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Abstract

Compilations of radiative view factors (often in closed analytical form) are
readily available in the open literature for commonly encountered geometries.
For more complex three-dimensional (3D) scenarios, however, the effort
required to solve the requisite multi-dimensional integrations needed to
estimate a required view factor can be daunting to say the least. In such cases, a
combination of finite element methods (where the geometry in question is sub-
divided into a large number of uniform, often triangular, elements) and Monte
Carlo Ray Tracing (MC-RT) has been developed, although frequently the
software implementation is suitable only for a limited set of geometrical
scenarios. Driven initially by a need to calculate the radiative heat transfer
occurring within an operational fibre-drawing furnace, this research set out to
examine options whereby MC-RT could be used to cost-effectively calculate any
generic 3D radiative view factor.

Initially, a suite of geometric ‘primitives’ (i.e. a sphere, cylinder, frustum, disc,
annulus, rectangle and triangle) and a methodology by which these primitives
can be combined and manipulated to construct complex 3D geometries was
introduced. As an alternative to using well-established finite element methods
(FEMs), these primitives permit more efficient memory usage, higher accuracy
(particularly in cases where part or all of the 3D geometry involves curved
surfaces) and an intuitive formulation for constructing arbitrary 3D geometries.
The functionality required to launch uniformly distributed rays from the surface
of each primitive in the suite, and identify valid ray-primitive intersections, were
also developed.

A robust C++ based program (called RayFactor) was developed to calculate
diffuse radiative view factors for any 3D geometry that could be described by a
combination of the available primitives. Using the computational test system for
this research, an Apple Mac Pro 4.1, RayFactor was refined by benchmarking
against a selection of geometries for which analytical view factors was available
in the literature. Using these benchmark examples, RayFactor was quantitatively
assessed in terms of its convergence characteristics, statistical results
distribution, and computational run-time to ensure that the underlying
numerical methods and computational design philosophy for MC-RT were sound.

With a CPU-based version of RayFactor fully tested, a range of options were
examined to improve computational speed and efficiency. These included: (i)
code structure optimisation targeting Intel’s multi-core processors; (ii)
implementation and comparison of a range of pseudorandom number generators
(PSRNGs) in terms of speed, quality of the number sequences delivered, and
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memory consumption; with the dSFMT generator providing optimal
performance on the CPU platform; (iii) implementation and testing of both
coarse and fine grain vectorisation methods, leveraging the OpenMP API and the
SIMD architecture of modern Intel processors; with problem vectorisation
efficiencies of approximately 98% being achieved; and (iv) implementation of a
range of algorithmic options to provide ‘fast’ numerical approximations of
transcendental functions (such as sine and cosine) repeatedly used within
RayFactor.

Despite the extensive optimisation options explored and implemented for the
CPU-based version of RayFactor, computational run-time was still felt to be an
issue. Thus, OpenCL, a modern heterogeneous computing framework, was
utilised to develop a general-purpose graphic processing unit (GPGPU) based
MC-RT implementation, called RayFactorCL. The highly vectorisable nature of
MC-RT was here exploited by targeting the parallel processing architecture and
capabilities of GPGPUs. Two consecutive generations of NVidia GPGPUs, the
GTX580 and the GTX680, were installed in the Mac Pro 4.1 test system and
extensively tested. Several alternative approaches to ‘work-load partitioning’
were examined. It was determined that GPGPU-based computations were most
efficient when such partitioning was conducted at the geometric object level
rather than at the ray level. Pseudorandom number generation was revisited in
light of the new GPGPU-based architecture, with the Philox counter-based
PSRNG, specifically developed for use on GPGPU platforms, being adopted. An
overall performance increase (in terms of run-time reduction) of over 32 times
was realised when comparing the GPGPU-based RayFactorCL to the earlier CPU-
optimised RayFactor, demonstrating that remarkable improvements can be
achieved using modern ‘commodity’ hardware provided that care is exercised to
match the numerical problem to the choice of hardware and software.

The object representational method employed in RayFactorCL was further
examined with a comparative study of finite element methods (FEMs) against
geometric primitives being conducted. The advantages and disadvantages of
both methodologies were explored in the context of solution accuracy,
computational speed and computing resource requirements, with geometric
primitives being found to have significantly higher performance than the
triangular elements used in typical FEMs for 3D objects with curved surfaces,
such as the sphere and cylinder. However, it was apparent that object
representation using geometric primitives may not be suitable in all
circumstances, and therefore a hybrid method, in which the most advantageous
features of both primitives and FEMs were combined, was developed and tested.
In essence, this hybrid model mapped finite element meshes to the surfaces of
geometric primitives and once ray-primitive intersection was identified,
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preformed a nearest neighbour search with the intersection point and the
associated finite elements. Performance improvements (in terms of run-time
reduction) of up to 50% were achieved compared to a standard bounding
volume approach, and when using the proposed hybrid representational method,
and up to 260% compared with a ‘pure’ FEM-based approach.

Finally, a fully conjugate heat transfer model of an operational fibre-drawing
furnace was developed using the commercial CFD simulation software PolyFlow.
Radiative view factors for all internal surfaces within the furnace were calculated
using RayFactor. These were then manipulated (due to the limited ability of
PolyFlow to include radiative heat transfer) to allow ready data exchange
between the two software packages, thus permitting calculation of the radiative
heating profile along the length of the polymer preform and the drawn fibre. This
heat transfer model was validated against experimental temperature profile data
with excellent agreement being achieved, and used in parametric studies to
predict fibre drawing behaviour over a range of temperatures and draw ratios. A
modified version of this furnace model will be used in planned research into the
high-speed production of sub-micron meta-material fibres where the structured
metal core is enclosed within a glass sheath. Due to the higher (than necessary
for polymeric fibres) furnace draw temperatures, thermal radiation will be the
dominant contributor to heat transfer, making the accurate prediction of furnace
view factors a key model parameter.

Few projects follow the initial research script, and this one was certainly no
exception. What began as an urgent need to calculate the radiative heat transfer
within an operational fibre drawing furnace, ended up exploring the
computational capabilities (and challenges) of modern heterogeneous
computing platforms. Along the way, the advantages (and it has to be said, the
disadvantages) of combining geometric primitives and Monte-Carlo methods to
enable the rapid determination of complex three-dimensional radiative view
factors were explored in some detail.
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Introduction

1.1 Radiative Heat Transfer

Radiative heat transfer is important across a wide range of engineering systems.
In all such cases, the ability to accurately predict three-dimensional (3D)
radiative heat transfer can be critical in both system design and analysis.

Radiative heat transfer, unlike the conductive and convective mechanisms of
heat transfer, can occur in the absence of either a solid or fluid transmission
medium. It is generally accepted that radiative heat transfer occurs via the
emission and absorption of electromagnetic radiation with wavelengths in the
range 0.1 to 100pum with the propagation of thermal radiation as electromagnetic
waves being described by the following equation.

c=fA )

Where c is the speed, f is the frequency and A is the wavelength. The emission of
electromagnetic radiation occurs due to the energy released as a result of atomic
oscillations and translations. These are maintained by the internal energy of the
material, which is a strong function of temperature. Therefore, as the
temperature of the matter increases, so too will the intensity of its thermal
radiation.

Radiative heat transfer occurs with all forms of matter and is a volumetric
phenomenon in which radiation emerging from a finite volume of matter is the
integrated effect of local emission throughout the volume [1]. In most solids and
liquids, when radiation is emitted from a molecule within its volume, it is
subsequently absorbed and re-emitted by its neighbours. This cycle of emission,
absorption and re-emission results in any thermal radiation emerging from the




volume originating from within a short distance of the exposed surface. This
allows radiative heat transfer to be viewed largely as a surface phenomenon for
many materials of engineering interest.

The rate at which radiant energy is emitted with a wavelength 1 and a direction
defined by the spherical coordinates 8 and ¢ is referred to as the radiation
intensity, I, .. The radiative intensity is defined in terms of the unit area of the
emitter, dA; and the normal to the direction of emission and may be expressed
mathematically as a function of the wavelength and direction as shown in
equation (2).

dq

2
dA;.cos¢.sing.de.db.dA @)

I/l,e (/1' 0, ¢) =

If the spectral and directional distributions of the radiation intensity are known,
then the quantity of radiation emitted per unit area of the emitter (i.e. the
emissive power) may be determined. Considering monochromatic radiation, the
rate at which it is emitted in all directions (i.e. the spectral emissive power) may
be calculated using the intensity of the emitted radiation, [;,, as shown in
equation (3).

2 /2
Ey(A) = f f [e(4,0,¢).cos¢p.sing.de.do 3
o Jo

The rate of which radiation is emitted at all wavelengths, in all directions (i.e. the
total emissive power) may be calculated by integrating the spectral emissive
power over all wavelengths as shown in equation (4).

E = f OOEA (Ada 4)

Similarly, if the spectral and directional distribution of the radiation incident on
a surface is known, the quantity of radiation intercepted by the surface (i.e. the
irradiation) may be determined. Again considering monochromatic radiation
with a wavelength 4, the rate at which radiation is received from all directions




(i.e. the spectral irradiation) may be calculated using the intensity of the incident
radiation, I, ; as shown in equation (5).

2 /2
G,() = f f L,;(4,8,¢).cos ¢ .sing.de.do ®)
0 0

The rate at which radiation is incident on a surface at all wavelengths from all
directions may then be determined by integrating the spectral irradiation over
all wavelengths in a similar fashion to the total emissive power.

G = f mG,l(A)d/l (6)

As suggested by the equations for calculating the emissive power and irradiation,
the nature and temperature of the emitting surface govern the characteristics of
the spectral and directional effects on radiation emission. The non-ideal nature
of radiation emission can result in quite complex and time-consuming analysis
for systems containing ‘real’ surfaces.

Rather than analysing complex directional or spectral emission of radiation, it
may be acceptable in many engineering situations to make the simplification that
the objects in a given system behave as ideal emitters and absorbers of radiant
heat. Such an idealized surface would emit radiation uniformly in all directions
(i.e. exhibit a diffuse distribution) and absorb all incident radiation. Such an
idealized surface is known as a blackbody and by using its emission and
absorption characteristics, radiative heat transfer analysis can be greatly
simplified.

1.2 The Blackbody

A blackbody is an idealized volume which emits and absorbs the maximum
possible amount of radiation at a given temperature in all directions over all
wavelengths. Blackbodies are perfect emitters and absorbers of radiation and,
therefore, are useful as a reference when describing radiative heat transfer for
non-ideal surfaces.




Unsurprisingly, real surfaces never fully exhibit the ideal behaviour of a black
body, although such behaviour may be closely approximated by a cavity whose
inner walls are maintained at a uniform temperature and radiation is only
permitted to enter and leave the cavity via a small aperture. The blackbody
behaviour of this particular idealized geometry be may explained in terms of the
following:

1. All radiation entering the cavity will experience multiple reflections at the
walls of the cavity and will ultimately be entirely absorbed.

2. All radiant heat emitted at the walls of the cavity can only leave through
the aperture, as the walls are isothermal and therefore heat transfer
between them would be in violation of the second law of
thermodynamics.

3. Radiation emitted at the walls of the cavity will undergo multiple
reflections before finding a path out of the cavity. These multiple
reflections will result in the exiting radiation having a highly scattered
directional distribution as it leaves through the cavity aperture.

Although radiative heat transfer systems seldom include geometries which
behave as a blackbody (such as an idealised cavity), adopting the blackbody
approximation (or variations on it) allows the emission and absorption of
radiative heat to be readily characterised.

1.2.1 Spectral Emissive Power of a Blackbody

The spectral distribution for the intensity of radiation emitted from a blackbody
was first determined in 1901 and is known as the Planck distribution, as shown
in equation (7).

2.h.c?

A5 [exp </1hkcqr> - 1] ")

I)L,b (A, T) =

Given that a blackbody is a diffuse emitter and therefore I; ., (4,6, ¢) = I; , (1), its
spectral emissive power can be calculated by substituting the Planck distribution
into the spectral emissive power equation (3). The resulting formula for the
spectral emissive power of a blackbody is shown in equation (8).
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The spectral emissive power of a blackbody at a selection of temperatures is
shown in Figure 1. As a blackbody is a perfect emitter, the curves shown here
provide an upper bound for the spectral emissive power of any real surface at
the same temperature.
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Figure 1: Blackbody spectral emissive power at a selection of temperatures

From Figure 1 the following emissive characteristics of a blackbody become
immediately apparent:

1. The emitted radiation varies continuously with wavelength;
The peak emissive power increases with temperature;

3. As the temperature of the body increases, so the wavelength at the point
of peak emissive power decreases.

Of particular importance on this curve is the wavelength at which maximum
emissive power occurs, A,y




1.2.2 Wavelength of Maximum Emission

The wavelength at which a blackbody will have its maximum emissive power
may be calculated using Wein’s displacement law. This states that the
wavelength of maximum emissive power, 4,,,,, is displaced to shorter
wavelengths with an increasing temperature. The mathematical form of this law
is shown in equation (9) and indicates that the product of 1,,,, and the
(absolute) temperature is constant.

AmaxT = C3 (9)

Where C; is Wien’s displacement constant. It is of interest to note that Wein'’s
displacement law may be obtained by differentiating equation (8) with respect to
A and solving for the case where this derivate is equal to zero. Alternatively, if we
integrate equation (8) with respect to A over the range of all wavelengths, we
obtain another important quantity, the total emissive power.

1.2.3 Total Emissive Power

Although presented later here, the formula to calculate the total emissive power
of a blackbody actually predates the discovery of the Planck distribution, being
determined experimentally in 1879 by Joseph Stefan and verified theoretically in
1884 by Ludwig Boltzmann [1]. It may be calculated as a function of absolute
temperature as shown in equation (10).

Eb = O-T4 (10)

This equation is today known as the Stefan-Boltzmann law and may be used to
calculate the emissive power of a blackbody over all wavelengths, in all
directions, per unit time and area. As mentioned previously, equation (10) can be
obtained by substituting equation (8) into equation (4).

Given the simplicity in calculating the radiative characteristics of a blackbody,
the appeal of using such an approximation for radiative heat transfer analysis is
clearly apparent. Unfortunately, most real surfaces have non-ideal emission and
absorption characteristics. However, the blackbody approximation can still be
used as a reference point, if the radiative behaviour of a surface can be described
in terms of its emissivity.




1.3 Emission from Real Surfaces

1.3.1 Emissivity

In reality no real surface exhibits the ideal emission/absorption characteristics
of a blackbody. However, for many real surfaces, it is adequate to describe their
behaviour in terms of a surface radiative property known as emissivity.

Emissivity is defined as the ratio of the radiative emission from the real surface
to that of a blackbody. It therefore lies in the range 0 < € < 1 where a black body
has an emissivity of 1 and any real object will have an emissivity less than 1.

As the emission of thermal radiation from a real surface is dependent on the
temperature of the emitter, the (two spherical coordinate) direction of the
emission and the wavelength of the emitted radiation, the emissivity is a function
of four parameters. When dependence on all four parameters is considered, the
emissivity is referred to as the spectral-directional emissivity and may be
defined as shown in equation (11).

[,e(4,6,9,T)

11
Il,b (Ar T) ( )

81,9 (/L 9; (,b; T) =

For some materials, we may simplify our treatment of emission by assuming that
the emissivity is spectrally independent i.e. emissivity is constant with respect to
wavelength. This is then known as the directional emissivity and represents the
‘spectral average’ of ¢, ¢ as defined in equation (12).

1.(0,9,T) (12)

(0,9, T) = 1, (D)

Similarly, if appropriate for a particular analytical situation, one could instead
make the assumption that emission characteristics are independent of the
emission direction and use the spectral hemispherical emissivity, as defined in
equation (13).




E;(A,T)
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EA,b (A' T) ( )

g, T) =

By making the further simplification that emission is independent of both
emission angle and the wavelength, one can define total hemispherical
emissivity, which represents the average emissivity over all wavelengths and
directions, as defined in equation (14).

E(T)

14
Ey(T) 9

e(T) =

A final simplification that can be made for a real surface (relative to the
corresponding blackbody) is that its emission is constant over all temperatures,
and wavelengths. This is known as the ‘grey body’ assumption. Despite its
limitations, this simplification is commonly used in engineering analysis due to
the far greater availability of grey body emissivity factors compared to spectral
or directional emissivity data. Although the grey body simplification is
reasonable for many real materials, one must always be aware that it is in fact an
approximation and that the emission characteristics of all real surfaces will
depart from diffuse, temperature independent emission to a greater or lesser
extent.

Once the emissivity of a given material is known, one may calculate the radiant
heat emitted from an object by simply multiplying its emissivity by the
corresponding blackbody body value. For example, if we have the spectral
emissivity €; (4, T), we may calculate the spectral emissive power from equations
(8) and (13). Similarly if we have the total hemispherical emissivity €(T), or the
grey body emissivity €, we may calculate the total emissive power using
equations (10) and (14) or simply multiplying equation (10) by the grey body
emissivity.

Clearly, the characterisation of the radiative behaviour of real surfaces is a
challenging endeavour that has been addressed by many researchers over many
years. In addition to the quantification of the radiant heat emitted from an object,
however, knowledge of how the emitted radiation is distributed to the
surrounding environment is required to complete any radiative heat transfer
analysis. This distribution is dictated by the geometric arrangement of the




various elements within a radiative heat transfer system. For any two elements,
this may be characterised using a parameter known as the view factor.

1.4 The View Factor

The view factor (also known as the configuration, exchange, or shape factor) is
defined as the fraction of thermal radiation leaving one surface i which is incident
on a second surface j. The view factor, F;; accounts for both the geometric
configuration of surface j relative to i and the directional distribution of the
radiation leaving surface i. Formulation of the view factor may be demonstrated by
considering two infinitesimal surfaces dA; and dA; as shown in Figure 2.

Figure 2: Configuration for radiative heat exchange between two infinitesimal surface

elements

The rate at which radiation leaves dA; and is incident on dA; may be expressed in
terms of the intensity of the radiation leaving surface i (I;), the straight line distance
between the two finite surfaces (R), and the angles that this line makes with each

surface normal (Hi, 9~) as shown in equation (15).

cos 6; cos 6;

Assuming that surface i is a diffusely emits and reflects radiation, the total
radiation leaving i may be represented in terms of its radiosity J; as shown in
equation (16).




cos 6; cos 9

Making the additional assumption that the radiosity is uniform over the surface i
the total rate at which radiative energy is leaving i and being intercepted by j
may be calculated by integrating over the surfaces 4; and A4; as shown in

equation (17).

4i r4jcos B; cos B;
qij = J; f f — "7 dA;. dA; (17)

As the view factor Fj; is the ratio of all radiation leaving surface i and being
subsequently intercepted by surface j to the total amount of radiation leaving
surface i, we may present the view factor as the ratio of the two as shown in
equation (18).

qi-j
= 22 1
Fy; A, (18)

Substituting equation (17) into equation (18), the equation for the view factor
for a grey, diffuse emitter is obtained as shown in equation (19).

1 (4 (4 cos B cos b
F;; :_f f % dA;. dA; (19)
o Jo mT.R

Evaluation of any required view factor is straightforward provided that R, 6; and
0; can be expressed in terms of the geometrical parameters that define the two
participating surfaces, and the necessary integration of equation (19) can be
performed.

Because of the importance of radiative heat transfer in a wide variety of
applications, compilations of analytical or tabulated results (often in terms of a
set of relevant dimensionless geometrical parameters) are available in the
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literature [2]. In some cases, an unknown view factor can be generated from
known factors by making use of view factor algebra [3]. However, for many
complex radiative heat transfer geometries, analytical or tabulated view factors
are not available. In such cases, view factors must be calculated from first
principles, for example by solving equation (19) for a diffuse emitter, or by using
a suitable alternative calculation methodology.

1.5 Calculation of View Factors

The analysis of many geometries does not lend itself to the simple application of
compiled view factors. As one might suspect from equation (19), it can become
quite challenging to calculate closed-form view factors for all but the simplest
geometries.

The following section will provide a demonstration of the potential complexity in
calculating closed-form view factors for the simple geometry of parallel, co-axial
discs using equation (19). Subsequently, a more promising method which is at
the heart of this thesis called Monte Carlo Ray Tracing (MC-RT) will be
introduced.

1.5.1 Calculation from First Principles

Consider a geometry containing two parallel coaxial discs of unequal radius as
shown in Figure 3. The view factor from 4, to A, may be calculated analytically
by solving equation (19) for any two given radii (r;,7,) and the distance
separating the two discs (h).

Figure 3: Geometry for disc to parallel unequal coaxial disc (C-41)
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Given that, as the discs are parallel, the two angles ; and 0; formed by the line R,
which joins a point on 4; to a point on A, will be equal. Furthermore, the cosines
of each of these angles will be equal to the distance separating the discs divided
by the length of R and therefore equation (19) may be expressed as shown in
equation (20).

. R2

1 A Aj h/R 2

In order to evaluate this integral, the variable R must be cast in such a way that it
represents changes in the integration variables. This is achieved through the use
of polar coordinates as shown in equation (21).

R? = (r cos 0; — cosH ) + (r sin; — sm@ ) + h? 21)
72+ 77 + h2 — 2.7.% cos(6; — ;)
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Substituting these definitions back into equation (20) results in the quadruple
integral shown in equation (22):

e N I TR A CRN @)

Integrating for one of the polar angles and constructing the new variable
definition 8 = §; — §j results in a triple integral, which can then be integrated for

6 as shown in equation (23).
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Now by using changes in variables and the designations S; = r* and S; =1/, one

can simplify the previous integral and allow for two successive 1ntegrat10ns over
the S; and §; to take place as shown in equation (24).

f f S;+S; + h? s ds
/ . i. J
(i + 5+ h2)* 4.51-.51-]3 i

- 2_1r12 lhz +r2+1? - \/{hz + (- Tj)z}{hz + (i + rf)z}l

(24)

Simplifying this view factor equation by introducing normalization variables
(R; =r/hand R; =1;/h) and the substitution variable (T = 1+ R} + R?) the
analytical solution for the view factor between two parallel coaxial discs is
obtained.

1 ,
R

No novelty is claimed for this analysis. However, the point can be made that even
for a relatively simple geometry, a certain level of applied mathematical
sophistication is required to obtain a solution.

1.5.1 Calculation by Numerical Integration

In addition to solving the view factor equation from first principles, numerical
integration methods such as contour double integration may be used [4]. Rather
than developing a closed-form parameterised formula as presented in equation
(25), numerical integration methods will solve the view factor equation as a
definite integral, providing an explicit value for F;_;. It should be noted that the
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view factor set describing the radiative heat transfer for the case study
presented in Chapter 7 was originally calculated using numerical integration
techniques and served as a benchmark for view factors calculated by MC-RT
methods which will be presently introduced in subsequent sections.

While numerical integration does reduce the difficulty of solving the view factor
equation, it still requires some algebraic manipulation before it can be applied.
For example, when considering the view factors for the geometry shown in
Figure 3, one must first develop equation (22) before any numerical integration
(by Gaussian quadrature) may be attempted. Furthermore, in order to
numerically integrate multi-dimensional integrals such as the view factor
equation, it is typically required that the integral be phrased as a series of
iterative one-dimensional integrals, which results in a progressive growth in
computational run-time with the dimensionality of the integral.

While several efficient algorithms have been developed for the numerical
integration of view factors [5, 6], these algorithms are typically for very specific,
idealised geometries such as the coaxial parallel discs example shown in Figure
3.

Although extensive catalogues of both numerical and closed-form view factor
solutions have been presented in the literature [2], these solutions can be
complicated leaving them prone to round-off and/or truncation error and like
the numerical integration algorithms, are typically not general enough to be used
for the complex radiative geometries often encountered in ‘real’ heat transfer
systems. In such cases, probabilistic methods are often utilised.

1.5.2 Calculation by Probabilistic Methods

As the complexity of the geometry and/or emission characteristics increases, so
the difficulty in applying deterministic approaches (such as first principles or
numerical integration) increases exponentially, quickly rendering these methods
intractable in many cases. Furthermore, due to the nature of radiative heat
transfer any modifications to the geometry and/or the material properties
during the design process will typically require the solution to be fully reworked.

Due to the inherent complexity in solving the view factor equation for all but the
simplest geometries, Monte Carlo based methods have widely been employed to
solve radiative heat transfer problems [7-15]. Although Monte Carlo methods
may be used to solve the view factor integral itself (via Monte Carlo integration),
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when analysing radiative heat transfer it is most powerful when coupled with a
ray-tracing technique.

1.6 Monte Carlo Ray Tracing

As the name implies, Monte Carlo Ray Tracing (MC-RT) is the use of a ray-tracing
technique within the context of a Monte Carlo simulation. MC-RT is an incredibly
versatile probabilistic method for the calculation of radiative view factors, and as
such its use and implementation on contemporary computer hardware/software
platforms is the focus of this thesis. The following sections will provide a high-
level overview of both Monte Carlo methods and ray-tracing, with more specific
details of its application to the calculation of radiative view factors being
presented in Chapters 2 and 3.

1.6.1 The Monte Carlo Method

Monte Carlo methods form a class of numerical algorithms that rely on repeated
random sampling of the behaviour of individual elements in order to statistically
characterise the behaviour of a population as a whole [16]. It is often concisely
described (somewhat unflatteringly) as the technique of solving a problem by
putting in random numbers and getting out random answers [17]. The statistical
nature of Monte Carlo methods mean that models do not always steadily
converge on a single result but instead fluctuate around the solution with the
magnitude of these fluctuations progressively reducing with an increase in the
number of samples used.

Monte Carlo based methods have been in use for many years, with the
experimental determination of = by French mathematician Buffon in 1768 being
cited as an early example [18]. The work of von Neumann, Metropolis and Ulam
during the Manhattan project in the late 1940s provided a formal foundation for
Monte Carlo methods where they were used to predict the average behaviour of
nuclear processes by repeatedly simulating the behaviour of individual neutrons
[8]. Today, Monte Carlo methods are applied to a host of diverse numerical
problems such as financial forecasting and climate modelling where they have
proven to be exceptionally useful in circumstances where it is difficult to obtain
closed-form expressions or infeasible to apply deterministic algorithms. In this
context, the calculation of radiative view factors is a good example.

The complexity in analysing radiative heat transfer may be greatly reduced by
implementing a Monte Carlo strategy. Here, rather than examining the radiative
heat transfer process as a whole as required by the view factor equation, analysis
is limited to a single discrete packet or ‘photon’ of radiative energy. When
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considering just a single photon, radiative transport may be represented as a
series of interactions between the photon and its surroundings (i.e. as a Markov
chain process) with the photon’s behaviour at each interaction being governed
by a probability density function (PDF). Through implementing such a Monte
Carlo strategy, radiative heat transfer can be quantified by repeatedly sampling
the behaviour of many (often in the many millions) independent photons to
obtain the average behaviour of emitted radiation. Not only does this strategy
drastically simplify the mechanics required to analyse radiative heat transfer
problems, but the deconstruction into a series of independent samples also has
important ramifications for implementations on modern vectorised computer
hardware (which will be explored later in Chapters 4 and 5).

When considering surface-surface radiative exchange problems, a Monte Carlo
strategy can be coupled with a computational technique called ray-tracing to
provide limitless bounds on the geometries that are open to analysis.

1.6.2 Ray Tracing and MC-RT

The term ray-tracing was first coined to describe the general technique of
modelling the path taken by rays of light as they interacted with optical systems
such as camera lens and microscopes. Over the years, ray-tracing has steadily
evolved and today has largely come to represent the computational technique in
which the path of a photon is traced from a point (such as in a camera) and
through a virtual three-dimensional geometry for the purposes of generating
photorealistic images. In this application, rather than trace the ray from source
to destination, it is instead traced from the destination (i.e. the camera) to the
light source. This is done for efficiency reasons as it ensures rays that do not
reach the camera from the emission source are not considered in the analysis.

The application of ray-tracing in the field of computer graphics has been around
for over four decades, with the first image-rendering ray tracing algorithm being
presented by Appel in 1968 [19]. Due to the intense interest (and strong
financial incentive) of the computer graphics community in ray-tracing, an
extensive body of research has been developed on its application [20-23]
particularly in the areas of computational run-time reduction [24-30].

Although much of the modern ray-tracing knowledge/expertise has been
developed in the field of computer graphics, it is readily adaptable to the analysis
of radiative heat transfer problems. Here, rather than trace a ray of light from
destination to source, a photon of radiation is traced from emitter to absorber.
By coupling ray-tracing with Monte Carlo methods, radiative heat transfer can be
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quantified by sampling a statistically significant number of rays, which each
exhibit the physical characteristics of the emitted electromagnetic radiation.

The use of MC-RT for the calculation of radiative heat transfer is not a new
concept, with comprehensive surveys of its application available [8]. In its
formative years, MC-RT was used primarily for the direct simulation (DSMC-RT)
for both surface-surface exchange [14, 31-36] and participating media systems
[7, 17, 37-40] (it should be noted that consideration of participating media can
result in a large increase in the solution run-time, particularly if the medium is
optically thick [16]). Here, each ray is assigned a discrete energy level and a
wavelength and dissipates this energy as it travels through a geometry
undergoing successive absorption, reflection and/or transmission processes.

Howell [7] outlined a basic DSMC-RT framework for the direct computation of
radiative exchange between two surfaces and applied it to the exchange between
a differential element, dA;, and to an infinite plane, A,. In this method, the total
emitted energy per unit time for the emitting element d4; is calculated using the
total hemispherical emissivity with the total energy being evenly distributed
across N ‘samples’. In this context, these samples may be looked at as bundles of
energy (i.e. photons) with each bundle being of a different wavelength.
Conceptually, this leads to a different number of photons per bundle as a
photon’s wavelength is dependent on its energy (and vice-versa).

Following the allocation of energy to each bundle, a random launch direction is
selected by assuming the directional distribution of a grey diffuse emitter.
However, it is also noted that more complex emission characteristics could be
implemented at an increased computational cost. If the launch direction results
in the bundle hitting dA4, then a wavelength is assigned to the bundle according
to the emission properties of dA; and the bundle is either absorbed or reflected
depending on the absorptivity of dA4, and the bundle’s wavelength. All bundles
which are reflected by dA, back to dA; are neglected and therefore it may be
assumed in this two surface problem that all reflected bundles are 'lost' to the
environment and require no further computation.

More recently, MC-RT has been used in the calculation of three-dimensional view
factors for arbitrary geometric systems [12, 35, 41-43]. Here, the basic
framework of the simulation is essentially identical to that used for DSMC-RT,
with the minor difference that each ray is not assigned an energy level, a
difference that allows certain optimisation options to be employed on modern
hardware, such as the Graphical Processing Unit (GPU), which will be examined
in Chapter 5. However, before further consideration may be given to the
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calculation of radiative view factors, one must examine one of the most critical
aspects of any Monte Carlo implementation, the random number generator
(RNG).

1.6.3 Random Number Generation

The most critical aspect of any Monte Carlo implementation is the fast generation
of ‘high-quality’ random numbers. In the context of MC-RT treatment of radiative
heat transfer, billions of random numbers are required for the determination of
ray starting points, ray launch directions and material characteristics. Due to the
shear quantity of random numbers required for MC-RT it is often impractical to
feed ‘true’ random numbers streams (such as those derived from atmospheric
noise) into the simulation. Instead these are provided by pseudo random
number generators (PRNGs).

PRNGs use a deterministic algorithm to generate a stream of numbers that
(closely) approximate a truly random sequence. Ideally, these sequences are
uniformly distributed, uncorrelated, reproducible, exhibit long periods (i.e. the
amount of numbers generated before the sequence repeats itself) and are easily
split into many independent streams for the purposes of problem vectorisation
[44].

As literally billions of random numbers are required even for MC-RT treatment
of relatively simple geometries, it is essential that an efficient random number
generator of long period is implemented. Many algorithms have been proposed
for the generation of pseudo random numbers [45-50] with several general
reviews of their use and suitability available in the open literature [44, 51-56].

As each PRNG provides its own balance of speed, quality and ‘memory
consumption’ (which are typically conflicting attributes), no one PRNG can be
considered as the ‘best’ across all numerical applications and computer
hardware architectures. It is therefore typically recommended that for a given
application, multiple PRNGs are considered and tested to ensure high overall
performance (as indeed will be presented in Section 4.3 for the current
research).

While the selection of the PRNG greatly impacts the rate at which an MC-RT
simulation can converge on the true value of a radiative view factor (from both a
generation speed and sequence quality perspective), it will not eliminate
statistical variations in the final solution. While these variations can be reduced
through increasing the number of samples (at the cost of increasing the run-
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time), these variations can also be reduced through the use of view factor
smoothing techniques.

1.6.1 View Factor Smoothing

As view factors calculated from MC-RT are a result of random statistical
sampling, they will have inherent stochastic errors. Only when the number of
rays emitted from a surface, N, approaches infinity will the MC-RT view factor
F; ; be equal to the ‘exact’ view factor Fj;. As it is generally impractical to increase
the number of rays fired from a surface to extreme levels, alternative methods,
such as view factor smoothing, may be adopted to minimise the discrepancy
between F;;and F;.

The simple premise behind view factor set smoothing is to force compliance with
reality. From the very definition of a view factor, it is clear that the sum of all the
view factors from a given surface must equal unity as follows [1]:

iﬂj =1 (26)

Jj=1

This is known as the summation rule and is clearly satisfied when Fij is
substituted for F;; as every ray that is released as part of an MC-RT simulation is

inevitably absorbed at some point by some other surface.

In addition, the second law of thermodynamics requires that the net heat
transfer between two surfaces at the same temperature to be equal to zero, and
this can be described by the reciprocity rule [1]

A F,

ij = 4 (27)

Ji

As F; ; and Fji are determined independently from different statistical samplings,
it cannot be guaranteed that the reciprocity rule is satisfied for any given view
factor in a MC-RT simulation. Smoothing algorithms utilise this reciprocity
requirement by aiming to increase the overall accuracy of a view factor matrix by
enforcing ‘reality compliance’ through matrix modification.
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Two main classes of smoothing algorithms exist. The first class iteratively
modifies the view factor matrix to satisfy the reciprocity rule without limiting the
size of the correction. The second class aims to find the smallest vector of
correction factors that could be added to a set of view factors to satisfy the
required reality rules.

The first class of algorithm, originally presented by van Leersum [57], modified
the view factor matrix iteratively to enforce the two ‘reality rules’ until
convergence was achieved. This method treated each view factor identically,
regardless of their relative accuracy. Lawson [58] subsequently built on van
Leersum’s method by taking into account the relative accuracy of the
unsmoothed view factor set by proportioning the correction to the size of the
unsmoothed view factor. Taylor et al [59] took a different approach by instead
calculating the ‘upper triangle’ of the view factor matrix and using the reciprocity
and summation rules to calculate the ‘lower triangle’ and diagonal of the view
factor matrix, respectively. Although this class of smoothing algorithm is simple
to implement, they do not guarantee that the modified view factor matrix will be
more accurate than the original matrix [60].

Thus, Vercammen and Froment [43] introduced a second class of algorithm in
order to smooth Hottel's exchange areas as determined by a Monte Carlo
method, but treated view factor smoothing as a constrained-least-squares
optimisation problem. In this approach, a correction vector is added to the
unsmoothed view factor matrix to yield a smoothed matrix with the overall aim
of minimising the correction vector. This approach was later refined by Larsen
and Howell [61] and Loehrke et al [60], with modifications including the
weighting of elements in the correction vector to ensure that the smaller,
generally less accurate, view factors were modified in preference to the larger,
generally more accurate, view factors [62]. By 1995, the run-time for large MC-
RT simulations to a given accuracy was effectively halved through the use of
view factor smoothing with Loehrke reporting an accuracy improvement
comparable to that obtained by doubling the total number of photons released in
the simulation [60].

Although these various algorithms produced quite substantial increases in the
accuracy of MC-RT view factor sets, they could still produce negative view factors
in the final smoothed matrix as a non-negativity constraint could not be imposed
on the least-squares minimisation problem without making it analytically
intractable [62]. Daun et al [62] solved the negative smoothed view factor
problem in 2005 by implementing a constrained maximum likelihood (CML)
estimation rather than the least-squares optimisation utilised by previous
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authors. When considering an identical geometry to that analysed by Loehrke et
al [60] but with CML smoothing, Daun et al observed accuracy increases
consistent with the previous approach. However, these authors emphasised that
the CML smoothing problem is roughly half the size of the least-squares problem,
and that CML is more accurate than least-squares optimisation when relatively
few rays N, < 1x103 are used [62].

In addition to view factor smoothing the accuracy and computational run-time
required to calculate radiative view factors by MC-RT simulation may be
improved by revisiting the methods by which geometries are represented within
the simulation.

1.6.2 The Use of Geometric Primitives in MC-RT

Although a finite element representation of surfaces is ideal for analysing heat
transfer by conduction, it is not always the best option for radiative heat transfer
analysis. Despite the fact that the necessary polygon intersection routines are
relatively fast (an issue to be explored in Chapter 6), it may take thousands of
such (finite element) polygons to give an accurate representation of tightly
curved surfaces. An alternative is not to discretise the surfaces, but rather to
instead treat each surface as a whole - with the complete geometry being
described in terms of a suite of generic ‘primitive’ shapes. This representation
method borrows heavily borrowed from the field of modern computer graphics,
and its use in the calculation of radiative view factors will be detailed in Chapter
2.

As an example, Vueghs et al [12] combined the use of finite elements for
conductive heat transfer and a primitive based MC-RT for thermal radiation to
calculate the heat transfer flows within a satellite. A geometric representation of
a sphere was used to enclose an alternative finite element mesh representing the
same sphere. When a ray was launched into the geometry to model radiative
heat transfer, intersection was first tested with the sphere as a whole (i.e. with
the primitive). If the ray did not intersect the sphere, then the computation was
deemed to have finished. However, if the ray met the ‘primitive’ sphere, then its
intersection point was mapped onto a structured mesh placed over the sphere
and all finite elements describing the sphere were tested for intersection. This
hybrid technique was also applied to calculating the view factor between two
concentric spheres exhibiting specular reflection. It was found that not only were
run-times reduced, but errors arising from the approximation of the surface
curvature were effectively eliminated.
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Walker et al [14] have greatly extended this concept of geometric primitives in
radiative heat transfer. They have developed and presented a framework for
modelling complex three-dimensional geometries using a limited set of primitive
objects (such as a sphere, a cylinder, a (truncated) cone, and a flat surface), to
which affine transformations could be applied to generate any desired geometry.
Using such primitive objects permitted easy generation of geometries without
the requirement for any finite element modelling. This work will later be
explored throughout this thesis.

1.6.3 Adoption and Problem Complexity Scaling of MC-RT

The primary disadvantage of MC-RT simulations is that they are computationally
expensive, and indeed in the early years of their implementation they were
impractical for all but the simplest simulations. As a result, alternative, more
established methods (such as direct numerical integration of the problem as
posed in terms of analytical geometry) were the accepted way of calculating
radiative heat transfer at this time. However, such approaches scaled quite
poorly with increasing problem complexity, and in many cases such approaches
were totally impractical for more challenging geometries.

Campbell [63] compared the solutions obtained by finite element based methods
and MC-RT, and concluded that while the former can generally calculate a
solution, MC-RT has a clear potential advantage when handling more complex
geometric scenarios. His comparison of the two methods lead to Campbell noting
that at the time of publication (1967) there was no one computational method
capable of handling all radiative heat transfer problems encountered in
science/engineering, and therefore it was advantageous to have access to both
methodologies.

In 1968, Howell [16] extended his previous work [7] and provided a thorough
review of general Monte Carlo analysis and its application to a range of heat
transfer problems. In this paper, he concisely sums up the issue of implementing
a MC-RT solution by stating that anyone analysing a radiative exchange problem
has to ask themselves: "Is it better to program the solution of the integral
equations by finite difference techniques, with the possibility that convergence
will not be attained, or by Monte Carlo based methods, which, though
computationally demanding will give an answer sooner or later?".

In addition, Howell revisited the surface exchange problem presented in his
earlier paper [7], further demonstrating the ease with which emissivities of
greater complexity than the simple grey diffuse emitters may be incorporated
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into a Monte Carlo framework with little increase in implementation difficulty,
although implying that such increases in complexity would also increase the
simulation run-time. In broad agreement with Campbell [63], Howell states that
many specialised techniques had been developed which surpass a generic Monte
Carlo based approach in terms of accuracy and run-time, however the range of
problems to which they may be applied is limited (and in some cases, very
limited). It was concluded that a Monte Carlo program increases in complexity in
roughly direct proportion to the complexity of the problem, while the
alternatives, such as finite difference based methods, broadly increase in
proportional to the square of the problem’s complexity. The situation has not
changed radically from when this conclusion was initially drawn, and today one
of the key advantages of MC-RT solutions is that they still scale in a much more
computationally friendly manner for complex radiative systems than the
alternative methods.

1.6.4 Current Issues in MC-RT for Radiative Heat Transfer

As stated in the preceding section, the primary issue for MC-RT methods is the
time they take to converge on a solution. As demonstrated by Campbell [63], MC-
RT simulations have two key properties governing their behaviour: (i) that the
statistical error approaches 0 as the number of rays launched approaches
infinity, and (ii) that there is no propagation of statistical errorl. It is within the
context of these two properties that the way forward for MC-RT may be
addressed.

Considering the first property, the issue is one of ensuring that an MC-RT
simulation has high performance i.e. it converges quickly. The ‘performance’ of
Monte Carlo solutions may be quantified in terms of the run-time t and the
variance y of the results as shown in equation (28).

1

Performance « ﬁ (28)

Here the performance is judged by the statistical error of the solution, which
from the previous point (i) can be increased by increasing the number of rays?,
used and reducing the time it takes to simulate these rays. While the first

1 This means that the average result of 10 runs using 1000 bundles each will have the same
accuracy as a result of a single run using 10,000 bundles.

2 The standard deviation is proportional to 1/,/N,,, therefore to double the accuracy we must
‘shoot’ four times as many rays.
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property permits error reductions by increasing the number of samples, the
second property allows these samples to be taken independently allowing
vectorised computer hardware to be readily exploited for the calculation of
radiative view factors.

While there are suitable convergence acceleration techniques, such as view
factor smoothing available, MC-RT performance is ultimately decided by the
selection of a suitable high quality PRNG, geometric object representational
methods, and the exploitation of modern, high performance hardware such as
the graphical processing unit (GPU). This thesis will aim to address these key
areas as described in the following section.

1.7 Thesis Aims and Structure

The flexibility of Monte Carlo Ray Tracing makes it an invaluable tool for the
calculation of radiative view factors in complex three-dimensional geometries.
However, its high computational cost can limit the size and types of problems
that may be feasibly analysed using this method. This thesis has as its central
aims a comprehensive re-examination of the performance of MC-RT within the
context of modern computing hardware/software, and the development of an
efficient, extensible framework for the calculation of radiative view factors, by
exploring alternative object representational methods such as the concept of a
geometric primitive and modern heterogeneous computing.

These two thesis aims will be addressed over the course of the following
chapters.

Chapter 2 introduces the concept of the geometric primitive and the mechanics
by which primitives can be manipulated to construct complex 3D geometries for
the calculation of radiative view factors.

Chapter 3 describes the creation and optimisation of a primitive based MC-RT
program called RayFactor. Both coarse and fine grain vectorisation methods are
discussed while various algorithmic optimisations are explored in reference to
their impact on computational accuracy and speed.

Chapter 4 introduces the computer system selected for this research and
presents a suite of geometries that were used to verify and validate the quality
and accuracy of radiative view factors as calculated by RayFactor.
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Chapter 5 further exploits the vectorisable nature of MC-RT by presenting a
RayFactor implementation within the framework of a general-purpose graphic
processing unit (GPGPU). In order to interact with the GPGPUs used, a modern
heterogeneous computing framework called OpenCL is adopted. Here, it is
demonstrated that significant performance improvements can be obtained even
using modern ‘commodity’ hardware.

Chapter 6 compares the use of geometric primitives for object representation to
established Finite Element Methods (FEMs). The advantages and disadvantages
of both methods are explored in the context of accuracy, speed and computing
resources, while a framework within which both primitives and FEMs can be
used to complement each other is discussed.

Chapter 7 utilises the RayFactor software to calculate the radiative view factors
for an operational fibre-drawing furnace. Here, a fully conjugate heat transfer
model of the furnace is developed and verified against experimental temperature
profile data while further parametric studies are undertaken to predict fibre
drawing behaviour over a range of temperatures and draw ratios.

Chapter 8 summarises the findings of this research and discusses outstanding
areas that warrant further research and development.
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2

Primitives

The starting point for any MC-RT simulation is object representation. Each
surface (or volume) of a geometry treated by MC-RT must have a suitable virtual
representation, flexible enough to represent arbitrary three-dimensional
geometries and capable of both ray launching and ray intersection calculations.
The object representational method can have a significant impact on both the
computational run-time and accuracy on the simulation and is therefore an
important part of any MC-RT. This chapter introduces the use of primitives, an
alternative representational method to well established finite element methods.

2.1 Concept of a Primitive

Finite element methods (FEMs) are well developed and widely used in many
branches of science and engineering (e.g. computational fluid dynamics). The
main strength (and potential weakness) of FEMs is that any surface can be
described by a fine mesh of regularly shaped (often triangular) elements.
However, in modern graphical environments (such as video games and computer
generated graphics), it is more intuitive to construct ‘scenes’ from a set of
geometric primitives rather than to use a finite element mesh. In undertaking
this thesis, the issue of the relative advantages of using a FEM and primitives to
determine 3D view factors was seen as a key consideration and one that will be
returned to in Chapter 6.

Geometric primitives are objects just like the (typically triangular) objects used
in FEMs. Objects such as a sphere, a cylinder, a cone, and a rectangular surface
are common examples of primitives used in graphical descriptions. However,
primitives are not limited to such familiar objects. Indeed, any object that can be
explicitly described in terms of a surface equation and a ray-surface intersection
algorithm (simply a method by which the intersection of a straight line and the
surface can be calculated) is a suitable candidate for inclusion in a MC-RT
methodology.
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In the context of radiative heat transfer calculations, primitive objects can be
used in conjunction with a FEM (typically for combined radiative/conductive
models) or else can provide a complete stand-alone representation of the
required 3D geometry. As an example of the former combined approach, Vueghs
et al. [12], combined the use of geometric primitives and a FEM to increase the
speed and accuracy of the radiative portion of a combined conductive/radiative
heat transfer model of a satellite in orbit. Geometric primitives were used to map
the surfaces being described using finite element meshes. Each time a ray was
launched into the geometry, intersection (between ray and surface) was first
tested with a sphere primitive describing the satellite as a whole, rather than
considering potential intersection with each of the many finite elements making
up the satellite surface. If the ray did not intersect the sphere, then the
computation was deemed to have finished. However, if the ray met the sphere as
a whole, then its intersection point was mapped to the finite element mesh and
all elements located in the general area of the intersection point was tested for
possible intersection. This combined technique (a FEM plus primitives) was also
employed by these authors in their calculation of view factors between two
concentric spheres with specular reflection. They reported a reduction in
computational time, as well as the effective elimination of errors in reflective
component arising from the approximation of surface curvature.

This work clearly demonstrated a role for geometric primitives in the calculation
of radiative view factors within a MCRT framework. However, modelling
arbitrary 3D geometries requires the development of a comprehensive suite of
primitives (i.e. basis shapes such a sphere, rectangle and cone) that can be linked
together to form the required heat transfer environment, together with the
means for launching rays from one surface and intersecting with another. This
realisation was crucial in defining the scope of the research forming this current
thesis.

However, when considering the use of primitives for arbitrary 3D geometries, it
is impractical to require the user to customise these various algorithms for each
new configuration encountered. Indeed, this eliminates one of the prime
strengths of the MC-RT approach, its inherent flexibility. Alternatively, primitives
may be implemented with an affine transformation framework. Such an
approach allows essentially any 3D geometry to be described by a small number
of ‘standardised’ primitives (e.g. a unit radius sphere centred at the origin).
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2.2 Affine Transformation

The surface equations of standardised geometric objects provide the basis upon
which complex geometries may be formed. However, this is only possible though
the use of affine transformations that allow a generic, standardised object to be
converted into a similar ‘real world’ object possessing the required size,
orientation and position. These various transformations preserve distance ratios
and collinearity, and can be readily applied through the use of an appropriate
transformation matrix M (and reversed using the inverse matrix M-). For
example, to transform the three-dimensional point P into P one would multiply
the original point with a transformation matrix as follows.

(29)
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In order to transform P back to P, one would simply perform a similar

calculation using the inverse transformation matrix M1 as shown in equation
(30).

(30)
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The ‘1’ appended to the end of the point co-ordinates is used to apply the
translation transformation which is stored in the fourth column of M. If a
directional vector was to be transformed rather than a point, a ‘0’ would be used
in place of the ‘1’ as directional vectors are always defined relative to the origin
and therefore are exempt from translation transformations.

Through the use of such affine transformations, it is possible to formulate all ray
algorithms required for a primitive-based MC-RT framework in terms of
standardised objects that exist in what may be described as ‘object space’. For
example, a ray’s starting point may be determined on the surface of a unit sphere
(i.e. in object space), and transformed to a starting point on an actual sphere (i.e.
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in the actual ‘world space’) by pre-multiplying the point by the appropriate
transformation matrices.

2.2.1 Composing Affine Transformations

When multiple transformations are performed on a given primitive, a compound
transformation matrix may be computed. Therefore, regardless the number of
transformations required to move between object space and the desired world
space configuration, only a single matrix needs to be stored and a single matrix
multiplication preformed per object in the run-time loop.

The compound transformation matrix may be calculated by pre-multiplying a
transformation matrix by each subsequent transformation. For example if
transformation M; was performed followed by transformation M, the compound
transformation matrix would be calculated as follows:

M = M,M, (31)

A single transformation matrix using this method may represent any number of
sequential transformations. Similarly the compound inverse transformation
matrix may be determined by post-multiplication by each subsequent
transformation as shown in equation (32).

M=t = MMt (32)

This simplification significantly reduces the computational load as billions of
rays may be required to accurately model a complex 3D geometry each requiring
transformation prior to ray-primitive intersection calculations.

The elementary affine transformations implement in RayFactor will now be
described.

2.2.2 Scaling

Affine scaling, scales a primitive object about the origin by scaling factors Sy, Sy and
S, along the x, y and z coordinate axes, respectively. The transformation and
inverse transformation matrices have the form expressed in equation (33).
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S, 0 0 o 1/S, 0 0 o

w0 S o o) L_[0 15 o o (33)
o 0 S, o 0 0 1/S, o©
0 0 0 1 0 0 0 1

Reflection of a primitive about a given axis can be achieved with a scaling
transformation by specifying a negative scaling factor for that axis. If a scaling
factor is defined as -1, a ‘pure’ reflection will result from the application of the
transformation.

When applying a scaling transformation care must be taken to ensure that the
scaling factors are not too large, especially when the implementation uses single
precision floating point number as degenerate scaling can occur. Degenerate
scaling will result in a primitive being treated as infinitely small when the
inverse transformation is applied, as the reciprocal of the scaling factor in the
inverse transformation matrix will evaluate to 0 within the computer.

2.2.3 Translation

Translation allows a primitive to be moved (or translated) by amounts T, Ty and
T, along the x, y and z-axes, respectively, from its initial position at the origin. The
transformation and inverse transformation matrices for translation are shown in
equation (34).

100 T, 10 0 —-T,
w0 10T y-1o[0 10 -7 (34)
00 1 T, 00 1 -T,
00 0 1 000 1

As previously mentioned, the translation transformation is only a valid
transformation for points and should not be applied to direction vectors.

2.2.4 Rotation

Rotation allows a primitive object to be rotated about an arbitrary axis through a
given angle 6. In its most elementary form, the primitive will be rotated around the
x (x-roll), y (y-roll) and z (z-roll) coordinate axis. These elementary rotations are
listed in equation (35) where ¢ = cos 8 and s = sin 6.

30



1 0 0 O
0 ¢c —s O
Mx—roll = 0 s c 0
0O 0 0 1
c 0 s O
0O 1 0 O
My_ron = s 0 ¢ 0 (35)
0O 0 o0 1
c —s 0 0
s ¢ 0 0
MZ—TO” = 0 O 1 0
0O 0 0 1

To calculate the inverse rotation transformation, one simply calculates the
transformation matrix using the negative of the rotation angle.

Often it is required that multiple elementary rotations are applied to achieve the
desired geometric positioning, leading to the computation of multiple
transformation matrices. However, Euler’s theorem states that any rotation (or
sequence of rotations) about a point is equivalent to a single rotation about some
axis through that point [64]. Therefore, instead of using a sequence of x, y or z-
rolls, one can more efficiently choose to perform a single rotation about an
appropriate axis.

Maillot [65] formulated the transformation matrix for rotation about an arbitrary
axis u which is shown in equation (36).

c+ (1-c)u (1 - uyuy —su, (1 —cJuu, +suy, 0

M= (1 = uyuy + su, c+ (1 -u; 1 -9uyu, +su, 0 (36)
(1 = AJuzu, +suy, (1 —cJuyu, + su, c+ (1-c)u? 0
0 0 0 1

Here, the inverse transformation is again calculated using the transformation
matrix with the negated rotation angle.

The Maillot rotation transformation, rather than the elementary rotation
transformation matrices, is implemented in RayFactor to provide maximum
flexibility and efficiency when dealing with such transformations.
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2.3 Ray Definition

This concept is central to any ray-tracing implementation, as although
transformations are specified in terms of the primitives it is the ray on which
transformations are actually applied. A ray is completely specified in terms of its
starting point S = (Sx,Sy,SZ, 1), and its direction, ¢ = (cx, Cy, Cz, O), giving the ray

equation as follows:

r=S+4ct (37)

Here, the variable t is representative of the ‘time’ that the ray has taken to travel
from its starting point to a given point along its length, and plays an important
role in verifying valid ray intersections (see Section 2.4).

Within the context of a Monte Carlo simulation, the selection of appropriate ray
starting points and directions is of critical importance. The formulation of the ray
starting point is dependent on the geometric object the ray is being launched
from and, therefore, its selection will be covered in detail for each primitive in
Section 2.4. The direction, however, is dependent on the emission properties
(diffuse, directional, etc) and not the geometric configuration and, therefore, may
be discussed separately from each specific primitive.

2.3.1 Ray Direction

The ray launch direction is dependent on the properties of the surface being
considered, and therefore the calculation of the ray direction can vary. With
alternative numerical methods, such as integration by finite difference, more
complex emission characteristics can result in an increase in solution complexity
proportional to the square of this complexity [16]. However, the complexity of an
MC-RT solution increases in an essentially linear fashion with the complexity of
the emission characteristics. Table 1 demonstrates the functions required to
calculate the ray direction for various types of emitters within a MC-RT solution
for two independent, uniform random numbers §; and &, defined in the range
0<¢<1.
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Table 1: Ray directional functions required for various surface emitters

Ray directional functions assuming independence of azimuthal angle

Diffuse emitter &, = sin®*(¢)
0
$2 = P
) ¢
Directional grey emitter & = g_f e(¢) sin(¢) cos(¢) .d¢
T 0
2
7T .
52 = m[ ll.d/l
0
5 ¢ o
Directional non-grey emitter & = . aT“f f e(4, ¢)iy sin(¢) cos(¢p).dA.dg
T 0 0
2
n -
& = gTUT4fg(/1)L,1.d/1

0

It should be noted that in order to reduce the MC-RT run-time when analysing
for cases with complex emitters, numerical integration is required in the pre-
processing stage to obtain probability density functions (PDFs) which allow the
ray wavelength and emission zenith angles to be calculated directly as a function
of a uniform random number rather than performing integration each time a ray
is launched.

Although ray directional vectors need to be selected such that a ray is fired away
from the surface at its starting point, these vectors are first formulated in object
space on the surface of a unit hemisphere whose base lies in the x-y plane for all
primitives as shown in Figure 4.
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Figure 4: Selection of 1000 ray starting points in object space

When considering a grey diffuse emitter, the ray directional vector may be
calculated simply using the formula shown in Table 1. If it is desired that the
vector be described in Cartesian coordinates (as required by RayFactor), one
could simply convert the azimuthal and zenith angles from polar coordinates
using standard conversion formulae (which from a computational perspective
would require three calls to trigonometric functions). However, a more efficient
method to calculate the directional vector in Cartesian coordinates is to first
calculate the azimuthal angle () and a pseudo-zenith angle (1):

9 :21-[{1

38
n=4% (39)

The Cartesian coordinates may then be calculated using a single call to sincos, a
function that calculates the sine and cosine of an angle in a single step, costing
around the same time as a single call to the cosine function.

¢, =1ncosb
¢, =7msinf (39)

Cz:\/]-_fz
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Once the ray directional vector has been calculated in object space, it must be
transformed into world space by orientating it with the surface normal at the
ray’s starting point in world space. To obtain the surface normal in world space,
the normal is first calculated in object space as described for each primitive in
Section 2.4. The normal is then transformed from object space to world space
using the transpose of the inverse transformation matrix as shown in equation
(40).

N = MTTlNobject (40)

Although the ray direction could be orientated with the surface normal using the
affine rotation matrix previously described, this would require the calculation of
the surface normal in polar coordinates and a number of trigonometric function
calls to construct the rotation matrix. Alternatively, the Rodrigues rotation
formula [66] can be applied which allows the construction of a rotation matrix
using only the x, y and z coordinates of the surface normal (nx, ny, nz) at the ray

starting point.

n, 0 ny, 1 ns -n,n, 0
Mrotation = 0 ng ny + 1+ N _nxny nyzc 0 (41)
—Tlx —le TlZ 4 0 0 0

Using the Rodrigues rotation matrix, one may transform the directional
distribution from object space to world space by pre-multiplying by equation
(41). Following the selection of the ray’s starting point and its direction, the ray
is then ready to be tested for intersection against objects in the surrounding
environment.

2.3.2 Ray Transformation

The heart of the MC-RT method is the transformation (and inverse
transformation) of the ray. As previously discussed, although transformations
are specified in terms of primitive objects, it is actually the ray to which the
transformations are applied.
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The general procedure when launching a ray from object i is to first generate the
ray in object space. This ray is then transformed from object space to world
space using the transformation matrix of object i as shown in equation (42).

Sx Cx
S o

Tworld = Mi Sy + Ml CZ t (42)
12 0

Once the ray has been transformed, into world space, intersection tests between
the ray and other objects can be conducted. In order to test a ray for intersection
with an object, j, the ray must now be transformed from world space into the
object space of j using the inverse transformation matrix as shown in equation
(43).

Sx Cx
1( S 4] c
robject—j = M] 1 Sy + M] 1 CJZ] t (43)
z
1 0

When the ray is inversed transformed it becomes specified relative to object j,
meaning that testing for intersection between the inverse transformed ray and
the primitive object is equivalent to testing intersection between a ray and object
specified in the space coordinate space. This allows the use of generic
intersection calculations, which are dependent on the type of primitive and not
the actual geometric configuration of the object in the system being modelled.
For example, a sphere with a radius of 2 centred at the point (-1, 3, 2) will
employ the same intersection routine as a sphere with radius 5 centred at the
point (10, 10, 10).

To test additional objects for ray intersection, the steps subsequent to obtaining
the ray in world space are repeated with the ray being transformed from world
space into the object space of each primitive and intersection tested using the
generic intersection methods for each primitive type. The calculations required
to both generate the rays and test intersection in object space for each primitive
employed in RayFactor are detailed in Section 2.4.

36



2.3.3 Post-Transformation Primitive Surface Area

When conducting a Monte Carlo simulation, it is often desirable to specify the
number of samples used in terms of a sampling density rather than an absolute
quantity. This allows the simulation sample rate to be decoupled from the actual
geometric configuration of the system being analysed.

RayFactor adopts this approach by allowing a ray density (i.e. the number of rays
per unit area) for each object (or the entire system) to be specified. However, in
order to know the total number of rays to launch at run-time, this ray density
must be converted to an absolute quantity for each object. Given every object
starts as a primitive of known surface area and is transformed to the desired
geometric configuration using an affine transformation, we may calculate the
surface area of the transformed object using the determinate of the
transformation matrix as shown below.

Atransform = Aprimitive |M| (44)

Through equation (44), the absolute number of rays to be launched from each
object may be calculated by multiplying the area post-transformation,
Atransform, Dy the ray density.

2.4 RayFactor Primitives

A variety of primitives were selected for implementation within the RayFactor
program. These primitives are the rectangle, disc, annulus, sphere, cylinder and
frustum and were selected as they can be manipulated to represent almost all
objects commonly found in real-world engineering geometries. Although this
initial set of primitives may seem somewhat limited, it could be extended with
relative ease due to the computational structure of RayFactor and the nature of
the MC-RT framework employed.

The following sections provide descriptions of each primitive used and present
methods for generating random points on the surface of each object (a ray
staring point) and detecting ray-object intersection. It is with the basis provided
in the following sections that a robust primitive-based MC-RT algorithm for
computing 3D view factors may be built.
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2.4.1 Rectangle

This is the simplest primitive in RayFactor and represents a rectangle lying in the
x-y plane (z = 0) with bounds on the x and y coordinates such that—-1 <x <1
and —1 < y < 1. The surface equation of the rectangle primitive is shown in
equation (45).

F(x,y,z)=z=0 (49)

The surface equation of this primitive is simply the equation of the x-y plane,
however by bounding the x and y coordinates one may consider the treatment of
a discrete surface rather than an infinite plane (which would be impractical to
launch rays from).

Ray Staring Point

Given the simple nature of the rectangle primitive, the x and y starting positions
may be calculated from two random numbers & and ¢, using just two
multiplications and subtractions as presented in equation (46).

><U)
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§—1 (46)
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The vector normal to the surface of a rectangle primitive at any point along the
surface has the coordinates (0,0,1).

Ray Intersection

Intersection between a ray fired from another object and the x-y plane occurs
when S, + c,t = 0 and the ‘time’ at which intersection occurs t;, may be simply
calculated as:

(47)
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Prior to calculating the intersection time, it must be ascertained that the ray is
not moving parallel to the plane. This is indicated when ¢, = 0 and if left
unchecked will result in a divide by zero error within RayFactor at run-time.

If the intersection time is greater than 0 (within machine error) the intersection
point is calculated from the ray equation as shown in equation (48).

Ph:S+C.th (48)

If the x and y coordinates of the ‘hit point’ are within the bound of the rectangle
primitive (—1 <x < 1land —1 <y < 1) then the intersection is accepted as
valid.

2.4.2 Disc

The disc primitive represents a circle lying in the x-y plane, the surface equation
of this primitive being shown in equation (49).

F(x,y,z) = x* + y? —r? (49)

Although the implicit equation of a disc allows for the radius to be set as a
parameter, the RayFactor implementation uses a fixed radius of 1. This permits
various computational optimisation options to be employed but has no impact
on the overall flexibility of the disc primitive.

Ray Starting Point

One might expect that the ray starting point for the disc primitive may be
calculated by choosing a random azimuthal angle, 6 € [0,27], and radius,
r € [0,1]. However, this is incorrect and would lead to a non-uniform
distribution of points with crowding around the disc centre.

As the aim to uniformly distribute the ray launching points over the surface area
of the disc, and the area of the disc increases proportionally with the square of
the radius, one must take the square root of the randomly generated radius and
calculate the ray starting point as shown in equation (50).

39



S, = T cos 0
Sy =rsin6 (50)
S, =0

Here 6 is calculated as shown in equation (38). This formulation allows a ray
starting point to be determined (within RayFactor) with a square root, two
multiplications and a single call to the sincos function.

Like the rectangle primitive, the vector normal to the disc surface at any ray
launch position is (0, 0,1).

Ray Intersection

Similarly to the rectangle primitive, the intersection time t, is calculated using
equation (47). If the hit time is greater than 0, the distance of the intersection
point from the origin (0, 0, 0) is calculated using equation (51).

D= (Se + e ty)? + (Sy + ¢y ty) (51)

If D satisfies the condition D < 1, indicating that the point of intersection falls
within the unit circle on the x-y plane, then the intersection is considered to be
valid.

2.4.3 Annulus

The generic annular primitive is similar to the generic disc with the additional
functionality of having specified inner and outer radii and thus the ray starting
point must be selected in such a way that it lies on the annulus surface.

Ray Staring Point

The ray starting point on the surface of the annular primitive requires the
selection of the azimuthal angle 8 (equation (38)), followed by the selection of a
random radius which lies between the two annulus radii, r, and r;. This random
radius 7z may be calculated using equation (52).
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e = \/ (12 —1)é +17 (52)

Subsequently, the Cartesian coordinates for the ray starting point may be
calculated using r; as the radius in equation (50).

Ray Intersection

Ray intersection with the annular primitive is detected in much the same way as
for the disc primitive. That is to calculate the intersection time as shown in
equation (47), then to calculate the distance of the intersection point from the
origin in the x-y plane (D) as shown in equation (51). However, here we consider
the intersection valid only if r; < D < 1.

2.4.4 Sphere

This primitive represents a unit sphere, centred on the origin. The implicit form
of the sphere primitive is displayed in equation (53).

F(x,y,z) = x>+ y? + z? —r? (53)

Although the implicit equation permits the use of a radius parameter, like with
the disc primitive, the RayFactor implementation uses a fixed radius of 1 for
similar reasons.

Ray Starting Point

There are numerous methods by which random points on the surface of a sphere
may be selected. Several of these are outlined by Marsaglia [67] including the
‘rejection method’, one of the fastest approaches for generating a random point
of the surface of a sphere from a uniformly distributed random number.

The rejection method is essentially an exercise in picking random points inside a
cube and throwing away points which do not also lie within a sphere bounded by
the cube. From the ratio of a sphere’s volume to that of a bounding cube, we may
calculate that the probability that a random point will lie within the volume of
the sphere as /6. Therefore on average 6/m (~1.9) attempts are made before
each random point is generated.
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At each attempt, two independent uniformly distributed numbers, &;,¢&, €
[—1,1], are generated and the acceptance criteria shown in equation (54) is
calculated.

+é<1 (54)

If (54) is not satisfied the point would be rejected and two new random numbers
selected. Once random numbers are selected such that equation (54) is satisfied,
the random point is projected onto the sphere of the sphere and the Cartesian
coordinates of the point can be calculated using equation (55).

Sx = 2.8;. /1—512—53

Sy =2.8. |[1-§ =&

S, =1-20¢ - §)

(55)

Although this method takes on average 1.9 attempts for each point generated, it
does not require the use of transcendental functions (cos, sin etc.) and therefore
still executes several times faster than alternative methods.

Although the rejection method was utilised as the method for generating ray
starting points on a sphere’s surface in RayFactor’s initial serial implementation,
it is not an ideal option moving towards highly vectorised implementations (see
Section 4.4.2 for more details). For example, on modern Intel processors capable
of processing packed data arrays of up to 8 elements in a single processor cycle,
an average of 22.1 attempts per starting point generated would be required.

Thus, subsequent versions of RayFactor opted for a determinate method for the
generation of ray starting points a sphere. In this method, an azimuthal angle is
calculated as shown in equation (38) while using a second independent random
number the Cartesian coordinates for the ray starting point can be calculated as
shown in equation (56).
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S, =+1—2%sin0
Sy =41 — z2%2cos @ (56)

S, =26 -1

Although this method does require computationally expensive sine and cosine
functions, its form leaves it receptive to extensive optimisation through the
implementation as fast sine and cosine approximations, which will be explained
in detail in Section 4.6.3.

Ray Intersection

Substituting the ray equation (37) into the surface equation of the sphere (53),
we get the equation needed for ray-sphere intersection below.

lcl?ti +2(S - )tp + (ISIP—1) =0 (57)

This is a quadratic equation of the form At? + 2Bt + C = 0 and the time of
intersection may be calculated as shown in equation (58).

B
th:_Zi— (58)

However, before any attempt to calculate the intersection time, one first
calculates the discriminate B? — AC. If the discriminate is negative, the ray does
not intersect the sphere and the intersection calculations are exited early. If the
discriminate is equal to 0, the ray grazes the surface of the sphere with just one
point of intersection. If the discriminate is positive, there are two intersection
points, one as the ray enters the sphere and one as it exits. When this occurs, we
calculate both intersection times and accept the valid intersection as being the
one with the earliest non-negative time.

2.4.5 Cylinder

This primitive represents a cylinder with a radius and height of 1, with its base
lying in the x-y plane. The implicit form of the cylinder primitive is shown in
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equation (59) with the specified height of 1 being obtained through a bound on
the z coordinate such that 0 <z < 1.

F(x,y,2) = x> + y? —r? (59)

Like other primitives discussed previously, the RayFactor implementation uses a
fixed radius of 1 and relies on affine transformations to obtain any alternative
radius.

Ray Starting Point

To generate a random ray starting point on the cylinder primitive, a random
height along the cylinder (S,) is first selected using a uniform random number
¢ € [0,1]. An azimuthal angle is then selected as described in equation (38) and
the x and y coordinates calculated from this angle using a standard polar to
Cartesian coordinate system conversion. Equation (60) lists the complete set of
equations for the generation of a ray starting point on the surface of the cylinder
primitive.

S, =sin@
S, =cos#@ (60)
S;=¢

The vector normal to the surface of the cylinder at the ray starting point is
dependent on the starting point location and specified using the coordinates at
this point as (Sx, Sy, O).

Ray Intersection

Similarly to the sphere primitive, to check a ray-cylinder intersection we may
substitute the ray equation (37) into the surface equation (60) of the cylinder
and obtain a quadratic equation describing the intersection as shown in equation
(61).

(c2+c2)tF +2(Sycy + Sycy)tn + (S2+S2-1) =0 (61)
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This can then be solved for t;, using the quadratic equation (58). Like the sphere
primitive, we may exit intersection calculations early if the discriminate is
negative. Once we have identified that there is at least one valid intersection, we
must calculate the z coordinate of the intersection point using the ray equation
and perform the additional check that 0 < z < 1.

2.4.6 The Frustum

The frustum primitive represents a portion of a cone lying between two parallel
planes. Like the cylinder primitive, the frustum has its base in the x-y plane with
its base radius and height each unity, and a top radius r; that may be varied
between 0 (giving a generic cone) and 1 (giving a generic cylinder). The implicit
form of the frustum is shown in equation (62).

F(x,y,z) =x?>+y2— (1 + (. — 1)z)? (62)

Although the base radius is fixed at unity in the RayFactor implementation, the top
radius r; may be specified to support a wide range of configurations.

Ray Starting Point

The selection of a ray starting point on a frustum is the most complex of the
supported primitives within RayFactor, as measures need to be taken to ensure
that all points are distributed uniformly over a surface whose area varies along
the z-axis and also with a changing top radius r;. The approach used here was to
first select a random area fraction, {;, and convert this to a z coordinate under
which the fraction of the frustum’s total surface area is equal to &;. This z
coordinate may be calculated as follows:

S __1+ 1_fl+€1rt2

zZ

— (63)

Following the selection of a z coordinate, the radius of the frustum at this height
may be calculated as shown in equation (64).

=1+ — 1S, (64)
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Using a random azimuthal angle calculated by equation (38), and the radius of
the frustum atS$,, the x and y coordinates of the ray starting point may be
calculated as shown in equation (65).

Sy =1 cos VO

65
Sy =T1¢ sin V6 (%)

The vector normal to the surface of the frustum at the ray starting point is
somewhat more involved to calculate compared to the previous primitives due to
the variable slope of the side of the frustum. Equation (66) displays the formulation
of the frustum surface normal.

N = (Sy, 8,1 =S, =1, — S,12) (66)

Due to the flexibility of the frustum primitive, it was used to model a range of
geometries from the cone (r; = 0) through to the cylinder (r; = 1) in the initial
version of RayFactor. However, as one may suspect from the material presented for
the frustum and cylinder primitives, calculations may be greatly simplified by using
a dedicated primitive for the cylinder.

Ray Intersection

In order to test for ray-frustum intersection, we substitute equation (37) into the
frustum surface equation (62) to obtain a quadratic equation of the form
At? + 2Bt + C = 0. The quadratic coefficients for this intersection are shown in
equation (67).

A=ci+c;— ((rt — 1)CZ)2
B = Sycy + Sycy, — ¢, S, (¢ =21+ 1) + ¢, (1 + 1) (67)
C=52+52—((r,— 1S, +1)°

This can then be solved for t; using the quadratic equation (58) with a familiar
ability to exit intersection calculations early if the discriminate is negative. Once
we have identified that there is at least one valid intersection, we must calculate
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the z coordinate of the intersection point using the ray equation and perform the
additional check that 0 < z < 1 to ensure that the intersection takes place within
the defined bounds of the frustum primitive.

2.5 The use of Primitives in Radiative View Factor Calculation

The concept of the primitive and the mathematics by which they can be
integrated into a MC-RT framework have been presented in this chapter.
However, in order to become a viable tool for radiative heat transfer analysis, a
software implementation must be developed and carefully optimised to ensure
accurate results can be produced in a reasonable amount of time.

The following chapter will detail the implementation of the concepts presented
in this chapter into a robust primitive-based MC-RT application called RayFactor.

47



3
Numerical Determination of Primitive

Based View Factors

In order to calculate radiative view factors using a primitives-based MC-RT
computational environment the concepts introduced in Chapter 2 must be
implemented in robust computer code and the results benchmarked against known
solutions to confirm the implementation’s accuracy and gauge its speed. This
chapter discusses these aspects for a software implementation called RayFactor.

3.1 High-Level Design Constraints

The development of RayFactor was initially driven by a research need to
numerically calculate view factors within an operational fibre-drawing furnace
(discussed in detail later in Chapter 7). However, the decision was made early on to
develop robust, portable code for calculating view factors in arbitrary 3D
geometries, rather than simply building the fastest possible codebase for
modelling the furnace geometry. This wider objective imposes numerous
programming design constraints which ultimately affect the overall run-time
performance to some (greater or lesser) extent.

Furthermore, it was decided that RayFactor be targeted for commodity computer
hardware rather than any specific hardware. The consequences of this constraint
may not seem significant, however it dictates the technologies that may be utilised
and limits the assumptions that can be made during code development and
optimisation.

3.2 Development Environment

3.2.1 Computer system

An Apple Inc. Mac Pro 4.1 in a 2 x 2.12 GHz Quad Core Intel Xeon E5520 Nehalem
processor configuration was selected as the development environment for
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RayFactor. The technical specifications of interest for this configuration of the Mac
Pro 4.1 are outlined in Table 2 below.

Table 2: Selected technical specifications for a Mac Pro 4.1

Attribute Value
Processors 2 (8 Cores)
Processor speed 2.26 GHz
Processor type Quad Core Xeon E5520
Architecture Nehalem
L1 Cache 32KBx 8
L2 Cache 256 KBx 8
L3 Cache 8MBx 2
RAM 8 GB
RAM Type 1066 MHz DDR3 EEC

The primary motive for the selection of an Apple Inc. system was the high
performance and stability UNIX based operating system, ‘Mac OS X'. Additionally,
all required software development tools and environments were provided with the
operating system including the integrated development environment (IDE) ‘XCode’,
performance analyser and visualizer ‘Instruments’ and automation tool for testing
called ‘Automator’.

The Mac Pro 4.1 model was selected, as it was the highest performance Apple Inc
system available at the time and the only Apple system where 3rd party GPUs could
be easily installed (this was important for the work to be presented in Chapter 5).
Secondary to these requirements, the Mac Pro had the ideal performance
characteristics. At the time of purchase, it was one of the most powerful ‘off the
shelf computing systems available and by the end of the research it was expected
that it would be representative of computational power available to the general
consumer. The assumption of the Mac Pro 4.1 representing ‘general’ computing
power was verified when comparing the Primate Labs GeekBench 2 scores for the
Mac Pro 4.1 used and the contemporary Mac Mini (the lowest powered Apple Inc.
system) as shown in Table 3. The Primate Labs Geekbench software is the industry
standard for measuring the average performance of a computer and works by
running a series of stress tests quantify test integer, floating point, memory and
bandwidth performance.
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Table 3: Primate Labs Geekbench 2 scores for a selection of Apple Inc. Computers

Computer Processor Geekbench 2 Score
Mac Pro 4.1 (2009) 2 x 2.26 GHz Quad Core Intel 11,803
(selected) Xeon E5520
Mac Pro 4.1 (2009) 2 x 2.93 GHz Quad Core Intel 14,904
X5570
Mac Pro 5.1 (2011) 2 x 3.06 GHz Hex Core Intel 22,137
Xeon X5675
Mac Mini 6.1 (2011) 2.6 GHz (3.4 GHz Boost) 11,758

Dual Core Intel Core i7

The top processor configurations for the Mac Pro 4.1 and 5.1 have been included in
Table 3 to show the performance range for the Mac Pro between 2009 and 2011. Of
particular interest is the fact that a 50% increase in performance between the two
models is obtained by increasing the core count (by 50%) rather than the
processor clock speed (increased by only 4.5%). This is the current trend in the
computer hardware industry and will be exploited during the optimisation of
RayFactor, as discussed in chapter 5.

3.3 Random Number Generation

The generation of random numbers using deterministic methods (i.e. computer
based generation) is an area of great importance for any Monte Carlo simulation,
and has led to the development of a large selection of pseudorandom number
generators (PRNG) [46-49, 68, 69].

For all classes of Monte Carlo simulation (of which MC-RT is no exception) the
key to obtaining an accurate result in the fastest possible time frame is the rapid
generation of ‘high quality’ random numbers. Given the dual objectives of having
random numbers that are generated quickly and are of high quality with long
period (time it takes before the sequence is repeated) and uniform distribution,
the selection of a suitable random number generator for use in RayFactor can be
viewed as an optimisation problem.

The selection and performance characteristics of the PRNG used in RayFactor is
discussed in detail in Chapter 4. However, it is important to note that the
selection of the PRNG will not only influence the computational run-time of a MC-
RT but also the accuracy of the results such those presented in this chapter.
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3.4 RayFactor Benchmarking Methodology

To test the code which performs ray formulation, intersection and transformation
algorithms, the view factors for a selection of geometries were calculated using
RayFactor and compared against the analytical solutions available in literature3 [2].

The 7 chosen geometries are shown in Table 4 and were selected to ensure that
each primitive implemented (i.e. sphere, cylinder, frustum, rectangle, annulus, disc
and triangle) was tested thoroughly, not only for a ‘standard’ configuration but also
for configurations where volumetric primitives (such as the sphere and cylinder)
were considered to be bounding (i.e. looking inward).

For each of the geometries selected a series of ray densities (typically from 10 to
108 rays per unit surface area) were analysed with up to 600 runs being carried out
at each ray density to provide statistically significant data to examine convergence
behaviour with increasing ray density and the distribution of view factor results at
each ray density.

3 RayFactor results for a specific case (A-19) were also verified though personnel
communications with J.R. Howell.
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3.5 RayFactor Validation for the C-77 case

Although RayFactor was benchmarked for all the cases shown in Table 4, only
the results for a single case will be presented in this thesis for the sake of brevity.
The benchmarking results from this particular case are representative (in terms
of the speed and accuracy) of the results of all other benchmark cases.

The results to be presented here are from the C-77 case in which the view factors
between the outer surface of a cylinder and an annular disc at the end of the
cylinder are calculated. When benchmarking software of this nature, the
following population characteristics are of interest.

1. Multiple samples at a fixed sample rate have a normal distribution around
the known solution.

2. Simulation results converge on the known solution as the sample rate is
increased.

3. Computational time increases linearly with the sample rate.

Each of these qualities will be examined for the C-77 case using sample rates (i.e.
ray densities) ranging from 10 rays/unit? to 100,000,000 rays/unit? and 600
runs at each respective ray density.

It should be noted that benchmarking was conducted at numerous points during
the development of RayFactor to assess the changes in quality and performance
for each new feature or optimisation implemented. The results presented below
were generated using the latest version of RayFactor at the time of writing; this
particular version has the best ratio of performance to accuracy of all versions of
RayFactor and is therefore the most appropriate to examine.

3.5.1 Solution Distribution

A view factor determined by a MC-RT simulation is simply the average of a
number of Bernoulli experiments (i.e. does a random ray launched from object i
hit object j?). As such, view factors produced by MC-RT should belong to a
normal distribution with the population mean equal to the analytical solution.

Production of normally distributed results is of critical importance as deviation
from such a distribution is a clear indicator of poor PRNG performance or overly
aggressive optimisations (which reduce the overall simulation accuracy). For
example, a flattened distribution indicates that the PRNG may not be producing
uniform random numbers or the accuracy of in-built functions such as that used
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to evaluate square root is to low, while a skewed distribution indicates that the
selected program epsilon (a tuneable constant for combating machine error)
may be too high (discussed in detail in Section 4.2).

Figure 5 shows the distribution of 600 RayFactor runs for the C-77 case with a
ray density of 10,000 rays/unit? and a normal curve with a mean equal to the
analytical solution (marked by the red line) and a standard deviation equal to
that of the 600 samples. It is clear that the distribution of results produced by
RayFactor closely matches a normal distribution, an outcome that provides
confidence in the accuracy of the results generated.
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Figure 5: Histogram overlayed with the Gaussian PDF for 600 runs of the C-77 case with a
ray density of 104

During the implementation of vectorisation features in RayFactor, examination
of the results distribution uncovered problems in the parallel seeding of the
PRNG being used, dSFMT. Correspondence with the creators of dSFMT, Mutsuo
Satio and Makoto Matsumoto, who was also a co-creator of the Mersenne twister
algorithm one of the most widely used PRNGs today, resulted in a ‘patch’ being
developed and implemented to the seeding of the dSFMT function in parallel
computing applications.
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3.5.2 Solution Convergence

As the ray density is increased, the view factors calculated by RayFactor are
expected to converge on the analytical solution. Convergence for the C-77 case
may be demonstrated by plotting the result of a single run at each density as
shown in Figure 6.
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Figure 6: Convergence of RayFactor results on the analytical solution for the C-77 case

In addition to single run convergence, it is also desirable to ensure that the range
over which results are produced for any given ray density becomes smaller as
the ray density increases. From the central limit theorem, we can expect the
convergence rate of a Monte Carlo solution to be proportional to the inverse
square root of the number of samples [16]. This relationship is clear when
plotting the sample standard deviations at each ray density as shown in Figure 7.
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Figure 7: Sample standard deviation with increasing ray density

The curve in Figure 7 can be described by the equation o = 1.537/\/5 which

agrees with the anticipated rate of convergence with sample size, further
validating the accuracy of RayFactor.

3.5.3 Solution Run-Time

The final property of a Monte Carlo method to be demonstrated by RayFactor is a
linear increase in computational time with increasing ray density. As a Monte
Carlo method is essentially repeating the same operation for a given number of
samples (in the case of RayFactor, formulate, fire and calculate the intersection
of a ray), the amount of ‘work’ that must be completed is directly proportional to
the number of rays fired. Any significant deviation from a linear relationship
could indicate errors in the computational implementation such as memory
leaks. Figure 8 displays the increase in the average run time with increasing ray
density for the C-77 case.
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Figure 8: RayFactor run-times with increasing ray density

Examining the average run times as a function of ray density in Figure 8, we
observe a fairly constant run-time at ray densities lower than 103. Here the
computation involved in launching and intersecting rays is negligible compared
to the ‘fixed costs’ of seeding the PRNG, resulting in a fairly constant run-time. As
the ray density increases above 103, the computational time transitions to being
dominated by the launching and intersecting of rays, and for ray densities
greater than 104 the expected linear relationship between the ray density and
run-time is indeed observed.

While of critical importance, the calculation of radiative view factors with high
accuracy and desired distributional properties is only one of the requirements of
a useable MC-RT implementation. One must also be able to analyse geometry of
meaningful complexity in an appropriate amount of time as described by
Gustafson’s law [70]. Although the performance of computing hardware is
continually increasing, extensive software optimisations are required to exploit
these gains due the recent shift in computing paradigm from high clock
frequencies to highly vectorised designs. The following chapter details the
optimisations implemented in RayFactor to exploit the performance gains
afforded by the architecture of contemporary CPUs.
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4
Optimisation of RayFactor for the CPU

Due to the statistical nature of MC-RT, the results of the simulation become
increasingly accurate with the number of samples. Whilst this provides a simple
pathway by which the uncertainty of results can be reduced, the workload required
to obtain acceptable results can be extreme [71].

In order to calculate view factors with high accuracy in a reasonable amount of
time, systematic optimisation must be carried out to ensure that all aspects of the
codebase are operating as efficiently as possible as well as exploiting the
underlying hardware.

However, before such optimisation is undertaken an appreciation of one of the
most fundamental aspects of any code base must be gained. This is the hardware
representation of real numbers, which on modern hardware are approximated
using floating-point representation.

4.1 Floating Point Precision

Arithmetic on computer hardware presents the interesting problem of trying to
accurately represent a (infinitely defined) real number in a finite amount of
memory. One widely used method is floating pointing representation in which
numbers are represented by a fixed number of significant digits called the
significand (or mantissa) which is scaled using an exponent in a similar fashion to
scientific notation as shown in equation (68).

Number = significandxbase®*Ponent (68)

Floating point number representation is provided on nearly all-modern hardware
as specified by the IEEE 754 standard. This standard defines four basic binary
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representations (base=2) which are commonly supported in most programing
languages and listed in Table 5.

Table 5: Summary of IEEE 754 binary floating-point types

IEEE Common  Base Significand Exponent Bits Decimal
Name Name Bits Bits Precision digits
binary16 Half 2 10 5 11 ~3
binary32 Single 2 23 8 24 ~7
binary64 Double 2 52 11 64 ~16
binary128  Quadruple 2 112 15 113 ~34

The trade-off involved in the selection of the floating-point data type is that of
maximising precision while minimising storage size. Although one might expect
that the difference in floating point storage size will not affect performance, for all
but pure serial CPU applications a larger data type will reduce the maximum
computational throughput. As processors have increased in speed over the years,
and their architecture has become increasingly parallel, data transfer speeds have
become a bottleneck, a situation that is particularly true for GPGPU programs
which will be discussed in detail in Chapter 5.

Furthermore, the speed increases obtained through data level parallelism
instructions such as SIMD (see Section 4.4.2) is proportional to the size of the
floating-point representation. For example, on a processor with a SIMD width of
128 bits, one could operate on 8, 4, 2 or 1 numbers simultaneously depending on
whether a half, single, double or quadruple precision floating point is used,
respectively.

Given the limitations of the half precision floating point and the limited support for
the quadruple precision floating point, early versions of RayFactor were developed
using double precision floating point numbers as is common practice in scientific
computing. However, as vectorisation efforts were ramped up, RayFactor was
converted to single precision to exploit performance gains at the cost of some
precision.

An extensive discussion of floating point representation and arithmetic is out of the
scope of this thesis but a detailed commentary may be found in the literature [72].
However, there is one aspect of floating point representation that is of particular
importance and worthy of discussion, the machine epsilon.
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4.2 Machine Epsilon

As floating-point numbers cannot exactly represent real numbers, rounding is
performed in order to obtain a floating-point representation of a real number. The
upper bound on the relative error due to rounding is known as the machine
epsilon. This may be calculated using the precision (p) and the base (b) of the
floating point as shown in equation (69).

b
eps = Eb‘(’"l) (69)

From this equation, we can determine that the upper bound on the relative error
for a single precision floating-point number (b=2; p=24) is 1.1921 x 107, and
therefore all calculations will carry this relative uncertainty.

Machine epsilon and floating point precision becomes an issue in RayFactor when
calculating ray intersection times. As presented in Chapter 2, ray-primitive
intersection is determined by the earliest intersection time greater than 0, but
consider launching a ray from the curved surface of a cylinder or sphere. When the
zenith angle of the ray direction ¢ is selected, it may have a maximum value of .
The absolute error in the representation of the zenith angle could thus be as large
as 3.74 x 107. Although this might not seem very large it is large enough to cause
the ray to intersect with the convex surface from which it was fired with an
intersection time greater than zero.

The issue of ‘false intersections’ is not only limited to launching rays from
primitives with curved surfaces but can occur in numerous circumstances. Another
example is launching a ray from a rectangle primitive which has been translated
and/or rotated. Limitations in the floating point precision when calculating the ray
starting point can result in the ray being fired from slightly behind the surface
rather than on the surface, again resulting in a false positive when testing for
intersection.

RayFactor accounts for the lack of precision in floating point representation by
defining a factor for absolute error in the intersection time calculations. This
number acts as a ‘tuneable’ factor for calculation tolerance with intersection times
less than this factor being discarded. In the initial stages of RayFactor development,
this factor was set to 1 x 106, however as faster, less precise functions were
implemented for the calculation of sine, cosine and square root, this factor was
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increased to 1 x 104 which provides the optimal balance between rejecting false
positives and accepting valid intersections for primitives in close proximity to each
other. The effects of having an incorrectly selected error factor may be observed if
we revisit the view factor distribution for the C-77 benchmarking case with an
error tolerance of 1 x 10-3 as shown in Figure 9. Here we can visually detect a slight
left skew on the distribution as valid intersections where the cylinder and annulus
meet are disregarded, as due to the short distance between the two objects their
intersection times are less than 1 x 10-3.
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Figure 9: Slightly left skewed distribution for C-77 case with an error tolerance of 1 x 10-3

Although the left skew in Figure 9 is moderate, there is a definite change in the
view factor distribution when compared to Figure 5, demonstrating that the choice
of error tolerance is worth optimising due to the limited precision of floating point
numbers.

However, the precision of number representation is not the only factor in the
integrity of view factors calculated by RayFactor. Perhaps worthy of more attention
is the random number generator which lies at the heart of every Monte Carlo based
method.
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4.3 Random Number Generation

As discussed in Section 1.6.3, the selection of a pseudorandom number generator
(PRNG) is of critical importance in MC-RT. When programming a Monte Carlo
based method, particularly for parallel applications [44], the implemented PRNG
should be thoroughly examined as no one PRNG is superior in all circumstances,
as the quality of a given generator is closely related to the problem being solved
[73]. Therefore, it is necessary to examine multiple PRNGs and their effect on
result distribution and simulation speed to ensure that poor simulation
performance is not realised due to inappropriate PRNG selection.

Several algorithmic classes of PRNGs were considered for use in RayFactor with
the classes being linear congruential generators (LCG), the Mersenne Twister
(MT) algorithm and the recently developed counter-based Threefry generator.

In addition to the PRNGs considered in this research, many high quality
alternatives such as the XorShift (XorS) [45] and the Well Equidistributed long-
period Linear (WELL) generator [69] have been developed. Given the focus of
this thesis not all PRNGs could be considered, and therefore selection was
limited to generators that have been demonstrated to provide high performance
and for which suitable well-supported implementations are available.

4.3.1 Tested Generators

Linear Congruential Generators

Linear Congruential Generators (LCG) are one of the oldest and more commonly
used PRNG algorithms in Monte Carlo simulation of radiative transport [73].
Once seeded, these generators produce a sequence of pseudorandom numbers
using a recurrence relation requiring only 32 bits of memory to retain the state
of the generator. However, they suffer from a short period (typically around 232)
and show strong serial correlation.

Generators that exhibit a strong serial correlation will generate similar
sequences of pseudorandom numbers for close seed values, limiting the options
where they can be used for the generation of parallel streams of pseudorandom
numbers.

The highly accessible standard library implementations of LCG, rand and
drand48, were examined for use with RayFactor.
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Mersenne Twister Generator

Makoto Matsumoto and Takuji Nishimura [48] developed the Mersenne Twister
generator as a PRNG specifically optimised for Monte Carlo simulations. The
Mersenne Twister algorithm is a twisted, generalised feedback shift register
function based on the Mersenne prime and uses matrix linear recurrence over a
binary field to produce fast, high quality pseudorandom numbers.

The Mersenne Twister generators have a large period (= 21937 — 1) and do not
exhibit serial correlation, making them a viable option for generation of parallel
streams of pseudorandom numbers. However, the Mersenne Twister generator
does require a large amount of memory to retain the state of the generator and
can take a long time to start generating a high quality sequence of random
numbers if seeded with a poor initial state4. Therefore, when using this
generator care must be taken to select suitable seed numbers.

Two implementations of the Mersenne Twister generator were examined for use
with RayFactor. The 2004 MT19937-64 implementation and the double
precision SIMD-orientated Fast Mersenne Twister (dASFMT) [49].

Threefry Generator

D.E Shaw Research [50] developed the Threefry algorithm based on the
cryptographically secure Threefish algorithm in late 2011. The Threefry
generator trades the cryptographic strength of Threefish for speed while still
maintaining a high level of randomness. The Threefry generator creates a very
high quality sequence of pseudorandom numbers passing the full battery of the
TestUO1 tests of randomness [74] (also know as the crush tests) and requires
only 256 bits of memory to retain its state.

The Threefry implementation in the Random123 library published by D.E. Shaw
Research was examined for use in RayFactor. Numerous counter-based
generators are present in this library including the Philox PRNG which is used in
the OpenCL version of RayFactor presented in Chapter 5. However, the Threefry
generator was selected as a potential candidate for RayFactor as it is the fastest
counter-based PRNG in the Random123 library for CPUs without Advanced
Encryption Standard (AES) hardware support [50].

4 Poor initial state refers to using a seed number with low entropy, such as a number whose
binary representation is predominately many zeros.
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Unfortunately, the Random123 library was published after the development and
testing of RayFactor had been completed and therefore its consideration is
largely in retrospect.

4.3.2 PRNG Summary and Selection

The selection of a PRNG for MC-RT is based primarily on two factors, speed and
randomness. PRNG speed may easily be quantified in terms of the number of
random numbers generated per second but randomness, however, is a more
difficult property to define.

Several batteries of statistical tests have been compiled to assess the
randomness of a PRNG with the most frequently referenced being the DIEHARD
tests [75], and its successor the TestUO1 suite [74] commonly referred to as the
‘crush tests’. The later are by far the more stringent of the two test suites, being
designed to address the known shortcomings of the DIEHARD tests.

The TestUO1 suite is divided into three separate batteries of tests, ‘small crush’
consisting of 15 tests, ‘crush’ consisting of 96 tests and ‘big crush’ consisting of a
total of 106 tests [74]. An appreciation of the intensity of the crush tests relative
to the DIEHARD tests may be gained by examining the time it takes to complete
PRNG testing for each suite. The small crush, crush and big crush tests take
around 2 minutes, 1.7 hours and 12 hours, respectively, while the DIEHARD tests
take approximately 15 seconds to be completed on a comparable machine [76].

As the TestU01 suite has become the method of choice for testing the
randomness of PRNGs [56], the ‘randomness’ of the PRNGs examined for use
with RayFactor will be quantified using this option. Table 6 summarises the
properties of interest for the PRNGs examined in this research, including their
performance on the Mac Pro 4.1.

Here the ‘crush resistance’ has been graded poor, good or excellent, with poor
meaning failure of the small crush test, good being limited failure of crush and
big crush, and excellent being the passing of all the crush test batteries. The
crush resistance of MT19937 has been rated ‘good’ as it only fails 2 out of the 96
crush tests and 2 out of the 106 big crush tests [76], however these tests are
measures of linear complexity and failure here is unlikely to effect the results of a
MC-RT simulation.
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Table 6: Summary of PRNGs considered for use in RayFactor

PRNG State Size  Period Performance Crush
bytes Numbers/s  Relative Resistance
rand 4 2% 9.09x10’ 0.64 Poor
drand 8 2% 6.67x10’ 0.47 Poor
MT19937 2496 21971 1.43x10° 1.00 Good
dSFMT 3080  27°%%%L1  1.43x10° 1.00 Excellent
dSFMT (array) 3080 2791 1.67x10° 1.17 Excellent
Threefry 2x32 16 2% 1.00x10° 0.70 Excellent
Threefry 4x32 32 2% 1.29x10° 0.90 Excellent
Threefry 4x64 64 2% 1.14x10° 0.80 Excellent

NOTE: Threefry variants are designated Threefry AxB where B is the size of the number in bits (32 =
single precision floating point; 64 = double precision floating point) while A is the number of
random numbers generated per function call.

Examining the results presented in Table 6, it appears that the optimal selection
is the array-based dSFMT as it exhibits the best characteristics across the board
with the exception of its state size. However, its implementation carries the
requirement that the pseudorandom numbers are generated as an array with a
minimum size of 192 elements each time dSFMT is called. This requires
excessive memory for storage of the array and extra computations to distribute
the array contents, both of which compound to erode the performance bonus.
However, using dSFMT in a conventional manner (i.e. a single number is
generated at each call) does not carry these constraints and provides the next
best performance.

Comparable to dSFMT was MT19937, which demonstrated identical
performance, lower memory requirements for state retention, and negligible
difference in ‘randomness’ for application in MC-RT. However, dSFMT has been
shown to have significantly better recovery than MT19937 from 0-excess state®
making it a more reliable candidate [49].

The main weakness of dSFMT is the amount of memory required to retain its
state. Moving towards vectorisation of RayFactor using an independent sequence

5 0-excess state is where too many of the bits in the PRNG state are set to 0. When this occurs the
PRNG can take a long time to ‘recover’ the state bits to being a blend of 1’s and 0’s. As the
pseudorandom numbers produced by the PRNG are a function of the state during this period the
sequence of generated numbers will be similar.
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technique for parallel generation of pseudorandom numbers, each computing
thread (discussed in detail in Section 4.4) would need to store its own copy of the
generator state. As the number of threads increases, this will strain processor
resources and negatively impact on simulation speed. This makes Threefry an
attractive alternative, as it requires nearly 100 times less memory for state
retention for only 10% lower performance. Although the period of Threefry is
comparatively low, it has been demonstrated to produce at least 2128 unique
sequences of pseudorandom numbers making it ideal for massively multicore
processors.

Despite the advantages of Threefry in parallel applications, its very recent
release (November 2011) lead to dSFMT being incorporated in RayFactor.

The selection of a fast, high quality PRNG ensures integrity of simulation results.
However, the overall performance improvement from its integration is somewhat
limited compared to what is possible through vectorisation. Modern processors are
increasingly built using vectorised architectures and without user care the vast
performance gains possible will not be realised.

4.4 \Vectorisation

MC-RT is often referred to as an ‘embarrassingly parallel’ algorithm, as it
involves a large number of essentially identical sequences of calculations being
performed for each ray launched. This algorithm structure lends MC-RT to
vectorisation in which rather than performing each calculation sequentially,
processing is divided into independent blocks of data and processed in parallel.

In years past, performance increases have been largely realised through
dramatic increases in processor clock frequency with the top tier clock speeds
jumping from 5 MHz in 1983 to 3 GHz in 2002 [77]. However, as processor clock
speeds approached the 3 GHz mark, the associated heat generation and
dissipation posed a design constraint on further CPU performance gains through
increases in processor clock frequency.

Despite the constraints posed by heat generation, the number of transistors on
integrated circuits (transistor budgets) has continued to double approximately
every two years in accordance to Moore’s Law. These growing transistor budgets
combined with the constraints in increasing processor clock frequency have
naturally lead to the development of multicore processors. The introduction and
success of multicore processors has not, however, only been due to the growing
transistor budgets but also due to the enhanced performance and power
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efficiency they afford. This is demonstrated in Figure 10, which shows the
performance and power draw of a single core which has had a 20% increase
(over-clocked) and decrease (under-clocked) in clock frequency compared to a
20% under-clocked dual core.

Performance I
Power D

1.73 1.73

Single Core (+20%) Single Core Single Core (-20%)  Dual Core (-20%)

Figure 10: Performance and power draw of an under-clocked and over-clocked processor
core [77]

By combining two 20% under-clocked single cores, a substantial performance
increase of 73% is achieved for only a 2% increase in power draw. However the
performance increases by moving to multi-core processor designs is not
automatic and software must be vectorised to reap the benefits.

Two vectorisation techniques were used in RayFactor, Single Instruction
Multiple Data (SIMD) and Single Instruction Multiple Thread (SIMT). In essence,
SIMT is a variant of SIMD with the added characteristic that instructions can be
either coherent (i.e. instructions being executed are synchronous over all data)
or incoherent (i.e. instructions are being executed out of step over all data).
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4.4.1 Single Instruction Multiple Thread (SIMT)

Initial vectorisation efforts for RayFactor used a coarse grain SIMT approach
using the Open Multiprocessing (OpenMP) Application Programming Interface
(API). OpenMP is a cross-platform, shared memory, multiprocessing interface
which provides a portable and scalable way to utilise modern multicore CPUs.

In a SIMT approach, the workload is divided across multiple threads (i.e. an
independently managed sequence of instructions) which are then executed
independently when a processing resource becomes available. For a MC-RT
problem, the optimal number of threads will match the number of virtual
processor cores available. On the Mac Pro 4.1 test system, which has 8 physical
cores and employs hyper-threading (i.e. two virtual cores per physical core),
optimal performance is obtained using 16 threads. If too few threads are used,
processing resources will be under-utilised and if too many threads are used,
time and resources will be wasted in the creation and swapping of the surplus
threads. It is therefore important that the number of threads used matches the
underlying processor. In its default configuration, OpenMP will use a thread
count equal to the number of virtual cores made available by the underlying
processor.

In addition to using the correct number of threads, it is also important that the
work is divided evenly among all threads. Uneven workloads will result in under-
utilisation of the available processing resources resulting in a drop in overall
simulation performance.

To reap the full benefits of SIMT, work must be broken up into independent units
of work, any dependencies a work unit has on adjacent units will lower the
efficiency of running across multiple cores. For MC-RT there are several ways in
which the work can be divided to obtain independent work units of which the
most obvious choices are on a per object and per ray basis.

Dividing the workload on a per object basis, each thread would be responsible
for generating and launching all rays for a single object. In order to achieve full
processor utilisation, the number of objects in the geometry being studied must
be a multiple of the number of threads. For current commodity CPUs this means
the total number of objects should be a multiple of 8 or 12 which seems
reasonable. However, for research grade hardware, such as the Intel 80-core
Polaris processor, the total number of objects would need to be a multiple of 160
for full utilisation. Although an object count of 160 might not seem like much for
a contemporary finite element mesh (FEM) based MC-RT program, primitive

71



based modelling can permit the modelling of complex systems with relatively
few objects. Therefore, workload division on a per object basis is not optimal for
primitive based MC-RT and was not pursued in the development of RayFactor.

Rather, the division of workload on a per ray basis was adopted for RayFactor’s
SIMT implementation. Here, for each object the number of rays to be launched is
divided evenly among the threads, and each thread is responsible for the
generation and intersection calculations of their allocated rays. This results in
even loading across each thread and high resource utilisation as typically
millions of rays are launched per object.

However, when dividing the workload in such a way, care must now be taken in
the generation of the random numbers used to construct the rays. As all threads
are simultaneously launching rays from a single object, each thread must
maintain its own PRNG which if not seeded correctly will result in ‘domain
collisions’ (i.e. the PRNG on each thread generates identical sequences of
numbers). Early SIMT implementations of RayFactor encountered this issue,
which was discovered to be a bug in the seeding function of the dSFMT PRNG.
Correspondence with the authors of dSFMT lead to a fix in which the PRNG of
each thread could be uniquely seeded using an array containing the thread
number, the clock time in microseconds, and the number of processor tics from
the start of RayFactor execution to the time of PRNG seeding.

SIMT vectorisation using the OpenMP technology proved a valuable starting
point for RayFactor vectorisation efforts; however, further vectorisation on each
thread may be achieved using a Single Instruction Multiple Data (SIMD)
technique with SSE technology.

4.4.2 Single Instruction Multiple Data (SIMD)

Further to SIMT vectorisation, finer grain, data level parallelism using SIMD
instructions was implemented in RayFactor. In essence, SIMD allows the same
instruction to be performed on multiple data points simultaneously, as
demonstrated in Figure 11.

One of the first SIMD instruction sets available on commodity processors was the
AMD 3DNow! extensions which were introduced in 1998 and promptly replaced
in 1999 by Intel’s Streaming SIMD Extensions (SSE). Since its introduction the
SSE instruction set has become widely supported on both AMD and Intel
processors.
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Figure 11: Data level parallelism with SIMD

The real impact of floating-point precision (or more concisely the size of the
floating-point representation) on performance becomes apparent when utilizing
SIMD instructions. In order to implement SIMD in hardware, additional
arithmetic logic units (ALU), floating point units (FPU) and registers, afforded by
increasing transistor budgets, must be added to the processor silicon. The
number of data points that may be simultaneously operated on is a function of
the registry and floating-point width. The SSE registries on the Mac Pro 4.1
system have a width of 128 bits (referred to as the SIMD width) and, therefore, if
RayFactor uses a single precision floating-point representation, which requires
32 bits per number, a total of 4 data points can fit in the register and be operated
on simultaneously. If a double precision floating-point representation is used,
which requires 64 bits of storage per number, only 2 data points may fit in the
registers. Therefore, a SIMD implementation using single precision floating-point
will have twice the throughput of a SIMD implementation using double precision
floating-point representation.

Further SIMD enabled performance gains are available through the Advanced
Vector Extensions (AVX), the successor to SSE. Intel proposed AVX in 2008 and it
became available in the Intel Sandybridge and AMD Bulldozer processors
released in 2011. The SIMD width on AVX enabled processors was increased to
256 bits, which allows a total of 8 single precision floating-points to be operated
on simultaneously. The processor on the system used for this thesis was not AVX
enabled, and therefore, only SSE instructions were implemented. However, it is
important to note that the benefits from using SIMD are growing due to the
continual advancement of SIMD technologies on the CPU.
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SIMD vectorisation was implemented in RayFactor using SSE instructions to
process four rays (determined by the SIMD width) simultaneously in a structure
of arrays (SoA) format. In SoA format, each of a ray’s parameters, such as the x
coordinate of the ray starting point, are packed into arrays. This allows the
treatment of ‘ray packets’ rather than individual rays and using this format any
elementary operation (such as add and multiply) may be completed on four rays
simultaneously using SSE instructions.

Performing calculations on ray packets does, however, have limitations.
Branched calculations cannot be performed efficiently, as each instruction is
performed across all four rays. Early exits from intersection calculations now
require all rays in a given bundle to satisfy the exit conditions, otherwise
intersection calculations must be fully completed. Given that the rays are
produced randomly, it is highly unlikely that they will be coherent lowering the
chances that the early exit condition will be satisfied for all four rays.

Regardless of the constraints and limitations imposed by both the OpenMP and
SSE technologies, impressive performance gains were delivered as discussed in
the following section.

4.4.3 SIMT and SIMD Performance Improvement

The maximum expected performance improvements for vectorisation of a fixed
size problem may be calculated using Amdahl’s law given the fraction of the
program that is parallelisable P and the number of processing cores used N,y
as shown in equation (70).

P (70)

Amdahl’s law permits the prediction of the maximum number of processors that
can be used to increase program performance. For example, a program for which
90% of the algorithm is parallelisable (P = 0.9) a maximum speed up of 10 times
may be achieved using around 1024 processors. Similarly we may use Amdahl’s
law to predict that for embarrassingly parallel algorithms such as MC-RT where
P = 1 the maximum speedup will be essentially equal to the number of
processors used.

This same result is true for SIMD and in that the maximum speedup possible is
equal to the number of floating point numbers that will fit into the SIMD
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registries. Given that SIMD is implemented on each thread, we may compound
the maximum speedups and state that for a combined SIMT and SIMD MC-RT
implementation, the maximum speed up through vectorisation is equal to the
number of cores multiplied by the number of SIMD data points.

In practice the Amdahl’s law speedups are never fully realised due to factors
such as implementation overheads and hardware bandwidth, memory and 10
limitations. For SIMT, overhead work must be completed to spawn the worker
threads and collate their results, while for SIMD overhead work must be
completed to pack and unpack SIMD data arrays. This work, while necessary to
utilise vectorisation techniques, may be viewed as an inefficiency as it does not
directly contribute to simulation results. Given our understanding of Amdahl’s
law, the efficiency (€) of each vectorisation technique and the number of floating
points which fit into a SIMD register (Ws;p) the speedup for a combined SIMT +
SIMD implementation (compared to a serial implementation) may be expressed
as shown in equation (71).

S = €simr XNeoresX€simp XWsimp (71)

With respect to RayFactor, the primary cause of efficiency reduction for SIMT
vectorisation is from the spawning of threads and the reduction of the view
factors calculated by each thread into a single view factor matrix, where the
fraction of the total simulation time required for each of these operations is
proportional to the number of objects and inversely proportional to the number
of rays.

The primary cause of efficiency reduction for SIMD is the packaging of random
numbers (generated as scalar values) into a packed array for SIMD treatment,
and extracting the final ray intersection data from the SIMD array. The fraction of
the total simulation spent on these two operations is essentially constant.
Despite efficiency reductions for SIMD, the net speedup relative to a non-SIMD
version is not necessarily less than 1:1 as it permits various computational
shortcuts to be taken (discussed further in Section 4.5.1). Table 7 presents
relative performance for SIMD and non-SIMD RayFactor implementations for the
C-77 benchmarking case for a range of cores/threads.

Given that the Mac Pro 4.1 test machine has 8 processing cores (spread across its
two processors), one might expect that maximum performance would be
reached using 8 threads. However, Table 7 indicates that an increase in
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performance of 30% (i.e. 7.4 to 9.7) for the non-SIMD and 11% (i.e. 29.5 to 32.9)
for the SIMD versions is achieved using twice this amount. This is due to hyper-
threading, which allows memory or pipeline latency to be covered up by creating
two virtual cores for each physical core. Here, as execution on one of the virtual
cores stalls waiting for data, physical resources are quickly switched over to the
second virtual core where processing continues until it in turn stalls and
resources are switched back to the original virtual core.

Table 7: Measured relative speed for SIMD and non-SIMD RayFactor versions on the Mac
Pro 4.1 test system for the C-77 benchmarking case

Number of cores Non SIMD SIMD (SSE)
1 1.0 4.3
2 2.0 8.5
4 4.0 17.0
6 5.7 23.3
8 7.4 29.5
16 (hyper-threaded) 9.7 32.9

Using these relative run-times, we may calculate efficiency factors for both the
SIMD and non-SIMD versions as a function of the number of physical cores
utilised as shown in equation (72).

t XN, S
€ (Ncores) — parallel cores — (72)

tserial Ncores

The efficiency as a function of the number of physical cores used provides insight
into the scalability of RayFactor particularly as it moves from using a single
processor (N, y,.s < 4) to two processors. Figure 12 shows the efficiency as
calculated from the run-times of each version on the Mac Pro 4.1 as the ratio of
the relative speedup to the number of physical processor cores used.

Here efficiencies of 98.5% and 99% are experienced for the SIMD and non-SIMD
versions, respectively, when only a single processor is utilised. As the thread
count increases into the region where the second processor is utilised, we see a
decline in efficiency, as the slower communication speed between the two
processors becomes a bottleneck. The efficiency decline for the SIMD version is

76



observed to be much sharper than that of the non-SIMD version. This is to be
expected, as from Table 7 the throughput of the SIMD version is around 4.2 times
that of the non-SIMD version and, therefore, memory and IO limits are

approached more closely.

Despite the various limitations, RayFactor vectorisation efforts proved very
successful with a 9.7 times speedup for the SIMT version and a 32.9 times
speedup for the SIMT + SIMD version. Given the verified scalability of the MC-RT
algorithm in RayFactor, later research using hardware-enabled vectorisation was
carried out using General Purpose Graphics Processing Units (GPGPU). Typically,
speed increases of 10-300 fold [78-80] can be achieved when utilising GPGPUs,
however this is not without its challenges and limitations as will be discussed in

Chapter 5.
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Figure 12: Efficiency of SIMT and SIMD RayFactor implementations

Vectorisation techniques allowed RayFactor to run significantly faster by exploiting
the underlying hardware. However, once the limit of hardware speedup was
reached, further enhancements to the performance of RayFactor had to be achieved
through optimisation at an algorithmic level, as discussed in the following section.




4.5 Algorithmic Optimisation

4.5.1 SIMD Random Number Recycling

In order to fully specify a ray, four random numbers are required to calculate the
ray starting point coordinates and directional angles. As discussed, the
implementation of SIMD techniques in RayFactor leads to four rays being treated
together as a ray packet. Taking a simplified approach, each ray packet would
require the generation of 16 random numbers and four operations to pack these
numbers into a SIMD array.

Taking advantage of the SIMD architecture, we can reduce the ray generation
requirements to the generation of only four random numbers and a single pack
operation. Here, each time a random number is used, the elements of the array
are shuffled by one place. This results in all four rays using the same random
numbers to specify their rays, but the random numbers are used in different
positions, as shown in Figure 13, so that each generated ray remains
independent of adjacent rays in the packet.

Ray
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RN3 4

RN4 ) €

Figure 13: Recycling of random numbers (RN) in an SIMD implementation
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The recycling of random numbers in this manner allows the speed of the SIMD
version to be greater than 4 times that of the non-SIMD counterpart as
demonstrated in Table 7.

4.5.2 Ray Direction Alignment

The ray direction is first calculated as a point on a generic hemisphere whose
pole is on the positive z-axis and whose base lies in the x-y plane. In order to be
correctly specified for the primitive from which the ray will be fired, the ray
directional hemisphere must be rotated so that it is aligned with the surface
normal at the ray staring point.
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The ray directional hemisphere may be aligned with the surface normal
(nx,ny,nz) by converting the Cartesian coordinates of the surface normal to
spherical coordinates as shown in equation (73) and performing an affine
rotation of the hemisphere using equation (36).

n
6 = tan! <_y>
nZ

¢ = cos™'(n,)

(73)

While straightforward, this method is computationally very expensive, as it
requires execution of slow transcendental instructions (tan', cos, cos and sin).
Alternatively, the Rodrigues rotation formula shown in equation (74) may be
utilised efficiently to develop the rotational matrix for the ray direction.

R =1cosO + [k].sinO + (1 — cos @) kkT” (74)

The Rodrigues rotation formula requires a rotation angle 8 and a unit vector
along the axis of rotation k. In the task of aligning the ray directional hemisphere
with the surface normal of the primitive at the ray starting point, neither the axis
of rotation or the rotation angle are known. Here it is desired to rotate the z-axis
to the surface normal N and, therefore, the axis of rotation is simply the vector
perpendicular to n and the z-axisn;, which may be calculated as shown in
equation (75).

(75)

This leaves the rotational angle 6 as the remaining unknown parameter.
Although this angle could be calculated from the available data, this is inefficient
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and would lead to expensive trigonometric calls similar to the first alignment
algorithm proposed in equation (73).

Alternatively, we may directly obtain values for cos 6 and [k] sin 6 using the
geometric properties of the vectors n, n; and k. Firstly it may be appreciated that
the z component of the normal vector is equal to the cosine of the angle it forms
with the z-axis (the rotational angle 8) as shown in equation (76)

cosf =n, (76)

Secondly, the calculated perpendicular vector n; has a direction along the
desired rotation axis k and a magnitude equal to the sine of the rotational angle 6
and, therefore, the second component of the Rodrigues rotation formula may be
specified as shown in equation (77).

TlJ_ =ksin9

11y = [l sin 6 (77)

Finally, the component kk” must be determined. From equation (77), we may
calculate thatn,n! = sin? 8 kk”, which may be converted to the desired kk” by
dividing by sin? 8. However, calculation of the sine function may be avoided by
using the identity sin? # = 1 — cos? 0, where equation (76) provides the cosine
of the rotational angle, to give the final form of kk” shown in equation (78).

T
r_ Wy
kk" = — 2 (78)

Substituting equations (75) through to (78) into equation (74), the Rodrigues
rotation formula may be developed without the use of any computationally
expensive transcendental functions as shown in equation (79).

80



R =1cos@ + [kl sinB + (1 — cos O)kkT

T
nn

=In, + [TlJ_]X +(1+—1’Jl_)

Z

(79)
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Implementation of the Rodrigues rotational function in place of the initial ray
distribution alignment algorithm based on equation (73) led to a reduction in
simulation time of approximately 40% for the non-SIMD version of RayFactor.

Despite the fact that transcendental functions were eliminated from the algorithm
to align the ray directional distribution with the primitive surface normal, the
transcendental functions cannot be completely eliminated from the RayFactor
codebase. Given that the instructions to calculate these transcendental functions
(and various other elementary instructions such as square root) are up to 100
times slower than addition or subtraction instructions, they are naturally the next
target for code optimisation effort.

4.6 Optimisation of Elementary Functions

4.6.1 Fast Reciprocal Square Root

The calculation of a reciprocal square root is required for the normalisation of
the ray directional vectors. This operation is conducted once per ray fired and
can consume a significant amount of computational time.

On modern processors, there are two primary pathways by which the reciprocal
square root may be calculated. The first is to calculate the square root of a
number using the SQRTPS instruction followed by dividing 1 by the calculated
square root using the DIVPS instruction. The second is to use the instruction
RSQRT which directly computes the reciprocal square root using various
approximation shortcuts based on the IEEE 754 floating point layout.

As one might expect, the differentiating factor between the two methods is the
accuracy and speed as evident in Table 8 which lists the precision and relative
performance of each method for the SSE and AVX instruction sets.
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Table 8: Methods for calculating the reciprocal square root on modern processors [81]

. SSE AVX
Method Precision
Performance Performance
SQRTPS + DIVPS 24 bits 1 1
RSQRTPS ~11 bits 13.5 9.1
RSQRT + 1 NR ~22 bits 5.2 17.5

NOTE: NR = Newton-Raphson Iteration

In order to maintain the full 24 bits of precision available in single precision
floating points, one is forced to use the SQRTPS + DIVPS instructions which take
a total of 36 processor cycles to execute. However, if lower levels of precision can
be tolerated, a dramatic performance increase may be realised by instead using a
RSQRTPS instruction at a cost of only 2-3 processor cycles.

During benchmarking of RayFactor, it was determined that the 11 bits of
precision provided by the RSQRTPS instruction was insufficient, resulting in an
increase in the number of rays intersecting with the surface of the primitive from
which they were launched. While this could to a degree be corrected by
increasing the error tolerance in RayFactor, the resulting view factor distribution
would be skewed as discussed in Section 4.2.

In order to obtain an optimal balance between the performance of using the
RSQRTPS instruction and the precision of using the SQRTPS + DIVPS
instructions, the RSQRTPS instruction was used with a single Newton-Raphson
iteration which increases the precision to around 22 bits [81]. The Newton-
Raphson iteration for the reciprocal square root is simple and may be completed
using only four multiplication instructions and one subtraction instruction which
can be executed in a single processor cycle each. In this method, the reciprocal
square root of x is initially estimated using RSQRTPS to gety,, then a higher
precision approximation y,,, is calculated using equation (80).

Yn+1 = yn(]-S - OSX}/,%) (80)

The increase in precision is evident when examining the absolute error for the
RSQRTPS and the RSQRTPS + 1 NR methods as shown in Figure 14 where the
average error is reduced by a factor of approximately 1000 over the range
001<x <1.
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Figure 14: Error in the calculation of the reciprocal square root for RSQRT and RSQRT + 1
NR

Adopting the RSQRTPS + 1 NR method to calculate the reciprocal square root in
RayFactor was found to provide sufficient accuracy such that the difference
between implementing RSQRTPS + 1 NR and the slower but more precise
SQRTPS + DIVPS was virtually undetectable when examining the view factor
distribution.

4.6.2 Fast Square Root

In addition to calculating the reciprocal square root, the square root is itself
required for numerous calculations throughout RayFactor with the most
frequently executed case being from the calculation of the discriminate when
testing for ray-primitive intersection.

As covered in Section 4.6.1, the square root of a number may be calculated to the
full 24 bits of single floating-point precision using the SQRTPS instruction but at
the expense of around 20 processor cycles. Similarly to the calculation of the
reciprocal square root, alternative faster, lower precision methods are available.
There are numerous alternatives such as the Babylonian method or Taylor
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expansion but given the now optimised calculation of the reciprocal square root,
the best method is to calculate the square root as shown in equation (81).

Vx=x (81)

==

Given the calculation of the square root to 24 bits of precision only requires the
SQRTPS instruction, the performance enhancements are not as large as those for
the reciprocal square root as demonstrated in Table 9.

Table 9: Methods for calculating the square root on modern processors [81]

o SSE AVX
Method Precision
Performance Performance
SQRTPS 24 bits 1 1
RSQRTPS + MULPS ~11 bits 4.7 5.9
RSQRTPS + 1 NR + MULPS ~22 bits 2.3 4.3

NOTE: NR = Newton-Raphson Iteration

The performance increases from using approximations for the square root instead
of the SQRTPS instruction may not be as impressive as those for the reciprocal
square root, but given that RayFactor is required to perform the reciprocal square
root at most once per ray while the square root must be calculated once per ray,
per object the overall performance boost for each calculation is comparable. Early
benchmarking studies indicated that using RSQRTPS + 1 NR for the calculation of
the reciprocal square root and RSQRT + 1 NR + MULPS for the calculation of the
square root gave an average RayFactor run-time reduction of approximately 5%

4.6.3 Fast Sine and Cosine

The slowest executing instructions on a modern processor are transcendental
functions such as sine and cosine. These functions are performed as scalar
operations in the processor’s floating-point unit and take up to 100 processor
cycles to calculate a single sine or cosine value. This makes the calculation of a sine
or cosine 20 times more expensive than calculating the square root to full precision.
Furthermore, the fact that these instructions are scalar means that expensive
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unpacking and packing of a SIMD vector would need to occur in order to use them
in a SIMD codebase.

The sine and cosine functions have the corresponding scalar instructions FSIN and
FCOS and are used in RayFactor for the generation of the ray starting point and
direction. Profiling of an early version of RayFactor (using XCode Instruments)
indicated that the FSIN and FCOS instructions were accounting for 23.6% and
20.9% of RayFactor’s total run-time, respectively.

Realising that the majority of the FSIN and FCOS instructions are paired, we may
make a preliminary optimisation by using the FSINCOS instruction which can
calculate both the sine and cosine of a single input number in approximately 110
cycles.

Although the substitution of the FSIN and FCOS instructions by FSINCOS can reduce
the time required to calculate the sine and cosine of a given number, the
performance is still not ideal. As this is a widespread problem in the game
development and scientific computing communities, several fast approximation
methods have been developed over the years such as the Goertzels algorithm, table
lookup and polynomial curve fits, of which the most common is a Taylor expansion
[82].

Given the relative stagnation in memory access speeds compared to the rapid
increase in processor clock speed, the Goertzels algorithm and table lookup
methods are not strong candidates for a modern processor and therefore
polynomial based approximation methods were pursued in this thesis.

RayFactor uses a polynomial approximation method, adapted from the Cephes
math library [83] for the calculation of sine and cosine in which three stages are
employed, additive reduction, approximation and reconstruction. In the additive
reduction stage, the periodicity of the two functions is used to map all input
numbers onto the range 0 < x < 2m. Function symmetry is once again used to
further reduce the domain of the approximation down to 0 < x < m/4. This
process of additive reduction is commonly expressed in terms of the double angle
formulas shown in equation (82).

sin(X + B) = sin(X) cos(B) + cos(X) sin(B)

82
cos(X + B) = cos(X) cos(B) + sin(X) sin(B) (82)
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Here the additive angle B is used to shift the input value x into the range [0: /4]
and may be calculated as shown in equation (83) where k is the integer number of
times x may be divided by /4.

(83)

Following from equation (82) we may conclude that the full period of the sine and
cosine functions may be constructed with the portions of both functions in the
range 0 < ¥ < /4 and knowledge of the function’s symmetry [84]. This is an
important result as it reduces the range over which the functions need to be
approximated, which in turn reduces the number of polynomial constants stored
and powers evaluated to obtain an accurate fit.

Figure 15 diagrammatically demonstrates how the half-period of the sine and
cosine functions may be reconstructed using the reduced range [0:7/4]. The
second half-period of the sine and cosine functions may be calculated by mirroring

the results from the range [0: ] about the x axis using f;;.o (x) = — fo.z(x).
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Figure 15: Construction of sine and cosine from the function defined on the range [0: /4]
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The subsequent step uses a polynomial to approximate the sine and cosine
functions over the range of 0 < x < m/4. Rather than using a Taylor series
expansion for the approximating polynomials, a minimax polynomial is used. The
coefficients of minimax polynomials are selected (commonly using the Remez
exchange algorithm) in such a way that error is uniformly distributed over the
function range, whereas the use of a Taylor series expansion will result in a high
maximal error due to necessary truncation [85]. Additionally, the polynomial
coefficients are optimized for floating point representation and organised using
Estrin’s algorithm to reduce the number of operations required to evaluate the
polynomial [82].

The final step in the fast calculation of sine and cosine is reconstruction. Here the
sine and cosine values are produced from the given input value by mapping the
polynomial approximations onto the correct region using a series of fast bitwise
operations. By using this software based polynomial approximation for the sine
and cosine function’s, the execution time is greatly reduced compared to the scalar
instructions FSIN, FCOS and FSINCOS which are typically carried out on the system
hardware.

Table 10: Comparison of the number of processor cycles to calculate the sine and cosine
functions using system hardware and the implemented polynomial approximation

Cycles to Execute

Method ] ]
System Approximation
Sine 40-100 25
Cosine 40-100 25
Sine + Cosine ~110 25

From Table 10, the performance increase is clear with the calculation of both the
sine and cosine functions using the polynomial approximation executing around
440% faster. However, typical of most optimisation efforts, there is a trade-off
between performance and accuracy. The absolute error for the calculation of the
sine and cosine functions using the polynomial approximation is shown in Figure
16.
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Figure 16: Absolute error for the polynomial approximation of the sine and cosine
functions

Effectively, Figure 16 demonstrates that the sine and cosine approximations have a
maximum error of 1 bit resulting in ~23 bits of precision. This is in line with the
accuracy of the other fast elementary functions implemented in RayFactor and was
thus deemed to be acceptable.

4.7 Space-Partitioning Strategies

The time it takes to test for ray-primitive intersections in a MC-RT solution
increases linearly with the number of objects being analysed. Although the use of
primitive objects (in place of finite elements - see Chapter 6) reduces the
number of objects for which ray intersection needs to be tested, for non-trivial
geometries considerable run-time reductions could be achieved using a space
partitioning strategy.

Space-partitioning strategies are commonly used in physics and graphics engines
and divide the simulation space into sub regions, which are placed into a
hierarchical tree structure. When a ray is launched, it is tested for intersection
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with the root nodes of the space-partitioning tree. If intersection with one of
these nodes is determined, ray intersection is then recursively tested with the
corresponding ‘child nodes’ until intersection with an element occurs or all the
child nodes have been exhausted.

Use of a space-partitioning tree reduces the average run-time complexity for
identifying ray-primitive intersection from linear, O(Nob jects) to logarithmic,
0(log Nobjects), where the base of the logarithm will be equal to the number of

child nodes used.

A multitude of space-partitioning strategies have been developed including kd-
trees [24], Binary Space Partitioning (BSP) trees [86], Octrees [87], R-trees [88]
and Bounding Volume Hierarchies (BVH) [27], each with their own advantages
and disadvantages.

While predominately studied in the context of computer graphics [29, 89] space-
partitioning strategies have also been implemented for the MC-RT simulation of
radiative heat transfer. Zeeb et al [90] incorporated a Uniform Spatial
Subdivision (USD) with mail-boxing strategy to analyse radiative heat transfer
within large arbitrary geometries with non-participating media. Here the
geometries analysed contained between 1000 to 5000 surfaces, which were
sorted into 4,000-65,000 volumetric nodes (voxels) resulting in computational
speedups of 17.7 to 81.4 times.

In more recent studies the use of the BSP strategy in a MC-RT simulation of
surface-surface radiative exchange was found to provide speed-ups of up to 51.5
times for a geometry containing over 50,000 elements while speed-ups of 4.6
times were found for geometries containing only 600 elements [91].

While the literature reports impressive speed-ups for the use of space-
partitioning strategies, recent changes in computer hardware architecture
introduce new challenges to the implementation of these strategies. In order to
store the partitioning hierarchy, additional memory is required and with full
utilisation of processing resources in a vectorised environment the availability of
fast on-chip memory to store these structures is scarce.

Furthermore, most implementations of space-partitioning strategies neglect
SIMD hardware. As previously discussed, for full exploitation of the available
technology calculations are no longer conducted on single rays but rather on ray
packets. For AVX enabled processors, this means that packets containing 8 rays
can be treated together. These rays are highly unlikely to be coherent and
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therefore multiple traversals of the partitioning hierarchy would be required for
a single ray packet. Further to this problem are the constraints involved when
incorporating control logic for tree traversal as branching of instructions is not
strictly permitted within SIMD.

While efforts to find efficient, SIMD friendly partitioning structures are being
undertaken in the field of computer graphics [92-94] research is mainly focused
around coherent ray packets making this by no means a solved problem for the
simulation of radiative heat transfer.

Due to the research state of this problem, space issues and the relatively small
number of elements used to construct the geometries studied in this thesis
(typically less than 500), a space partitioning strategy was not implemented in
RayFactor. However, this is an interesting area for further research as increasing
hardware-enabled vectorisation provides a moving target for the development of
efficient SIMD space-partitioning strategies for incoherent ray packets.

4.8 Conclusions

Numerous optimisation strategies were explored and implemented to enhance
the performance of MC-RT on modern CPUs. Due to the embarrassingly parallel
nature of MC-RT, optimisations focusing on vectorisation were found to provide
the most impressive performance improvements. The following chapter will
further explore vectorisation of MC-RT using general purpose Graphics
Processing Units (GPGPUs) whose architecture provide vectorisation
opportunities far exceeding that of current CPUs.
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5
General Purpose Computing with OpenCL

Of late, impressive performance increases on CPUs have been afforded largely
due to their increasingly vectorised architecture. As discussed in Section 4.4, the
product of thermal design constraints and increasing transistor budgets has
resulted in increasing CPU performance though vectorisation. Although multi-
core CPUs are now commonplace, they are still highly optimised for serial
processing (and thus capable of performing branching operations efficiently)
and contain a relatively few number of complex processing cores.

However, CPUs are no longer the only accessible hardware option for performing
general numerical calculations. Since the development of the Brook streaming
programming language [95], and its evolution into NVidia’s Compute Unified
Device Architecture (CUDA) (first released in 2006), Graphics Processing Units
(GPUs) have been capable of natively running numerical simulations. GPUs have
a fundamentally different design to CPUs and consist of hundreds of small,
‘simple’ cores, specifically designed for parallel performance, making them an
ideal target for embarrassingly parallel algorithms such as MC-RT .

This chapter will introduce a new version of RayFactor, called RayFactorCL,
which can access the computational power across multiple computational
devices of varying architecture, heterogeneously using the Open Compute
Language (OpenCL).

5.1 Open Compute Language

OpenCL is a framework for developing and running parallel programs
heterogeneously ®. This framework is a very recent development in high
performance computing (HPC) with the first specification being presented in late
2008 [96], and the first implementation being available in Apple Inc’s operating

6 Heterogeneous computing is the act of running a program across multiple devices of different
architecture (i.e. CPUs and GPUs). Alternatively, homogenous computing is the act of running a
program on a single device architecture.
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system OS X 10.6 in late 2009. Since its introduction, OpenCL has received
widespread adoption with hardware vendors such as Intel, Advanced Micro
Devices (AMD), NVidia and ARM Holdings all providing OpenCL support in their
computing devices.

Programs created using OpenCL are both portable and scalable. When running
an OpenCL program, the framework detects the available hardware and
performs Just In Time (JIT) compilation for each OpenCL device. This means that
an OpenCL program can be written once and effectively run on any device
supporting OpenCL. However, in order to achieve such portability, a level of
hardware abstraction is introduced by the OpenCL specification. This abstraction
is implemented through OpenCL’s platform, execution and memory models,
which are introduced in the following sections.

5.1.1 The OpenCL Platform Model

The high level abstraction of a heterogeneous computing system is known as the
‘platform model’ in OpenCL. This model, presented in Figure 17, states that an
OpenCL system consists of a single host responsible for interfacing an OpenCL
program with the external environment (e.g. coordinating data transmission)
and one or more OpenCL devices on which an OpenCL program (referred to as a
‘kernel’) is executed.

T

T

Processing
element

Compute device

+

Compute unit

Figure 17: The OpenCL Platform model

An OpenCL enabled device (referred to as a ‘compute device’) consists of one or
more compute units, which may in turn contain one or more processing
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elements, the modules responsible for performing the actual computations of a
kernel. On the now familiar CPU (i.e. the compute device), each core is a compute
unit containing a single processing element. While the distinction between
compute units and processing elements may seem unnecessary when
considering CPUs, one must remember that OpenCL is device agnostic and
therefore the platform model must be capable of describing all computing
devices, and with devices such as GPUs (discussed in detail in Section 5.3) this
distinction is necessary.

5.1.2 The OpenCL Execution Model

An OpenCL application consists of two parts, (i) the host program, which
executes on the host, and (ii) one or more kernels, which execute on the compute
devices. The host program is responsible for the initialisation of all compute
devices and using the OpenCL API acts as a gateway, transferring data between
the kernel and the external program environment (e.g. standard C++ data
pre/post-processing functions).

An OpenCL kernel is a function that is executed on a compute device. The ‘real’
work of OpenCL applications is completed in the kernels with the host program
simply transferring data (parameters) required by the kernel to the compute
devices before the kernel itself is placed in the compute device’s command queue
to await execution. When the compute device prepares to execute a kernel, a
collection of basic OpenCL work units called work-items (similar to threads on
the CPU), are created and organised into independent work-groups.
Decomposing the computational domain in this manner provides fine-grained
data parallelism, nested within coarse-grained data and task parallelism [97].

The work-items within a single work-group concurrently execute kernel
instructions on the processing elements of a single compute unit, while work-
groups may execute on different compute units in any order, in parallel or in
series. This is the heart of concurrency in OpenCL, and it follows that work-
groups cannot be assumed to execute in any particular order or concurrently,
and that only work-items within the same work-group can be assumed to share
the same compute unit resources. This has ramifications in the sharing of data
between work-items as described by the OpenCL memory model.

5.1.3 The OpenCL Memory Model

The OpenCL memory model defines five distinct memory regions: host, global,
constant, local and private, which may be defined as follows:
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1. Host memory: This region is only visible to the host and has no particular
influence on the execution of a kernel.

2. Global memory: This region is accessible to all work-items of all work-
groups. It is the only medium by which data can be shared across work-
groups and between the host and a compute device. Global memory may
be viewed as the ‘bulk’ memory of a compute device (similar to RAM for a
CPU) as it is typically the largest memory region, however, it provides the
slowest read /write access of all the memory regions on a compute device.

3. Constant memory: This is a sub-region of global memory that may not be
modified during kernel execution (i.e. is read-only). Constant memory
must be initialised on the host and transferred to the compute device
prior to kernel execution. The read-only nature of this region permits the
compute device to optimise for data reads, making it faster than global
memory for read-only access and, therefore, the preferable location to
store read-only data that will be accessed by all work-items.

4. Local memory: This region is local to, and shared by, each work-group.
Although, work-items belonging to the same work-group share the work-
groups local memory, work-items cannot access the local memory of
work-groups to which they do not belong. Depending on the hardware,
local memory generally has much lower latency than global memory and
is, therefore, typically used as a manual cache for global memory.

5. Private memory: This is the most restricted region of memory being
private to individual work-items. Work-items may not access the private
memory of other work-items regardless of which work-group they belong
to. Private memory is the lowest latency memory and is generally located
in close physical proximity to the processing core. If a work-item exceeds
the amount of private memory physically available, private memory will
spill into the higher latency local memory.

Although OpenCL specifies multiple, distinct memory regions, it is at the
compute device’s discretion as to how each region maps to the physical memory
modules of the device. For example, most CPUs map all memory regions to the
same physical memory module, a computer’s Dynamic Random-Access Memory
(DRAM), while a GPU maps each memory region to a physically distinct memory
module. The presence of multiple memory regions, and the ability for work-
items to concurrently access the memory element, introduces difficulties in
maintaining memory consistency. However, in OpenCL memory consistency may
be maintained using atomic operations and synchronization points called
‘barriers’.
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5.1.4 Atomic Operations and OpenCL Barriers

Given that work-items may concurrently write to the same memory element,
memory consistency cannot be guaranteed. For example, when calculating a
radiative view factor, each work-item will fire a ray from object i and check to
see if it intersects object j. If two work-items, A and B, concurrently determine
that their rays intersect object j, they will simultaneously proceed to increment
the variable holding the number of i-j intersections. In order to increment a
variable, each work-item must first read the variable, add one to it and write this
variable back to memory. As this variable is concurrently being read by work-
items A and B, both work-items will write the same number to memory resulting
in only one of the two intersections being recorded. In order to prevent this loss
of information, it must be enforced that only one work-item can increment the
variable at a time, that is serially. This may be enforced using atomic operations,
however their use should be minimised as they create an execution bottleneck as
each work-item waits to gain exclusive access to the variable.

The higher the number of work-items capable of accessing the memory region
where data resides, the higher the performance penalty of an atomic operation. If
the variable resides in global memory, then in the worst case execution of all
work-items becomes serialised as they could all potentially require exclusive
access. Alternatively, if the variable resides in local memory, then in the worst
case execution is only serialised for work-items within a work-group. In the
example of recording the i-j intersections, the penalties of the atomic operations
can be reduced by each work-group maintaining its own intersection counters in
local memory, and at a suitable point (e.g. on conclusion of firing rays from the
current object), work-groups combining their individual results into global
memory. This way, serialisation is limited to the work-group level for each ray
and global serialisation will only occur once per object (rather than once per
ray). However, this approach introduces a new problem, synchronisation.

Unconstrained, when at least one work-item in a work-group has finished
launching its rays from object i, it will start the task of adding the work-group’s
local intersection counters to the global counters. However, at this point it is not
guaranteed that all work-items have finished recording their intersection data
and, therefore, the local counters will be added to the global counters before all
intersections have been recorded. This again results in potential information loss
and must be prevented using a synchronisation point called a barrier. Barriers
may be placed at the local or global level and require all work-items to pass
through the barrier before subsequent instructions can be executed. Barriers do
not create serialisation points, but they do require execution time while not
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strictly performing any additional work. In the example above, by placing a local
barrier before local intersection counters are added to the global counters, one
can be certain that all work-items have finished processing the current object
and therefore no information will be lost.

As demonstrated by the preceding sections, the development of an OpenCL
program requires the adoption of a new (and more complicated) programming
paradigm. However, by embracing the OpenCL platform, execution and memory
models, one may not only produce a highly scalable and portable application, but
also one that is capable of heterogeneous computing, able to execute
simultaneously on multiple compute devices. In essence, this is an extension to
the concept of vectorisation, whereby now the program is not only vectorised
across the processing elements of a single compute device but over all capable
compute devices installed on a given platform.

Although OpenCL provides abstraction from the underlying hardware, it is not
completely opaque, and an understanding of the compute device’s architecture is
required to achieve optimum performing kernels. Much of the architecture of
CPUs has previously been discussed and its mapping to the OpenCL memory
models is quite straightforward with typically all memory regions being located
in the same physical memory (i.e. DRAM). However, for compute devices such as
GPUs this is not case, and careful attention must be paid to the memory regions
used. In order to write optimal OpenCL kernels, one must first gain an
appreciation of GPU architecture and general-purpose computing on a GPU.

5.2 Test System GPUs

Two different GPUs were installed in the Mac Pro 4.1 test system (see Section
3.2.1), the NVidia GTX 580 and GTX 680. These GPUs were selected as they
represent the highest performance consumer GPUs available from each of the
last two generations from NVidia (before one moves into dual GPU designs and
research units).

The specifications of each GPU, relative to the CPUs installed in the test system,
are presented in Table 11. Here, an effort has been made to express each
specification in terms of OpenCL nomenclature. Whilst this is straightforward for
the GPU, there are some peculiarities with the CPU, specifically in the area of the
private and local memory regions. As previously mentioned, the CPU maps all
memory regions to the DRAM. However, the CPU has several high bandwidth,
low latency memory modules local to its processing elements called the L1, L2
and L3 caches. These modules are similar to the private and local memory
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regions on the GPU in that they have drastically higher performance than global
memory (DRAM). However, unlike private and local memory they are managed
by CPU control units rather than the OpenCL kernel and could contain data from
either the private, local or global memory regions. For the purposes of Table 11,
L1 cache was taken as representative of the private memory and L2 cache as the
local memory. In addition to this, each CPU in the test machine has 8 MB of L3
cache, which like the L1 and L2 caches could be utilised for the storage of any
memory region by the CPU.

Table 11: Comparison of OpenCL specifications for the Intel Xeon E5520 CPU and the
NVidia GTX 580 and GTX 680 GPUs.

L ) Intel Xeon NVidia NVidia

Specification Units
E5520 GTX 580 GTX 680

Launch date - Q12009 Q42010 Q12012
Transistors - 7.31x10°  3x10° 3.54x10°
Compute units - 4 16 8
Processing elements per unit - 1 32 192
Total processing elements - 4 512 1536
Clock speed (MHz) 2260 1544 1006
Thermal design power (W) 80 244 195
Memory bandwidth (GB/s) 25.6 192.4 192.2
Local Memory per unit KB 256" 48 48
Private Memory per unit KB 128" 128 256
Maximum global memory GB 144 1.5° 2°

Notes: 1. Intel CPUs do not explicitly have local and private memory regions, instead the L1 and
L2 caches have been presented, while an additional 8 MB of L3 Cache is available.
2. This is the amount of memory in the NVidia reference design. Manufacturer version’s
memory may exceed this.

Further discussion involving general computing on the GPU will be specific to the
Fermi and Kepler architectures of the NVidia GTX 580 and GTX680, respectively.
However, it should be noted that these architectures are not representative of all
GPUs such as those manufactured by Advanced Micro Devices (AMD), and
therefore statements made regarding GPU based computing may not be directly
applicable for all GPU devices.

5.3 General-Purpose Computation on the GPU

Due to their highly parallel nature, Graphic Processing Units (GPUs) are an ideal
platform to run ‘embarrassingly parallel’ algorithms such as MC-RT. In the early
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days of GPU computing, one was required to map numerical problems onto the
paradigms used to render graphics to computer screens. However, the
development of general-purpose GPU (GPGPU) programming languages, such as
CUDA and more recently OpenCL, has made the GPU accessible for traditional
numerical calculations.

The GPU is, however, fundamentality different to the CPU. While the CPU has
historically been optimised for serial processing of general-purpose tasks, the
GPU has been developed for massively parallel processing of specific tasks (i.e.
simultaneously colouring the pixels on your computer screen). While the CPU
and GPU are slowly converging in their designs (i.e. CPUs are becoming
increasingly parallel while GPUs are becoming increasingly general), there is still
a marked difference in their architecture and operational characteristics.

The differences in architecture arise from how ‘transistor budgets’ are spent for
each device. In order to perform optimally for general tasks, the CPU spends a
relatively large portion of its transistor budget on control units and memory
cache while GPU designs opt to spend the majority of their budget on processing
elements (i.e. processor cores) as demonstrated in Figure 18.
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Figure 18: Transistor distribution of a typical CPU and GPU.
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The reduction in size and complexity of the GPU’s control units, processing
elements and memory cache in exchange for an increased number of processing
elements, introduces new design considerations for programs targeting the GPU,
such as a reduction in cache control and branching performance (due to a lack of
control units) and run-time penalties in accessing memory (due to reduced
memory caches). These considerations will be discussed in subsequent sections
in relation to NVidia GPUs employing the Fermi and Kepler architectures.
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5.3.1 GPU Work-item Execution Control

On the CPU, each processing element has a sophisticated control unit allowing
each work-item to execute its instructions independently of adjacent work-items.
On the GPU, however, due to the reduced number and complexity of the control
units relative to the number of processing elements, independent control of each
work-item cannot be provided, and at the hardware level work-items are placed
into groups called ‘warps’ that on current NVidia hardware each contain 32
work-items and share a common control unit called a warp scheduler. This
means that work-items within a warp must execute in lock-step with one
another, and therefore if a kernel contains a conditional branch and a single
work-item must follow this branch, then all other work-items must wait for that
work-item to finish executing the branch before the warp may continue
executing the main sequence of instructions. This behaviour is similar to that
encountered with SIMD instructions on the CPU (discussed in Section 4.4.2).
However, for SIMD this behaviour is limited to single operations whereas for a
warp it extends to the whole sequence of instructions which make up a kernel.

Another side effect with small, less complex control units is the loss of cache
management by the control unit. This has ramifications in the OpenCL memory
model, which will be explored in the following section.

5.3.2 Mapping the OpenCL Memory Model to the GPU

As described in Section 5.1.3, OpenCL specifies multiple memory regions. On the
CPU, these regions all map to the same physical memory with the CPU’s control
units managing the movement of data from the slow DRAM to high performance
on-chip memory caches as required. Due to the simpler design of a GPU control
unit, ensuring that the data required by the work-items is stored in the ‘best’
available memory becomes a responsibility of the kernel rather than the
underlying hardware, and may be conducted using the OpenCL memory model.
Unlike CPUs, the OpenCL memory region maps to physically distinct memory
modules on the GPU, which are summarised in Table 12.

The performance of each memory region may be characterised using its latency
(i.e. the time delay between when a control unit asks for a piece of data and the
moment it becomes available at the memory module’s output pins) and
bandwidth (i.e. the rate at which data can be transferred into or out of a memory
module). The higher the performance of the memory region, the more expensive
(and therefore the less abundant) it is. For optimum performance, one must
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ensure that data is not only placed in a memory region of high performance but
also a region in which adequate memory is indeed available’.

Table 12: Physical memory of an NVidia GTX680 with representative performance figures.

Size Bandwidth Latency Managed
Memory

(KB) (GB/s) (cycles) by
Private memory (registers) 4 > 2000 1 Compiler
Local memory 48 1500-2000 20-30 Program
Constant memory 48 150 400 Program
L2 cache 512 480 100-200 GPU
Global Memory > 2x10° 192.3 400-800  Program

* Register memory on the Kepler architecture is 256KB per compute unit which is shared

amongst all work-items on the compute unit.

In addition to the restrictions on the amount of physical memory available, the
private and local memory regions are not allocated on a continuous basis (as one
encounters on the CPU), but are instead allocated in ‘blocks’ at the warp level,
where the size of a block is specified by the GPU’s hardware. This is called
‘memory granularity’ and means that memory allocated in these regions, for the
work-items within a warp will be rounded up to ensure that the size of the
allocated memory is a multiple of the GPUs private or local memory allocation
block size. For example, if a work-item requires 40 bytes (i.e. ten single-precision
floating points) of private memory, theoretically 1,280 bytes would need to be
allocated per warp. However, on an NVidia GTX 680 with a private memory
allocation unit size of 1024 Bytes, a total of 2048 Bytes would be consumed per
warp.

The intricacy of GPU memory interactions is not limited to the allocation of
memory in blocks when dealing with private memory. Additionally, due to the
reduction in the number of control units (discussed in Section 5.3.1), each warp
scheduler concurrently allocates private memory for multiple warps. The
number of warps that may be allocated at once is called the ‘warp allocation
granularity’ and is dependant on the design of the warp scheduler. For the
NVidia GTX 680, the warp allocation granularity is equal to four warps, and
therefore private memory is allocated for four warps at a time. This means that if

71f a particular memory region runs out of space, it ‘spills’ over into the next region in the
memory hierarchy (i.e. private memory would spill to local memory). This results in poor
performance, as both memory regions need to be accessed when retrieving data.
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the actual number of warps in a work-group is not a multiple of four, then the
number of warps will be rounded up to the nearest multiple and private memory
allocated on this basis. If the work-group in the previous example contained 160
work-items, there would be 5 warps per work-group. Given the GTX 680 has a
warp allocation granularity of 4, private memory would actually be allocated for
8 warps (rounding up to the nearest multiple of 4) resulting in a total private
memory allocation of 16,384 Bytes for the work-group compared to the 6,400
Bytes that are actually required prior to accounting for any memory and warp
allocation granularity. As demonstrated by this example, memory allocation on
the GPU can result in higher than expected memory consumption due to the
relatively high granularity of operations within the GPU.

Relative to the CPU, the structure and allocation of memory on the GPU is quite
complex, requiring careful examination of memory usage patterns to access the
full computational potential of the GPU. However, memory usage is not the only
area in which care is required, the application of the OpenCL execution model to
the GPU introduces further optimisation constraints.

5.3.3 Mapping the OpenCL Execution Model to the GPU

As discussed in Section 5.1.2 the OpenCL execution model partitions numerical
problems into work-groups that each contain one or more work-items. In
addition to this partitioning, outside of OpenCL, the GPU hardware allocates
work-groups into sub-groups called warps, which contain up to 32 work-items
each. In order to fully utilise the GPU hardware, each warp must be fully
occupied, as the GPU will commit the same amount of computing resources to
process a warp regardless of how many work-items populate it. However, simply
ensuring that the work-group size is a multiple of the warp size is not enough to
obtain maximum performance on the GPU, one must also account for operational
peculiarities that are introduced by the GPU’s hardware architecture as shown in
Figure 19.

In a similar manner to hyper-threading on the CPU, a warp scheduler will
reallocate processing resources when execution of a work-item (more concisely
a warp) stalls. When a work-item stalls on the CPU, the current state of memory
is transferred from the fast L1 cache of the processing element to slower DRAM,
an operation that may take many processor cycles to complete. However, for a
GPU compute unit, which can maintain a greater number of work-items, and is
far more likely to need to reallocate processing resources due to higher
instruction and memory latencies, this approach is far from ideal. Instead, the
state (which resides in the private and local memory regions shown in Figure
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19) of all work-items in the active work-groups is initialised at the start of work-
group execution and maintained until a work-group has been fully processed.
This allows the warp schedulers to quickly reallocate processing elements from
stalled warps to those ready to execute with nearly no time penalty. However,
this strategy introduces an additional constraint on the work-group size. As
shown in Figure 19, both the private and local memory is common to all
processing elements and, by extension to all work-items in the active work-
groups. Therefore, selection of the work-group size must also take into account
the amount of private and local memory that will be required by each work-item
and ensure that there is sufficient physical memory available in these regions to
concurrently store the state for all work-items within a work-group.

Instruction Cache
Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

Dispatch Unit | Dispatch Unit | Dispatch Unit | Dispatch Unit | Dispatch Unit | Dispatch Unit | Dispatch Unit | Dispatch Unit
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Figure 19: GPGPU relevant components of NVidia GTX 680 compute unit.

NOTES: LD/ST represents the load store unit. SFU represents the special function unit which
execute transcendental instructions such as sine, cosine and square root. N = 16 indicates that a
total of 16 rows (each row has 12 cores) make up the compute unit.

If an unsuitably large work-group size is selected, the private and/or local
memory may ‘spill’ into the more abundant (but slower) global memory, which
will increase the simulation run-time. In the case of RayFactorCL, for example,
setting the work-group size to 1024 work-items results in a 280% increase in
run-time compared to using a smaller work-group size of 128, which allows the
private memory of all work-items in a work-group to coexist in the compute unit
register file. This limitation on work-group size is characterised through the
calculation of the GPU ‘occupancy’, a metric measuring the ratio of work-groups
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that can be active on a compute unit (Ny ¢ qctive) to the maximum number of
active work-groups a compute unit can manage (Ny¢ max) :

N, WG,active

Occupancy = (84)

NWG,max

Here, the number and capacity of the warp schedulers dictate the maximum
number of work-groups that may be active at any one time Ny 1,4x. The number
of active work-groups Ny ¢ qctive, hOwever, is slightly more complex and must be
calculated as a function of the maximum number of active work-groups on the
compute unit Ny max, the warp size Ny, 4., (Where for current NVidia GPUs,
Nyarp = 32), the number of work-items per work-group Ny, ;, the size of the
private and local memory regions on the device, Dpriyqte and Djycq; TESpectively,

and the amount of private and local memory required by each work-group,
Dy ¢ private and Dy 10ca1 @S Shown below :

NWG,max

NWG,max ><Nwarp/NWIG

NWG,active = MIN (85)

Dlocal/DWG,local
Dprivate /DWG,private

It is important to note that when calculating Ny, ¢ 4ctive, the memory required for
each work-group in the private and local memory regions must reflect the

memory and warp granularity of the GPU hardware, as discussed in Section
5.3.2.

As evidenced by the material presented thus far, the selection of an appropriate
work-group is of crucial importance to ensure maximum utilisation of the GPUs
available computational power. This is not a straightforward task, and requires
optimisation of the kernels to ensure they are not prematurely limited by the
latency, memory bandwidth, or instruction bandwidth of the GPU’s hardware.
Although the selection of an appropriate work-group size greatly impacts the
performance of an OpenCL program, it is not the most stringent constraint on
GPU utilisation. For this consideration, one most examine the processing of
single and double precision floating points on the GPU.
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5.3.4 Single versus Double-Precision Floating Points on the GPU

The advantages and disadvantages of using either single (32 bit), or double (64
bit) precision floating point representation in regards to the CPU were discussed
in Section 4.1. There it was stated that the computational throughput was similar
for general instructions with both precision levels, however, the maximum
computational throughput using double-precision floating points was reduced by
50% relative to single-precision floating points when using SIMD instructions.

On the GPU, however, the use of double-precision floating points is greatly
penalised due to the simplicity of the GPU processing elements. On a CPU, each
processing element has parallel execution trains for 32 bit and 64 bit operations,
resulting in no throughput penalty for general instructions. However, typical
GPU processing elements contain only 32 bit execution trains and therefore, for
64 bit operations, dedicated 64 bit processing elements must be used. The
number of these 64 bit processing elements is small compared to the number of
32 bit elements and, therefore, the computational throughput is drastically
reduced when using double-precision floating points.

For the Fermi architecture of the GTX 580, the throughput of 64 bit operations is
1/8th that of 32 bit, while on the more recent Kepler architecture of the GTX 680
the throughput for 64 bit operations is 1/16 that of 32 bit. Therefore, while the
selection of single-precision floating points on the CPU could be debated, for the
GPU they are the only sensible option and for this reason single-precision
floating point representation was used for RayFactorCL.

5.4 Overview of RayFactorCL

The potential of heterogeneous computing and the ability to utilise the vast
numerical processing capabilities of the GPU in a portable and scalable manner
led to the development of RayFactorCL. Using the algorithms presented in the
preceding chapters as a foundation, RayFactorCL was designed to fully utilise all
available numerical computing hardware on a platform through the OpenCL API.
In conforming to the requirements of the OpenCL specification, RayFactorCL was
split into two segments, the host program and the MC-RT kernel.

5.4.1 Host Program

As discussed previously, the host program for an OpenCL application is primarily
responsible for communicating and allocating workloads to compute devices and
the management of data transfer between these devices and the host program
environment. However, before any computational work can be conducted, the
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host program must ‘survey’ a platform and establish the available computing
resources.

Connection to OpenCL Devices

On initialisation of RayFactorCL, the host program surveys the platform for
OpenCL enabled devices and generates a list of all available devices. This list is
then processed to remove any devices that do not meet minimum requirements,
which for RayFactorCL (due to a dependency on atomic operations) is OpenCL
Version 1.1. The kernel is than compiled for each of the remaining devices, which
are subsequently sorted using the following performance metric:

Pdevice = NPE,totalePE (86)

By multiplying the total number of processing elements in the device Npg ¢o1a1,
and the clock speed of the processing elements fpg, the total number of cycles a
device can perform per second can be obtained. While this is not a
comprehensive measure of device performance, it is a simple metric to calculate,
and the calculation inputs Npg 10¢q; and fpg, may be obtained solely from OpenCL
API device queries with no prior knowledge of the device.

At this point in initialisation, if RayFactorCL is operating in homogenous (i.e.
single device) mode, the device with the highest performance is selected and
used for computation. However, if RayFactorCL is operating in heterogeneous
(i.e. multiple device) mode, a relative performance rating for each device is
calculated as the ratio of the device performance to that of the device with the
lowest performance. This rating is later used to determine how work is
partitioned between devices, although before work is allocated the host must
initialise and transmit all required data.

Data Initialisation

Once the suitable OpenCL devices have been selected and rated, the host creates
a three-dimension array containing a pseudo view factor matrix for each device
that subsequent computation will be conducted on. This array is referred to as a
pseudo view factor matrix as its entries will contain integer intersection
counters rather than the actual view factors. Blocks of this array are then
transferred to each device along with the primitive object data (which due to the
slow transfer speeds can take a significant amount of time). For example, the
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transfer of a simple 2x2 pseudo view factor matrix and the data for two
primitives takes 10% of the time required to actually perform the simulation for
moderate ray densities.

Once all data required by the kernel has been transferred from the host to the
devices, the kernels are ready to be launched and begin execution.

Kernel Launching

In order for the kernels to actual execute, the host program must issue an
instruction to the command queue of each device, informing the device of the
kernel name, the work-group size to use, and the total number of work-items
that should execute.

Two approaches were examined for launching the MC-RT kernel. The first
instructed a device to run the kernel once, with the kernel looping through and
processing all objects in the geometry. The second was to repeatedly instruct the
device to run a simpler kernel, once for each object in the geometry with the
kernel only processing a single primitive at a time. Each of these approaches had
advantages and disadvantages, however the latter approach was ultimately
favoured (as discussed in Section 5.4.2), as it had higher performance and
provided greater control over workload distribution.

When multiple compute devices are detected, the host program partitions the
geometry to each device based on the device’s calculated relative performance
rating. For example, if two devices were detected and their relative performance
ratings were 4 and 1 respectively, and the geometry contained 8 objects, the host
would instruct device A to execute the kernel four times to process each of
objects 1-4, then instruct device B to execute the kernel once for object 5, then
finally instruct device A to further execute the kernel three more times for
objects 6-8. While relatively effective, this is a very elementary work partitioning
scheme and does not account for the differences in workload per object or any
dynamic variations in device performance, opening this aspect of RayFactorCL as
a potential area of future research.

Following the execution of the kernel on all devices selected by the host
program, the pseudo view factor matrices are retrieved by the host program
from the device in preparation for post-processing.
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Host Post-Processing

As multiple devices can execute the MC-RT kernel, each work-item is unaware of
how many rays are fired from each object and it, therefore, becomes the task of
the host program to produce the view factor matrix. In order to complete this
task, the host performs a reduction step in which the corresponding entries of
the pseudo view factor matrices from each device are combined and then each
row of the resulting matrix is divided by the total number of rays launched from
the object corresponding to that row. Once this is complete, the resulting view
factor matrix is output to file signifying the completion of the simulation.

5.4.2 The RayFactorCL Kernel

While the host program ensures that compute devices have work to process, it is
the kernel that provides the instructions for how to actually complete the work.
The MC-RT kernel in RayFactorCL performs the calculations described in
Chapter 2, namely the generation of pseudo-random numbers, construction of a
random ray and intersection calculations between the ray and all primitives in
the geometry. Specific design considerations for the design of the MC-RT kernel
will be discussed in the subsequent sections.

Handling of Object Data

As the kernel does not need to modify the primitive objects, they are stored and
accessed directly from the constant memory region of the GPU. This permits
hardware-optimised broadcast of primitive data (such as transformation
matrices) to the work-items during execution. Early designs of the kernel also
performed asynchronous caching of each primitive object in local memory, in an
attempt to leverage the lower memory latency. However, this functionality was
later removed as it increased run-times by approximately 7% for local memory
caching of just the object being processed, and approximately 15% for local
memory caching of both the object being processed and the object being tested
for intersection, due to additional data handling and work-group
synchronisation requirements.

While storage of the primitives in constant memory provides optimal access
speeds, it should be noted that although it is not as scarce as private or local
memory it still has rather limited capacity. With each primitive requiring 112
Bytes of memory for storage, on contemporary GPUs such as the NVidia GTX 680,
the number of objects than may be stored in constant memory is limited to 585.
Requirements greater than this will result in primitives ‘spilling’ into the global
memory, which will increase the overall run-time.
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Handling of the View Factor Matrix

By virtue of the fact that the view factor matrix must be readable by the host
program and writable by all work-groups, it is initialised and stored in global
memory. However, to prevent data inconsistencies occurring when multiple
work-items attempt to modify the same entry in the view factor matrix, all
operations on the view factor matrix are conducted atomically. This creates a
serialisation point in which work-items queue to obtain exclusive access to a
particular entry in the view factor matrix. For geometries in which view factors
are low (less than 0.01), such as those containing numerous evenly distributed
primitives, work-items accessing entries in the view factor matrix seldom clash
and this is not a significant issue. However, for geometries in which objects will
yield moderate or large view factors, serialisation of access to the view factor
matrix can significantly increase the run-time.

In order to increase performance while maintaining data consistency, the
RayFactorCL kernel implements indirect recording of work-item results by first
storing results in local memory and later adding these results to the ‘master’
view factor matrix in global memory. Here, each work-group maintains an array
in local memory representing a single line of the view factor matrix. As a work-
group starts firing rays from a given object, this array is initialised to zero and
then used to store the view factor results from this object for all the work-items
in the work-group. When all rays have been fired from this object, each work-
group performs a reduction step in which the elements of their local array is
atomically added to the view factor matrix in global memory. By doing this,
serialisation no longer occurs for all active work-items on the compute device,
but is instead limited to the active work-items within a single work-group.

While using an indirect approach to recording results increases the total
workload a kernel must perform, it dramatically improves the performance of
the RayFactorCL kernel as evident in Table 13, which presents the relative run-
times for each approach for the benchmarking cases C-77 and C-109 (shown in
Table 4) and a larger geometry denoted W-100 that consists of 55 vertically
stacked cylinders.
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Table 13: Comparison of RayFactorCL relative run-times for direct and indirect recording
of work-item results.

Example Indirect Direct
C-77 1 3.28
C-109 1 7.85
W-100 1 1.02

Of the geometries examined in Table 13, the most impressive run-time reduction
is observed for C-109. This geometry has the largest view factors (F1-1x0.3, F1.
2%0.7, F2.1=1) and, therefore, the highest incidence of work-items attempting to
concurrently access a given entry in the view factor matrix. On the other side of
the spectrum, the view factors for geometry W-100 are all quite small (Fi; <
0.01), resulting in a lower incidence of concurrent access and, therefore, a less
impressive run-time reduction of only 2%.

Kernel Design and Launching

Three distinct kernel designs were examined for implementation in
RayFactorCL. Design A was a comprehensive kernel that is queued once, and
after launch, loops through all objects launching rays from each one as it goes.
This architecture resulted in the most complex kernel and the highest private
memory footprint of all the kernel designs examined. Design B only launched
rays from a single object each time it was launched. This required the kernel to
be queued once for each object, increasing the host program’s workload.
However, it resulted in a reduction in the private memory footprint and the
removal of a run-time loop. Finally, Design C extended on Design B, using a
specialised kernel for each primitive type. Here, when the host program is
queuing a kernel for each object, it examines the type of object and queues a
specific kernel for that object type. This removes a step in which the work-item
would have to select which function to use to generate a ray. However, it
requires that multiple kernels are maintained increasing the complexity of
RayFactorCL. The relative run-times for each kernel design using the C-77, C-109
and W-100 geometries is presented in Table 14.
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Table 14: Relative run-times for various kernel designs in RayFactorCL.

Kernel Design A B C
C-77 1 0.96 0.95
C-109 1 0.72 0.76
W-109 1 0.86 0.86

As demonstrated by Table 14, run-time reductions are obtained when, moving
from a single launch (A) to a multiple launch (B and C) kernel design. Negligible
performance difference was observed between B and C and, therefore, kernel
Design B was selected as it offered higher maintainability.

5.4.3 Random Number Generator

In order to correctly ‘sample’ a geometry, each work-item must maintain its own
Pseudo Random Number Generator (PRNG). Given the private memory
constraints, a PRNG implemented on the GPU must have a low memory footprint
and, therefore, the issue of PRNG selection had to be revisited.

In Section 4.3.2, dSFMT was selected for pseudorandom number generation on
the CPU, requiring a total of 3,088 Bytes to retain its state. Accounting for the
warp and memory allocation granularity of the GPU hardware, a memory
demand of this magnitude would fail to compile, as it would request more
private memory than was physically available on each compute unit.
Alternatively, to work-around private memory constraints, the state of the
dSFMT PRNG could be stored in the abundant global memory, however the
frequency of PRNG use coupled with the lower bandwidth of the global memory
region would cripple simulation performance.

In addition to the constraints on private memory availability, one must consider
the use case for the PRNG on the device it will run. On the CPU, relatively few
independent streams of pseudorandom numbers will be generated due to the
low number of available processing elements; however, each stream will contain
a significant number of random numbers. This is the perfect use case for the
dSFMT PRNG, which can generate pseudorandom number streams of at least
219937 — 1 elements, but is very limited in its capability to generate independent
streams [49]. The larger number of processing elements in the GPU, on the other
hand, requires numerous independent streams of pseudo random numbers with
a relatively small number of elements per stream, a less than optimal usage

pattern for the dSFMT PRNG.
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To contend with the constraints in generating pseudorandom numbers on the
GPU, an alternative to dSFMT was sought and found in the crush-resistant,
counter-based Philox PRNG from the Random123 library [50]. This PRNG was
specifically designed for massively parallel high-performance computation, and
as such requires only 24 Bytes of memory to retain state. It can produce at least
264 independent parallel streams® each with a period of at least 2128,

The Philox PRNG takes a fundamentally different approach to conventional
PRNGs (such as dSFMT) for the generation of pseudorandom numbers.
Conventional PRNGs generate a sequence of numbers by successively applying a
transformation function to a data structure consisting of earlier numbers in the
sequence (i.e. the PRNG’s state). This makes conventional PRNGs inherently
serial, as generation of successive numbers in the sequence requires knowledge
of the previously generated numbers.

Alternatively, counter-based PRNGs such as Philox, generate each number by
applying a transformation function to a simple integer counter. This permits a
sequence of pseudorandom numbers to be reproduced from any point (or
counter value) without having to generate previous numbers in the sequence. By
ensuring that the transformation function is bijective, the period for this
generator will be equal to 2P where P is the size of the integer counter in bits
(RayFactorCL used a 128 bit counter). However, if each work-item used a simple
counter-based PRNG, they would all generate identical numbers in the event that
counter values overlapped, lowering the effective number of simulation samples.
This is avoided in the Philox PRNG by using a keyed block cipher as the
transformation function. Keyed block ciphers are used extensively in
cryptography and map results to a given key, ensuring that the cipher output is
unique to the key value. By giving each work-item a unique key such as their
OpenCL global identification number?, they are guaranteed to produce a unique
stream of pseudorandom numbers regardless of counter overlap.

The cipher block functions used in the Philox generator are quite slow to execute
relative to conventional PRNG transformation functions, with the standard MT-
19937 PRNG achieving approximately 1.8 times the performance on an Intel
Xeon CPU [50]. However, due to the significantly lower memory requirements on
the Philox generator, it achieves 7.9 times higher performance than the MT-
19937 generator on an NVidia GTX 580 GPU [50].

8 This was confirmed with M. Moraes, co-author of the Random123 library, via personal
communication on the 23/03/2013.

9In OpenCL, each work-item is given a unique global identification number, which is simply a
sequential integer.
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5.5 Performance Comparison of RayFactor and RayFactorCL

Extensive performance benchmarking was performed on RayFactorCL to
quantify the performance gains realised using GPGPU computing with the
OpenCL framework relative to the CPU optimised version of RayFactor discussed
in Chapter 4. This performance benchmarking involved running the test
geometries introduced in Section 3.4 in addition to the test geometry W-100
introduced in this chapter and comparing the execution speeds.

5.5.1 Benchmarking Compute Devices

Benchmarking was conducted on the Mac Pro 4.1 test system using an NVidia
GTX 580 and GTX 680 independently and then in conjunction. Although it is
possible to additionally use the test system’s CPUs as compute devices, this was
not done as the kernel was written specifically targeting NVidia GPUs which
would lead to less than optimal performance on the CPU and because heavy
loading of the CPU can result in ‘GPU starvation’ lowering their total throughput
[98]. Furthermore, the work partitioning strategy employed would only allocate
one out of every 67 objects to the CPU when operating heterogeneously (CPU +
GTX 580 + GTX 680) and, therefore, the performance benefits from utilising CPUs
as compute devices would be negligible.

5.5.2 Benchmarking Results

Typically, when comparing the performance of programs running on a GPU
versus a CPU, single threaded CPU programs are used to access the performance
of the CPU [99-101]. As demonstrated in Section 4.4, this is inherently wrong as
for the past decade CPUs have been manufactured with multiple cores and SIMD
support providing large performance gains over serial implementations (32.9
times for RayFactor). In order to obtain a fair comparison of performance
between the two classes of device, performance will be presented on a per device
basis. Given that the test machine is equipped with two CPUs, this involved
limiting execution to a single CPU.

Run-Timing

Run-time measurements were taken for both RayFactor and RayFactorCL using
the “cycle.h” module from the Massachusetts Institute of Technology as part of
the FFTW library [102]. This module measures the number of processor cycles
between two events, which can subsequently be converted into absolute time
using the clock speed of the CPU.
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For RayFactorCL, program initialisation time (including the time taken to
compile OpenCL kernels and transfer memory between the host program and
compute devices) was not included in this comparative study, although it was
measured separately. Therefore, the results presented are representative of the
time taken to launch and finish executing kernels. Measurements for RayFactor
on the CPU were identical with no utility operations being included in the final
measurement.

Results

As previously mentioned, each of the geometries presented in Table 4 as well as
the W—100 geometry introduced in this chapter were run with RayFactor on a
single Intel Xeon E5520 and with RayFactorCL using a NVidia GTX 580, GTX 680
and a GTX580 + GTX680 configuration. A ray density of 1x10° rays per unit area
was used for all elements in all benchmarking geometries. The relative
performance of each implementation and compute device is shown in Table 15.

Table 15: Relative performance for each benchmarking geometry on CPU and GPU based

systems.
Case Xeon GTX GTX GTX580 & Approx.
E5520 580 680 GTX680 Fi/ Fji
C-14 1 13.9 18.0 9.5 0.20/0.20
Cc-47 1 14.4 19.8 11.2 0.38/0.13
C-52 1 16.9 25.6 9.0 0.15/0.07
C-77 1 15.0 19.7 18.1 0.27/0.18
C-109 1 11.4 10.1 8.0 0.71/1.0
C-122 1 16.3 24.2 21.0 0.06/0.17
W-100 1 213 32.1 47.5 0.01

From Table 15, it can be seen that RayFactorCL running on either the NVidia GTX
580 or GTX 680 provides significant performance gains (10 - 32 times faster)
than RayFactor running on the CPU. It should be noted that the benchmarking
geometries with the exception of W-100 provide the worst geometric
characteristics for the GPU, specifically large view factors which increase the
extent to at which work-item execution is serialised to atomically increment the
view factor matrix. This is especially true for geometry C-109, which has the
largest view factors and, as a result, the lowest performance increases relative to
the CPU.
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Geometry W-100 provides the highest performance increases relative to the CPU
for both GPUs. As one may expect, this is because with 55 objects this geometry
is significantly larger, with each object having relatively small view factors. This
geometry is more representative of those that would be analysed in practical
engineering problems and, therefore, one should expect performance boosts
greater than 20 times in such applications.

RayFactorCL on Multiple GPUs

Due to the relatively simplistic work partitioning strategy employed in
RayFactorCL, geometries C-14 through to C-122 still run solely on the GTX680.
This is because in a two GPU configuration RayFactorCL’s performance metric
calculates that the GTX680 performs twice the number of cycles as the GTX580
and, therefore, allocates both objects to be processed by the GTX680 while the
GTX580 sits idle. Although the GTX680 is the only device actually used to
produce results, the host program must still perform work partitioning
calculations and device synchronisation which results in lower performance
gains than if just the GTX680 was used.

For the more realistic W-100 case, utilising the GTX680 and the GTX580 together
rather than just the GTX680 alone gains 1.5 times higher performance. While this
increase is not insignificant, it could be improved still further by using a more
advanced dynamic work partitioning strategy. The results in Table 15 indicate
that the despite the GTX680 having twice the throughput of the GTX580, as
calculated by the performance metric, actual throughput of the GTX680 is only
1.5 times that of the GTX580. This means that the efficiency of the implemented
work-partitioning strategy is only 75%, providing ample room for further
improvement.

5.6 Conclusions

High performance primitive-based MC-RT simulation for the calculation of
radiative view factors targeting both CPU and GPU compute devices has been
established in the RayFactor and RayFactorCL programs. However, while heavily
utilised in the field of computer graphics, geometric primitives are not commonly
used for object representation in radiative heat transfer applications with Finite
Element Meshes (FEMs) being the favoured option. FEMs have the ability to
approximate any geometry using a single element, such as a triangle. However,
they require a significantly larger number of elements to represent a given
geometry. Therefore, a comparison of the speed and accuracy of radiative view
factor calculation for both primitive and FEM based object representation will be
considered in the following chapter.
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6
Comparison with Finite Element Methods

Although surface representation using geometric primitives provides many
advantages, its implementation has been largely confined to the field of
computer graphics. In contemporary heat transfer software, surfaces are
predominately modelled using finite element methods (FEMs). Indeed, finite
elements form the basis for a wide range of numerical approaches with an
extensive literature available on their use in diverse applications e.g. [89, 103-105].

In the field of heat transfer, FEMs offer high interoperability between radiative,
conductive and convective heat transfer solvers making them ideal for conjugate
heat transfer models (as will be discussed in the fibre drawing chapter presented
in the next chapter). Furthermore FEMs allow for efficient program architecture
due to the fact that only a single (typically triangular) object type need be
implemented to model any geometry. The use of a single object removes the need
for branching operations, which are required when multiple object types are
implemented to follow execution paths dependent on object type, resulting in
enhanced instruction caching.

However, while object representations with FEMs has definite advantages over
geometric primitives they are not without their flaws. FEMs require
comprehensive knowledge of available meshing algorithms and finite element
types to produce optimal meshes for geometries of interest. Furthermore, unlike
geometric primitives, FEMs are only ever approximations of surfaces and will
therefore have an inherent error, especially when utilised to model curved
surfaces. Although, this error can be minimised or even eliminated!® through use
of an appropriate meshing strategy, it typically comes at the cost of processing a
greater number of elements.

10 [t is only meaningful to eliminate approximation error relative to the precision of the floating-
point representation used in the simulation.

115



With these considerations in mind, this chapter presents a comparative study of
the speed and accuracy using a triangle based FEM mesh and geometric
primitives for the two benchmarking geometries C-77 and C-122, and
subsequently investigates methods by which both methods may be used in
conjunction with each other to enhance the overall performance of the
calculation of radiative view factors.

6.1 The Triangle Element

The triangular element is the most fundamental element type used for FEM
modelling of two and three-dimensional objects. Given the importance of the
triangle element in a variety of numeral fields such as computer graphics, and
physics and engineering simulations, it has been extensively researched
resulting in the availability of extremely high performance ray-triangle
intersection algorithms [89, 103, 105, 106]. Given the high performance and low
storage requirements of the triangle (only 3 vertices and a normal are required),
it makes an ideal candidate for a performance comparison of calculating
radiative view factors in geometries represented using either geometric
primitives or FEMs.

6.1.1 Ray-Triangle Intersection Algorithm

The approach for calculating ray-triangle intersection is substantially less
complex than that required to calculate the intersection between a ray and the
geometric primitives introduced in Chapter 2. Triangles are fully defined in
‘world” space and therefore ray-triangle intersections do not require
transformation steps during intersection calculations. This reduces the memory
footprint of a triangular element as one does not need to store transformation
matrices as required by the geometric primitives.

Given that triangles exist completely in world space, performing a ray-triangle
intersection is simply a matter of determining if a ray (S + ct) passes through a
point in the triangle defined by its vertices A, B and C. Using the barycentric
coordinates u and v, ray-triangle intersection may be determined by solving
equation (87).

S+ct=A+u-(B—A)+v-(C—-A4) (87)
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In order for the intersection to be considered valid, the intersection point
calculated by equation (87) must lie within the triangle and be the earliest
intersection that the ray experiences, i.e. the ray does not hit any other object
before striking this particular triangle. This can be determined by ensuring that
the parameters ¢, u and v meet the conditions outlined in equation (88).

0 <t < tpest

u=0

v=0 (88)

(u+v)<1

In the context of ray-tracing, numerous computer-based algorithms have been
developed to rapidly solve equation (87) with respect to the conditions outlined
in equation (88). For the purposes of this research, the ray-triangle intersection
algorithm presented by Harvel and Herout [103] was implemented in OpenCL
for the triangle primitive. This algorithm builds on the techniques proposed by
Wald [89] and Shevtov [106] to achieve a maximum intersection calculation
speed-up of 30% over the earlier algorithms.

The Harvel algorithm describes a triangle in terms of three planes rather than its
vertices A, B and C, which are each defined by the general equation of a plane
using a normal vector n and a constant d as shown in equation (89).

x.ny+yn,+zn,+d=0 (89)

The three planes used to describe a triangle element are the plane containing the
triangle surface, the plane perpendicular to the vector (C — A) and the plane
perpendicular to the vector (B — A) as shown in Figure 20.
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Figure 20: Planar representation of a triangle element

The plane in which the triangle lies may be defined by the normal to the triangle
surface ny (this is not a unit normal and when no is used for calculating ray
direction it must be multiplied by the scalar 1/(n?, +n3, +n3,)) and the
constant do which can both be calculated using the triangle vertices as shown in
equation (90).

ny = (B — A)x(C — A)

90
d0=—A'n ( )

The plane perpendicular to the side of the triangle (C — A) may be described by a
vector n, that is perpendicular to both the triangle surface normal n, and the
vector (C — A), and a constant d; which may both be calculated as shown in
equation (91).

_(C—=A)xn
! |n|? (91)
d1 — —n1 " A
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The final plane used to define a triangle element, which is perpendicular to the
side of the triangle (B — A), may be defined by the vector m, (which is
perpendicular to both the triangle surface normal n, and the vector (B — A)),
and a constant d, which may both be calculated as shown in equation (92).

_nx(B—4)
n, = |n|2 (92)
dz == _nz 'A

Once these three planes have been calculated, knowledge of the triangle vertices
is no longer required to perform ray-triangle intersection calculations.
Therefore, by calculating and storing these planes during the pre-processing
stage, the total work load in the processing stage is reduced and the memory
footprint of the triangle element is not significantly increased as only the vectors
n,, n; and n, and the scalar constants d,, d; and d, need be stored.

Using the three planes described previously, the system of equations required to
find the ray-triangle intersection point P as described by the barycentric
coordinates u and v are as shown in equation (93).

P=S+ct
u=n1'P+d1 (93)
U=n2'P+d2

Here the barycentric coordinates u and v express a point on the triangle in terms
of a scaled distance along the vectors n; and n,. By substituting the ray equation
(S = ct) into the plane equation of the triangle, the time at which the ray
intersects with the plane containing the triangle may be calculated as shown by
equation (94).

no'S+d
t=———— (94)

ny-c
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The Havel algorithm, however, recognises that division operations are
computationally expensive (approximately 14 times slower than an addition
operation on an Intel Nehalem CPU) and therefore defers all divisions until the
end of the calculation. This allows unnecessary divisions to be avoided in the
event that the ray does not intersect the triangle and there is an opportunity to
exit the intersection calculations early. Instead, the denominator and a variant of
the numerator are calculated separately as shown in equation (95).

div=mny-c

t'=d- (5 n,) (%9)

Without explicitly calculating t as shown in equation (94), the first condition of
equation (88) may be tested using the expression listed in equation (96).

sign(t') = sign(div. tyee; — t') (96)

If equation (96) is ‘false’ then intersection calculations may be exited early.
However, if it is ‘true’ then the ray intersects the plane containing the triangle in
front of its starting point S (0 < t), and it is the earliest intersection found thus
far (t < tpest). Assuming that equation (96) is ‘true’ the next step in the
algorithm is to check the second condition of equation (88). This is done by
calculating the pseudo-barycentric coordinate u’ (u' = div.u) as shown in
equation (97).

P=S+ct

97
u’=n1'P+d1 ( )

The second condition for a valid intersection, u = 0, may now be tested using the
sign of u’ for another opportunity to exit early from the intersection calculations
using equation (98).

sign(u’) = sign(div —u') (98)
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As with previous checks, if equation (98) is ‘false’ then the ray does not intersect
the triangle and intersection calculations may be exited early. However, if it
evaluates as ‘true’ the pseudo-barycentric coordinate v' (v’ =div.v) is
calculated in the same manner as u’ as shown in equation (99).

U,:nz'P+d2 (99)

A third and final check must now be completed using equation (100), which
given that equation (98) is true at this point, simultaneously ensures that v > 0
and (u + v) <1 providing the last opportunity for an early exit from the
intersection calculations.

sign(v") = sign(div —u' —v') (100)

If equation (100) holds ‘true’, then it can be safely stated that the ray does in fact
intersect the triangle and the division deferred from the start of the calculation
performed to obtain the actual intersection time and barycentric coordinates of
the intersection as shown by equation (101).

t 1 t'
lul = a [u’] (101)
vl

Although the ray-triangle intersections calculations appear somewhat more
complex than those for of the geometric primitives presented in Chapter 2, they
require relatively little data and only a single division operation. This results in
extremely high performance when checking for ray-triangle intersection as
shown later in Section 6.2.2. However, performing ray intersections is not the
only workload when performing MC-RT simulations, rays must also be generated
and launched from the surface of each object. The following section presents the
method implemented for the launching of rays from triangle elements.
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6.1.2 Triangle Ray Launching Strategy

Two different approaches may be adopted for launching rays from the surface of
triangular elements. These methods differ only in the way in which the ray
starting point is selected, with the first approach randomly selecting starting
points on the surface of the triangle similar to ray starting point selection for
geometric primitives, and the second simply using the triangles centre as the ray
starting point with each ray differing only in the direction it is fired.

As one may expect, the first approach will yield the most accurate results,
however it requires each vertex of the triangle to be stored. This will extend run-
times either through the increased data requirements of for the vertices (9 more
floating point values are needed) or the additional workload to calculate the
planes used in the ray-triangle intersection calculations. For this reason the
second approach was taken with the coordinates of each triangles centre point P,
being calculated during pre-processing using equation (102).

1
P.=5A+B+0) (102)

Calculating the triangle’s centre point during the pre-processing phase increases
the memory footprint of the triangle by 16 bytes (i.e. 12 bytes to store P, F.,,
and P, , and one byte of ‘padding’ to improve cache alignment), however this is
significantly less than the 48 bytes required to store the triangle vertices.

As each ray is generated, its starting point is set to the pre-computed centre
point of the triangle. The direction of each ray is then calculated using the same
methodology used for the geometric primitives, which is outlined in Section
2.3.1. However, the surface normal required to align the ray directional
distribution with the launch surface need not be calculated during ray launching
(as is done with the geometric primitives), as the triangle surface normal n; has
already been calculated during the pre-processing stage using equation (90).

6.2 Comparison of Triangular FEMs and Geometric Primitives

In order to assess the value of geometric primitives, it was appreciated that their
performance must be compared to that of calculations performed using a ‘fast’
FEM based approach. This was achieved by assessing the ‘raw’ and ‘compound’
performance of each representational method. Raw performance gives insight
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into the mechanics of an individual element and can be assessed using metrics
such as the rate at which random rays could be generated and intersection
calculations performed. Compound performance is a high-level view of each
object’s representational strategy and measures overall performance in the
context of radiative heat transfer geometries; here the metrics used are the total
simulation time and the accuracy of the calculated view factors.

6.2.1 Ray Launching Speed

As one may expect, this performance metric measures the rate at which random
rays can be generated for a given object type. Theoretically, the triangle element
stands at a marked advantage over geometric primitives for ray launching.
Triangles exist solely in world space and therefore the ray starting point does not
need to be transformed as required for a geometric primitive. Additionally, the
triangle has many useful properties pre-calculated and available for immediate
use, such as the triangle’s centre, which is utilised as the ray starting point, and
the triangle’s surface normal which is required to align the ray directional
distribution.

The ray launching speed was measured by developing a series of OpenCL kernels
to perform the ray generation algorithms for each object type. The time taken to
execute each of these kernels on an NVidia GTX-580 operating under Windows
XP with a set number of work-items was measured and the ray generation rate
calculated as the total number of rays generated divided by the time taken to
complete execution. The rates of ray generation for the geometric primitives
relative to the rate of ray generation for the triangle element are shown in Table
16.

Table 16: Relative ray generation performance of objects in an OpenCL implementation.

Object Relative
Performance

Annulus 0.70
Cylinder 0.72
Disc 0.71
Frustum 0.65
Rectangle 0.93
Sphere 0.67
Triangle 1.00
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As expected, the highest ray generation rate is observed for the triangle element,
which is on average 37% greater than that of the geometric primitives tested.

6.2.2 Intersection Time

More important than ray launching to overall simulation speed, however, is the
rate at which ray-object intersections can be performed. Multiple intersection
calculations per ray launched are required regardless of any space partitioning
strategies employed, and therefore efficient intersection routines are paramount
to MC-RT performance. Similarly to the testing of ray launching performance,
dedicated OpenCL kernels were developed to conduct the intersection
calculations for each object type and the time taken to execute these kernels on
an NVidia GTX-580 with a set number of work-items was measured. However
unlike ray generation, the performance of intersection calculations varies
depending on the geometric orientation between the object and the ray. The
intersection methods for many objects have early exit conditions, which identify
when rays will not intersect an object before the entire intersection calculation is
executed, thus terminating calculations early and avoiding unnecessary work.
Therefore, in order to examine the full spectrum of intersection calculation
performance, both the case in which the ray misses the object (defined as the
‘best’ case in terms of computational speed) and the case where the ray
intersects the object (defined as the ‘worst’ case in terms of computational
speed) must be examined. These two values may be viewed as the upper and
lower limits of intersection performance, as in practice the average rate at which
intersection calculations are performed will lie somewhere between these two
values. Table 17 lists the ‘best’ and ‘worst’ intersection times for the triangular
finite element and the geometric primitives presented in Chapter 2.

Table 17: Relative ray Intersection performance for objects in an OpenCL implementation.

Object Best Case Worst Case
Annulus 2.15 1.52
Cylinder 1.93 1.42
Disc 2.15 1.82
Frustum 1.68 1.28
Rectangle 2.14 1.79
Sphere 2.09 1.56
Triangle 3.14 1.00
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In the ‘best’ case, where the ray misses the object and intersection calculations
can be exited at the earliest point possible, ray-triangle intersection calculations
provide the highest performance with the calculation rate on average 50%
higher than for the geometric primitives tested. This is due to the fact that prior
to evaluating any early exit conditions, geometric primitives must first inverse
transform the ray from world space to object space, a calculation which requires
numerous multiplication and addition operations.

In the ‘worst’ case, where the ray intersects the object, ray-triangle intersection
performance is on average 36% lower than that for the geometric primitives.
This can be attributed to the simplicity of the primitive’s intersection
calculations afforded by testing ray intersection in object space. However, low
performance of intersection calculations in the event that a ray intersects a
triangular element is not necessarily an indicator of poor overall performance.
Triangle elements (especially in FEM implementations) generally have a small
surface area and therefore the incidence of worst-case ray-triangle intersection
will be low. However, as the triangles in an FEM implementation will generally
have a small surface area relative to primitives, many more such triangle
elements are required to model equivalent surfaces. Within this context, the
performance of both triangles and primitives will be examined in the subsequent
section.

6.2.3 Comparison for Benchmarking Geometries

In addition to comparing the raw performance of both triangle elements and
geometric primitives, the overall performance in the context of radiative heat
transfer geometries must be examined. While the triangle elements have high
performance for ray generation and intersection calculations relative to
geometric primitives, a large number of triangles are required to adequately
represent three-dimensional objects such as spheres and cylinders. To compare
the overall performance of each representational method radiative view factors
were calculated for the benchmarking geometries (C-77 and C-122) using both a
triangular FEM mesh and geometric primitives.

These geometries contain both two-dimensional planar objects, such as a
rectangle and an annulus, as well as three-dimensional objects such as a sphere
and a cylinder.
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Approximation of Geometric Primitive Using A Triangle Mesh

Triangle meshes for the geometric primitives in the C-77 and C-122
benchmarking geometries were constructed using elementary meshing
algorithms implemented by the author.

The triangle mesh for the sphere in the C-122 geometry was generated by taking
two base aligned tetrahedrons and iteratively bisecting the edges of each of the
eight triangular faces, creating four smaller triangles for each bisected triangle
facet in the process. By repeating this bisection step the number of triangles
composing the mesh is increased, improving the accuracy of the sphere
approximation. Figure 21 demonstrates the progressively improved triangle
mesh approximation by increasing the number of triangles forming the mesh
from 8 to 2,048.

v N |
() (d)

Figure 21: Sphere approximation with a mesh consisting of (a) 8 (b) 128 (c) 512 and (d)
2048 triangles.

Figure 22: Triangle mesh approximation of a cylinder and annulus with (a) 20 (b) 160 (c)
600 and (d) 1400 elements
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The meshing algorithms implemented for the cylindrical and annular objects
were similar in design and simply segmented the upper and lower (or for the
annulus inner and outer) circumferences into uniform angular increments. The
quadrilateral segments formed by these divisions were than each divided into
two triangular elements by joining two opposing vertices. The resulting triangle
mesh approximations of the cylinder and annulus objects, which were generated
using this algorithm with 20, 160, 600 and 1400 elements, are shown in Figure
22.

As shown in Figure 22, the algorithm to develop FEMs for the cylinder and
annulus allow meshing of the cylinder in the axial and angular directions, and of
the annulus in the angular and radial directions. As rays are fired from the centre
of the triangle elements, computed radiative view factors are sensitive to the
number of mesh divisions in either direction.

Simulation Accuracy

The accuracy of each object’s representational method was assessed by
comparing the calculated radiative view factors to the analytical solutions for the
C-122 and C-77 geometries using ray densities over the range 1 x 105 to 1 x 108
rays/unit?.

In addition to the ray density, the number of triangles used to model each object
was varied in an attempt to gauge the sensitivity of view factor error to the
number of elements and the structure of the mesh used. View factor error as a
function of ray density for the C-122 case, with the sphere modelled using
meshes of 128, 512 and 2048 elements is shown in Figure 23. Here it can be seen
that the geometric primitives not only have substantially lower error but also
converge predictably on the analytical solution with increasing ray density. This
is not the case for the FEMs, which for ray densities greater than 1 x 10¢ have an
essentially constant error. This is due to the fact that above this ray density,
error is a strong function of the number of triangles composing the mesh. Given
that rays are only launched from the centre of each triangle element, the total
number of unique ray starting points is equal to the number of triangles forming
the sphere mesh. Alternatively for geometric primitives ray-starting points are
selected at random, meaning that each ray provides a fully unique sample point.
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Figure 23: Error in calculated radiative view factor for the C-122 geometry using triangle
based FEMs and geometric primitives.

Figure 23 indicates a surprisingly weak dependence between the error and the
number of triangular elements used to describe the sphere. The reason for this
behaviour is unclear but may well be a cumulative effect of the interactions
between the various approximation techniques used. In all cases, however, the
error for the calculated radiative view factors was less than 0.6%. Certainly,
obtaining a solution for the case where 2048 triangles was used to model the
sphere was substantially slower than simply using a sphere primitive, a point
that will be discussed further in the following section. By comparison, the results
for the C-77 geometry (shown on a semi-log plot in Figure 24) show a much
stronger relationship between the error and the number of triangular elements
used.

Although there are error differences between the two approaches, when
considering the results in the context of applied engineering calculations, the
error for either method is generally more than acceptable relative to errors
introduced by other radiative parameters such as emissivity. Therefore it can be
concluded that it terms of accuracy either method can produce solutions to an
acceptable level of error for practical engineering calculations. However,
accuracy is only one aspect, on which numerical methods should be compared; in
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order for solutions to be useful they must not only be accurate but should be
obtained as quickly as possible.
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Figure 24: Error in calculated radiative view factor for the C-77 geometry using triangle-
based FEMs and geometric primitives.

Simulation Speed

Equally as important as the accuracy of a numerical method is the speed at which
it can provide a solution. As put forth by Gustafson’s law [70], reductions in
simulation run-time not only allow fixed size problems to be solved in the
shortest possible time frame, but they also permit the solving of the largest
possible problem in a given “reasonable” time frame. Therefore, by increasing
the performance of MC-RT, one is ultimately increasing the size and complexity
of radiative heat transfer models that can be feasibly solved.

The relative run-times for calculating radiative view factors for the C-77 case
using triangular meshes consisting of 20, 160 and 600 elements per object are
shown in Figure 25.
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Figure 25: Run times relative to geometric primitives for the calculation of radiative view
factors for the C-77 geometry.

It can be seen here that even when using a relatively coarse mesh of only 20
elements per object, the run-time is approximately 5.2 times greater than when
the cylinder and annulus primitives are used. Furthermore, it should be noted
that in addition to the substantial run time penalty, the view factors calculated
using these 20 triangle meshes carry an error of approximately 29%, much
greater than the 0.07 - 0.1% error exhibited by the view factors calculated using
geometric primitives. Therefore, not only do geometric primitives provide
superior accuracy to FEMs, they also offer an exceptional run-time advantage.

Although the computational time required to perform ray intersection
calculations may be reduced from a linear O(n) to a logarithmic O(log, n)
relationship with the number of objects n, by implementing a space partitioning
strategy (see Section 6.3), the relatively large number of mesh elements required
to accurately model even simple objects such as a sphere or cylinder, inhibits the
performance of an FEM based MC-RT solution from competing with a geometric
primitive based approach.

However, it must be pointed out that FEMs still have several distinct advantages
over geometric primitives; notably that they are capable of representing any
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arbitrary surface (geometric primitives require a surface to be expressed as an
implicit surface equation), and their use affords flexible surface discretisation.
The latter feature is particularly important when analysing complex heat
transfer models, where it is often desirable to have a meshing pattern that varies
with both the local geometry and the dominant local heat transfer modes (i.e.
radiative, convective and/or conductive). Traditionally, FEMs have been the only
practical option for geometries requiring explicit discretization. However, this
thesis proposes a hybrid representational method that draws inspiration from
bounding volume space partitioning strategies, so as to provide the
discretisation properties of FEMs with a performance level comparable to the
use of geometric primitives on a GPU-based system.

6.3 Accelerating FEM-Based MC-RT on a GPU-Based Computing

Environment

6.3.1 Space Partitioning

One of the most effective ways to accelerating MC-RT for geometries containing a
large number of objects is to implement a space-partition strategy. Over the
years numerous space partitioning strategies have been developed such as the
uniform grid [107], kd-tree [24] and bounding volume hierarchy (BVH) [27] with
the optimal partitioning strategy being highly dependent on the characteristics
of the partitioned geometry.

Space-partitioning strategies recursively subdivide ‘space’ of interest into two or
more sub-volumes and organise these volumes into an efficient data structure
such as a binary tree. In the context of MC-RT, sub-dividing space in such a way
allows some of the unnecessary ray intersection calculations to be avoided
because if a ray does not intersect a sub-volume, it can safely be assumed that it
will not intersect any objects within that volume and therefore ray-object
intersection calculations need not be conducted. Figure 26 displays the
geometric and tree representation for a bounding volume hierarchy for an
illustrative two-dimensional system.

The two-dimension geometry in Figure 26 (left) contains eight triangle elements,
with bounding volume A (the root node of the BVH) encompassing the entire
geometry. A BVH may be constructed by subdividing the area within A into
bounding volumes B and C. These subdivisions can be placed in a bounding
volume hierarchy as shown in Figure 26 (right) to reduce the computations
required to identify ray-triangle intersection.
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Figure 26: Construction of a bounding volume hierarchy for a two-dimensional geometry.

Although many space-partitioning strategies, such as the kd-tree approachll, can
reduce the complexity of ray intersection from an 0(n) to O(log, n) in the best
case scenario, they have historically been developed within a CPU-based
computing environment, and utilise techniques that are either sub-optimal or
not currently supported for a GPU-based environment such as recursive function
calls, multiple data referencing and random memory access. Due to the inherent
computational power of the GPU, there has been a real incentive to adapt and
optimise space-partitioning strategies for the GPU. This has led to the
development of several implementations targeting efficient space-partitioning
on the GPU [21, 28, 109, 110]. However there are still significant performance
improvements to be made, as will now be demonstrated.

Despite the substantially higher computational throughput of a GPU, OpenCL kd-
tree implementations targeting both the CPU and GPU have been found to have
quite similar performance due to memory bandwidth limitations on the GPU. In
fact, for geometries containing less than 30,000 elements, brute force searches
(such as those used in RayFactor) were found to provide higher performance
than a GPU-optimised kd-tree implementation [109].

Thus, rather than implementing a traditional space-partitioning strategy to
enhance the performance of RayFactorCL when processing geometries
represented by FEMs, a hybrid Primitive-FEM representational method was
developed to obtain run-times closer to those of geometric primitives, while
providing the desirable discretisation characteristics of FEMs.

11 kd-trees have been found to generally provide the highest performance on a CPU [108] This
made the kd-tree the de facto space-partitioning strategy.
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6.3.2 Proposed Primitive-FEM Object Acceleration

While having high computational performance, geometric primitives limit the
potential for geometry discretisation, and although FEMs provide high
discretisation potential they exhibit lower computational performance on a GPU.
While existing space-partitioning strategies can be used to enhance simulation
performance, they have been demonstrated to be rather inefficient on the GPU.
This has led to an exploration of an alternative acceleration method by which
discretisation characteristics of FEMs can be employed but with substantially
lower run-times than with ‘straight’ FEM based solutions.

In the proposed acceleration strategy, the geometric primitives act in a similar
manner as a bounding volume!2. However, rather than simply enclosing a FEM,
the primitive object is specified (using an affine transformation) such that the
elements of the discretization mesh lie on the surface of the primitive. While this
approach requires that FEMs can only be described using geometric primitives,
and is therefore not suitable for surfaces that cannot be described by implicit
equations, it permits several types of optimisation in the ray launching and ray
intersection algorithms.

Object Construction

Object construction is similar to that previously described in Sections 2.4 and 6.1
for both the primitive and FEM variants of RayFactorCL. However, as each
triangle element is known to lie on the surface of a geometric primitive, ray
intersection calculations no longer require knowledge of the surface normal, and
the vertex planes described in Section 6.1 (the reasons for this will become clear
in subsequent sections). Therefore, only the coordinates of the triangle’s centre
point need to be stored, reducing the memory required to store FEM data by a
factor of four. However, prior to storage, each centre coordinate is first
transformed from world space to object space using the inverse transformation
matrix of the parent primitive.

As each FEM is associated with a specific primitive object, the constituent FEMs
are grouped by primitive type and stored sequentially in a single array. By doing
this, each primitive object (stored in a separate array) can determine its
‘associated’ FEMs by storing just two additional integers, the indices of the first
and last FEMs for which it is associated as shown in Figure 27.

12 Bounding Volumes and Bounding Volume Hierarchies (BVH) have a distinct difference. A
bounding volume is a simple primitive object which encloses one or more objects, while a BHV is
a tree-based hierarchy of volumes in which each bounding volume may enclose one or more
smaller bounding volumes.
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Figure 27: A sphere modelled using a primitive and 512 finite elements (shown as centre
points) and its representation in memory where n is the total number of primitives and W
is the total number of finite elements (stored as centre points) lying on the surface of n
primitives.

Ray Intersection

As the primitive object is now defined such that its surface is coincident with its
associated FEM, when a ray intersects a primitive it follows that it must also
intersect one of the finite elements associated with that primitive. With
knowledge that the ray intersects a primitive, the computational problem is no
longer one of determining whether the ray intersects an element in the
associated mesh, but rather one of determining which element in the mesh is
intersected. While the specific element intersected could be identified by
conducting ray intersection calculations with each associated mesh element (as
done for a traditional bounding volume, and in fact the only way in which the
result is guaranteed to be correct), this would require additional intersection
computations and memory requirements.

Alternatively, once a ray-primitive intersection is confirmed in the proposed
method, the co-ordinates of the intersection point are calculated as shown in
Equation (103), and a nearest neighbour search is performed to determine the
mesh element with the centre point that lies closest to the ray-primitive
intersection point.

X Sx Cx
(y) =[Sy |+ (Cy> t (103)
Z S Cy
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To avoid the computationally expensive square root operation when calculating
the distance between the intersection point H and the FEM centre point C, the
squared distance is utilised as shown in Equation (104).

d = (Hy — C)* + (Hy — C,)" + (H, — C,)? (104)

It should be noted that the nearest neighbour search could itself be enhanced
through the use of a space-partitioning strategy, however given the expected
number of finite elements associated with a given primitive is expected to be less
than 30,000, a ‘brute force’ nearest neighbour search provides the best
performance on a GPU [109]. An overview of the proposed acceleration
algorithm is shown in Figure 28.
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Figure 28: Overview of the ray intersection algorithm for the proposed FEM acceleration
method.
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Ray Launching

Ray launching for the proposed acceleration algorithm lends itself strongly to
that used previously for the FEMs. Here rays are launched from each FEM centre
point, with the associated primitive being used to calculate the surface normal
and hence ray orientation at the launch point. A flow chart outlining ray
launching is presented in Figure 29.

Set the ray starting point to the FEM centre point

Calculate surface normal in object space using primitive
equation

Calculate random ray direction in object space and
align with surface normal

Transform the ray from object to world space using
primitive transformation matrix

H«I«I«I«I‘I

Figure 29: Overview of the ray launching algorithm for the proposed FEM acceleration
method.

Although the benchmarking study presented in Section 6.2.3 concluded that the
reduction in accuracy experienced when using a FEM representational method
was primarily due to limiting the ray starting points to a single location per
element (i.e. the triangle’s centre coordinates), by adopting the same approach
here the number of calculations and data handling required to launch a ray are
minimised. For example, if the ray launching algorithm of the geometric
primitives was used not only would the determination of a ray’s starting point be
more computationally expensive (see Table 16), the FEM from which the ray is
fired would not be known prior to formulation on the GPU. This means that one
could no longer cache a single line of the view factor matrix in local memory as
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described in Section 5.4.2, preventing efficient caching of OpenCL work-group
results. Furthermore a nearest neighbour search (similar to that in ray
intersection) would be required after each ray is formulated to determine which
finite element the ray was actually fired from.

Performance of Proposed Acceleration Method

The performance of the proposed acceleration method was compared to both a
‘brute force’ FEM solution (as presented in Section 6.2) and a standard bounding
volume implementation [111] in which once the earliest, valid primitive
intersection is identified each individual triangle associated with the primitive is
tested for intersection (as opposed to simply performing a nearest neighbour
search).

Both the C-77 and C-122 benchmarking geometries were used in this
performance assessment. As only two triangles were used to model the rectangle
in the C-122 geometry, it provided the highest performance for the purposed
acceleration method as a nearest neighbour search using only two coordinates is
required when rays launched from the sphere intersect the rectangle, and
therefore intersection performance is close to that for a primitive. Coupled with
the use of the triangle ray launching method (shown in Section 6.2.1 to have
approximately 8% and 49% higher performance that ray launching from the
rectangle and sphere primitives respectively), the proposed acceleration strategy
has better performance than the straight primitive solution when less than 512
elements are used to model the sphere, as shown in Figure 30.

The C-77 benchmarking geometry, however, provides a more realistic
assessment of the proposed acceleration strategy’s performance with both the
cylinder and the annulus being modelled using equivalent numbers of finite
elements (i.e. 20, 160 and 600 triangular elements per object). Under these
circumstances, an extensive nearest neighbour search is required when either of
the bounding primitives is successfully intersected, and therefore run-times are
observed to be 2.6 to 58 times greater (depending on the number of elements
used) than for a purely primitive based solution. However, while only obtaining a
fraction of the performance of a primitive based solution, the proposed
acceleration structure exhibits 2.3 times higher performance on average than the
brute force FEM solution, and an average of 1.5 times higher performance than a
standard bounding volume implementation.
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Figure 30: Run times relative to using geometric primitives for the calculation of radiative

view factors for the C-122 geometry using the proposed acceleration method, a standard
bounding volume implementation and a ‘brute force’ FEM approach.
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Figure 31: Run-times relative to geometric primitives for the calculation of radiative view

factors for the C-77 geometry using the proposed acceleration method, a standard
bounding volume implementation and a ‘brute force’ FEM approach.
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While the proposed acceleration method does provide significant performance
benefits over a standard bounding volume implementation, it is important to
note that the proposed strategy is not a suitable replacement for conventional
bounding volumes under all conditions. The latter offer the flexibility for the
associated FEMs to not only be coincident with the surface of the bounding
volume, but also to be freely located anywhere within it, making it suitable for
objects that cannot be adequately modelled using geometric primitives.
Additionally, the use of a nearest neighbour search results in a degree of
uncertainty in finite element intersection that is not experienced for bounding
volumes where each individual finite element is tested for possible intersection.

While the proposed strategy does have its disadvantages compared to standard
bounding volumes, the averaging effect of using a Monte Carlo simulation, the
flexibility of employing an affine transformation, and the demonstrated run-time
performance improvements, collectively make the proposed acceleration
strategy a suitable alternative to bounding volumes for a wide range of radiative
heat transfer geometries analysed using a GPU-based computing environment.

6.4 Conclusions

Although FEMs have traditionally been regarded as the de facto representational
method for three-dimensional radiative heat transfer geometries, from a
computational performance perspective they are not necessarily the optimal
choice for MC-RT simulations within a GPU-based computing environment.

Thus, while geometric primitives have been demonstrated to exhibit better
performance than FEMs, the discretisation requirements of a particular heat
transfer model may restrict their application. To circumvent this limitation, a
new bounding volume strategy has been proposed that leverages the advantages
of both geometric primitives and finite elements. Benchmarking studies have
shown that it conservatively provides 2.3 times higher performance than a ‘brute
force’ FEM strategy and 1.5 times higher performance than a traditional
bounding volume approach within a GPU-based environment.

Given the demonstrated high performance GPU-based geometric primitives
calculations, the following chapter will demonstrate the use of RayFactor to
calculate the radiative heat transfer component for a complex heat transfer
model describing an operational fibre drawing furnace.
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7
Case Study — A Fibre Drawing Furnace

It is worth noting that the need to accurately characterise radiative heat transfer
within an operational polymer fibre drawing furnace was the primary driving
force in the early development of the RayFactor software. As such, initial furnace
modelling efforts were undertaken prior to the development of RayFactorCL for
a GPU based computational environment, and therefore radiative view factors
presented in this chapter have primarily been calculated using software
optimised for use on a CPU based platform.

This chapter will detail the development of a fully conjugate heat transfer model
for a drawing furnace used in the manufacture of a wide range of polymer optical
fibres, and lays the groundwork for on-going research using an upgraded version
of this furnace for the high temperature (up to approximately 1000-1100°C)
drawing of sub-micron ‘meta-material’ fibres comprising a structured metal core
contained within a glass sheath.

7.1 Optical Fibre Fabrication

Optical fibres are commonly employed in high-speed, high-bandwidth
applications. Traditionally, these fibres are manufactured from high-purity silica,
however recently polymer optical fibres (POFs) have emerged as a viable
alternative [112-114]. These optical fibres are typically manufactured by feeding
a large cylindrical preform into a drawing furnace where it is heated, softened
and drawn under tension. During drawing, the heat distribution throughout the
preform influences neck-down shape (i.e. the shape of the transition between the
preform and the final fibre). When considering the drawing of micro-structured
polymer optical fibres (mPOFs), which owe their light guidance properties to a
pattern of holes running the length of the fibre, a comprehensive understanding
of the heat transfer within the entire drawing furnace is required including the
conductive /radiative heat transfer within the fibres themselves [112, 115]. With
a suitable heat transfer model of the furnace, one can select furnace-heating
characteristics so as to ensure the integrity of the hole structure as the preform
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is drawn down to a fibre. Heat transfer to the preform in the furnace occurs by
both thermal radiation (both through a quartz window and by re-radiation from
the furnace walls) and by convection induced within the furnace. The
combination of furnace geometry, a shape-changing preform and multiple heat
transfer mechanisms makes this problem a challenging case study for the
employment of MC-RT using primitives.

In order to generate a meaningful heat transfer furnace model, the radiative
solution from MC-RT was coupled to a commercial computational fluid dynamics
(CFD) software package (PolyFlow). Two cases were then considered. In the first,
the furnace was operated such that the polymer preform never exceeded its
glass transition temperature and, thus, never underwent any reduction in
diameter. Here, all relevant view factors were determined by both direct
numerical integration and MC-RT. Very good agreement was obtained between
experimental temperature measurements (both at the centreline and on the
surface of the preform) and results from the furnace heat transfer model. In the
second case considered (for which unfortunately no experimental measurements
were available from the operational fibre-drawing rig), it was assumed that the
preform was raised above its polymeric glass transition temperature for a range
of preform draw-down ratios (Dr = 4, 10 and 50), noting that for a given preform,
the larger the value of Dy, the finer the drawn fibre will be.

7.2 Overview of Furnace Operation

The fibre drawing furnace (shown schematically in Figure 32) consists of a
cylindrical section with a height of 0.18m and a radius of 0.032m. When the
furnace is operating, a preform (0.006m in radius) enters at the top of the
furnace through an adjustable iris while drawn fibre leaves at the bottom
through a second iris (typically left partially open). Six external halogen lamps
(under on-off control) provide radiant heating through a central quartz ‘hot-
zone’ window, with the rest of the furnace being well insulated. Thus, the
preform surface is heated by thermal radiation (both through the quartz window
and by re-radiation from the furnace walls) and by convection induced within
the furnace.

7.1 Modelling of the Drawing Furnace

Modelling of the fibre-drawing furnace was conducted using PolyFlow, a
commercial CFD simulation package specifically designed for simulating
transport processes involving viscoelastic materials. PolyFlow was utilised in the
modelling of the fibre drawing furnace to numerically solve the equations
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governing polymer behaviour: mass, momentum and energy conservation,
together with an appropriate set of physical properties.

R, = 0.032;m
= 0.006m
Top Iris
. \
Preform 5 -
Hqt-zone L
window H=0.18m
a
Furnace Wall -o
Bottom Iris

Figure 32: Schematic diagram of fibre drawing furnace

Although PolyFlow allows analysis of the various conductive and convective heat
transfer modes within the drawing furnace, it does not have the functionality
required for a comprehensive analysis of the radiative heat transfer components.
Therefore, in order to create a realistic heat model, ‘cooperation’ between
PolyFlow and RayFactor was required, and a methodology for interfacing the
two programs was therefore developed (discussed later in section 7.1.3).

7.1.1 PolyFlow Modelling

Taking advantage of the geometry of the fibre-drawing furnace, a two-
dimensional axi-symmetrical model was created in PolyFlow. After performing
mesh refinement analysis to the convergent solutions, the computational domain
was discretised into 5,760 quadrilateral elements to ensure results were mesh
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size independent. This mesh was formed by 180 uniform cells along the length of
the preform, 6 uniform cells across the preform radius and 26 uniform cells
across the radial space between the preform and the furnace wall.

Boundary Conditions on the Furnace Walls (Including the Irises)

In order to correctly model the furnace, it is of critical importance to ensure that
realistic boundary conditions are imposed. These boundary conditions are
required at both the boundaries of the problem space (i.e. the furnace wall and
the top and bottom irises), as well as at phase interfaces such as that between the
solid preform and the surrounding gas.

In order to minimise heat lose, the operational furnace has several layers of
insulating foam in addition to seals where the preform enters the furnace. As the
top iris essentially provides an ‘air-tight’ seal!3, a non-slip condition is applied at
this point for the gas-phase (Rp <r< RW) as shown in Equation (105).

u; =v; =0 (105)

In addition to the conditions imposed on the radial and axial velocities at the iris
surface, u and v respectively, continuous heat loss through the iris is accounted
for using an overall heat loss coefficient U and a thermal boundary condition, as
shown in Equation (106).

qc = U(T — Tx) (106)

Here, the ambient air temperature T,, was taken as 20°C (293 K), while the
overall heat transfer coefficient U accounts for both conductive and convective
thermal resistances at the top iris and was estimated to be approximately 10
W/m?.K, a figure obtained by matching model outputs and experimental results.

After travelling through the furnace, the preform (or drawn fibre) leaves through
an adjustable metal vane system at the bottom iris. To prevent damage to the
preform (or fibre) as it leaves the furnace, this vane is typically left slightly open

13 The seals comprising the top iris were removed during temperature measurements to allow
thermocouple leads to pass into the furnace. This creates a small (~1-2mm) air gap which is not
characterised in the PolyFlow model.
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(~1mm gap between the preform and vane) during normal operation. However,
during these particular experimental measurements, this vane was left fully open
for ease of operation, and therefore fully developed flow and temperature
profiles are assumed at the bottom iris boundary, as shown in Equation (107).

o _aw _
ozly, 0zl
a_T L (207)
0zl

In terms of radiative heat transfer, the bottom iris is treated as a black surface at
the ambient temperature T,, = 293K. In a similar manner to that employed at
the top iris, a non-slip condition is imposed on the velocity at the furnace wall as
shown in Equation (105), however, here the experimentally measured
temperature profile along the wall T}, (z) is used as the thermal boundary
condition, as shown in Equation (108).

T =T,(2) (108)

The experimentally measured temperature profile of the furnace wall during
non-deforming draw is shown in Figure 33. For the deforming cases this profile
was again utilised, however, here a constant 70 K was added to ensure
temperatures within the furnace for preform deformation to occur.

Boundary Conditions at the Preform Interface

For the interface between the gas phase and the preform (r =R,0 <z < H), a
velocity continuity condition is applied, as shown in Equation (109).

g P
(109)
Ug = Up
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Figure 33: Experimentally measured temperature profile along the furnace wall.

From a heat transfer perspective, the gas phase is treated as a (radiatively) non-
participating medium and net heat flux continuity is applied at the interface, as
shown in Equation (110).

oT oT

K—| +qr =Kk
an g qT‘ an P (110)

Here n is the local normal at the preform surface while g, is the net radiative
heat flux at the perform surface, as calculated using RayFactor (discussed in
detail in Section 7.1.3).

In order to determine the free surface geometry of the preform as it deforms,
kinematic and dynamic boundary conditions [114] are applied to perform a force
balance on the preform surface, as shown in Equation (111).

146



Vy-n=0
op:ns=0 (111)

op: nn =Ky

Where V = ui + vi + wk is the velocity vector, n and s denote the local normal
and tangential vectors to the preform surface, o is the traction tensor acting on
the preform surface, y is the surface tension coefficient of the preform material
(PMMA or polymethylmethacrylate) and K is the sum of the principal curvatures
of the free surface.

Boundary Conditions for the Preform

Now turning attention to the preform itself, at the centre-line (r = 0,0 < z < H)
an axi-symmetric boundary condition is applied, as shown in Equation (112).

u, =0
dv
WL ) (112)
a_T| ~0
orl,

At the top of the preform (z =0,0<r< Rp), the velocity boundary conditions

represent the preform being fed into the furnace with a constant axial velocity
(V; = 0.01 m/s), as shown in Equation (113).

up=0
" —v (113)
p — Vi

Using a heat transfer coefficient (hp) to characterise the heat transfer rate from
the top of the preform (z = 0) to the surrounding environment, a thermal
boundary condition here may be used to account for heat loss due to conduction
along the preform (and the free convection away from the cold preform before it
enters the furnace), as shown in Equation (114).
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oT

S ) = —h,(T — Ty) (114)

Here the heat transfer coefficient h, was determined using the correlation for

heat transfer across the base of an infinitely long fin, as shown in Equation (115).

Zth
=R (115)

where h is the heat transfer coefficient for natural (or ‘free’) convection from a

vertical cylinder which was estimated as 7 W/m2.K from the literature [115].

Finally, the boundary conditions at the bottom of the preform (z =H0<r<
Rp) need to be considered. Here, the preform is being drawn down to a fibre and
as such, experiences zero shear force and has an axial exit velocity I, that is
determined by the draw ratio!4. For the simpler case of a non-deforming preform
(examined in Section 7.2), the axial exit velocity is equal to the feeding speed V;.
A fully developed temperature field is assumed as the thermal boundary
condition at the bottom of the preform, as shown in Equation (116).

o _,
0z » - (116)

In addition to the boundary conditions presented above, in order to accurately
represent the behaviour of both the PMMA preform and the furnace air space,
relevant material properties are required. These were entered directly into
PolyFlow where possible, or else implemented as external User Defined
Functions (UDFs) in the C Language Integrated Production System (CLIPS). The
material properties used for the PMMA preform and the air within the furnace
are provided in the following sections.

14 Draw ratio is the ratio cross-sectional area of the preform to the cross-sectional area of the
final fibre.
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Physical Properties of PMMA

The temperature variations likely to be experienced within the PMMA preform
indicate that viscosity and heat capacity need to be considered as temperature
dependent properties. The viscosity was determined by laboratory testing on the
specific grade of PMMA used for optical fibre manufacture in the experimental
drawing furnace, and may be determined as a function of temperature as shown
in Equation (117).

n= 0.266182687'8/(T_273) (117)

The heat capacity of PMMA was modelled using the data reported by Bu et al
[116] and can be determined using the glass transition temperature of PMMA
(Tg = 393K), as shown in Equation (118).

1420 + 4x(T — 298) T <T,—20
c, ={1720 + 16.5%(T —=373) T, —20<T<T, (118)
2050 + 5.5(T — T,) T >T,

The density and thermal conductivity of the PMMA preform were each assumed
to be constant, with values of p, =1170kg/m® and k.= 0.17W/m.K

respectively, as suggested in the literature [115].

Additionally, it is suggested that PMMA can be regarded as optically thick [117],
allowing for only short-range transmission of thermal radiation. In this case,
rather than analysing the radiative heat flux within the preform, the Rosseland
approximation [118] was used to model radiative transfer as an effective
conduction term, referred to as ‘radiative conductivity’, k,, as shown in Equation
(119).

B 16n2%0T3

K
" 3a,,

(119)
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The infrared absorption spectrum for PMMA as presented by Xue et al [115]
indicated that the mean absorption coefficient «,, as a function of wavelength (A)
may be calculated using a linear band model as shown in Equation (120).

1241 —224cm™ 19um <1 <235um
25,54+ 8cm™t 235um <A<4um
110 cm™t 4uym <A< 7um
138 —4Acm™?! 7um <A<133um

(120)

Once the radiative conductivity is calculated using the refractive index (n =
1.55) and mean absorption coefficient («,,), heat transfer within the preform
can be described using a combined conductivity, as shown in Equation (121).

K= Ko + Ky (121)

It should be noted, however, that for the operating temperature range
experienced in the drawing of PMMA optical fibres, radiative heat transfer is
predicted to account for only 4% of the total heat transfer within the preform.
This contribution is expected to increase when an upgraded version of this
furnace is used for drawing ‘metamaterials’ fibres (comprising a structured
metal core within a glass sheath) at temperatures in the range 1000-1100°C.

Physical Properties of Air

Temperature dependent properties of air have been well studied and are widely
available in the literature [1]. Due to the modest temperatures changes within
the furnace, the density of air was taken as constant with a value of p,= 0.9980
kg/m3. The thermal expansion (buoyancy) of the air was approximated using the
Boussinesq approximation, as shown in Equation (122) using a reference
temperature T, = 350 K.

pg = pogll — B(T — Tp)] (122)

where g is gravity (g = 9.81 m/s) and f is the thermal expansion coefficient.
Temperature dependent functions for the viscosity, thermal conductivity and
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heat capacity of the air were developed by low-order curve fitting to tabulated
data available in the literature [1] and are listed in Equation (123).

n = 2.075x1075 + 3.52x10~8(T — 350)
k, = 0.03 + 7.24x1075(T — 350) (123)
¢, = 1009 + 0.1(T — 350)

For the purposes of modelling radiative heat transfer within the furnace (which
will be discussed in the following section), the gas phase was considered to be a
non-participating medium. This required the radiative analysis to only consider
surface-surface exchanges, greatly reducing the complexity of the problem.

7.1.2 Modelling the Furnace in RayFactor

Radiative heat transfer within the fibre-drawing furnace was characterised using
radiative view factors calculated by RayFactor.

Although not required by the RayFactor software, the preform and furnace walls
were each discretised using 180 'slices' and represented using cylinder and
frustum primitives, while the regions of the top and bottom iris each discretised
into 26 annular elements so as to allow a direct comparison of the view factors
with those obtained via numerical integration (discussed in Section 7.2) and a
one-to-one correspondence to the mesh used within PolyFlow (which used this
level of discretisation to ensure that the numerical results were grid
independent).

7.1.3 Interfacing PolyFlow and RayFactor to Model Radiative Heat Transfer

Within the fibre drawing furnace, the preform surface may either gain or lose
radiative energy to the surrounding surfaces depending on surface radiative
properties, the relative temperature differences and how the surfaces ‘view’ each
other.

Modelling of the radiative heat transfer to the preform surface was complicated
by the fact that in PolyFlow, radiative heat transfer can only be introduced via
the equivalent of an infinitely long heating surface. This limitation was managed
by first calculating the net radiative flux q, across the preform surface and
subsequently deriving an equivalent heating temperature profile T,(z) for a
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‘dummy’ infinitely long heating surface which can be used as the thermal
boundary condition at the preform-gas and gas-preform interfaces.

In order to calculate this heating temperature profile T,(z), one must first
determine the radiative flux g, across the surface of the preform. This was
completing by applying the net radiation method [117, 119] over the furnace
enclosure. Here, the furnace surfaces are discretised into either ring elements
(for the preform and furnace wall) or annular discs (for the top and bottom
irises) small enough to consider the temperature as constant across each
element. The net radiative heat flux for each element g,  is then calculated using
the outgoing and incoming fluxes on the element g, , , and g, ; , respectively, as
shown in Equation (124).

qr,k = qr,o,k - qr,i,k (124)

By assuming that each element is a grey diffuse emitter with constant emissivity
the outgoing radiative heat flux may be expressed as shown in Equation (125).

Grok = k0T, + (1 — &) qr ik (125)

Here g, ;, is the sum of the radiative heat that is emitted by all other (N)
elements in the furnace and is incident on the surface of element k and may be
described as shown in Equation (126).

N
Arik = Z F}'—k Ar,0,j (126)
j=1

By applying Equations (124) - (126) to each of the N elements within the furnace
enclosure, a system of N linear equations may be obtained which if the
temperature of the element is known (i.e. furnace walls, preform surface and
bottom iris) has the form shown in Equation (127).
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N

[61(1' - (1 - gk)F}'—k]Qr,o,j = gkO_TI? (127)
j=1

where 6 ; is the Kronecker delta. For elements where the net flux gy is given,

such as the insulated top iris, Equation (128) is used.

N

6k} Qr 0,j =k (128)
j=1

Once the view factors are known, a system of linear equations can be constructed
from Equations (127) and (128) and can be solved numerically using Gauss-
Seidel iteration to determine the outgoing radiative heat flux of each element
Gr ok This may then in turn be used to calculate the incoming radiative heat flux
with Equation (126) and the net radiative heat flux using Equation (124).

As PolyFlow requires the radiative heat transfer to the preform to be expressed
in the same form as for two infinitely long concentric cylinders, as shown in

Equation (129), the radiative heat flux needs to be converted to an ‘equivalent’
radiative heating temperature Ty .

Qrk = SkU(TI:L - T;k) (129)

This equivalent radiative heating temperature may be determined for each
element of the preform through manipulation of Equation (125) to obtain the
relation shown in Equation (130).

4’quk fOT’ erk = 0
Tyr = (130)
’quk
forquk <0

Using the methodology presenting in this section to develop and incorporate a

suitable radiative heat transfer model into PolyFlow, two scenarios of furnace
operation were examined. In the first case, a non-deforming draw was examined,
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where the PMMA preform is heated to a temperature below its glass transition
temperature, so that the diameter of the preform does not change as it passes
through the furnace. Here the results of the model were compared to
experimental measurements taken from the furnace detailed in Section 7.2. In
the second case, the heating of the preform above its glass transition
temperature was considered with the preform being (computationally) drawn
under tension to produce a PMMA fibre. These two cases are discussed in the
following sections.

7.1.4 Emissivity

From Equation (127), it is apparent that radiative heat transfer within the
furnace is dependent on the emissivity of the participating surfaces and
therefore this material property must be considered.

First consider the preform itself. The linear band model for the absorptivity
coefficient presented in Equation (120) indicates that PMMA is highly absorptive
around the wavelength of maximum emission (A,eqx = 6.5 um, as calculated by
the Wien displacement law) for the anticipated furnace operating temperature
region (298-470K). Therefore a constant hemispherical emissivity (e, = 0.96)

was used in this modelling as suggested in the literature [113, 117].

Next consider the glass wall of the furnace. Sayles and Caswell [120] presented
the following relationship for the estimation of the hemispherical spectral
emissivity of a glass cylinder:

g = 0.885(1 — e~%2) (131)

where §; = 2a;R is the optical thickness of a glass cylinder of radius R. However,
for cylinders with a radius greater than 0.25 cm, a precise value of the absorption
coefficient is not required [121] as the asymptotic value (e; = 0.885) can be
used. This asymptote is reached for wavelengths greater than about 3 um, which
from Wien'’s displacement law is applicable at temperatures experienced in the
fibre drawing furnace.

Finally, the bottom iris must be considered. As this adjustable vane was fully
open during the experimental measurements used in this study, the bottom iris
may be considered as essentially a blackbody with a hemispherical emissivity of
e = 1. Given these emissivities one must now determine the furnace views
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factors in order to satisfy Equations (127) and (128) and therefore calculate the
net radiative fluxes within the furnace.

7.1.1 Calculating Radiative View Factors Within the Furnace

Prior to inclusion in the PolyFlow furnace model, the sensitivity of the view
factor results to ray density was examined by calculating the view factor matrix
for ray densities in the range 10° < p,4, < 10°and comparing the results to
those obtained through numerical integration (discussed later in Section 7.2).
The relative run-times for the calculation of the complete drawing furnace
radiative view factor matrix is shown in Table 18.

Table 18: Relative run-times for RayFactor (a CPU based environment using 2 x 2.26 GHz
Intel E5520 and RayFactorCL (a GPU-based environment using a NVidia GTX580 system)

Ray Density RayFactor RayFactorCL
(rays/unit?) (2 x Intel E5520) (NVidia GTX580)
10° 0.11 0.01
10* 1.00 0.11
10° 9.87 1.07
10° 98.61 10.74

Here the run-time for RayFactor with a ray density of 10* was approximately
3.36 minutes, with the run-time for a ray density of 10>, which was ultimately
selected for modelling being 33.2 minutes!>. Although this furnace modelling
work was largely completed prior to the development of the GPU based
RayFactorCL software, it is worth noting that RayFactorCL had a computational
time of only 3.6 minutes using a ray density of 105 This increase in
computational speed will undoubtedly prove extremely beneficial in future
research into high temperature drawing of sub-micron ‘meta-material’ fibres,
particularly if a large number of iterations is required to obtain heat transfer
model convergence (discussed later in Section 7.3).

7.2 Non-deforming Preform Case

In the non-deforming case, the temperature of the preform does not exceed its
glass transition temperature and therefore retains its dimensions as it travels

15 Early versions of RayFactor (prior to the optimisations discussed in Chapter 4) required a
computational time in excess of 6 hours at ray densities of 105.
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through the fibre-drawing furnace. In this case, the preform may be modelled
within RayFactor using only cylindrical primitives.

RayFactor results using ray densities of 103, 104 and 10> are given in Figure 34
through to Figure 36, where in each case the view factors calculated by
RayFactor (shown as discrete symbols) are compared to those obtained by
numerical integration (shown as solid lines). Although all possible view factors
for this furnace enclosure were determined, values are only given here between
the preform surface and the furnace wall (observed from three different axial
positions z = 0.0095, 0.0895, and 0.1695 of one surface to the entire other
surface or to itself) so as to provide a direct comparison between the two
methods. Here F,s refers to the view factor from a position on the preform
surface to the furnace wall, while Frrrefers to the view factor from a position on
the furnace wall to itself. The z values chosen show the essential geometric
symmetry of a system that comprises a constant diameter cylinder located along
the axis of a cylindrical enclosure. Under conditions where the preform
undergoes neck-down to form a smaller diameter fibre, however, this symmetry
is broken, as discussed later in Section 7.3.
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Figure 34: View factors from three positions (z, = 0.0095, 0.0895, 0.1695) on the preform
to the furnace wall with ray density p = 103 rays per unit area.
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Figure 35: View factors from three positions (z, = 0.0095, 0.0895, 0.1695) on the preform
to the furnace wall with a ray density p = 104 rays per unit area.
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Figure 36: View factors from three positions (z, = 0.0095, 0.0895, 0.1695) on the preform
to the furnace wall with a ray density p = 105 rays per unit area.
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Figure 37: View factors from three positions (z; = 0.0095, 0.0895, 0.1695) on the furnace
wall to the preform surface and to itself; (p = 105 per unit area; cylindrical preform).

The accuracy of the view factor calculations is implied by both the close
agreement between all Fi; profiles obtained from the numerical integration and
ray-tracing methods, and the ‘summation rule’ where the total of the view factors
for each surface within the enclosure is essentially unity. Near perfect agreement
between view factors calculated by RayFactor and those obtained through
numerical integration was obtained at a ray density of 10> and therefore this ray
density was utilised for all subsequent view factor calculations.

Using these view factors, as a first check on the radiative heat transfer
methodology to be employed for the drawing furnace, this mode of heat transfer
was calculated using the net radiation method between a stationary, finite
length, solid preform, and the furnace surfaces where the furnace heating wall
was at a uniform temperature and the top and bottom irises are either insulated
or treated as black surfaces. For this simplified case, if the aspect ratio of the
cylindrical preform is large enough, then the net radiative heat flux profile over
the central section of the preform surface should approximate that for the
limiting case of two infinitely long concentric cylinders. Figure 38 shows the
results when a stationary PMMA preform (R = 6 mm; constant hemispherical
total emissivity €, of 0.96 [113, 117]; initially at a uniform temperature of 293 K)
is heated inside a furnace (with a constant emissivity € = 0.885 [113]; height H =
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180 mm; radius Rw = 32 mm; uniform wall temperature Ty of 373 K). Note that in
Figure 38, the net heat flux for the preform has been scaled by the emitted flux g5
from a black surface with the same uniform wall temperature, that is by
qp, = 0,T,s, while the axial length has been scaled by H. With an aspect ratio for
the cylindrical preform of 30, when both irises are treated as insulated surfaces,
the net radiative heat flux over the middle portion of the preform surface is
consistent with the analytical result for two infinitely long concentric cylinders.
However, if both irises are treated as black surfaces, then due to heat loss
thought the irises, the overall net radiative heat flux to the preform surface is
reduced along the length of the preform, with the reduction becoming more
marked when approaching the ends of the preform. This difference indicates the
importance of correctly describing the boundary conditions in such a modelling
exercise.
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Figure 38: Net radiative heat flux profiles along a stationary cylindrical preform within a

furnace with a uniform heating wall temperature; two different thermal boundary

conditions are used for the irises.

Once testing of the view factor and radiative heat transfer calculations was
complete, results from the fully conjugate furnace heat transfer model were
compared with experimental temperature measurements taken (via imbedded
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thermocouples) at the preform surface and centreline. For this moving preform
case, Figure 39 demonstrates that a close match between experimental data and
model predictions was obtained. The residual error between the experimental
and modelling results are felt to be the result of the unmodelled (~ 1-2 mm) air
gap around the preform as it passed through the iris at the furnace entry. This
level of model/experimental discrepancy was deemed acceptable in terms of the
intended model use for furnace redesign so as to maximise polymer fibre-
drawing flexibility, and subsequent upgrading to metamaterial fibre
manufacture. The resulting temperature profile of a vertical cross-section of the
fibre-drawing furnace is shown in Figure 40, showing temperatures within both
the solid preform and the surrounding gas phase.
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Figure 39: Comparison of experimental and furnace model results for preform surface
temperature.
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Figure 40: Temperature profile of a vertical cross-section of the furnace for non-

deforming draw.

7.3 Deforming Preform Case

In the deforming case, using the validated furnace model, the preform is heated
above its glass transition temperature, which when combined with the draw
tension applied, results in the preform being drawn down into a fibre. The
calculation of radiative view factors by direct numerical integration becomes
challenging for the case of a deforming preform due to the variation of the
preform diameter along the length of the furnace. It is here that the real value of
the MC-RT approach becomes evident. The validated heat transfer furnace model
was used over a range of preform draw ratios (D-= 4, 10 and 50).

An iterative approach was required, however, as at each solution step, the
preform shape had changed, meaning that the view factor profiles and thus the
net radiative heat flux profile to the preform had changed. The computational
flow sheet for iteratively converging the furnace heat transfer model for a
deforming preform case is shown in Figure 41.
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Figure 41: Flowchart of method employed for converging deforming preform heat transfer
model.
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The deforming preform furnace model converged to a final solution in just 3-4
iterative steps over the complete range of draw ratios considered. Figure 42
shows this convergence via the calculated T, profile at each iteration for the
most extreme case studies where D, = 50. Rapid convergence was no doubt aided
by the fact that due to the relatively low furnace temperatures, convection
(rather than radiation) is the major mode of heat transfer (~70%) to the preform
as it moves through the furnace. However, the need for an iterative solution in
problems such as this one was a key driver for reducing the run-time required
for calculating 3D view factors via MC-RT. In this case, MC-RT required
approximately 30 minutes per iteration (on the CPU), comprising around 50% of
the total run-time required for each iteration. If the GPU-based RayFactorCL
version (which was not developed until much of the furnace modelling work was
complete) was utilised, view factor calculation would account for less than 9% of
the total run-time for each iteration).
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Figure 42: Convergence of T, temperature profile over four successive iterations.

The temperature profiles for a vertical cross-section of the fibre-drawing furnace
are shown in Figure 43 and Figure 44 for draw ratios of 4 and 50, respectively.
Here, it can be seen that as the fibre gets smaller (i.e. as the draw ratio
increases), it becomes so thin that it quickly equilibrates with the surrounding
air (aided by the increased external heat transfer coefficient afforded by higher
fibre exit speeds).
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Figure 43: Temperature profile for a vertical cross-section of the fibre drawing furnace for

a draw ratio Dr = 4.
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Figure 44: Temperature profile for a vertical cross-section of the fibre drawing furnace for

a draw ratio Dr = 50.
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7.4 Conclusions

It has been demonstrated that radiative heat transfer within a fibre drawing
furnace can be successfully characterised using radiative view factors calculated
by RayFactor and the methodology described in Section 7.1. Although, the time
taken to compute the furnace view factor matrix was relatively high at the time
the original modelling work took place (approximately 50% of total solution
time), it was substantially reduced through the development of RayFactorCL
which took advantage of the speedups possible using a GPU based computing
environment. Indeed, it was the relative slowness of RayFactor when used within
a furnace heat transfer model that required iteration between PolyFlow and
RayFactor that drove the research to consider GPU based computational tools.

Having established the benefits of primitive based MC-RT on a GPU based
platform this research is well positioned to benefit upcoming research into high
temperature drawing of metamaterial fibres (as noted, sub-micron fibres with a
metal core surrounded by a glass sheath).
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8
Conclusions and Recommendations

View factors play an important role in the calculation of radiative heat transfer.
However, for complex three-dimensional (3D) geometries, their determination
can be a computational challenge. At the time this research began, finite element
methods were the preferred option for such 3D situations, while the idea of
combining Monte Carlo based ray-tracing methods with geometric ‘primitives’ as
a means of building complex radiative heat transfer scenarios was a largely
untested approach. In the early stages of this work, the computational demands
of this new approach to numerically determining radiative view factors were
considerable indeed. Thus, much of this thesis then became concerned with
examining computationally efficient methods for using Monte Carlo Ray Tracing
(MC-RT) on modern computer hardware, and in particular in researching how
best to ‘marry’ the numerical methods to a computer’s internal architecture. As
expected, this research followed paths that were never imagined at the start,
with the following key conclusions emerging:

1) MC-RT is indeed a robust tool for the determination of radiative view
factors in complex three-dimensional environments.

2) Object representation via geometric primitives can provide substantial
benefits in simulation accuracy and/or run-time when compared to the
use of finite elements methods (FEM), particularly in situations where the
geometry under consideration involves curved surfaces.

3) The use of geometric primitives will never be the preferred option in all
cases. However, even in situations where they may be unsuitable as a
stand-alone option (such as combined radiative-conductive models),
geometric primitives can still be used to advantage in a bounding volume
configuration to enhance the performance of an FEM based approach.

4) It is critically important that the pseudorandom number generator
(PSRNG) employed in a MC-RT solution be both high quality in terms of
the sequences it generates, and well matched to the underlying computer
hardware and its internal data management structure.
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5) The ‘embarrassingly parallel’ nature of MC-RT readily lends itself to the
exploitation of vectorised computer hardware such as the latest
generation of Central Processing Units (CPUs) and emerging General
Purpose Graphics Processing Units (GPGPU). However, the significant
differences between these two computer architectures call for quite
different approaches to code optimisation.

6) Highly impressive performance improvements can be achieved by
exploiting a GPGPU-based computational platform. The GPGPU version of
the MC-RT software developed for this thesis (which required careful
coding in Open CL) exhibited up to 32 times faster performance than was
possible using optimised code on a CPU-based platform.

7) The MC-RT software (RayFactor) developed as part of this thesis can be
readily interfaced with commercial flow packages (such as PolyFlow) to
allow radiative heat transfer to be included in complex 3D geometries.

The overarching aim of any simulation exercise is to achieve maximum accuracy
in the minimum computational time. In this context, this research has clearly
shown that using geometric primitives to describe 3D scenarios within a GPGPU-
based computing environment is a powerful combination for radiative view
factor estimation. However, to fully exploit this combination will require on-
going research in the following key areas:

(i) A more systematic integration of FEM-based and primitives-based object
representational methods to exploit the computational advantages of
each. Part of this tighter integration would be the development of more
efficient GPGPU-based spatial sub-division algorithms, noting that the
version implemented in this thesis was far from optimal.

(ii) The development of robust ‘load balancing’ algorithms for efficient MC-
RT using heterogeneous computing. This work has amply demonstrated
that simply moving from a CPU-based environment to a GPGPU-based
environment is only part of the solution; matching the characteristics of
the numerical problem, the computational hardware, and the features of
the coding language (noting that Open CL is still very much in the early
development stage) is still a core requirement of any ‘good’ solution.

As a final note, it should perhaps be reiterated that this project emerged from an
urgent need to calculate the radiative heat transfer within an operational fibre
drawing furnace. Hence the focus on the numerical estimation of 3D radiative
view factors. The latter part of the work, however, evolved into an exploration of
how best to match Monte Carlo based numerical techniques to the challenges
and opportunities presented by modern computing hardware. This was, indeed,
an interesting journey and one that has still some way to go.
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