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ABSTRACT 

 

Contrary to the usual assumption of fixed, well-defined preferences, it is increasingly 

evident that individuals are likely to approach a choice task using rules and decision 

heuristics that are dependent on the choice environment. More specifically, heuristics that 

are defined by the local choice context, such as the gains or losses of an attribute value 

relative to the other attributes, seem to be consistently employed. Recent empirical findings 

also demonstrate that previous choices and previously encountered choice tasks shown to 

respondents can affect the current choice outcome, indicating a form of inter-dependence 

across choice sets.  

 

A number of these heuristics, namely the majority of confirming dimensions (MCD), the 

extremeness aversion and the reference revision heuristics, are extensively analysed in this 

thesis. Although these heuristics have been previously identified in the existing literature, for 

example, the extremeness aversion heuristic in the psychology and marketing literature, their 

application, using the discrete choice modelling framework, to the transportation field has 

only barely begun. In particular, arising from the extremeness aversion heuristic, three 

models are discussed. The first is a recently developed model of context dependence known 

as the random regret minimisation (RRM) model. The second model is a non-linear utility 

model that makes reference to the worst attribute level in a choice set. The third model is a 

“relative advantage maximisation” (RAM) model, with an updated version of the existing 

RAM model introduced in this thesis. All these models are compared against one another and 

with the standard linear-in-the-parameters random utility maximisation (RUM) model. The 

results strongly indicate that incorporating context dependency into existing models should 

be a key consideration for the practitioner. 

 

Moreover, having identified some heuristics of especial interest, the role that multiple 

heuristics or decision rules can play in choice behaviour is also analysed. This can be done 

through models of probabilistic decision processes but interestingly, the heuristics themselves 

can be embedded directly into the utility functions by means of heuristic weighting functions, 

which weight the contribution of each heuristic to overall utility. The thesis examines the 

validity of such an approach.  
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CHAPTER 1   INTRODUCTION 

 

1.1 PRELIMINARIES 

 

Human decision making typically culminates in the choice of some alternative that is picked 

from a larger number of alternatives that are available to the decision maker. The study of 

how people end up with the choices they make can be said to be the raison d‟être of a 

significant number of researchers in the social sciences such as psychology and economics, 

and in many other related and applied fields as well. It is a vast and burgeoning area of 

research, spanning the range from theory to applied practice and fieldwork. Cutting edge 

techniques and methodology developed by this research are used extensively not just in the 

academic domain, but also in the corporate and government sectors around the world.  

 

Discrete choice modelling is one of the most powerful tools to have emerged in the last half-

century or so to understand how people make choices. At the heart of discrete choice 

modelling is the question of how decision processes might be expressed in a model. 

Frequently, the literature relies on a simplified decision making rule that is based on the use 

of context independent utility specifications as a representation of preferences for an 

alternative. By context independent, it is assumed that a person‟s utility for an alternative is 

assumed to be independent of the attributes of all other available alternatives. Hence, the 

presence or absence of other alternatives in the choice set does not make a difference to the 

respondent‟s subjective evaluation of any one particular alternative. Put another way, if the 

same alternative were to be taken from one context and placed in another, the subjective 

evaluation of that alternative remains the same. This assumption of context independent 

utilities often underpins the design of choice experiments which, in discrete choice 

modelling, are the main mechanism for collecting data and evidence about preferences. 

 

The idea of context independent utility functions has a long history in economic thought. 

Beginning with the neoclassical economic theory of the consumer, it has been postulated that 

goods themselves are the direct objects of utility. In other words, while the demand for a 

particular good might be affected by changes in the attributes of another good such as 

changes in price, the utility for that good is stable and remains unaffected.  This long held 
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premise continues to be one of the basic building blocks used in standard microeconomics 

textbooks even till today. 

 

It was in 1966 that Lancaster suggested an important extension to the neoclassical view of 

consumer behaviour. He advocated that utility is derived, not directly from the goods 

themselves, but from the intrinsic characteristics or attributes of the good. Even as Lancaster 

advanced our understanding that it is this collection of attributes of the good that is at the 

forefront of utility or preference ordering, no further mention was made of the possibility that 

utility may in part be determined by the attributes of other alternatives. Indeed, McFadden 

(1974) built on this notion of context independent utilities in the modelling of discrete 

choices by introducing linear additive models, free of contextual effects, for the non-

stochastic part of the utility function.  

 

For a variety of reasons, the idea of context independence was left largely unchallenged in 

microeconomic theory at that time. Context independent utilities satisfy the axioms of 

rational choice, and are therefore „well-behaved‟ and analytically tractable, even though 

context independence may be inconsistent with findings from psychology. Looking back at 

the 1970s, Camerer (1999) suggests that economists then were not particularly concerned by 

the systematically false psychological assumptions of their economic agents, since their 

formal mathematical models of behaviour had resulted in surprisingly good predictions. 

Thus, the economics and psychology disciplines were kept apart for a period of time, not only 

by differences in methods and the ways of acquiring knowledge, but also by the reluctance of 

economists to delve deeper into the intricacies of human decision making. 

 

Meanwhile, even as economists devoted themselves to deriving increasingly elegant models 

of consumer theory, psychologists were adopting a different approach by using results from 

controlled experiments to ask questions about how individual preferences might be shaped by 

the decision context. A few years after McFadden‟s seminal 1974 paper, Russo and Dosher 

(1983) introduced into the psychology literature the heuristic known as the majority of 

confirming dimensions (MCD). The motivation behind the MCD heuristic arose partly out of 

their research and partly out of a body of accumulating evidence from other work. 

Specifically, behavioural findings on processing suggest that decision makers are 

predominantly comparing attributes across alternatives, rather than evaluating alternatives as 

a whole. This idea of dimensional processing across attributes, rather than holistic processing 
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within alternatives, led Russo and Dosher (1983) to consider how dimensional processing 

may proceed under various simplifying strategies. 

 

One of these strategies turned out to be the MCD heuristic. Under the MCD, the cognitive 

burden of dimensional processing is reduced by assuming that decision makers are ignoring 

the magnitude of the differences in the attribute levels. Only the direction of change – 

whether an attribute is higher or lower than its counterpart in a competing alternative – is 

thought to matter. The MCD rule may also be said to be an example of what Tversky and 

Simonson (1993) would later call “context dependent preferences”, since explicit 

consideration is made to a relative ranking in an attribute-by-attribute comparison across 

alternatives in the decision making process.  

 

Continuing with this theme of context dependent preferences, around the same time of the 

work by Russo and Dosher (1983), Huber et al. (1982) demonstrated convincingly that 

contextual effects can influence choice in ways that can violate commonly held assumptions, 

such as Luce‟s (1959) choice axiom which states that the probability ratio between two 

alternatives in a choice set is not affected by the presence or absence of other alternatives.  In 

particular, Huber et al. (1982) showed that choice probabilities between existing alternatives 

can be altered significantly when a certain class of alternatives called asymmetrically 

dominated or „decoy‟ alternatives are introduced into the choice set. In other words, decision 

making is not independent of choice set composition. Shifts in perceptions arising from such 

choice set changes or even the use of decision strategies involving pair wise attribute-by-

attribute comparisons in the spirit of Russo and Dosher (1983) were suggested as possible 

explanations for such behavioural anomalies.  

 

Regret theory, articulated by Loomes and Sugden (1982) in the context of decision making 

under uncertainty, is yet another example that preferences may be influenced by context. 

Loomes and Sugden (1982) argue that decision makers will take into account the 

psychological experience of regret, in the sense that the pleasure derived from a course of 

action depends not only on the consequence of that action itself, but also on the consequences 

of the non-chosen action. Therefore, if the non-chosen course of action happens to lead to a 

more desirable consequence, decision makers might reflect on how much better their 

positions might have been, had they made a different choice, and this reflection may have a 

negative bearing on the pleasure derived from the chosen action.   
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The classical example of the role of contextual effects in individual decision making comes 

from prospect theory (Kahneman and Tversky, 1979). A key idea that emerges from the 

evidence is that in the editing phase of the decision, “people normally perceive outcomes as 

gains and losses, rather than as final states of wealth or welfare” (Kahneman and Tversky, 

1979, p. 274). Gains and losses must be defined relative to some reference point. In 

particular, the idea that the attributes of some competing alternative can be used as the 

reference point by which gains and losses are defined is the hallmark of the models of the 

extremeness aversion heuristic that is explored in this thesis. Simply put, the extremeness 

aversion heuristic is characterised by the proclivity to choose a middle option that has neither 

very good nor very bad attributes, rather than an extreme option that has both very good and 

very bad attribute levels. Therefore, another objective of this thesis will be devoted to 

estimating and comparing models of extremeness aversion in the transportation stated choice 

context. 

 

The question of whether reference points can be revised is an interesting one and has been the 

subject of some discussion in the literature, especially where path dependence is concerned. 

Whether preferences are poorly formed initially, or whether strategic considerations are at the 

forefront of decision making in a sequence of choice responses, initial choices made at the 

beginning of the sequence may come to influence subsequent decisions. Broadly speaking, a 

departure from the status quo and the inertia that it exerts on the decision process may mean 

that a non status quo alternative becomes the new point of reference for subsequent decision 

making.  

 

The fundamental premise of this thesis rides on the growing trend, in discrete choice analysis, 

of giving greater consideration to alternative behavioural models that contrast with the 

standard context independent formulation. In a sense, as Camerer (1999) points out, there has 

recently been a reunification of psychology and economics. The field is vast, the number of 

heuristics potentially available to a decision maker is immense, and it is therefore necessary 

to consider a subset of heuristics that might be worthwhile exploring in greater detail. The 

study of these heuristics will take place within the transportation context. As will be fully 

explained in subsequent chapters, the following three alternative decision rules – the majority 

of confirming dimensions (MCD), the extremeness aversion heuristic, and the reference point 

revision heuristic – are the focus for more intense assessment in the thesis. To date, a 
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thorough understanding of these decision rules or heuristics in the transportation discrete 

choice literature has been limited. This thesis will address this research gap and it is hoped 

that the findings will contribute to a wider discussion and debate among transportation 

professionals on the merits of using such alternative models for future research.   

 

Increasingly, it is also becoming widely recognised that heterogeneity in decision making 

strategies is an important element to capture in formal modelling (see for example, Hensher 

and Greene, 2010; McNair et al., 2012; Hess et al., 2012; Chorus et al., 2013, to name but a 

few). Modelling approaches typically consider differences in strategies across segments of 

decision makers or perhaps along the dimension of attributes. This thesis also proposes an 

alternative way of understanding heterogeneity by specifying that a weighted mixture of 

decision strategies may be integrated into one combined decision rule, with the weights of the 

mixture allowed to be endogenously determined through the estimation process.  

 

Marginal willingness to pay measures constitute important outputs from a discrete choice 

model. Studies from behavioural economics suggest that in real life, people are probably not 

as „well-behaved‟ as neoclassical economic theory would postulate, but the willingness to 

pay and consumer surplus measures grounded in microeconomic axioms are well understood, 

even if it almost inevitably means accepting a loss of behavioural realism. On the other side 

of the trade off, there may be instances where capturing more behavioural realism is 

preferred. Such a scenario might come about where more accurate forecasts of future demand 

might be required. This thesis will also examine the various implications on willingness to 

pay arising from the use of context dependent preferences in discrete choice models. 

 

1.2 STRUCTURE OF THIS THESIS 

 

This thesis is organised as follows. The following chapter, Chapter 2, discusses and 

summarises some of key research papers related to the modelling of context dependent 

preferences and heuristics in the discrete choice modelling literature. A review of the early 

work from behavioural decision research shows an emphasis on relating various aspects of 

choice task properties to the use of heuristics in decision making. Some of this work is 

qualitative in nature, but modelling approaches developed within the discrete choice 

framework tend to focus on phased decision making, with the first phase invoking some form 

of screening criteria to narrow down a subset of feasible alternatives from a larger universal 
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set. In some cases, direct representations of complexity through the entropy measure are used. 

Following this, „relational‟ heuristics such as extremeness aversion are then discussed. The 

common feature of this class of decision heuristics is the explicit use of reference points 

derived from attribute levels of competing alternatives within the same choice set. The final 

major class of heuristics reviewed in this chapter pertains to issues of choice set inter-

dependence. 

 

Chapter 3 describes the econometric methodology that will be used in the data analysis. Some 

basic definitions pertaining to the nomenclature of the data used are first described. These are 

then followed by an overview of the econometrics behind the standard linear additive random 

utility maximisation (RUM) model. Following this review, some discussion of the non-linear 

logit model is then provided, as many of the heuristics of interest result in a non-linear 

specification for the utility function of an alternative. The chapter concludes with a discussion 

of some post-estimation methods for comparing model outputs. 

 

Chapter 4 provides an extensive description of the datasets which are used for the empirical 

work. The common feature across all these datasets is that each of them relates to a stated 

choice experiment on what route choices are made, where each alternative presented 

represents varying bundles of travel time and travel cost attributes. Moreover, each of these 

datasets makes use of a pivot design. Such a design allows the current or reference alternative 

to always feature in the choice set, and also allows the attribute levels of the hypothetical 

alternatives to be coded as variations around the reference level. The similarity of the data 

context enables some conclusions to be made on whether the decision rules tested are 

independent of respondents; in other words, whether they carry across similar data contexts. 

 

Chapter 5 forms the empirical core of the thesis. Results from the RUM MNL model are first 

presented. These are then followed by a discussion on modelling the MCD heuristic. Next, 

models of extremeness aversion, including an extension of the contextual concavity model 

(Kivetz et al., 2004), the random regret minimisation model (Chorus, 2010) and its variants, 

and the relative advantage maximisation (RAM) model (Kivetz et al., 2004) are introduced 

and extensively tested and discussed. The last heuristic to be considered is the reference 

revision heuristic. As mentioned earlier, a framework for combining and integrating these 

various decision rules is also introduced and examined in this chapter. The chapter concludes 
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with a section devoted to a discussion of the marginal willingness to pay measures that can be 

derived from the models. 

 

Chapter 6 concludes by summarising the main findings of the thesis. Suggestions for a future 

research agenda on the role of heuristics, and in particular, some possible ways forward for 

the RAM model, are also discussed. 
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CHAPTER 2   LITERATURE REVIEW 

 

2.1 INTRODUCTION 

 

The typical approach used in much of the discrete choice modelling literature in traveller 

behaviour studies assumes that well-defined preferences exist for most decision tasks. Under 

the standard random utility theory, preferences are stable and invariant to choice tasks, and 

are fully known to the respondent. In the great majority of cases, the analyst writes out a 

utility function assuming that the respondent is cognitively indefatigable, examining all 

alternatives and all attributes across all choice tasks in the same fully compensatory manner. 

The linear weighted additive form for utility, also commonly known as the standard Random 

Utility Maximisation (RUM) model, has been found to be a representation which is easily 

tractable and which is capable of embodying all these assumptions. The RUM model has 

therefore become the mainstay in discrete choice modelling.  

 

As a description of how people behave, research in the decision behaviour field, and more 

recently from the choice experiment literature, has cast doubt that the weighted additive 

function, assumed independent of contextual effects, comes close to being an accurate 

representation of the actual processes used in the majority of decision tasks (see for example, 

McFadden, 1999; Gigerenzer et al., 1999). Empirical research from the psychology literature 

has shown that preferences for an alternative are influenced by the choice context itself; in 

other words, by factors that are beyond the immediate attributes of the alternative under 

consideration. Earlier work focused on how choice task properties, such as the number of 

alternatives and attributes, impact decisions in terms of how decision rules are selected and 

applied (e.g., Payne et al., 1993). Decisions may also be made according to some reference 

point selected by the respondent (see for example, Kahneman and Tversky, 1979; Tversky 

and Kahneman, 1991; Li and Hensher, 2011). This reference may have something to do with 

the other alternatives in the same choice set (Simonson and Tversky, 1992; Kivetz et al., 

2004) or even across previously encountered choice sets (McNair et al., 2011; 2012). 

Moreover, different respondents may be attending to various subsets of attributes, and such 

heterogeneity may be masked if it is assumed that preference weights are the same across all 

individuals in the entire dataset. Outside the immediate environment of a choice experiment, 

the social context, through an intermediate construct of comparative happiness, may also 
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influence utility (Abou-Zeid and Ben-Akiva, 2011). Compared to the context independent, 

linear weighted additive, form of utility, these studies suggest that other representations of 

utility which better approximate the realism of real-life decision making can lead to an 

improved goodness of fit and more plausible model estimates and outputs. Swait et al. (2002) 

best summarise this position when they write that 

 

“In choice modelling, we believe a shift in emphasis to mapping the psychological 

processes of an individual in comprehending and responding to the decision task at 

hand could bring some significant gains in terms of a richer insight into individual 

preferences, improved accuracy in predicting individual behavioural responses to 

economic changes or policy interventions, and a more realistic assessment of the 

impact of policy interventions on individual welfare.” (Swait et al., 2002, p. 197). 

 

The purpose of this chapter is to review the decision heuristics that have been modelled in the 

discrete choice literature, drawing from extant work in the fields of transport, environment, 

marketing and psychology. The examples cited in this chapter primarily deal with stated 

choice data, although the relevance of applying decision heuristics to revealed preference 

data cannot be ruled out, even if examples from revealed preference data are much fewer in 

comparison. Heuristics prompted by contextual effects in the form of choice task properties 

are first discussed, followed by a review of the various methodological approaches to embed 

such heuristics into choice models. Contextual effects embodied in relational heuristics linked 

to the idea of referencing are then discussed. The chapter concludes by identifying some 

research gaps in the literature, especially as they relate to discrete choice models in the 

transportation literature, and lays out a roadmap for the rest of this thesis.  

 

2.2 THE INTERPLAY BETWEEN HEURISTICS AND CONTEXTUAL EFFECTS 

AS EXPRESSED BY CHOICE TASK PROPERTIES 

 

The psychology literature has amassed a wealth of evidence to suggest that humans rely on 

the use of quick mental processing rules, known as heuristics, to manage the vast number of 

decisions that must be made in everyday life. While the fully compensatory weighted additive 

rule is commonly used for the purposes of modelling, psychologists have argued that this 

rule, if followed strictly to the letter, is cognitively demanding and time consuming (Payne et 

al., 1993). It moreover implies an assumption of stable, well-articulated preferences which 
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appears to hold only under conditions where the choice task is familiar or when the 

respondent has experience with the various alternatives that are presented. In many instances, 

it is argued that these conditions fail to apply, and preferences are not determined in advance 

of the choice situation, but are instead constructed in response to the contextual effects which 

vary according to the properties of the choice task. As described by Payne et al. (1999, p. 

245), the construction process involves an interaction between “the properties of the human 

information processing system and the properties of the choice task.”  

 

Therefore, rather than static decision processes which are repeatedly applied to different 

choice contexts, the conclusion drawn by behavioural decision research is that “individuals 

have a repertoire of decision strategies for solving decision problems” (Bettman et al., 1998, 

p. 194). Some decision strategies that might be a part of this repertoire include satisficing 

(Simon, 1955), lexicography (Tversky, 1969), elimination-by-aspects (EBA) (Tversky, 1972) 

and the majority of confirming dimensions (Russo and Dosher, 1983). Brief descriptions of 

these heuristics follow below: 

 

(1) Satisficing (Simon, 1955): Under this heuristic, an attribute may be associated with a 

pre-defined cut-off and the first alternative with all attribute levels satisfying the cut-

off criteria is chosen. If none of the alternatives meets the cut-off criteria, the cut-offs 

may be relaxed and the process repeated; or a random choice is made.  

(2) Lexicography (Tversky, 1969): The respondent evaluates all alternatives based on 

what is deemed to be the most important attribute. The alternative with the best value 

on that attribute is chosen. If there is a tie, or if the difference between the best levels 

of the attribute is not noticeable, then the remaining alternatives are evaluated on the 

next most important attribute, and so on. 

(3) EBA (Tversky, 1972): The respondent identifies the most important attribute (either 

deterministically or probabilistically) and its associated cut-off threshold.  An 

alternative is eliminated if its attribute fails to satisfy the cut-off. This process is 

repeated with the second most important attribute and so on until one alternative 

remains. 

(4) Majority of confirming dimensions (Russo and Dosher, 1983): The first two 

alternatives are compared and the one with the larger number of winning attributes is 

retained. The retained alternative is compared with the next alternative and so on until 
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all alternatives have been evaluated. The alternative with the highest number of 

winning attributes is selected. 

 

Payne et al. (1993) argue that heuristics are used to manage situations of high choice task 

complexity. Choice complexity is largely determined by the choice context, which in this 

case are choice task properties such as the number of alternatives in the choice set, the 

number of attributes in each alternative, and the correlation between attribute levels across 

multiple alternatives. This idea of complexity can be contrasted with Hensher‟s (2006) notion 

of relevancy, which pertains to providing more complete descriptions of attributes in the 

choice task and allowing respondents to form their own processing rules with regards to 

relevancy. Hence, a choice task that disaggregates say a time attribute into its various 

components such as free-flow time, slowed down time and stop-start time may be more 

relevant to a respondent, even though this task would be “more complex” from Payne et al.‟s 

(1993) perspective. 

 

An effort-accuracy trade-off framework has been proposed as one possible mechanism by 

which individuals select the decision strategy or combination of decision strategies out of the 

repertoire available to them (Payne et al., 1993). This framework is not a formal choice 

model, but it still postulates a relationship between decision strategies and choice task 

complexity. Essentially, the decision maker‟s choice of heuristic is thought to be the outcome 

of trading-off between two conflicting goals: maximising the accuracy of a decision, with the 

weighted linear additive rule defining the normative benchmark level of accuracy, and 

minimising the cognitive effort required to reach that decision. One way of measuring 

cognitive effort for each decision strategy is to consider the number and type of elementary 

information processes (EIPs) required. For example, in a linear additive representation of 

utility, an alternative is assessed through EIPs such as MULTIPLYING weights with attribute 

levels and then ADDING up part-utilities. An alternative is ELIMINATED if the sum of its 

part-utilities is less than that from a competing alternative.   The cognitive processes of 

multiplying, adding, comparing, eliminating and choosing are collectively known as EIPs. 

 

Using qualitative evidence such as verbal protocols and process tracing, Payne et al. (1993) 

suggest that heuristics such as lexicography and EBA are more commonly used when choice 

tasks become more complex. Their understanding of complexity essentially relates to the 

dimensions of the choice task and the quantity of information provided, such as the number 
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of alternatives and the number of attributes per alternative. A choice task is therefore said to 

be more complex when the information load given to respondents increases. Hensher (2006) 

takes issue with this particular definition of complexity, arguing that it is „relevancy‟ that 

matters, but following Payne et al.‟s (1993) line of reasoning for the moment, it has been 

argued that in more complex choice tasks, heuristics are more likely to be called upon to aid 

decision making because they require much less cognitive resources but at the same time, do 

not require much sacrifice in terms of accuracy, where accuracy is defined as the ability of a 

decision heuristic to replicate the choice outcome from the weighted additive rule. In this 

sense, Hensher (2006) and Payne et al. (1993) agree that when the dimensionality of a choice 

experiment is high, individual respondents are more likely to use „coping‟ strategies 

(Hensher‟s terminology) or decision heuristics (Payne et al.‟s terminology). Of course, the 

choice of heuristic is not necessarily only as a strict consequence of the dimensionality of a 

choice experiment, but can be associated with previous experience in adopting specific 

heuristics, and hence it is important to recognise and account for both potential sources of 

influence on choice making and selection of a heuristic.   

 

As a corollary of the effort-accuracy trade-off framework, a phased decision strategy may 

also be employed under some circumstances (Stevenson et al., 1990). In this strategy, 

respondents are thought to initially rely on some non fully-compensatory heuristic to reduce 

choice task complexity before using a fully compensatory strategy to evaluate the reduced 

number of alternatives and/or attributes. For example, Payne (1976) has observed that 

respondents demonstrate the use of attribute-based non-compensatory strategies like EBA 

early in the decision process, to reduce the number of alternatives before using an alternative-

based strategy such as additive utility, to arrive at the final outcome. This raises an interesting 

possibility in terms of whether a mixture of heuristics can be modelled sequentially, instead 

of simultaneously, a feature which can be incorporated into models of two stage processes, 

reviewed below. 

 

Conceptually, the effort-accuracy framework requires the decision maker to be cognisant of 

the costs and benefits of each strategy as applied to the choice task under consideration. The 

realism of such an assumption is debatable, in view of the maintained hypothesis that 

cognitive effort is a scarce resource. Cost-benefit approaches potentially lead to the infinite 

regress issue. At the empirical level, as pointed out by Cameron and DeShazo (2010), a 

significant challenge remains in terms of identifying and quantifying the cognitive effort 
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associated with each heuristic. Nonetheless, the effort-accuracy framework describes broad 

conditions under which non-compensatory heuristics like lexicography or EBA are more 

likely to be used, thus providing some guidance in terms of model specification. For example, 

Young (1984) assumes an EBA model of choice because choosing a residential location 

among many attributes and alternatives is thought to be a complex choice task.  Therein also 

lies a potential limitation of the effort-accuracy framework, for it does not explain the strong 

empirical evidence for cognitively more demanding relational heuristics (Section 2.4 and 

Section 2.5) that require the use of various reference points. 

 

Discrete choice models of information processing strategies such as attribute non-attendance 

(see for example, Hensher, 2010; Hensher and Greene, 2010; Scarpa et al., 2009) may be 

interpreted as a “bottom-up” or “data-driven” view of preference construction (Payne et al., 

1993, p. 171).  The “bottom-up” view differs from a top-down view of strategy selection 

where the decision maker selects the best strategy from his/her repertoire of strategies, on the 

basis of some effort-accuracy trade-off. The bottom-up view to preference construction 

allows respondents to shape or change decision strategies on the spot by exploiting 

previously encountered problem structures, which can be a reflection of accumulated overt 

experiences. As people learn more about dimensions of the decision problem, processing 

strategies may change to reflect the peculiarities of the decision problem. In other words, 

processing is opportunistic. In bottom up processing, decision problems may be subsequently 

restructured as an intermediate step, making them more amenable to analysis using certain 

heuristics. Information in choice tasks might be transformed through rounding or through 

calculations to standardise values in a common metric. Information might also be rearranged 

or further simplified by deeming certain attributes irrelevant. It is argued that such 

restructuring serves to make difficult decision tasks more manageable by reducing the 

perceived complexity of the choice task and making later processing more efficient (Payne 

and Bettman, 1992).  
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2.3 CHOICE TASK COMPLEXITY: A REVIEW OF MODELLING 

APPROACHES  

2.3.1 Two Stage Processes 

 

Modelling decisions as following a two stage decision process is one way of incorporating a 

phased decision strategy into a discrete choice model. A general form of a two-stage model, 

attributed to Manski (1977), is given in Equation (2.1): 

 

 ( | ) ( ),
j

C G

P P j C P C



   (2.1) 

where Pj is the unconditional probability that alternative j is chosen, ( | )P j C  is the 

probability of choosing alternative j given the reduced choice set C, and ( )P C  is the 

probability that the reduced choice set is C, among all the non-empty subsets of a master 

choice set G. 

 

In the first stage of decision making, respondents are assumed to invoke screening rules in 

selecting a subset of alternatives from a larger universal set. The final choice is made from 

the reduced set. In these two-stage models, Swait and Ben-Akiva (1987) have observed that 

the first stage, which is a form of choice set generation, establishes the set of feasible 

alternatives and in many instances, resembles the “considered subset” in Simon‟s (1955) 

satisficing model. To generate the feasible choice set, the analyst must identify appropriate 

screening rules or constraints. These rules could be based on the history of past choices of the 

respondent, or on the attribute levels of alternatives in the current choice situation. Swait and 

Ben-Akiva (1987) argue that this process “must not only consider constraints such as income 

and transport infrastructure, but must also account for informational, psychological, cultural 

and social restrictions” (Swait and Ben-Akiva, 1987, p. 91). Because constraints are external 

to the choice process, and are not often observed by the analyst, they may be thought of as 

random or probabilistic, especially if the degree of confidence in the constraint is low. To 

operationalise these constraints probabilistically, Swait and Ben-Akiva (1987) suggest an 

appeal to random thresholds, for example, a travel alternative is included in the feasible 

choice set if its cost is below a threshold 
1

T , with 
1

T distributed according to an unknown (but 

estimable) mean 
1

T and variance 
2

1
( )T . 
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Expanding on the Manski (1977) equation, Cantillo and Ortuzar (2005) assume a first stage 

elimination involving the use of a rejection mechanism based on individual-specific 

thresholds of attribute levels. Alternatives which survive the first stage screening are then 

evaluated in the usual compensatory manner within the random utility framework. Cantillo 

and Ortuzar (2005) suggest that the threshold might be determined by “the most favourable 

value among those that the attribute can take for the set of potential alternatives; it could also 

be the value that the attribute takes for the chosen alternative or simply any reference value” 

(Cantillo and Ortuzar, 2005, p. 644). The distribution of thresholds can even be a function of 

systematic influences. Hence, there is a great amount of flexibility as to how the individual-

specific thresholds are modelled.  

 

Following Swait and Ben-Akiva‟s (1987) suggestion, Cantillo and Ortuzar (2005) assume 

that the vector of such thresholds is distributed across all individuals with a certain mean and 

variance-covariance structure, since they do not have other data sources on what constitutes 

acceptable threshold levels,. Hence, Tn, may be specified as a 1m   threshold vector, where 

m is the number of attributes subject to threshold considerations, satisfying 0 m K  . K is 

the total number of attributes in the alternative. Tn is assumed to be a random vector 

distributed according to a joint density function Ω(δ) with mean  n
E T T  and a variance-

covariance matrix  var
n

T Σ . The vector of means of the distribution T can also be made a 

function of individual specific characteristics. Hence, an alternative j is included in the 

second stage consideration if ,
nj n
X T for all the m attributes which are assumed to be 

threshold constrained. 

 

Applying this model to a route choice stated preference experiment of possible car trips in 

which alternatives are described by travel time, toll charge and the number of accidents per 

year, Cantillo and Ortuzar (2005) do not find evidence of a threshold effect for the time and 

cost attributes. For the accident rate attribute however, there is evidence for an age varying 

threshold effect, with men below thirty years old having a larger threshold for accidents. 

Interestingly, once the threshold effect for the accident variable is explicitly modelled, the 

accident attribute no longer contributes to indirect utility in the compensatory decision 

making stage and its effect appears entirely in the non-compensatory screening stage. 

whereas cost and travel time continue to remain relevant in the compensatory stage in all 

model specifications. It is also interesting that in the accident threshold model, Cantillo and 
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Ortuzar (2005) find that the value of travel time is much higher compared to the MNL model. 

What Cantillo and Ortuzar (2005) do not address in their paper, however, is the situation 

where a very low attribute level for cost or time might invoke a believability threshold, for 

example, in the work on attribute attendance and processing (Hensher, 2010).  

 

Another example of a two-step model comes from Suzuki‟s (2007) model of airline and 

airport choice. In this model, the probability of an alternative surviving the first stage is 

assumed to be negatively related to its likelihood of violating some minimum acceptable 

standard or threshold. The probability of an alternative j belonging to a reduced choice set C 

is given in Equation (2.2) by a negative exponential function: 

 

 

1

1
Pr( ) ,

exp( )
j C

L
   (2.2) 

 

where  L is a penalty variable that increases as thresholds (minimum standards) are violated 

and δ1 is a parameter to be estimated. 

 

Like Cantillo and Ortuzar (2005), Suzuki (2007) does not collect respondent data on 

thresholds. Since the thresholds are unknown for each respondent, they are arbitrarily 

approximated. However, unlike Cantillo and Ortuzar (2005), Suzuki determines these 

acceptable standards by appealing to contextual effects using a decision rule reminiscent of 

lexicography and majority of confirming dimensions. Various specifications for these 

standards, such as whether an attribute is the „best‟ performer, „best‟/„second-best‟ performer 

or „best‟/„second-best‟/„third-best‟ performer in the choice set, are tested for goodness-of-fit. 

If the „best value‟ definition is used to specify the threshold, then only the alternative that has 

the most attractive value of a given attribute is considered as meeting the respondent‟s 

acceptable standard for that attribute.  

 

Alternatives are then evaluated according to a disjunctive or conjunctive rule via penalty 

variables denoted by L. Under the disjunctive rule, an alternative simply needs to meet the 

respondent‟s acceptable standards in at least one attribute to have a 100 percent chance of 

being considered in the second stage; in this case, where acceptable standards are met, the 

penalty variable satisfies 0L  . If the respondent‟s acceptable standards are not satisfied, 

then 1L  and the probability of second stage consideration will be lower. On the other hand, 
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the conjunctive rule explicitly takes into account the number of attributes meeting the 

respondent‟s acceptable standards. An alternative with a larger number of attributes meeting 

these acceptable standards is granted a higher probability of survival into the second stage. 

Under the conjunctive rule, 0L  for the alternative(s) having the maximum number of 

attributes meeting the acceptable standard, from among all alternatives in the choice set. All 

other alternatives will have a non-zero L variable, with the magnitude of L increasing with the 

alternative that has fewer attributes meeting the acceptable standard.  

 

The Suzuki (2007) model specifies a traveller‟s airport-airline choice probability as specified 

in Equation (2.3): 

 

 Pr( , ) Pr( ) Pr( | ),h j h j h  (2.3) 

 

where Pr( , )h j is the joint probability of choosing departure airport h and airline j. 

 

If a two-step process of airline choice is assumed, then the conditional probability ( | )P j h is 

given by Equation (2.4): 
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 (2.4) 

     

where 
hj

u is the observed component of the utility for airline j given airport h, 

 Jh is the airline consideration set given airport h and 

 
hj

C is the airline choice set given airport h. 

 

Turning to airport choice, if a one-step process is assumed, the marginal probability ( )P h

satisfies Equation (2.5): 
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 Pr( ) Pr{max ( ) max ( )} ,
h h

h hj l hj h h j l h j
j J j J

h v u L v u L h H 


  
 

         (2.5) 

 

where  H is the consideration set of airports available and 

 
h

v is the observable component of the utility for airport h. 

 

Equation (2.5) can be converted into Equation (2.6): 

 

 exp( )
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exp( )
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(2.6) 

 

where ln exp( )

h

h hj l hj

j J

IV u L


  and  is an inclusive value parameter. 

 

Equation (2.6), which is used to model the one-step process of airport choice, may be 

modified to take account of a two-step process of airport choice, as in Equation (2.7): 
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(2.7) 

 

where D is the airport choice set and
1

Pr( ) .
exp( )

p h

h D
L

   The parameters may be 

estimated simultaneously by maximising the log-likelihood function associated with P( , ).h j  

 

The overall conclusion from Suzuki‟s (2007) modelling results is that the goodness of fit 

measures support the assumption of a two-step process in airline choice (but a one-step 

process in airport choice) over a conventional utility model specification which assumes no 

such thresholds. In general, the better model fit is obtained using the conjunctive rule and a 

stricter definition of acceptable standards; hence, the best model fit is achieved with the 

conjunctive method and by assuming that the „best‟ performing attribute defines the 

acceptable standard for respondents. Further tests of Suzuki‟s two-step model also show that 

it outperforms the standard MNL and nested logit models in terms of forecasting and 

prediction. 
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Another application of two-stage models lies in modelling endogenous attribute attendance 

and attribute non-attendance (Hole, 2011; Hensher and Greene, 2010). In the first stage, 

rather than deciding on the composition of the considered subset of alternatives, respondents 

are instead assumed to decide which subset of attributes to take into account when making 

their choice. Subsequently, in the second stage, all available alternatives in the choice task are 

evaluated conditioned on the subset of attributes chosen in the first stage. The probability that 

decision maker n takes attribute k into account in the first stage is assumed to follow a 

logistic function, which is Equation (2.8):  

 

 
n

n

exp( z )

1 exp( z )

k

k

k

P









 (2.8) 

 

In this equation, 
n

z is a vector of individual-level observed characteristics and 
k

 is a vector 

of parameters to be estimated. Comparing the results of the endogenous attribute attendance 

(EAA) model to the standard logit model, Hole (2011) finds that the both models are 

qualitatively similar in terms of the sign and the statistical significance of the parameters, 

with the only exception being an attribute that is significant in the logit model but not in the 

EAA model. Comparison of model goodness-of-fit using a likelihood ratio test allows Hole to 

conclusively reject the standard fully compensatory logit model in favour of the two stage 

model. In terms of attribute attendance, Hole (2011) finds that a substantial share of 

respondents is not attending to one or more attributes when making their choices. For 

example, the most frequently ignored attribute was the cost attribute which was only attended 

to by about 30 percent of respondents.  

 

There are also noticeable differences in the willingness-to-pay (WTP) measures between the 

logit model and the EAA model. In most cases, the standard logit estimates are considerably 

higher than the EAA model estimates. Hole (2011) concludes that imposing the assumption 

that all respondents trade off all attributes in a fully compensatory manner might lead to 

biased WTP estimates. He cautions however that allowing for endogenous attribute 

attendance/non-attendance results is a different challenge as it may not be possible to infer 

anything about WTP for the (relatively large) segment of respondents who seem to ignore 

cost. While Hole (2011) does not give a reason for the high incidence of costs non-
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attendance, Hensher et al. (2012b) suggest that such this result might have come about as a 

consequence of the design of the choice experiment. For example, some respondents may not 

have seen much merit in trading off costs with the other attributes of the alternatives given 

the ranges and levels presented in the experiment.  

 

2.3.2 „Soft‟ Constraints 

 

Instead of assuming a „hard‟ inviolable cut-off constraint and then modelling the probability 

of whether an alternative is dropped from consideration or not, another class of models 

allows cut-offs to be possibly violated, and then penalises any violation by directly adding a 

penalty cost into the utility function. This is the approach taken by Swait (2001). Hence, an 

alternative whose attributes violate the cut-off can still be chosen provided sufficient 

compensation in the other attributes is available to outweigh the dis-benefit of violating the 

cut-off. The modelled component of the utility function for alternative j is written in Equation 

(2.9) as follows: 

 

  j jk jk k jk k jk

k k

V X       
 

(2.9) 

 

In this model,
jk

 and
jk

 are the respective penalties of violating the lower bound and upper 

bound constraints on attribute k. Therefore, the parameters 
k

  and 
k

 may be interpreted as 

the marginal disutilities of violating the lower and upper cut-offs. Let the lower bound cut-off 

threshold and the upper bound cut-off threshold for attribute k be denoted by 
k

c and 
k

d  

respectively, where 
k

c and 
k

d  may be allowed to vary across individuals. 
jk

 and
jk

 may 

then be defined in terms of 
k

c and 
k

d  as in Equation (2.10): 
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 (2.10) 

 

Incorporating these cut-offs creates piecewise linear utility functions. To estimate the model, 

Swait (2001) uses self-reported cut-off information from respondents to determine ck and dk. 

Estimation results show that the inclusion of penalty parameters is able to significantly 
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improve the goodness-of-fit of the model. However, for empirical identification of the 

penalty parameters, sufficient choices must be made under conditions where cut-offs are 

violated, and this may be easier to achieve with experimentally manipulated stated choice 

data rather than revealed preference data.   

 

In a subsequent application of a „soft‟ constraint model, Hensher and Rose (2012) extend 

Swait‟s (2001) model by allowing the entire utility function, including the penalty function, 

to be conditioned on individual specific perceptions, such as the acceptability of the 

alternative, the certainty of the choice response and the incidence of attribute levels in the 

perceived attribute threshold rejection region. More specifically, an index jn
A  defining the 

acceptability of alternative j for the individual n is constructed and by allowing the observed 

component of utility to be specified as
jnjn

VA , jn
A conditions the utility expression 

multiplicatively. The formulation of jn
A  recognises that individual-specific perceptions, 

proxied by statements on relevance of attributes defining each alternative, condition the 

marginal (dis)utility of each observed attribute associated with alternative j in a pre-defined 

choice set. An example of how jn
A  may be constructed is by means of Equation (2.11): 

 

  1
1

K

jn j jn k knk
A AC R


      (2.11) 

 

In Equation (2.11), 
jn

AC is a variable denoting whether an alternative is perceived to be 

acceptable or not by the n
th

 individual, 
kn

R is a dummy variable indicating whether the level 

of attribute k is in a perceived attribute threshold rejection region or not for individual n, and 

j
 and 

k
 are estimated parameters. The inclusion of 

kn
R recognises that the perception of 

alternative acceptability is fundamentally determined by the attributes, in particular the role 

of attribute thresholds.  

 

In terms of the data requirements to identify the model, respondents are asked to indicate, for 

each alternative in each choice task, whether it was acceptable or not. Prior to the 

commencement of the actual choice experiments, respondents are also asked to reveal their 

lower and upper thresholds for attributes. Hensher and Rose (2012) find that besides 

improved fit and in sample prediction success, conditioning on these perceptions, especially 
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on alternative acceptability, leads to noticeable differences in mean direct elasticities 

compared to a model without such conditioning.  

 

2.3.3 Mixture Models 

 

Another approach, used by Swait (2009), to formalise decision process heterogeneity is to 

consider a mixed model of random utility, where an alternative may be evaluated in one of 

several discrete states, with each state corresponding to a different decision rule or cognitive 

process. One of these states pertains to the usual utility maximising, fully compensatory 

condition, while other states may represent a more extreme version of attractiveness or 

unattractiveness, which aims to capture the possible use of a non-compensatory strategy, 

context dependence and/or attribute independence. Equation (2.12) illustrates this model for a 

simple two-condition scenario, where alternative j is assigned to either the first state which 

represents the trade-off condition in the usual sense, or another state representing a rejection 

condition, where the utility for alternative j is not defined over attribute values. 

 

  w ith probability 

 w ith probability 

j j j

j

j

V p
U

q

 

 

 (2.12) 

 

Swait‟s (2009) model can be set up to embed the EBA heuristic as part of choice set 

formation, by allowing ,
j

q the probability of an alternative being in the rejection condition, to 

be written as a function of a disjunctive screening rule: it takes just one attribute to fail the 

threshold cut-off before the alternative is eliminated. Conversely, ,
j

p which is the probability 

that an alternative is in the usual random utility maximising, fully compensatory trade-off 

condition, is written in the conjunctive sense: it is the probability of all attributes satisfying 

the threshold criteria before fully compensatory processing takes place. 

 

In the model, for each attribute of interest, individual-specific thresholds can be assumed to 

be randomly distributed across the population, according to say, a normal distribution with 

mean k and variance 2

k
 . Consider an example where the EBA heuristic is applied to one 

aspect, for example, departure time. Then Equation (2.13) is obtained, where 
k

  takes on a 

lower bound threshold (i.e., departure time no earlier than
k

 ): 
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 (2.13) 

 

Equation (2.13) can be generalised to elimination by m aspects, 1 m K  , in which case a 

joint density function for the vector of thresholds,  1 2
, , ...,

m
   τ is required. Other 

parameterisations of
j

p are also possible, for example, as a logistic function of attributes or 

person characteristics. Using such a logistic specification, Swait (2009) concludes that these 

mixed models are preferred over the standard linear additive model despite the loss of 

degrees of freedom in estimating an increased number of parameters.  

 

Despite sharing some similarities to two-stage models, Swait‟s (2009) model departs from the 

strict two-stage model in the sense that there is a non-zero probability of all alternatives being 

in the rejection condition. If this happens, the alternatives are simply selected according to a 

random choice rule. This contrasts with the typical two-stage model, where the set of all 

possible choice subsets in the second stage does not include the null, thereby excluding the 

possibility that all alternatives are „rejected‟. In a choice experiment with status quo 

alternatives, a modification of this decision rule might require the status quo alternative to be 

always in the trade-off condition. Even more complex hybrid rules that depend on alternative, 

person and/or choice context characteristics can also be considered in extensions of this 

model. For example, the majority of confirming dimensions heuristic might be invoked by 

allowing pj to depend on the number of „best‟ attributes that an alternative possesses. 

 

Andersen et al. (2007) use a conceptually similar mixture model to represent dual latent 

decision processes in decision making under uncertainty. In their model, they assume that 

decision making by any individual is based on two criteria. One criterion is simply a form of 

expected utility maximisation. The other criterion is based on an aspiration-type process that 

incorporates a minimum income threshold. The weights of the criteria in decision making are 

a priori unknown and are therefore inferred in the estimation process. Their results indicate 
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that respondents appear to assign a nearly two-third probability weight to the aspiration-type 

process, and assigning only a one-third weight to the expected utility process. 

 

2.3.4 Direct Representations of Complexity  

 

In a more direct approach of embedding complexity into discrete choice models, Swait and 

Adamowicz (2001) suggest that a formal relationship might exist between the error variance 

or conversely, scale in preferences, and entropy, which can be seen as a measure of 

complexity. Entropy is defined in Equation (2.14) with
js

 denoting the probability of 

choosing alternative j in choice situation s. 
js

 is obtained by a priori estimating a basic MNL 

model: 

 

 log( )
s js js

j s

H  


   
(2.14) 

 

As preferences among alternatives become more indistinguishable, 
js

 approaches 1/J and a 

high level of entropy (and complexity) is obtained. Entropy is related to scale by noting that 

at both low and high levels of entropy, the scale is high as decision-making is relatively easy 

in the former case and alternatives are all approximately similar in utility terms in the latter. 

At moderate levels of complexity however, more preference inconsistency (lower scale) may 

be evident as respondents resort to using simplifying heuristics.  Hence, the scale of choice 

task s, μs, may be related to Hs through a quadratic form to account for these non-linear 

effects, as in Equation (2.15):  

 

 2

1 2
exp( )

s s s
H H     (2.15) 

 

According to the preceding hypothesis, it would be expected that
1

0  and
2

0  . These 

theoretical predictions are confirmed in eight of the ten cases of consumer choice analysed by 

Swait and Adamowicz (2001). In each of these cases, which involve either revealed 

preference or stated preference data, the null hypothesis of a homoscedastic MNL assumption 

is strongly rejected at the five percent level. The estimated parameters 
1

 and 
2

 all have the 

expected sign, implying that scale is a function of entropy. However, Swait and Adamowicz 

(2001) do not test if entropy affects preferences directly. 
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By using contextual attributes to condition the preference and scale functions of a discrete 

choice model, Zhang and Adamowicz (2011) test if such conditioning can control for the 

choice format effect. Essentially, the choice format effect describes the different model 

outcomes, for example parameter estimates and WTP measures, that have been observed 

purely as a consequence of how the choice experiment has been structured, for example, 

whether the choice experiment has two alternatives (a status quo alternative plus one other 

experimentally designed alternative) or three alternatives (status quo plus two alternatives). 

Zhang and Adamowicz (2011) postulate that the emergence of a choice format effect may be 

a result of the model misspecification which arises due to the application of the standard 

RUM assumptions without regard to the psychology of choice decision making. They reason 

that if the choice effect format comes about as a result of preferences that are context 

dependent, then the choice format effect may disappear once cognitive components are 

incorporated into the standard RUM model. 

 

In terms of the contextual variables that are tested in the model, Zhang and Adamowicz 

(2011) consider, besides entropy, the number of attributes whose levels differ across 

alternatives (numdiff), the dispersion of attribute levels within each alternative, and the 

dispersion of the standard deviation across alternatives. These are variables which can be 

used to capture the structure of information (DeShazo and Fermo, 2002; Boxall et al., 2009). 

The order of a choice task (order) is also considered as another candidate context variable 

(Holmes and Boyle, 2005). Zhang and Adamowicz (2011) consider the following 

representations in Equations (2.11a to 2.11c) for the modelled component of utility, where Zs, 

which is the vector of choice task specific context variables, is allowed to condition 

preferences through interaction terms with the attributes of the alternatives in the choice task. 

In Equation (2.16a), Zs enters the preference function alone. 

 

 P

js s
V  

j js s
βX γX * Z

 
(2.16a) 

 

If Zs enters the scale function, then Equation (2.16b) follows. 

 

 ( ) *
S

js s
V 

s j
Z βX

 
(2.16b) 
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Finally, if the context variables are assumed to enter both the preference and scale functions, 

then Equation (2.16c) is obtained. 

 

 ,
( )

P S P

js js
V V

s
Z

 
(2.16c) 

 

From their dataset, Zhang and Adamowicz (2011) find that numdiff, entropy and order are the 

contextual effects that are most significant in the various model specifications, with numdiff 

appearing to have the strongest effect, followed by entropy and order. The best fit model is 

the random parameter logit model where these contextual effects are fully interacted with all 

main variables, with many of the interaction terms highly significant. Hence, they conclude 

that the choice format affects preferences and that it is necessary for contextual effects to at 

least enter the preference function in order to control for the effects of different choice 

formats on preference elicitation.  

 

Zhang and Adamowicz (2011) also find that these contextual effects do not control for the 

choice format effect when entered into the scale function only. In particular, the lack of 

significance of the entropy variable in the scale function, contrary to what Swait and 

Adamowicz (2001) have found, leads Zhang and Adamowicz (2011) to postulate that entropy 

might be more suitable for capturing continuous relationships between the scale function and 

the level of choice complexity (such as the number of alternatives) in a more complex choice 

set rather than the situation they analyse, which involves a discrete change from only two 

alternatives to three alternatives.  

 

2.3.5 Hierarchical Bayes Modelling 

 

Hierarchical Bayes modelling has also proven useful when estimating heterogeneity in cases 

where the decision sequence, constraints and thresholds are latent. Gilbride and Allenby 

(2004) model the two stage decision processing strategy by assuming that screening rules 

exist to restrict a larger choice set into a smaller subset of alternatives for final evaluation. 

The screening rules considered include (i) a compensatory screening rule, where the 

deterministic portion of utility in the traditional compensatory sense must exceed a threshold; 

(ii) a conjunctive screening rule, where all attribute values must be acceptable and (iii) a 

disjunctive rule, where at least one attribute value needs to be acceptable. These thresholds 
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are determined endogenously and are allowed to vary by respondents, not unlike the approach 

taken by Swait (2009) and Cantillo and Ortuzar (2005). In conclusion, Gilbride and Allenby 

(2004) find that the conjunctive screening model explains the data best. Further extensions of 

this work include modelling the EBA processing rule and an economic screening rule which 

stops all processing of an alternative whenever an undesirable attribute level is present 

(Gilbride and Allenby, 2006). 

 

2.4 RELATIONAL HEURISTICS: PROSPECT THEORY 

 

Another broad category of heuristics might be called “relational” heuristics. Unlike the 

models discussed earlier, choice task properties and complexity are not the focus of attention 

here. Instead, these heuristics emphasise the use of some reference point(s), or in some 

specific applications, a comparison of ratings of one alternative against another. Prospect 

theory (Kahneman and Tversky, 1979) is perhaps one of the most well-known behavioural 

models in this category. Some brief remarks about prospect theory (PT) follow, but for a 

more comprehensive treatment, see Van de Kaa (2010a; 2010b) and Li and Hensher (2011). 

 

Essentially, prospect theory assumes that respondents frame alternatives and attributes 

relative to a reference state, that respondents are loss averse, and that there is diminishing 

sensitivity to gains and losses. If evaluating outcomes which are uncertain, laboratory 

experiments have shown that relative to certain outcomes, outcomes with low probabilities 

are overweighted and outcomes with high probabilities are underweighted. Hence, PT 

assumes that each individual evaluates the expected probabilities according to an inverse S-

shaped weighted probability function.  

 

Despite numerous examples demonstrating that an individual‟s reference state is updated in 

successive choice settings, the original version of PT as proposed by Kahneman and Tversky 

(1979) does not discuss this issue. Neither is PT concerned with heterogeneity in choice 

behaviour strategies. To address these gaps in the theory, Van de Kaa (2010a) proposes an 

extension of prospect theory, aptly named extended prospect theory (EPT), suggesting that 

“attributes of alternatives are framed as context-dependent changes (gains and losses) relative 

to an updated reference state, and most individuals value losses higher than gains of 

equivalent size.” (Van de Kaa, 2010a, p. 773) 
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A review of empirical evidence in the transportation literature in support of PT/EPT was 

undertaken by Van de Kaa (2010a), whose meta-analysis finds strong support for the key 

PT/EPT assumption of reference-dependent, loss-aversive choice behaviour in close to 100 

studies reviewed. In these studies, the evidence shows that loss-neutral utility maximisation 

appears to be more of an exception rather than a rule. As for the other assumptions of 

PT/EPT, some studies also demonstrate that respondents display diminishing sensitivity to 

gains and losses and that PT‟s inverse S-shaped weighted probability function offers a better 

descriptive ability than the expected utility concept.  

 

In a series of experiments inspired by Kahneman and Tversky (1979), Avineri and Prashker 

(2004) show that traveller behaviour in the light of travel time uncertainties violate the 

assumptions of expected utility theory. For example, respondents are found to make decisions 

according to the Allais paradox. The Allais paradox represents a violation of one of the 

axioms of expected utility theory as it has been shown empirically that the addition of an 

independent event influences choice behaviour. The following well-known example of the 

Allais Paradox in Table 2.1 is due to Kahneman and Tversky (1979): 

 

Table 2.1: Illustration of the Allais Paradox (Kahneman and Tversky, 1979) 

Problem I: choose between A B 

 33% chance of winning 2,500 

66% chance of winning 2,400 

1% chance of winning nothing 

2,400 for sure 

Problem II: choose between C D 

 33% chance of winning 2,500 

67% chance of winning 

nothing 

34% chance of winning 2,400 

66% chance of winning 

nothing 

 

Kahneman and Tversky (1979) find that a majority of respondents when confronted with 

Problem I choose B over A. In Problem II however, the majority would choose C over D.  

This finding violates expected utility theory since the only difference in going from Problem I 

to Problem II is the elimination of a 66 percent chance of winning 2,400 across both 

alternatives.  
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There is also evidence suggesting that small probabilities are inflated. In another experiment, 

Avineri and Prashker (2004) show that when there are substantial probabilities of a gain, as 

measured by travel time savings, people prefer the option with larger probabilities, but when 

the probabilities of travel time savings are very close to zero, preferences are switched and 

the option with the larger time savings is preferred. In summary, the evidence gathered by 

Avineri and Prashker (2004) seems to point to respondents as possibly prospect maximisers 

instead of utility maximisers. Likewise, consistent with prospect theory, Senbil and Kitamura 

(2004) observe reference dependency in the decision frames relating to departure time 

decisions. At the same time, Hess et al. (2008) demonstrate, in the context of stated choice 

data, the existence of referencing around a recently experienced alternative and that 

preference formation may better relate to differences in respondent specific reference points, 

rather than the absolute values of the attributes shown in stated choice experiments.  

 

On a more cautionary note however, Timmermans (2010) and Avineri and Prashker (2004) 

raise some questions regarding the application of prospect theory to travel behaviour under 

uncertainty, especially in dynamic situations where there is feedback. In particular, Avineri 

and Prashker (2004) highlight that their results are obtained in the context of one-shot 

experiments and do not explicitly capture learning and day-to-day effects. 

 

A review of the evidence suggests that PT and its variants hold a significant amount of 

promise as an alternative theory of traveller behaviour. However, until further research 

convincingly demonstrates its applicability in what is a fairly complex environment of 

decision making - multi-day, multi-choice situations where dynamic feedback and learning is 

highly possible – the literature suggests that PT should be embraced more cautiously in travel 

applications.  

 

2.5 EXTREMENESS AVERSION AND REGRET MINIMISATION 

2.5.1 Empirical Demonstrations of the Extremeness Aversion Effect 

 

More specific examples of relational heuristics abound. The discussion in this section focuses 

on models of extremeness aversion (Simonson and Tversky, 1992; Tversky and Simonson, 

1993) and regret minimisation (Chorus et al., 2008; Chorus, 2010; Chorus, 2012). 

 

The extremeness aversion heuristic has been put forward as a possible explanation for the 
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fairly robust empirical findings of the so-called “compromise effect” (Simonson, 1989). The 

compromise effect states that respondents prefer an in-between alternative when extreme 

alternatives are available in the choice set. In this particular context, extreme alternatives are 

defined as those which perform best on some attributes, but worst on others. Loss aversion 

may explain the compromise effect; in that the disadvantages of an alternative (defined 

relative to the other alternatives in the choice set) are weighted more heavily than its 

advantages (Tversky and Kahneman, 1991; Simonson and Tversky, 1992). Hence, the in-

between alternative, with its smaller advantages and disadvantages, is more highly favoured 

compared to the extreme alternative, which has larger advantages, but also larger 

disadvantages. Louviere and Myer (2008) also show that this effect can arise from preference 

uncertainty among risk averse individuals. It might also be pointed out that much of the early 

literature on the compromise effect focuses on analysing alternatives with only two attributes; 

hence, with the notable exception of the random regret minimisation model reviewed later, 

many of the examples cited here relate to the case of two attributes. 

 

Under some circumstances, extremeness aversion may violate the principle of regularity 

(Tversky and Simonson, 1993). Regularity states that the market share of an alternative 

cannot be increased by enlarging the choice set. Formally, for any item that is a part of choice 

set A where A is, in turn, a subset of B, the probability of choosing an element j from A must 

not be less than choosing j from B, i.e., for all , ( ; ) ( ; )j A B Pr j A Pr j B   . Regularity is a 

very weak condition and violations are generally not expected (Luce, 1977). It is the 

minimum condition for most existing choice models (Huber et al., 1982) and it is implied by 

the standard linear additive representation of utility. However, through a series of 

experiments, such as the one reported in Table 2.2, Simonson and Tversky (1992) 

demonstrate the existence of the extremeness aversion heuristic in several instances of 

decision making, which leads to unexpected violations of regularity
1
.   

 

                                                             
 

 

 

1 The addition of asymmetrically dominated alternatives to a choice set can also result in violations of regularity 

(Huber et al., 1982). 
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Table 2.2: Results from a Camera Purchase Experiment (Simonson and Tversky, 1992) 

Category: 35mm camera  Share (%) 

Quality of Camera Price ($) Version 1 Version 2 

Alt 1: Low-end  169.99 50 22 

Alt 2: Middle range  239.99 50 57 

Alt 3: Top quality 469.99 - 21 

 

In the first version of the experiment, Simonson and Tversky (1992) asked respondents to 

choose between two alternatives: a low-end camera (Alt 1) and a middle-of-the-range camera 

(Alt 2). In this experiment, both low-end and middle-of-the-range alternatives proved to be 

equally popular. When an extreme alternative (Alt 3), a top-of-the-range camera, was added 

to the choice set (Version 2 of the experiment), the middle alternative Alt 2 became more 

popular relative to the low-end camera Alt 1, in both relative and absolute terms. Simonson 

and Tversky (1992) found that the difference in the market shares of Alt 2 relative to Alt 1 

between Version 2 and Version 1 of the experiment was statistically significant at the five 

percent level, allowing them to conclude that regularity had been violated.  

 

Extremeness aversion also violates a betweenness inequality which is a stronger condition 

than regularity (Tversky and Simonson, 1993). To understand the betweenness inequality, 

first define Alt 2 to be between Alt 1 and Alt 3 if for all attributes k, either 
1, 2 , 3 ,k k k

x x x  or

1, 2 , 3 ,k k k
x x x  is true. Under a ranking condition which occurs with empirical regularity 

(Tversky and Simonson, 1993), if Alt 2 lies between Alt 1 and Alt 3, then the ranking Alt 3 > 

Alt 2 > Alt 1 should be relatively more common than the ranking Alt 3 > Alt 1 > Alt 2. Putting 

the ranking condition together with the value maximisation condition according to classical 

utility theory, the betweenness inequality essentially states that the middle alternative Alt 2 

should lose relatively more than the existing extreme alternative Alt 1 when an extreme 

alternative such as Alt 3 is introduced into the choice set. Intuitively, this is because Alt 3 is 

more similar to Alt 2 than to Alt 1.  

 

To see the violation of the betweenness inequality in Table 2.2, observe that in Version 1 of 

the experiment, the choice share of Alt 2 relative to Alt 1 is equal to 
0.5

0 .5
0 .5 0 .5




, while in 
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Version 2 of the experiment, the choice share of Alt 2 relative to Alt 1 is equal to 

0.57
0.72

0.57 0.22



. Hence, the introduction of Alt 3 has taken relatively more from Alt 1 than 

from Alt 2. 

 

The compromise effect is a symmetric form of extremeness aversion, occurring when 

disadvantages loom larger than advantages on all attributes. The in-between alternative 

becomes the compromise, and its share is enhanced relative to both extreme alternatives. A 

non-symmetric form of extremeness aversion, known as polarisation, may occur when the 

introduction of an in-between alternative substantially reduces the relative share of one of the 

extreme alternatives but makes the other extreme alternative even more favoured. This 

happens when disadvantages loom larger than advantages on only some of the attributes of 

the alternatives, but not on others. To illustrate polarisation, another example from Simonson 

and Tversky (1992) would be helpful. This example is reported in Table 2.3. 

 

In Choice Set 4, the relative choice share of Alt 2 with respect to Alt 3 in the presence of Alt 1 

is
0.48

0.53
0.48 0.43




. In Choice Set 2, the relative choice share of Alt 2 with respect to Alt 3 

in the absence of Alt 1 is 0.4. In this case, Simonson and Tversky (1992) find that the increase 

 

Table 2.3: Results from a Stated Choice Purchase of a Cassette Player  

(Simonson and Tversky, 1992) 

Option (AM/FM cassette player) Share (%) 

Brand  Price ($) Choice Set 1 Choice Set 2 Choice Set 3 Choice Set 4 

Alt 1: Low quality Emerson 39.99 45 - 51 9 

Alt 2: Mid quality Sony 69.99 55 40 - 48 

Alt 3: Top quality Sony 149.99 - 60 49 43 

 

 

in Alt 2‟s relative choice share in Choice Set 4 compared to Choice Set 2 ( 0.53 0.4 0.13  ) 

is not statistically significant, indicating that the inclusion of Alt 1 into the choice set does not 

lead to a noticeable extremeness aversion effect away from Alt 3 in favour of the in-between 

alternative Alt 2.  

 

However, Simonson and Tversky (1992) found that if the market share of Alt 2 relative to Alt 

1 in Choice Set 1 is compared to its counterpart in Choice Set 4, there is a statistically 
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significant increase of
0.48

0.55 0.29
0.48 0.09

 


. This result suggests that the inclusion of 

extreme alternative Alt 3 leads to extremeness aversion away from Alt 1 towards Alt 2. This 

example illustrates the point that extremeness aversion works only in one direction, which is 

an aversion away from Alt 1, rather than an aversion away from Alt 3. Moreover, a 

comparison between Choice Sets 3 and 4 shows that the inclusion of the middle alternative 

Alt 2 disproportionately shifts market share away from Alt 1 towards Alt 3. Simonson and 

Tversky (1992) conclude from these results that there is a polarisation effect in favour of 

quality.  

 

It would be interesting to speculate on the differences in circumstances that might lead to the 

emergence of the compromise effect and the polarisation effect, but empirical observations 

aside, there does not seem to be much further discussion in the literature on why the 

compromise effect is observed in some cases and the polarisation effect in others. This may 

in fact be a potential area of upstream research with interesting implications for the modelling 

techniques used in discrete choice modelling. 

 

2.5.2 Models of Extremeness Aversion and Regret Minimisation 

 

The random regret minimisation (RRM) model, first proposed in Chorus et al. (2008) and 

subsequently refined in Chorus (2010) has been shown to be able to accommodate the 

extremeness aversion heuristic, in particular, the compromise effect. In the RRM model, 

regret is said to occur when a non-chosen alternative leads to a more desirable outcome, for 

example, when a foregone alternative performs better on a certain attribute compared to the 

chosen alternative. This notion of regret should be distinguished from the early representation 

of heuristics encapsulated by regret theory (Bell, 1982; Loomes and Sugden, 1982), which 

focuses on the study of risky choices in single attribute (usually monetary) alternatives. The 

RRM model has been primarily developed for the analyses of riskless multi-attribute choice 

such as those commonly found in travel demand modelling, although it is possible for the 

RRM to be extended to the study of risky choices as well (Chorus, 2012).  

 

Under the RRM model, respondents are assumed to engage in regret avoidance behaviour by 

choosing the alternative which minimises regret. The systematic regret for any considered 
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alternative j, denoted ( )Reg j , is the sum of all binary regrets associated with the bilateral 

comparisons of alternative j over all non-considered alternatives j  in choice set s. 

Specifically, the binary regret function ( , )Reg j j  may be written in the form of Equation 

(2.17a), with the subscript k denoting the k
th

 attribute of the alternative, Xjk denoting the level 

of attribute k in alternative j and 
jk

 denoting the taste parameter associated with attribute k 

of alternative j: 

 

  ( , ) ln 1 exp
j k j k jk jk

k

Reg j j X X 
 

    
   (2.17a) 

 

The systematic regret function ( )Reg j is given by Equation (2.17b): 

 

 
,

( ) ( , )

j j

j s

Reg j Reg j j



   
(2.17b) 

 

In the limit, as the regret term[ ]
j k j k jk jk

X X 
 

 becomes sufficiently negative, ( , )Reg j j 

with respect to attribute k falls towards zero. Likewise, if [ ]
j k j k jk jk

X X 
 

 becomes 

sufficiently large, ( , )Reg j j  with respect to attribute k approaches [ ]
j k j k jk jk

X X 
 

 . As 

illustrated by Chorus (2010) and reproduced here, a graph of the function ln(1 exp( ))y x  is 

provided in Figure 2.1. It is readily apparent that the regret function is a convex function. 

 

 

Figure 2.1: Graph of y = ln(1 + exp(x))  

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

-4 -3 -2 -1 0 1 2 3 

x 

y 



 
 

35 
 

 

As the regret function is convex, the extent to which an improvement in an attribute can 

compensate for the deterioration in the value of another attribute depends very much on its 

value relative to the other alternatives. For example, an improvement in an attribute that is 

already far superior to its counterparts in the other alternatives leads to a minimal reduction in 

regret, while a worsening of another attribute which was comparing poorly to begin with can 

lead to a substantial increase in regret. This implies that the RRM model is able to capture 

semi-compensatory behaviour (Chorus, 2010). Semi-compensatory behaviour occurs when a 

disproportionately large improvement in an attribute is required to offset a given decline in 

the performance of another attribute. If the decline in the performance of the latter attribute 

 (that is, an increase in regret) is large enough, no amount of improvement in the first 

attribute will compensate sufficiently. 

 

It is the convexity/semi-compensatory property of the RRM model that allows it to also 

account for the compromise effect (Chorus, 2010). Put another way, when an attribute of an 

alternative performs well relative to other alternatives in the choice set, such as in the case of 

an extreme alternative, an improvement generates only a small decrease in regret; whereas on 

another attribute in which the extreme alternative fares poorly, a small amount of 

deterioration in that attribute will generate a large amount of regret. Consequently, in the 

RRM model, the „in-between‟ alternative is favoured over the extreme alternative.  

 

Other properties of the RRM model are also worth highlighting. For example, it might also be 

observed that the RRM model is just as parsimonious as the standard RUM model, unlike 

other models of contextual effects which typically require the estimation of additional 

parameters (Chorus, 2010). As attributes of the non-considered alternatives enter into the 

regret function, the RRM model also does not display the property of independence from 

irrelevant alternatives (IIA), even if independent and identically distributed (i.i.d.) error terms 

are assumed for the unobserved part of the regret function. As for parameter interpretation, 

Chorus (2012) observes that the parameters “reflect the upper bound of the extent to which a 

unit increase or decrease in relative performance on an attribute influences the level of regret 

that is associated with a comparison with another alternative.” (Chorus, 2012, p. 79, emphasis 

his) 

 



 
 

36 
 

Despite these desirable properties of the model, empirical support for the RRM, in terms of 

goodness of fit measures, appears to be mixed, at least as far as stated preference data are 

concerned (Chorus, 2012). This may be because the level of anticipated regret engendered in 

stated choice data is less prescient than in revealed preference data which reflect real life 

choices and trade-offs. However, even where the RRM model does not fit the data as well as 

the standard linear additive RUM model, the context dependency engendered in the RRM 

model means that there are different implications for marginal willingness to pay measures 

and mean elasticities (Hensher et al., 2011). From a behavioural perspective, it may be more 

desirable to consider the outputs from the RRM model if it is believed that context 

dependency, regret and referencing matter in decision making.  

 

Embedding the compromise effect into discrete choice models is also possible through the 

proposed specifications offered by Kivetz et al. (2004) in the marketing literature. Their 

contextual models incorporate the use of reference points and also account for either loss 

aversion or concavity in gains in the context of comparisons against competing alternatives in 

the current choice set. Like the RRM model, instead of a reference alternative, reference 

attribute levels are used. In their loss aversion model, the reference point is taken to be the 

mid-point of the attribute range of the alternatives in the local choice set s, which is not 

necessarily equal to the attribute levels in the existing status-quo choice option. The value 

function for the loss aversion model is defined in Equation (2.18) as:   
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 (2.18) 

 

In Equation (2.18), Vj is the value of alternative j (given a choice set s), ( )
jk jk

v X is the utility 

of attribute k of alternative j, 
k

  is the loss aversion parameter for attribute k and 
rk

X

indicates the reference value of attribute k in choice set s. If respondents display loss aversive 

tendencies, 
k

 will be greater than one. 

 

On the other hand, Kivetz et al.‟s (2004) contextual concavity model takes the attribute value 

with the lowest part-utility as the reference point and codes the utility of other attribute values 

as gains against the reference. This model specification is shown in Equation (2.19): 
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kc

j jk jk rk rk

k

V v X v X   (2.19) 

 

As its name suggests, the contextual concavity model assumes that the utility gains are 

concave relative to the reference, as an outcome predicted by prospect theory. Hence, 
k

c is 

introduced as a concavity parameter for attribute k and would typically take a value between 

zero and one. 
rk

X in this case is the attribute value that gives the lowest utility on attribute k 

across all alternatives in the choice set. The reference is context specific and will change from 

choice task to choice task. More generally, the concavity parameter implies diminishing 

marginal sensitivity to gains; thus, the in-between alternative with its moderate gains on the 

attributes benefits more compared to the extreme alternatives. 

 

As an application to the transportation literature, Chorus and Bierlaire (2013) compare the 

contextual concavity model with the RRM model in a stated route choice experiment and find 

that in terms of model fit, the contextual concavity model has a “slight (but statistically 

significant) edge” over the RRM model, even after correcting for the additional number of 

parameters (Chorus and Bierlaire, 2013, p. 561). They also find that the concavity parameters 

associated with the attributes of travel time and travel time variability are not statistically 

different from one at the usual levels of significance (implying absence of concavity), but the 

associated concavity parameters for travel cost and percentage of travel time spent in 

congestion are statistically less than one. In terms of predictive ability for out of sample 

forecasts, Chorus and Bierlaire (2013) find that the differences between the RRM and the 

contextual concavity model are small. There is no clear „winner‟ as such, since the RRM 

performs better on certain metrics and the contextual concavity model is better on others. 

Chorus and Bierlaire (2013) also explore another more explicit way of postulating that 

respondents are focusing on a compromise alternative by constructing a compromise variable 

to measure the „in-betweenness‟ score of an alternative which is then entered into a 

conventional linear-in-the-parameters logit model. However, they find that their empirical 

results favour either the contextual concavity model or the RRM over the linear + 

compromise model. 
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Another model, attributable first to Tversky and Simonson (1993) as a componential context 

model, is another candidate for explaining the compromise effect. This model was later 

empirically estimated as a relative advantage model by Kivetz et al. (2004). The 

componential context model or relative advantage model is shown in Equation (2.20): 

 

 ( ) ( , ')
j k jk

k j s
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(2.20) 

 

In Equation (2.20), ( , ')RA j j  denotes the relative advantage of alternative j over alternative j', 

and λ is the weight given to the relative advantage component of the model. ( , ')RA j j may be 

defined, according to Tversky and Simonson (1993), as follows: First, for a pair of 

alternatives ( , ')j j in choice set s, consider the advantage of j over j' with respect to an 

attribute k, denoted in Equation (2.21) by:  
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Define the disadvantage of j over j' with respect to an attribute k as an increasing convex 

function (.)
k

  of the corresponding advantage function ( ', )
k

A j j , that is,

( , ') ( ( ', ))
k k k

D j j A j j . (.)
k

 is assumed to be convex as a consequence of loss aversion in 

evaluating a disadvantage. A functional form for ( , ')
k

D j j , due to Kivetz et al. (2004), is 

suggested
 
in Equation (2.22): 
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Here, 
k

L  is a loss aversion parameter (a priori expected to be greater than zero) and 
k

  is a 

power parameter (a priori expected to be greater than one). The relative advantage of j over j' 

is then defined in Equation (2.23) as: 
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Like the RRM model, the relative advantage model assumes a bilateral comparison of each 

alternative against all other alternatives in the choice set. Moreover, since the componential 

context/relative advantage model was primarily motivated by the need to explain the 

compromise effect, Tversky and Simonson (1993) supposed that ( , ') 0RA j j   if choice set s 

contains two or less elements, as by definition, the compromise effect cannot occur in such a 

choice situation. Empirically however, this assumption is unnecessarily restrictive. Chapter 5 

discusses and estimates a relative advantage model on binary choice data.  

 

Testing the various model forms for the compromise effect, Kivetz et al. (2004) find that the 

parameter estimates for all models are consistent with a priori expectations from theory. 

However, the contextual concavity model and the loss aversion model have superior 

measures of fit and predictive validity compared to the relative advantage model, with the 

latter performing no better than the standard model in a handful of cases. The poorer 

performance of the relative advantage model may be a consequence of the way the model 

was estimated. Since the model is highly non-linear, Kivetz et al. (2004) resorted to a priori 

imposing, without further testing, the restriction of a common 
k

 across all k attributes of the 

alternatives and then using a grid search to find the optimal value for 
2
.  It is also 

noteworthy that Kivetz et al. (2004) reported that in all their empirical applications, none of 

the loss aversion parameters 
k

L turned out to be statistically different from zero. 

 

Although less widely documented than extremeness aversion, the opposite effect, known as 

extremeness seeking, may also be true, especially when choice sets are “non-alignable” 

(Gourville and Soman, 2007).  A non-alignable choice set entails alternatives “that vary along 

discrete, non-compensatory attributes, such that one alternative may possess one set of 

desirable features, while a second alternative may possess a different set of desirable 

features” (Gourville and Soman, 2007, p. 10). For example, in having to choose among 

                                                             
 

 

 

2 In their empirical applications, the optimal value of ψ is reported to be either 5 or 10. It is not clearly stated in 

the paper how the grid search was conducted, but one suspects that given these reported optimal values for ψ, 

the search was only conducted over integer values of ψ. 
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multiple car models, with say one model having rear seat DVD entertainment but no sun roof, 

and another model having the sun roof, but no rear seat entertainment, the trade-off across 

attributes is discrete, such that by choosing one alternative, the desirable features of another 

may have to be given up completely. In such cases, Gourville and Soman (2007) found that 

respondents displayed an increased tendency to either of the extreme alternatives. Hence, 

Gourville and Soman (2007) proposed that extremeness aversion occurs under more specific 

circumstances when the attributes are alignable, i.e., when attributes can be traded off 

incrementally. For example, a choice involving a low-priced, low processing speed computer 

model and a medium-priced, medium processing speed model is alignable, and the 

introduction of an extreme high priced, high processing speed option causes the market share 

of the intermediate option to go up.  

 

If the hypothesis suggested by Gourville and Soman (2007) is valid, then extremeness 

seeking behaviour should be taken into consideration when modelling choice data where 

alternatives are described by discrete attributes. In the more likely case where alternatives 

have a mix of discrete and continuous attributes, a mixture of extremeness seeking and 

extremeness aversion may even be possible. To the best of this author‟s knowledge, while the 

compromise effect has been modelled for continuous attributes, the case of discrete attributes 

has not received any empirical attention in the discrete choice literature. 

 

2.6 CONTEXT-FREE AND CONTEXT DEPENDENT PREFERENCES 

 

Arising from the utility specification found in the relative advantage model, Simonson (2008) 

highlights a distinction between “inherent” and “constructed” preferences. He argues that 

there may be a more important role for stable or inherent preference values to play in shaping 

decisions than has been recognised in the behavioural decision literature, which has mainly 

been focused on demonstrating that preferences are largely constructed. Such inherent 

preferences or dispositions (to like or dislike) may even exist for objects that people have not 

yet experienced. The relative advantage model described in Equation (2.20) thus represents 

the notion that preferences are separable into inherent and constructed components (Kivetz et 

al., 2008). The first term on the right hand side of Equation (2.20) represents value 

maximisation independent of contextual effects while the second term is context dependent 

utility. The parameter λ can be taken as an indication of the strength of the choice context in 

determining preferences and represents the weight given to constructed preference vis-à-vis 
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inherent preferences. Additionally, as in explored in Chapter 5, the parameter λ may be 

expressed as a function of respondent and choice task characteristics, allowing the weight of 

constructed preferences to vary across respondents and choice tasks. 

 

Rooderkerk et al.‟s (2011) model essentially follows this line of thinking by decomposing 

utility into additively separable context-free and context dependent components. Their key 

innovation is to consider a contextual model of utility where the context dependent 

component is written as a linear combination of three contextual effects that have been well-

documented in the marketing and psychology literature: the compromise effect, discussed in 

Section 2.5, the attraction effect (Huber et al., 1982), and the similarity effect (Tversky, 

1972).  Both the attraction and similarity effects are described below. 

 

The attraction effect occurs when an asymmetrically dominated alternative is included in the 

choice set. An asymmetrically dominated alternative is one which is dominated by one 

alternative in the choice set, but not by others. The inclusion of such a decoy alternative 

increases the relative market share of the dominating alternative, leading to a violation of the 

IIA assumption. Table 2.4 below, obtained from Huber et al. (1982), provides an illustration 

of the attraction effect. What Huber et al. (1982) found was that in a binary choice between 

Beer A and Beer B, 43 percent of respondents chose Beer A when the decoy was not present. 

However, when the asymmetrically dominated alternative (the decoy) was added to the 

choice set, the market share of Beer A increased to 63 percent, violating the regularity 

condition.   

 

Table 2.4: An Example of the Attraction Effect (Huber et al., 1982) 

Six-Pack Beer Beer A Beer B Decoy 

Price ($) 2.60 1.80 3.00 

Quality rating 70 50 70 

Market share of Beer A (binary choice, no decoy present) 43%  

Market share of Beer A (with decoy present) 63% 

 

The similarity effect states that the inclusion of an alternative takes away more market share 

from a similar alternative than from a dissimilar alternative. The following example presented 

in Table 2.5 is taken from Tversky (1972). 
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Table 2.5: An Example of the Similarity Effect (Tversky, 1972) 

Potential college applicants A B C 

Intelligence score 78 60 75 

Motivation score 25 90 35 

Share of A relative to B in binary choice {A,B} 56%  

Share of A relative to B in triple {A,B,C} 46% 

Share of C relative to B in binary choice {B,C}  47% 

Share of C relative to B in triple {A,B,C} 39% 

 

In this experiment, respondents were asked to choose the most promising college applicant 

among profiles with different intelligence and motivation scores. The alternatives were 

designed so that applicants A and C were more similar to each other than either of them was 

to applicant B. Tversky (1972) found that the inclusion of alternative C into the choice pair 

{A, B} led to a fall in the popularity of A relative to B, from 56 percent to 46 percent. 

Likewise, the inclusion of A into the choice pair {B, C} led to the similar alternative C losing 

relatively more than the dissimilar alternative B. The difference in market shares of A and C 

between the three-alternative choice set and the two-alternative choice set was statistically 

significant at the ten percent level. 

 

Returning back to Rooderkerk et al. (2011)‟s model, the impact of these contextual effects 

are expressed as direct utility gains or losses in the value function. The compromise, 

attraction and similarity effects are modelled using measures of Euclidean distance between 

attributes. In particular, the compromise effect is modelled using a different perspective from 

the RRM model of Chorus (2010), the compromise variable of Chorus and Bierlaire (2013) 

and the models of Kivetz et al. (2004).  For Rooderkerk et al. (2011), a compromise 

alternative, which may be a virtual alternative that does not exist in the choice set, is first 

constructed. The attribute levels of such an alternative are defined by the mid-points of the 

range of attribute values in the choice set, as in Equation (2.24): 
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Instead of using a non-linear specification for the compromise effect (Chorus, 2010; Kivetz et 

al., 2004), Rooderkerk et al. (2011) measure the strength of the compromise effect by a linear 
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representation of the distance between alternatives j and the (possibly virtual) alternative c. 

The hypothesis advocated by Rooderkerk et al. (2011) is that the closer the attribute values of 

alternative j are to the compromise alternative c, the more likely j will benefit from being like 

the compromise and the larger its choice share.  As for the attraction effect, it is modelled by 

assuming that it is only present when there are pairs of dominating/dominated alternatives in 

the choice set. Whenever an alternative is dominating, the attraction effect, which makes the 

dominating alternative more attractive in the presence of a dominated alternative, becomes 

stronger as the distance between it and the dominated alternative increases, with the attraction 

effect adding to utility; while the same attraction effect reduces utility for the dominated 

alternative. Finally, the similarity effect is measured by the distance between an alternative 

and its closest neighbour. The higher this distance becomes, the more dissimilar is the 

alternative to others in the choice set and this should add to utility. As an extension to the 

model, an interaction between the similarity and attraction variables is also included. 

 

Compared to a RUM model without contextual effects and also to the main effects contextual 

model without any interaction terms, Rooderkerk et al. (2011) find that the extended 

contextual model (which includes the interaction term) leads to an improvement in most of 

the descriptive and prescriptive fit statistics. In the extended model, all contextual parameters 

are statistically significant and of the correct sign. In conclusion, they suggest that context 

effects can be quite easily embedded into commonly used choice models by treating them as 

extra components in the utility function. This approach sits well with the MCD and reference 

revision heuristics examined in this thesis. 

 

2.7 HEURISTICS OF CHOICE SET INTER-DEPENDENCE: VALUE 

LEARNING AND STRATEGIC MISREPRESENTATION 

 

The notion of “relational” can be extended to allow preceding choice tasks or choice 

outcomes to impact current choice. As noted by Simonson and Tversky (1992), “in deciding 

whether or not to select a particular option, people commonly compare it to other alternatives 

that are currently available as well as with relevant alternatives that have been encountered in 

the past” (Simonson and Tversky, 1992, p. 282). This notion is not entirely dissimilar to case-

based decision theory advocated by Gilboa and Schmeidler (1995), where respondents are 

thought to recollect similar choice problems and the associated choice outcomes encountered 

previously. As most stated choice experiments require respondents to answer a series of 
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choice tasks, the implication arising from Simonson and Tversky (1992) and Gilboa and 

Schmeidler (1995) is that preferences over attributes are not necessarily independent across 

choice sets. 

 

There is now a significant body of evidence indicating that what respondents encounter in 

previous choice sets matters in the current decision making context.  “Ordering anomalies”, 

where choice is biased by the sequence of attribute values observed in the preceding choice 

set(s), are not uncommon, according to Day and Prades (2010). For example, if a price 

attribute of one alternative is seen to increase from one choice set to another, the proportion 

of respondents choosing that alternative in the second choice set is smaller than if the choice 

sets are reversed. A proposed explanation for this observation may be found in a „good deal / 

bad deal‟ heuristic (Bateman et al., 2008) whereby „good deals‟ in the current choice task, 

relative to the price-attribute combinations encountered in previous choice tasks, are chosen 

more frequently than relative „bad deals‟. A trade-off contrast (Simonson and Tversky, 1992) 

by which current preferences are revised on the basis of previous price or cost attributes may 

also explain ordering effects. Such ordering anomalies may be considered to be specific 

examples of a more general phenomenon of preference reversal (Tversky et al., 1990). 

 

Strategic misrepresentation has also been invoked as one justification for incorporating the 

attributes of some previously chosen non status-quo alternative as a reference point in the 

current choice set. The argument from a public goods provision context is that people aim to 

increase the likelihood of their most preferred alternative being implemented by deliberately 

withholding the truth about their preferences in the current choice task if chosen alternatives 

in previous choice tasks have better attribute values (such as lower cost) than those in the 

current choice task. Strategic misrepresentation assumes that the respondents have stable and 

well formed preferences, but that a discrepancy exists between stated preferences and 

underlying true preferences. A weaker version of strategic misrepresentation allows 

respondents to consider the likelihood that the good would not be provided if they do not 

reveal their true preferences, and hence to only reject truth-telling probabilistically (McNair 

et al., 2012). Other papers have also concluded that the data are consistent with respondents 

using previously encountered information and past choices and that estimated parameters are 

sensitive to how choice sets are ordered. Strategic behaviour in respondents, particularly the 

weaker version of strategic behaviour, is not rejected (Scheufele and Bennett 2010; 2013; 

McNair et al., 2011).  
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Another explanation for considering features of previously encountered choice sets into the 

current choice set involves a value learning heuristic, which assumes truth telling, but poorly 

formed initial preferences. Value learning involves the discovery of preferences and taste 

parameters may change according to the attribute levels presented to the respondent. Hence, 

preferences can be influenced by the starting point and subsequent attribute values (McNair 

et al., 2011), with the „good-deal / bad-deal‟ heuristic being a specific case in point. The 

„good-deal/bad-deal‟ heuristic posits that an alternative is less (more) likely to be chosen if its 

attributes are relatively inferior (superior) to those of the preceding alternatives.  

 

McNair et al. (2011) show that responses to a sequence of binary choice tasks involving the 

provision of an underground electricity network are consistent with both a weak form of 

strategic misrepresentation and with a „good deal/bad deal‟ heuristic. The relationship 

between cost sensitivity and the positioning of the cost level relative to the levels presented in 

previous choice tasks may be ascertained by interacting the cost variable with variables that 

indicate the relative cost position. In any given choice task, the cost level presented must 

satisfy one of the following four conditions: 

 

1. both the minimum and the maximum level presented in the sequence to that point; 

2. the minimum, but not the maximum level presented in the sequence to that point; 

3. the maximum, but not the minimum level presented in the sequence to that point ; or 

4. neither the minimum nor the maximum level presented in the sequence to that point. 

 

Using these interaction terms, McNair et al. (2011) reject the standard null hypothesis that the 

relative cost position in the choice set does not matter. They find that the cost sensitivity is 

closest to zero and WTP the highest when the cost level is the minimum, but not the 

maximum level presented up to that point. Conversely, cost sensitivity is highest (and WTP 

lowest) when cost is the maximum, but not the minimum level presented in the sequence to 

that point. These results imply that an order with an increasing sequence of cost levels will 

underestimate WTP, while an order with a declining sequence of cost levels might 

overestimate WTP. With this perspective in mind, it would be prudent to account for such 

ordering effects in the data, whether by means of experiment design or by modelling or both. 
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Decision process heterogeneity is another dimension that can or should be explicitly 

considered as well. It is possible that in a group of respondents, several heuristics are at work 

and no one heuristic dominates. One way of testing this hypothesis is to use equality 

constrained models of probabilistic decision processes (PDP), which are essentially latent 

class models of decision rules, to represent heterogeneity in decision behaviour across 

respondents. For example, strategic misrepresentation and value learning can be modelled as 

distinct classes of heuristics for sub-groups of respondents, in addition to the standard 

assumption about utility (McNair et al., 2012). In that paper, the authors particularly 

emphasised the role of cost levels in the value learning heuristic as cost levels are thought to 

be a significant factor in how the value learning process shapes preferences. The impact of 

cost levels might be especially important in modelling stated choice data in which similar 

goods are offered at very different prices over the course of a sequence of surveys. For the 

value learning heuristic, utility functions were specified to allow the alternative-specific 

preference to vary with the average of cost levels observed in the sequence up to and 

including the current choice task. Therefore, while the status quo alternative was specified in 

the usual way, the utility functions of the hypothetical/experimentally designed alternatives 

included a variable that measures the average cost level observed up to that point in the 

experiment (Equation (2.25)): 
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 (2.25) 

 

In Equation (2.25),
0

z is the average of the cost levels observed up to and including the 

current choice task. z is the average of cost levels in the whole sample (averaged across all 

choice tasks and all respondents). The purpose of z is to normalise the average observed cost 

variable so that its sample mean is approximately zero. 

 

To model the strategic misrepresentation heuristic, McNair et al. (2012) specify utility 

functions which have the following two features. The first feature requires respondents to 

compare alternatives to those accepted in previous choice tasks. Defining a reference 

alternative as the highest cost alternative that was previously accepted in the sequence, the 

strategic misrepresentation heuristic suggests that the choice of the status quo option not only 
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occurs when the status quo is preferred to the alternatives in the current choice set, but, 

potentially, also when a previously accepted alternative is preferred to the hypothetical 

alternatives currently on offer. When this latter condition occurs, respondents are also 

assumed to replace the status quo with the reference alternative. The second feature of the 

strategic misrepresentation heuristic is that respondents consider the probability of provision. 

When a similar good is offered at very different cost levels over the course of a sequence of 

choice tasks, it would be reasonable for respondents to assume that the higher-cost 

alternatives are more likely to be provided where the respondents‟ stated WTP is higher. 

McNair et al. (2012) assume that the perceived probability of project provision is equal to the 

ratio of the maximum cost level previously accepted by the respondent and the maximum 

cost level observed in all intervening choice sets up to the current choice task. Under strategic 

misrepresentation, the utility expressions for the status quo and experimental alternatives may 

be expressed by Equation (2.26): 
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The variables in Equation (2.26) are defined as follows. 
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In terms of estimation results, using the PDP/latent class approach, McNair et al. (2012) find 

that the project attributes have the expected sign where they are significant. On the class 

membership probabilities of the various decision processes modelled, they find that about 40 

percent of respondents behave according to the value learning heuristic. Some 30 to 45 

percent of respondents are estimated to be choosing according to the strategic 

misrepresentation heuristic. The class with the lowest membership probability is the decision 

process based on the standard assumptions of truthful response and stable preferences. Within 

the value learning heuristic, the estimated parameter 
1k




is positive, which agrees with prior 
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expectations that a higher cost level observed in a previous choice task leads to a higher 

probability that the hypothetical alternative is chosen in the current choice task, all else equal. 

However, McNair et al. (2012) do not find any significant differences in mean prior WTP 

calculations across this proposed probabilistic decision process model and a standard MNL 

model. 

 

Underpinning value learning and strategic misrepresentation is the notion of reference point 

revision (DeShazo, 2002). In experiments which include the status quo as one of the 

alternatives, the oft-observed status quo bias (Samuelson and Zeckhauser, 1988; Fernandez 

and Rodrik, 1991) may mean that the status quo itself simply ends as the reference point, as 

respondents continue to stick disproportionately to the status quo. Samuelson and Zeckhauser 

(1988) argue that  

 

“A decision maker in the real world may have a considerable commitment to, or 

psychological investment in, the status quo option. The individual may retain the 

status quo out of convenience, habit or inertia, policy (company or government) 

or custom, because of fear or innate conservatism, or through simple 

rationalization.” (Samuelson and Zeckhauser, 1988, p. 10). 

 

Hensher and Collins (2011) test whether reference points are shifted when non status quo 

alternatives are chosen and find that if a non-reference (i.e., non status quo) alternative is 

chosen in the preceding choice set 1s  , the reference in the current choice set s is revised 

and the utility of the non status quo alternatives increases. This suggests a shift in the value 

function around a new reference point.  

 

In the marketing literature, Briesch et al. (1997) have suggested that a relatively large 

proportion of consumers are fairly accurate in their recollection of prices and may therefore 

rely on their memories for past prices when evaluating current purchases across various 

brands. When previously encountered attributes or alternatives are used as a reference, 

judgements are assumed to be memory-based because information is retrieved from memory 

and then compared to what is currently available in the choice set. Memory based judgements 

“are likely to occur when consumers are able and are motivated to recall past prices from 

memory and use this information for the task at hand.” (Briesch et al., 1997, p. 204). Thus, a 

vastly superior and dominant alternative encountered in a choice set would create favourable 
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conditions for memory-based judgments to take place and it would be likely for such an 

alternative to be held in memory as a reference point in future choice sets. By contrast, when 

the current attributes of another alternative are used as the reference, judgement is said to be 

stimulus based. Concerning high frequency purchases of consumer goods, Briesch et al. 

(1997) evaluate various econometric specifications of references involving memory-based or 

stimulus-based prices. Several possible candidate specifications considered by Briesch et al. 

(1997) are described in Table 2.6. 

 

In their specification of the utility function, Briesch et al. (1997) consider different sensitivity 

to gains and losses. They find that a specification assuming memory based judgements 

involving brand specific past prices provides the best model of reference price across all the 

consumer product categories they analysed. Respondents appear to consider up to around six  

 

Table 2.6: Description of Possible Reference Rules  

Memory-based prices Stimulus-based prices 

Price of all previously chosen brands: This 

reference specification is motivated by a body of 

findings that consumers have a stronger memory for 

an actual chosen brand than for a non-chosen brand. 

Prices of previously chosen brands are more readily 

accessible, with more recently encountered prices 

given a greater weight. 

Current price of a random brand: An 

extreme case where the consumer has no 

knowledge of brand prices and is unable to 

determine which of the current brands is 

appropriate as a reference. Hence, a random 

brand is selected and its price used as the 

reference. 

Brand-specific past prices: Consumers use the past 

price history of each brand as a reference price to 

evaluate the respective brands in the current choice 

set. The reference price is unique for each brand. 

Current price of previously chosen brand: 

Assumes that consumers do not remember the 

price paid previously, but do recall the brand 

they chose. The current price of this reference 

brand becomes the reference price. 

Brand-specific past prices and other information: 

The reference used is not only the past prices specific 

to each brand, but also the brand‟s price trend and 

frequency of deals. This rule places greatest demand 

on memory. 
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time periods when choosing the length of the price history to include in the reference price. 

Briesch et al. (1997) caution however that the results are sensitive to the specification of 

reference price. For example, the use of past prices of all previously chosen brands as a 

reference does not lead to any improvement in the fit over a model that does not contain a 

reference price term. Briesch et al. (1997) conclude that this finding is significant because it 

demonstrates that misspecifications of the reference price can lead to wrong conclusions 

about the absence of the reference price effect, even when it may actually exist. 

 

2.8 STATE DEPENDENCE AND HABIT PERSISTENCE 

 

With a sufficient number of choice sets per respondent, such as when decisions of a panel of 

respondents are recorded over a period of time, it may be possible to test whether intervening 

choice sets matter. Heckman (1981) suggested the idea of modelling the dynamics of past 

influences on current decisions through a general model of structural state dependence and 

habit persistence. Structural state dependence occurs when previous choice outcomes affect 

current utility, whereas habit persistence allows for previous utility evaluations to affect 

current utility. Structural state dependence is not dissimilar to what Gilboa and Schmeidler 

(1995) would call “case-based decision theory”.  In a model of dynamic vehicle choice, 

Hensher et al. (1992) capture the dependence of current choice behaviour on past behaviour 

through the use of an expectations and an experience effect. In particular, the proposed 

experience effect measures the influence of past behaviour on current choice. It is given by 

the difference, in absolute terms, in the current attribute level with the same attribute level in 

some past instance, weighted by a time discount factor. From the results, Hensher et al. 

(1992) find that the strong statistical significance, with the correct sign, points to the 

important role that habit plays in influencing current vehicle-type choice
3
. 

 

Heckman‟s (1981) model is also picked up by Swait et al. (2004) in the context of choice 

behaviour among recreational anglers, who have to repeat the choice of one of several fishing 

                                                             
 

 

 

3 Hensher et al. (1992) also allowed for serial correlation across time periods for a dynamic model of vehicle 

use. 
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sites multiple times over the season. In the model specification for habit persistence, the 

current utility at time or choice set s of alternative j is defined through a meta-utility function 

as shown in Equation (2.27): 

 

 
, ,

0

ˆ exp( )

i s

js j s i j s i

i

V V



 



  (2.27) 

 

Meta-utility ˆ
js

V is dependent on all past (static) utilities Vj,s–i which is itself dependent only on 

the attributes in the period s – i. The link between current utility and historical observed 

utilities is achieved through a path-dependence parameter
,j s i




, where 
,j s i




might also be 

interpreted as the weights associated with the previous periods. 
,j s i




satisfies the conditions

,
0 1 ; 1

j s i js
 


   . Taking logs to obtain a linear additive form and adding past and 

contemporaneous error terms results in Equation (2.28): 

 

 
, , ,

0 0 0

ˆln( ) ln( )

i s i s i s
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V V  

  

  

  

      (2.28) 

 

As the first right hand side term of Equation (2.28) contains all past attribute levels, this 

equation can also be seen to link “current utility to historical observed attribute levels in a 

fashion that is consistent with learning about attributes or updating.” (Swait et al., 2004, p. 

98). Attribute levels in previous periods are therefore combined with current attribute levels 

in a form of temporal averaging. Incorporating state dependence into the model involves 

using a dummy variable that equals 1 for alternative j in current choice set s if the same 

alternative had been chosen in choice set s – 1. The variance structure of the disturbance term 

can be allowed to vary over time, providing a form of temporal heteroscedasticity. With 

single respondents answering repeated choice experiments, this model provides another way 

of investigating the role of the value learning heuristic. 

 

Heckman‟s (1981) idea of state dependence implies that the utility for alternatives in the 

current state or choice set is directly modified by previous choices or previously encountered 

attributes. One difficulty with this approach is the potential endogeneity that might arise as a 

result of the error term being correlated with some of the co-variates. The use of lagged 

endogenous variables to model habits is avoided in Adamowicz and Swait (2013) through a 
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two stage decision process. In their model, the higher level decision involves a choice from 

one of various decision strategies. These decision strategies correspond to: (i) randomly 

choosing any alternative that is different from the last alternative chosen (pure variety 

seeking heuristic with minimum effort); (ii) repeating the choice of the same alternative again 

in order to minimise cognitive effort (habitual behaviour); or (iii) conducting a full evaluation 

of all products based on attributes and prices (utility maximisation in a fully compensatory 

sense). In their approach, tastes, as reflected in the utility function, are constant over time and 

utility is stable, in the sense that the evaluation of an alternative is not influenced by simple 

cumulative experience with an alternative. 

 

The second stage of the decision process is the evaluation of alternatives conditioned on the 

decision strategy of the first stage. Past choice behaviour influences the higher level decision 

on which decision strategy to adopt, but does not directly affect the evaluation of the 

alternatives themselves. Consider first the fully evaluative strategy. The expected value of the 

maximum utility from a set of alternatives can be summarised as the log-sum or inclusive 

value ln
jV

s

j s

I e


   (Ben‐Akiva and Lerman, 1985). Whilst the benefit of pursuing the full 

evaluation strategy in the current choice task is a function of its log-sum value, Adamowicz 

and Swait (2013) suggest that because decision makers are cognitive misers, they do not use 

s
I  in deciding whether the full evaluation strategy is worthwhile or not, as the proper 

assessment of this benefit requires the full evaluation of all alternatives. Instead, it is assumed 

that people use 
1s

I


which is the log-sum value from the prior choice task to naively forecast

s
I .  

 

Given that the full evaluation strategy is likely to require some cognitive resources, 

Adamowicz and Swait (2013) assume that the utility of the full evaluation strategy takes the 

form
1FE s

V I 


  , where θ represents the net effect of the cognitive processing costs of 

undertaking full evaluation and the utility of knowing that the “best” option has been chosen 

and that all available alternatives have been fully evaluated. The use of 
1s

I


is not without its 

difficulties however, as the computation of 
1s

I


assumes that respondents make a full 

evaluation of all alternatives even if the decision strategy used previously was something 

other than full evaluation. 
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The utility of the pure habitual decision making strategy is given by the utility of the previous 

choice, so that
1H s

V V


 .
H

V does not include a component for processing cost because by 

assumption, the pure habitual strategy requires low cognitive effort.  

 

For the variety seeking strategy, Adamowicz and Swait (2013) suggest that a simplifying 

heuristic that can be used to approximate this decision rule is for respondents to make a 

random choice from all alternatives in the current choice set but excluding the alternative 

chosen in the previous period. This strategy eventually provides a diversity of choice 

outcomes which satisfies the desire for variety. The variety seeking strategy is also 

differentiated from the full evaluation strategy due to the very parsimonious use of 

information, needing only the prior choice to be known. Nevertheless, in terms of modelling 

the utility of the variety seeking strategy, certain aspects of the model are borrowed from the 

full evaluation strategy model, primarily, that the benefit of adopting pure variety‐seeking is 

the maximum expected utility from the previous set of alternatives excluding the alternative 

that was chosen.  

 

More formally, for the variety seeking strategy,
1

*

ln( exp( ))
s j

j j

I V




   , where j* denotes the 

alternative that was previously chosen. Because choice is assumed to be random, all the 

alternatives *j j appear to have equal utility from the decision maker‟s perspective, hence 

it may be assumed that j
V V and 

1

*

ln( exp( ))
s

j j

I V




   . This assumption of equal utility 

reduces the informational processing load that is required of respondents. Finally, a constant 

γ is added to reflect the net effect between a “variety premium” and the disutility of knowing 

that the random choice may generate an undesirable outcome. In summary, the observed 

utility in the variety seeking strategy is
1VS s

V I 

  . Since 

1s
I


 collapses to a constant 

because of the constant term ,V  Adamowicz and Swait (2013) are only able to identify one 

overall term that captures the net utility of variety seeking relative to the other decision 

strategies. 

 

When applied to a dataset of routine and repeated purchases of catsup and yoghurt over time, 

Adamowicz and Swait (2013) find that their proposed decision strategy model is preferred 
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over a state dependence model on the basis of information criteria (AIC and BIC) and also on 

the plausibility of direct price elasticities. Among the three decision strategies, the highest 

propensity is reserved for the fully evaluative model, but the propensity for the habitual 

strategy is not insignificant either. The purchase behaviour of catsup seems to favour the 

habitual model quite highly, possibly due to catsup being consumed and replenished at a 

lower rate and also due to there being less flavour variations in catsup and therefore, a 

smaller choice set to choose from. This means that price has very little effect on catsup 

choice. By not correcting for habit persistence where it is more likely, Adamowicz and Swait 

(2013) argue that the standard state dependence model leads to an over-prediction of price 

elasticity relative to their proposed model. 

 

2.9 ATTRIBUTE LEVEL EDITING 

 

Another way of linking the attribute levels in the preceding choice set to the attributes in the 

current choice set involves a just noticeable difference heuristic (Cantillo et al., 2006). This 

heuristic may also be interpreted as an avenue for respondents to edit the attribute levels 

presented to them. A change in the attribute level from choice task 1s  to choice task s is 

assumed to be perceptible to the respondent if the magnitude of the change in the attribute 

levels of attribute k exceeds a certain threshold, i.e., 
, , , 1nk s nk s nk s nk

X X X 


    , for non-

negative threshold values δnk of attribute k for respondent n. Like several of the threshold 

formulations described earlier, thresholds can be assumed to be individual-specific, randomly 

distributed across the population, and may also depend on socio-demographic characteristics. 

 

Cantillo et al. (2006) hypothesise that respondents only perceive the part of the attribute level 

change that is bigger than the threshold, as in Equation (2.29) below:  

 

 
, 1

( ) max( , 0)
jnks jnk s jnks jnks nk

X X sgn X X 


      (2.29) 

 

If m out of the K attributes are associated with a perception threshold, the modelled 

component of utility can be written in Equation (2.30) as: 
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(2.30) 

 

To complete the model, Cantillo et al. (2006) assume that 
nk

  can be expressed as a 

proportion of 
, 1njk s

X


 so that  
, 1

( )
nk njk s k nk

X  


  , where 
k

  is the expected perceived 

value that is allowed to vary by individual characteristics and 
nk

  represents individual 

deviations from the perceived value following a probability density function with mean zero 

and variance
2


 . If multiple perception thresholds are considered in the model, then a joint 

density function is required. In their empirical application, since there is no theory to 

determine which attribute is likely to be threshold constrained, Cantillo et al. (2006) test 

every attribute modelled in the utility function against a threshold constrained assumption 

until the best model fit is obtained. Applying this model to a route-choice stated preference 

survey for car trips, and for the thresholds, Cantillo et al. (2006) conclude that a threshold 

exists for the travel time attribute but not for the cost or variability attribute. A threshold 

model for travel time significantly improves the log-likelihood of the model compared to the 

reference MNL model, with substantial increases in both the coefficients for travel time and 

cost. These parameter estimates imply a range of values of travel time savings which are on 

average lower compared to the travel time benefits obtained from a traditional MNL model. 

 

Cantillo et al.(2006)‟s just noticeable difference heuristic provides one way of allowing 

respondents to modify the attribute values presented to them in a particular choice task, 

thereby relaxing the frequently maintained assumption in most choice models that 

respondents take the attribute levels as given. In applications where variability matters, for 

example, in transport where both travel times and variability of travel times are important 

determinants of choice, the travel time and the probability attributes may themselves be 

changed or edited by the respondent, with the magnitude of the edit possibly depending on 

the variability attribute and any associated threshold. In the rank dependent utility model of 

Hensher and Li (2012), where one of three possible outcomes (early, on time or late arrival) 
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in a risky choice situation will occur, the decision weight associated with outcome m of is not 

solely based on the objective probability of occurrence itself, but is also in part determined by 

some non-linear transformation of the cumulative probability; the latter being dependent on 

the rank ordering of all possible outcomes. This transformation, which is another form of 

editing, allows low objective probabilities to be overweighted and high objective probabilities 

to be underweighted in decision making. In this model, the utility for an alternative is 

assumed to be dependent on the transformed travel time that is associated with each of these 

m outcomes.  

 

More specifically, Hensher and Li (2012) assume that the non linear transformation of the 

objective probabilities follows a probability weighting function proposed by Tversky and 

Kahneman (1992). This function, called ( )w p , is given by Equation (2.31): 

 

 1
( )

(1 )

m

m m

p
w p
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(2.31) 

 

Ranking outcomes from the least desired to the most desired, the decision weights ( )
m

p  are 

given by Equation (2.32): 

 

 
1 1 1 1

( ) ( ... ) ( ... )
m m m M m M
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       for 1, ..., 1m M   and 

( ) ( )
M M

p w p   
(2.32) 

 

The part-utility for an attribute k which can take on m different outcomes is then represented 

by the following Equation (2.33): 

 

 

1

( ) ( ) ( )

M

m

k m k

m

U X p U X


   (2.33) 

 

For the assumed functional specification of w(p), Hensher and Li (2012) find that the 

estimated curvature parameter γ leads to a convex probability weighting curve. This means 

that the decision weight of the most desired outcome, which is on time arrival, is smaller 

compared to its objective probability. The decision weights of the less desired outcomes 
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(early or late arrivals) are higher than their associated objective probabilities. Respondents 

may therefore be described as conservative in terms of their beliefs regarding the likelihood 

of on time arrivals. 

 

2.10 OTHER HEURISTICS 

 

Heterogeneity in decision processes may be inferred from observed choice outcomes by 

directly embedding various heuristics into the modelled component of utility functions in 

latent class or probabilistic decision process models (Hensher and Collins, 2011; Hess et al., 

2012; Hensher and Greene, 2010; McNair et al., 2012; Scarpa et al., 2009). In transport 

applications, these models have been used to test the heuristics of common-metric attribute 

aggregation, attribute non-attendance and decision rules like majority of confirming 

dimensions (which can be considered a form of editing) to explain choice in the context of a 

toll road/non toll road alternative (Hensher, 2010; Hensher and Greene, 2010; Hensher and 

Collins, 2011).  

 

2.10.1 Lexicography and Elimination-by-Aspects 

 

By means of the latent class approach, Hess et al. (2012) model the lexicographic and EBA 

decision rules. This represents a starting point that differs from the approach of Swait (2009). 

In Swait (2009), all respondents are assumed to be homogenous in the sense that the same 

decision rule is used in evaluating alternatives; heterogeneity in the treatment of alternatives 

comes about as a result of individual-specific thresholds. In contrast, the latent class model or 

the probabilistic decision process model assumes heterogeneity in the decision processes of 

the sample of respondents and hence potentially very different model structures in each latent 

class. 

 

Hess et al. (2012) exploit the knowledge that (apparent) lexicographic behaviour is easier to 

spot in a two attribute choice task (travel time and cost) and assume that respondents who 

always choose the fastest travel time are lexicographic on travel time and those who always 

choose the lowest cost alternative are lexicographic on cost. Hess et al. (2012) find that 

including the two lexicographic models lead to an improvement in fit compared to the simple 

MNL and MMNL models. More significantly, they find that including the lexicographic 

classes reduces the random taste heterogeneity that is retrieved from a pure MMNL model. It 
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appears that non-trading behaviour and extreme sensitivities are best modelled by explicitly 

specifying a lexicographic model structure rather than by requiring a random taste parameter 

to explain non trading effects through an extreme tail on its distribution. 

 

In modelling the EBA heuristic, Hess et al. (2012) encounter the usual challenge that in the 

absence of data to specify the kind of EBA decision rule that is being used, some plausible 

EBA rules have to be assumed. In a choice experiment involving rail travel behaviour, with 

the alternatives described on the basis of two continuous variables (travel time and fare) and 

three other attributes that are described in terms of being present/absent, Hess et al. (2012) 

assume the following four EBA rules:  

 

EBA1: Eliminate the worst (for the considered attribute) of any remaining alternatives at a 

given stage; 

 

EBA2: Eliminate all but the best (for the considered attribute), equating to a dominance based 

approach; 

 

EBA3: Eliminate all options that are 10 minutes slower than the reference trip, or $0.50 more 

expensive when using fare (depending on which attribute is used as a basis for elimination); 

and 

 

EBA4: Eliminate an alternative if the time or fare is worse than that for the reference trip 

(again depending on which attribute is used as the basis for elimination). 

 

Hess et al. (2012) consider a choice experiment with five different aspects
1 2 3 4 5

{ , , , , }k k k k k , 

such that under an EBA heuristic, if each aspect is associated with weight 
1 2 5
, , ..., ,w w w  then 

the probability that an elimination ordering is
1 2 3 4 5

{ , , , , }k k k k k is equal to: 
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 (2.34) 

 

With a given elimination ordering
1 2 3 4 5

{ , , , , }k k k k k , the EBA heuristic states that alternatives 
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which do not possess aspect 1 are first eliminated. Remaining alternatives are eliminated on 

the basis of aspect 2 and so on until one alternative remains. If this remaining alternative 

coincides with the actual choice made by the respondent, then Pns = 1, otherwise Pns = 0. In 

cases where more than one alternative remain after all aspects have been cycled through, the 

remaining alternatives are given an equal probability of being chosen. The unconditional 

probability of observing the actual sequence of choices is the weighted average across all 

possible elimination orderings: 

 

 5

, , , ,

1 , , , , , ,

n a b c d e ns

a b a c b a d c b a e d c b a s

P p P
    

        (2.35) 

 

By estimating four different latent class models, with each model comprising a dual class 

structure of an MNL rule and one of the four EBA rules, Hess et al. (2012) find that each of 

the latent class models embedding the EBA rule outperforms the standard MNL model in 

terms of goodness of fit, despite the MNL part of the model still accounting for the majority 

share of the class probabilities. The EBA2 rule provides the best model fit. Interestingly, 

EBA2 coincides with one of Suzuki‟s (2007) assumed decision rules on how an alternative 

may be retained for further consideration in a two-step model.  

 

In a latent class model of MMNL and EBA2, Hess et al. (2012) find an across-the-board 

increase in the mean values of each of the four WTP measures, compared to the pure MMNL 

model, and a reduction in the degree of heterogeneity in the WTP measures. This result 

indicates that the EBA2 rule has a role to play in explaining a portion of heterogeneity that 

was previously ascribed to random taste variance in the simple MMNL model. Interestingly, 

Hensher et al. (2012a) also come to a similar conclusion when they observe that using a 

random parameter approach might confound with attribute processing, and so it might be 

preferable to account for attribute processing using fixed parameters in discrete latent classes 

rather than to use continuously distributed random parameters and ignore attribute processing 

altogether. The overall conclusion from the research is that accounting for decision process 

heterogeneity in latent classes – that is, allowing heuristic use to vary by subgroups of 

respondents (up to a probability) – leads to improvements in model fits compared to the 

standard multinomial logit model, and where assessed, the mixed logit model based on a 

standard utility specification.  
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2.10.2 Common Metric Attribute Aggregation  

 

To model the incidence of common metric attribute aggregation, Hensher (2010) assumes 

that a threshold exists such that attribute aggregation occurs if the distance between common 

metric attributes is smaller than the threshold. More formally, assuming that 
1

X and 
2

X are 

the attributes with a common metric, then 
j

V may be conditioned in Equation (2.36) as 

follows: 
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 (2.36) 

 

The parameter α, which is assumed to take a random distribution in the population, is the 

threshold distance that determines if common metric attributes are aggregated or not. 

Recalling the earlier discussion on the similarity effect in Section 2.6, this formulation for Vj 

intuitively captures the notion of similarity, so that the heuristic in this case is the rule that 

common metric attributes whose values are close enough to each other are indistinguishable. 

Hensher (2010) assumes an exponential distribution for α, such that: 

 

 2

1 2( )2

1 2
Pr(  )  = Pr( ( ) ) 1
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    and 

    
2

1 2( )2

1 2
Pr(  )  = Pr( ( ) )
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attribute aggregation X X e




 
             

(2.37) 

 

Hensher (2010) argues that the exponential distribution is a good choice for this model as it 

has a large mass near zero which allows for the sample to behave as standard optimisers in a 

large fraction of the choice sets while the tail allows for the relatively less frequent 

occurrence of attribute aggregation. Recalling the earlier discussion in Section 2.2 on how the 

properties of the choice task can influence the choice of heuristic, note that the probability of 

attribute aggregation/disaggregation is a function of a choice task property, which is the 

squared difference in attribute levels
1

X and
2

X , and it therefore follows that this probability 

will vary within the same respondent as long as 
2

1 2
( )X X is not constant. The unconditional 

utility is simply given by Equation (2.38): 
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2 2 2 2

1 2 1 2 1 2 1 2
( | ( ) ) ( ( ) ) ( | ( ) ) ( ( ) )

j j j
V V X X Pr X X V X X Pr X X            

 
(2.38) 

 

Estimating this model, Hensher (2010) finds that when the common metric attribute 

aggregation rule is applied, the mean value of travel time savings is higher than in a 

traditional MNL model. 

 

2.10.3 Majority of Confirming Dimensions and Attribute Non-Attendance 

 

Hensher and Collins (2011) operationalise the majority of confirming dimensions rule by 

identifying, for each attribute, the attribute level that is the best in the choice set (no ties 

allowed) and then taking the count of the number of „best‟ attributes for each alternative. This 

variable is entered as an additional component in the utility function. Hensher and Collins 

(2011) find that the parameter on this variable is highly significant and positive in sign, so 

that as the number of best attributes increases in the alternative, that alternative is more likely 

to be chosen. However, on the value of travel time estimates, no statistical difference is 

observed between the standard MNL model and the MNL model plus the majority of 

confirming dimensions rule.  

 

However, Hensher and Collins (2011) find a significant improvement in model fit between a 

model that takes respondent stated attribute non-attendance into account versus a model that 

ignores non-attendance completely (i.e., assumes all attributes are attended to, regardless of 

what respondents say). A further improvement is obtained when the majority of confirming 

dimensions rule is re-interpreted to account only for those attributes that are attended to. 

Where the estimates for the value of travel time saving are concerned, there is a significant 

difference between models that embed attribute non-attendance and models that do not. This 

suggests that for policy applications which require the use of these outputs, it would be 

preferable to account for potential attribute non-attendance in the model. 

 

Fundamentally, attribute non attendance implies the existence of a subset of attributes for 

which the marginal rate of substitution is not computable, as there is no trade-off between 

attributes in the neoclassical economic sense. For non market valuation, no relative implicit 

price can be obtained for respondents who do not make such trade-offs. There is a danger that 
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biased WTP estimates are obtained when pooling respondents who fully attend to all 

attributes with respondents who ignore some attributes. Accordingly, Scarpa et al. (2009) 

advocate the use of equality constrained latent class models to operationalise attribute non-

attendance, which is one way of inferring and accounting for attribute non-attendance when 

data on self reported attribute non attendance are not available. In these models, latent classes 

are specified with zero utility weights for selected attributes assumed not attended to, while 

the taste parameters for the attributes assumed attended to are required take the same value 

across classes. Scarpa et al. (2009) report evidence showing that the incidence of respondents 

attending to all attributes is very low – in the order of less than 0.1 – and that most 

respondents seem to ignore at least two attributes when making their decisions. In more 

recent applications, such as Hensher et al. (2012a), the equality constraint assumption is 

relaxed and parameter heterogeneity within and across various types of attribute processing 

rules may be observed. 

 

In instances where supplementary questions are a part of the survey instrument, directly 

embedding self-stated responses to questions of whether certain attributes are ignored has 

further improved the explanatory power of the models and the efficiency of marginal WTP 

estimates. For example, Scarpa et al. (2010) measure attribute attendance and non attendance 

at the level of the choice task by asking respondents at the end of each choice task whether an 

attribute was attended to or not. A measure of serial non attendance can be constructed if 

there is consistent non-attendance for a particular attribute throughout the sequence of choice 

tasks. From the data collected, Scarpa et al. (2010) observe that choice task attribute non 

attendance is far more prevalent than serial non-attendance, indicating to the importance of 

monitoring such behaviour at the choice task level for multi-attribute choices. If there is 

within-respondent variability in the incidence of attribute attendance and non-attendance 

during the course of the choice experiment, asking respondents one question on 

attendance/non attendance at the end of the survey, as is typically the case, may lead to over 

(or under) generalisation of the issue.  

 

Indeed, Scarpa et al. (2010) find that assuming only serial attendance/non attendance and 

disregarding intra-respondent variation in non-attendance leads to a worsening of fit 

compared to the conventional model which assumes all attributes are attended to. The best-

fitting specifications are provided by the model which accounts for choice task attribute non-

attendance statements. They also find that accounting for choice task attribute non-attendance 
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tends to lead to smaller WTP estimates than either assuming serial non-attendance or 

assuming full attendance. 

2.11 SUMMARY AND CONCLUDING REMARKS 

 

One of the main purposes of this chapter is to convincingly demonstrate that a significant 

amount of research has been undertaken in the discrete choice modelling literature towards 

modelling the contribution of decision heuristics and the influence of contextual effects in 

explaining choice behaviour. Much of this work is very recent and undoubtedly, a lot more 

work on the role of heuristics in explaining choice behaviour is currently in progress or is 

being planned.  

 

The empirical evidence consistently shows that embedding heuristic rules into the modelled 

component of utility leads to improved measures of fit. What this review chapter also shows 

is that in many cases, single heuristics are considered and compared against the standard 

RUM model. However, given the plethora of heuristics that can be called upon by 

respondents to aid their decision making, it may now be an opportune time to consider testing 

how multiple heuristics may be embedded in choice models. Modelling certain aspects of 

heterogeneity in decision rules might well complement the current research focus of 

modelling preference heterogeneity through more advanced discrete choice models such as 

the mixed multinomial logit.  

 

As a practical way forward, subsequent chapters of this thesis will advocate the use of 

mixture models, where multiple heuristics are weighted in a utility function, using weighting 

functions that depend on the socio-economic characteristics of the respondent and other 

choice context variables, including individual specific perceptions data, where available. 

These mixture models thus allow a certain degree of heterogeneity in the use of decision 

rules. Such an approach is especially relevant in testing cases such as the relative advantage 

model, where respondents‟ utility for a certain alternative are assumed to be a function of 

both inherent preference (predispositions) and constructed preferences which depend on the 

choice context. Rooderkerk et al. (2011) have pointed out that context dependent components 

may be added to the context free or context independent RUM component of the utility 

function, and a mixture model of heuristics can easily be seen as a natural extension of this 

work. 

 



 
 

64 
 

A related observation is that in contrast to prospect theory, there appears to be comparatively 

much less research done on the application of models of extremeness aversion (the 

compromise effect) and other choice set contextual components within the discrete choice 

literature in transportation. Only very recently has there been a nascent attempt at this 

(Chorus and Bierlaire, 2013). With the notable exception of existing work done using the 

RRM model, this lack of research into the extremeness aversion heuristic is all the more 

remarkable considering that authors in the management science and marketing fields have 

consistently identified these effects as important determinants of choice. Perhaps this 

heuristic has not attracted much research attention because of the limitations in discrete 

choice modelling software in estimating utility functions which are non-(additively) linear in 

the parameters and attributes. Fortunately, testing these heuristics is highly feasible even with 

existing datasets and with recently developed advances in modelling software. Another 

advantage of estimating extremeness aversion models is that compared to models which 

incorporates thresholds, no additional information on thresholds needs to be collected from 

respondents, nor do rules on thresholds need to be assumed and tested. Therefore, another 

objective of this thesis will be devoted to estimating and comparing models of extremeness 

aversion in the transportation stated choice context. 

 

In addition, much research in this area involves using the same dataset to estimate various 

models with decision heuristics embedded and comparing these to a standard model which is 

usually specified to be MNL, fully compensatory, linear-in-the-parameters and linear-in-the-

attributes. Again, there is comparatively less work done on testing the independence of 

heuristics across multiple datasets, in other words, testing if the heuristics that purportedly 

explain the data better in one dataset can do so likewise for other datasets. This line of inquiry 

would be especially pertinent for models which rely on additional data for identification 

(such as models using self-reported threshold data). Considering how some of these heuristics 

have a non-linear functional representation, it will be useful to have a better understanding of 

how general the use of such heuristics are, before starting on a data collection process or an 

estimation process that might be resource intensive. 

 

The heuristics that have been reviewed in this chapter have been developed and assessed 

within specific discrete choice modelling frameworks; however while the evidence is limited 

to static models, it does signal a need to consider incorporating the findings into other 

behavioural frameworks that incorporate choice model components such as activity-based 
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models and even model systems that allow for dynamic factors (learning, adaptation, habitual 

behaviour), and mental processes that have an important role in heuristic decision making. 

Wherever a utility expression is included in a model system, the evidence herein suggests that 

value might be added if new or alternative functional forms that capture a range of decision 

making rules or heuristics are specified. 

 

In a similar vein, the literature has observed that model outputs such as welfare estimates and 

marginal willingness to pay can be substantially different when the model departs from the 

standard assumptions about decision making. However, there is mixed evidence as to the 

direction of change to willingness to pay measures when heuristics are embedded into choice 

models. For example, some papers suggest an increase in the value of travel time savings 

when heuristics are modelled (e.g., Hensher, 2010), while others come to the opposite 

conclusion (e.g., Cantillo and Ortuzar, 2005). This is another research question that will be 

addressed in Chapter 5. 

 

To conclude this chapter, the main heuristics that have been discussed are summarised in 

Table 2.7. More importantly, Table 2.7 also lays out a roadmap for the empirical analysis in 

Chapter 5 in terms of the types of heuristics that are examined in this thesis. The three 

heuristics that will be discussed in greater detail are the majority of confirming dimensions 

rule, the extremeness aversion heuristic and the reference point revision. Before that takes 

place, some discussion of the methodology used in this thesis is presented in Chapter 3.  
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Table 2.7: Summary Table of Main Heuristics Discussed in Chapter 2 

Heuristic Brief Description Key References Examined in thesis? 

Satisficing Choose the first alternative whose 

every attribute meets an 

acceptability threshold 

Simon (1955) No 

Majority of Confirming 

Dimensions (MCD) 

Select the alternative that has the 

highest count of „best‟ attributes 

Russo and Dosher (1983) Yes 

Elimination-by-Aspects 

(EBA) 

Select an attribute based on some 

function of importance weight. 

Eliminate all alternatives whose 

attribute level fail to meet the 

threshold.  

Tversky (1972) No 

Lexicography Identify the most important 

attribute and select alternative with 

the „best‟ level in that attribute. 

Tversky (1969) No 

Extremeness Aversion 

Heuristic 

 

 

Compromise Effect 

 

 

 

 

Polarisation Effect 

 

Extreme alternatives – those with 

very good and very bad attributes 

– tend to be avoided. 

 

The compromise or in-between 

alternative has a higher probability 

of being selected. Postulated to be 

a result of loss aversion. 

 

One of the extreme alternatives 

tends to be selected over another 

extreme alternative. Can be 

considered to be an asymmetric 

form of extremeness aversion 

where respondent exhibits aversion 

to only a subset of attributes. 

Tversky and Simonson 

(1992); Simonson and 

Tversky (1993) 

Yes 

 

 

 

Yes 

 

 

 

Yes 

Extremeness Seeking 

Heuristic 

Extreme alternatives are preferred 

to the compromise. 

Gourville and Soman 

(2007) 

Yes, in relation to 

extremeness 

aversion 

Random Regret 

Minimisation 

Select an alternative to minimise 

negative emotion, where negative 

emotion is defined as the feeling of 

loss when a non-chosen alternative 

does better than the chosen 

alternative on some attribute. 

Chorus et al. (2008); 

Chorus (2010); Chorus 

(2012) 

Yes 
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Heuristic Brief Description Key References Examined in thesis? 

Prospect Theory Attributes are framed as gains and 

losses relative to a reference. 

People are aversive to losses. 

Kahneman and Tversky 

(1979) 

Not directly, but 

related to 

extremeness 

aversion. 

Reference Revision 

Heuristic 

The choice of a non status-quo 

alternative shifts the reference 

point and increases the probability 

of another non status-quo 

alternative being chosen in 

subsequent choice sets. 

DeShazo (2002); 

Hensher and Collins 

(2011) 

Yes 

Strategic 

Misrepresentation 

Withholding true preferences in 

the hope that the most preferred 

alternative, which was encountered 

in some previous choice set, will 

be implemented. 

McNair et al. (2012) No 

Value Learning Preferences are „discovered‟ and 

may be influenced by both the 

starting point and intervening 

attribute values. 

Bateman et al. (2008); 

McNair et al. (2011) 

No 

Attribute non-

attendance (ANA) 

Some attributes of an alternative 

are ignored in the decision process. 

Hensher (2010); Scarpa 

et al. (2009); Scarpa et 

al. (2010). 

No, but models 

discussed in 

Chapter 5 can be 

extended to include 

ANA. 
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CHAPTER 3   ECONOMETRIC METHODOLOGY 

 

3.1 INTRODUCTION 

 

This chapter discusses the methodology that will be used to test how the heuristics of interest 

identified in Chapter 2 perform as alternative decision rules of choice behaviour. The general 

data setting is first discussed in Section 3.2. Random utility theory and the multinomial logit 

(MNL) model are then introduced in Section 3.3, before more advanced logit models are 

discussed in Sections 3.4 and 3.5. Section 3.6 explains several methods of embedding 

multiple heuristics into discrete choice models, including the approach of using heuristic 

weighting functions. The final sections in this chapter are concerned with methods of model 

comparisons, in terms of model fit as well as post-estimation analyses of model output. 

 

3.2 NOMENCLATURE OF PREFERENCE DATA 

 

Broadly speaking, there are two classes of data which can be used in a study of individual 

preferences. Revealed preference (RP) data are collected from responses observed in an 

actual market setting, while stated preference (SP) data come from responses observed in an 

experimental setting. RP data collection might, for example, be interested in observing how a 

person actually travels from home to work, given knowledge of existing real world 

alternatives and their attribute levels. SP data on the other hand require respondents to state 

their preferences in response to some hypothetical scenarios. Regardless of whether the data 

is RP or SP, it is important to note that actual preferences are never directly obtained, but are 

inferred from information that is provided by either RP or SP data. 

 

The experimental setting in which SP data collection proceeds can be both an advantage and 

a disadvantage for the modeller. While hypothetical biases and predictive validity are always 

a concern, SP data can improve understanding of preferences, especially when RP data are 

inadequate. For example, SP data are particularly useful in analysing the response behaviour 

of a person who is confronted with both existing and new alternatives, since the latter are not 

present in RP data. SP data are also useful in cases where new attributes or new attribute 

levels of an existing alternative need to be considered.  
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This thesis is primarily concerned with the analysis of SP data. Even within the realm of SP 

data, several different preference elicitation methods may be used
4
. These methods include 

matching methods and conjoint analysis. Matching methods are frequently used in contingent 

valuations where respondents are asked to provide a number that will make them indifferent 

in some sense, for example, they may be asked to state their willingness to pay (i.e., give up 

income) in exchange for some good that they do not have. In conjoint analysis, respondents 

may be asked to rate or provide a complete ranking of the various treatment combinations of 

multi-attribute alternatives shown to them. These combinations will most likely involve 

different attribute levels so that the analyst can make meaningful statements on how 

respondents are trading off among attributes. However, Louviere et al. (2010) observe that in 

conjoint analysis, data are collected  

 

“in ways that cannot be analyzed to be consistent with neoclassical economic theory 

because ratings and attribute importance measures do not readily translate into 

choice or matching (e.g., direct expression of WTP) data, the primitives on which 

utility theory is based.” (Louviere et al., 2010, p. 61).  

 

Rather than conjoint analysis, the focus of the thesis will be on stated choice analysis (of SP 

data). In other words, the preference elicitation method used is the discrete choice experiment 

(DCE). Implied by its name, decision makers in a DCE are required to make some type of 

choice. A typical DCE always involves some hypothetical choice scenarios and researcher 

specified attributes and attribute levels which are systematically varied within and/or between 

respondents by means of an experimental design. Moreover, choices are discrete in the sense 

that there is a finite, countable set of alternatives from which the decision maker must make a 

choice. A DCE immediately assumes that the respondent will face at least two alternatives in 

all choice situations, so that choice is meaningful. According to Louviere et al. (2010), DCEs 

should not be viewed as a special case of conjoint analysis, but rather “DCEs are based on a 

long-standing, well-tested theory of choice behaviour that can take inter-linked behaviours 

                                                             
 

 

 

4
 Carson and Louviere (2011) describe the nomenclature of various SP elicitation methods in great detail. 
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into account. The theory … is called random utility theory (RUT)” (Louviere et al., 2010, p. 

62).  

 

Even within the genre of DCE itself, preference elicitation may proceed along several 

different pathways. For example, respondents may be asked to simply state their most 

preferred alternative from among all available alternatives on offer (used in the majority of 

studies), or their least preferred alternative, or what they consider the best and worst 

outcomes to be, the latter approach being applicable to DCEs where there are three or more 

alternatives in the choice set.  The preference elicitation approach used in all the datasets 

analysed in this thesis is the one that requires each respondent to state only the best 

alternative for him/her, among all the alternatives available in the choice set. The analysis of 

such „best only‟ data is supported by a large body of well developed theory, described in 

Section 3.3 and Section 3.4. 

 

The DCE used in the empirical application can be labelled or unlabelled. In a labelled choice 

experiment, the title of the alternative conveys some information to the respondent, such as 

„car‟, „bus‟ and „train‟. In an unlabelled experiment, the title of an alternative, such as 

„alternative A‟ or „alternative B‟ does not convey any such information, except perhaps the 

order in which the collection of attributes occur. The datasets in this thesis all relate to 

unlabelled experiments. A fuller description of the data used in the thesis can be found in 

Chapter 4.  

 

3.3 RANDOM UTILITY THEORY (RUT) AND THE MULTINOMIAL LOGIT 

(MNL) MODEL 

 

Respondents in a DCE will encounter sets of alternatives, known as choice sets, from which 

some choice must be made. These choice sets will contain a fixed number of mutually 

exclusive alternatives. Random utility theory (RUT) assumes that for each of these choice 

alternatives, there is some latent construct known as “utility” that is known to the decision 

maker, but not to the researcher. The overall utility of an alternative j may be denoted by Uj.  

 

Technically, Uj may vary by respondent n and choice set s; however, for the time being, the n 

and s subscripts are suppressed for notational simplicity. RUT further assumes that this 

overall level of utility may be decomposed into an „observable‟ and an „unobservable‟ or 
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„random‟ component. The observed component of utility may be denoted by 
j

V  and the 

unobserved component by
j

 . Louviere et al. (2010) describe 
j

V  as comprising “attributes 

[that explain] differences in choice alternatives and covariates [that explain] differences in 

individuals‟ choices.” (Louviere et al., 2010, p. 62)  On the other hand, 
j

 may 

 

“comprise all unidentified factors that impact choices. Psychologists further assume 

that individuals are imperfect measurement devices; so, random components also can 

include factors reflecting variability and differences in choices associated with 

individuals and not choice options per se.” (Louviere et al., 2010, p. 62) 

 

Typically, it is assumed that 
j

V and 
j

  are independent and additive, such that 
j j j

U V   . 

This assumption has a long history in discrete choice modelling (see for example, McFadden 

(1974)) and all the indirect utility functions estimated in this thesis will assume this 

independent and additive form between 
j

V  and 
j

 . 

 

To the researcher at least, since utilities are inherently a stochastic construct because of the 

unobserved component
j

 , it is meaningful only to speak of the probability that a respondent 

chooses alternative j in choice set s. Since the „best outcome‟ question is the one on view, it is 

reasonable to conclude, under random utility maximisation based on the axioms of choice 

theory, that the alternative chosen provides the highest utility of all alternatives in the choice 

set. Denoting alternatives in the choice set by ,j  ( )P j , which is the probability that a 

particular alternative j is chosen, is given by Equation (3.1): 

 

 ( ) [ m ax ( )] [ m ax ( )]
j j j j j j j j j j

P j P U U P V V 
     

       (3.1) 

 

RUT gives rise to probabilistic discrete choice models. Since 
j

  is unobserved, any number 

of assumptions can be made about its distribution, but a commonly used assumption is that 

j
  is independent and identically distributed (i.i.d.) standard Extreme Value Type I. Hence, 

j
  has a cumulative density function given by Equation (3.2): 
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 ( ) exp( )





 
j

j
F e  (3.2) 

 

The i.i.d. Extreme Value Type I distribution is convenient since it results in a closed form 

solution for ( )P j .  Following Louviere et al. (2000, pp. 45 - 46), ( )P j  may be obtained as 

follows. From Equation (3.1), 

 

 ( ) [ ]  ,
j j j j

P j P V V j s j j 
 

         (3.3) 

 

For a given value of 
j

 , say 
j

b  and using the i.i.d. extreme value type I assumption for 

,
j

  

 

 ( ) ( )
( | ) exp( ) exp( )

j j j jb V V b V V

j

j sj s

j jj j

P j b e e
      

 
 

      
(3.4) 

 

The probability density function of 
j

  is given by: 

 ( ) exp( )f e e
 


 

   (3.5) 

 

Hence, the unconditional probability ( )P j  is given by the integral of ( | )
j

P j b   weighted 

by its density: 

 

 ( )

( )

( )

( ) exp( ) ( )

exp( ) exp( )

exp( ) exp( )

j j

j j

j j

b V V

j s

j j

b V V

j s

V Vb

j s

P j e f b db

e b db

e e b db







   





   




 




 

  

  







 (3.6) 

 

Let exp( )z b  and 
( )j jV V

j s

a e
 



  . Therefore, ln( )b z  and 
1

db dz
z

   

Applying the substitution to the integrand and changing the limits of integration, 
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 0

0

0

1
( ) ( )

1 1

za

za

za

P j ze dz
z

e dz

e
a a












 



  



  (3.7) 

 

By substituting ( )j jV V

j s

a e
 



  back into the equation and re-arranging, the multinomial logit 

(MNL) model is obtained in Equation (3.8): 

 

 exp( )
( )

exp( )

j

j

j s

V
P j

V







 

(3.8) 

 

3.4 MORE ON THE OBSERVED COMPONENT OF UTILITY 

 

This section elaborates on some ways to model and estimate 
j

V , which is the observable 

component of utility. The notion that an alternative is essentially a bundle of attributes is a 

useful starting point and hence, following Lancaster (1966), the link from the attributes and 

the attribute levels to the utility of an alternative is often made. As alluded to in Chapter 2, 

the alternative decision rules or heuristics that are modelled in 
j

V will imply a different 

specification for 
j

V . A more thorough comparison and discussion of the various candidate 

functional definitions of 
j

V  is left aside until Chapter 5. 

 

A choice alternative in a DCE is described by any number of attributes. For example, 

attributes that describe a public transport alternative might include its one way fare, its 

average travel time, its crowding level and its frequency. Now, assume that each alternative is 

described by k attributes. Let the attribute level of attribute k in alternative j be denoted by 

Xjk. Covariates that may be entered into the observed component of utility include data such 

as the socio economic characteristics of the respondent. The value of each of the l covariates 

may be represented by a vector 
l

z . Hence, 
j

V  can be represented by some function of the 

attribute levels and covariates, so that 
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( , ; , )
j jk l jk l

V h X z β δ  

where 

jk
β  is a vector of coefficients associated with the attribute vector 

jk
X   

l
δ  is a vector of coefficients associated with the covariate vector 

l
z  

 

The function h need not be linear, although in practice, 
j

V  is commonly parameterised by 

some linear additive function such as in Equation (3.9): 

 

 
j jk jk jl l

k l

V X Z     (3.9) 

 

The parameters of the model may be obtained by maximum likelihood estimation (MLE). 

Simply put, MLE searches for values of the parameters for which the observed sample data 

are most likely to have occurred. Let the parameters to be estimated be denoted generically 

by θ. The likelihood function in the case of the MNL is then  

 

 
,

( ) ( | ) ,
nsjy

nsj nsj n

n s j

L P θ X z θ  (3.10) 

where 1
nsj

y  if alternative j in choice set s was selected by respondent n and 0 otherwise. 

 

It is usual to work with the log-likelihood function since the value of θ that maximises the 

likelihood function will also maximise the log-likelihood function. Hence, Equation (3.11) 

follows: 

 

 
,

( ) ln[ ( | )]
nsj nsj nsj n

n s j

LL y P   θ x z θ  (3.11) 

 

To maximise the value of the log-likelihood function, it is necessary for ˆ
M L E

θ to satisfy the 

following first order conditions: 

 

 

ˆ

( )

M LE

L L








θ

θ
0  (3.12) 
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For ( )LL θ to be at a local maximum rather than a local minimum when ˆ
M L E

θ θ , the second 

order conditions must also be satisfied, that is, the Hessian matrix must be negative 

semidefinite when evaluated at  ˆ
M LE

θ . The MNL model with a linear representation for 
j

V

leads to a globally concave log-likelihood function and the existence and uniqueness of the 

MLE estimator is therefore guaranteed (McFadden, 1974). 

 

3.5 THE NON-LINEAR RANDOM PARAMETERS LOGIT MODEL 

 

In many cases, the heuristics tested in this thesis will require 
j

V to be specified as a non-linear 

function in the attributes and respondent characteristics, hence necessitating the use of a non 

linear logit model. Some of these functional forms have been alluded to earlier in Chapter 2, 

and will be more extensively discussed in the relevant empirical sections of Chapter 5.  

 

The non-linear model may also be extended to account for random parameters. The subscript 

n for each respondent is now introduced which means that the set of parameters θ can 

potentially vary across respondents. Assuming each respondent n is faced with Sn choice sets. 

For any respondent n in each choice situation s, the more general model for the conditional 

probability, assuming non linear utility functions, is given by Equation (3.13): 

 

 '

'

exp[ ( , , )]
( | )

exp[ ( , , )]

nsj n

ns n

nsj n

j s

h
P j v

h






n

n

x z θ

x z θ
 

(3.13) 

where 

 n

n

 
  
 

β
θ

δ
 

n n n n n
       β β z Γv β z η  

n n n
   δ δ Γv δ η  

 is the matrix of structural parameters on the observed heterogeneity 

n
v ~ with mean vector 0 and covariance matrix I 

Γ is a full unrestricted lower triangular matrix 
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The probabilities ( | )
ns n

P j v have to be obtained by simulated replications. Let the joint 

conditional probability of any replication r be given by 

 

 
1

( ; ) [ | ( )]
nS

n ns n
s

P j r P j r


 v  (3.14) 

 

The unconditional choice probability ( )
n

P j is obtained by simulating the conditional 

probabilities ( ; )
ns

P j r  r times over the distribution ( | , , , )
n n

f η z Ψ Γ θ : 

 

 1
( ) ( ; )

n n

r

P j P j r
R

   (3.15) 

 

so that the simulated log-likelihood function is given by 

 

 ( , , | , ) log ( )S n

n

LL P jθ Ψ Γ x z  (3.16) 

 

Simulation methods vary but one common method is to use intelligent or pseudo random 

draws such as Halton sequences to ensure more uniform coverage over the distribution 

(Train, 1999). 

 

Denote by vec(ψ) and vec() the column vectors formed by stacking the rows of ψ and , 

respectively.  Then, 

 

 

 

 

 

1 1

[ , , ( )] [ , , ( )]          

log ( , , | , , ) 1 1
( ; ) [ , , ( )] [ , , ( )]

( )

[ , , ( )] [ , , ( )]( )

( )

n

j

R S
S

n j nr s
nn

j n

n s r n s r

LL
P j r n s r n s r

P j R

n s r n s rvec

vec

 

 
 


   
  
       

 
 

  

g g

θ Ψ Γ X y z
g g z

θ

g g vΨ

Γ

 

(3.17) 

where  

gj[n,s,(r)]  =  
[ , , ( )]

( )

j nsj n n

n

h r

r





x z θ

θ
       

 and   

1
[ , , ( )] [ | ( )] [ , , ( )]

nsJ

ns n jj
n s r P j r n s r


 g v g .    
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For optimisation, the derivatives of the simulated log likelihood function must be simulated 

as well since the heterogeneity in θ needs to be averaged out.  

  

3.6 METHODS OF EMBEDDING MULTIPLE HEURISTICS IN CHOICE 

MODELS 

3.6.1 The Probabilistic Decision Process (PDP) Model 

  

If it is believed that there is heterogeneity in decision processes, i.e., different heuristics are 

employed by different respondents, one possible approach is to appeal to probabilistic 

decision process (PDP) models where the functional form of the heuristic under consideration 

is expressed through the utility expressions in each class. The PDP model is essentially a 

special case of a latent class model. Work by Hensher and Collins (2011), Hess et al. (2012) 

and McNair et al. (2012) fall into this category. Typically in such models, each latent class is 

thought to represent one heuristic. As a matter of interpretation, the modeller is implicitly 

assuming that each respondent is relying only on one heuristic in the decision process. 

However, what that heuristic might be for each individual can only be known up to a 

probability, which is the estimated class membership.  

 

It will be appropriate to describe the PDP model in some detail as there will be scope to apply 

the PDP model to a study of multiple heuristics in Chapter 5. As mentioned, in the PDP 

(latent class) model, heterogeneity in the decision rules may be handled via discrete 

distributions of the parameters where each class represents a decision process. Within each of 

these classes, parameters and choice probabilities are assumed to be generated by MNL 

models. Conditional on a decision process d, 

 

nsj d nsj d nsj d
U V  

| | |
,  where 

nsj d


|
~ i.i.d. EV type I. 

 

Hence, 
nsj d

P
|

follows the logit probability defined earlier. 

 

 
|

|

|

exp( )

exp( )








nsj d

nsj d

nsj d

j s

V
P

V
 

(3.18) 
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Since the decision process is not directly observed, decision processes may only be specified 

up to a probability. This probability specification makes use of the MNL logit form. 

 

 

1

exp( )
Pr(decision process )

exp( )

d

D

dd

d





 


 (3.19) 

 

In Equation (3.19), the decision process-specific probabilities are specified as a set of fixed 

constants, with one of these constants set to zero. However, if required, the decision process 

probabilities themselves may be considered as functions of respondent specific 

characteristics.  

 

For a given respondent n, the probability of choosing alternative j in choice set s is the 

expected value of 
|nsj d

P over all the decision process probabilities, that is,  

 

 
|1

|1

1

( ) Pr(decision process = d)

exp( )

exp( )

D

ns nsj dd

D
d

nsj dDd

dd

P j P

P



















 (3.20) 

 

In a panel dataset where multiple observations are captured per respondent, the probability of 

observing a sequence of choices for some alternative j in choice sets 1s  through to 
n

s S is  

 

 

( 1) ( 2 ) ( ) |1

|1

1

( , , ..., ) P r(decision process =  d)

exp( )

exp( )

n

D

n s s s S nsj dd
s

D
d

nsj dDd
s

dd

P j j j P

P




   





 
  

 



 

 


 (3.21) 

 

 

3.6.2 The Hybrid RRM-RUM Model 

 

Another approach of invoking multiple heuristics in a utility function is to assume 

heterogeneity in the way subsets of attributes of an alternative are processed by the 

respondents. The hybrid RRM-RUM model advocated by Chorus et al. (2013) is an example 

of this approach. In these hybrid RRM/linear additive RUM models, respondents are assumed 

to process a subset of attributes according to RRM, and the remaining attributes of the 
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alternatives according to a linear additive processing rule. If it is assumed that attributes 1,..., 

m of alternative j are processed according to linear additive RUM and attributes m+1, ..., K 

are processed according to RRM, then the observed component of utility can be described by 

Equation (3.22): 

 

 
0 ,

1,..., , 1,...,

ln (1 exp( ))
j j jk jk j k j k jk jk

k m j s k m K

j j

V X X X   
 

   


        
(3.22) 

 

3.6.3 Heuristic Weighting Functions 

 

Finally, another suggested alternative to the latent class model approach that will be 

advocated in this thesis is to weight each heuristic directly in the utility function. Each 

heuristic, which can be given its own functional specification, can be embedded within the 

utility function for each alternative. By weighting each heuristic, this approach allocates the 

proportional contribution of each heuristic to overall utility, with the possibility of linking this 

share outcome to the characteristics of respondents and other possible contextual influences.  

 

In a model with a total of M heuristics, the weights of each heuristic, denoted by Wm, 

m=1,2,…,M can be given by means of an exponential function shown in Equation (3.23): 

 

 exp( ) m lm l

l

W z  (3.23) 

 

l
z  has been defined earlier and it denotes the value of variable l which is typically a socio-

economic variable or a variable describing context characteristics. 
lm

is a parameter weight 

that is allowed to vary according to each of the l variables and each of the m heuristics. To 

ensure identification of the model, it will be necessary to normalise, for every variable l, one


lm

. 

 

This multiple heuristics approach will be examined in Chapter 5 as a „mixture‟ of the standard 

fully compensatory, linear-in-the-parameters RUM decision rule in conjunction with the 

models for the extremeness aversion heuristic, such as the RAM model described in Chapter 

2.  
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3.7 MODEL COMPARISONS 

 

A key research question addressed by the empirical analysis in Chapter 5 relates to whether 

models of context dependent heuristics and models of multiple heuristics perform better than 

the standard linear additive, context independent utility specification. Therefore, statistical 

tests to distinguish between models are necessary and these are described in this section. 

 

3.7.1 Comparing Nested Models with the Likelihood Ratio Test 

 

When deciding which of two discrete choice models provide the better fit for the data, the 

likelihood ratio test may be used in cases where one of the models is nested in the other, that 

is, when one model is a restricted version of the other. 

 

Suppose there are two models, m = 1, 2, to be compared, which each model using Km 

parameters to explain the same choices. Model 1 is assumed to be nested in Model 2. Let LLm 

be the sample log-likelihood of model m at convergence. Under the null hypothesis that 

Model 1 is the correct specification, then the statistic
1 2

2( )LL LL  follows a
2

 distribution 

with degrees of freedom given by
2 1

K K . If this statistic is “large enough”, as defined by the 

five percent critical cut-off value, then the null hypothesis may be rejected and the 

unrestricted Model 2 can be said to be preferred to the restricted Model 1. 

 

3.7.2 Comparing Non-Nested Models with the Ben-Akiva and Swait (1986) Test  

 

Several statistical tests are available in cases where one of the models is not a restricted form 

of the other, that is, when model specifications are non-nested. In the case of several models 

of heuristics estimated in Chapter 5, functional specifications of the context dependent 

heuristics in the indirect utility function are not nests of each other. For non-nested models, 

two widely used tests are due to Ben-Akiva and Swait (1986) and Vuong (1989). However, in 

a series of Monte Carlo simulations, Strazzera et al. (2013) find that the Vuong test has much 

lower power compared to the Ben-Akiva and Swait test, implying that the Vuong test too 

often fails to reject the null of no differences in model when the alternative hypothesis is true. 
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With this in mind, the Ben-Akiva and Swait test is therefore used as the primary method of 

comparing non-nested models in this thesis. 

 

The Ben-Akiva and Swait test may be described as follows.  

 

Again, suppose there are two models, m = 1, 2, to be compared, with the difference this time 

being that Model 1 is not nested in Model 2. As before, denote by Km the number of 

parameters used by each model to explain the same choices. Define LL(0) as the log-

likelihood of the equal probabilities naïve model, that is, assuming that all parameters are 

zero and therefore choices are random. Again, let LLm be the sample log-likelihood of model 

m at convergence. Now define a goodness of fit measure, as in Equation (3.24): 

 

 2
1

(0)m

m m
LL K

LL



   (3.24) 

 

Assuming that model 2 has the better goodness-of-fit, i.e., 2 2

2 1
  , then Ben Akiva and 

Swait (1986) show that under the null hypothesis that Model 1 is the correct specification, the 

following asymptotic bound holds: 

 

  
2 1

2 2

2 1
Pr( ) 2 (0) ( )Z Z LL K K            (3.25) 

 

In Equation (3.25), Z is the difference in the goodness-of fitness measures between Model 2 

and Model 1 and it is assumed to be greater than zero. Φ is the standard normal cumulative 

distribution function.  

 

Equation (3.25) may be interpreted as describing an upper bound for the probability of 

erroneously choosing Model 2 when in fact Model 1 is the true specification. Using the 

conventional five percent significance level, the statistic 
2 1

2 (0) ( )Z LL K K      needs 

to be smaller than –1.64 in order to justify the rejection of the null hypothesis, that is, for 

Model 2 to be preferred to Model 1. 
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3.8 A PROCEDURE FOR ANALYSING NON-LINEAR FUNCTIONS OF 

PARAMETERS 

 

Typically, outputs of interest that are derived from discrete choice models include willingness 

to pay measures and calculations of elasticity. As the models will be estimated in utility 

space, these outputs are non-linear functions of the parameters and in the case of the 

extremeness aversion heuristic, where reference is made to the other attributes of competing 

alternatives in the choice set, outputs are non-linear in the sample data as well. As is well-

known, even in a simple linear additive model where the utility of an alternative, say a 

transport mode, is given by a price and time attribute such as
1 2j

V price tim e     , the 

marginal willingness to pay for a unit of travel time saved is non-linear and is equal to 2

1




. 

The delta method described below is a post-estimation procedure that may be used to analyse 

such non-linear functions, for example, to obtain standard errors of the functions of the 

parameters, where the parameters are estimated with some uncertainty. This procedure is 

used for where parameters are assumed to be fixed in the model. 

 

Suppose that i non-linear functions of the form ( )
i

 β are required. Let ( ) β denote the vector 

of these non-linear functions. Furthermore, let ci(b) be the sample estimate of ( )
i

 β . Denote 

by 
i

μ the set of partial derivatives 

 

( )
i





i

β
μ

β
 

 

i
μ may be estimated by inserting the parameter estimates b into the function defined by 

i
μ . 

Denote such estimates of 
i

μ by mi. Denoting by ̂  the estimated asymptotic variance-

covariance matrix ofβ , then the estimated asymptotic variance-covariance matrix of ( ) β is 

given by Equation (3.26): 

 

 ˆ ,  G Μ Σ Μ  (3.26) 

where the rows of Μ are given by mi. 
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Where the non-linear functions involve sample data, such that ( , )
i

xβ , the functions 

themselves can either be evaluated at the means of the data or they can be averaged over the 

sample observations. In the first case, the estimate of ( , )
i

xβ is given by ( , )
i

c xb and in the 

second case, the function ( , )
i

xβ is given by 
1

1
( , )


N

i nn
c x

N
b . 

 

3.9 CONCLUSION 

 

This chapter has reviewed some of the econometric theory of discrete choice modelling that 

can be called upon to investigate the role of various decision heuristics and rules in choice 

behaviour. This body of theory is well established and is frequently referenced in the 

literature. Having described the methodology that will be used to analyse the data, the next 

chapter will introduce the datasets themselves. 
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CHAPTER 4   DESCRIPTION OF THE DATA 

 

4.1 OVERVIEW OF THE DATASETS 

 

This chapter describes the datasets that will be used for the empirical application in Chapter 

5. Seven stated choice (SC) datasets have been selected for analysis. These datasets are from 

five Australian and two New Zealand toll road studies that were conducted over a ten year 

period between 1999 and 2008. They are very similar to one another in the sense that the 

centrepiece of each dataset comprises a SC experiment described by three unlabelled 

alternatives in the context of a sample of commuters choosing among bundles of trip time, 

trip variability and cost attributes associated with tolled and non-tolled routes. Each of the SC 

experiments required every sampled respondent to complete 16 choice tasks by choosing 

what they considered to be the best alternative from the set of alternatives on offer.  

 

In each of these datasets, respondents were asked to provide a profile of a recent trip, in terms 

of the attribute levels for the attributes of interest. Attribute levels of the other two 

hypothetical alternatives in the choice task were then generated by pivoting off the values of 

the recent (or reference) commuting trip profile provided by the respondent. Pivoting is said 

to offer more realism in the SC experiment since hypothetical alternatives are defined relative 

to the reference alternative (status quo), giving better specificity in the context of the choice 

task (Train and Wilson, 2008). Since the attributes of the recent trip are based on actual 

market data, the inclusion of the recent trip profile as one of the alternatives in the choice set 

ensures a sufficiently desirable or at the very least, a no worse-off option, should the 

hypothetical alternatives, for whatever reason, be completely unappealing to the respondent. 

All seven surveys were conducted as computer aided personal interviews (CAPI).  

 

With the exception of NZ99, which was collected in 1999 and thereby making it the oldest 

among the seven datasets, all the other SC experiments also asked a second choice question 

which required the respondent to assume that the recent trip was unavailable and to therefore 

make a choice between the two hypothetical alternatives only.  

 

All datasets include running costs and toll costs, as well as free flow time; however non-free 

flow time may be defined as either a single attribute „congested time‟ or two separate 
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attributes „slowed down time‟ and „stop/start/crawling time‟. Given that the sampled New 

Zealand‟s car commuters had no tolling experience before they were interviewed, self 

reported toll costs are only available for Australian studies. The labelling of the datasets 

follows the convention countryyear, where country is either Australia (“Aust”) or New 

Zealand (“NZ”) and year is the year of collection, which can be 1999 (“99”), 2000 (“00”), 

2004 (“04”), 2005 (“05”), 2007 (“07”) or 2008 (“08”). Hence, a dataset which was collected 

in Australia in 2008 is labelled Aust08. 

 

Each dataset is described more extensively below in Section 4.2. Further details of the toll 

road datasets may also be found in Hensher et al. (2012c). Section 4.3 discusses some 

summary statistics of each of the seven datasets and Section 4.4 provides some concluding 

remarks.  

 

4.2 DETAILED DESCRIPTIONS OF DATASETS 

4.2.1  Australia, 2008 (Aust08) 

 

Undertaken in 2008, this study is the most recent of all the seven toll road datasets. The data 

are drawn from a commuter study undertaken in a metropolitan area in Australia in the 

context of toll versus free roads. The three alternatives shown in each choice set, that is, the 

recent trip and two hypothetical alternatives (i.e., route A and route B), were described in 

terms of free flow time, slowed down time, stop/start/crawling time, running cost, toll cost, 

and travel time variability (see Table 4.1). Figure 4.1 provides an illustrative screen capture 

of the experiment. 

Table 4.1: Trip Attributes in Stated Choice Design 

Routes A and B 

Free flow travel time 

Slowed down travel time 

Stop/start/crawling travel time 

Arriving x minutes earlier than expected  

Arriving y minutes later than expected 

Probability of arriving earlier than expected 

Probability of arriving at the time expected 

Probability of arriving later than expected 

Running cost 

Toll Cost 
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Figure 4.1: Illustrative Screenshot of Choice Experiment used in Aust08 

 

Compared to the other toll road datasets, Aust08 is unique in terms of how travel time 

variability is portrayed, where each alternative has three travel scenarios - „arriving x minutes 

earlier than expected‟, „arriving y minutes later than expected‟, and „arriving at the time 

expected‟. Each time is associated with a corresponding probability
5
 of occurrence to indicate 

that travel time is not fixed but can vary stochastically.  

 

Aust08 used a D-efficient experimental design structured to increase the statistical 

performance of models with relatively smaller samples than are required for other less-

efficient (statistically) designs such as orthogonal designs (see e.g., Rose et al. 2008).  For all 

attributes except the toll cost, minutes arriving early and late, and the probabilities of arriving 

on-time, early or late, attribute levels of the hypothetical alternatives are obtained by pivoting 

around the knowledge base of travellers, that is, variations around the values for the current 

trip. Given the lack of exposure to tolls for many travellers in the study catchment area, the 

                                                             
 

 

 

5 The probabilities are designed and hence exogenously induced from each respondent‟s perspective, similar to 

other travel time reliability studies. 
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toll levels are fixed over a range, varying from no toll to $4.20, with the upper limit 

determined by the trip length of the sampled trip. 

 

A telephone call was used to establish eligible participants from households. During the 

telephone call, a time and location were agreed for a face-to-face CAPI. In total, 280 

commuters (with less than 120 minutes‟ trip length) were sampled for this study, each 

responding to 16 choice tasks, resulting in 4,480 observations for model estimation.  

 

4.2.2 Overview of Other Datasets 

 

The surveys used in the other datasets (Australia00, NZ99, Australia05, Australia04a, 

Australia04b and NZ07 are similar to that shown in Figure 4.2. An orthogonal design was 

used in Aust00 and NZ99 and a D-efficient design was used for Aust04a, Aust04b and NZ07. 

All studies allowed the disaggregation of trip cost into the running cost and the toll cost. In 

terms of travel time, respondents in NZ99 and Aust05 were shown the three time components 

of free flow time, slowed down time, and stop/start/crawling time; while respondents in 

Aust00, Aust04a, Aust04b and NZ07 were given the two time components of free flow time 

and congestion time for consideration. 

 

 

Figure 4.2: Illustrative Screenshot of Choice Experiment Used in Other Datasets 

 

In contrast to Aust08, where three arrival scenarios along with their probabilities of 

occurrence for a trip were presented in the choice experiments, the other six studies defined 

the trip time variability attribute as plus or minus a level of trip time associated with a trip. 
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Given previous evidence using these other datasets that the variability attribute was poorly 

specified and often not statistically significant, trip time variability in all model estimation is 

excluded, despite the innovation in the trip variability attribute in Aust08 (Hensher et al., 

2012c). 

 

4.2.3  Australia, 2000 (Aust00) 

 

The data in this dataset come from a study undertaken in Australia in 2000. The sample of 

147 effective interviews, each responding to 16 choice sets, resulted in 2,352 observations for 

model estimation. The attributes included in the choice experiment are free flow time, 

congestion time, trip time variability, running cost, toll cost and toll payment options (cash, 

Electronic/Tag, and Electronic/Licence plate recognition (no tag required)). Attributes except 

for toll payment of the hypothetical alternatives are based on the values for the current trip in 

terms of travel times and cost (including tolls if a toll was paid). In the design of the choice 

experiment, important considerations were given to the range of the toll costs (between $0 

and $16) and to logical outcomes. Examples of such considerations include requiring longer 

trip lengths to be associated with higher toll costs, and for hypothetical alternatives involving 

a toll to be mostly faster than the current trip, in cases where the current trip is not tolled. It is 

also assumed that a faster total travel time correlates with a higher toll cost; a lower running 

cost, and lower free-flow time, congestion time and trip time variability. 

 

4.2.4 New Zealand, 1999 (NZ99) 

 

This study was conducted in late June and early July of 1999, sampling residents of seven 

cities and regional centres in New Zealand. Given a sample size of 152 car commuters 

evaluating 16 choice sets each, 2,432 choice observations were obtained.  

 

The design is based on two unlabelled alternatives each defined by six attributes each of four 

levels (i.e., 4
12

): free flow travel time, slowed down travel time, stop/start travel time, 

uncertainty of travel time, running cost and toll costs. Except for toll costs, the levels are 

proportions relative to those associated with a current trip identified prior to the application 

of the SC experiment. Including the current alternative, described by the exact same six 

attributes as the two hypothetical alternatives, the design starts with six columns of zeros for 

the last trip attributes followed by six attributes for alternative A and then six attributes for 
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alternative B. The six attributes for alternative A are orthogonal to the six columns for 

alternative B, allowing for the estimation of models with complex structures for the random 

components of the utility expression associated with each of the alternatives (Louviere and 

Hensher, 2001). The levels of the attributes for both hypothetical alternatives were rotated to 

ensure that neither alternative A nor alternative B would dominate the reference trip, and to 

ensure that alternatives A and B would not dominate each other. The fractional factorial 

design has 64 rows. Each respondent was randomly allocated one of the four blocks of 16 

choice tasks. 

 

4.2.5 Australia, 2005 (Aust05) 

 

This survey, conducted in 2005, sampled 304 car commuters resident in an Australian 

Metropolitan Area, resulting in 4,864 observations over the entire sample. The trip attributes 

associated with each alternative are: free flow time, slowed down time, and 

stop/start/crawling time, travel time variability, toll cost and running cost. For all attributes 

except the toll cost, the values for the hypothetical alternatives are variations around the 

values for the current trip. Given the lack of exposure to tolls for many travellers in the study 

catchment area, the toll levels are fixed over a range, varying from no toll to $8, with the 

upper limit determined by the trip length of the sampled trip. A D-efficient design was used 

for the experiment. 

 

4.2.6 Australia, 2004 (Aust04a) 

 

The data collected in this study is from a study undertaken in Australia in 2004. Each 

alternative is described in terms of free flow time, congestion time, trip time variability, 

running cost and toll cost. With the exception of trip time variability, the attribute values for 

the hypothetical alternatives are variations around the counterpart values for the current trip. 

A D-efficient experimental design method was used. This survey has 57 effective interviews 

for car commuters, resulting in 912 observations.  
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4.2.7 Australia, 2004 (Aust04b) 

 

Like Aust04a, the data are also obtained in 2004 from another study undertaken in Australia. 

The sample of 243 effective interviews, with each respondent answering 16 choice sets, 

resulted in 3,888 observations for model estimation. To ensure that a large number of travel 

circumstances were captured, the sample consisted of individuals who had recently 

undertaken trips of various travel times, in locations where toll roads currently exist. To 

ensure some variety in trip length, three segments were investigated: no more than 30 

minutes, 31 to 60 minutes, and more than 61 minutes (capped at two hours). A telephone call 

was used to establish eligible participants from households stratified geographically. A 

statistically efficient design that is pivoted around the knowledge base of travellers is used to 

establish the attribute packages in each choice scenario. The trip attributes associated with 

each route are free flow time, congestion time, trip time variability, running cost and toll cost.  

 

4.2.8 New Zealand, 2007 (NZ07) 

 

The main field survey was undertaken in New Zealand in 2007. Like Aust04a and Aust04b, 

the trip attributes associated with each route are free flow time, congestion time, trip time 

variability, running cost and toll cost. For all attributes except the toll cost, values in the 

hypothetical alternatives were variations around the values for the current trip. Given the lack 

of exposure to tolls for many NZ travellers in the study catchment area, the toll levels were 

fixed over a range, varying from no toll to $4, with the upper limit determined by the trip 

length of the sampled trip. 115 car commuters were sampled, resulting in 1,864 choice 

observations for this survey, and a D-efficient design was used to structure the SC 

experiment.  

 

4.3 SUMMARY STATISTICS 

 

This section provides a description of the datasets from a statistical perspective. To reiterate, 

trip time variability is excluded in all model estimation given previous evidence that the 

variability attribute was poorly specified and often not statistically significant. Hence in 

Aust08, NZ99 and Aust05, the attributes of the alternatives that are modelled in the utility 

function are: free flow time (FF), slowed down time (SDT), stop/start/crawling time (SST), 

running cost (RC) and toll cost (TC). In Aust00, Aust04a, Aust04b and NZ07, the attributes 
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modelled in the utility function are: free flow time (FF), congestion time (CT), running cost 

(RC) and toll cost (TC). 

 

4.3.1 Summary of Key Attributes in the Reference and Hypothetical Alternatives 

 

Table 4.2 presents the summary statistics of each of the datasets in terms of the reference trip 

and some selected socio-economic characteristics of the respondents. On average, 

respondents in Aust04a reported the highest average trip travel time across all the seven 

datasets. Commensurate with this, reported running costs are also highest in Aust04a. The 

lowest average reported trip time belonged to respondents in NZ99. Similarly, the time spent 

in congested conditions (i.e., either a sum of slowed down and stop start time or just simply 

congestion time) is found to be lowest in the New Zealand datasets (NZ99 and NZ07). 

Recalling that respondents in the New Zealand datasets all did not have any tolling 

experience in their reference trip, the average toll cost for the reference trip in these datasets 

is zero. 

 

Some summary statistics of the total trip time and the total trip cost by alternative type and by 

dataset are presented in Table 4.3. The total trip time may be defined by the summation of 

free flow, slowed down and stop start time in Aust08, NZ99 and Aust05, and by the 

summation of free flow time and congestion time in Aust00, Aust04a, Aust04b and NZ07. In 

all datasets, the total trip cost is defined to be the sum of running costs and toll costs. 

 

As a result of the experimental designs in all datasets, the mean of total travel costs is higher 

in the hypothetical alternatives than in the reference trip. This feature largely arises from the 

experimental increases in the toll costs compared to the reported toll costs in the reference 

trip. On the other hand, in Aust08, NZ99 and Aust05, the means of the total travel time are 

higher for the hypothetical alternatives than for the reference alternative, whereas in Aust00, 

Aust04a, Aust04b and NZ07, the means of the total travel time are lower for the hypothetical 

alternatives than for the reference. The situation for Aust08, NZ99 and Aust05 is rather 

surprising if it is believed that a higher travel time and travel cost induces disutility, since the 

“average” hypothetical alternative is now dominated by the “average” reference alternative. 

Of course, modelling is conducted at the level of individual choice sets, using disaggregated 

time and cost attributes, and so, this may not be of significant concern in the end.  
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Table 4.2: A Summary of the Seven Tollroad Studies 

 

Number of 

sampled car 

commuters* 

Mean Attribute Levels of Recent Trip 

(standard deviation in parentheses) 

Means of Selected Socioeconomic Variables 

(standard deviation in parentheses) 

Free flow 

minutes 

(mins) 

Slowed 

down time 

(mins) 

Stop/start/ 

crawling 

(mins) 

Congestion 

time  

(mins) 

Running 

cost ($) 

Toll Cost  

($) Age 

Gender 

(proportion 

male) 

Annual Personal 

Income 

(thousands) 

Hours worked 

per week 

Aust08 280 

13.30 

(11.42) 

11.53 

(9.82) 

13.59 

(14.59) - 

2.95 

(2.31) 5.80** 

39.44 

(13.01) 

0.575 

(0.494) 

 

53.32*** 

(31.59) 

 

37.79 

(13.65) 

Aust00 147 

23.35 

(15.52) - - 

16.78 

(15.95) 

2.72 

(2.15) 

1.02 

(1.53) 

42.48 

(9.84) 

0.694 

(0.461) 

82.82 

(38.27) 

39.93 

(15.60) 

NZ99 152 

13.76 

(19.49) 

5.84 

(7.45) 

3.96 

(5.05) - 

1.61 

(3.15) 0 

40.74 

(12.23) 

Not 

available 

16.45 

(12.11) 

34.30 

(15.65) 

Aust05 304 

12.19 

(9.73) 

12.66 

(9.74) 

10.92 

(11.09) - 

1.76 

(1.33) 

2.23**** 

(0.34) 

42.30 

(11.86) 

0.661 

(0.473) 

53.59 

(30.90) 

41.04 

(13.77) 

Aust04a 57 

38.86 

(20.83) - - 

34.93 

(19.55) 

7.03 

(3.75) 

1.43 

(2.33) 

42.74 

(11.70) 

0.895 

(0.307) 

82.55*** 

(34.32) 

42.56 

(12.81) 

Aust04b 243 
22.53 

(12.37) - - 
31.80 

(19.28) 
3.44 

(1.66) 
2.05 

(1.67) 
41.70 

(11.26) 
0.642 

(0.479) 
92.07*** 
(35.17) 

41.91 
(11.60) 

NZ07 115 

29.03 

(15.66) - - 

9.87 

(9.93) 

3.99 

(2.01) 0 

48.02 

(12.26) 

0.374 

(0.484) 

42.20*** 

(21.56) 

41.92 

(13.83) 

Notes:  * Model estimation has a multiple of 16 times the number of sampled car commuters. 

 ** Only one sampled respondent paid a toll. This is the reported toll amount paid. 

 *** Some respondents did not report an income variable in these datasets. 

   **** Averaged over the 24 respondents who reported paying a toll.
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Table 4.3: Summary Statistics of Total Trip Time and Total Trip Cost  

 Mean Attribute Levels of Recent Trip 
(standard deviation in parentheses) 

Mean Attribute Levels of Hypothetical Alternatives 
(standard deviation in parentheses) 

 Total travel time  

(mins) 

Total travel costs  

($) 

Total travel time  

(mins) 

Total travel costs 

($) 

Aust08 
38.42 

(16.67) 
2.97 

(2.37) 
39.72 

(16.51) 
5.35 

(3.00) 

Aust00 
40.13 

(20.81) 
3.74 

(3.05) 
26.93 

(18.85) 
7.91 

(4.04) 

NZ99 
23.56 

(23.72) 
1.61 

(3.15) 
24.21 

(24.63) 
2.82 

(3.46) 

Aust05 
35.77 

(15.51) 
1.94 

(1.59) 
43.24 

(18.03) 
4.55 

(3.01) 

Aust04a 
73.79 

(26.27) 
8.45 

(4.68) 
68.36 

(29.95) 
10.98 
(5.36) 

Ausralia04b 
54.33 

(20.98) 
5.49 

(2.77) 
50.27 

(23.50) 
6.45 

(3.04) 

NZ07 
38.90 

(19.84) 
3.99 

(2.01) 
37.33 

(20.46) 
5.55 

(2.46) 

 

Figure 4.3 illustrates the kernel density plots of the total trip time and total trip cost in each of 

the datasets. The kernel density plots of these two attributes are partitioned by the type of 

alternative, either the reference alternative or the two hypothetical alternatives. 
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 Kernel Density of Total Trip Time Kernel Density of Total Trip Cost 
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NZ07 

  

Figure 4.3: Kernel Densities of Total Trip Time and Total Trip Cost, by Dataset  
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Across all seven datasets, it may be observed that the distributions of total trip time and total 

trip cost in the reference alternative (indicated in black) are likely to be multi-modal, in the 

sense that several local maxima exist in the distribution, whereas the same distributions in the 

hypothetical alternative (indicated in red) are closer to having just one clearly defined mode. 

 

The key attribute levels in the two hypothetical alternatives of each of the seven datasets are 

summarised in Table 4.4. Compared with the summary statistics of the reference trip in Table 

4.2, the attribute levels in the hypothetical alternatives are of roughly the same magnitude as 

those of the reference trip. This feature of the datasets is more clearly seen in Table 4.5 which 

offers a slightly different perspective to Table 4.4 by summarising the percentage difference 

of the time and running cost attributes of the constructed hypothetical alternatives to the 

reference alternative. As for the toll costs attribute, the differences reported in Table 4.5 are 

absolute (level) differences, rather than percentage differences, in the hypothetical 

alternatives relative to the pivot alternative The reason for comparing the toll cost attribute on 

absolute rather than percentage differences is that many respondents reported not having to 

pay a toll for their reference trip, even in the case of the Australian datasets. 

 

Table 4.4: Summary Statistics of the Key Attributes in the Hypothetical Alternatives 

 

Mean Attribute Levels of Hypothetical Alternatives 
(standard deviation in parentheses) 

 

Free flow 

time (mins) 

Slowed down 

time (mins) 

Stop/start/ 

crawling 

time (mins) 

Congestion 

time 

(mins) 

Running cost 

($) 

Toll Cost 

($) 

Aust08 
13.48 

(10.77) 
11.88 

(9.09) 

14.36 

(13.45) 
- 

3.25 

(2.68) 

2.10 

(1.37) 

Aust00 
15.58 

(12.51) 
- - 

11.35 

(12.56) 

2.28 

(1.90) 

5.63 

(3.58) 

NZ99 
13.85 

(19.98) 
6.06 

(8.10) 
4.29 

(5.30) 
- 

1.61 
(3.22) 

1.21 
(1.42) 

Aust05 
14.48 

(10.97) 

14.95 

(11.12) 

13.81 

(12.00) 
- 

1.85 

(1.58) 

2.70 

(2.14) 

Aust04a 
35.93 

(23.24) 
- - 

32.43 

(21.34) 

6.68 

(4.45) 

4.30 

(2.93) 

Aust04b 
21.01 

(13.50) 
- - 

29.26 

(20.65) 

3.27 

(2.03) 

3.19 

(2.47) 

NZ07 
27.42 

(16.60) 
- - 

9.91 
(9.63) 

3.78 
(2.19) 

1.77 
(1.19) 
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Table 4.5: Summary of Variation of Attribute Levels around the Pivot Alternative  

 
 Attribute Levels of Hypothetical Alternatives, Relative to Pivot Alternative 

 

 

Free flow time 

(mins) 

Slowed down time 

(mins) 

Stop/start/ 

crawling time 

(mins) 

Congestion time 

(mins) 
Running cost ($) 

Toll Cost 

($) 

Aust08 
Mean Variation 

(standard deviation) 

– 4.99% 
(22.97) 

– 5.01% 
(23.08) 

– 4.98% 
(22.95) - +10% 

(22.91) 
+ $2.08 
(1.42) 

Largest Negative Difference/ 

Largest Positive Difference 
– 50%/ +50% – 50%/ +50% – 50%/ +50% - – 25%/ +45% – $5.80/+$4.20 

Aust00 

Mean Variation 
(standard deviation) 

– 34.25% 
(24.60) 

- - 
– 33.96% 
(25.16) 

– 17.59% 
(13.21) 

+$4.62 
(3.78) 

Largest Negative Difference/ 

Largest Positive Difference 
– 80%/ +35% - - – 100%/+33% – 50%/ +21% – $6/+$15 

NZ99 

Mean Variation 
(standard deviation) 

0% 
(19.00) 

– 0.6% 
(42.03) 

– 0.4% 
(43.2) 

- 
+ 0.1% 
(19.49) 

+$1.21 
(1.42) 

Largest Negative Difference/ 

Largest Positive Difference 
– 33%/ +33% – 100%/ +100% – 100%/ +100% - – 28%/ +33% – $0/ +$6 

Aust05 

Mean Variation 
(standard deviation) 

+13.78% 
(22.19) 

+12.83% 
(27.89) 

+12.97% 
(28.07) 

- 
+5% 

(33.54) 
+$2.53 
(2.20) 

Largest Negative Difference/ 

Largest Positive Difference 
– 33%/ +50% – 33%/ +60% – 33%/ +60% - – 40%/ +50% – $3.70/ +$8 

Aust04a 

Mean Variation 
(standard deviation) 

– 7.53% 
(29.54) 

- - 
– 7.52% 
(29.52) 

– 4.91% 
(33.56) 

+$2.87 
(3.25) 

Largest Negative Difference/ 

Largest Positive Difference 
– 60%/ +20% - - – 60%/ +20% – 52%/ +42% – $7/ +$6.40 

Aust04b 

Mean Variation 
(standard deviation) 

– 7.54% 
(29.49) 

- - 
– 7.87% 
(29.51) 

– 4.86% 
(33.47) 

+$1.13 
(2.71) 

Largest Negative Difference/ 

Largest Positive Difference 
– 60%/ +25% - - – 60%/ +23% – 54%/ +43% – $10/ +6.40 

NZ07 

Mean Variation 
(standard deviation) 

– 5.64% 
(23.15) 

- - 
– 5.42% 
(24.00) 

– 5.31% 
(23.14) 

+$1.77 
(1.19) 

Largest Negative Difference/ 

Largest Positive Difference 
– 33%/ +33% - - – 50%/ +50% – 30.9%/ +30.4% – $0/ +$3.51 
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Computed at the sample means, the running cost attribute and the time components of the 

hypothetical alternatives are within 10 percent of their respective counterparts in the 

reference (pivot) alternative in most datasets, with Aust00 being the only exception to this 

rule. The similarity of the hypothetical alternatives to the reference pivot afforded by the 

experimental design at the means generally suggests that there is a high degree of realism and 

balance in the construction of the hypothetical alternatives. At the same time, there is also 

quite a substantial variation in the attribute levels of the hypothetical alternatives, evidenced 

by both the standard deviation and also by the largest negative and largest positive change 

from the reference. As expected, with the datasets being toll road stated choice studies, the 

average toll cost attribute of the hypothetical alternatives differs substantially from the 

reference alternative. 

 

4.3.2 Summary of the “Worst” Attribute Levels in Choice Sets 

 

The maximum attribute level for a given attribute k over all alternatives j in choice set s is 

denoted by m ax ( )
j s jks

X . Arising from the discussion in Chapter 2 on the contextual 

concavity model, m ax ( )
j s jks

X would be of particular empirical interest, since m ax ( )
j s jks

X  

may be considered to be a reference attribute level in the choice set, in addition to any 

referencing effects that may arise from the presence of the pivot alternative. As higher levels 

of time and cost attributes in a route choice alternative are generally associated with 

increasing disutility; m ax ( )
j s jks

X might therefore be regarded as the worst level that a given 

attribute k can take in a given choice set s. Table 4.6 provides some summary statistics of 

m ax ( )
j s jks

X in each of the datasets for each attribute of interest. 

 

Table 4.7 shows, for each attribute of interest, how m ax ( )
j s jks

X  is distributed among the 

reference and hypothetical alternatives in the choice sets of each dataset. To illustrate this 

table, in the case of Aust08, the maximum level of the free flow time attribute (across the 

three alternatives) occurs in the reference alternative in 1,413 choice situations. Similarly, the 

maximum level of the free flow time attribute occurs in either of the hypothetical alternatives 

or both in 3,615 choice situations. 
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Table 4.6: Summary Statistics of 


m ax ( )
j s jks

X  

 

Mean of m ax ( )
j s jks

X  

(standard deviation in parentheses) 

 

k = Free 

flow time 

(mins) 

k =Slowed 

down time 

(mins) 

k =Stop/start/ 

crawling 

time (mins) 

k =Congestion 

time 

(mins) 

k =Running 

cost ($) 

k =Toll Cost 

($) 

Aust08 
15.99 

(12.09) 

14.11 

(10.16) 

17.08 

(15.31) 
- 

3.71 

(2.96) 

2.92 

(1.08) 

Aust00 
23.68 

(15.81) 
- - 

17.04 

(16.31) 

2.75 

(2.19) 

7.68 

(3.03) 

NZ99 
15.85 

(22.45) 

7.96 

(9.86) 

5.54 

(6.23) 
- 

1.85 

(3.63) 

1.72 

(1.56) 

Aust05 
16.43 

(11.89) 

17.26 

(12.27) 

16.39 

(13.63) 
- 

2.23 

(1.76) 

3.73 

(1.92) 

Aust04a 
44.69 

(24.25) 
- - 

40.30 

(22.53) 

8.79 

(4.84) 

5.94 

(1.84) 

Aust04b 
26.10 

(14.09) 
- - 

36.43 

(22.10) 

4.30 

(2.15) 

4.40 

(1.97) 

NZ07 
33.41 

(18.47) 
- - 

11.94 

(11.06) 

4.52 

(2.36) 

2.47 

(1.02) 

 

Table 4.7: Incidence of 


m ax ( )
j s jks

X Across Alternatives  

 
 Incidence of m ax ( )

j s jks
X across alternatives 

 
Incidence of 

m ax ( )
j s jks

X  

k = Free 

flow time 

(mins) 

k = Slowed 

down time 

(mins) 

k= 

Stop/start/ 

crawling 

time (mins) 

k= 

Congestion 

time 

(mins) 

k= 

Running 

cost ($) 

k= Toll 

Cost 

($) 

Aust08* 
(4480) 

In reference alt 1413 1405 1107 - 365 150 

In hypothetical alts 3615 3674 3904 - 4115 4464 

Aust00 
(2352) 

In reference alt 2100 - - 2136 2071 75 

In hypothetical alts 477 - - 738 597 2277 

NZ99 
(2432) 

In reference alt 661 564 668 - 613 152 

In hypothetical alts 1875 2052 2085 - 1827 2432 

Aust05 
(4864) 

In reference alt 540 1025 579 - 1520 85 

In hypothetical alts 4864 4699 4596 - 3344 4781 

Aust04a 
(912) 

In reference alt 228 - - 224 0 0 

In hypothetical alts 684 - - 688 912 912 

Aust04b 
(3888) 

In reference alt 952 - - 980 0 0 

In hypothetical alts 2952 - - 2924 3888 3888 

NZ07 
(1840) 

In reference alt 684 - - 619 745 0 

In hypothetical alts 1156 - - 1357 1095 1840 

*the number of choice sets in each dataset is indicated in parentheses below the dataset identifier 
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These choice situations are not mutually exclusive, in the sense that if there is a tie between 

the reference alternative and at least one of the hypothetical alternatives on the maximum 

attribute level, that choice situation adds to the count of incidence of both the reference 

alternative and the hypothetical alternatives. However, if the tie for the maximum only occurs 

between the two hypothetical alternatives, then that choice situation is counted only once. 

Since this count of the choice situations across the reference and hypothetical alternatives is 

not mutually exclusive, the sum can exceed the total number of choice sets in the datasets.  

 

Table 4.7 shows that across most datasets, the maximum values of the time and cost 

components are more likely to be found in either of the hypothetical alternatives. This is 

probably not unexpected given the pivot nature of the designs. The incidence of either of the 

two hypothetical alternatives possessing the maximum of a certain time or cost attribute in 

the choice set generally exceeds 60 percent of the number of choice sets in each dataset, with 

the major exception being Aust00. Aust00 contrasts with the other datasets in that the 

reference alternative has a much larger incidence of the maximum values of the free flow, 

congestion time and running cost attributes. Only in the toll cost attribute do the hypothetical 

alternatives possess a higher incidence of its maximum attribute level. In Aust04a and 

Aust04b, the experiment was constructed such that the maxima of the running cost and the 

toll cost attributes in the choice set are always to be found in at least one of the hypothetical 

alternatives. Finally, in NZ99 and NZ07, since the reference trip always had zero toll costs 

across all respondents, the experimental design required the hypothetical alternatives to be 

always the ones to contain the maximum of the toll cost attribute. In NZ99 particularly, as the 

reference alternative is found to contain the maximum toll cost attribute level in 152 choice 

situations and since the toll cost attribute in the reference is equal to zero, the hypothetical 

alternatives were constructed with zero toll costs in these 152 choice situations. 

 

4.3.3 Summary of Pair Wise Comparisons in Choice Sets 

 

A study into the extremeness aversion heuristic will also include the estimation of the RRM, 

Hybrid RRM-RUM and the RAM models. A critical behavioural assumption common to 

these models is the comparison by a respondent of an attribute k across all possible pairs of 

alternatives in the choice set. Therefore, some summary statistics of these pair wise 

comparisons, reported in Table 4.8a for Aust08, NZ99 and Aust05, and Table 4.8b for 

Aust00, Aust04a, Aust04b and NZ07, are useful at this point.   
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Table 4.8a: Summary of Pairwise Comparisons in Aust08, NZ99 and Aust05 

 Aust08 

(% of 4480) 

NZ99 

(% of 2432) 

Aust05 

(% of 4864) 

 
 Alt A Alt B Alt A Alt B Alt A Alt B 

k F F  

Ref  < 48.13 48.13 49.84 49.84 60.59 60.59 

Ref  = 11.38 11.38 4.28 4.28 23.01 23.01 

Ref  > 40.49 40.49 45.89 45.89 16.40 16.40 

Alt A <  40.38  34.29  44.12 

Alt A =  20.78  31.41  16.39 

Alt A >  38.84  34.29  39.49 

k SD T  

Ref  < 48.97 48.97 54.93 54.93 56.00 56.00 

Ref  = 11.70 11.70 8.22 8.22 22.12 22.12 

Ref  > 39.33 39.33 36.84 36.84 21.88 21.88 

Alt A <  42.99  33.39  39.64 

Alt A =  15.78  33.22  28.08 

Alt A >  41.23  33.39  32.28 

k SST  

Ref  < 56.21 56.21 53.62 53.62 62.99 62.99 

Ref  = 9.24 9.24 14.97 14.97 18.75 18.75 

Ref  > 34.55 34.55 31.41 31.41 18.26 18.26 

Alt A <  43.44  31.87  43.54 

Alt A =  13.75  36.27  17.52 

Alt A >  42.81  31.87  38.94 

k R C  

Ref  < 62.5 62.5 49.84 49.84 50 50 

Ref  = 0 0 0.33 0.33 0 0 

Ref  > 37.5 37.5 49.84 49.84 50 50 

Alt A <  48.88  37.34  37.50 

Alt A =  10.96  25.33  29.81 

Alt A >  40.16  37.34  32.69 

k TC  

Ref  < 87.19 87.19 75 75 78.04 80.51 

Ref  = 12.46 12.46 25 25 18.22 16.41 

Ref  > 0.36 0.36 0 0 3.74 3.08 

Alt A <  40.40  37.5  44.72 

Alt A =  16.38  25  11.06 

Alt A >  43.21  37.5  44.22 
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Table 4.8b: Summary of Pair Wise Comparisons in Aust00, Aust04a, Aust04b and 

NZ07 

 Aust00 

(% of 2352) 

Australia 04a 

(% of 912) 

Aust04b 

(% of 3888) 

NZ07 

(% of 1840) 

  Alt A Alt B Alt A Alt B Alt A Alt B Alt A Alt B 

k F F  

Ref  < 6.04 5.82 50 50 51.44 51.44 38.48 37.83 

Ref  = 5.99 6.25 0 0 0.31 0.31 0 0 

Ref  > 87.97 87.93 50 50 48.25 48.25 61.52 62.17 

Alt A <  37.07  50  49.59  36.74 

Alt A =  5.36  25  25.41  22.99 

Alt A >  57.57  25  25  40.27 

k C T  

Ref  < 5.27 5.31 50.88 50.88 50 50 46.79 47.17 

Ref = 17.56 17.60 0 0 0.31 0.31 5.98 5.98 

Ref  > 77.17 77.08 49.12 49.12 49.69 49.69 47.23 46.85 

Alt A <  39.97  25  25  37.17 

Alt A =  20.41  25  25.10  28.91 

Alt A >  39.63  50  49.90  33.91 

k R C  

Ref  < 7.10 6.38 50 50 50 50 38.32 37.5 

Ref  = 7.53 7.31 0 0 0 0 0 0 

Ref  > 85.37 86.31 50 50 50 50 61.68 62.5 

Alt A <  45.75  50  50  40.22 

Alt A =  17.52  0  0  28.53 

Alt A >  36.73  50  50  31.25 

k TC  

Ref  < 87.42 85.63 75 75 75 75 83.97 90.76 

Ref  = 3.91 5.14 16.67 16.67 6.17 6.17 16.03 9.24 

Ref  > 8.67 9.23 8.33 8.33 18.83 18.83 0 0 

Alt A <  49.87  75  75  56.79 

Alt A =  6.25  0  0  5.98 

Alt A >  43.88  25  25  37.23 

 

Since each choice set contains three alternatives, three possible pairs of comparison, that is, 

Ref/Alt A, Ref/Alt B and Alt A/Alt B, are possible. To understand Table 4.8a and Table 4.8b, 

note that each cell in the main body of the table represents a pair wise comparison. Therefore, 

the cell that is at the intersection of the row labelled “Ref <” and the column labelled “Alt A” 

indicates the pair wise comparison of the reference alternative and Alternative A in the given 

attribute k. The number reported in the cell is the percentage of choice sets in the dataset 

where
, ,


ref k AltA k
X X .  Likewise, the cell at the intersection of the row labelled “Ref =” and 
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the column labelled “Alt A” indicates the percentage of choice sets where 
, ,


ref k AltA k
X X  and 

the column labelled “Alt A” indicates the percentage of choice sets where 
, ,


ref k AltA k
X X  and 

the cell at the intersection of the row labelled “Ref >” and the column labelled “Alt A” 

indicates the percentage of choice sets where
, ,


ref k AltA k
X X . The table is similarly interpreted 

for the alternative pairs Ref/Alt B and Alt A/Alt B. 

 

As an illustration, taking the example of Aust08 again, the free flow time attribute in the 

reference alternative is less than its counterpart in alternative A in 48 percent of all choice 

sets. The free flow time attribute in the reference is equal to its counterpart in Alternative A 

in 11 percent of the datasets and it is less than its Alternative A counterpart in 40 percent of 

all Aust08 choice sets. 

 

A summary of the statistics across all datasets shows that on pair wise comparisons alone, the 

toll cost attribute in the reference alternative is less than the toll cost attribute value in either 

of the competing (hypothetical) alternatives in at least 75 percent of choice sets. Again, this is 

not surprising given that choice responses to proposed increases/introduction to toll charges 

are one of the key research questions addressed by these seven studies. However, pair wise 

comparisons between Alternatives A and B on the toll cost attribute show a more balanced 

picture where in many cases, such as in Aust08, Aust00, NZ99 and Aust05, the incidence of 


A B

TC TC is somewhat closer to the incidence of 
A B

TC TC . This feature reflects the 

structure of the experimental design with its randomised allocation to alternatives A and B. 

With the exception of Aust00, on the other attributes FF, SDT, SST (or CT, where 

appropriate) and RC, the experimental design has also resulted in more balanced choice sets 

across all pair wise comparisons across all datasets, in the sense that the incidence of the 

attribute being higher than its pair wise competition is not too dissimilar from the incidence 

of the attribute being lower than its pair wise competition. On the other hand, the design of 

Aust00 resulted in the vast majority of choice sets in which the reference alternative 

possesses higher levels of free flow time, congestion time and running cost attributes 

compared with the hypothetical alternatives. 

 

 

 

 



 
 

103 
 

4.3.4 Socio-economic Characteristics 

 

In order to mitigate the intrusive nature of questions asking respondents to report their age 

and income, the surveys did not ask for exact age and income levels, but merely required 

respondents to indicate the appropriate age and income bracket to which they belonged. For 

the age variable, the interval classifications for all datasets are: 24age , 24 30 age , 

30 40 age , 40 50 age  and 50 60 age . For datasets other than Aust00, another 

category 60 70 age is also available.  For modelling purposes, the age of the respondent is 

coded at the top of the range of the indicated category; hence a discrete distribution for age is 

obtained. Likewise, the income variable is also coded at the top of the range. These are not 

unreasonable assumptions if it is believed that people tend to underreport their age and 

income. Figure 4.4 plots the histogram of the age and income variables for all datasets.  In the 

majority of datasets, the most commonly reported age is between 30 and 40 years old, with 

modal income between $40,000 and $60,000. Compared to other datasets, it appears that 

younger people are more heavily represented in Aust08. 
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 Histogram of age variable Histogram of income variable 
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 Histogram of age variable Histogram of income variable 

NZ07 

 

Mode: 40 – 50 years 

 

Mode: $40,000 - $60,000 

Figure 4.4: Histograms of Age and Income Variables  

 

The income variable is reported in the currency of the country where the experiment was 

conducted. Some significant differences in the income distribution across datasets may be 

observed, for example, the mean income in NZ99 is considerably lower than in the other 

datasets, even when compared to the other New Zealand dataset, NZ07.  In Aust04b, and to a 

lesser extent, in Aust00 and Aust04b, the highest income bracket also happens to be heavily 

represented. 

 

4.4 SOME CONCLUDING REMARKS 

 

This chapter has provided a description of the datasets which will be used in the empirical 

analysis in Chapter 5. Respondents in all datasets have been presented with a very similar 

stated, unlabelled, route choice problem involving pivot designs and three (two hypothetical 

plus one status quo) alternatives in each choice set. There are some differences across the 

datasets in terms of how each of the choice experiments has been designed, but to a large 

extent, the similarity of these seven datasets controls for the data context. Therefore, using 

these seven datasets will present a unique opportunity to test if the heuristics discussed in 

Chapter 2 are independent of respondents, that is, whether heuristics are portable across 

datasets, given that the differences in the data context have been largely controlled for. At the 

same time, it is worth noting that the fact that very similar datasets are used can limit the 

degree to which evidence in the form of model fit differences is in fact convincing and 

generalisable.
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CHAPTER 5   MODEL RESULTS AND ANALYSIS 

 

5.1 INTRODUCTION 

 

This chapter reports the results of the data analysis using a subset of the heuristics that have 

been discussed in Chapter 2. The heuristics that are discussed in this chapter are the majority 

of confirming dimensions (MCD), the extremeness aversion heuristic and the reference point 

revision heuristic. As previously discussed, the work on the MCD rule and the reference point 

revision rule is an extension of Hensher and Collins (2011) while the discussion on the 

extremeness aversion heuristic extends the work of Tversky and Simonson (1993), Kivetz et 

al. (2004) and Chorus (2010). 

 

 The outline of this chapter is as follows. Firstly, Section 5.2 presents the results of the 

standard linear additive MNL model with no heuristics. The standard model might be seen as 

a benchmark to which more behaviourally realistic models of heuristics may be compared. 

Section 5.3 which follows discusses the majority of confirming dimensions (MCD) rule. 

Section 5.4 then moves on to a specific application of the extremeness aversion heuristic 

using a non-linear logit specification that makes reference to the worst attributes level in the 

choice set. The model presented is an extension of the contextual concavity model. After this, 

Section 5.5 discusses the random regret minimisation (RRM) model and its cousin, the hybrid 

RRM-RUM model. Section 5.6 reports an extensive analysis into the relative advantage 

maximisation (RAM) model. This is important since the RAM model is a competitor model 

to the RRM model on several dimensions. Section 5.7 then compares the models of the 

extremeness aversion heuristic. Following this section, Section 5.8 discusses the reference 

revision heuristic. Next, Section 5.9 discusses the results of using the heuristic weighting 

function approach to embedding multiple heuristics into the choice model. Section 5.10 

presents the results of some mixed logit estimations and Section 5.11 discusses calculations 

related to the value of travel time savings. Section 5.12 provides a brief summary of this 

chapter.  
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5.2 THE STANDARD CONTEXT INDEPENDENT MNL MODEL 

 

In this section, the results of the standard, linear additive context independent MNL model 

are reported and discussed. To make the nomenclature more convenient, this model will be 

referred to as the „standard RUM model‟. The analysis focuses on the seven toll road datasets 

described in Chapter 4. The model is written as shown in Equation (5.1): 

 

 
0 ,j j k k j

k

U X      (5.1) 

 

As discussed previously, the utility specification written in Equation (5.1) is an example of a 

context independent specification because the indirect utility for alternative j is assumed to be 

a function of only its own attributes, and not of the attributes of any other competing 

alternative. In other words, Uj is assumed to be the same regardless of how good or how bad 

a competing alternative is.   

 

The 
j

 term represents an error or may be thought of as a representation of all other 

unobserved influences on utility. In the MNL model, 
j

  is assumed to be independent and 

identically distributed (i.i.d), with an extreme value type I distribution. The MNL model does 

not account for repeated observations made by the same individual, i.e., the panel nature of 

the dataset, which may induce correlations across choice observations. Since the toll road 

datasets consist of unlabelled experiments, it will be preferable to estimate the taste 

parameters βk as generic across all alternatives, as recommended by Hensher et al. (2006). 

The reason is that the labels (or lack thereof) associated with each alternative do not confer 

any additional meaning to the respondent on what the alternatives represent in real life and 

there is no information that can be used to systematically distinguish one alternative from 

another. All models in this chapter are estimated using a post release version of Nlogit 5. 

 

As each choice set contains three alternatives, the alternative specific constant (ASC)
0 , j

  can 

appear in at most two alternatives. For the purposes of estimation, 
0 , j

 is included in the 

utility expression for the current alternative and the hypothetical alternative A. One 

justification for the inclusion of ASCs in the modelling for choice experiments with some 

unlabelled alternatives is to control for potential left-to-right effects that may or may not be 
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present in the choice response. In pivot designs where the attribute levels of the hypothetical 

alternatives are pivoted off the current or reference alternative, another justification for the 

use of an alternative specific constant, at least for the reference alternative which is labelled 

in all datasets, is to allow the practitioner to control for potential status quo biases. 

 

The results from the MNL estimation are shown in Table 5.1. Only parameters that are 

statistically significant at the five per cent level are reported. Where parameter estimates are 

statistically significant, they are negative, as expected. A negative sign for the taste 

parameters of the time and cost attributes reflects the reduced desirability of an alternative as 

its time and cost attribute values increase. This is consistent with expectations and also a 

large body of evidence in the literature. The normalised AIC in Table 5.1 and in subsequent 

tables is defined as equal to (– 2(log likelihood at convergence)) + 2K )/n, where K is the 

number of estimated parameters and n is the number of observations in the dataset. 

 

It may be observed that ˆ
R C

 in Aust00 and ˆ
F F

 in NZ99 are found to be statistically 

indistinguishable from zero. This result may mean one of a few things. Firstly, respondents 

may on average be genuinely unconcerned about the levels of the RC attribute in Aust00 and 

the levels of the FF attribute in NZ99. This may be linked to attribute non-attendance in the 

sense that respondents may be ignoring the attribute at the levels presented in the choice task, 

but higher levels of that attribute would elicit some aversive response. For example, among 

all datasets, the average of the 
R C

T otal T ravel C ost
 ratio across all alternatives is the lowest in 

Aust00, which may have led to a larger proportion of respondents ignoring the RC attribute in 

Aust00. However, without any further information on say the incidence of self-reported 

attribute non-attendance, it is difficult to make any more definitive statements on the apparent 

non-attendance of the RC attribute in Aust00 and the FF attribute in NZ99. 

 

Another reason may be linked to experimental design. Aust00 and NZ99 are the only two 

datasets out of the seven that are based on an orthogonal design. The analysis by Rose et al. 

(2008) shows that orthogonal designs in general produce much larger asymptotic standard 

errors and are therefore not as statistically efficient as D-efficient designs. In the specific 

example highlighted by Rose et al. (2008), some of the t-ratios associated with the estimated 

parameters in the orthogonal design were too low to permit a rejection of the null hypothesis 
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Table 5.1: Results from Standard MNL Estimation 

Standard RUM Model Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 
̂  

(z-ratio) 

Free flow time (FF) (min) 
– 0.0516*** 

(– 7.36) 

– 0.1256***      

(–14.97) 
n.s. 

– 0.0761*** 

(– 7.94) 

– 0.0351*** 

(– 8.37) 

– 0.0683*** 

(–17.71) 

– 0.0994*** 

(–14.67) 

Congestion time (CT) (min)  
– 0.1192***      

(–14.04) 
  

– 0.0351*** 

(– 7.40) 

– 0.0904*** 

(–28.53) 

– 0.1271*** 

(–10.06) 

Slowed down time (SDT) (min) 
– 0.0723*** 

(– 9.92) 
 

– 0.0788*** 

(– 6.45) 

– 0.1167*** 

(–13.60) 
   

Stop start time (SST) (min) 
– 0.0805*** 

(–14.28) 
 

– 0.1701*** 

(– 9.76) 

– 0.1684*** 

(–20.29) 
   

Running Cost (RC) ($) 
– 0.3425*** 

(– 9.19) 
n.s. 

– 0.2597*** 

(– 4.05) 

– 0.5629*** 

(– 10.16) 

– 0.1166*** 

(– 6.54) 

– 0.3159*** 

(–14.40) 

– 0.4671*** 

(–10.27) 

Toll Cost (TC) ($) 
– 0.2770*** 

(–12.46) 

– 0.5568*** 

(–21.42) 

– 0.8152*** 

(–13.39) 

– 0.5041*** 

(–22.85) 

– 0.1575*** 

(– 9.34) 

– 0.3633*** 

(–28.74) 

– 0.6488*** 

(–21.95) 

Alternative Specific Constants        

     -current alternative 
0.9116***      

(17.62) 

0.5984***      

(8.55) 

1.0937*** 

(14.72) 

0.3621*** 

(6.49) 

– 0.5491*** 

(– 5.17) 

0.0920** 

(2.17) 
n.s. 

     -Alternative A n.s. 
0.1434** 

(2.02) 

0.2295*** 

(2.84) 
n.s. 

0.2396*** 

(2.79) 
n.s. n.s. 

No. of observations 4480 2352 2432 4864 912 3,888 1840 

Log-Likelihood at convergence – 3434.58 –1862.23 – 1694.93 – 2670.14 – 847.75 – 3031.58 – 1631.79 

Normalised AIC 1.536 1.588 1.399 1.100 1.872 1.562 1.778 

LL(0) – 4921.78 –2583.94 – 2671.83 – 5343.65 – 1001.93 – 4271.40 – 2021.45 

** denotes significance at the five percent level. 

*** denotes significance at the one percent level. 
n.s.: not significant 
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that the parameter was equal to zero, even when non-zero priors were assumed in the “true” 

model. Likewise, in the case of Aust00 and NZ99, the use of an orthogonal experimental 

design may not have allowed for some of the parameters to be recovered with statistical 

significance, even if the true values of these parameters are negative. 

 

Regarding the ASCs, it might be noted in passing that with the exception of Aust04a and 

NZ07, all the ASCs associated with the current alternative are positive at the five percent 

significance level. In addition, it can also be observed that
0 , 0 ,

ˆ ˆ
A current

  . Taken together, these 

are consistent with the hypotheses of left-to-right bias and the status quo effect. While such 

biases do not seem to be present in NZ07, it is interesting that the modelling results from 

Aust04a show that the status quo alternative is relatively less preferred to the hypothetical 

alternatives, ceteris paribus. This may have something to do with the trip time variability 

attributes that have been omitted from the model specification. 

 

5.3 MAJORITY OF CONFIRMING DIMENSIONS HEURISTIC AS A CONTEXT 

DEPENDENT HEURISTIC 

5.3.1 Discussion of the mcd Variable 

 

The analysis of context dependent, or more precisely, choice set dependent heuristics begins 

with the majority of confirming dimensions (MCD) heuristic. As with several of the 

heuristics such as lexicography and EBA discussed earlier in Chapter 2, an appeal may be 

made to the effort-accuracy framework in order to justify the use of the MCD heuristic in 

certain choice contexts; that is, respondents are searching for a mental shortcut to use that 

will deliver a relatively high level of accuracy but with lower cognitive effort compared to 

the standard RUM decision rule. The MCD is a heuristic that is easy to use, since the 

respondent is not required to compute the magnitude of the differences in the attribute levels 

across alternatives (Payne et al., 1993). Instead, respondents simply need to ascertain the 

relative ranking of the attributes, that is, identify the best attribute level across all alternatives 

in the choice set. The alternative with a larger number of best ranked attributes will be more 

preferred to another alternative with a smaller number of best ranked attributes. While most, 

if not all heuristics, have in common the idea of context dependency embedded in them, 

another advantage of using the MCD heuristic in modelling is its convenient representation 
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for context dependency, since it can simply be specified as another linear additive term to the 

standard RUM model. 

 

As suggested by Hensher and Collins (2011), one way of testing for the MCD heuristic 

involves generating a total count of the number of attributes in each alternative j that have the 

best levels across all alternatives in choice set s. This generated variable is labelled mcd. To 

contribute to the count, the attribute has to have an attribute level strictly better than all the 

levels of the same attribute in the other alternatives. Given the results of the MNL estimation 

in Section 5.1, where all statistically significant taste parameters of the attributes are found to 

be negative, the definition of a „strictly better‟ attribute level is one where the attribute level 

under consideration is strictly less than the counterpart attribute level of a competing 

alternative in the same choice set. Each alternative is associated with an mcd value and Table 

5.2 describes how each of the possible discrete values of the mcd variable is distributed 

across each of the three alternatives in each of the seven datasets. 

 

Table 5.2: Frequency Distribution of the mcd Variable  

 Frequency of Occurrence 

j
m cd

 Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

0 
2373 

(17.7%) 

2530 

(35.9%) 

2286 

(31.3%) 

4815 

(33.0%) 

551 

(20.1%) 

2246 

(19.3%) 

2002 

(36.3%) 

1 
5225 

(38.9%) 

2879 

(40.8%) 

3211 

(44.0%) 

4867 

(33.4%) 

1253 

(45.8%) 

5038 

(43.2%) 

2732 

(49.5%) 

2 
3899 

(29.0%) 

1645 

(23.3%) 

1371 

(18.8%) 

3058 

(20.1%) 

705 

(25.8%) 

3122 

(26.8%) 

716 

(13.0%) 

3 
1585 

(11.8%) 

2 

(0.03%) 

394 

(5.4%) 

1361 

(9.3%) 

207 

(8.3%) 

1258 

(10.8%) 

70 

(1.3%) 

4 
334 

(2.5%) 
N.A. 

34 

(0.5%) 

432 

(3.0%) 
0 0 0 

5 
24 

(0.2%) 
N.A. N.A. 

59 

(0.4%) 
N.A. N.A. N.A. 

TOTAL 13440 7056 7296 14592 2736 11664 5520 

 

The assumption used in creating the mcd variable for these datasets is that an attribute is only 

considered if its associated taste parameter was found to be statistically significant in the 

MNL estimation. Recall that in Aust00 and NZ99 respectively, ˆ
R C

 and ˆ
F F

  are not 

statistically significant at the five percent level. Hence, in Aust00, the mcd variable was 

constructed using only the FF, CT and TC attributes, while in NZ99, the mcd variable was 
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constructed on the SDT, SST, RC and TC attributes. With regards only to the time and cost 

attributes that have been included in the model, which are not the full set of attributes that 

describe the alternatives in the choice experiment, it might be observed that in Aust08, NZ99 

and Aust05, there is a handful of alternatives which dominate all other competing alternatives 

in the choice set; that is, all the attribute levels of these alternatives are strictly better than 

those in all other competing alternatives in the choice set.  

 

5.3.2 Generic versus Alternative Specific Parameters for the mcd Variable 

 

The approach of Hensher and Collins (2011) of including mcd as a linear additive term in the 

utility function of an alternative seems to be a good starting point on how the mcd variable 

might be modelled. An interesting question arises as to whether the generated mcd variable 

should enter into the utility expressions of all three alternatives, or only into the utility of just 

the hypothetical ones. In support of having a generic βmcd parameter across all alternatives, it 

may be argued that there is consistency in the decision process when applying a particular 

heuristic. Hensher and Collins (2011) choose this approach and restrict the parameter for the 

mcd variable to be the same across all alternatives, but a more nuanced understanding of mcd 

can also be reasonably advocated. If the Payne et al. (1993) view of decision making is 

adopted, then in pivot designs, where the attribute levels of the current alternative are fixed 

throughout the experiment, the cognitive burden of evaluating the current alternative using 

the weighted linear additive function in a fully compensatory sense is not very onerous: once 

respondents calculate the value for the current alternative in the first choice set or if they are 

able to refer to a stored utility value for the current alternative from memory, the same value 

may be applied to the current alternative in all other choice sets. On the other hand, using the 

MCD heuristic to evaluate the current alternative may actually require a larger cognitive 

effort as the relative rankings of each of the attributes in the current alternative will change 

from choice set to choice set which means that the mcd variable for the current alternative has 

to be recalculated for every choice set in the experiment. Therefore, for the reference 

alternative in pivot designs, the fully compensatory linear additive function may be adequate 

as a decision rule and there is no necessity to appeal to the MCD heuristic. 

 

As a first step in the analysis of the MCD rule, adapting the approach of Hensher and Collins 

(2011), it might be appropriate to consider models involving just the standard RUM 
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specification and the mcd variable in order to gain a better understanding of how mcd 

influences utility. The following empirical questions are of interest at this point:  

 

1. Whether the inclusion of the mcd variable into the utility function improves model fit. 

2. Whether
,curr A B

m cd m cd
  , that is, whether the mcd parameter is generic across all three 

alternatives or whether
,curr A B

m cd m cd
  , i.e., whether the mcd parameter is generic only 

across the hypothetical alternatives and assumed to be alternative specific to the 

current alternative. In particular, 
curr

m cd
 might be expected to less than

,A B

m cd
  if the MCD 

heuristic is not used by some segment of respondents to evaluate the current status 

quo alternative.  

3. Whether 0
curr

m cd
  and 

,
0

A B

m cd
  which implies a stronger condition that all respondents 

are rejecting the use of the MCD heuristic when evaluating the current alternative, 

i.e., the standard specification suffices.  

 

A simple model to address the questions raised above is proposed in Equation (5.2). 

 

 
0

,

0

,

curr j

A j

B j

curr curr

k k m cd

k

A A B

k k m cd

k

A B

k k m cd

k

U

U

U

X m cd

X m cd

X m cd

  

  

 







 

 



 

 

 







 (5.2) 

 

In all models, 
,A B

m cd
 is specified to be generic across the hypothetical alternatives.  

 

Table 5.3 summarises the results of the estimation. The parameter estimates associated with 

the attributes of the alternatives are not reported in order to facilitate comparison across the 

datasets as to the various hypotheses about the mcd parameter.  

 

Indeed, just by considering the model where βmcd is assumed generic across all three 

alternatives (results of Column 1), the relationship between mcd and utility is positive and 

statistically significant at the five percent level in all datasets except Aust04a. Generally 

speaking therefore, it is possible to conclude that the inclusion of the mcd variable improves 

model fit with respect to the standard RUM model. However, without further consideration of  
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Table 5.3: Comparison of mcd Parameter Assumptions Using MNL  

  Column 1 Column 2  

  ,curr A B

m cd m cd
   

,curr A B

m cd m cd
   

 
rejected 

at 5% level?
 

  

 

̂  

(z-ratio) 

̂  

(z-ratio) 

 

Aust08  

curr

m cd
  

0.0673**       

(2.51) 

– 0.0686* 

(– 1.77) 

Yes 
,A B

m cd
  

0.2374*** 

(5.35) 

LL at convergence – 3431.44 – 3419.71 

No. of observations 4,480 

 Aust00  

curr

m cd


 0.2949***      

(6.81)
 

1.3387***      

(10.44) 

Yes 
,A B

m cd


 
0.0029 

(0.05) 

LL at convergence
 

– 1838.71 – 1798.72 

No. of observations 2,352 

NZ99  

 0.4698*** 

(11.63)
 

0.7900*** 

(11.85) 

Yes  
0.1564** 

(2.46) 

LL at convergence
 

– 1624.57
 

– 1604.09 

No. of observations 2,432 

Aust05  

 0.1496*** 

(4.78)
 

0.1202*** 
(2.69) 

No  
0.1826*** 

(3.84) 

LL at convergence
 

– 2658.71
 

– 2658.29 

No. of observations 4,864 

Aust04a  

 0.1008         

(1.47)
 

0.1328 

(1.17) 

No  
0.0813 

(0.93) 

LL at convergence
 

– 846.67 – 846.61 

No. of observations 912
 

Aust04b  

 0.0812**       

(2.40)
 

0.1057* 
(1.88) 

No  
0.0631 

(1.34) 

LL at convergence
 

– 3028.71
 

– 3028.56 

No. of observations 3,888 

NZ07  

 0.0902** 

(2.03)
 

0.0433 

(0.86) 

Yes  
0.1573*** 

(2.79) 

LL at convergence
 

– 1629.73
 

– 1627.86 

No. of observations 1,840 

 *denotes significance at the ten percent level. 

 ** denotes significance at the five percent level. 

 *** denotes significance at the one percent level. 

 

,curr A B

m cd m cd
 

curr

m cd


,A B

m cd


curr

m cd


,A B

m cd


curr

m cd


,A B

m cd


curr

m cd


,A B

m cd


curr

m cd


,A B

m cd
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the possibility of an alternative specific mcd parameter, the dangers of assuming a generic 

mcd parameter are also evident. Notably in Aust08, Aust04b and NZ07, the point estimate of 

the generic βmcd parameter is a fraction of that in Aust00 and NZ99. Moreover, the z-ratios of 

the parameter in these datasets are close to the value of two, suggesting that mcd is not a 

strong determinant of choice. However, if the true values of curr

m cd
 and ,A B

m cd
 are such that curr

m cd


is zero and ,A B

m cd
 is positive, then assuming a generic mcd parameter would result in a 

downward bias for the estimated
m cd

 . 

 

Column 2 of Table 5.3 reports the results of estimating alternative specific curr

m cd
 and ,

.
A B

m cd
  

These results directly address Hypothesis 2 and Hypothesis 3. It can be seen that in Aust08, 

Aust00, NZ99 and NZ07, the hypothesis 
,curr A B

m cd m cd
  may be rejected at the five percent level, 

that is, alternative specific mcd parameters may be assumed. Among all the datasets, the 

results from Aust08 and NZ07 are most consistent with the hypotheses that 0
curr

m cd
  and 

,
0

A B

m cd
  . In particular, inclusion of an alternative specific mcd parameter in the model for 

Aust08 results in a substantial improvement in the log-likelihood statistic. On the other hand, 

,curr A B

m cd m cd
  is not rejected at the five percent level in Aust05, Aust04a and Aust04b. For 

Aust04a in particular, neither the 
curr

m cd
 parameter nor the ,A B

m cd
 parameter is statistically 

significant, while in the other two datasets Aust05 and Aust04b, the assumption of a generic 

mcd parameter across all alternatives, that is,
,curr A B

m cd m cd
  and 

,
, 0

curr A B

m cd m cd
   , is supported by 

the data. Unexpectedly, results from Aust00 and NZ99 seem to suggest that respondents 

place a higher important weight on using the MCD heuristic when the current alternative is 

assessed vis-à-vis the hypothetical alternatives; in Aust00 for example, 
curr

m cd
 is found to be 

greater than zero, while
,

0
A B

m cd
   is not rejected at the five percent level. 

 

The MCD effect hypothesised so far can be simply stated as the higher the mcd count, the 

more desirable the alternative. It is also of interest to note that the extremeness aversion 

heuristic expressed through the compromise effect may in theory oppose the MCD effect. 

Since the extreme alternatives are defined by both extremely good and bad attribute levels, it 

is quite possible for an extreme alternative to have a higher mcd count than a compromise 

alternative, by virtue of the extreme alternative having some attributes that are the „best‟ in 
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the choice set. On the other hand, the compromise alternative may have a low mcd count, 

possibly even having  a mcd count of zero, if none of its attributes are the „best‟ in the choice 

set. Therefore, through the compromise effect, it might be the case that the lower the mcd 

count, the more desirable the alternative becomes. At even higher mcd counts, where an 

alternative is close to becoming, or is in effect, the dominating alternative, the MCD effect 

may run up against the believability of an alternative. To the extent that such an alternative 

lacks believability, its utility may be negatively impacted. These observations may explain 

some of the empirical anomalies described above.  

 

To summarise, there does not appear to be a generalisable rule governing how the MCD 

heuristic can be modelled in different datasets. Nevertheless, these results suggest that some 

empirical testing needs to be undertaken if MCD is to be used as a representation of context 

dependence. Hensher and Collins (2011) also conclude that the mcd variable on its own is not 

sufficient to explain the observed choice made by the respondent. Attributes of the 

alternatives do matter.  

 

5.3.3 A Probabilistic Decision Process Model 

 

One possible avenue of further research into the role of the MCD heuristic may be 

undertaken through a probabilistic decision process (PDP) model such as that suggested in 

McNair et al. (2012). A PDP model may be used to capture the possibility of heterogeneity in 

decision rules among the sample of respondents. In the PDP model considered here, assume 

that there are two latent decision rules. The first decision rule corresponds to the MCD rule 

and the second decision rule corresponds to the standard RUM linear additive rule. Therefore, 

in the first decision rule, all taste parameters associated with the attributes of the alternatives 

are set to zero, and in the second decision rule, the coefficient of the MCD variable is set to 

zero. The model accounts for the panel nature of the dataset. The results are reported in Table 

5.4. 

 

Across all seven datasets, as expected, the coefficient associated with the mcd variable is 

positive and statistically significant at the five percent level. In contrast to the RUM model 

results reported earlier, all coefficients associated with the time and cost attributes in Class 2 

for Aust00 and NZ99 are now negative and statistically significant. Likewise in the other  
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Table 5.4: Estimation of Probabilistic Decision Process Models 

 
̂  

(z-ratio) 

 Aust08 NZ99 Aust05 

 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

Free flow time (FF) (min)  
– 0.0460***  

(– 3.13)        
 

– 0.1649***  

(– 12.49)        
 

– 0.1160***  

(– 8.63)        

Slowed down time (SDT) (min)  
– 0.1201***  

(– 8.38)        
 

– 0.2336***  

(– 6.46)        
 

– 0.1596***  

(– 12.35)        

 Stop start time (SST) (min)  
 – 0.0847*** 

(– 7.44) 
 

– 0.3477***  

(– 6.46)        
 

 – 0.2052*** 

(– 17.27) 

Running Cost (RC) ($)  
– 0.8154***    

(– 8.54)      
 

– 2.5528***  

(– 17.41)        
 

 – 0.8090*** 

(– 10.50) 

Toll Cost (TC) ($)  
– 0.6678***    

(– 8.56)      
 

– 6.0570***  

(– 11.86)        
 

– 0.8327***    

(– 18.47)      

MCD 
0.3715***       

(9.19)       
 

0.3991*** 

(5.64) 
 

0.4972***       

(9.36)       
 

Alternative Specific Constants       

        -current alternative 
– 0.6516***       
 (– 4.20) 

1.4913*** 
(16.53) 

1.3102*** 
(8.34) 

n.s. 
– 0.2414**       
 (– 2.08) 

0.4316*** 
(6.25) 

    
       - Alternative A 

n.s. n.s. 
0.3148** 
(2.14) 

n.s. n.s. n.s. 

Probability 
0.2928***       
(8.65)      

0.7072*** 
(20.90) 

0.3573***       
(12.27)      

0.6427*** 
(22.06) 

0.1433***       
(5.98)      

0.8567*** 
(35.78) 

Log-likelihood at convergence – 2783.53 – 1494.29 – 2420.12 

Normalised AIC 1.247 1.236 0.999 

            *** denotes significance at the one percent level. 
** denotes significance at the five percent level. 

n.s.:  not significant. 
Models account for panel nature of dataset 
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 ̂  

(z-ratio) 

 Aust00 Aust04a Aust04b NZ07 

 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

Free flow time (FF) (min)  – 0.2744***  

(– 7.20)        
 

– 0.0864***  
(– 9.77)        

 
– 0.1054***  

(– 16.63)        
 

– 0.1627***       

(– 13.87)        

Congestion time (CT) (min)  – 0.2697*** 

(– 7.14)         
 

– 0.0174* 

(– 1.81)         
 

– 0.1240***  

(– 24.16)        
 

– 0.1878***  

(– 9.33)        

Running Cost (RC) ($)  – 0.9195***    

(– 2.53)      
 

 – 0.1335*** 
(– 3.08) 

 
– 0.4309***    

(– 14.19)      
 

– 0.7851***    

(– 10.79)      

Toll Cost (TC) ($)  – 1.4968***    

(– 8.01)      
 

– 0.3090***    
(– 9.03)      

  
– 0.5270***    

(– 23.73)      
 

– 1.1265***    

(– 15.54)      

MCD 0.3654***       
(3.82)       

 
0.5739***       
(8.77)       

 
0.3915***       

(7.12)       
 

0.3483***       
(7.12)       

 

Alternative Specific Constants         

        -current alternative 1.0930***       

 (7.53) 
n.s. 

– 2.3377**       

 (– 10.80) 

0.9366*** 

(5.10) 

0.3287*** 

(3.16) 
n.s. 

– 2.5647*** 

(– 9.12) 

0.6094*** 

(5.90) 

        -Alternative A 
n.s. n.s. n.s 

0.5789*** 

(2.99) 
 n.s. n.s. 

 0.3727*** 

(4.09) 
n.s. 

Probability 0.3501***       

(11.57)      

0.6499*** 

(21.48) 

0.5962***       

(9.16)      

0.4038*** 

(6.20) 

0.2062***  

(6.53)      

0.7938***  

(25.15)      

0.2970*** 

(6.88)      

0.7030***  

(16.29)      

Log-likelihood at convergence – 1812.38 – 714.61 – 2889.23 – 1271.94 

Normalised AIC 1.547 1.587 1.490 1.392 

*** denotes significance at the one percent level. 
** denotes significance at the five percent level. 
n.s.:  not significant 
Models account for panel nature of dataset 
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datasets, the time and cost parameters are negative and statistically significant at the five 

percent level, with the sole exception of the CT parameter in Aust04a. The log-likelihood 

statistics of the PDP model indicate a vast improvement in model fit, which is also to be 

expected since the panel nature of the data is now accounted for. All class probabilities are 

statistically significant, with the probability of a respondent belonging to class 1 (use of the 

MCD heuristic) ranging from around 15 percent in Aust05 to almost 60 percent in Aust04a. 

These results show that the incidence of respondents not fully trading amongst the attributes 

can be very high. 

 

As an aside, it may be observed that the MCD heuristic is a decision rule that captures semi-

compensatory decision making, that is, both compensatory and non-compensatory decisions 

can be captured. It is compensatory in the sense that the loss engendered by a previously 

„best‟ attribute moving to „non-best‟ can be compensated by another attribute moving from 

„non-best‟ to „best‟. However, it can also be non-compensatory at the same time in the sense 

that once an attribute is „best‟ or „non-best‟, any improvements/worsening of that attribute 

will not affect the MCD count.  

 

The consistency across datasets that is revealed in the (non-zero) probability of using the 

MCD heuristic as opposed to the standard linear additive RUM rule suggests the need for 

more careful consideration on how to embed the MCD heuristic in choice models. On its 

own, the MCD heuristic provides little information to the practitioner on the outputs of 

interest – typically marginal willingness to pay measures, welfare estimates or elasticities – 

so it is envisaged that some other kind of decision rule will have to be assumed for the model 

as well. The extent to which the use of the MCD heuristic is itself a function of the 

experimental design is another interesting research question. For example, explanations for 

why there might be perceived non-attendance to certain attributes (Hensher et al., 2012b) 

might also be used to explain the perceived presence or absence of the MCD heuristic across 

various choice contexts. 
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A criticism that can be levelled against the MCD approach is that the researcher would have 

to a priori identify the „best‟ level for the attribute based on whether, say, more is better or 

less is better. This identification poses a significant challenge particularly in mixed logit 

models where in some cases, parameter distributions may be assumed to be unconstrained 

and such models may reveal substantial heterogeneity in the sign of the parameters
6
. 

 

5.4 THE EXTREMENESS AVERSION HEURISTIC 

 

As discussed in Chapter 2, a major class of heuristics explored in this thesis relates to the 

extremeness aversion heuristic. With extremeness aversion, the assumption of context 

independence is immediately relaxed, since a reference point is now introduced into the 

utility function. The modelling approach discussed in this section is adopted from one of 

Kivetz et al.‟s (2004) specifications for extremeness aversion, which is the so-called 

contextual concavity model written out in Equation (5.3). In this model, the context 

dependence stems from the part-utilities of each attribute in the utility function being 

expressed as gains relative to the minimum part-utility of the same attribute in that choice set. 

The nomenclature of concavity arises from the assumption that the gains in part-utility are 

concave functions, although the empirical results that are presented later in this section will 

question this assumption. Hence, for the moment, this model will be referred to as the non-

linear logit model. Equation (5.3) expresses the utility for alternative j in each choice set s as: 

 

 
0 ,

( ( max ( ))) k

js j k jks j s jks j

k

U X X


  


     (5.3) 

 

 

m ax ( )
j s jks

X


 is the maximum value attained by attribute k among all j alternatives in choice 

set s, to recognise that the minimum part-utility of an attribute is associated with the worst 

attribute level it takes in choice set s. 
k

 is the power parameter associated with attribute k.  It 

is at least thought to be greater than zero so that Ujs is an increasing function in the gains. 

                                                             
 

 

 

6 For this matter, this is a criticism against many models which make use of a reference point. For example, in 

lexicography or EBA, „best‟ or „worst‟ levels of attributes typically need to be known/assumed beforehand. 
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Like the MCD heuristic, the reference point in the utility function in the case of the 

extremeness aversion heuristic is choice set dependent, meaning that preferences are context 

specific. For now, the model is estimated assuming i.i.d. Extreme Value I error terms. 

 

It is also important to note that written in the form above, the utility function 
js

U  is estimable 

only if 
k

  is non-positive for each attribute k. Otherwise, if 
k

 was positive, an estimation 

error would occur since
k

  is not generally an integer value and a negative quantity raised to a 

non-integer power is not a real number. While there is overwhelming evidence in the 

transportation literature regarding the sign of 
k

 on the time and cost attributes of an 

alternative, in practice, where the sign of 
k

 is not known a priori, it might be necessary to 

estimate, say the standard RUM model first, in order to determine the sign of 
k

 . That 

information can then be used to determine which of max( )
jks

X  or min( )
jks

X  is the 

appropriate reference, i.e., “worst” attribute level in the choice set, to be used in the model.  

 

If prospect theory applies, in other words, if there are diminishing returns to the gains in part 

utilities, as suggested by Kivetz et al. (2004), the prior expectation is for 
k

  to satisfy the 

inequality 0 1.
k

   From the econometric perspective however, it is not necessary for such a 

constraint to be imposed on
k

 , hence 
k

  is not bound by this restriction and may take on 

values greater than one. To highlight one application of this non-linear logit approach, Table 

5.5 reports the results of the estimation for Aust08, where the error terms are assumed to be 

i.i.d. EV type I. In the case of ˆ
k

 , 95 percent confidence intervals are also reported in order to 

facilitate the comparison of the estimated value with the value of one, which is the linear 

form of the utility function.  

 

The results obtained from the non-linear logit model show that all the ˆ
k

 estimates are 

statistically significant at the one percent level and all have the expected negative sign. It is 

also reassuring to note that all ˆ
k

 are statistically significant as well, indicating that all the 

attributes that have been modelled in the utility function do matter. Notice that when 1
k

   

for all k, the model collapses to the standard context independent MNL model since within 

each choice set, the same term m ax( )
jksk

X is added to all the utility functions and the  
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Table 5.5: Results from Applying a Non-Linear Multinomial Logit Model to Aust08 

 
̂  

(z-ratios) 

̂  

(z-ratios) 

[95% confidence interval] 

Free flow time (FF) (minutes) 
– 0.0637*** 

(– 15.62) 

      1.842*** 

(8.75) 

[1.430 – 2.255] 

Slowed down time (SDT) (minutes) 
– 0.0756*** 

(– 11.79) 

     1.192*** 

(8.35) 

[0.912 – 1.472] 

Stop start time (SST) (minutes) 
– 0.0815*** 

(– 13.97) 

    0.934*** 

(11.43) 

[0.774 – 1.094] 

Running Cost (RC) ($) 
– 0.3155*** 

(– 5.45) 

     0.571*** 

(6.07) 

[0.386 – 0.755] 

Toll Cost (TC) ($) 
–  0.2672*** 

(– 9.48) 

     0.751*** 

(6.09) 

[0.509 – 0.993] 

Alternative Specific Constants   

     -current alternative 

 

0.9168*** 

(14.98) 

 

      -Alternative A not significant  

No. of observations 4,480 

Log-likelihood at convergence  – 3414.41 

                   *** denotes significance at the one percent level. 

addition of the same term across all utility functions will not affect the estimation results. 

Hence, the standard model is nested in this non-linear logit model, and to test if the non-linear 

model is providing a better statistical fit for the data, the likelihood ratio test will be 

appropriate. The result shows that embedding a contextual heuristic into the model provides a 

better statistical fit at the one percent level [Non-linear model vs. Standard RUM model:

2

( 5 )
Prob ( 40.34) 0.01   ].  

 

The estimated ˆ
k

 parameters in the non-linear model have a natural counterpart in the ˆ
k

  

parameters of the standard representation, in the sense that these parameters can be 

interpreted as weights for the attribute levels in the utility function. However, while the ˆ
k



parameters in the RUM specification have another interpretation as the marginal 

utility/disutility associated with a unit increase in the attribute, the marginal utilities in the 

non-linear contextual specification will depend on the values of ˆ
k

 , ˆ
k

 , Xjks and max( )
jks

X . 
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Diminishing returns to utility gains or the concavity of the functional form can be tested by 

comparing the null 
0

ˆ: 1
k

H    (no concavity, i.e., linear in the attributes) against the 

alternative
1

ˆ: 1
k

H    (concavity). In Aust08, the null cannot be rejected at the five percent 

level for the power parameters 
SD T

 and 
SST

 associated with the SDT and SST attributes. 

Hence, in the SDT and SST time components, respondents are behaving as if they are 

standard linear additive utility maximisers. On the other hand, the data allow the rejection of 

the null hypotheses ˆ 1
RC

   and ˆ 1
TC

  , in favour of the alternative hypotheses ˆ 1
RC

   and

ˆ 1
TC

  , at the five percent significance level, although the 95 percent confidence interval of 

ˆ
TC

 just barely excludes the value of one. This implies that the gains in the RC and TC part-

utilities relative to the reference point are concave and therefore consistent with prior 

expectations. 

 

For this non-linear logit model, a more interesting result relates to the rejection of the null 

hypothesis ˆ 1
FF

   in favour of the alternative hypothesis ˆ 1
FF

  , leading to the conclusion 

that respondents are treating the part-utility gains in the free flow time attribute as a convex 

function, rather than a concave function. This is a surprising observation as a convex function 

implies that there are increasing, rather than diminishing, returns to gains in the part utility. 

Previous studies (Kivetz et al., 2004; Chorus and Bierlaire, 2013) do not find non-concavity 

for the power parameters and so the theoretical reason for this result is not entirely clear. 

 

The non-linear logit model is also estimated for the other datasets, with the results for the 
k



estimates reported in Table 5.6. Since the power parameters ˆ
k

 are of empirical interest, Table 

5.7 makes a comparison of these parameters across all the seven datasets. In addition to the 

point estimates, 95 percent confidence intervals are again reported to facilitate the 

comparison of these estimates to critical values such as zero or one. 

 

The first observation relates to model fit. Applying the likelihood ratio test, the non-linear 

logit model outperforms the standard RUM model in all datasets, with the exception of 

Aust00. In other words, there seems to be a rather consistent pattern that accounting for some 

form of non-linearity in the utility functions is an important element of describing choice 

behaviour. It might also be observed that all the estimated
k

 are negative and statistically 
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Table 5.6: Estimates from a Non-Linear Multinomial Logit Estimation 

 Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 Estimates of
k

  

(z-ratios) 

Free flow time (FF) (min) 
– 0.0637*** 

(– 15.62) 

– 0.1156*** 

(– 7.71) 
n.s. 

– 0.0629*** 

(– 3.56) 

– 0.0333*** 

(– 12.02) 

– 0.0726*** 

(– 15.34) 

– 0.0958*** 

(– 14.64) 

Congestion time (CT) (min)  
– 0.1468*** 

(– 6.88) 
  

– 0.0364*** 

(– 6.61) 

– 0.0819*** 

(– 21.71) 

– 0.1233*** 

(– 12.43) 

Slowed down time (SDT) (min) 
– 0.0756*** 

(– 11.79) 
 

– 0.0717*** 

(4.82) 

– 0.1294*** 

(– 11.66) 
   

Stop start time (SST) (min) 
– 0.0815*** 

(– 13.97) 
 

– 0.1771*** 

(– 8.27) 

– 0.1602*** 

(– 15.98) 
   

Running Cost (RC) ($) 
– 0.3155*** 

(– 5.45) 
n.s. 

– 0.3073*** 

(– 7.46) 

– 0.7320*** 

(– 9.45) 

– 0.1206*** 

(– 6.45) 

– 0.3227*** 

(– 11.77) 

– 0.4797*** 

(– 10.38) 

Toll Cost (TC) ($) 
–  0.2672*** 

(– 9.48) 

– 0.5884*** 

(– 13.51) 

– 10.322** 

(– 2.10) 

– 1.2691*** 

(– 6.05) 

– 0.2250*** 

(– 3.86) 

– 0.4279*** 

(– 14.30) 

– 0.7961*** 

(– 9.51) 

Alternative Specific Constants  

     - current alternative 
0.9168*** 

(17.59) 

0.6188*** 

(7.57) 

0.8558*** 

(11.25) 

0.2408*** 

(3.81) 

– 0.7312*** 

(– 6.85) 
n.s. n.s. 

     - Alternative A n.s. 
0.1407** 

(1.98) 

0.2756*** 

(3.15) 
n.s. n.s. n.s. n.s. 

LL at convergence – 3414.41 – 1859.55 – 1579.82 – 2617.33 – 837.29 – 3019.63 – 1625.99 

Normalised AIC 1.529 1.588 1.307 1.081 1.856 1.557 1.776 

*** denotes significance at the one percent level. 
n.s.: not significant  
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Table 5.7: A Comparison of the 
k

  Estimates across the Seven Toll Road Datasets (MNL Estimation) 

 Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 Estimates of k
  

(z-ratios) 

[95% confidence interval] 

ˆ
FF

  
1.842*** 

(8.75) 

[1.430 – 2.255] 

1.053*** 

(13.72) 

[0.903 – 1.204] 

not estimated; 

0
FF

   

0.505*** 

(3.99) 

[0.257 – 0.753] 

1.587*** 

(6.40) 

[1.101 – 2.073] 

0.848*** 

(11.77) 

[0.707 – 0.989] 

1.128*** 

(14.76) 

[0.978 – 1.278] 

ˆ
CT

   
0.874*** 
(12.36) 

[0.735 – 1.013] 

  
0.796*** 

(4.74) 

[0.467 – 1.125] 

1.148*** 
(23.69) 

[1.053 – 1.243] 

1.264*** 
(10.16) 

[1.020 – 1.5108] 

ˆ
SD T

  
1.192*** 

(8.35) 

[0.912 – 1.472] 

 

0.853*** 

(5.31) 

[0.538 – 1.167] 

0.784*** 

(9.76) 

[0.626 – 0.941] 

   

ˆ
SST

  
0.934*** 
(11.43) 

[0.774 – 1.094] 

 
0.901*** 

(8.37) 

[0.690 –  1.112] 

1.047*** 
(15.98) 

[0.918 – 1.175] 

   

ˆ
RC

  
0.571*** 

(6.07) 

[0.386 – 0.755] 

not estimated; 

0
RC

   

Restricted to 

1
RC

   

0.720*** 
(8.75) 

[0.558 –0.881] 

0.896*** 
(3.75) 

[0.427 – 1.365] 

0.780*** 
(7.87) 

[0.585 – 0.974] 

0.914*** 
(7.56) 

[0.677 – 1.151] 

ˆ
TC

  
0.751*** 

(6.09) 
[0.509 – 0.993] 

0.975*** 

(28.01) 
[0.906 – 1.043] 

0.301*** 

(6.83) 
[0.215 – 0.387] 

0.476*** 

(10.99) 
[0.391 – 0.560] 

0.382*** 

(3.93) 
[0.191 – 0.573] 

0.835*** 

(15.74) 
[0.731 – 0.939] 

0.812*** 

(10.36) 
[0.659– 0.966] 

R Yes No Yes Yes Yes Yes Yes 

*** denotes significance at the one percent level. 

R = reject standard RUM utility specification at the 5% level? 
  



 
 

126 
 

 

significant at the five percent level. An interesting observation is the greater difficulty in 

fitting the non-linear logit model to NZ99 (
RC

 had to be constrained to one in order for 

sensible results to be obtained) and the emergence of an apparently strong aversion to toll 

costs (say, relative to the running cost attribute). At the same time, estimating the non-linear 

logit model for NZ99 allows a vast improvement in the log-likelihood statistic, from – 1694.9 

in the RUM model to – 1579.8 in the non-linear logit model.  

 

Upon closer inspection of the data, it is observed that there is a much stronger consistent 

pattern of choice for the reference alternative in NZ99, compared to say the other New 

Zealand dataset which is NZ07. In NZ99, it was found that the reference alternative was 

chosen in 72 percent of the choice sets, whereas in NZ07, the reference alternative was 

chosen only 49 per cent of the time. In the New Zealand datasets, there was no prior 

experience with tolling and hence, the reference alternatives all had zero toll costs. In order 

for the non-linear logit model to provide a better fit to the choice patterns observed, it seems 

that the TC parameter has to be allowed to be highly negative, indicating a strong aversion to 

toll costs and to the hypothetical alternatives, which makes sense since the reference 

alternative had no toll costs.  

 

Turning to the k
 parameters, it is observed that while the null hypothesis that 0

FF
  can 

always be rejected in favour of 0
FF

  across all the six datasets where 
FF

 is estimated, 
FF



itself can take on values between zero and one (Aust05 and Aust04b), equal to one (Aust00 

and NZ07), or greater than one (Aust08 and Aust04a). 

 

Across the three datasets Aust08, NZ99 and Aust05 where the SDT and SST attributes are 

available for modelling, estimates of SD T
 reveal that SD T

 is never statistically greater than 

one; hence gains in the part utilities in the SDT attribute can be represented as either a linear 

or concave function, but not a convex function. Respondents in Aust08 and NZ99 may be 

thought of taking the SDT attribute to be linear in the gains, while in Aust05, it is preferable 

to treat the gains in SDT as a concave function. Across these three datasets, the null of 

1
SST

  is not rejected at the five percent level, that is, the SST attribute may be modelled as 

entering the utility function as a linear function. 
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Across the four datasets where CT is an attribute of the alternatives, it is found that ˆ 1
CT

 

is not rejected at the five percent level in Aust00 and Aust04a. However, in Aust04b and 

NZ07, ˆ
CT

 is found to take on a value greater than one, which is again somewhat of a 

surprising result in light of evidence that gains should be concave. Therefore, along the time 

attributes of the alternatives, it is possible for respondents to exhibit extremeness seeking, 

extremeness aversive or extremeness neutrality (linear-in-attributes and linear-in-parameters) 

behaviour, and it is very much an empirical question as to what kind of behaviour is on 

display. 

 

Along the RC and TC cost attributes, the estimated RC
 and TC

 parameters of the model are, 

in the vast majority of cases, statistically less than one and in all cases, do not statistically 

exceed one.  It therefore appears that on the monetary dimension at least, behaviour of 

respondents is generally consistent with prospect theory and extremeness aversion. There are 

six instances of the TC
 parameter and four instances of the RC

 parameter being less than 

one. This might suggest that respondents are generally more extremeness averse in the TC 

attribute than in the RC attribute, which sounds intuitively correct since not only are toll costs 

more salient than running costs, but the emphasis of the choice experiments was on tolled 

roads as well.  

 

The overall conclusion from examining the data through the lens of a non-linear logit model 

such as Equation (5.3) suggests that while some consistent behavioural patterns across 

datasets may be observed, there is also quite a substantial amount of heterogeneity in the way 

the same heuristic is applied across groups of respondents. With the exception of Aust00, the 

estimation results from Model 2 show that accounting for some form of referencing and 

accounting for non-linearity in the utility function are important, at the very least, for some 

attributes of the alternative. Whether the demonstrated behaviour is extremeness aversive or 

extremeness seeking is ultimately an empirical question that depends on the magnitude of the 

power parameters. 

 

In view of the evidence presented, instead of what has hitherto been known as a contextual 

concavity model, which makes the prior assumption that differences in the part-utilities are 
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concave in the gains, it may be more appropriate  to label such a functional specification as a 

“non-linear worst level referencing” (NLWLR) model. In cases such as in Aust04a where 

some of the power parameters are greater than one, and other power parameters less than one, 

the NLWLR model can display not the compromise effect, but the polarisation effect where 

there is an increased tendency to pick one of the extreme alternatives. 

 

Table 5.8 illustrates the polarisation effect using data from an actual choice set in Aust04a. In 

this example, alternative A is the compromise alternative since the part utilities of its FF and 

TC attributes lie in-between the other two extreme alternatives of current and B. As a matter 

of notation, elements within the round brackets indicate the choice set under consideration. 

For example, 
( , , )curr A Bcurr

V denotes the observed utility of the current alternative in the choice set 

comprising of the current alternative, alternative A and alternative B. As calculated, the 

introduction of an extreme alternative B into the binary choice set of {curr, A} causes the 

choice share of A relative to the choice share of curr to fall from 3.20 to 1.82. This is 

extremeness aversion away from curr. On the other hand, the introduction of curr into the 

binary choice set of {A, B} causes the choice share of B relative to A to increase. This 

represents extremeness seeking behaviour towards B, which has the highest part-utility in the 

FF attribute. Together, these observations constitute an example of polarisation since 

extremeness seeking/extremeness aversion operates only in one direction in this case, that is, 

away from curr and towards B. 

 

The initial motivation behind the development of the contextual concavity model was to find 

a way to explain the compromise effect, but as has been shown, the NLWLR model, which is 

a more appropriate nomenclature for the contextual concavity model, is capable of generating 

not only compromise effects, but also polarisation effects. In cases where all of the k
  

parameters are greater than one, the NLWLR model might even account for extremeness 

seeking behaviour, where all the extreme alternatives are preferred to the compromise. 

 

As a matter of empirical estimation, the NLWLR model can be tricky to estimate. It is 

possible for unconstrained estimation to lead to errors since the k
 parameters need to be 

non- positive. In the case of an alternative whose attribute
jks

X takes on the maximum value 

in the choice set, the gains in the part-utility of that attribute relative to the reference is zero 
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Table 5.8: An Illustration of the Polarisation Effect Using Parameters Obtained from 

Estimation on Aust04a 

 
current Alternative A Alternative B 

Part-utility of  FF attribute, 
,j FF

V  
,

0.54
curr FF

V    
,

0.45
A FF

V    
,

0.24
B FF

V    

Part-utility of TC attribute, 
,j TC

V  
,

0
curr T C

V   
,

1.56
A TC

V    
,

1.89
B TC

V     

Assume NLWLR model for 
j

V ; 
, , , ,

( min( )) ( min( )) TCFF

j j FF j FF j TC j TC
V V V V V


     

Assumptions: 1.59
FF

   , 0.38
TC

   

Observed utility in binary choice 

situation {curr, A} 
 

( , )

1.19
curr Acurr

V   
( , )

0.022
curr AA

V    

Observed utility in binary choice 

situation {A, B} 

 
( , )

0.65
A BA

V   
( , )

0.084
A BB

V   

Observed utility in choice 

situation {curr, A, B} 
( , , )

1.27
curr A Bcurr

V   
( , , )

0.67
curr A BA

V   
( , , )

0.15
curr A BB

V   

Relative probabilities (choice shares) 

In binary choice situation 

{curr,A}   

( , )

( , )

Pr( )
3.20

Pr( )

curr A

curr A

curr

A
  

In binary choice situation  

{A,B}   

( , )

( , )

Pr( )
0 .57

Pr( )

A B

A B

B

A
  

In choice situation {curr,A,B} 

( , , )

( , , )

Pr( )
1.82

Pr( )

curr A B

curr A B

curr

A
  

( , , )

( , , )

Pr( )
0.59

Pr( )

curr A B

curr A B

B

A
  

Note: 
,

.
j k k jk

V X  

and an error will occur if k
 happens to be non-positive. It is possible to avoid these errors by 

a sensible choice of starting values for the parameters, for example, by not starting with 

0
k

  and 0
k

  . Nevertheless, a significant amount of trial and error may be required 

before an appropriate set of starting values is found which allows the model to converge. 

 

To aid in the estimation, an algebraic trick may be employed to avoid the problem of division 

by zero. The utility function may be re-written as in Equation (5.4): 
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0 ,

( m ax ( )) ,
k

js j k jks j s jks k k j

k k

U X X d d


  


      
    (5.4) 

 

where 1
k

d  if m ax ( )
jks j s jks

X X


 and 0 otherwise. Hence, if it is true that 
k

 is always less 

than zero, then the term in the square brackets will always be positive and the utility function 

will be defined for all values of 
k

 . 

 

5.5 MODELS WITH REGRET MINIMISATION 

5.5.1 The Random Regret Minimisation (RRM) Model 

 

Regret based theories and models are built on the premise that people aim to minimise 

anticipated regret when making a choice. The RRM model was primarily developed to 

analyse riskless choice involving multi-attribute alternatives, and in this context regret is said 

to occur when the attributes of a non-chosen alternative perform better than the attributes of 

the chosen alternative (Chorus, 2012). 

 

The Chorus (2010) version of the RRM model was described in Chapter 2, Section 2.5.2, but 

for the reader‟s convenience, salient points of the model are outlined and reproduced below. 

Define, in Equation (5.5), the binary or pair-wise regret associated with considering 

alternative j as opposed to alternative j′: 

 

 ( , ) ln[1 exp( )]
j k j k jk jk

k

reg j j X X 
 

   
 

(5.5) 

 

The total regret associated with alternative j is the sum of binary regrets over all alternatives j′ 

in choice set s, that is, Equation (5.6): 

 

 
,

( ) ( , )

j s

j j

reg j reg j j



   
(5.6) 

 

The RRM model can be estimated by observing that minimising the regret function is 

equivalent to maximising the negative of regret. Estimation of the RRM model is easily 
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accomplished in Nlogit 5.0 as it already comes with a built-in procedure for estimating the 

model. 

 

In the RRM model, preferences for each alternative depend not only on the attribute values 

for that alternative, but also on the relative performance of these attributes against their 

counterpart attribute levels in all the other alternatives in the choice set. In other words, 

preferences for an alternative are context dependent or choice set specific. The RRM allows 

preferences to change even if an alternative‟s attribute levels remain constant from choice set 

to choice set, as long as there is a change in the attribute levels of any of the other alternatives 

to which an alternative is being compared. 

 

As explained in Chapter 2, the compromise effect due to the RRM model is also closely 

related to semi-compensatory behaviour. Since extreme alternatives contain both best and 

worst performing attributes in the choice set, the higher amount of regret engendered by their 

worst performing attributes, described in Equation 5.5, is not fully offset by their best 

performing attributes, and this can lead to the extreme alternative being relatively less 

preferred and the compromise alternative being relatively more preferred. Hence, the 

discussion of the RRM model is closely related to the extremeness aversion heuristic, and 

therefore linked to the NLWLR model elaborated in Section 5.4 as well as the relative 

advantage model to be discussed in Section 5.6. 

 

Table 5.9 summarises the results of estimating the RRM model on each of the seven toll road 

datasets. With the exception of the free flow time taste parameter in NZ99 which is not 

statistically significant, all other parameters are statistically significant at the five percent 

level and of the correct sign. In particular, estimating the RRM model on Aust00 has allowed 

the taste parameter for the RC attribute to become significant, although the log-likelihood 

statistic for the model is lower than for the standard RUM model. 

 

Implications on the value of travel time savings arising from fitting the RRM model to the 

data are discussed later in Section 5.9, but for now, it suffices to note that the results obtained 

from the estimation of the RRM model on the seven toll road datasets are consistent with 

earlier findings that the empirical performance of the RRM model is somewhat mixed when 

compared with the standard linear additive RUM model. As reported in previous studies (see 

for example, Chorus, 2012), the full RRM model, compared to the standard linear additive 
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Table 5.9: Estimation Results from the RRM (MNL) Model 

RRM Model Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 
̂  

(z-ratio in parentheses) 

Free flow time (FF) (min) 
– 0.0332*** 

(– 7.05)         

– 0.0308*** 

(– 5.21)        
n.s.            

– 0.0504*** 

(– 7.86)       

– 0.0238***       

(– 7.96)   

– 0.0465*** 

(– 16.92)         

– 0.0622*** 

(– 14.31)       

Congestion time (CT) (min)  
– 0.0358*** 

(– 7.23)         
  

– 0.0242***       

(– 7.17) 

– 0.0631*** 

(– 26.50)         

– 0.0837*** 

(– 9.51)       

Slowed down time (SDT) (min) 
– 0.0472*** 
(– 9.36)       

  
– 0.0549*** 
(– 6.02)         

– 0.0754*** 
(– 12.92)         

   

Stop start time (SST) (min) 
– 0.0549*** 

(– 13.50)         
 

– 0.1160*** 

(– 9.29)       

– 0.1114*** 

(– 19.03)         
   

Running Cost (RC) ($) 
– 0.2171*** 

(– 8.54)         

– 0.2727*** 

(– 3.05)         

– 0.1653*** 

(– 3.45)         

– 0.4142*** 

(– 10.77)         

– 0.0770***       

(– 6.36) 

– 0.2091*** 

(– 14.15)         

– 0.2872***       

(– 9.51) 

Toll Cost (TC) ($) 
– 0.1813*** 

(– 12.46)       

– 0.2328*** 

(– 17.96)         

– 0.5757*** 

(– 13.08)       

– 0.3390*** 

(– 21.84)   

– 0.1083***       

(– 9.49) 

– 0.2578*** 

(– 27.77)       

– 0.4175*** 

(– 21.28)       

Alternative Specific Constants        

        -current alternative 

 

0.9156*** 

(18.32) 

0.6599*** 

(11.46) 

1.0784***       

(14.62) 

0.3578*** 

(6.34) 

– 0.5837***       

(– 5.59)   

n.s. 

 

n.s. 

 

        -Alternative A n.s.                n.s. 
0.2319*** 

(2.86)       
n.s.          

0.2394***       

(2.79)       
n.s.                   n.s.  

No. of observations 4480 2352 2432 4,864 912 3,888 1840 

Log-Likelihood at convergence – 3439.32 – 1951.54 – 1691.55 – 2683.70 – 847.55 – 3044.11 – 1639.22 

Normalised AIC 1.538 1.664 1.396 1.106 1.872 1.568 1.786 

Log-Likelihood  

(standard RUM) 
– 3434.02 –1861.64 – 1694.73 – 2669.73 – 847.75 – 3031.58 – 1630.62 

Reject standard RUM model in 

favour of RRM? 
No No Yes No Yes No No 

***denotes significance at the one percent level. 

n.s.: not significant    
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RUM, offers improvement in model fit in some, but not all, of the datasets considered. Out of 

the seven datasets studied, the RRM model only fits NZ99 and Aust04a better. In the latter 

case, only a very marginal improvement is observed over the RUM model.  

 

5.5.2 The Hybrid RRM-RUM Model 

 

One attempt to refine the RRM model is to introduce heterogeneity in decision making along 

the dimension of how attributes are processed. For example, in a hybrid RRM/linear additive 

RUM model, respondents are assumed to process a subset of attributes according to RRM, 

and the remaining attributes of the alternatives according to a linear additive processing rule 

(Chorus et al., 2013). If it is assumed that attributes 1,..., m of alternative j are processed 

according to linear additive RUM, and attributes m+1, ..., K are processed according to RRM, 

then the observed component of utility can be described by Equation (5.7): 

 

 
0 ,

1,..., , 1,...,

ln (1 exp( ))
RRM RUM

j j jk jk j k j k jk jk

k m j S k m K

j j

V X X X   


 

   


        
(5.7) 

 

As there is no theory to a priori determine which attributes are RUM-processed and which 

are RRM-processed, one approach that can be adopted is to search over all possible 

RUM/RRM combinations of attributes to find the one combination that results in the best 

model fit. The results obtained by estimating the best performing hybrid RRM-RUM model, 

together with an indication of whether an attribute is RRM or RUM processed, are reported in 

Table 5.10. The estimated taste parameters in the hybrid model are for the most part 

statistically significant at the five percent level and of the correct sign. The two exceptions, 

which were also found in the case of the standard RUM estimation of Section 5.2, are for the 

RC attribute in Aust00 and the FF attribute in NZ99. As far as goodness of fit is concerned, a 

comparison of the hybrid RRM-RUM model with the standard RUM utility estimation shows 

that the empirical performance of the hybrid model is also somewhat mixed, like the RRM 

model.  The hybrid model might be preferred in NZ99, Aust04a, Aust04b and NZ07, whereas 

the RUM specification might still be retained for Aust08, Aust00 and Aust05. However, the 

hybrid model can be said to be a better performer than the RRM model for all datasets, 

suggesting that applying the RRM assumption to all attributes might be overly constrictive. In 

a sense, the hybrid model may be viewed as a counterpart to the NLWLR model, from which 
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Table 5.10: Results from Hybrid RRM-RUM (MNL) Estimation 

Hybrid RRM-RUM Model Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 
̂  

(z-ratio in parentheses) 

Free flow time (FF) (min) 
– 0.0515***       

(– 7.35) (U)         

– 0.1214*** 

(– 14.56) (U)       
n.s.                 

– 0.0507*** 

(–7.89) (R)       

– 0.0351*** 

(– 8.36) (U)         

– 0.0472***  

(– 17.04) (R)      

– 0.0998*** 

(– 14.74) (U)       

Congestion time (CT) (min)  
– 0.0686*** 
(– 13.22) (R)       

  
– 0.0243***  
(– 7.19)  (R)      

 – 0.0898*** 
(– 28.70) (U)         

– 0.1280*** 
(– 10.12) (U)         

Slowed down time (SDT) (min) 
– 0.0725*** 

(– 9.94) (U)         
 

– 0.0543*** 

(– 6.01) (R)       

– 0.1163*** 

(– 13.58) (U)       
   

Stop start time (SST) (min) 
– 0.0804*** 

(– 14.26) (U)         
 

– 0.1701*** 

(– 9.68) (U)       

– 0.1682*** 

(– 20.28) (U)       
   

Running Cost (RC) ($) 
– 0.3417*** 

(– 9.17) (U)       
n.s.           

– 0.2605*** 

(– 4.05) (U)       

– 0.5649*** 

(– 10.19) (U)      

– 0.1172*** 

(– 6.55) (U)       

– 0.2131*** 

(– 14.34) (R)         

– 0.4475*** 

(– 9.95) (U)       

Toll Cost (TC) ($) 
– 0.1823*** 

(– 12.50) (R)       

– 0.5281*** 

(– 21.14) (U)       

– 0.5796*** 

(– 13.11) (R) 

– 0.5055*** 

(– 22.84) (U)       

– 0.1083*** 

(– 9.48)  (R)        

– 0.3693*** 

(– 29.69) (U)         

–0. 4385*** 

(– 21.27) (R)         

Alternative Specific Constants        

       -current alternative 

 

0.9294*** 

(18.64) 

0.6105*** 

(8.74) 

1.0851*** 

(14.69) 

0.3571*** 

(6.33) 

– 0.5597***  

(– 5.32) 

n.s. 

 

n.s. 

 

       -Alternative A n.s. 
0.1432** 

(2.02)                  

0.2324*** 

(2.86)             
n.s.                

0.2409***       

(2.80)      
n.s.                   n.s.                   

No. of observations 4480 2352 2,432 4864 912 3,888 1840 

Log-Likelihood – 3434.79 – 1872.09 – 1690.49 – 2670.20 – 846.53 – 3030.78 – 1631.14 

Normalised AIC 1.536 1.596 1.395 1.100 1.870 1.561 1.777 

Reject standard RUM model in 

favour of hybrid model? 
No No Yes No Yes Yes Yes 

Reject RRM model in favour of 

hybrid model? 
Yes Yes Yes Yes Yes Yes Yes 

*** denotes significance at the one percent level. 

(R): Attribute is RRM-processed 

(U): Attribute is RUM-processed 

n.s.: not significant   
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one might recall that some attributes are processed according to linear additive utility (if the 

power parameters are not statistically different from one) while others are processed through 

a non-linear rule. 

  

Another empirical observation relates to the frequency of occurrence of each attribute in the 

RRM component of the model. While there does not appear to be a general rule as to the 

allocation of each attribute either to the RRM or RUM part of the utility, the TC attribute 

appears in the RRM part of the utility function in four of the seven datasets, which is the 

highest occurrence in the RRM for any of the attributes considered. The TC attribute has the 

highest likelihood of being processed according to a regret minimisation heuristic which 

would be consistent with prospect theory and loss aversion, considering that it is a very 

salient attribute of the alternative and one which also invokes a substantial amount of 

negative emotion. 

 

5.6 THE RELATIVE ADVANTAGE MAXIMISATION MODEL AS A 

DESCRIPTION OF EXTREMENESS AVERSION 

5.6.1 Setting up the RAM Model 

 

As discussed in Chapter 2, the componential contextual model first proposed by Tversky and 

Simonson (1993) and later relabelled a relative advantage model by Kivetz et al. (2004) is 

another candidate representation for the extremeness aversion heuristic. In the context of 

discrete choice modelling, it might be useful to term such a model as a “relative advantage 

maximisation” model, since the relative advantage component of the model enters directly 

into the utility specification for alternative j as a term to be maximised. 

 

Like the RRM model, the RAM model assumes that each alternative is assessed against all 

other alternatives in the choice set. However, one key difference between RAM and RRM is 

that the RAM model explicitly considers the disadvantages and advantages of an alternative, 

with the advantages of an alternative expressed as a ratio to the sum of advantage and 

disadvantage. 

 

Since the RAM model, due to Kivetz et al. (2004), has been described extensively in Chapter 

2, again, some salient points regarding the model are simply noted here by way of recall.
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( , ')
k

A j j , which is the advantage of j over j' with respect to attribute k, might be defined as 

the increase in the part utility of alternative j over alternative j' with respect to attribute k. 

Following the standard representation of part utility used in the standard RUM model, i.e., the 

multiplication of the attribute value by its parameter weight, ( , ')
k

A j j can be specified in 

Equation (5.8) as follows: 

 

 
' '

 if 
( , ')

0 otherw ise.

j j

jk jk j k j k jk jk j k j k k

k

X X X X
A j j

    


 
   

 


 (5.8) 

 

Equation (5.8) indicates that the minimum value that ( , ')
k

A j j can take is zero, that is, 

( , ')
k

A j j is always non-negative. Given the values of
'j k

X , 
jk

  and ,
j k




( , ')
k

A j j is a 

piecewise linear function in
jk

X . j j

k


 can be interpreted as a lower bound threshold level 

specific to attribute k for which ( , ')
k

A j j  is recognised by respondents as having a non-zero 

value. In other words, the advantage ( , ')
k

A j j is perceived only when there are “large 

enough” differences in the part utilities of j over j'. For simplicity, j j

k


 is assumed to be zero 

for all respondents over all attributes k, ignoring this notion of “large enough” differences, so 

that any increase in the part utility 
jk jk

X over 
'j k j k

X
 will imply a non-zero advantage of j 

over j'. Future work might explore the possibility of incorporating non-zero j j

k


 thresholds 

into the RAM model. 

 

The specification of the disadvantage variable ( , ')
k

D j j is dependent on which assumptions 

are used in the model. In the simplest case, if symmetry between advantage and disadvantage 

is assumed, that is, if the disadvantage of alternative j over alternative j' with respect to an 

attribute k is the corresponding advantage of j' over j with respect to the same attribute, then 

Equation (5.9) follows: 

 

 ( , ') ( ', )
k k

D j j A j j  (5.9) 

 

To maintain a parsimonious representation for the RAM model, this assumption of symmetry 

in the advantage and disadvantage functions will be used throughout the analysis. This means 

that the RAM, RUM and RRM models use the same number of taste parameters, in contrast 
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to the NLWLR model which requires additional power parameters to be estimated. 

Empirically, as Kivetz et al. (2004) demonstrated, the loss aversion parameters associated 

with ( , ')
k

D j j are not statistically significant, and so the symmetry assumption is not 

necessarily overly restrictive. Nevertheless, further work may consider extensions to allow 

the ( , ')
k

D j j functions to be increasing and convex in ( ', )
k

A j j .  

 

For notational convenience, represent ( , ')
k

A j j and ( , ')
k

D j j  by Equation (5.10): 

 

  '
( , ') max , 0

k jk jk j k j k
A j j X X 


  
 

and 

 '
( , ') max , 0 .

k jk jk j k j k
D j j X X 


   
 

 

(5.10)
 

 

Then, Equation (5.11) follows from the definition of the relative advantage of alternative j 

over alternative j', ( , ')RA j j : 

  

 ( , ')
( , ')

( , ')
( , ') ( , ') ( , ') ( , ')

k

k

k k

k k

A j j
A j j

RA j j
A j j D j j A j j D j j

 
 



 
 (5.11) 

 

 

    

In cases where the denominator ( , ') ( , ')A j j D j j is equal to zero, such that alternative j 

confers neither an advantage nor a disadvantage over alternative j′, ( , ')RA j j  is 

mathematically undefined. In this case, it would be convenient to assume that alternative j 

confers no relative advantage over alternative j′ and so ( , ')RA j j is assumed to be zero.  Such 

a scenario may arise when all attribute values of alternatives j and j′ that enter into the

( , ')R j j function are equal, or when thresholds are assumed for ( , ')A j j , such that small 

enough differences in the attribute values between the alternatives are either not perceived or 

disregarded by the respondent. The first scenario might occur especially in a stated choice 

experiment where due to the experimental design, a small number of choice situations exist in 

which all attribute values of alternatives j and j′ that enter into the ( , ')RA j j function are 

equal. In the toll road datasets, a handful of such cases were encountered. The denominator 

( , ') ( , ')A j j D j j may also be equal to zero when all the taste parameters 
jk

 are equal to 
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zero, and this is a potential drawback of the model if during the estimation process, all the 

jk
 have to be set to zero. 

 

Having defined ( , ')RA j j , the modelled component of utility for alternative j is then written as 

a linear combination of the linear additive RUM model and the relative advantage component

( , ')RA j j , as shown in Equation (5.12): 

 

 
0 ,

,

( , ')
j

RAM

j jk jk

k j s

j j

V X RA j j 



     
(5.12) 

 

Since this particular functional specification assumes ( , ')RA j j is composed of piecewise 

linear functions of ( , ')
k

A j j and ( , ')
k

D j j , it is useful to call such a model the “piecewise 

RAM” model, to be contrasted with another version of the RAM model discussed in Section 

5.6.6. Unlike the RRM model, the RAM model allows for a combination of context 

independent („inherent‟) preferences and context dependent preferences, which is consistent 

with Kivetz et al.‟s (2008) hypothesis that preferences may not be entirely context dependent. 

The RAM model acknowledges that preferences are to a certain extent shaped by the choice 

context, but also allows each person a set of context free, innate preferences which are 

brought to bear on each choice situation.  

 

A question that may arise is whether the RAM model and in particular, whether the ( , ')RA j j

component, imposes a prior sign constraint on
jk

 . A model that requires a prior sign 

constraint to be imposed on the parameters is not desirable since it goes against the scientific 

method of allowing the data to impact the conclusions. By definition, while ( , ')RA j j  is 

restricted to only non-negative values, the same is not true for
jk

 . In other words, barring the 

special circumstances discussed earlier, ( , ')RA j j is defined for all values of 
jk

 . If higher 

values of an attribute are preferred to lower values, one expects 
jk

 to be positive and the 

combination of a positive 
jk

 and a positive 
jk j k

X X


 leads to a positive ( , ')
k

A j j . Similarly, 

if lower values of an attribute are preferred to higher values, one expects 
jk

  to be negative 

and the combination of a negative 
jk

 and a negative 
jk j k

X X


 again leads to a positive
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( , ')
k

A j j . Figure 5.1 illustrates the graph of ( , ')
k

A j j  under two sign assumptions of 
k

 , 

where 
k

  has been assumed to be generic for ease of illustration. 

 

 
Figure 5.1: Graph of ( , ')

k
A j j under Two Different Sign Assumptions on β  

 

The role of ( , ')RA j j  is to allow the overall utility for alternative j to be augmented or 

modified depending on how well this alternative performs compared to the reference 

alternative, the reference being all other competing alternatives 'j in the choice set.  Under 

the RAM model, an attribute of an alternative j that does „better‟ than its counterpart attribute 

in alternative 'j  contributes to the utility of alternative j beyond what is specified by the 

context independent rule. An attribute that does „worse‟ than its counterpart in another 

alternative adds nothing to the utility of alternative j.  

 

In most empirical work in this chapter, it will be assumed that all attributes which appear in 

the context independent component RUM component will also be included in the relative 

advantage component of 
j

RAM
V . The two exceptions to this assumption will be discussed later 

in sub-section 5.6.4, when the empirical results of the RAM model are presented. It might 

also be observed that both the context independent component and the relative advantage 

components, as written in Equation (5.12) are given equal weights in
j

RAM
V . In Section 5.7, 

the weight of the context independent component and/or the relative advantage component of 

utility is allowed to be heterogeneous across respondents, by conditioning on certain socio-

economic characteristics, using a multiple heuristics approach in the utility function. 

0 
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Using the additive error term structure, the total utility for an alternative in the piecewise 

RAM model is simply the sum of the observed component and an unobserved error 

component
j

 , i.e., 
j j

RAM RAM

j
U V   .  

 

5.6.2 Some Theoretical Properties of the RAM Model 

 

Some theoretical properties of the RAM model are briefly discussed in this section. Like the 

RRM model, the RAM model does not exhibit the IIA property, even though i.i.d. error terms 

are assumed
7
. This should not be entirely surprising considering that the utility function for 

an alternative j in the RAM model makes explicit reference and comparison to all competitor 

alternatives j′ in the choice set. The non-IIA feature of the RAM model is easily observed if 

we take the ratio of choice probabilities of alternatives p and q from a choice set consisting of 

three alternatives p, q and r in Equation (5.13). 
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p pk pk
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(5.13) 

 

Clearly, 
Prob( )

Prob( )

p

q
is dependent on the attribute levels of alternative r.  

 

It has been argued that that the ( , ')D j j function needs to be an increasing and convex 

function of ( , ')A j j in order for the RAM model to display the compromise effect (Simonson 

and Tversky, 1993; Kivetz et al., 2004). It turns out that this is not a necessary condition for 

the piecewise RAM model to display the compromise effect. To demonstrate this, consider 

                                                             
 

 

 

7
 Although see an example at the end of this section for a caveat. 
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the simplest case of two attributes {1,2} and three alternatives {p, q, r}. Assume that q is the 

in-between alternative and p and r are the extreme alternatives. Let the context independent 

component of preferences be denoted by v(.). In the standard RUM model,
1 2

v( ) v v
p p

p   , 

1 2
v( ) v v

q q
q   and 

1 2
v( ) v v

r r
r   . 

 

Let the probability ratio 
Prob( )

Prob( )

q

p
 in the binary choice problem {p,q} be denoted by 

( , )

Pr( / ) .
p q

q p  As before, the alternatives present in the choice set are explicitly listed in the 

subscript.  Hence, the same probability ratio 
Prob( )

Prob( )

q

p
in the three alternative problem {p, q, 

r} is denoted by 
( , , )

Pr( / )
p q r

q p . Figure 5.2, which is modified from Figure 4 and Figure 5 in 

Tversky and Simonson (1993), provides a graphical illustration of the RAM model for two 

attributes, with the axes 
1

v  and 
2

v  denoting the part utility of attributes 1 and 2 respectively. 

 

 

 

In the two alternatives {p,q} case, where alternative r is unavailable, the values of the various 

advantage and disadvantage functions are as follows: 

1 1

2 2

1 1

2 2

( , ) ( , )

( , ) ( , ) 0

( , ) ( , ) 0

( , ) ( , )

A p q D q p a

A p q D q p

D p q A q p

D p q A q p c

 

 

 

 

 

 

a 

c 

b 

d 

alt p 

alt q 

alt r 

1
v

v1 Figure 5.2: Piecewise RAM Model with Compromise Effect 

2
v

v1 
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Therefore, with two alternatives {p,q} in the choice set, the piecewise RAM model is defined 

as follows in Equation (5.14): 

 

 

 
( , )

( , )

v( ) ( , ) v( )

v( ) ( , ) v( )

p q

p q

RAM

p

RAM

q

a
V p RA p q p

a c

c
V q RA q p q

c a

   


   


 

 

(5.14) 

 

In the three alternatives {p,q,r} case, the piecewise RAM model is given by Equation (5.15):  

 

 

( , , )

( , , )

( , , )

v( ) ( , ) ( , ) v( )

v( ) ( , ) ( , ) v( )

v( ) ( , ) ( , ) v( )

p q r

p q r

p q r

RAM

p

RAM

q

RAM

r

a a b
V p RA p q RA p r p

a c a b c d

c b
V q RA q p RA q r q

c a b d

c d d
V r RA r p RA r q r

c d a b d b


     

   

     
 


     

   

 

 

 

(5.15) 

 

In the classic definition of the compromise effect, the compromise effect is said to occur 

when 
( , , ) ( , )

Pr( / ) Pr( / )
p q r p q

q p q p . In the piecewise RAM model with i.i.d. EV type I error 

terms, 
( , , ) ( , , )( , , )

Pr( / ) exp( )
p q r p q r

RAM RAM

p q r q p
q p V V  and 

( , ) ( , ) ( , )

Pr( / ) exp( )
p q p q p q

RAM RAM

q p
q p V V  . Hence, 

showing
( , , ) ( , )

Pr( / ) Pr( / )
p q r p q

q p q p  is equivalent to showing whether the inequality 

( , , ) ( , , ) ( , ) ( , )

( ) ( ) 0
p q r p q r p q p q

RAM RAM RAM RAM

q p q p
V V V V     is satisfied, since the exponential function is a one-to-

one increasing function. 

 

After some algebraic simplification, Equation (5.16) is obtained: 

 

 
( , , ) ( , , ) ( , ) ( , )

( ) ( )
( )( )p q r p q r p q p q

RAM RAM RAM RAM

q p q p

bc ad
V V V V

b d a b c d


   

     (5.16) 

 

For the term on the right hand side of the equation to be strictly greater than zero, the 

condition bc ad must hold, since the denominator is always positive, by definition. This 

occurs unambiguously when c a and d b , with at least one of these inequalities holding 

strictly.  It can be seen from Figure 5.2 that 
1 1

v v
p q

a  and 
2 2

v v
p q

c  , and the addition of 

these two equations results in v( ) v( )p q a c   . Therefore, c a  implies v( ) v( )p q . 
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Similarly, for the condition d b  to hold, the inequality v( ) v( )q r  must be satisfied. 

Hence, the compromise effect can be obtained in the piecewise RAM model if v( ) v( )q p

and v( ) v( )q r , with one of these inequalities holding strictly. A similar argument can be 

used to show that 
( , , ) ( , )

Pr( / ) Pr( / )
p q r q r

q r q r when v( ) v( )q p and v( ) v( )q r , with at least 

one strict inequality, which completes the demonstration of the compromise effect from the 

perspective of adding an extreme alternative p to the binary set of {q, r}. 

 

As an aside, it is well known that the standard RUM MNL model will not display the 

compromise effect because of the IIA property of the model. Observe also that if the signs of 

the inequalities are reversed, that is, v( ) v( )q p and v( ) v( )q r , and again, with at least one 

of these inequalities holding strictly, the piecewise RAM model leads to extremeness seeking, 

in which there is an increase in the probability share of the extreme alternatives p and r 

relative to q in the three alternative case compared with the binary case, in other words, 

( , , ) ( , )
Pr( / ) Pr( / )

p q r p q
q p q p and 

( , , ) ( , )
Pr( / ) Pr( / )

p q r q r
q r q r . Extremeness seeking seems to 

be less common than extremeness aversion, but it has been documented in a few cases 

(Gourville and Soman, 2007). It is also possible for the piecewise RAM model to exhibit the 

polarisation effect. For example, if there is a polarisation that favours alternative p away from 

alternative r, then 
( , , ) ( , )

Pr( / ) Pr( / )
p q r q r

q r q r and 
( , , ) ( , )

Pr( / ) Pr( / )
p q r p r

p r p r which would 

happen when bc ad and ba cd .  

 

One instance where the piecewise RAM model gives rise to an IIA-like property happens 

when v( ) v( ) v( )p q r  . Under this scenario, illustrated in Figure 5.3, observe that a c and

b d . Therefore, each of the binary relative advantage terms in Equation (5.15) is equal to 

0.5 and the pairwise differences in the utilities of each of the alternatives is equal to zero, 

whether in the standard RUM model or in the piecewise RAM model. Hence, the inclusion of 

a third alternative into a binary choice set has no impact on the ratio of choice probabilities. 

Having said this however, an occurrence of the condition v( ) v( ) v( )p q r   is unlikely to 

ever happen in practice, and it would be reasonable to conclude that in general, the RAM 

model does not display the IIA property.  
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5.6.3 A Relative Disadvantage Model and its Equivalence to the RAM Model 

 

This sub-section considers a counterpart model to the RAM model, where instead of 

maximising relative advantage, decision makers might be thought to choose an alternative on 

the basis of relative disadvantage minimisation. The motivation for considering such a model 

may be derived analogously to the motivation behind the RRM model, where negative 

emotions associated with the choice of an alternative are to be avoided as far as possible. 

Like relative advantage, the relative disadvantage of alternative j over alternative j', 

( , ')RD j j ,  may be defined in Equation (5.17) as: 

 

 ( , ')
( , ')

( , ') ( , ')

D j j
RD j j

A j j D j j


  
(5.17) 

 

Like the standard regret function, the relative disadvantage function of Equation (5.17) also 

preserves the notion of context dependency and the key idea that disutility, in the form of 

disadvantage, occurs whenever a competing alternative fares better than the considered 

alternative. However, unlike the regret function, one key difference is that in relative 

disadvantage, the disadvantage of an alternative is defined relative to the sum of advantage 

and disadvantage.  If one accepts that disadvantage and regret are synonymous concepts, then 

the notion of „relative regret‟ is on view in ( , ').RD j j  A relative disadvantage minimising 

model (RDM) might then be specified in Equation (5.18) as: 

a 

c 

b 

d 

alt p 

alt q 

alt r 

Figure 5.3: Piecewise RAM Model with IIA-like property 

2
v

v1 
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v

v1 
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 0 ,

,

( , ')
j

RD M

j jk jk

k j s

j j

V X RD j j 



   
 (5.18) 

 

As with the conventional understanding of regret, a negative sign is inserted before the 

relative disadvantage component to indicate that the relative disadvantage of an alternative is 

to be minimised, or that the negative of relative disadvantage is to be maximised.  

 

It turns out that such a relative disadvantage model as defined in Equation (5.18) is 

econometrically equivalent to the RAM model defined earlier in Equation (5.12). This is 

easily seen by noting that ( , ') ( , ') 1RA j j RD j j  and so ( , ') 1 ( , ').RA j j RD j j   Taking 

the summation over all alternatives ,j s j j    results in ( , ') 1 ( , ').

j j j j j j

j s j s j s

RA j j RD j j
    
    

   

Therefore, 
j

RAM
V differs from 

j

RDM
V by a constant term and since it is only differences in the 

utility that matter, the constant term washes out and the RAM model specified in Equation 

(5.12) will produce the same results and output as the RDM model of Equation (5.18). 

 

5.6.4 Empirical Estimation of the Piecewise RAM model with Three Alternatives in 

Choice Set 

 

For the moment, assume that in the piecewise RAM model, 
j

  is i.i.d. EV type I distributed, 

so that all models discussed in this section are of the fixed parameter, MNL form.  

 

Recall from Section 5.4 that the empirical performance of the RRM and the hybrid RRM-

RUM models for the seven datasets was mixed when compared to the standard RUM model. 

Turning to the estimation of the piecewise RAM model using a non-linear logit command, a 

substantial improvement in model fit compared to the standard RUM, the RRM and the 

hybrid RRM-RUM models was obtained in all the datasets studied. Results are reported in 

Table 5.11. In some cases such as Aust00, NZ99 and Aust05, this improvement is close to, or 

even exceeds, 100 log-likelihood units. Considering that all models contain the same number 

of estimated parameters, this is a very encouraging  finding. Unlike the NLWLR model, 

estimation of the symmetric RAM model was not particularly sensitive to the choice of 

starting values, despite the highly non-linear nature of the utility function. Table 5.11 
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summarises the log-likelihood statistics for the standard RUM, RRM, hybrid RUM-RRM and 

RAM models. The common feature across all these four models is that they share the same 

number of parameters, that is, the models are equally parsimonious.  

 

Table 5.11: Comparison of Log-likelihood Statistics across the Four Models 

  
Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

Log-likelihood at convergence 

Standard RUM – 3434.58 – 1862.23 – 1694.93 – 2670.14 – 847.75 – 3031.58 – 1631.79 

RRM – 3439.32 – 1951.54 – 1691.55 – 2683.70 – 847.55 – 3044.11 – 1639.22 

Hybrid RRM-RUM – 3434.79 – 1872.09 – 1690.49 – 2670.20 – 846.53 – 3030.78 – 1631.14 

Piecewise RAM – 3383.95 – 1783.53 – 1550.81 – 2580.28 – 826.23 – 2990.51 – 1605.15 

 

An examination of the parameter estimates for Aust08, Aust00 and Aust05 through NZ07 

(Table 5.12 below) shows that all parameter estimates are of the expected sign and are 

statistically significant at the five percent level. In Aust00, the RC taste parameter, which was 

not statistically significant in the RUM and hybrid models, has now turned statistically 

significant. The RRM is the only other model examined so far that allows the RC taste 

parameter to be estimated with statistical significance. However, the clear advantage of the 

piecewise RAM model is that it exhibits a big decrease in the LL statistic compared to the 

RRM model. This result for the piecewise RAM model was obtained by assuming that the 

RC attribute appeared only in the context independent RUM component and not in the 

relative advantage component as either an advantage or a disadvantage. 

 

NZ99 provides an interesting case study on the importance of embedding context dependence 

effects into the utility function. On analysis, only the TC attribute enters into the relative 

advantage component of the model; the SDT, SST and RC attributes are excluded from the 

relative advantage function and only appear in the context independent part of the model 

(note that the parameter weight for FF is insignificant across all models). Since there is only 

one attribute in the relative advantage component, ( , )RA j j  essentially reduces to a [0,1] 

variable, where “1” indicates that the TC attribute of alternative j confers an advantage over 
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Table 5.12: Estimates from the Symmetric Piecewise RAM (MNL) Model 

 Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 

̂  

(z-ratio) 

Attribute        

Free flow time (FF) (min) 
– 0.0057***  
(– 2.68)         

– 0.0487***       
(–5.94) 

n.s. 
– 0.0416***       
(– 8.27)         

– 0.0060***       
(– 2.69)         

– 0.0325***       
(–13.72) 

– 0.0386***       
(– 8.31)         

Congestion time (CT) (min)  
– 0.0532***       

(–6.70) 
  

– 0.0066***       

(– 2.68) 

– 0.0422***       

(–17.50) 

– 0.0508***       

(– 7.13)      

Slowed down time (SDT) (min) 
– 0.0074***       

(– 2.81)      
 

– 0.0726***       

(– 6.09) 

– 0.0588***       

(–11.86)         
   

Stop start time (SST) (min) 
– 0.0103***       

(– 3.06)         
 

– 0.1624***       

(– 9.01) 

–0.0787***       

(–14.48)         
   

Running Cost (RC) ($) 
– 0.0564***       

(– 3.00)         

– 0.2543**        

(–2.02) 

– 0.2958***       

(– 7.16)        

– 0.2844*** 

(– 9.59)         

– 0.0244*** 

(– 2.69)       

– 0.1473**  

(–11.56) 

– 0.1978***       

(– 7.25)         

Toll Cost (TC) ($) 
– 0.0401***  

(– 2.95)         

– 0.2697***       

(–10.51) 

– 0.2375***  

(– 6.05) 

– 0.2895*** 

(–17.33)         

– 0.0350***       

(– 3.00)        

– 0.1819***       

(–18.23) 

– 0.2693***  

(–10.19)         

Alternative Specific Constants        

     -current alternative 
0.8004***       
(15.34) 

0.7693***       
(9.78) 

0.6739***       
(9.23) 

0.2239*** 
(3.83)   

– 0.7277***       
(– 6.69)   

n.s. n.s. 

 -Alternative A n.s.   
0.1775** 

(2.47)   

0.2438***       

(2.81)            
n.s. 

0.2171**        

(2.44)            
n.s. n.s. 

Number of observations 4480 2,352 2,432 4,864 912 3,888 1,840 

LL at convergence – 3383.95 –1783.53 – 1550.81 – 2580.28 – 826.23 – 2990.51 – 1605.15 

** denotes significance at the five percent level. 
*** denotes significance at the one percent level. 
n.s. : not significant 
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the TC attribute of alternative j′, and “0” otherwise
8
. What is surprising is the magnitude of 

improvement in model performance when a simple indicator function for context dependence 

is entered into what is essentially the standard RUM specification.  

 

In summary, the empirical estimates from the RAM model suggest that there is a case to be 

made for using the piecewise RAM model as a superior representation of context dependency 

compared to say the RRM or the hybrid RRM-RUM models. Secondly, if the results are 

viewed from the perspective of relative disadvantage minimisation, then, the notion of regret, 

which has so far been based on some function of absolute differences of attribute values, 

might benefit from being recast into relative terms, into relative disadvantage, for example.  

 

5.6.5 Estimation of the Piecewise RAM with Two Alternatives in Choice Set 

 

Since their primary motivation for introducing the RAM/componential context model was to 

explain the compromise effect, Tversky and Simonson (1993) posited that ( , ')RA j j would be 

equal to zero in cases where only two alternatives are presented in the choice set. As a matter 

of empirical estimation, however, it is not necessary for the RAM to be restricted to cases 

with three or more alternatives in the choice sets, and so the RAM may be estimated even 

where there are only two alternatives in the choice set. This sub-section therefore illustrates 

an innovative use of the RAM model by applying the RAM model to binary choice data. 

 

With binary choice data, the RRM model faces one key limitation in that it collapses to the 

standard RUM model. Therefore, the RRM model is meaningless as a model of context 

dependency and regret when it comes to binary choice data. Proof that the RRM model 

reduces to the standard RUM model is shown below and this is similar to the proof presented 

in Chorus (2010). 

 

                                                             
 

 

 

8 ( , )RA j j  was also set to zero when 
jj

TC TC
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Consider the two alternatives i and j in the choice set, where the regret of alternative i over 

alternative j on an attribute k is given by the usual regret formula: 

 

( , ) ln[1 exp( )]
k jk jk ik ik

reg i j X X     

 

Recalling that the minimisation of regret is equivalent to maximising the negative of regret, 

the “part-utility” of alternative i on attribute k is given by 

 

ln[1 exp( )]
RRM

ik jk jk ik ik
V X X      

 

The differences in the part utility on attribute k between alternatives i and j is given by 

ln[1 exp( )] ( ln[1 exp( )]
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1 exp( )
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1
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Denoting RUM

j jk jk

k

V X  , then 

RRM RRM RRM RRM

i j ik jk

k k

ik ik jk jk

k k

RU M RU M

i j

V V V V

X X

V V

 

  

 

 

 

   

 

Since only differences in utility matter, the RRM model is equivalent to the RUM model in 

the case of two alternatives.  
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Fortunately, the RAM model (and equivalently, the RDM model) does not exhibit this 

property. In other words, where binary choice data are concerned, the RAM/RDM model can 

still meaningfully capture the notion of context dependency and in the case of the RDM 

model, the notion of regret, which is not possible with the RRM model. This feature of the 

RAM/RDM model seems important considering that there is no reason to suspect that context 

dependency and regret become non-existent whenever there are two alternatives in the choice 

set. Since the RRM cannot be estimated with binary choice data, the comparison is therefore 

restricted to between the RAM model and the RUM model.  

 

Also quite fortuitously, the data in the toll road datasets allow for the possibility of comparing 

the performance of the piecewise RAM model with the standard RUM model in the 

experimental situation with only two alternatives in the choice set. Such a possibility arises 

because in all datasets except for NZ99, each respondent was required to answer two choice 

questions per choice scenario, where the first question required respondents to choose one 

alternative among the current alternative, and two hypothetical alternatives A and B, and the 

second choice question asking respondents to choose among the hypothetical alternatives 

only. Modelling on the responses to the second choice question alone, the results are 

presented in Table 5.13.  

 

Again, it may be observed that the piecewise RAM model outperforms the RUM model in all 

six of the datasets analysed. Again, all parameter estimates of the RAM model are 

statistically significant at the five percent level and of the correct sign. In the case of Aust00, 

one key difference (or improvement) in the RAM model over the standard RUM model is 

that the taste parameter for the RC attribute has turned significant. Moreover, unlike the three 

alternative case where the RC attribute was excluded from the ( , )RA j j  component, the RC 

attribute is now a determinant of preferences in both the context independent component and 

the relative advantage component of the model.  

 

Overall, the empirical findings suggest that context dependency, as represented by relative 

advantage maximisation, is still relevant even in the case of binary choice data.  
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Table 5.13: Comparison of Standard RUM and Piecewise RAM (MNL) Models With Two Alternatives in Choice Set  

 
̂  

(z-ratio in parentheses)
 

 Aust08 Aust00 Aust05 Aust04a Aust04b NZ07 

RUM RAM RUM RAM RUM RAM RUM RAM RUM RAM RUM RAM 

Free flow time 
(FF) (min) 

– 0.0509*** 
(– 8.27) 

– 0.0181*** 
(– 5.85) 

– 0.1172*** 
(– 10.55) 

– 0.0357*** 
(– 4.63) 

– 0.1197*** 
(– 15.33) 

– 0.0682*** 
(– 12.18) 

– 0.0301*** 
(– 6.76) 

– 0.0153*** 
(– 4.89) 

– 0.0664*** 
(– 15.76) 

– 0.0423*** 
(– 13.01) 

– 0.0977*** 
(– 13.89) 

– 0.0577*** 
(– 11.28) 

Congestion time 

(CT) (min) 
  

– 0.1297*** 

(– 10.95) 

– 0.0543*** 

(– 5.57) 
  

– 0.0373*** 

(– 6.90) 

– 0.0186*** 

(– 4.98) 

– 0.0825*** 

(– 21.45) 

– 0.0523*** 

(– 15.78) 

– 0.0922*** 

(– 6.99) 

– 0.0589*** 

(– 6.87) 

Slowed down 
time (SDT) (min) 

– 0.0489*** 
(– 7.17) 

– 0.0174*** 
(– 5.19) 

  
– 0.0856*** 
(– 13.58) 

– 0.0508*** 
(– 11.40) 

      

Stop start time 
(SST) (min) 

– 0.0699*** 
(– 13.15) 

– 0.0293*** 
(– 8.71) 

  
– 0.1382*** 
(– 20.10) 

– 0.0891*** 
(– 17.32) 

      

Running Cost 
(RC) ($) 

– 0.3695*** 
(– 12.46) 

– 0.1807*** 
(– 9.80) 

n.s. 
– 0.3343*** 
(– 3.46) 

– 0.4842*** 
(– 10.24) 

– 0.3264*** 
(– 10.28) 

– 0.1037*** 
(– 6.09) 

– 0.0560*** 
(– 5.06) 

– 0.2845*** 
(– 14.15) 

– 0.1798*** 
(– 11.99) 

– 0.5533*** 
(– 10.28) 

– 0.3643*** 
(– 10.37) 

Toll Cost (TC) ($) 
– 0.4869*** 
(– 25.34) 

– 0.2282*** 
(– 13.63) 

– 0.6568*** 
(– 19.87) 

– 0.3685*** 
(– 11.67) 

– 0.6231*** 
(– 27.18) 

– 0.4189*** 
(– 21.85) 

– 0.2006*** 
(– 10.43) 

– 0.1107*** 
(– 7.30) 

– 0.3590*** 
(– 23.57) 

– 0.2423*** 
(– 18.88) 

– 0.8179*** 
(– 18.19) 

– 0.5057*** 
(– 13.54) 

ASC – Alt A n.s. n.s. 
0.1657*** 
(3.20) 

0.1132** 
(2.04) 

n.s. n.s. 
0.2749*** 
(3.52) 

0.2435*** 
(2.94) 

0.2084*** 
(4.95) 

0.1912*** 
(4.30) 

0.1179** 
(2.04) 

n.s. 

LL at 
convergence 

– 2515.95 – 2454.37 – 1137.09 – 1080.82 – 2365.11 – 2289.52 – 499.85 – 487.85 – 1820.94 – 1788.64 – 928.45 – 886.62 

Log-likelihood (0) – 3104.44 – 1625.87 – 3371.23 – 627.50 – 2691.24 – 1267.53 

No. of 
observations 

4480 2352 4864 912 3888 1840 

Reject standard 

RUM model in 
favour of RAM 
model? 

Yes Yes Yes Yes Yes Yes 

*** denotes significance at the one percent level. 
** denotes significance at the five percent level. 
n.s.: not significant 
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5.6.6 An Alternative Specification for the RAM Model Using the Regret Function 

 

From an empirical point of view, one concern that might be raised with estimating the 

piecewise RAM model as originally proposed by Kivetz et al. (2004) is the non-

differentiability of the utility function at the kink. There may also be stability issues in the 

model arising from the possibility that the denominator in the ( , ')RA j j component of the 

piecewise RAM model may be zero. The z-ratios of the parameter estimates are, in several 

cases such as Aust08 and Aust04a, a fraction of the counterpart z-ratios in the standard RUM 

model, arguably making the RAM model estimates less useful for practitioners because less 

precise parameter estimates are obtained. To address these potential concerns, this section 

proposes an alternative specification of the RAM model. 

 

A simple starting point for such an alternative specification might be to note that since regret 

and disadvantage are practically synonymous, the regret function may be used to represent

( , ')
k

D j j such as in Equation (5.20): 

 ( , ') ln[1 exp( )]
k j k j k jk jk

D j j X X 
 

    (5.20) 

 

Again, assuming symmetry between advantage and disadvantage, Equation (5.21) follows:  

 

 ( , ') ( ', ) ln[1 exp( )]
k k jk jk j k j k

A j j D j j X X 
 

     (5.21) 

 

In this regret form of the RAM model, the definitions of ( , ') ( , ')
k

k

A j j A j j  , 

( , ') ( , ')
k

k

D j j D j j   and 
( , )

( , ')
( , ) ( , )

A j j
RA j j

A j j D j j




 
are now based on Equation (5.20) 

and Equation (5.21). In this case, ( , ')RA j j only takes values in the open interval between 

zero and one.  

 

A graph of the function
ln(1 exp( ))

( )
ln(1 exp( )) ln(1 exp( ))

z
f z

z z




   
is plotted in Figure 5.4 as a 

means of visualising ( , ')RA j j in the case of a single attribute. Where the alternatives contain 

multiple attributes, changing the value of one attribute holding all else constant is akin to 
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adding a constant to both the numerator and the denominator and this does not fundamentally 

alter the shape of the function. 

 

 

Figure 5.4: Graph of the ( , )RA j j function 

 

It is immediately obvious from Figure 5.4 that ( , ')RA j j follows an S-shaped curve 

reminiscent of the value function from prospect theory (Kahneman and Tversky, 1979) and 

that it captures the notion of concavity in gains and convexity in the losses. This is a rather 

nice result which suggests that the use of the symmetry assumption ( , ') ( ', )
k k

A j j D j j is not 

entirely inappropriate. Importantly, the purpose of introducing an alternative specification for  

( , ')RA j j  has been met, which is that ( , ')RA j j is now a smooth function, unlike the kinked 

functions used by Kivetz et al. (2004). This model might be referred to as the regret-RAM 

model. Estimating the regret-RAM model on the toll road datasets (and dropping all 

insignificant parameters) yields the results reported in Table 5.14. Table 5.15 provides a 

comparison of the log-likelihood statistics across the standard RUM, RRM, hybrid RRM-

RUM and regret-RAM models. 

 

As with the piecewise RAM model, estimating the regret-RAM model results in a better fit of 

the data, compared to the standard RUM, the RRM, and the hybrid RRM-RUM models, in 

almost all of the datasets studied, with the single exception that the hybrid model outperforms 

the regret-RAM model in Aust04a. However, the overall improvement in log-likelihood is 

now much more modest compared to the piecewise form of the regret model estimated in 

Section 5.5.4. Nevertheless, this improvement can still be quite substantial, as seen in Aust00, 
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Table 5.14: Estimates from the Regret Form of RAM (MNL) Model (Three Alternatives in Choice Set)  

 Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 

̂  

(z-ratio) 

Attribute        

Free flow time (FF) (min) 
– 0.0427***  

(– 7.84)         

– 0.1030***       

(–14.39) 
n.s. 

– 0.0649***       

(– 8.87)         

– 0.0280***       

(– 8.46)         

– 0.0553***       

(–19.05) 

– 0.0804***       

(– 16.07)         

Congestion time (CT) (min)  
– 0.0983***       

(–13.32) 
  

– 0.0282***       

(– 8.24) 

– 0.0733***       

(–29.68) 

– 0.1028***       

(– 11.00)      

Slowed down time (SDT) (min) 
– 0.0599***       

(– 10.12)      
 

– 0.0650***       

(– 6.62) 

– 0.0985***       

(–15.26)         
   

Stop start time (SST) (min) 
– 0.0669***       

(– 14.98)         
 

– 0.1389***       

(– 9.42) 

– 0.1418***       

(–21.37)         
   

Running Cost (RC) ($) 
– 0.2866***       

(– 10.88)         
n.s. 

– 0.2214***       

(– 6.35)        

– 0.4732*** 

(– 11.04)         

– 0.0937*** 

(– 7.29)       

– 0.2554***  

(–14.81) 

– 0.3806***       

(– 11.21)         

Toll Cost (TC) ($) 
– 0.2302***  

(– 13.19)         

– 0.4578***       

(–21.62) 

– 0.7037***  

(– 20.83) 

– 0.4307*** 

(–25.69)         

– 0.1261***       

(– 9.72)        

–0.2948***       

(–29.69) 

– 0.5240***  

(–22.17)         

Alternative Specific Constants        

     -current alternative 
0.9076***      

(18.62)   

0.5991***      

(8.13) 

1.0561***      

(14.77) 

0.3405*** 

(6.23)  

– 0.5521***       

(– 5.30)   

0.0897** 

(2.08) 
n.s. 

    -Alternative A n.s. 
0.1447**       

(2.04)   

0.2321***      

(2.74)            
n.s. 

0.2397***        

(2.77)            
n.s. n.s. 

Number of observations 4,480 2,352 2,432 4,864 912 3,888 1,840 

LL at convergence – 3433.77 –1854.09 – 1688.83 – 2664.50 – 847.29 – 3027.75 – 1630.32 

*** denotes significance at the one percent level. 
n.s.: not significant 
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Table 5.15: Comparison of Standard RUM, RRM, Hybrid and Regret-RAM Models (all 

MNL) with Three Alternatives in Choice Set 

  Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

Log-likelihood at convergence 

Standard RUM – 3434.58 – 1862.23 – 1694.93 – 2670.14 – 847.75 – 3031.58 – 1631.79 

RRM – 3439.32 – 1951.54 – 1691.55 – 2683.70 – 847.55 – 3044.06 – 1639.22 

Hybrid RRM-RUM – 3434.79 – 1872.09 – 1690.49 – 2670.20 – 846.53 – 3030.78 – 1631.14 

Regret-RAM – 3433.77 – 1854.09 – 1688.83 – 2664.50 – 847.29 – 3027.75 – 1630.32 

Note: For each dataset, the number of free parameters used across all model types is the same.   

 

NZ99 and Aust05. Overall, this is still a remarkable finding and points to the robustness of 

the RAM model in explaining choice behaviour. The z-ratios of the parameter estimates are 

also comparable to those obtained from the standard RUM model. The regret-RAM model 

also has an advantage over the piecewise-RAM model in that the denominator is never zero 

and this provides for more stability in the estimation especially if for some reason, all the
k



parameters happen to be zero. A worked example of the regret-RAM model with illustrative 

values for ),( jjA  , ),( jjD  and ),( jjRA  is shown in Table 5.16. 

 

The regret-RAM model may also be estimated on binary choice data. In terms of model fit 

and parameter estimates, the results are qualitatively similar to those reported for the 

piecewise RAM model in Section 5.6.5 but with the caveat that like the regret-RAM models 

in the three alternative case, the magnitude of improvement in fit is much reduced. 

  

5.6.7 Relative versus Absolute Regret 

 

Since the RAM model is comprised of both context independent and context dependent 

components, it is worth exploring if the addition of a context independent component to the 

standard RRM model results in the same pattern of improvement to the model fit as the 

piecewise and regret-RAM models discussed earlier. Following the spirit of the RAM model, 

a (modified) RRM_1 model may be defined according to Equation (5.22): 

 

 
0 ,

,

ln (1 exp( ( )))
j j k jk k j k jk

k j s k

j j

V X X X  





        
(5.22) 
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Table 5.16: Regret-RAM Model with Example Choice Set from Aust00 

 current Alternative A Alternative B 

FF (mins) 8 4 6 

CT (mins) 67 29 46 

RC ($) 3.40 2.30 2.70 

TC ($) 0 7.40 3.70 

 ),( jjA   

 j  = current j  = Alternative A j  = Alternative B 

j = Current  2.02 1.42 

j = Alternative A 2.35  1.52 

j = Alternative B 1.67 1.44  

 ),( jjD   

 j  = current j  = Alternative A j  = Alternative B 

j = Current  2.35 1.67 

j = Alternative A 2.02  1.44 

j = Alternative B 1.42 1.52  

 ),( jjRA   

 j  = current j  = Alternative A j  = Alternative B 

j = Current  0.46 0.46 

j = Alternative A 0.54  0.51 

j = Alternative B 0.54 0.49  

RUM Probabilities 0.271 0.429 0.299 

RAM Probabilities 0.276 0.425 0.299 

 

If the improvement in model fit is as hypothesised, that is, it comes about as a result of 

adding the standard RUM component to the RRM model, then the RRM_1 model, together 

with the RAM model, should outperform both the standard RRM and the standard RUM 

models in all seven datasets. All models within the same dataset are estimated with the same 

number of parameters. A comparison of the model fit of this RRM_1 model with the standard 

RUM and RRM models is reported in Table 5.17. 

 

Comparing the standard RRM model to the RRM_1 model, it may be observed that in five 

out of the seven datasets, the RRM_1 model performs better than the standard RRM model.  
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Table 5.17: Comparison of Log-likelihoods of RRM_1 Model (MNL) with Standard 

RUM (MNL) and Standard RRM (MNL) Models 

  Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

Log-likelihood at convergence 

Modified RRM_1 – 3435.99 – 1901.01 – 1692.51 – 2672.97 – 847.60 – 3035.04 – 1633.75 

Standard RRM – 3439.32 – 1951.54 – 1691.55 – 2683.70 – 847.55 – 3044.11 – 1639.22 

Standard RUM – 3434.58 – 1862.23 – 1694.93 – 2670.14 – 847.75 – 3033.93 – 1631.79 

Reject standard RRM 

model in favour of 

RRM_1? 

Yes Yes No Yes No Yes Yes 

Reject standard RUM 

model in favour of 

RRM_1? 

No No Yes No Yes No No 

Note: For each dataset, the number of free parameters used across all model types is the same.  

 

In the other two datasets (NZ99 and Aust04a), the performance of the RRM model is only 

slightly better than the RRM_1 model. This finding supports the hypothesis of Kivetz et al. 

(2008) that preferences are not purely context dependent and therefore suggests that 

introducing a context independent component to the RRM model might be preferable in 

many cases to simply representing preferences by the regret function alone. 

 

However, a comparison of the RRM_1 model to the standard RUM specification shows that 

like the standard RRM and the hybrid RRM-RUM models, the RRM_1 model does not 

unambiguously exhibit a clear improvement in model fit across all datasets. Much like the 

standard RRM, the RRM_1 model outperforms the standard RUM model in NZ99 and 

Aust04a even though in these datasets, the RRM_1 model is not as good as the conventional 

RRM. In the other datasets, the standard RUM can be said to still be the preferred model. 

Overall, the empirical results demonstrate that it is not simply a matter of adding a context 

independent specification to the standard RRM model that will improve the model fit. These 

suggest that the specification of the regret function context does matter significantly. 

 

As an aside, on these datasets, the RRM_1 model is well defined. However, the model runs 

into potential problems for larger choice sets, as the RRM-parameters become smaller than 

their RUM-counterparts due to the additive regret function (Chorus, 2012). As a 

consequence, RRM_1‟s intrinsic assumption that both RUM and RRM parameter sets are 

equal is likely to become restrictive in the context of such larger choice sets.  
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The standard RRM and RRM_1 models also differ from the two versions of the RAM model 

explored up to this point in how regret is entered into the utility functions. Fundamentally, the 

standard RRM and RRM_1 models represent regret in an absolute sense, whereas the RAM 

models use regret in a relative sense, albeit in two different functional specifications. It is 

worth considering if it is the relative form of regret that matters, rather than the absolute level 

of regret.   

 

To explore this hypothesis further, a hybrid version of the two forms of relative regret might 

also be considered, where ( , )
k

A j j  is still given by a piecewise linear function, such as in 

Equation (5.23): 

 

  '
( , ') ( , ') max , 0

k k jk j k

k k

A j j A j j X X    
    (5.23) 

 

However, let ( , ')D j j be represented by the regret function as stated in Equation (5.24): 

 

 ( , ') ( , ') ln[1 exp( ( ))]
k k j k jk

k k

D j j D j j X X


      (5.24) 

 

Using Equations (5.23) and (5.24) means that the model is no longer symmetric in ( , )A j j

and ( , ')D j j . In this case, the RDM model is estimated, where ( , ')RD j j may be recalled 

from Equation (5.17) to be: 

 

( , ')
( , ')

( , ') ( , ')

D j j
RD j j

A j j D j j



 

 

The log-likelihood statistics of such a modified RRM_2 model and a comparison with the 

standard RUM model are presented in Table 5.18. Again, the number of parameters estimated 

for each dataset is the same across models. 

 

The results show that like the piecewise RAM and regret-RAM models, this RRM_2 model 

outperforms both the standard RUM model and the standard RRM model in all the seven 

datasets. The consistency of the evidence from the three forms of relative regret that have 
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Table 5.18: Summary and Comparison of Log-likelihood Statistics of RRM_2 (MNL) 

with RUM (MNL) Model 

  Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

Log-likelihood at convergence 

Modified RRM_2 – 3429.78 – 1833.75 – 1676.36 – 2652.14 – 846.63 – 3018.87 – 1626.95 

Standard RUM – 3434.58 – 1862.23 – 1694.93 – 2670.14 – 847.75 – 3031.58 – 1631.79 

Standard RRM – 3439.32 – 1951.54 – 1691.55 – 2683.70 – 847.55 – 3044.11 – 1639.22 

Reject standard 

RUM in favour of 

modified RRM_2? 

Yes Yes Yes Yes Yes Yes Yes 

Reject standard 

RRM in favour of 

modified RRM_2? 

Yes Yes Yes Yes Yes Yes Yes 

 

been studied indicates that respondents are concerned not just with the absolute level of 

regret, but rather with the relative magnitude of regret that encompasses both the advantages 

and disadvantages embodied in an alternative.  

 

The result that relative regret seems to matter is reminiscent of what Tversky and Kahneman 

(1981) discovered when they posed the following problem, in two versions, to two group of 

respondents: 

 

Imagine that you are about to purchase a jacket for ($125)[$15], and a 

calculator for ($15)[$125]. The calculator salesman informs you that the 

calculator you wish to buy is on sale for ($10)[$120] at the other branch 

of the store, located 20 minutes drive away. Would you make the trip to the 

other store? (Tversky and Kahneman, 1981, p. 457) 

 

The first group of respondents received the problem with the numerical values in parentheses 

(  ), while the second group of respondents received the same problem, but with the numerical 

values in square brackets [  ]. Tversky and Kahneman (1981) found that the responses to the 

two versions of the problem were markedly different. In the first version, 68 percent of 

respondents were willing to travel 20 minutes to save an extra $5 off the purchase price of 

$15, while in the second version, only 29 percent of the respondents were willing to make the 

extra trip. It appears that the discount of $5 has a greater impact when the price of the 
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calculator is low than when the price of the calculator is high. Tversky and Kahneman (1981) 

suggest that respondents are evaluating the potential saving in a more inclusive mental 

account, which includes the price of the calculator, rather than a more minimal account which 

focuses only on the incremental savings. 

 

The conclusion drawn by Tversky and Kahneman (1981) may explain why using a relative 

form of regret in modelling is likely to be preferable to using an absolute form of regret. 

Using an absolute level of regret is akin to assuming a minimal account which focuses only 

on the incrementals. On the other hand, if a more inclusive mental account is being used by 

respondents to evaluate alternatives, then it would be more appropriate to consider both 

advantages and disadvantages of an alternative using a relative advantage component as a 

representation of context dependency. 

 

5.7 COMPARISONS OF MODEL FIT 

 

Having examined the NLWLR, RRM and the RAM models in some detail, this section 

provides a comparison of model fit across these models, with a primary focus on the 

comparison between the NLWLR and the RAM models, since this comparison has not been 

dealt with directly in previous discussions. The focus of the discussion is now back to the 

multinomial choice data of three alternatives in the choice set. Where models are not nested 

within one another, for example the NLWLR and the RRM models, they are compared using 

the Ben Akiva and Swait (1986) test, The Ben Akiva and Swait (1986) test has been 

described in Chapter 3. Results are reported in Table 5.19. 

 

Table 5.19: Ranking of Models based on Model Fit 

 NLWLR RUM RRM Piecewise-RAM Regret-RAM 

Aust08 2 4 5 1 3 

Aust00 3 4 5 1 2 

NZ99 2 5 4 1 3 

Aust05 2 4 5 1 3 

Aust04a 2 5 4 1 3 

Aust04b 2 4 5 1 3 

NZ07 2 4 5 1 3 

 

If the comparison includes the piecewise-RAM model, then the piecewise-RAM is the best 
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performing model in all datasets. Between the NLWLR model and the regret-RAM model, 

the differences in model fit are significant at the five percent level. Excluding the piecewise-

RAM model from the comparison, then the best performing model is the NLWLR in all the 

datasets, except in Aust00, where the regret-RAM model is better performing. In all cases, 

the NLWLR performs better than the RRM. This result reinforces the conclusion obtained by 

Chorus and Bierlaire (2013) who find that for the one stated choice dataset that was analysed, 

the contextual concavity model, which might be seen as the forerunner to the NLWLR model, 

is the better performing model compared to the RRM model.  

 

5.8 THE REFERENCE POINT REVISION HEURISTIC 

 

This section explores the role of a reference point revision heuristic in the determination of 

choices. As mentioned in Chapter 2, in the context of stated choice experiments, respondents 

may apply a reference point revision heuristic to the current choice task whenever a non 

status quo alternative was chosen in some previous choice task, typically assumed to be the 

choice task immediately preceding the current one (Hensher and Collins, 2011). Essentially, 

this hypothesis states that the respondents‟ utility for an experimentally constructed 

alternative shifts (upwards) whenever a hypothetical alternative was chosen in the previous 

choice set. Recall that this version of reference revision may be distinguished from a broader 

concept of value learning. In the latter, underlying preferences in the form of the taste 

parameters may initially be poorly formed or unknown to the respondent and are discovered 

as respondents work through the sequence of choice tasks. For example, McNair et al. (2011) 

show that preferences are sensitive to the sequence and attribute levels shown to respondents.  

 

In reference revision, the taste parameters are assumed to be stable but preferences can be 

affected by previous choices. Reference revision can also be interpreted from the perspective 

of the status quo bias (Samuelson and Zeckhauser, 1988). Here, the respondent exhibits an 

increased willingness to consider hypothetical alternatives which have non-zero toll costs as 

the preceding choice of a hypothetical alternative acts as a force of habit or inertia on the 

decision to be made in the current choice task. Econometrically, the specification used to 

model reference point revision is a more explicit and appropriate way of treating choice set 

interdependence, compared to using a correlated error variance structure (Hensher and 

Collins, 2011).  
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Specifically, a dummy variable (refrev) was created that equals one whenever a hypothetical 

experimental alternative (i.e., Alternative A or Alternative B) was chosen in the previous 

choice set. This dummy variable was then inserted into the Alternative A/Alternatie B utility 

functions of the current choice set. refrev was set to zero for the first choice set encountered 

by the respondent. As with the mcd variable, the refrev variable can be specified as entering 

the utility function in a linear additive manner, as in Equation (5.25). Again, such a model 

may be thought of as a mixture of two decision rules. This is a simple model of reference 

revision used by Hensher and Collins (2011) which does not account for potential 

endogeneity issues. 

 

 
0 ,j j k jjk r

k

U X refrev       (5.25) 

 

In this simple model of reference revision, the log-likelihood statistics estimated in all 

datasets show a remarkable improvement over the standard RUM model with the inclusion of 

just one additional variable, refrev. As hypothesised, the parameter associated with the refrev 

variable is positive and statistically significant across all seven datasets, with the z-ratios of 

the estimated parameter found to be in excess of 10. Table 5.20 reports these results. 

 

Inclusion of the reference revision heuristic into the utility expressions for the hypothetical 

alternatives introduces a dummy variable indicating the type of alternative (current or 

hypothetical) chosen in the previous choice scenario. This reference revision variable is 

linked to the unobserved effects of the previous choice set and potentially induces 

endogeneity and correlation across choice sets for specific alternatives. Extending the work 

of Hensher and Collins (2011), error components logit models are next estimated to address 

the issue. At the same time, these models are allowed to account for the panel nature of the 

data (recall that each respondent was asked to answer 16 choice sets each). The error 

components model is written in Equation (5.26). 

 
0 , ,

 0 , ,

 ,

curr curr k curr k curr

k

Route A A k A k r AB AB A

k

Route B k B k r AB AB B

k

U X

U X refrev E

U X refrev E

  

    

   

  

    

   







 

~ . . . (0,1)
AB

E i i d N  

(5.26) 
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Table 5.20: Estimation Results Embedding Reference Revision Heuristic (MNL Model) 

 Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 

 

̂  

(z– ratios) 

Free flow time (FF) (min) 
– 0.0583*** 

(– 7.89) 

– 0.1156*** 

(– 13.09) 
n.s. 

– 0.0870*** 

(– 8.80) 

– 0.0358*** 

(– 8.32) 

– 0.0711*** 

(– 18.10) 

– 0.1089*** 

(– 14.84) 

Congestion Time (CT) (min)  
– 0.1096*** 

(– 12.17) 
  

– 0.0348*** 

(– 7.15) 

– 0.0939*** 

(– 28.60) 

– 0.1240*** 

(– 9.39) 

Slowed down time (SDT) (min) 
– 0.0770*** 

(– 9.82) 
 

– 0.0814*** 

(– 6.54) 

– 0.1153*** 

(– 13.19) 
   

Stop start time (SST) (min) 
– 0.0846*** 

(– 14.16) 
 

– 0.1745*** 

(– 9.80) 

– 0.1686*** 

(– 19.87) 
   

Running Cost (RC) ($) 
– 0.3643*** 

(– 9.62) 
n.s. 

– 0.2342*** 

(– 3.74) 

– 0.6244*** 

(– 10.99) 

– 0.1155*** 

(– 6.50) 

– 0.3249*** 

(– 14.75) 

– 0.4685*** 

(– 9.67) 

Toll Cost (TC) ($) 
– 0.3180*** 

(– 13.53) 

– 0.5341*** 

(– 19.61) 

– 0.8709*** 

(– 13.99) 

– 0.5283*** 

(– 23.18) 

– 0.1643*** 

(– 9.51) 

– 0.3530*** 

(– 27.34) 

– 0.7824*** 

(– 17.16) 

refrev 
2.2078*** 

(28.47) 

1.6620*** 

(16.37) 

1.1835*** 

(11.11) 

1.5375*** 

(17.58) 

1.8736*** 

(10.55) 

1.2995*** 

(15.52) 

2.3756*** 

(20.25) 

Alternative Specific Constants        

     – current alternative 
1.6120*** 

(26.28) 

1.2232*** 

(14.79) 

1.4033*** 

(17.26) 

0.7416*** 

(12.11) 

0.6224*** 

(4.21) 

0.8810*** 

(13.36) 

0.9146*** 

(9.86) 

     – Alternative A n.s. 
0.1508** 

(2.10) 

0.2578*** 

(3.15) 
n.s. 

0.2485*** 

(2.88) 
n.s. n.s. 

No. of choice observations 4480 2,352 2,432 4,864 912 3,888 1,840 

LL at convergence – 2987.40 – 1718.97 – 1633.49 – 2511.44 – 789.60 – 2906.72 – 1390.34 

***, ** denote significance at the one percent and five percent level respectively. 
n.s.: not significant 
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This specification of the error components logit model assumes a correlation between the 

hypothetical alternatives (through the unobserved effect) but no correlation between the 

hypothetical alternative and the current alternative. Results of the estimation are shown in 

Table 5.21. 

 

With the error components logit specification, the parameter on the refrev variable has 

become insignificant at the five percent level in Aust00, NZ99 and Aust05. Additionally, in 

Aust08 and Aust04b, this parameter is barely significant at the five percent level. βr is only 

significant in Aust05 and NZ07, but even so, these parameters are now estimated at a much 

lower value of around 0.6 compared to 1.5 to 1.9 in the MNL model. This is a reduction of a 

factor of about three to four. Likewise, the z-ratios of the βr  estimates are reduced by a factor 

of about four. Another observation worth nothing is that in the error components model, the 

z-ratios associated with the estimates of the taste parameters of the attributes are in general 

much higher than in the MNL model. 

 

The results relating to the lack of significance of the reference revision heuristic might be 

expected as some of the choice set interdependence embodied in reference revision is now 

picked up by the correlated error structure, so the reference revision effect identified earlier in 

is due in large part to what was then un-modelled similarity in preferences. However, in some 

of the datasets, there is still a significant effect to refrev even after accounting for the panel 

nature of the data and for a possible correlation in error structure. Overall, a comparison ofthe 

results across the seven datasets suggests that there is a lack of consistency in the role of the 

reference revision heuristic across different choice contexts. 

 

5.9 HEURISTIC WEIGHTING FUNCTIONS 

 

Recall from Chapter 3 that a suggested alternative to the probabilistic decision process model 

is to weight each heuristic directly in the utility function. In the models such as the various 

RAM models that have been estimated so far in this chapter, the implicit assumption is that 

the context independent RUM component and the context dependent relative advantage 

component are assigned equal weights in the utility function. In a utility function where a 

total of M heuristics are embedded and weighted, the weights of each heuristic, denoted by 

Wm, m=1,2,…,M can be given by means of an exponential function shown in Equation (5.27): 
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Table 5.21: Estimation Results Embedding Reference Revision Heuristic (Error Components Logit Model) 

 Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 ̂  

(z– ratios) 

Free flow time (FF) (min) 
– 0.0752***      
(– 11.06)     

– 0.1406***      
(– 24.72)         

n.s. 
– 0.1231***      
(– 17.22)      

– 0.0383***       
(– 16.43)        

– 0.0865***      
(– 35.59)         

– 0.1266***      
(– 30.41)        

Congestion Time (CT) (min)  
– 0.1366***      

(– 24.59)   
  

– 0.0418***       

(– 12.32)         

– 0.1099***      

(– 46.49)         

– 0.1532***      

(– 12.74)        

Slowed down time (SDT) (min) 
– 0.1121***      

(– 16.24 ) 
 

– 0.0801*** 

(– 5.83)       

– 0.1283***      

(– 14.62)         
   

Stop start time (SST) (min) 
– 0.1236***      

(– 23.48)        
 

– 0.1782*** 

(– 9.68)       

– 0.1988***      

(– 26.09)        
   

Running Cost (RC) ($) 
– 0.4297***      

(– 15.68)       
n.s. 

– 0.2232*** 

(– 6.38)         

– 0.7228***      

(– 12.32) 

– 0.1218***       

(– 9.59)       

– 0.3876***      

(– 20.24)         

– 0.5407***      

(– 12.38)        

Toll Cost (TC) ($) 
– 0.4234***      

(– 18.58)       

– 0.6362***       

(– 37.36)         

– 1.0717*** 

(– 40.37)         

– 0.6214***      

(– 34.14)        

– 0.1861***      

(– 14.95)        

– 0.4212***  

(– 45.14)         

– 0.8934***      

(– 25.21)        

refrev 
0.2194**       

(2.13)      

0.2590*        

(1.69)         

0.0319 

(0.23)            

0.5643***      

(5.52)        

0.2474         

(1.27)        

0.1580*      

(1.75)         

0.6270***      

(4.32)        

A B
  

2.6507*** 

(15.88)       

1.8381*** 

(10.60)         

1.5125*** 

(12.22)       

1.6561*** 

(18.58)       

2.6127***     

(3.90)   

1.8604*** 

(19.63)         

2.5906*** 

(10.15)         

Alternative Specific Constants        

     – current alternative 
1.4149***      

(7.34)   

0.7671***      

(3.55)  

1.1388*** 

(6.30) 

0.5381***      

(4.14)   

– 1.6271***      

(– 3.61)  

n.s. 

 

n.s. 

 

     – Alternative A n.s. 
0.1427**       
(2.42)                 

0.2533*** 
(2.72)                 

n.s. 
0.2595***      
(4.17)              

0.1165*** 
(2.63) 

n.s. 

No. of choice observations 4,480 2,352 2,432 4,864 912 3,888 1,840 

LL at convergence – 2539.60 – 1559.13 – 1486.72 – 2304.48 – 709.68 – 2640.36 – 1209.87 

Simulation based on 250 Halton draws 
***, **, * denote significance at the one percent, five percent and ten percent levels respectively. 

      n.s.: not significant. 

     Models account for panel nature of datasets
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 exp( )
m lm l

l

W Z   (5.27) 

 

Assuming each of the components in the utility function contributes positively to the utility of 

the alternative, the exponential function is appropriate as a functional representation of the 

weight since
m

W , by construction, will be positive. The parameters 
lm

 may be unconstrained 

in sign. The signs of the parameters are informative as the partial derivatives of Wm with 

respect to each of its l arguments are functions that take the same sign as
lm

 . In other words, 

a positive
lm

 means that an increase in the level of socio economic characteristic l of a 

respondent is associated with an increased reliance on the use of heuristic m in the decision 

process. 

 

5.9.1 Application of the Multiple Heuristic approach to the RUM and NLWLR 

Mixture 

 

As an illustration of the multiple heuristic approach, a „mixture‟ of the standard context 

independent decision rule and the NLWLR heuristic is explored in this section. Subsequently, 

a „mixture‟ approach using the standard RUM and the relative advantage component is 

analysed. 

 

For this model, define the standard context independent and NLWLR specifications as 

illustrated in Equation (5.28): 

 

 
1

2

  and

( ( m ax( ))) k

k k

k

k jks jks

k

H X

H X X








 




 (5.28) 

 

If the weighting function W1 is specified by
1

exp( )
l l

l

W Z  , then a normalisation of 
2

W by 

2
exp( )

l l

l

W Z  is used, that is, 
2

W is the reciprocal of 
1
.W  Such a specification of the 

weighting function is appealing for at least two reasons. Firstly, the use of the exponential 

function ensures that 
1

W  and 
2

W are positive, which is to be expected since a higher value 
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obtained from each of the decision rules is positively associated with an increase in utility. 

Secondly, any change to 
1

W is associated with a change in the opposite direction for
2

W , 

which is not a behaviourally implausible assumption. Finally, as a matter of empirics, it was 

observed that other specifications of 
2

W , such as 
2 1

1W W   led to problems of identification. 

Therefore, the observable component of the utility functions for each of the three alternatives 

in the choice set can be written in the form of Equation (5.29): 

 

 
0 , 1 1 2 2

0 , 1 1 2 2

1 1 2 2

curr curr

A A

B

V W H W H

V W H W H

V W H W H





  

  

 

 (5.29) 

where  
2

1

1
.W

W
  

 

By writing 
j

V  in this manner of Equation (5.29), the relative weight of 
2

H  to 
1

H  may be 

given by 2

1 2

W
RW

W W



 in all three utility expressions.  Additionally, using the interpretation 

offered by Tversky and Simonson (1993), RW may be considered to be an indication of the 

strength of the context dependent component relative to the context independent RUM 

component. 

 

By way of illustration, the heuristic weighting function W1 is conditioned on the age and 

gender characteristics of the respondents, such that Equation (5.30) is obtained:  

 

 
1 1 2

exp( * * )
o

W gender age    
 (5.30) 

 

In principle, other socio-economic characteristics or choice task characteristics such as the 

choice task number, or the length of time taken to answer a particular choice question, might 

be used as conditioning variables as well. It might also be appropriate to consider using 

income as a conditioning variable; however, as the income variable was not captured for 

some respondents in Aust04a, Aust04b and NZ07, the use of this variable to condition the 

heuristic weighting function is not considered further.  
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To simplify the estimation of the RUM/NLWLR mixture model, 
k

 is set equal to one if, in 

the simple NLWLR version of the model, the null hypothesis 1
k

  is not rejected at the five 

percent level. For each attribute k, the taste parameters
k

 are assumed to be equal across the 

RUM and the NLWLR decision rules. Table 5.22 reports the results of the estimation for 

selected datasets. 

 

As the NLWLR heuristic is not found to be supported in Aust00, the multiple heuristics 

approach combining the RUM and the NLWLR is not applied to this dataset. Another point 

to note is that unlike the other datasets, there appears to be some issue with identification and 

so the utility for the current alternative in Aust05 is written as: 

 

0 , 1 2

1

1
curr curr

V H H
W

    

 

However, 
A

V and 
B

V  in Aust05 are unchanged from Equation (5.29). 

 

The parameter estimates ˆ
k

 and ˆ
k

 have already been discussed extensively, and these will 

not be discussed here, except perhaps to note that the magnitude of ˆ
FF

 has increased 

substantially from the simple NLWLR model in Aust08 and Aust04a. The signs and the 

statistical significance of the parameters conform to expectations. Using the likelihood ratio 

test, the multiple heuristics model outperforms either the single RUM or the single NLWLR 

heuristic in all datasets considered, indicating that this multiple heuristic approach of using a 

heuristic weighting function has its merits.  Focussing on the parameters of interest in this 

section, which are the ˆ
l

 , in all datasets, at least some, if not all, of the ˆ
l

  are statistically 

significant. Moreover, the socio-economic characteristics of the respondent do not all enter 

the heuristic weighting function in exactly the same way. Some variability is observed. For 

example, ˆ
age

  is negative in Aust04a, Aust04b and NZ07, and statistically indistinguishable 

from zero in Aust08 and Aust05. This implies that an older respondent in Aust04a, Aust04b 

and NZ07 is more reliant on the NLWLR heuristic than a younger person, but in Aust08 and 

Aust05, no such conclusion can be drawn. Similarly, ˆ
gender

 can take on a range of values, be
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Table 5.22: Empirical Estimation of a RUM and NLWLR Mixture (MNL Model)  

 Aust08 Aust05 Aust04a Aust04b NZ07 

 ̂  

(z-ratio)
 

Free flow time (FF) 

(min) 

– 0.0426***        

(– 17.60) 

– 0.0316***     

(– 4.67)       

– 0.0199***      

(– 13.33) 

– 0.0256***      

(– 12.16)         

– 0.0388***      

(– 13.06)         

Congestion time 

(CT) (min) 
  

– 0.0131***      

(– 7.14)         

– 0.0389***      

(– 25.37)         

– 0.0552***      

(– 11.09)      

Slowed down time 

(SDT) (min) 

– 0.0349***       

(– 9.74)     

– 0.0552***     

(– 10.84)       
   

Stop start time 

(SST) (min) 

– 0.0388***       

(– 13.41)     

– 0.0747***   

(– 18.29)         
   

Running Cost (RC) 

($) 

– 0.1105***       

(– 4.49)    

– 0.2300***      

(– 5.97)       

– 0.0439***     

(– 6.37)       

– 0.1144***      

(– 9.70)         

– 0.1871***      

(– 10.97)       

Toll Cost (TC) ($) 
– 0.1080***      

 (– 6.16)      

– 0.2654***      

(– 14.92)       

– 0.0494***     

(– 4.90)       

– 0.1525***      

(– 20.30)         

– 0.2436***     

(– 12.91)         

ASC 

     -current 

alternative 

     
     -Alternative A 

 

0.9042*** 

(17.93) 

 
n.s 

 

0.7387***      

(6.56) 

 
n.s. 

 

– 0.6392*** 

(– 5.70) 

 
0.2099**       

(2.18)            

 

n.s. 

 

 
n.s. 

 

n.s. 

 

 
n.s.                  

 ̂  

(z-ratio) 

[95% confidence interval] 

ˆ
FF

  3.2167*** 

     (4.27) 

[1.740 – 4.693]        

0.6078*** 

    (4.16) 

[0.321 – 0.895]    

3.078***   

     (3.96) 

[1.556 – 4.600]  

0.5896***       

   (5.73) 

[0.388 – 0.791]    

1
FF

   

ˆ
C T

    
1

CT
   

1.2932***       

   (9.37) 

[1.023 – 1.564]       

1.3656*** 

    (6.17) 

[0.931 – 1.800] 

ˆ
SD T

  
1

SD T
   

0.7281*** 

    (6.68)   

[0.514 – 0.942]     

   

ˆ
SST

  1
SST

   1
SST

      

ˆ
RC

  0.5261*** 

    (5.35) 

[0.333 – 0.719]       

0.5743*** 

    (6.35) 

[0.397 – 0.751]         

1
RC

   0.5898***       

   (4.93) 

[0.356 – 0.824]       

1
RC

   

ˆ
T C

  0.6985*** 

    (4.59)  

[0.400 – 0.997]       

0.3421*** 

    (4.41) 

[0.190 – 0.494] 

0.6437***       

    (4.12) 

[0.337 – 0.950] 

0.7009***   

   (5.75) 

[0.462 – 0.940] 

0.6455***       

    (6.86) 

[0.461 – 0.830]      

 
̂  

(z-ratio) 

constant n.s.       – 0.1428***       

(– 2.66) 

2.0654*** 

(3.96)       

2.1280***      

(10.48)       

2.7409*** 

(9.17) 

age n.s.           n.s.          – 0.0709***      
(– 7.48)      

– 0.0422***       
(– 8.71)          

– 0.0526***      
 (– 8.49)          

gender – 0.4109***       

(– 2.80) 

– 0.1308***       

(– 3.08)       

0.8282***      

(3.59) 

n.s. – 0.7719***      

 (– 4.53)       

Number of obs 4,480 4,864 912 3,888 1840 

LL at convergence – 3412.90 –2598.12 – 820.61 – 3003.68 – 1609.61 

Normalised AIC 1.528 1.073 1.824 1.550 1.759 
*** denotes significance at the one percent level. 

      n.s.: not significant 
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they positive (Aust04a), zero (Aust04b) or negative (Aust08, Aust05 and NZ07)
9
. 

 

The estimated coefficients in the heuristic weighting function may be used to construct 
1

W

and
2

W . Differences in the socio-economic characteristics across respondents will provide 

some heterogeneity in the values of 
1

W and 
2

W  within the same dataset. Summary statistics 

for 
1

W , 
2

W and RW are provided in Table 5.23 and the associated kernel density plots are 

shown in Figure 5.5. For Aust05, RW as defined is applicable only to the hypothetical 

alternatives, since the weights in the utility function for the current alternative are different to 

those in the hypothetical alternatives. 

 

Table 5.23: Summary Statistics of W1, W2 and RW  

 Aust08 Aust05 Aust04a Aust04b NZ07 

1
W       

Mean 0.806 0.797 1.078 1.605 1.238 

Std Deviation 0.167 0.050 0.780 0.706 0.974 

Minimum 0.663 0.761 0.112 0.436 0.181 

Maximum 1.0 0.867 3.29 3.047 4.392 

2
W       

Mean 1.292 1.260 1.83 0.778 1.415 

Std Deviation 0.251 0.076 1.91 0.391 1.092 

Minimum 1.0 1.153 0.303 0.328 0.228 

Maximum 1.508 1.315 8.91 2.291 5.524 

2

1 2

W
RW

W W




 
     

Mean 0.612 0.571 0.559 0.350 0.527 

Std Deviation 0.096 0.032 0.283 0.197 0.283 

Minimum 0.5 0.536 0.084 0.097 0.049 

Maximum 0.695 0.633 0.988 0.840 0.968 

 

                                                             
 

 

 

9
 Recall that the dummy variable gender takes the value of one if the respondent is male. 
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Figure 5.5a: Kernel Density Plots from Aust08 

 

 

Figure 5.5d: Kernel Density Plots from Aust04b 

 

 

Figure 5.5b: Kernel Density Plots from Aust05 

 

Figure 5.5e: Kernel Density Plots from NZ07 

 

Figure 5.5c: Kernel Density Plots from Aust04a 

 

Figure 5.5: Kernel Density Plots of W1, W2 and RW from Selected Datasets 

 

As discussed, the distributions of 
1

W , 
2

W and RW provide an indication of the strength of the 

context independent effect against the context dependent NLWLR heuristic. In a mixture 
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model where all 0
l

  , 
1 2

1W W  and 0.5RW  . Hence a RW value greater than 0.5 might 

be taken to indicate that the context dependent heuristic is stronger than the context 

independent RUM decision rule. In all datasets except Aust04b, the average value of RW 

exceeds 0.5. The NLWLR heuristic can therefore be considered to feature, on average, quite 

strongly in decision making in such datasets. In datasets where the ˆ
age

 parameter was found 

to be significant, the variability in RW is high, due to the variability in the age variable in the 

dataset. The kernel density plots show a bimodal distribution for RW in Aust08 and Aust05, 

which should be the case since the only variable that enters into the heuristic weighting 

function is a dummy variable for gender. 

 

5.9.2 Application of the Multiple Heuristic Approach to the RAM Model 

 

The multiple heuristic approach may also be applied to the piecewise RAM model. In this 

case, let  

1

2

and

( , )

  

j s

k k

k

H

H RA j j

X





 


 

The heuristic weighting functions are specified in the same way as in the RUM and NLWLR 

mixture. The results obtained from the multiple heuristic estimation of the piecewise RAM 

model are presented in Table 5.24. The gender variable is not available in NZ99 and gender is 

therefore not included in the 
1

W  specification for NZ99. In the RUM/piecewise RAM 

mixture, the utility functions of all three alternatives in Aust05 may now follow Equation 

(5.29). 

 

Other than Aust08, the multiple heuristic approach to the piecewise RAM model leads to an 

improvement in model fit in all the other datasets, compared to the equal weights piecewise 

RAM model. Estimation of the multiple heuristics RUM/piecewise RAM model for Aust08 

was somewhat problematic and the final model was estimated assuming that the FF attribute 

did not appear in the ( , )RA j j  component, that is, respondents were assumed to disregard the 

advantages and disadvantages in the FF attribute. This resulted in a poorer model fit. Putting 

aside Aust08, there again appears to be no consistent pattern as to how the socio economic 

characteristics of the respondents enter into the heuristic weighting function, as was observed
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Table 5.24: Estimation Results from a Multiple Heuristics Approach to the Piecewise RAM (MNL) Model 

 Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 
̂  

(z-ratio)
 

Free flow time (FF) (min) 
– 0.0242***      

(– 3.97) 

– 0.0244*** 

(– 4.90) 
n.s. 

– 0.0410*** 

(– 6.97)       

– 0.0070***       

(– 4.77)          

– 0.0264***  

(– 11.13)        

– 0.0284*** 

(– 7.46)         

Congestion time (CT) (min)   
– 0.0322*** 

(– 5.35) 
  

– 0.0075*** 

(– 4.76)          

– 0.0342*** 

(– 12.89)         

– 0.0367*** 

(– 6.68)         

Slowed down time (SDT) (min) 
– 0.0120***      
(– 4.91)       

 
– 0.0544*** 
(– 4.55)       

– 0.0488*** 
(– 7.23)         

   

Stop start time (SST) (min) 
– 0.0159***      

(– 5.64)       
 

– 0.1488***  

(– 8.71)      

– 0.0614*** 

(– 7.49)  
   

Running Cost (RC) ($) 
– 0.0811***      

(– 5.31)       

– 0.8304*** 

(– 5.53) 

– 0.3568*** 

(– 7.47)       

– 0.2376*** 

(– 7.00)       

– 0.0278*** 

(– 4.66)        

– 0.1199*** 

(– 9.99)         

– 0.1457*** 

(– 6.99)       

Toll Cost (TC) ($) 
– 0.0595***      

(– 5.52)      

– 0.1879*** 

(– 7.05) 

– 0.1528*** 

(– 3.30)       

– 0.2645*** 

(– 8.74)  

– 0.0421*** 

(– 5.40)          

– 0.1500*** 

(– 13.12)         

– 0.2002*** 

(– 8.54)         

Alternative Specific Constants        

  -current alternative 
0.8150***      

(15.73) 

0.8428*** 

(9.81) 

0.8497*** 

(10.62) 
n.s. 

– 0.7692***      

(– 6.94) 
n.s. n.s. 

  -Alternative A n.s.     
0.1870*** 

(2.58) 

0.2435*** 

(2.80)             
n.s.         

0.2213** 

(2.51)       
n.s. n.s.  

 
̂  

(z-ratio) 

constant 
1.2048*** 

(4.69)       

1.0091***  

(3.44)          

– 0.5658*** 

(– 4.90)       

– 0.6765*** 

(– 11.30)         

1.5297***      

(2.78)          

– 1.3980*** 

(– 6.44)       

– 2.1374***       

(– 8.15)         

age n.s. 
–  0.0208***      

(– 4.26)       

0.0094** 

(3.31)          
n.s.        

– 0.0457***      

(– 4.88)       

0.0286*** 

(4.88)        

0.0463*** 

(7.14)         

gender 
– 1.093*** 

(– 3.80)       

–  0.6075***       

(– 3.67)       
Not available 

0.2097*** 

(2.72)   

0.8178***      

(3.36)       
n.s.         

0.6955*** 

(3.67)        

Number of obs 4,480 2,352 2,432 4,864 912 3,888 1,840 

LL at convergence – 3385.13 – 1766.07 – 1528.83 – 2562.28 – 818.00 – 2984.15 – 1591.51 
***, ** denotes significance at the one percent and five percent level respectively. 

n.s.: not significant 
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with the multiple heuristic approach to the RUM and NLWLR mixture. As before, the 

parameters ˆ
age

 and ˆ
gender

 may or may not be statistically significant, and even when 

statistically significant, may be positive or negative.  For example, in Aust00 and Aust04a, an 

older respondent is associated with the tendency to use less of the RUM decision rule and 

more of the relative advantage rule, while the opposite conclusion is obtained in Aust04b and 

NZ07. The signs of ˆ
age

 and ˆ
gender

 may even vary from the RUM/NLWLR mixture to the 

RUM/ piecewise RAM mixture. For example, in Aust04b, ˆ
age

 is negative in the 

RUM/NLWLR mixture but positive in the RAM mixture. Likewise in NZ07, ˆ
age

 and ˆ
gender



are both negative in the RUM/NLWLR mixture model but become positive in the RAM 

model. The multiple heuristics approach may also be estimated on the regret form of the 

RAM model. The results are qualitatively similar to what has already been discussed. 

 

5.10 MIXED LOGIT ESTIMATIONS  

5.10.1 Mixed Logit Estimation of the NLWLR Model 

 

Besides the fixed (non-random) parameters model, the NLWLR model may be estimated 

using a mixed logit model which is an innovation by itself. In particular, the fixed parameters 

NLWLR model imposes the assumption of homogenous power parameters across all 

respondents. It would be of empirical interest to test if there is heterogeneity in the power 

parameters, since the magnitude of the power parameters gives an indication of whether 

mixtures of extremeness seeking ( 1
k

  ), extremeness aversive ( 1
k

  ) or extremeness 

neutral ( 1
k

  ) behaviour is being exhibited. The result would be especially interesting in 

cases where the null hypothesis of ˆ 1
k

  could not be rejected, since heterogeneity around the 

value of one may now be revealed, that is, there may be heterogeneity in the extremeness 

seeking/extremeness aversive behaviour in the respondent sample. Hence, in the mixed logit 

NLWLR model, the power parameters are now assumed to be random.  

 

Since the utility function for an alternative is expressed as a function of the gains in part-

utility relative to the worst level in the choice set, it is logical for this gain to be an increasing 

function. Hence it would make sense to constrain the power parameters to be non-negative, 

which can be achieved through the commonly used constrained triangular distribution, where 
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the mean of the distribution is set to be the same as the spread of the distribution. The 

estimation accounts for the panel nature of the dataset. Parameters are assumed to be 

uncorrelated. Estimation results are presented in Table 5.25 for selected datasets. 250 Halton 

draws are used to estimate the mixed logit models in this section. Consideration was made as 

to whether a higher number of draws was necessary; however, simulations involving 500 or 

1000 Halton draws did not substantially change the estimation results for one dataset 

(Aust04a) and the decision was therefore made to use 250 draws for estimation. 

 

Overall, it might be observed that the lack of a consistent pattern across datasets as to the 

magnitude of the 
k

 parameters highlights the point that the same NLWLR heuristic rule may 

lead to different behavioural implications of extremeness aversion depending on the context.  

For example, looking at just the FF attribute, the mean of ˆ
FF

 is greater than one in Aust08 

and less than one in Aust00 and NZ07. There are also differences arising from the mixed logit 

model of the NLWLR heuristic compared to the MNL model. In Aust04a and NZ07, the TC 

parameter is much more strongly negative. In terms of the power parameters, estimation 

results from Aust04a and Aust04b show that the null hypothesis of the mean of ˆ
FF

 equal to 

the value of one is not rejected at the five percent significance level. On the other hand, in 

NZ07, the null hypotheses that the mean of ˆ
FF

 and ˆ
RC

 are equal to one can be rejected. 

Opposite conclusions were obtained in the MNL NLWLR model.  

 

For Aust08, all the power parameters associated with the time components have mean values 

greater than one, indicating an extremeness seeking behaviour in the time components of the 

alternative. This is another point of difference from the MNL version of the NLWLR model, 

where only ˆ
FF

 was found to be greater than one. As for ˆ
T C

 , in the MNL form of the 

NLWLR, this was estimated at less than one, and in the mixed logit model, although its mean 

is no longer statistically different from one, the spread of the parameter indicates a certain 

amount of heterogeneity with a fairly significant probability that ˆ
T C

  is indeed below one.  

 

The calculated probability that all 
k

 are less than one is also of interest since this corresponds 

to the conventional understanding of extremeness aversion (compromise effect). For a 

constrained symmetric triangular distribution bounded below at zero, centred at c and 
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Table 5.25: Mixed Logit Estimation of the NLWLR Model 

 Aust08 Aust05 Aust04a Aust04b NZ07 

Non random 

parameters 
̂  

(z-ratio) 

Free flow time 

(FF) (min) 

– 0.0642*** 

(– 19.58) 

– 0.0989*** 

(– 17.29) 

– 0.0421*** 

(– 15.95) 

– 0.1057*** 

(– 23.51) 

– 0.1701*** 

(– 13.03) 

Congestion time 

(CT) (min) 
  

– 0.0728*** 

(– 10.52) 

– 0.1078*** 

(– 28.27) 

– 0.1257*** 

(– 12.91) 

Slowed down 

time (SDT) (min) 

– 0.0755*** 

(– 19.16) 

– 0.1250*** 

(– 15.56) 
   

Stop start time 

(SST) (min) 

– 0.0960*** 

(– 39.68) 

– 0.1853*** 

(– 24.42) 
   

Running Cost 

(RC) ($) 

– 0.2802*** 

(– 5.98) 

– 0.7829*** 

(– 13.96) 

– 0.2258*** 

(– 8.40) 

– 0.5772*** 

(– 15.32) 

– 0.8496*** 

(– 14.66) 

Toll Cost (TC) ($) 
– 0.1858*** 

(– 6.40) 

– 1.7505*** 

(– 7.83) 

– 2.7591*** 

(– 2.71) 

– 0.6451*** 

(– 17.16) 

– 2.1580*** 

(– 7.61) 

ASC      

     -current 

alternative 

1.06550*** 

(34.53) 
n.s. 

– 1.2815*** 

(– 15.67) 

n.s. 

 

– 0.7852*** 

(– 17.32) 

   -Alternative A n.s. n.s. 
– 0.1624** 

(– 2.32) 
n.s. n.s. 

Random 
Parameters 

̂  

(z-ratio) 

[95% confidence interval] 

ˆ
FF

  

 

Mean = 

Spread 

1.8107*** 

(9.70) 

[1.445 – 2.177] 

0.7731*** 

(8.14) 

[0.587 – 0.959] 

1.1654*** 

(7.93) 

[0.878  – 1.453] 

1.0636*** 

(16.25) 

[0.935 – 1.192] 

0.7402*** 

(16.90) 

[0.654 – 0.826] 

ˆ
C T

  

 

Mean = 

Spread 
  

0.7623*** 

(9.05) 

[0.597 – 0.928] 

1.0730*** 

(25.95) 

[0.992 – 1.154] 

1.1543*** 

(8.25) 

[0.880 – 1.428] 

ˆ
SD T

  

Mean = 

Spread 

 

1.2888*** 

(9.93) 

[1.034 – 1.543] 

0.9384*** 

(9.88) 

[0.752 – 1.124] 

   

ˆ
SST

  
Mean = 

Spread 

1.250*** 

(17.45) 

[1.109 – 1.390] 

1.1123*** 

(19.53) 

[1.001 – 1.224] 

   

ˆ
RC


 

Mean = 

Spread 

0.5592*** 

(5.33) 
[0.354 – 0.765] 

1.2065*** 

(9.95) 
[0.969 – 1.444] 

0.6889*** 

(4.04) 
[0.355 – 1.022] 

0.8429*** 

(13.61) 
[0.721 – 0.964] 

0.7875*** 

(8.47) 
[0.605 – 0.970] 

ˆ
T C

  

 

Mean = 

Spread 

0.7912*** 

(3.47) 

[0.344 – 1.238] 

0.6711*** 

(14.93) 

[0.583 – 0.759] 

0.3902*** 

(7.09) 

[0.282 – 0.498] 

0.8111*** 

(21.91) 

[0.739 – 0.884] 

0.8355*** 

(12.94) 

[0.709 – 0.962] 

Number of obs 4,480 4,864 912 3,888 1,840 

LL at 

convergence 
– 3359.72 – 2406.46 – 800.80 – 2772.14 – 1361.69 

Note: Simulations based on 250 Halton draws 

*** denotes significance at the one percent percent level respectively. 
 n.s.: not significant 
Estimations account for panel nature of datasets 
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bounded above at 2c, the cumulative distribution function (CDF) is given by Equation (5.31): 
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(5.31) 

 

 

Given the estimated parameter c of the triangular distribution, the CDF can be used to 

calculate the probability that the power parameter ˆ
k

 is less than one. This is done by setting

1x  . Then, the CDF is a function of the parameter c alone, and it can be simulated by the 

delta method. Results are presented in Table 5.26. 

 

Table 5.26: Simulations of the CDFs for 1P r( )
k

   

 Mean value of Pr( 1)
k

   

(standard deviation in parentheses) 

 Aust08 Aust05 Aust04a Aust04b NZ07 

Pr( 1)
FF

   
0.153    

(0.031) 

0.750 

(0.112) 

0.368 

(0.093) 

0.442 

(0.054) 

0.789 

(0.052) 

Pr( 1)
C T

     
0.763 

(0.100) 

0.434 

(0.033) 

0.375 

(0.091) 

Pr( 1)
SDT

   
0.301 

(0.061) 

0.564 

(0.101) 
   

Pr( 1)
SST

   
0.320 

(0.037) 

0.404 

(0.041) 
   

Pr( 1)
RC

   
0.978 

(0.071) 

0.343 

(0.069) 

0.850 

(0.197) 

0.669 

(0.071) 

0.733 

(0.109) 

Pr( 1)
TC

   
0.729 

(0.268) 

0.870 

(0.051) 
1.0 

0.706 

(0.043) 

0.678 

(0.074) 

Pr( 1)
k

k

   0.010 

(0.005) 

0.051 

(0.017) 

0.239 

(0.076) 

0.091 

(0.018) 

0.147 

(0.046) 

 

Indications from Table 5.26 are that the incidence of full extremeness aversion, that is, the 

extremeness aversion across all attributes, is relatively small in the respondent sample. This is 

particularly true for Aust08 where the estimated means of the power parameters for the time 

components FF, SDT and SST are all statistically greater than one. Looking at the individual 
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marginal probabilities, it can be generally said that for the cost components, the probability 

that their associated power parameters is less than one is a lot higher than their counterparts 

for the time components. This suggests that respondents tend to be extremeness averse in 

costs rather than in time. Perhaps this is a reflection that losses in monetary terms are a lot 

more salient than losses in time. 

 

5.10.2 Mixed Logit Estimation of the Regret-RAM Model 

 

The regret form of the RAM model can also be estimated using the mixed logit model. There 

is no particular theory to determine whether a parameter is random or not; however, there is 

reason to suspect heterogeneity in the congestion time (CT) parameter, or in the slowed down 

time (SDT) and stop-start time (SST) parameters where available, and in the toll cost (TC) 

parameters. Heterogeneity in the CT/SDT/SST parameters is possible since these could be 

related to travel time variability which has not been explicitly modelled. The TC parameter 

may also be considered random since the aim of the toll road studies was to observe choice 

behaviour under various attribute combinations of tolled/non-tolled routes and also given that 

in many instances, no prior experience with tolling was reported. In particular, the mixing 

distribution for these parameters is assumed to be constrained triangular, as a way of imposing 

consistency with the behavioural implication that increasing levels of the CT and TC 

attributes provide disutility rather than utility. Other parameters of the model remain non-

random. The model accounts for the panel nature of dataset. Estimation results are presented 

in Table 5.27.  

 

In the mixed logit estimation, all parameters continue to possess the appropriate sign, as 

expected. More so than the travel time parameters, there appears to be a substantial amount of 

heterogeneity in the TC parameter, as can be observed from the large spread of the 

distribution in some of the datasets. 

 

5.11 CALCULATIONS OF VALUE OF TRAVEL TIME SAVINGS (VTTS) 

5.11.1 Some Preliminaries 

 

The marginal willingness-to-pay measure is a typical parameter of interest derived from 

choice models. This section explores some of the implications on the values of travel time 

savings (VTTS) of embedding the previously identified heuristics into the model. The focus 
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Table 5.27: Estimation Results of the Mixed Logit Regret RAM Model 

 Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

 ̂  

(z-ratio) 

Non random parameters        

Free flow time (FF) (min) 
– 0.0578*** 
(– 13.37)         

– 0.1237*** 
(– 11.75)         

n.s. 
– 0.0862*** 
(– 20.42)         

– 0.0310*** 
(– 17.49) 

–  0.0618*** 
(– 34.45) 

– 0.1018*** 
(– 31.61) 

Running Cost (RC) ($) 
– 0.3103*** 

(– 15.01)         
n.s.         

– 0.2294*** 

(– 8.14)         

– 0.4705*** 

(– 13.44)         

– 0.1048*** 

(– 10.37) 

– 0.2940*** 

(– 19.38) 

– 0.5111*** 

(– 17.68) 

ASC        

     -current alternative 
0.1091*** 

(4.08) 

0.3585*** 

(6.16) 

0.3760*** 

(5.75) 

n.s. 

 

– 0.7835*** 

(– 11.56) 

0.1482*** 

(4.50) 

– 0.6581*** 

(– 14.12) 

     -Alternative A n.s. 
0.2141*** 

(3.28) 

0.3055*** 

(3.23) 
n.s. 

0.2714*** 

(4.22) 

0.1228*** 

(2.65) 
n.s. 

Random parameters        

Congestion time (CT) (min)  
[constrained triangular] |Mean| = 

Spread 

 
– 0.1980*** 
(– 17.28)         

  
– 0.0290*** 
(– 13.17) 

– 0.0785*** 
(– 31.81) 

– 0.0769*** 
(– 12.78) 

Slowed down time (SDT) (min)  

[constrained triangular] |Mean| = 

Spread 

– 0.0611*** 

(– 17.00)         
 

– 0.0811*** 

(– 6.38)         

– 0.1016*** 

(– 15.98)         
   

Stop-start time (SST) (min)  

[constrained triangular] |Mean| = 

Spread 

– 0.0595*** 

(– 33.26)       
 

– 0.1321*** 

(– 10.25)       

– 0.1489*** 

(– 26.98)         
   

Toll Cost (TC) ($) 

[constrained triangular] |Mean| = 

Spread 

– 1.1377*** 

(– 24.54)       

– 1.1137*** 

(– 26.92) 

– 3.5492*** 

(– 15.77)       

– 0.7663*** 

(– 33.79)         

– 0.2651*** 

(– 14.48) 

– 0.3893*** 

(– 31.66) 

– 1.3813*** 

(– 17.04) 

Number of observations 4,480 2,352 2,432 4,864 912 3888 1,840 

LL at convergence – 3043.11 –1314.47 –1415.95 – 2468.03 – 799.20 – 2844.45 –  1405.85 

   Note: Simulations based on 250 Halton draws 
***, ** denotes significance at the one percent and five percent level respectively. 

      n.s.: not significant 
   Estimations account for panel nature of datasets 
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of the discussion will be on the models that are related to the extremeness aversion heuristic. 

The VTTS for these models are more interesting since they depend not only on the alternative 

being chosen, but also on the attribute levels of other competing alternatives in the choice set.  

 

In general, the value of travel time savings (VTTS) or the marginal willingness to pay for a 

one unit reduction in travel time is given in Equation (5.32) by: 

Equation (5.32) is the ratio of the marginal utility with respect to time to the marginal utility 

with respect to cost. In general, since there are two cost components modelled in the utility 

function, 
( )

j
V

cost




 can be expressed as a weighted average of 

j

j

V

R C




and 

j

j

V

T C




 as shown in 

Equation (5.33): 

 

 

( )

j j j j j

j j j j j j

V RC V TC V

cost RC TC RC RC TC TC

  
   

    
 (5.33) 

 

In Aust00, Aust04a, Aust04b and NZ07, where the only time components modelled are FF 

and CT, the VTTS measure for an alternative j (in $/person-hour) is obtained as a weighted 

average of 
/ ( )

/ ( )

j j

j

V FF

V cost

 

 
and 

/ ( )

/ ( )

j j

j

V C T

V cost

 

 
as in Equation (5.34)

10
: 

 

 / ( ) / ( )
60

/ ( ) / ( )

j j j j j j

j

j j j j j j

FF V FF C T V C T
VTTS

FF C T V cost FF C T V cost

    
     

       

 (5.34) 

 

                                                             
 

 

 

10
 A multiplication by 60 is appropriate since the time attributes are presented in minutes. 

 

 

 

/ ( )

/ ( )

j

j

j

V time
VTTS

V cost

 

 

 (5.32) 
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In Aust08, NZ99 and Aust05, where the FF, SDT and SST time attributes are modelled in the 

utility function, the VTTS expression is simply an extension of Equation (5.34), i.e., Equation 

(5.35): 

 / ( ) / ( ) / ( )
60

/ ( ) / ( ) / ( )

j j j j j j j j j

j

j j j j j j

j j j j

FF V FF SDT V SDT SST V SST
W TP

TT V cost TT V cost TT V cost

TT FF SDT SST

      
       

       

  

 (5.35) 

 

For the standard RUM model, .
j

k

jk

V

X






 

 

5.11.2 The NLWLR model 

 

With the NLWLR model, the willingness to pay function will be non-linear in the attribute 

levels. The marginal utility with respect to any single attribute 
jks

X can be written in 

Equation (5.36) as: 

 
 

1

m ax(( )
k

k k k jks jks

jks

V
X X

X



  


 


 (5.36) 

 

If 1
k

  , 
jks

V

X




is not defined when max( )

jks jks
X X , that is, when the level of attribute k is 

the maximum or worst level it can take in the particular choice set. In this case, there is a 

division by zero. One may either disregard the calculation of 
jks

V

X




in such cases or else the 

function may be evaluated at the sample mean of max( )
jks jks

X X   , which will typically 

have a non-zero value. This latter approach is used in the calculations presented in Section 

5.11.4. 

 

A similar issue arises for the RC and TC attributes since they appear in the denominator of 

the VTTS equation. Even where ˆ 1
RC

  and ˆ 1
TC

  , a situation in which both the RC and TC 

attribute levels are simultaneously the maximum values in the choice set leads to the 
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denominator of the VTTS equation taking on the value of zero, since 0

js

V

RC




 and 

0

js

V

TC




 . Evaluating the function at the sample means also avoids this complication. 

 

5.11.3 The RRM Model and the Hybrid RRM-RUM Model 

 

Recall that in the RRM model, ln(1 exp( ( ))).
RRM

j k j k jk

j s k

j j

V X X





       

Where an attribute is processed according to random regret minimisation, the marginal utility 

j

jk

V

X




 with respect to

jk
X will be specific to the alternative and also specific to the choice set 

as the attribute value
jk

X of the alternative and its counterpart values in all other competitor 

alternatives enter into this expression. Therefore, Equation (5.37) follows: 

 

 exp[ ( )]

1 exp[ ( )]

j k k j k jk

j sjk k j k jk
j j

V X X

X X X

 





 


 


  
  (5.37) 

 

By appropriate substitution of
j

jk

V

X




in Equation (5.37) into Equations (5.33) to (5.35), the 

VTTS expressions in the case of the full RRM model follow analogously. 

 

In the hybrid RRM-RUM model, the expressions for the partial derivatives of 
j

V with respect 

to
jk

X will follow either Equation (5.37) if the attribute is processed according to regret 

minimisation or will simply be
k

  if the attribute is processed according to linear additive 

utility maximisation. Again, by appropriate substitution, the VTTS expressions can be 

derived from Equations (5.33) to (5.35). 
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5.11.4 The RAM Model 

Piecewise RAM Model 

 

Recall the observed component of utility in the RAM model, as shown in Equation (5.38): 

 

 
0 ,

,

( , ')
RAM

j j k jk

k j s

j j

V X RA j j 



     
(5.38) 

As a result of the advantage function ( , ') ( , ')
k

k

A j j A j j  and disadvantage function 

( , ') ( , ')
k

k

D j j D j j  appearing in ( , ')RA j j , the partial derivative of ( , ')RA j j with respect 

to 
jk

X  will be a function of all attributes of all alternatives, and not just a function of attribute 

k alone. In the piecewise RAM model, 
( , )

jk

RA j j

X




can be distinguished according to three 

cases. 

 

Case One  

If alternative j confers a non-zero disadvantage over alternative j   in attribute k, ( , ) 0
k

A j j  

and ( , )A j j is independent of Xjk. ( , )D j j remains a function of Xjk, and Equation (5.39) 

follows: 

 

 
2

( , ) *( , )

[ ( , ) ( , )]

k

jk

A j jRA j j

X A j j D j j




  
 (5.39) 

 

Case Two 

If alternative j confers a non-zero advantage over alternative j   in attribute k, ( , ) 0
k

D j j  and 

( , )D j j  is independent of Xk. ( , )A j j  is a function of Xjk and therefore Equation (5.40) 

follows: 

 

 
2

( , ) *( , )

[ ( , ) ( , )]

k

jk

D j jRA j j

X A j j D j j




  
 (5.40) 
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In Case One and Case Two, the marginal utility of alternative j with respect to attribute k is 

given in Equation (5.41) by: 

 

 ( , )j

k

j sjk jk
j j

V RA j j

X X





 
 

 
  (5.41) 

 

With a negative βk, as is expected for the travel time and travel cost attributes, then 
j

jk

V

X





would be negative as well. 

 

Case Three 

If ( , ) ( , ) 0
k k

A j j D j j   , for example, when the attribute values Xjk and Xj′k are equal, 

( , )

k

R j j

X




 is not defined and in such cases,

j

jk

V

X




 is simply equal to .

k
  

  

Regret-RAM Model  

In the regret RAM model, Equation (5.42) follows directly from the definitions of ( , ')A j j  

and ( , ').D j j  
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k

jk k jk j k
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( , )
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k
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 (5.42) 

 

Equation (5.43) follows. 
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Again, by appropriate substitutions into Equations (5.33) to (5.35), the VTTS for the regret-

RAM model may be obtained. 

 

5.11.5 Estimates and Discussion 

 

The summary results of the VTTS calculations for the various models, computed at the 

sample means, are reported in Table 5.28. Hence, variability in VTTS calculations is due to 

parameter estimation error. These estimates are intended as a comparison across the model 

types. For the context dependent models, the VTTS values obtained may be valid only within 

the limits of the experimental design, since the VTTS equations for the context dependent 

models depend, to varying degrees, on the attribute values of the other competing alternatives 

in the choice set, and in a stated choice experiment, these are hypothetical. The real market 

VTTS values will depend not only on the real market attribute values of competing 

alternatives, but possibly on the composition of the choice set itself. 

 

The use of context dependent preferences for VTTS calculations is likely to violate the 

microeconomic axioms that underpin the VTTS obtained from RUM models. In real life, 

people are probably not as „well-behaved‟ as postulated by neoclassical economic theory, but 

VTTS and consumer surplus measures are well understood from RUM models, even if it 

almost inevitably means accepting a loss of behavioural realism. On the other hand, 

behavioural realism may be an important consideration where more accurate forecasts of 

future demand are needed.  

 

Alternative specific VTTS will certainly be the norm in the models of context dependence 

(NLWLR, RRM, Hybrid RRM-RUM and RAM models) since attributes of whichever 

alternative is chosen and those of any relevant competing alternatives enter into the VTTS 

function. Hence, to bring the VTTS estimates in agreement to the stated preference of 

respondents, the VTTS calculations are restricted to only those alternatives actually chosen. 

As can be seen from Equations (5.34) and (5.35), the VTTS calculations are based on some 

weightings of the incidence of the time and cost components of the alternatives, and so even 

in the case of the standard RUM model, the VTTS will be alternative specific.  
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Table 5.28: Summary of VTTS Calculations for the MNL Form of the Standard RUM, 

NLWLR, RRM, Hybrid RRM-RUM and Regret-RAM Models 

  Aust08 Aust00 NZ99 Aust05 Aust04a Aust04b NZ07 

Mean VTTS($/person-hour) 

 Standard RUM 

Mean 12.26 13.25 22.39 12.85 16.23 14.51 12.92 

Standard Deviation 1.34 0.35 4.62 1.19 2.04 0.69 1.08 

95% confidence interval 
 9.62– 

14.89 

12.56 – 

13.94 

 13.34– 

31.45 

 10.53 – 

15.18 

12.23– 

20.22 

 13.16– 

15.86 

 10.80– 

15.03 

 NLWLR 

Mean 10.89 13.94 17.59 11.08 16.31 14.98 12.57 

Standard Deviation 1.37 0.87 2.22 0.98 2.53 0.74 1.08 

95% confidence interval 
8.20 – 

13.57 

12.23 – 

15.66 

13.24 – 

21.95 

9.15 – 

13.01 

11.35 – 

21.26 

13.53 – 

16.43 

10.46 –

14.69 

 RRM 

Mean 13.04 8.67 24.54 11.41 16.34 14.71 13.50 

Standard Deviation 1.51 2.88 6.04 1.03 2.10 0.72 1.26 

95% confidence interval 10.07 – 

16.01 

3.03 – 

14.32 

12.70 –   

36.38 

9.39 – 

13.42 

12.21 – 

20.46 

13.29 – 

16.13 

11.04 – 

15.96 

 Hybrid RRM-RUM 

Mean 12.94 11.53 21.68 11.55 15.57 15.63 14.59 

Standard Deviation 1.47 0.35 4.89 1.03 2.06 0.67 1.32 

95% confidence interval 
10.06 – 

15.83 

10.85 – 

12.22 

12.09 – 

31.27 

9.53 – 

13.56 

11.52 – 

19.61 

14.32 – 

16.94 

12.00 – 

17.17 

 Regret-RAM 

Mean 12.17 13.51 21.51 12.87 16.18 14.52 12.86 

Standard Deviation 1.11 0.38 3.11 1.05 1.92 0.64 1.01 

95% confidence interval 
10.00 – 

14.34 

12.78 – 

14.25 

15.42 – 

27.60 

10.81 – 

14.94 

12.43 – 

19.93 

13.27 – 

15.77 

10.89 – 

14.83 

Note: VTTS estimates presented in the currency of the country where experiment was conducted. VTTS 

calculated using the MNL forms of the models. VTTS computed at the sample mean and VTTS variability is 

due to parameter estimation error. 

 

In the VTTS calculations for the NLWLR model, the non-linear specification for all attributes 

was retained, even if the null hypothesis of 1
k

  cannot be rejected at the five percent level. 

For the RAM models, only the VTTS results for the regret-RAM model are reported. 

Estimates are obtained using the delta method. 

 

The VTTS in NZ99 appears high, but this result can be explained by observing that the FF 

attribute does not enter the utility expression, and hence, the VTTS in NZ99 may be expected 
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to be higher since it represents the marginal willingness to pay to avoid an extra minute of 

slowed down or stop start time. 

 

From a statistical perspective, there is little to suggest that the mean VTTS are significantly 

different across model types for the same dataset, with the exception in Aust00 where the 

hybrid model produces VTTS estimates which are lower than those in the standard RUM, 

NLWLR and regret-RAM models. The much lower VTTS estimate from the RRM model in 

Aust00 might also be treated with more circumspection in light of the significantly poorer 

model fit of the RRM and the wider 95 percent confidence interval of the estimates. 

However, in practice, only mean VTTS values are generally used and the differences in 

means do reveal substantial time benefit differences when applied to specific projects. For 

example, in Aust05, the NLWLR model predicts a mean VTTS of $11.08 while the regret-

RAM predicts a mean VTTS of $12.87. 

 

Another observation to make is that in most datasets, the standard deviation of the VTTS 

estimates from across the models are comparable to one another, suggesting in this case at 

least that even with  the inclusion of various alternative specific attribute values into the 

VTTS expression, the precision of the VTTS estimate is not impacted too negatively. In fact, 

in several datasets, the standard deviation of the VTTS estimates in the regret-RAM model is 

the lowest across the models. 

 

Since the attribute values of all available alternatives enter the RAM VTTS equation, the 

RAM VTTS measures will generally change with changes in the attributes of competing 

alternatives. This is of course fully in line with the notion that the RAM model, together with 

the RRM, hybrid and NLWLR models, implies choice set-specific preferences. As suggested 

by Chorus et al. (2012), this allows for a richer interpretation of the implied trade-offs that 

are made as choice set composition is varied.  

 

Allowing preferences to be choice set specific may seemingly imply that models like the 

NLWLR, RAM, RRM and hybrid RRM-RUM are less suitable for the derivation of VTTS 

measures. After all, the VTTS measures are now a function of hypothetical attribute values, 

which are a function of the experiment design. For the policy analyst, the task of deciding an 

appropriate VTTS estimate appears to be even more challenging than before, since the real 
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market attribute values of competing alternatives in the person‟s choice set needs to be 

known. However, a careful assessment of the VTTS equation will reveal that the range of 

policy options may actually be expanded under the assumption of choice set specific 

preferences. The policy maker may be able to influence VTTS quite substantially simply by 

framing and appropriately defining alternatives and choice sets in the public domain. For 

example, to increase VTTS and perhaps the chance of a transport project being approved, the 

policy maker could paint an alternative scenario with very poor time attribute values (if 

nothing is done), so that the transport project, in comparison, will appear to have a very large 

relative advantage compared with the status quo or no-improvement alternative. 

 

5.12 SUMMARY 

 

Within the confines of the stated route choice unlabelled datasets, some broad conclusions are 

beginning to emerge. The empirical results highlighted in this chapter suggest that accounting 

for some form of context dependency into context independent models like the standard 

RUM model is an important consideration and should not be ignored in future work. In 

particular, the NLWLR model and the RAM model, even in its restricted form, offer to hold a 

lot of promise in how context dependency might be modelled. The estimation results of the 

RAM/RDM model strongly indicates that a relative form of regret should be seriously 

considered as well. The data analysis also suggests that assuming a purely context dependent 

model like the RRM model might be overly restrictive. Instead, a combination of context 

independent decision rules and context dependent heuristics, possibly weighted by some 

weighing function, appear to hold substantial promise as a better representation of choice 

behaviour. 

 

More importantly, there is a word of caution as to how context dependence is specified in the 

models. For example, consistent with previous findings, and now further reinforced by this 

research, the performance of the RRM model compared to the standard RUM model can be 

said to be mixed at best. Through the PDP model, the MCD heuristic appears to hold some 

validity as a simple model of context dependence. On the other hand, the effect of choice set 

interdependence, by means of the reference revision heuristic, largely disappears once more 

advanced models are considered. 
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The next chapter summarises the overall contributions of this thesis and suggests some 

potential avenues of inquiry for future research. 
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CHAPTER 6   CONCLUSIONS 

 

6.1 MAIN CONTRIBUTIONS OF THIS THESIS 

 

Using well-established methods from discrete choice modelling and within the context of 

unlabelled stated route choice experiments as the data setting, this thesis has focused on 

examining the evidence for the majority of confirming dimensions (MCD), the extremeness 

aversion and the reference revision heuristics in choice behaviour. On the MCD and the 

reference revision heuristics, this study might be seen as an extension of the work by Hensher 

and Collins (2011). 

 

6.1.1 Reference Revision Heuristic 

 

The reference revision heuristic has been modelled assuming that there is a shift in the 

reference in the subsequent choice scenario when a non-status quo alternative was chosen 

previously. From the empirical results, the conclusion is that the impact of this particular 

heuristic on choice decisions is substantial if simpler models such as the MNL are 

considered, but its impact is substantially diminished once the correlation between 

alternatives and the panel nature of the dataset are accounted for. The reference revision 

heuristic becomes statistically negligible in four of the seven datasets, although it still retains 

statistical significance at the five percent level in the remaining three datasets, albeit with a 

much smaller estimated coefficient. This result does echo the kind of findings obtained 

whenever the RRM model is compared against the RUM model and the lack of a consistent 

pattern of observable behaviour across datasets suggests that this heuristic might somehow 

depend on the characteristics of the respondent sample. At the very least, the result suggests 

that if models with simple error structures have to be used, it would be important to control 

for the impact of reference revision.   

 

6.1.2 Majority of Confirming Dimensions Heuristic 

 

The MCD heuristic can be interpreted as a simple way of modelling context dependency, 

since the „best‟ attribute level in any given choice set will depend on the attribute levels of all 

competing alternatives. It was hypothesised that in the case of pivot designs, the MCD 
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heuristic might apply to either all alternatives in the choice set, or if the effort-accuracy trade-

off framework is correct, only to the hypothetical alternatives, since the value of the current 

or status quo alternative is well known and might be stored in memory. As it turns out, the 

results are mixed, which is itself a more nuanced understanding of the role of the MCD 

compared to what has been previously reported. From an empirical point of view, in a 

handful of datasets, it is better for the MCD heuristic to appear with a generic coefficient in 

all three alternatives of the choice set, while in other datasets, it is preferable to restrict the 

MCD heuristic to only the hypothetical alternatives. Still in other datasets, the MCD heuristic 

appears only in the reference alternative or its effect may be statistically negligible. 

 

Some further analysis was undertaken by means of a probabilistic decision process model to 

evaluate the role of this heuristic. The MCD heuristic vis-à-vis the standard linear-in-the 

parameters RUM model may be thought to be latent in the population of respondents and 

with the latent class structure, each decision rule may be assigned to one particular class. 

Under these assumptions, the model output indicates a significant probability that the MCD 

rule (instead of the standard linear additive rule) is being used to make decisions. This 

probability is as high as 60 per cent in one of the datasets, implying that future work must 

take into account the high incidence of semi compensatory behaviour in trading amongst 

attributes. 

 

6.1.3 Models of the Extremeness Aversion Heuristic 

 

On the extremeness aversion heuristic, this thesis has extended the contextual concavity 

model of Kivetz et al. (2004) by allowing the power parameters to be freed from the 

constraint that they be less than one. The result is a loss of the concavity property for some 

attributes, at least from a statistical point of view, but the gain is a deeper understanding that 

respondents may be extremeness seeking in some attributes, especially for the time attributes 

of the alternatives, while being extremeness averse in others. This is a finding that has not 

been reported in the literature before. Therefore, instead of calling such a model a “contextual 

concavity” model, which by implication suggests that all power parameters are less than one, 

this thesis has suggested a new nomenclature for this model, the “non-linear worst level 

referencing” (NLWLR) model. Furthermore, since concavity may be rejected for some 

attributes of the alternatives, the potential for compromise effects as an explanation for 

observed choice behaviour is very much reduced. Rather, such combinations of extremeness 
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seeking in some attributes and extremeness aversion in other attributes that is evident across 

most of the datasets studied suggest that a polarisation effect, rather than a compromise 

effect, may be more prevalent in decision making. As has been noted in Chapter 2, the 

polarisation effect may be interpreted as an asymmetric form of the extremeness aversion 

heuristic. 

 

This thesis has also extensively examined the performance of the random regret model 

(RRM) model in the context of the seven toll road datasets. The roots of the RRM model lie 

in regret based theories and regret avoidance behaviour. Although the RRM model is not 

primarily motivated by extremeness aversive behaviour, it turns out that the convexity of the 

regret function allows the compromise effect to be modelled. Hence, like the non-linear worst 

level referencing (NLWLR) model, which is an extension of the contextual concavity model 

and the relative advantage maximisation (RAM) model, the RRM model may also be thought 

of as another model of extremeness aversion. Overall, a comparison of the RUM and RRM 

models produces evidence suggesting that model fit criteria do not consistently favour one 

model over another. This finding is in line with the results reported by Chorus (2012), 

meaning that the RRM model remains as a serious candidate in empirical studies. 

 

This thesis has also extensively discussed the RAM model. In addition to the original 

piecewise specification proposed by Kivetz et al. (2004), a new and easily estimable form of 

the RAM model, based on the regret function of the RRM model, has been introduced. This 

particular re-specification of the RAM model has been called the regret-RAM model. This is 

an important innovation especially in light of relatively unsuccessful attempts at estimating a 

RAM model in the past that resulted in poor model fit (Kivetz et al., 2004). The regret-RAM 

model has several advantages over the piecewise-RAM model. The regret-RAM model is 

everywhere differentiable and the denominator of its relative advantage component is always 

positive. Hence, issues of divisibility by zero do not arise. By assuming that advantages and 

disadvantages are symmetric, both forms of the RAM model can be just as parsimonious as 

the RUM, RRM and hybrid RRM-RUM models.  

 

Under certain conditions, the piecewise and regret-RAM models can display the compromise 

effect, but it is also possible for these models to display polarisation or even extremeness 

seeking effects. Initial evidence across all seven datasets from this study indicates that there 

is a lot of potential in the RAM model in terms of providing a better fit for the data, in the 
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retrieval of parameter estimates that match with prior expectations from previous research 

and from theory, and in obtaining more precise model outputs such as willingness to pay 

measures, at least from the perspective of smaller standard deviations.  

 

From the evidence gathered, two points of observation may be made. Firstly, from a 

behavioural perspective, the idea of context dependence, in this case, using competing 

alternatives as a point of reference is an important one. This is evident from the better 

statistical fit of the RAM model across all datasets compared to the RUM model. Secondly, 

the specification of context dependence is also crucial. It has been noted that the RAM model 

is mathematically equivalent to a relative disadvantage minimisation (RDM) model. If 

respondents‟ choice of an alternative is a reflection of an attempt to minimise the negative 

emotions associated with their choice, then in essence, the terms “relative disadvantage” and 

“regret” can be treated synonymously. Hence, the notion of regret which, in the RRM model, 

is based on some function of absolute differences of attribute values, may benefit from being 

recast into relative terms, for example into a relative form of regret or a relative disadvantage. 

From the comparisons of the RRM model to the RAM/RDM model, the relative form of 

regret appears to better capture respondent preferences. For future work, it would be possible 

to study a RRM-model with a RAM-based relative component which results in a new and 

interesting hybrid model containing both absolute and relative regret. 

 

Another innovation of this thesis is to apply the RAM model, hitherto used in the context of 

making a choice from three or more alternatives, to binary choice data. As discussed in 

Sections 5.6.5 and 5.6.6 of Chapter 5, the results are again promising. In all the datasets 

studied, the fit of the RAM model is just as good, if not better, than the standard RUM model. 

This seems especially important given that the standard RRM model simplifies to the linear 

additive RUM model. There is no reason to suspect that context dependency effects are less 

important in binary choices than in choices involving more than two alternatives. Since the 

RRM model is not able to meaningfully account for referencing and context dependency in 

binary choice data, having an alternative model of context dependence such as the RAM that 

is generalisable to binary choice data will be particularly useful. 

 

Allowing for heterogeneous weights through the use of heuristic weighting functions on the 

context independent RUM component and the context dependent component has been shown 

to be another promising line of research. As a means of embedding multiple heuristics into 
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choice models, this is an alternative to the latent class (probabilistic decision processes) 

approach. If consumer preferences are thought to be a synthesis of both „inherent‟ and 

„constructed‟ preferences, as more recently advocated by Simonson (2008) and Kivetz et al. 

(2008), then there is an appealing behavioural basis to the heuristic weighting function 

approach as well. This model may even be interpreted as an early attempt to heed the call by 

Kivetz et al. (2008) to build “synthetised models that capture the relative weight between 

inherent and constructed preferences.” (Kivetz et al., 2008, p. 185). In fact, Kivetz et al. 

(2008) hypothesised that the weight of constructed preferences may vary according to certain 

individual differences, which is precisely what the heuristic weighting approach aims to do. 

Accordingly, the data at hand allow the heuristic weighting functions to be specified as being 

dependent on socio-economic characteristics such as age and gender. Although the empirical 

evidence across datasets is mixed as to how each of the socio-economic characteristics 

influences the weight of the heuristic, this does not detract from the potential merits of this 

approach in future work.  

 

Finally, another original contribution of the thesis is the estimation of mixed logit models of 

the NLWLR and the regret-RAM models. Mixed logit models of the NLWLR heuristic are 

particularly interesting as heterogeneity in the power parameters can be revealed, and these 

can be used to establish the extent to which the compromise effect occurs in the choice set. 

The conclusion is that extremeness aversion across all attributes, as indicated by a power 

parameter of less than one, is not a common occurrence. Rather, a mixture of extremeness 

seeking and extremeness aversion is more common. Moreover, in the context of choice 

among various toll road alternatives, extremeness aversion seems to be more likely for the 

cost attributes than for the time attributes. The mixed logit estimation of the regret-RAM 

model is a fairly straightforward extension of the fixed parameter, MNL case. 

 

The value of travel time savings (VTTS) expressions for the various extremeness aversion 

models have also been derived in this thesis. With models such as the RRM, NLWLR and 

RAM, the VTTS expressions are not only a function of the taste parameters, but also 

functions of the attributes in the competing alternatives as well, to varying degrees. In the 

NLWLR model, the reference point is the worst level of any given attribute in the choice set, 

and so, changes to other attribute levels (as long as they do not become the worst level) will 

not impact VTTS. This is not the case with the RAM and RRM models, as these models 
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require binary comparisons to be made across all eligible pairs of alternatives in the choice 

set; thus, a change to any attribute value in the choice set will change the VTTS.  

 

On model outputs, Hensher et al. (2011) and Theine et al. (2012) claim to find non-negligible 

differences in the elasticities derived from the linear additive RUM and the RRM models. 

While it is true that the VTTS formulae are different in the RUM and RRM models, the 

aforementioned papers only reported mean VTTS values and in the absence of further 

information, it is difficult to make a judgement on whether the differences are statistically 

significant or not. In contrast to these findings, on the VTTS measures that have been 

calculated in Chapter 5, the results generally indicate statistically insignificant differences in 

the means of the VTTS estimates between the RUM and the RRM models, even though the 

magnitude of the differences may appear to be quite large. An analysis of the VTTS values 

obtained from the NLWLR and the regret-RAM models also suggest statistically insignificant 

differences and in the case of the regret-RAM model, the results are very similar in 

magnitude to the linear additive RUM model.  

 

Although the empirical results from these datasets do not suggest that there is substantial 

variation in the VTTS values across the models (valid within the limits of the experimental 

design), nevertheless, choice set specific preferences such as those encapsulated by the 

NLWLR, RRM and RAM models produce markedly different behavioural insights which 

potentially lead to a richer interpretation of the trade-offs as choice set composition is 

changed. For example, in the RRM and RAM models, the VTTS calculations would be 

sensitive to changes in the performance of any of the other available alternatives, a feature 

which may become more apparent in other data contexts. For labelled experiments, it would 

also be appropriate to generate choice probability forecasts to get a sense of the magnitudes 

of differences that might be expected across the various behavioural models. 

 

6.2 SOME SUGGESTIONS FOR FUTURE RESEARCH 

 

Attribute non-attendance is one area of research that has been very actively looked into in 

recent years. However, this issue has by and large been left aside in this thesis, in the sense 

that all time and cost attributes presented to the respondent are assumed to be attended to. 

Future work could bring the two research elements of context dependent preferences and 

attribute non-attendance together. For example, in the study of the MCD heuristic, provision 
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might be made for certain attributes to be ignored in the total MCD count based on say, 

responses to supplementary questions that may be found at the end of the survey. An 

extension of this idea might be to integrate the notion of just noticeable differences with 

MCD. Behind just noticeable differences is a recognition that differences in attributes across 

alternatives are too small to warrant further consideration and these attributes may therefore 

be ignored in the editing phase of the decision. For just noticeable differences to work, the 

idea is that an attribute adds to MCD only if some threshold level is exceeded. To illustrate, a 

time attribute might contribute to the MCD count only if it exceeds the second best level (in 

the choice set) by say, five minutes. Another possibility is to consider functional forms for 

MCD that impose conditions such as lower or upper thresholds in a latent class setting, such 

as Campbell et al. (2013). 

 

Likewise, travel time variability, in particular, the treatment of risk, uncertainty and 

probabilities applying the heuristics discussed in this thesis, is another area worthy of further 

research.  Models such as the rank dependent utility (RDU) model suggested by Hensher and 

Li (2012) come to mind, where the decision weight for each event depends on a non-linear 

probability weighting function. This decision weight itself transforms the cumulative 

probability distribution of the event, based on its ranking relative to other outcomes. In a 

modified RDU model for example, there would be ample scope to consider alternative 

specifications of the utility function, such as those informed by the extremeness aversion 

heuristic. 

 

Turning to a discussion of the models themselves, it might be observed that while the RAM 

model has been applied to a limited extent in consumer choice datasets, it is still very early 

days yet for the RAM model in transportation research. In fact, the RAM model has yet to be 

more closely evaluated in other disciplines like environmental and health research that also 

rely significantly on choice modelling tools. Likewise, the NLWLR model or its cousin the 

contextual concavity model is only just beginning to get attention in the formal choice 

modelling literature. Beyond this thesis, a number of very fruitful areas of research can be 

pursued with regards to these models. Very similar datasets have been used which may limit 

the degree to which evidence in the form of model fit differences is in fact convincing and 

generalisable. Therefore, testing of the RAM and NLWLR models can be extended to other 

datasets, for example with revealed preference data where attribute values across alternatives 

could be quite similar to one another. Labelled datasets are also good candidates for further 
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work. Although choice sets with a smaller number of alternatives such as the ones examined 

in this thesis might make a good start for exploratory analysis of this kind, it would also be 

imperative at some point down the road to consider extending these models to larger choice 

sets, as such choice sets are more likely to be encountered as part of a larger research agenda.  

 

With the RRM and RAM models in particular, there is the intriguing possibility that the 

respondent may be attending to only a subset of all possible binary pair wise comparisons of 

an attribute across alternatives. This may be a consequence of just noticeable differences, in 

which comparisons are not performed by the respondent if the differences are perceived to be 

negligible. To explore this issue further, models which have been developed to make choice 

set formation and attribute non-attendance endogenous may be extended to make pair wise 

comparisons endogenous as well. At a practical level, a reduction in the modelled number of 

pair wise comparisons (especially for the RAM model which has a more complicated utility 

expression) is likely to bring greater stability to the estimation and help to make run times 

more manageable, especially when choice sets become large. 

 

Related to this issue, one working assumption for the RAM model is that all attributes 

attended to in the context independent RUM component of the model are also attended to in 

the relative advantage component. This assumption can also be tested in future work by 

allowing some subset of attributes to appear in either one component only, by assuming a 

structure of heterogeneity like the hybrid RRM-RUM model. Where data on attribute 

processing are available, such as whether a respondent reported ignoring an attribute (see 

Hensher (2010) for details of such models), the link between attribute processing and the 

relative advantage component can also be studied in greater depth. 

 

Chorus (2012) highlights that since the RRM VTTS is dependent not only on the considered 

alternative, but also on all alternatives that make up the choice set, the RRM VTTS is likely 

to violate the microeconomic axioms that underpin the VTTS for the RUM model. The same 

can be said for the other context dependent models as well. In real life, people are probably 

not as „well-behaved‟ as neoclassical economic theory would postulate, but using the 

conventional RUM model leads to well understood VTTS and consumer surplus measures, 

even if it almost inevitably means accepting a loss of behavioural realism. On the other side 

of the trade off, there may be instances where capturing more behavioural realism is preferred 

which is where context dependent models could come into their own. Such a scenario might 
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come about where forecasting future demand (for a new road, for a new good etc) is 

concerned. Differences in model fit may offer some guidance, but ultimately, it is up to the 

analyst to carefully consider the more appropriate model type to use, based on the research 

question to be addressed. Context dependent models are based on certain reference points, 

and may be more suited to short term predictions assuming references can be identified and 

are reasonably stable over the period of evaluation. With longer term predictions, references 

can change (for example, a new and significant travel mode) and more research is needed to 

understand the evolution of references over time.  

 

Where the mixture model of heuristics is concerned, this thesis provides some indication as to 

how various socio economic factors might trigger the pattern of decision making that is 

associated with context dependent preferences. It would be interesting to see what other 

factors might tilt the weight either towards or away from such preferences. For example, it 

has been said (Zeelenberg and Pieters, 2007) that in decisions which matter to the respondent, 

the anticipation of regret becomes more dominant. Hence, it would be an interesting research 

question to determine if factors like the importance or the difficulty of the decision matter in 

the heuristic weighting function or not. 

 

The models described in this thesis are still very much works-in-progress. Until such time 

when a fuller understanding of the properties of these context dependent models becomes 

available, a useful first step for the practitioner might be to think of using such alternative 

behavioural specifications as part of a sensitivity analysis to test the robustness of predictions 

from our more conventional (and better understood) models. With more research effort, time 

will tell if, and under what conditions, context dependent models might in fact be preferable 

to the standard RUM model. More specifically, the validity of the NLWLR and RAM models 

vis-à-vis the RRM model may be put to the test. These conclusions will have significant 

implications for practical work. 

 

In the next generation of behavioural models for the utility expression, the results presented 

suggest that the alternative model forms for context dependence and referencing highlighted 

in this thesis are prime candidates for further consideration. These are: 
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(1) The NLWLR heuristic, where the reference is the worst attribute level in the current 

choice set s, and the power parameter 
k

 is greater than zero. In the case of time and 

cost attributes the worst attribute level would typically be the highest level in the 

choice set: 

 

 max ( )( ( )) k

k j
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    (6.1) 

 

(2) The RAM model, where the reference is to counterpart attribute levels of the 

competing alternatives in the choice set. The RAM model is an example of a model 

form where preferences are not simply context dependent alone: 
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Finally, variants of these models where each heuristic or decision rule is weighted using some 

form of weighting function, can also be considered. 

 

It is hoped that the work from this thesis will further excite the growing interest in modelling 

the role of heuristics in choice behaviour. Without overstating the case, there is no doubt that 

a wealth of new discoveries awaits the intrepid researcher. 
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