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ABSTRACT 
With increasingly aging and sedentary populations, chronic wounds have been reported to be 

approaching pandemic proportions. Chronic wounds are defined by slow or absent 

healing. Accumulation of wound bacteria forms a biofilm that can inhibit wound healing and 

the action of antibiotics. Conventional skin grafts can readily harbor bacterial and fungal cells 

while excluding penetration of larger immune cells and essential neo-vascularization.  

Soft tissue regenerative scaffolds with highly interconnected porosity have been developed 

for wound healing. In this research, scaffolds were fabricated with bioactive components to 

impart antibacterial activity. The interconnective porosity of the scaffold was preserved 

through using thermally forming composite scaffolds. Bioactive glass (45S5), bulk metallic 

glass (MgZnCa), and infused antibiotic (Cephazolin sodium) were utilised to form the 

composite eluting scaffolds.  

A novel in vivo wound model was generated to simulate the wound environment. This 

consisted of perfusing media, proximal biofilm, planktonic bacteria, and bacterial cells which 

attached within the scaffold. A confluent biofilm of Staphylococcus aureus was generated on 

polymer coupons using a bioreactor (106
 - 109 colony forming units (cfu)/ml each coupon). 

The coupons were placed within nutrient agar dishes (simulating tissue) underneath scaffold 

specimens. Gravity fed perfusion flow was set up using a drip-set kit. 

The model successfully replicated the planktonic phase of the Staph. aureus life-cycle and 

infection of the scaffold from the wound model. Bacterial attachment assays were also 

conducted to assess the potency of bioactive component combinations. All composite 

scaffolds were observed to remain physically in tact throughout experiements. 

Bioactive glass by itself did not contribute any detectable Staph. antibacterial activity whether 

on the scaffold or fused to a silicone substrate. Bioactive glass modified surfaces increased 

CFU measurements. When bioactive glass was present with MgZnCa and antibiotic, it 

appeared to contribute to a mild synergistic improvement in antibacterial activity. This 

strategy may facilitate soft tissue adhesion and further mitigate against bacterial infection. 

Novel interconnective bioactive polymer composite scaffolds with particulate bioactive glass, 

MgZnCa metallic glass, infused antibiotic inhibited Staph. aureus proliferation within the 

scaffold compared to the smooth surfaced controls. This is the first instance of an in-

vitro wound model with an infusion method and planktonic bacteria phase, applied to assess 

antibacterial activity synthetic scaffolds 
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CHAPTER 1 

LITERATURE REVIEW 

1.1 ANATOMY AND PHYSIOLOGY OF SKIN  

The functionality of the skin is based on the integrity of its two primary tissue layers: the 

epidermis and dermis, which are shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 

Figure 1.1: Skin structure showing two main layers, the skin appendages and the main cellular 
components.[1] 

1.1.1 Epidermis 

The epidermis is the outermost layer of the skin, forming a 0.06 – 1.4mm protective layer. 

This layer is impermeable, mechanically strong and enzyme resistant. The main cell type in 

the epidermis is the keratinocyte, which synthesises and deposits keratin which forms the 

stratum corneum [2]. When damage occurs to the corneum, pathogens are recognised by 

Langerhan cells, T-cells and Natural Killer- T cells and the immune response is triggered [3, 

4].  

Another prominent cell type in the epidermis is Merkel cells, which are pressure sensitive 

proprioceptors. In addition, melanocytes secrete the pigment melanin, which protects the 

body against ultraviolet radiation. Sebum is secreted by sebaceous glands, considered to be 

the surface film which protects against entry of microorganisms [5].  Furthermore, these 
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surface microorganisms are removed with dead keratinocytes which are regularly shed when 

new cell layers form on the skin surface [6].   

1.1.2 Dermis 

The dermis is the secondary layer of the skin, which is a 0.3- 3mm thick layer composed of 

blood vessels, sensory nerves, connective tissue and hair follicles. This layer is responsible 

for structural strength, hydration, thermoregulation and nutrient supply. The main 

components of the dermis are collagen, elastic fibers and extrafibrillar matrix, which provide 

resistance to force in all directions. This is particularly important for tensile strength, to  

prevent skin tearing in response to massive stretching [7]. One of three critical type cells in 

the dermis is the fibroblast, which can synthesise extracellular matrix, including collagen, 

elastin and plays a critical role in wound healing [8]. Other cells in the dermis involved in 

wound healing include endothelial cells in vessels and various immune cells [6] 

1.1.3 Skin Function  

In general, the roles of skin include: 

• Serving as an anatomical barrier to physical, chemical and biological assaults 

from the external environment. The skin is the first line of defence system 

against infection. [9] 

• Injury sensory perception from the external environment via a variety of nerve 

endings in the skin.   

• Controlling evaporation to regulate internal body temperature.  

• Storage of lipids and water. 

• Contribute to the endocrine system by releasing hormones, growth factors and 

cytokines. 

• Excretions from sweat, sebaceous and apocrine glands.  

When the skin barrier is disrupted, its ability to perform its essential functions is impaired. It 

is therefore vital to restore its integrity as soon as possible. A wound is defined as a break in 

the epithelial integrity of the skin. However, the disruptions can also go deeper, extending to 

the dermis, subcutaneous fat, fascia, muscle and even bone. Skin can be lost due to burns, 

ulceration and postsurgical and posttraumatic wounds. A lack of sufficient donor tissue and 

the high cost of bioengineered skin mean there is a need for readily available and cost-

effective synthetic skin grafts. 
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1.1.4 The Natural Wound Healing Process (Acute Wound) 

Mammalian skin is able to recover from injury. The process occurs in four overlapping 

phases: haemostasis, inflammation, proliferation and remodeling, as shown in the following 

figure. [1]. 

 

 

 

 

 

 

 

 

Figure 1.2: Phases of the wound healing process: haemostasis, inflammation, migration and proliferation, 
and maturation  [1]. 

1.1.4.1 Haemostasis 
This phase occurs in the moments immediately following injury. The wounded area fills with 

a clot to stop bleeding and prevent external contamination.  In the later phases of healing, this 

clot will act as a temporary matrix, particularly its fibrin and platelet components, for the cells 

involved in reconstruction of the dermal tissue  

1.1.4.2 Inflammation  
The inflammation phase occurs almost simultaneously with haemostasis. In this phase, the 

cells responsible for wound cleaning—neutrophils, macrophages and lymphocytes, migrate to 

the wound site and produce inflammatory mediators. These cells contain any microorganisms 

and activate fibroblasts and epithelial cells for tissue repair. The immune cells and other cells 

involved in tissue repair increase vascular permeability to facilitate further infiltration of 

immune cells. 

1.1.4.3 Proliferation and Migration Phases 
In this phase, epithelial cells and fibroblasts synthesise the constituents of the extracellular 

matrix, leading to the formation of granulation tissue. New connective tissue forms and 

generates new skin and vasculature. 
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1.1.4.4 Maturation 
During this stage, there is a remodeling of the granulation tissue. This results in a change in 

the composition and properties of the tissue. The skin regains up to 80% of its original 

strength. A scar forms where collagen and extracellular matrix reshape and are deposited in 

the wound. 

1.2 CHRONIC WOUNDS  

1.2.1 Infection in Deep Chronic Wounds 

A chronic wound can be defined as one that fails to heal within 3 months. Tarnuzzer and 

Schultz indicated that the major pathobiological causes of wound chronicity are advanced 

age, repeated trauma, local tissue ischemia with reperfusion injury, and high numbers of 

bacteria are the major pathobiological causes of wound chronicity [10]. The impaired healing 

in chronic wounds is due to a failure of the basic processes of acute wound healing. In chronic 

wounds, there is a significant increase in tissue levels of proteases and collagenases, both of 

which can degrade matrix proteins and growth factors. The reduced level of these growth 

factors impairs cellular proliferation and chemotaxis, which are crucial processes for natural 

wound healing. It is not clear what influence bacteria have on this process, although the direct 

release of bacterial proteases and the indirect effect of protease release from phagocytic cells 

are both relevant (Figure 1.3). 

 

 

 

 

 

  



5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The normal inflammatory cascade of wound healing and non-healing (A) in a healthy patient 
and (B) in a patient suffering chronic wounds [11]. 

 (A) At the wound bed, there is an early neutrophil-derived burst of reactive oxygen species (ROS) can kill 
bacteria. Once bacterial numbers decline, the oxidative burst decreases, thereby lessening damage to the 
surrounding tissue. The inflammatory phase of healing enables angiogenesis with resolution of wound 
hypoxia, and the wound proceeds to the latter stages of healing. However, in areas of regional ischemia (B), 
bacteria are not efficiently cleared, partly because of an ineffective oxidative burst (which requires oxygen). 
Local ischemia can result from conditions such as diabetes and aging, in which tissue oxygenation is 
impaired as a result of poor vascular supply. Bacteria can then multiply until a critical level of colonization 
is reached. Unless effective debridement and therapy takes place, bacteria continue to gather in a biofilm, 
causing an amplified and/or prolonged inflammatory response with wound stasis. This persistent 
inflammatory reaction and cellular damage will eventually result in the vicious cycle described. 



6 
 

1.2.2 Bacterial Colonisation of Chronic Wounds 

1.2.2.1 Bacterial Invasion 
Within one month after wounding, the Gram-positive organisms streptococci and 

corynebacterium begin to invade in the wound beds.  In the case of non-healing ulcers, a 

broader-spectrum of organisms appears, including Gram-negative microbial such as 

coliforms, Klebsiellae, Proteus spp. and Peptostreptococcus sppq [12]. Numerous bacterial 

species come together to form biofilms in prolonged chronic wounds [13]. 

1.2.2.2 Biofilm Formation 
A biofilm is defined as adherent microorganisms within a polymer matrix. Colonies can 

adhere to both organic and inorganic sites. This biofilm also contains water channels inside. 

Biofilms are formed by a wide range of bacterial species. The bacteria has a high level of 

resistance to antibacterial agents. Biofilms also induce chronic inflammation that delays 

healing [14, 15]. The mechanism for the resistance be effect of innate and induced factors, but 

this view is still controversial [16]. 

Furthermore, within the biofilms, the genotypic resistance of mutant cells can be enhanced by 

genetic transfer to other cells. As the consequent, resistant ability is improved, so the biofilm 

is further protected [15, 17]. Table 1.1 lists some common bacteria found in wounds. These 

have been isolated from patients in three recent studies. 
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Table 1.1: Bacterial species isolated from wounds [13, 18] 

 

As shown in this table, there is a diversity of bacteria found in wounds. Staphylococcus spp. 

appears prominently in many types of wound. The most common variety of Staphylococcus 

aureus [19], an non motile, Gram-positive cocci, which attach to surfaces via adhension 

proteins on their cell wall [20] Therefore, in the current model, we seeded scaffolds with 

Staphylococcus aureus. Our motivation was to investigate treatments for Staphyloccocus 

aureus in the wound environment.   

1.2.2.3 Antibiotics for Treating Bacteria 
Antibiotic treatment can be effective in some situations. For example, many venous stasis 

ulcers develop a cellulitis that is difficult to control without antibiotic therapy.  

Indications of infection include: (1) decrease in rate of healing, (2) increased pain and (3) 

straw-colored “oozing” of wound exudate from the skin. Coloured exudate is likely to be 

evidence of an underlying Staphylococcus cellulitis or lymphangitis.  

Any patient with significant lymphedema and an open wound should be considered for 

antibiotic therapy. Antibiotics should also be used in contaminated wounds (oral flora, animal 

bites), as well as in patients with mechanical implants.  
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Systemic antibiotics can be delivered to tissues which have a good blood supply. For other 

tissues,  topical antibiotics and/or removal of bioburden by cleansing are even more critical 

[21]. Table 1.2 lists some common antibiotics. 

Table 1.2: Some common antibiotics for clinical treatment of infected wounds [22]. 

Product & 

Formulation 
Bacterial spectrum Advantages Disadvantages Refs 

Neomycin  

Powder  

Cream:0.5%  

Ointment:0.5%  

Gram-negatives 

except P.aeruginosa 

Gram-positives: 

S.auereus 

Not streptococci  

Low cost  

May enhance re-  

epithelialisation  

Potential for systemictoxicity 

Hypersensitivity with chronic 

use 

Bacterial resistance 

(staphylococci and Gram 

negative bacilli) 

[56-

60] 

Bacitracin  

Ointment:  

500units/g  

Powder  

Gram-positives: 

Aerobic 

staphylococci 

&streptococci, 

corynebacteria, 

anaerobiccocci  

No cross-

resistance with 

other antibiotics 

Minimal 

absorption 

Hypersensitivity with chronic 

use 

Bacterial resistance  

[56-

59] 

Polymixin  

Gram-negatives: 

including 

P.aeruginosa  

Low cost 

Minimal potential 

for allergic 

eactions 

Limited spectrum of activity  
[56, 

61] 

These antibiotics can also be used combination, the most common being neomycin, bacitracin 

and polymixin. Using a combination allows a wider spectrum of bacteria to be treated [22].  

1.2.2.4 Cephalosporin 
Cephalosporin is mainly used to treat bacterial infections of the skin [23]. It is clinically 

effective against infections caused by Staphylococci (except methicillin-resistant 

Staphylococus aureus) and Streptococci of Gram-positive bacteria. These organisms are 

common on normal human skin. Resistance to cephalosporin is seen in several species of 

bacteria.  

Cephazolin sodium, the first generation of cephalosporin, is used extensively as a prophylaxis 

antibiotic before wide range of surgical operations. This antibiotic interfere with the synthesis 

http://en.wikipedia.org/wiki/Staphylococcus�
http://en.wikipedia.org/wiki/Streptococcus�
http://en.wikipedia.org/wiki/Gram_staining�
http://en.wikipedia.org/wiki/Bacteria�
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of cell-walls, causing cell to rupture and die [24]  Due to it’s common use in clinic, in the 

current study we decided to incorporate cephazolin sodium into soft tissue regenerative 

scaffold, in order to treat bacteria present in skin wounds. Cephazolin sodium (Sandoz, 

Novartis) was the chosen antibiotic to load onto the scaffolds. This was to complement the 

chosen test bacteria of Staphylococcus Aureus. Their established binding affinity to 

hydrophobic sites made it a suitable choice for attaching to similarly hydrophobic polyester 

scaffolds [25]. The maximum absorbance peak of Cephazolizsodium was found at 270nm 

wavelength [26]  

1.3 TREATMENTS FOR CHRONIC WOUNDS 

Wound healing can be promoted by adherence to the following principles [27]: 

• Overall health care such as control of diabetes, weight  control and nutritional 

balance 

• Wound debridement and treatment of infection 

• Maintenance of a moist wound environment and stable temperature 

• Restore arterial flow and allow wound exudates to drain freely 

• Minimisation of scarring and restoration of function 

• There are a number of techniques commonly used for treatment of wounds: 

1.3.1 Negative Pressure Therapy (NPWT) 

NPWT uses negative pressure to create a suction force that promotes wound healing by 

increasing blood flow and cellular activity, stimulating granulation tissue formation and 

reducing the likelihood of oedema [28].  

This treatment has the advantages of a low complication rate [29] and the ability to treat 

chronic wounds caused by some rare diseases (e.g., complex reconstructions in plastic 

surgery) [30]. However, its efficiency in curing chronic wounds has not yet been definitively 

proven [29]. 

1.3.2 Wound Debridement 

The process of preparing the wound bed for wound healing by reducing the bioburden is 

known as debridement. Without adequate debridement, a wound is persistently exposed to 

cytotoxic stressors and competes with bacteria for scarce resources such as oxygen and 

nutrients. Debridement step is a crucial step, as most problematic wounds afflict aged patients 

and occur in the setting of ischemia. Although non-surgeons and wound-product 

manufacturers have rediscovered the importance of debridement in the care of both acute and 

chronic wounds, many surgeons do not fully appreciate the importance of adequate 
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debridement. That many surgeons still allow wounds to heal under a “biologic dressing” or 

eschar suggest an under appreciation of the deleterious side effects that occur during the 

process of eschar formation. 

Types of debridement include surgical, autolysis, enzymatic and mechanical. Autolysis is 

when debridement occurs through the action of leukocytes. Enzymatic and proautolytic 

agents prevent the crosslinking of exudated components and impede the formation of 

bacteria-sequestering pseudoeschar and biofilms from forming. Some dressings (notably 

hydrocolloid dressings) have the ability to rehydrate partially dehydrated and hardened scab 

tissue, which can then be phagocytosed by wound leukocytes. 

A particularly useful mechanical debrider is the pressurized water jet (VersaJet, Smith & 

Nephew, Largo, FL), which has the ability to penetrate into microcrevasses in the wound bed 

to flush out entrapped particulate matter and bacteria. A Waterpik (Waterpik Technologies, 

Fort Collins, CO), or even a handheld shower spray, is a low-tech device that patients can use 

at home. Similarly, a syringe with a 20- gauge needle will generate the 15 psi necessary to 

reduce bacterial load in tissue. 

Another means of achieving wound debridement is through the use of maggot therapy, which 

can be remarkably efficacious in removing devitalized material while sparing viable, well-

perfused tissue. Some centers use this form of biologic debridement extensively. 

1.3.3 Skin Substitutes  

Skin substitute can be used to provide permanent protection of a wound area. Split skin and 

grafts from other areas have also shown good promise. Advantages of skin substitutes are the 

availability to treat large wound areas and to diminish the risk of infection or immunologic 

issues. However, their drawbacks include they are painful and relatively expensive compared 

to other methods[31]. Entrenched deep infection may still persist after the graft is deployed 

when antibiotic resistant bacteria or fungal infection is involved. In 2003, a paper described 

an individual with neuropathic joint and tarsometatarsal joints of the left foot who was 

successfully treated with skin cultured from neonatal foreskin tissue [32]. 

1.3.4 Free Flap  

The term free flap means tissue transfer from a donate site to wound site. This method 

accelerates the healing of wound site and corrects scar contractures [33]. However, it 

contributes to morbidity and lack of donor sites. It is estimated that the ratio between wound 

site and donor site is 1:1 for split graft and 1:1.4 for full length graft [34]. Therefore, this 

method is not available for large wound area. 
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1.3.5 Tissue Engineering  

Tissue engineering scaffolds play a vital role in providing ancillary support for tissue repair at 

sites of injury or disease [35].Tissue scaffolds, or matrices, are used for regenerative 

treatment where both the form and function of the native tissue are restored to healthy 

conditions  [36]. This approach marks a shift from replacement of tissues as provisioned in 

prosthetic devices [28, 36-38]. Increasing the life-span of medical implants is a critical area of 

development, particularly as society seeks strategies to cope with an aging population [39]. 

The chief aims of tissue engineering approaches are therefore to: 

(1) Improve the integration of implants within the body, 

(2) To improve the health of damaged tissue by addressing underlying pathological issues and  

(3) To be completely replaced and eliminated from the body in the long term.  

Approaches to improve the attachment of tissue to medical devices have included the 

incorporation of bioactive materials and modulation of the implant shape/surface [40, 41]. 

Bioactive scaffolds which promote tissue regeneration have great potential for improving 

healing outcomes for a wide range of tissue types and conditions [42]. This will be discussed 

in more details in the later part of the chapter. 

1.3.6 Bioengineered Skin Substitute 

Table 1.4 describes the features of some commercially available skin substitutes. 
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Figure 1.4: Commercially available tissue engineering solutions for dermal injuries [4, 43-48]. 

1.4 DRUG DELIVERY SYSTEM (DDS)  

Drug Delivery System (DDS) refers to a method or process to convey drugs to target places 

and manipulate drug release through pharmacokinetics and bio-distribution of drugs. 

Controlled DDS can provide an excellent method to delivery drugs to wound sites to promote 

healing process as well as supressing endless inflammatory reaction [49]. However, there is 

little literature applying long term DDS to wound healing [49] 

Conventional drug delivery involves delivering a high concentration of drug instantly, in a 

burst. This might lead to toxicity, and to the drug being used up within a short period of time. 

This means that the  drug may not able to reach its target site. Even it does, the concentration 

may be below the lowest efficient concentration. This kind of problem inhibits drug efficacy 

for chronic wounds. 

To overcome this problem, one approach is to increase the dosage of the medication by 

increasing the number or concentration of treatments. However, this approach may raise the 
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risk of potential side effects. In addition, some drugs can only be effective after they 

overcome obstacles on their way to target site, such as digestion in the stomach, the brain-

blood barrier or biofilm in the wound site. Unfortunately, conventional drug delivery does not 

provide any protection or way for drugs to pass through those obstacles, causing the efficacy 

of the drug to reduce. Therefore, a new and more effective method of drug delivery is needed.  

Over the last three decades, DDS has been increasingly drawing scientists and engineers’ 

interests for its significant advantages. One advantage is the controlled and sustained release 

of drugs. With the help of DDS, drug concentration in vivo can be maintained within a 

desirable time period without triggering any side effects, reducing the essential amount of 

drug for each dose and increased the efficiency of the drug. In addition, DDS can provide 

protection for the drug to en route to the target site. With the help of modern technologies, 

including micro-/nano-technology and surface technology, DDS allows the localised delivery 

of a drug. Releasing the drug at the target site without it being flushed away to irrelevant parts 

of the body ensures efficacy and safety. Improving safety and efficiency of “old” drugs is the 

goal of many researchers today. This is done by altering drug delivery behavior, including 

controlling the delivery rate, a slow and sustained delivery, and targeted delivery [50]. Certain 

biomaterials bond to both soft tissue and hard tissue [51]. This provides a convenient way to 

localise the DDS. DDS allow lengthy periods of drug action, extending to weeks or even 

months [52]. 

Drug release mechanisms for DDSs are usually controlled through diffusion, solvents or 

chemical means [53]. 

1.4.1. Diffusion-Controlled Delivery System  

A diffusion-controlled DDS is often made of non-biodegradable materials (usually polymers). 

Diffusion-controlled system include “reservoir” or “matrix” approaches.  

1.4.1.1 Reservoir System 
The drug can be stored within core, known as s “reservoir system”. The drug release rate of a 

reservoir system depends on the thickness and porosity of its membrane  [53]. 

1.4.1.2 Matrix System 
Alternately, the drug can be homogenously stored in a “matrix” [54].  

For hydrophobic matrix, the diffusion rate is controlled by molecule structure of polymer, 

such as degrees of crosslink, crystallinity, branching and overlapping [55]. The release rate of 

lipophilic matrix is governed by hydrophobicity of the polymer.  
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When compared to biodegradable DDS,  diffusion DDS has more controlled and longer drug 

release period [56]. The most common disadvantage of diffusion mechanism is the inability to 

achieve a constant release rate (“zero order release kinetics”). The release rate is initially high 

and decline rapidly [57].  

1.4.2. Solvent Controlled Delivery System  

Solvent - controlled systems can be controlled by swelling or osmosis.  

1.4.2.1 Swell Controlled Systems 
Swell control refers to drug release due to dimension change of hydrophilic polymer matrix 

after water absorption [58]. The matrix swells after absorbing water without dissolving. Once 

the water concentration reaches high enough to low down the glass-to-rubber transition below 

environmental temperature, the system relaxes [58]. As a result of that, drug leaches into the 

surrounding tissue.  

The drug release rate mainly depends on characteristics of matrix, such as the degree of water 

absorption, level of hydration and degree of cross-link [58-60]. In addition, when the system 

contain ionic networks, the kinetics are governed by mass transfer limitations, including ion 

exchange and interaction [59, 60]. 

Generally, materials used in this approach are polymers, mostly hydrogels. These materials 

are biocompatible and easy to be tailored into variety of different physical forms, including 

slabs, micro-particles, nanoparticles, coatings, and films [61]. They can also withstand harsh 

environment such as low pH, high temperature, high ionic strength, and high electric fields 

[61]. The drug release rate of some swelling-controlled DDS can be triggered due to a change 

in pH [62]. However, they are not able to cope with drugs which are unstable in intestinal or 

colonic environment and low solubility at high pH environment [63]. 

1.4.2.2 Osmosis Controlled Systems 
Osmosis-controlled DDS involves a semipermeable membrane, which allows permeation of 

water but not drug. When water is pushed into drug container by difference of osmotic 

pressure, volume of the container increase [64], leading to drug be pumped out through 

delivery orifice.  

The drug release rate of the Osmosis-controlled DDS is mainly  determined by: (1) thickness 

of semi-membrane,(2) level of leachable component of the membrane, (3) the osmotic 

pressure difference between inside and outside membrane [65]. However, Tobias et al. argues 

that for a large orifice, the diffusion rate is the dominant factor [66]  
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A key feature of osmosis controlled DDS is that performance is independent on external 

variables, such as pH, hydrodynamics of the external dissolution medium, stirring [67-69]. 

This system is suitable for delivering substances which are difficult to administrate due to 

their rapid degradation and poor absorption in the gastrointestinal tract [70]. In addition, 

literatures point out that most of osmosis-controlled DDSs can achieve a constant rate of drug 

release [68, 70]. 

Unfortunately, numerous challenges constrain the development of the DDS, including 

concentration polarization, membrane fouling, reverse solute diffusion and the requirement 

for membrane development [71]. Furthermore, the membrane may have a relatively low 

permeability. Therefore, the system cannot suit low aqueous solubility drugs [69, 72]. 

1.4.3 Chemical-Controlled Delivery System  

Chemical control mechanisms include conjugation and biodegradation. 

1.4.3.1 Conjugation Systems 
Matrix-drug conjugation is the DDS where drug molecule binds with matrix via conjugation 

.This bond is cleaved through hydrolysis or enzyme cleavage when the matrix reaches its 

target site. The drug release kinetics of conjugation system depends on the concentration of 

cleaving agent or enzyme at target site [73]. Other influencing factors include molecule space 

condition of matrix, types of side chains [74], pH and temperature at the target site [75].  

These systems can be tailored for drugs, with low solubility, low permeability, poor 

absorption and instability [75, 76]. Because the material matrix is usually polymer, backbone 

and side chain are easily modified [77]. The matrix can be designed to sensitive to external 

simulations such as pH, temperature, light and enzyme [77, 78]. Those features give a 

potential method for the DDS to suit various drugs and target different sites. Most 

importantly, published results indicate that this mechanism readily allows drugs to be 

delivered through the blood-brain barrier (BBB) [79, 80].  

This approach can make pharmacokinetics controllable and greatly reduce the minimum 

requirement of drug dosage. However, there are still some disadvantages of Matrix-drug 

conjugation DDS. Firstly, it is not easy to find a perfect matrix for a drug. Kosasih [81]  

describes that an ideal system should satisfy requirements for chemical stability, non-toxicity 

and, not changing properties of the drug. It is not easy to find a matrix can meet all of those 

requirements. Furthermore, large molecules of some drugs are not suitable for the DDS 

because of limited matrix space. Since a matrix has to attach a lot of side chains, such as drug 

and targeting moiety, there are not many spaces for large molecules. Space conditions of a 
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matrix could also affect the chemical process of bond cleavage [74]. Environmental vectors 

also play a major influence on system reliability [75]. 

1.4.3.2 Biodegradation System  
With biodegradable DDS systems, the drug is released during biodegradation of the matrix. 

Two common types of matrix materials are bioceramics and polymers. Drugs are released 

from polymer systems via cleavage or hydrolysis of enzyme sensitive bonds [82]. Drug 

release from bio-ceramic is through absorption of mineral elements such as calcium, 

phosphorous, strontium, zinc and iron [83]. 

The factors affecting drug elution rates vary between matrix materials. For polymers sensitive 

to hydrolysation, elution depends on matrix erosion, including bulk and surface erosion. Both 

behaviors can happen simultaneously. The varying degrees of each is still unclear [84]. 

Literature indicates erosion behavior may depend on the diffusivity of water inside matrix 

[84-86]. If hydrolysis is slower than penetration of water, it goes to bulk erosion, otherwise it 

leads to surface erosion [85]. When a constant, controlled drug release rate is required, 

surface erosion is more effective degradation method than bulk erosion of the matrix [84] 

Furthermore, properties of a polymer system, also determine the ability of water accessing 

inside of matrix. A high glass transition temperature (Tg) indicates relatively limited 

molecular motion and less space available for water molecule penetration. Similarly, high 

degree of crystallinity means the polymer chain is tight and ordered, preventing water from 

ingress [87].  

On the other hand, for enzyme sensitive polymer systems, the erosion rate is influenced by 

factors similar to matrix-drug conjugation DDS, but dominated by the concentration of 

specific enzymes [88]. 

1.5 BIODEGRADABLE MATERIALS FOR BIOENGINEERING 

Biodegradable controlled DDS has drawn extensive research interest in the last two decades 

owing to overcoming obstacles of previously mentioned systems. 

1.5.1 Biopolymers  

Early DDSs were polymer-based non-degradable system. One of the first DDS systems was 

comprised of silicon rubber [89]. Drugs can be physically encapsulated into DDSs allowing 

for localised pharmacological activity when the delivery vector is injected or implanted into 

human body. However, this approach does not suit slowly diffuse ionic species or molecules 

whose relatively molecular mass are greater than 400. This is due to the polymer matrix 

acting as a interference factor for large molecules reducing the rate of diffusion [89]. To 
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address that problem, Davis [90] developed a new polyacrylamide (PAA) method. The use of 

PAA allowed the diffusion of large molecules, such as protein drugs, and prolonged the total 

release time to a few weeks. Langer et al. pointed out that this method has high risk of 

triggering inflammation in animals [91].  

Since then, polymer-based degradable systems have been designed using biocompatible 

materials such as poly-(glycolic acid) and poly-(lactic acid) [52]. However, DDS derived 

from these polymers tend to have a reduced total release period. For instance, poly-(lactic 

acid) DDS with relatively molecular weights between 150,000 and 450,000 containing 

sulphadiazine only spends 90 days to release about 80% of the drug [52]. Conversely, drugs 

with a short life time, including luteinizing hormone, can be incorporated into these systems 

[89]. Nevertheless, the bulk erosion behaviour of polymer DDS need to be considered as it 

can have a major effect when developing a DDS with consistent release. In Table 3, common 

polymer material candidates are listed with their features and applications. 
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Table 1.3: Types of Polymer materials used in Drug Delivery System Applications    

Polymer Features Applications Refs 

Poly-(glycolide)  
Excellent fibre-forming ability; 

good initial mechanical properties 

Bone internal fixation devices; 

drug delivery system  

[82, 92] 

 

 

Poly-(L-lactide)  

(PLLA)  

Good tensile strength; low 

extension and a high modulus; 

ability to form high strength fibers  

Load bearing applications;  

scaffold for ligament replacement;  

 

[82] 

Poly(DL-lactide)  

(PDLLA)  

Compared to PLLA- much lower 

strength; faster degradation rate  

Drug delivery systems; low 

strength scaffold  

[82] 

[93] 

Poly(lactide-co-

glycolide) (PLGA)  

Properties vary depending on the 

composition; variety of structures 

and forms; controllable degradation 

rates  

Multifilament sutures; skin 

replacement materials; duramater 

substitutes; 3D scaffolds; space 

preservation; drug delivery 

system  

 

[82, 94] 

Polycaprolactone 

(PCL)  

Hydrolytic degradation; high 

permeability; non-toxic; extremely 

high elongation; excellent 

biocompatibility  

Long-term delivery system  [82, 95] 

Poly(trimethylene 

carbonate) (PTMC)  
Excellent flexibility  

Soft tissue regeneration; drug 

delivery systems; suture materials  
[82] 
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1.5.2 Polycaprolactone (PCL) 

The scaffolds manufactured from biodegradable polymer polycaprolactone (PCL) has a 

slower degradation rate and as other biodegradable polymers. Therefore, they have a reduced 

inflammatory response than other materials commonly used in tissue engineering such as 

PLGA [96]. PCL scaffolds can be easy and affordable to manufacture and have an excellent 

shelf-life. These qualities mean PCL may be a suitable candidate for making scaffolds as a 

leave-in dressing for chronic wounds. In research conducted by our research group but not yet 

published, PCL-based scaffolds showed vascularisation throughout the scaffold after 2 weeks 

in a subcutaneous murine model. The scaffold has unique macro and microstructural 

characteristics and >95% porosity. Figure 1.5 shows some configurations of PCL which have 

been published in scientific literature. 

 

 

Figure 1.5: Structures made from PCL: Nanospheres (a,b). Nanofibres (c,d). Foams (e,f). Knitted textiles 
(g,h,i). Selective laser sintered scaffold (j-o). Fused deposition modeled scaffolds (p–u)[97]. 
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1.5.2 Bioactive, Bioresorbable Bioceramics 

Bioactive bioceramics have been used clinically since the 1970’s [98]. Traditionally, they 

have been used as bone fillers, but more recently they have been common as implant coatings 

for their capacity to bond with bone [99]. They can be produced almost completely inert or 

with varying degrees of interaction with the physiological environment. This is known as 

“bioactivity”. Bioceramics with a high level of bioactivity are completely bioresorbed by the 

body, forming products such as silica, calcium and phosphorus. Metallic or polymer surfaces 

can be rendered bioactive through the incorporation of ceramics of glass-ceramics.  

Bioceramics include calcium phosphates (e.g. hydroxyapatite, tricalcium phosphate), calcium 

silicates (e.g wollastonite, hardystonite, sphene) and silica-based bioactive glasses (e.g. 

Bioglass). Compared to the more stable hydroxyapatite, calcium phosphates exhibit a greater 

degree of bioactivity and are completely absorbed into the body [100]. The incorporation of 

silicon results in a further increase in bioactivity by leading to the formation of Si-OH groups 

on the surface, thus improves bone binding by triggering the nucleation and formation of 

apatite layers on the surface. Silicon can be incorporated into calcium phosphate, and SiO2 is 

the network former of silica-based bioactive glasses. 

1.5.2.1  Calcium Phosphates  
One of the most popular bioceramics is hydroxyapatite (Ca10 (PO4)6(OH)2), HA), due to its 

biocompatibility and having the same chemical composition as bone mineral. Hydroxyapatite 

coatings have been used since the late 1980’s, and excellent clinical results on total hip 

replacement 15 years+ after implantation [101]. These coatings remove the need for bone 

cement, while providing a seal against wear debris. Hydroxyapatite and TiCaP coatings have 

also been used clinically for coatings for spine implants (e.g. NuVasive) [102, 103] Fibrous 

encapsulation was avoided by a particulate hydroxyapatite coating on a nucleus replacement 

implant (ultra-high-molecular weight polyethylene woven mesh) [102, 103]. This coating 

encouraged good tissue integration and physiological motion during the first 6 months. 

However, progressive stiffening occurred as scar tissue calcified to form bone.  

1.5.2.2 Calcium Silicates 
Calcium silicates (CaO-SiO2) were developed in the 1990s for biomedical applications, 

particularly by De Aza and co-workers [104]. They are highly bioactive, with a faster rate of 

hydroxyapatite formation then glass ceramics. Their bending strength is close to human 

cortical bone (50-150MPa). Calcium silicates as yet are not widely used clinically, but due to 

their high degree of osteoinductivity they have been investigated for their potential as bone 

fillers, implant coatings and incorporation into tissue scaffolds [104]. 
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1.5.3 Bioactive Glasses 

Many silica-based bioactive glasses are highly biocompatible, bioactive and biodegradable. 

The original formulation, 45S5, was based on the SiO2-CaO-Na2O-P2O5 system. It was 

developed by Larry Hench in the 1970s and commercialised under the name “Bioglass”[37]  

Bioactive glassed have been used for many years as implant coatings (e.g. for titanium 

alloys), and shown excellent bonding to both hard and soft tissue without any intervening 

fibrous layers [99, 105]. Bioactive glass-coated titanium alloy was implanted in a pig bone 

model for 6 months, and showed the formation of a thin Ti5Si3 layer [106]. The bone matrix 

in the vicinity of the bone-implant interface of the coated implants had changed to mature 

lamellar-type bone, while the uncoated implants remained with woven-type bone. In addition 

to improving osseointegration, bioactive glass coatings also improve the corrosion resistance 

of implants. The role of the coating is twofold: (1) Protect the metal against corrosion from 

the body fluids, and (2) Protect the tissue from the corrosion products of the alloys. 

Bioactive glasses are also widely used for root canal therapy [107] and bone filler [108]. 

Bioactive glass granules are available commercially as a synthetic bone graft (Perioglas, 

Novabone, US Biomaterials), and can be made into composites using the patient’s own bone. 

The bending strength of bioactive glass is 2-3x less than calcium silicates. The brittleness of 

bioactive glass has limited it’s clinical use as a bulk material for bone tissue engineering, 

although some researchers have developed porous glass scaffolds [42, 109]. 

1.5.3.1 Silicate Bioglass  
The major constituents of Bioglass are SiO2, Na2O and CaO. Properties of Bioglass depend 

on the ratio of those three components [37]. For example, in Figure 1.6, the best area for bone 

bonding exists in area A. 

 

 

 

 

 

Figure 1.6: Diagram demonstrating how different concentrations of Bioglass components affect the 
bioactivity [37] 
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Researchers found that constraining proportion of Bioglass ingredients to area S facilitate 

bonding between implant and soft tissue. In 1977, professor Ulrich Gross and his colleagues 

found that 45S5 (45 representing 45 wt% SiO2, being the network former and 5 representing 

the ratio of CaO to P2O5, based on glass-ceramic with small addition of K2O and MgO, will 

produce a strong mechanical bonding [37]. Furthermore, adding multi-valent cations, such as 

Ti and Ta, further improves bonding [37]. What is more important is discovering of a unique 

processing method for producing a very fine-grained glass-ceramic composed of very small 

apatite and wollastonite crystals bonded by a Bioglass interface [37].  

Another benefit is 45S5 Bioglass had a strong antibacterial effect against the bacteria and 

different effect for gram-negative and gram-positive bacteria. Research suggested that both 

the high pH and needle-like Bioglass debris on the surface of bacteria might be the possible 

mechanisms of the antibacterial effect. 45S5 Bioglass particulates caused the damage of cell 

walls and inactivation of bacteria [110]. Moreover, to improve inhibitory effect on bacterial 

growth of Bioglass, some researchers has showed the composite with silver containing 

bioactive glass proved to have bacterial effect (on Gram-negative Escherichia coli and Gram-

positive Staphylococcus epidermidis) [111-113] 

Although Bioglass 45S5 is a promising candidate for DDS, it still has some limitations. It can 

be relatively difficult to process and degrades slowly [106]. A range of glasses with varying 

properties have been developed. Bioactive glass 13-93 contains a higher percentage of SiO2 

along with K2O and MgO. As a result, it can be sintered to high density without 

crystallization showing no marked difference in osteoblastic proliferation and differentiation 

in vivo study when comparing with 45S5[106]. However, 13-93 degrades even slower than 

45S5 [106].  

1.5.3.2 Borate Bioactive Glass  
Borate glass is also considered a bioactive material. However, chemical instability of some 

borate bioactive glasses lead to faster degradation than 45S5 and 13-93. Toxicity is the issue 

need to concern because of the borate ions, (BO3)3- [106]. Borate containing scaffolds of 13-

93B3 were found to be toxic to murine MLO-A5 osteogeneic cells during in vitro study [106]. 

However, the same scaffolds did not show toxicity to cells in vivo and supported new tissue 

infiltration when implanted subcutaneously in rats. The boron concentrations in the rat blood 

remained below the toxic level [106].  
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1.5.3.3 Phosphate Bioactive Glass  
Phosphate glasses have also been developed for biomedical use. They consist of ions which 

are present in the organic mineral phase of bone [106]. Therefore, these glasses have a 

chemical affinity with bone.  

1.5.4 Bulk Metallic Glass (BMG) 

Bulk metallic glass (BMG) was discovered in 1960s. It is a type of metallic alloy with an 

amorphous structure that is currently being researched as a biomaterial. Its molecular formula 

is Mg60Zn35Ca5. BMG possesses high strength, elasticity, corrosion resistance and 

biocompatibility, but because of its metastable nature it has not been well adopted for wide 

commercial application. Current research into BMG has focused on using the material to 

produce bone screws, pins or plates. Unlike other metals such as titanium, BMG bioresorbs in 

the body at a rate of approximately 1mm per month. The speed of degradation can be adjusted 

by varying the zinc content [114, 115]. It has also been shown to have good biocompatibility 

with higher cell viabilities compared to pure magnesium [115].  In addition, the degradation 

products of BMG have been shown to have antibacterial properties [116, 117]. However, 

small concentrations of calcium and magnesium ions have indeed been shown to be required 

for S. aureus growth.  [118]. 

1.5.5 Polymer/Bioactive Glass Composites  

Further improvement of Bioglass was driven by the dissatisfaction of its mechanical 

properties, including poor tensile strength and brittleness [119]. Composites of Bioglass with 

metal or polymer have been developed. Degradation rate and drug release kinetics were 

altered by selecting different polymer or/and glass materials.  

1.5.5.1 Protein-Based Polymer/Ceramic Composites  
Collagen and gelatine are the most commonly used proteins for this kind of composite 

because collagen is the most abundant protein inside human body and is easily to be obtained. 

Meanwhile, gelatin is a cheap and commercially available biomaterial.  

Degradation rates of proteins are decided by chemical crosslinking of proteins which makes 

collagen or gelatin less accessible for proteolytic degradation [119]. Addition of bioceramic 

can make the degradation rate controllable.  

Porous gelatin/collagen and ceramic particles scaffold can be fabricated via freeze-drying 

process [119]. However, the mechanical properties of the scaffold are not much improved. 

Furthermore, highly cross-linked gelatin/collagen is desired due to it’s good stability [119].  



24 
 

By using this kind of scaffold for DDS, drug releasing will be more sustained. Kim et al. 

added gentamycin to a HA/Gelatin and found results that increasing crosslinking density 

leads to a higher drug entrapment as well as a decreasing initial drug releasing concentration 

[120].  

1.5.5.2 Carbohydrate-Based Polymer/Ceramic Composites  
Carbohydrate polymer, such as chitin and chitosan, has drawn interest. Carbohydrate 

polymers are biodegradable by lytic enzymes and they have good mechanical properties 

matched by those of bone [119].  

Carbohydrate polymers are often added into ceramic cement to improve cohesion in water as 

well as mechanical properties (increasing flexural strength and failure loading)[119]. 

When this kind of scaffold is used in a DDS, there is no significant improvement in adjusting 

drug releasing rates [119]. 

1.5.5.3 Natural polymers 
Within natural polymers, a number of substances derived from various biologic tissues are 

included. Among these are collagen, chitosan, gelatine, thrombin, and autologous blood clot. 

Collagen has been studied most extensively because of relative biocompatibility, low costs 

and easy availability [121], and has been commercially available for over 20 years. Collagen 

fleeces are produced from bovine skin or tendon. Since collagen is a major component of 

connective tissue, it is bio-compatible and non-toxic. Degradation of collagen usually takes 

place within 8 weeks [122], although the speed partially depends on the method of 

sterilization used [123]. Degradation speed however, plays only a small role in the release rate 

of incorporated antibiotics as the antibiotics diffuse faster out of the collagen than its 

degradation speed. 

1.5.5.4 Incorporating bioactive components into polymers 
Polymer-ceramic composites have been used for tissue engineering approaches such as bone 

fillers, coatings and scaffolds. They are an attractive class of materials due to their 

biocompatibility, good handing properties, their capacity for long-term drug delivery and 

their capacity to reproducibly control their physical properties such as stiffness, strength and 

degradation rate. 

Properties of biomedical composites are strongly affected by a number of factors [124], some 

of which are listed: 

1. Reinforcement shape, size, and size distribution 

2. Reinforcement properties and volume percentage; 
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3. Bioactivity of the reinforcement (or the matrix) 

4. Matrix properties (molecular weight, grain size, etc.) 

5. Distribution of the reinforcement in the matric; and  

6. Reinforcement-matrix interfacial state.  

A large number of polymers have been used clinically, which are candidates for 

inclusion with bioactive ceramics [125].  

1.6 DELIVERY OF THERAPEUTIC AGENTS FROM SCAFFOLDS 

Conventional delivery routes for therapeutic agents include orally, intravenously or via 

injection. Although injection of therapeutic agents provides a bolus dose which can aid tissue 

repair, these factors are unable to maintain their effectiveness throughout the remodeling 

phase of wound healing. This occurs weeks/months after the injury. 

1.6.1 Benefits of 3D Scaffolds 

Three-dimensional scaffolds have the ability for short, medium or long-term localized 

delivery of factors beneficial for tissue regeneration. Scaffolds have the potential to deliver a 

higher concentration to a local area, compared with systemic delivery. In addition, lower costs 

can be incurred as less therapeutic is used when it is delivered locally and in a controlled way. 

Scaffolds have the potential to release drugs, natural factors (e.g. cytokines, hormones, 

proteins), plasmid DNA [126] or antibiotic agents. These agents are used to stimulate cellular 

adhesion, proliferation and differentiation, and/or to address infection and other tissue 

conditions. The challenge for engineers is to direct the release of multiple growth factors at 

various time intervals from a scaffold as to stimulate and enhance the natural healing process 

[127]. 

1.6.2 Factors Affecting Drug Delivery from Scaffolds 

Several points need to be considered when incorporating therapeutic agents for release from 

scaffolds [128] 

• Loading capacity –defined as the amount of therapeutic that can be mixed into 

the scaffolds. 

• Load distribution – the therapeutic needs to be dispersed evenly throughout the 

scaffold; 

• Bing affinity – defined as how tightly the therapeutic binds the scaffold; this 

binding affinity must be sufficiently low to allow release; 

• Release kinetics-need to be controlled to allow the appropriate dose of growth 

factor to reach the cells over a given period of time and  
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• Long-term stability- the stability of the therapeutic when incorporated within 

the scaffolds at physiological temperature; therapeutics need to maintain their 

structure and activity over a prolonged period of time  

DDSs applying scaffolds form an architectural extracellular matrix containing drugs, 

antibiotics and molecules provides afore mentioned advantages. Drug release kinetics can be 

controlled through scaffold properties; size, hydrophobicity and porosity [129].  

There are three general categories: cell-based strategies, growth factor-based strategies and 

matrix-based strategies. However, two or more of these strategies are frequently combined to 

implement a solution. The criteria of scaffold vary from target sites. Generally speaking, 

biocompatibility and site suitability should be considered priority [130].  

There is a growing interest in adding substance (growth factor etc.) or changing environment 

signals (light, pressure, temperature etc.) at target sites to simulate cells to migrate or/and 

generate to trigger healing process.  

1.6.3 Key Functions of a Tissue Scaffold 

Fully functional tissue is less likely to become a locus for infection and should be the ultimate 

goal of any tissue engineering approach [131]. A scaffold should perform several important 

roles to facilitate vascularized tissue repair [132] 

These include: 

• Offer a 3D framework in which cells can migrate, attach and proliferate 

• Keep space for hierarchical tissue formation and remodeling 

• Protect developing tissue from stresses such as high compressive forces and 

infection 

• Promote good integration with the surrounding tissue 

• Accelerate the transport of wound fluid and blood through scaffold 

• Facilitate the transfer of force to the developing tissue 

• Address underlying tissue pathologies through delivery of therapeutic factors 

These key functions of a scaffold are like those of a house. Similar to the role of a house, 

scaffold designs should provide a protective function, while also facilitating connection to the 

surrounding environment. Scaffolds should provide protection from deleterious forces and yet 

still allow physiologic stress to be transferred to the tissue within the scaffold [40, 133]. If 

these concepts are not incorporated into the scaffold design, excessive displacement or forces 

can lead to tissue necrosis and hinder vessel development.  
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Instead, controlled levels and directions of force transfer are important to enable mature, 

vascularized tissue to develop [134]. 

Ideal scaffolds should also be designed to induce stasis or inhibition of bacterial colonization 

and biofilm formation. This can be achieved through materials selection, removal of vacant 

space and localized, long-term therapeutic delivery from the scaffold. Nutrient delivery to the 

cells and extraction of waste products should be facilitated via good mass transfer and 

competent vascularization throughout the scaffold. The scaffold must also provide a good 

connection with the surrounding tissue, so that the cells within the scaffold are not isolated 

via the formation of scar tissue. 

Scaffolds play an important role in providing space for tissue regeneration [135]. This 

concept has been clinically confirmed through the use of guided tissue regeneration 

membranes for dental surgery. These non-biodegradable membranes were effective for space 

making and in the prevention of scar tissue ingrowth. In many clinical examples, scaffolds 

increase the speed and quality of tissue compared to the absence of a scaffold [136]. 

1.6.4 Methods of Imparting Bioactivity to Scaffolds 

Bioactivity refers to the capacity of a material to be “tissue inductive”. Bioactive materials 

can facilitate cellular attachment and even gene modulation. A stable interfacial bond can 

form between the material and the surrounding tissue. Both bioceramic coatings and porous 

surfaces contribute to the level of bioactivity of an implant [38]. Coatings are considered 

bioactive when they facilitate the formation of a bone-like hydroxyapatite (calcium 

phosphate) crystallite layer on their surface, after submission in simulated body fluids.  

Hench and Polak identified three classes of materials, depending upon the response they elicit 

from the biological environment [38, 137]. First generation materials are permanent and 

bioinert (e.g. alumina, stainless steel). Second generation materials are bioactive or 

biodegradable (e.g. poly-ε-caprolactone, tri-calcium phosphate). Third generation materials 

are those, which are both bioactive and biodegradable (e.g. hydroxyapatite, bioactive glass). 

1.6.5 Surface Modification  

Scaffolds provide the substrate for cell attachment and their subsequent growth and 

proliferation. However, instead of binding to scaffolds directly, cells attach on proteins 

absorbed on surface of scaffold [138]. Therefore, those proteins on surface of scaffold are 

crucial to efficacy of scaffold. Approaches, such as protein coating, photochemical 

modifications and plasma technique, had been done to use growth factors and peptide to 

mimic proteins. The concentration, local duration and spatial distribution of those proteins 
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affect performance of scaffold. Furthermore, the surface topography of the scaffold material 

has also been shown to be significant cells proliferation, differentiation as, immune system 

respond and inflammatory process [139].  

1.6.5.1 Protein Coating  
This approach is to coat surface of scaffold with cell adhesive molecules (fibronectin, 

heparin, collagen and gelatin), small peptides fragments of amino acid arginine-glycine-

aspartic acid) or other functional groups (chitosan, poly (Llysine)-grafted-polyethylene 

glycol) [140].  

In 2006, Chen et al. [138] did an experiment to determine the effect of surface modification 

on hydroxyapatite (HA) formation. Bioglass scaffolds were synthesised using a sol-gel 

process followed by attachment of 3-AminoPropyl-TriethoxySilane (APTS) and 

gluteraldehyde (GA) protein coupling agent [138]. The results indicated that the surface 

modification improved formation of HA.  

1.6.5.2 Photografting Modification  
Topographical modification has been shown to improve protein bonding. One method of 

accomplishing this is by photografting. In 2002, Gao et al. improved the cytocompatibility of 

polyurethane (PU) porous scaffolds through photo-oxidation of the scaffolds and UV light 

treatment. It also indicates that photografting technique is possible for porous scaffolds [141].  

However, because degradable polymer materials are sensitive to solvent and low head 

stability, conventional modification methods such as high-energy irradiation, photografting, 

oxidation or etching will damage structure of polymer chain to some extent [139]. 

Researchers recently presented a solvent-free photografting technique for topography 

modification without destructive of polymer chain. They applied vapour-phase grafting 

technique to create topography surface modification of degradable polymers scaffold (Poly-

(N-vinylpyrrolidone), PVP).  

1.6.5.3 Plasma Treatment  
Plasma treatment is a technology for tailoring surface properties via exposing them to an 

electrical discharge or plasma [142]. With this kind of technology, wettability and absorbable 

ability is improved. Thus, proteins can more easily attach to surface of scaffold and 

biocompatibility is improved. Ho et al. in 2005 immobilized RGDS (Arg-Gly-Asp-Ser) on 

PLLA scaffolds via plasma treatment [143]. The results demonstrated that this kind of 

modification can render PLLA scaffolds more suitable for culture of osteoblast-like cells and 

for generation of bone-like tissues. 
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Furthermore, mineral coating sputtered via Plasma has been shown to improve wettability, 

adsorption and adhesion abilities of scaffold [144]. Suárez-González et al. indicate that 

mineral coating (carbonate, HCO3) affect the release kinetics of growth factors [145].  

1.6.6 Antibiotic Delivery  

1.6.6.1 Controlled Antibiotic Release from Composite Scaffolds 
Antibiotics are chemicals, which inhibit the growth of microorganisms such as bacteria which 

can cause infection. Scaffold composition and form have been shown to alter the rate of the 

release of antibiotics. Nandi and co-workers [146, 147] observed delivery of the antibiotic 

cefuroxime axetil over a period of 6 days, when incorporated into a porous bioactive glass 

block. Zhang and co-workers [148] created composite pellets from chitosan, bioactive glass 

particles and teicoplanin (antibiotic) powder, and found it provided an effective treatment for 

osteomyelitis induced by Staphylococcus aureus. Implantation of the pellets into a rabbit tibia 

osteomyelitis model resulted in the detection of teicolpanin in the blood for about 9 days.  

Another group, Zhang and co-workers [149] loaded gentamicin sulphate onto 

chitosan/calcium phosphate scaffolds via dipping in an antibiotic/PBS solution. In vivo, these 

scaffolds showed a sustained release for more than 3 weeks, as compared with the burst-

release exhibited by the pure chitosan scaffolds. Chang and co-workers [150] loaded 

gentamicin sulphate onto PCL matrices via suspension of the antibiotic particles in the PCL 

solution, prior to forming scaffolds using precipitate casting. They demonstrated the vitro 

release of 80% of the gentamicin sulphate over 11 weeks, with low levels of antibiotic being 

measured up to 20 weeks. Further it was possible to increase the amount of drug loaded onto 

the PCL by cooling the PCL solution to 40C prior to casting.  
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1.6.6.2 Ideal Antibiotic Carrier 
An ideal antibiotic carrier is:  

• Characterized by good biocompatibility, 

• Controllable degradation kinetics,  

• The ability to incorporate and release any antibiotic desired for treatment for an 

- extended period at adequate levels prevent further infection [151, 152] 

• Preferably with a zero-order release kinetics (constant drug release 

• overtime) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Possible antibiotic release kinetics from degradable carriers. A. Diffusion-based release from 
slowly degrading carrier materials. B. Bulk eroding carrier materials. C. Surface eroding carrier materials 
[153]. 
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1.7 IN VITRO WOUND MODELS  

In vitro wound models attempt to replicate the in vivo environment as closely as possible. In 

vitro wound models have been used to examine the physiological and biological 

characteristics of wounds [154, 155], and wound treatment [155, 156].   

Due to importance of in vivo testing, different wound models have been developed. The 

simplest was an incised cell monolayer [154]. In order to investigate the infected chronic 

wound, a biofilm should be added into the model. Woods et al used a drip-flow reactor 

model, in which a polycarbonate membrane served as platform for biofilm growth. This  

membrane was located on top of an absorbent pad through which nutrients were wicked 

(Figure 1.8, Left) [157].  In this model, nutrient flow is constant.  

Hill and coworkers used constant depth film fermenters (CDFF) to generate biofilms (Figure 

1.8, Right) [158]. The model consisted of plug inserts on a rotating turntable. In order to 

conduct tests on wound dressings, the plug inserts were inverted onto the dressing within a 

broth-containing petri dish. No dynamic nutrient flow was used here. 

A study by Sun et al simply used media-filled test-tubes to contain the pipette tip, previously 

used to inoculate the medium, as a surface on which biofilm was grown [159] 

 

Figure 1.8: Left: Drip-flow reactor model (Woods et al.) Right: CDFF with plug inserts (Hill et al) [158]. 
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Assadian et al. investigated the effect of topical negative pressure on bacterial inhibition by 

using a vacuum [160]. These systems must have appropriate dressings and coverings, so 

slightly more complex.  

While these studies have made valid and clinically relevant discoveries, these wound model 

systems vary mostly in their protocols and specifications. As such, any combining of data or 

cross comparisons must be done with experimental variations, a mission which may be 

impossible in some cases.  

Ideally, a standardized protocol should be used. The most recent in vitro wound model had 

been developed and established by Ngo et al [161] 

However, there are currently no configurations that can adjust for all testing purposes. 

Therefore, the development of a standardized wound modeling protocol is necessary, which is 

suitable for a range of testing protocols and contain physiologically relevant wound 

characteristic as much as possible. 
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CHAPTER 2 

THESIS AIM AND DESIGN 

REQUIREMENTS 

2.1 THESIS AIM 

There remains a need to develop a competent soft tissue regenerative scaffold with 

demonstrated antibacterial activity.  

The strategy for achieving this objective included the incorporation of antibacterial coating 

and antibiotic into a proven biocompatible soft tissue scaffold without any adverse changes to 

the interconnected porous structure. The fabricated composite scaffolds were required to 

maintain structural integrity, be verified using microscopic analysis and spectrophotometry 

methods, and be subject in vitro microbiological testing. To assess the antibacterial activity of 

the scaffolds the assay should replicate in vivo condition as closely as possible. 

2.2 DESIGN REQUIREMENTS 

2.2.1 Design Aim 

Design has to address these risks 

• Blood or immune cells infusion into graft or scaffold is inhibited  

• Graft or scaffold harbours bacterial or fungal infection better than granular 

tissue 

• The system causes cytotoxic response  

• The system causes chronic inflammation. 

• The graft or scaffold mechanically unsuitable (too stiff or too weak)   

2.2.2 Design criteria  

1. Need blood and granular tissue to infuse into scaffolds to fight infection => improve 

interconnected attach bacteria 

2. Need to combine suitable bioresorable and biocompatible materials in one unit. 

3. At least one of these biomaterials needs to have inherent antibacterial activity 

4. Allow infusion of antibiotic into scaffold biomaterial without inhibiting antibiotic potency. 
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2.2.3  User requirements: 

1. Soft tissue biocompatible  

2. Remain soft yet supported  

3. Able to be sutured  

4. Able to be inserted into a deep wound 

5. Wound conforming 

6. Interconnected porosity 

7. Bioactive coating to facilitate soft tissue attachment 

8. Antibacterial coating has potential to disrupt biofilm and bacteria cells. 

9. Be compatible with antibiotic infusion and delivery. 
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CHAPTER 3 

SYNTHETIC POLYMER SCAFFOLDS 
Our group produces novel polymer scaffolds from polycaprolactone. These scaffolds can then 

be modified by infusing or coating with bioactive molecules to increase their effectiveness. 

This section describes the manufacturing protocol for these scaffolds. The modified scaffolds 

need to be evaluated in terms of quantity and quality.   

3.1       SYNTHESIS OF SCAFFOLD 

These scaffolds have a highly interconnected porous polymeric structure, composed primarily 

of high molecular weight aliphatic polycaprolactone (PCL) polyester, CAPA6800. Scaffolds 

formed from PCL are suitable for manufacturing due to their low melting temperature of 58-

60°C, biocompatibility and resorbability [162]. The scaffolds can thus be used in a laboratory 

environment with standard laboratory safety guidelines and standard personal protective 

equipment.  

 3.1.1 Manufacturing Protocol 

The general procedure for manufacture of the scaffolds follows a batch polymer coagulation 

process. This not only allows much more efficient manufacturing, but also improves product 

consistency. The procedure consists of four main processes, which are modular and can thus 

be individually optimised. This manufacturing protocol was thus the basis on which the new 

scaffolds were designed and fabricated. 

This protocol describes the formation of the scaffolds using the polymer batch coagulation 

process. 

Step 1: Solution was prepared by mixing PCL pellets in acetone. The mixture was agitated 

and heated to 600C and kept at that temperature over 24 hrs until a homogenous solution 

formed. 

Step 2: Precursors were prepared as a template for scaffold formation. The precursors 

consisted of leachable particles that fill space in the scaffold, leaving pores behind once 

removed. 

Step 3: Precursors were completely submerged in the PCL solution, heated and agitated. 

Step 4: Precursors were picked up separately and washed in a water bath for 30 seconds. The 

membrane on the surface of each precursor was peeled off carefully and collected.  
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Step 5: The scaffolds were rinsed with water to remove all chemicals left inside. Each peeled 

scaffold was located in a separate compartment in the water bath. The arrows in the figure 

show the flow of water. The water was continuously recycled through the scaffolds until all 

the precursors had leached out. Scaffolds without precursors floated to the surface.  

Step 6: The precursors were centrifuged to remove the remaining water. The spun scaffolds 

were collected in a clean container for the next step. 

Step 7: The scaffolds were categorized and collected into groups with the same qualities 

before being packaged.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Process to make scaffolds: (a) Polymer solution preparation, (b) Addition of precursor, (c) 
Infusion, (d) Peeling (membrane removal), (e) Leaching, (f) Drying, (g) Packaging.  

 (a)                                            (b)                                                                (c) 

(e)                                                                   (f)                                       (g) 

Homogenous solution 

Water direction 

~60oC ~60oC 

(d) 
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3.1.2 Key mechanisms in the main steps of production of soft tissue 

regenerative scaffold 

Further details of the mechanisms involved in each step are given in Table 3.1. 

Table 3.1: Steps in the production of the scaffolds 

Fig Stage Description 

(a) 

Precursor Preparation 

The precursor can be considered as a template in which 

the scaffold interconnections can be formed. The 

dimensions, level of interconnectivity and pore size of 

the scaffolds can be adjusted by changing the 

characteristics of the precursor 

Solution Preparation 

The solution is a solvent which dissolves PCL and 

assists PCL getting inside the porogen matrix. The 

solvent evaporates after the polymer struts form. 

(b) Precursor Infusion 

The polymer solvent solution is infused into the 

precursor at a specific temperature so that polymeric 

struts can form. 

(c) Membrane Removal 

This instant step controls the surface quality of the 

scaffold to prevent the PCL solvent solution from 

forming membranes and sealing pores inside. 

Therefore, this step is modified individually to find out 

the best time to peel off the membrane. 

(d) Batch Coagulation 

The polymeric beams are produced in this step. The 

porogen is fully dissolves in water, leaving empty space 

as pores. A porous and interconnected structure is 

obtained. 
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3.2      SCAFFOLD WITH BIOACTIVE PROPERTIES 

Although basic scaffolds can provide supportive struts to promote tissue ingrowth and 

vascularization, their ability to encourage soft tissue attachment and kill microbes at the 

damaged skin site can be improved. Therefore, soft tissue regenerative scaffolds with 

potential antimicrobial potential were designed, synthesised and tested. Chapter 5 describes 

experiments to test the efficacy of these modified scaffolds in a wound model. This wound 

model may be used in the future as an alternate to preliminary animal experiments.  

Plain scaffolds were manufactured, as described in section 3.1. These scaffolds infused and/or 

coated with a variety of bioactive substances. These included Bioglass 45S5, BMG and 

antibiotics. Scaffolds were made with dimensions of 6 x 6 x 5mm in order to fit the 

dimensions of coupon used in wound model testing.  

3.2.1 Bioactive Glass 45S5 Infusion  

One of the methods chosen to manufacture the composite scaffolds was through infusion of 

the bioactive glass component. 45S5 Bioglass was chosen for infusion into scaffolds due to 

it’s antimicrobial ability, as mentioned in section 1.5.3.1 [163, 164]. In addition, Bioglass can 

promote attachment of hard and soft tissue to the polymer scaffolds. From this point, the rate 

of vascularization will be increased. These features are all advantageous in relation to wound 

healing [165].  

3.2.1.1 Materials  
45S5 Bioglass granules were obtained from BiometicTM. The formulation contained 35% 

(w/w) silica (SiO2), 31% (w/w) soda ash (Na2CO3), 24% (w/w) calcium carbonate (Ca3CO3), 

and 10% (w/w) tricalcium phosphate (Ca3(PO4)2). The final Bioglass product was an ultra-

fine powder, ground using a mortar and pestle. The grain diameter after grinding was ≤30 

μm. 

3.2.1.2 Method 
Bioglass powder was added into the PCL/acetone solution during the first step of scaffold 

synthesis (Fig 3.1a). This allowed Bioglass to be directly inserted within the porous structure 

of the scaffold, as shown in Figure 3.2. The following steps for scaffold synthesis were as 

described in section 3.1. 
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Figure 3.2 Schematic diagrams of Bioglass incorporation during the infusion process and the embedded 
particles in the scaffold struts.  

3.2.2  Bioactive Glass 45S5 Coating 

Coating with a bioactive component is another method for modifying the properties of the 

scaffold. It was hypothesised that coating with Bioglass could improve the healing capacity of 

the scaffold. This could lead to a better outcome when treating wounds on which bacterial 

biofilms are present. 

3.2.2.1 Materials 
Ultra-fine Bioglass 45S5 was used for coating. 

3.2.2.2 Method 
Each of the plain scaffolds was put in a sealed sterile container containing 2 g of Bioglass 

4S5S. The container was agitated to obtain a full covering of Bioglass 4S5S on the surface of 

scaffolds. The packages were placed in an oven, with rotation and heating to 52°C for 10 

minutes, to enhance thermal adherence of the Bioglass 45S5 to the scaffold. This process is 

depicted in Figure 3.3. The scaffolds were then moved into sterile packages (Medipack, 

Medipack Medical Packaging Mfg. Co.). Nine scaffolds were produced using this procedure. 

 

Figure 3.3: Bioglass coating with heat treatment, resulting in particle adhesion to the scaffold surface.  
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3.2.3 Bulk Metallic Glass Coating 

As previously indicated in the literature review, bulk metallic glasses show resistance to 

bacterial infection, due to elements including magnesium, zinc, and calcium. This property 

makes bulk metallic glass coating a promising approach for incorporation of anti-bacterial 

activity in to skin implants. BMG also has the advantage of being biocompatible and 

bioresorbable [143].  

3.2.3.1 Materials 
Several pieces of BMG (approximately 3g) were ground with a mortar and pestle to create a 

fine BMG powder of 50-100μm diameter (Figure 3.4). The powder was kept in a sterile 

plastic jar prior to use. 

3.2.3.2 Method 
One scaffold was transferred to each jar containing BMG powder. The cap was closed the jar 

was agitated for 5 seconds with the aim of maximizing coating of the scaffold. Excess powder 

was shaken off and removed using a sieve. The coated scaffolds were removed from the jars 

using forceps and transferred to sterile Medipacks, with three scaffolds per compartment 

(Figure 3.4). The packaged scaffolds were rotated at 38-42°C for 30 minutes. This heat 

treatment step was expected to increase physical attachment of the BMG powder to the 

scaffold struts. 

Scaffold mass change was verified by weighing of the scaffolds before and after the coating 

process using high precision scales. 

 

 

Figure 3.4: Left panel: Pot containing BMG powder and coated scaffold. Right panel: Depiction of coating 
process. 
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3.2.4 Scaffold Verification of Coatings 

3.2.4.1.Optical Microscopy and Mass Change 
The scaffolds were observed visually using a Leica DMRXE Optical Microscope. The 

scaffolds were weighed before and after coating using high precision scales and the mass 

change calculated. 

3.2.4.2. Scanning Electron Microscope (SEM) 
SEM uses a focused beam of high-energy electrons to generate a variety of signals at the 

surface of solid specimens. The signals reveal information about the sample including 

external morphology (texture), chemical composition, and crystalline structure and character 

of materials making up the sample [166] 

The following protocol for preparation and SEM imaging of the scaffolds was carried out by 

Alex Baume (USYD) at the Australian Centre for Microscopy & Microanalysis (ACMM) 

Three cycles of 5 minute washing was carried out in 0.1M PBS. Post-fixation was achieved 

with 1% osmium (OsO4) in 0.1M PBS for 1 hour, followed by OsO4 removal by three 5 

minute washing cycles in Milli-Q water. Samples were then dehydrated in ethanol solutions at 

50%, 70% and 95% (2x 5minute cycles), then at 100% (2 x 10minute cycles). A 3 minute 

immersion in 100% hexamethyldilazane (HMDS) allowed chemical drying, followed by 

transfer into a desiccator for overnight HDMS evaporation. Specimens were mounted onto 

aluminium stubs using carbon paint and sputter coated with 10nm gold. Images were taken on 

the EVO SEM with EHT set at 10kV and WD at 26mm. 
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3.3      RESULTS & DISCUSSION 

3.3.1 Soft Tissue Regenerative Scaffolds  

Plain scaffolds were synthesised as shown in Figure 3.6. 

 

 

 

 

 

Figure 3.5: Shape of scaffolds. 

Nine types of scaffolds were produced using combinations of the additive substances. The 

iteration and abbreviation of each type is shown in Table 3.2.  

Table 3.2: Description of scaffold modification with their abbreviations. 

 

  

No Scaffold Modifications Abbreviation 

1 Plain; no modifications Plain 

2 Bioglass infused only BG-infused 

3 Bioglass coated only BG-coated 

4 BMG powder coated only BMG-coated 

5 Antibiotic infused only Ab-infused 

6 Bioglass infused and BMG coated BG-infused + BMG-coated 

7 Bioglass infused and antibiotic infused BG-infused + Ab-infused 

8 BMG and antibiotic infused BMG-coated + Ab-infused 

9 
Bioglass infused and BMG and 

antibiotic infused 

BG-infused + BMG-coated 

+Ab-infused 
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3.4  VERIFICATION OF MODIFIED SCAFFOLDS 

3.4.1 Verification of BG and BMG Coating 

The scaffold coatings were verified qualitatively (visually) and quantitatively (mass change). 

A colour change was observed for the BMG scaffolds, as the scaffolds took on a grey metallic 

colour (Figure 3.4). BMG particles were also verified by reflective optical microscope 

imaging (Figure 3.6). Scaffolds with BG infusion have no colour difference from the plain 

scaffolds. When being cut, these scaffolds were stiffer than the plain scaffolds, but could tear 

more easily. 

 

Figure 3.6: Ground BMG particles (10x) viewed under a reflective optical microscope. 

Scaffold mass change was verified by weighing of the scaffolds before and after the coating 

process using high precision scales. 

The quantitative method based on mass verification, whereby the scaffolds were weighed 

before and after the coating process. We use an enclosed sieve and put on a vibrating bench 

top for 10 minutes High precision scales were used for excess BG or BMG powder, where an 

average mass increase of 4.95mg was found for individual plain scaffolds, and 1.24mg for 

BG‐infused scaffolds. Raw data can be found in the Appendix. 

3.4.2 SEM Imaging  

Imaging with SEM demonstrated the scaffolds were successfully coated with bioactive 

components. Plain scaffolds are depicted in Figure 3.7a. Figure 3.7b shows scaffolds which 

have been infused with Bioglass and coated with BMG. In Figure 3.8, BMG-coated scaffolds 

are visualized.  
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Figure 3.7: Visualisation of scaffolds with Scanning Electron Microscopy (a) Plain PCL scaffold (b) BMG 
coated PCL scaffold  

 

(a) 

(b) 
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Figure 3.8: Visualisation of BG infused + BMG-coated scaffolds with Scanning Electron Microscopy 

3.5     DISCUSSION 

Various types of scaffold were produced for further testing. Although the plain scaffolds were 

sterilized, the other types were not. The modified scaffolds need to be sterilized for biological 

testing. Each scaffold was cut into quarters for biological testing (chapter 5). 

From SEM results, our scaffolds were successfully seeded with BG and BMG. These 

antibacterial particles still stick on scaffolds after removing excess particles by shaking. 

Moreover, SEM images of scaffolds showed an interconnected structure and no damage 

inside modified scaffolds. These characteristics help blood vessel and immune cells get 

through wound and accelerate healing process. Preliminary verification findings do suggest 

successful modifications. Furthermore, for enhancing antibacterial effects of scaffolds, other 

experiments with scaffold antibiotic infusion were conducted.  
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CHAPTER 4 

SCAFFOLD ANTIBIOTIC INFUSION 

AND DELIVERY 

4.1 ANTIBIOTIC LOADING OF SCAFFOLDS 

Cephazolin sodium (Sandoz, Novartis) was chosen to load onto the scaffolds. This antibiotic 

was selected to treat Staphylococcus aureus infection, as discussed in section 1.2.2.2. The 

established binding affinity of cephazolin sodium to hydrophobic sites [25] and its clinical 

common use made it a suitable choice for attaching to the hydrophobic scaffolds. 

The antibiotic coating was the final modification of the scaffolds, performed after infusion 

and coating other bioactive particles on the polymer surface. 

4.1.1 Materials 

Cephazolin sodium powder (Figure 3.4) was dissolved in sterile deionized water to make a 5 

mg/mL antibiotic solution, followed by vortexing to ensure the antibiotic was completely 

solubilized. The solution was stored in sterile plastic jars before use, in order to maintain 

maximum antibiotic activity. 

4.1.2 Method 

Each plastic specimen jar was filled with 12 scaffolds of a single type. Four types of scaffolds 

were placed in separate jars: plain scaffolds, Bioglass-infused scaffolds, Bulk Metallic Glass-

coated, and Bioglass-infused + Bulk Metallic Glass-coated scaffold. 

Due to the lack of research into the capacity of the scaffolds to absorb cephazolin sodium, it 

was not clear what concentration of antibiotic should be used so an estimation was made. 12 

scaffolds were placed into 18 mL antibiotic solution to achieve an exposure ratio of one 

scaffold to 1.5 mL solution (average 7 mg antibiotic). This volume was chosen to ensure that 

each scaffold was fully submerged in antibiotic solution. 

The coated scaffolds were left at room temperature in 24 hours and dried in a vacuum 

centrifuge (Concentrator 5301, Eppendorf). The drying was done in three separate ‘runs’ of 5, 

10 and 15 duration, with the scaffolds being transferred to new Eppendorf tubes after each 

‘run’. The scaffolds were stored in sterile petri dishes until use. 
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Figure 4.1: Left: Vials of cephazolin sodium. Right: The different types of antibiotic-coated scaffolds.  

4.2 OPTICAL DENSITY MEASUREMENTS FOR ANTIBIOTIC 

VERIFICATION 

To ensure scaffolds contain antibiotic for testing, we measured absorbance of antibiotic 

solution release by using a spectrophotometer (DU 800 Spectrophotometer, Beckman 

Coulter) to quantify concentration of antibiotics infused into scaffolds. Disposable cuvettes 

were consumed, to avoid contamination due to previously used curvettes. 

4.2.1 Cephazolin Sodium Absorbance Spectrum 

An absorbance spectrum of the cephazolin sodium supplied was initially determined to detect 

the suitable wavelength at which to make measurements for all antibiotic infused scaffolds.  

A 5mg/mL stock antibiotic solution was made. A pipette was used to transfer a 10μL sample 

to a cuvette. Cuvettes were filled with sterile de-ionized water until the required volume was 

reached for the spectrophometer to work properly. The sample was tested with several 

different wavelengths, in order to detect the maximal absorbance peak of cephazolin sodium. 

This wavelength finally found at 286nm, instead of 270nm as literature review mentioned 

[26]. This result was depicted in Figure 4.2. This wavelength was used in subsequent tests. 

 

 

 

 

 

 

Figure 4.2: Absorbance spectrum for cephazolin sodium in wavelength range. Highest absorbance peak for 
reading was at 286nm. 
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4.2.2 Cephazolin Sodium Standard Curve 

The standard curve for cephazolin sodium was found using a 1mg/mL antibiotic solution. 

Absorbances were measured for a range of antibiotic solution concentrations including; 0, 5, 

10, 20, 40, 50, and 100μg/mL. The results are shown in Figure 4.3. The data points formed a 

trendline with equation y=0.0109x with an R2=0.9718. This indicates a good linear tend. 

From this, the calibration coefficient for chloramphenicol is 0.0109. 

 

Figure 4.3: Cephazolin Sodium Calibration Curve 

4.3 ANTIBIOTIC LOADING CAPACITY 

This experiment was designed to confirm the attachment of cephazolin sodium to the various 

scaffold types. There is a lack of previous research indicating threshold loading capacities for 

similar antibiotics on scaffolds. 

4.3 1. Methods 

Three scaffold types were tested: 

• Plain 

• BG‐infused 

• BMG‐coated 

The antibiotic solutions were made using the following protocol. 

Three 5mL plastic specimen vial of antibiotic solutions were made. 2mL of cephazolin 

sodium was placed in each vial at a concentration of 2.5mg/ml. The negative control was 

sterile deionised water and the positive control was the antibiotic solution only. The negative 

control aids to confirm false negatives, where negligible absorbance values were expected. 
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The positive control supported a reference point to compare with antibiotic concentration of 

test samples. 

One scaffold was soaked in each vial. The vials were wrapped in foil to prevent UV exposure 

for degradable antibiotic inside. The vials were agitated on a platform rocker (model no: 

8040, Bioline) on a medium setting. This step made the liquid go through scaffolds well and 

helped the concentration of the antibiotic through the scaffold to remain constant. Samples 

were tested in triplicate. 

A small volume of liquid was taken from each plastic vial to check whether the concentration 

was different from the initial concentration. A 20μL sample volume and 980μL of water were 

mixed together in a cuvette for spectrophotometric measurements at 286nm. Sample was 

taken at the following time-points: 0min, 10mins, 30mins, 90mins, 3hrs, 6hrs, and 24hrs. 

4.3.2 Results & Discussion 

An antibiotic loading capacity test can confirm whether antibiotic attached to scaffolds. The 

concentration in the sample taken to spectrophometer is expected to decrease time by time. 

However Figure 4.4 reveals an opposite trend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Profile showing the level of antibiotics remaining in the vials over a 24 hr period. This indicates 
the amount of antibiotic which had not been taken up by the scaffolds. 
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As seen from the figure, the level of antibiotic remaining in the vials for the different types of 

samples was similar after 24hrs of soaking. The decrease in the early time period may 

indicate loading of antibiotics onto scaffolds. However, the positive control displays a similar 

profile. This suggests the cephazolin attached to the plastic vial wall, despite keeping samples 

on a rocker platform to prevent this. Therefore, the true concentration of antibiotics is not 

known accurately and cannot used to calculate the amount of antibiotics that may have 

attached onto the scaffold. The amount of antibiotic loaded onto the scaffold could perhaps be 

estimated by analysing the differences in concentration between positive control and test 

samples (Figure 4.5). This figure shows that there may have been 3x antibiotics loaded onto 

the BMG-coated scaffolds, compared to the BG-infused scaffolds. However, the large 

standard deviation gives doubt about how accurate these trends are.  

 

Figure 4.5: Average mass of antibiotic presumed to be in scaffold after 24 hours submersion. 

These results could be explained by degradation of the antibiotic. Further experiments 

conducted by Ben Chow showed little degradation occurred [167]. 

4.3.4 Antibiotic Elution Profile 

No references could be found describing the elution of cephazolin sodium from scaffolds. 

Figure 4.6 shows an ideal antibiotic elution profile [167]. This figure indicates the ideal curve 

is described by two phases, the initial burst phase, followed by a prolonged antibiotic release. 

The burst phase is expected to release the most antibacterial activity with its high 

concentration. This phase is essential for treating bacterial in wound beds instantly and then 

the sustained release phase continued, whereby can prevent further infections [151, 152]  
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Figure 4.6: The ideal antibiotic elution profile, consisting of an initial burst phase, followed by a secondary 
sustained release [121]. 

4.3.4.1 Methods 
Four scaffold types were tested for their antibiotic elution properties, including plain, 

BG‐infused, BMG‐coated and BG‐infused + BMG-coated. Each type of scaffolds was coated 

with antibiotic. Each scaffold was put separately into plastic specimen vials and wrapped in 

foil. In each vial, 3mLdeionised water was added. Vials were agitated on a platform rocker. 

At specified timepoints, a 200μL sample was taken from each vial for testing. Absorbance 

measurements were conducted at 286nm, at the same time‐points as for the loading capacity 

time‐course. The first time point was taken as the first contact point for the water and 

scaffold. The negative control used was plain scaffold to ensure that any absorbance readings 

were antibiotic, not due to other eluted scaffold particulates. Samples were examined in 

triplicate. 

4.3.4.2 Results & Discussion 
The resulting elution profiles are shown in Figure 4.7. These profiles clearly deviate from the 

‘ideal curve’. Positive eluted antibiotic amounts were recorded for plain and BG‐infused 

scaffolds only. However, BMG‐coated and BG-infused + BMG-coated scaffolds may have 

also eluted antibiotics, but were not detected given that the values for the negative control are 

also below zero. 

This error may be equipment related, given the uncharacteristic negative control values. 

Alternately, the presence of BMG particles may have reacted with and broken down antibiotic 

molecules, either prior to or during elution profiling. 
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Figure 4.7: Elution of cephazolin sodium over 24 hours. 

Despite these results, the possibility of successful antibiotic attachment should not be 

rejected. It is a possibility that antibiotic elution from BMG‐coated scaffolds are prolonged 

and thus cannot be detected within 24 hours. 

Basically the data are indicating that the cumulative antibiotic mass was essentially zero for 

the plain, BMG+Ab and BMG+BG+Ab specimens, whereas the cumulative antibiotic mass 

was significant for Ab-coated and BG+Ab. 

There is no current literature on the interaction between BMG and cephazolin sodium, 

particularly on a hydrophobic surface such as the PCL scaffold. As such, further 

investigations into their use are required. In the future, larger samples could be used to ensure 

detection of smaller eluted antibiotic amounts. 

4.3.5 Summary of Antibiotic Loading Capacity 

The uncertainty surrounding antibiotic coating on a BMG‐coated scaffold remains to be 

resolved. Preliminary verification findings do suggest successful modifications. However, 

main unknown is the interaction between these substances and their antibacterial effect, 

especially, in an in‐vivo environment. Next chapter designed to determine whether modified 

scaffolds inhibit bacteria.  

The data demonstrate that the elution rate of BMG-coated scaffolds was lower than for the 

control, while the Bioglass-infused scaffold had about the same elution rate as the control. 
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This is a new and significant finding. However, as this is the first time such a study has been 

done, there is nothing in the literature with which these results can be compared. Therefore, it 

should be noted, that the present findings are based on a number of assumptions. Firstly, that 

there was no degradation of the antibiotic over the 24-hour period. Secondly, that solutes 

eluted from the scaffold do not effect the absorbance, and thirdly that the amount of antibiotic 

absorbed by the scaffold enough to cause a detectable change in the concentration of the 

remaining antibiotic. A future PhD project could investigate in great depth these assumptions 

and build on the findings of the present study. 
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CHAPTER 5 

MICROBIOLOGICAL TESTING 

5.1 SCAFFOLD STERILISATION  

Before biological testing was conducted, all samples were sterilised to ensure no 

contamination. Plain scaffolds were initially sterilised within their package with gamma 

radiation, before being cut quarters using an aseptic technique so each scaffold measured 

~5x5x5mm. 

BG-infused and BG-coated scaffolds were subject to a different sterilisation process 

previously reported in the literature [168]. They were exposed to 20 minutes of UV radiation 

during which the scaffolds were inverted. This double exposure was to ensure all scaffold 

surfaces were irradiated. The scaffolds were then submerged in 70% ethanol solution for 20 

minutes, before being transferred into phosphate-buffered saline (PBS) for a further 10 

minutes. The drying process was similar to dry antibiotic-coated scaffolds, followed by 

overnight desiccation.  

BMG-coated scaffolds were sterilised by exposure to 20 minutes of UV radiation with 

inversion. Base scaffolds used for coating were pre-sterilised.  

Antibiotic-coated scaffolds were not subject to UV or ethanol exposure to prevent 

degradation of cephazolin sodium. The plain scaffolds had been gamma pre-sterilized prior to 

coating.  

5.2 EVALUATING BACTERIAL ATTACHMENT ON PLAIN 

SCAFFOLD 

5.2.1 Introduction  

For the purposes of biological testing, it is necessary for bacteria attach to the base scaffold, 

in order to determine any effects of the surface modifications.  

As mentioned in the literature review, various bacteria types may infect a chronic wound. As 

such, a preliminary experiment was set up to characterise bacterial attachment to the scaffold 

with bacterial species including Staphylococcus aureus, Staphylococcus epidermidis and 

Pseudomonas aeruginosa. These were chosen due to their clinical relevance in infected 

chronic wounds [13]. However, non-virulent strains were used for the purposes of minimising 

biological hazards.  



55 
 

5.2.2 Materials & Methods  

The bacterial broths were made by inoculating each bacteria in separate jar containing 100% 

tryptone soy broth (TSB) solution (product no. CM0129, OXOID). These jars were incubated 

overnight on an incubator shaker platform set at 120 rpm, at 37°C (Innova 42 Incubator 

Shaker, New Brunswick Scientific). Solutions of 106 cfu/ml were made from each bacterial 

broth via dilution. Twelve sterilised plain scaffolds were submerged in each jar of diluted 

bacterial broth, and left at room temperature 

5.2.2.1 Harvesting Protocol  
Triplicate scaffolds were harvested at 24hrs and 48hrs post scaffold submersion as shown in 

Figure 5.1. Scaffolds from the 24hr harvest were rinsed in PBS solution to eliminate excess 

bacterial broth. They were then transferred to separate screw-cap vials of 4mL PBS solution. 

The vials were subject to a 5-minute sonication process to allow bacterial detachment into the 

surrounding buffer solution. This was done at room temperature in a water-bath sonicator 

(model no. 80TD, Soniclean). A dilution series then was plated onto horse blood agar (HBA) 

plates (Micromedia Pty Ltd) for each sample (refer to Appendix). Two to three dilutions were 

plated to ensure a valid endpoint was reached. The plates were incubated overnight at 37°C. 

Cell counts were carried out and expected to be between 30 and 300.  

A novel scaffold processing protocol was designed for the 48hr harvest in order to optimise 

the elimination of excess broth. In addition to an initial rinse in PBS, the scaffolds were also 

subject to a 10 second mixing process in fresh PBS solution, using a vortex mixer 

(FineVortex, FINEPCR). They were then individually transferred to 1.5mL Eppendorf tubes 

where excess liquid was removed by flicking the tube. The remaining protocol for processing 

and plating was the same as for the 24hr harvest. 

 

 

 

 

 

 

 

Figure 5.1: Schematic of experimental process for preliminary bacterial attachment tests.  
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5.2.3 Results & Discussion  

All three bacterial species were found to attach onto the scaffolds, as seen in Figure 5.2. The 

highest attachment is P. aeruginosa, followed by S. aureus, then S. epidermidis for which 

very little attachment was observed. Slight differences were found between the 24hr and 48hr 

harvest for all three bacteria. This is contrary to the expected increase of bacterial growth over 

time. However, this may be due to the different scaffold processing protocol used for the 48-

hour harvest. Excess planktonic bacteria may thoroughly be removed prior to plating. 

 

 

 

 

 

 

 

 

 

Figure 5.2: Comparison of bacterial attachment capacity of scaffolds with different bacteria relevant to the 
chronic wound.  

The much higher growth of P. aeruginosa, an aerobic Gram-negative rod, is representative of 

its bacterial characteristics as an opportunistic pathogen. It is has a preference for growth in 

moist environments and is often ubiquitous in soil and water with a flagellum for high 

motility [169]. As such, the highly porous scaffold architecture provides an advantageous 

surface for P. aeruginosa growth. Additionally, P. aeruginosa is known to have simple 

nutrient requirements [170] , which may have contributed to its comparatively fast growth 

within 24 hours.  

Staphylococcus species, on the other hand, attach to surfaces via adhesion proteins on their 

cell wall [20]. Their non-motility may thus account for their lower cell attachment count 

compared to P. aeruginosa. It has been shown that adhered S. epidermidis on polymeric 

surfaces take longer to grow than P. aeruginosa, with lag times of 4 hours and 1 hour, 

respectively [171]. Furthermore, S. aureus has also been shown, to adhere, at least 5 times 

longer more than S. epidermis on a range of polymeric surfaces [172], which is confirmed by 

the current results.  
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5.2.4 Summary of Bacterial Attachment Verification  

From the results of this preliminary experiment, it can thus be shown that the scaffold readily 

acts as a possible surface on which bacteria can grow. Furthermore, different bacteria will 

display varied growth behaviour.  The rinsing process of the scaffolds was found to be critical 

for an accurate representation of bacterial attachment, where planktonic bacteria must be 

removed. 

5.3 IN VITRO WOUND MODELLING  

5.3.1 Introduction  

The in vitro wound model mimics in vivo wound environment as closely as possible. The 

method was established by Ngo et al [161]. A biofilm surface is grown in a moist, perfused 

environment. Teflon coupons are used as surfaces to grow biofilm. Using this approach, the 

effects of the scaffold on the experimentally induced bioburden can be investigated with more 

relevance to clinical settings. S. aureus was the chosen bacteria for this wound modeling 

experiment, given that it is the most prominent pathogen in infected wounds [23].  

The principles of this model are based on the surface contact between the scaffold and 

coupon, and the process of bacterial migration and attachment. It is expected for the bacteria 

embedded in biofilm to become planktonic and attach to the scaffold surface (Figure 5.3a). As 

such, the surface modifications are expected to affect and potentially inhibit bacterial activity 

(Figure 5.3b and Figure 5.3c). It was hypothesised that the scaffold iteration with all 

modifications would have the most anti-bacterial and anti-biofilm effect. 

 

 

 

 

 

Figure 5.3: Schematic of interaction between scaffold and biofilm layer in an in vitro wound model. (a) 
Planktonic bacteria migrate and attach onto scaffold surface. (b) Antimicrobial activity from scaffold 
inhibit bacteria migration. (c) Antimicrobial degrade actively biofilm layer.  
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5.3.2 Methods  

5.3.2.1 Biofilm Generation  
The main apparatus for biofilm generation was a CDC biofilm reactor (CBR), which 

consisted of a reactor vessel, a rotating baffle and a cap with three inflow conduits (Figure 

5.4). The reactor held 8 polypropylene rods, in which Teflon coupons, measuring 13mm in 

diameter 4mm depth, were assembled. These coupons provided the surfaces on which the 

biofilm was grown and for subsequent use in the in vitro wound model. Each rod held 3 

coupons, thus allowing the generation of 24 biofilm-covered coupons at a time. Since 8 

coupons were required for each type of model, so three types of models could be analysed in 

one set. 

 

 

 

 

 

 

 

 

Figure 5.4 CDC biofilm reactor (CBR) apparatus used for biofilm generation.  

The S. aureus broth was cultured via overnight incubation at 37°C. This was diluted to a 

108cfu/ml solution, using the method outlined in the Appendix.  

An initial static batch-phase, as seen in Figure 5.5, was carried out by inoculating 1ml of the 

108 cfu/ml S. aureus broth into the reactor vessel, via the inoculation port. This also contained 

500ml of 100% TSB solution to provide sufficient nutrients for S. aureus proliferation and 

attachment to the coupons. The CBR was kept in a 37°C water bath, on top of a digital 

magnetic stir plate (IKA RCT Basic, InVitro) set at 120 rpm. The bath was heated using a 

glass heater (AquaOne). An air pump (AP-750, AquaOne Infinity) was also connected to the 

CBR, which provided a continuous inflow of air to facilitate aerobic bacterial growth. The 

batch-phase was maintained for 24 hours.  

This was followed by a 24hr dynamic flow-phase of biofilm growth, where 20L of 10% TSB 

solution was pumped through the CBR system at a rate of 13ml/min. A peristaltic pump 
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(Masterflex L/S Digital Standard Drive, Cole-Parmer Instrument) was used to connect the 

TSB reservoir to another inflow conduit on the CBR (Figure 5.5). A waste outflow line from 

the reactor vessel was connected, which allowed initial evacuation of excess planktonic 

bacteria, and subsequent continuous waste removal. This was collected in a waste reservoir, 

which contained 2L of 12.5%w/v sodium hypochlorite to kill incoming bacteria media. 

 

 

 

 

 

 

 

 

Figure 5.5: Equipment set-up for biofilm generation.  

5.3.2.2 Coupon Preparation  
The coupon rods were rinsed twice in PBS, before coupon removal and further rinsing to 

ensure elimination of any residual planktonic bacteria. One surface of biofilm was removed in 

order to accurately investigate the effects of the scaffold in contact with the remaining layer.  

A paper towel moistened with 1.25%w/v sodium hypochlorite solution (APS Ajax 

Finechem.) was used to wipe one coupon surface (Figure 5.6). Several drops of bovine serum 

albumin (BSA) (Sigma-Aldrich) were simultaneously placed on the opposite surface to 

protect against unwanted disinfection. The coupons were then quickly rinsed twice in PBS to 

remove the BSA and any residual biocide before transferring to a third volume of PBS, until 

placement into the wound model chamber. 

 

 

 

  

Figure 5.6: Coupon wiping process to rid one surface of biofilm layer.  



60 
 

5.3.2.3 Scaffold Preparation  
A total of nine types of wound models were prepared. Three types of scaffolds were 

examined at a time, with 8 coupons for each type. Scaffolds were prepared as described in 

Section 3.1 & 3.2. 

1. The first set of models contained Control coupons, Plain scaffolds, and BG-infused 

scaffolds.  

2. The second set tested BMG-coated, Ab-infused, and composite BG-infused + Ab-

infused scaffolds. 

3. The third set tested BG-infused+BMG-coated, BMG-coated+Ab-infused and BG-

infused+BMG-coated+Ab-infused composite scaffolds.  

Plain scaffolds were used as the control for bacterial attachment. The control coupon was the 

plain coupon which had not been inoculated with bacteria. This tested whether the inoculation 

procedure  had been successful. Experiments were conducted in triplicate so as to address the 

accuracy issues 

5.3.2.4 Wound Model Chamber Preparation  
The wound model chamber housed eight biofilm-covered Teflon coupons, which were 

embedded in an agar bed for stable placement. The bed was made-up by pouring molten 3% 

bacteriological agar around glass coupons, of similar size to Teflon coupons, to create the 

appropriate molds.  

The glass coupons were removed once the agar turned to solid, followed by insertion of 

biofilm-covered coupons into the newly formed molds, with the biofilm surface exposed. This 

process is illustrated in the schematic of Figure 5.7. Individual scaffolds were then placed on 

top of the coupons while ensuring complete surface contact between both objects, as shown in 

Figure 5.7. 

 

 

 

 

 

 

Figure 5.7. Preparation of wound chamber for coupon insertion. 

Agar mold 

Agar mold 

Agar mold 
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Figure 5.8: Placement of scaffolds into chamber using aseptic technique. Wound model chamber with 
scaffold samples on top of Teflon coupons (white) sitting in agar platform. 

Sterile foam dressing (V.A.C. Vers-Foam Large Dressing, KCI) was cut then carefully placed 

over the top of the scaffolds in the wound chamber. This step assisted to maintain a moist 

chamber environment and preventing dislocation of scaffolds. A sterile adhesive drape 

(V.A.C. Drape, KCI) was then wrapped around the foam and chamber shape to create a fully 

contained structure with minimal susceptibility to potential contamination. Figure 5.9 & 5.10 

illustrates the components within the wound model once completely set up.  

 

 

 

 

 

Figure 5.9: (a) Placement of pre-cut sterile foam dressing on top of wound chamber. (b) Positioning of 
sterile adhesive drape over foam. (c) Drape wrapped around whole chamber to ensure full containment and 
prevent contamination. The complete process was carried out aseptically in a sterile safety cabinet (HERA 
Safe KS, Thermo Scientific).   

 

 

 

Figure 5.10: A schematic showing the components of a wound model chamber in a cross-sectional view. 

(a) (b) (c) 
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5.3.2.5 Perfusion System  
A perfusion system was set-up using a standard IV drip (BP Medical Supplies), and a 10% 

TSB-saline solution for nutrient flow. The perfusion rate was set to approximately 6-8 drips 

per minute, which was roughly a rate of 10 ml/hr.  

The giving-set in-flow tube was connected to the wound model chamber at the top end via a 

small incision made through the adhesive drape, as depicted in Figure 5.11 & 5.12. The 

outflow tube connected to a small channel leading from the bottom of the chamber, which 

was fed into a waste container of 2L 1.25% chlorine solution for disinfection. The solution 

was replenished as necessary. All procedures were conducted aseptically. 

 

 

 

 

 

 

 

 

 

Figure 5.11: Schematic diagram of perfusion inflow and outflow through wound model chamber 

 

Figure 5.12: Left: Experiment set-up of in-vitro wound models showing the perfusion system in operation. 
Right: Sample harvesting process.  
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5.3.2.6 Harvesting Protocol  
Triplicates of both scaffolds and coupons were harvested from the wound models. This was 

done at two time points; 4 and 6 days post scaffold-coupon contact. These times were chosen 

to allow adequate time for planktonic bacteria release from the biofilm and attachment onto 

the scaffold. 

The harvesting process was carried out in an aseptic manner, sterile equipment was used. 

Access to the wound model chamber interior was achieved by firstly slicing through the 

adhesive dressing around the chamber perimeter, then peeling back the foam dressing to 

reveal the samples (Figure 5.12; right). These were then extracted and placed in individual 

vials of 5mL PBS, before sonication.  

A dilution series then was plated onto horse blood agar (HBA) plates (Micromedia Pty Ltd) 

for each sample (refer to Appendix). Two to three dilutions were plated to ensure a valid 

endpoint was reached. The plates were incubated overnight at 37°C. 

5.3.2.7 SEM Sample Preparation  
An extra scaffold was also harvested for use in SEM imaging. These were transferred directly 

into 5mL of 3% glutaraldehyde solution for primary fixation and left for at least 2 hours at 

room temperature. The scaffold samples were then transferred into 5mL sterile deionised 

water and stored in a refrigerator at 5°C.  

The remaining protocol for biological sample preparation and imaging was carried out by 

Alex Baume (USYD) at the Australian Centre for Microscopy & Microanalysis as described 

in section 3.2.3.2. 

5.3.2.8 Statistical Analyses Method 
Raw cell counts from each wound model were taken initially after 4 days and 6 days. Each 

wound model has one type of modified scaffold but three samples were taken for each 

harvest. So the result was an average of 3 samples. Cell counts across scaffolds and coupons 

were separately analysed using Kruskal-Wallis One Way Analysis of Variance (Kruskal-

Wallis ANOVA) on Ranks, evaluating differences in median values. All Pairwise Multiple 

Comparison Procedures (Dunn’s Method) were then carried out for each possible pair of 

scaffolds, then coupons. If results were insignificant, t-tests were carried out using sample 

pairs that showed largest difference on ranks. The power of these were calculated with α = 

0.05.  

T-tests were similarly used to compare differences between the two harvesting time points for 

scaffolds and coupons. The program SigmaPlot 11 was used.  
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5.3.4 Results & Discussion  

5.3.4.1 Cell Counts of Bacterial and Biofilm Attachment 
Cell attachment was seen for most scaffold iterations at both time points. However, there 

were some exceptions. 

Figure 5.13 shows the results from the first set of wound models. The control coupons 

demonstrated bacteria was successfully transferred and inoculation did occur. Without the 

scaffolds, bacteria inoculated successfully around 106 – 109 cfu/ml. At 4 days, the cell count 

on the BG-infused scaffolds and corresponding coupons is less than that of the plain 

scaffolds. This suggests a possible antimicrobial effect of the Bioglass on S. aureus 

attachment and biofilm, in accordance with literature [110]. 

 

Figure 5.13. S. aureus cell counts for scaffolds and corresponding coupons of wound model set 1.   

Figure 5.14 depicts the results for the second set of wound models. At 4 days, there were zero 

cells for all scaffolds for these Wound Models. This may imply effective antimicrobial 

activity, however, this result must be interpreted with caution. It is more likely to be a result 

of insufficient sonication or mixing, where the small amount of bacterial attachment may 

have been missed. 

After 6 days, the scaffold with the least level of bacterial attachment was the BMG-coated 

scaffold. The BMG appears to have had a substantial effect on resisting biofilm attachment. 

This can be further reinforced by the low cell count on the corresponding coupon at day 4 

(8.17x102 cfu). This is in comparison to the initial cell seeding number of 1x107 cfu. This 

value was taken from a protocol adapted from Ngo et al [161]. 
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Figure 5.14. S. aureus cell counts for scaffolds and corresponding coupons of wound model set 2.  

The antimicrobial effect of BMG is largely due to the metal ions and oxide by-products. Both 

magnesium and zinc oxides have been shown to inhibit S. aureus growth and attachment 

[116,117].  

The 4 day time point was not used for the wound model set 2 as wound model set 1 was the 

primary experiment 

The effect of BMG on bacterial attachment did have a limit, however, as evident by the 

increased average cell count on the coupons at 6 days. The elution of surface BMG may 

account for this. This excess BMG would have been subsequently flushed from the chamber 

by the flow of perfusion. However, residual BMG still remains as shown in Figure 5.21a. 

The antibiotic-infused scaffold demonstrated a notably increased bacterial growth at the 6 day 

time-point compared to the BMG-coated scaffold. However, after 4 days, the number of 

bacteria on both the coupon and scaffold had been less than other scaffold types. This result 

may be explained by the antibiotics initially having an effect but they may have degraded 

over time. Alternately, this result may indicate an error in either the sonication or dilution 

steps. 
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Figure 5.5 shows the results for the third set of wound models. The scaffold with the highest 

antibacterial action appears to be the BG+BMG+Ab scaffolds. This was the trend for both the 

4 day and 6 day timepoints. Furthermore, a similar trend for the corresponding coupons 

demonstrates anti-biofilm activity. It is proposed that the three modifications together create a 

synergistic antimicrobial effect, which otherwise cannot be achieved on their own or in pairs. 

The formation of a hydrated silica gel layer by the infused Bioglass may entrap BMG 

particles and antibiotics, and thus delay their elution. This surface change is depicted in 

Figure 5.17.b. Consequently, their antimicrobial activity is prolonged, as seen after 6 days. 

This promising trend should be confirmed with further in-vitro testing with larger sample 

sizes. 

 

 

 

 

 

 

 

Figure 5.15. S. aureus cell counts for scaffolds and corresponding coupons of wound model set 3.   

 

5.3.4.2 SEM Imaging of Bacterial Attachment 
In order to certify bacterial attachment onto modified scaffold, SEM imaging has been 

undertaken. The results are shown in Figure 5.16 & 5.17.  
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(a) 

Figure 5.16. Magnified surface morphologies of scaffolds with none or one modification: (a) Plain 
Scaffold: Smooth surface with evidence of S. aureus attachment (red arrows) (x381),  (b) BG-infused 
Scaffold: Clusters of S. aureus (red arrows) found on relatively smooth surface (2190x), (c) BMG-coated 
Scaffold: Highly textured surface with BMG particles (green arrows), and compromised bacterial 
remnants (red arrow) (3490x) 

 

 



69 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17. Magnified surface morphologies of scaffolds with combined modifications: (a) BG-infused + 
BMG-coated (2500x). Clumps of BMG remnants (green arrows) and individual S. aureus cocci (red arrows) 
amongst other debris can be found on top of a relatively smooth surface. (b) BG-infused + BMG-coated + 
antibiotic-coated (1140x). Highly roughened surface with S. aureus clusters (red arrow) and BMG 
precipitates (green arrow).  

(a) 

(b) 
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5.3.4.3 General Analysis of Wound Model 
The t-tests comparing cell counts across harvests recorded negative results. This suggests that 

the prolonged wound model incubation time did not affect the bacterial growth on scaffolds 

or the biofilm layer on coupons. This insignificant difference, however, may again be 

accounted for by the high variability within triplicate cell counts for the same sample type. A 

general trend can still be distinguished amongst mean scaffold cell counts, with a general 

increase over the 6 day incubation period except BG+BMG+Ab scaffolds as shown in Figure 

5.15. 

The highest scaffold cell count was found for plain scaffolds (3.03x108 cfu) and for BMG-

coated + Ab-infused (7.35x108 cfu), at 4 and 6 days respectively. Coupon cell counts were 

highest for control coupons (6.70x108) at 4 days, and for corresponding BMG-coated + Ab-

infused coupons (1.86x108 cfu) at 6 days.  

The zero cell count for scaffolds and corresponding coupons at 4 days is unexpected. In  

Section 5.2.3 the presence of bacteria attachment onto scaffolds had been confirmed. The 

primary explanation for this may be error in processing of coupon preparation for the wound 

model. Factors which may have caused biofilm elimination included excess sodium 

hypochlorite solution (biocide) for wiping or insufficient rinsing. Furthermore, moving of the 

scaffolds within the wound chamber may have scratched the biofilms. This may have 

occurred during placement of the foam dressing. 

The Kruskal-Wallis ANOVA found significant differences amongst medians of both scaffold 

and coupon groups for each harvest, however, pairwise comparisons were mostly 

insignificant. Only coupons used with BG-infused+BMG-coated scaffolds were found to have 

significantly more bacteria than corresponding plain coupon (P < 0.05).  

Subsequent t-tests found no significant differences between any scaffold pair at 4 days. 

However, the low power of the tests (0.408) suggests caution to be taken when interpreting 

negative results. Figure 5.16 and Figure 5.17 are SEM images revealing bacterial attachment 

onto the scaffolds. For the 6 day harvest of scaffolds, BG-infused+BMG-coated scaffolds 

were found to have significantly higher cell counts than plain ones (P = 0.042), however the 

power was also relatively low (0.553). This result may seem contradictory, as it was expected 

for modified scaffolds to introduce and encourage an antibacterial effect.  

Despite the lack of significant differences between most scaffold types, which may be 

attributable to the variability in cell counts, general trends can still be drawn. For instance, the 

cell count on BG-infused scaffolds and corresponding coupons at 4 days is less than that of 

the plain scaffolds (Figure 5.13). However, the presence of Bioglass may lessen the effect of 
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cephazolin sodium. This effect was also seen in Figure 5.14, where there was an increased 

cell count on BG-infused+Ab-infused scaffolds compared to Ab-infused scaffolds. This may 

be due to a destructive interaction between the two substances, where Bioglass may inactivate 

the antibiotic, or vice versa by affecting the hydration products of Bioglass. 

A further speculation is that the perfused TSB solution, as a protein source, may have affected 

antibiotic potency. In contrast, TSB enables bacterial growth, an activity required by 

antibiotics to have effect. In this instance, the potency of antibiotics may be indirectly 

increased. Further investigation would be required for a conclusive finding.  

Although combine BMG+BG+Ab has seen the most effective (Figure 5.15) the increase in 

cell attachment for the remaining scaffold types does not necessarily dismiss antimicrobial 

effects of other modifications. As previously documented, the elution of antibiotics may 

account for the absence of their effects. The bacteria may simply have reattached and regrown 

within the first 4 days of inoculation. As such, higher concentrations of additives or perhaps a 

lower initial biofilm bioburden are acquired in future investigations. 

An alternative viewpoint is that hydrated Bioglass may encourage bacterial growth. A 

hydrated silica gel may also provide a larger and optimum surface for bacteria to attach. The 

existence of both pro- and anti-bacterial activities of these substances are reasonable, thus a 

balance must be achieved in order to induce the desired effect.  

5.3.4.3 Experimental Variations and In-vitro Wound Model Assessment  
While interpreting these results, caution must be assigned upon drawing comparisons across 

all 8 scaffold types tested. As noted previously, the in-vitro wound model experiments were 

carried out in different groups, where slight variations in methodology as well as biological 

alteration may have affected the relative outcomes. As such, it may not be warranted to draw 

direct comparisons between combinations of scaffold modifications and the effects of their 

individual types. Cross comparisons within experimental sets, however, are more reasonable 

but still subject to experimental variation.  

One possible explanation for various results is that there may have been different local 

pressures within the wound model chambers when applying the foam and adhesive dressing. 

This is an inherent design issue of this wound model system. This would have induced 

inconsistent scaffold-coupon contact areas, where higher bacterial attachment may be an 

indirect result of a greater compressive pressure. The greater exposure of the scaffold surface 

may have thus allowed more relative bacterial attachment. Furthermore, the decreased 

distance between the biofilm layer and scaffold struts may have contributed to more effective 

bacterial transfer. Alternatively, scaffold displacement from the coupon, during chamber 
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constructing, would have prevented bacterial attachment altogether. Any potential 

antibacterial effects would then have been overlooked. This variation would have to be 

controlled for manually, where consistent performance is required.  

Variations in the perfusion system may also greatly influence the results. While this system is 

capable of replicating the perfused environment in a wound, the use of an IV fluid drip set 

invariably brings about inconsistencies, as it can only be controlled by hand with 

approximations to perfusion rate for each set. This system can be improved by using of 

peristaltic pumps, where perfusion rates can be accurately quantified and maintained.   

A further cause of variation can be related to inconsistent scaffold geometries. This may have 

been due to inconsistent cutting, or distortion when handling with forceps. Thus, it is likely 

that different surface areas may have been exposed to the biofilm, leading changes in relative 

cell attachment. Therefore, the relative amounts of antimicrobial substances on the scaffolds 

would have been affected, in addition to the inherent variations during scaffold modification. 

To control for this error, scaffold sectioning may be automated or cutting guides used, or 

alternatively be manufactured to size to eliminate the need for quartering.  

Larger sample sizes or customizing coupon number in each model can also be studied to 

reduce the variability.  

5.34.4 Summary of Wound Model Tests  
From this in vitro wound modelling experiment, it can be said that the combined 

antimicrobial effects of Bioglass, BMG and antibiotics were achieved, thus fulfilling a key 

user requirement defined for the scaffold. This modification on its own can induce activity 

against bacteria. However, the concentrations used may not have been high enough to induce 

prolonged effects. There is also the possibility of these substances inducing bacterial growth, 

either on each type or within a pair. There is still potential, however, to maximize resistance 

ability to bacteria and activity against biofilms. There need to used adequate concentrations 

and application techniques of antimicrobial substances. 

It can thus be said that this novel experimental procedure has revealed the highly complex 

interactions between biological media and biomaterials. There is a need to carry out further in 

vitro testing in order to fully assess the interactions and effects of developed scaffolds on 

wound-like bioburdens. The incorporation of a perfusion system and presence of biofilm are 

particularly important experimental variables that allow a more clinically relevant assessment, 

and thus the novelty of this investigation. 
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5.4 PRIMARY BACTERIAL ATTACHMENT TESTS  

5.4.1 Introduction  

In order to further characterise the antibacterial potential of modified scaffolds in a simpler 

experimental model, planktonic bacterial attachment tests were developed. This was carried 

out to more directly exhibit the interaction between S. aureus and the modified scaffolds. 

Furthermore, the experimental outcome may have clinical significance for infected wounds 

devoid of biofilm.  

5.4.3 Methods  

5.4.2.1 Scaffold Test Samples  
The following scaffold samples were used, and the hypothesised outcome in term of bacterial 

attachment: 

BG-infused + BMG coated < BMG-coated< BG-coated< BG-infused< Plain scaffolds. 

5.4.2.2 Primary Bacterial Attachment Protocol  
S. aureus was again used in this experiment, where the broth and a dilute techinque 105cfu/ml 

solution were made using the same harvesting protocol.  

Twelve scaffolds and four silicone samples of each type were placed into individual plastic 

specimen vials, containing 20mL of diluted S. aureus broth (Figure 5.18 & 5.19). These were 

left at room temperature. Samples were harvested at two time-points; 7 hours and 24 hours, 

including triplicate scaffold and duplicate silicone samples.  

Samples were processed similarly to the optimised rinsing protocol set out in Section 5.2.2. 

However, instead of flicking, scaffolds were centrifuged at 1200rpm in Eppendorf tubes. This 

was to remove excess broth solution. Silicone samples were rinsed twice in PBS only. All 

scaffolds were placed into 5mL PBS solution for sonication, followed by a dilution series and 

plating onto HBA plates for overnight incubation at 37°C. Cell counts were subsequently 

recorded. 

An extra sample of each scaffold type was also harvested at the 7-hour time-point for 

processing for confocal imaging. A live-dead stain was applied to the scaffold surface for 1 

hour, followed by a 1-hour fixation process with 3% paraformaldehyde. The samples were 

then rinsed 3 times with PBS for 10 minutes and left in the final rinse for storage at 4°C until 

imaging. Tubes containing samples were covered in aluminum foil throughout the process. 

Dr’s A. Jacombs and H. Hu at the Australian School of Advanced Medicine, Macquarie 

University, carried out the sample preparation and imaging.  
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Figure 5.18: Scaffold samples after harvesting and sonication.  

 

Figure 5.19: Schematic of experimental process for primary bacterial attachment test.  

5.4.4 Results & Discussion  

S. aureus was found to attach onto all sample types, with highest attachment counts on 

Bioglass-infused scaffolds and 100%w/v Bioglass coated silicone samples, at both harvesting 

time-points. Cell counts were also found to increase between the first and second harvest, as 

shown in Figure 5.20. 

Statistical analysis showed that BG+BMG samples had bacterial attachment significantly 

higher (p<0.05) than plain, Bioglass-coated or BMG-coated samples at 7 hours. At 24 hours, 

Bioglass-coated scaffolds had significantly higher counts (p<0.05) than all other scaffold 

types, excepting BG+BMG samples, and similarly for Bioglass-infused scaffolds.  

These results deviate widely from what was hypothesised, which was based on findings in 

literature that establish antimicrobial effects of Bioglass. The level of bacterial attachment or 

resistance by Bioglass is highly dependent on the amount it has dissolved into the media. In 

longer time courses, a higher level of resistance to microbial growth may have be evident for 

Bioglass. However at the 7 and 24hr timepoints, it appears the Bioglass infusion and coatings 
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change the scaffold surface morphology, particularly when Bioglass becomes hydrated to 

form a silica gel layer. This results in an increased surface area, which actually encourages 

bacterial attachment.  

 

Figure 5.20: Average cell count of S. aureus attachment to scaffold and silicone samples submerged in 
planktonic bacterial broth for 6hrs and 24hrs.  

This explanation could also be applied to Bioglass-coated silicone samples. After 24hr 

culture, there was more S. aureus attachment to BG-coated silicone than plain silicone. 

Similarly, a Bioglass coating can increase surface area due to increased surface roughness, 

and thus create more sites flat to bacterial attachment.  

Differences to results reported in literature are likely to be due to variations in experimental 

protocol. Antimicrobial studies in the literature often test single Bioglass granules in higher 

concentrations than would be coated or infused onto scaffolds [110]. Current scaffold samples 

are highly interconnected, which contributes to a much larger surface area and a favourable 

microstructure on which bacteria can attach.  

Furthermore, Bioglass particles are embedded in the polymeric struts of BG-infused 

scaffolds, thus reducing their exposure to the surrounding medium and overall concentration. 

Bacteria in samples with Bioglass in this experiment are therefore much higher than that of 

literature studies.  

A different situation applies to Bioglass-coated scaffolds, as Bioglass particles here are not 

subject to the lack of bacterial exposure. Instead, detachment and elution of Bioglass may be 

the contributing factor to increased bacterial attachment. The eluted Bioglass will again be in 

the presence of much higher bacterial concentrations, thus any antimicrobial action may be 

reduced. This is particularly relevant for the 24-hour harvest where bacterial growth is known 
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to increase exponentially, which is confirmed by the increased cell counts (Figure 5.20). As 

such, the potential antimicrobial activity of Bioglass is greatly impeded due to these 

conditions.  

The lack of expected antimicrobial effects of BMG-coated samples, as compared to the plain 

scaffold, is highly attributable to its elution into the surrounding TSB medium. This can be 

verified by observation of BMG particulate accumulation within the sample container (Figure 

5.21a), as well as the loss of the characteristic grey discolouration of BMG-powder coating 

(Figure 5.21b) at the 7-hour harvest. 

Figure 5.21: (a) Residual BMG powder accumulated from BMG-coated scaffold in sample vial. (b) 
Discolouration of BMG coated scaffolds from the surface, indicating BMG detachment. 

Confocal images of all five scaffold types verify the attachment of bacteria, as seen by the 

green fluorescent staining (Figure 5.22). This staining is indicative of live bacteria, which 

suggest that S. aureus can still readily attach and grow on the scaffolds despite the presence 

of Bioglass and BMG. However, coverarge of live bacterial coverage may conceal any 

stained dead bacteria. Furthermore, dead bacteria may have detached from the scaffold, thus 

are absent in the images. These images remain a qualitative means of exhibiting confluent 

surface coverage by S. aureus, whereupon scaffold microstructure can also be represented. 

(a) (b) 
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Figure 5.22. Confocal images of bacterial attachment onto scaffolds of the following types: a. Plain, b. BG-
infused + BMG-coated, c. BG-coated, d. BG-infused, e. BMG-coated.  

5.4.5 Summary of Bacterial Attachment 

The result of this experiment provides preliminary evidence that Bioglass may encourage 

bacterial growth and attachment, contrary to several findings in literature [110]. This is a 

clinically relevant finding, which can help bring about a wider understanding of Bioglass-

composite behaviours and may have a larger influence on its future applications.  

With that, however, it must also be said that the experimental protocol plays a significant role 

in determining the result. This is particularly relevant to the highly dynamic and flexible 

nature of biological environments. Thus, this planktonic bacterial attachment experiment may 

be used to provide opposite insight into the complex interactions explored by more clinically 

relevant in vitro protocols, such as the in vitro wound modelling system. 
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CHAPTER 6 

DISCUSSION & CONCLUSION 

6.1 DISCUSION 

Soft elastomeric polycaprolactone and bioactive glass composite scaffolds were 

reliably fabricated using an established method as outlined in Chapter 2 [132]. A 

thermal coating method was used to adhere MgZnCa BMG particles to the scaffold. 

Scaffolds has been verified by SEM image (Figure 3.8) to observe interconnected and 

porous structure. When viewed on a sectioned surface, bioactive particles were found 

to consistently cover and adhere to the scaffold structure. The scaffold’s strut array 

was maintained, vital for hosting granular tissue infiltrated with neo-vasculature 

carrying infection fighting cells. 

Staph. aureus biofilm was generated using bioreactor (106-109 cfu/ml each coupon) 

after 4 days. This is compared to a value previously experiment by Ngo et al 

[161]which generated  1.8 x107 cfu/ml after 5 days. Inoculation  was carried out via a 

new wound model. The token carrying the biofilm was situated within an agar dish 

and flow of body fluids was replicated using a IV. Bacteria was only allowed to infect 

the scaffold residing above the biofilm token in its planktonic phase of its life cycle. 

As seen in Figure 5.16, BG+BMG+Ab scaffolds had more antibacterial activity than 

other modified scaffolds. It is proposed that the three modifications together create a 

synergistic antimicrobial effect, which cannot be achieved on their own or in pairs. 

The formation of a hydrated silica gel layer by the infused Bioglass may allow 

adsorption and ingress of metallic cations/salts and antibiotics, and thus slow the 

release of these antibacterial agents from the proximity of the scaffold. The MgZnCa 

BMG releases magnesium and zinc cations and related salts/oxides that are known to 

inhibit S.aureus growth [116,117]. Their antimicrobial activity was observed after 6 

days. These finding need to be replicated. 

From bacterial attachment test (Section 5.4), statistical analysis showed that 

BG+BMG samples had bacterial attachment significantly higher (p<0.05) than plain, 

Bioglass-coated or BMG-coated samples at 7 hours. At 24 hours, Bioglass-coated 

scaffolds had significantly higher counts (p<0.05) than all other scaffold types.  While 
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biomaterials chemistry is critical in understanding antibacterial activity, this is also 

dependent on surface roughness and morphology. Bioactive glass infused and BMG 

coated scaffolds were observed to have additional porosity or surface roughness, 

providing additional binding sites for bacterial cells with good media access.   

Work carried out in Section 5.4 with 30%, 100% bioactive glass coated silicone, 

demonstrated that bacterial attachment was enhanced by bioactive glass. While 

bioactive glass may be beneficial for soft and hard tissue attachment [95,105] and 

provide some minor antibacterial activity [110], this is not the case for all types of 

bacteria and all situations. It is speculated that both bioactive glass infusion and 

coatings change the scaffold surface morphology, particularly when bioactive glass 

becomes hydrated to form a silica gel layer. Increasing surface area by adding rough 

coating would normally increase bacterial attachment.  

This results in an increased surface area, which thus encourages bacterial attachment. 

While some studies have shown silver in Bioglass can improve antibacterial effect 

[111-113], silver is cytotoxic to wound tissues. Zinc on the other hand, can be 

antibacterial without being cytotoxic to granular tissue. Increasing zinc component 

and released cation may be beneficial for future studies. 

Antimicrobial studies in literature often test single bioactive glass granules in higher 

concentrations than would be coated or infused onto the current scaffolds [110]. 

Current scaffold samples are highly interconnected, which contributes to a much 

larger surface area and a favourable microstructure on which both tissue and bacteria 

can attach. By enhancing tissue attachment using hydrated-silicate surfaces a scaffold 

can become more prone to bacterial infection, and yet, healthy vascularized tissue 

attachment can exclude bacterial attachment that would occur if a scaffold were 

isolated from blood contact due to a fibrous capsule. The optimum balance is 

proposed to be reached in ensuring vascularized tissue infiltration using a high 

interconnected porosity scaffold, using a soft tissue attachment medium such as 

bioactive glass. 

  



80 
 

6.2 CONCLUSION 

Bioactive soft tissue scaffolds that can improve granular tissue infiltration and integration 

could assist wound healing even aside from the incorporation of antibacterial and antibiotic 

agents into the scaffold. To mitigate against persisting infection a new scaffold configuration 

was developed in this work. While bioactive glass particulates have been shown to have a 

slight anti-bacterial response, the main benefit afforded is for soft tissue attachment. 

A cross-disciplinary review of relevant literature on wounds, biomaterials and scaffolds. 

Scaffold prototype and test design inputs were identified. Requirements were identified in 

chapter 2 then utilised and verified in subsequent chapters.  

A novel iteration of scaffold design was successfully fabricated that incorporated a particulate 

bioactive glass infusion, and a particulate MgZnCa BMG and antibiotic infusion. This was 

characterized alongside variations and with controls using a bacterial attachment study and 

novel perfusion-biofilm model. The scaffold design demonstrated antibacterial and anti-

biofilm activity that exceeded other variants and may be attributable to a synergistic effect 

arising from the combination of BMG, bioactive glass and antibiotic infusion.  

 

Specific findings and contributions of this thesis include:  

- Producing a polymer synthesis material which suit design requirement. 

-  Not only bacteria but also biofilm was created to test antibacterial possibility of 

scaffolds.  

- Bioglass, BMG, and Cephazolin sodium can act synergistically to enhance 

antimicrobial and anti-biofilm action against S. aureus bacteria.  

- Bioglass coated silicone and scaffolds, and infused scaffolds may encourage bacterial 

growth. This may be due to increased surface area and hydrated silicate surface 

chemistry that is desirable for soft tissue attachment.  

- A novel in vitro scaffold-wound model was developed that can be used for pre-

clinical development of wound treatments. It may also be applicable to investigating 

implant microbe, implant-biofilm interactions even approach to animal testing.  
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6.3 RECOMMENDATIONS  

- Test other clinically relevant bacterial species with the same configuration (E Coli etc)  

- Increase sample numbers used in microbiological evaluation  

- Validate scaffold efficacy in in-vivo murine studies  

- Apply this in vitro approach to other wound and biofilm relevant microbes  

- Investigate the scaffold design in an infected in vitro skin cell culture model, before a 

subsequent animal infection model.  

In conclusion, this thesis provides a some preliminary evidence for a platform for which 

further development could result in a safe and efficacious solution for treating serious chronic 

wounds. 
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APPENDIX 
SCAFFOLD MODIFICATION DATA  

BMG-coating mass verification: raw data 

 

Equation for Calculating Total Mass of Antibiotics  

 

 

Where;  

Standard curve slope = 0.0109  

Dilution factor = 50 for antibiotic loading (since 20uL sample in 1mL cuvette volume)  

= 5 for elution profile (since 200uL sample in 1mL cuvette volume)  

Initial Sample Volume = volume in sample vial prior to sampling 
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MICROBIOLOGICAL EVALUATION DATA  

Average counts and standard deviations 
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