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EXECUTIVE SUMMARY 
 
Increased global industrialisation and deforestation have placed enormous burden on our 

atmosphere and environment.  For no other reason than future proofing soils against major 

climate variability – a possible side effect of growing atmospheric CO2, diverting more of 

this carbon (C) from our air to where it can do considerably more good seems very 

worthwhile. 

 

This has made soil carbon storage and its measurement such an important and intense area of 

current research activity.  To know and fully understand the impacts of various land 

management practices on soil carbon building processes requires before anything further is 

said or done the ability to measure carbon stocks reliably.  The enormous challenges are to 

do this for huge land areas with a sensitivity to see the real changes occurring with an 

awareness of the spatial, seasonal or other variations that may be as significant.  

 

This research study had set out to advance our understanding of soil carbon and its 

measurement.  It has investigated what has gone before and is currently being done but also 

considers ideas on the horizon.  From this base, several novel approaches have been taken to 

develop innovative methods of dealing with these immediate questions with an aim to easing 

the soil carbon data crisis.  One of the major problems is the natural variability of carbon in 

soils over relatively small distances leading to uncertainties in carbon analyses which easily 

amplify in terms of carbon stocks.  To capture this variability using conventional methods 

available today make on-the-ground measurement prohibitively costly.  Specifically to deal 

with this problem a system named the Soil Carbon Bench (SCB) was developed at the centre 

of this research to cope with large amounts of soil and in fact to enable carbon analysis of 

whole cores by trusted combustion.  This newly developed apparatus formed the core of the 

work and in its test-bed form has been tested on carbonaceous calibration materials and was 

then demonstrated on soil cores recovered from a trial field under lucerne rotation.  Its 

accuracy has been equivalent or better than standard analytical methods and when evaluated 

in terms of its cost efficiencies and determining carbon stocks on the work to date it has done 

so with a smaller margin of error and at much lower cost.  The relative costs of determining 

soil C stocks were estimated to be about 1/5 of conventional methods along with improved 

precision.  Soil C data obtained with the SCB had a lower variance and C stocks could be 

replicated so that total C values per 50cm core were typically within 0.2g or 0.0003 kg/kg of 

the site mean. The research has succeeded at addressing the benefits of analysing whole 

cores and paved a way to more efficient carbon surveys that easily respond to any changing 

protocol requirements as may be recommended by bodies such as the IPCC.  There are 
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numerous other possibilities to test in conjunction with sampling designs and the support of 

emerging proximal techniques under experimentation.   

 

Another but related area was to elucidate reliable ways to differentiate and determine soil 

carbon forms which are of great importance when considering carbon pools and storage.  

Thermal analytical studies were not only an ideal complement to the development of the 

SCB but provided many insights into the thermal behaviour of soil carbon components 

relevant to these pools.  While it provided useful information related to loss on ignition 

methods (an important alternative method for large scale soil determination) it has opened up 

further possibilities for productive investigation that encompass characterising soil 

components and organic matter (OM) stabilisation.  In particular it has shown real potential 

for the determination of black carbon and bushfire residues not easily detected by other 

instruments, but important for calibrating rapid soil spectral techniques.   
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INTRODUCTION 
 

Food and soil security have been perennial topics but the past decade has seen a sharpened 

focus on soil and its capacity to store more carbon (C) in the form of soil organic matter 

(SOM).  Now the world’s soils are coming under ever greater stress to meet the huge 

demands for food and other land resources which in some cases lead to greater soil 

degradation.  In a downward cycle, wind and water erosion are processes that can further 

alter the soil C balance.  The value of organic matter (largely composed of C) to soil function 

and its general well-being has long been recognized.  Soil and moisture conservation 

methods as proposed and implemented by visionaries such as H. Bennett and H. Finnell 

during the 1930s in the drought ravaged states of the US have been classic examples (for 

further reading see compilation by Helms, 1992).  There, much of the poorer crop land had 

to be returned to native grassland as the only viable way of retaining the fragile top soil.  

These same concepts have become reinvigorated where many are beginning to realize 

increased OM as the way to drought proofing their farms (Landline February 2012, 

Australian Broadcasting Corporation).  With the encouragement of worms and other biota, 

OM promotes stabilization and the development of a soil structure (Angers 1992; Dexter et 

al., 2008; Six et al., 2000) where the organic-mineral combination has a greater ability to 

withstand compaction from overgrazing, dispersion and erosion.  More recently there has 

been an added driving force – to reduce atmospheric C and storing it via photosynthesis in 

agricultural soils.  The major incentive has been the concept of C credits operated through 

various financial instruments for carrying out this function in verifiable ways according to a 

framework as set out under IPCC guidelines.  

 

Carbon in perspective 

Carbon dioxide (CO2), well known for its capacity to absorb long-wave radiation (so called 

radiative forcing), has varied within the atmospheric composition in the Earth’s past (Berner 

and Kothavala, 2001; Ehleringer and Cerling 1995).  The biosphere has been improving 

landscapes fit for habitation since the appearance of algae and plants eons ago.  The 

influence of land plants, in particular forests, has had a major role not only in metabolising C 

(which can be enhanced through CO2 fertilization) but accelerating the weathering of 

silicates (organic acids) to release Ca++ and Mg++
 
  which have been crucial to the removal of 

mineralized C from the system over time (see also Berner and Kothavala, 2001 and their 

related references).  Global warming and climate change are very complex processes that 

involve other trace gases, water vapour (very efficient at trapping heat) and albedo-type 

mechanisms such as stratospheric cloud and ice formation (Andrews et al., 2012).  While 

some amount is essential to life as we know it, the relatively abundant atmospheric CO2 



Introduction                                                                                                                    Soil and global C 
 

 2 

distributed around the globe has predictable anthropogenic sources lending itself to much 

better control and management.  

 

Records for atmospheric CO2 concentrations since the Industrial Revolution are evidence of 

the accelerating trend which has been from primarily fossil fuel energy usage (coal and 

petroleum) especially since the 1950s.  The fossil fuel reserves can now be considered as 

having re-entered the C cycle through human exploitation.  However the problem is bigger 

than only the increasing levels of atmospheric C now nudging 400ppmv.  Atmospheric CO2 

(figure 1) would be predicted to be more isotopically depleted through the �Suess effect but 

is only nearing –8 ‰ relative to the Vienna PeeDee Belemnite (VPDB) limestone standard 

(Ghosh and Brand, 2004).  Apart from additional primary sources and cycling via the 

biosphere (expected to be fairly balanced) the isotopic impact from fossil sourced C over this 

past 150 year period is not fully reflected in the current composition.  This signals another 

process at work – the dissolution and exchange with the ocean’s dissolved inorganic C (DIC) 

store.  According to Raven and Falkowski (1999) up to a third of the CO2 emitted to the 

atmosphere since the industrial revolution has dissolved in the ocean, which provides some 

offset mechanism but there are serious limitations.  These involve ocean stratification, limits 

to removal in the form of CO3 and importantly acidification that may lead to worse 

consequences.  In addition the well established CO2 (aq) – bicarbonate – carbonate 

equilibrium is temperature sensitive representing another potential feedback. 

 

The total mass of soil organic C (SOC) in the surface metre of global soils is in the region of 

1600 Pg (Pg = 1015 g) and nearly ½ as much again in the form of carbonates (Batjes, 1996).  

The soil organic C pool is a minor part of the global C inventory (figure 1) but in 

cooperation with the biosphere is a comparatively active reservoir (for non-geological 

timeframes) and of major importance to the C cycle.  Deforestation is an equally serious 

contributor where forest fires emit 4 Pg annually (Adams and Attiwill, 2011).  Some of these 

emissions are cycled back into the biosphere and hydrosphere but after all these sinks are 

accounted for, there still remains a net increase to atmospheric stocks of well over 3 Pg per 

annum.  On a comparative basis world’s soils (1600 Pg) rate prominently as ideal sinks to 

offset these growing emissions where the atmosphere contains a relatively modest 750 Pg C.  

Soils are particularly well suited for some of this redistribution because many have become 

C depleted (sources of C) after years of exploitative farming (and stand to gain from 

increased organic matter) but importantly much of the land area is under management with 

agriculture covering 30% (Janzen et al., 2004). 

                                                 
� The Suess effect describes the increasing isotopic dilution of atmospheric CO2 by ancient, fossil C. 
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Figure 1.  The relative sizes of the global C pools and significant carbon isotopic (13C) 

compositions. Sources: Mackenzie et al. (2004); Brownlow (1979) and Ghosh and Brand 
(2003). 

   
 
�Carbon is the vital building block used in plant and animal assimilation and the subsequent 

forms of diverse organic matter which when broken down to SOM render numerous 

beneficial properties to soils and its biology. 

 

Increasing organic soil C (through SOM) on an on-going basis can be brought about by 

encouraging more OM entering the soil or reducing losses of stable C from the soil.  

However building organic soil C is a slow and difficult process because the majority of 

organic matter (e.g. crop residue) is fairly promptly (months) returned to the atmosphere 

from the soil’s surface through microbial respiration with only a small fraction preserved.  

SOM may be considered the biologically degraded residue of OM where nutrients have been 

balanced and are readily available to plants when required but SOM may be subject to 

further microbial degradation.  This process of humification is widely acknowledged but not 

particularly well quantified and understood. 

 

Improving the soil’s fertility and selecting the crops with favourable root ratios are one way 

of increasing soil biomass although there are limits to how much this can be raised, rainfall 

                                                 
�The element carbon (C) with a crustal abundance only 320ppm readily combines in a diverse range 
of organic and inorganic compounds and has formed substantial reservoirs around the earth’s surface. 
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being an obvious constraint (Ugalde et al., 2007).  While in itself not a nutrient, C has been 

positively correlated with the macronutrients N, S and P (Kirkby et al., 2011; Kirkby et al., 

2013).  Net increases in SOM appear to be very dependent upon these nutrient inputs but 

particularly their proportions (analogous to �Redfield ratios).  Apart from supplying the 

balanced nutrients needed for plant growth it appears to be more important in controlling 

SOM formation by providing the optimal conditions for soil microbes to stabilise SOM 

(Kirkby et al., 2013).  Disequilibrium in these macronutrients is most likely the main driver 

in positive priming – a serious unwanted consequence of adding high organic C material to 

soils.  Another set of considerations when boosting inputs (e.g. fertilizer) are the C costs of 

production (Schlesinger, 1993), nitrification (changes to pH) due to top dressing or legume 

rotation and the final outcome on crop productivity (i.e. foliage vs fruit).  

 
This makes loss reduction an equally important component for C sequestration so that SOM 

currently held can be maintained and not depleted (through oxidation or priming).  

Furthermore it is more readily achieved and the associated costs are likely to be lower for 

example, during minimal tillage where in addition stubble and other residues may be 

retained near the soil surface.  The merits of tillage (primarily weed control) vs direct drilling 

have long been debated (Faulkner, 1945; Carew, 1949) but current data has shown the 

practices most likely to boost and maintain higher steady-states of SOM to be conservation 

tillage methods (Angers et al., 1997; VandenBygaart et al., 2003 and others) and supporting 

perennial grasslands (Post and Kwon, 2000). 

 

Measurement – one can only manage what can be measured 

While SOM assimilation represents some of the difficulties in advancing soil C as a means 

of sequestration, the major obstacle has been a vacuum in the capacity to accurately measure 

and monitor soil C over the required scale.  In order to make properly informed decisions 

about various C management with some degree of certainty and within some margin of error 

the analytical method needs to be able to determine the real changes in soil C stocks that are 

not the result of natural variation – seasonal or spatial, but due to the C management itself.  

Such knowledge will allow effective assessment of the various practices applied in all the 

soil types, climates and land uses. 

 

These are the analytical challenges involved: 

• The broad landscapes that have to be covered reliably 
• Determining the best sampling schemes to capture the natural C variability 

                                                 
� Redfield ratios describe the limiting nutrient balances required by simple marine life forms first 
recognised by Redfield (1958).  
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• Having the required sensitivity to quantify the real changes in C stocks (excluding 
seasonal movements from long term C gains) 

• Deliver all these in a cost effective way while maintaining the overall objectives 
 
A number of very promising proximal systems have emerged in the past few years designed 

to acquire data directly in the field (e.g. Veris on-the-go NIR spectroscopy, hand-held NIR 

and MIR devices).  However most of these systems need to be tied to large calibration sets 

and have no advantage for the determination of actual C stocks over the traditional analyser.  

This is because they similarly only sample discrete points of the soil’s surface and in many 

cases can be used more effectively as laboratory benchtop instruments where frequent 

calibrations can be carried out and where condition are the least variable.  However these 

systems do provide rapid data acquisition allowing high resolution covariate data layers to be 

mapped e.g., for soil C.  

 

The need to measure broad areas immediately turns attention to remote sensing as the 

obvious solution.  While some good correlations have been obtained by remote sensing such 

as with Quickbird imagery (2m resolution) where the ‘ground truth’ soil C was determined 

for <20cm (Aynekulu et al., 2011) the following must be considered.  The more costly 

hyperspectral methods generally are limited to the near surface, may be obscured by ground 

cover, have uncertainties related with signal to noise (Gomez et al., 2011) or lack predictive 

accuracy (Selige et al., 2006).  The latter found soil C stocks to be overestimated below 

levels of 1.5% C and that would include many of our landscapes.  It has been appreciated for 

some time that soil properties (soil C being one) generally cannot be as readily interpolated 

as continuous geographic quantities, e.g., hydrology (Burrough, 1983) placing the emphasis 

on direct soil sampling and measurement.  

 

The use of empirical models to determine soil C stocks as a function of inputs (management 

and conditions) have been promoted as a cost effective means because it avoids some of the 

big expenditure – that associated with comprehensive sampling and analysis.  There are still 

the measurement requirements to initiate these less direct approaches to simulate the 

theoretical behaviour of SOM under relevant conditions.  However soils and organic matter 

vary considerably from point to point and there are unrealistic assumptions made such as the 

homogeneity of degradation in each pool (Poirier et al., 2005).  On-the-ground measurement 

of soil C stocks remains the most direct and reliable way to read real changes occurring at 

that site as a consequence of management. 

 

All these discussed methods are based however on (are calibrated against) the reliable dry 

combustion method which extracts all of the C prior to quantification.  The problem is that 
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this technology is only limited to analysing small amounts of material (<0.5 g), being 

designed as very precise instruments for laboratory determinations.  This then means for the 

measurement of C stocks based on incongruously small aliquots removed from the landscape 

under some sampling design, the number of required analyses may still become cost 

prohibitive.  Bulking and further sub-sampling of soils combined with powerful statistical 

tools may ease this but then there are the added time/costs of processing. 

 
This overall lack of an appropriate and reliable soil C determination method that meets 

the agricultural scale has been an immediate restriction that has prolonged the soil C 

data crisis and hindered the development of other vital aspects:  the importance of 

dynamic pools and the best management for real and effective soil C increases.  As a 

result, a new look at ways soil C can be better determined have been the priority focus 

in this study.  Two central hypotheses were set: 

 
1. To demonstrate how large volumes of soil and whole cores can be analysed for 

C by a trusted method and that these can overcome the problems associated 
with soil C variability  

2. How significant are the different soil C fractions when measuring C stocks and 
what better approaches can be applied during agricultural C sequestration?  

 
In the following sections, the range of existing methods for determining soil C stocks 

and pools are reviewed and evaluated and then followed through with the development 

of apparatus / methods to answer these specific questions. 
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CHAPTER 1 – THE ANALYSIS OF TOTAL SOIL CARBON:  INDUSTRY 
STANDARD METHODS 
 
Wet chemical oxidation of organic matter 

Although carbon determination by combustion was successfully demonstrated in 1831 by 

Liebig (Kohn, 1951), the quantification of soil C by wet chemical oxidation has continued to 

the present day in some laboratories because of low cost and simplicity.  This soil C 

determination method known as Walkley and Black (WB) relies on oxidation of soil OM by 

a corrosive reagent, potassium dichromate (K2Cr2O7.2H2O) that is acid catalysed (H2SO4).  It 

has been credited to these researchers because of the refinements they made (Walkley and 

Black, 1934; Walkley, 1947) to existing techniques.  It still remains a standard method for 

soils (Rayment and Lyons, 2011) and is used where the more expensive but accurate dry 

combustion systems have as yet not superseded or in remote locations without access to such 

equipment (McCarty et al., 2010).  In this reaction soil C is lost as CO2 and the amount of C 

originally present can be determined gravimetrically or by titration of the remaining solution.  

From these quantities, SOC can be calculated using a conversion factor (varies depending on 

the efficiency of the method used).  It is generally regarded that WB based methods tend to 

underestimate SOC although some good agreement with dry combustion has also been 

reported.  Tabatabai and Bremner (1970) obtained a 1:1 correlation (method of Allison, 

1960) but care was taken to trap out interfering chloride ions.  When CO3
2- and Cl- are 

present in soils, these ions can interfere with the process necessitating correction of the 

results.  Wet oxidation has since been further refined (Heanes, 1984) so that the reaction is 

held at 135 oC in a heated block to increase the efficiency of C extraction / oxidation.  A 

compact chronology of the improvements made to wet oxidation and their various merits is 

presented in a review on methods by Chatterjee et al. (2009).  However it has been generally 

found that the different wet chemical treatments either under- or overestimate OM.  Overall, 

while these wet chemical oxidation methods are cheap and the materials readily procured, 

they are unsatisfactory in terms of the accuracies obtained (variable results in comparison to 

automated dry combustion) as well as being messy and time consuming.  As an alternative, 

hydrogen peroxide (acid catalysed) and sodium hypochlorite can also be employed as 

oxidising agents without the disadvantage of leaving chemical residues for special disposal 

such as Cr solutions.  It must be emphasised that unlike in other methods soil carbonates are 

not simultaneously decomposed by wet oxidation does not simultaneously decompose soil 

carbonate present (Zimmermann et al., 2007a; Conyers et al., 2011) while it does occur using 

other analysis methods.  
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Dry combustion by elemental analysis 

This dry combustion method (also referred to as Dumas for his work in obtaining nitrogen 

measurements from organic materials) relies on the conversion of carbonaceous material to 

CO2 with its subsequent measurement.  At the core of the method (including LECO, the 

commonly associated or quoted manufacturer) is the presence of copper oxide in the 

combustion train (Fieser and Fieser, 1956; Kohn 1951).  As stated earlier, the principles 

necessary for quantitative dry combustion were established before the 20th C but the 

development and use of C analysers as we know them now only occurred in laboratories 

after the 1960s coinciding with the appearance of microprocessors and detectors to measure 

the product CO2.  While quantitative analysis by combustion was the most precise, prior to 

this time it required complicated manual systems of glass apparatus for conversion and 

trapping, often not practical for routine laboratory analysis.  Such installations were found in 

laboratories concerned with specialist research activities such as: determining conversion 

factors for soils (Read, 1921), plant tissue (Worsley and Nutman, 1931) and in later years for 

micro C analysis in waters and sediments (Salonen, 1979) or the isolation of C traces from 

lunar samples (Kaplan et al., 1970).  In 1921, Read published an ingenious dry combustion 

method which relied on a gravimetric technique to determine the amount of C formed from 

the combustion (with same principles) of OM (diagram of apparatus published in his paper 

shown on figure 1-1).  The resulting data successfully produced OM to C conversion factors 

to support loss-on-ignition (LOI) analyses of soils.  It was somewhat complicated (numerous 

traps, loading procedure, a separate sweep-out phase after combustion) and analysed only 1g 

soil but it was very accurate.  A number of the design elements are still contemporary and it 

is surprising that the method did not appear to have been propagated /developed.   

 

 
Figure 1-1 Soil carbon analysis apparatus (taken from Read, 1921). 

 

Most modern automated dry combustion instrumentation analyse very small aliquots, usually 

less than 1 gram, and trap / release oxidised products for quantitative determination by 

usually infrared and / or thermal conductivity detectors.  The operating principles have much 

in common with the modules used in gas chromatography.  Variable combinations of the 
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elements C, N, H, O and S can be analysed concurrently but in soil science most interest is in 

C and N.  A number of comparisons between various analysers and between methods have 

been made in terms of differences in operation and outputs etc. (e.g. Smith and Tabatabai, 

2004; Chatterjee et al., 2009).  These reviews have taken into account the relative costs and 

intricacies of the various methods currently available.  While some differences in precision 

may occur (e.g. depending on the combinations of detectors employed) overall, as a soil C 

determination method, elemental analysis has been indicated as the most optimal by virtue of 

its greater accuracy and hence reliability in determining C stocks.    

 

The capital costs for such analysers can be in excess of AUD $50,000 and the running costs 

are also high ($5-10 per sample) due to expensive ultra high purity gases required because of 

the small amounts of analyte in question.  While they are much more efficient (compared to 

wet chemistry) at extracting 100% of the C in the soil aliquot and its quantification (e.g. %C) 

there is a strong dependence on instrument maintenance, calibration and how they are 

operated.  That is, the setting up of method files that define combustion periods, 

temperatures and oxygen flows appropriate to the type of sample material.  Results can 

depend on the sample size i.e. the respective concentration of elements present, for example 

C and N can be quite different in char rich material. 

 

Inorganic carbon determination 

Automated dry combustion methods are usually operated at temperatures in excess of 650 oC 

so are unable to discriminate between organic and inorganic C.  Furthermore the time and 

temperatures required for thermal decomposition of carbonates depends on their form 

(composition and structure), distribution in the matrix and total quantity.  Soil carbonates are 

usually Ca, Mg or FeCO3 while NaCO3 is found associated with salt deposition.  Loeppert 

and Suarez (1996) describe the various occurrences and traditional methods of analysis.  The 

currently used methods available to quantify this primary form of soil C still relies on 

reacting the anion with an acid to form gaseous CO2 which can be analysed directly by 

pressure calcimeter (Sherrod et al., 2002), gas chromatograph, by LECO RC 412 (Girard and 

Klassen, 2001; Gazulla et al., 2012) or by difference in conjunction with elemental analysis 

(Rayment and Lyons, 2011).  Some related methods have been found quite effective at 

removing CO3 such as fumigation (Harris et al., 2001; Amundson et al., 1988).  

 

 

 

 

Loss on ignition (LOI) 
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LOI is a well established (Rather, 1917; Read 1921) method of dry combustion where the 

soil is heated (oxidised) in a muffle furnace with a small opening to atmospheric air.  Capital 

outlay is minimal requiring only an oven (muffle furnace) and a balance and as a technique 

is easy to apply.  It is therefore still in widespread use but its reliability has been questioned 

repeatedly (Mook and Hoskin, 1981; Konen et al 2002; Pribyl, 2010; Sutherland, 1998; 

Chatterjee et al., 2009; McCarty et al., 2010).  First of all the duration of heating has been 

shown to affect the magnitude of mass loss (Schulte et al., 1991; Matthiessen et al., 2005).  

Presumably this is related to the movement of oxidising air into and out of the soil matrix 

where large samples result in lower relative yields.  The temperatures applied vary also 

between laboratories yielding mass changes that can be erroneous due to reactions that are 

not related to OM (i.e. lattice water, carbonates).  At around 450 to 550 oC the mass changes 

due to mineral dehydroxylation become a significant contributor in fine grained soils.  

Typically losses resulting from heating between 105 and 550 oC (16hrs) are used and then 

ascribed to OM.  Carbon (%) concentrations are then derived by applying a conventional 

conversion factor (e.g. 0.58 quoted in soil text books).  As a result the OH- contribution from 

such a broad temperature window can lead to over estimation.  Therefore depending on the 

soil type and temperatures (and durations) used, the method can lead to under or over 

estimation of the C contents.  Alternatively, factors can also be empirically determined for a 

representative cross-section of soils from the locality by processing them with the same LOI 

protocol and calibrating the results using (more expensive) elemental analyses on a limited 

number to obtain a ‘correction’ factor.  Konare et al. (2010) reliably determined West 

African soils by LOI (using the mass losses between 105 and 350 oC) to serve as a fairly cost 

effective means of C determination in that region where instrumentation is more difficult to 

access.   

 
Advanced Methods for In Situ Soil C Measurement 
 
The ‘holy grail’ in soil C determination is to be able to measure intact soil core or even better 

in situ soil volumes without disturbance or removal and preferably on a volumetric basis.  

The benefits that accompany such methods include lower costs associated with sampling / 

processing of soil, rapid large-area coverage, bulk analyses and very importantly 

preservation of the sampling site (Gehl and Rice, 2007).  Ideally ground should not be 

removed or destroyed so that the exact same site can be monitored again over time.   

 

In contrast to most spectroscopic techniques where certain wavelengths from an external 

light source are absorbed by different chemical bonds in the material, emissions type 

spectroscopy elicit electromagnetic radiation from within the material.  These are systems 
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that use thermal or laser energy to induce responses that can be specifically indicative and 

quantitative.  

 
Laser Induced Breakdown Spectroscopy (Libs) 

LIBS is a spectroscopic technique where laser energy is focused directly onto a sample 

material (soil) to produce electromagnetic emissions characteristic of the elements present.  

The method is interesting for this review because it has the potential to measure total in situ 

carbon and could contribute a major advance.   

 

The breakdown energy is produced by a neodymium doped, yttrium aluminium garnet 

(YAG) pulsed laser.  The energy is delivered to the soil surface using optical fibre and 

emission signal collected with photo diode array detector.  LIBS can be distinguished from 

NIR / MIR where the quantity of interest is the amount of energy transmitted / absorbed.  

Instead energy is released at certain wavelengths as a result of the laser ablating (destructive) 

the sample material.  Data are acquired over the LIBS spectral range from a little below 

200nm to 800nm.  Emission lines specific to elements that include Fe, Si, Mg, Al and C 

(Cremers et al., 2001) occur more than once, where C has its characteristic lines at 193.03 

and 247.88nm. 

   

To date, LIBS development has involved lab based experiments on prepared core faces or 

pressed buttons containing carefully mixed soil and C powder.  In these experiments the 

moisture and density have been well controlled along with special attention to the distance 

from the laser focal point.  These have been initial laboratory calibration studies that form 

the basis of any field portable development.  In field experiments by Ayyalasomayajula et 

al. (2012) the specific C lines have been used (in situ) to detect and measure any fugitive 

CO2 in surface soil that may be evading geological sequestration.  An example of output over 

the 245 – 250 nm range with the useful C and Fe lines is shown on figure 1-2.  
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Figure 1-2 LIBS spectrum of whole soil showing the significant emission lines for iron and 

carbon where the Y-scale are arbitrary units (reproduced from Ayyalasomayajula et al., 
2012). 

 
 

Clearly C can produce a striking emission peak at around 248nm but there is some 

interference with Fe.  The other C line at 193.03 can be out of range for some detectors but 

according to the literature quantifying proximate spectral lines (i.e. Si or Fe) to obtain ratios 

with the 248nm C allows the peak areas to be normalised improving the calibration.  This 

more or less univariate approach (corrected using neighbouring elements) has resulted in 

reasonable correlation with that from dry combustion (Cremers et al., 2001).  However due 

to the multiple and overlapping peaks, a multivariate approach (partial least squares 

regression or PLSR, described in more detail further on) based on the whole spectra has also 

been demonstrated by Bricklemyer et al. (2011) who applied it directly to intact cores. Thus 

this method still relies on calibration using standard method. 

 

Direct application of LIBS can include root material and it may also experience interference 

due to minerals.  It is a point analysis method so for large scale assessment of soil C stocks 

would again require large numbers of analyses within a framework of sampling design and 

statistical modelling.  However the potential for easy field use and rapid analysis turnover 

compensates for the numbers required.  It is also quite sensitive with a lower limit of 

detection around 0.03% C and reasonable precision of 4-5% on replicate analyses.  In 

addition there is also the possibility of differentiating lime by the amount of Ca present 

which can also be determined by LIBS (Bricklemyer et al., 2011). 
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Inelastic Neutron Scatter (INS) 

While INS has been employed previously for the measurement of water (hydrogen) in 

geological applications the more recent development of this technology has been direct 

measurement of atomic carbon and oxygen during well logging (summarised in Bond et al., 

2010).  It has made it possible to determine C/O ratios in proximally located material such as 

in formations adjacent to wells to assess oil-field fluids.   

 

In the case of C determination the principle of operation relies on the pulsed 

electromechanical production of fast and thermal neutrons at 14 MeV which then collide 

with atoms in the material.  Between these short pulses, gamma emissions with a distinctive 

4.43 MeV (for C) resulting from inelastic thermal neutron capture are subsequently detected. 

The process has been schematically described on figure 1-3. 

Application of the method to the direct measurement of soil C has been very limited 

probably due to a lack of knowledge in this area.   Initial experiments based at medical 

facilities (Wielopolski et al., 2000) have now developed into a prototype systems that can be 

used to test soils in situ (Wielopolski et al., 2010; 2011).  While still developmental, it stands 

out from other methods by being non-destructive, as there is no soil removal and no ablation 

nor combustion.  The way signal is generated and acquired and the area that can be covered 

approaches an on-the-go capability.   

 
 

 
 

Figure 1-3  Schematic diagram of the prototype system used for soils described by 
Wielopolski et al., 2010; 2012 . 
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On the question of the most promising alternatives, according to R. Lal (Ohio State 

University) the application of the inelastic neutron scatter technique to soils represents the 

future in soil C determination (pers. comm., July 2012).  According to their recent paper 

Wielopolski et al. (2011) there are still several issues to address:  

a) The mass / volume relationship for INS and DC are at odds 
b) C varies with depth and laterally so intensive scanning is required to reliably indicate 

changes over time 
 
The real advantage is that heterogeneities in soil C are easily integrated by the 1m2 footprint 

(controlled by size of detector array where each acquisition period takes 60 min) and a depth 

penetration currently at 0.3m.  Results from this preliminary work (on soil which included 

>2mm) indicated that soil processing may not be required which is a major advantage 

although, root C and total C may need to be correlated / calibrated separately.  INS offers the 

potential advantage of C responses that are independent of mass (and bulk density) providing 

an absolute C value for a given volume per area which makes it a good fit with IPCC 

guidelines (IPCC, 2006).  This is an important consideration because it circumvents issues 

associated with compaction.  INS can also be used for other elements, Ca being one of them, 

enabling correction for soil carbonate.  Although, element-specific responses are reliant on 

discrete energy inputs which vary according to the element. 

 
Differentiating Soil Carbon Forms 
 
This aspect is important to consider in how it relates to soil sampling and processing 

procedures employed for soil C surveys.  It enables a clearer definition of soil C within the 

framework of C sequestration, SOM dynamics and global change.  It revolves around the 

issue that the variety of C forms, react and mineralise at different rates (Table 1-1).  From a 

sequestration point of view accumulating a greater proportion of more resistant material is 

obviously more desirable.  These have been extensively discussed in more recent reports 

examining soil C sequestration and what protocols might be adopted (Walcott et al., 2009; 

Capon et al., 2010) 

 

Carbon forms – their diversity 

Calcium and magnesium carbonates can be significant in soils and according to Batjes 

(1996) almost half of the soil C stocks can be attributed to this source.  These are thought to 

be stable over millennial timescales but this ignores the possibility of carbonate amendment 

or subsequent changes to pH (resulting from C building strategies) that may alter the 

equilibrium of inorganic soil C stocks.  Apart from other mineralised forms, such HCO3
- (aq) 

and CO2 in the soil pores, the un-mineralised C is within a continuum of related organic 

matter of varying stabilities.  Under certain Eh (i.e. oxidation potential measured in mV 
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against a reference hydrogen electrode) conditions other gases can be evolved in trace 

amounts (Smith and Dodwell, 1973) but this is more of concern to GHG emissions studies 

for the various land use practices.   Conventional soil sampling processes themselves are 

likely to incur loss and alteration of volatile and less stable organic matter such as gases, 

short-chain aliphatic acids and some carbohydrates.   The major focus must be on the 

primary quantities that make up soil C stocks and the dynamics of its major pools. 

 

Table 1-1 A simplified representation of soil organic C forms and residence times (after 
Walcott et al., 2009 and their references). 

Active Pool Recent SOM Annual 
Slow Pool Humified SOM Decadal 

Passive / inert Pool Mineral complexed SOM 
and pyrogenic C 

Centennial 

 

Soil organic matter (SOM)  

SOM is a collection of heterogeneous organic materials that are related in some way.  It 

comprises varying proportions of carbohydrates, lipids and proteins primarily derived from 

plants and the soil microbes that utilise them.  While simple sugars contain about 42% C and 

an average of the main plant organs typically closer to 49% C (representing the range for 

recent OM), this value increases with maturation of SOM in the soil (to over 58%) through 

the loss of H (but decreases relative to nutrients, discussed later).  SOM itself was 

traditionally seen as strongly aromatic (based on older methods of analysis) until 13C-NMR 

revealed that carbohydrate was dominant (Barron et al., 1980).  Further advances in the 

technique allowed other chemical structures (proteins, carbohydrates, lignin and aliphatic 

material) to be assigned (Nelson et al., 1999). 

 

At any one time, SOM is likely to comprise varying proportions of carbohydrates, lipids and 

proteins primarily derived from plants and the soil microbes that utilise them.  Both recent 

(labile) and mature OM impart important soil functions.  Humification of OM is 

accompanied by increased N and P relative to C and is an important factor contributing to 

soil fertility.  Labile OM high in N directly supports soil biology and nutrient cycling 

whereas C-rich mulches such as straw lead to competition for limited N as microbes 

decompose biomass with possible priming effects for the remaining stable OM.  While 

humified OM appears important to long term fertility, a certain proportion of labile OM has 

been positively correlated with crop yield (Stine and Weil, 2002).  This has led to several 

schemes (e.g. Blair et al., 1995; Hoyle et al., 2006; Weil et al., 2003) that make use of 

selective oxidation with mild reagents (e.g. 0.025 M KMnO4) to relatively quantify bio-

available organic matter. 
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Important plant components such as lignin can persist in soils for significant periods.  Lignin 

is similar in composition to cellulose and comprises about 25% of woody plant tissue 

providing strength to cell walls.  Carbohydrates decompose to simpler sugars but the 

relatively strongly bonded units in lignin make it very resistant to decay.  This coupled with 

its relative abundance from plant material means that along with its breakdown products 

become a significant part of OM in soils and sediments.  When lignin eventually breaks 

down it adds to humic substances (HSs) via the intermediates; unsaturated aromatic alcohols 

and polyhydroxy carboxylic acids adding to the HS pool derived from various organic 

sources (Brownlow, 1979).  Chemical degradation of lignin by CuO oxidation has been used 

to study the degree of OM humification (Koegel-Knabner and Ziegler, 1993) but ideas on the 

precursors for humic substances (HSs) continue to evolve and include plant starches (refer to 

online article by Susic, 2003.  It is still not clear whether the collection of heterogeneous 

SOM structures fit a polymer model (coiled macromolecules) or supra-molecular model 

(clusters of smaller units connected by H bonds), as discussed by Sutton and Sposito (2005) 

who also point to a two compartment system (MacCarthy et al., 2001) made up of more 

resistant and less resistant humic substances.  According to Hanninen (2010), humification 

may be a de-aromatisation process resulting in predominantly aliphatic compositions.  

Irrespective of their exact nature, these humic materials are likely to vary in stability 

(residence times) depending on the environmental conditions and degree of protection (i.e. 

landscape and soil type).  The latter influence has been thoroughly articulated by Schmidt et 

al. (2011) who review the diverse forms of SOM. 

 

Another prominent soil C group that is not so readily determined is pyrogenic or black 

carbon (BC) so called because of its often charcoal appearance.  These comprise soots, chars 

and aromatised C remaining after woody material is heated to high temperatures such as 

through wildfires where conditions become oxygen poor resulting in partial combustion and 

pyrolysis.  BC can also be beneficial having chelating properties due to residual charge 

acquired after oxidation of phenyl groups producing some ion exchange capacity.  Charred C 

may be of lower significance in some soils but is likely to be widespread in many parts of 

Australia.  Their components tend to be more stable in soils and therefore serve as a (more) 

effective soil C storage medium and because of this, BC should be measured as a separate 

type of soil C when considering whole SOM cycling.   

 

Black C reports as organic C in standard C (elemental) analysers.  As a necessity there have 

been a number of methods developed / used to specifically determine black carbon from 

soils as summarised by Hammes et al. (2007; 2008). These range from laborious microscopy 

and density separation to selective digestion / oxidation processes (e.g., Kurth et al., 2006) 
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with varying effectiveness in leaving all the BC as residue.  They all operate on the principle 

that BC which is more resistant, remains after the removal of labile OM and can then be 

determined by elemental analysis.  The CSIRO soils laboratory (Adelaide) previously used a 

UV-photo oxidation procedure to remove less stable OM (Skjernstad et al., 1996; 2002) 

followed by C analysis.  Hydrogen pyrolysis (HyPy) is a current method that utilises high 

pressure H2 to hydrogenate and remove labile OM in addition to labile aromatic C (ring sizes 

<7) for later elemental analysis of the residue (Roberts et al., 1995).  These all share in 

common fairly involved processes coupled with often two or more sets of elemental 

analyses.  The 13C-NMR technique, which has its own complexities, is more direct by 

providing a ratio of aromatised to aliphatic C and as such is often used to complement / 

demonstrate the results of the other methods being developed.   

 
Wet chemical extraction and separation 

In contrast to the wet oxidation procedures used to determine the C content of SOM 

(discussed in the foregoing sections), extraction methods were long used as a way to remove 

parts of the SOM.  The origin of extracting OM from soils dates back considerably, for 

example Sprengel, (1826) studied these products and historically humic substances (HSs) 

were extracted from soils and peats to obtain organic rich liquids.  In the laboratory the 

method involved using alkaline solutions (0.1M NaOH) to extract these organic substances 

which could then be further separated into humic and fulvic acids by lowering the pH 

(Leeper and Uren, 1993).  Alkaline extractions are still carried out today to isolate certain 

SOM components for their individual quantification and for further detailed study such as 

solid state 13C NMR or infrared spectroscopy.  The basic principles still apply only that the 

level of refinement with regard to solutions used (NaOH, NaP2O and Na2CO3) and strengths 

used has become more sophisticated (Tatzber, 2007) enabling the extraction of selected 

fractions for detailed study.  Similarly, instrument methods to separate and measure HSs 

directly continue to be developed for ion chromatography under various experimental 

conditions (Hutta et al., 2011).  According to studies by Tatzber et al. (2009) humic acid 

extracts appear to be a representative pool of SOM.  However recent studies have questioned 

such a view, with humic substances merely a product of the extraction procedure rather than 

an actual component of SOM (Stockmann et al., 2013).  Contemporary works have proposed 

the combination on both physical and chemical fractionation methods (e.g. Zimmermann et 

al., 2007a).  Physical fractionation is mostly used to isolate soil C which is related to soil 

structure, or protected inside soil aggregates (Angers and Caron, 1998).  This requires 

arbitrary application of energy to disperse the soil aggregates and separation of fractions by 

density or size.   
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Soil C and Grainsize: What is the Case for Soil Pre-Processing? 
 
A great deal of time and effort in soil C analysis goes towards soil preparation and 

processing, although much of it can be mechanised using for example electric puck mills.  

There are several explanations used to justify the focus on fine size fractions with respect to 

soil C analysis that prompts a detailed examination. 

 

Soils submitted for elemental analysis (i.e. dry combustion) are generally ground and sieved 

to pass 100 or sometimes 50�m particle size.  Historically the basis for refining soils to these 

small particle sizes prior to dry combustion appears to be uniformity (Rayment and Lyons 

2011; Smith and Tabatabai, 2004).  This has evolved as the standard method for soil 

processing over the last few decades mainly because the sample capacities of these 

instruments are so minuscule (more appropriate to the analysis of pure substances) that 

including coarser material lowers homogeneity and potentially the precision of analyses.  

Due to such studies as by Tabatabai and Bremner (1970) who originally recommended using 

<150�m sieve fractions for reasons of precision, such processing methods seem to have 

become entrenched as a standard.  Moreover, their data actually reflected similar 

reproducibility for the <420�m fraction with C present throughout all size fractions although 

commonly tends to be more abundant in the fine silt particle sizes (Anderson et al. 1981; 

Ladd et al., 1985).  What does this mean for the quantitative accuracy (% total C) of a given 

unit of soil using only that particular fraction?  Should values be corrected (a dilution) for the 

mass of coarser material present (so called gravel correction) and how much C is contained 

in the discarded portion?  These are questions seldom dealt with – but obviously it must 

affect the final outcome and only through consistent methodology can any data be 

comparable (Hedley et al., 2012). 

 

Clearly, aside from chars, SOM is a diverse set of organic materials with different stabilities 

as indicated by wet chemical and other analyses.  The issue of how OM is humified 

(degraded and matured) and how it is preserved in various soil types and mineral 

components is an important aspect because it has a bearing on how to proceed with soil 

treatment before analysis especially in the context of C sequestration where long lived SOM 

is more desirable.  There is some evidence that occluded C is older and or possibly more 

stable.  Contact with clays, incorporation into microaggregates and mineral defects offers 

some physical and chemical protection for OM (Balesdent et al., 2000; McCarthy et al., 

2008; Skjemstad at al., 1996; Wilson et al., 2009).  This chemical protection probably 

increases with maturation (given a constant soil environment).  Intuitively, sandy soils are 

expected to be poor in C and fine grained soils higher because of greater moisture, nutrients 
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and retention.  This has been supported by various studies where resistant plant remnants 

were concentrated in the sandy particle sizes and the microbial wastes in the clays (Ladd et 

al., 1996).  Similarly greater amounts of microbial biomass and aliphatic compounds have 

been noted in the finer particle sizes (Spain et al., 1990; Baldock et al., 1992; Nelson and 

Baldock, 2005) and these aliphatic compounds appear to be more recalcitrant according to 

Baldock et al. (1997).  Such fine particles have greater surface areas to support microbes, as 

have mineral hydroxides and oxy-hydroxides (Oades, 1989).  Furthermore the tiny soil 

interstices may be water filled so that diffusion of O2 is much slower (Baldock et al., 2004) 

than through open pores - an important consideration in the context of biodegradation of 

OM.  Thus fine and adsorptive particles offer both places to be attached and physical 

protection from more rapid chemical degradation. 

 

There is a sound basis for the separation of coarse organic material from soils.  The removal 

of material >2mm (McKenzie et al., 2000) excludes recent OM such as roots along with 

gravel sized material.  These are also termed surface plant residues (SPR) and buried plant 

residues (BPR) according to the separation scheme described by Baldock et al. (2004).  If 

included as part of sequestration inventories, these fast pool (see table 1-1) components can 

likely complicate any soil C accounting offset scheme.  Being present in various states of 

decomposition they also comprise root material with masses that vary according to land use, 

i.e. crop type.  It is reasonable to expect degrading OM to become more finely divided and 

therefore a broad fractionation according to grain size by sieving should achieve some 

separation of recent from older C (as with the >2mm and hand picked fragments).  Then 

what of recent microbial wastes and cellular material that pass the finest sieves and as these 

decompose further, their gradual polymerisation (D. Guest pers. comm. November 2012).  A 

number of SOM fractionation schemes have evolved such as those of Zimmermann et al. 

(2007a); Baldock et al. (2004) with further development (Janik et al., 2007) to isolate pools 

with different levels of stability.  Attempts have been made to equate these within the 

framework of the Rothamsted carbon model where each contributes to soils by way of 

metabolic C cycling, nutrient regulation and C storage.  The latter method involves primarily 

physical techniques comprising sieving and settling (after dispersion and pH adjustment) to 

yield the following: 

Particulate organic carbon (POC)  in size fraction >53�m  
Humus organic carbon (HOC)   in size fraction <53�m 
Resistant organic carbon (ROC) by 13C NMR or remaining after UV-photo 

oxidation of disaggregated soil 
 
where POC is particulate organic C, HOC is more stable humified OM associated with the 
fine soil particles and ROC is fairly inert C, such as charred material (usually very fine) 
resulting from wildfires.  These subdivisions resemble those in table 1-1.   
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As SOM develops and ages, C diminishes relative to N, making the C/N value a useful 

indicator of stabilisation.  The trends observed in C/N ratios with decreasing size fractions 

add support to this (Gerzabek et al., 2006 and references therein) as the example on table 1-2 

shows (from Magid et al., 2002).  Similarly C/N are expected to decrease down the soil 

profile reflecting the disappearance of less stable C with advancing humification.  The final 

SOM composition would probably reach C/N values in the order of 5 or 6, a natural floor set 

by the remaining microbial compositions (Aponte et al., 2010). 

 
Table 1-2 Changes in C/N with soil size fractions reproduced from Magid et al. (2002). 
 

Size fraction (�m) � (g/cm-3) C/N ratio std error 
1000-4000 <1.0 37.30 2.50 
 <1.6 21.30 2.80 
100-1000 <1.0 26.20 1.40 
 <1.6 23.80 1.00 
53-100 <1.6 17.20 0.40 
 <1.6 13.20 0.30 
<53 <1.6 21.00 0.80 
  <1.6 7.90 0.30 
   (n=4) 

 
Note to put in perspective sand, silt and clay are classified thus: 
Fine sand 20 – 200�m 
Silt 2 – 20�m 
Clay <2�m 
 
 
 
SOM Diversity – The Best Technologies 
 
New life into thermal analysis and the LECO models RC 412 and 612 

Thermogravimetric analysis (TGA) is an old technique developed in the early part of the 20th 

century.  It was mostly applied to the study of soil mineral decomposition but there were 

some notable investigations into SOM (Turner and Schnitzer 1962; Schnitzer et al., 1964). 

TGA is a common piece of instrumentation in chemistry laboratories where it is used to 

study the thermal stability of polymers and various oxidation (mass gain or loss) reactions of 

synthetic or natural materials.  Along with differential thermal analysis and differential 

scanning calorimetry which measure heat flow, together these comprise a very useful toolkit 

in distinguishing the chemistry of substances.  With the appearance of more sophisticated 

software and precise electronics these instruments have attracted renewed interest for 

application in soil research over the past decade or so with a particular focus towards OM 

characterisation and measurement.  In addition there are more opportunities to couple these 

with for example, bench top mass spectrometers providing a greater combination of signals 



C Analysis Methods                                                                                            Review of the Literature 
 

 23 

to interpret or to screen out ambiguous information.  TGA is such a powerful technique 

because it allows precise control of reaction conditions (atmosphere and a heating program) 

while monitoring any slight increase /decrease in mass using a microbalance.  It is a simple 

exercise to estimate for a whole soil with minimal processing the amount of free moisture, 

inorganic and organic C from a single run (Boyle, 2004; Kasozi et al., 2009).  Current 

research has focused on ways to better analyse TGA results from soils and composts to assist 

our understanding of SOM dynamics, a major contributor in global change dynamics.  There 

are some inherent difficulties in using TGA for soil analysis related to overlapping events 

but further investigation and development has been well justified.  A key observation from 

early studies (Schnitzer et al., 1964; Schulten, 1996) was that humic compounds were found 

to be more thermally stable than their plant derived precursors – and this makes TGA study 

worthwhile in the context of soil studies.  The TGA technique, which has some common 

principles with LOI, has been taken up experimentally in the current study and is expanded 

in detail in the following section/s.  Because thermal analysis instruments are such fine 

equipment comprising microbalance sensitive to 0.0001mg and precise heating furnaces they 

come at a capital cost in the region of AUD$35,000 or more. 

 

The LECO models RC 412 and RC 612 (temperature programmable C analysers) were 

designed to differentiate C in industrial applications by continuous or sequential oxidation.   

They use a controlled heating rate to characterise the thermal breakdown of a material 

(refractory continuum) and can be likened to the TGA method by their programmable 

heating.  Instead of sensitively monitoring mass change it monitors the evolution of C (CO2) 

and H (water) using infrared detectors.  This enables the interpretation of particularly organic 

related events where both water and CO2 are the main products.  It appears to be potentially 

one of most useful approaches for the simultaneous characterisation and quantification of 

SOM by thermal means.   While such instruments may have been designed around industrial 

applications it has been largely under-utilised (or overlooked) for distinguishing inorganic C 

from SOM and within SOM with very few exceptions.  Schwartz (1994) and then Beyer et 

al. (1998) demonstrated the automated separation of carbonates and SOM.  Only since the 

work of Kristensen (1990), who devised a TGA based index where relatively refractory-C 

was expressed against labile material as an indicator of SOM maturity, has an equally simple 

(and effective) approach been put forward.  This separation into thermal regions by 

Kristensen (i.e. Rp or Exo 1, 2, 3 etc.) for each mass change was never fully rationalised 

which was one of the main criticisms of the method according to Plante et al., 2011 (and 

others).  This instrument circumvents this issue to a large extent by producing discrete C-

only signals which can be varied by the heating program.   Beyer et al. (1998) already 

recognised that the method might potentially detect differences in OM turnover / 
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humification characteristics between soils (example of a mineral soil on figure 1-4).  These 

are not current generation instruments and may be partly the reason they have not been used 

to further explore the possibility of differentiating SOM or at least separating components 

such as BC from SOM.  This has only been exceeded by a more recent development that 

uses multi element scanning thermal analysis (MESTA) and has been tested on coals and 

chars.  This allows diverse C to be separated thermally while concurrently being measured 

by continuous elemental analysis.  

 

 

 
Figure 1-4  SOM analysis by Leco model RC 412 showing C pattern as it is released over a 

temperature program of 13 oC per min (reproduced from Bayer et al., 1998).   
 
 

Infrared Spectroscopy 

Historically, the nuances in colour have been an important descriptor for soils providing a 

means of inferring certain characteristics such as presence of Fe, hydration state or even 

organic matter providing some basis for classification.  The use of the Munsell chart to help 

describe soil properties is a good example (Minasny and Hartemink, 2011).  In the same way 

that the visible spectrum is used to distinguish and infer a great deal about the nature and 

composition of a material (soil), the same applies to other parts of the electromagnetic 

spectrum, only that the human eye cannot detect them.  A material absorbs specific 

frequencies over the infrared spectrum which gives away much about its chemical 

composition through particular bonds vibrations from within functional groups.  There are a 

number of regions over the visible - near infra red (Vis-NIR) band (400-700-2500 nm) and 

especially throughout the mid infra red or MIR (2500-25000 nm) wavelength band that relate 

to the mineral and organic constituents found in soils.  This has presented huge opportunities 

in being able to directly identify and quantify numerous chemical (and physical) properties 
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from whole soils without complex and lengthy procedures.  In fact it has the capacity to be a 

single analytical tool to measure and predict a number of agricultural soil properties and 

numerous studies over the last decade or so have indicated its great potential (Janik et al., 

1998; Janik et al., 2007 and others).   

 

As a field portable spectrometer, NIR has proved more reliable in comparison to MIR where 

spectra are much more particle size and moisture dependent (Kusumo et al., 2011; Reeves, 

2010).  Importantly the NIR spectral range is not influenced by quartz minerals (Merry and 

Janik, 2001), a significant component of mineral soils and so removes this as a potential 

source for any overlapping (and ambiguous) absorptions.  Furthermore the higher energy of 

NIR can be an advantage when penetrating in situ soil where the usual preparation to refine 

soils, as afforded laboratory MIR analysis, is obviously not practical during field application. 

The 1650–2500 nm range is often cited as the most relevant for measuring soil organic C 

(Bellon-Maurel and McBratney, 2011). 

 

MIR spectroscopy is a powerful analytical technique having a great number of vibrational 

absorbance regions (primary and secondary) hence its prominence in chemistry laboratories.  

So much so that absorbances in the fingerprint region (1430 - 600 cm-1) can be difficult to 

interpret due to the complex absorptions.  For example the C-C bond has absorptions over a 

wide range of the region and would not be specifically informative when analysing for 

example charcoal type materials.  In contrast, at the higher energy levels of the group 

frequency region (4000 - 1430 cm-1) there are some important diagnostic positions relevant 

to organic materials (diatomic units).  The exact frequency / wavelength at which these occur 

vary according to the compound hosting these bond units.  In the analysis of SOM some of 

the most important bonds are the aliphatic and aromatic C-O double and single bonds (ca. 

1670 and 1430 cm-1) (Tatzber et al., 2007; Zimmermann et al, 2007b).  The aliphatic C-H 

bond (2980 - 2850 cm-1) may not be as compound specific and therefore regarded as less 

diagnostically useful but for TOC analysis is an easily ‘picked’ indicator of OM abundance 

and has been used to quantify labile SOM (Demyan et al., 2012).  In addition the proximate 

broad O-H band (over 3000 cm-1), while present in organic compounds, becomes 

overwhelming where mineral matter, especially clays occur, as in the analysis of whole soils 

and size fractions.  This huge absorption band can distort or obscure the C-H bond vibration 

(in the context of SOM studies).  Beyond this region (4000 to about 6000 cm-1) lie the 

combination tones (interacting vibrations) and overtone region which simply means the next 

order harmonics related to the fundamental vibrations in the MIR.  One way of dealing with 

interference due to coinciding absorptions from inorganic and organic bonds was to use ash 

subtraction (in effect removing the mineral imprint). However, the real benefit of this 
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approach has recently been reassessed (Reeves, 2012) concluding that the variable ashing 

effects from different clay minerals is not at all helpful by therefore leaving narrower ranges.  

 

These instruments commonly incorporate a method of diffuse reflectance infrared Fourier 

transform spectroscopy (or DRIFTS).  It is optically designed so that scattered reflection 

from the soil surface layer is collected by parabolic mirror over a wider angle.  This has 

made possible the analysis of soils placed neat or directly into the sample cups whereas 

previously it was necessary to dilute the soil with a non absorbing media to counteract 

specular reflection.  Halide salts such as NaCl and KBr are transparent to IR light and have 

been routinely used by mixing or grinding sample material into KBr at a rate of generally 1 

to 5% and pressed into discs.  While there can be improvements to specular reflection there 

are various effects (e.g. attenuated absorbances, sloping baselines) that accompany both the 

methods and these have been reviewed for soils (see Nguyen et al., 1991; Reeves 2003).  

Overall the amount of pre-treatment a soil should undergo before analysis is comparatively 

modest making it an attractive analytical technique for large sample numbers.  Soils (and 

other materials) analysed by FTIR need to be of a particle size commensurate with the 

incident infrared beam which has a wavelength of 0.8 to 25�m.  For this reason soils are 

usually ground to a fine powder using a timed agate mill and this has become a routine 

industry practice (Janik et al., 2007; Janik et al., 2009; Gerzabek et al., 2006).  Both the 

refining of particle size and the addition of KBr can improve DRIFTS spectra where the 

latter is an advantage where very limited material is available for analysis.  In addition to 

measuring total OM in soils it can also be used to determine specific forms of C such as 

carbonates, condensed C or humified OM (Janik et al., 2007) based on calibrations after 

separating and analysing these C fractions (e.g. Baldock et al., 2004). 

 
Spectral Data Analysis and Chemometric Models 

Most methods of chemical analysis such as gas chromatography can adequately use 

univariate analysis to quantify the analyte in question.  In other words it is based on a unique 

response (peak area) dependent on the concentration present easily described by a linear 

algebraic relationship.  This is usually not the case in spectroscopic analysis where a number 

of (spectral) regions can be influenced by the concentration of the analyte but according to 

the Lambert-Beer law a spectral response can be linearly correlated with concentration.  

Univariate analysis runs into problems with multidimensional data (numerous responses) and 

when they are not fully resolved (e.g. poorly separated peaks) as seen with FTIR or LIBS 

which are best served by a multivariate method.  
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Taking a principal component analytical (PCA) approach allows relationships to be drawn 

between two matrices: one with x-variables (running into thousands of spectral reflectance), 

the other with a y-dependant variable comprising analyte concentration/s (usually equal to 

the sample size).  The number of variables (absorbances) usually far exceed the number of 

soil samples being studied.  The classical method is to compress the number of relevant 

components to a workable set of data (principal components) the number of which should be 

robust enough to capture all the important spectral events (rank) associated with the full 

range of analyte in the samples.  This means it is not necessary to identify specific peaks 

(e.g. C-H or C=O bond stretching) but to encapsulate all the relevant regions for these 

functional groups (eg., using the Bruker Instruments software).  This is because continuous 

frequency bands can be subtly influenced by the concentration of one component.  However 

to go beyond clustering of associated data and build a mathematical relationship between the 

spectra and known concentrations requires a partial least squares regression (PLSR) analysis.  

Rather than just simply predicting a class property, PLSR allows for the prediction of such a 

continuous variable.     

 

Before measuring unknown samples, calibration spectra have to be obtained and analysed 

and it is generally accepted that a minimum of  20 to 30 are used and that their 

characteristics cover the expected range (concentrations, soil types) to ensure a robust model.  

For example the presence of CO3 can affect linearity (Reeves, 2009).  PLSR analysis is a 

form of ‘supervised’ training where those soils with known characteristics or concentration 

comprise the training set.  Data can only be properly analysed quantitatively when spectra of 

differing baselines or amplitudes (due to optical artefacts) unrelated to concentration can be 

made comparable.  Normalising and smoothing the data can achieve this while acquiring the 

mathematical derivative (for points) helps overcomes scale and noise issues and emphasises 

significant spectral features (Wehrens, 2011).  From there the data is transformed into a set 

of Eigen vectors that range in significance with respect to the analyte of interest (rank).  

Building the model on too many components observes more features than may be required or 

even includes noise or unrelated events and results in overfitting. The reverse leads to under-

fitting.  According to Wehrens (2011) there is no hard and fast rule for the correct sequences 

of data processing (smoothing, differentiation etc.) as this may vary for different instruments 

/ techniques and materials but rather to optimise the process to obtain the most reliable 

predictive model (lowest standard error of prediction).  The aim is to produce a 'best fit 

model' but it is only as good as the calibration that built it and as pointed out in a review by 

Bellon-Maurel and McBratney (2011) the value of bias in the data is a good indicator.  Other 

statistical approaches that achieve the same outcome can also be used such as so called rule 
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based algorithms.  These generate association rules by extracting co-occurrences that link, in 

this situation, spectral information with the concentrations of analyte.  

 

Gravimetric and volumetric carbon concentration 

Generally, soil C measurements give a gravimetric concentration (kg C per kg of soil, or also 

usually expressed in percent mass).  However the C stock requirement is reported in kg C per 

m2.  This requires the knowledge of bulk density: 

 

C stock (kg/m2) = C concentration (kg/kg) x Bulk density (kg/m3) x depth (thickness) of soil 

sample. 

The requirement for bulk density measurement is an additional sampling effort and source of 

uncertainty in conventional analysis. There is also another problem where there could be 

differences in bulk density from different sampling dates (e.g. due to cultivation practices) 

which will affect C stock calculation. This issue is discussed in McBratney and Minasny 

(2010). 

 

NIR spectral calibration is usually performed for prediction of total soil C content (on a 

gravimetric basis).  Several studies also differentiated the prediction into soil organic C, and 

inorganic C (Bellon-Maurel and McBratney, 2011).  In order to reduce the uncertainty in 

having to estimate bulk density, Bellon Maurel and McBratney (2011) suggested directly 

predicting the volumetric C concentration (kg m-3) from spectra.  Other researchers have 

attempted the calibration / prediction of C content (volumetric basis kg m-3).  The group in 

France (IRSTEA) found that the prediction from NIR spectra on a volumetric basis is 

slightly lower than gravimetric, however the prediction is still reasonable (R2 = 0.66).  

Researchers in New Zealand have made a direct prediction of C stocks (in tonne ha-1) from 

NIR spectra with good result (R2 = 0.75) (Roudier et al., 2013).  These efforts have further 

highlighted the pressing need and potential to develop a method that measures soil C 

concentration both on the gravimetric and volumetric basis. 

Another exciting concept is proximal hyperspectral / multispectral imaging incorporating the 

advantages of rapid scanning in a way of overcoming the limitations associated with point 

analyses (Buddenbaum and Steffens, 2012). 

 

It can be concluded that the emergent proximal technologies encompassing in situ nuclear, 

laser or infra red spectroscopic methods should in due course revolutionise soil C stock 

determination once fully developed and tested.  But in the interim, measurement methods 

can continue to rely on improved existent techniques that are able to adapt to the varying 

scales.  Similarly, the ability to readily observe patterns of different soil C forms have major 
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uses in the study of soil C dynamics and in this regard thermal analytical approaches appear 

to offer a simple and accessible means to do this.  The following table summarises the most 

significant advantages and disadvantages for the methods reviewed.  

 
Table 1-3 Merits of the reviewed systems. 

 
Laboratory methods for soil C analysis Strengths Weaknesses 

Wet chemical oxidation / extraction selectively targets OM pools 
destructive, inaccurate for TOC, 

does not react with all the stabilised OM 

Standard dry combustion unequivocal and precise, TOC
unable to distinguish C form, 
high capital & running costs 

Temperature programmable dry combustion differentiates main C pools high capital and running costs 

Thermal analysis 
differentiates mass changes, 
i.e. possible main C pools 

overlapping ambiguous events, 
opposing endo and exothermic responses 

Hyphenated thermal analyses 
differentiates main C pools 

depending on detector 
limited by detector used, 

catalysation issues, high capital costs 
In situ / Proximal C analysis    

Proximal inelastic neutron scatter non destructive, area coverage
still under development, 

shielding of neutron pulses 

Proximal laser induced spectroscopy rapid and direct 
still under development, 

need to generate laser 

Proximal spectroscopy large area coverage 
point analsyes, surface penetrataion, 

large calibration data sets 

Hyperspectral imaging large area coverage 
poor spatial resoltion and limited depth, 

higher acquisition costs 
Note that the group of laboratory based methods generally require soil preparation while proximal 
methods require large calibration sets. 
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Introduction 
Soils are significant global reservoirs for carbon (C) and are therefore receiving a great deal 

of attention for their capacity to offset the increasing levels of atmospheric CO2.  In addition 

there is the immense value of having higher amounts of organic matter (OM) for improved 

soil function and structure which have a positive outcome in terms of food security through 

resilience against degradation.  To assess the effectiveness of land use practices where 

temporal changes in soil carbon building can be small, measurement instruments / methods 

need to be sufficiently sensitive and provide robust values.  Added to this, soil carbon 

content can be highly variable (Goidts, Van Wesemael & Crucifix 2009) from one place to 

another and also occur in a variety of forms with different stabilities and therefore residence 

times (McCarthy et al. 2008 and references therein), a key issue for soil carbon storage.  As 

a consequence, soil carbon analysis methods have become a lively area of interest, especially 

considering the need to map large areas and the inherent variability.   

 

Dry combustion by elemental analysis of soils is often used to provide precise total carbon 

determinations on fairly small amounts sub-sampled.  On the other hand the loss-on-ignition 

(LOI) method, which is widespread due to its low cost simplicity, allows larger amounts to 

be tested appropriate to the scale of the task at hand.  However the technique has attracted a 

great deal of discussion about its accuracy and equally OM to C conversion factors have 

been controversial (Pribyl, 2010; Sutherland, 1998 and others).  By this technique, 

previously dried and weighed soils are heated in a muffle furnace to obtain the mass of 

material lost which can be transformed to % carbon by reported conversion factors.  More 

accurate factors can be derived from a ‘calibration’ set of soils (via elemental analysis) from 

the study area which take account of local conditions but there is no set protocol for 

temperatures (can be 500oC plus) and durations which vary between soil laboratories. 

 

Thermogravimetric analysis (TGA) is a method traditionally used for the mineral (clay and 

oxides) components of soils, generally after the removal of OM.  Although the variety of 

carbon forms present in soils, which can range in their kinetic behaviour, can also be broadly 

distinguished (and quantified) using controlled heating rates (see examples in Laird et al. 

2008).  For example CaCO3 which begins to degrade after 600 oC, is readily separated from 

organic-C (Kasozi, Nkedi-Kizza & Harris 2009).  Thus the thermal distribution of all 

components in a whole soil, including those that are carbon-bearing, can provide a 

fingerprint characterisation as well as quantitative information.  Applications of this method 

to tease out differences within the organic fraction in soils have been relatively small but a 

number of researchers (notable examples Dell’Abate, Benedetti & Sequi 2000; Dell’Abate, 

Benedetti & Brookes 2003; Siewert 2004; Manning, Lopez-Capel & Barker 2005; references 
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in the review by Plante, Fernandez & Leifeld 2009) have more recently reported TGA 

related investigations on either soils or composted materials. 

 

In this study TGA and related techniques were applied to a range of whole soils to obtain a 

better understanding of SOM thermal stability and hence distribution over the heating 

program and what this means for loss-on-ignition methods.  Inorganic reactions were not 

followed up in detail here but instead were an overall consideration when evaluating thermal 

methods used to measure organic matter.  A database containing comprehensive information 

on LOI, carbon and texture was also analysed to support the observations from thermal 

studies and to indicate the influence of clay content when measuring C using LOI methods. 

 

Materials and Methods 
 

Collection and preparation of soil subsamples 

A cross-section of soils (36) were obtained from different areas in NSW, Australia (Table 2-

1).  Soils were extracted from the field using hand or mechanized corer and intervals 

removed to plastic tubes for transport and storage.  Some of the soils included here were 

collected as part of other studies hence some variation in depths sampled (indicated on Table 

2-1).  Representative amounts were sub-sampled for replicate analyses (>2 per site) to 

confirm differences observed for these localities which varied considerably by soil type and 

the amount of OM present.  Samples were air and oven (40 oC) dried prior to removal of 

recent organic matter such as visible root material by passing a 2mm sieve (McKenzie 2000).  

For elemental and thermogravimetric analysis samples were then ground by mortar and 

pestle and dry sieved (<100 µm) to obtain homogenous material to facilitate the small 

sample loadings.  In addition some soil references (Rayment et al. 2007) acquired through 

Proficiency Services Ltd. Hamilton, NZ were included in this study.  A legacy dataset of 

soils (CSIRO National Soil Database) containing LOI, dry combustion and textural data 

(methods according to Rayment & Lyons, 2011) was also used. 

 

Measurement of carbon by dry combustion using elemental analysis (EA) 

Carbon concentrations were determined using a Vario-max Elementar CN analyser (Hanau, 

Germany) with 900 oC combustion temperatures (for detailed explanation of the dry 

combustion method, refer to Rayment & Lyons 2011).  
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Thermogravimetric analysis (TGA) 

Pure TGA experiments were conducted on a TA Instruments 2950 thermogravimetric 

analyser which can heat up to 100 mg of material at variably programmable rates to over 

1000 oC.  Typically 60 to 100 mg of soil (equates to several mg OM) were suspended in a 

platinum pan (tare weight 360 mg) such that comparable amounts of C (ranging from <1% to 

15%) were analysed.  The incremental mass changes (resolution of 0.0001 mg) recorded 

over this program were processed using TA Universal Analysis 2000 software. 

 

An oxygen-rich atmosphere was used (60ml/min O2 purging furnace and 40ml/min N2 

purging balance) as it provides O2 in excess for SOM conversion to CO2 which would 

otherwise degrade in an inert stream and potentially leave a charred residue leading to an 

incomplete mass loss (possible ghost signals) and underestimation.  Evolution of non-

combustible components such as interlayer water and OH- units or CO2 from carbonates are 

unaffected by the type of atmosphere used during thermal decomposition.  Samples were 

heated to 200 oC, held for 10 min (surface dehydration) and then ramped at 10 oC per min to 

700 oC and finally held for another 10 min.  Carbonatic soils were heated at the same rate but 

beyond 700 oC until completely calcined.  Heating rates of 10 oC per min. from 200 to 600 oC 

provided the optimal resolution in soils. 

 

Thermogravimetric analysis / mass spectrometry (TGA/MS)  

To look more deeply into the various mass change events, thermal analyses on a small subset 

of soils were run in combination with mass spectrometry.  TGA/MS was carried out with a 

Setaram setsys 16/18 thermobalance TGA connected via quartz capillary (in 150 oC jacket) 

to a Balzers Thermostar quadrupole mass spectrometer set at 70 eV (electron energy).  This 

allowed major ion traces to be obtained (electron impact) along the entire heating program 

and is presented as mass/charge (m/z).  Whole soils (approximately 40 mg) were suspended 

in a Pt pan and heated at the same rates as above in a stream of aerobic purge gas flowing at 

40 ml/min.   

 

Results and Discussion 
 

Typical soil thermal patterns 

Plotting the first derivative of mass changes (DTGs) over the heating cycle (time or 

temperature along x-axis) allows separate events to be more readily distinguished and assists 

in the measurement of their proportions.  Using this technique, soils can exhibit thermal 

characteristics which may be affected by its type, management or sampling depth as shown 

in figure 2-1.  These relative differences seen in the interval 15 and 70 min. run time (200 to 
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590 oC) are related primarily to the amounts of carbon (200 to 430 oC) and clay minerals 

(430 to 590 oC) producing the typical patterns.  For example the trends shown here are easily 

attributed to the regular changes in texture and OM with depth (Conant, Smith & Paustian 

2003; McKenzie et al. 2004). 

 

 
 

Figure 2-1 Typical soil thermal characteristics at various depths using the differential mass 
losses (DTG) obtained by TGA (here of a sandy clay loam at one site). 
 

The mineral fractions of soils have been widely studied by thermal methods (Fanning, 

Keramidas, & El-Desoky 1995; Frost & Vassallo 1996; Hedley,Yuan & Theng 2007) 

providing a baseline for underlying inorganic reactions from micas and clays when 

considering organic constituents within whole soils.  Mass changes occurring in the 430 to 

600 oC interval appear to be dominated by the mineral fraction (reflected in figure 2-1) and 

furthermore when using an inert gas, mass changes in this interval are not noticeably affected 

indicating decomposition rather than oxidation.  By contrast, mass losses over the thermal 

region 200 to 430 oC are significantly greater when aerobically purged, consistent with OM.  

Thermal decomposition of most carbonates is quite separate and obvious from other 

constituents occurring over 600 oC (Kasozi, Nkedi-Kizza & Harris 2009) with the exception 

of more soluble types such as siderite which have much lower decomposition temperature at 

around 500 oC (Alkac & Atalay 2008).  During thermal analyses this would contribute to 
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(and possibly confound) the changes related to clay minerals but generally these carbonates 

are less common in soils and do not persist below pH of 9.5 (Rayment & Lyons 2011).  It 

should be similarly noted that other minerals such as Goethite or Gibbsite which is more 

common in tropical soils, decompose in the 210 to 550 oC region (Kloprogge, Ruan & Frost 

2002) along with OM and therefore have the potential to interfere with TGA analyses 

conducted on whole soils.   

 
Quantitative TGA and dry combustion 

A selection of eastern Australian soils were studied for their TGA behaviour and the 

principal mass losses quantified.  Along with relevant soil information these have been 

assembled on table 1 with respective carbon contents found by dry combustion (elemental 

analysis).  The soils are mostly carbonate free and comprise sandy clay loams (Camden, 

NSW), Dermosols (Hunter Valley, NSW), Vertisols (Liverpool Plains and Narrabri, NSW) 

and several local soils ranging in texture.  The principal mass loss regions were obtained by 

the natural separations (condition specific) as described by differential mass loss curves or 

DTGs corresponding to the two temperature bands that correspond to organic and 

predominantly inorganic events contained in the 200-430 and 430 to 590 oC regions 

respectively (table 2-1).  Some soils contained carbonates and this was readily measureable 

using this technique (indicated by mass changes in the 590 to 750 oC region). 

 

Table 2-1  List of soils used for these experiments detailing mass losses from thermal 
analysis. 
 
Soil and origin Landuse Depth % C % mass losses 
    cm   200 - 430oC 430 - 590oC 590 - 750oC 

Pilliga Chromosol 2 Crop surface 0.2 0.7 1.9  
Hunter Valley Dermosol 3 Mixed farming 30-60 0.2 0.9 2.7  
Hunter Valley Dermosol 2 Mixed farming 30-60 0.2 0.9 2.8 0.7 
Hunter Valley Dermosol 5 Mixed farming 30-60 0.2 0.7 2.3  
Hunter Valley Dermosol 4b Mixed farming 60-100 0.2 0.8 1.7 9.8 
Lansdowne Kandosol Mixed farming 0-5 0.2 0.4 0.3  
Hunter Valley Dermosol 4a Mixed farming 30-60 0.3 1.4 3.0  
Pilliga Chromosol 1 Crop surface 0.4 1.1 3.1 8.0 
Namoi Vertisol 2 Crop 10-30 0.5 1.1 2.5  
Narrabri Vertisol 1b Crop 16-30 0.6 0.9 1.5  
Camden 2c Lucerne 21-30 0.8 1.3 3.1  
Hunter Valley Dermosol 8c Mixed farming 30-60 0.8 0.4 3.4  
Camden 2b Lucerne 11-20 0.8 1.4 2.9  
Narrabri Vertisol 2b Crop 16-30 0.8 1.4 2.2  
Narrabri Vertisol 1a Crop 0-15 0.9 2.1 2.4  
Camden 3c Lucerne 21-30 0.9 1.4 3.1  
Narrabri Vertisol 2a Crop 0-15 1.0 1.5 1.5  
Soil standard 1 Reference material unknown 1.0 1.3 3.8 1.9 
Hunter Valley Dermosol 1d Mixed farming 30-60 1.0 3.7 4.2 2.5 
Hunter Valley Dermosol 8b Mixed farming 15-30 1.1 0.6 3.7  
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Namoi Vertisol 1 Crop 0-10 1.4 2.2 2.0  
Hunter Valley Dermosol 7a Mixed farming 0 to 5 1.5 1.3 4.2 1.7 
Hunter Valley Dermosol 1c Mixed farming 15-30 1.5 2.5 3.7 0.6 
Liverpool Plains Vertisol 2 Crop surface 1.6 3.1 4.1  
Hunter Valley Dermosol 8a Mixed farming 5-15 1.7 0.9 1.9  
Camden 3b Lucerne 11-20 1.7 2.1 2.7  
Liverpool Plains Vertisol 1 Pasture surface 1.8 3.3 4.8  
Hunter Valley Dermosol 7b Mixed farming 15 to 30 1.8 1.4 3.5  
Camden 2a Lucerne 0-10 1.8 2.2 2.5  
Camden 1 Lucerne 0-30 2.0 2.0 2.3  
Camden 3a Lucerne 0-10 2.3 3.1 3.1  
Hunter Valley Dermosol 6 Mixed farming 25 2.4 2.7 2.6 tr 
Soil standard 2 Reference material unknown 2.6 4.5 1.7  
Hunter Valley Dermosol 1b Mixed farming 5-15 2.6 3.6 5.7  
Hunter Valley Dermosol 1a Mixed farming 0-5 3.4 6.2 6.6  
Soil standard 3 Reference material unknown 4.0 7.5 2.0  
Sydney Basin Kandosol Vegetated 0-5 6.1 9.5 1.5  
Sydney Basin loam Horticulture 0-5 9.5 13.8 7.1 1.1 
Sydney Basin sandy loam Horticulture 0-5 9.6 15.8 6.3 1.2 
 
 

The elemental analyses (% C) obtained for these various study soils (n=39) were most 

closely correlated (figure 2-2) with mass changes occurring over the 200 – 430 oC indicating 

this to be the (most) significant thermal region for SOM release.  A slope of 0.62 (R2 = 0.95) 

provides an approximate conversion factor for these different soils that is a little higher than 

the traditional factor of 0.58 (van Bemmelen 1891) and could be suggesting that not all the C 

is accounted for by this region alone, in those soils.  Nonetheless it highlights the most 

important part of the thermogram for the bulk of OM and is consistent with what can be 

observed in thermogravimetric soil characterisations under aerobic conditions.  While this 

region probably encapsulates the most labile OM, any shortfall indicated by this comparison 

is more thermally recalcitrant C such as black carbon (char) and quite likely, equally 

resistant organic substances tied up with the expected clay mineral event which follows over 

the 430 – 590 oC.  Very few of our soils have high C contents but removal of the extreme 

points on figure 2 lowers the factor to 0.57 (lowers coefficient of determination to 0.84) but 

it is anticipated a greater number of high C soils would only reinforce that existing trend.  A 

similar approach taken by Gerzabek et al. (2006) on a small set of soils yielded a value close 

to 0.59 (mass loss maxima 330 and 440 oC) while Plante et al. (2011) obtained a 

considerably lower value (0.49) for the slope of regression but the temperature interval 

included mass losses to 600 oC (possible contribution from other reactions). 
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Figure 2-2 Relationship between TGA mass losses between 200 and 430 oC interval and the 
total carbon content determined by dry combustion for the soils on table 1 (relative to van 
Bemmelen line obtained by multiplying these mass losses by 0.58). 
 

There is some deviation or scatter of the data points relative to the calculated (TGA 200-430 

multiplied by 0.58) van Bemmelen line.  Any under-bias (under van Bemmelen line) could 

be attributed to minor structural water from the 320 oC region although according to Ball 

(1964) this should be minimal where most of the water loss from clay minerals pre-dried 

(105 oC) should appear between 450 to 600 oC.  Conversely any over-bias (above van 

Bemmelen line) as most points appear to, is indicative of unaccounted for, more thermally 

stable C-matter which has not reacted until higher temperatures are reached.  Analyses 

relying on this temperature interval would be relatively diminished by some amount (in 

comparison to the true value found by dry combustion >600 oC) which could be minor but is 

an uncertain quantity from soil to soil.   
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Investigating the thermal distribution of soil carbon - evolved gas analysis (EGA) by 

TGA/MS 

To ascertain what reactions / compositions prevail over the TGA heating cycle, combined 

thermal experiments were conducted on a small number of whole soils.  This could uncover 

decomposition / oxidation and the significance of C-release beyond 430 oC which may be 

quite variable possibly reflected on figure 2-2.  To be able to use m/z 44 (CO2) as a proxy for 

C release from OM assumes that its relatively low concentrations in whole soils, an excess of 

oxygen in the purge gas and sufficient active sites ensures quantitative conversion to CO2 

and water (without charring or recondensing).  Major ions were recorded as they evolved 

into the MS from the programmed heating as mineral material and OM degraded / 

combusted.  The kinetic distribution of carbon (m/z 44) could now be observed (unlike the 

previously combined signals from DTGs) which interestingly continues into the 

temperatures where clays (m/z 17, 18) degrade as in the example of a Vertisol under crop 

shown in figure 2-3.  The mass changes in the 200 to 430 oC and then the 430 to 590 oC 

region correspond to the destruction of OM and a combination of predominantly inorganic 

and lesser organic substances respectively.  Water and hydroxyl units indicated in the EGAs 

(m/z 18, 17) peaked around 500 oC from a falling baseline which follows initial surface 

dehydration (to 200 oC).  Carbonaceous material indicated by m/z 44 reached a maximum 

around 350 oC, which was in keeping with the correlation of mass changes over 200 to 430 
oC with dry combustion on figure 2-2.  Other soils have shown similar ion patterns where 

most of the organic material is destroyed (CO2 released) over the first thermal region (200-

430 oC) with lesser and variable amounts in the second (430 oC+).  The m/z 17 or 18 ion 

traces did not indicate the presence / breakdown of hydroxide or oxy-hydroxide minerals that 

would add to mass losses in the thermal region near 300 oC as noted in some soils (Boyle 

2004; McCarty et al. 2010). 
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Temperature oC 

 
Figure 2-3 Monitoring ion currents (mass 17, 18 and 44) for oxidised products evolving from 
a cropped Vertisol aerobically heated by TGA program (10 oC/min between 200 and 800 oC) 
along with the differential mass changes (DTG). Note the continuation of C release from OM 
(m/z 44) beyond 430 oC where inorganic reactions dominate. 
 
These experiments have further demonstrated that OM persists into the temperature regions 

where clays lose most of their mass, raising this accompaniment between OM and clay or 

other minerals such as an organo-mineral complex (Oades 1995; Kleber et al. 2011).  Other 

approaches need to be employed to provide reasonable evidence of the physiochemical 

linkages between clay and C, often described as a shielding / encapsulation mechanism 

(Bachmann et al. 2008; Brunn et al. 2008; Flessa et al. 2008; McCarthy et al. 2008) and more 

lately organic micelles in mineral defects as possible sites (Wilson et al. 2008; Chenu & 

Plante 1996).  Irrespective of this, the OM is probably more recalcitrant (Plante, Pernes & 

Chenu 2005; Plante et al, 2011), may be thermally similar to char particles but degrades at 

the same temperatures that the mineral components lose mass (i.e. tightly held water / 

hydroxyl units) making it difficult to quantify by simple LOI methods. 
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The relevance of grainsize and implications for loss-on-ignition (LOI) methods 

What does this merging of residual SOM and mineral matter mean for LOI determinations?  

To explore and demonstrate any possible pattern of C-overestimation with grain size, we 

referred to a legacy database where there was sufficient corresponding dry combustion, LOI 

and textural data (n=208) (acquired with methods described by Rayment & Lyons, 2011).  

The % carbon values derived from LOI (using factor 0.58) were plotted against dry 

combustion (elemental analysis) but separated into <25, 25-50 and >50% clay to highlight 

these differences (figure 2-4).  To obtain greater statistical detail about how the calculated 

values deviate from the true value (expressed here as % C LOI / % C dry combustion) for the 

respective textural classes, these have been presented as a box plot on figure 2-5.  Clearly the 

coarser textured soils tend towards parity while the more clay-rich (especially >30%) soils 

show a greater variability in this relationship indicating quite large overestimation in some 

cases. 

 

 
 
Figure 2-4 Correlation of LOI derived %C (using 0.58) with their values determined by dry 
combustion relative to 1:1 line. 
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Figure 2-5 Box plot measuring relationship between soil C by LOI and soil C by elemental 
analysis for each clay class where ends of the boxes are 25th and 75th quantiles and mid-line 
the median value. 
 
To get some real perspective of how much C is unaccounted for when applying more 

conservative LOI temperatures or conversely how much erroneous mass is included at higher 

temperatures, these relative amounts have been assessed using the coupled TGA/MS 

approach.  In the example on figure 2-6 of a Vertisol (under pasture) corresponding ion 

currents were plotted along with mass changes represented by the DTG.  These initially track 

the differential mass loss curve but deviate beyond about 430 oC enabling a relative 

quantification of how much C remains using the m/z 44 ion as all OM is released through 

combustion.  The additional mass losses beyond this temperature which derive primarily 

from increasing inorganic reactions provides a guide of how much unrelated mass loss needs 

to be incurred in order to obtain those diminishing increments of OM (i.e. % C).   The data 

on table 2-2 (determined using LoggerPro, Vernier Software and Technology) shows a 

benefit – sacrifice regimen to assess how worthwhile each subsequent temperature interval is 

in terms of returning these extra few % C (over and above the 3.46 % mass due to only OM).  

Obviously this varies considerably depending on the soil texture and OM complexity / type.  

Interestingly, Siewert (2004) correlated principal soil components with mass changes up to 
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1000 oC in 10 oC steps.  Very significantly C and N were strongest in the range 200 to 500 
oC and clay % increased to 550 oC producing a composite plot (correlation coefficients 

against temperature) showing some resemblance to the ion plots in this study.   

 

 

Temperature oC 
 
Figure 2-6 Differential mass loss (DTG) and C-trace (m/z 44) for Vertisol under pasture to 
assess benefit of LOI temperatures over 430 oC which are detailed on table 2.  
 
 
Table 2-2  Increments of  % C (OM) and % mass loss (mostly from mineral) for intervals 
beyond 430 oC. 
 

Temperature o C % of total C 
Additional 

% mass loss 
Cumulative 

% mass loss 
440 76.5 0.20 3.66 
460 81.0 0.39 4.05 
480 87.0 0.48 4.53 
500 91.3 0.61 5.14 
520 95.0 0.84 5.95 
540 96.9 0.94 6.89 
560 98.9 0.52 7.41 

 

 

LOI temperatures vary between laboratories (Rayment & Lyons 2011 and their sources; 

Sutherland 1998) and in many cases are likely to overestimate OM values where 

temperatures are excessive.  It is expected that LOI would yield reliable C determinations on 
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sandy or peaty soils and not so much for clay-rich soils which may explain previous 

concerns over the method (Leeper & Uren 1993; Sutherland 1998; Heiri, Lotter & Lemcke 

2001).  However it is suggested that the method should be fairly reliable provided they 

adhere to careful heating regimes and observe the mass changes between 200 and 430 oC 

which should exclude changes from all inorganic reactions (dehydration and clay collapse 

i.e. dehydroxylation).  Generally the conversion factor of 0.58 has been regarded by many as 

not universally applicable due to heterogeneities between soils and should be refined for 

each area or soil type (Sutherland 1998; Kasozi et al. 2009; Pribyl 2010).  In their summary 

on carbon determination methods, Chatterjee et al. (2009) indicate 430 oC (similarly 

conservative temperatures suggested by Nelson & Sommers 1996) as a recommended LOI 

temperature after drying the soil at 105 oC which should, based on our work, yield a 

reasonably good estimate of OM and hence TOC.  However it can be noted that it excludes 

any variable amounts of more resistant OM oxidisable at higher temperatures such as charred 

particles or what might possibly be tied up with the mineral component.  TGA combined 

with other detection techniques clearly reveal the overlap of CO2 due to organic matter and 

OH- from inter-crystalline losses which could give rise to overestimation when mass-only 

changes are considered (as in LOI beyond temperatures of 430 oC).  Conversely, the 

proportion of residual OM (overlapping with inorganic mass changes) that would be 

excluded would result in small underestimations but should provide greater accuracy than 

yields from higher temperature as is often the practice.   

 

It is herein proposed that the C distributed in these two main thermal bands could be 

determined separately by elemental analysis on duplicate soils by oxidising at 430 and then 

again at 550 oC, the difference in C content between the two, potentially representing the 

more stable portion.  Further studies to map the thermal distribution of C in diverse soils, 

depths and land-uses by either TGA/MS or TGA/FTIR is encouraged to uncover any 

relationships with OM maturity or the presence of other C forms such as biochars or those 

that may be mineral bound.  Such combined analyses assist in the interpretation of mass 

change events where whole soils can contain numerous constituents such as iron or 

aluminium oxides and clays minerals as well as OM. 

 

Conclusions 
 
Thermal analytical techniques have been a useful tool in elucidating the distribution of 

carbonaceous materials in soils.  They have exposed some of the weaknesses of LOI 

methods but on the other hand serve an excellent guide to allow its more reliable application.  

It has demonstrated that care needs to be exercised when applying LOI with an awareness of 
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the relevant thermal regions and reactions of the various soil components as seen using TGA 

and adjunct techniques.  The soil data from this study has indicated that traditional 

conversion factors may provide a reasonable carbon estimate for finer textured soils using 

LOI methods as long as temperatures are constrained between 200 and 430 oC.  Data 

acquired using higher temperature methods (e.g. 550 oC) would require more intensive site-

specific calibration which should automatically factor in textural variations.   

 

Thermal methods readily divide organic and inorganic C, as is well known, but could 

potentially be used to distinguish other kinetic pools such as biochars which make it well 

suited to the assessment of management practices for C sequestration.  Further work into the 

carbonaceous material associated with different particle size fractions and mineral matrices 

could be very valuable also. 
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CHAPTER 3 - A CARBON DETERMINATION SYSTEM FOR WHOLE 
SOIL CORES 
 
Key aims of the method 

Dry combustion of soils has been the benchmark method for soil C and N determination.  

Whilst destructive, it is most direct because it extracts this element by converting it to a 

single and pure form, CO2.  This method has generally been regarded as difficult to carry out 

on samples much larger than a few grams due to incomplete conversion and in particular the 

huge �volumes of gas generated.  However the issue surrounding such small amounts is that 

it necessitates greater sample pre-processing e.g., selection, grinding, bulking and sub-

sampling (added cost and labour) which all can lead to deviations from the true composition 

and a loss of ‘representativeness’. 

The hypotheses central to this study that need to be addressed in this and the next section are: 

1. That large aliquots namely the contents of whole cores can be reliably determined 

2. Use them to overcome or improve the uncertainties caused by soil C variability 

3. Incorporate cost efficiencies vital for any large scale measurement of soil C stocks  

Large aliquots in the following studies (including next chapter) refer to amounts in the 

region of 300 or 400 gram which is hundreds of times the soil that is currently analysed for 

the determination of soil C stocks (see review). The method should also be able to measure 

directly both soil C concentration (mass basis, kg/kg) and C stock (volume basis, kg/m3 or 

kg/m2). 

A successful method should deliver: 

Reliable C data with requisite levels of precision 

Ease of application 

Cost effectiveness 

Readily duplicated or verified soil C data 

 

Once demonstrated in field trials, this technique can also provide support for the reliable 

development of other methods such as on–the–go Vis – NIR and MIR, the emerging inelastic 

neutron scatter method as well as providing a ground-truth to spectral GIS approaches that 

incorporate spatial statistics. 

 

                                                 
� Rule of thumb: 1 mole of gas occupies 24.4L at STP 
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Methodology and Design Concept  
 
Classically, C has been determined in a range of materials by combustion at temperatures 

usually over 800 oC (Bisutti et al., 2004) and then determining the product by weight 

(gravimetric), titration or some other means.  Combustion is carried out in O2 rich 

atmospheres to achieve complete oxidation and any minor CO formed can be further 

converted catalytically.  Anaerobic atmospheres produce pyrolysis products and are 

inappropriate for analysis of C.  

Alternative methods of oxidizing C to CO2 and quantitatively capturing all the product gas 

can be achieved by either: 

a) oxidizing C in a constant volume reactor and measuring its partial pressure, 

b) purging and trapping CO2 as combustion proceeds and measuring pressure in a 

constant volume or, 

c) analysing or quantifying the resultant CO2 during the conversion period 

 

These were all considered as part of the proposal but for this study a fixed volume vessel / 

furnace (a), was regarded unsatisfactory for the samples sizes intended, safety and 

procurement.  In addition, analysis turnover will be restricted by cooling periods between 

samples which can also affect quantification (taking of pressure readings) as temperature 

varies.  Similarly a purge and trap system (b) requires messy cold traps and high transient 

pressures. The last option offered numerous advantages as well as simplicity.  

 
 
Description of test bench - individual components 

The soil carbon bench (SCB) was designed around these four main modules: 

1. Enclosed and refractory flow-through reactor tube with gas supply, 

2. Furnace mounted on rolling stock (mobile heat source), 

3. Split flow arrangement leading to measurement systems (e.g. gas chromatograph) 

and 

4. Data acquisition system and computer (signal collection and processing)  

These have been set out schematically on figure 3-1 and shown photographically (plates 3-

1).  Each module is discussed in some detail below. 
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Figure 3-1 Schematic diagram of the important modules that make up the soil carbon bench. 
 

 

Reactor tube, furnace and catalyst 

A purpose built furnace was fabricated with the assistance of Prior Industries Australia 

(Silverwater, NSW).  The heating element consisted of a Kanthal resistance wire wound 

around a 120mm (od) Mullite tube (Ceramic Industries, Croydon, NSW) over ca. 500mm 

length (tube length 600mm).  This was enclosed in a 380mm diameter mild steel casing and 

packed out with low density (Kao wool) insulation.  This type of low density material 

facilitates fast heat-up (800 oC from ambient in ca.45 min.) with lower heat losses (G. Golder 

and R. Macquart pers. Comm.).  This 2 kW furnace was designed so that it could be 

connected and supplied to any domestic single phase outlet (10 amp).   

 

The power was set with an energy regulator (Prior industries) where temperatures were 

monitored by K-type thermocouple (positioned midpoint of unit) connected to a multimeter 

which measures the induced mV signal that is proportional to temperature.  After 

commencement of analyses adjustments to the power regulator were required to maintain 

appropriate and constant heat levels during analyses as heat was dissipated (into soil core 

and also lost).  Usually thermocouple or thermostatic controllers are used for precise heat 

control in laboratories but in this case would have been of limited value where heat losses 

are high due to ‘sinking’ into soil masses and reciprocation of the furnace.  While the 

oxidation of OM occurs under 500 oC and CaCO3 decomposition ca. 650 oC (see section on 

TGA, Chapter 2), a higher external temperature provided an effective gradient to enable heat 

to penetrate the matrix of the typically 300 gram soil core masses held within the reactor.  

The amount of available heat energy (measured as temperature) enclosing the soil also 

affected the time period required to process / analyse soil C on this scale.  The operational 
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temperature (850 oC) was accompanied by the distinctive bright orange appearance of its 

ceramic core making it also possible to visually estimate when the furnace was approaching 

a good operating temperature.  The method of control could ultimately be retrofitted with an 

embedded thermocouple feedback control device for greater precision and safety but given 

the lag accompanying heat transfer has made this a lesser priority. 

 

The furnace was mounted on a rolling stock arrangement to allow the heat to be brought to 

the soil rather than the reverse as in the usual (small-scale) systems.  This facilitated soil 

loading without uncontrolled loss of C but crucially enabled the centralizing of the reactor 

tube within the mobile heat zone.  The parallel track also provided a steady movement 

around the centralised reactor tube.  One disadvantage of the reciprocation method was that 

some heat dissipated onto the relatively cool parts of the reactor containing the soil and on its 

return again.   

 

Alternative methods of heating were considered before proceeding with an electric resistance 

type which was regarded appropriate for test bench purposes.  The ratings given in table 3-1 

are relative and were based on information gathered during the initial discussion, design and 

planning processes.  The mobile design of the current system overcame what would be 

considered the main drawbacks of a resistance element furnace which are its slow heating 

and cooling cycle.  By maintaining temperature and moving the heat source to the soil core 

sample allowed instantaneous combustion (flashing) of volatiles or incipient combustion (in 

heavy matrices) with some lag as heat penetrated.  The soil sample chamber also cooled 

more quickly after the furnace was returned to its standby position.  While there may have 

been advantages with other forms of heating, predictability (uniform heat) and cost were 

important considerations. 

 

 
Table 3-1 Relative merits of different heating apparatus considered for this purpose. 
 
  Heat-up Cool-down Simplicity Power  Initial cost Special 
   rate  rate  consumption  requirements 
Resistance element mod slow high high low N/A 
Induction heating v. fast fast low mod mod ferrous material
Radio frequency v. fast v. fast low high high safety shielding 
Halogen lamps v. fast v. fast mod low mod N/A 
Gas fired fast slow mod low low supply, exhaust 
 
Note that in industry, rotary or tumbler type kilns are used to spread and mix the heat and reactants 
however, where gas flow and seals are required (as here) these could be more difficult to implement.  
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The reactor tube constructed of quartz was especially ‘blown’ to specifications (D. Stathers, 

ANSTO/CSIRO Lucas Heights).  Two main sections, one 85mm (id) x 600mm (to contain 

soil during combustion) were fused to another 40mm (od) x 600mm interval to contain 

catalytic material.  These were terminated with a 6mm gas outlet and Pyrex flange to 

accommodate a sealable cap where soil is introduced.  Quartz was an ideal reactor material 

during developmental work because it allowed observation of combustion events 

(transparent) and withstood innumerable heating and cooling cycles owing to the material’s 

low coefficient of expansion.  Transfer of radiant heat and lower losses through conduction 

(unlike in steel or copper) were also advantageous.  Catalytic material (Cu turnings 

converted to CuO) was incorporated for conversion of volatile C to CO2 but more 

importantly completing the oxidation of CO formation.  Packing of the catalyst held the key 

to reliable performance by preventing excess back pressure and maintaining a steady 

sampling stream which is paramount for quantitative analysis (although higher O2 partial 

pressures do assist combustion).  Inclusion of catalyst served both OH&S and the analytical 

objectives. 

 

An examination of the Gibbs free energy values for the reaction: 

Cu + ½O2 � CuO 

over the temperature range the Cu is exposed to (in the SCB) assists in predicting that at 

operating temperature oxygen is more readily given up to any passing CO than when cooling 

(in oxygenated stream) which favours re-oxidation (i.e. �Go is more negative).  Values 

calculated from enthalpies and entropies at different temperatures have been added to an 

Ellingham-type diagram drawn up for N and C (see figure 3-7 toward end of this section). 

 

The gas supply 

There were two primary requirements for gas flow with the SCB.  The first is to oxygenate 

reactive sites in the solid support (catalyst) in situ and provide an excess of O2 for the 

decomposition and complete combustion of OM.  The second important role of gas pressure 

was to move combustion products out of the system where they can be analysed and safely 

disposed of.  In commercial analysers where several 100 mg material are burnt, O2 (ultra 

high grade) is introduced and locked in for the period of conversion. This is followed by 

expulsion of reaction products by an inert gas usually helium which is an advantage for the 

detection system but then becomes a much more complicated process.  Ideally if these 

functions could be performed by one gas it simplifies many aspects of the procedure.  Air is 

the obvious candidate (21% O2 and 78% N2 inert carrier) because it can oxidise, is readily 

available and is safe.  Industrial grade air was trialled initially at flows from 0.2L to 2L min-1 

but there were disadvantages that accompany the use of this gas (see also under subsections: 
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combustion efficiency and nitrogen).  Poor conversion was experienced with air-only purging 

(see plates of soil and char below) unless higher pressures were used (increased pO2) which 

caused intermittent seal problems (remembering it was designed as a low pressure flow 

through apparatus with inbuilt overpressure release).  Any bursting hazard was managed by 

having a continuous open vent for the bulk of the gas stream and a spring tethered flange at 

the inlet. 

 

Subsequently 100% O2 in the form of industrial grade oxygen was supplied at similar flow 

rates to the system to overcome these oxidation problems.  This almost instantly solved any 

difficulties relating to the kinetics and completeness of conversion and could be done at one 

atmosphere pressure.  Using industrial or welding grade oxygen has other advantages. It is 

cost effective ($20 per cylinder refill) and readily available also in rural areas.  � Pure oxygen 

became both carrier and oxidant, making it very convenient for operation but safety 

considerations needed to be observed.  Experimental methods in the past have generally been 

concerned with analysing low amounts of C in samples and then the background levels in the 

gas supply may be significant.  To remove any uncertainty in these situations researchers 

‘cleaned it up’ by passing it through traps (e.g. molecular sieve) or preheating the oxygen 

supply (Salonen, 1979).  In the current situation, C bearing contaminants may have been 

present in this lower grade gas.  Although any contamination is a constant, the oxygen used 

to convert and purge OM from the soil cores was also tested to assess if it contained 

impurities that might contribute C to the overall signal which arises from either CO2 or 

hydrocarbons if present at low levels.  Impurities were not evident in any blank runs where 

only gas was passed through furnace and theoretically for the purge volumes used per soil 

core (1L per min. for 5 min.) even 100 ppm impurity would only add 1/2 ml to the total – an 

insignificant amount even in low C soils.  

 

Monitoring and measuring gases – the alternative analysis devices 

The range of gas sensing devices was reviewed and evaluated in terms of suitability, 

longevity and cost.  A number of alternative detection methods could have been used to 

carry out a proof of concept for the SCB up to and including soil C field trials.  The . (3-2) 

compares the various merits of traditional and emerging detectors.    

  
 

                                                 
� Oxygen is an accelerant that can be hazardous in some circumstances such as where it is allowed to 
accumulate in combustible materials. 
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Table 3-2 Detector attributes for types commonly used in gas determination  
 
Type Range Specificity Robustness Current suitability 
IR (NDIR) trace to med CO2 high high 
Chemical gas sensor trace CO, CO2,  low high 
TCD low to high all gases mod high 
Cold wire low to high all gases v high high 
Discharge ionisation trace HCs, He mod low 

Flame ionisation trace HCs, CO, N2O v high low 
Electron capture trace N2O, CO2, ClHCs mod low 
 
 
Infra Red 

For C measurement via the CO2 form, infrared absorption is the obvious method of 

detection.  This is because asymmetric, diatomic gases absorb energy in the infrared region 

making it very sensitive to trace amounts.  Water vapour, CH4, N2O and CO2 are strong 

absorbers, hence their reputation as GHGs. These devices typically operate at ppm levels or 

low %.  In order to incorporate this detection system into a combustion system where huge 

volumes of CO2 are produced would require dilution of the sample stream and introduces a 

potential source for error.   Dispersive infrared is where the IR beam is broken up (optically) 

into a continuum of wave lengths for a given range (as determined by the source and 

beamsplitter), and enables the entire spectrum to be scanned and collected.  By contrast non-

dispersive infrared gas detectors (NDIR) are so ‘tuned’ that the broad region around the 

major absorption band for CO2 (4.24�m) are detected and quantified.  In addition, to perform 

optimally the gas should be as dry as possible (Smith and Tabatabai , 2004). 

 

Chemical Gas Sensors 

These sensors operate on the basis of gas diffusion through a membrane and a chemical 

reaction resulting in either an amperometric or potentiometric change (Dubbe et al., 1995).  

In the latter the electrical potential is proportional to the gas partial pressure where the 

relationship can be described by the Nernst function (Marr, 2004).  Being fairly gas specific, 

these detectors allow acquisition of data in real time because there is no intermediate step 

such as GC separation.  This developing technology was attractive due to the gas specificity 

but suffers from being restricted to trace levels and saturation limiting service life 

(poisoning).  During SBC development an EL–USB –CO data logger (Lascar Electronics 

Inc.) was used to monitor CO for the purpose of gauging the combustion efficiency of the 

system as well as health and safety.  Amperometric type devices can be gas selective by 

optimising the electrode potential but some cross selectivity can still occur (LaConti et al., 

1971). This phenomenon was evident during SCB operation where hydrogen used as a 

carrier gas for the GC (flow rate 25ml / min) was also concurrently registered by the device.  
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Care was required not to mistake these two sources, however more seriously, greater 

exposure to such other reactive gases further limits the life of the electrodes. 

 

Thermal conductivity detector (TCD) 

Like all materials, gases have a particular heat transfer capacity or thermal conductivity 

(TC).  These can be measured in absolute terms (for example CO2 dissipates 0.0154 watts 

per metre Kelvin compared to 0.0240 for air).  However when discussing gas 

chromatography it is more convenient to express TC values relative to air and these have 

been set out for common gases on table 3-3.. Generally the lighter (smaller) a molecule is, 

the greater its ability to remove heat.  This property makes it possible to observe differences 

in gas composition by measuring changes to electrical resistance resulting from heat 

dissipation.  Thus the relative thermal conductivity of a gas can be measured by the 

resistance of a fine filament (examples on plate 3-1) within a stationary or mobile gas stream 

and this principle has been successfully employed in gas flow measurement devices.  Usual 

TC filaments are composed of rhenium and sometimes tungsten or nickel but these are all 

susceptible to oxidation.  Normally TC sensors are incorporated in such a way that one or a 

set of filaments is held in a reference stream of pure, non-oxidative gas, commonly He, while 

the other set is positioned in the sample stream which is primarily the same gas with variable 

concentration of impurity gas which periodically alters the electrical resistance properties of 

the filament wire (through heat conduction) as these gases come and go.  Electronically these 

sets of filament wires (matched sets at close to 110 ohm for TCDs) are arranged to form a 

Wheatstone bridge circuit.  An impurity gas having a different TC to the reference gas 

results in an imbalance across the bridge measured as a small difference in potential (mV).  

Understandably where the sample gas has an equivalent or similar TC to the reference it 

becomes in effect invisible to the circuit.  Oxidation is the biggest operational concern with 

this type of device, (Gow Mac Instrument Co and personal experience). 
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Plate 3-1 Example of a TCD filament (left) and a thermistor bead on the right. (Source: AGC 

Instruments) 
 

Thermistor filaments (have higher resistances values) are also thermally sensitive elements 

but have a negative electrical characteristic (i.e. more conductive when warmer) and operate 

well at ambient temperatures.  These are manufactured from a mixture of metal oxides (Mn, 

Ni, Co), sintered in an oxidising atmosphere and glass coated to provide resistance to further 

oxidation although, these should not be used around H2 atmospheres (advice from Gow Mac 

Instrument Co., New Jersey).  Variations of this type of device can be found in low 

temperature (Cold Wire) applications as well as gas flow monitoring e.g. some digital flow 

meters and spirometers.  

 
Table 3-3 Thermal conductivities for common gases expressed relative to air (source: Gow 
Mac Instrument Co.). 
 

Gas 27oC 93oC 
Air 1.00 1.00 
Ar 0.68 0.68 
CO2 0.64 0.71 
CO 0.96 0.97 
CH4 1.31 1.42 
N2O 0.66 0.76 
NO 0.99 1.00 
NO2 - 2.68 
O2 1.023 1.031 
N2 0.99 0.99 
He 5.73 5.50 
H2 6.94 6.78 
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The thermistor filaments used in this experimental work had resistance values of 2200 ohms.  

These elements were similarly fed into a Wheatstone bridge arrangement to provide a stable 

baseline signal and a response to slight changes in resistivity due to altered gas composition.  

The cold wire sensor was powered by 3 V (DC) which supplied a low mA current where 

signals usually under 10 mV were produced by CO2 depending on the organic material, 

carrier gas type and volume passing through the cell (figure 3-2). 

Binary gas mixture

from reactor              
at 26ml min-1

Wires carry mA current 
between thermistor element 

and Wheatstone bridge circuit

Thermistor 
element

 
Figure 3-2 The Cold Wire (thermistor) cell used in process monitoring and C determination. 
 

To sum up, chemical gas sensors can cost less that $150 and are highly sensitive (ppm) but 

absorb gases being measured leading to saturation, shortened service life and also possibly 

changed sensitivity with time.  This makes such devices not sufficiently robust for this work 

where gas volumes can be enormous.  Cheap and portable NDIR cells can also be purchased 

for a few hundred dollars but these are constructed to monitor work-spaces for levels of CO2 

under 10%.  

 

For the purpose of demonstrating the concepts and answering the questions posed in this 

study, thermal conductivity devices (constructed and arranged into a bridge circuit) offer the 

most effective, versatile and low cost alternative to implement.  However it remains perfectly 

feasible to incorporate other types of detector systems provided they have a satisfactory 

sensitivity range and are resilient against degradation.  The disadvantage of fixing a FTIR 

cell to the SCB (approx. cost AUD$15,000 and a little less for NDIR) would be a 

requirement to dilute the sample gas flow and if not carefully controlled can be a source of 

error during quantification. 
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Soil carbon test bench operating procedure  

The process involved transferring the (>800 o C) heat by means of the rolling stock system 

directly to the (previously weighed) soil material held within the 85mm diameter quartz 

reactor tube as the oxygen flows at slightly over 1 atmosphere pressure.  The furnace was 

manually reciprocated along the rail bed between sample (soil / calibration materials) 

position A (Plate 3-2) and catalytic copper turnings at the other end (position B).  In standby 

the catalyst heated up again in readiness for oxidation.  Conversion of carbonaceous material 

was carried out using between 0.5 and 1.5 L min-1 O2 but 1 L min-1 was found to be optimal 

so became the standard rate.  This provided adequate oxidation throughout the hot bed of soil 

inside the quartz reactor without too much overheating caused by gas exiting at too high a 

rate.  This also served as the principal carrier gas transferring product to the detection cells 

and ultimately the vent.   

 
 

 
 

Plate 3-2 Photographs of the SCB in standby and combustion positions. 
 
 

Clean copper turnings (approx. 2mm average thickness) were lightly packed into the 

catalytic part of the reactor (see plate 3-2) to oxidise volatile OM and CO (after 

preconditioning it in situ) and reduce NO2 (at ‘cool’ end).  It also acted as a filter to arrest 

any particulates. 

Oxidising of OM 



Analysing whole cores                                                                                          The Soil Carbon Bench 
 

 65 

Ignition temperatures for OM are often discussed in the literature as low as 200 oC or so.  

The TGA work (Chapter 2) has provided a reliable guide to the various reactions (including 

self ignition) occurring during the combustion of soils.  Combustion of OM is an exothermic 

reaction requiring a minimum temperature (in the absence of a naked flame) to exceed the 

required activation energy.  Typically in a stream of oxygenated atmosphere this self ignition 

for OM begins around 230 to 250 oC (figure 3-3) indicated by the differential (rate of mass 

loss) curve.  Onset times (i.e. start of mass change event) depend on heating rates, amount of 

insulating matrix and adequate O2.  Thermally resistant (refractory) OM can also be present 

such as charred C, and these require a higher degree of heat energy for ignition to occur.  

Carbonates if present begin to decompose to gaseous CO2 above about 650 oC and need to be 

considered / tested during dry combustion methods for soils. 
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Figure 3-3 Thermogram of soil heated at 10 oC min-1 to show major mass loss events.  
 
 

The discrete mass loss events above relate to the following predictable and simple set of 

products (gases) released during the heating of soils:  

<200 oC    water vapour 
230 – 430 oC     CO2, some water, CO, NOx  
430 – 600 oC and over   water, CO2 
 
 

 

Combustion efficiency 
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The appearance of the residue can tell a great deal about the heating conditions.  For 

example, the photographs below are of a soil (plate 3-3a) and foils on which pure charcoals 

(plate 3-3b) had been oxidised.  The gradation in the level of oxidation to the right is fairly 

obvious in the soil and reflected insufficient heat and partial pressure of oxygen.  Similarly 

the foils on the right are clean because these were combusted with pure O2 while those with 

grey residue have not completely converted because air flow was used.  There were several 

other measures that could be used to gauge the completeness of conversion and include: 

o Gas composition, 
o Elemental analysis of residue, 
o Re-combustion and signal 
o Co-linearity of CO2 vs mass loaded 

 
 

 
 

Plate 3-3 Combustion of charcoal on foil (a) and soil (b) under variable O2 conditions. 
 
Spot checks on processed soil residue (ashed) by elemental analysis yielded only background 

signal as are obtained for blank analyses and re-combustion did not indicate any residual C 

either. 

 
Carbon Monoxide 

While all the C may be extracted from the soil (as indicated above) it does not automatically 

follow that it has been quantitatively converted to oxidised product.  A good diagnostic 

indicator of combustion (quality) and oxygen sufficiency is the level of carbon monoxide 

(CO) produced.  Monitoring CO concentrations by GC was difficult (see next section) with 

respect to gas separation and TCD sensitivity which is limited to % and over.  This may have 

been possible under pyrolysis conditions where much higher levels can be reached.  Instead, 

a chemical gas sensor (USB pen type) which can detect CO down to a few ppm was 
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positioned in proximity to the gas outlet which recorded every 10 seconds.  The levels during 

SCB operation depended on various factors (precise location of sensor, the amount of C 

burnt when air was still used, even other gases used in the vicinity).  Overall the combustions 

were reasonably well managed, where CO levels were typically under 500 ppm as shown on 

the example of output (figure 3-4).  

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35

Monitoring period (min)

C
O

 (p
pm

)

 
Figure 3-4 Levels of CO over typical experimental session as measured by CGS sensor. 

 
 
Developing the Methodology 
 
To assist in monitoring combustions and then devising the most effective methodology for 

determining C from soil cores, the SCB system was connected to a gas chromatograph (GC) 

fitted with a thermal conductivity detector.  A second hand Shimadzu model 8A GC was 

acquired for this purpose.  Being older and of basic design it lent itself very readily to 

modifications and adaptation with the experimental SCB rig (see plate 3-2).  The instrument 

was fitted with dual injectors / column capability and a thermal conductivity detector.  

Connecting a GC had a two fold purpose: 

i) monitoring various processes during experimental development i.e., completeness of 

combustion, excess O2, other gases and 

ii) determination of the amount of C being produced by the system either from 

calibration material (sucrose, charcoal, standards) or soil C. 

 

It was not possible to simply pipe gas to the detector and there were several reasons for this.  

First gas mixtures need to be separated prior to detection for proper analysis, second, low 

pressure flow (from the SCB) must enter the high pressure GC systems and thirdly the 

amount of oxidising gas to the TCD detector must be kept to a minimum (the stream is 

predominantly excess O2).  
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Therefore certain modifications to the instrument were required to be able to use it to 

monitor the combustion of soils and involved: 

-fitting an 8-port Valco valve to the carrier gas supply to obtain ‘snapshot’ analyses during 

soil combustions 

-fitting of Cold Wire (thermistor) sensor upstream to monitor the combustion event 

-connecting to the valve various volume sizes which are constructed of stainless steel or 

aluminium tubing which (referred to in GC parlance as sampling loops)   

 

The concept was that the loops capture fixed volumes of combustion product for transfer to 

the GC column where gases are resolved (separated) prior to detection. 

The GC separation column was made from a 2m length of ¼” (6mm) tubing, moderately 

packed with Porapak® type Q polymer (80/100 mesh).  Its primary purpose was to isolate the 

CO2 from all other gases in the mixture of products from soil (and C standards) combustion 

for accurate determination.  To achieve this, an operating temperature of 40 oC isothermal 

was satisfactory but separation efficiency depended chiefly on the size of gas aliquot sub-

sampled from the exit stream.  Overloading is a familiar problem in chromatography 

resulting in a lack of resolution and the inability to analyse individual components by 

univariate means.  Loop volumes below about 40 ml could be resolved (60m was 

oversaturated) into their gas constituents (CO2 and residual O2) from the SCB system.  

Before operating, the column was baked at 140 oC with carrier flow to remove contaminants, 

mainly water.  Monitoring the gases by chromatograph was done to gauge how oxidation 

was proceeding.  It was readily observable that excess oxygen signals were inversely 

proportional to the amount of C loaded but peaks were ‘clipped’ because this gas was 

overloaded on the separation column.  The TCD is ‘broad spectrum’ detector capable of 

responding to any type of gas (or even mixture) provided it has a thermal conductivity 

sufficiently different to the reference gas and it is present above the minimum level of 

sensitivity.  In these experiments, H2 was used as reference gas (rates of 25ml min-1), being 

low cost and having a thermal conductivity that contrasts well against the analyte gases (see 

table 3-3).  In the case of TCD this lies around 0.01% (vol / vol) so that trace quantities <100 

ppmv are less likely to be recorded.  The possible gases resulting from combustion usually 

include CO2, residual O2, N2 and traces of CO (and much less likely hydrocarbons such as 

CH4 within an oxidising atmosphere).  These gases can be detected by TCD at % 

concentrations however gases other than CO2 and excess oxygen were not noted.   

 

These combusted quantities of soil were relatively large (and soils are good heat insulators) 

which meant the quantity of heat had to be sufficiently high to penetrate the soil mass so that 

the temperature at the soil centre could extract and convert all C present.  The cold wire 
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(connected up stream of the chromatograph) proved to be an interesting and invaluable 

means of observing the full duration of the combustion event.  It provided (in near real time) 

an indication of commencement to completion as the C was being evolved from the SCB 

after which time the signal returned to baseline.  The GC and cold wire outputs were 

recorded simultaneously (Logger Pro 3.8.4) as shown on figure 3-5.  Note, as the 

temperature rose within the soil, any incipient oxidation due to refractory C continued to 

report at the detector until fully converted.  This safeguarded against selective conversion 

where recalcitrant forms are not fully combusted because of insufficient exposure time.  This 

addresses concerns about some of the more recalcitrant OM remaining at even 700oC as 

noted by Wang and Anderson (1998) and that complete conversion is time dependent 

(Chichester and Chaison, 1992). 

More thermally resistant C produced attenuated peak shapes where for example carbonate 

was not distinguishable from SOM but was very elongated due to the slow decomposition of 

CO3.  Therefore the completeness of combustion of the soils (synthetic soils used charcoal as 

the C source) could also be directly observed by the cold wire trace (i.e., return to baseline) 

but was also reflected in the oxidised appearance of spent soil and coherent area data.  It 

demonstrated that heat was transferred effectively when the furnace temperature (as 

measured by K-type thermocouple on the internal annulus of the heater core) was operated at 

800 - 850 oC. 

 

A secondary aims using the SCB proposed at the outset was to analyse by GC the oxidation 

products at several successive heat levels (300, 400, 500 oC etc.) as one might with 

thermogravimetric methods.  However the coarser temperature control along with the sheer 

mass of soil (leading to variable and uncertain heat transfer) meant such experiments were 

best assigned to TGA studies (chapter 2) which can carry out slow continuous heating at 

variable rates.  In other words the SCB was best suited to instantaneous combustion of 

contained carbonaceous matter (determination of the total) rather than thermal differentiation 

although recalcitrance in combustion was reflected in signal delays. 
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Figure 3-5 Composite signal outputs: cold wire sensor monitors the bulk gas composition 
and the TCD detector via the 6.5ml sampling loop and GC column. 
 
 

The response areas obtained from the cold wire sensor when correlated with the mass of C 

loaded into the SCB system produced a linear relationship (discussed further under 

calibration section 3.3) indicative of quantitative combustion.  However, the response areas 

recorded from the GC detector (shown on figure 3-6) were linear up to about one gram total 

C but levelled thereafter.  This pointed to an oversaturation effect within the sampling loops 

even though the GC base line separations were easily achieved and the peaks within range as 

exemplified by the TCD output on figure 3-5.  The extent of linearity (GC area data) may 

have been a little influenced by sampling loop volume but appeared to be mainly controlled 

by the volume of gases generated which are then not fully captured.  The sampling loop / GC 

method could be used for soil C determination where the amount of C is under a gram or if 

sub-sampled from a static, fixed volume reactor vessel. 
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Figure 3-6 Comparing area responses for the 6.5 and 28ml sampling loop volumes. 
 
 
Flow rates and the analytical stream 

The key aspect of this system would have to have been that most of the gas was vented and a 

small but representative stream was split at a T-junction, diverted and used for analysis.  This 

needed to be a constant ratio to be quantitative but the benefits were an interpretable signal 

(to ‘see’ the combustion) due to C within a dynamic operating range and minimisation of 

noise producing inputs (moisture, pressure and temperature changes) over the entire process.  

The fractional stream also means that some delay and attenuation of the event as indicated at 

the sensor was experienced because the linear velocity of this flow is reduced relative to the 

bulk stream.  

 

The use of a single gas to oxidise the OM in the soils and move products through the system 

had simplified the process with fewer cylinders, valves and lines required (apart from the H2 

used for the GC) and facilitated the setting up of the sampling stream.  The gross flows of 1L 

min-1 oxygen through the SCB were found to provide a good balance between heat transfer 

away (where the gas exits the rig) and an acceptable turnaround in analyses.  In addition the 

majority of gases were vented from the work area to waste (vacuum system vented to roof of 

building).  The possible gases generated from this chemical system that combines OM and 

excess O2 can include: 

CO  highly poisonous (accompanies incomplete combustion) 
CO2  asphyxiant 
OCNs  unlikely or very low 
NOx  toxic and forms nitric acid 
CH4  asphyxiant, not important unless pyrolysis conditions 
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The gas flow pressure was set by adjusting the regulator (at the cylinder) to 20psig however 

there was some flexibility provided it was sufficiently positive to produce a flow.  The rate 

of flow was more critical and set at 1L min-1 by means of a gas metering valve while the 

value was indicated by (Platon) rotameter, both devices located (in this order) upstream of 

the reactor’s gas inlet flange.  Early experiments tested variations to this configuration but 

resulted in poorly controlled flow, excessive pressures and difficulties in setting and 

monitoring the flows generally.  The reactor vessel was designed to ‘rupture’ and release 

pressure in the events of too much gas, explosive force due to high amounts of pure organic 

material or high back pressure. 

 

The sampling stream was controlled by the sum of restrictions acting on the gas coursing 

past the T-branch, through the cold wire sensor block, sampling valve and loop arrangement 

to the exit where the rate of flow was measured by HP digital bubble meter. This could also 

have been done by a secondary valve but the totality of these devices produced an optimal 

restriction to achieve the efficient 26 ml per min. This flow was directed to the various 

analytical components for measurement of contained C (in form of CO2) and proved to be an 

ideal fraction in terms of reducing the huge total volumes generated from calibration 

materials and soil cores in addition to the problematic water released from mineral lattices 

and oxidation of H from OM.  The bulk stream of approx. 975 ml min-1 compensates when 

any changes to sampling stream occurs (e.g. blockage due to condensation in extreme cases) 

and in theory the consistency of flow was regarded as a crucial factor in calibration and 

measurement.  However, in practical terms the SCB system appeared robust enough to cope 

with small flow fluctuations (e.g. 24 ml instead of the 26 ml) indicated by comparable 

output.     

 
 
Nitrogen during analysis 

There are two sources of N2 (inorganic and organic) that need to be considered in 

combustion analyses.  A large volume of inorganic (atmospheric) N2 passes through the SCB 

between each sample as a consequence of soil sample loading (current manual operation) 

and clears along with any traces of oxidised species formed (initial peak cold wire, figure 3-

5).  As molecular N2 moves through the heated zone, some ‘prompt’ NOx can be formed via 

the Fenimore mechanism (Dean and Bozzelli, 2000) but this is more relevant in the presence 

of fuel such as OM.   Thermodynamically N2 should be favoured at these furnace 

temperatures (850 oC) used for ignition and most of the concerns associated with prompt 

NOx formation have been eliminated here by the use of O2 rather than air as dual carrier / 

oxidant.  There was the added precaution where Cu/CuO extending to the ‘cool’ zone at the 
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end of the reactor facilitates reduction of any NOx through re-oxidation of Cu (to form 

Tenorite).   

 

The organically derived N (so called fuel N) on the other hand (usually equivalent to about 

10% of the C present) could potentially interfere with the C signal where these are measured 

concomitantly.  In particular, NO2 has a high thermal conductivity (table 3-3) and any 

significant amount would be problematic for C quantification using the cold wire sensor.  

For example if an equivalent volume of NO2 was co-eluting with any CO2 this would 

diminish its total response by a factor of about 2.  NO and NO2 are reactive gases (Chickos et 

al., 1973) formed during oxidation of N ions released from OM.  There are a number of 

complex pathways (Dean and Bozzelli, 2000) by which N oxides to NO2 with NO as an 

important intermediate stage so that: 

NO + ½O2 ↔ NO2 

Calculating the Gibbs free energy (�Go) of reaction allows some prediction to be made on 

the direction of an equilibrium reaction and therefore whether either NO or NO2 

predominates at a particular temperature.  The data (plotted below on figure 3-7) shows that 

at the temperatures used in the SCB, �Go have positive values meaning that the equilibrium 

shifts towards the reactant NO rather than NO2 (which would be minor if present).  The 

reduced Cu at the reactor exit also acts to ‘snatch’ any stray NOx promoting the molecular 

form (N2) beyond that point.  Similarly calculated �Go values for NO2 formation from N2 are 

positive and therefore not spontaneous at these temperatures.  The thermal conductivities for 

species NO, N2O and N2 are very similar to the reference stream (O2) as indicated on table 3-

3, meaning these gases are effectively ‘invisible’ relative to the carrier.  Comparisons of area 
�counts acquired for atmospheric N2 have been made here with the areas for similar volumes 

of CO2.  On this basis a 300 gram soil core at 2% C would record about 2000 area counts for 

C and a negligible 5 for most forms of N making it difficult to distinguish from background 

carrier using the cold wire sensor.  Chromatographic retention times for any gases depend on 

carrier flow, temperature and the type of packing media.  On Porapak type Q, as used here, 

the order of elution expected is according to their boiling points (N2 < NO < N2O < NO2) but 

to be detected by the TCD would need to be present above trace levels.  However in these 

chromatograms such gases could not be distinguished from the overwhelming presence of 

excess O2 and CO2.  Ultimately it would be desirable to accurately measure the amount of N 

(as N2) contained in soil cores, it being an important macronutrient.   

 

                                                 
�Absolute area counts are specific to the particular data (A/D) collection system, sampling rates, 
sensor and amplifier used. 
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Figure 3-7 Ellingham-type diagram to indicate spontaneity for the reactions and gas 
formation occurring in the SCB. 

 
 
Water during analysis 

On heating, soils release additional water (several %) beyond the normal drying temperature 

of 105 oC (i.e. oven dry moisture).  Free water, which can be more considerable when 

sampled after damp periods, is easily removed by air drying and low temperature oven 

without degrading the OM (although volatile C-containing compounds are almost certainly 

lost).  However there is structural water that is incorporated in the lattice of clay minerals (in 

addition to OH– units between phyllosilicate sheets).  Greacen (1981) found that the lattice 

water ranged from 0.02 m3/ m3 in sands to 0.1 m3/m3 in clays. It is released only after much 

higher temperatures are attained (430 oC), where OM still continues to decompose / oxidise 

thus presenting a potential interference for C analysis in any thermal method (see chapter 2) 

including the SCB.  Even NDIR detectors which are tuned to the major CO2 absorption lines 

require a dry gas for analysis (Smith and Tabatabai, 2004).  Thermal analysis studies 

(chapter 2) have been a useful way of describing the relative distribution of water-related 

events over a heating cycle.     

 

The SCB is a bulk C system that operates at over 800 oC and transfers heat into the 300g plus 

soil mass to degrade and extract carbonaceous material including BC.  Elemental analysers 
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run at equally high temperatures but operate in a somewhat different way, transferring 

product gases in stages and removing water with hydrophilic traps.  This is a cumbersome 

step and would have meant operating at increased system pressure or otherwise introducing a 

condenser coil which needs to be dried frequently.  While the bulk gas stream was found to 

be ‘dripping’ during the analyses of finer grained soils, to date, any precaution in the 

methodology to trap out water from the analytical stream flow has been avoided owing to the 

SCBs general configuration.  That is, the concept of a fractional stream (40:1) vastly reduces 

this problem which can cause flow blockage as well as interference at the detector.  The 

experimental soil C data presented here was based on a fractional flow of 26 ml min-1.  This 

appeared to be an optimal flow rate while it probably entailed some condensation on metal 

surfaces en route to the detector block (followed by cyclical drying as gas purges through) 

but appeared manageable.  The architecture of the cell (refer to figure 3-2) also makes it less 

susceptible to contamination from a ‘dirty’ gas stream where the filament wire is raised away 

a little from its direct path.        

 

However, analyses conducted on such amounts of soils were expected to yield water 

quantities resulting from the mineral matter typically around 6g depending on the 

percentages of clay (refer to clay related TGA mass loss on figure 3-3).  Because both CO2 

and water can appear at the detector concurrently tests had to be carried out to gauge any 

interfering effects due to water vapour from the gas stream on the overall C analyses and the 

detector baseline.  To do this, comparable amounts of water were heated in preconditioned 

soil matrices (C removed).  The resulting traces (example on figure 3-8) did not indicate 

adverse effects and as discussed would be due mainly to the reduced analytical flow to the 

detection system substantially dropping the apparent level to more like 0.2 g per soil 

analysis.  

There is also the additional source from the combustion of OM according to one of the basic 

chemical reactions: carbohydrate + O2 � CO2 + H2O 

Simple carbohydrates from recent OM resemble sugars and starches with the common 

formula CnH2nOn and are a rich source of oxidisable H.  The amounts of H (i.e. potential 

water) tend to decrease with maturation / preservation of OM (Schnitzer et al., 1964) and are 

much lower from charred materials but these differences are likely to be irrelevant in 

comparison to the amounts of clay minerals present. 
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Figure 3-8 Cold wire trace to test effect of usual water contents (background burnt soil and 
water). 

 

 

Calibration and Performance evaluation of the SCB 
 
Calibrating the SCB 

The calibration work was based on the combustion of known amounts of pure carbonaceous 

materials.  These became the internal standards and were primarily sucrose (42% C) and 

charcoal (70% C) which were readily available.  Combustion initially of neat material was 

replaced by ‘synthetically’ prepared (i.e. organic bearing) soils where these pure substances 

were mixed into previously ‘cleaned’ sandy clay loam (from Lansdowne).  There were two 

main reasons for this: 

a) pure materials can result in explosive combustion events and while the detected peak 

shapes are favourable gas can be lost and 

b) experiments needed to simulate the extraction of C from soil matrices as much as 

possible because the calibration had to be applicable to (unknown) soils. 

 

The calibrations summarised by the charts on figure 3-9a and 3-9b span 0.1 to 3.5 gram C to 

cover the typical soil contents expected in subsequent field trials.  While most attention was 

given to lower end calibration, an upper limit for the system has not been reached.  

Instrument responses were acquired with a sampling rate of 1Hz and the data system (Logger 

Pro3.8.4, Vernier Software & Technology, Oregon) set to 20mV range.  Most importantly 

the preset analytical stream was measured at 26 ml min-1 and while not used numerically it 

must remain constant.  
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On the second chart a narrower region has been expanded (range where most activity has 

been carried out) showing C values re-calculated using the derived calibration function and 

respective areas along with error bars representing the standard error of the mean (�SEM).  

This area response data was obtained by the cold wire sensor where linearity extends 

between the origin and the maximum amount of C tested.   

 

The C compositions of calibration materials were also determined by elemental analysis 

(Vario Max) as part of the standardisation process.  While carbonate yielded the expected 12 

% C there were serious variations in charcoal results that could not be assigned to moisture 

(due to hygroscopic properties).  It was concluded that the commercial analyser was easily 

oversaturated where C occurred in high concentration and care was required when analysing 

black C material.   
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Figure 3-9 Calibration chart for the SCB correlating areas with amount of C (a) and error 

bars (b). 
 
 
Performance parameters 

Standard methods were used to characterise the performance of the SCB analytical system.  

The Standard error of prediction (SEP) was calculated so that: 

SEP = [1/n (measured-standard)2]0.5 

The calculated standard error of prediction (SEP) based on the calibration data was 

determined at 0.7 g C /kg which provides a measure of the analytical uncertainty when 

applying the slope function to ‘unknown’ soils.  Sources of error that may contribute to 

analytical results might be: 

                                                 
� SEM = Std deviation / �n where n is number of calibrations at given mass  
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-unsteady balance when weighing out small amounts of soil with high C content, 

-leakage of gas or blockage of flow which changes the relative magnitude of the analytical 

stream and / or 

-incomplete oxidation of C in the soil. 

 

In practical terms the lowest concentration that can be reliably analysed can be determined 

by running standards at successively lower concentration and plotting the results (and 

standard deviations).  It can also be useful to compare the signals obtained for known 

amounts against baseline noise from blanks.  However it is not necessary to successively 

reduce the amount of analyte (gram C) to determine the lower limit of detection (LLD).  The 

limit of detection is derived from the smallest measure that can be detected with reasonable 

certainty for a given analytical procedure (IUPAC, 2006). There are a number of different 

"detection limits" that are commonly used, one of them being the method detection limit 

(MDL).  The method detection limit (MDL) is a statistical approach based on replicate 

analyses (table 3-4) at one particular concentration (U.S. Environmental Protection Agency, 

1997; Oblinger Childress et al., 1999).  This parameter in effect quantifies the amount of 

signal unrelated to the analyte which is then used to determine LLD.    

 

MDL = Std deviation (replicate analyses) x student t coefficient, 

 

where the replicate analyses are carried out on the same (low) concentration over several 

days to capture all possible variables and the student’s coefficient (t-distribution, � = 0.01) 

given by the number of replicates.  Accordingly, the MDL and LLD were determined for the 

SCB based on repeated aliquots of soil containing 0.35 gram C (representing low end of 

scale) analysed over different days.  The standard deviation for the test values in table 3-4 

(0.03) with the T-test value for n=9 at 99% confidence level, yielded the MDL of 0.085g C.  

MDL provides some measure of the variance due to extraneous signal and changes to the 

MDL over time can alert to problems with the analytical system (it may also be useful to 

carry this out for different levels of concentration). 

 
More useful information on this subject can be found on the following report by the US 
Geological Survey (Childress et al., 1999): 
http://water.usgs.gov/owq/OFR_99-193/detection.html 
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Table 3-4 Detector response data (recorded as area counts) based on replicate (0.35 g C) 
analyses to yield final C determinations (univariate analysis) then used to obtain MDL value. 

 
Analysed Response Yield 
Gram C Peak area Gram C 

0.35 101 0.30 
0.35 115 0.34 
0.35 108 0.32 
0.35 112 0.34 
0.35 123 0.37 
0.35 134 0.40 
0.35 107 0.32 
0.35 114 0.34 
0.35 113 0.34 

 
 

Commonly a concentration 2.5 times the MDL value is regarded as the LLD and below this 

the analytical results are deemed unreliable and could report a false positive.  In this case the 

LLD was 0.17g C and if we take a look at the instrument output (figure 3-10) for soils 

containing C at similarly low levels (MDL 0.085) it is clear that system perturbations and 

noise become significant factors.  

 
Figure 3-10 Instrument response for low total C masses (one gram of 1.02 % and 2.6% soil C 
standards).  N2 peaks derive from atmosphere during sample introduction. 
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SUMMARISING THE SCB 
 
GC was a useful companion in developing the SCB – although it was limited in sensitivity 
for CO and currently unable to measure N2. 
 
Soil C can be determined with the GC on calibrated sampling loop volumes below a critical 
amount of total C in the sample which is about one gram = 1% in 100g. 
 
The thermistor sensor proved very responsive to the amount of C in the bulk gas resulting 
from the combustion of simulated and natural soils over a 0.1 to 3.5 % range. 
 
The SCB is a test bench that forms a template for commercialisation and / or the possibility 
to up-scale further if required.  
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CHAPTER 4 - FIELD TRIALS: SOIL CARBON BENCH FOR WHOLE 
CORE ANALYSIS 
 
One of the major problems confronting the measurement of soil C stocks is the variability 

with space both laterally and with depth (Goidts et al., 2009; Hiederer, 2009).  This is 

influenced by the geology, soil type, climate, topography and land use.   

Patterns in soil C variation with depth alone can be diverse and depend on any of the 

following: 

a) the subsurface – for example it can increase where carbonate occurs in the regolith, 
b) the rate of OM accumulation and oxidation (inputs /outputs) controlled by aeration 

properties 
c) bioturbation including tillage or 
d) natural phenomena – for example as occurs in the Cranbourne sand of Victoria 

(Leeper and Uren, 1993) and vertisols generally. 
e) alluvial / colluvial processes and  
f) podzolisation and eluviation  

 

Therefore the objective to analyse a nominal depth interval, which is also well aligned with 

the IPCC framework, offers considerable advantages because such a single analysis can 

encapsulate this entire variation.  In fact, an underlying driving force for producing this 

method was taking a soil aliquot sufficiently large to overcome problems associated with the 

natural variation in any dimension.  Although capturing the lateral variability (across stratum 

scale) must depend on sampling density (influenced by real changes).  Conventional soil C 

inventories have been based on the analyses of very small and refined (sieved) subsamples.  

This has placed enormous burden and cost on careful preparation to obtain representative 

material with its numerous impracticalities for broad scale surveys.  

 
Size fractions in perspective  

Standard soil C methods have relied on the analysis of these particle sub-fractions which was 

to a large extent related to expediency (covered in the earlier review).  In addition it is fair to 

say that C separated with the finer particles may well be more decomposed (arguably older 

and stabilised) as has been shown by some indicators.  Studying soil C tied up with the 

<50�m (more stable) fraction over the longer term could provide valuable information on 

OM dynamics and is therefore worthwhile continuing.  However SOM must originate from 

once recent OM and sustaining this process necessitates adding more recent OM 

(notwithstanding priming effects).  Over the timeframes (years to decades) anticipated in C 

sequestration monitoring and assessing efficiencies between land management practices, 

there may be some question marks and limits over the practically of looking for C change in 

the sub-fractions especially in view of instrument detection limits.  A clear definition of what 

should be assessable under soil C stocks is still required although considerable material has 

been generated on the subject (McKenzie et al., 2000; Sanderman et al., 2011; IPCC 2006).  



Soil Carbon Bench                                                                                                                   Field Trials 
 

 83 

Some have called for a method by which the SOM and the contribution from root mass can 

be measured separately.  In Canada for example, there is a growing movement toward 

analysing the whole soil and even including the roots in the soil C inventory (D. Angers pers. 

Comm., March 2013) since these are such an important part of below ground C stocks.  

Determining the C for the total soil core (less recent OM such as roots) was the central theme 

for this project bringing with it advantages of direct soil C measurement on a volumetric or 

gravimetric basis and obviating the need for gravel corrections.  

 

The effect of particle-size on C measurements 

Then follows the question on how conventionally obtained concentrations of C in sub-

fractions interrelate and any bearing it may have for analyses obtained by SCB over the 

study area.  This would serve to: 

• provide typical C data for the area 

• some measure of the spatial variation in terms of %C and 

• distortion to C values because the SCB analyses all C under 2mm (not only <53�m) 

To gain some insight on this aspect for the soil C within the study area, comparisons on 

(�SPR and BPR free) size fractions were done by standard methods.  Two soils at a lucerne 

plot were cored a metre apart at Lansdowne, via Cobbitty, NSW (located approximately 

S34.02.335, E150.66.454) and processed in the conventional way.  After these were dried, 

ground and separated by dry sieving into the size sub-fractions shown on table 4-1, C 

concentrations were determined on maximum aliquot sizes (around 0.7g) using an elemental 

analyser (Elementar Vario Max, Hanau Germany with standard error on replicates within 

0.03% C).  The patterns exhibited by the % C data throughout these fractions indicated the 

commonly found decline in C concentration with depth.  In particular, the data also reflected 

a systematic C enrichment in the finer particle sizes where the individual values (e.g. 2.34 

and 1.81% in the top 10cm) showed the extent of lateral variation over a metre distance.  

These were sub-sampled from what were considered well mixed, representative core 

intervals but after the data were recalculated over the full 30cm for both sites the differences 

(between each site) became less extreme with 0.53 and 0.40% in the fine and total fractions 

respectively but still sufficiently different.  

 

Of special interest in the context of the SCB method (which analyses the total soil fraction) 

was that the ratio between the % C in fine and total fractions were fairly uniform (table 4-1) 

for both sites and all three depths.  Similarly when % C for successive depth intervals were 

compared (by ratios), almost equivalent values were obtained for each respective size 

                                                 
� SPR are surface plant residues and BPR are buried plant residues 
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fraction.  These indicated that the same (consistent) spatial C distribution patterns should 

result whether determined by SCB or <53�m (conventional means).  It would have to be 

investigated separately how universal this pattern might be and the overall influence of 

grainsize distribution on whole core C analysis.  

  

 
Table 4-1  Soil C content of size fractions at each depth and ratios of these values between 

fine and coarse at each depth. 
 

Depth % C % C % C Ratio 
Intervals <53�m <100�m <2mm <53/< 2mm 
0-10cm 1.81 1.40 1.33 1.4 
11-20cm 0.79 0.68 0.57 1.4 
21-30cm 0.75  0.49 1.5 
1 m apart     
0-10cm 2.34 1.90 1.74 1.3 
11-20cm 1.70 1.34 1.18 1.4 
21-30cm 0.91   0.67 1.4 

 
 

Soil Collection Methods for C Determination 
 
The test site 

Devising the most optimal soil extraction method for the SCB and testing its analytical 

capability was conducted at the same locality (Lansdowne, NSW).  There, the soils varied 

from sandy loams to sandy clay loams along the N-S transect (see aerial map on figure 4-1).  

The area was an ideal testing ground because it consisted of a good grading of grainsizes and 

C content ranging from 0.2 % in the sandier parts up to several % in surface clay loams 

nearer the river.  This meant the experimental work could include any of the anticipated 

difficulties associated with the analysis of soils with clay content as well as that associated 

with the actual sampling methodology.  Theoretically, C is more readily oxidised out from 

sandy than clay soils because the lattice water can be problematic during analysis and where 

the C may be more occluded this has implications for diffusion of gases into and out of the 

matrix.  The soils in this area had pH values around neutral (6.8 to 7.4) which may not 

necessarily preclude the presence of carbonates but has not been detected in thermal analyses 

(described in Chapter 2) of soils from this general area. 
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Figure 4-1  Aerial view of the test site (overlain with gamma radiometric data) at Lansdowne 
which was under lucerne cultivation.  The sandy loam changes to sandy clay loam coinciding 

with higher gamma counts (blue). 
 

Method of sampling cores 

In order to develop a method that allowed C data to be expressed on a volumetric basis a 

method of obtaining reliable and uniform soil plugs was an important requirement.  

Obtaining soils from known volumes avoids issues described by Lee et al. (2009) when 

correcting data using bulk density.  Several soil recovery tools including 50cm vibracore 

were tested to arrive at the most suitable soil plugs in terms of uniformity and a volume of 

soil that could be competently processed in the SCB.  Manual soil recovery tools (e.g. 

Grainger product) were also tested.  While these were easily deployed (very portable) and 

good soil data was obtained, productivity was limited for large scale surveys.  Moving to a 

mechanised coring method of the correct volumetric dimensions increased efficiency and 

ease of collecting cores for the SCB.  Two soil corer tubes were custom made to 

specification (Christie Engineering, Horsley Park, NSW) which would adapt to the existing 

(Gaiter or Canter mounted) hydraulically driven vibracore system (Atlas Copco).  The 

samplers as depicted on Plates 4-1a and 4-2 were drawn down at the cutting end from the 

standard 38mm tubes so that a volume / mass of soil appropriate for the SCB (ca. 450cc or 

600g) could be recovered up to 1 m depth. 
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Plates 4-1 Close-up of the corer cutting edge (a) used to recover soil plugs (b) with 
dimensions 24mm across and lengths to 500mm which were very suitable for the SCB. 
 

The 24mm cutting tip in combination with this diameter tube seemed to make removal of 

core (as appear in 4-1b) an easy task because of the greater clearance compared to similar 

samplers (in the 50mm versions a paper clip had been used to ease the extrusion of tightly 

held core).  The stronger taper from the 24mm also worked well with the sandy clay loam 

where soil tends to expand after it has been ‘cut’ from the surrounding ground.  Conceivable 

limitations might be where soils contain stony fragments over 24mm however this tool was 

designed for these sandy clay loams.  As with other corers, care was required to retain 

sandier material (as encountered at the northern most part of the trial area) which was 

recoverable but not as coherent as soil with greater clay content.  Direct determination of C 

for the whole core volume circumvented the need to calculate it using bulk density data 

which itself was obtained as part of processing.  Data from all the probes types were 

comparable using the calculated volumes (cross sectional area multiplied by precise depth) 

and masses had been recorded allowing C to be expressed volumetrically or gravimetrically.  

To facilitate continuity in the data it was regarded that a uniform method of sampling should 

become a part of the SCB method.   
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Plate 4-2 Core lengths (C) recovered in the field using the core tool (S) which are then 
broken up where >2mm OM (roots) are removed / dried and then transferred to stainless 

steel combustion boats (B) ready for loading into the SCB. 
 
 
Bulk Density 

Bulk density (BD) determination was based on the mass of oven-dried material recovered 

(only solids) over the volume of soil removed.  Because insertion and retrieval of the coring 

tool can results in some spreading / compaction of the surrounding ground (enlarged void) it 

was most reliable to use the cross-sectional area of the cutting tip and multiplying by length.  

In addition clay loams can expand slightly after coring.  Furthermore, especially when using 

a hydraulic hammer, some bottom fragments can drop back (in sandier ground) and any 

unaccounted for material would lead to error in volumetric determinations.  To cross-check 

the depth penetration, normally gauged from graduations on the corer and total recovery 

(possible losses or compression) the measuring tape was extended down hole (sometimes 

reassembling core can assist also).  These steps provided reassurance in the volume 

accuracies essential to determine the absolute C (kg) per m2 or bulk densities of the soils 

extracted.  
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Results for the SCB 
 
Accuracy and precision – Validation with conventional C analysis on homogenised samples 

In order to demonstrate how accurately and reproducibly the SCB system could deliver 

results in comparison to the industry standard it was necessary to conduct conventional soil 

C analyses in parallel.  These were carried out on the small amounts of soil necessary for the 

elemental analyser (Elementar Vario Max, Hanau Germany) obtained from the cores in one 

of two ways.  Numerous soils (mainly from Lansdowne) which were used continuously in 

the development and testing stages of the SCB were well homogenised and these results 

have been summarised on figure 4-2 and table 4-2.   

 

Elemental analysers are very precise instruments capable of replicating results well below 

0.1% C when using similar masses of homogenous soil or standard.  All soils were similarly 

dried in a holding oven (90 oC) prior to analysis so that values could be expressed on the 

standard dry basis (Rayment and Lyons, 2011) as surface water is a factor that can lead to 

differences if not removed or corrected.  Moisture contents were variable at around 5% in the 

sandy northern part of the trial area to between 10 and 15% in the clay loam.  In practice 

however, the precisions of replicate analyses for C in soils can often be closer to 0.2% 

reflecting the sum of instrument / process noise and any heterogeneity remaining in the 

sample.  The accuracy of the commercial instrument had been checked against laboratory 

soil standards (Rayment et al., 2007) obtained through Proficiency Services Ltd. (Hamilton, 

NZ).  These ranged in C from 0.1 to 4.02% while instrument calibration for C and N was 

based on L-Glutamic acid.  In general, certified soil standards were inappropriate or 

impractical for routine use in the SCB simply because the total amount (50 gram) available 

in the laboratory was far less than a normal SCB loading – hence the requirement for internal 

standards met by the (relatively unlimited) Lansdowne soils and carefully prepared 

(weighed) mixtures with known C.  Purely as a demonstration, an equivalent amount of soil 

standard as used in the elemental analyser (i.e. 4.02% of 1 gram) was analysed by SCB.  In 

total, this resulted in a fairly minuscule amount of C for the SCB system where the output 

fell on the lowest limit of the calibration line (figure 3-9a, Chapter 3). 

 

The SCB data was validated against results from the elemental analyser and the performance 

assessed by evaluating the respective differences between these two sets of results (see table 

4-2).  Unlike the conventional data, SCB determinations were in the form of a single C value 

derived for the entire mass of soil.  The C content from the two measurements are in good 

agreement, with a mean absolute difference between the two methods 0.12%, RMSE = 
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0.16%, and bias = -0.06%.  It must be emphasised these were not measures of �precision 

which tend to be much closer for a particular instrument.  The variations in the two 

measurements do not appear to be systematic i.e. they are independent of C abundance 

(figure 4-2).   
 

Note: RMSE = [1/n ��(SCB-standard)]1/2 , and Bias =1/n �(SCB-standard) where values are in 
% C and n is the number of observations. 
 

 
Figure 4-2  General concordance of the soil carbon analyses obtained by SCB and elemental 
analysis.  
 
 
 

                                                 
� Note: The SCB was applied to the analysis of whole cores but to assess how this instrument can 
repeat soil C results (as occurs with conventional methods) this required running cores of effectively 
the same soil.  This aspect is discussed in detail in the next section on site analyses. 
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Table 4-2 Comparison of C analyses from the SCB with those from standard analytical 
methods (test soils, Lansdowne area). 

 

SCB Standard 
Absolute 

Difference 
bulk of soil analyses  (SCB-standard)

%C %C � %C 
0.24 0.32 0.08 
0.31 0.40 0.09 
0.33 0.46 0.13 
0.39 0.50 0.11 
0.39 0.50 0.11 
0.43 0.50 0.07 
0.50 1.02 0.52 
0.50 0.50 0.00 
0.53 0.70 0.17 
0.54 0.71 0.18 
0.59 0.70 0.11 
0.61 0.69 0.08 
0.70 0.74 0.04 
0.75 0.99 0.24 
0.80 0.86 0.06 
0.83 1.19 0.36 
0.84 0.87 0.03 
0.85 0.90 0.05 
0.92 0.90 0.02 
0.94 0.90 0.04 
0.94 0.95 0.01 
0.95 0.94 0.01 
0.98 0.80 0.18 
1.01 1.10 0.09 
1.02 1.18 0.16 
1.03 1.20 0.17 
1.05 1.00 0.05 
1.09 1.10 0.01 
1.27 1.20 0.07 
1.48 1.40 0.08 
1.58 1.30 0.28 
1.63 1.40 0.23 

 

 
 
Accuracy and precision – Validation of results from whole soil cores 

In the next stage of the work where whole core contents were collected along a transect in 

Lansdowne, duplicate or triplicate representative subsamples for each sampling interval were 

removed and similarly determined for C by standard analysis The results are presented on 
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table 4-3, arranged against each location on the transect showing replicates for whole cores 

(in gram C per core and % C of total core, the total masses recovered and their BD) and 

replicates for conventional elemental analysis.  The comparison of results is graphically 

presented on figure 4-3. 

 

Elemental analyses need to be conducted on small amounts of soil so aliquots were removed 

from the respective core intervals to capture a representative or reliable subsample of the 

mass to be determined.  Where duplicate and triplicate EA data was obtained, the soil was 

taken from two/three points in the grinding vessel containing the mixed up dry core after 

several minutes of diminution.  In the cases where only a single value appears the core had 

been ground (and well homogenised) for >10 min.  
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TABLE 4-3 Spatial data (from GPS), BD, soil mass and all carbon data at each position 
along transect (Lansdowne trial area).  Values from the SCB represent mass C per 50cm core 
and %C (by mass) along with their respective standard replicate analyses (also %C mass 
basis) obtained using the Elementar Vario Max analyser.   
 
Geographic location Interval Dry mass* BD Total C Total C Standard method replicates 

South East cm g g cm-3 g / core % (mass) %C %C %C 

3402127 15066210 0-50 505 1.3 2.51 0.50 0.55 0.36 0.45 

3402127 15066210 0-50 448 1.1 2.23 0.50 0.50   

3402127 15066210 0-50 493 1.2 2.99 0.61 0.20 0.48  

3402173 15066202 0-50 324 1.4 1.98 0.61 0.57 0.52  

3402173 15066202 0-50 344 1.5 1.51 0.44 0.44 0.45  

3402173 15066202 0-50 309 1.3 3.02 0.98 0.91 0.90  

3402216 15066188 0-50 384 1.0 3.39 0.88 0.91 0.78 0.93 

3402216 15066188 0-50 329 0.8 3.21 0.98 0.80   

3402216 15066188 0-50 341 0.8 3.53 1.03 0.81 0.78  

3402265 15066180 0-50 283 1.2 1.31 0.46 0.66 0.23  

3402265 15066180 0-50 336 1.5 1.58 0.47 0.60 0.25  

3402265 15066180 0-50 338 1.5 1.67 0.49 0.66 0.65  

3402305 15066160 0-50 488 1.2 3.35 0.69 0.65 0.65 0.70 

3402305 15066160 0-50 498 1.2 3.06 0.61 0.69   

3402305 15066160 0-50 557 1.4 3.74 0.67 0.64 0.72  

3402352 15066164 0-50 263 1.1 1.90 0.73 1.02 0.32  

3402352 15066164 0-50 274 1.2 1.90 0.71 1.04 0.35  

3402352 15066164 0-50 296 1.3 2.20 0.74 0.91 0.90  

3402387 15066140 0-50 505 1.3 3.29 0.65 0.45 0.47 0.55 

3402387 15066140 0-50 462 1.1 3.25 0.70 0.74   

3402387 15066140 0-50 465 1.2 3.38 0.73 0.76 0.75  

3402436 15066135 0-50 325 1.4 2.40 0.75 0.39 1.19  

3402472 15066117 0-50 413 1.0 4.06 0.98 0.76 1.06 0.91 

3402472 15066117 0-50 487 1.2 4.62 0.95 0.94   

3402472 15066117 0-50 497 1.2 4.66 0.94 1.02 0.98  

3402518 15066110 0-50 317 1.4 3.20 1.00 1.74 0.64  

3402560 15066096 0-50 294 1.3 1.79 0.61 0.45 0.45  

3402560 15066096 0-50 351 1.5 1.88 0.54 0.71   

3402560 15066096 0-50 348 1.5 1.90 0.55    
 
*Note that a larger corer diameter was initially tested and resulted in the higher total masses of soil 
and gm /core. 
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Figure 4-3 Soil analyses for cores determined by SCB and compared with representative 
aliquots taken prior to elemental analysis. 
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Table 4-3 has been set out separating data which were analysed by the EA singly, in 

duplicate or in triplicate.  The results indicated that the differences (error) from duplicate and 

triplicate samples were generally higher than single value analyses from well mixed samples. 

The scatter or variation amongst some replicate analyses indicated most likely an issue with 

soil heterogeneity remaining although it must be emphasised that material for replicate 

analyses were obtained by taking representative subsamples prior to processing the cores by 

SCB (as described above).  Larger variations (error) can probably be attributed to C 

heterogeneity emerging much more easily during conventional analyses due to the small 

sample sizes.  Hence the analyses via SCB relate better to the replicate mean values.  

Statistical parameters (root mean square error or �RMSE and bias) have been summarised 

below (table 4-4) to compare the relative performance of the two analysis methods (SCB vs 

EA) based on the two types of soil presentations used in the SCB, i.e., homogenised soils for 

development and calibration (table 4-2) and whole soil core volumes as in field testing (table 

4-3).  The values indicated by the RMSE of 0.114% for the whole cores from transects as 

compared to 0.163% for homogenised soils showed that analysis of whole core volumes (i.e. 

one value per core) provided data of equivalent reliability.  Their respective biases were 

0.017 and -0.060 which is the mean value of deviation or systematic error.  The (–) sign in 

this case indicated that the SCB produced a slightly higher result relative to the standard 

method but are within accepted normal analytical precision.  

 

Table 4-4 Comparing the results from the two systems (C content in %) on a statistical basis.  
 

Soil sample n RMSE BIAS 
Cores 28 0.114 0.017 
Homogenised  32 0.163 -0.060 

 

 

Reviewing the overall data in the tables (4-2 and 4-3) showed that the results between the 

two systems typically concurred within 0.15% C.  The fact that differences between the 

systems were very low for analyses of the whole core and well worked soils or where 

replicate data were averaged, provided some indication that the SCB had the capacity to 

‘smooth’ the natural variation in soil C.  The preconception that such an approach 

incorporates the heterogeneity into one C value, effectively integrating the spatial (or depth) 

variation seems to have been well vindicated.   

 

                                                 
� Bias =1/n �(SCB-standard) where values are in % C and n are the number of comparisons. 
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Determining soil C stocks by analysing whole cores – Proof of concept 

So far it has been shown that the SCB can provide reliable C data and that it has the capacity 

to average or integrate otherwise variable point analyses.  It is then obvious that unless soil is 

homogenously distributed in the sample (where conventional analyses should agree well 

with the SCB) that point analyses can be problematic and necessitate multiple processing / 

analysis (adding to time and cost).  This supports the case for processing larger quantities of 

soil to obtain a better picture of C in the landscape.  It can be emphasised at this point that 

while C changes with depth are incorporated in single analyses, those occurring between 

sample sites must be interpolated.  To demonstrate how large scale C determination could be 

a useful attribute for quantifying soil C inventories, the whole cores extracted from each of 

the sites in the test area and determined according to the SCB method have been analysed on 

a site-specific and transect basis.   

 
Site locations (on systematic grid with random starting point) were nominally spaced at 

100m intervals along the N-S transects (see table 4-3).  To gain a measure of site-specific 

replication (for whole soil cores) and importantly the level of uncertainty for soil C estimates 

over a number of locations, three cores were removed at each site in a small triangular 

configuration (within approximately 20cm of one another).  Triplicate sampling was 

intended to enable not only an evaluation of the uncertainties but also to assist in the 

recognition of aberrations in soil C data which can arise for a number of reasons.  These can 

result from either technical malfunctions during the analytical stages, poor sampling 

(although these should be minimised), but also real anomalies from the soil itself such as a 

buried tree stem or some other C ‘nugget’.  Obviously such data should be removed during 

numerical evaluation for C stocks.   At each test site the corer was positioned and GPS 

coordinates were recorded.  The full 50cm soil plug was retracted with the corer, carefully 

removed and transferred to labelled �bag before shifting to the next position.  

 

Note, the results for whole core analyses from each sampling location over the study area 

(table 4-3) were also used for the cross validation analysis above where data were correlated 

with standard analytical methods (figures 4-2, 4-3 and table 4-4).  The results presented / 

discussed here for all the sites along the transect have been expressed as gram C per whole 

core interval (50cm) (the immediate value obtained from the SCB) and % C of total dry core 

mass (divide % by 100 to convert to kg/kg).  Overall the soil C values from the cores were 

quite coherent (per site and trend down transect) except in two cases (site coordinates 

3402173, 15066202 and 3402216, 15066188) where contamination was suspected from most 

                                                 
� Sampling bags were composed of cellulose, a rich source of C, however contamination was regarded 
as highly remote. 
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likely an old buried post and grease on the corer respectively.  In the former, the low BD (0.8 

g cm-1) immediately alerted to an anomalous sampling point.  Generally, total C per core 

were within 0.2 gram of their mean for each site where the total amounts ranged from 0.7 to 

4.7 gram C per 50cm core for the sampled positions over the entire transect.  On a 

gravimetric basis (the ranges were 0.2 to 1.09% C per 50cm core) the site reproducibility 

was typically around 0.0003 kg/kg.  All the data acquired for a section of this transect have 

been plotted below (expressed as kg m-2, figure 4-4) to show graphically that the SCB 

provides ‘smoother’ soil C stocks (top figure) in comparison to the standard method where 

results appear more variable (bottom figure).  A clearer statistical picture is obtained through 

the box plots (figure 4-5) comparing the methods over the transect.  On a gravimetric basis, 

there is a slightly higher mean for the SCB, but the SCB has a lower standard deviation.  

Similarly for C stock (as kg m-2), both EA and SCB produce similar mean values across 

transect (mean = 4.3, median = 4.1 kg m-2), however the values obtained by SCB has a 

smaller variance (std. deviation = 0.99, interquartile range = 1.08 kg m-2) when compared to 

values obtained by EA (std. deviation = 1.36, interquartile range = 2.71 kg m-2).  

 

Table 4-5 Summary of statistical data for C stocks comparing SCB and conventional method 
on Transect 1 (n = 28).  
 
 %C %C C kg m-2 C kg m-2 

 EA SCB EA SCB 

Mean 0.695 0.712 4.250 4.305 

Std. dev 0.206 0.188 1.357 0.990 

 
Also note that means for each site have also been presented as spatial plots in following discussion on 
figures 3-6a and b to better visualise distribution, trend and the impact that errors may have. 
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Replicate C stock analyses (kg m-2) for whole cores using the soil carbon bench. Triplicate 
cores were extracted within 20cm of one another at each site which were in metres along 

transect (x-axis). 
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Figure 4-5 A box plot comparison of C content measured by Elemental Analysis (EA) and 
Soil Carbon Bench (SCB) on a gravimetric basis (left) and volumetric basis (right). 

 

 

Level of uncertainty in C determinations and C stocks by SCB 

Uncertainties in C stock determinations are one of the major issues hampering advancement 

of soil as a sequestration and C offset medium.  The problems lie in the propagation and 

addition of errors associated with sampling procedures, C analysis, natural spatial variability 

in soil C and grainsize variations (Goits et al., 2009).  Bulk density also has a strong 

influence when C stocks are calculated (Lee et al., 2009) and can lead to increased 

uncertainties for example, as arises in gravelly soils after applying BD corrections (Schrumpf 

et al., 2011).  The ability to directly produce C data from a volumetric basis overcomes the 

need to apply BD corrections and addresses such concerns.  Intuitively the greater the sample 

size (not only in numbers of points but soil masses or volumes), the greater the level of 

certainty or confidence should flow through to the final data.  The SCB is designed around 

this idea and the field trials have been used to demonstrate the proof of concept.  Carbon 

content can naturally be expected to vary between each sampling point influenced by 

changes in soils and vegetation.  The magnitude of this variation should have a bearing on 

sampling density and therefore acquisition costs but for now it is the data extracted from 

individual sites that provide the most basic measure of certainty (constitutes the minimum 

error).  Therefore maximising the confidence in soil C data at each sampling point is of 

fundamental importance.  This can be referred to as site-specific or within-site uncertainty.  

To put this into perspective, commonly encountered analytical errors (for example as 
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reviewed by Girard and Klassen, 2001) due to the instrument plus heterogeneity in the soil 

can alone lead to significant uncertainty (0.001 kg C per kg).  This can be relatively 

substantial, especially in many agricultural soils in Australia (see Web, 2002), where the C 

content can be as low as 0.2% (C stock ca. 13t ha-1
 for 50cm depth) and the uncertainty 

translating into ± 6t ha-1.  Therefore the aim should be to carry through any benefit of a low 

site-specific uncertainty to the broader area or strata being assessed.  The bulking of soils 

from across the field (not carried out in this work programme) offers another effective way 

to transfer lower uncertainties to a wider scale.  

 

To quantify the variation at each site and hence derive a measure of within-site uncertainty 

or error that incorporates both sampling and analysis, the spread of replicate determinations 

were expressed using the standard error of the mean (SEM) which is given by SEM = 

SD/(n1/2), where SD is the standard deviation and n the number of replicates per site.  The 

mean value of 0.00018 kg/kg (excluded aberrations) could be considered the typical site 

specific value for this parcel of land translating to an equivalent in C stocks of ± 0.7t ha-1 

(30cm depth basis).  This still remains under the 2t recommended as a maximum figure 

under any market based instrument or less than the 20% uncertainty described for usually 

employed methods (Dalal et al., 2009).  However current CSIRO estimates (April, 2013) 

give a range for realistic soil C gains as 0.3 to 2 tonne per ha per year (previously to 0.6t ha-1 

according to Sanderman et al., 2010).  The smaller changes would be difficult to detect on a 

yearly basis and in fact when calculated out (30cm depth basis), the lower gains (<0.0001 

kg/kg) would be below the detection limit of most analytical instrumentation. 

 

Spatial analysis 

The instrument output, as generated from the SCB data system, directly presented the total 

number of grams C for the respective cores removed from the landscape.  Mean values for 

each site indicated the steady trend down the catena shown on figure 4-6a.  These output 

values could be used as an immediate measure of the mass C per volume and also unit area 

(m2) for a nominal sampling depth, in this case it was 50cm.  These values were then readily 

converted to gravimetric data since total mass of cores (both field moist and dry) were 

recorded.  Gravimetric data (for this survey at least) appeared to be somewhat ‘tighter’ for 

each site (see table 4-3) due to a normalisation effect provided by their slightly different 

masses and these have been used to produce the C stock distributions (to 50cm basis) on 

figure 4-6b.  This effect is most likely because the mass of C is linked with the mass of soil 

rather than the volume from which it came (itself subject to variation through compaction 

etc.).  These were useful findings making the system amenable to the guidelines proposed 

under IPCC 2006 and a mass coordinate system (Gifford and Roderick, 2003).  The method 
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described here addresses the concerns about the ability to reproduce soil C stocks laterally 

and with depth (Walcott et al., 2009) along with the required sensitivity.  Carbon densities 

obtained for volumes (as kg m-2) from sites over the landscape should facilitate the mapping 

and determination of total C stocks.   
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Figure 4-6 Distribution of C over the Lansdowne test field as determined by SCB (table 4-3) 
expressed as (a) gram per 50cm core interval (equal volume cylinder basis) and (b) kg m-2 
from gravimetric C values.    
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Cost Analysis of C Determination by SCB 
 
Lowering the cost of C analysis is equally important as improved analytical confidence.  

This has been achieved by transforming a fairly cost prohibitive method into a viable 

measurement option for determining soil C stocks.  Cost has been one of the major 

drawbacks for on-the-ground measurement as compared to model based methods.  Apart 

from increased certainty and confidence in soil C data at each sampling site another major 

improvement afforded by the SCB method is ease of application and dramatically reduced C 

analysis costs.  These have been assessed in detail on the basis of the time – motion 

requirements per sample site and the costs of analysing the material.   

 

Analysing the costs of determining soil C stocks can be best achieved by looking at the basic 

units of activity i.e., crushing etc., (also described by Brus et al., 1999).  It is generally 

regarded that travel to and from sites and the extraction of soil cores comprise a significant 

cost component in the determination of soil C stocks but soil processing and analysis are 

major.  For the purpose of evaluating the relative costs of soil C analysis by SCB, sampling 

(which includes transport and oven storage of soils) has been regarded as fairly comparable 

since similar amounts of soils are removed from the landscape using current methodologies.  

However Improvement to this component would also be feasible with the SCB since it is 

designed around portability and standard power requirements.  Comparison of the relative 

cost efficiency of determining C stocks by SCB required a further breakdown (table 4-6) of 

the components involved in acquiring equivalent information conventionally on a pro rata 

basis (i.e. site-specific).   

 
Table 4-6 Assessment of the relatives costs on a pro rata (per site) basis to obtain C stocks 

using SCB against the conventional method. 
  

  SCB Conventional 
Process Time Rate AUD Time *Rate AUD 
Field collection  equivalent   equivalent 
         
Soil prep        
drying    equivalent   equivalent 
crushing 0.2 hr $30/hr 6.00 0.5 hr $30/hr 15.00 
sizing N/A $30/hr   1.0 hr $30/hr 30.00 
bulking N/A $30/hr   0.5 hr $30/hr 15.00 
  Quantity    Quantity   
C Analysis 3 cores $1/core 3.00 3 thimbles $7 ea. 21.00 
Totals     $9.00     $81.00 
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*These estimates are base costs (given in Australian currency) using in-house elemental analyser and 
labour.  N.B. in this comparison the total amounts of soil analysed by SCB and conventionally are 
approximately 400 gram and 0.5gram respectively. 
 
 

The running expenses that flowed onto the overall costs for soil C analysis using commercial 

analysers are determined mainly by consumable charges.  These comprised the relatively 

expensive gases and reagents set as prerequisites by manufacturers.  The SCB in contrast is 

capable of producing comparable results with welding grade O2 at $20 per cylinder (albeit at 

higher consumption rates) as compared to >$900 for UHP O2.  Power consumption for the 

SCB was based on the current rate of $0.25 per kWh where the analysis of three cores 

required approx. an hour, drawing a maximum of 2.5kW.  The cost of oxygen consumption 

was tallied as $0.30 (per hr) for the three cores.  

 
The cost of determining C stocks over entire areas is going to hinge on the required sampling 

intensity adding to total sampling and analytical charges.  These are largely determined by 

the natural variations in the soil, topography and land use enabling a basis for stratification 

which can reduce the number of sampling points needed.  Apart from efficiencies gained 

through, for example bulking, sampling from small areas to constrain the variation has been 

another recommendation (Sanderman et al., 2011).  However there have been numerous 

strategies (such as random sampling) and geo-statistical tools proposed to cope with the 

spatial uncertainty (reviewed recently by Allen et al., 2010).   Testing how the SCB could 

contribute to and optimise these methods would need to become the next phase of research. 

 
The SCB – utilising added efficiencies  

The method by which whole cores were analysed (detailed in previous chapter) meant that 

each borehole or site was represented by one C content (unless split into horizons or bulked 

with others).   When analyses with the SCB were in progress, operationally it was convenient 

to run core volumes successively and store the output containing C responses in a single file.  

Also, in this manner a portion of any transect when analysed sequentially was easily 

displayed graphically showing the relative amounts of C at each site or with depth as in the 

examples on figures 4-7 and 4-8 respectively.  In the following example, seven 50cm long 

cores had been determined for C within 135 min. 
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Figure 4-7 Analyses for part of transect (Lansdowne) as outputted from SCB.  (Spikes 

between the principal peaks were atmospheric nitrogen introduced between core loadings in 
the current manual configuration.) 

 
 
As shown peak areas were proportional to total amount of C (figures 4-7 and 4-8) but their 

shapes and widths reflected the rate of oxidation.  This rate could be influenced by the type 

of OM and the mineral material surrounding the C as matrix (also the overall mass).  This is 

because the developed method of analysis was based on monitoring the C as �released during 

the combustion cycles (Figures 4-7, 4-8 and 4-9) over which these bulk amounts of soil were 

oxidised.  A general observation was the overall combustion characteristics (shape and 

distribution over run time) seemed to be reflected by the soil’s physical and compostional 

makeup, where:  

-total amount of soil influences amount of CO2, the rate of heat penetration and gas 

diffusion, 

-grainsize of soil influences rate of gas diffusion through matrix, 

-recalcitrance of C bonds influences rate of CO2 evolution e.g. carbohydrate vs carbonate. 

  

                                                 
� Responses were in near real time where offset was due to the differential rate of flows between 
sampling and bulk gas streams (set by total carrier flow rate and aliquot stream).  
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Figure 4-8 Analyses of three soil horizons (0-20, 21-40 and 41-60cm) run in succession 

(total mass 600 gram) showing the decreasing amounts of C (results were 1.3, 0.6 and 0.3% 
C respectively). 

 
 
Optimising core for analysis – dried intact vs crushed and dried  

To fully evaluate the advantages / disadvantages of pre-drying broken-up core and removing 

coarse root material as a minimal processing step, a number of cores (which were sampled in 

triplicate) were combusted intact and compared with their site counterparts.  Comparative 

soil combustion experiments showed that breaking-up core maximised dehydration during 

the pre-drying stage that was benefited with reduced amounts of water released during C 

determination.  Water can adversely affect the analytical system through flow retardation and 

interference.  The detector output provided some measure of the efficiency of processing 

cores whole vs intact.  Apart from greater moisture levels that can impede gas transfer, the 

duration of analyses were longer for equivalent quantities of C.  This had implications for the 

quality of the signal output and the time/cost requirements that impact on analyses.  As a 

result the detector responses became somewhat elongated and with perhaps more 

pronounced larger secondary peaks (shoulders) which was interpreted to be due to root 

material oxidising within the core at a slower rate compared to the mostly finely divided OM 

(see figure 4-9).  These combustion characteristics seemed to reflect the rate of C evolution 

(and perhaps its form) and were reminiscent of the instrument outputs from the studies of 

Beyer et al. (1998) discussed in chapter 1, who sought differences related to labile and stable 

(i.e. humified) OM.  The conclusion that roots most likely caused some of these responses 

was supported by the observation that gases appeared to readily permeate the core structure 
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to oxidise and release C from OM (see root vesicles on Plate 4-3).  In some cases these 

contained remnant ash visible in broken core.   

24mm

Root 
vesicles

 
 
 

Plate 4-3  A soil core cross-section after 15 minutes combustion broken to expose the 
condition of the soil and any OM.  Note the voids remaining where roots had oxidised and 

the fissile, biscuity texture. 
 

In the ‘chromatography world’ some of these signal outputs would be regarded as poor 

(asymmetric with peak tailing) but it must be emphasised these are not ‘filtered’ through a 

separating column and are near real time responses to the release of C.  In fact there may be 

additional value in obtaining these types of outputs if it can be shown to indicate the 

presence of root C. 

 

0

1

2

3

0 10 20 30 40

Run time (min)

C
ol

d 
w

ire
 re

sp
on

se
 (m

V
)..

 
Figure 4-9  SCB recording combustion characteristic for intact core (heavy line) with 
approximately 0.8% C against calibration standards with 1.25 and 2.5% C (fine line). 
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Generally the intact cores tended to be slightly higher in dry mass compared to their 

respective set but not sufficiently to be evident in their bulk densities with the exception of 

4c (table 4-7).  In any case, heavier masses would not be surprising where water retention 

would have been much greater even though these were also placed in the oven for the same 

time periods as broken-up core (see Best practice).  The core 2c may have had lower values 

through possible mass loss although the normalised C concentration (0.8%) is not consistent 

with this.  With the exception of cores 2c and 4c the C values were fairly comparable.  

Overall the mass of C extracted from the cores were within 0.4 g per core length (excludes 

2c and 4c).  After being normalised with their masses, most cores were within 0.05% C and 

correlated well (figure 4-10) while again 2c and 4c varied up to about 0.2% possibly due to 

root material in the latter.   

 
Table 4-7 Comparing carbon and bulk density data for whole cores oxidised from intact (c) 

and crushed cores (a & b). 
 

Sites Mass Total C Total C BD 
0-50cm gram gram / core % (mass) gm cm-3 
1a 294 1.79 0.61 1.3 
1b 351 1.88 0.54 1.5 
1c 348 1.90 0.60 1.5 
2a 324 3.52 1.09 1.4 
2b 320 3.27 1.02 1.4 
2c 289 2.40 0.80 1.3 
3a 314 2.63 0.84 1.4 
3b 334 2.50 0.75 1.5 
3c 335 2.60 0.80 1.5 
4a 291 2.67 0.92 1.3 
4b 353 2.94 0.83 1.5 
4c 475 4.60 1.00 2.1 
5a 334 1.69 0.51 1.5 
5b 346 1.70 0.50 1.5 
5c 370 1.90 0.50 1.6 
6a 359 1.29 0.36 1.6 
6b 348 1.20 0.30 1.5 
6c 365 1.60 0.40 1.6 
7a 317 0.75 0.24 1.4 
7b 357 0.90 0.20 1.6 
7c 361 0.90 0.20 1.6 

 



Soil Carbon Bench                                                                                                                   Field Trials 
 

 107 

 
Figure 4-10  The concordance in C content from intact and crushed cores. 

 

 

What all this generally means is that breaking-up core, thoroughly drying it and removing 

visible roots is a conservative measure that produces the most reproducible mass, BD and C 

data.  This step was included in the cost schedule (time and labour) on table 4-6. 
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Best Practice Methodology for C Determination by SCB 
 
The flow diagram in figure 4-11 outlines the steps that were used in obtaining all the soil C 

data and is the basis for the cost analysis.  Soils were extracted from the field (point 

coordinates recorded) as core plugs using hydraulic hammer with 24mm tubes.  Cores were 

then placed into paper bags to facilitate drying in transit (drying may act to lessen microbial 

activity i.e. degradation, due to increased aeration after exposure).  Calico bags may have 

been better from a strength perspective as moisture weakens paper but at a higher cost.  Tests 

to carry out integrity of sampling bags may be advisable.  

 

Routinely soil masses were recorded on arrival to the laboratory and then placed in an oven 

at 90oC overnight (still within bag).  The soils were then removed (weighed if 90oC moisture 

required) and broken-up either mechanically or by hand in large mortar and pestle (the latter 

being very effective) followed by removal of >2mm OM (i.e. recent BPR) and root material.  

A final drying was then carried out for min. 12 hours to maximise this on the larger surface 

area.  This was probably the most optimal temperature because it will have halted microbial 

activity and it removed as much free water as possible without reaching boiling point (losses 

of volatile C would occur at sampling and breaking-up). 

 

After removal from the oven the dried soil core masses were finally weighed (used for 

gravimetric determinations) and loaded into the SCB successively with the settings and 

methods as described in chapter 3.  Response area data was then acquired via the detector 

and data system and stored as a spreadsheet with the required calibration information. 

 

Core 
recovery 

from field

Processing 
options

Break-up

Dry at 
90oC

850 oC

Conversion 
to CO2

Dried 
whole core

Size 
fractions

Analysis

Figure 4-11 Steps required for analysis by SCB where the first option which was used 
throughout most of the demonstration appeared to be optimal. 
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In its normal operation the SCB quantifies all C from the core mass (roots can be included if 

required) and in so doing automatically circumvents any issues surrounding gravel 

corrections.  However stabilised C has been associated with the silt and clay fraction (refer 

back to earlier review) so application of the SCB to size classes may become of importance 

where soil C dynamics need to be investigated between fractions on a larger scale (with 

some additional cost resulting from the added processing step).  To test the applicability of 

the SCB on soil size fractions (which is most often what soil C determinations have been 

based on), two cores were separated into nominal size classes and analysed with the results 

shown on table 4-8.  This exercise demonstrated the feasibility but also the advantages over 

current systems where material representing different size classes (all contain C but usually 

discarded) can be quickly determined as well as pre-separated root masses.  The C 

distribution (% of total in table 4-8) well demonstrated the spread of C between these size 

classes providing an indication of the significant amounts of C residing in parts of the soil 

sample commonly discarded.  

 

 
 
Table 4-8 Example of carbon distribution relative to the size fractions for two cores from the 

Lansdowne test site analysed by SCB. 
 

  Size fraction (�m)  
  425 - 2000 100 - 425 <100 
Silty loam    
Mass distribution (% of total) 43.1 39.3 17.6 
C concentration (%) 0.43 0.42 0.85 
C distribution (% of total) 35.2 32.1 32.7 
Sandy loam    
Mass distribution (% of total) 36.7 53.8 9.5 
C concentration (%) 0.20 0.18 0.87 
C distribution (% of total) 27.6 40.3 32.1 
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CHAPTER 5 - BLACK C DETERMINATION IN SOILS: HYDROGEN 
PYROLYSIS AND SPECTROSCOPIC CALIBRATION  
 
Background and scope 

Pyrogenic carbon also known as black carbon (BC) is composed dominantly of condensed 

structures such as polycyclic aromatic hydrocarbons.  These chemical structures arise in soils 

through natural or deliberate means but report with and are analytically indistinguishable 

from organic matter during normal C analyses.  Their different in-soil stabilities however 

necessitate differentiation from less stable SOM.  While biochar can be distinguished from 

naturally occurring BC as that produced for the purpose of amendment and / or C 

stabilisation, both have chemical similarities in contrast to SOM but all analyse together as 

organic C.  As the name suggests pyrogenic C is formed through the heating and incomplete 

combustion of OM such as biomass or hydrocarbons in conditions where there are low levels 

of air (oxygen).  Under aerobic conditions these materials would oxidise to CO2 but instead 

because of the low partial pressure of O2 carbonisation takes place resulting in charcoal like-

materials.   

 

Why is the ability to measure BC in soils where small quantities occur so important?  Within 

the soil environment, BC is generally more resistant resulting in very different turnover 

dynamics compared to other SOM as previously emphasised by Leifeld and colleagues 

(Leifeld et al., 2003).  Therefore measuring TOC during sequestration / monitoring is 

insufficient because it cannot be assumed to have equivalent residence times.  This also has 

implications for the accuracy of SOM models where relative residence times are affected by 

different soils, climates and land uses.  The proportion of BC in the overall SOM distribution 

should therefore be part of any soil C inventory measurement during sequestration.  

However standard soil C analysis methods cannot distinguish this pool from OM as readily 

as it can say carbonate C.  This has resulted in the range of BC analysis methods (see figure 

5-1).  

 

There are two likely sources of BC in soils as it applies to the Australian scene: 

a) A prevalent history of grass and forest fires in the Australian landscape have 

accumulated BC in soils and may also be of ecological significance. 

b) For agriculture it has been used as a fertilizer and soil conditioner but more recently 

has been promoted for its possible role in soil C sequestration and where 

intentionally produced for such purposes is referred to as biochar. 

 

The addition of BC in crop plots to store C in this more soil-stable form and concurrently 

improve soil properties has become a popular idea.  Farmers and horticulturalists have done 
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this for centuries and it was also part of ancient land practices (e.g. Amazonian Terra Preta).  

There may be numerous benefits resulting from the addition of biochars that include 

increased CEC, water holding capacity with improved structure (aeration) as well as higher 

fertility (increased potash).  This has been used as a viable approach in horticulture, for 

example, where tomato waste undergoes bio-charring and the energy utilised (for warming 

of greenhouse).  The residues containing nutrients such as P and K get recycled as fertiliser 

on the new crops (form of nutrient cycling).  Clearly charring leads to enrichment of 

nutrients that are assimilated after addition of mineral fertilizers or from the soils naturally.  

Oxalate minerals form within the plant tissue and these become concentrated when dried and 

decomposed. (see Manning et al., 2005 and their relevant references).  Macronutrients such 

as N (possibly P) can become depleted because of their volatility during charring.  In forest 

soils (fire affected) the relative concentration of N (to C) was found to be greatest i.e. 

reflective of the source material, in the finest particle sizes (Adams and Attiwill, 2011). 

 

Many Australian soils have some small component of naturally occurring BC material in the 

shallow horizons (refer to Skjemstad et al., 1996; Lehmann et al. 2008).  This is because as 

previously mentioned bushfires have been a part of the Australian ecologically for millennia 

and allowed significant amounts of BC to accumulate in situ.  Black carbon / biochars can be 

produced from a range of starting materials such as woody tissue, grasses (also crop 

residues) and animal manure.  While these starting materials vary somewhat they all have in 

common a lignocellulose basis with comparable and overlapping compositions.  The final 

chemistry of any BC produced is more likely to be influenced by the conditions of pyrolysis 

(e.g. temperature, air composition) as indicated by elemental ratios on figure 5-1.  Lehmann 

et al. (2008) analysed 58 soil profiles in the national soil archive and found that the BC 

constituted an average of 33% of the total organic C, a significant contribution. 
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Figure 5-1. Components of black carbon ranging from slightly �charred to graphitised BC 
assessed by different methods across a continuum of recalcitrance increasing from left to 
right (adapted from Hammes et al., 2007 and Sohi et al., 2009).  
 

Conventional methods for soil BC analysis 

It is generally acknowledged that a simple and routine method for the determination of black 

carbon in soils has been lacking.  BC determinations in soils remains fairly involved 

processes because they include combinations of physical and chemical treatments followed 

by C analysis and expensive characterisation methods (figure 5-1, see also Rayment and 

Lyons; 2011; Baldock et al. 2004).  BC has also been quantified on the basis of specific 

molecular markers (Glaser et al., 1998) but again involves several analytical steps.  However 

what most of the usual methods have in common is that the labile forms of C are selectively 

removed leaving BC remaining for analysis.  The simplest is wet oxidation of the labile 

material and the most practical among these being reaction with acid catalysed H2O2 (Kurth 

et al., 2006) or NaClO (Zimmermann, 2007).  However these methods probably tend to have 

lower efficiencies of OM removal and overestimate BC.  Protocols that use a combination of 

pre-treatments and selective combustion can be counted as chemo-thermal oxidation (CTO) 

techniques and are the most commonly used to determine BC.  In such procedures (see 

Agarwal and Bucheli, 2011), after removal of carbonates, if present, the OM is heated to 

375oC to remove labile C leaving the BC in the residue for elemental analysis.  Although, 

this assumes that forms of humified OM are not present beyond 375 oC and that no 

                                                 
� Char refers to incipient alteration under pyrolysis conditions while charcoal is produced from a 
complete process where it is manufactured under those conditions for extended periods. 
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artefactual BC is produced (Bird et al., 2011).  A fairly unique system developed by Jan 

Skjemstad uses UV photo oxidation (Skjemstad et al., 2002) on disaggregated soil where the 

photons generated by Hg lamp were used to degrade non BC material.  Previously CSIRO 

(Glen Osmond) employed this method to remove labile forms prior to elemental analysis.  

The resistant organic carbon (ROC) soil component is now based on the physical separation 

after dispersion into particulate (POC) and humified (HUM) organic matter followed by 13C 

NMR characterisation to determine the ROC (Sanderman et al., 2011). The analysis of a 

specific molecular marker has also been demonstrated as a quantitative measure (Glaser et 

al., 1998).  The merits of a number of approaches used to measure BC have been 

summarised by Hammes et al. (2008) who also touch on thermal analysis, a dynamic 

method. 

 

An easily applicable and practical method for BC determination in amended plots was 

described recently by Koide et al. (2011) for concentrations from a fraction of 1% to 10%.  

This could be regarded a quasi-LOI technique where the amount of OM pre-exiting in the 

soil could be quantified through a calibration set of soils providing a mass-loss baseline over 

and above changes due to the mineral soil fraction.  It was demonstrated in this study that 

additional C in the soil due to amended BC was readily determined by the increased mass 

losses (over relevant temperature interval).  It was not clear how sensitive the method might 

be for quantifying naturally occurring BC.  

 

Other studies have been undertaken that assessed the effectiveness of BC estimation by 

PLSR and MIR spectral information using BC calibrations based on quite different 

determination methods.  Bornemann et al. (2008) proposed a method for BC screening by 

MIR spectroscopy based on calibration using determined SOC and a significant BC marker 

called benzene polycarboxylic acids (BPCA) described in detail by Glaser et al. (1998).  

BCPA determination of the calibration soils was in accordance with the method of 

Brodowski et al. (2005).  According to the models developed by the authors, prediction of 

BC were poorer (slopes of 0.73 and 0.85) and a larger scatter of data (R2 = 0.7) than the 

accurate and precise POC estimations.   This is consistent with the observations that 

quantifying BC by use of BCPA determination can lead to over or underestimation where 

some non-BC aromatics report as BC and conversely highly condensed BC escape detection 

(refer to review on BC methods by Hammes et al. 2008).  Interestingly, the degree of 

condensation based on the proportion of mellitic acid present was also measured by 

Bornemann et al. (2008).  When spectra were correlated with this quantity the resulting 

models were metrologically similar to total BC by BCPA.  An analysis of the latent variables 
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(most important absorbance bands: 1760, 1400-1600, 770-830 cm-1) indicated the dominance 

from aromatic C used to produce the models.   

 

In the studies by Zimmermann et al. (2007) only carbonate free soils (and under 15% C) 

underwent spectral PLSR analysis.  They used a SOM separation scheme to obtain the 

combined labile and combined stable C pools which differed from that of Sanderman et al.  

(2011).  Soils were wet sieved but also involved density separation and mild oxidation with 

NaOCl.  The latter was used to render OM free of labile C so that only resistant soil C 

(rSOC) remained.  Models developed for these different fractions based on their determined 

C produced reasonable predictions where rSOC (closest equivalent to ROC) provided an 

accuracy and precision of 0.991 (slope) and R2 (0.89) which was fairly comparable to the 

CPOM.  Principal absorbance bands (based on latent variables) for the OM fractions showed 

that the 2800 to 3200cm-1 region which is prominent with regard to labile OM had no 

influence for rSOC prediction by PLSR.  

 

The recent method of calibrating MIR for resistant organic carbon (ROC) by CSIRO Land 

and Water (Glen Osmond, S.A.) has been very relevant to this study (Baldock et al., 2009) 

and is a method component of the �National Soil Carbon Research Programme (SCaRP).  

The models so derived were used here to compare the results obtained for the spectral 

analysis of soils which had been predetermined for BC by hydrogen pyrolysis (HyPy) at the 

JCU facility (James Cook University, Cairns campus) and also with soils of known biochar 

blends.  The CSIRO ROC method has evolved with the development of physical and 

chemical soil separation techniques followed by ROC determination by two main 

approaches.  The subdivisions have been designated particulate organic carbon (POC), 

humified organic carbon (HUM) in the finer fraction and resistant organic carbon (ROC) in 

both fractions.  Previously photo-oxidation was an important component in calibrating PLSR 

for BC by Janik et al. (2007, and earlier work).  In a principle similar to that employed by 

Zimmermann (2007) it has allowed non-BC to be removed (by UV light) from the <53�m 

fraction prior to analysis which is due to BC.  Predictions obtained by this preparation / 

calibration process were more accurate (regression approaching 1:1) than by the BPCA 

method and reasonably similar to the wet oxidation procedure demonstrated by Zimmermann 

(2007) even though the data set probably encompassed a broader range of soils (origins).  

Perhaps not surprisingly the principal absorbance regions were consistent with those found 

by the other authors.  However since the earlier work it had been recognised that while most 

                                                 
� SCaRP is a current programme coordinated by the CSIRO Land and Water (Glen Osmond S.A.) 
intended to investigate the variation in total soil carbon and the C pool structure based on these 
fractions within the top 30cm over a range of soils and land uses across Australia. 
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BC is collected in the fine fractions sufficient is also contained in the >53�m (POC) portions 

which have led to certain methodological modifications (see Sanderman et al., 2011).  As a 

result NMR spectroscopic results which are used to quantify BC are now bulked together for 

a more accurate total ROC.  Note that BC can be determined by 13C NMR because it is 

dominated by aryl-C occurring as fused rings which have a strong influence over the 130 

ppm chemical shift during these analyses.  While the magnitude of this response (being 

primarily due to BC) provides some measure of its proportion in the sample it is also 

contributed to from SOM making UV photo oxidation a fairly useful way to screen for BC.  

For routine use this necessitated access to such equipment whereas FTIR is rapid and much 

more readily available. 

 

Aims of the experimental work for this study 

To undertake any proper evaluation of C stocks and its dynamics there is clearly a need to be 

able to measure BC as a separate quantity where residence times are expected to be quite 

different.  Infrared spectral techniques hold the promise of delivering soil information much 

more efficiently than any other method.  To their advantage they are non-destructive, can be 

used proximally and spectral analysis systems can be ‘trained’ to provide more detailed 

information about forms of C present in the soil which includes carbonate and BC.  In this 

way it has the potential to be a major contributor in supporting more accurate SOM 

dynamics models.  A major part of the efficiency is that the amount of time and effort (cost) 

in soil preparation is relatively low (particle separation usually not required), is very fast but 

it is heavily reliant on calibration sets.  Furthermore, soil is composed of a variety of mineral 

and organic components that influence IR spectral absorption and then there are different soil 

and char types as well.  This means that considerable attention needs to be given to 

calibration over a broad range of relevant soils and BC concentrations.  Some laboratories 

use the previously discussed separation and selective oxidation techniques prior to spectral 

analysis including physical particle sizing, photo- and chemical oxidation.  In addition to 

being laborious there have been questions surrounding the accuracy of BC determinations by 

especially wet chemical means which can then lead to propagation of error and uncertainty 

into spectral based models.   

 

The aim was to investigate and compare two soil BC determination techniques as 

calibration methods for MIR spectroscopy and MIR based prediction models.  These 

were physical size separation followed by NMR (CSIRO ROC) and the selective 

retention of BC by hydropyrolysis (JCU facility).  In addition biochars were blended 

into soils, analysed and studied using MIR spectroscopy. 
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Why Hydrogen pyrolysis?   

BCs have overall a more stable chemistry but they comprise variable proportions of 

biodegradable components that are comparable to SOM in terms of their C sequestration 

potential (years rather than decades).  How much of any BC falls within this portion?  

Studies by Kanaly and Harayama (2000) have shown that poly-aromatic structures with ring 

sizes 6 or less constitute this less stable portion in contrast to recalcitrant BC with greater 

degrees of condensation.  However there has been no universally accepted benchmark for 

BC determination.  �Hydrogenation techniques (including hydrous pyrolysis) have been used 

for some time in petroleum research applications to evaluate source rock and hydrocarbon 

generation potentials.  Importantly, ring sizes > 7 remain intact up to HyPy temperatures of 

575 oC (plateau occurs at 525 to 575 oC) where the high pressure flow-through reaction 

limits any alteration to the structure or the condensation of more aromatic rings (Love et al.,  

1995; Meredith et al.,  2004).  Below this temperature all labile OM has combined with H 

and been swept away while beyond this plateau BC is cracked to gas.  Its limit of detection 

appears only to be constrained by the sensitivity of the elemental analyser.  The effectiveness 

of HyPy (HyPy facility pictured on Plate 5-1) in removing non-aromatic OM has also been 

demonstrated by pre and post hydropyrolysis studies using 13C NMR (Ascough et al., 2010).   

 

 

 
 

Plate 5-1 HyPy apparatus used for extracting non BC organic material at the JCU facility. 
 
 

                                                 
� The process enables the formation of solvent soluble hydrocarbons and biomarkers allowing the 
geochemist to characterise prospective sediments.  
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According to Bird and Ascough (2012) this recently embraced technique for BC research 

could provide the analytical standard that defines BC for determinative and preparative 

purposes.  The latter relates to obtaining pure BC for isotope and dating studies which must 

be free of all recent C (these methods are described by Ascough et al., 2009; 2010). 

 

 
Material and Methods 
 
Soils investigated by HyPy 

A small set (15) of various soils were selected for the determination of �native black carbon 

(NBC) by HyPy.  This term has been applied to distinguish BC that is naturally occurring or 

pre-existing in soils most likely a consequence of local fires over time.  The aim of this 

component was a) gaining a better understanding of the HyPy process and b) to test IR 

spectral prediction models based on HyPy results.  The soils included three standards where 

one was suspected of containing NBC and three forest soils from a fire prone district 

expected to host some NBC.  However one of the soil standards had been blended with 

biochar to serve as a type of control.  Along with the remaining samples which were from 

agricultural areas in NSW, these were taken to the HyPy facility at JCU and processed for 

BC determination. 

 

Preparation of soils containing a range of BC (0.25 to 20% by mass) 

The aim of this experimental component was to produce a set of synthetic soils with 

unequivocally known concentrations of biochar to serve as a sound starting point for TGA 

study and the calibration of MIR spectra.  This was a readily accessible way to obtain 

accurate BC concentrations without the uncertainties associated with CTO and extraction 

methods as indicated by the large variations from comparative studies (Schmidt et al., 2001).  

The latter may be attributable to the numerous handling steps and under or over efficiencies 

of removing labile C (also mentioned by Bornemann).  

 

Two sets of BC blends were prepared by mixing carefully weighed proportions into the same 

batch of sandy loam (Lansdowne, NSW; S3402164, E15066212) and homogenised in a 

mortar and pestle.  The rates of addition were 0.25, 0.5, 1.0, 2.0, 5.0, 7.5, 10 and 20% by 

mass and were in keeping with realistic ranges applied in field experiments where soils are 

amended with biochars (see Koide et al., 2011; Rondon et al., 2007).  Note that any pre-

existing charred C which may have been present in the original soil was not accounted for.  

                                                 
� This term has been applied to distinguish BC that is naturally occurring or pre-existing in soils most 
likely a consequence of local fires and not the result of deliberate soil amendment or sequestration. 
These types of BC have significance for ecological and dating studies.  
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Biochars from two different types of dry land shrubs were obtained from RCRA, Qld (who 

produce commercial charcoal), and these were from: 

a) Mulga (Acacia aneura, 1.2g/cm3 air dried)  
b) Gidgee (Acacia cambagei, 1.3g/cm3 air dried).  
 
The two biochars differed in their ignition characteristics and ash residues. 
 
 
Analytical  

Soil pre-treatment consisted of grinding in a puck mill to pass 100�m appropriate for FTIR 

and other analyses and storage of soils was under the same conditions after drying (40oC 

oven). 

 

Routine carbon and nitrogen determinations were carried out on the biochar blends with the 

Elementar Vario Max elemental analyser on subsamples (3-400mg).  Accurate C analyses 

were also required in conjunction with HyPy treatments to determine NBC and these were 

conducted at JCU on a Costech (Milan, Italy) elemental analyser with a zero blank auto 

sampler. 

 

Hydrogen pyrolysis 

Soils were previously homogenised in a mortar and pestle but no pre-treatments were carried 

out other than acidification with 1M HCL for 24 hrs (followed by washing) on soils 

containing carbonate.  This process would not be required if soil pH were low (i.e. <5 

indicating an absence of this anion) or the proportion of C as carbonates were known so that 

this could be accounted for in the final post-HyPy result.  Inorganic C would endure HyPy 

temperatures and add as an apparent BC value.  

 

Approximately 3-400mg soil was weighed out into suitable vials and mixed with sulphided 

molybdenum catalyst at a rate of 5% (soil C <10%) and at 10% (soil C >10%).  The mix was 

then covered with methanol and stirred with spatula to obtain intimate coating of catalyst on 

the soil.  Samples were then completely dried by placing them on a hot plate at 60 oC to 

evaporate the methanol before freeze drying overnight.  After removal, about half the soil 

was accurately weighed and transferred to a borosilicate reaction tube and plugged with 

clean quartz wool both ends (to allow the passage of H2 during pyrolysis).  These were 

weighed again (tube plus contents) before processing in the reactor.  The remaining material 

was used for elemental analysis to provide the pre-HyPy carbon contents of the soil (plus 

catalyst).  Tubes were processed one after the other which involved successive loading and 

sealing into the reactor, leak checking, commencing the high pressure H2 flow (5L min-1) 

and the programmed heating.  The soils were heated (resistance furnace) from ambient to 
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250 oC at 300 oC min-1 followed by a much slower ramp (8 oC min-1) to 550 oC and then held 

for 2 min. before gradually releasing the pressure as the system cooled to ambient.  The 

overall process required over an hour per sample provided there were no leaks in the system.  

During pyrolysis any hydrogenated C �compounds were swept from the soil mineral matter 

leaving theoretically >7 aromatic ring sizes in the matrix for subsequent weighing and C (i.e. 

BC) determination.  

 
Calculating NBC 

NBC was calculated using the important quantities; the initial composite masses (soil + 

catalyst), post-HyPy composite masses and their respective analyses. This circumvented 

having to correct for the additional mass of catalyst present which varied a little.  The gross 

mass differences represented the amount of labile C lost as it reacts with the H2 gas swept 

through at 5ml/min along with lattice water.  Pre and post-HyPy elemental analyses were 

used to determine the ratio of BC to TOC which were then applied to the initial elemental 

analyses to yield the actual amount of BC present in soil.  

 
Infrared Spectroscopy 

Soil spectra were acquired using a Bruker Tensor 37 DRIFTS spectrometer fitted with an 

HTS-XT microplate / detector module. Soils subsamples were firmly packed into microplate 

wells and uniformly levelled where one of the wells was designated for the KBr reference.  

The plate was then placed in the autosampler ready for FTIR analysis.   The infrared beam 

was provided by Globar source and the beam-splitter a KBr crystal. The mercury-cadmium-

telluride (MCT) detector built into the HTS-XT module was liquid-N2 cooled.  Sample 

positioning was effected by a motorised stage holding the sample plate which is 

automatically relocated to perform successive spectral analyses. Absorbance spectra were 

acquired atmospherically corrected with a resolution setting of 4cm-1 using the Bruker OPUS 

software version 6.5.  Each soil was scanned 60 times (averaged) over the frequency range 

4000 to 600 cm-1 (2500 to 17,000 nm) against the KBr reference which was scanned between 

each sample. Apodization was carried out using the Blackman-Harris 3-term function.  The 

spectra were also smoothed and normalised within the OPUS 6.5 software (Bruker) and the 

spectral data reprocessed (differentials) for principal component analysis (PCA). 

 

SCaRP MIR-ROC calibration data 

In order to use spectral data to predict or determine the content of a soil it must be related to 

other ‘known’ spectra which have been determined in some analytical way previously.   

                                                 
� In some research these compounds are trapped for MS fingerprinting which can be indicative of the 
source material. 
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Part of the Soil Carbon Research Project (SCaRP) by CSIRO collected soil samples from 

cropping, pasture and rangeland management systems located in a range of Australian 

agricultural regions.  The samples were measured for total, organic and inorganic C in soil as 

well as the allocation of organic C to its component fractions (particulate, humus and 

resistant organic carbon).   

Sydney University was part of an inter-laboratory comparison in collaboration with the 

coordinating soil research group at the CSIRO.  The calibration set consisted of 200 finely 

ground soils and another 87 soils as a test set.  The samples were finely ground in a puck 

mill for 90 sec. The resistant C (ROC) values were obtained by the CSIRO laboratory using 

the methods described by Sanderman et al. (2011) and their references.  This involved 

physical separation and determination of ROC in the particulate and humified fractions with 

the aid of 13C NMR and a molecular mixing model (Baldock et al., 2004). The samples were 

scanned and a model predicting ROC from the MIR spectra (MIR-ROC) was developed 

using the Cubist software (Minasny and McBratney, 2008). 

 

The MIR-ROC model generated from the SCaRP data was then applied to two small test sets 

consisting of: 

i) the soils measured by HyPy and 
ii) the synthetic BC bearing soils. 

 
 
The MIR-ROC model 

The calibration model generated from the MIR spectra of the SCaRP data (figure 5-2a) was 

linear and well correlated (R2 0.96) over the large range of ROC soil concentrations 

(equivalent to 0.02 to 2 % ROC).  Spectral model analyses were carried out with the data 

mining software Cubist (Rulequest Research), see Appendix I for rules and wavelengths 

used. 

The model separated the spectra into 8 rules or groups from high to low ROC concentrations, 

based on absorbance at wavenumber at 1797cm-1. Each of the rules is a linear prediction of 

ROC based on several wavenumbers. Cubist found that absorbances at wavenumbers 2784, 

1797, 1727, 1488, 1396, and 1357 cm-1 were the most frequently (significantly) used as 

predictors.  

 

The MIR-ROC model was applied to an independent validation data set of 87 (figure 5-2b).  

While the predictive quality is good for most soils with a bias of -0.3 mg/kg, a small 

proportion of points fall away from the trend hence a determination coefficient (R2) 0.77.   

 
 



Black carbon                                                                                                                    MIR Calibration 

 
 

123 

     

 
 
Figure 5-2a The MIR-ROC calibration model consisting of 200 soils determined for ROC by 
separation into POC and HUM followed by 13C NMR spectroscopy. (n = 200, RMSE = 
0.788 mg/kg, R2 = 0.96). 
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Figure 5-2b Validation of the MIR-ROC model using an independent 87 ROC measured 
soils. (n = 87, RMSE = 1.727 mg/kg, R2 = 0.78) 
 
 
 
 
 
 
 
 
 
 



Black carbon                                                                                                                    MIR Calibration 

 
 

124 

Results and Discussion 
 
NBC determinations by HyPy 

The soils selected for HyPy were on the basis that some would have a higher probability of 

containing significant amounts such as those from fire prone areas.  The results (table 5-1) 

correlated to some extent with this expectation such that most soils which were from 

agricultural sites were generally below 0.5% NBC down to 0.02% while the forest soils 

(subject to periodic wildfire) reached 1.01%.  One of the samples (soil standards) had a 

significant amount of BC at 1.29% only exceeded by a soil biochar blend placed into the set 

as a cross reference (2.15% BC).  

 
Table 5-1 NBC determinations after HyPy treatment. 

 
TEST SOILS Mass TOC Post-HyPy NBC BC/TOC 
  mg % C % C %   
Chromosol 2 682 0.15 0.03 0.02 0.13 
Soil standard 1 413 0.60 0.08 0.06 0.11 
Chromosol 1 496 0.39 0.10 0.09 0.23 
Vertisol 1 507 0.90 0.12 0.11 0.12 
SCL 1 453 0.70 0.14 0.11 0.16 
Dermosol 2 648 0.79 0.15 0.12 0.16 
Vertisol 2 563 0.82 0.19 0.19 0.23 
SCL 2 464 1.30 0.26 0.23 0.17 
Soil standard 2 574 2.60 0.25 0.29 0.11 
Sandy forest soil 1 590 2.00 0.33 0.31 0.15 
Sandy forest soil 3 544 2.60 0.63 0.56 0.21 
Dermosol 1 673 4.10 0.74 0.64 0.16 
Sandy forest soil 2 632 2.30 0.94 1.01 0.44 
Soil standard 3 755 4.02 1.44 1.29 0.32 
BAS 535 5.10 2.43 2.15 0.42 

SCL refers to sandy clay loam, BAS denotes biochar amended Lansdowne derived sandy loam soil 
 
 
Spectral analysis of NBC 

Subsequent to HyPy analysis these 15 finely ground (100�m) soils were studied by MIR 

spectroscopy (according to the methods described above).  A pure prediction model built 

from the known NBCs and their MIR data would not be particularly informative 

metrologically because these are based on a small set of soils (15) which tend to be heavily 

influenced by one or two outliers.   Instead, the MIR-ROC model (as described in the 

previous section) was used to predict ROC concentrations and the resulting data then 

compared with those obtained by HyPy (table 5-2).  Following on, the ROC predicted and 

HyPy correlation were plotted along with the SCaRP validation dataset (87 samples) used to 

test the model (figure 5-3), with all data expressed as % BC as obtained for HyPy.  The 15 

experimental soils fall generally around the trend produced by the MIR-ROC model 

although several do lie away from this.  It demonstrated that overall the method of 
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determining BC by HyPy was modestly comparable and yielded results in the same 

quantitative region as ROC data.  The effect of adding the HyPy soils to the ROC trend 

lowered the coefficient of correlation produced with the 87 test soils from 0.77 to 0.58 (R2). 

The BC concentration obtained by HyPy was generally smaller than that obtained by ROC, 

possibly related to the different extraction procedures.   

 

Table 5-2 NBC predicted by ROC model compared to measured (HyPy) values. 
 

  Observed MIR Predicted 
  % BC (HyPy) % C ROC 
Chromosol 2 0.019 0.000 
Dermosol 2 0.115 0.127 
SCL 1 0.123 0.274 
SCL 2 0.227 0.335 
Sandy forest soil 1 0.307 0.339 
Vertisol 1 0.109 0.346 
Soil standard 2 0.288 0.394 
Soil standard 1 0.065 0.395 
Sandy forest soil 2 1.006 0.586 
Chromosol 1 0.090 0.701 
BAS 2.145 0.909 
Sandy forest soil 3 0.556 1.042 
Soil standard 3 1.289 1.182 
Dermosol 1 0.639 1.218 
Vertisol 2 0.186 1.268 

 

 

The most obvious outlier among this set is the biochar amended (Lansdowne) sandy loam 

soil (composited from 10 to30cm interval) which has been strongly under-predicted by the 

MIR-ROC model.  This sample was composed of over 5% C, where according to HyPy 

2.14% or nearly ½ was BC.  It needs to be considered that biochar C is not entirely made up 

of black C within the definition (polyaromatised C) which may vary depending on the 

conditions of production i.e., heat, atmosphere, and duration (biochar blends discussed 

further below).  Several other soils correlate poorly (e.g., Vertisol 2, Chromosol 1) and it is 

equally possible that the two methods used to obtain the BC values could contribute small 

differences.  HyPy retains all the material with condensation numbers greater than 7, while 

the ROC method may exclude material that is not held within the HOC and POC fractions.  

This does not even consider the possible losses through handling but note that both methods 

have been developed with the aid of NMR analysis.   
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Figure 5-3 Predicting black carbon in a range of soils using the MIR-ROC model.  The black 
points are the prediction of the SCaRP validation soils (n=87) by the same model. 
 
 

When the MIR spectra of the NBC samples were projected in the principal component space 

of the 200 calibration soils (from SCaRP) (figure 5-4), the NBC soils are inclusive of the 

calibration set.  This means the spectral properties of the NBC soils are well covered by the 

calibration set, and the difference in the BC estimates are due to the techniques (HyPy vs. 

ROC). 
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Figure 5-4 Biplot for the MIR spectra of the 15 soils (analysed by HyPy) within the field of 
the SCaRP samples. 

 

When the 15 NBC soils are factorised and expressed according to their PCA scores (shown 

on figure 5-5) it is evident that other soil properties (including the mineral content) may exert 

a greater influence over the spectra than the relatively minor amounts of BC.  For example, 

the SFS soils from Upper Tambo are located in one small area (similar scores), they all 

contain BC remnants after fire but are primarily the same sandy forest soil.  In general it 

appears soils tend to group according to their region / soil type with BC secondary.   This 

observation has been reinforced by the BC blend which was purposefully included as a cross 

check during the HyPy process.  This blend had been made up at a rate of 16% biochar (5% 

C) with the soil standard-2 but plots along with this pure soil standard on the PCA, while soil 

standard 3 with high BC (1.29%) scores very differently (figure 5-5).  
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Figure 5-5 Principal component analysis (PCA) of the MIR spectra for the soils that 
underwent HyPy analysis.  The distribution of their scores point to genetic similarities (and 

differences).  
 

Furthermore, spectral analyses were carried out on untreated (only ground to under 100�m) 

soils to avoid influences that acid and washing may bring about in term of spectral 

characteristics.  The level of interference due to the presence of carbonates is uncertain in 

these studies but according Reeves (2009) should be considered.  In fact Chromosol-1 and 

the soil standard-1 both contained some carbonate.   While HyPy required carbonates to be 

removed so these did not add to apparent BC, for the purpose of spectroscopy the acid 

treating (including washing and drying) step was removed because it appeared to alter the 

physical condition of the soil and avoided possible losses through handling.  Note that 

treatment also lowers simplicity, where simplicity was a main aim for routine spectral work.  

 

The principal component analysis goes some way to explaining any deviations resulting 

from MIR predictions as shown on figure 5-5.  Their grouping appears to be associated with 

provenance as much as NBC content.  Any poor predictions based on this calibration 

comparison may also be related to the two methods of determination.   In some ways HyPy 

is a type of CTO relying on the removal of carbonates by wet chemistry prior to treatment 

followed by the removal of labile C (HyPy) to render ‘pure’ BC which is calculated from 

three sets of elemental analyses.  Similarly, does 13C-NMR after physical size fractionation 
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‘see’ the same BC as captured by HyPy?   HyPy may likely result in slightly lower BC 

values because some of the more reactive BC with PAC <7 is lost.  This would result in 

slight over-prediction on figure 5-3.  The success of any BC calibration hinges on a 

consistent definition for BC followed by a standard and uniform preparation methodology. 

 
Spectral analyses of blends 

To further understand the spectral behaviour from BC in soils, known amounts (independent 

of the current determination methods described above) of soils-biochar blends were studied 

spectroscopically.  These consisted of two biochars added precisely by mass into separate 

soils obtained from one batch (Lansdowne origin) and then fully homogenised.  The rates 

used (0.25 to 20% blend, see methods), were aimed to be consistent with the possible BC 

concentrations encountered during field applications as well as the range used in the MIR-

ROC calibration (0.02 to 2.0% C).  The finely ground blends were analysed under the same 

conditions and MIR range as previously described.  Spectra for biochar-soil blends (5 and 

20%) have been shown in the examples on figure 5-6a along with end-member spectra for 

the unblended soil and a pure biochar and the important region expanded (figure 5-6b).  The 

known quantities in these cases were the concentration of biochar C determined by the blend 

ratio in the soils and the C analysis of the particular biochar incorporated (ranged 0.05% to 

12% BC).  The Gidgee and Mulga derived chars themselves were 0.21 and 0.63% C 

respectively.  It should be noted that the pre-existing C content (0.3%) of the soil used for the 

blends contained a small component of BC according to HyPy analyses (between 0.11 and 

0.23%) placing them in the lowest range of mixtures (0.25 to 0.5% addition).   
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Figure 5-6 Complete FT-MIR spectra of soil-biochar blends and end member soil and pure 
biochar (a) and expanded region most relevant to absorbance of functional groups related to 

BC (b). 
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According to the ROC model about 14% of the C in these blended soils was classified as 

BC.  The moisture contents for the gidgee and mulga biochars were 3.9 and 4.4% 

respectively and after mixing with the sandy Lansdowne soil dropped to 2%.  The presence 

of significant moisture in the chars could otherwise account for discrepancies between C % 

in blends and their ROC predictions but these are minor amounts.  More importantly with 

regard to the blends, both were produced (carbonised) at relatively low temperatures at the 

RCRA facility (200-250 oC, Karen Siepen pers. comm.) instead of the 450 to 600 oC 

commonly the case.  The result is lower amounts of highly condensed C and is the main 

reason for the low predicted BC in the biochar.  The naturally occurring BC values are in the 

same order of magnitude as the prediction model remembering that these come about as the 

result of wildfires which reach higher carbonisation temperatures.  Over 480 oC char 

becomes almost fully aromatic (Adams and Attiwill, 2011) however the temperature of the 

organic layer near the soil surface can be considerably less such as soils under grassland 

(Gonzalez-Perez et al., 2004 and references therein).  Therefore the organic residues in 

biochars or naturally produced BC (NBCs above) vary and are likely to be complex mixtures 

of SOM i.e. combinations of alkyl characteristics (e.g. absorbances at 2930, 2850 cm-1) and 

unsaturated C structures (aryl groups).  The latter can be expected to be increased under 

higher temperature / lower O2 and spectrally indicated by absorbance >3000 cm-1, in 

particular, aromatic groups absorbing near 3057 cm-1 (seen in the pure biochar on figures 5-6 

a and b).  Although this absorbance band was not recognised as a significant factor 

(according to the CUBIST analysis) in these studies compared to carbonyl (C=O) vibrations 

of esters and C-H bending (1779, 1727, 1488 cm-1).  Some other patterns in these spectra 

were also visually quite evident, namely, the diminished absorbances with increasing BC as 

indicated on figure 5-6b (approx. 2250 to 1800 cm-1) related to the lower influence of soil 

spectral properties.    

 

These soil-biochar spectra were then used as a test set with the MIR-ROC model.  The ROC 

predictions (figure 5-7) obtained for the blends using the model indicated a good linearity 

(R2 = 0.96) although were systematically underestimated.  The ROC model predicted much 

lower BC values by about a factor of 7.  

 
 



Black carbon                                                                                                                    MIR Calibration 

 
 

132 

y = 0.1418x + 0.1156
R2 = 0.9635

0.0

0.5

1.0

1.5

2.0

0 5 10 15

 Black carbon (%C due to blended biochar)

Pr
ed

ic
te

d 
R

O
C

 %

 
 
Figure 5-7 Using the MIR- ROC model to predict the amount of BC in the biochar blended 
soils. 
 

Alternatively constructing a PLSR model generated from the spectra against its pre-

determined BC values conveys a different story.  The correlation obtained directly using the 

OPUS 6.5 software is shown on figure 5-8 (6 factors were used).  The problem here however 

is that it is built from a small number of increasingly large BC concentrations and predicted 

values can become ‘overfitted’ or forced.  The same would apply to a model based on the 

blend ratio as being the known quantity where any such calibration may otherwise be quite 

useful when monitoring the gross amount of biochar in amended soil unconstrained by a 

specific definition of BC.  Principal component analysis indicated that the two biochars 

increasingly trended apart which can be due to either the %C present or the biochar itself.  
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Figure 5-8 Prediction model generated (using spectroscopy software) from the spectral 
information and their known BC. 

 
 
The disparity between the predicted and actual %BC is most likely again related to the core 

determination method used.  Here, the BC was taken to be all of the biochar C blended into 

the soil (background BC from soil was regarded negligible).  However during the 

charcoaling process not all the C is necessarily fully carbonised leaving variable amounts of 

only partially affected lignocellulose within its structure.  In such cases the resultant 

chemical composition would be expected to escape the HyPy process (this includes aromatic 

rings with low condensation) or alternatively not be analysed as BC by 13C-NMR.  The end 

result must be under-prediction hence why the MIR-ROC model indicated that only 14% of 

the biochar C is resistant. 

 

An important observation related to all the approaches used here is that good prediction 

models can be achieved for particular calibration method but does not mean these equate 

between methods or measure the same C.  This comes back to the point about defining what 

is BC across all calibration (determination) methods.     
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C and N compositions of biochar soil blends 

The determination of C and N are routine soil analyses where ratios (ranging from 10 to 20) 

can often distinguish forest, pasture and crop soils as a consequence of biological inputs.  

These were similarly completed for the soil-biochar blends.  Charring of organic materials 

such as wood can be expected to lower the N content due to volatility and the process of 

carbonisation (as occurs through fire) where C increases at the expense of H and O.  The 

same sorts of changes occur during coal maturation (see Van Krevelen, 1963).  As a result 

charcoals contain up to 60 or 70% C as compared to about 58% in OM.  The source and 

form of N in BC presumably is what remains (after wildfire) from partial oxidation with 

possible alteration to heterocyclic N forms (De la Rosa et al., 2008).  Accompanying this are 

C/N ratios that can reach several hundred among charcoals and values of this magnitude 

should exert some influence over the overall bulk soil composition with respect to C/N.  

Where significant amounts are present this ratio could be used to indicate the presence / 

quantity of BC or alert to another C form distinct from humified OM such as carbonate.   

 

The results for the C and N analyses have been plotted as C/N against the % of char added 

on figure 5-9.  Two separate trends were produced corresponding to each char type.  The 

nomogram allows a reasonable estimation of the amount of biochar in the soil over about 1% 

for Gidgee derived material and to a lesser extent the Mulga derived.  Other information can 

also be gleaned from these plots namely, the C content of the biochar, the C/N ratio in the 

soil OM and the pre-existing % C.  It should be emphasised that the presence of carbonate C 

(if left untreated) could increase ratios substantially and distort any such interpretation.  Low 

levels of biochar or residues from forest fires are unlikely to be betrayed from C/N alone. 

 

While these analyses can in themselves be quite a useful tool for BC estimation in soils 

where concentrations are higher (e.g., amended plots) it also highlights that as BC increases 

so do other factors that may affect spectral analysis. 
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Figure 5-9 Result of elemental analyses (C/N) for biochar blends (in same batch of sandy 

loam). 
 

 
Conclusions 
 
1. A significant proportion of biochar C did not appear to fall under the category of BC as 

defined by other methods. Experiments on biochar added to soils at varying rates were 

estimated for their BC content by MIR spectra using a prediction model based on physical 

separation / 13C-NMR (ROC method).  This clearly showed that biochar comprised > 50% of 

relatively labile C (possibly C structures with ring sizes <7).  These results highlighted that 

what is included as BC may vary according to the means of separations / analysis used and 

emphasised the importance of developing a standard and uniform method of determination.  

 

2. Hydrogen pyrolysis was tested as an alternative means of determining naturally occurring 

BC (fire remnants) and as a potential method to calibrate MIR spectra for rapid soil BC 

analyses.  These were based on a small number of samples (15) and from quite diverse 

provenance.  Their spectra were predicted using the ROC model (as above) and while these 

plotted only generally they conformed to the overall trend produced by the model.  As a 

possible calibration bench mark for future MIR spectral calibration these comparisons (with 

HyPy processed data) were very encouraging.  MIR calibration on a larger set of soils is 
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expected to yield better correlations and could be used to build prediction models equal to 

ROC. 
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APPENDIX I Equations used in Cubist and principal absorbances 
 
Details of the CUBIST rules used to identify principal absorbance bands and generation of a 
quantitative prediction model. The 1797cm-1 was mostly used to separate BC concentration, 
followed 1488, 1396, 2784, 1727, and 1357 as useful predictors. WN refers to first derivative 
absorbance at the particular wavenumber. 
 

ROC (mg/kg) Equations 
Rule 1: [127 cases, mean 2.336, range 
0.24 to 6.69, est err 0.547] 
 
  if 
      1797 <= 0.00868 
   
 

ROC = -1.81 + 543 1797WN + 178 1511WN + 155 1643WN - 278 2082WN 
           - 154 1357WN + 66 1843WN - 160 1488WN + 152 1465WN 
           - 150 1573WN - 64 1396WN - 99 1504WN + 81 1727WN + 226 2784WN 
           - 19 1080WN + 53 3802WN - 50 1458WN - 98 2260WN 

Rule 2: [33 cases, mean 8.757, range 
1.99 to 20.22, est err 0.880] 
 
  if 
      5892 <= -4.35e-005 
      3972 > 7.15e-005 
      1797 > 0.00868 
   
 

ROC = 2.757 - 3063 1365WN + 2281 1357WN + 834 1396WN + 1072 1797WN 
           + 746 2784WN + 76 1727WN + 93 1488WN 

Rule 3: [27 cases, mean 5.778, range 
1.16 to 15.32, est err 0.709] 
 
  if 
      5892 > -4.35e-005 
      1797 > 0.00868 
   
 

ROC = -7.385 + 671 1511WN + 804 1797WN + 333 1643WN + 242 1843WN 
           + 559 1465WN + 662 3802WN - 558 1488WN - 391 1504WN 
           + 930 2784WN - 211 1396WN + 306 1727WN - 448 2082WN 
           - 154 1365WN + 120 1357WN - 185 1458WN + 34 1080WN 
           - 361 2260WN 

Rule 4: [5 cases, mean 9.712, range 
7.2 to 13.43, est err 0.798] 
 
  if 
      5892 <= -4.35e-005 
      3972 <= 7.15e-005 
      1797 > 0.00868 
      1458 > 0.0141 
   
 

ROC = 4.517 + 673 1797WN - 361 1365WN + 273 1357WN - 241 1488WN 
           + 75 1396WN + 229 2784WN + 23 1727WN 

Rule 5: [3 cases, mean 12.387, range 
10.55 to 15.67, est err 0.075] 
 
  if 
      5892 <= -4.35e-005 
      3972 <= 7.15e-005 
      1797 > 0.00868 
      1488 > 0.00469 
      1458 <= 0.0141 
  
 

ROC = 6.639 + 603 1797WN - 257 1488WN - 28 1365WN + 21 1357WN 
           + 6 1396WN 

Rule 6: [8 cases, mean 6.425, range 
3.59 to 8.99, est err 0.746] 
 
  if 
      5892 <= -4.35e-005 
      1797 > 0.00868 
      1488 <= 0.00469 
   
 

ROC = -2.093 + 349 1511WN + 581 1797WN + 179 1643WN + 130 1843WN 
           - 315 1488WN + 299 1465WN + 355 3802WN - 126 1396WN 
           - 194 1504WN + 159 1727WN + 444 2784WN - 240 2082WN 
           - 99 1458WN + 18 1080WN - 194 2260WN 
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Attribute usage: 
 
Significance   MIR Frequency 
 
100%   1797WN 
100%  1488WN 
100%     1396WN 
99%      2784WN 
99%      1727WN 
96%      1357WN 
80%      1458WN 
80%      3802WN 
80%      2260WN 
80%      2082WN 
80%      1843WN 
80%      1643WN 
80%      1511WN 
80%      1504WN 
80%      1465WN 
80%      1080WN 
63%      1573WN 
37%            5892WN 
33%      1365WN 
20%           3972WN 
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APPENDIX II   Raw data for soils used in HyPy analyses 
 
 
Soil Pre-hypy Post-hypy Post-Hypy *Previous Pre-hypy Post-hypy Pre-hypy Post-hypy BC/TOC BC in soil 
  SCV (g) SCV (g) SV (g) C% C% C% C  (mg) C  (mg) % % 
Chromosol 2 1.1374 1.1223 0.3092 0.15 0.19 0.03 0.62 0.08 12.55 0.02 
Soil Std 1 0.9981 0.9842 0.1979 1.02 0.69 0.08 1.46 0.16 10.83 0.06 
Chromosol 1 1.0423 1.0215 0.2366 0.39 0.38 0.10 0.98 0.22 22.98 0.09 
Vertisol 1 0.9662 0.9523 0.2125 1.20 0.90 0.12 2.03 0.24 12.06 0.11 
SCL-1 1.0409 1.0253 0.2051 0.70 0.77 0.14 1.69 0.28 16.40 0.11 
Dermosol 2 1.094 1.0682 0.2332 0.79 0.87 0.15 2.25 0.35 15.52 0.12 
Vertisol 2 1.112 1.0994 0.2743 0.82 0.80 0.19 2.30 0.52 22.71 0.19 
SCL-2 1.0468 1.031 0.2082 1.30 1.36 0.26 3.05 0.53 17.43 0.23 
Soil Std 2 1.0516 1.0279 0.2214 2.60 2.00 0.25 4.90 0.54 11.07 0.29 
SFS 1 1.1468 1.1312 0.3007 1.80 2.01 0.33 6.37 0.98 15.35 0.31 
SFS 3 1.0926 1.078 0.2823 2.60 2.78 0.63 8.25 1.76 21.38 0.56 
Dermosol 1 1.1423 1.1001 0.2846 4.10 4.11 0.74 13.42 2.09 15.59 0.64 
SFS 2 1.0839 1.0687 0.2386 2.30 2.02 0.94 5.13 2.24 43.75 1.01 
Soil Std 3 1.075 1.0438 0.2038 4.02 3.88 1.44 9.12 2.92 32.07 1.29 
BAS 1.0899 1.0616 0.2115 4.70 5.10 2.43 12.22 5.14 42.07 2.15 
Note: SCV refers to soil+catalyst+vial; BCs were calculated based on *previous C analyses (our labs); values (in italics) were adjusted for carbonate content. 



 

CHAPTER 6 - REVIEWING THE DETERMINATION OF SOIL C POOLS: 
ADDITIONAL EXPERIMENTS IN THERMAL ANALYSIS 
 
Background and scope 

Soil C is diverse and SOM itself is composed of a continuum of biologically derived 

substances that individually can persist for quite variable periods of time under the set of 

conditions (soil type, climate, etc.) that influence degradation rates (Sanderman et al., 2010).  

This aspect is as important as predicting soil C priming and loss minimisation because 

without an understanding of the processes at a component level, soil C building strategies are 

too uncontrolled and remain obscured by the real soil C structure.  It must be emphasised 

that physical protection of SOM by the mineral component (while not quantified here) is 

another important factor capable of producing apparent changes to in-soil decomposition 

sensitivity (Schmidt et al., 2011). 

 

Numerous methods of modelling the dynamics of soil C have evolved from the earliest 

concepts of SOM degradation studied for the past 150 years (most notably at the Rothamsted 

Experimental Station).  Now computerised turnover simulation models (e.g. CENTURY, 

ROTH-C) try to predict the theoretical degradation and residence times of distinct soil C 

pools (Kirschbaum et al., 2001; Davidson 2006).  These rely on initial values obtained for 

the different soil C pools to predict their respective abundances over time but may become 

too generic (inputs are too general) with respect to soil conditions and perhaps the type of 

OM.  It is of some importance to be able to recognise what is occurring to these differing soil 

C fractions over time by a practical ability to measure their proportions rather than simply 

the total C abundance.  As quite justifiably pointed out by Baldock et al. (2009), a method to 

obtain meaningful and measurable soil C pools would be more reliable than conceptual pools 

derived from simulation models.  This point has been well demonstrated by these authors’ 

attention to the development of a protocol to separate major pools to calibrate rapid spectral 

analyses for greater soil throughput.  To this end, physical and chemical separation followed 

by various analytical methods have been seen as the effective way of dividing a soil into 

their broad organic C types: labile, humified and black carbon (BC).  This general approach 

into isolating the main C groups has been adopted by others (e.g. Zimmermann et al., 2007) 

with several variations used in separations, all of which are time consuming and involved. 

 

A definition for these soil C pools 

Generally speaking, in addressing soil C pools in the context of monitoring stocks, from 

currently proposed strategies (eg. Walcott et al., 2009) there seems to be general agreement 
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that soil C may be categorised into four main groups (table 6-1).  These are based on relative 

differences in residence times enabling a fairly reasonable broad definition as follows:  

 
Table 6-1 The relative residence times for the major soil C forms and alternative terms used 
for the group.   

 
Major soil C forms Turnover  dynamics Equivalent designations 
Carbonate Millennial Inorganic C 
Black carbon Centennial 1ROC, 2Inert OM 
Humus C Decadal 1HUM, recalcitrant OM 
Labile C Annual/seasonal 1POM, POC, active pool 

 
Note: Nomenclature used by 1Sanderman et al. 2011 1Baldock et al. 2009 (CSIRO) and also 
1,2Zimmermann et al. 2007, 1Bornemann PhD thesis 2011. The active pool includes microbial 
biomass. 
 
The persistence of each C group in the soil environment is likely to be influenced by a 

different set of factors.  For example the abundance of inorganic C is not expected to change 

over long periods (Allen et al., 2011 and their references) without significantly decreased 

pH.  While inert C resulting from wildfires is relatively stable (except during subsequent 

fires), POM and HUM are probably mostly susceptible to alteration via increased aeration 

(e.g. tillage) and the affects of priming (addition of labile C-rich OM). 

 

In Chapter 2, thermal analysis was used as a way to better understand LOI and its limitations 

but those experiments also provided strong indicators of this technique’s ability to 

differentiate other forms of soil-related C.  The perturbations observed in the ion currents 

associated with thermogravimetric (TGA) oxidation products (primarily CO2), were 

interpreted to be related to a diversity of OM itself as well as other chief soil C contributors 

such as black carbon and carbonates.   

 

Rather than physiochemical means, the potential for separating these same groups thermally 

appears to have been underexplored and is the focus of this chapter.  It tries to answer two of 

the main hypotheses set at the outset of this research as it relates to soil C fractions and 

auditing with emphasis on black C, carbonate and humified OM: 

 

1. Test the hypothesis that there is a relationship between the in-soil recalcitrance of 
carbon and ignition temperature. 
 
2. Increase our understanding of the types of carbon most relevant in such studies and 
clarify the importance of soil size fractions during soil carbon auditing. 
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A review of activation energies and the basis for thermal analysis  

Earlier soil researchers already recognised that differential thermogravimetry (DTG) curves 

were a means to characterise OM that could assist in the classification of soils (Turner and 

Schnitzer, 1962; Schnitzer et al., 1964; Schnizter and Hoffman, 1966).  In addition they also 

derived rate constants for different OM based on thermal analysis data using early methods 

(Van Krevelen, 1951).  In principle, the mass lost (degraded) for a set of heating rates 

provide information on rate constants at stages of the material’s decomposition and from 

there allowed activation energies (Ea) to be calculated.  Over the decades kinetic data 

acquired in this manner by various methods including Flynn and Wall (1966), Gill et al. 

(1992) have been recorded for organic and inorganic materials.  In order to provide some 

numerical framework to discuss these four different soil C forms / pools in the context of 

thermal analysis and the potential to separate them on a refractory basis, published data on 

activation energies have been abridged for table 6-2.  A brief examination of activation 

energy data for carbonaceous materials representative of these groups indicates that they 

differ in their stability which means some pools could be differentiated by thermogravimetry 

(TGA).  For example carbonate (160 kJ mol-1) should decompose at a higher temperature 

than charcoal (65 kJ mol-1) allowing the relevant forms to be easily determined by TGA 

depending on the thermal behaviour of other components present.   

 

Table 6-2  The ranges and variations in activation energies (Ea) for model materials 
representative of the major pools and the literature sources (obtained by TGA methods). 
 

C form Ea (kJ mol-1) Reference/s 
Cellulose 76-133 Emsley and Stevens, 1994; Xie et al., 2009; Amutio et al., 2012 
Lignin 62 - 98 Amutio et al., 2012; Shen et al., 2013; Xie et al., 2009 
Black C* 65 Bafghi et al., 2011 
Kerogen 70 Aboulkas and El Harfi 2008  
CO3 160 Halikia et al., 2001 
CO3 (in situ) 133-138 Geogiva et al., 2013 

* Charcoal value used as black C varies depending on form (soot, coal etc.)  Also note: cellulose may 
be considered under POC while lignin and black C as more resistant under soil conditions i.e. HUM 
and ROC respectively. 
 

SOM can be regarded as carbohydrate in composition (Barron et al., 1980) where mainly 

plant debris has been oxidised and rearranged to form coiled macromolecules (Sutton and 

Sposito, 2011).   The biomass precursor can be chemically represented by cellulose and 

lignin which are some of the most widespread carbonaceous materials in our environment.  

Their kinetic data has been considered here as way to approximate recent plant derived SOM 

in terms of thermal degradation since values for the latter are scant with the exception of 

some general information on SOM kinetics (e.g. Ruxton, 2003) and some respiration studies 
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(e.g. Reth et al., 2009).  As an example, simulated aging of pure cellulose under air by TGA 

at low temperature (160 oC) was accompanied with increasing carbonyl units (Ali et al., 

2001).  However, although OM turnover has been correlated with activation energy where 

short term data has been excluded (Reichstein et al., 2005), it must be emphasised here that 

Ea data from TGA analysis of cellulose, lignin and BC cannot be used as a strict analogue to 

in-soil degradation.  This is because, how the different substrates behave in soils is more 

complex and undoubtedly depends on the prevailing conditions such as pO2 or presence of 

microbial enzymes (Sanchez-Jimenez et al., 2011).  Decomposition of carbohydrates can be 

variable and cellulose has usually been regarded as less stable than �lignin although this has 

been challenged more recently (Schmidt et al., 2011).  Whether through chemical or 

structural protection both these polymers are not easily broken down in the natural 

environment without the assistance of fungi (Kabuyah et al., 2012) and their enzymes 

(cellulases and lignases).  In addition, fungi produce melanin, a fairly resistant pigment made 

of aromatic C structures, in turn, adding to the more recalcitrant lignin.    

 

In reviewing Ea data related to the thermal decomposition for some of these ‘model’ 

materials considerable ranges have been encountered.  Published Ea values for cellulose in 

particular, differs widely partly because of its complex decomposition / depolymerisation 

(pathways described by Emsley and Stevens 1994; Shafizadeh and Bradbury 1979 and many 

others) but also due to the varied conditions throughout all the TGA studies.  Most 

appropriate to this study would be TGA thermal degradation of cellulose under oxidation 

conditions.  Lignin has often been found to be more stable than cellulose in terms of TGA 

degradation temperature and hence Ea (Xie et al., 2009), which according to Shen et al. 

(2013) is because of the presence of polymerised aromatic units.  These may be consistent 

with what can be expected in natural settings although Amutio et al. (2012) showed that the 

onset temperature for lignin was actually lower than cellulose resulting in a lower Ea but the 

bulk of the lignin degraded at temperatures higher than cellulose.  Furthermore, even under 

oxidative TGA, there were volatilisation and oxidation phases evident (pyrolysable and non-

pyrolysable fractions).  This means that even where air is used (21% O2) some of the organic 

(combustible) materials degrade into gases and form char to be fully oxidised at higher 

temperatures.  Shifts can also occur in the initial stages (onset) of thermal decomposition and 

oxidation depending on pO2 (Tihay et al., 2011; Horrocks et al., 1985), heating rates and 

perhaps also substrate/matrix leading to different Ea.  All these factors may provide some 

                                                 
� Lignin forms part of the plant cell (xylem) imparting strength to its structure and can be as much as 
one quarter of woody material.  It is bound together in strong bonds making it resistant to decay. 
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explanation for the various Ea data available in the literature for particular types of organic 

material. 

 

Activation energy data for a particular material can also vary to some degree depending on 

its physical condition (particle size and structure) during heating or composite thermal 

behaviour (contaminated or compound minerals).  In some ways it offers the possibility to 

differentiate polymorphs of the same chemical composition.   

In situ formed CaCO3 appears to have a lower activation energy (Georgiva et al., 2013) 

which may have further importance for soil analysis by thermal means.  Generally the onset 

temperature for carbonate thermal degradation is around 650 oC and may extend beyond 800 
oC (depending on total mass and thermal disequilibria) or higher where dolomites are present 

(Wang and Anderson, 1998).  However, MgCO3 (in its native form) depending on its likely 

abundance in soils should be considered because of its lower degradation temperature at 

from around 500 oC (Bisutti et al., 2007) which would interfere with the clay / mineral TGA 

event.  As with carbonates, BC is also usually indistinguishable from SOM (e.g. elemental 

analysis) but is not as easily corrected for as carbonate.  Any advantages of acid treatment 

apply in such cases where the removal of carbonates other than dolomite or calcite may be 

necessary.   

 

Numerous TGA studies of pure cellulosic materials (e.g. applications in bio-fuel production / 

plantation wastes etc.) have provided useful indicators of their thermal behaviour / 

characteristics.  For example differentiable thermal characteristics have been shown for 

hemi-cellulose, cellulose and lignin and (e.g. Abdullah et al., 2010).  As a result, the 

technique’s potential to distinguish soil C types has received renewed attention over the last 

decade and as projected by Manning et al. (2005), SOM could be resolved into discrete 

dynamic C pools using the basis of programmed heating rates. 

 
Objectives 

The key goal in this study was to evaluate TGA as an alternative means to determine one or 

more of these soil C pools without having to resort to the more time consuming and involved 

physical and / or chemical fractionation as employed by the current standard methods.  

Potentially, data obtained in this way could be used in conjunction with (calibration of) rapid 

FTIR analysis of these subdivisions in a similar manner to those proposed by Vasques et al. 

(2009) or Baldock et al. (2009) and Sanderman et al. (2011) and were the approaches 

discussed in Chapter 5 (in conjunction with HyPy).   
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Materials and Methods 
 
Soils and carbonaceous materials 

Soils were obtained from mainly around NSW to include Dermosols with carbonate content, 

sandy loams from fire prone areas for their BC content and agricultural Vertisols and loams 

with variable SOM to test separation of these main pools by TGA.  Two soil-biochar blends 

were selected (used for studies in chapter 5), to test quantification of BC in soil by TGA. 

 

Soil treatments 

A small subset of soils (6) primarily loams from Lansdowne (under lucerne) and a Vertisol 

under pasture from Dimby Downs were digested using wet oxidants to remove labile OM 

and test the TGA response. The chemicals used were 0.9M Calcium Hypochlorite 

(Ca(OCl)2), 0.33M K- Permanganate (KMnO4), 10% (3M) hydrogen peroxide (H2O2) and 

0.1M NaOH (alkaline solution).  The wet oxidants were allowed to digest for 24hrs and the 

alkaline solution 160hrs. Each of these reactions required periodic agitation and in the case 

of the H2O2 digestion was done using a warming plate (60 oC).  None of these reactions was 

acid catalysed. 

 

Clay separations 

Clay sedimentation was carried out on the basis of Stokes law where particles finer than 2 

µm remained in the surface 20cm of a soil water suspension 16hrs after agitation.  Because 

larger quantities were required for repeated thermal analysis, settling was carried out in 

bucket proportions (vessel 25 cm height and width) using around 150g soil (dispersant free).  

After the specified time had elapsed the fine fraction was decanted carefully into a broad 

vessel to facilitate drying before collection of each fraction (yielding 50 mg to 2g).  TGA 

analysis were carried out using the TA Instruments 2950 (as described in chapter 2) and a 

new instrument the Q5000 by TA instruments was also trialled (University of NSW, School 

of Chemical Engineering). The latter was capable of analysing much lower masses as 

obtained after settling.  

 

TGA analysis 

Thermal analyses were carried out using a TA Instruments 2950 TGA.  Samples were dried 

(stored at 40 oC) and ground up to homogenise the matrix which was supposed to reduce 

thermal disequilibria.  Soils were heated in a platinum pan (capacity to 100mg) at a rate of 

10 oC min-1 from 200 to 750 oC under oxidative purge (40ml min-1 through the furnace).  

Heating from ambient conditions was at 25 oC min-1 to remove maximum free water.  All the 
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mass changes reported here were determined using the TA Universal Analysis 2000 

software.  

 

Thermogravimetric analysis / Fourier transform infra-red (TGA/FTIR) 

TGA/FTIR (Fourier Transform Infra red) was carried out with a TA Instruments 2050 TGA 

connected via heated (200 oC) 1/8” transfer line to a Nicolet 5700 FTIR spectrophotometer 

(Thermo Electronic Corp) fitted with evolved gas cell accessory and liquid N2 cooled 

detector.  The heating program was as with pure TGA and TGA/MS experiments and purged 

with a gas flow rate of 75 ml/min.  Ultra high purity N2 was used in order to extract and 

preserve as much functional group information as possible.  FTIR spectra were averaged 

from 16 scans at a resolution of 4 cm-1 using OMNIC 7.3 software. 

 
Results and Discussion 
 
Separation of BC and Carbonate 

The review of activation energies for possible soil constituents indicated that the more 

thermally resistant BC and CaCO3 provided a good starting point for separation in a simple 

system that did not involve silicates, alumino-silicates or typical SOM.  A pure gidgee 

biochar has been presented on figure 6-1 indicating the mass change events due to free water 

(below 200 oC), biochar (onset temperature ~320 oC) and CaCO3 (onset temperature ~620 

oC).  The thermal analysis (shown by differential mass change curve) of this pure biochar 

yielded the following information: 

1. that the biochar degraded with a sharp mass change, 

2. biochar is well separated from CaCO3, 

3. both components can be readily determined on mass basis as well as their C 

contribution provided a conversion factor can be derived for each form and, 

4. the residue was due to the ash content (proximate analysis) in this case 60%.  

 

The C contribution due to carbonate is easily calculated according to the decomposition 

reaction: 

CaCO3 + (heat) � �CaO + CO2  

The CO2 is lost in the gas stream, lowering the remaining mass by 44% but a quick rule is 

the amount of C due to carbonate present in the (soil) sample is 27% of the mass lost (i.e., 

conversion factor is 0.27).  

 

                                                 
� This is a calcining process where the residue (66%) CaO, sometimes improperly termed lime, has 
been used to amend soils and pH.  
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The thermogram of this biochar provided a good example of the separations achieved by 

TGA.  In this case the CaCO3 may come about through the concentration of calcium oxalate 

from precursor plant stems during production (not so apparent after dilution into soils).   
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Figure 6-1 Thermogram of a gidgee derived biochar showing all mass loss events: initial 

moisture, biochar at 350 oC and calcium carbonate at 650 -700 oC.  The biochar had maxima 
of 320 oC low for BC and is related to its low temperature of production (200-250 oC) 

 
 

Similarly, carbonate is well separated from SOM with temperature onsets lower than BC 

providing for quite effective TGA differentiation / determination of SOM and carbonate.  

Furthermore their relative proportions can be correlated with the stable carbon isotope 

composition of the whole (soil) sample which quantifies the isotopic sum of all the C 

components present (refer to Attachment-A below as stable isotopes are not discussed 

further here).  

 

Determining black carbon 

However it is not always so neat and simple.  Soils contain several mass change events that 

may mask BC notably, SOM and dehydration / dehydroxylation of minerals.  To ascertain 

whether TGA can distinguish and determine BC, both soils with known BC and several 

synthetic soil blends were studied in this way.  Soils (including soil standard 3) originated 

from various localities as well as fire-prone areas which were previously confirmed to 

contain low amounts of native black C (NBC) using the hydrogen pyrolysis (HyPy) 
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procedure described in chapter 5.  Charred C is found in surface soils after wildfires and is 

thought to occur by depletion of polysaccharide-derived organic matter and enrichment of 

lignin and lipid derived compounds (Neff et al. 2005).  This may well be reflected in pre- 

and post-wildfire differential scanning calorimetry (DSC) plots presented by De la Rosa et 

al. (2008) showing the relative decrease of labile and increase of more stable OM (discussed 

further under SOM below).   

 

To investigate the potential to determine BC in soil by TGA alone, soils were thermally 

analysed under oxidative conditions according to the methods described.  Examples of 

thermograms have been presented on figure 6-2 clearly showing the major mass change 

events between 20 and 50 minutes (200 to 550 oC) observed with the differential mass loss 

(DTG) curves.  The anticipated mass losses found in earlier studies due to free water, OM 

between 20 and 30 minutes and the mineral event (45 mins.) were noted.  However these 

analyses included an additional event between 33 and 43 minutes (temperature equivalent of 

350 to 470 oC) suspected to be due to the presence of BC content.  Although, this feature is 

not always evident in all thermograms and is probably abundance related.  Also the two fire 

prone forest soils were sandy and lacked a distinctive mineral event.  Note that soils were 

finely ground to prevent spikes during oxidative analysis. 
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Figure 6-2 Soil thermograms containing variable amounts of SOM and BC ranges from 0.28 
to 1.29% of total mass.  SFS-1 and -2 refer to sandy forest soils (0-5 cm) from fire prone 

areas.  
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TGA mass loss data was then determined for the thermal ‘window’ (360 to 470 oC) as 

defined by the DTG curves in the example plots above and then compared to results obtained 

after HyPy (the number of soils that underwent both analyses, n=13).  The following 

correlation on figure 6-3 was produced (R2 = 0.91) and indicated that TGA was able to detect 

a significant proportion of the mass change event due to BC.  The slope of ~2.4 was 

consistent with BC in the soils being typically composed of 40% C, fairly low for BC and 

closer to that of recent OM.  The linear correlation function between the results obtained by 

TGA (converted to % BC) and determined by the HyPy method was 0.952 + 0.23 with a bias 

of 0.21.  The small deviations from unity (including intercept of 0.5) could be attributed to 

slightly different C concentrations BC in individual soils (from various origins) and the 

likely interference from OM oxidation and mineral decomposition events flanking both ends 

of the BC oxidation.  The latter would add mass and produce lower C concentrations.  
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Figure 6-3 Correlating the mass losses for the TGA thermal interval (33 to 34 min.) with the 

values obtained by HyPy analysis for BC (n=13). 
 
 
Equally the TGA analysis for that thermal region may include small amounts of less 

aromatised material which is lost during the HyPy process polyaromatic carbon rings (PAC) 

<7.  As a cross check, when the mass drops for the SOM and BC in the soil standard were 
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combined and corrected with the factor 0.58, the result was 4.35% C as compared to the 

value from dry combustion of 4.02% C. 

 
Since adjacent thermal events can interfere with BC mass during quantitative determination, 

another approach using TGA analysis was to disregard the mineral event and quantify 

relative changes.  To do this, two blends (2 and 5% by mass) of Mulga biochar (negligible 

ash and no carbonate content) were heated at higher rates (interactive heating to 20 oC min-1).  

This resulted in separation from labile material below 340 oC (see figure 6-4) but without 

any resolution between BC and the mineral event (i.e. they were completely concordant). 
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Figure 6-4 Mugla biochar blends (2 and 5% by mass ground into Lansdowne sandy loam) 

heated at 20 oC min-1. 
 

 

The mass changes (table 6-3) for the OM region were both the same (0.73) and using the 

conventional conversion factor (0.58) resulted in a consistent C analysis (0.42%) for the 

aliquot of Lansdowne soil used to blend the chars.  The relative areas under the peaks on the 

thermal analysis relate to mass losses of 3.60 and 6.64 for the addition rates of 2 and 5% 

respectively.  After the amount of BC was accounted for, the comparable residuals recorded 

(1.60 and 1.64) were within 0.04% and are representative of the losses (inorganic) from the 

mineral component 1.62 +/-0.2 mass %.  This method may be fairly applicable where 

biochars have been amended and soils can be calibrated along the lines of Koide et al. (2011) 
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who used LOI but used unamended soils from around the trial plot to standardise the 

baseline. 

 

Table 6-3 Mass losses recorded at the OM and BC regions after adding biochar to 
Lansdowne sandy loam at 2% and 5% by mass. 

 
Rate of  TGA mass losses 
addition OM BC Residual 
2% biochar 0.73 3.60 1.60 
5% biochar 0.73 6.64 1.64 

 

 

In the Koide et al. (2011) approach, the background soil was weighed after LOI heating in 

order to correct for mass losses from substances (OM and water) other than BC.  Our TGA 

approach has the advantage of not requiring calibration soils and is likely to be more precise 

because it has the capacity to separate components thermally.   

 

Analysis of the mass change events and comparison with HyPy data has demonstrated that 

BC can be identified and semi-quantitatively determined.  Determinations are likely to be 

improved by increasing resolution of components through changed heating ramps (currently 

10 oC min-1) and screening C only signals to overcome the problem of overlap with the 

mineral event.  In contrast, Differential scanning calorimetry techniques used previously to 

monitor BC in soils (e.g. De la Rosa et al., 2008) were fairly qualitative where small 

amounts of char (exothermic) occur  concurrently where clay minerals release OH and water 

(endothermic) resulting in some cancellation.  

 
The SOM carbon Pools 

The often discussed organo-mineral complex developed through the aggregation of soil 

minerals and organic particles probably carry the more stable SOM as found in the fine 

particle size fractions.  That the fine fraction hosts older and more humified OM has been 

reasonably supported by other evidence such as C/N ratios (Magid et al., 2002) and isotope 

data (Bird et al., 2003) which also indicated trends with depth.  The work in Chapter 2 

(where TGA was discussed in the context of LOI), indicated that lesser amounts of 

carbonaceous material (i.e., OM) is released during TGA analysis concurrent with the mass 

changes from clay minerals during loss of lattice water.  This observation may hold an 

important key to unscrambling recent and aged organic matter that may equate to or 

constitute designations such as POM and HUM.   
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Simple thermograms alone provided sufficient information from their variations in mass 

change to suggest separate stages of OM release not necessarily related to BC in soils 

(considered also in relation to catalysis below).  Such patterns have been observed for 

different but related soils such as the cropped and pastured Vertisols (figure 6-5).  Similarly 

differences have been observed in thermograms between slaking and stable soils where the 

latter was marked by variable mass changes during the transition into the mineral event.  

Biologically mediated stabilisation of SOM may also be recognisable by TGA (refer to 

Attachment-B where some observations about composted materials have been included for 

its intrinsic interest.   

 

 
Figure 6-5 Thermogram of a cropped and pastured Vertisol (Liverpool Plains, NSW) 

 
 

Chemical and physical effects on SOM indicated by thermal analysis  

To gain deeper insights into the possible POC / HUM makeup of SOM and any relationship 

with the mineral events through TGA analysis, two approaches were used that involved 

chemical and physical treatments.  Firstly several chemical extraction methods were applied 

to loam soils and a Vertisol to gauge changes in TGA behaviour to directly measure the 

effects of the mild oxidation i.e., to detect whether OM was disappearing from one or the 

other thermal mass loss region.  Several different chemical reagents were used in case of 

artefacts due to the particular chemical (note analyses were carried out after washing with 

de-ionised water and drying).   
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The results for the mass changes along with the proportions have been tabulated below (6-4) 

for each thermal region corresponding to the main OM event (MOM) and the OM and 

mineral composite referred to as the OMC broadly over 430 to 590 oC.  All the treatments 

removed similar proportions of OM represented by the 200 to 430 oC TGA region.  However 

changes to the OMC were a little more variable with a 60-70% decrease when KMnO4 was 

used, no appreciable change after NaOH extraction and a slight increase after Hypochlorite 

but quite marked after peroxide.  Some of the increases may be accounted for by the relative 

loss due to the OM but not in the latter with no obvious explanation.   Overall this approach 

may introduce other uncertainties related to the chemicals used, for example hypochlorite 

residue (CaCl2) is very soluble but hygroscopic.  Equally, the exchanging of cations cannot 

be discounted in producing mass changes in the OMC.  SOM within the OMC are expected 

to be minor compared to MOM and the losses from the OMC when KMnO4 was applied 

were in the same range or higher.  This is evident in their thermograms as shown by the 

example on figure 6-6 below.  

 

Table 6-4 Effects of various soil chemical treatments on respective mass change events. 
 

 TGA masses (%) Fraction remaining after treatment 

Soil and treatment 200 - 430 oC 430 - 590 oC 200 - 430 oC 430 - 590 oC Effect to OMC 
SCL-1 before treatment 3.1 3.1       
0.9M Ca(OCl)2 1.9 3.2 0.6 >1.0 slight increase 
0.1M NaOH 1.7 3.0 0.5 1.0 no sig. change 
0.33M KMnO4 2.4 1.8 0.8 0.6 decreased 
SCL-2 before treatment 1.4 2.9       
0.33 KMnO4 1.1 2.1 0.8 0.7 decreased 
SLC-3 before treatment 2.3 2.3       
3M H2O2 1.7 1.9 0.7 0.8 decreased 
Vertisol before treatment 3.3 4.8       
3M H2O2 2.8 5.6 0.8 1.2 increased 

SLC refers to a sandy clay loam taken from lucerne cultivation, (Lansdowne via Camden, NSW) 
where SCL-1 was sampled from 0-10 cm; SCL-2 from10-20 cm and SCL-3 at surface; the surface 
Vertisol was from pasture land Liverpool plains, NSW.  
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Figure 6-6 Thermogram of SCL-2 showing the effect of KMnO4 treatment on both MOM 

and OMC.  
 

Zimmermann (2007) used Differential scanning calorimetry to investigate (limited study) the 

effects of wet oxidation (6% NaOCl) and found that it did not produce any shift in SOM 

maxima (also not noted here) but did unmask the presence of BC.  These chemical 

treatments may have introduced unexplained alteration effects, especially to the OMC, so the 

following experiments set out to analyse by TGA the settled (physically separated clay-

sized) fractions along with their whole soils.  The soils were Vertisols from the Narrabri area 

and also three loams varying in texture.  As an example, the composite thermograms for the 

Lansdowne 2b sandy clay loam and its clay-sized fraction is shown on figure 6-7 to illustrate 

the dramatic increased mass events in the finer material.  Such data for all the samples tested 

have been presented numerically on table 6-5.  In this example the maxima for MOM is near 

315 oC (whole soil) and 330 oC (clay fraction) but for OMC decreased from 532 to 513 oC 

for the settled fraction.  The latter is probably a reflection of the increased amount of OM 

concurring with the mineral dehydration / dehydroxylation thus shifting the gross thermal 

maxima 20 oC lower. 
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Figure 6-7 Illustration of the increased mass losses associated with the finer soil fraction 

(Sandy clay loam from 11-20 cm depth, table 6-5 Camden 2b).  
 

An analysis of the relative increases after settling for the region (200 to 430 oC) associated 

with SOM indicated that the Vertisols and Lansdowne SCL generally doubled while two 

loams with lower clay content had reduced OM in the fine sediment.  The combined organic 

and mineral (OMC) loss of mass was also more pronounced in the Vertisol clay fractions and 

generally exceeded that due to OM by around twofold.  The data strongly implicate OM to 

have settled with the clay particles which included less resistant OM (indicated in the 200 to 

430 oC temperature region) perhaps as a coating on minerals as suggested by �Bornemann 

(2011).   

 
 

                                                 
� Some positive correlations were found during spectral studies between POM-C and O-H vibrations 
(clay minerals) where it was inferred that OM may be coating minerals grains.  Referenced from PhD 
Thesis by L.C. Bornemann, 2011) 
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Table 6-5  The mass losses from soils and their clay fractions at the discrete temperature 
regions and their relative changes. 

 
Soil type / origin Fraction MOM % � MOM OMC % � OMC 

 
(<2�m by 
settling) 

200 to 430 
oC 

 430 to 590 
oC 

 

Camden 2b whole 1.4  2.9  
Camden 2b <2�m 3.7 2.3 8.8 5.9 
Sydney Basin loam whole 13.8  7.1  
Sydney Basin loam <2�m 13.0 -0.8 10.2 3.1 
Sydney Basin sandy 
loam whole 15.8  6.3  
Sydney Basin sandy 
loam <2�m 10.8 -5.0 11.6 5.3 
Narrabri Vertisol 1a whole 2.1  2.4  
Narrabri Vertisol 1a <2�m 2.3 0.2 6.7 4.3 
Narrabri Vertisol 1b whole 0.9  1.5  
Narrabri Vertisol 1b <2�m 2.0 1.1 6.5 5.0 
Narrabri Vertisol 2a whole 1.5  1.5  
Narrabri Vertisol 2a <2�m 4.2 2.7 7.8 6.3 
Narrabri Vertisol 2b whole 1.4  2.2  
Narrabri Vertisol 2b <2�m 3.0 1.6 7.2 5.0 
 
Note: MOM and OMC refer to main organic matter and organic mineral composite respectively.  It 
was also noted that carbonates were present (590 to 750 oC) in the loam soils but not in their clay 
fractions and was assumed to be related to its particle size.   
 
 
Furthermore, when the differences (� % mass loss) for the two groups were plotted (figure 

6-8), any increased mass in OMC due to settling was accompanied (linearly) by small 

increments of mass related to the MOM.  The Sydney Basin sandy loam (excluded from 

chart) lay outside the trend set by all the other soils including a loam which also had a small 

negative � value but the reasons are unclear.  That finer soils carry greater amounts of OM 

has been widely acknowledged (e.g. Spain et al., 1990; Wang et al., 2003) and is also 

consistent with the findings in chapter 2.  However the generally correspondingly higher 

amounts of MOM with increasing OMC due to settling says something much more striking 

about the connection between the organic and mineral components (and how it is 

distributed).  
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Figure 6-8 The relationship between �OMC (mineral) and �OM (organic) mass changes 

used to infer that OM settles with clay particles. 
 
 

 

TGA / evolved gas analysis (EVA) 

The results have left some of the important questions unanswered because these have all 

been mass-change studies and cannot tell us specifically about the C events over the heating 

cycle.  That is, were the increases observed in the fine material due to more resistant OM and 

how much of the more resistant OM coincided with the OMC in the range (430 to 590 oC)?  

Also, during treatments, the TGA characteristics may have become altered – another 

important reason to seek out a simultaneous C-only signal.  To this end a combined TGA / 

evolved gas analysis (EVA) method was investigated to determine whether C may be 

observed in the thermal regions related to the OMC.  Initially TGA/FTIR was tested for 

another underlying reason: to try and obtain more information about the C chemistry such as 

dominant functional groups corresponding with OM and OMC thermal regions.  The TGA in 

this case was a TA 2090 model. 

 

Soils were heated at the same rates as in all the other studies only that here ultra pure N2 was 

used to purge decomposition products from the reaction cell to the analytical instrument (FT-

MIR).  Inert gas was used because the object was not to oxidise the OM but to release 

meaningful OM fragments to the detection system as the mass changes were being recorded 

from the TGA.  Such approaches have been used to deconstruct chemical building blocks 

and to fingerprint pyrolysis reactions (e.g. Xie et al., 2001).  The FTIR instrument output 
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resulted in a 3-D image that recorded the range (x-axis in frequency) of relative MIR 

absorbances (y-axis) as the soil was heated (z-axis on time / temperature scale).  Figure 6-9 

presents an example of a FT-MIR absorption spectra after TGA heating of a clay loam.  

However despite the use of ultra pure carrier N2, the amount of functional group information 

was limited to that for CO2 and water molecules evolved from the heated soils.  Water was 

evident by the broad absorbance around 2000 and again at 3900 cm-1 but that from mineral 

lattices is mostly obscured by carbonyl, the major absorbance at 2360 and 669 cm-1.  The 

reason for the dominant carbonyl absorbance is that as SOM is heated carboxyl and methyl 

groups are thermally broken away from the OM molecules.  Decarboxylation and 

demethoxylation have been noted as significant reactions during the thermal decomposition 

of SOM (Miyazawa et al., 2000) and from important SOM constituents such as organic acids 

(Smith et al., 1998).  Therefore monitoring the FT-MIR absorbances of the gases from 

controlled heating of SOM under reduced conditions (anoxic) had no particular advantages 

in terms of differentiable functional group information over aerobic experiments.  The same 

was found for earlier MS experiments (chapter 2) where the major ions reflected CO2 and 

water, consistent with the findings of Dell’Abate et al. (2003). 

  

It was of concern that the CO2 from decarboxylation of OM might not reflect the true pattern 

of decomposition for the various thermal regions.  To minimise these unwanted effects such 

as re-deposition of gaseous C species (Amutio et al., 2012) leading to possible distortion 

(which may differ from soil to soil) it was advisable to use aerobic purging thereafter 

although, according to Cihlar and Kucerik (2010) the phenomenon may still be present.  
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Figure 6-9 Three dimensional FT-MIR output of a Dermosol from a mixed farming area (15-

30 cm depth) heated by TGA at 10 oC min-1.   
 
 

Mass change differences have been observed between related soils but how might these be 

due to OM rather than the mineral content.  The objective in using the FTIR signal here was 

to test and compare the output of several soils using the carbonyl functional group as a proxy 

for C to show the relative proportion of C associated with the MOM and OMC events and 

that the mass losses for the latter were not just due to clay mineral decomposition.  The 

prominent 2360 cm-1 signals acquired as part of 3-d outputs (above) were extracted (time / 

temp on x-axis) for ready comparison between soil fractions.  Two sets of plots with both 

DTG and MIR outputs have been presented below: the fist of a clay loam with its settled 

(<2�m) fraction (figure 6-10) and a Dermosol sampled from 0-5 and 15-30cm depths 

(combined on figure 6-11).   

 

Soil thermograms typically have maxima for the MOM and OMC around 320 and 530 oC 

respectively but these FT-MIR experiments showed some deviations.  Firstly, the surface 

Dermosol and whole clay loam had FT-MIR signal patterns that were fairly amorphous 

resembling a continuum of organic material from the MOM to OMC (red solid traces on 

figures 6-10 and 6-11).  A small amount of carbonate mineral was present in both of these 

soils which have been used as a time marker to confirm the signals (DTG and FT-MIR) both 
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were comparable on a time / temperature basis and that no significant lag was noted.  In 

contrast, the deeper Dermosol and clay-sized fraction from the clay loam were more resolved 

(two small discrete maxima) consistent with MOM and OMC in their DTGs (see dashed red 

traces in same figures).  The strong OMC seen by TGA (<2�m clay loam) due to increased 

mineral content was relatively lower according to the ‘C’ plot.  Nonetheless both these 

samples indicated significant amounts of C (seen by the carbonyl absorbance) associated 

with the secondary TGA (OMC) event.  There have been some general similarities with 

these patterns of C release (whole / surface soil compared to their deeper / fine counterparts) 

with those reported by Beyer et al. (1998). 

 

In addition, FT-MIR revealed small amounts of carbonaceous-sourced volatiles released 

from below 200 oC not evident by TGA where it has been masked by free water loss.  The 

FT-MIR signal for the fine fraction was somewhat delayed, perhaps an experimental artefact 

due to attenuation rather than any relative mass differences (note that evolved gas is likely to 

expand and slow after entering the IR cell).   
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Figure 6-10  TGA / FTIR analyses of a Sydney basin loam (carbonate amended) sampled 
from 0-5 cm (whole soil as solid line) and its (<2µm) settled fraction (broken line).  The 

FTIR signal recorded CO2 at 2360 cm-1 (in red) while the simultaneously recorded 
differential mass losses (DTGs) are presented for the two fractions (in brown). 
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Figure 6-11  TGA / FTIR analyses of a Dermosol (under mixed farming) sampled from 0-5 
cm (solid line) and 15-30 cm (dashed line).  The FTIR signal for the two depths have been 

recorded by their CO2 (2360 cm-1) outputs (in red) and the simultaneously recorded 
differential mass losses (DTGs) are presented for the two depths (in brown). 

 

Several significant observations could be drawn from these experiments: 

• small quantities of carbonaceous material were volatilised below 200 oC, 

• important amounts of C were released concurrent with the OMC comparable with 

that for the MOM event and 

• both the deeper (15-30 cm) and finer (<2µm) soil material which is expected to host 

the older SOM, was more resolved than the surface (0-5cm) and whole soil.  

 

Experimental artefacts or soil characteristics? 

However, before any rigorous interpretive study into patterns associated with ‘older’ SOM 

be undertaken it needs to be established that artefacts associated with attenuation (quite 

possible due to gas diffusion in FTIR cell) or poor catalysis do not contribute to the final 

instrument outputs.  Overcoming attenuation (tighter responses) but more importantly 

dealing with poor catalysis (lack of instantaneous oxidation) would potentially enable a 

kinetic mapping of SOM distribution and be quite useful in the study of different carbon 

contents, soil types, depths (ages) and grain sizes (HUM).  It should also assist in the 

determination of more resistant OM in soils, such as BC.  Specifically it should be followed 

up how much intermediate reactions (preferential volatilisation of parts of OM at lower 
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temperature) followed by final oxidation as described by Cihlar and Kucerik (2010) affect 

TGA (and EVA) signals and ways of solving this.  This type of problem can be graphically 

described by the changes occurring to SOM during wildfires where the amount of oxygen 

can become limited due to insulation (analogous to poor oxidation during TGA).  In the 

following observations by De la Rosa et al. (2008) using Differential scanning 

calorimetry, the plot shows how partial combustion results in loss of labile OM at 350 oC but 

adds to more resistant OM at 550 oC (where U-DSC is for the unburnt SOM and B-DSC 

after the fire event on figure 6-12).  

 
 
 

 
 

Figure 6-12 Differential scanning calorimetry of pre- and post-wildfire soil OM reproduced 
from De la Rosa et al. (2008). 

 
 

Leifeld (2007) similarly demonstrated the effects of charring on cellulose and how these alter 

(increase) onset temperatures of a proportion of the material as indicated by comparative 

DSC curves.  Differences in the stability between BC types were also noted thus enabling 

their thermal differentiation.  It was inferred that oxidative thermal stability increased with 

bond energies and the degree of molecular order hence higher temperatures were indicated 

for aromatic materials and in the case of graphite (which is highly ordered) 700 oC.  

 

Clarification about the quantitative oxidation of OM on heating under air may explain why 

the LECO CR12 has not been taken up to a greater extent as it showed considerable potential 

in differentiating OM types (described in literature review). 
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Conclusions 
 
Black carbon and CaCO3 are determinable from SOM by thermal analysis methods making it 

a potentially powerful tool to unravel one or more soil C pools.  SOM pools (e.g. POC, 

HUM) may be more difficult to separate as indicated by Ea on simple ‘model’ materials 

(cellulose and lignin) but can be characterised by their individual SOM continuum.  Thermal 

analysis of SOM could benefit from further fine tuning of experimental conditions (including 

quantitative oxidation) but particularly devising a better means of obtaining a pure C signal 

to separate mass and OM based events.  The latter should provide better characterisation / 

distinction of SOM thermal events and possibly enable fairly reliable C determinations.  This 

should help resolve some of the mystery surrounding the OM as a continuum with the 

mineral event (rather than discrete pools).  This may lead to comprehensive studies that look 

at many more soils and environments and provide a foundation for a simpler and accessible 

determination to support rapid spectral methods.   
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ATTACHMENT - Further observations during TGA studies 
 
During the course of completing thermal analysis work on the numerous soils and organic 

materials throughout the experimental program some other potentially useful observations 

were noted and these have been summarised here. 

 

Soil C pool-structure by TGA and stable carbon isotopes 
 
CaCO3 is an important consideration during determination of soil C surveys given its 

widespread occurrence.  Its presence may be indicated by high soil pH values (>8 and 

sometimes a little lower) however determination of organic C or carbonate itself usually 

requires acid treatment and repeated washing in between two C analyses.  Such exercises are 

labour intensive and there is always some risk of altering the OM through the acidification 

and repeated washing steps.  Thermogravimetric analysis (TGA) was used as a more elegant 

way to determine the relative amounts of inorganic C (chapters 2 and 6) in soils as it was a 

direct approach, without the need for pre-treatment and possible losses.  In testing this 

simpler TGA method for measuring the relative amounts of carbonate to SOM when 

determining soil C stocks, a complementary set of stable isotope determinations were 

completed on a small number of soils also.   

 

Materials and Methods used here 

A limited set of carbonatic soils (mostly Dermosols from central NSW) were finely ground 

for analysis and oven dried (40 oC).  TGA was conducted with a TA Instruments 2950 using 

the same methods described in earlier sections.  Stable carbon isotope compositions were 

determined using a Delta V (Thermo Finnigan) continuous flow isotope ratio mass 

spectrometer (IRMS) interfaced via capillary to an elemental analyser upstream which was 

used to effect the conversion / decomposition of SOM and carbonate.  Catalysts such as CuO 

or VaP2O5, as sometimes incorporated, were not employed since oxygen gas was present and 

furthermore is not expected to alter the carbonate-decomposition equilibrium.  Results were 

expressed in the usual stable isotope notation (δ) as parts per thousand (‰) relative to the 

international standard, Pee Dee Belemnite Limestone (PDB) accordingly: 

 

δ13C (‰) = (13C/12C sample – 13C/12C reference) x 1000 
13C/12C reference 

 

The precision for isotope analyses are within 0.2‰ to 0.5‰.  Note the absolute 13C 

abundance relative to 12C of most planetary C is around 1.1 atom %.   
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Some brief background on stable isotopes 

Isotopic fractionation is well known in biological systems.  This is related to the kinetic 

isotope effect where reaction rates are governed by the physical mass of respective isotopes 

and their bond energies (activation energy).  This has consequences for physical processes 

like diffusion as well as biological metabolism such as microbial alteration of lipids, in the 

latter case resulting in relative 13C depletion (Hoefs, 1973) of the respired product.  These 

processes are also responsible for producing small differences in isotope composition of 

cellular components such as proteins, lipids and carbohydrates but isotopic fractionation also 

accompanies the initial stages involved in photosynthesis, the extent of which depends on the 

metabolic cycles used by the plant.  Two primary cycles (known as C3 and C4) have evolved 

in the plant kingdom which produces a distinctly different range of isotopic compositions in 

their respective biomasses.  These differences can be well employed when studying SOM 

turnover and is the usual method by which rates are determined based on simple mixing 

models.  However they require a gross change (re-planting crop) in vegetation type and 

studies are long term (decades).  The final isotopic composition of SOM is the product of the 

plant source material (determined by its metabolic pathway) overprinted by any microbial 

alteration effects.  Models may become complicated when vegetation from the two metabolic 

groups coexist (have coexisted) in the same district.  On the other hand, limestones (primary 

CaCO3) have stable carbon isotope values that cover a small, relatively enriched range from 

around zero ‰ to – 6 ‰ (PDB) depending on when and where the carbonate was deposited.  

These are expected to be fairly uniform for a particular region (pedogenic carbonates not 

considered) and are isotopically distinguishable from any type of organic matter.   

 
�Results 

This set of experimental soils was used to test the reliability of determining C pools (i.e. the 

proportion of SOM and carbonate) by TGA along with the stable C isotope signature of the 

whole soil.  The stable isotope compositions (δ13C, ‰) and the relative amounts of organic C 

(stocks) and of total obtained for these soils have been summarised on table A-1 and two 

contrasting thermograms from this set have been combined and presented on figure A-1.   

 

                                                 
� These preliminary results were presented at the 11th Australasian Environmental Isotope / 4th 

Hydrogeology Research Conference in Cairns (July, 2011).  
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Figure A-1 Thermogram of two soils with clearly different proportions of SOM (28 mins.) 

and carbonate mineral content (60 – 70 mins.) reflected in their overall stable C isotope 
compositions. 

 
 
The data from Dalal et al. (2011) re-plotted in figure A-2, reflect the increasing C stocks due 

to OM accumulation after wheat cropping (12 management practices) over what was 

previously C4 grassland.  The δ13C for our study (where the organic C from a number of 

localities ranged from 4.3 to 35 Mg ha-1) related very poorly because of the influence of 

carbonate on the isotopic composition.  This highlighted the limitations of using isotope data 

(not acid pre-treated) to study turnover dynamic where calcareous material is present.  
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Figure A-2 Plotting the 9 carbonatic soils together with those from a stable carbon isotope 

study of Vertisols after changes to cropping (replotted from Dalal et al., 2011). 
 
 
Table A-1 The proportion of the soils inorganic C pool and the δ13C isotope composition of 

the whole soil. 
 

 Soil Analysed Organic 
C stocks 

Proportion 
organic C 

Total soil 
analysis 

  Mg ha-1 % of total δ13C (‰)  
Dermosol-4 5.7 14.5 -8.6 
Chromosol-1 7.8 21.4 -10.4 
Clay soil 2.7 38.2 -16.0 
Sandy Calcarasol 35.1 38.6 -14.1 
Soil standard 9.4 58.5 -19.8 
Dermosol-2  6.0 60.5 -16.9 
Dermosol-1  27.3 76.6 -22.7 
Dermosol-3 5.1 86.7 -22.2 
Chromosol-2 4.3 90.4 -20.9 

 

 

After the compositions were replotted however, on the basis of the proportion of Mg organic 

C ha-1 / total C ha-1 (table A-1) the points become linearised (figure A-2).  These produced a 

similar trend against isotope ratio (whole soils) albeit in terms of their relative organic C 

contents but appear to reflect the variable contribution from C3 dominant vegetation adding 
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to total SOM.  The sum contributions towards the whole stable isotope composition were 

from two distinct sources, in this case C3 SOM and CaCO3.   What this indicated is that the 

presence of a carbonate isotopic signature could be used to advantage when monitoring SOM 

accumulation rates (e.g. during sequestration) while still maintaining the same (C3 or C4) 

cropping regime.   
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Figure A-3 The same 9 carbonatic soils replotted but as their proportion of organic C over 
total (equivalent to % of total) against their stable C isotope composition.  This trend reflects 

dominance of C3 plants over these soils whereas a theoretical trend due to dominantly C4 
plants would rise more steeply from the x-axis.  

 
  
 
Conclusions and further work 

The stable isotope compositions of soils (not treated in any way other than ground up) 

reflected the imprint of both inorganic and organic C present depending on their relative 

proportions (as determined in these cases by TGA).  In studying C sequestration / land 

management methods, the ability to readily quantify both total soil C and the balance of 

organic to inorganic C pools quickly and robustly, is fairly important.  In field applications 
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of this method, CO3 and organic C contents in soils could be similarly determined based on a 

knowledge of end member δ13C composition.  The ultimate aim may be to develop this to an 

extent where SOM / carbonate information can be obtained from single stable C isotope 

analyses.  The method can potentially inform on changes in relative SOM abundance due to 

C management or the use of amendment of crushed lime (CaCO3) which may also respond 

to changing pH. 

Possible uses for this method include: 

• mapping calcareous terrain / carbonate distribution in soils, 

• quantifying increased SOM stocks based on single analyses where soils are 

carbonatic or amended but also where vegetation types are mixed, 

• detecting addition of CaCO3 where SOM sequestration practices are being tested, 

• detecting loss of C from the inorganic pool where decreases in pH result from 

management. 

 

 
 

SOM stabilisation by earth and compost worm activity 
 
In the course of conducting TGA experiments on SOM samples, other organic materials used 

for soils were also included.  Worms are well known for their soil improvement and nutrient 

concentration capacities where they accelerate the breakdown of OM to a more nutrient 

balanced residue (see C/N table A-2).  These take place through physical working of the 

ground (restructure, aeration) but also more effective SOM stabilisation than composting 

(Lazcano et al., 2008).  Both mineral and organic matter passes through the gastro-intestinal 

tract with the involvement of enteric microbes modifying these substrates which also include 

denitrifying bacteria implicated in unwanted N2O production (Lubbers et al., 2013).  Sand 

grains are thought to assist in the physical grinding process also.  However, strong parallels 

may exist between internal worm activity and external humification processes that give rise 

to OMC.   

 

Results 

Two composts and a vermicompost analysed both elementally and by TGA analyses have 

been presented on table A-2 and figure A-4 respectively.  A second garden compost from the 

same batch had a lower C content indicating some heterogeneity but interestingly the C/N 

relationship was maintained. These samples were only air dried and have retained reasonable 

amounts of water (peaks prior to 15 mins.)  Organic matter residues from commercial and 

backyard composts (very little mineral-related signal) were marked by principal mass 
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changes in the region 230 to 330 oC (20 to 30 mins. heating time) and seem to be 

representative of typical starting materials (lignocellulose, other carbohydrates).  However 

the Vermicast fed on similar organic materials (kitchen waste as well as ground coffee 

residues, I. Wheeler, pers. comm.) also showed a smaller signal (a remnant or product?) in 

this region 20 – 35 minutes which is usually associated with the SOM continuum during 

TGA.  The main mass change event for the vermicompost occurred at a much higher 

temperature 480  to 510 oC than found in the typical food sources (the composts) and 

indicates increased thermal stability (even higher than the biochars analysed/discussed in the 

earlier sections).  This main peak for the worm casting was due to a fairly sharp mass change 

and therefore probably chemically fairly homogenous. 

 
 
 

Table A-2 Carbon and nitrogen analyses of compost and vermicompost. 
 

Organic matter type %C %N C/N 
Commercial compost 14.2 0.99 14.3 
Garden compost 3.1 0.21 14.8 
Garden compost rpt 0.7 0.05 14.2 
Vermicompost 6.8 0.77 8.8 
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Figure A-4 TGA analyses of a Vermicast and composted OM. 
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Further work 

These TGA analyses indicated evidence of greater stabilisation seen by kinetic 

characteristics and while this is based on one example only, the seeming lack of work 

reported along these lines would indicate a fertile area for further investigation.  It is 

suggested that monitoring the starting materials over the weeks and months required to 

produce vermicast products by various analytical means (TGA, FTIR) may provide 

important insights on how SOM stabilisation proceeds.  Monitoring the transformation of 

SOM by FTIR has been previously attempted using C-H / C-O ratios and how these might be 

affected by earthworm activity (Ellerbrock, 2009).  Stable isotopes may be another useful 

tool in tracking changes since biological mediation is generally accompanied by 

fractionation.  
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REVIEW OF STUDY OUTCOMES 
 
The specific goals of this research were to advance the current tool kit that can be used in 

determining soil C, in particular total C stocks on the broader scale, as well as its C pool 

structure for its fundamental importance to understanding long term soil C sequestration.  

 

The project enabled a new method, using the SCB apparatus, to determine C from whole 

cores to reduce the margin of error resulting from the natural C variability and capturing a 

reliable site-specific measure.  The project also explored the importance of soil C fractions 

and its relevance to sequestration with further study into methods for the rapid analysis of 

one or more soil C pool/s.  In particular was the application of the thermogravimetric 

analysis technique on SOM to advance our understanding of LOI approaches and how these 

C pools might be differentiated thermally. 

 
  
Achievements: 
 
� Critical analysis of the methods used across the sector and the basis of their use. 

� An objective evaluation of the LOI method.  Loss on ignition is a possible means to 

determine C stocks for larger quantities of soil and may be regarded as a viable option to 

current methods as well as the SCB.  However these comparative thermal analytical 

studies indicated various restrictions associated with LOI but also its optimal use. 

� Carbon analyses on large soil volumes were demonstrated by SCB. 

� C stocks by analysis of whole cores were demonstrated using the SCB.  Whole cores can 

now be reliably determined using the SCB where all C is extracted thermally under O2 

stream and quantified.  Values can be directly reported on volumetric or gravimetric 

basis. 

� Spectral calibration for black carbon based on hydrogen pyrolysis (HyPy).  These 

analyses appeared to be an effective means to calibrate MIR soil spectra for black carbon 

determination in finely ground whole soils although considerable comprehensive 

calibration work is still required.  

� Use of thermal analysis in determining the inert soil C pool.  Thermal analysis has been 

demonstrated as an alternative method to determine black carbon and carbonates and 

could play a role in MIR calibration. 

� Provided further inspiration for novel approaches to enquire into SOM and other pools 

using controlled heating methods. 
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Soil Carbon stocks 
 
The SCB was a system specifically designed and developed to measure soil C from whole 

cores and large soil aliquots with the intent to lower sampling and analytical errors 

associated with the natural variability in soil C surveys.  The concept was based on the 

quantitative extraction of all C from these soil volumes by a combustion method followed by 

analysis.  

 
Carbon analyses from the SCB agreed well with those obtained using conventional methods 

based on calibration materials as well as soils.  The sensitivity of this instrument was 

determined by the method detection limit (MDL) to be 0.085 g C.  At the same time, the 

SCB has a large dynamic range allowing the analysis of soil masses from one to many 

hundreds of grams where the upper limit is controlled by the furnace volume rather than the 

detection system (Chapter 3). 

 

It was shown that whole cores could be analysed successfully although benefits accrue from 

breaking and drying the core thoroughly which also enabled recent OM (roots) to be 

efficiently removed.  Carbon stock data was determined over a trial area and results could be 

immediately expressed as g C per whole core interval (e.g. 50cm) but were readily 

transformed to mass coordinate units so that % C of total dry mass or kg m-2 was readily 

available (recording core masses was a routine part of acquisition).  Analysing the entire soil 

C from the cores produced coherent data over the test field but with a lower variance (std. 

deviation = 0.97, interquartile range = 1.08 kg m-2) when compared to values obtained by 

conventional analysis methods (std. deviation = 1.36, interquartile range = 2.71 kg m-2).  

Total C values per core was within 0.2 g of their mean for each site where the totals ranged 

from 0.7 to 4.7 g C per 50 cm core for the sampled positions over the transect.  On a 

gravimetric basis (the ranges were 0.2 to 1.09% C per 50 cm core).  Based on these soils and 

the C compositions at the trial sites the reproducibility in C stocks were within 0.0003 kg/kg.  

Overall these results were extremely encouraging and prompt further testing.  The relative 

costs of determining soil C stocks were estimated to be about 1/5 of conventional methods 

(based on the work to date and test site).  This is owed largely to the cost savings in reduced 

processing time and the much lower running costs compared to the standard analytical 

instruments used (Chapter 4). 

 

Demonstrated benefits of whole core analysis 

Unequivocal C determinations derived from whole soil cores or sub-fractions (as averaged 

over space) are expected to provide a more accurate assessment of C management practices 

(over given time period) than point analyses which is more likely to reflect variable changes.  
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In addition, the determination of total soil C over an entire depth interval was able to readily 

yield volumetric C stocks as well as mass coordinate / gravimetric units which were all 

amenable to uptake by any IPCC accord (e.g. soil C stocks as TOC m-2 to 30cm).  Rapid and 

cost effective acquisition of farm-scale C stocks should lead to an increased number of land 

holdings covered over the next five year period.  This resultant enhanced knowledge of C 

distributions is expected to facilitate comprehensive soil C base maps and allow more 

effective assessment of the C management practices and relative impacts. 

 
Areas for improvement to the SCB and recommendations for future work 

The SCB has been demonstrated as an effective and viable means to determine C stocks on 

bulk amounts of soil or core.  There are however several components that could be improved 

/ modernised which fall into the following areas: 

 
� Flow control devices for smoother, regulated gas rates with possible improvements to 

reproducibility 

� Increase the efficiency of the catalyst to minimise CO production 

� Automation of the sampling apparatus so soils can be introduced to heated areas without 

handling after initial loading 

� Redesign / build sensor and electronics and reduce size where possible 

� Retrofitting heat control device/s for more accurate heat setting   

 
These design changes (e.g. lengthening the catalyst) would be expected to deliver small 

increases to the precision of analysis but importantly add to safety and efficiency.  Increasing 

the catalytic function should further lower CO levels and allow high concentrations of C to 

be analysed (e.g. composts, biochars) possibly using a secondary heat supply.  The rate of 

gas flow is crucial to measurement and has to date been achieved with rotameter and bubble 

meter technology but currently available metering methods (electronic flow controllers) may 

provide advantages and should be investigated.  Along with the renewal of electronic 

components these should result in an improved baseline and quantitative determination of C 

from any core mass.   

 

The SCB forms a template that could be applied to larger sample sizes (if required) using the 

same principles and modifications incorporating some of these further developments listed.  

Stainless steel may be another good option to cope with robust handing should such a system 

be deployed commercially or on-farm.  Attention to the choice of materials is an additional 

consideration when using pure oxygen streams.  Similarly automation of modules such as 

sample loading and furnace actuation should be explored appropriately as high soil 

throughput becomes routine.  
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Further application and testing of the SCB comprises the next phase of development and 

should evaluate its performance over different soil types and land uses (range of natural C 

variability).  This can and should be conducted in combination with sampling schemes:  

systematic sampling (grid based); stratified random sampling; spatial probability sampling 

(on stratified areas) to test optimal sampling densities.  These further applications should 

also test C management strategies and the minimum limits of sensitivity to change detectable 

by the SCB.  

 

Soil Carbon Pools 
 
Thermal analysis as separation tool 

Methods were investigated for the determination of important C pools but in particular BC, 

which is important in the Australian context because of the historical prevalence of wildfire 

in this soil ecosystem.  This form of organic C tends to be more stable in the soil hence its 

accumulation and persistence.  The capacity to readily quantify this component would enable 

more immediate availability of such valuable information for soil C sequestration studies.   

 

HyPy was tested as one alternative method to calibrate MIR soil spectra albeit, using a small 

number of soils but its potential was indicated by comparison with an established BC model 

(Chapter 5).  Synthesised biochar blends were also studied spectroscopically to demonstrate 

that MIR could be used to directly determine addition rates in amendments (e.g. where 

indiscriminately applied to soils) independent of the BC content (i.e. mass % aryl C). 

 

Many of the studies of recent years have pursued the pure chemistry and biology of SOM 

whether through fractioning and analysis or sophisticated imaging.  A fresh look at 

differences in OM on an energy basis, as thermal methods (TGA and DSC) offer, may yield 

more practical information not only for pools but mechanistic aspects of humification or 

SOM stabilisation processes.  Considerable time was invested in thermogravimetric analysis 

techniques as a means of separating the four major soil C groups (labile OM, humified OM, 

inert C, and carbonates).  It was found that TGA can be used to successfully determine BC 

and carbonates but is still underdeveloped with regard to differentiating and characterising 

SOM (i.e. labile and humified OM).  This may be largely because part of SOM is associated 

with some of the mineral component and when thermal decomposition proceeds this can lead 

to conflicting instrument responses with unclear results.  This is the case irrespective 

whether using TGA or DSC.  However these studies did provide important information for 

the more effective use of LOI techniques, a possible method considered to tackle broad scale 
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C stock determination.  For example it indicated the restrictions using LOI for soils with 

finer grainsizes where C overestimation can commonly result at the higher temperatures (550 
oC).    

 

Conversely the correlation between thermogravimetric data associated with the oxidation of 

BC and results obtained from HyPy (chapter 5) strongly suggested that as an analytical tool, 

thermal analysis could be used for this purpose i.e., pure determination of BC (chapter 6) as 

well as for the calibration of spectral techniques.  

 

Suggested further work on thermal analysis 

It is anticipated that much of the ambiguities related to differentiating and attributing mass 

changes (e.g. due to overlapping events) can be overcome by obtaining a pure C signal as 

when using the more costly techniques (TGA/MS and TGA/FTIR).  Additional work is 

expected to yield a valuable method to characterise or perhaps even separate and determine 

SOM types.  Attempts to do this have been held back by the lack of a cost effective and 

direct means to acquire a concurrent C signal in order to de-convolute mass change events 

during heating.  A more direct and cost effective means needs to be devised which would 

also aid BC determination and overcome some of the analytical issues associated with pure 

TGA or DSC analyses.  Such a continuous C signal could then be easily implemented in 

conjunction with DTG curves to monitor both mass changes and real-time C evolution 

through two simultaneous signals.  Related to this could also be the direct coupling of TGA 

to a GC to obtain C/N analyses at different stages (related to pools) of heating cycle.  It is 

proposed some potential applications that may follow on are i) stability characteristics of 

SOM and to try to devise a humification index (HI) based on this and ii) study compost and 

vermicompost SOM stabilisation processes possibly also in conjunction with gas analyses.  

 

Poor catalysis / oxidation has been identified as a potential issue during TGA analysis and 

may have diminished the information obtained through coupled FTIR (Chapter 6).  This 

aspect should be studied in more detail which may then lead to more precise methods of 

TGA analysis.  Another way of observing differences in functional groups for MOM, OMC 

etc. over a heating program (as used in TGA) would be to monitor the soil’s emissions 

spectra.  This is more likely to indicate certain functional groups (aliphatic, aromatic) and 

their temperature of disappearance.  This does not seem to have been applied to the 

characterisation of SOM and may remove interference from decarboxylation of OM.  
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Recommended further work on Spectral calibration for BC 

Spectroscopic analysis for BC using HyPy in the calibration process was limited with regard 

to the number of soils and the resultant predictive model.  It is suggested that expansion of 

this approach (possibly in collaboration with JCU and CSIRO) built on a database of critical 

size (200 finely ground soils) should produce a much improved independent and robust 

prediction model.  Performance comparisons could then be competently made against 

established models (e.g. CSIRO).   

 

Similarly, the potential for thermal analyses to be used in this calibration process (ground 

truth) should be fully tested.  However, before such applications can be carried out the 

instrument development / refinement work discussed above is strongly recommended. 



 

 




