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Abstract 

 

The optimal management of ecological systems is challenging because the 

locations of thresholds between desirable and undesirable regimes are generally 

unknown to the decision-maker. However, it is possible to learn about the resilience 

of an ecological system by intelligently perturbing the system using adaptive 

management (Arrow et al. 1995). Previous research has modelled optimal decisions in 

systems with hysteretic thresholds (Mäler et al. 2003), derived necessary conditions 

for optimal control when the locations of thresholds are unknown (Nævdal 2006; 

Nævdal and Oppenheimer 2007), and used stochastic dynamic programming to 

examine the effect of this form of uncertainty on risk averse behaviour (Brozovic and 

Schlenker 2011). This thesis extends previous research to model the effect on optimal 

decisions of learning about the locations of thresholds via a process of adaptive 

management. A dynamic programming framework is developed and applied to 

various ecological contexts, including numerical simulations of a shallow lake 

ecosystem, and used to demonstrate the role of learning. 

 

This thesis demonstrates that learning can be modelled by updating the prior 

probability distribution for a threshold’s location and by adjusting the boundary 

between the regions of a system’s state-space that could and could not contain the 

threshold. The model captures the trade-off faced by the decision-maker between the 

costs of crossing a threshold and shifting to an undesirable alternative regime, and the 

benefits of learning about the threshold location. Explicit consideration of the value of 

information means the decision-maker will generally make decisions that incur a 

greater risk of crossing the threshold in order to learn about its location. This finding 

is independent of the initial prior probability distribution used to model threshold 

location and the type of ecosystem dynamics considered. By explicitly modelling the 

value of information, this thesis better demonstrates the nature of optimal decision-

making in the adaptive management of ecological systems. 
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Chapter 1. Introduction 

 

The aims of this thesis are (1) to examine how active learning about unknown 

ecological threshold locations impacts optimal management decisions, (2) to examine 

the sensitivity of perceived optimal management decisions to the particular dynamics 

of an ecosystem, that is, the responsiveness of system ‘output’ to changes in system 

‘input’, and (3) to examine the sensitivity of perceived optimal management decisions 

to the subjective choice of prior distribution for unknown threshold locations. Arrow 

et al. (1995) argue in favour of the use of adaptive management [active learning] to 

learn about the resilience of an ecological system. This thesis extends the existing 

literature by including the benefits and costs of active learning within a mathematical 

decision framework. 

 

...ultimately, the resilience of systems may only be tested by intelligently perturbing 

them and observing the response using what has been called ‘adaptive management’. 

 

Arrow et al. (1995, p. 93) 

 

Ecological resilience is the ability of a system to experience disturbances or 

shocks, yet maintain the same basic structure, function and productivity. Loss of 

resilience, which is a movement of the system that takes it closer to a critical 

threshold, is potentially important for at least three reasons. First, crossing a threshold 

results in a sudden and non-marginal loss of biological productivity. Second, crossing 

a threshold may imply an irreversible change in the set of options available to both 

present and future generations. Third, crossing a threshold and experiencing a regime 

shift from a familiar to an unfamiliar regime, for which the dynamics are less well 

understood, increases the uncertainties associated with the environmental effects of 

economic activities (Arrow et al. 1995). 

 

An uncertain and irreversible decision causes a reduction in the range of 

options available to a decision-maker and should result in an adjustment to the 

expected benefits of this decision (Hart 1942; Arrow and Fisher 1974). For risk averse 

decision-makers, this adjustment is downward (Cicchetti and Freeman 1971). 
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Therefore, the idea of an ‘option value’ is central to any mathematical framework that 

seeks to model uncertain or irreversible decisions over time. Ecosystems provide 

flows of goods and services that are valued by humans, but may be subject to 

reversible or irreversible regime shifts. Actions that increase the likelihood of crossing 

a critical threshold, and experiencing an undesirable regime shift, negatively affect the 

net present value of expected returns from that system. 

 

In ecosystems, regime shifts may be reversible or irreversible and the exact 

locations of ecological thresholds may be known or unknown (Nævdal 2003; Nævdal 

2006). Previous research has modelled optimal decisions in systems with hysteretic 

thresholds (Mäler et al. 2003), derived necessary conditions for optimal control when 

the locations of thresholds are unknown (Nævdal 2006; Nævdal and Oppenheimer 

2007), and used stochastic dynamic programming to examine the effect of this form 

of uncertainty on risk averse behaviour (Brozovic and Schlenker 2011). However, 

these approaches do not incorporate a mechanism for modelling the iterative process 

of active learning about threshold locations or the benefits of engaging in active 

learning. This thesis demonstrates that learning about unknown threshold locations 

can be modelled by first partitioning the system’s state-space into regions that could 

and could not contain the threshold. Using this approach to model learning extends 

the ‘risk switching point’ concept introduced by Nævdal (2006). 

 

The modelling framework developed in this thesis extends the line of research 

described above to consider the role of active learning about an unknown threshold 

location, and explicitly factor into current decisions the possibility of active learning. 

An important aspect of the decision problem is neglected if the impact of active 

learning is not considered. Explicitly factoring active learning into the decision 

problem acknowledges that the decision-maker is able to exert some control over the 

speed with which new information is acquired, as well as put this new information to 

use. The optimal degree of risk averse behaviour1 is also likely to differ when active 

learning is considered, compared to the case when learning is not considered. 

 

                                                                 
1 Risk averse behaviour relates to management actions that move the system away from a critical 
ecological threshold. 
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1.1 Ecological systems 

 

For many natural systems, it is possible for the system to exist in one of two or 

more alternative regimes. Walker and Salt (2006) define a system regime as a set of 

states, different combinations of underlying slow-moving variables, within which the 

system will exhibit the same basic structure and function. Examples of regime shifts 

include (Walker and Salt 2006): 

• The large-scale conversion of vegetation in a wetland ecosystem from sawgrass- 

to cattail-dominated marsh as a result of increased nutrient inflow from 

agriculture. 

• The shift of soil on agricultural land from non-saline to saline as a result of 

excessive irrigation bringing a saline groundwater table to the soil surface. 

• The large-scale conversion of a savannah ecosystem from grass- to shrub-

dominated because of increased grazing pressure in combination with low rainfall. 

• The large-scale conversion of a reef ecosystem from hard coral- to fleshy 

seaweed-dominated as a result of overfishing and increased nutrient and sediment 

runoff from adjacent land. 

 

For systems that can exist in two or more alternative regimes, these regimes 

are separated by thresholds that usually occur as functions of underlying slow-moving 

ecosystem variables (Scheffer et al. 2001; Walker and Meyers 2004). While the 

output of the system (sometimes also referred to as flows of goods and services from 

capital stocks) may display no noticeable change, an underlying slow ecosystem 

variable that ultimately determines the system’s regime may be moving closer to a 

critical ecological threshold. When the underlying slow variable crosses a critical 

threshold, a regime shift results and the output of the system will experience an 

abrupt, non-marginal change. Threshold effects may come in one of three different 

forms: reversible along the same path, reversible but with a hysteretic return path, and 

irreversible (Walker and Salt 2006). 

 

Hysteresis is characterised by path dependence. If the system’s underlying 

slow variable crosses a critical threshold in one direction and causes a shift to an 

alternative regime, the system can only return to the original regime along a different 
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path of the underlying slow variable. This path will take the slow variable in the 

opposite direction and beyond the point where the first threshold was crossed. The 

general design of the model developed in this thesis means that it may be applied to 

systems with hysteretic dynamics, irreversibilities or threshold effects reversible along 

the same path of the underlying slow variable. 

 

The ecological literature does not strictly use the metaphor of an ‘ecosystem as 

a production function’. However, it abounds with cases that fit this description (e.g. 

Sutherland 1974; May 1977; Carpenter et al. 1985; Friedel 1991; Noymeir 1995; 

Carpenter et al. 1999; Scheffer et al. 2001; Mäler et al. 2003; Collie et al. 2004; 

Petraitis and Dudgeon 2004; Casini et al. 2009; Suding and Hobbs 2009; Walker et al. 

2010). More recently, Baskett and Salomon (2010) examine sea urchin-algae 

interactions in temperate rocky streams, and Gil-Romera et al. (2010) examine bush 

encroachment in savannah environments. In both cases, ecosystem dynamics are 

represented using diagrams very similar to Figure 2-1 below (Baskett and Salomon 

2010, p. 1768; Gil-Romera et al. 2010, p. 624). The level of one ecosystem variable, 

the system ‘output’, is expressed as a function of another ecosystem variable, the 

system ‘input’ or underlying slow-moving variable. 

 

In this thesis, a model is developed for a system with two regimes and two 

ecological thresholds, which represents the simplest general case for an ecosystem 

with multiple alterative regimes. Such an example is presented in Baskett and 

Salomon (2010), where algae population is modelled as a function of herbivore 

mortality. For the model developed in this thesis, the two alternative regimes are ‘high 

functioning’ and ‘low functioning’. In purely economic terms, the high functioning 

regime produces greater value. The location of each threshold is assumed unknown; 

however, a prior probability distribution for its location can be postulated based on 

historical data, experimental data and/or expert knowledge. A process of active 

learning occurs every time the system is perturbed, and the aforementioned 

probability distribution is continually updated as new information becomes available. 

This information is simply whether or not the relevant critical ecological threshold has 

been crossed during a particular time period. If a threshold is crossed, the system will 

shift regimes. The new regime will have different dynamics and a different threshold, 

compared to the previous regime. 



5 
 

1.2 Modelling and managing ecological systems 

 

Complex ecological systems are characterised by adaptability, 

unpredictability, feedback effects and thresholds. In contrast, the complicated 

ecological systems modelled in this thesis are mostly deterministic, yet are susceptible 

to threshold effects. These natural systems can be represented in the form of a 

production function2 and can be extended to examples where the system output is not 

easily quantifiable, is a function of multiple inputs and/or is susceptible to threshold 

effects. Examples include production function models of shallow lake systems (Mäler 

et al. 2003; Brozovic and Schlenker 2011) and models of both genetic and species 

diversity (Eldridge 2010; Lee et al. 2010; Clark et al. 2011). Models of ecological 

systems represent simplifications of the true production functions, the actual 

ecological dynamics, at play. However, such simplification is necessary to maintain 

parsimony and tractability when modelling complex or complicated systems. 

 

Many ecological systems are susceptible to threshold effects (Mäler et al. 

2003; Walker and Salt 2006; Baskett and Salomon 2010; Gil-Romera et al. 2010). A 

threshold is a level of an underlying slow-moving variable where the feedbacks to the 

rest of the system change; the system shifts to an alternative regime. For example, if 

the concentration of phosphorus (slow variable) within a shallow lake system 

becomes too high (crosses a threshold), biological processes within the lake system 

will be altered, and the lake will change (regime shift) from a clear (oligotrophic) 

regime to a dirty, murky (eutrophic) regime (Mäler et al. 2003). Threshold effects can 

be partially or fully reversible, or completely irreversible. They represent natural 

physical limits to substitution between different system inputs. Further, much of the 

foundational theory and numerous examples of dynamic modelling and optimal 

control of natural resources is discussed, at length, in Clark (1976). 

 

The nature of the decision-maker’s problem, and the character of the resulting 

optimisation problem, is determined by whether the locations of critical ecological 

thresholds are known or unknown. In the case where the threshold location is known, 

                                                                 
2 This form of model specification represents a reductive model of ecosystem function. It by no means 
captures the true complexity of a complex ecological system, but is necessary to develop a tractable 
framework for modelling the process of active learning about unknown threshold locations. 



6 
 

the historically standard approach to modelling thresholds was to define the threshold 

as a state constraint, where the level of the relevant state variable cannot cross the pre-

defined threshold level (Seierstad and Sydsaeter 1987; Perrings and Pearce 1994). 

This approach is problematic for two reasons. First, it is unrealistic to assume that the 

initial state of the ecological system will always be on the ecologically desirable side 

of the threshold (i.e. the state constraint has not already been violated). Second, even 

if the initial state of the system is on the ecologically desirable side of the threshold, 

in some cases, it may be economically optimal to cross to the other side of the 

threshold, either briefly or permanently (Nævdal 2001). 

 

In many cases, the exact locations of critical ecological thresholds are 

unknown to the decision-maker. However, a prior probability distribution can be 

postulated for an unknown threshold location, based on historical data, experimental 

data and/or expert knowledge. For a system with a threshold of unknown location, 

deliberately perturbing the system in the direction of the threshold increases the 

probability of learning about its location. This process will result in efficiency gains if 

it is learnt that lower amounts of active control are required to maintain the system in 

the preferred regime. However, perturbing the system toward the threshold also 

increases the probability of experiencing an undesirable regime shift and being 

required to recover the system to the preferred regime. 

 

Prior to this thesis, Nævdal (2006) and Nævdal and Oppenheimer (2007) came 

closest to including learning about unknown threshold locations within an optimal 

control framework. Nævdal (2006, p. 1134) suggested the concept of a “risk 

switching point” that allows the system’s state space to be partitioned into two 

regions. On one side of the boundary, the decision-maker has information sourced 

from observations of the system for certain combinations of the state variables (the 

system state). The ecological threshold is known to have not been crossed for these 

combinations of the state variables. Therefore, the ecological threshold must be 

located on the other side of the boundary. 

 

The mathematical framework developed in this thesis extends the concept of 

the ‘risk switching point’ by using it as a starting point for modelling the benefits of 
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engaging in active learning in order to reduce or resolve uncertainty3 about unknown 

threshold locations. Failure to incorporate the benefits of active learning represents an 

oversight of existing models and is likely to result in perceived optimal outcomes 

actually being sub-optimal. 

 

1.3 The research problem 

 

When confronted with an uncertain outcome, one may postulate a prior 

probability distribution that captures the likelihood of a particular event occurring. 

This means the outcomes are characterised in terms of Knightian risk (Knight 1921). 

Likewise, when confronted with a threshold of unknown location, the decision-maker 

may postulate a prior probability distribution that captures the likelihood of a 

particular location being that of the ecological threshold. Over time, more information 

is acquired and the extent of uncertainty diminishes. This new information will be 

factored into management decisions made in the future. 

 

When considering any future management decision, it is necessary to 

acknowledge that the information set available when making such a decision in the 

future may, and is highly likely to, differ from the current information set. This 

section of the introduction summarises the main research problems of the thesis and 

provides an overview of the methodology, research questions and propositions. 

Specifically, these research questions concern: the impact of active learning on 

management decisions, the impact of particular system dynamics on management 

decisions, and the sensitivity of perceived optimal management decisions to the 

subjective choice of prior for an unknown threshold location. 

 

Section 1.3.1 outlines the research aims. Section 1.3.2 provides an overview of 

the methodology used to develop the mathematical modelling framework. Section 

1.3.3 describes the research questions and propositions of the thesis. 

 

 

                                                                 
3 Measured by assuming Knightian risk, rather than Knightian uncertainty. 
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1.3.1 Research aims 

 

The focus of this thesis is the development of a mathematical framework for 

the management of ecological systems that are susceptible to threshold effects, where 

the exact locations of thresholds are unknown to the decision-maker. Despite a lack of 

perfect knowledge on the part of the decision-maker, it is still possible to postulate a 

prior probability distribution for each unknown threshold location. The decision-

maker is able to learn about the location of a threshold by engaging in active learning. 

This involves deliberately perturbing the system in the direction of the threshold in 

order to learn about its location. The benefits of engaging in active learning must be 

included in the decision-maker’s objective function, otherwise they will pursue an 

incorrectly specified objective. After including the benefits of active learning, the 

objective of the decision-maker is to make management decisions ‘today’ (i.e. 𝑃 = 1) 

that maximise the expected net present value of the stream of net benefits flowing 

from the ecosystem, while explicitly acknowledging that the information set available 

in future will be conditional on the management actions undertaken ‘today’. 

  

This thesis extends previous research to model the effect on optimal decisions 

of learning about the locations of critical ecological thresholds. Learning is modelled 

using a process of adaptive management. A dynamic programming framework is 

developed and applied to various ecological contexts and used to demonstrate the role 

of learning. In modelling terms, this means that after each time period (this may be 

days, weeks, years, etc.), a (hypothetical) signal is provided by the ecosystem, in the 

form of whether or not a critical ecological threshold was crossed during that time 

period. This new information can then be used by the decision-maker to update prior 

beliefs, summarised by the prior probability distribution for the unknown threshold 

location, to form a posterior distribution. This posterior distribution will form the 

basis of management decisions in the following time period, and the process is 

repeated. 

 

Previous research has modelled optimal decisions in ecological systems with 

hysteretic thresholds (Mäler et al. 2003), derived necessary conditions for optimal 

control when the locations of thresholds are unknown (Nævdal 2006; Nævdal and 
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Oppenheimer 2007), and used stochastic dynamic programming to examine the effect 

of this form of uncertainty on risk averse behaviour (Brozovic and Schlenker 2011). 

However, existing modelling frameworks do not adequately capture the benefits of 

active learning about unknown threshold locations. In fact, Brozovic and Schlenker 

(2011) explicitly state that allowing the decision-maker to learn about the uncertain 

threshold location through time would be a valuable extension to their analysis. This 

thesis thereby examines the role of active learning in making optimal decisions for the 

management of ecological systems. This research problem has three components, 

which are (1) to examine how active learning about unknown ecological threshold 

locations impacts optimal management decisions, (2) to examine the sensitivity of 

perceived optimal management decisions to the particular dynamics of an ecosystem, 

that is, the responsiveness of system ‘output’ to changes in system ‘input’, and (3) to 

examine the sensitivity of perceived optimal management decisions to the subjective 

choice of prior distribution for unknown threshold locations. 

 

This new modelling framework captures the trade-off faced by the decision-

maker between the costs of crossing a threshold and shifting to an undesirable 

alternative regime, and the benefits of learning about the threshold location. Explicitly 

considering the value of information, or the benefits of active learning, means the 

decision-maker will generally make decisions that incur a greater risk of crossing the 

threshold in order to learn about its location. This finding is independent of the initial 

prior probability distribution used to model the unknown threshold location and the 

type of ecosystem dynamics considered. Generally, the omission of active learning 

from the problem structure results in sub-optimal management decisions that incur 

less risk than is deemed optimal by using a problem structure that explicitly includes 

the benefits of active learning. 

 

For a system with a reversible threshold, the decision-maker will engage in 

riskier behaviour for two reasons. First, if more is learnt about the location of a 

threshold without actually crossing it, the decision-maker will know that they can 

operate in a what is likely to be a more profitable region of the system’s state-space in 

future time periods without any risk of crossing the threshold. Second, if the threshold 

is crossed, the information acquired while crossing this threshold can be put to use in 

future time periods. However, this will only be possible after the system has 
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recovered to the preferred regime. For a system with an irreversible threshold, only 

the first reason for riskier behaviour is applicable because there is no possibility of the 

system recovering from the less preferred to the preferred regime. However, for both 

threshold types, the benefits of active learning are omitted from a standard dynamic 

optimisation model that overlooks the role of learning. 

 

1.3.2 An overview of the methodology 

 

This thesis develops a mathematical modelling framework that demonstrates 

the role of active learning in making optimal decisions concerning the management of 

ecological ecosystems. The use of a mathematical model removes the need for 

reliance on intuition when making management decisions. Instead, it allows for 

results that might seem counter-intuitive, but are actually optimal for a rational 

decision-maker. For example, deliberately perturbing a system in the direction of a 

threshold for the purpose of learning about its location. 

 

The model is applied to various ecological contexts, including numerical 

simulations of a shallow lake ecosystem. Active learning is modelled by updating the 

prior probability distribution for a threshold’s location and by adjusting the boundary 

between the regions of the system’s state-space that could and could not contain the 

threshold. The model captures the trade-off faced by the decision-maker between the 

costs of crossing a threshold and shifting to an undesirable alternative regime, and the 

benefits of learning about the threshold’s location.  

 

The important components of the model are as follows: 

 

1. An ecosystem susceptible to threshold effects. Crossing a critical ecological 

threshold causes abrupt, non-marginal changes to the output of the system. Most 

ecosystems can exist in more than one regime (Walker and Salt 2006). The most 

general example is a system with hysteretic dynamics. This means that a regime shift 

is reversible but along a different path of the underlying slow ecosystem variable than 

the path that caused the original regime shift. The simplest case of hysteretic 

dynamics is an ecosystem with two alternative system regimes and two critical 
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ecological thresholds. It is quite easy to show that this general model design can also 

be applied to systems with irreversibilities or threshold effects reversible along the 

same path of the underlying slow variable (see Section 2.1). 

 

2. Fixed but unknown threshold locations. The locations of the two critical ecological 

thresholds are assumed to be at fixed positions within the 𝑋-space (where 𝑋 denotes 

the underlying slow variable). However, these positions are not known to the 

decision-maker at the beginning of the problem. Instead, a prior probability 

distribution is postulated for each threshold’s position, based on historical or 

experimental data, or expert knowledge. Over time, more is learnt about the system 

and the bounds of these prior probability distributions are gradually tightened as more 

information is (hypothetically) acquired about the locations of thresholds. 

 

3. Regime-specific production functions. The two alternative system regimes are 

modelled as two distinct production functions. System output for Regime 𝑚 (𝑌𝑚) is 

modelled as a function of system input (𝑋), which is an underlying slow ecosystem 

variable. These production functions are deterministic in the sense that if the system 

input (𝑋) is known with certainty, the system output (𝑌) is also known with certainty. 

However, if the system input is a random variable, the system output (as a direct 

function of 𝑋) will also be a random variable. A few simple examples of these 

production functions include fish population as a function of water quality, koala 

population as a function of habitat size or connectivity, and crop yield as a function of 

the depth of a saline groundwater table. 

 

4. The objective of the decision-maker. The decision-maker’s objective is to maximise 

the net present value (NPV) of expected utility, generated directly and/or indirectly 

from the system, over a finite time horizon. This is achieved by managing the control 

variables relating to controlling the underlying slow variable (𝐶) and the amount of 

harvest effort undertaken for either system output or input (𝐸). The level of 

consumption expenditure (𝑞) must also be chosen for each time period. 

 

Utility can be obtained from two main sources: (i) consumption utility, which 

results from consumption expenditure paid for by wealth acquired from any profits 
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generated by the system; and (ii) direct utility, which is a direct function of the current 

output of the system but does not require that the output be harvested. For example, 

direct utility may be obtained from the aesthetic value of a system, which is a function 

of the population size of a particular bird species. Consumption utility is temporally 

transferable because acquired wealth can be stored and used for consumption in a 

future time period. Direct utility, on the other hand, cannot be stored and can only be 

enjoyed in the current time period. 

 

The two other sources of utility are only applicable in the terminal time period, 

𝑇. These sources are (iii) utility from terminal wealth, which captures the bequest 

value (either to a representative agent or individual) of any wealth remaining at the 

end of the terminal time period; and (iv) the scrap value of the system, which captures 

utility that may be sourced based on the system’s future productive potential and is 

conditional on the state of the system at the end of the terminal time period. Implicit 

in (iii) and (iv) is an assumption that both the system and society will continue to exist 

beyond the finite time horizon modelled. 

 

5. Updating of prior beliefs (Learning). This model assumes Knightian risk (Knight 

1921) rather than Knightian uncertainty. The risk context considered is one where the 

system is deterministic, but the decision-maker possesses incomplete knowledge of it. 

Exact threshold locations are unknown, but prior probability distributions can be 

postulated based on historical data, experimental data and/or expert knowledge. A 

process of learning occurs (i.e. a signal is provided) every time the system is 

(hypothetically) perturbed. The probability distributions for threshold locations are 

continually updated as new (hypothetical) information becomes available and the 

bounds of these prior probability distributions are progressively tightened over time. 

 

Use is made of (hypothetical) active learning to capture how individuals and 

decision-makers actually make management decisions. That is, to choose what 

appears to be the best course of action (e.g. level of investment) at the current point in 

time, conditional on current levels of information and risk. Then, as new information 

is acquired, and levels of information and risk change, the best course of action is 

revised to reflect the most recent information set. 
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6. Solution method is dynamic programming. The economic problem analysed in this 

thesis takes the form of a dynamic optimisation, where the objective is to maximise 

the expected NPV of utility, generated directly and/or indirectly from the system, over 

a finite time horizon. The problem is a dynamic optimisation because of the presence 

of several state variables. Generally, these state variables are: system output (𝑌), 

system input (𝑋), acquired wealth (𝑊), and the parameters that determine the shape 

and/or bounds of the prior probability distributions for unknown threshold locations. 

The control variables relate to actions (𝐶) that impact on the level of the underlying 

slow variable, the amount of harvest effort (𝐸) undertaken for either system output or 

input, and the amount of consumption expenditure (𝑞) for each time period. 

 

The dynamic nature of the problem means that the optimisation problem must 

be solved recursively. The problem must be first solved for the terminal time period, 

𝑇, for all feasible levels of the abovementioned state variables. This process will 

generate a value function that captures the maximum expected utility generated from 

the system during the terminal time period, 𝑇, as a function of the levels of the state 

variables at the beginning of the same time period. The value function for time period 

𝑇 then forms part of the value function for time period 𝑇 − 1, which captures the 

maximum expected utility generated from the system during time periods 𝑇 − 1 and 

𝑇, as a function of the levels of the state variables at the beginning of the time period 

𝑇 − 1. This iterative process is repeated until a value function is generated for the first 

time period of the problem, which captures the maximum expected NPV of utility 

generated from 𝑃 = [1,𝑇]. The optimal levels of the control variables can then be 

determined as functions of the initial levels of the state variables. The model 

simulations are solved using numerical techniques. 

 

1.3.3 Research questions and propositions 

 

To examine the impact on management decisions of active learning about 

unknown ecological threshold locations, different types of ecosystem dynamics, and 

the subjective choice of prior distribution for unknown threshold locations, the 

following research questions and propositions were formulated, based on a review of 

the relevant literature. 
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Question 1: What is the impact on expected returns of active learning about unknown 

ecological threshold locations? 

P1.1: The maximum expected NPV of utility generated by an ecosystem will 

be higher for the case when active learning is included in the optimisation 

compared to the case when active learning is not included in the optimisation. 

P1.2: For the first time period of the problem, the amount of effort invested 

into controlling the ecosystem away from an undesirable threshold (i.e. 

investment in risk averse actions) will be lower for the case when active 

learning is included in the optimisation compared to the case when active 

learning is not included in the optimisation. 

P1.3: The value of information (i.e. the difference between the expected NPV 

of utility when active learning is included compared to when it is not included) 

will have a non-monotonic relationship with the initial level of uncertainty 

about the threshold location (as measured by standard deviation of prior 

probability distribution). 

 

Question 2: How are management decisions affected by different types of ecosystem 

dynamics? 

P2.1: For a system with hysteretic dynamics, the optimal level of first-period 

investment in effort to control the system away from an undesirable threshold 

will be lower for the case when active learning is included in the optimisation 

compared to the case when active learning is not included in the optimisation. 

P2.2: For a system with hysteretic dynamics, the optimal level of first-period 

investment in effort to control the system in the direction of a desirable 

threshold will be lower for the case when active learning is included in the 

optimisation compared to the case when active learning is not included in the 

optimisation. 

P2.3: For a system with an irreversibility, the optimal level of first-period 

investment in effort to control the system away from an undesirable threshold 

will be lower for the case when active learning is included in the optimisation 

compared to the case when active learning is not included in the optimisation. 
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Question 3: Are perceived optimal management decisions sensitive to the subjective 

choice of prior distribution for unknown threshold locations? 

P3.1: For a system with hysteretic dynamics that begins the problem in the 

economically-preferred regime, the optimal level of first-period investment in 

effort to control the system away from the undesirable threshold will be more 

sensitive to changes in the closer bound (i.e. crossing this bound means the 

probability of a regime shift is positive) than changes in the further bound (i.e. 

crossing this bound means the threshold is crossed with certainty) of the prior 

probability distribution for the unknown threshold location. 

P3.2: For a system with hysteretic dynamics that begins the problem in the 

economically-non-preferred regime, the optimal level of first-period 

investment in effort to control the system in the direction of the desirable 

threshold will be more sensitive to changes in the closer bound (i.e. crossing 

this bound means the probability of a regime shift is positive) than changes in 

the further bound (i.e. crossing this bound means the threshold is crossed with 

certainty) of the prior probability distribution for the unknown threshold 

location. 

P3.3: For a system with an irreversibility that begins the problem in the 

economically-preferred regime, higher uncertainty4 about the location of the 

(sole) undesirable threshold will result in a lower optimal level of first-period 

investment in effort to control the system away from the undesirable 

threshold. 

 

Question 4: How are management decisions affected by the relative contributions of 

direct and consumption utility to total utility? 

P4.1: For a system where utility is sourced from both consumption and direct 

utility, the optimal level of first-period investment in effort to control the 

system away from the undesirable threshold will be higher ceteris paribus 

when more weight is placed on direct utility, relative to consumption utility. 

 

                                                                 
4 Measured as the standard deviation of the prior probability distribution. 
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1.4 An outline of the thesis 

 

This thesis continues with a literature review in Chapter 2. Chapter 3 presents 

the modelling framework developed to include the role of active learning within the 

decision-maker’s problem. Chapters 4 and 5 outline several representative case 

studies of ecosystems that are suitable for simulation exercises. Chapter 6 summarises 

and discusses the results for each research question using data from model simulations 

conducted for a shallow lake ecosystem. Chapter 7 discusses the broader implications 

of the research findings, presents ideas for future research and concludes the thesis. 

 

Table 1-1 below summarises the key features of the four representative case 

studies described in Chapters 4 and 5. 

 

 
Table 1-1 Key features of the four representative case studies 

Characteristic Shallow lake Savannah Reef fishery Koalas 

Threshold effect Hysteretic 
dynamics 

Completely 
reversible 

Completely 
reversible 

Hysteretic 
dynamics 

Underlying slow 
variable 

Phosphorus 
concentration 

Grass cover – 
fuel load 

Reef-mangrove 
distance 

Habitat quality 

Trade-offs Better water 
quality in lake 
system vs. 
Harvesting crops 
for profit 

Non-use vales 
from biodiversity 
in the rangeland 
system vs. 
Grazing livestock 
for profit 

Non-use values 
from the fish 
population vs. 
Harvesting fish 
for profit 

Non-use values 
from koala 
population vs. 
Utility from 
home ownership 

Ecological 
dynamics 

Nutrient cycling 
where 
phosphorus is 
added via natural 
and 
anthropogenic 
processes and 
partially 
assimilated by 
the system 

Grass and tree 
prevalence 
modelled using a 
space implicit 
model, where 
trees are the 
superior 
competitor 

Fish population 
modelled using a 
Lotka-Volterra 
predator-prey 
model 

Koala population 
modelled using a 
logistic growth 
function 

Sources of utility Direct utility: 
Recreational use 
of lake – function 
of water quality 
 
Consumption 
utility: Paid for 
using profits 
from cropping 
activities 

Direct utility: 
Existence and 
aesthetic value – 
function of 
biodiversity 
 
Consumption 
utility: Paid for 
using profits 
from grazing 
activities 

Direct utility: 
Existence and 
aesthetic value – 
function of the 
fish population 
 
Consumption 
utility: Paid for 
using profits 
from fishing 
activities 

Direct utility: 
Existence and 
aesthetic value – 
function of the 
koala population 
 
Direct utility: 
Utility from 
home ownership 
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Summary of introduction 

 

This thesis extends previous research by presenting a mathematical framework 

to be used for managing ecological systems with thresholds of unknown location. 

Models that fail to take account of the benefits of reducing or resolving uncertainty5 

about the locations of thresholds omit an important component of the problem 

structure. This omission is likely to result in perceived optimal management decisions 

actually being sub-optimal. 

 

The mathematical framework is used to model the effect on optimal decisions 

of learning about the locations of thresholds. Learning occurs via a process of 

adaptive management. The process of learning is modelled by updating the prior 

probability distribution for a threshold’s location and by adjusting the boundary 

between the regions of a system’s state-space that could and could not contain the 

threshold, as new information is acquired. The model captures the trade-off faced by 

the decision-maker between the costs of crossing a threshold and shifting to an 

undesirable alternative regime, and the benefits of learning about the threshold 

location. Consideration of both the benefits and costs of active learning means the 

decision-maker will generally make decisions that incur a greater risk of crossing the 

threshold in order to learn about its location.  

                                                                 
5 Measured by assuming Knightian risk, rather than Knightian uncertainty. 
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Chapter 2. Literature review 

 

An ecological system can be represented in the form of a production function, 

by way of a reductive model. In this way, the system output (𝑌) can be represented as 

a function of one or more system inputs (𝑋), where 𝑋 may be a scalar or vector. 

Typical for the management of productive systems is the use of optimisation 

techniques, or the application of benefit-cost analysis (BCA) or similar valuation tools 

(e.g. Nævdal 2006; Hanley and Barbier 2009; Balikcioglu et al. 2011). However, the 

management of ecological systems is made challenging by the presence of critical 

ecological thresholds (e.g. Sutherland 1974; May 1977; Carpenter et al. 1985; Friedel 

1991; Noymeir 1995; Carpenter et al. 1999; Scheffer et al. 2001; Mäler et al. 2003; 

Collie et al. 2004; Petraitis and Dudgeon 2004; Casini et al. 2009; Suding and Hobbs 

2009; Walker et al. 2010). The management of these systems is complicated further if 

the precise locations of thresholds are unknown, which represents a key challenge to 

the production function approach to managing ecological systems. 

 

This chapter reviews the methodologies that have been developed to 

incorporate the components of ecosystems that are not present in simple productive 

systems.6 These include methods for capturing uncertainties within the ecological 

system and appropriate methods for managing or controlling a system when 

confronted with these uncertainties. The most notable of these uncertainties are 

thresholds of unknown location. This chapter describes the development of these 

methods and evaluates their relative merits for modelling and managing ecological 

systems. 

 

2.1 Managing ecological systems with unknown threshold locations 

 

Complex ecological systems are characterised by adaptability, 

unpredictability, feedback effects and thresholds. They are typically self-organising, 

                                                                 
6 Please note that the author acknowledges the conceptual limitations of the conceptual framework 
developed in this thesis. The systems modelled here can be classified as complicated, rather than 
complex. This is because the conceptual framework does not capture the properties of emergence and 
self-organisation that characterise a complex system. Nonetheless, a discussion of the broader literature 
is pertinent at this point. 
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which means a change to one component will cause other components to respond and 

adapt (Levin 1998; Walker et al. 2004). Many natural systems are able to exist in one 

of two or more alternative regimes, where ecosystem function, dynamics and ‘output’ 

are different in each regime. For such systems, these regimes are separated by 

thresholds that usually occur as functions of underlying slow-moving ecosystem 

variables (Scheffer et al. 2001; Walker and Meyers 2004). Although the underlying 

slow variable may be in a continual state of flux, the output of the system will 

noticeably change only if a critical ecological threshold is crossed. These threshold 

effects may be completely or partially reversible, or completely irreversible (Walker 

and Salt 2006). All of the previously described characteristics, but particularly the 

presence of thresholds, create challenges for modelling ecological systems and using 

standard optimisation techniques. However, these challenges are not insurmountable. 

  

An ecological system can be represented in the form of a production function, 

where the system output (𝑌) is modelled as a function of one or more system inputs 

(𝑋). Some examples include (i) crop yield expressed as a function of water and 

fertiliser application rates (e.g. Anselin et al. 2004; Malzer et al. 2004; Hurley et al. 

2005; Tumusiime et al. 2011), (ii) manufacturing output expressed as a function of 

labour, capital and other inputs (e.g. Dobbelaere and Mairesse 2008; Li 2010; Lizal 

and Galuscak 2012), and (iii) the population of a fish species at a particular point in 

time expressed as a function of the previous population level and the amount of 

harvest effort exerted (e.g. Hannesson 2002; Ding and Lenhart 2009; Sarkar 2009; 

Ewald and Wang 2010). 

 

These examples describe system outputs that are easily observable and 

quantifiable, and generated by both natural and artificial systems. In the case of 

natural systems, the metaphor of an ‘ecosystem as a production function’ can also be 

extended to examples where the system output is not easily quantifiable, is a function 

of multiple inputs and/or is susceptible to threshold effects (Sutherland 1974; May 

1977; Carpenter et al. 1985; Friedel 1991; Noymeir 1995; Carpenter et al. 1999; 

Scheffer et al. 2001; Mäler et al. 2003; Collie et al. 2004; Petraitis and Dudgeon 

2004; Casini et al. 2009; Suding and Hobbs 2009; Walker et al. 2010). Examples 

include production function models of shallow lake systems (Mäler et al. 2003; 

Brozovic and Schlenker 2011) and models of both genetic and species diversity 



20 
 

(Eldridge 2010; Lee et al. 2010; Clark et al. 2011). The ecosystem services provided 

by a shallow lake system (output) can be modelled as outputs that are conditional on 

the concentration of phosphorous within the lake (input). Biodiversity within a 

geographic area (output) can be modelled as a function of habitat size, shape and 

connectivity, and within-system feedbacks, plus a multitude of exogenous drivers, 

such as temperature and precipitation (multiple inputs). Biodiversity and ecosystem 

services can provide non-use values such as option, bequest and existence values 

(Hanley et al. 2007). Further, at least some of the inputs, or ecological drivers, that 

determine the levels of outputs, such as biodiversity and ecosystem services, can be 

controlled through deliberate management actions. Examples of these actions include 

water filtration to remove undesirable chemicals or nutrients, and the planting of 

wildlife corridors to improve habitat connectivity. For an optimisation problem, these 

actions are referred to as control or choice variables. 

 

Models of ecological systems represent simplifications of the true production 

functions, the actual ecological dynamics, at play. However, such simplifications 

make the models more tractable and allow them to be solved using a standard 

optimisation framework, which involves using standard differential calculus for either 

a constrained or unconstrained optimisation. Key ecological variables are considered 

to be inputs that can be controlled, or managed, in order to maximise net benefits7 

accrued from the system’s output. 

 

Ecological systems are usually not adequately represented by a single 

continuous production function. They are ‘complex’ systems because the many 

linkages and feedbacks between their components mean that it is almost impossible to 

predict with certainty what the response will be to any intervention in the system 

(Walker and Salt 2006). Ecosystems are also adaptive. A complex adaptive system 

consists of many components that are only loosely connected and typified by variation 

and unpredictability. This type of system is self-organising, which means that a 

change to one component will cause other components to respond and adapt. 

Therefore, complex adaptive systems are characterised by (i) both independent and 

interacting components, (ii) a selection process that works on these components, and 

                                                                 
7 Net benefits are expressed in utility or monetary units. 
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(iii) variation and novelty over time, resulting from the addition and/or removal of 

components.8 

 

Several different analogies have been proposed to describe the manner in 

which ecological thresholds operate, and the concept of ecological resilience. The first 

of these analogies is the ‘Ball in a Basin’ metaphor. Here, the ‘state of the system’ is 

defined by the levels of 𝑚 state variables, which represent the ‘ball’. Each ‘basin’ 

represents a different system regime, where the ‘ball’ may move between ‘basins’ and 

is inclined to move to the bottom of the ‘basin’, toward a stable equilibrium, unless 

subjected to external forces (Walker and Salt 2006). 

 

A simpler, two-dimensional representation of an ecosystem is proposed by 

Walker et al. (2010). The dependent variable is the state of the capital stock, which 

can also be described as the ‘fast’ variable or the ‘system output’. The independent 

variable is the underlying variable, which can also be described as the ‘slow’ variable 

or ‘system input’. The system output can be modelled as a function of the system 

input. However, the system may be susceptible to one of several different types of 

threshold effect. These threshold effects may be (b) completely reversible, (c) 

reversible, but along a hysteretic return path, or (d) irreversible (see Figure 2-1). Such 

simplifications of complex ecological systems provide parsimony when 

demonstrating theoretical concepts and allow applied dynamic optimisation problems 

to be solved. Dynamic optimisation problems grow exponentially with the number of 

variables that describe the state of the system. This concept is otherwise known as the 

‘curse of dimensionality’ (Bellman 1957). 

 

The model formulation used in this thesis closely follows that proposed by 

Walker et al. (2010); more specifically, case (c) of Figure 2-1 below. Case (c) 

represents a system with two alternative regimes and hysteretic dynamics, which 

means that one threshold must be crossed for the system to shift from the first to the 

second regime, but a different threshold must be crossed for the system to shift from 

the second to the first regime. Intuitively, it can be seen that cases (b) and (d) are 

                                                                 
8 The ecological systems modelled in this thesis are complicated systems, rather than complex systems. 
However, the management of complex systems represents a possible extension to this model. 
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merely variations of case (c), where these two thresholds either converge, as for case 

(b), or infinitely diverge, as for case (d). 

 

 
Figure 2-1 Ecosystem dynamics and threshold effects 

Source: Walker et al. (2010) 

 

The presence of ecological thresholds and the inherent unpredictability of 

complex ecological systems have led some to advocate a resilience approach to 

management and dismiss an optimisation approach, as is typically used by economists 

in a wide variety of settings. For example, Walker and Salt (2006) argue that, for 

some period of time, it will be possible to manage or control an ecological system 

within a narrow range of different system states. This can be achieved by breaking a 

system into its individual components and understanding how each functions in 

isolation. However, if insufficient consideration is given to feedback effects and the 

possibility of a threshold being crossed, the system is probably being managed 

inappropriately. Nevertheless, we will see later in this chapter that an optimisation 

approach can adequately address these concerns. 

 

It is important to acknowledge that there are biological and physical limits to 

substitution between different types of capital and between different sources of 

natural capital (Dasgupta and Mäler 2001; Dietz and Neumayer 2007). The terms 
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‘substitution’ and ‘substitutability’ relate to the possibility of maintaining the same 

level of a chosen output (e.g. automobiles or biomass) by substituting between 

different inputs (Pindyck and Rubinfeld 2005). For example, first, the same number of 

automobiles can be produced if the number of workers (labour) is reduced, but this 

reduction is compensated with an increase in the use of machinery and mechanisation 

(physical capital). Second, it may be possible for an ecosystem to sustain the same 

amount of biomass following a reduction in its physical size, if the connectivity of the 

ecosystem is improved. In this sense, an ecological threshold can be considered a 

natural physical limit to substitution between different system inputs; an unavoidable 

limit to substitutability. In the case of crossing an ecological threshold, the marginal 

rate of substitution9 between different system inputs is effectively zero because no 

amount of substitution between different system inputs can maintain the previous 

level of system output. For example, in the context of fish breeding within a 

population, the last fertile male fish cannot be substituted with another female fish. 

 

The characteristics of ecological systems discussed above create complications 

for modelling and using standard optimisation techniques. These complications are 

not insurmountable, but instead add layers of complexity to the modelling problem. 

Critical ecological thresholds represents limits to substitutability between system 

‘inputs’ and crossing a threshold results in an alteration of the system’s dynamics. In 

this thesis, ecosystem dynamics are modelled in the form of a production function, 

with separate functions for each alternative system regime. 

 

2.2 Modelling the management of ecological systems 

 

Several alternative methods have been proposed for modelling the 

management of ecological systems. These range from mathematical techniques, such 

as marginal resilience pricing and optimal control, to decision heuristics, such as safe 

minimum standards, the precautionary principle, minimax and minimax-regret. 

Option theory and the burden of proof are also discussed in the context of the 

precautionary principle. 

                                                                 
9 The marginal rate of substitution is the ratio for which one input can be substituted for another, while 
maintaining the same level of output. 
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2.2.1 Marginal resilience pricing 

 

Many ecological systems are complex adaptive systems. It is the ability of 

these systems to adapt and maintain the same basic function, even after the system 

state has changed, that is a source of economic value in addition to the standard input-

output relationship. In this sense, a system’s stock of resilience can be thought of as a 

form of insurance. New information, in the form of learning about an unknown 

threshold location, is akin to reducing the risk premium that makes such an insurance 

contract actuarially fair. A system’s ability to recover, or ‘bounce back’, from a 

perturbation (i.e. its resilience) can make new information about threshold locations 

especially valuable. However, the value of new information will be lower in the case 

of a system with an irreversible threshold. The reason for this distinction between 

reversible and irreversible thresholds relates to the concept of a quasi-option value, 

which results from the value of information gained by delaying an irreversible 

decision (Arrow and Fisher 1974; Freeman 2003). For example, new information 

gained after experiencing an irreversible regime shift is of little, or no, value because 

this new information cannot be put to use. 

 

If ecological resilience is defined as the physical distance between the 

underlying slow variable and the critical ecological threshold, the economic value of 

an environmental asset can be modelled using an approach known as marginal 

resilience pricing. Here, a system’s ‘stock’ of resilience is viewed as a capital asset 

that can be valued (Mäler et al. 2007; Walker et al. 2010). A more resilient system 

can absorb a larger shock (disturbance) without shifting into an alternative system 

regime (Holling 1973; Walker et al. 2004) and ceteris paribus will have a higher 

economic value than a less resilient system. 

 

Walker et al. (2010) use the example of agricultural land above a saline water 

table. If the saline water table encroaches within two metres of the soil surface, 

capillary forces will draw saline water to the soil surface and cause the land to shift 

from a non-saline to a less productive saline regime. The stock of resilience is defined 

as the physical distance of the water table from the two-metre critical threshold, such 

that a water table depth of seven metres would correspond to five metres of resilience 
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stock. The subsequent valuation of resilience is calculated as a function of (i) the 

physical distance of the system from the critical ecological threshold, (ii) the 

associated conditional probability10 of a regime shift occurring in the future, and (iii) 

the difference in expected income or utility streams between the current 

economically-preferred regime and the non-preferred alternative regime. 

 

2.2.2 Dynamic optimisation with known or unknown threshold locations 

 

Dynamic optimisation involves determining optimal levels of control 

variables, conditional on known or estimated model parameter values. For example, a 

decision problem may involve determining optimal levels for: fertiliser application 

rates, the number of trees planted, rates of mechanical pumping of saline 

groundwater, the amount of fishing effort undertaken, etc. The exact locations of 

critical ecological thresholds may be known or unknown. Therefore, threshold 

location is an important model parameter. If the threshold location is known and 

deterministic, the model parameter is a scalar, whereas, if the threshold location is 

unknown, the model parameter can be considered as a random variable with an 

associated probability density function. 

 

Literature concerning optimal control in the presence of deterministic 

thresholds of known location (e.g. Farzin 1996; Nævdal 2001; Nævdal 2003; Keller et 

al. 2004) has developed in parallel with the literature concerning the optimal control 

of systems with unknown threshold locations or stochastic thresholds. This literature 

has developed from the fields of resource economics (Cropper 1976; Kemp 1976; 

Tsur and Zemel 1995; Tsur and Zemel 1996; Nævdal 2003; Weitzman 2003), and 

research and development (R&D) (Lucas 1971; Kamien and Schwartz 1991; Zemel et 

al. 2001). 

 

In resource economics, this type of model is most commonly applied to the 

extraction of non-renewable resources when the stock size is unknown. However, this 

problem is formally equivalent to the management of a system with an unknown 
                                                                 
10 A conditional cumulative probability distribution is used to estimate the probability of a regime shift 
having occurred at any time up to pre-determined future point in time. This probability is conditional 
on the current ‘stock’ of resilience. 
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threshold location, given certain conditions (Nævdal 2006). More recent applications 

are decisions involving potentially catastrophic outcomes and catastrophic risk, such 

as human-induced climate change (Tsur and Zemel 1996; Nævdal 2003; Nævdal 

2006; Nævdal and Oppenheimer 2007), and the management of nutrient loads in 

shallow lake systems with thresholds of unknown location (Mäler et al. 2003; 

Brozovic and Schlenker 2011). 

 

In the optimal control theory literature that relates to ecosystems, underlying 

slow ecosystem variables are managed across a finite or infinite time horizon with the 

aim of maximising the net present value of utility sourced from the ecosystem (e.g. 

Mäler et al. 2003; Nævdal 2003; Nævdal 2006; Brozovic and Schlenker 2011). 

Essential to this framework is the imposition of Knightian risk (Knight 1921). This 

means that, although exact locations may be unknown, probability distributions can 

be postulated for the unknown threshold locations. 

 

For a system with a threshold of unknown location, deliberately perturbing the 

system in the direction of the threshold increases the probability of learning about its 

location and may result in future cost savings, or efficiency gains, in terms of the 

amount of active control required. Perturbing the system toward the threshold also 

increases the probability of experiencing an undesirable regime shift and being 

required to recover the system to the preferred regime. Peterson et al. (2003) suggest 

that continual cycles of collapse and recovery may be optimal; however, Brozovic and 

Schlenker (2011) show that this result is an artefact of an assumption that the 

decision-maker is not allowed to condition their behaviour on the observed state of 

the system. If allowed to condition their behaviour on the observed state, repeated 

collapses and recoveries will not occur (Brozovic and Schlenker 2011). 

 

Nævdal (2006) and Nævdal and Oppenheimer (2007) have come closest to 

including learning about unknown threshold locations within an optimal control 

framework. Nævdal (2006, p. 1134) identifies what he coins a “risk switching point”. 

Effectively, the risk switching point represents the boundary of the current data set. 

On one side of the boundary, the decision-maker has information sourced from 

observations of the system for certain combinations of the state variables (the system 

state). One important piece of information is that the threshold is not located at any of 



27 
 

the aforementioned system states. Instead, the threshold must be located on the other 

side of the boundary. Therefore, crossing the risk switching point will instantly result 

in a positive probability of crossing the ecological threshold. Partitioning the state 

space in this manner is one of the important steps of modelling active learning about 

thresholds of unknown location. 

 

Although not the focus of this thesis, robust control is a powerful alternative 

toolbox for managing systems with uncertain parameters or dynamics, such as 

ecosystems with unknown threshold locations. Robust control theory allows the 

decision-maker to describe physical systems using models that include bounded 

uncertainty. Robust control methods are designed to maintain a properly functioning 

system, as long as uncertain parameters or disturbances are within these, typically 

tight, bounds. Robust control techniques have been applied to the fields of biology, 

medicine, engineering, neuroscience, computing and economics (Smith and Doyle 

1992; Zhou et al. 1996; Doyle and Csete 2011). The management of ecological 

systems represents one such application. 

 

2.2.3 Alternatives to standard optimisation techniques 

 

Several decision rules and valuation tools have been proposed as alternatives 

to standard optimisation techniques, where each focus on specific aspects of 

managing ecological systems. These frameworks include, but are not limited to, safe 

minimum standards, the precautionary principle, real options, minimax, and minimax-

regret. Excluding real options, these decision rules are typically advocated for systems 

where uncertainties, such as threshold locations, are difficult to conceptualise. These 

uncertainties can be considered as random variables for which probability 

distributions are difficult to postulate. Given the theme of this thesis, the following 

review of the literature will focus primarily on uncertainty, or risk, regarding 

ecological threshold locations. However, other sources of uncertainty will also be 

discussed. 

A safe minimum standard (SMS) is typically advocated in situations where the 

decision-maker concedes that they don’t know enough about an ecological system, or 

the system is too complex, to adequately characterise it using a mathematical model. 
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As such, support for a SMS will typically begin with the assertion that a utilitarian 

optimisation framework is inapplicable (Margolis and Nævdal 2008). Therefore, it is 

logically impossible to assess the optimality of non-utilitarian rules from within a 

utilitarian framework. However, Margolis and Nævdal (2008) identify some problem 

specifications that generate SMS-type results from within a utilitarian framework, but 

only by building in firm thresholds that force this result. The authors are able to 

establish a relationship between two parameters that suggest a SMS can be motivated 

by a conventional utilitarian criterion. These parameters capture (i) the seriousness of 

the potential catastrophe, and (ii) the magnitude of risk (of catastrophe) associated 

with the state variable’s current position in the state-space. 

 

SMS rules can also be used to trigger shifts from using technical decision 

criteria, for example, efficiency, to other rules, such as stake-holder dialogue or 

judicial review. This trigger point signifies the maximum tolerable level of discomfort 

associated with using technical procedures for decision making (Farmer 2001). The 

SMS can also be advocated as protection against the piecemeal approach of benefit-

cost analysis, where projects are considered on an individual basis and do not always 

consider flow-on or feedbacks effects on other systems. The SMS guards against the 

possibility that quasi-option and other non-use values have been excluded from, or 

inaccurately valued in, a benefit-cost analysis (Randall 1991). Quasi-option values 

reflect the irreversible nature of many decisions, in the presence of incomplete 

knowledge. Other non-use values include option value, which is equivalent to an 

insurance premium for conserving the environment in case it provides a use value in 

future, and existence value, which captures satisfaction or utility gained merely from 

knowing that a certain species or system exists (Rolfe 1995). 

 

The minimax and minimax-regret decision rules have been developed as 

alternatives to a safe minimum standard, with the aim of addressing some of its 

conceptual limitations. Assume that several experts have postulated different prior 

probability distributions for the unknown threshold location. For the minimax 

decision rule, the objective is to minimise the possible loss from a worst-case scenario 

(i.e. maximum loss). This implies minimisation of the worst-case scenario over the 

range of different probability distributions postulated (Stoye 2007). Alternatively, this 

decision rule is used to maximise the minimum gain. For the minimax-regret decision 
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rule, the objective is to minimise the maximum regret resulting from a decision. 

Regret is defined as the difference between the expected ex-ante11 outcome and the 

maximum ex-post12 outcome. In other words, the difference between the expected 

outcome when the state of nature is not known and the outcome that could have been 

achieved if the state of nature was known (Stoye 2009a). The minimax-regret 

criterion explicitly incorporates the opportunity cost of making a ‘wrong’ choice 

(Palmini 1999).  

 

The precautionary principle, option theory and the burden of proof have 

developed as distinct methodologies; however, there are enough conceptual 

similarities and overlaps to allow them to be discussed concurrently. In the context of 

ecological systems, these methodologies are typically applied to systems susceptible 

to irreversible threshold effects, where ecosystem dynamics are very poorly 

understood and/or where damages are assumed to be catastrophic. The precautionary 

principle can be viewed as a double-negative way of defining a real option (Hertzler 

2007). That is, actions are taken today to avoid the possibility of an undesirable 

regime shift occurring and reducing the number of environmental management 

options, and consumption possibilities, available in the future. A second interpretation 

of the precautionary principle is a reversal of the burden of proof, from ‘innocent until 

proven guilty’ to ‘guilty until proven innocent’ (van den Belt 2003). 

 

Satisfactory arguments in terms of the precautionary principle can be made in 

two opposite directions. First, that costly preventative actions should not be 

undertaken until the existence of a high (potentially catastrophic) risk is scientifically 

proven. Second, that taking preventative action now will lead to greater flexibility and 

maintain more options in the future, thus resulting in a positive option value when 

taking preventative action. The central question then becomes one of assigning a 

burden of proof. This can take the form of either (i) external parties who suffer harm 

from a management decision being required to prove this harm, or (ii) a decision-

maker being required to prove that their management decision does not cause harm to 

external parties (Ansink and Wesseler 2009). 

 
                                                                 
11 Ex-ante implies that management decisions must be made before the state of nature is known. 
12 Ex-post implies that management decisions can be made after the state of nature is known. 
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The decision rules described above have been proposed as alternatives to 

traditional optimisation techniques to counteract the complications associated with 

modelling ecological systems. However, these rules are largely prescriptive. They are 

useful for providing ‘rules of thumb’ or decision heuristics, but cannot be used for 

optimisation in the traditional sense. Nevertheless, each serves as a useful conceptual 

starting point for more mathematically rigorous analysis and optimisation, where the 

decision-maker possesses a sufficient amount of information. 

 

This section described several alternative techniques and decision rules that 

have been proposed for modelling the management of ecological systems. These 

range from mathematical techniques, such as marginal resilience pricing and optimal 

control, to decision rules, such as safe minimum standards, the precautionary 

principle, minimax and minimax-regret. The main limitations of these approaches will 

be discussed in the following section. 

 

2.3 Extensions to previous approaches 

 

This section details possible extensions to previous approaches proposed for 

the management and modelling of ecological systems. These extensions relate to the 

observations that (i) the benefits of active learning are not considered within the 

decision framework, (ii) the decision framework is unable to provide specific 

recommendations in terms of levels of control variables, and (iii) there are conceptual 

inconsistencies with standard economic theory. 

 

2.3.1 Consideration of the impacts of active learning 

 

Most past approaches developed for managing and modelling ecological 

system have either not considered the benefits of learning or have been unable to 

include them due to methodological limitations. Conversely, imposing a safe 

minimum standard strictly precludes any possibility of learning through intelligently 

perturbing the system. 
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Marginal resilience pricing can be used to value a system’s ‘stock’ of 

resilience as a capital asset (Mäler et al. 2007; Walker et al. 2010). The inclusion of a 

resilience stock in a capital-theoretic framework, such as the inclusive wealth 

framework (Arrow et al. 2003), can be considered as ‘middle ground’ between 

advocates of ‘strong’ and ‘weak’ sustainability. This is because it acknowledges that 

there may be some degree of substitutability between capital stocks, but there are also 

limits to substitutability, which are defined by critical ecological thresholds (Dasgupta 

and Mäler 2001; Dietz and Neumayer 2007). However, a major limitation of this 

approach is that the cumulative probability distribution used to estimate the likelihood 

of an undesirable regime shift occurring, and therefore place a value on resilience, is 

independent of the path of the underlying variable over time. 

 

The value of resilience is calculated as a function of (i) the physical distance 

of the system from the critical ecological threshold, (ii) the associated conditional 

probability of a regime shift occurring in the future, and (iii) the difference in 

expected income or utility streams between the current economically preferred regime 

and the non-preferred alternative regime (Walker et al. 2010). The second component 

described above is of concern because of the possibility of learning is not considered. 

Instead, the probability 𝐹(𝑋0, 𝑃) of experiencing a regime shift at or before any future 

time period 𝑃 is modelled as a function of the current stock of resilience, 𝑋0, and the 

number of future time periods considered, 𝑃. The fact that the specification of 𝐹 is 

time-invariant signifies that the functional form cannot be updated as time progresses 

and new information is gathered. 

 

In the context discussed above, the use of marginal resilience pricing as a 

component of a capital-theoretic framework appears to be no more than an accounting 

exercise; a benefit-cost analysis. However, Walker et al. (2010) acknowledge the 

potential for modifying the resilience pricing metric for use in an optimal control 

framework. Further to this assertion, this thesis develops a dynamic programming 

model that explicitly solves for the optimal levels of control variables. The model also 

includes an iterative process of learning about the unknown locations of thresholds, 

which represents a natural extension of the conceptual framework described above. 
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In the case of a known and deterministic threshold, there is no need for an 

optimal control framework to consider the benefits of learning about unknown 

threshold locations, since there are no opportunities to engage in such learning. 

However, in many cases, the exact locations of critical ecological thresholds are 

unknown to the decision-maker, and there are benefits that flow from the possibility 

of learning. Nævdal (2006) and Nævdal and Oppenheimer (2007) came closest to 

including learning about unknown threshold locations within an optimal control 

framework. Nævdal (2006, p. 1134) identifies what he coins a “risk switching point”, 

which effectively represents the boundary of the current data set. The ‘risk switching 

point’ allows the state-space (for the underlying slow variable) to be partitioned into 

regions that can and cannot contain the threshold. This distinction is necessary for the 

process of modelling learning. 

 

Frequently, the aim of an optimal control analysis is to examine trajectories to 

an optimal steady state of the system (e.g. Mäler et al. 2003; Grune et al. 2005; 

Nævdal 2006; Nævdal and Oppenheimer 2007). In other words, the aim is to 

determine levels for each state variable that can be maintained across time through 

active management of these variables. The reasoning is that if the levels of the 

underlying slow variables of the ecosystem do not change over time, the ecosystem 

will not experience an undesirable regime shift. However, this approach negates the 

potential to learn about a threshold’s location and narrow the bounds of the prior 

distribution that characterises its possible location. This is because the optimal 

outcome will be one that achieves a steady state of the system and does not 

necessarily involve perturbing the system toward the threshold for the purpose of 

learning more about its location. 

 

When the exact location of an ecological threshold is unknown, its location 

can be modelled using a prior probability distribution. The concept of a ‘risk 

switching point’ elucidates strong parallels to the rationale for safe minimum 

standards and risk thresholds (e.g. Margolis and Nævdal 2008) in terms of partitioning 

the state-space into safe and unsafe regions. However, a risk switching point differs 

because it relies entirely on data from an observed path of the state variable, whereas 

a safe minimum standard (SMS) is usually set based on experimental data, expert 

knowledge or social preferences. 
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Proponents of the SMS rule argue that it guards against the myopic and 

irrational nature of human behaviour that fails to account for longer term 

considerations and the welfare of future generations. If justified on the grounds of 

short-sightedness, the SMS rule needs to be very inflexible to prevent rent seeking 

behaviour from parties disadvantaged by the implementation of the SMS (Rolfe 

1995). The main drawback of a binding SMS is that it precludes learning about 

unknown threshold locations. Also, in cases where threshold crossings are thought to 

be irreversible, it is highly likely that a SMS, option theory or other optimisation 

techniques would generate similar results that indicate a significant degree of risk 

averse behaviour is optimal. However, for systems with reversible thresholds, a 

binding SMS does not allow uncertainty about unknown threshold locations to be 

reduced because the system will not be perturbed into the region of the state-space 

that contains the threshold. Reduced uncertainty13 about threshold locations may 

result in significant future efficiency gains. These gains can take the form of cost 

savings owing to less future active management being required to prevent the system 

crossing a threshold. Alternatively, these gains can result from being able to operate 

in a more productive, or more profitable, system state without any risk of crossing a 

threshold. These potential gains are not considered if a binding SMS is in place. 

 

2.3.2 Provision of specific recommendations for control variables 

 

Some of the decision rules proposed as alternatives to traditional optimisation 

techniques have practical limitations because they are unable to provide specific 

recommendations about optimal management decisions. Instead, these alternatives are 

largely prescriptive, providing decision heuristics or ‘rules of thumb’. Conversely, 

mathematical optimisation frameworks are used to provide specific recommendations 

for management decisions. 

 

At its core, the precautionary principle is merely a concept or a guideline that 

provides no specific notion of how it should be applied in practice. According to 

Randall (2011), “The precautionary principle is framed as a principle and, as such, 

cannot be expected to be ready for implementation in particular management and 
                                                                 
13 Measured by assuming Knightian risk, rather than Knightian uncertainty. 
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policy situations.” Rather, the precautionary principle is a statement of a normative 

moral position. It can provide a policy framework that foresees and accounts for 

competing and conflicting principles. Further, the practical problems with many 

precautionary principle formulations are the result of, or exacerbated by, 

unconvincing connections between the possible consequences of uncertainties about a 

real-world system, the degree of our lack of knowledge and the corrective course of 

action required (Randall 2011). 

 

While assessing the theoretical validity of the precautionary principle, Gollier 

and Treich (2003) identify linkages between irreversibility, information, risk and the 

notion of option value. Although there are various economic interpretations of the 

precautionary principle, most definitions revolve around the question of how to 

manage risk in the presence of scientific uncertainty or, in other words, “under 

conditions of imperfect scientific knowledge” (Gollier and Treich 2003, p. 77). The 

precautionary principle of scientific management advocates that scientific uncertainty 

is no reason for failing to act. This is actually a double-negative way of defining a real 

option. In positive terms, undertaking precautionary actions today will preserve more 

options for the future. If, later, we decide that we don’t require these options, we can 

undertake riskier actions (Hertzler 2007). 

 

For irreversible decisions with uncertain benefits, a quasi-option value raises 

the opportunity cost of a management action due to the prospect of forthcoming 

information about the currently uncertain benefits (Arrow and Fisher 1974). It is this 

sequential nature of the decision process that is central to the problem of managing 

risk in the presence of scientific uncertainty (Gollier and Treich 2003). However, 

application of the precautionary principle stifles the sequential nature of the decision 

process by advocating precautionary actions that reduce, or remove, the possibility of 

learning about an unknown threshold location. Furthermore, for cases with a high 

degree of uncertainty about threshold locations and where it is expected that any 

damages will be catastrophic, a mathematical optimisation model is also likely to 

support precautionary actions, in addition to specifying an optimal amount of 

precaution. 
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A similar criticism can be made of the safe minimum standard (SMS). 

Margolis and Nævdal (2008) use an economic framework to assess the optimality of 

choosing a SMS. The authors examine the rationale for a SMS policy within both a 

static and dynamic framework and derive necessary and sufficient conditions for 

when a SMS can be dismissed or defended as an optimal policy. The authors argue 

the SMS differs from a simple quantity constraint because, at least up to some level, it 

is independent of the social benefits available from relaxing the standard. For this 

reason, the SMS is commonly considered an unappealing policy from the viewpoint 

of an expected social welfare maximiser. “Indeed, for many authors it is precisely this 

– the abandonment of the efficiency criterion, rather than the bounding of a physical 

variable – which defines the SMS” (Margolis and Nævdal 2008, p. 402). Rather than 

being used to determine an optimal path or optimal steady state of the state variables 

of the system, the SMS simply imposes a quantity constraint, which may or may not 

have been set arbitrarily. Therefore, it provides no specific notion of how the system 

should be optimally managed over time, apart from not crossing the SMS-threshold. 

 

2.3.3 Conceptual inconsistencies 

 

The minimax and minimax-regret decision rules have been developed as 

alternatives to a safe minimum standard, with the aim of addressing some of its 

conceptual limitations. Although these rules have experienced a resurgence in recent 

times (e.g. Manski 2004; Manski 2005; Brock 2006; Eozenou et al. 2006; Manski 

2006; Schlag 2006; Stoye 2007; Manski 2007a; Manski 2007b; Hirano and Porter 

2008; Manski 2008; Stoye 2009a; Stoye 2009b), they have conceptual limitations of 

their own. For the discussion that follows, assume that several experts postulate 

different prior probability distributions for the unknown threshold location, but the 

decision-maker doesn’t know which of these is the correct distribution. One then 

encounters a decision problem under ambiguity, rather than a decision problem under 

risk (Stoye 2009a). 

 

Ready and Bishop (1991) use the insurance and lottery games to illustrate that 

the framing of the decision problem can significantly alter the optimal strategy. In the 

insurance game, the uncertain future states of the world are independent of the 
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management options available to the decision-maker. On the other hand, implicit in 

the lottery game is an interaction between the management option chosen and the 

possible future states of nature. This means that choosing a particular management 

option may preclude certain states of nature from occurring. The differing optimal 

management actions for different framings of the problem are explained by the level 

of dependence between possible future states of nature (i.e. alternative future events) 

and the management action chosen (Palmini 1999). Further, the minimax decision 

rule violates Milnor’s bonus invariance axiom for game theoretic decision rules 

(Milnor 1964; Palmini 1999). This axiom states that if the decision-maker receives a 

bonus (or penalty) from a source exogenous to the choice set, the decision-maker’s 

optimal strategy should not change. 

 

Palmini (1999) proposes the use of the minimax-regret rule because it results 

in a consistent optimal strategy, regardless of the framing of the decision problem. 

The minimax-regret rule minimises the maximum regret resulting from a decision, 

where regret is defined as the difference between the expected ex-ante14 outcome and 

the maximum ex-post15 outcome. In other words, the difference between the expected 

outcome when the state of nature is not known and the outcome that could have been 

achieved if the state of nature was known (Stoye 2009a). Palmini (1999) also argues 

that the minimax rule ignores the standard economic principle that opportunity cost 

guides the choices people make, even when the person is risk averse. 

 

Further, both the minimax and minimax-regret decision rules have theoretical 

drawbacks and inconsistencies with standard economic theory. First, both decision 

rules avoid the explicit use of priors; however, the minimax-regret rule implicitly 

selects a prior and can be viewed as a prior selection device motivated by a specific 

notion of uniform quality of decisions.16 Second, the minimax-regret rule is menu-

dependent, which means that adding a new decision rule to the available set of 

decision rules may alter the benchmark against which regret is measured and can 

affect their relative rankings (Stoye 2009a). Third, for some cases, both the minimax 

and minimax-regret decision rules can generate trivial results and no-data rules in 
                                                                 
14 Ex-ante implies that management decisions must be made before the state of nature is known. 
15 Ex-post implies that management decisions can be made after the state of nature is known. 
16 No single decision based on a specific prior is better or more reliable than any other decision based 
on a different prior. 
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treatment choice problems (Schlag 2003; Manski 2004; Hirano and Porter 2008; 

Stoye 2009a). 

 

This section discussed some of the most important limitations of approaches 

previously advocated for the management and modelling of ecological systems. These 

range from being unable to include the economic benefits of learning within the 

decision-making framework, being unable to provide recommendations for optimal 

levels of control variables, and conceptual inconsistencies with standard economic 

theory. An optimal control framework that explicitly considers the benefits of active 

learning addresses these limitations. 

 

2.4 Requirements of a new approach 

 

The previous sections have detailed the management of ecological systems 

with unknown threshold locations, how the management of ecological systems is 

modelled, and the limitations of past approaches to management and modelling. This 

section details the elements that are required for a new approach to modelling and 

management that focuses particularly on the ability of a decision-maker to engage in 

active learning to control the speed with which new information is gathered and 

uncertainty17 about unknown threshold locations is reduced. This new modelling 

approach captures the trade-off faced by the decision-maker between the costs of 

crossing the threshold and shifting to an undesirable alternative regime, and the 

benefits of active learning. The modelling framework backs away from some of the 

complexity of ecological modelling to instead focus more productively on the value of 

active learning through intelligently perturbing the system. 

 

The model developed in this thesis extends previous models by allowing the 

decision-maker to learn about unknown threshold locations and factoring this 

potential for learning into the decision-maker’s current decision. Learning has been 

included in some previous models (e.g. Walters 1986; Kelly and Kolstad 1999; Karp 

and Zhang 2006; Shenton et al. 2010; Johnson and Mengersen 2012). In fact, Walters 

(1986) provided numerous examples of mathematical models similar to that 
                                                                 
17 Measured by assuming Knightian risk, rather than Knightian uncertainty. 
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developed in this thesis and was a pioneer in the field of adaptive management. One 

of the intellectual contributions of this thesis is allowing hypothetical future 

information to be explicitly included in the decision-maker’s current decisions, as 

well as allowing the decision-maker to determine the speed with which new 

information is acquired. For the specific class of management problems with 

unknown threshold locations, this has not been done before. 

 

Learning can take several forms and be modelled several different ways.18 For 

example, Brozovic and Schlenker (2011) explicitly advocate allowing the decision-

maker to learn about an unknown threshold location through time using Bayesian 

updating. In their seminal paper, Kelly and Kolstad (1999) consider Bayesian learning 

in the context of greenhouse gas pollution and climate change. Here, there is a clear 

distinction between passive learning, where the process by which information is 

acquired is exogenous to the system, and active learning, where the decision-maker 

has some control over the rate at which information is acquired. The case considered 

by Kelly and Kolstad (1999), and the case modelled in this thesis, is that of 

endogenous learning, otherwise known as active learning. 

 

 Bayesian updating (see Gelman et al. 2003) is the process of using Bayes’ 

theorem to update and refine a prior belief as new information becomes available. For 

example, a player has a prior expectation that a two-sided coin is ‘fair’, so the 

probability of tossing ‘heads’ or ‘tails’ is equally likely and equal to ½. However, 

after several tosses of the coin, the player observes that the coin has landed on ‘heads’ 

on each occasion. The player can use Bayes’ rule to update their prior belief, using 

this new information, to form a posterior belief that the probability of tossing ‘heads’ 

is greater than ½ and ‘tails’ is less than ½. As new information is progressively 

acquired, less weight is placed on the initial prior belief and more weight is placed on 

the observed data. 

 

                                                                 
18 Epistemologically, the notion of ‘modelling learning’ is problematic. Once the rule for updating prior 
distributions of threshold locations is specified, the model reduces to a discrete time dynamical system. 
The initial conditions of the problem, as specified by the modeller, will then determine the results. 
Technically, no learning takes place in the usual sense of the word. However, the process of learning, 
as modelled in this thesis and elsewhere, nonetheless, captures the possibility of learning occurring and 
the alertness of the decision-maker to this process. It also adequately captures the ability of the 
decision-maker to determine the regularity with which new information is acquired; active learning. 
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The use of a Bayesian updating rule for modelling learning about unknown 

threshold locations would be most effective in cases where an ecological threshold is 

thought to be stochastic. In other words, when an ecological threshold is known to 

exist, but its exact location is continually changing. In such a case, the unknown 

threshold location can be considered a random variable with an associated probability 

distribution. As new information is acquired, namely whether an ecological threshold 

has been crossed at a particular point in time and for particular levels of underlying 

slow variables, the prior probability distribution is updated. 

 

The rule used in this thesis for updating prior beliefs differs from Bayesian 

updating because of the assumption of a fixed threshold location. This means that the 

threshold location does not change over time and is at a fixed point within the state-

space. The key point of difference between a fixed and stochastic threshold is that the 

location of a stochastic threshold will never be known with certainty. Conversely, 

once discovered, the location of a fixed threshold will always be known. This means it 

is possible to partition the ecosystem’s state-space into a region that is known to not 

contain the threshold, because this region has been traversed previously without 

crossing the threshold, and a second region that must contain the threshold. This is 

conceptually equivalent to the risk-switching point discussed previously (Nævdal 

2006). In terms of an updating rule, this means that the appropriate approach is to 

truncate and re-scale the initial prior distribution19 as new information is acquired 

about where the threshold could and could not be located. This approach aligns with 

Kolmogorov’s second axiom, which states that there is a probability of one that some 

elementary event in the entire sample space will occur (Kolmogorov 1956). In this 

case, the two possible events are the threshold being crossed or not being crossed. 

 

From a decision-maker’s perspective, there are several different management 

options available for ecosystem management. The most notable of these are passive 

adaptive management (passive learning) and active adaptive management (active 

learning) (e.g. Kelly and Kolstad 1999; Sabine et al. 2004; Prato 2005). The key 

distinction between passive and active learning is one of intent. If a decision-maker 

engages in passive learning, they do so simply by observing a system as it changes 
                                                                 
19 The prior probability distribution is truncated and re-scaled such that the posterior distribution has a 
probability mass of one. 
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naturally over time. In contrast, active learning involves the deliberate perturbation of 

a system, with the explicit aim of learning about the system. Arrow et al. (1995) argue 

that it is only possible to learn about the resilience of a complex system by 

intelligently perturbing the system using adaptive management. By perturbing the 

system in the direction of a threshold, the decision-maker has actively increased the 

probability of a threshold being crossed and a regime shift occurring, but has also 

increased the likelihood of learning about the threshold’s location. 

 

If we drop the simplifying assumption that a decision-maker or manager 

knows the current state and dynamics of the system with certainty, we can assert that 

adaptive management is well suited to managing these ecosystems. Adaptive 

management increases the rate at which decision-makers acquire knowledge about 

ecological relationships and aids decision-making through the use of iterative 

hypothesis testing. It also enhances information flows among policy makers (Prato 

2005). Further, recent research has suggested some generic indicators of close 

proximity to critical ecological thresholds, such that critical transitions may be 

anticipated. These indicators include (i) critical slowing down, where the system’s 

ability to recover from small perturbations becomes very slow when near a threshold, 

and (ii) increased variability in stochastic systems, where larger variance suggests a 

contrasting regime to which the system may shift if conditions change (Scheffer et al. 

2012). This field of research is in its infancy, and offers many avenues for cross-

disciplinary collaboration. 

 

The main source of economic value in terms of learning, and resulting new 

information, is the ability of a system to recover or ‘bounce back’. For a system with a 

reversible threshold (either completely reversible or hysteretic), the value of 

information, acquired through learning, is derived from two separate sources. First, if 

new information is acquired about the location of an unknown threshold without 

actually crossing the threshold, future management of the system will be less costly, 

or more profitable. Learning about the unknown threshold location without actually 

crossing it involves perturbing the system into the ‘risky’ sub-space, which is defined 

as the confidence bounds, or region, within which the unknown threshold location 

could lie (Nævdal 2006). This process tightens the confidence bounds around the 

unknown threshold location and will generate a cost saving resulting from requiring a 
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lower amount of active control of the system in future to certainly avoid crossing the 

undesirable threshold. Alternatively, the decision-maker can operate in what is likely 

to be a more profitable region of the state-space without incurring any risk of crossing 

the undesirable threshold. Second, for a system with a reversible threshold, the 

damage resulting from an undesirable regime shift may be short-lived and incur a 

small cost relative to the cost savings that may be made by lowering the level of 

active control required in future time periods. 

 

The value of information, as defined in this thesis, is conceptual different to 

the ‘expected value of perfect information’, as defined by Walters (1986). The 

expected value of perfect information (EVPI) (Walters 1986) requires multiple policy 

models, with associated probabilities of being the correct model. If no learning is 

possible, the ex-ante best policy (action) will be a function of the probability-

weighted returns from each model. If, however, a magical study is able to resolve all 

uncertainty (perfect knowledge) and determine the correct model, the optimal policy 

can be chosen for each model. The set of ‘perfect knowledge’ estimates of returns are 

then compared with the returns expected if the best ‘no learning’ policy were used, to 

determine the EVPI. By contrast, the ‘value of information’, as defined in this thesis, 

is calculated by comparing expected returns when the decision-maker acknowledges 

that their current actions will have bearing upon the speed with which learning takes 

place, and expected returns when the decision-maker makes no such 

acknowledgement. Walters (1986) asserts that, surprisingly often, learning will not be 

as valuable as intuitively expected. However, in the context of ecological systems 

with unknown threshold locations, the value of information will depend on the degree 

of uncertainty around threshold locations, and the magnitude of differences in 

expected returns across alternative system regimes. The value of information is 

problem-specific, and may be large or small. 

 

 New information, acquired after a threshold has been crossed, can be put to 

use for future management decisions if the system has a reversible threshold, but not 

an irreversible threshold. The model developed in this thesis captures the trade-off 

faced by the decision-maker between (i) the potential benefits from learning about the 

threshold location and (ii) the potential costs incurred as a result of an undesirable 

regime shift. These benefits take the form of a cost saving from requiring less active 
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control in the direction away from an undesirable threshold, because learning narrows 

the prior probability bounds for the unknown threshold location. The costs, in the case 

of a reversible threshold, relate to the cost of recovering the system following an 

undesirable regime shift, which includes both control costs and an opportunity cost in 

terms of forgone utility or output when in the undesirable regime. The costs, in the 

case of an irreversible threshold, relate to the forgone utility or output from being 

permanently in the less-preferred regime following an undesirable regime shift. The 

model then calculates the optimal amount of risk to incur (which could be zero) via 

some amount (which could be zero) of deliberate perturbation of the system. In this 

context, risk is defined as the probability of a regime shift occurring, based on the 

conditional prior probability distribution for the unknown threshold location. It is the 

ability of the system to recover that, in some cases, may make engaging in risky 

management behaviour optimal. 

 

A properly specified optimisation framework should acknowledge and include 

the iterative impact of learning on current and future management decisions (e.g. 

Walters 1986; Karp and Zhang 2006). Failure to do so omits the value of learning 

from the optimisation framework. The model developed in this thesis explicitly 

accounts for the iterative process of learning about unknown threshold locations and 

the impact of learning on future management decisions. A dynamic programming 

approach is used to solve recursively for all possible combinations of system state 

variables and all possible paths of the state variables. The particular paths of state 

variables will ultimately determine the timing and degree of learning about unknown 

threshold locations. This process allows a decision-maker to determine the optimal 

levels of control variables (e.g. fertiliser application rates) in the current time period, 

while implicitly considering the impact that these choices will have on future 

management decisions and the expected NPV of the future stream of net benefits from 

the system. 

 

Summary of literature review 

 

An ecological system can be represented in the form of a production function, 

by way of a reductive model. In the case of an ecosystem with a critical threshold, the 

system output (𝑌) can be represented as a function of one or more system inputs (𝑋), 
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where at least one threshold exists in terms of the 𝑋 variable or variables. Many 

ecological systems are susceptible to threshold effects (e.g. Mäler et al. 2003; Walker 

and Salt 2006; Baskett and Salomon 2010; Gil-Romera et al. 2010). A threshold is a 

level of an underlying slow-moving variable where the dynamics and the ‘output’ of 

the system change. 

Numerous methodologies have been proposed for modelling and managing 

ecological systems. These include mathematical techniques, such as marginal 

resilience pricing and optimal control, and decision heuristics, such as safe minimum 

standards, the precautionary principle, minimax and minimax-regret. Each 

methodology focuses on specific aspects of managing complicated systems that differ 

from those associated with the management of simple systems. However, each of 

these methodologies suffer from conceptual limitations, such as being unable to 

include the benefits of active learning within the decision framework, being unable to 

provide specific recommendations in terms of levels of control variables, and 

conceptual inconsistencies with standard economic theory. 

 

A new approach to modelling and managing ecological systems is required to 

extend the literature beyond the limitations outlined above. It must focus on the ability 

of a decision-maker to engage in active learning about the unknown locations of 

critical ecological thresholds. This new modelling approach captures the trade-off 

faced by the decision-maker between the costs of crossing the threshold and shifting 

to an undesirable alternative regime, and the benefits of active learning. It also allows 

the decision-maker to determine the speed with which new information is acquired, 

since the potential for learning is conditional on the management actions undertaken.  
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Chapter 3. Modelling framework 

 

This chapter presents a new modelling framework for the management of 

ecological systems. The mathematical model demonstrates the role of learning in 

making optimal decisions by explicitly modelling active learning about unknown 

threshold locations in complicated ecological systems. Active learning involves 

occasionally deliberately perturbing the system in the direction of a critical threshold 

for the purpose of learning about its location. Such deliberate management actions are 

associated with both benefits and costs. However, previous modelling frameworks 

have not adequately considered the value of learning about threshold locations. 

  

Learning is modelled by first partitioning the system’s state space into two 

regions. Based on the current information set, one region is known to not contain the 

ecological threshold, which means that the other region must contain the threshold. A 

prior probability distribution can then be postulated for the unknown threshold 

location, based on historical or experimental data, or expert knowledge. The prior 

distribution is updated over time as more information is hypothetically gathered, 

where the potential for learning is conditional on the management actions undertaken 

by the decision-maker. 

 

The objective of the decision-maker is to maximise the expected net present 

value of utility returns from the system. To this end, each alternative system regime is 

modelled as a distinct production function. Crossing an ecological threshold results in 

the system shifting from the original regime to an alternative regime and experiencing 

an abrupt change in productivity. Utility is modelled as a function of several 

management actions. These actions determine the instantaneous level of utility, the 

expected future returns from the system and the likelihood of learning about the 

unknown threshold location. In other words, the decision-maker must choose 

management actions ‘today’, while acknowledging that these actions will ultimately 

determine the amount of learning that occurs, and the resulting benefits and costs of 

such learning. 
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3.1 Introduction to the model 

 

This section provides an introduction of the new mathematical modelling 

framework developed in this thesis, including the model notation, decision-maker’s 

objective, and the important characteristics of the modelling framework. Section 3.1.1 

introduces the notation used in the modelling framework. Section 3.1.2 outlines the 

decision-maker’s objective. Section 3.1.3 describes the important characteristics of 

the modelling framework. Sections 3.1.4 and 3.1.5 provide graphical representations 

of the decision process when the system has reversible and irreversible threshold 

effects, respectively. 

 

3.1.1 Notation 

 

Table 3-1 below lists and describes all of the variables used in the mathematical 

modelling framework. 

 
Table 3-1 Variables used in the mathematical modelling framework 

Variable Description 

𝑃 Discrete time period 

𝑚𝑡 Current system regime – either A or B 

𝑗𝑡 Captures all information captured up to, and including, time period 𝑃 

i.e. a record of when and which thresholds have been crossed 

𝑉𝑗𝑡  Value function at time period 𝑃, having arrived at time period 𝑃 by traversing branches 

𝑗𝑡 

𝜌 Rate of pure time preference 

𝑋𝑗𝑡  Level of the underlying slow ecosystem variable at the end of time 𝑃 

𝐶𝑗𝑡 Effort for positive anthropogenic control of the system via investment in measures that 

determine the level of 𝑋𝑗𝑡 ≡ 𝑋𝑗𝑡−1
′  

𝑘𝑡 Marginal cost of effort for positive anthropogenic control of the system 

𝑞𝑗𝑡 Consumption expenditure paid for by acquired wealth 

𝑊𝑗𝑡  Stock of acquired wealth at the end of time 𝑃 

𝑃𝑡 Real interest rate on the stock of acquired wealth 

𝑎 and 𝑏 Prior probability density functions (PDFs) for the fixed but unknown locations of 

Threshold A and Threshold B, respectively 
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𝑎𝑗𝑡
𝑚𝑖𝑛 Lower bound of the 𝑎 PDF i.e. Threshold A 

𝑎𝑗𝑡
𝑚𝑚𝑚  Upper bound of the 𝑎 PDF i.e. Threshold A 

𝑏𝑗𝑡
𝑚𝑖𝑛 Lower bound of the 𝑏 PDF i.e. Threshold B 

𝑏𝑗𝑡
𝑚𝑚𝑚 Upper bound of the 𝑏 PDF i.e. Threshold B 

𝑌𝑖  Output of the system when in Regime 𝑚 

𝑃𝑡  Revenue received per unit of output 

𝐻𝑗𝑡  Amount of output that is harvested in time period 𝑃 

𝐸𝑗𝑡  Amount of harvest effort in time period 𝑃 

ℎ𝑡 Marginal cost of harvest effort 

𝐿𝑗𝑡 Within-system feedbacks, which alter the level of 𝑋 in the current period 𝑃 and are a 

function of the level of 𝑋 in the previous period 𝑃 − 1 

𝑆𝑡 Vector of exogenous inputs that affect 𝑋 e.g. temperature, precipitation 

𝐷𝑗𝑡 Anthropogenic damages to the underlying slow variable as a result of management 

practice in the previous period 𝑃 − 1 

𝐺𝑗𝑡  Funding from an external source e.g. government or private funding 

 

3.1.2 The decision-maker’s objective 

 

In this model, the decision-maker’s objective is to maximise the NPV of 

expected utility from the system over a finite time horizon, [1,𝑇]. Excluding the 

terminal time period 𝑇, utility can be obtained from two sources; (i) consumption 

utility, which results from consumption expenditure paid for by wealth acquired from 

the profits generated by the system, and (ii) direct utility, which is a direct function of 

the current ‘output’ of the system. For example, direct utility may be obtained from 

the aesthetic value of a system, which may be a function of the population size of a 

particular bird species. Consumption utility is temporally transferable because 

acquired wealth can be stored and used for consumption in a future time period. This 

means that consumption utility can be used to smooth total utility in the event of an 

undesirable regime shift and significant reduction in the level of direct utility. On the 

other hand, direct utility cannot be stored and can thus only be enjoyed in the current 

time period. The two other sources of utility are only applicable in the terminal time 

period 𝑇. These sources are (iii) utility from terminal wealth, which captures the 

bequest value (either to a representative agent or individual) of any wealth remaining 

at the end of the terminal time period; and (iv) the scrap value of the system, which 



47 
 

captures utility that may be sourced based on the system’s future productive potential, 

and is conditional on the state of the system at the end of the terminal time period. 

Implicit in (iii) and (iv) is an assumption that both the ecological system and society 

will continue to exist beyond the finite time horizon of the problem. 

 

The time-invariant instantaneous utility functions are: 

 

• 𝑈𝑞 �𝑞𝑗𝑃�, which captures consumption utility 

• 𝑈𝑌 �𝑌𝑗𝑃�, which captures direct utility 

• 𝑈𝑊𝑇 �𝑊𝑗𝑇�, which captures utility from terminal wealth 

• 𝑈𝑋𝑇 �𝑋𝑗𝑇,𝑅𝑗𝑇�, which captures the scrap value of the system, conditional on its state 

at the end of the terminal time period 

 

3.1.3 Model characteristics 

 

The model is characterised by: 

 

(i) Two alternative system regimes 

 

A system regime is a set of states in which a system can exist and retain the 

same basic structure and function. Most ecosystems can exist in more than one regime 

(Walker and Salt 2006). For example, an agricultural system may exist in a saline or 

non-saline regime. Also, a lake ecosystem may exist in a variety of regimes, such as 

oligotrophic and eutrophic. 

 

(ii) Hysteretic dynamics 

 

This means that a regime change from one regime to another is reversible, but 

along a different return path. This is because alternative regimes have different 

dynamics and different critical ecological thresholds. If a system crosses a threshold 

from the original regime to an alternative regime, it will be required to cross a 

different threshold, and via different dynamics, to return to the original regime. This 
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general form of the modelling framework means that it can also be applied to the 

management of systems with irreversible or fully reversible thresholds, which are 

merely extreme cases of a system with hysteretic dynamics. 

 

(iii) Fixed but unknown threshold location 

 

The locations of critical ecological thresholds are assumed to be at fixed 

positions within the 𝑋-space. However, these positions are not known to the decision-

maker at the beginning of the problem. Instead, prior probability distributions are 

postulated for the thresholds’ position. Over time, more is learnt about the system and 

the bounds of these prior probability distributions are gradually tightened as more 

information is (hypothetically) acquired. 

 

(iv) Regime-specific production functions 

 

The two alternative system regimes are modelled as two different production 

functions. These production functions are deterministic in the sense that if the system 

‘input’ is known with certainty, the system ‘output’ is also known with certainty. 

However, if the system ‘input’ is instead a random variable, the system ‘output’ will 

also be a random variable. 

 

‘Ecosystem dynamics’ and ‘ecosystem production function’ are two terms that 

will be used interchangeably unless otherwise stated. A separate production function 

is assumed for each regime in order to capture the different dynamics across each 

system regime. Output, 𝑌, is modelled as a function of a single input, 𝑋. A few simple 

examples of these production functions include fish population as a function of water 

quality, koala population as a function of habitat size or connectivity, and crop yield 

as a function of the depth of a saline water table. 

 

(v) Learning 

 

This model assumes Knightian risk rather than Knightian uncertainty (Knight 

1921). Exact threshold locations are unknown, but prior probability distributions can 

be postulated based on historical data, experimental data, and/or expert knowledge. A 
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process of learning occurs (i.e. a signal is provided) every time the system is 

perturbed. The probability distributions for threshold locations are continually 

updated as new information becomes available, and the bounds of these prior 

probability distributions are progressively tightened over time. 

 

3.1.4 A system with hysteretic dynamics 

 

Figure 3-1 provides a visual representation of the ecosystem dynamics 

assumed in this model. The ecosystem exhibits hysteretic dynamics, which means 

there is more than one system regime, but regime shifts are reversible along a 

different path and via different system dynamics. The two alternative regimes are 

represented by the red and blue curves. Each regime is typified by a different 

production function, where the production function is stochastic. The near-horizontal 

solid red and blue curves represent the expected value of each production function. 

The near-horizontal dotted red and blue curves represent confidence bounds for each 

respective production function. The solid red and blue probability density functions 

(PDFs) at the bottom of the graph represent the prior PDFs for the locations of 

Threshold A and B, respectively, and are denoted 𝑎𝑃(𝑋) and 𝑏𝑃(𝑋), respectively. The 

initial PDFs can be supported on a bounded or unbounded interval. They are only 

required to be bounded in the presence of a natural physical boundary. For example, if 

the slow ecosystem variable is groundwater table depth, it is bounded from below at 

𝑋 = 0 i.e. where the groundwater table reaches the surface. Similarly, if 𝑋 represents 

the total area of a species habitat, it cannot take a value below zero. Should the input 

variable (𝑋) cross a critical ecological threshold, the ecosystem will immediately shift 

from the current regime to the alternative regime; either red to blue or blue to red. The 

vertical dotted black arrows represent the means of 𝑎𝑃(𝑋) and 𝑏𝑃(𝑋). 
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Figure 3-1 A system with two alternative regimes and hysteretic dynamics 

 

Figure 3-2 sets out the period-by-period problem faced by the decision-maker. 

In this example, the system is known to be in Regime A (𝑅𝐴) in period 0. Each branch 

represents the two alternative contingencies, which are ending that period in 𝑅𝐴 or 𝑅𝐵 

(i.e. Regime B). The number alongside each branch (expressed algebraically) 

represents the probability of following that branch, conditional on the action/s of the 

decision-maker at the beginning of the period (i.e. the choice of 𝐶𝑗𝑃, which determines 

𝑋𝑗𝑃 ≡ 𝑋𝑗𝑃−1
′ ), and the system’s regime at the beginning of the period. 𝐴𝑗𝑡(𝑋𝑗𝑡) is a 

cumulative distribution function (CDF) that gives the probability of remaining in 

Regime A at the end of period 𝑃 if the system was in Regime A at the beginning of 

period 𝑃 (i.e. the probability of remaining in Regime A). Likewise, 𝐵𝑗𝑃(𝑋𝑗𝑃) is a CDF 

that gives the probability of remaining in Regime B. 1 − 𝐴𝑗𝑡(𝑋𝑗𝑡) and 1 − 𝐵𝑗𝑡(𝑋𝑗𝑡) are 

survival functions, which give the conditional probability of crossing the relevant 

ecological threshold from Regime A to B, and from Regime B to A respectively. 

 

The subscript 𝑗𝑃 is used to denote the path (i.e. branches) the system has 

traversed, up to and including time period 𝑃. For example, 𝑋𝐴𝐴𝐵 represents the level of 

the state variable 𝑋 when the system has (hypothetically) been in Regime A at the end 

of 𝑃 = 1, Regime A at the end of 𝑃 = 2 and Regime B at the end of 𝑃 = 3. Note that 

the system is known to be in Regime A at 𝑃 = 0, therefore, there is no need to include  

𝑏𝑡(𝑋) 𝑎𝑡(𝑋) 

𝑋 
 

𝐸(𝑌𝐵) 

𝐸(𝑌𝐴) 

𝑌 
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𝑃 = 0 (Initial conditions)     𝑋0, 𝑊0, 𝑎0
𝑚𝑚𝑚, 𝑎0

𝑚𝑎𝑚, 𝑏0
𝑚𝑚𝑚, 𝑏0

𝑚𝑎𝑚, 𝑅𝐴 
------------------------------------------------------------------------------------------------------- 
𝑃 = 1                                                      Choose 𝐶𝐴 

    Gives 𝑋0
′  

     Gives 𝑉𝐴                                                          
 

 
 
                                       𝑌𝐴 �𝑋0

′ �                                           𝑌𝐵 �𝑋0
′ � 

                                       𝑋𝐴                                                 𝑋𝐵 
                                          𝑊𝐴                                                 𝑊𝐵 
                                       𝐴𝑁                                                 𝐴𝐶 
                                           𝐵𝑉                                                  𝐵𝑉 
                                           𝑅𝐴                                                  𝑅𝐵 
------------------------------------------------------------------------------------------------------- 
𝑃 = 2                          Choose 𝐶𝐴𝐴                                   Choose 𝐶𝐴𝐵 
                                   Gives 𝑋𝐴′                                        Gives 𝑋𝐵′  
                                      Gives 𝑉𝐴𝐴                                      Gives 𝑉𝐴𝐵 
 
 
 
                           𝑌𝐴 �𝑋𝐴′ �      𝑌𝐵 �𝑋𝐴′ �                   𝑌𝐴 �𝑋𝐵′ �        𝑌𝐵 �𝑋𝐵′ � 
                                 𝑋𝐴𝐴             𝑋𝐴𝐵                          𝑋𝐵𝐴               𝑋𝐵𝐵 
                                 𝑊𝐴𝐴            𝑊𝐴𝐵                         𝑊𝐵𝐴              𝑊𝐵𝐵 
                              𝐴𝑁𝑁            𝐴𝑁𝐶                         𝐴𝐶𝑉               𝐴𝐶𝑉 
                                𝐵𝑉𝑉             𝐵𝑉𝑉                          𝐵𝑉𝐶              𝐵𝑉𝑁 
                                  𝑅𝐴              𝑅𝐵                            𝑅𝐴                 𝑅𝐵 
------------------------------------------------------------------------------------------------------- 
   𝑃 = 3          Choose 𝐶𝐴𝐴𝐴     Choose 𝐶𝐴𝐴𝐵          Choose 𝐶𝐴𝐵𝐴   Choose 𝐶𝐴𝐵𝐵 
                        Gives 𝑋𝐴𝐴′          Gives 𝑋𝐴𝐵′              Gives 𝑋𝐵𝐴′         Gives 𝑋𝐵𝐵′  
                        Gives 𝑉𝐴𝐴𝐴        Gives 𝑉𝐴𝐴𝐵           Gives 𝑉𝐴𝐵𝐴       Gives 𝑉𝐴𝐵𝐵 
 
 
 
              𝑌𝐴 �𝑋𝐴𝐴′ � 𝑌𝐵 �𝑋𝐴𝐴′ �   𝑌𝐴 �𝑋𝐴𝐵′ � 𝑌𝐵 �𝑋𝐴𝐵′ �                        𝑌𝐴 �𝑋𝐵𝐵′ �  𝑌𝐵 �𝑋𝐵𝐵′ � 
                   𝑋𝐴𝐴𝐴      𝑋𝐴𝐴𝐵    𝑋𝐴𝐵𝐴     𝑋𝐴𝐵𝐵                                 𝑋𝐵𝐵𝐴    𝑋𝐵𝐵𝐵 
                   𝑊𝐴𝐴𝐴    𝑊𝐴𝐴𝐵    𝑊𝐴𝐵𝐴    𝑊𝐴𝐵𝐵                                𝑊𝐵𝐵𝐴   𝑊𝐵𝐵𝐵 
                    𝐴𝑁𝑁𝑁    𝐴𝑁𝑁𝐶    𝐴𝑁𝐶𝑉     𝐴𝑁𝐶𝑉                                 𝐴𝐶𝑉𝑉    𝐴𝐶𝑉𝑉 
                    𝐵𝑉𝑉𝑉     𝐵𝑉𝑉𝑉     𝐵𝑉𝑉𝐶     𝐵𝑉𝑉𝑁                                 𝐵𝑉𝑁𝐶    𝐵𝑉𝑁𝑁 
                        𝑅𝐴         𝑅𝐵      𝑅𝐴         𝑅𝐵                                    𝑅𝐴        𝑅𝐵 
------------------------------------------------------------------------------------------------------- 
𝑃 = 4 
 
 
 

Figure 3-2 Decision tree for the optimisation of a system with hysteretic dynamics 

 

 

Both 
thresholds 
have been 

crossed 

1 − 𝐵𝐴𝐵𝐵(∙) 𝐵𝐴𝐴𝐵(𝑋𝐴𝐵′ ) 
1 − 𝐵𝐴𝐴𝐵(∙) 

1 − 𝐴𝐴𝐴𝐴(∙) 

1 − 𝐴𝐴𝐴(∙) 

𝐴𝐴𝐴𝐴(𝑋𝐴𝐴′ ) 

 
 

1 − 𝐵𝐴𝐵(∙) 

𝐵𝐴𝐵𝐵(𝑋𝐵𝐵′ ) 

𝐵𝐴𝐵(𝑋𝐵′ ) 

1 − 𝐴𝐴(𝑋0′) 

𝐴𝐴𝐴(𝑋𝐴′ ) 

𝐴𝐴(𝑋0
′ ) 
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this information in the 𝑗𝑃 subscript of a variable. The subscript 𝑗𝑃 is also used to 

capture any information acquired about a variable, up to and including period 𝑃. The 

same notation is used for the parameters of 𝑎 and 𝑏, which are, technically, state 

variables in the problem. The subscripts on these state variables indicate that, during a 

particular time period, the relevant threshold was crossed (𝐶), not crossed (𝑁), or the 

concept is void (𝑉) because the system was in the alternative regime. The updating 

rules for each of these state variables are discussed in greater detail in Section 3.2.3. 

Red and blue arrows denote the crossing of Threshold A and Threshold B, 

respectively. 

 

The brown variables in Figure 3-2 represent the state variables of the decision-

maker’s problem, measured at the end of a given time period. These variables are: 

• 𝑋, the underlying slow ecosystem variable. 

• 𝑊, the decision-maker’s level of wealth. 

• 𝐴, which is a shorthand expression for the lower and upper bounds (𝑎𝑗𝑃−1
𝑚𝑚𝑚 and 𝑎𝑗𝑃−1

𝑚𝑎𝑚, 

respectively) of the CDF that gives the probability of remaining in Regime A at the 

end of a time period, if the system was in Regime A at the beginning of that time 

period. 

• 𝐵, which is a shorthand expression for the lower and upper bounds (𝑏𝑗𝑃−1
𝑚𝑚𝑚 and 𝑏𝑗𝑃−1

𝑚𝑎𝑚 

respectively) of the CDF that gives the probability of remaining in Regime B at the 

end of a time period, if the system was in Regime B at the beginning of that time 

period. 

 

The final elements of the decision tree diagram in Figure 3-2 are the value functions, 

𝑉𝑗𝑃. Each value function is a sum of (i) a weighted average of the two value functions 

that succeed it, and (ii) the utility gained in the current period from direct and 

consumption utility. For this model, any regime shifts occur at the end of the time 

period. This means that the current regime (A or B) is known for the duration of the 

current time period, and system output at the end of the time period will be 

conditional on the system having been in this same regime. The assigned probability 

weights for the value function are based on the conditional probability of being in 

Regime A or Regime B at the end of the current period and, therefore, at the 

beginning of the next period. For example, the equation for 𝑉𝐴 is: 
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𝑉𝐴 = max

𝐶𝐴,𝑞𝐴,𝐸𝐴
�𝑈�𝑌𝐴(𝑋𝐴),𝑞𝐴�

+ (1 + 𝜌)−1�𝐴𝐴(𝑋𝐴).𝑉𝐴𝐴(𝑋𝐴) + �1−𝐴𝐴(𝑋𝐴)�.𝑉𝐴𝐵(𝑋𝐴)�� 
(1) 

 

The operation arg max �𝑉𝑗𝑃� gives the optimal levels for the control variables 

𝐶𝑗𝑃, 𝑞𝑗𝑃 and 𝐸𝑗𝑃. The optimal levels of these variables can be expressed as functions of 

the ‘inherited’20 levels of the state variables 𝑋𝑗𝑃−1
, 𝑊𝑗𝑃−1

, 𝑎𝑗𝑃−1
𝑚𝑚𝑚, 𝑎𝑗𝑃−1

𝑚𝑎𝑚, 𝑏𝑗𝑃−1
𝑚𝑚𝑚, 𝑏𝑗𝑃−1

𝑚𝑎𝑚 as 

well as the parameter values of several other variables. The value function is 

discussed in greater detail in Section 3.4.2. 

 

3.1.5 A system with an irreversibility 

 

Figure 3-3 shows a modified version of Figure 3-2. Figure 3-3 shows a system 

where any regime shift from Regime A to Regime B is irreversible. This has the effect 

of greatly simplifying the decision tree when compared to a system with hysteretic 

dynamics, since many of the alternative contingencies (i.e. branches of the tree) are no 

longer possible. More specifically, it is possible for the system to shift from Regime A 

to Regime B; however, there is no path of the underlying slow variable (𝑋) that will 

allow the system to shift back from Regime B to Regime A. Mathematically, this case 

is defined via the 𝐵-CDF. For a system where a regime shift is irreversible, and 

assuming the preferred and initial regime is Regime A, the 𝐵-CDF will be a 

degenerate distribution where 𝐵 = 1. Therefore, 1 − 𝐵 = 0. This means there is no 

possibility of crossing Threshold B and shifting back to Regime A. For any branches 

where Threshold A has been crossed, 𝑌𝐵 �𝑋𝑗𝑃� will be received with certainty for all 

remaining time periods. For any branches where Threshold A has not yet been 

crossed, the optimisation remains as per that described in the Section 3.1.4. That is, 

where weights are assigned based on the conditional probabilities of being in either 

Regime A or B in different time periods. 

 

  

                                                                 
20 In this context, the word ‘inherited’ is used to describe the levels of the state variables at the end of 
the previous time period. These levels are inherited in the sense that they will also be the initial levels 
of the state variables in the current time period. 
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1 − 𝐴𝐴𝐴𝐴(∙) 

𝑃 = 0 (Initial conditions)     𝑋0, 𝑊0, 𝑎0
𝑚𝑚𝑚, 𝑎0

𝑚𝑎𝑚, 𝑏0
𝑚𝑚𝑚, 𝑏0

𝑚𝑎𝑚, 𝑅𝐴 
------------------------------------------------------------------------------------------------------- 
𝑃 = 1                                                      Choose 𝐶𝐴 

                Gives 𝑋0
′  

    Gives 𝑉𝐴                                                          
 

 
 
                                      𝑌𝐴 �𝑋0

′ �                                           𝑌𝐵 �𝑋0
′ � 

                                       𝑋𝐴                                                  𝑋𝐵 
                                         𝑊𝐴                                                 𝑊𝐵 
                                        𝐴𝑁                                                  𝐴𝐶 
                                           𝐵𝑉                                                  𝐵𝑉 
                                           𝑅𝐴                                                  𝑅𝐵 
------------------------------------------------------------------------------------------------------- 
𝑃 = 2                          Choose 𝐶𝐴𝐴                                       In 𝑅𝐵 
                                   Gives 𝑋𝐴′                                            for 
                                      Gives 𝑉𝐴𝐴                                     remaining 
                                                                                             periods 
    
                                                                                       Receive 𝑌𝐵 �𝑋𝑗𝑃� 
                            𝑌𝐴 �𝑋𝐴′ �      𝑌𝐵 �𝑋𝐴′ �                                    for     
                                 𝑋𝐴𝐴             𝑋𝐴𝐵                                 remaining          
                                 𝑊𝐴𝐴            𝑊𝐴𝐵                                  periods         
                              𝐴𝑁𝑁            𝐴𝑁𝐶                                         
                                 𝐵𝑉𝑉            𝐵𝑉𝑉                                          
                                  𝑅𝐴              𝑅𝐵                                              
------------------------------------------------------------------------------------------------------- 
   𝑃 = 3          Choose 𝐶𝐴𝐴𝐴          In 𝑅𝐵       
                        Gives 𝑋𝐴𝐴′             for         
                        Gives 𝑉𝐴𝐴𝐴           remaining         
                                                     periods 
 
                                                     Receive 𝑌𝐵 �𝑋𝑗𝑃� 
               𝑌𝐴 �𝑋𝐴𝐴′ �      𝑌𝐵 �𝑋𝐴𝐴′ �    for     
                   𝑋𝐴𝐴𝐴      𝑋𝐴𝐴𝐵           remaining                                
                   𝑊𝐴𝐴𝐴    𝑊𝐴𝐴𝐵           periods                 
                    𝐴𝑁𝑁𝑁    𝐴𝑁𝑁𝐶                                               
                    𝐵𝑉𝑉𝑉     𝐵𝑉𝑉𝑉                                                
                        𝑅𝐴         𝑅𝐵                                                            
------------------------------------------------------------------------------------------------------- 
𝑃 = 4                           In 𝑅𝐵 for remaining periods 
                                    Receive 𝑌𝐵 �𝑋𝑗𝑃� for remaining periods 

 

Figure 3-3 Decision tree for the optimisation of a system with an irreversible threshold 

  

𝐴𝐴𝐴𝐴(𝑋𝐴𝐴′ ) 

 
 

1 − 𝐴𝐴𝐴(∙) 

1 − 𝐴𝐴(𝑋0′) 𝐴𝐴(𝑋0
′ ) 

𝐴𝐴𝐴(𝑋𝐴′ ) 
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3.2 Updating prior beliefs about threshold locations 

 

This section details how active learning is modelled in the conceptual 

framework. This process involves, first, postulating prior probability distributions for 

unknown threshold locations. Crossing an ecological threshold results in the system 

shifting to an alternative system regime, where the productivity of the system 

experiences an abrupt, non-marginal change. These prior distributions are then 

progressively updated as new information is gathered, based on (i) the observed path 

of an underlying slow-moving system variable and (ii) an observation of whether an 

ecological threshold was or was not crossed after a particular perturbation of the 

underlying variable. 

 

Section 3.2.1 outlines the process of postulating and modelling probability 

density functions for unknown threshold locations. Section 3.2.2 explains the process 

used to model the path of the underlying slow variable. Section 3.2.3 describes how 

the processes outlined in the two previous sections can be combined to form general 

updating rules for the prior probability distributions that characterise the unknown 

threshold locations. Section 3.2.4 explains how these general updating rules can be 

converted to a form suitable for use in a dynamic programming simulation exercise. 

 

3.2.1 Modelling of probability density functions for unknown threshold 

locations 

 

Unknown threshold locations. It is assumed that the ecosystem has two separate 

system regimes (𝑅𝐴 and 𝑅𝐵), each with its own dynamics and critical ecological 

threshold. These critical ecological thresholds are assumed to be at fixed locations 

within the 𝑋-space. However, the exact locations are unknown to the decision-maker 

at the beginning of the problem. Using historical or experimental data, or expert 

knowledge, it is possible to postulate a probability density function (PDF) for each of 

the two fixed but, as yet, unknown threshold locations. For the initial discrete time 

period of the decision-maker’s problem, the PDFs that characterise two random 

variables are defined as 𝑇0
𝐴 and 𝑇0

𝐵, for Threshold A and Threshold B, respectively. 

For every other discrete time period, the PDFs that characterise two random variables 
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are defined as 𝑇𝑗𝑃
𝐴  and 𝑇𝑗𝑃

𝐵, for Threshold A and Threshold B, respectively. The time 

subscripts, 𝑗𝑃, allow for updating of the upper and lower bounds as more information 

is gathered about the probable locations of Thresholds A and B. 

 

Only one restriction applies to the initial prior probability distributions of 𝑇0
𝐴 

and 𝑇0
𝐵, and necessarily applies to only one of 𝑇0

𝐴 and 𝑇0
𝐵. This restriction relates to 

the presence of data gathered after previous perturbations of the system. For example, 

if the system has previously been perturbed in the direction of Threshold A [B], 

without crossing Threshold A [B], the extreme point of this path will represent the 

finite upper or lower bound of the 𝑇0
𝐴 [𝑇0

𝐵] PDF21. This point represents the boundary 

of the sub-space within which Threshold A [B] is known not to exist; the ‘safe’ 

region. When this case applies for either Regime A or Regime B, the prior PDF for 

the corresponding unknown threshold location (i.e. Threshold A or B) must be 

bounded from at least one side. Conversely, if a regime shift from Regime A [B] to 

Regime B [A] has never been observed, no such restriction applies when the decision-

maker postulates the upper and lower bounds of the 𝑇0
𝐵 [𝑇0

𝐴] PDF. Instead, when a 

particular system regime has not previously been experienced, and data regarding the 

location of the corresponding threshold is completely lacking, the decision-maker 

may wish to postulate an unbounded PDF to characterise the unknown location of this 

threshold. 

 

The upper and lower bounds of the prior PDFs for Threshold A and Threshold 

B are 𝑎𝑗𝑃
𝑚𝑎𝑚 and 𝑎𝑗𝑃

𝑚𝑚𝑚, and 𝑏𝑗𝑃
𝑚𝑎𝑚 and 𝑏𝑗𝑃

𝑚𝑚𝑚, respectively. Each of these parameters22 may 

be finite or infinite, conditional on the availability of data, as described above. 

Therefore, the prior PDFs for the unknown threshold locations can be specified as 

follows: 

 

 𝑇𝑗𝑃
𝐴  ~ 𝑃𝑃�𝑇𝐴 = 𝑋�𝑋𝑗𝑃 = 𝑋� = 𝑎(𝑋) = 𝑎 �𝑋,𝑎0

𝑚𝑎𝑚,𝑎0
𝑚𝑚𝑚,𝑎𝑗𝑃

𝑚𝑎𝑚,𝑎𝑗𝑃
𝑚𝑚𝑚� (2) 

                                                                 
21 The PDF used by the decision-maker to characterise the unknown location of Threshold A, given 
their level of knowledge at the beginning of the optimisation problem (i.e. at 𝑃 = 0). 
22 Technically, 𝑎𝑗𝑡

𝑚𝑚𝑚  and 𝑎𝑗𝑡
𝑚𝑖𝑛 , and 𝑏𝑗𝑡

𝑚𝑚𝑚 and 𝑏𝑗𝑡
𝑚𝑖𝑛 are state variables in the optimisation problem, and 

are continually updated as more information is hypothetically gathered about the unknown threshold 
locations. However, each of these state variables serve as model parameters when specifying the prior 
PDFs for each discrete time period. 
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 𝑇𝑗𝑃
𝐵  ~ 𝑃𝑃�𝑇𝐵 = 𝑋�𝑋𝑗𝑃 = 𝑋� = 𝑏(𝑋) = 𝑏 �𝑋,𝑏0

𝑚𝑎𝑚,𝑏0
𝑚𝑚𝑚,𝑏𝑗𝑃

𝑚𝑎𝑚,𝑏𝑗𝑃
𝑚𝑚𝑚� (3) 

 

Note: the subscript 𝑗𝑃 is used to denote the path followed along the decision tree up to 

time period 𝑃. For example, if the system was in Regime A at the end of time periods 

𝑃 = 1 and 𝑃 = 2, and in Regime B at the end of time period 𝑃 = 3, then 𝑗𝑃=3 = 𝐴𝐴𝐵. 

 

It is the parameter values for the distributions of these random variables, 𝑇𝑗𝑃
𝐴  

and 𝑇𝑗𝑃
𝐵, that will be updated for each successive node of the decision tree (see Section 

3.1.4); conditional on whether or not the relevant ecological threshold has been 

(hypothetically) crossed during the time period. Only the parameters of 𝑇𝑗𝑃
𝐴  will be 

updated if the previous node was an 𝑅𝐴-node, and only the parameters of 𝑇𝑗𝑃
𝐵 will be 

updated if the previous node was an 𝑅𝐵-node. In other words, for a particular time 

period, the ecosystem can only cross the threshold of the current regime. Therefore, 

the decision-maker is only able to learn about the threshold location of the current 

regime. The method of updating prior beliefs for threshold locations (i.e. 𝑇𝑗𝑃
𝐴  and 𝑇𝑗𝑃

𝐵) 

will be discussed in detail in Section 3.2.3. 

 

Underlying slow ecosystem variable. For the purpose of calculating the value 

function23 for each node of the decision tree, it is necessary to keep track of the 

underlying slow ecosystem variable 𝑋𝑗𝑃 (a random variable) over time. The exact 

value of 𝑋𝑗𝑃 is only ever known at 𝑃 = 0. The initial value of 𝑋𝑗𝑃 is: 

 

 𝑋𝑗𝑃=0
= 𝑋

0
= 𝑋�0 (4) 

 

For all other time intervals 𝑃 = [1,𝑇], the value of the underlying slow 

ecosystem variable is a function of within-system feedbacks, exogenous inputs, 

positive anthropogenic control of the system, anthropogenic damages to the system, 

and whether or not the critical ecological threshold was crossed in the current time 

period: 

                                                                 
23 The sum of discounted utility in the current time period and discounted expected utility in all future 
time periods, up to and including the terminal time period 𝑇. 
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i. Within-system feedbacks (𝐿𝑗𝑃): 

For example, 𝑋 measures phosphorus concentration in a shallow lake or 

greenhouse gas concentration in the atmosphere. In both cases, the ecosystem will 

possess some ability to assimilate or break-down these nutrients, which is likely to 

be a function of the current level of these nutrients. 

 

 𝐿𝑗𝑃  ~ ℒ�𝑃 �𝐸0 �𝑋𝑗𝑃−1
�� ,𝜎𝐿2 �𝑃 �𝐸0 �𝑋𝑗𝑃−1

���� = ℒ𝑗𝑃(𝑋) (5) 

 

ii. Exogenous inputs (𝑆𝑃): 

For example, the average temperature for a region is expected to follow a trend 

(deterministic), while experiencing some variation around this trend (stochastic). 

 

 𝑆𝑃 ~ 𝜁 �𝐸0[𝑆𝑃],𝜎𝑆2(𝐸0[𝑆𝑃])� = 𝜁(𝑋) (6) 

 

iii. Positive anthropogenic control of the underlying slow ecosystem variable (𝐶𝑗𝑃): 

For example, the removal of saline groundwater via mechanical pumping will 

cause an expected reduction in the groundwater table (deterministic), but with 

some uncertainty about the exact reduction (stochastic). 

 

 𝐶𝑗𝑃  ~ 𝛾�𝐸0 �𝐶𝑗𝑃� ,𝜎𝐶2 �𝐸0 �𝐶𝑗𝑃��� = 𝛾𝑗𝑃 �𝑋�𝐸0 �𝐶𝑗𝑃�� (7) 

 

iv. Anthropogenic damages to the underlying slow ecosystem variable (𝐷𝑗𝑃): 

 Damages in the current time period 𝑃 may be a function of the level in the 

previous time period 𝑃 − 1 of any, or all, of the following variables: system 

‘output’ (𝑌), consumption (𝑞), harvest amount (𝐻), harvest effort (𝐸). For 

example, assume 𝑌 is the fish stock in a fishery and 𝑋 is the water quality in the 

fishery. Water quality in the current time period is likely to have been affected by 

the amount of fishing effort in the previous time period, which generates pollution 

through fuel leakage, etc. 
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𝐷𝑗𝑃  ~ 𝛿�𝑑�𝐸0 �𝑌𝑗𝑃−1

,𝑞𝑗𝑃−1
,𝐻𝑗𝑃−1

,𝐸𝑗𝑃−1
�� ,𝜎𝐷2 �𝑑�𝐸0 �𝑌𝑗𝑃−1

,𝑞𝑗𝑃−1
,𝐻𝑗𝑃−1

,𝐸𝑗𝑃−1
����

= 𝛿𝑗𝑃 �𝑋�𝑌𝑗𝑃−1
,𝑞𝑗𝑃−1

,𝐻𝑗𝑃−1
,𝐸𝑗𝑃−1

� 
(8) 

 

v. Whether or not the critical ecological threshold was crossed during the current 

time period (i.e. whether 𝐹𝑗𝑃 = 1 or 𝐹𝑗𝑃 = 0) provides information regarding the 

probability with which 𝑋 traversed a ‘risky’ path or ‘safe’ path during the current 

time period. If the threshold was crossed (i.e. 𝐹𝑗𝑃 = 1), 𝑋 must have traversed a 

risky path; one which took it in the direction of the threshold. The critical 

ecological threshold could not have been crossed if the underlying slow ecosystem 

variable 𝑋 remained stationary or moved further away from the threshold. On the 

other hand, 𝑋 may have traversed either a risky or safe path if the threshold was 

not crossed (i.e. 𝐹𝑗𝑃 = 0). This is so because the underlying slow variable could 

have moved in the direction of the threshold (risky path) without actually crossing 

it. 

 

Equation of motion for 𝑋𝑗𝑃. In the absence of any threshold effects or natural physical 

boundaries in terms of the underlying slow ecosystem variable: 

 

• 𝑋𝑗𝑃 evolves according to: 

 

 𝑋𝑗𝑃 = 𝑋𝑗𝑃−1
+ 𝐿𝑗𝑃 + 𝑆𝑃 + 𝐶𝑗𝑃 +𝐷𝑗𝑃 (9) 

 

• The change in 𝑋𝑗𝑃 is given by: 

 

 
∆𝑋𝑗𝑡 = 𝑋𝑗𝑡 − 𝑋𝑗𝑡−1 = �𝐿𝑗𝑡 + 𝑆𝑡 + 𝐶𝑗𝑡 + 𝐷𝑗𝑡� ~ �ℒ𝑗𝑡(𝑋) + 𝜁(𝑋) + 𝛾𝑗𝑡(𝑋) + 𝛿𝑗𝑡(𝑋)�

=  𝑢𝑗𝑡(𝑋) 
(10) 

 

However, given the existence of thresholds of unknown location, it is 

necessary to use two different updating rules for 𝑋𝑗𝑃, conditional on whether 𝐹𝑗𝑃 = 1 

or 𝐹𝑗𝑃 = 0. However, in the special case where 𝐿𝑗𝑃, 𝑆𝑃, 𝐶𝑗𝑃 and 𝐷𝑗𝑃 are deterministic, so 

too is ∆𝑋𝑗𝑃. In this case, the updating rules for when 𝐹𝑗𝑃 = 1 and 𝐹𝑗𝑃 = 0 will converge 
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to a single updating rule, and ∆𝑋𝑗𝑃 will be a degenerate random variable. However, in 

all other cases, the updating rules for 𝐹𝑗𝑃 = 1 and 𝐹𝑗𝑃 = 0 will remain distinct. 

 

For the explanation that follows, it is assumed that the ecosystem is currently 

in Regime A. It is also assumed that an increase in the level of 𝑋 means the system 

has moved further away from the unknown location of Threshold A, whereas a 

decrease in the level of 𝑋 means the system has moved closer to the unknown location 

of Threshold A. If the reverse is true for a system regime, the equations described 

below must be reversed. The reverse framing is shown in full in Appendix A. 

 

3.2.2 Deterministic evolution of the underlying slow ecosystem variable 

 

For the deterministic case, ∆𝑋𝑗𝑃 is a degenerate random variable. This scenario 

represents the extreme case for ∆𝑋𝑗𝑃, where the exact value of 

𝑋𝑗𝑃 �𝐶𝑗𝑃,𝑋𝑗𝑃−1
,𝑞𝑗𝑃−1

,𝐻𝑗𝑃−1
,𝐸𝑗𝑃−1

,𝑆𝑃� will be known for every time period within the time 

horizon, [0,𝑇]. This means that the path traversed by 𝑋 from 𝑋𝑗𝑃−1
 to 𝑋𝑗𝑃, for which 

the relevant ecological threshold was either hypothetically crossed or not, is also 

known with certainty. For this reason, the process of active learning will lead to 

tighter bounds on the updated priors for the locations of Thresholds A and B than 

would be the case if ∆𝑋𝑗𝑃 were a random variable. It is assumed that if the threshold is 

crossed, this crossing occurs at the end of the time period, and the resulting regime 

shift’s effect on system output only manifests itself in the following time period. The 

process by which the prior distribution for a threshold’s location is updated is 

explained below, by way of example. 

 

The initial value of 𝑋 is known to be 𝑋0 = 𝑋�0. In addition, initial prior PDFs 

are postulated for the fixed but unknown threshold locations: 

 

(i) Threshold A (𝑇𝐴): 
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𝑃𝑃�𝑇𝐴 = 𝑋�𝑋0ʹ = 𝑋� = 𝑎𝑗𝑡=1(𝑋)

= 𝑎�𝑋,𝑎0𝑚𝑚𝑚 ,𝑎0𝑚𝑖𝑛,𝑎𝑗𝑡=1
𝑚𝑚𝑚 ≡ 𝑎0𝑚𝑚𝑚 ,𝑎𝑗𝑡=1

𝑚𝑖𝑛 ≡ 𝑎0𝑚𝑖𝑛� 
(11) 

(ii) Threshold B (𝑇𝐵): 

 

 
𝑃𝑃�𝑇𝐵 = 𝑋�𝑋0ʹ = 𝑋� = 𝑏𝑗𝑡=1(𝑋)

= 𝑏�𝑋, 𝑏0𝑚𝑚𝑚 , 𝑏0𝑚𝑖𝑛, 𝑏𝑗𝑡=1
𝑚𝑚𝑚 ≡ 𝑏0𝑚𝑚𝑚 , 𝑏𝑗𝑡=1

𝑚𝑖𝑛 ≡ 𝑏0𝑚𝑖𝑛� 
(12) 

 

Where 

𝑎0
𝑚𝑎𝑚, 𝑎0

𝑚𝑚𝑚, 𝑏0
𝑚𝑎𝑚 and 𝑏0

𝑚𝑚𝑚 are parameters of the model 

𝑎𝑗𝑃
𝑚𝑎𝑚, 𝑎𝑗𝑃

𝑚𝑚𝑚, 𝑏𝑗𝑃
𝑚𝑎𝑚 and 𝑏𝑗𝑃

𝑚𝑚𝑚 are state variables ∀ 𝑃 = 1,𝑇 

 

Since ∆𝑋𝑗𝑃 is purely deterministic, the PDF characterising the probabilistic 

level of 𝑋 at the end of 𝑃 = 1 will be identical (in fact, a degenerate random variable) 

regardless of whether or not the threshold was crossed during that time period: 

 

 𝑋0
′ = 𝑋𝐴 = 𝑋𝐵 = 𝑋�0 + 𝐿0

𝑚=𝐴�𝑋�0�+𝐷0
𝑚=𝐴�𝑋�0�+ 𝑆�0 + 𝐶0

′ 𝑚=𝐴 (13) 

 

Where 

𝐿0
𝑚  is the impact of within-system feedbacks 

𝐷0
𝑚  is the impact of anthropogenic damages 

𝑆0 is the impact of exogenous inputs 

𝐶𝑃′
𝑚
 is the impact of positive anthropogenic control of the system 

𝑚 is the system regime at the beginning of the time period; in this case, Regime A 

 

At the end of time period 𝑃 = 1, there are two possible (hypothetical) outcomes: 

a. First, 𝐹𝐴 = 0 ; which means that after starting the time period in 𝑅𝐴, the ecological 

threshold has not been crossed by the end of the time period. 

b. Second, 𝐹𝐴 = 1 ; which means that after starting the time period in 𝑅𝐴, the 

ecological threshold has been crossed by the end of the time period. 

 

a. If 𝑭𝑨 = 𝟎 
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The system will remain in 𝑅𝐴 and only the upper bound (i.e. 𝑎𝑗𝑃
𝑚𝑎𝑚) of the 𝑎-

distribution can potentially be updated. Driving the updating process for 𝑎𝑗𝑃
𝑚𝑎𝑚 is 

whether 𝑋𝐴 traversed a path which took it into the risky sub-space, where 𝑋𝐴 < 𝑎𝐴𝑚𝑎𝑚 

(Case 2), or remained in the safe sub-space, where 𝑋𝐴 ≥ 𝑎𝐴𝑚𝑎𝑚 (Case 1). 

  

Mathematically, the updating rule is expressed as: 

 

 𝑎𝐴𝐴𝑚𝑎𝑚 ≡ 𝑎𝐴𝑚𝑎𝑚|𝐹𝐴=0
𝑈 = 𝑚𝑚𝑚(𝑎𝐴𝑚𝑎𝑚,𝑋𝐴) ≡ 𝑚𝑚𝑚�𝑎𝐴𝑚𝑎𝑚,𝑋0

′ � (14) 

 

Also note, if 𝑋𝐴 takes a value less than or equal to the lower bound 𝑎𝐴𝑚𝑚𝑚, there 

is zero probability of Threshold A not being crossed during the time period i.e. 

𝑃𝑃�𝐹𝐴 = 0�𝑋𝐴 ≤ 𝑎𝐴𝑚𝑖𝑛� = 0. Therefore, given a choice of 𝐶0
′  that will result in 

𝑋𝐴 ≤ 𝑎𝐴𝑚𝑚𝑚, there is no resulting branch of the decision tree for the condition 𝐹𝐴 = 0. 

 

The two possible cases for which 𝐹𝐴 = 0 are shown graphically below: 

 

• Case 1: 𝑋𝐴 ≥ 𝑎𝐴𝑚𝑎𝑚  

 

 

 

 

 

 

 

Here, X remains in the ‘safe’ sub-space and no learning occurs. Therefore, 

𝑎𝐴𝐴(𝑋) = 𝑎𝐴(𝑋), since 𝑎𝐴𝐴𝑚𝑚𝑚 = 𝑎𝐴𝑚𝑚𝑚 and 𝑎𝐴𝐴𝑚𝑎𝑚 = 𝑎𝐴𝑚𝑎𝑚. 

 

• Case 2: 𝑎𝐴𝑚𝑚𝑚 < 𝑋𝐴 < 𝑎𝐴𝑚𝑎𝑚 
 
 
 
 
 
 

𝑎𝐴𝐴(𝑋) = 𝑎𝐴(𝑋) 

𝑋�0 𝑋𝐴 𝑋 𝑎𝐴𝐴𝑚𝑖𝑛 = 𝑎𝐴𝑚𝑖𝑛 𝑎𝐴𝐴𝑚𝑚𝑚 = 𝑎𝐴𝑚𝑚𝑚  
 

𝑎𝐴𝐴(𝑋) 

𝑎𝐴(𝑋) 

𝑋�0 𝑋 𝑎𝐴𝑚𝑚𝑚  



63 
 

 
 
 
 

 

Here, X traverses a risky path, but the threshold is not crossed. Therefore, it is 

now known that Threshold A is not located within the interval [𝑋𝐴,𝑎𝐴𝑚𝑎𝑚]. 𝑎𝐴(𝑋) is 

converted to  𝑎𝐴𝐴(𝑋) by truncating at the new upper bound, 𝑋𝐴, and normalising, such 

that the probability mass of 𝑎𝐴𝐴(𝑋) is equal to one. 

 

b. If 𝑭𝑨 = 𝟏 

 

The system will switch to 𝑅𝐵 and only the lower bound (i.e. 𝑎𝑗𝑃
𝑚𝑚𝑚) of the 𝑎-

distribution can potentially be updated. Driving the updating process for 𝑎𝑗𝑃
𝑚𝑚𝑚 is 

whether 𝑋𝐴 traversed a path which took it into the risky sub-space, where 𝑎𝐴𝑚𝑚𝑚 <

𝑋𝐴 < 𝑎𝐴𝑚𝑎𝑚 (Case 4), or beyond the risky sub-space, where 𝑋𝐴 ≤ 𝑎𝐴𝑚𝑚𝑚 (Case 3). 

 

Mathematically, the updating rule is expressed as: 

 

 𝑎𝐴𝐵𝑚𝑚𝑚 ≡ 𝑎𝐴𝑚𝑚𝑚�𝐹𝐴=1
𝑈 = 𝑚𝑎𝑚�𝑎𝐴𝑚𝑚𝑚,𝑋𝐴� = 𝑚𝑎𝑚�𝑎𝐴𝑚𝑚𝑚,𝑋0

′ � (15) 

 

Also note, if 𝑋𝐴 takes a value greater than or equal to the upper bound 𝑎𝐴𝑚𝑎𝑚, 

there is zero probability of Threshold A being crossed during the time period i.e. 

𝑃𝑃(𝐹𝐴 = 1|𝑋𝐴 ≥ 𝑎𝐴𝑚𝑚𝑚) = 0. Therefore, given a choice of 𝐶0
′  that will result in 

𝑋𝐴 ≥ 𝑎𝐴𝑚𝑎𝑚, there is no resulting branch of the decision tree for the condition 𝐹𝐴 = 1. 

 

The two possible cases for which 𝐹𝐴 = 1 are shown graphically below: 

 

• Case 3: 𝑋𝐴 ≤ 𝑎𝐴𝑚𝑚𝑚 

 

 

 

 

 

𝑋𝐴 = 𝑎𝐴𝐴𝑚𝑚𝑚  𝑎𝐴𝐴𝑚𝑖𝑛 = 𝑎𝐴𝑚𝑖𝑛 

𝑎𝐴𝐵(𝑋) = 𝑎𝐴(𝑋) 

𝑋�0 𝑋𝐴 𝑋 𝑎𝐴𝐵𝑚𝑖𝑛 = 𝑎𝐴𝑚𝑖𝑛 𝑎𝐴𝐵𝑚𝑚𝑚 = 𝑎𝐴𝑚𝑚𝑚  
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Here, the path traversed by X crosses the threshold with certainty and no 

learning occurs. Therefore, 𝑎𝐴𝐵(𝑋) = 𝑎𝐴(𝑋), since 𝑎𝐴𝐵𝑚𝑚𝑚 = 𝑎𝐴𝑚𝑚𝑚 and 𝑎𝐴𝐵𝑚𝑎𝑚 = 𝑎𝐴𝑚𝑎𝑚. 

 

• Case 4: 𝑎𝐴𝑚𝑚𝑚 < 𝑋𝐴 < 𝑎𝐴𝑚𝑎𝑚 
 

 

 

 

 

 

 

 

Here, X traverses a risky path, and the threshold is crossed. Therefore, it is 

now known that Threshold A is located within the interval [𝑋𝐴,𝑎𝐴𝑚𝑎𝑚]. 𝑎𝐴(𝑋) is 

converted to  𝑎𝐴𝐵(𝑋) by truncating at the new lower bound, 𝑋𝐴, and normalising, such 

that the probability mass of  𝑎𝐴𝐵(𝑋) is equal to one. 

 

3.2.3 General updating rules for the four state variables 

 

By combining the four cases described in Section 3.2.2, and the equivalent 

cases for 𝑏𝑗𝑃
𝑚𝑎𝑚 and 𝑏𝑗𝑃

𝑚𝑚𝑚, the updating rules for each of the upper and lower bound 

state variables can be expressed succinctly using piecemeal functions. Each function 

contains three pieces, which capture all possible scenarios in terms of the threshold-

crossing indicator variable 𝐹𝑗𝑃 and the system regime at the beginning of the time 

period, 𝑅𝑗𝑃. Threshold crossings are assumed to occur, and be observed, at the very 

end of a time period. The updating rules for each of 𝑎𝑗𝑃+1
𝑚𝑎𝑚, 𝑎𝑗𝑃+1

𝑚𝑚𝑚, 𝑏𝑗𝑃+1
𝑚𝑎𝑚 and 𝑏𝑗𝑃+1

𝑚𝑚𝑚 are 

shown below: 

 

𝛼𝐴𝐵(𝑋) 𝛼𝐴(𝑋) 

𝑋�0 𝑋𝐴 = 𝑎𝐴𝐵𝑚𝑖𝑛 𝑋 𝑎𝐴𝑚𝑖𝑛  𝑎𝐴𝑚𝑚𝑚  
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(i) 𝑎𝑗𝑃+1
𝑚𝑎𝑚 =

⎩
⎨

⎧𝑚𝑚𝑚 �𝑎𝑗𝑃
𝑚𝑎𝑚,𝑋𝑗𝑃 ≡ 𝑋𝑗𝑃−1

ʹ � 𝑚𝑓 𝐹𝑗𝑃 = 0 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐴
𝑎𝑗𝑃
𝑚𝑎𝑚 𝑚𝑓 𝐹𝑗𝑃 = 1 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐴
𝑎𝑗𝑃
𝑚𝑎𝑚 𝑚𝑓 𝑅𝑗𝑃 = 𝐵

 (16) 

 

 

Where 
𝑎𝑗𝑃
𝑚𝑎𝑚 ≤ 𝑎0

𝑚𝑎𝑚  ∀ 𝑃  

 

(ii) 𝑎𝑗𝑃+1
𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧ 𝑎𝑗𝑃

𝑚𝑚𝑚 𝑚𝑓 𝐹𝑗𝑃 = 0 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐴

𝑚𝑎𝑚�𝑎𝑗𝑃
𝑚𝑚𝑚,𝑋𝑗𝑃 ≡ 𝑋𝑗𝑃−1

ʹ � 𝑚𝑓 𝐹𝑗𝑃 = 1 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐴
𝑎𝑗𝑃
𝑚𝑚𝑚 𝑚𝑓 𝑅𝑗𝑃 = 𝐵

 (17) 

 

Where 

𝑎𝑗𝑃
𝑚𝑚𝑚 ≥ 𝑎0

𝑚𝑚𝑚  ∀ 𝑃  

 

(iii) 𝑏𝑗𝑃+1
𝑚𝑎𝑚 =

⎩
⎪
⎨

⎪
⎧ 𝑏𝑗𝑃

𝑚𝑎𝑚 𝑚𝑓 𝐹𝑗𝑃 = 0 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐵

𝑚𝑚𝑚�𝑏𝑗𝑃
𝑚𝑎𝑚,𝑋𝑗𝑃 ≡ 𝑋𝑗𝑃−1

ʹ � 𝑚𝑓 𝐹𝑗𝑃 = 1 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐵
𝑏𝑗𝑃
𝑚𝑎𝑚 𝑚𝑓 𝑅𝑗𝑃 = 𝐴

 (18) 

 

Where 

𝑏𝑗𝑃
𝑚𝑎𝑚 ≤ 𝑏0

𝑚𝑎𝑚  ∀ 𝑃  

 

(iv) 𝑏𝑗𝑃+1
𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧𝑚𝑎𝑚�𝑏𝑗𝑃

𝑚𝑚𝑚,𝑋𝑗𝑃 ≡ 𝑋𝑗𝑃−1
ʹ � 𝑚𝑓 𝐹𝑗𝑃 = 0 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐵

𝑏𝑗𝑃
𝑚𝑚𝑚 𝑚𝑓 𝐹𝑗𝑃 = 1 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐵

𝑏𝑗𝑃
𝑚𝑚𝑚 𝑚𝑓 𝑅𝑗𝑃 = 𝐴

 (19) 

 

Where 

𝑏𝑗𝑃
𝑚𝑚𝑚 ≥ 𝑏0

𝑚𝑚𝑚  ∀ 𝑃  

 

Summary of updating rules for prior bounds 
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In each of the four cases described above in Section 3.2.2, and the equivalent 

cases for 𝑏𝑗𝑃
𝑚𝑎𝑚 and 𝑏𝑗𝑃

𝑚𝑚𝑚, it is important to note that the functional form of 𝑎𝑗𝑃(𝑋) 

[𝑏𝑗𝑃(𝑋)] does not change internally to the upper and lower bounds of 𝑎𝑗𝑃
𝑚𝑎𝑚 [𝑏𝑗𝑃

𝑚𝑎𝑚] and 

𝑎𝑗𝑃
𝑚𝑚𝑚 [𝑏𝑗𝑃

𝑚𝑚𝑚], respectively. Instead, 𝑎𝑗𝑃(𝑋) [𝑏𝑗𝑃(𝑋)] is merely the initial prior probability 

distribution, 𝑎𝑗𝑃=1
(𝑋) [𝑏𝑗𝑃=1

(𝑋)], truncated from one side, or both sides, as the upper 

(𝑎𝑗𝑃
𝑚𝑎𝑚 [𝑏𝑗𝑃

𝑚𝑎𝑚]) and/or lower (𝑎𝑗𝑃
𝑚𝑚𝑚 [𝑏𝑗𝑃

𝑚𝑚𝑚]) bounds are updated. This truncated version 

of 𝑎𝑗𝑃=1
(𝑋) [𝑏𝑗𝑃=1

(𝑋)] is then normalised, such that the probability mass of 𝑎𝑗𝑃(𝑋) 

[𝑏𝑗𝑃(𝑋)] is equal to one. 

 

The general formula for 𝑎𝑗𝑃(𝑋) for any time period 𝑃 is shown below: 

 

 𝑎𝑗𝑃(𝑋) =

⎩
⎪
⎨

⎪
⎧

0 𝑚𝑓 𝑋 ≥ 𝑎𝑗𝑃
𝑚𝑎𝑚

𝑎1(𝑋)

1− ∫ [𝑎1(𝑋)]𝑑𝑋
𝑎𝑗𝑃
𝑚𝑚𝑚

𝑎0
𝑚𝑚𝑚 − ∫ [𝑎1(𝑋)]𝑑𝑋𝑎0

𝑚𝑎𝑚

𝑎𝑗𝑃
𝑚𝑎𝑚

𝑚𝑓 𝑎𝑗𝑃
𝑚𝑚𝑚 < 𝑋 < 𝑎𝑗𝑃

𝑚𝑎𝑚

0 𝑚𝑓 𝑋 ≤ 𝑎𝑗𝑃
𝑚𝑚𝑚

 (20) 

 

Where 

𝑎𝑗𝑃(𝑋) = 𝑎�𝑋,𝑎0
𝑚𝑎𝑚,𝑎0

𝑚𝑚𝑚,𝑎𝑗𝑃
𝑚𝑎𝑚,𝑎𝑗𝑃

𝑚𝑚𝑚�  

𝑎1(𝑋) = 𝑎𝑗𝑃=1
(𝑋) = 𝑎�𝑋,𝑎0

𝑚𝑎𝑚,𝑎0
𝑚𝑚𝑚,𝑎𝑗𝑃=1

𝑚𝑎𝑚 ≡ 𝑎0
𝑚𝑎𝑚,𝑎𝑗𝑃=1

𝑚𝑚𝑚 ≡ 𝑎0
𝑚𝑚𝑚�  

 

Likewise, the general formula for 𝑏𝑗𝑃(𝑋) for any time period 𝑃 is shown below: 

 

 𝑏𝑗𝑃(𝑋) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0 𝑚𝑓 𝑋 ≥ 𝑏𝑗𝑃

𝑚𝑎𝑚

𝑏1(𝑋)

1− ∫ [𝑏1(𝑋)]𝑑𝑋
𝑏𝑗𝑃
𝑚𝑚𝑚

𝑏0
𝑚𝑚𝑚 − ∫ [𝑏1(𝑋)]𝑑𝑋𝑏0

𝑚𝑎𝑚

𝑏𝑗𝑃
𝑚𝑎𝑚

𝑚𝑓 𝑏𝑗𝑃
𝑚𝑚𝑚 < 𝑋 < 𝑏𝑗𝑃

𝑚𝑎𝑚

0 𝑚𝑓 𝑋 ≤ 𝑏𝑗𝑃
𝑚𝑚𝑚

 (21) 

 

Where 

𝑏𝑗𝑃(𝑋) = 𝑏�𝑋,𝑏0
𝑚𝑎𝑚,𝑏0

𝑚𝑚𝑚,𝑏𝑗𝑃
𝑚𝑎𝑚,𝑏𝑗𝑃

𝑚𝑚𝑚�  

𝑏1(𝑋) = 𝑏𝑗𝑃=1
(𝑋) = 𝑏�𝑋,𝑏0

𝑚𝑎𝑚,𝑏0
𝑚𝑚𝑚,𝑏𝑗𝑃=1

𝑚𝑎𝑚 ≡ 𝑏0
𝑚𝑎𝑚,𝑏𝑗𝑃=1

𝑚𝑚𝑚 ≡ 𝑏0
𝑚𝑚𝑚�  
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3.2.4 Conversion of updating rules for use in simulation model 

 

Suitable rules for the updating of prior beliefs about unknown threshold 

locations have been described in Sections 3.2.2 and 3.2.3 above. In these examples, 

updating rules are described when moving in the forward direction through time. 

However, since the dynamic nature of this problem means it must be solved 

recursively, the updating rules must be expressed in a form that captures a backward 

progression through time. In fact, each of these different updating rules represents a 

different constraint for the optimisation problem. 

 

Due to the complexity of the value functions and constraints in this problem, a 

numerical solution method is required. An analytical solution cannot be obtained 

because the problem contains several state and control variables, and the resulting 

first order conditions cannot be easily solved algebraically. Instead, the value function 

for each time period must be solved for many combinations of the starting values for 

each of the state variables (i.e. 𝑋𝑗𝑃−1
, 𝑊𝑗𝑃−1

, 𝑎𝑗𝑃
𝑚𝑚𝑚, 𝑎𝑗𝑃

𝑚𝑎𝑚, 𝑏𝑗𝑃
𝑚𝑚𝑚, 𝑏𝑗𝑃

𝑚𝑎𝑚), which are the 

arguments of the value function. A translog function can then be estimated via 

regression analysis, using the aforementioned state variables as regressors. This 

translog estimation is used to interpolate the value function for other combinations of 

initial values of the state variables. 

 

The first step of this optimisation process is to optimise the two different 

terminal value functions. The two separate value functions capture the alternative 

cases of the system being in either Regime A or Regime B for the duration of the 

terminal time period. Neither of these value functions will have a probabilistic 

component because the system regime will be (hypothetically) known for the duration 

of the terminal time period. Also, utility from terminal wealth and the scrap value of 

the system are independent of the lower and upper bounds of the prior distributions 

for the unknown locations of Thresholds A and B (i.e. 𝑎𝑗𝑃
𝑚𝑚𝑚, 𝑎𝑗𝑃

𝑚𝑎𝑚, 𝑏𝑗𝑃
𝑚𝑚𝑚, 𝑏𝑗𝑃

𝑚𝑎𝑚). 

Instead, the arguments of the terminal value functions are the levels of the underlying 

slow variable (𝑋𝑗𝑃−1
) and the decision-maker’s stock of wealth (𝑊𝑗𝑃−1

) at the end of 

the problem’s penultimate time period. 
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When solving recursively for all non-terminal time periods, it is necessary to 

group paths of the underlying slow variable in terms of whether the system regime in 

the previous time period (i.e. 𝑃 − 1) was Regime A (𝑅𝐴) or Regime B (𝑅𝐵). There will 

be three possible paths for each of the two groups; defined as cases 1-3 for 𝑅𝐴 and 

cases 4-6 for 𝑅𝐵. If considered in the context of a forward progression through time, 

these three different cases for each group (either cases 1-3 or 4-6) will capture the 

system (i) remaining in the same regime with certainty, (ii) shifting to the alternative 

regime with certainty, and (iii) probabilistically remaining in the same regime or 

shifting to the alternative regime. 

 

It is then necessary to compare the results from each of the cases 1-3 or 4-6. 

For each combination of starting values for the state variables mentioned above, there 

will be a different optimal (i.e. maximum) value of the objective function for each of 

the six cases. For example, if the system was in Regime A in the previous time period 

(i.e. 𝑃 − 1), cases 1-3 must be compared. Finding the maximum value from these 

cases identifies the optimal course of action for the decision-maker, given the starting 

values of the state variables. The possible ‘courses of action’ for the decision-maker 

correspond to (i), (ii) and (iii) directly above, and the associated objective function 

value then feeds into the value function for the previous time period 𝑃 − 1. The same 

logic applies when the system regime in the previous time period is Regime B; 

however, in terms of cases 4-6, rather than cases 1-3. Each of the six possible cases, 

and associated constraints, are described in detail below. 

 

When solving recursively, there are three possible ways for the system to be in 

Regime A in the preceding time period: 

 

1. The system is in 𝑅𝐴 in the current period (𝑃), as well as the preceding period 

(𝑃 − 1) 

 

For this case, the system is certainly in 𝑅𝐴 for both time periods; 𝑃 − 1 and 𝑃. 

This means that nothing new has been learnt about the unknown location of Threshold 

A during this time. Therefore, 𝑎𝑗𝑃+1
𝑚𝑎𝑚 will be equal to 𝑎𝑗𝑃

𝑚𝑎𝑚, and 𝑎𝑗𝑃+1
𝑚𝑚𝑚 will be equal to 

𝑎𝑗𝑃
𝑚𝑚𝑚. 



69 
 

 

The constraints for Case 1 are as follows: 

 

a. 𝑋𝑗𝑃 ≥ 𝑎𝑗𝑃
𝑚𝑎𝑚 

b. 𝑋𝑗𝑃−1
≥ 𝑎𝑗𝑃

𝑚𝑎𝑚 
(22) 

 

Where 

the levels of 𝑎𝑗𝑃
𝑚𝑎𝑚 and 𝑋𝑗𝑃−1

 are assumed given, and are used as parameter values 

for the optimisation problem 

 

Constraint (a) ensures that the system certainly remains in 𝑅𝐴 in time period 𝑃 

because 𝑋𝑗𝑃 is constrained to remain within the ‘safe’ sub-space. Constraint (b) 

ensures that the system was certainly in 𝑅𝐴 in time period 𝑃 − 1. This constraint also 

ensures that the optimisation for Case 1 is only undertaken for feasible starting levels 

of 𝑋𝑗𝑃−1
.24 

 

2. The system is in 𝑅𝐵 in the current period (𝑃), but was in 𝑅𝐴 the preceding period 

(𝑃 − 1) 

 

For this case, the system is certainly in 𝑅𝐴 for time period 𝑃 − 1, and certainly 

in 𝑅𝐵 for time period 𝑃. This means that nothing new has been learnt about the 

unknown location of Threshold A during this time. Therefore, 𝑎𝑗𝑃+1
𝑚𝑎𝑚 will be equal to 

𝑎𝑗𝑃
𝑚𝑎𝑚, and 𝑎𝑗𝑃+1

𝑚𝑚𝑚 will be equal to 𝑎𝑗𝑃
𝑚𝑚𝑚. 

 

The constraints for Case 2 are as follows: 

 

c. 𝑋𝑗𝑃 ≤ 𝑎𝑗𝑃
𝑚𝑚𝑚 

d. 𝑋𝑗𝑃−1
≥ 𝑎𝑗𝑃

𝑚𝑎𝑚 
(23) 

Where 

                                                                 
24 Also, note that the levels of 𝑋𝑗𝑡 , 𝑎𝑗𝑡+1

𝑚𝑖𝑛 = 𝑎𝑗𝑡
𝑚𝑖𝑛 , and 𝑎𝑗𝑡+1

𝑚𝑚𝑚 = 𝑎𝑗𝑡
𝑚𝑚𝑚  are arguments of the A-value 

function, 𝑉𝑗𝑡+1(𝐴), for time period 𝑃 + 1. 
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the levels of 𝑎𝑗𝑃
𝑚𝑚𝑚, 𝑎𝑗𝑃

𝑚𝑎𝑚 and 𝑋𝑗𝑃−1
 are assumed given, and are used as parameter 

values for the optimisation problem 

 

Constraint (c) ensures that the system certainly shifts to 𝑅𝐵 in time period 𝑃 

because 𝑋𝑗𝑃 is constrained to pass through the ‘safe’ sub-space, and pass sufficiently 

through the ‘risky’ sub-space such that the probability of a regime shift occurring is 

one. Constraint (d) ensures that the system was certainly in 𝑅𝐴 in time period 𝑃 − 1. 

This constraint also ensures that the optimisation for Case 2 is only undertaken for 

feasible starting levels of 𝑋𝑗𝑃−1
.25 

 

3. The system is probabilistically in both 𝑅𝐴 and 𝑅𝐵 in the current period (𝑃), but was 

in 𝑅𝐴 the preceding period (𝑃 − 1) 

 

For this case, the system is certainly in 𝑅𝐴 for time period 𝑃 − 1, and 

probabilistically in 𝑅𝐴 and 𝑅𝐵 for time period 𝑃. The underlying slow variable enters 

the ‘risky’ sub-space, and something is learnt about the unknown location of 

Threshold A. This means that, first, the upper bound of the prior probability 

distribution (𝑎𝑗𝑃
𝑚𝑎𝑚) can be updated if the threshold is not crossed (i.e. the system 

remains in 𝑅𝐴), and, second, the lower bound of the prior probability distribution 

(𝑎𝑗𝑃
𝑚𝑚𝑚) can be updated if the threshold is crossed (i.e. the system shifts to 𝑅𝐵). 

 

The constraints for Case 3 are as follows: 

 

e. 𝑎𝑗𝑃
𝑚𝑚𝑚 < 𝑋𝑗𝑃 < 𝑎𝑗𝑃

𝑚𝑎𝑚 

f. 𝑋𝑗𝑃−1
≥ 𝑎𝑗𝑃

𝑚𝑎𝑚 
(24) 

Where 

the levels of 𝑎𝑗𝑃
𝑚𝑚𝑚, 𝑎𝑗𝑃

𝑚𝑎𝑚 and 𝑋𝑗𝑃−1
 are assumed given, and are used as parameter 

values for the optimisation problem 

 

                                                                 
25 Also, note that the levels of 𝑋𝑗𝑡 , 𝑎𝑗𝑡+1

𝑚𝑖𝑛 = 𝑎𝑗𝑡
𝑚𝑖𝑛 , and 𝑎𝑗𝑡+1

𝑚𝑚𝑚 = 𝑎𝑗𝑡
𝑚𝑚𝑚  are arguments of the B-value 

function, 𝑉𝑗𝑡+1(𝐵), for time period 𝑃 + 1. 
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Constraint (e) ensures that 𝑋𝑗𝑃 enters the ‘risky’ sub-space in time period 𝑃, 

and there is a non-zero and non-one probability of the system shifting regime, or not 

shifting regime. Constraint (f) ensures that the system was certainly in 𝑅𝐴 in time 

period 𝑃 − 1. This constraint also ensures that the optimisation for Case 3 is only 

undertaken for feasible starting levels of 𝑋𝑗𝑃−1
.26 

 

When solving recursively, there are three possible ways for the system to be in 

Regime B in the preceding time period: 

 

4. The system is in 𝑅𝐴 in the current period (𝑃), but was in 𝑅𝐵 the preceding period 

(𝑃 − 1) 

 

For this case, the system is certainly in 𝑅𝐵 for time period 𝑃 − 1, and certainly 

in 𝑅𝐴 for time period 𝑃. This means that nothing new has been learnt about the 

unknown location of Threshold B during this time. Therefore, 𝑏𝑗𝑃+1
𝑚𝑎𝑚 will be equal to 

𝑏𝑗𝑃
𝑚𝑎𝑚, and 𝑏𝑗𝑃+1

𝑚𝑚𝑚 will be equal to 𝑏𝑗𝑃
𝑚𝑚𝑚. 

 

The constraints for Case 4 are as follows: 

 

g. 𝑋𝑗𝑃 ≥ 𝑏𝑗𝑃
𝑚𝑎𝑚 

h. 𝑋𝑗𝑃−1
≤ 𝑏𝑗𝑃

𝑚𝑚𝑚 
(25) 

Where 

the levels of 𝑏𝑗𝑃
𝑚𝑚𝑚, 𝑏𝑗𝑃

𝑚𝑎𝑚 and 𝑋𝑗𝑃−1
 are assumed given, and are used as parameter 

values for the optimisation problem 

 

Constraint (g) ensures that the system certainly shifts to 𝑅𝐴 in time period 𝑃 

because 𝑋𝑗𝑃 is constrained to pass through the ‘safe’ sub-space, and pass sufficiently 

through the ‘risky’ sub-space such that the probability of a regime shift occurring is 

one. Constraint (h) ensures that the system was certainly in 𝑅𝐵 in time period 𝑃 − 1. 
                                                                 
26 Also, note that the levels of 𝑋𝑗𝑡 , 𝑎𝑗𝑡+1

𝑚𝑖𝑛 , and 𝑎𝑗𝑡+1
𝑚𝑚𝑚 are arguments of the seceding value function for 

time period 𝑃 + 1. For the A-value function, 𝑉𝑗𝑡+1(𝐴), the upper bound of the prior distribution is 
updated such that 𝑎𝑗𝑡+1(𝐴)

𝑚𝑚𝑚 = 𝑋𝑗𝑡 . For the B-value function, 𝑉𝑗𝑡+1(𝐵), the lower bound of the prior 
distribution is updated such that 𝑎𝑗𝑡+1(𝐵)

𝑚𝑖𝑛 = 𝑋𝑗𝑡 . 
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This constraint also ensures that the optimisation for Case 4 is only undertaken for 

feasible starting levels of 𝑋𝑗𝑃−1
.27 

 

 

 

 

5. The system is in 𝑅𝐵 in the current period (𝑃), as well as the preceding period 

(𝑃 − 1) 

 

For this case, the system is certainly in 𝑅𝐵 for both time periods; 𝑃 − 1 and 𝑃. 

This means that nothing new has been learnt about the unknown location of Threshold 

B during this time. Therefore, 𝑏𝑗𝑃+1
𝑚𝑎𝑚 will be equal to 𝑏𝑗𝑃

𝑚𝑎𝑚, and 𝑏𝑗𝑃+1
𝑚𝑚𝑚 will be equal to 

𝑏𝑗𝑃
𝑚𝑚𝑚. 

 

The constraints for Case 5 are as follows: 

 

i. 𝑋𝑗𝑃 ≤ 𝑏𝑗𝑃
𝑚𝑚𝑚 

j. 𝑋𝑗𝑃−1
≤ 𝑏𝑗𝑃

𝑚𝑚𝑚 
(26) 

Where 

the levels of 𝑏𝑗𝑃
𝑚𝑚𝑚 and 𝑋𝑗𝑃−1

 are assumed given, and are used as parameter values 

for the optimisation problem 

 

Constraint (i) ensures that the system certainly remains in 𝑅𝐵 in time period 𝑃 

because 𝑋𝑗𝑃 is constrained to remain within the ‘safe’ sub-space, where a threshold 

crossing is not possible. Constraint (j) ensures that the system was certainly in 𝑅𝐵 in 

time period 𝑃 − 1. This constraint also ensures that the optimisation for Case 5 is only 

undertaken for feasible starting levels of 𝑋𝑗𝑃−1
.28 

 

                                                                 
27 Also, note that the levels of 𝑋𝑗𝑡 , 𝑏𝑗𝑡+1

𝑚𝑖𝑛 = 𝑏𝑗𝑡
𝑚𝑖𝑛, and 𝑏𝑗𝑡+1

𝑚𝑚𝑚 = 𝑏𝑗𝑡
𝑚𝑚𝑚  are arguments of the A-value 

function, 𝑉𝑗𝑡+1(𝐴), for time period 𝑃 + 1. 
28 Also, note that the levels of 𝑋𝑗𝑡 , 𝑏𝑗𝑡+1

𝑚𝑖𝑛 = 𝑏𝑗𝑡
𝑚𝑖𝑛, and 𝑏𝑗𝑡+1

𝑚𝑚𝑚 = 𝑏𝑗𝑡
𝑚𝑚𝑚  are arguments of the B-value 

function, 𝑉𝑗𝑡+1(𝐵), for time period 𝑃 + 1. 
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6. The system is probabilistically in both 𝑅𝐴 and 𝑅𝐵 in the current period (𝑃), but was 

in 𝑅𝐵 the preceding period (𝑃 − 1) 

 

For this case, the system is certainly in 𝑅𝐵 for time period 𝑃 − 1, and 

probabilistically in 𝑅𝐴 and 𝑅𝐵 for time period 𝑃. The underlying slow variable enters 

the ‘risky’ sub-space, and something is learnt about the unknown location of 

Threshold B. This means that, first, the lower bound of the prior probability 

distribution (𝑏𝑗𝑃
𝑚𝑚𝑚) can be updated if the threshold is not crossed (i.e. the system 

remains in 𝑅𝐵), and, second, the upper bound of the prior probability distribution 

(𝑏𝑗𝑃
𝑚𝑎𝑚) can be updated if the threshold is crossed (i.e. the system shifts to 𝑅𝐴). 

 

The constraints for Case 6 are as follows: 

 

k. 𝑏𝑗𝑃
𝑚𝑚𝑚 < 𝑋𝑗𝑃 < 𝑏𝑗𝑃

𝑚𝑎𝑚 

l. 𝑋𝑗𝑃−1
≤ 𝑏𝑗𝑃

𝑚𝑚𝑚 
(27) 

Where 

the levels of 𝑏𝑗𝑃
𝑚𝑚𝑚, 𝑏𝑗𝑃

𝑚𝑎𝑚 and 𝑋𝑗𝑃−1
 are assumed given, and are used as parameter 

values for the optimisation problem 

 

Constraint (k) ensures that 𝑋𝑗𝑃 enters the ‘risky’ sub-space in time period 𝑃, 

and there is a non-zero and non-one probability of the system shifting regime, or not 

shifting regime. Constraint (l) ensures that the system was certainly in 𝑅𝐵 in time 

period 𝑃 − 1. This constraint also ensures that the optimisation for Case 6 is only 

undertaken for feasible starting levels of 𝑋𝑗𝑃−1
.29 

 

Summary of updating rules for use in simulation modelling 

 

                                                                 
29 Also, note that the levels of 𝑋𝑗𝑡 , 𝑏𝑗𝑡+1

𝑚𝑖𝑛, and 𝑏𝑗𝑡+1
𝑚𝑚𝑚 are arguments of the seceding value function for 

time period 𝑃 + 1. For the A-value function, 𝑉𝑗𝑡+1(𝐴), the upper bound of the prior distribution is 
updated such that 𝑏𝑗𝑡+1(𝐴)

𝑚𝑚𝑚 = 𝑋𝑗𝑡 . For the B-value function, 𝑉𝑗𝑡+1(𝐵), the lower bound of the prior 
distribution is updated such that 𝑏𝑗𝑡+1(𝐵)

𝑚𝑖𝑛 = 𝑋𝑗𝑡 . 
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In order to be able to solve this problem recursively, the updating rules 

previously described in Sections 3.2.2 and 3.2.3 must be rearranged to reflect a 

backward, rather than a forward, progression through time. These rearranged updating 

rules then form constraints of the optimisation problem. 

 

A numerical solution method is employed because the large number of state 

and control variables means an analytical solution, using differential calculus, is not 

possible. A dynamic programming approach is used to recursively solve value 

functions for each time period and for many different combinations of starting levels 

of each state variable. A translog, or flexible form, function is then used to estimate 

the true value function for each time period and system regime. 

 

These estimated value functions feed into the value functions of the previous 

time period. This process is repeated many times in order to approximate a problem 

structure with an infinite time horizon. The solution values obtained are for the 

decision-maker’s optimal course of action in the first time period of the problem (i.e. 

‘today’), given the initial conditions of the problem. These initial conditions include 

the level of the underlying slow variable and the prior probability bounds for the 

unknown threshold location/s. 

 

3.3 Equation of motion (EOM) for wealth 

 

For this model design, there is no requirement for a positive starting amount of 

wealth (budget). However, for most applications of the model, there will be a positive 

initial amount of wealth. The source of this wealth and the frequency with which it is 

subsidised is also likely to be context-specific. It is possible that there is a continuous 

stream of funding from an external source in the form of a constant per-time-period 

budget allocation. Alternatively, the only form of external funding might be through a 

one-off payment (wealth) provided at the start of the problem. Many other 

specifications are possible for the EOM for wealth; however, it is assumed that the 

decision-maker is not allowed to engage in any Ponzi game behaviour30. The 

                                                                 
30 A Ponzi game, or Ponzi scheme, is one in which each new wave of consumption expenditure is 
funded by taking on more debt. This new loan is used to repay existing debt and fund new consumption 
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specification for the EOM for wealth is also likely to differ, conditional on whether 

the relevant project is primarily publicly or privately funded and/or managed. 

 

For a public project, utility will predominantly be sourced through direct 

utility. Since such a project is unlikely to generate sufficient wealth to fund its own 

management, it will be necessary for funding to be provided from an external source 

(e.g. a government agency) on an ongoing basis. This situation can only be avoided if 

the ecosystem is able to generate sufficient profits to fund its own management. 

Consumption (dis)utility in the context of a public project would represent the utility, 

or welfare, gained by society from putting government funding to an alternative use. 

In other words, it represents the marginal social opportunity cost (MSOC) of spending 

the money on managing a particular ecosystem rather than putting it to an alternative 

use (e.g. funding infrastructure development or education). 

 

For a private project, utility will predominantly be sourced from consumption 

utility. Funding (wealth) for managing the system will most likely come from profits 

generated by the system itself. For this reason, no external funding (i.e. external to the 

private individual or business) would be necessary. However, a positive starting 

amount of wealth is likely to be required to cover the start-up costs of the project. 

 

The evolution of wealth over time is given by: 

 

 𝑊𝑗𝑃 = �
(1 + 𝑃𝑃).𝑊𝑗𝑃−1

+ 𝐺𝑗𝑃 − 𝑞𝑗𝑃 + 𝜋𝑗𝑃
𝐴 �𝐶𝑗𝑃 ,𝑋𝑗𝑃−1

� 𝑚𝑓 𝑅𝑗𝑃 = 𝐴

(1 + 𝑃𝑃).𝑊𝑗𝑃−1
+ 𝐺𝑗𝑃 − 𝑞𝑗𝑃 + 𝜋𝑗𝑃

𝐵 �𝐶𝑗𝑃 ,𝑋𝑗𝑃−1
� 𝑚𝑓 𝑅𝑗𝑃 = 𝐵

 (28) 

 

Where 

(1 + 𝑃𝑃).𝑊𝑗𝑃−1
 is carried over wealth 

𝐺𝑗𝑃 is external funding 

𝑞𝑗𝑃 is consumption expenditure paid for by profits from the system 

𝐶𝑗𝑃 is a vector of levels of the control variables 

                                                                                                                                                                                        
expenditure. So long as a sufficient pool of loan funds is available, this spending-borrowing cycle can 
continue indefinitely. Such a scheme is conceptually equivalent to acquiring a new credit card every 
time repayments are due on existing debts. 
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𝑋𝑗𝑃−1
 is the level of the underlying slow variable 

𝜋𝑗𝑃
𝑚  is profit from the system, conditional on the system regime 𝑚, levels of choice 

variables and the level of the underlying slow variable 

 

If a regime shift occurs, it occurs at the end of a time period. Therefore, the 

system remains in a given system regime for the duration of a time period. This means 

that wealth at the end of a time period is calculated as the sum of carried over wealth 

from the previous time period (plus interest), any additional external funding and 

profits acquired from the system in the current time period. Consumption expenditure 

must be subtracted from this amount to calculate the level of wealth at the end of time 

period 𝑃. 

 

3.4 The value function: the NPV of expected future utility 

 

The value function captures utility acquired in the current time period and all 

future time periods. It is used as the objective function for the dynamic optimisation 

problem that determines the optimal level/s of control variable/s and the maximum 

expected NPV of utility, given a set of initial values of the state variables of the 

decision problem. Utility can be derived from several sources, which are described 

below. 

 

Section 3.4.1 introduces four alternative sources of utility. Section 3.4.2 

describes the formulation of the value function, which is the dynamic equivalent of an 

objective function. 

 

3.4.1 Sources of utility 

 

In the most general case of the decision problem, there are four distinct 

sources of utility, which are: 

 

(i) Consumption utility 
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Consumption utility is denoted 𝑈𝑞 �𝑞𝑗𝑃� and is a function of the amount of 

acquired wealth used for expenditure on consumption. It captures utility gained from 

the goods and services purchased using this consumption expenditure. It is assumed 

that the marginal utility of consumption utility is strictly positive but decreasing in 𝑞𝑗𝑃, 

such that 𝑈𝑞′ �𝑞𝑗𝑃� > 0, and 𝑈𝑞′′ �𝑞𝑗𝑃� < 0. 

 

(ii) Direct utility 

Direct utility is denoted 𝑈𝑌 �𝑌𝑗𝑃� and is a function of the level of ‘output’ of 

the system. It captures utility gained from non-use or non-harvest values, such as 

aesthetic and existence values. It is assumed that the marginal utility of direct utility is 

strictly positive but decreasing in 𝑌𝑗𝑃, such that 𝑈𝑌′ �𝑌𝑗𝑃� > 0, and 𝑈𝑌′′ �𝑌𝑗𝑃� < 0. 

 

(iii) Utility from terminal wealth 

Utility from terminal wealth is denoted 𝑈𝑊𝑇 �𝑊𝑗𝑇� and is a function of the 

level of acquired wealth at the end of the terminal time period 𝑇. Utility from terminal 

wealth is only applicable to the terminal time period 𝑇, and none of the preceding 

time periods. It captures the bequest value of acquired wealth at the end of the 

problem’s time horizon. Therefore, there is an implicit assumption that society will 

continue to exist beyond the problem’s finite time horizon. 𝑈𝑊𝑇 �𝑊𝑗𝑇� may be thought 

of as a lump sum utility payment acquired just prior to the termination of the problem. 

This component is included because the problem is solved over a fixed time horizon, 

𝑃 = [1,𝑇]. Utility from terminal wealth assigns a positive, but notional, amount to the 

utility that could be obtained by future generations using the wealth acquired up to 

terminal time 𝑇. However, optimality in decision making of future generations is not 

assumed. In the event that terminal wealth is negative, utility from terminal wealth 

will also be negative. This structure provides a disincentive to engage in Ponzi game 

behaviour without explicitly preventing such behaviour. 

 

(iv) Scrap value of the system, conditional on its current state 
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The scrap value of the system is denoted 𝑈𝑋𝑇 �𝑋𝑗𝑇,𝑅𝑗𝑇� and is a function of the 

level of the underlying slow ecosystem variable and the current system regime at the 

end of the terminal time period 𝑇. For simplicity, it is assumed that the system will 

remain in regime 𝑅𝑗𝑇 and the level of the underlying slow ecosystem variable will be 

costlessly maintained at 𝑋𝑗𝑇 in perpetuity. If the ‘output’ of the system is saleable, the 

decision-maker will receive 𝑈𝑞 �𝑃.𝑌𝑗𝑇 �𝑋𝑗𝑇,𝑅𝑗𝑇�� for each subsequent time period, in 

perpetuity. If the ‘output’ from the system is non-saleable, the decision-maker will 

receive 𝑈𝑌 �𝑌𝑗𝑇 �𝑋𝑗𝑇,𝑅𝑗𝑇�� for each subsequent time period, in perpetuity. Since the 

utility received from either, or both, of saleable and non-saleable output will be 

constant for each subsequent time period, the NPV of utility received in each future 

time period can be characterised as the sum of an infinite geometric series. When 

expressed in time period 𝑇-dollars, the scrap value is given by: 

 

 𝑈𝑋𝑇 �𝑋𝑗𝑇 ,𝑅𝑗𝑇� = 𝛾𝑈� + 𝛾2𝑈� + 𝛾3𝑈� +⋯ = 𝛾𝑈��1 + 𝛾+ 𝛾2 +⋯� (29) 

 

Where 

𝜌 is the pure rate of time preference 

𝛾 = (1 + 𝜌)−1 is the discount factor 

𝑈� = �𝑈𝑞 �𝑃.𝑌𝑗𝑇 �𝑋𝑗𝑇,𝑅𝑗𝑇��+𝑈𝑌 �𝑌𝑗𝑇 �𝑋𝑗𝑇,𝑅𝑗𝑇��� is the instantaneous utility function 

after time period 𝑇 

 

If 𝜌 is strictly positive, the scrap value will converge to a positive constant, 

given by: 

 

 𝑈𝑋𝑇 �𝑋𝑗𝑇 ,𝑅𝑗𝑇� = � 𝑈�𝛾𝑘−𝑇
∞

𝑘=𝑇+1
=

𝑈�𝛾
1− 𝛾 (30) 

 

Using this approach, there is no requirement for optimisation beyond the 

terminal time of the problem. However, some value is still placed on the health (state) 

of the system beyond the terminal time. In the absence of a scrap value for the system, 

the optimal course of action would likely be to under-invest in maintaining, or 



79 
 

improving, the level of 𝑋𝑗𝑃 during the latter time periods of the problem. This will be 

the case because without a scrap value of the system, any benefits of such investment 

that accrue after time 𝑇 would be unaccounted and, therefore, not impact on the 

decision-making process. 

 

3.4.2 The value function 

 

The value function captures the expected net present value (NPV) of utility 

received from all sources in the current time period and all succeeding time periods. 

Utility sources (iii) and (iv) above are only applicable to the terminal time period 𝑇; 

however, their influence will extend to all value functions preceding time period 𝑇. 

 

Since this problem must be solved recursively, the first value function that 

must be solved is that of the terminal time period 𝑇. The value function for terminal 

time 𝑇 will have two slightly different formulations, conditional on whether the 

starting regime for time period 𝑇 (i.e. finishing regime for time period 𝑇 − 1) is 𝑅𝐴 or 

𝑅𝐵. The value function for the terminal time period is denoted by 𝑉𝑗𝑇. 

 

a. If 𝑹𝒋𝑻 = 𝑨 

 

 𝑉𝑗𝑇(𝐴)
= max

𝐶𝑗𝑇 ,𝑞𝑗𝑇 ,𝐸𝑗𝑇
�𝑈𝑞 �𝑞𝑗𝑇� +𝑈𝑌 �𝑌𝐴 �𝑋𝑗𝑇��+𝑈𝑊𝑇 �𝑊𝑗𝑇� +𝑈𝑋𝑇 �𝑋𝑗𝑇 ,𝑅𝐴�� (31) 

 

b. If 𝑹𝒋𝑻 = 𝑩 

 

 𝑉𝑗𝑇(𝐵)
= max

𝐶𝑗𝑇 ,𝑞𝑗𝑇 ,𝐸𝑗𝑇
�𝑈𝑞 �𝑞𝑗𝑇�+𝑈𝑌 �𝑌𝐵 �𝑋𝑗𝑇��+ 𝑈𝑊𝑇 �𝑊𝑗𝑇�+𝑈𝑋𝑇 �𝑋𝑗𝑇 ,𝑅𝐵�� (32) 

 

For the terminal time period, utility is sourced from consumption and direct 

utility, utility from terminal wealth, and the scrap value of the system. For simplicity, 

it is assumed that if the system is (hypothetically) in Regime 𝑚 at the beginning of the 

terminal time period, it will remain in Regime 𝑚 in perpetuity. From time period 𝑇 + 1 

onwards, it is assumed that the level of 𝑋 is costlessly maintained at a constant level, 
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and the stream of per-period undiscounted net benefits from the system remains 

constant. 

 

For all other time periods, the value function is composed of (i) the utility 

function of the current time period, and (ii) a conditional probability-weighted 

average of the two possible value functions for the succeeding time period. One value 

function corresponds to ending the time period in Regime A, and the other in Regime 

B. 

 

Here, the probability weights assigned to value functions for time period 𝑃 + 1 

are functions of the underlying slow variable (𝑋𝑗𝑃), and the lower and upper bounds 

for the unknown location of the relevant ecological threshold (𝑎𝑗𝑃
𝑚𝑚𝑚 and 𝑎𝑗𝑃

𝑚𝑎𝑚, or 𝑏𝑗𝑃
𝑚𝑚𝑚 

and 𝑏𝑗𝑃
𝑚𝑎𝑚). The levels of all state variables (𝑋𝑗𝑃,𝑊𝑗𝑃,𝑎𝑗𝑃

𝑚𝑚𝑚,𝑎𝑗𝑃
𝑚𝑎𝑚,𝑏𝑗𝑃

𝑚𝑚𝑚,𝑏𝑗𝑃
𝑚𝑎𝑚) at the end 

of time period 𝑃 are then ‘inherited’ at the beginning of time period 𝑃 + 1, and become 

the arguments of the corresponding value function; 𝑉𝑗𝑃+1(𝐴)
 or 𝑉𝑗𝑃+1(𝐵)

. 

 

a. If 𝑹𝒋𝒕 = 𝑨 

 

 

𝑉𝑗𝑡(𝐴)�𝑋𝑗𝑡−1 ,𝑊𝑗𝑡−1 , 𝑎𝑗𝑡−1
𝑚𝑖𝑛, 𝑎𝑗𝑡−1

𝑚𝑚𝑚,𝑏𝑗𝑡−1
𝑚𝑖𝑛,𝑏𝑗𝑡−1

𝑚𝑚𝑚�

= max
𝐶𝑗𝑡 ,𝑞𝑗𝑡 ,𝐸𝑗𝑡

�𝑈𝑞�𝑞𝑗𝑡� + 𝑈𝑌 �𝑌𝐴�𝑋𝑗𝑡��

+ (1 + 𝜌)−1 �𝐴𝑗𝑡�𝑋𝑗𝑡�.𝑉𝑗𝑡+1(𝐴)�𝑋𝑗𝑡� + �1 − 𝐴𝑗𝑡�𝑋𝑗𝑡�� .𝑉𝑗𝑡+1(𝐵)�𝑋𝑗𝑡���

= max
𝐶𝑗𝑡 ,𝑞𝑗𝑡 ,𝐸𝑗𝑡

�𝑈𝑞�𝑞𝑗𝑡� + 𝑈𝑌 �𝑌𝐴�𝑋𝑗𝑡��

+ (1 + 𝜌)−1 �𝐴�𝑋𝑗𝑡�𝑎𝑗𝑡
𝑚𝑖𝑛, 𝑎𝑗𝑡

𝑚𝑚𝑚�.𝑉𝑗𝑡+1(𝐴)�𝑋𝑗𝑡 ,𝑊𝑗𝑡 , 𝑎𝑗𝑡
𝑚𝑖𝑛,𝑎𝑗𝑡

𝑚𝑚𝑚 ,𝑏𝑗𝑡
𝑚𝑖𝑛,𝑏𝑗𝑡

𝑚𝑚𝑚�

+ �1 − 𝐴�𝑋𝑗𝑡�𝑎𝑗𝑡
𝑚𝑖𝑛,𝑎𝑗𝑡

𝑚𝑚𝑚�� .𝑉𝑗𝑡+1(𝐵)�𝑋𝑗𝑡 ,𝑊𝑗𝑡 , 𝑎𝑗𝑡
𝑚𝑖𝑛,𝑎𝑗𝑡

𝑚𝑚𝑚 ,𝑏𝑗𝑡
𝑚𝑖𝑛,𝑏𝑗𝑡

𝑚𝑚𝑚��� 

(33) 

 

b. If 𝑹𝒋𝒕 = 𝑩 
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𝑉𝑗𝑡(𝐵)�𝑋𝑗𝑡−1 ,𝑊𝑗𝑡−1 ,𝑎𝑗𝑡−1
𝑚𝑖𝑛, 𝑎𝑗𝑡−1

𝑚𝑚𝑚 ,𝑏𝑗𝑡−1
𝑚𝑖𝑛,𝑏𝑗𝑡−1

𝑚𝑚𝑚�

= max
𝐶𝑗𝑡 ,𝑞𝑗𝑡 ,𝐸𝑗𝑡

�𝑈𝑞�𝑞𝑗𝑡� + 𝑈𝑌 �𝑌𝐵�𝑋𝑗𝑡��

+ (1 + 𝜌)−1 ��1 − 𝐵𝑗𝑡�𝑋𝑗𝑡�� .𝑉𝑗𝑡+1(𝐴)�𝑋𝑗𝑡� + 𝐵𝑗𝑡�𝑋𝑗𝑡�.𝑉𝑗𝑡+1(𝐵)�𝑋𝑗𝑡���

= max
𝐶𝑗𝑡 ,𝑞𝑗𝑡 ,𝐸𝑗𝑡

�𝑈𝑞�𝑞𝑗𝑡� + 𝑈𝑌 �𝑌𝐵�𝑋𝑗𝑡��

+ (1 + 𝜌)−1 ��1

− 𝐵�𝑋𝑗𝑡�𝑏𝑗𝑡
𝑚𝑖𝑛,𝑏𝑗𝑡

𝑚𝑚𝑚�� .𝑉𝑗𝑡+1(𝐴)�𝑋𝑗𝑡 ,𝑊𝑗𝑡 , 𝑎𝑗𝑡
𝑚𝑖𝑛,𝑎𝑗𝑡

𝑚𝑚𝑚 ,𝑏𝑗𝑡
𝑚𝑖𝑛,𝑏𝑗𝑡

𝑚𝑚𝑚�

+ 𝐵�𝑋𝑗𝑡�𝑏𝑗𝑡
𝑚𝑖𝑛,𝑏𝑗𝑡

𝑚𝑚𝑚�.𝑉𝑗𝑡+1(𝐵)�𝑋𝑗𝑡 ,𝑊𝑗𝑡 , 𝑎𝑗𝑡
𝑚𝑖𝑛,𝑎𝑗𝑡

𝑚𝑚𝑚 ,𝑏𝑗𝑡
𝑚𝑖𝑛,𝑏𝑗𝑡

𝑚𝑚𝑚��� 

(34) 

 

Summary of modelling framework 

 

This chapter details a new modelling framework for the management of 

complicated ecological systems that explicitly models active learning about unknown 

threshold locations. The decision-maker’s objective is to maximise the NPV of 

expected utility from the system over a finite time horizon, [1,𝑇]. The general nature 

of the modelling framework makes it applicable to ecological systems with reversible 

or irreversible threshold effects. 

 

Learning about an unknown threshold location is modelled by partitioning the 

system’s state space into regions that could and could not contain the threshold, and 

postulating a prior probability distribution for the location of the threshold. The prior 

distribution is updated over time as more information is hypothetically gathered, 

where the potential for learning is conditional on the management actions undertaken 

by the decision-maker. A dynamic programming approach is used to solve the 

problem recursively and determine optimal management decisions, conditional on the 

initial conditions of the problem. 
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Chapter 4. Modelling commercial production with 

uncertain ecological thresholds 

 

The management of ecosystems involves many different types of trade-offs 

and threshold effects, including trade-offs between use-values, non-use values, and 

different degrees of reversibility around critical thresholds. Chapter 4 and Chapter 5 

each present two detailed case studies of complicated ecological systems that can be 

managed using the mathematical modelling framework developed in this thesis. 

Chapter 4 explores the trade-offs between the use values associated with profits from 

continuing production in a shallow lake system with hysteretic dynamics in 

comparison with a savannah system with a completely reversible threshold. Chapter 5 

focuses on trade-offs associated with environmental quality in terms of use and non-

use values, by examining a case study of the trade-offs between harvesting fish whilst 

maintaining the health of a reef system and a case study of the trade-offs between 

housing construction versus conserving a koala population. Table 4-1 below provides 

a summary of the similarities and differences of the two representative case studies 

discussed in Chapter 4. 

 
Table 4-1 Key features of the shallow lake and savannah case studies 

Characteristic Shallow lake Savannah 

Threshold effect Hysteretic dynamics Completely reversible 

Underlying slow variable Phosphorus concentration Grass cover – fuel load 

Trade-offs Better water quality in lake 
system vs. Harvesting crops for 
profit 

Non-use vales from biodiversity 
in the rangeland system vs. 
Grazing livestock for profit 

Ecological dynamics Nutrient cycling, where 
phosphorus is added via natural 
and anthropogenic processes 
and partially assimilated by the 
system 

Grass and tree prevalence 
modelled using a space implicit 
model, where trees are the 
superior competitor 

Sources of utility Direct utility: 
Recreational use of lake – 
function of water quality 
 
Consumption utility: Paid for 
using profits from cropping 
activities 

Direct utility: Existence and 
aesthetic value – function of 
composition of vegetation types, 
which serves as a proxy for 
biodiversity. 
 
Consumption utility: Paid for 
using profits from grazing 
activities 
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4.1 Shallow lake and adjoining agricultural land 

 

A shallow lake provides benefits to recreational users as they enjoy 

swimming, fishing, boating and other activities. However, the runoff of phosphorus 

fertiliser from adjacent agricultural land into the shallow lake system can suddenly 

turn the lake water from clear (oligotrophic) to dirty (eutrophic) when a critical 

threshold is crossed. This regime shift adversely affects the utility derived by 

recreational users, but is a result of the multiple uses of the lake, where the second use 

is as a waste sink. Utility is also derived from consumption paid for by profits from 

cropping on land adjacent to the lake, but this comes at a cost of reducing the water 

quality of, and utility derived from, the lake. 

 

For this case study, the stock of a pollutant, phosphorus, is modelled as a 

function of phosphorus input resulting from agricultural activities on adjoining land, 

mean natural input of phosphorus, internal nutrient cycling (feedbacks) and the lake’s 

ability to assimilate the pollutant load (Brozovic and Schlenker 2011). The dynamics 

and economics of shallow lakes have been studied extensively (Scheffer et al. 1993; 

Carpenter and Cottingham 1997; Scheffer 1997; Carpenter et al. 1999; Nævdal 2001; 

Mäler et al. 2003; Peterson et al. 2003; Carpenter 2005; Brozovic and Schlenker 

2011). Shallow lakes are typified by non-linear dynamics, discontinuities and 

hysteresis. Shallow lake systems also typically provide competing services as a 

resource and a waste sink. Shallow lakes can exist in two different regimes. The 

ecologically desirable regime is the oligotrophic regime, which is typified by clear 

water and a higher level of ecological services. The ecologically undesirable regime is 

the eutrophic regime, which is typified by green, turbid water and a lower level of 

ecological services (Mäler et al. 2003). 

 

In this example, crop output and profits are generated through the application 

of phosphorus-rich fertilisers on agricultural lands adjacent to the lake. Cropping 

represents a major source of utility, via consumption paid for by profits generated 

from this activity. Interestingly, the lake serves two competing purposes. First, as a 

waste sink for phosphorus runoff that flows from the agricultural land into the lake. 

Second, as a resource in terms of facilitating recreational activities (e.g. swimming, 
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boating) and providing non-use values (e.g. amenity value). The lake’s role as a 

resource provides direct utility; however, the level of utility provided is conditional on 

the health of the lake and is adversely affected if the lake shifts from an oligotrophic 

to a eutrophic regime. It is the responsibility of an ecosystem manager (representative 

agent) to manage the agricultural land-lake system with the objective of maximising 

the NPV of utility sourced from it. 
 

4.1.1 Shallow lake: State variables 

 

Table 4-2 below lists and describes the state variables of the shallow lake case 

study. 
 

Table 4-2 State variables of the shallow lake case study 
State variables Description 

Underlying slow ecosystem 
variable (𝑋) 

Stock of phosphorus in the lake – a function of phosphorus 
runoff from adjacent agricultural land, natural inputs and 
internal nutrient cycling 

Stock of abatement technologies 
(𝐼�̅�) 

Reduces the proportion of phosphorus runoff that makes its 
way from agricultural land to the lake 

Stock of wealth (𝑊) Wealth acquired via profits generated from the harvest and sale 
of an agricultural crop 

Prior probability bounds 
(𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑚𝑚) 

Describes the location of a reversible ecological threshold of 
unknown location that separates two alternative population 
growth regimes – although there is a single threshold, the 
system has hysteretic dynamics because feedbacks naturally 
push the system away from the threshold when in the eutrophic 
(undesirable) regime 

 

4.1.2 Shallow lake: Control variables 

 

Table 4-3 below lists and describes the control variables of the shallow lake 

case study. 
 

Table 4-3 Control variables of the shallow lake case study 

Control variable Description 
Phosphorus fertiliser (𝑃𝑡) Amount of phosphorus fertiliser applied to the agricultural land 

adjacent to the lake – crop yield (𝑌𝑡) is a monotonically 
increasing function of phosphorus fertiliser 

Investment in abatement 
technologies (𝐼𝑡) 

Reduces the transfer coefficient (𝜏𝑡) of phosphorus into the 
lake system, where 𝜏𝑡 ∈ [0, 1) – phosphorus transfer results 
from agricultural runoff (𝑂𝑡) and natural inputs (𝑃) 

Crop harvest (𝐻𝑡) The entire crop yield is harvested at the end of each time 
period, such that 𝐻𝑡 = 𝑌𝑡 

Expenditure on consumption 
activities (𝑞) 

These activities generate consumption utility – paid for using 
acquired wealth 
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4.1.3 Shallow lake: Trade-offs 

 

The trade-offs faced in this case study are between consumption utility, which 

is paid for using profits generated from the harvesting of an agricultural crop (𝑌) from 

land adjacent to the lake; direct utility, which is a function of the lake system’s current 

regime (𝑅𝑚) and level of phosphorus (𝑋); and disutility (opportunity cost) from the use 

of public funds for the purpose of increasing the stock of abatement technologies 

rather than on the best alternative use. Direct utility acquired from using the lake for 

recreational purposes, such as swimming, boating and fishing, is negatively impacted 

when the lake switches from the oligotrophic to the eutrophic regime and when the 

stock of phosphorus in the lake increases. Investment in abatement technologies 

decreases the proportion of phosphorus applied for agricultural purposes that reaches 

the lake system; however, this investment requires the use of public funding and 

creates disutility because these funds cannot be spent on the best alternative use. 

 

The transfer coefficient, 𝜏𝑃, denotes the proportion of agricultural runoff and 

natural input that makes its way into the lake, compared to the full amount of 

phosphorus that would make its way into the lake in the absence of any abatement 

technologies. This coefficient will be less than one if there is a positive stock of 

abatement technologies because some of this phosphorus is abated prior to it entering 

the lake. The transfer can be reduced by building up the stock of abatement 

technologies (Figure 4-1). 

 

 

 

 

 

 

 

 
 

Figure 4-1 Transfer coefficient for agricultural runoff to the lake 

  

 

0 
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Stock of abatement technologies (𝐼�) 

Transfer coefficient (𝜏) 
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Where 

𝜏𝑃 = 𝑚𝑎𝑚�1− 𝑚 ∙ 𝐼�𝑃, 0� 

𝑚 > 0 is an efficiency parameter that measures the effectiveness of abatement 

technology at reducing the transfer coefficient 

 

The stock of abatement technologies (𝐼�𝑃) evolves according to: 

 

 �̅�𝑃 = 𝑑 ∙ �̅�𝑃−1 + 𝐼𝑃 (35) 

 

Where 

𝑑 ∈ [0,1] is the proportion of abatement technologies that carry over 

 

Crop yield as a function of phosphorus application is monotonically increasing 

in its argument but experiences diminishing marginal returns. This relationship is 

illustrated by the crop response function (Figure 4-2). 
 

 

 

 

 

 

 

 

 
 

Figure 4-2 Crop response function 

 
Where 
𝑌𝑡 = 𝑌 + 𝑃 ∙ 𝑃𝑡𝛼 

𝑌 ≥ 0 is the crop yield in the absence of phosphorus application 

𝑃 > 0 is a scale parameter for the impact of phosphorus on crop yield 

𝛼 ∈ (0,1) determines the curvature of the crop response function 

 

 

 

0 

𝑌 

Phosphorous applied (𝑃) 

Crop yield (𝑌) 
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4.1.4 Shallow lake: EOM for stock of phosphorus in the lake (𝑋) 

 

For this case study, it is ultimately the stock of phosphorus within the lake 

system that determines whether the lake exists in the ecologically desirable 

oligotrophic regime (𝑅𝐴) or the eutrophic regime (𝑅𝐵). The stock of phosphorus is 

modelled as a function of phosphorus input resulting from agricultural activities on 

adjoining land, mean natural input of phosphorus, internal nutrient cycling 

(feedbacks) and the lake’s ability to assimilate the pollutant load (Brozovic and 

Schlenker 2011). It is the internal nutrient cycling (feedbacks) that differs between the 

two alternative regimes. The dynamics of the lake system are described as hysteretic 

because, when in the eutrophic regime, these feedbacks naturally push the system in 

the ecologically undesirable direction (i.e. away from the threshold) at a faster rate 

than would be the case in the oligotrophic regime. This means that, although a regime 

shift can be reversed by simply re-crossing the same threshold (in terms of 𝑋), it is 

much more costly (in terms of time and investment in abatement technologies) to 

engineer a regime shift from the eutrophic to the oligotrophic regime than it would be 

for a shift from the oligotrophic to the eutrophic regime. 

 

The stock of phosphorus in the lake evolves according to the following 

regime-dependent (for Regime 𝑚) equation: 

 

 ∆𝑋𝑡 = �
(𝐵 − 1)𝑋𝑡−1 + 𝜏𝑡−1 ∙ (𝑏 + 𝑂𝑡−1) 𝑚𝑓 𝑋𝑡−1 < 𝑋𝐶 , 𝑚 = 𝐴
(𝐵 − 1)𝑋𝑡−1 + 𝜏𝑡−1 ∙ (𝑏 + 𝑂𝑡−1) + 𝑃 𝑚𝑓 𝑋𝑡−1 ≥ 𝑋𝐶 , 𝑚 = 𝐵

 (36) 

 

Where 

𝐵 ∈ [0,1] is the proportion of the pollutant 𝑋 that carries over from one period to the 

next (i.e. (1−𝐵)𝑋𝑃−1 is assimilated and the pollutant load is reduced by (𝐵−
1)𝑋𝑃−1 

𝑏 is the mean natural input of the pollutant to the environmental (lake) system 

𝑃 > 0 is additional pollutant loading when the lake is in the eutrophic regime 

𝜏𝑃−1 ∈ [0,1] is the transfer coefficient, which determines the proportion of agricultural 

runoff and natural input of phosphorus that enters the lake system 

𝑂𝑃−1 = 𝑃 ∙ 𝑃𝑃−1 is the amount of agricultural runoff caused by application of 

phosphorus fertiliser 



88 
 

𝑃 ∈ (0,1) is the proportion of phosphorus fertiliser applied that converts to 

agricultural runoff 

 

Note that the additional term 𝑃 is included in the EOM of 𝑋 when the shallow 

lake system is in Regime B (eutrophic). It is this term that gives the system its 

hysteretic dynamics because the term ensures that the process of sufficiently reducing 

the level of 𝑋 in order to re-cross the threshold back from the eutrophic to the 

oligotrophic regime is both costly and time-consuming. 

 

4.1.5 Shallow lake: Critical ecological thresholds 

 

The shallow lake system is typified by two separate system regimes, where 

one experiences positive feedbacks and additional pollutant loading (eutrophic), and 

the other does not (oligotrophic). These two regimes are linked by a single threshold 

in terms of the stock of phosphorus in the lake (𝑋). The system experiences hysteresis 

in the form of positive feedbacks when in the eutrophic regime, which naturally push 

the system in the ecologically undesirable direction at a faster rate than would be the 

case in the oligotrophic regime. When in the eutrophic regime, a lake usually has a 

greenish look resulting from a dominance of phytoplankton (Carpenter and 

Cottingham 1997; Scheffer 1997). Additional nutrient loads, especially phosphorus, 

stimulate the growth of phytoplankton and increase turbidity. High turbidity prevents 

light from reaching the bottom of the lake, which kills the submerged vegetation and 

the organisms that graze on it, such as waterfleas (Mäler et al. 2003). 

 

In Regime A (𝑅𝐴), the stock of phosphorus is sufficiently low for the shallow 

lake to be in the oligotrophic regime. In Regime B (𝑅𝐵), the stock of phosphorus is 

sufficiently high for the shallow lake to be in the eutrophic regime. In Figure 4-3, the 

vertical dashed arrow signifies the crossing of the critical ecological threshold and the 

resulting shift in system regime. This regime shift is completely reversible along the 

same path, which is why the arrow is both upward- and downward-pointing. The 

purpose of the horizontal dotted line is to indicate that the exact location of the 

threshold is unknown; however, upper and lower bounds can be postulated. The 

system regime is modelled according to: 
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 𝑅𝑗𝑃 = �
𝐴 𝑚𝑓 𝑋𝑗𝑃−1

< 𝑋𝐶

𝐵 𝑚𝑓 𝑋𝑗𝑃−1
≥ 𝑋𝐶

 (37) 

 

Where 

𝑅𝑗𝑃 is the system regime for the duration of time period 𝑃 

𝑋𝑗𝑃−1
 is the level of the underlying slow variable at the end of the previous time period 

𝑋𝐶 is a random variable on a bounded interval �𝑋𝐶
𝑚𝑚𝑚

,𝑋𝐶
𝑚𝑚𝑚

� 

 

 

 

 

 

 

 

 
Figure 4-3 Alternative system regimes for the cycling of phosphorus in the shallow lake 

 

4.1.6 Shallow lake: Sources of utility 

 

Utility is gained both from consumption utility, paid for using profits 

generated from the harvesting of crops (𝐻) from the agricultural land adjoining the 

lake system, and from direct utility, as a function of the stock of phosphorus in the 

lake (𝑋) and the current regime of the lake (𝑅𝑚). The shallow lake system facilitates 

recreational activities (e.g. swimming, boating) and provides non-use values (e.g. 

amenity value). The level of direct utility provided is conditional on the health of the 

lake and is adversely affected if the lake shifts from an oligotrophic to a eutrophic 

regime. Also, negative utility results from the use of any public funding for 

investment in building the stock of abatement technologies. This disutility captures 

the opportunity cost to society of spending public funds on increasing the stock of 

abatement technologies, and reducing the proportion of phosphorus flows from 

𝑋𝐶
𝑚𝑎𝑚

 𝑋𝐶
𝑚𝑚𝑚

 
Stock of phosphorus (𝑋) 

𝑅𝐵 

𝑅𝐴 

Regime (𝑅) 
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agricultural runoff and natural inputs that make their way to the lake system, rather 

than on the best alternative use. 

 

When in Regime A (oligotrophic), direct utility is acquired according to the 

following equation: 

 

 𝑈𝐴(𝑋𝑃) = 𝛼𝐴 ∙ (𝑋𝑃 + 1)𝛽𝐴 +𝐾 (38 

 

Where 
𝛼𝐴 > 0 
𝛽𝐴 < 0 

𝐾 > 𝛼𝐵 > 0 

Note, when 𝑋𝑃 = 0, 𝑈𝐴(𝑋𝑃) = 𝛼𝐴 +𝐾 

 

When in Regime B (eutrophic), direct utility is acquired according to the 

following equation: 

 

 𝑈𝐵(𝑋𝑃) = 𝛼𝐵 ∙ (𝑋𝑃 + 1)𝛽𝐵 (39) 

 

Where 
𝛼𝐵 > 0 
𝛽𝐵 < 0 

Note, when 𝑋𝑃 = 0, 𝑈𝐵(𝑋𝑃) = 𝛼𝐵 

 

Direct utility sourced from recreational uses of the shallow lake system is 

defined by a piecemeal function, where the arguments are the stock of phosphorus in 

the lake (𝑋) and the current system regime (𝑅𝑚) (Figure 4-4). 

 

 

 

 

 

 

 
𝛼𝐴 +𝐾 

Direct utility (𝑈𝑚(𝑋𝑃)) 
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Figure 4-4 Direct utility from recreational use of the shallow lake 

 

The instantaneous total social utility received is given by: 

 

 𝑈(𝑃) = 𝛾𝑡𝐴 ∙ 𝑈𝐴(𝑋𝑡) + (1 − 𝛾𝑡𝐴) ∙ 𝑈𝐵(𝑋𝑡) + 𝑈𝑞(𝑞𝑡) − 𝐷𝑈(𝐼𝑡) (40) 

 

Where 

𝛾𝑃𝐴 is an indicator variable, which takes value 1 if the system is in Regime A for the 

duration of period 𝑃, and value 0 if the system is in Regime B for the duration of 

period 𝑃 

𝑑𝑈𝐴
𝑑𝑋

< 0 ; 𝑑
2𝑈𝐴
𝑑𝑋2

≥ 0 ; 𝑑𝑈𝐵
𝑑𝑋

< 0 ; 𝑑
2𝑈𝐵
𝑑𝑋2

≥ 0 ; 𝑑𝑈𝑞
𝑑𝑞

> 0 ; 𝑑
2𝑈𝑞
𝑑𝑞2

≤ 0 ; 𝜕𝐷𝑈
𝜕𝐼

> 0 ; 

𝜕2𝐷𝑈
𝜕𝐼2

≤ 0 

 

Summary of shallow lake case study 

 

A shallow lake system is susceptible to a regime shift from clear conditions 

(oligotrophic) to green and dirty conditions (eutrophic), if the stock of phosphorus 

within the lake reaches a critical concentration. This regime shift occurs after crossing 

a reversible threshold. However, the dynamics of the system are classified as 

hysteretic because a higher rate of internal nutrient cycling occurs in the undesirable 

regime, which makes it more difficult for the system to recover to the economically 

desirable regime. 

 

The trade-off faced by the ecosystem manager is between (i) the additional 

profits and consumption utility made possible when higher amounts of phosphorus 

fertiliser are applied to the agricultural land, and (ii) the negative impact that 

𝑋𝐶 
Stock of phosphorous (𝑋𝑃) 
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phosphorus runoff has on the health of the lake system and utility derived from 

recreational use of the lake. 

 

4.2 Savannah-forest system 

 

A savannah (henceforth alternatively referred to as rangeland) is an ecosystem 

co-dominated by trees and grasses. One such example is Australia’s Northern 

savannah, which stretches across northern Australia from Broome to Townsville; a 

distance of roughly 2,600km. Pastoralism occupies approximately 60% of the land 

area of the rangelands (Lesslie et al. 2006). The extensive grasslands systems typical 

to the rangelands provide important economic and environmental services. Savannahs 

occur in areas with annual rainfall from 300 to 1800mm and are commonly divided 

into dry and moist forms, where 500-700mm of annual rainfall represents the 

transition zone between the two classifications (Scholes and Walker 1993; Sankaran 

et al. 2005). In dry savannahs, grass production is a strongly increasing function of 

annual rainfall. In moist savannahs, this relationship is weak (Accatino et al. 2010). 

This is likely to be because soil moisture is not a limiting factor for grass production 

in a moist savannah. The Australian Northern savannah is on the border of being 

classified as a moist savannah since it receives approximately 700mm of annual 

rainfall. Rainfall varies from year-to-year and mean rainfall varies slightly across the 

breadth of the savannah, with some areas receiving mean annual rainfall of 

approximately 600mm and others 800mm (Bureau of Meteorology 2013). 

 

Australia’s Northern savannah is actively used for low-density livestock 

grazing (Walker and Salt 2006). However, overgrazing can have disastrous effects on 

this industry. Overgrazing reduces the prevalence of grasses, reduces the intensity of 

fires, allows more trees to survive to adulthood and significantly increases the 

likelihood of the system switching regimes from savannah (co-dominance of trees and 

grasses) to forest (only trees). Adult trees are much less susceptible to fire than are 

young trees and saplings. Also, as a result of high stocking rates, and especially 

during periods of low rainfall, grass prevalence will eventually decline to a level that 

is unable to carry a fire (Walker and Salt 2006). Therefore, a threshold exists in terms 
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of the minimum amount of grass cover (fuel load) required to be able to carry a fire 

and, in the process, regulate the prevalence of trees within the savannah system. 
 

4.2.1 Savannah: State variables 

 

Table 4-4 below lists and describes the state variables of the savannah case 

study. 
 

Table 4-4 State variables of the savannah case study 

State variable Description 
Grass cover (𝐺) A dimensionless variable that measures the proportion of land 

area occupied by grass cover (𝐺 ∈ [0,1]) 
Tree cover (𝑇) A dimensionless variable that measures the proportion of land 

area occupied by tree cover (𝑇 ∈ [0,1]) 
Stock of wealth (𝑊) Wealth possessed by the ecosystem manager, who retains some 

of the profits from livestock activities 
Prior probability bounds 
(𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑚𝑚) 

Describes the location of a reversible ecological threshold of 
unknown location that separates two alternative population 
growth regimes 

Stock size of livestock (𝐿�) A dimensionless variable that is defined as the proportion of 
the study area that must be occupied by grass cover in order to 
feed the livestock population for a single time period – the sum 
of young and mature cattle populations 

Stock of young cattle (𝐿𝑌) A dimensionless variable that measures the feed requirements 
of the stock of young cattle (0-12 months old) for a one year 
time period 

Stock of mature cattle (𝐿𝑀) A dimensionless variable that measures the feed requirements 
of the stock of mature cattle (12-18 months old) for the six 
month period that they spend on the savannah 

 

4.2.2 Savannah: Control variables 

 

Table 4-5 below lists and describes the control variables of the savannah case 

study. 

 

 

 

 

 

 
 

Table 4-5 Control variables of the savannah case study 
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Control variable Description 
Fire lighting (𝑃) The number of fires deliberately lit by an ecosystem manager, 

in addition to naturally occurring fires – fire can be used to 
reduce tree cover, but also reduces grass cover and feed in the 
short term 

Deliberate clearing of trees (𝐶) The targeted removal of trees from the savannah system – 
much more costly than tree removal using fire, but does not 
impact on grass cover 

Re-stocking of young cattle (𝐿𝑡𝑌) The amount of young cattle added to the total population of 
cattle 

Harvested cattle (𝐻) Mature cattle are ‘harvested’ and sent to a feedlot for finishing 
at 18 months of age 

Expenditure on consumption 
activities (𝑞) 

These activities generate consumption utility – paid for using 
acquired wealth 

 

4.2.3 Savannah: Trade-offs 

 

The trade-offs faced in this case study are between consumption utility, which 

is paid for using profits generated from the harvesting of livestock (𝐻) from the 

rangeland ecosystem to be sent for finishing in a feedlot; direct utility, which is a 

function of the composition of vegetation types (i.e. 𝐺 and 𝑇) within the rangeland 

system and serves as a proxy for the level of non-livestock biodiversity within the 

rangeland and is acquired from non-use values such as aesthetic and existence values; 

disutility (opportunity cost) from the use of public funds for the purpose of managing 

the prevalence of grasses within the rangeland system, rather than on the best 

alternative use. The prevalence of grasses (and trees) is managed through the 

deliberate lighting of fires (𝑃), which initially reduces the prevalence of both grasses 

and trees, but provides grasses with more opportunity to colonise vacant areas of the 

landscape, and the targeted clearing of trees (𝐶), which initially reduces the 

prevalence of trees, but leaves grasses unaffected. 

 

The expansion of grass into new areas is restricted to regions that are occupied 

by neither grass nor trees (i.e. vacant). As such, the expansion of grass is restricted by 

the current prevalence of trees (𝑇) in the landscape. Figure 4-5, the upper limit is such 

because it is not feasible for grass (𝐺) to occupy a proportion of the rangeland area 

greater than 1 − 𝑇. The amount of expansion of grass cover (∆𝐺) is proportional to 

both the starting amount of grass cover (𝐺) and the size of the region occupied by 

neither grass nor trees (1 − 𝐺 − 𝑇). At low levels of initial grass cover (𝐺), the 

amount of expansion (∆𝐺) will also be low. This is despite a relatively large portion 
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of the study area being vacant. At intermediate levels of initial grass cover (𝐺), the 

amount of expansion (∆𝐺) will be at its highest. This is because there is a higher base 

amount of grass cover from which expansion can occur, and because there is still a 

sufficiently sized vacant region (1 − 𝐺 − 𝑇) such that there is limited, or no, 

competition from the expansion of trees (∆𝑇). At high levels of initial grass cover (𝐺), 

there is very little vacant land available to be colonised by either grass or trees. Since 

trees are the superior competitor in this model, the new colonisation of vacant land by 

grasses is more than offset by the displacement of grasses by trees, and the amount of 

expansion of grass (∆𝐺) will be negative. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4-5 Natural growth of grass, net of losses from fire and grazing 

 

Since trees are the superior competitor, the expansion of trees into new areas is 

restricted only to regions that are not currently occupied by trees. In Figure 4-6, the 

upper limit on the prevalence of trees is 𝑇 = 1, which represents a savannah system 

completely dominated by trees (i.e. forest). The amount of expansion of trees (∆𝑇) is 

proportional to both the starting amount of tree cover (𝑇) and the size of the region 

not currently occupied by trees (1 − 𝑇). At low levels of initial tree cover (𝑇), the 

amount of expansion (∆𝑇) will also be low. This is despite a relatively large portion of 

the study area being absent of trees. At intermediate levels of initial tree cover (𝑇), the 

amount of expansion (∆𝑇) will be at its highest. This is because there is a higher base 

amount of tree cover from which expansion can occur, and because there is still a 

sufficiently sized region devoid of trees (1 − 𝑇) upon which to expand. At high levels 

0 
1 
𝐺 

1 − 𝑇 

∆𝐺|𝑇,𝑓 = 0,𝐿� = 0 
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of initial tree cover (𝑇), there is very little vacant land available to be colonised by 

trees, hence expansion (∆𝑇) will asymptote in the direction of 𝑇 = 1 and expansion 

(∆𝑇) will approach zero as 𝑇 approaches one. 

 

 

 

 

 

 

 

 

 
 

Figure 4-6 Natural growth of trees, net of losses from fire and grazing 

 

The impact of fire is examined explicitly in Figure 4-7. Note that the impact of 

fire was ignored in Figure 4-5 and Figure 4-6. Fire is a natural driver of savannah 

ecosystems; however, the incidence of fire can also be increased through deliberate 

lighting (𝑃). Figure 4-7 applies equally well to losses due to fire of either grass cover 

(𝐺) or tree cover (𝑇). Since fire is naturally occurring within the rangeland system, a 

proportion of losses (𝑚) will occur without any deliberate fire-lighting (𝑃). For any 

subsequent deliberately-lit fires, the fuel load available will be lower and any 

resulting fire will be of lower intensity. For this reason, each additional deliberately-lit 

fire results in diminishing marginal losses of vegetation (𝐺 or 𝑇). The proportional 

losses from fire, for a chosen vegetation type, cannot exceed one for a given time 

period because a value of one represents the loss of all vegetation of that type; it is not 

possible to lose more vegetation than was initially available to lose. 
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Figure 4-7 Proportional losses of vegetation due to fire 

 

The loss of grass cover (−∆𝐺) due to grazing is calculated simply as a linear 

function of the stock size of livestock (𝐿�); however, the stock of livestock (denoted in 

units of feed required) cannot exceed the amount of grass cover available (Figure 

4-8). Conversely, tree cover (𝑇) is unaffected by livestock grazing. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-8 Effect of livestock grazing on grass cover 

 

On the other hand, tree cover (𝑇) is impacted by targeted clearing; however, 

grass cover is unaffected by this action. The loss of tree cover (−∆𝑇) due to targeted 

clearing is calculated simply as a linear function of the clearing effort undertaken (𝐶) 

(Figure 4-9). 
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Figure 4-9 Effect of deliberate clearing on tree cover 

 

4.2.4 Savannah: Critical ecological thresholds 

 

The rangeland ecosystem is typified by two separate fire regimes, one where 

fire is of sufficient intensity to damage trees and another where fire is not of sufficient 

intensity to damage trees. In Regime A (𝑅𝐴), there is sufficient grass cover (i.e. fuel 

load) to produce a fire of sufficient intensity to destroy trees. In Regime B (𝑅𝐵), there 

is insufficient grass cover (i.e. fuel load) to produce a fire of sufficient intensity to 

destroy trees, meaning that trees are free to expand unimpeded. The term 

‘sufficiently’, as used above, is defined by a minimum level of grass cover as a 

proportion of the ecosystem (𝐺𝑐𝑃𝑚𝑃𝑚𝑐𝑎𝑃). In Figure 4-10, the vertical dashed arrow 

signifies the crossing of the critical ecological threshold and the resulting shift in 

system regime. This regime shift is completely reversible along the same path, which 

is why the arrow is both upward- and downward-pointing. The purpose of the 

horizontal dotted line is to indicate that the exact location of the threshold is 

unknown; however, upper and lower bounds can be postulated. The system regime is 

modelled according to: 

 

 𝑅𝑗𝑃 = �
𝐴 𝑚𝑓 𝐺𝑗𝑃−1

≥ 𝐺𝑐𝑃𝑚𝑃𝑚𝑐𝑎𝑃

𝐵 𝑚𝑓 𝐺𝑗𝑃−1
< 𝐺𝑐𝑃𝑚𝑃𝑚𝑐𝑎𝑃

 (41) 

 

Where 

𝑅𝑗𝑃 is the system regime for the duration of time period 𝑃 
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𝐺𝑗𝑃−1
 is the level of the underlying, slow variable at the end of the previous time 

period 

𝐺𝑐𝑃𝑚𝑃𝑚𝑐𝑎𝑃 ≡ 𝐺𝑐 is a random variable on a bounded interval �𝐺𝑐𝑚𝑚𝑚,𝐺𝑐𝑚𝑎𝑚� 

 
 

 

 

 

 

 
Figure 4-10 Alternative system regimes for prevalence of grass cover 

 

4.2.5 Savannah: Population growth functions 

 

In the space implicit model, introduced by Tilman (1994) and modified by 

Accatino et al. (2010), trees are modelled as the superior competitor and grasses as 

the inferior competitor. Trees, as the superior competitor, can displace grasses and 

colonise areas previously occupied by grasses, but grasses can only colonise areas 

occupied by neither trees nor grasses. This is one explanation for an observed 

hysteresis effect in terms of the prevalence of grasses. Accatino et al. (2010) modify 

Tilman’s model to distinguish between the consumption of grass by fires and grass 

reduction due to other causes, such as mortality and herbivores (grazing). 

 

For this case study, the model of Accatino et al. (2010) has been modified 

further to include a threshold effect in terms of fire intensity and the propensity of fire 

to kill trees. In Regime A, there is sufficient grass cover to fuel a fire capable of 

killing some of the tree cover. In Regime B, there is insufficient grass cover to 

perform the same function. As a result, trees will continue to grow, unimpeded by 

fire. It is also assumed that, should fire occur during a time period, it will occur at the 

very beginning of the time period. This means that the rangeland system has the 

remainder of the time period to recover (through re-colonisation) and be grazed upon. 

 

𝐺𝑐𝑚𝑎𝑚 𝐺𝑐𝑚𝑚𝑚 
Grass cover (𝐺) 

𝑅𝐵 

𝑅𝐴 

Regime (𝑅) 
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The regime-specific (for Regime 𝑚) growth function for tree cover is: 

 

 ∆𝑇𝑡 = �𝑐𝑇𝑇𝑡−1
′ (1 − 𝑇𝑡−1′ ) − 𝛿𝑇𝑇𝑡−1′ − 𝛿𝐹𝑓𝑡�𝑓,̅𝑃𝑡�𝐺𝑡−1𝑇𝑡−1 𝑚𝑓 𝑚 = 𝐴

𝑐𝑇𝑇𝑡−1(1 − 𝑇𝑡−1) − 𝛿𝑇𝑇𝑡−1 𝑚𝑓 𝑚 = 𝐵
 (42) 

 

Where 

𝑇𝑃−1
′ = 𝑇𝑃−1 −𝛿𝐹𝑓𝑃�𝑓�,𝑃𝑃�𝐺𝑃−1𝑇𝑃−1 is tree cover carried over from the time period 

𝑃 − 1 net of losses resulting from fire at the beginning of time period 𝑃 

𝑐𝑇 ∈ (0,1) is the colonisation rate of trees 

𝛿𝑇 ∈ (0, 1] is the ‘off-take’ rate for trees 

𝛿𝐹 measures the vulnerability of trees to fire 

𝐺𝑃−1 ∈ [0,1] is grass cover as a proportion of the study area 

𝑇𝑃−1 ∈ [0,1] is tree cover as a proportion of the study area 

𝑓� [in units of 1 𝑃⁄ ] is approximated by natural fire frequency 

𝑃𝑃−1 [in units of 1 𝑃⁄ ] is the number of fires that are deliberately lit 

𝑓𝑃−1 is the total number of fires that occur during the time period 

𝛿𝐹𝑓𝑃−1𝐺𝑃−1𝑇𝑃−1 is the reduction in above-ground tree cover 

𝑓𝑃−1𝐺𝑃−1 is the grass fuel load carried over from time period 𝑃 − 1 

 

If there is any grass in the landscape, there is a possibility that a grass-fuelled 

fire will occur. Unlike with trees, there is no minimum fire intensity required for grass 

to be damaged by fire; however, grass losses due to fire are a function of the fuel load 

available. Therefore, there is a single growth function for grass cover. The growth 

function for grass cover is: 
 

 
∆𝐺𝑡 = 𝑐𝐺𝐺𝑡−1′ (1− 𝑇𝑡−1′ − 𝐺𝑡−1′ ) − 𝑐𝑇𝑇𝑡−1𝐺𝑡−1′ − 𝛿𝐺𝑂𝐺𝑡−1′ − 𝐿�𝑡

− 𝑓𝑡�𝑓,̅𝑃𝑡�𝐺𝑡−1 
(43) 

 

Where 

𝐺𝑃−1
′ = 𝐺𝑃−1 −𝑓𝑃�𝑓�,𝑃𝑃�𝐺𝑃−1 is grass cover carried over from the time period 𝑃 − 1 net 

of losses resulting from fire at the beginning of time period 𝑃 

𝑐𝐺 ∈ (0, 1] is the colonisation rate of grass: 𝑐𝐺 > 𝑐𝑇 

𝑓𝑃−1𝐺𝑃−1 is the consumption of grass by fires 
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𝛿𝐺𝑂𝐺𝑃−1 is the reduction in grass due to other causes, such as natural mortality 

𝐿�𝑃−1 is the reduction in grass due to grazing pressures 

 

Finally, cattle grazing has an adverse effect on the level of grass cover within 

the rangeland system. The stock of cattle (𝐿�𝑃) is expressed in terms of the amount of 

grass-feed required (as a proportion of the rangeland system that must be occupied by 

grass cover) to feed the cattle for one time period. Hence, the stock of cattle is 

constrained such that it cannot exceed the amount of grass-feed that is available for 

consumption after reductions in grass from other sources (e.g. fire, colonisation by 

trees) has been taken into account: 

 

 
𝐿�𝑃 ≤ 𝐺𝑃−1 + 𝑐𝐺𝐺𝑃−1(1− 𝑇𝑃−1 −𝐺𝑃−1)− 𝑐𝑇𝑇𝑃−1𝐺𝑃−1 − 𝛿𝐺𝑂𝐺𝑃−1

− 𝑓𝑃−1�𝑓�,𝑃𝑃−1�𝐺𝑃−1 
(44) 

 

Calves (young cattle) are usually born in Spring (September-November) 

because the weather conditions give them the greatest chance of surviving through to 

maturity. Mature cows are usually moved from the rangeland to a feedlot after 18 

months for finishing. This means that cows will graze on grasses from the rangeland 

for a period of 18 months. The time-step used in this model is 12 months (from 1 

September to 31 August the following year) and the productive life of a cow on the 

rangelands will span two consecutive time periods. It is also assumed that a head of 

cattle requires an equal amount of food from 0 to 12 months of age (12 months) as it 

does from 12 to 18 months of age (6 months). This is because a ‘mature’ requires a 

greater amount of feed than a ‘young’ cow. 

 

The stock of ‘mature’ cattle (expressed in terms of the amount of grass-feed 

required) evolves according to: 

 

 𝐿𝑃𝑀 = 𝛾 ∙ 𝐿𝑃−1
𝑌  (45) 

 

Where 

𝐿𝑃𝑀 is the stock of ‘mature’ cattle that have carried over from time period 𝑃 − 1 

𝛾𝜖(0, 1] measures the rate of conversion from young cattle to mature cattle in terms of 

feed requirements – if there is no mortality from birth to maturity, 𝛾 = 1 
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𝐿𝑃−1
𝑌  is the stock of ‘young’ cattle at the beginning of time period 𝑃 − 1 

 

The total stock of cattle, both ‘mature’ and ‘young’ (expressed in terms of the 

amount of grass-feed required), evolves according to: 

 

 𝐿�𝑃 = 𝐿𝑃𝑀 + 𝐿𝑃𝑌 (46) 

 

Where 

𝐿𝑃𝑌 = 𝐿𝑃𝑌 is the level of re-stocking of ‘young’ cattle at the beginning of time period 𝑃, 

which corresponds to the stock of ‘young’ cattle at the beginning of time period 𝑃 

 

By the end of each time period, all ‘mature’ cattle will have been ‘harvested’ 

and sent to a feedlot for finishing. Therefore, no mature cattle will carry over from 

one time period to the next and the harvest of cattle will be determined by the 

following equation: 

 

 𝐻𝑃 = 𝐿𝑃𝑀 (47) 

 

The harvesting of cattle reduces grazing pressures (if the harvested cattle are 

not re-stocked in full) and generates profits from sale of cattle to feedlots for 

finishing. 

 

4.2.6 Savannah: Sources of utility 

 

Utility is gained both from consumption utility, paid for using profits 

generated from the harvesting of livestock (𝐻) from the rangeland system, and from 

direct utility (𝑈𝐵), as a function of the composition of vegetation types (i.e. 𝐺 and 𝑇) 

within the rangeland system, which serves as a proxy for the level of non-livestock 

biodiversity found within the rangeland system. Utility is acquired from non-use 

values, such as aesthetic and existence values. Also, negative utility results from the 

use of any public funding for the purpose of managing the prevalence of grasses 

within the rangeland system. This disutility captures the opportunity cost to society of 
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spending public funds on managing grass cover (and, subsequently, livestock stocking 

rates), rather than on the best alternative use. The prevalence of grasses (and trees) is 

managed through the deliberate lighting of fires (𝑃) and the targeted clearing of trees 

(𝐶). 

 

The instantaneous total social utility received is given by: 

 

 𝑈(𝑃) = 𝑈𝐵(𝐺𝑡,𝑇𝑡) + 𝑈𝑞(𝑞𝑡) − 𝐷𝑈(𝑃𝑡,𝐶𝑡) (48) 

 

Where 

𝑑𝑈𝐵
𝑑𝐺

> 0 ; 𝑑
2𝑈𝐵
𝑑𝐺2

≤ 0 ; 𝑑𝑈𝐵
𝑑𝑇

> 0 ; 𝑑
2𝑈𝐵
𝑑𝑇2

≤ 0 ; 𝑑𝑈𝑞
𝑑𝑞

> 0 ; 𝑑
2𝑈𝑞
𝑑𝑞2

≤ 0 ; 𝜕𝐷𝑈
𝜕𝑃

> 0 ; 

𝜕2𝐷𝑈
𝜕𝑃2

≤ 0 ; 𝜕𝐷𝑈
𝜕𝐶

> 0 ; 𝜕
2𝐷𝑈
𝜕𝐶2

≤ 0 

 

Utility acquired from the level of non-livestock biodiversity (𝑈𝐵), modelled as 

a function of the composition of vegetation types 𝐺 and 𝑇, is monotonically 

increasing in its arguments; however, marginal utility is decreasing for both 

arguments. Likewise, consumption utility is monotonically increasing in its argument 

but marginal utility is decreasing in its argument. Utility resulting from the use of any 

public funding on actions intended to actively manage the prevalence of grass and 

trees within the rangeland system (𝑃 and 𝐶) is negative and monotonically decreasing 

in its arguments. Marginal utility from these sources are increasingly negative in their 

arguments. 

 

Summary of savannah case study 
 

Australia’s Northern savannah stretches across a distance of roughly 2,600km 

and provides important economic and environmental services. A savannah is an 

ecosystem co-dominated by trees and grasses, where trees are the dominant vegetation 

type. Utility is derived from non-use values based on the prevalence of trees and 

grasses in the landscape, as well as from consumption funded by the rearing and 

selling of beef cattle. Beef cattle are grass-fed, so there is a trade-off between using 

grasses to feed the cattle or to acquire direct utility via non-use values. 
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Since trees are the dominant vegetation type, they can only be removed by 

intense fire or deliberate clearing, which is very costly. A critical threshold exists in 

terms of the grass fuel load required to create a fire with enough intensity to destroy 

trees. This threshold is reversible, which means that the proportion of grass cover 

must simply reach a threshold level before a sufficiently intense fire can burn. The 

ecosystem manager also has the option of deliberately lighting fires, rather than 

relying on the natural occurrence of fire, for the purpose of removing trees and 

promoting grass growth. After each fire, the grass fuel load will be lower, so there are 

biological limits to the use of deliberately lit fires for the purpose of removing trees 

from the landscape and promoting future grass growth. 

 

Conclusion 

 

This chapter presents two detailed case studies of complicated ecological 

systems that can be managed using the mathematical modelling framework developed 

in this thesis. For both the shallow lake and savannah case studies, profits are the 

main source of utility from the system. However, the case studies differ most notably 

in terms of threshold effects and system dynamics. The shallow lake system has 

hysteretic dynamics, while the savannah system has a completely reversible threshold. 

When the primary focus is generating profits, to obtain utility from consumption, the 

decision-maker will optimally incur more risk of crossing an undesirable threshold 

than for the equivalent case study where utility is primarily obtained from other 

sources, such as the health of the system. 

 

These findings can be compared to the two other representative case studies 

described in Chapter 5. For these case studies, utility is sourced primarily from the 

health of the system. First, in terms of the health of a reef system and, second, in 

terms of the size of a koala population. When utility is sourced primarily from the 

health of the system, the decision-maker will incur less risk of crossing an undesirable 

threshold than for the equivalent case, but where utility from consumption is more 

important.  
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Chapter 5. Modelling environmental quality with uncertain 

ecological thresholds 

 

Chapter 5 follows on from Chapter 4 by presenting a further two detailed case 

studies of complicated ecological systems that can be managed using the 

mathematical modelling framework developed in this thesis. Chapter 5 explores the 

trade-offs associated with environmental quality in terms of use and non-use values, 

by examining a case study of the trade-offs between harvesting fish whilst 

maintaining the health of a reef system and a case study of the trade-offs between 

housing construction versus conserving a koala population. The threshold effect for 

the reef system is completely reversible, while the population dynamics for koalas 

include a hysteretic threshold effect. Table 5-1 provides a summary of the similarities 

and differences of the two representative case studies discussed in Chapter 5. 

 
Table 5-1 Key features of the reef fishery and koala case studies 

Characteristic Reef fishery Koalas 

Threshold effect Completely reversible Hysteretic dynamics 

Underlying slow variable Reef-mangrove distance Habitat quality 

Trade-offs Non-use values from the fish 
population vs. Harvesting fish 
for profit 

Non-use values from koala 
population vs. Utility from 
home ownership 

Ecological dynamics Fish population modelled using 
a Lotka-Volterra predator-prey 
model 

Koala population modelled 
using a logistic growth function 

Sources of utility Direct utility: Existence and 
aesthetic value – function of the 
fish population 
 
Consumption utility: Paid for 
using profits from fishing 
activities 

Direct utility: Existence and 
aesthetic value – function of the 
koala population 
 
Direct utility: Utility from home 
ownership 

 
 

5.1 Reef fishery (reef-mangrove interaction) 

 

The stock size of a harvestable fish species (an amalgamation of yellowfin 

bream, moses perch and black rabbitfish) within a specified reef ecosystem is 

modelled as a function of the distance between the boundary of the reef system and 
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the boundary of an adjacent mangrove system (Olds et al. 2012). The mangrove 

system acts as an important breeding ground because it provides a sheltered and 

relatively safe environment for young fish. If the mangrove system is within sufficient 

proximity of the reef system, fish are able to migrate back and forth between the two 

systems and, ultimately, more successful breeding and a higher equilibrium stock of 

fish will result in the reef system. The reef ecosystem is typified by two separate 

population regimes, each with different growth rates of the fish stock and different 

maximum (equilibrium) populations. 

 

In this example, the mangrove system is protected (i.e. no fishing is allowed) 

and is therefore considered as exogenous to the problem. However, the proximity of 

the mangrove system to the reef system is considered of critical importance. 

Conversely, commercial fishing is allowed within the reef system and represents a 

major source of utility, via consumption paid for by profits generated from this 

activity. It is the responsibility of an ecosystem manager (representative agent) to 

manage the reef-mangrove system with the objective of maximising the NPV of 

utility sourced from it. 

 

5.1.1 Reef fishery: State variables 

 

Table 5-2 below lists and describes the state variables of the reef fishery case 

study. 

 
Table 5-2 State variables of the reef fishery case study 

State variable Description 
System ‘output’ (𝑌) Stock size of harvestable fish species within the reef system 
Underlying slow ecosystem 
variable (𝑋) 

Physical distance between the boundary of the reef system and 
the boundary of an adjacent mangrove system 

Stock of wealth (𝑊) Wealth acquired via profits generated from the harvest and sale 
of harvestable fish 

Prior probability bounds 
(𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑚𝑚) 

Describes the location of a reversible ecological threshold of 
unknown location that separates two alternative population 
growth regimes 

Stock size of a herbivorous fish 
species (𝐶̅) 

Modelled as a function of the stock size of the harvestable fish 
species (its predator) – this species is not harvested 

Stock of coral-damaging pollution 
within the reef system (𝑃�) 

Modelled as a function of the amount of pollution released 
through harvesting activities, the amount of pollution cleaned 
up, and the assimilative capacity of the reef ecosystem 
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5.1.2 Reef fishery: Control variables 

 

Table 5-3 below lists and describes the control variables of the reef fishery 

case study. 

 
Table 5-3 Control variables of the reef fishery case study 

Control variable Description 
Harvest effort (𝐸) Amount of effort exerted in search of, and harvesting, the 

harvestable fish species – measured in units of time (e.g. 
hours) 

Introduction of farmed 
herbivorous fish to the reef system 
(𝐶) 

Herbivorous fish graze on fleshy algae, which compete with 
the coral for living space, and therefore make it easier for the 
coral of the reef system to grow or regenerate, if damaged 
(Olds et al. 2012) 

Clean-up of pollution before it is 
released into the reef system (𝑃′) 

For example, by installing specialised filters on boat exhausts 
– will incur a constant marginal cost for each unit of fishing 
effort 

Clean-up of pollution after  it has 
been released into the reef system 
(𝑃′′) 

For example, by using specialised machinery to skim pollution 
off the water’s surface – lower pollutant stock is associated 
with a higher search cost to find and remove it 

Consumption activities (𝑞) These activities generate consumption utility – paid for using 
acquired wealth 

 

5.1.3 Reef fishery: Trade-offs 

 

The trade-offs faced in this case study are between consumption utility, which 

is paid for using profits generated from the harvesting of fish (𝐻) from the reef 

ecosystem; direct utility, which is a function of the stock size of harvestable fish (𝑌) 

and is acquired from non-use values, such as aesthetic, existence and bequest values; 

and disutility (opportunity cost) from the use of public funds for the purpose of 

reducing the physical distance between the reef and mangrove ecosystems, rather than 

on the best alternative use. This reduction is achieved through actions (𝐶, 𝑃′, 𝑃′′) that 

improve the health of the reef and increase the rate of its expansion in the direction of 

the mangrove system, decreasing the physical distance between reef and mangrove. 

 

The harvesting of harvestable fish is assumed to follow a bi-linear catch 

equation, where harvest in a given time period is a function of the amount of fishing 

effort undertaken (𝐸) and the stock size (𝑌) at the beginning of the time period 

(Figure 5-1). 
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Figure 5-1 Fishing harvest 

 

Where 
𝐻𝑃(𝐸𝑃,𝑌𝑃−1) = 𝑧 ∙ 𝐸𝑃 ∙ 𝑌𝑃−1 
𝑧 is the catchability of the stock 

 

Although fishing effort generates profits through the harvest and sale of fish, it 

also adds to the stock of coral-damaging pollution within the reef ecosystem (𝑃�). The 

stock of pollution within the reef ecosystem is modelled as a function of the amount 

of fishing effort undertaken in each period (𝐸), actions taken to clean up pollution 

before it enters the reef ecosystem (𝑃′) and actions taken to clean up pollution after it 

enters the reef ecosystem (𝑃′′). In addition, the reef possesses an ability to naturally 

assimilate some of the pollution that is deposited into the system. The stock of 

pollution evolves according to the following equation: 

 

 𝑃�𝑃 = Ω ∙ 𝑃�𝑃−1 + �𝜀 ∙ 𝐸𝑃 − 𝑃′𝑃� − Υ′′ �𝑃′′𝑃,𝑃�𝑃−1� (49) 

 

Where 

(1−Ω) is the proportion of pollution that is naturally assimilated per time period: 

0 < Ω < 1 

𝜀 ∙ 𝐸𝑡 ≥ 𝑃′𝑡 restricts the amount of pollution filtered to be no more than the amount 

generated 
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𝜀 > 0 is a transfer coefficient representing the ratio of fishing effort to pollution 

generated 

Υ′′ �𝑃′′𝑃,𝑃�𝑃−1� = 𝜐 ∙ 𝑃′′𝑃 ∙ 𝑃�𝑃−1 is the amount of pollution removed after it enters the 

reef 

𝜐 > 0 is an efficiency parameter for pollution removal 

 

It is assumed that each unit of fishing effort generates 𝜀 units of coral-

damaging pollution. To counter this process, special filters (𝑃′) can be attached to 

fishing boats. These filters are capable of capturing one unit of pollution per unit of 

filter. Each filter has a useful life of one unit of pollution captured. Since it is not 

possible to capture more pollution during a time period than is generated, the amount 

of pollution captured before entering the reef system (𝑃′𝑃) cannot exceed the amount 

of pollution generated (𝜀 ∙ 𝐸𝑡). Any pollution that is not captured is released into the 

reef system (Figure 5-2). 

 

 
Figure 5-2 Amount of pollution released after filtering 

 

Pollution that is not captured prior to release into the reef ecosystem can be 

removed via two different mechanisms. First, the reef system can naturally assimilate 

the stock of pollution at a rate of (1−Ω) per time period. Second, pollution can be 

actively removed from the reef system (e.g. through filtering or surface skimming). 

Pollution removed via this means is assumed to follow a bi-linear pollution removal 
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equation, where pollution removed (Υ′′) during a given time period is a function of the 

stock of pollution at the beginning of the time period, which is identical to the stock 

of pollution at the end of the previous time period (𝑃�𝑃−1), and the amount of clean-up 

effort undertaken (𝑃𝑃′′), measured in units of time (e.g. hours) (Figure 5-3). 

 

 
Figure 5-3 Amount of pollution deliberately removed from the system (excl. assimilation) 

 

5.1.4 Reef fishery: EOM for physical distance between reef and mangrove 

systems (𝑋) 

 

The physical distance between the reef and mangrove systems (𝑋𝑃) is 

modelled as a function of the physical distance between the two systems at the end of 

the previous time period (𝑋𝑃−1), the stock of coral-damaging pollution at the end of 

the previous time period (𝑃�𝑗𝑃−1
) and the stock size of herbivorous fish at the end of the 

previous time period (𝐶�𝑗𝑃−1
). For the purpose of parsimony, it has been assumed that 

there is a zero or inconsequential amount of nutrient-rich runoff from adjacent 

agricultural lands into the mangrove and reef ecosystems. 

 

Even in the absence of any impediments to coral growth (e.g. pollution), the 

reef and mangrove systems will not connect. Instead, differing environmental 

conditions (including water temperature and salinity concentrations) between the reef 

and mangrove systems impose a natural physical boundary between the two systems, 
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since a reef system requires certain environmental conditions to successfully function. 

As a result, there is a natural physical constraint on the level of 𝑋. This minimum 

distance between the reef and mangrove system is defined as 𝑋. Also, the growth rate 

of the reef decreases (i.e. 𝑑𝑋 becomes a smaller negative number) ceteris paribus as 

the boundary of the reef system approaches the natural physical constraint, 𝑋. 

 

Herbivorous fish are important because they graze on fleshy algae, which 

compete with coral for living space (Olds et al. 2012). For a high stock of herbivorous 

fish, fleshy algae are likely to be out-competed and the growth rate of coral ceteris 

paribus will be higher. For a low stock of herbivorous fish, the growth rate of coral 

will be lower, and for a sufficiently low stock of herbivorous fish, fleshy algae will 

out-compete the herbivorous fish and the growth rate of coral will be negative (Figure 

5-4). The parameter 𝐶 represents the stock of herbivorous fish for which the fleshy 

algae and herbivorous fish compete equally well and, in the absence of any negative 

impacts caused by coral-damaging pollution, 𝑋 will remain stable. 

 

 

 

  

 

 

 

 

 

 
 

Figure 5-4 Per-period natural growth of reef for various levels of harvestable fish stock, and reef-
mangrove distance 

 

Conversely, damage caused to the reef system (∆𝑋 > 0) by the stock of 

pollution (𝑃�) is independent of the level of 𝑋 and associated with increasing marginal 

damage (Figure 5-5). 

 

 

𝑋 

∆𝑋𝑃|𝑃�𝑃−1 = 0 

0 𝑋𝑃−1 

‘Low’ 𝐶�𝑃−1, 𝐶�𝑃−1 < 𝐶 

‘Low’ 𝐶�𝑃−1, 𝐶�𝑃−1 > 𝐶 

‘High’ 𝐶�𝑃−1, 𝐶�𝑃−1 ≫ 𝐶 
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The EOM for the physical distance between reef and mangrove systems is 

given by: 

 

 ∆𝑋𝑗𝑃 = 𝑋�𝑋𝑗𝑃−1
,𝑃�𝑗𝑃−1

,𝐶�𝑗𝑃−1
� = 𝑘1 �𝐶 − 𝐶�𝑗𝑃−1

� �𝑋𝑗𝑃−1
−𝑋�

𝑎
+ 𝑘2 �𝑃�𝑗𝑃−1

�
𝑏
 (50) 

 

Where 
𝑘1 > 0 
𝑘2 > 0 
0 < 𝑎 < 1 

𝑏 ≥ 1 
𝑋𝑗𝑃−1

≥ 𝑋 

 

 

 

 

 

 

 

 

 

 
Figure 5-5 Per-period damage caused by accumulated pollution 

 

5.1.5 Reef fishery: Critical ecological thresholds 

 

The reef ecosystem is typified by two separate system regimes, each with 

different growth rates of the fish stock and different equilibrium populations. In 

Regime A (𝑅𝐴), the reef and mangrove ecosystems are sufficiently connected (i.e. 

their boundaries are sufficiently close together) to allow the migration of fish between 

the two systems. In Regime B (𝑅𝐵), the reef and mangrove ecosystems are not 

sufficiently connected (i.e. their boundaries are not sufficiently close together) to 

allow the migration of fish between the two systems. The term ‘sufficiently close’, as 

used above, is defined by the maximum distance (𝑋𝑐𝑃𝑚𝑃𝑚𝑐𝑎𝑃) between the two systems 

0 

∆𝑋𝑃|𝐶�𝑃−1 

𝑃�𝑃−1 
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that still allows successful fish migration to occur between them. Referring to Figure 

5-6, the vertical dashed arrow signifies the crossing of the critical ecological threshold 

and the resulting shift in system regime. This regime shift is completely reversible 

along the same path, which is why the arrow is both upward- and downward-pointing. 

The purpose of the horizontal dotted line is to indicate that the exact location of the 

threshold is unknown; however, upper and lower bounds can be postulated. 

 

 

 

 

 

 

 

 
Figure 5-6 Alternative system regimes for harvestable fish population 

 

The system regime is modelled according to: 

 

 𝑅𝑗𝑃 = �
𝐴 𝑚𝑓 𝑋𝑗𝑃−1

< 𝑋𝑐𝑃𝑚𝑃𝑚𝑐𝑎𝑃

𝐵 𝑚𝑓 𝑋𝑗𝑃−1
≥ 𝑋𝑐𝑃𝑚𝑃𝑚𝑐𝑎𝑃

 (51) 

 

Where 

𝑅𝑗𝑃 is the system regime for the duration of time period 𝑃 

𝑋𝑗𝑃−1
 is the level of the underlying, slow variable at the end of the previous time 

period 

𝑋𝑐𝑃𝑚𝑃𝑚𝑐𝑎𝑃 ≡ 𝑋𝑐 is a random variable on a bounded interval �𝑋𝑐𝑚𝑚𝑚,𝑋𝑐𝑚𝑎𝑚� 

 

5.1.6 Reef fishery: Population growth functions 

 

A simplifying assumption is made that the stock size of neither the 

harvestable, nor the herbivorous (non-harvestable), fish is affected by the stock of 

pollution in the reef environment. Instead, the change in the stock of the harvestable 

𝑋𝑐𝑚𝑎𝑚 𝑋𝑐𝑚𝑚𝑚 
Reef-mangrove distance (𝑋) 

𝑅𝐵 

𝑅𝐴 

Regime (𝑅) 
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fish (∆𝑌𝑚𝑃) is a function of its own stock size in the previous time period (𝑌𝑗𝑃−1
), the 

stock size of its prey (the herbivorous fish) in the previous time period (𝐶�𝑗𝑃−1
) and the 

number of fish that are harvested during the current time period (𝐻𝑗𝑃), which itself is a 

function of the amount of fishing effort (𝐸𝑗𝑃) undertaken. Also note the 𝑚 superscript 

on ∆𝑌; 𝑚 = 𝐴 denotes that the system is in Regime A and 𝑚 = 𝐵 denotes that the 

system is in Regime B. In Regime A, the mangrove and reef systems are sufficiently 

connected to allow fish migration between the two systems. In Regime B, the 

mangrove and reef systems are not sufficiently connected to allow fish migration 

between the two systems. 

 

The stock size of harvestable fish (predator) evolves according to a modified 

Lotka-Volterra predator-prey model with two discrete delays (Ruan 2009): 

 

 
∆𝑌𝑚𝑗𝑃  =  𝑑𝑌�𝑌𝑗𝑃−1

,𝐶�𝑗𝑃−1
,𝐻𝑗𝑃 �𝐸𝑗𝑃�� 

∆𝑌𝑚𝑗𝑃 = 𝑌𝑗𝑃−1
�𝑃2

𝑚 + 𝑎21
𝑚 ∙ 𝐶�𝑗𝑃−1−𝜏2

− 𝑎22
𝑚 ∙ 𝑌𝑗𝑃−1

� − 𝐻𝑗𝑃 
(52) 

 

Where 

𝑃2
𝑚 , 𝑎21

𝑚  and 𝑎22
𝑚  are regime-specific; for Regime 𝑚 

𝑃2
𝑚 > 0 is the death rate of harvestable fish (predator) in the absence of herbivorous 

fish (prey) 

𝑎21
𝑚 > 0 is the conversion rate for the harvestable fish (predators); prey to predator 

𝑎22
𝑚 ≥ 0 describes the intraspecific competition among harvestable fish (predators) 

𝜏2 is a positive constant that denotes a discrete time delay 

 

Similarly, the change in the stock of the herbivorous fish (∆𝐶�𝑚𝑗𝑃) is a function 

of its own stock size in the previous period (𝐶�𝑗𝑃−1
), the stock size of its predator (the 

harvestable fish) in the previous period (𝑌𝑗𝑃−1
) and the number of farmed herbivorous 

fish that have been introduced to the reef system during the period (𝐶𝑗𝑃). 

 

 



115 
 

The stock size of herbivorous fish (prey) evolves according to a modified 

Lotka-Volterra predator-prey model with two discrete delays (Ruan 2009): 

 

 
∆𝐶�̅�𝑡 =  𝐶̅�𝐶�̅�𝑡−1 ,𝑌𝑗𝑡−1 ,𝐶𝑗𝑡� 

∆𝐶�𝑗𝑃 = 𝐶�𝑗𝑃 �𝑃1
𝑚 + 𝑎11

𝑚 ∙ 𝑌𝑗𝑃−1−𝜏1
− 𝑎12

𝑚 ∙ 𝐶�𝑗𝑃�+ 𝐶𝑗𝑃 
(53) 

 

Where 

𝑃1
𝑚 , 𝑎11

𝑚  and 𝑎12
𝑚  are regime-specific; for Regime 𝑚 

𝑃1
𝑚 > 0 is the death rate of harvestable fish (predator) in the absence of herbivorous 

fish (prey) 

𝑎11
𝑚 > 0 is the conversion rate for the harvestable fish (predators); prey to predator 

𝑎12
𝑚 ≥ 0 describes the intraspecific competition among harvestable fish (predators) 

𝜏1 is a positive constant that denotes a discrete time delay 

 

5.1.7 Reef fishery: Sources of utility 

 

Utility is gained both from consumption utility, paid for using profits 

generated from the harvesting of harvestable fish (𝐻) from the reef ecosystem, and 

from direct utility, as a function of the stock sizes of harvestable fish (𝑌) and 

herbivorous fish (𝐶�). This direct utility comes in the form of aesthetic, existence and 

bequest values. Also, negative utility results from the use of any public funding for 

increasing the connectivity of the reef and mangrove ecosystems. This disutility 

captures the opportunity cost to society of spending public funds on increasing habitat 

connectivity, and likely increasing equilibrium (maximum) fish stocks, rather than on 

the best alternative use. Habitat connectivity can be improved through public 

spending on introducing farmed herbivorous fish and actively capturing or cleaning 

up pollution generated through fishing effort. 

 

 

The instantaneous total social utility is given by: 

 

 𝑈(𝑃) = 𝑈𝑌(𝑌𝑡) + 𝑈�̅�(𝐶�̅�) + 𝑈𝑞(𝑞𝑡) − 𝐷𝑈�𝐶𝑡,𝑃𝑡′ ,𝑃𝑡′′� (54) 
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Where 

𝑑𝑈𝑌
𝑑𝑌

> 0 ; 𝑑
2𝑈𝑌
𝑑𝑌2

≤ 0 ; 𝑑𝑈𝐶�
𝑑𝐶̅

> 0 ; 𝑑
2𝑈𝐶�
𝑑𝐶̅2

≤ 0 ; 𝑑𝑈𝑞
𝑑𝑞

> 0 ; 𝑑
2𝑈𝑞
𝑑𝑞2

≤ 0 ; 𝜕𝐷𝑈
𝜕𝐶

> 0 ; 

𝜕2𝐷𝑈
𝜕𝐶2

≤ 0 ; 𝜕𝐷𝑈
𝜕𝑃′

> 0 ; 𝜕
2𝐷𝑈

𝜕𝑃′2
≤ 0 ; 𝜕𝐷𝑈

𝜕𝑃′′
> 0 ; 𝜕

2𝐷𝑈

𝜕𝑃′′2
≤ 0 

 

Utility derived from the stock sizes of harvestable and herbivorous fish, and 

consumption are monotonically increasing in their arguments; however, marginal 

utility is decreasing for all three sources of utility. Utility resulting from the use of any 

public funding on actions intended to decrease the physical distance between the reef 

and mangrove systems (i.e. 𝑃′, 𝑃′′, 𝐶) is negative and monotonically decreasing in its 

arguments. Marginal utility from these sources are increasingly negative in their 

arguments. 

 

Summary of reef fishery case study 
 

The stock size of a harvestable fish species within a reef ecosystem is 

modelled as a function of the distance between the boundary of the reef system and 

the boundary of an adjacent mangrove system. The fish use the mangrove system as a 

safe breeding ground, but are only able to do so if the reef and mangrove system are 

within sufficient proximity. If not, the equilibrium fish population will be lower. 

Therefore, a reversible threshold exists such that the equilibrium fish population is 

high when the reef and mangrove systems are close and low when the two systems are 

far apart. 

 

Utility is derived from non-use values based on the level of the fish stock, and from 

consumption paid for by any profits collected from the harvest and sale of fish. The 

physical distance between the reef and mangrove systems is negatively impacted by 

pollution resulting from fishing effort. This distance can be decreased by reducing the 

concentration of pollution using mechanical means and by adding herbivorous fish, 

which remove ecological impediments to coral growth. However, there are decreasing 

marginal returns to these measures, so the ecosystem manager faces a trade-off 

between increasing disutility from the use of public funds for this purpose. 
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5.2 Koala preservation and housing development 

 

Globally, mammal populations are increasingly threatened with population 

fragmentation. Populations can become fragmented as a result of habitat loss or 

anthropogenic barriers to gene flow, such as busy roads. Barriers that inhibit the use 

of important migration or dispersal corridors can effectively isolate adjacent 

populations, reducing genetic diversity and the species’ ability to respond to 

environmental change. The koala is an example of an iconic and internationally 

recognisable Australian marsupial. Koalas are biologically unique, since they are the 

only extant member of their family. Despite this, Australia’s koala population has 

experienced a significant reduction over recent centuries for reasons including, but not 

limited to, habitat loss and fragmentation (Lee et al. 2010). 

 

For this case study, the population of a koala species within a chosen 

geographical area (study area) is modelled as a function of the koala’s habitat 

‘quality’, which is a combined measure of habitat size and connectivity. Habitat 

quality is important because the koala population is typified by two distinct system 

regimes, each with different population growth rates and maximum (equilibrium) 

populations. Two critical ecological thresholds exist in terms of the level of habitat 

quality. Upon crossing one of these ecological thresholds, the system will shift from 

the original regime to the alternative regime. 

 

The land area currently occupied by koala habitat may alternatively be used 

for housing development. The conversion of land from koala habitat to housing 

development is considered to be effectively irreversible because housing 

developments are very rarely demolished. Reductions in habitat quality owing to 

conversions of koala habitat to housing development can be offset by improving 

existing or developing new wildlife corridors. Better wildlife corridors allow 

increased access to other geographically-separate koala colonies (populations) and, 

through cross-colony mating and breeding, the genetic diversity across koalas in the 

study area will be increased. 
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5.2.1 Koalas: State variables 

 

Table 5-4 below lists and describes the state variables of the koala case study. 

 
Table 5-4 State variables of the koala case study 

State variable Description 
System ‘output’ (𝑌) Population of a koala species (study population) within a 

chosen geographical area (study area) 
Underlying slow ecosystem 
variable (𝑋) 

Habitat ‘quality’ – combination of habitat size and habitat 
connectivity – proxy for genetic diversity 

Habitat size (𝑍𝑆) Physical size of the study area 
Habitat connectivity (𝑍𝐶) Connectivity of the study area with nearby koala colonies 
Stock of improvements to habitat 
connectivity  (𝐶�̅�) 

Habitat connectivity can be improved by improving existing or 
developing new wildlife corridors 

Prior probability bounds 
(𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑚𝑚 , 𝑏𝑚𝑖𝑛 , 𝑏𝑚𝑚𝑚) 

Describes the locations of two ecological thresholds of 
unknown location that separate two alternative population 
growth regimes 

Stock of housing development 
(𝐻�) 

Koala habitat within the study area can be converted to housing 
development 

 

5.2.2 Koalas: Control variables 

 

Table 5-5 below lists and describes the control variables of the koala case 

study. 

 
Table 5-5 Control variables of the koala case study 

Control variable Description 
Effort to increase the study area’s 
habitat quality (𝐶) 

Improving existing or developing new wildlife corridors to 
previously poorly-connected or disconnected koala colonies – 
cross-colony breeding improves genetic diversity and 
resilience to negative impacts e.g. disease 

Effort to harvest koala habitat and 
convert it to housing development 
(𝐸) 

Usually, the system output is harvested; however, the 
underlying slow variable is harvested in this case – any 
increase in the stock of housing development is offset by an 
equivalent reduction in habitat size 

 

5.2.3 Koalas: Trade-offs 

 

The trade-offs faced in this case study are between utility derived from non-

use values related to the koala population within the study area; utility acquired by 

individuals owing to living in their own home (this utility is taken to be the net utility 

gain from living in a house situated within the study area as opposed to living in a 
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house located elsewhere); and disutility (opportunity cost) from the use of public 

funds for the purpose of improving the habitat quality of the study area instead of for 

the best alternative use. 
 

The harvesting of koala habitat for conversion to housing development will 

have a linear, one-for-one relationship (i.e. one hectare of housing development 

comes at the expense of one hectare of koala habitat); however, the relationship 

between housing development and habitat connectivity is likely to be non-linear and 

conditional on the location of the specific parcel of land within the broader context of 

the total habitat area. The removal of a parcel of land that is vital for a wildlife 

corridor is likely to have a much more significant detrimental effect on the koala 

ecosystem than the removal of habitat from within a large area of habitat that does not 

perform that same role. Broadly speaking, the smaller the habitat size, the more likely 

a particular parcel of land forms a vital part of a wildlife corridor. Therefore, the 

negative impact of housing development on the koala ecosystem will be more 

significant when the koala habitat is smaller and the stock of housing development is 

higher. The conversion of land from koala habitat to housing development is 

considered to be effectively irreversible because housing developments are very rarely 

demolished. 
 

There is a linear, one-for-one relationship between the reduction in koala 

habitat due to harvesting and the increase in the stock of housing development (Figure 

5-7): 
 

 

 

 

 

 

 

 

 

 
 

Figure 5-7 Habitat size vs. Housing development 
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Where 

𝑍𝑆 = 𝑍𝑆����
𝑚𝑎𝑚

−𝐻� = 𝐻�𝑚𝑎𝑚 −𝐻�  
Alternatively, 

𝑍𝑆 +𝐻� = 𝑍𝑆����
𝑚𝑎𝑚

= 𝐻�𝑚𝑎𝑚 
 

Note that 𝑍𝑆, 𝐻� , 𝑍𝑆����
𝑚𝑎𝑚

 and 𝐻�𝑚𝑎𝑚 are expressed in hectares. 𝑍𝑆����
𝑚𝑎𝑚

= 𝐻�𝑚𝑎𝑚 represents 

the total land area of the study area; the maximum habitat area or, at the other 

extreme, the maximum stock of housing development. Since the study area has only 

two potential uses, the sum of habitat area and stock of housing development must 

equal the total land area of the study area. 

 

The relationship between stock of housing development and habitat connectivity is 

likely to be non-linear because the removal of one hectare of land from a much larger 

area of habitat is less likely to significantly adversely affect connections to the 

remaining hectares of land, compared to the removal of one hectare of land from a 

much smaller area of habitat (Figure 5-8). 

 

 

 

 

 

 

 

 

 

 
 

Figure 5-8 Habitat connectivity vs. Housing development 
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𝜍(0) = 1 

𝑑𝜍�𝐶��
𝑑𝐶�

> 0 

𝑑2𝜍�𝐶��
𝑑𝐶�2 ≤ 0 

 

𝜍(𝐶̅) is a scale parameter, which takes value 1 when no improvements have 

been made to the wildlife corridors that existed at the beginning of the problem, and 

no new wildlife corridors have been developed. In the case of no improvements to 

wildlife corridors (i.e. 𝐶� = 0) and no housing developments (i.e. 𝐻� = 0), 𝑍𝐶 will take 

a value of 1. Note that 𝑍𝐶 is an index variable and that 𝑍𝐶 = 1 has arbitrarily been 

chosen as its starting value. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5-9 Habitat quality vs. Housing development 

 

Where 

𝑋 = 𝑚𝑍𝑆 + (1 −𝑚)𝑍𝐶 

0 < 𝑚 < 1 
 

Habitat quality (𝑋) is defined as a convex combination of two variables, 

habitat size (𝑍𝑆) and habitat connectivity (𝑍𝐶). Since 𝑍𝑆 is linear in 𝐻�  and 𝑍𝐶 is non-

linear in 𝐻� , 𝑋 will also be non-linear in 𝐻�  (Figure 5-9). 
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5.2.4 Koalas: EOM for habitat quality (𝑋) 

 

The maximum land area available for housing development is pre-determined 

at the beginning of the problem, and will be equivalent to the total land area of koala 

habitat at the beginning of the problem. This is because it is assumed that no housing 

development has been undertaken. For this reason, there is a maximum level (land 

area) of housing development that can occur. However, the quality of koala habitat 

(𝑋) can be increased while the stock of housing development remains constant, or 

even increases. This is possible because effort in increasing habitat quality (𝐶), in the 

form of planting or developing new wildlife corridors to currently unconnected 

colonies will improve the connectivity of the habitat and the genetic diversity of the 

study population. Habitat quality (𝑋) serves as a proxy for genetic diversity. The 

equation of motion for habitat quality is given by: 

 

 ∆𝑋 = 𝑚∆𝑍𝑆 + (1 −𝑚)∆𝑍𝐶 (55) 

 

5.2.5 Koalas: Critical ecologic thresholds 

 

The koala ecosystem is susceptible to a threshold effect and regime shift if the 

habitat quality crosses a critical ecological threshold. Upon crossing a threshold, the 

system will shift from Regime A to Regime B, or vice versa, and the population will 

evolve according to a different population growth equation. The logic for there being 

two separate population growth regimes is that a larger and more resilient (higher 

expected survival rate) population will result when starting from a more diverse 

genetic base; habitat quality is used as a proxy for the genetic diversity of the 

population. In Figure 6-10, the vertical dashed arrows signify the crossing of a critical 

ecological threshold and the resulting shift in system regime. The downward-pointing 

arrow signifies a shift from Regime A to Regime B and the upward-pointing arrow 

signifies the opposite case. The purpose of the two horizontal dotted lines is to 

indicate that the exact locations of these two thresholds are unknown; however, upper 

and lower bounds can be postulated. 
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Figure 5-10 Alternative system regimes for koala population 

 

5.2.6 Koalas: Population growth functions 

 

Net population growth is a function of the koala population in the previous 

period; however, the growth rate is conditional on the current system regime. Also, 

the carrying capacity within the study area is a function of the habitat size (𝑍𝑆), since 

there is only enough food available per-hectare to feed a certain number of koalas. 

There is a critical threshold in terms of the habitat quality (𝑋), which acts as a proxy 

for the level of genetic diversity within the study population. The koala population is 

modelled to evolve according to a Ricker equation (Ricker 1954). However, the 

intrinsic growth rate of the population is conditional on the system regime. 

 

Koala population evolves according to: 

 

 𝑌𝑃 = 𝑌𝑃−1 ∙ exp �𝑃𝑚 �1−
𝑌𝑃−1

𝑌𝑃−1
𝑚𝑎𝑚�� (56) 

 

Where 

𝑃𝑚 is the regime-specific intrinsic growth rate for Regime 𝑚; 𝑚 = 𝐴,𝐵 
𝑃𝐴 > 𝑃𝐵 > 0  

𝑌𝑃−1
𝑚𝑎𝑚 = 𝛾 ∙ 𝑍𝑃−1

𝑆   
𝛾 is a scale parameter that specifies the maximum number of koalas that can be fed 

per hectare of koala habitat 

0 𝑏𝑚𝑚𝑚 𝑏𝑚𝑎𝑚 𝑎𝑚𝑎𝑚 𝑎𝑚𝑚𝑚 

𝑅𝐵 

𝑅𝐴 

Habitat quality (𝑋) 

System regime (𝑅) 
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Figure 5-11 provides an illustrative example of how the koala population will 

evolve when starting from a low population base and remaining within the same 

system regime for the duration of the time horizon. For this example, it is also 

assumed that the habitat size (𝑍𝑆), and therefore carrying capacity (𝑌𝑚𝑎𝑚), remains 

constant. Given sufficiently time, the koala population will converge to the upper 

limit, 𝑌𝑚𝑚𝑎𝑚�������, where this upper limit is conditional on the system regime. 
 

 

 

        

                 

 

                                                                                      

 

  
 

Figure 5-11 An illustrative path of the koala population when habitat size remains constant 

 

Figure 5-12 provides an illustrative example of how the koala population will 

evolve when starting from a low population base and remaining within the same 

system regime for the duration of the time horizon. However, the dotted vertical lines 

signify instances when the study area experiences a discrete reduction in habitat size 

(𝑍𝑆), and therefore carrying capacity (𝑌𝑚𝑎𝑚). If the koala population is already close to 

its carrying capacity, a sufficient reduction in habitat size (and carrying capacity) will 

cause the population to decrease until it converges to the new carrying capacity. 
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Figure 5-12 An illustrative path of the koala population when habitat size is occasionally reduced 

5.2.7 Koalas: Sources of utility 

 

Utility is derived both from direct utility, as a function of the koala population 

within the chosen geographical area, and from direct utility, as a function of the total 

stock of housing development; individuals receive utility from owning their own 

houses. Also, disutility, or negative utility, results from the use of any public funding 

for increasing the habitat quality. This disutility captures the opportunity cost to 

society of spending public funds on preserving koala habitat rather than on the best 

alternative use. Any profits gained by property developers from the sale of new 

housing developments have not been included in the model because they simply 

represent transfer payments between different members of society. 

 

The instantaneous total social utility is given by: 

 

 𝑈(𝑃) = 𝑈𝑌(𝑌𝑡) + 𝑈𝐻�(𝐻�𝑡) − 𝐷𝑈𝐶(𝐶𝑡) (57) 

 

Where 
𝑑𝑈𝑌
𝑑𝑌

> 0 ; 𝑑
2𝑈𝑌
𝑑𝑌2

≤ 0 ; 𝑑𝑈𝐻�
𝑑𝐻�

> 0 ; 𝑑
2𝑈𝐻�
𝑑𝐻�2

≤ 0 ; 𝑑𝐷𝑈𝐶
𝑑𝐶

> 0 ; 𝑑
2𝐷𝑈𝐶
𝑑𝐶2

≤ 0 

 

Utility acquired from the size of the koala population and stock of housing 

development are both monotonically increasing in their arguments; however, marginal 

utility is decreasing for both sources of utility. Utility resulting from the use of any 

public funding for increasing the habitat quality is negative and monotonically 

decreasing in its argument. Marginal utility from this source is increasingly negative 

in its argument. 

 

Summary of koala case study 

 

The population of a koala colony and its evolution across time is dependent on 

the size of the habitat and its connectivity to surrounding koala colonies. These two 

attributes are combined to form a measure of habitat quality, which serves as a proxy 

for the genetic diversity within the population. If the habitat quality falls below a 
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critical level, an undesirable shift occurs to a regime that is characterised by a lower 

population growth rate and lower equilibrium population. This regime shift is 

reversible by crossing a different critical threshold i.e. the system has hysteretic 

dynamics. 

 

The competing use of the land is housing development. An increase in the 

stock of housing development is associated with an equivalent decrease in the amount 

of koala habitat. This case study is distinguished by the ability to concurrently 

increase the stock of housing development and the habitat quality, via increasing 

habitat connectivity. However, there are decreasing marginal returns to investment in 

habitat quality, so the ecosystem manager faces a trade-off against increasing 

disutility from the use of public funds for this purpose. Therefore, there are economic 

limits to substitutability between housing development and habitat size. 

 

Conclusion 

 

This chapter presents two detailed case studies of complicated ecological 

systems that can be managed using the mathematical modelling framework developed 

in this thesis. For both the reef fishery and koala case studies, the health of the system 

is the main source of utility from the system. However, the case studies differ most 

notably in terms of threshold effects and system dynamics. The reef fishery has 

completely reversible dynamics, while the koala system has hysteretic dynamics. 

When the primary focus is maintaining environmental quality, to obtain utility from 

the health of the system, the decision-maker will optimally incur less risk of crossing 

an undesirable threshold than for the equivalent case study where utility is primarily 

obtained from profits and consumption. 

 

These findings can be compared to the two other representative case studies 

described in Chapter 4. For these case studies, utility is sourced primarily from profits 

and consumption. First, profits from crop production and, second, from a cattle 

grazing enterprise. When utility is sourced primarily from consumption, the decision-

maker will incur more risk of crossing an undesirable threshold than for the 

equivalent case, but where utility from other sources, such as the health of the system, 

is more important.  
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Chapter 6. Shallow lake simulation model and results 

 

Phosphorus pollution running off from agricultural land into a shallow lake 

can suddenly turn the lake water from clear (oligotrophic) to dirty (eutrophic) when a 

threshold is crossed. This chapter builds on this example of a regime shift presented in 

Chapter 4, to explicitly simulate the benefits and costs of active learning in a specific 

case study. Simulation results, with and without the possibility of learning, are 

compared to explore the implications of the theoretical framework that includes 

learning within the management of an ecological system with an unknown threshold 

location (footnote: the theoretical framework is presented in Chapter 3). This 

component of the research serves to validate the findings of the theoretical model and 

demonstrate its potential for future applications. For this purpose, an abridged version 

of the shallow lake model, largely based on that presented by Brozovic and Schlenker 

(2011), was used to obtain numerical solutions for a range of different model 

parameter values. The model presented by Brozovic and Schlenker (2011) is extended 

through the inclusion of a mechanism (similar to Bayes’ rule) for updating the prior 

probability distribution that characterises the location of a critical ecological 

threshold, where its exact location is unknown. 

 

The model of a shallow lake includes three state variables; the stock of 

phosphorus in the lake, and the lower and upper bounds for the prior probability 

distribution of the unknown threshold location. This model has one control variable; 

the amount of phosphorus fertiliser applied to adjacent agricultural land. Utility is 

obtained from two sources; (i) utility from the application of fertiliser to grow and sell 

crops, and (ii) (dis)utility from the build-up of phosphorus in the lake system, which 

serves as a proxy for the level of ecosystem services provided. As discussed in 

Chapter 4, utility derived from fertiliser application can be categorised as 

consumption utility, and (dis)utility from the build-up of phosphorus in the lake can 

be categorised as direct utility. The simulation model is used to examine the 

consequences of using alternative prior probability distributions to describe the 

location of the unknown threshold, as well as the relative contributions of 

consumption utility and direct utility to total utility. These parameters have been 

chosen because they are under the control of the decision-maker. 
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The results of the simulation model demonstrate that (1) the expected NPV of 

utility from the system will be higher when active learning is considered, (2) the value 

of information is highest when the prior distribution has low variance and the system 

state variable is close to the prior distribution, (3) the decision-maker will generally 

engage in riskier behaviour when active learning is considered, (4) the optimal level 

of the control variable is generally a function of both the lower and upper bounds of 

the prior distribution, (5) the decision-maker will be less willing to incur risk of 

crossing an undesirable threshold when a greater proportion of total utility is sourced 

from direct utility, compared to consumption utility. 

 

6.1 Simulation model (abridged ‘shallow lake’ model) 

 

What follows is an abridged version of the shallow lake problem described in 

Chapter 4. The problem is simplified to include three state variables and one control 

variable. The reason for this simplification is to provide a more straightforward and 

less ambiguous illustration of how the consideration of active learning affects the 

level of risk averse behaviour undertaken by a decision-maker. In this example, the 

level of risk averse behaviour is judged based on the amount of fertiliser applied. A 

lower application rate is interpreted to mean that a greater amount of risk averse 

actions have been undertaken. The problem structure is taken from Brozovic and 

Schlenker (2011) and is described below. 

 

6.1.1 The ‘Learning’ model 

 

In the ‘Learning’ model, the decision-maker is alert to the possibility of 

learning about unknown threshold locations and factors this possibility into the 

decision-making process. 

 

The instantaneous total social utility received is given by: 

 

 𝑈(𝑃) = 𝑘𝑃𝑡 − 𝑋𝑡2 (58) 
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Where 

𝑘 is a measure of the utility received per unit of phosphorus fertiliser applied 

𝑃𝑃 is the amount of phosphorus fertiliser applied, and the control variable 

𝑋𝑃 is the stock of phosphorus in the lake at the end of time period 𝑃 

 

The two equations of motion for the underlying slow variable (stock of 

phosphorus) are given by: 

 

 𝑋𝑃 = �
𝐵𝑋𝑃−1 + 𝑏+ 𝑃𝑃 𝑚𝑓 𝑅𝑃 = 𝐴

𝐵𝑋𝑃−1 + 𝑏+ 𝑃𝑃 +Ω 𝑚𝑓 𝑅𝑃 = 𝐵 (59) 

 

Where 

𝐵 is the proportion of phosphorus retained in the lake from one time period to the 

next; the remainder is assimilated 

𝑏 is the natural inflow of phosphorus to the lake 

Ω is additional phosphorus recycling when the lake is in Regime B 

𝑅𝑃 is the current system regime 

 

The other two state variables are the lower and upper bounds of the prior 

distribution for the unknown threshold location. These state variables are updated in 

accordance with the updating rules described in Section 3.2 above. A uniform 

distribution has been used to model the prior distribution for the unknown threshold 

location. The updating rules for the upper and lower bounds of the prior distribution 

are conditional on the current system regime and whether or not the critical threshold 

is crossed. The four possible cases are described below: 

 

a. If 𝑅𝑗𝑃 = 𝐴 and 𝐹𝑗𝑃 = 0: 

 

 𝑇𝑗𝑃+1
 ~ 𝒰�𝑎𝑗𝑃+1

𝑚𝑚𝑚 ,𝑎𝑗𝑃+1
𝑚𝑎𝑚� (60) 

 

Where 

𝑎𝑗𝑃+1
𝑚𝑚𝑚 = 𝑚𝑎𝑚�𝑎𝑗𝑃

𝑚𝑚𝑚,𝑋𝑗𝑃� 

𝑎𝑗𝑃+1
𝑚𝑎𝑚 = 𝑎𝑗𝑃

𝑚𝑎𝑚 
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b. If 𝑅𝑗𝑃 = 𝐴 and 𝐹𝑗𝑃 = 1: 

 

 𝑇𝑗𝑃+1
 ~ 𝒰�𝑎𝑗𝑃+1

𝑚𝑚𝑚 ,𝑎𝑗𝑃+1
𝑚𝑎𝑚� (61) 

 

Where 

𝑎𝑗𝑃+1
𝑚𝑚𝑚 = 𝑎𝑗𝑃

𝑚𝑚𝑚 

𝑎𝑗𝑃+1
𝑚𝑎𝑚 = 𝑚𝑚𝑚�𝑎𝑗𝑃

𝑚𝑎𝑚,𝑋𝑗𝑃� 

 

c. If 𝑅𝑗𝑃 = 𝐵 and 𝐹𝑗𝑃 = 0: 

 

 𝑇𝑗𝑃+1
 ~ 𝒰�𝑎𝑗𝑃+1

𝑚𝑚𝑚 ,𝑎𝑗𝑃+1
𝑚𝑎𝑚� (62) 

 

Where 

𝑎𝑗𝑃+1
𝑚𝑚𝑚 = 𝑎𝑗𝑃

𝑚𝑚𝑚 

𝑎𝑗𝑃+1
𝑚𝑎𝑚 = 𝑚𝑚𝑚�𝑎𝑗𝑃

𝑚𝑎𝑚,𝑋𝑗𝑃� 

 

d. If 𝑅𝑗𝑃 = 𝐵 and 𝐹𝑗𝑃 = 1: 

 

 𝑇𝑗𝑃+1
 ~ 𝒰�𝑎𝑗𝑃+1

𝑚𝑚𝑚 ,𝑎𝑗𝑃+1
𝑚𝑎𝑚� (63) 

 

Where 

𝑎𝑗𝑃+1
𝑚𝑚𝑚 = 𝑚𝑎𝑚�𝑎𝑗𝑃

𝑚𝑚𝑚,𝑋𝑗𝑃� 

𝑎𝑗𝑃+1
𝑚𝑎𝑚 = 𝑎𝑗𝑃

𝑚𝑎𝑚 

 

Therefore, the conditional probability of the system being in Regime A at the 

end of time period 𝑃 + 1 is given by: 

 

 𝐴𝑃+1(𝑋𝑃+1) =

⎩
⎪
⎨

⎪
⎧ 0 𝑚𝑓 𝑋𝑃+1 ≤ 𝑎𝑃+1

𝑚𝑚𝑚

𝑋𝑃+1 − 𝑎𝑃+1
𝑚𝑚𝑚

𝑎𝑃+1
𝑚𝑎𝑚 − 𝑎𝑃+1

𝑚𝑚𝑚 𝑚𝑓 𝑎𝑃+1
𝑚𝑚𝑚 <  𝑋𝑃+1 < 𝑎𝑃+1

𝑚𝑎𝑚

1 𝑚𝑓 𝑋𝑃+1 ≥ 𝑎𝑃+1
𝑚𝑎𝑚

 (64) 
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And the conditional probability of the system being in Regime B at the end of 

time period 𝑃 + 1 is given by 1−𝐴𝑃+1(𝑋𝑃+1). 

 

Finally, the Bellman equation of the utility function is described by the 

following equation: 

 

 
𝑉𝑖(𝑋𝑡) = max

𝑃𝑡
�𝑘𝑃𝑡 − 𝑋𝑡2

+ 𝛿 �𝐴𝑡+1(𝑋𝑡+1).𝑉𝐴(𝑋𝑡+1) + �1 − 𝐴𝑡+1(𝑋𝑡+1)�.𝑉𝐵(𝑋𝑡+1)�� 
(65) 

 

Where 
𝑉𝐴(𝑋𝑃+1) = 𝑉𝐴(𝐵𝑋𝑃 + 𝑏+𝑃𝑃) 
𝑉𝐵(𝑋𝑃+1) = 𝑉𝐵(𝐵𝑋𝑃 + 𝑏+ 𝑃𝑃 +Ω) 
𝐴𝑃+1(𝑋𝑃+1) is described above 

𝑚 = 𝐴,𝐵 

 

𝑉𝑚(𝑋𝑃) is the value function for time period 𝑃 and Regime 𝑚 

𝐴𝑃+1(𝑋𝑃+1) is the most recently updated conditional probability of the system being in 

Regime A in time period 𝑃 + 2; conditional on the stock of phosphorus in the lake 

1 − 𝐴𝑡+1(𝑋𝑡+1) is the most recently updated conditional probability of the system 

being in Regime B in time period 𝑃 + 2; conditional on the stock of phosphorus in 

the lake 

 

The system regime (Figure 6-1) is modelled according to: 

 

 𝑅𝑃 = �
𝐴 𝑚𝑓 𝑋𝑃−1 < 𝑋𝐶

𝐵 𝑚𝑓 𝑋𝑃−1 ≥ 𝑋𝐶
 (66) 

 

Where 

𝑅𝑃 is the system regime for the duration of time period 𝑃 

𝑋𝑃−1 is the level of the underlying slow variable at the end of the previous time period 

𝑋𝐶 is a random variable on a bounded interval �𝑋𝐶
𝑚𝑚𝑚

,𝑋𝐶
𝑚𝑚𝑚

� 
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Figure 6-1 Alternative system regimes in abridged 'shallow lake' model 

 

6.1.2 The ‘No learning’ model 

 

In the ‘No learning’ model, the decision-maker fails to immediately 

acknowledge the possibility of learning about unknown threshold locations, and the 

associated value of information. This means the decision-maker will initially make a 

sub-optimal decision because the impact of today’s actions on the speed of learning is 

not considered. Primarily, the ‘Learning’ and ‘No learning’ models differ because the 

lower and upper bounds of the prior distribution for threshold location are state 

variables in the ‘Learning’ model, whereas, they are parameters in the ‘No learning’ 

model. 

 

The Bellman equation of the utility function for the ‘No learning’ model is 

identical to that of the ‘Learning’ model, and is described by the following equation: 

 

 
𝑉𝑖(𝑋𝑡) = max

𝑃𝑡
�𝑘𝑃𝑡 − 𝑋𝑡2

+ 𝛿 �𝐴𝑡+1(𝑋𝑡+1).𝑉𝐴(𝑋𝑡+1) + �1 − 𝐴𝑡+1(𝑋𝑡+1)�.𝑉𝐵(𝑋𝑡+1)�� 
(67) 

 

Where 
𝑉𝐴(𝑋𝑃+1) = 𝑉𝐴(𝐵𝑋𝑃 + 𝑏+𝑃𝑃) 
𝑉𝐵(𝑋𝑃+1) = 𝑉𝐵(𝐵𝑋𝑃 + 𝑏+ 𝑃𝑃 +Ω) 
𝑚 = 𝐴,𝐵 

 

 

𝑋𝐶
𝑚𝑎𝑚

 𝑋𝐶
𝑚𝑚𝑚

 
Stock of phosphorus (𝑋) 

𝑅𝐵 

𝑅𝐴 

Regime (𝑅) 



133 
 

However, the lower and upper bounds of the prior distribution are not updated 

as hypothetical learning occurs. This means that: 

 

𝑎𝑗𝑡
𝑚𝑖𝑛 = 𝑎1𝑚𝑖𝑛  ∀ 𝑃 

𝑎𝑗𝑡
𝑚𝑚𝑚 = 𝑎1𝑚𝑚𝑚   ∀ 𝑃 

𝐴𝑡+1(𝑋𝑡+1) = 𝐴1(𝑋𝑡+1)  ∀ 𝑃 

 

As a result of this failure to acknowledge the potential for learning, a sub-

optimal level of the control variable will be perceived as optimal in the first time 

period (i.e. today). Thereafter31, the decision-maker will rely on the correct model 

specification, the ‘Learning’ model, when determining optimal decisions. Therefore, 

the value of information captures the cost of the decision-maker making a sub-optimal 

decision today, and the follow-on effects in future time periods. 

 

6.2 Simulation methodology 

 

This section explains the premise of the MATLAB© code used to solve the 

simulation model. This string of code forms a recursive solution algorithm that 

captures the elements of the conceptual model described in Chapter 3. The model is 

then run to obtain numerical solutions for a range of different model parameter values. 

The ultimate aim is to determine the level of the control variable ‘today’ that will 

maximise the expected NPV of utility from the system over an infinite time horizon, 

and when the benefits of active learning about unknown threshold locations are 

explicitly considered. 

 

First, the parameter values and initial values of the state variables must be 

defined. The state variables are the lower and upper bounds of the prior distribution 

for the unknown threshold location, and the initial concentration of phosphorus in the 

lake. The model parameter values are the number of discrete time periods modelled, 

the relative weightings of direct utility and consumption utility in the objective 

                                                                 
31 From time period 2 onwards. 
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function, and the parameters that describe the evolution of phosphorus in the lake i.e. 

the system dynamics. 

 

The computationally intensive nature of the problem necessitated the use of a 

grid of initial values of the state variables. The grid points were concentrated in 

regions of the state-space thought most likely to contain optimal solution values, 

however, the total number of grid points used was restricted by the ‘curse of 

dimensionality’. A three-dimensional grid containing the lower bound, upper bound 

and phosphorus stock was then cleaned such that only feasible specifications of the 

prior distribution were analysed. That is, specifications where the upper bound is 

greater than the lower bound. This left a grid of 377 points for each iteration. Upon 

solving the problem for each grid point, the solution values for levels of the state 

variables that did not form one of the grid points were interpolated using a flexible 

functional form (translog) regression.32 This process was repeated for each iteration of 

the model. For each iteration, the optimisation problem was solved using MATLAB’s 

‘Global Search’ algorithm, to avoid confusion between local and global optima. 

 

Since the model must be solved recursively, the problem is first optimised for 

the terminal time period. The value function for the terminal period differs from all 

other time periods because of the inclusion of a penalty value based on the health of 

the system, stock of phosphorus, at the end of the terminal time period. The penalty 

creates a disincentive for the decision-maker to exploit the system in the terminal time 

period, since a higher final level of phosphorus is associated with a higher penalty. 

The negative consequences of an undesirable regime shift in the terminal time period 

would otherwise not be considered because they are not felt until the succeeding time 

period. The terminal value function is optimised for two alternative specifications, 

which are spending the terminal time period in either the preferred regime (A) or the 

less preferred regime (B). One, or both, of these value functions then feed into the 

value functions of the preceding time period, and the process is repeated many times 

to approximate an infinite time horizon problem. 

 

                                                                 
32 For all translog regressions corresponding to each iteration, the 𝑅2 value exceeded 0.9. For almost all 
iterations, the 𝑅2 value exceeded 0.95. 
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For all non-terminal time periods, the system is modelled such that a regime 

shift may occur at the end of the time period. For example, the system can be in 

Regime A at the beginning, and for the duration, of time period 𝑃 − 1 then experience 

a regime shift to Regime B prior to the beginning of time period 𝑃. Therefore, six 

permutations must be considered, which are modelled as six separate constraints on 

the level of phosphorus stock in the previous (𝑃 − 1) and current (𝑃) time periods. 

These permutations capture (i) the system remaining in the ‘safe’ region, not crossing 

the closer bound of the prior, and certainly not experiencing a regime shift, (ii) the 

system being perturbed beyond the further bound of the prior and certainly 

experiencing a regime shift, and (iii) the system being perturbed into the ‘risky’ 

region, with associated non-zero probabilities of experiencing a regime shift or not 

experiencing a regime shift. These three possibilities expand to six permutations 

because the system could possibly have been in either of the two alternative regimes 

in the previous time period (𝑃 − 1). 

 

Each of these six permutations represent separate cases to be optimised and 

are associated with one of the six constraints described above. These six different 

cases are then divided into two groups, one for when the system is in Regime A in the 

previous time period (𝑃 − 1) and another for when the system is in Regime B in the 

previous time period. Each group contains the three permutations (i), (ii) and (iii) 

described above that apply to the corresponding system regime, A or B. 

 

The value function is then optimised for each grid point of initial conditions 

for the state variables, and for each of the three cases in each group. For example, if 

the system was in Regime A in the previous time period (𝑃 − 1), it could possibly take 

any of the three paths (i), (ii) and (iii) described above. Each of these paths is 

associated with a different level of the value function. A rational decision-maker will 

choose the path that derives the highest expected NPV of utility. This means that for 

each combination of the initial conditions of the state variables (grid point), the 

decision-maker chooses the path that results in the highest expected NPV and only the 

level of the value function and optimal level of the control variable associated with 

this particular path is of importance. 
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It is also possible that one or two of the paths are not feasible, given a 

particular grid point. For example, if the system is in Regime B in the previous time 

period (𝑃 − 1) and the carried-over stock of phosphorus is very large, it may not be 

ecologically possible for the stock of phosphorus to be reduced sufficiently for a 

regime shift to occur in the current time period. In this case, the particular system path 

is infeasible for the chosen initial levels of the state variables and a ‘Not a Number’ 

value is recorded for the value function. 

 

The process of solving recursively, or via backward induction, is repeated for 

a finite number of discrete time periods, with the aim of approximating a problem 

with an infinite time horizon. This process involves optimising the value function of 

the current time period (𝑃) for a grid of initial values of the state variables, 

interpolating these results for values that weren’t included in the grid, and feeding 

these model parameter estimates into the value function of the previous time period 

(𝑃 − 1). This iterative process is able to incorporate active learning via the evolution 

of the lower and upper bound state variables. The final iteration involves optimising 

the value function, and determining the optimal level of the control variable, for the 

initial time period of the problem. This corresponds to determining the optimal 

amount of fertiliser application ‘today’ that will maximise the expected NPV of utility 

from the system over an infinite time horizon, and when the benefits of active 

learning are explicitly considered. 

 

6.3 Simulation results 

 

This section presents the results of the model simulation and examines the 

propositions stated in Chapter 1. There is particular focus on the consequences of 

using alternative prior probability distributions to describe the unknown location of 

the threshold, as well as the relative contributions of consumption utility and direct 

utility to total utility. These parameters have been chosen because they are under the 

control of the decision-maker. The sensitivity of (i) optimal decisions, (ii) maximum 

expected NPV of utility, and (iii) the level of the control variable to the initial 

conditions of the problem are also examined. 
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6.3.1 Expected net present value calculations and the value of information 

 

A failure to consider the benefits, and costs, of learning means the decision-

maker is pursuing an incomplete and incorrect objective. Axiomatically, the 

maximum expected NPV of utility generated by an ecosystem will be higher when 

active learning is included in the optimisation. What is perceived to be the optimal 

solution when active learning is not considered differs from the optimal solution 

determined using a more complete objective function. Therefore, it is more interesting 

to examine the magnitude of the increase in the maximum expected NPV of utility 

and the change in the optimal level of the control variable when active learning is 

considered. The magnitude of expected gains depends on the subjective choice of 

both the lower and upper bounds of the prior distribution; however, these gains are 

always non-negative. 

 

P1.1: The maximum expected NPV of utility generated by an ecosystem will 

be higher for the case when active learning is included in the optimisation 

compared to the case when active learning is not included in the optimisation. 

 

Figure 6-2 and Figure 6-3 show a comparison of the expected NPV of utility 

when active learning is considered (Learning) and when active learning is not 

considered (No learning). For the latter case, the potential for learning is not 

considered for the initial time period, but is considered for all succeeding time 

periods. In other words, there is a lag of one time period before the decision-maker 

realises that the effects of active learning should be considered within the decision 

problem; however, a sub-optimal decision will have been made in the first time 

period. If the decision-maker takes longer than one time period to come to this 

realisation, the value of information will be greater. 
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Parameters:  X(0) = 0.01  amax(0) = 2.01  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-2 Expected NPV of utility when the lower bound is varied 

 

 
Parameters:  X(0) = 0.01  amin(0) = 0.26  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-3 Expected NPV of utility when the upper bound is varied 

 

For both models, the lake is initially in the preferred regime, and the 

concentration of phosphorus in the lake is known to be below the threshold level. In 

Figure 6-2, the upper bound of the prior distribution for the unknown threshold 

location is held fixed while the lower bound is varied. In Figure 6-3, the lower bound 

of the prior distribution for the unknown threshold location is held fixed while the 

upper bound is varied. The level of the other state variable, the stock of phosphorus 
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carried over from the previous time period, is also held fixed. For both Figure 6-2 and 

Figure 6-3, one of the prior bounds is held fixed while increasing the variance of the 

prior distribution, as measured by the distance between the lower and upper bounds of 

the prior distribution. 

 

As the lower bound (amin) is varied, there is almost no discernible difference 

between the expected NPV of utility when comparing the ‘Learning’ and ‘No 

learning’ models. This is attributable to the subjective choice of upper bound for the 

prior distribution, which is far from the initial level of the phosphorus stock. Note that 

the initial stock of phosphorus (𝑋) is 0.01 and the initial upper bound (amax) is 2.01. 

 

For values of the lower bound (amin) around 0.51, there is a discernible 

difference between the expected NPV of utility for the two models. For this small 

range of values, there is an expectation of net gains resulting from the trade-off 

between incurring extra risk of experiencing an undesirable regime shift and the 

possibility of favourably updating the prior distribution for the unknown threshold 

location. A favourable update of the prior distribution involves revising the lower 

bound (amin) upwards, which means a higher level of fertiliser can be applied in 

future time periods while knowing that the threshold will not be crossed. 

 

For low values of the lower bound (amin) of the prior distribution, choosing a 

level of the control variable that results in the lower bound (amin) being crossed is 

associated with a very low probability of crossing the threshold and learning valuable 

information about the system. This is because there is a large difference between the 

lower and upper bound, so the marginal probability of an additional unit of 

phosphorus stock resulting in the threshold being crossed is quite low. Therefore, 

there is limited additional incentive to perturb the system beyond the lower bound 

(amin) when the potential for learning is considered, compared to the case where 

learning is not considered. 

 

Conversely, for high values of the lower bound (amin), the system must be 

excessively perturbed in order to learn more about the location of the threshold. This 

is unlikely to happen because any consumption utility gains from additional 
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phosphorus application33 will be more than offset by direct utility losses34. For this 

reason, the threshold is essentially a non-binding constraint when the initial level of 

the phosphorus state variable is low and the lower bound (amin) of the prior 

distribution is sufficiently high. 

 

As the upper bound is varied in the ‘Learning’ and ‘No learning’ models, there 

is a positive near-monotonic35 relationship between the expected NPV of utility and 

the subjective choice of upper bound (amax) for the prior distribution of the unknown 

threshold location. This is expected for the ‘Learning’ model because a consistent 

instantaneous utility function (one that considers the effects of active learning) is used 

for all time periods in the model. There is a discernible difference between the two 

curves in Figure 6-3, which indicates that the first-period level of the control variable 

is sub-optimal for the ‘No learning’ model. The degree to which this initial sub-

optimal decision then affects the expected NPV of utility is dependent on the choice 

of upper bound (amax) for the prior distribution. For low levels of the upper bound 

(amax), perturbing the system to a point between the lower (amin) and upper bounds 

is associated with a high probability of learning about the system and significantly 

reducing the variance of the prior distribution, as measured by the difference between 

the lower and upper bounds. Conversely, when the variance of the prior distribution is 

high, there is a smaller likelihood of learning about the system, and there is a 

convergence between the expected NPV of utility from the two models. 

 

P1.3: The value of information (i.e. the difference between the expected NPV 

of utility when active learning is included compared to when it is not included) 

will have a non-monotonic relationship with the initial level of uncertainty 

about the threshold location (as measured by standard deviation of prior 

probability distribution). 

 

The value of information is defined as the difference in the expected NPV of 

utility between the two models. It is naturally expected that the value of information 

                                                                 
33 Due to higher crop yields and higher profits. 
34 Due to the lake being less suitable for recreational uses e.g. swimming, fishing. 
35 This is likely to simply be an artefact of the numerical estimation method used. A monotonic 
relationship is expected. 
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will be positive because more information allows a decision-maker to make more 

accurate decisions. What are of more interest are the particular problem characteristics 

that make information more, or less, valuable. It is worth noting that, for the ‘No 

learning’ model, it has been assumed that the decision-maker has only taken one time 

period to realise that the effects of learning should be considered. If the decision-

maker takes more than one time period to realise this, and makes sub-optimal 

decisions for a greater number of time periods, the value of information will be even 

higher. 

 

In Figure 6-4, the value of information is shown as the lower bound (amin) of 

the prior distribution is varied while maintaining a constant level of variance, as 

measured by the distance between the lower and upper bounds of the prior 

distribution. In Figure 6-5, the value of information is shown as the upper bound 

(amax) of the prior distribution is varied while maintaining a constant level of 

variance, as measured by the distance between the lower and upper bounds of the 

prior distribution. 

 

 
Parameters:  X(0) = 0.01  amax(0) = 2.01  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-4 Value of information when the lower bound is varied 

 

Following from the explanation given for Figure 6-2 above, the value of 

information, as a percentage of the expected NPV of utility from the ‘No learning’ 

model, is negligible for most values of the lower bound (amin) shown. It is only 

0

1

2

3

0.26 0.51 0.76 1.01 1.26 1.51 1.76

Va
lu

e 
(%

 o
f N

PV
 fr

om
 'N

o 
le

ar
ni

ng
') 

amin 



142 
 

around amin = 0.51 that there is a beneficial trade-off between incurring extra risk of 

crossing the threshold in combination with a reasonable probability of learning 

valuable information about the threshold’s location. Although quite small in absolute 

terms, Figure 6-4 shows a non-monotonic relationship between the value of 

information and the initial level of uncertainty36 about the threshold location. 

 

The value of information, as a percentage of the expected NPV of utility from 

the ‘No learning’ model, is highest for low values of the upper bound (amax), but 

approaches zero for high values of the upper bound. When both the lower and upper 

bounds of the prior distribution are low, and therefore the variance is low, perturbing 

the system between the two bounds is highly likely to result in valuable information 

being acquired about the unknown threshold location. The explicit consideration of 

active learning is at its most valuable for intermediate values of the upper bound, 

around amax = 0.76. The value of information then gradually declines as the variance 

of the prior distribution increases and the likelihood of the decision-maker learning 

about the threshold location declines. Similar to above, Figure 6-5 shows a non-

monotonic relationship between the value of information and the initial level of 

uncertainty about the threshold location. 

 

 
Parameters:  X(0) = 0.01  amin(0) = 0.26  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-5 Value of information when the upper bound is varied 

 
                                                                 
36 Measured by assuming Knightian risk, rather than Knightian uncertainty. 
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6.3.2 Extent of risk averse activity and willingness to incur risk 

 

It is expected that the explicit consideration of active learning will make the 

decision-maker more willing to incur risk. In this context, incurring more risk means 

taking actions that result in a higher probability of crossing a threshold. The decision-

maker is more likely to incur risk because it is the only way to learn more about a 

threshold’s exact location. The benefits flowing from learning about a threshold’s 

exact location are only considered in a model that explicitly factors in active learning; 

these benefits are otherwise not considered. The most notable potential benefit results 

when more information is gathered about the location of a threshold and the prior 

probability bounds are tightened. A cost saving (alternatively, a benefit) flows from 

requiring less active control of the system to avoid a threshold crossing than would 

otherwise have been assumed, if using the original prior distribution. Proposition P1.2 

is expected to hold regardless of whether the system has hysteretic dynamics or an 

irreversible threshold. It is tested as a combination of propositions P2.1 and P2.2 

below. 

 

P1.2: For the first time period of the problem, the amount of effort invested 

into controlling the ecosystem away from an undesirable threshold (i.e. 

investment in risk averse actions) will be lower for the case when active 

learning is included in the optimisation compared to the case when active 

learning is not included in the optimisation. 

 

For this problem, there is only one control variable, which is the amount of 

fertiliser applied to agricultural land that subsequently flows into the lake system. 

Therefore, greater investment in ‘risk averse actions’ is defined as applying a lower 

level of fertiliser, since a lower stock of phosphorus in the lake is associated with a 

lower probability of crossing the threshold from the more preferred to the less 

preferred regime. 
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P2.1: For a system with hysteretic dynamics, the optimal level of first-period 

investment in effort to control the system away from an undesirable threshold 

will be lower for the case when active learning is included in the optimisation 

compared to the case when active learning is not included in the optimisation. 

 

When the initial system regime is the preferred regime, it is expected that the 

decision-maker will desire to maintain the system in the preferred regime. However, 

factoring in the potential for learning also acknowledges that there are potential 

benefits from incurring some risk of crossing the threshold because this means that 

more information will be gathered about the location of the threshold. Gathering more 

information means updating the prior probability bounds for the unknown threshold 

location. If the updated probability bounds are more favourable, the decision-maker is 

then able to invest a lower amount of effort in controlling the system away from the 

threshold without incurring any risk of crossing the threshold. In the context of this 

problem, that means applying a higher level of phosphorus fertiliser without incurring 

any risk of crossing the threshold. 

 

Figure 6-6 shows a comparison of the optimal first-period levels of the control 

variable, fertiliser application, when active learning is considered (Learning) and 

when active learning is not considered (No learning). For both models, the lake is 

initially in the preferred regime, and the concentration of phosphorus in the lake is 

known to be below the threshold level. The vertical axis shows the level of fertiliser 

application, while the horizontal axis shows the number of time periods modelled. 

The optimal level of the control variable is plotted against the number of time periods 

modelled to show the solution converging as more time periods are added and an 

infinite time horizon is better approximated. 
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Parameters:  X(0) = 0.01  amin(0) = 0.51  amax(0) = 1.26  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-6 Optimal first-period level of phosphorus when in the preferred regime 

 

The decision-maker is more inclined to incur risk, by applying a higher 

amount of fertiliser, when active learning is considered compared to the case when 

learning is not considered. 

  

P2.2: For a system with hysteretic dynamics, the optimal level of first-period 

investment in effort to control the system in the direction of a desirable 

threshold will be lower for the case when active learning is included in the 

optimisation compared to the case when active learning is not included in the 

optimisation. 

 

When the initial system regime is the less preferred regime, it is expected that 

the decision-maker will desire to switch the system to the preferred regime. However, 

the assimilative capacity of the lake system, because of which only a small proportion 

of the phosphorus stock is retained from one time period to the next, means that the 

decision-maker is able to learn about the unknown threshold location without 

engaging in overly risk averse behaviour. This possibility is acknowledged by the 

decision-maker who considers active learning, and makes them less inclined to forgo 

short-term utility gains by engaging in overly risk averse behaviour that would result 

in a slightly higher probability of learning about the threshold’s location. This is 
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because the system itself effectively engages in some risk averse behaviour due to its 

assimilative capacity. 
 

Figure 6-7 shows a comparison of the optimal first-period levels of the control 

variable, fertiliser application, when active learning is considered (Learning) and 

when active learning is not considered (No learning). For both models, the lake is 

initially in the less preferred regime, and the concentration of phosphorus in the lake 

is known to be above the threshold level. The vertical axis shows the level of fertiliser 

application, while the horizontal axis shows the number of time periods modelled. 

The optimal level of the control variable is plotted against the number of time periods 

modelled to show the solution converging as more time periods are added and an 

infinite time horizon is better approximated. 
 

 
Parameters:  X(0) = 1.76  amin(0) = 0.51  amax(0) = 1.26  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-7 Optimal first-period level of phosphorus when in the non-preferred regime 

 

When beginning the problem in the less preferred regime, the decision-maker 

will apply more fertiliser when active learning is considered compared to the case 

where learning is not considered. This means that there will be less chance of 

experiencing a desirable regime shift at the end of the first time period for the case 

where the effects of learning have been considered by the decision-maker. 
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P2.3: For a system with an irreversibility, the optimal level of first-period 

investment in effort to control the system away from an undesirable threshold 

will be lower for the case when active learning is included in the optimisation 

compared to the case when active learning is not included in the optimisation. 

 

When the initial system regime is the preferred regime, and the system has an 

irreversible threshold, the decision-maker will obviously desire to maintain the system 

in the preferred regime. However, even at the risk of experiencing an irreversible 

regime shift, factoring in the possibility of learning also acknowledges that there are 

potential benefits from incurring some risk of crossing the threshold because this 

means that more information will be gathered about the location of the threshold. 

Gathering more information means updating the prior probability bounds for the 

unknown threshold location. If the updated probability bounds are more favourable, 

the decision-maker is then able to invest a lower amount of effort in controlling the 

system away from the threshold without incurring any risk of crossing the threshold. 

In the context of this problem, that means applying a higher level of phosphorus 

fertiliser without incurring any risk of crossing the threshold. 

 

Figure 6-8 shows a comparison of the optimal first-period levels of the control 

variable, fertiliser application, when active learning is considered (Learning) and 

when active learning is not considered (No learning). For both models, the lake is 

initially in the preferred regime, and the concentration of phosphorus in the lake is 

known to be below the threshold level. The vertical axis shows the level of fertiliser 

application, while the horizontal axis shows the number of time periods modelled. 

The optimal level of the control variable is plotted against the number of time periods 

modelled to show the solution converging as more time periods are added and an 

infinite time horizon is better approximated. 
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Parameters:  X(0) = 0.01  amin(0) = 0.51  amax(0) = 1.26  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-8 Optimal first-period level of phosphorus with an irreversible threshold 

 

Although the optimal first-period level of the control variable is slightly higher 

for the ‘No learning’ model compared to the ‘Learning’ model, this is most likely 

explained as a rounding error resulting from the numerical estimation method used. 

For both models, the lower bound (amin) of the prior distribution is 0.51. The optimal 

level of the control variable for each model will leave the stock of phosphorus at a 

level that is marginally below the lower bound of the prior, with zero probability of 

crossing the undesirable and reversible threshold. In other words, the potential 

benefits of learning about the threshold location are insufficient to justify incurring 

any risk of crossing the undesirable threshold. 

 

6.3.3 Subjective choice of prior distribution for unknown threshold location 

 

The dynamic optimisation undertaken here relies heavily on the subjective 

choice of prior distribution for the unknown threshold location. In this section, the 

sensitivity of optimal decisions to the subjective choice of prior is analysed. 

 

P3.1: For a system with hysteretic dynamics that begins the problem in the 
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sensitive to changes in the closer bound (i.e. crossing this bound means the 

probability of a regime shift is positive) than changes in the further bound (i.e. 

crossing this bound means the threshold is crossed with certainty) of the prior 

probability distribution for the unknown threshold location. 

 

Figure 6-9 and Figure 6-10 show the optimal levels of the control variable 

when active learning is considered (Learning) and when active learning is not 

considered (No learning), respectively. For both models, the lake is initially in the 

preferred regime, and the concentration of phosphorus in the lake is known to be 

below the threshold level. Both Figure 6-9 and Figure 6-10 are surface plots that show 

the optimal level of the control variable for different combinations of the lower and 

upper bounds of the prior distribution. For the ‘Learning’ model, it is expected that 

the optimal level of the control variable will be more sensitive to changes in the lower 

bound because the decision-maker can only learn about the threshold location by 

perturbing the system beyond the lower bound. For the ‘No learning’ model, it is also 

expected that the optimal level of the control variable will be more sensitive to 

changes in the lower bound. However, the decision-maker will be inclined to perturb 

the system in the direction of the threshold, but less intent on crossing the lower 

bound than would be the case for the ‘Learning’ model. 

 

 
Parameters:  X(0) = 0.01  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-9 Sensitivity of control variable to choice of prior bounds - 'Learning' model 

(Preferred regime) 
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When using the ‘Learning’ model and beginning the problem in the preferred 

regime, the optimal first-period level of fertiliser application is more sensitive to 

changes in the upper bound (amax) of the prior distribution for the unknown threshold 

location than changes in the lower bound (amin). Crossing the lower bound results in 

a positive probability of crossing the undesirable threshold, while crossing the upper 

bound means the threshold will be crossed with certainty. Holding the lower bound 

fixed while increasing the upper bound (moving in a rightward direction) decreases 

the marginal probability of crossing the threshold for each additional unit of fertiliser 

applied. Therefore, the decision-maker is willing to apply more fertiliser. 

 

 
Parameters:  X(0) = 0.01  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-10 Sensitivity of control variable to choice of prior bounds - 'No learning' model 
(Preferred regime) 

 

When using the ‘No learning’ model and beginning the problem in the 

preferred regime, the optimal first-period level of fertiliser application is more 

sensitive to changes in the upper bound (amax) of the prior distribution for the 

unknown threshold location than changes in the lower bound (amin). However, the 

optimal level of fertiliser application is monotonically increasing in both the lower 

(amin) and upper (amax) bounds. This relationship is in contrast to that described for 

the ‘Learning’ model in Figure 6-9 above, where there is a non-monotonic 

relationship between the optimal level of fertiliser application and the lower bound 

(amin). 
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P3.2: For a system with hysteretic dynamics that begins the problem in the 

economically-non-preferred regime, the optimal level of first-period 

investment in effort to control the system in the direction of the desirable 

threshold will be more sensitive to changes in the closer bound (i.e. crossing 

this bound means the probability of a regime shift is positive) than changes in 

the further bound (i.e. crossing this bound means the threshold is crossed with 

certainty) of the prior probability distribution for the unknown threshold 

location. 

 

Figure 6-11 and Figure 6-12 show the optimal levels of the control variable 

when active learning is considered (Learning) and when active learning is not 

considered (No learning), respectively. For both models, the lake is initially in the less 

preferred regime, and the concentration of phosphorus in the lake is known to be 

above the threshold level. Both Figure 6-11 and Figure 6-12 are surface plots that 

show the optimal level of the control variable for different combinations of the lower 

and upper bounds of the prior distribution. For the ‘Learning’ model, it is expected 

that the optimal level of the control variable will be more sensitive to changes in the 

upper bound (amax) because the decision-maker can only learn about the threshold 

location, as well as possibly switch to the more preferred regime, by perturbing the 

system beyond the upper bound. For the ‘No learning’ model, it is also expected that 

the optimal level of the control variable will be more sensitive to changes in the upper 

bound (amax). The decision-maker will be inclined to perturb the system in the 

direction of the threshold, and more intent on crossing the upper bound than would be 

the case for the ‘Learning’ model. 

 

When the system is initially in the non-preferred regime, the closer bound will 

be the upper bound (amax) of the prior distribution. Crossing the threshold will result 

in a desirable regime shift from the non-preferred to the preferred regime. The optimal 

level of the control variable is highly sensitive to the subjective choice of lower bound 

(amin) and also highly sensitive to the subjective choice of upper bound (amax). 
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Parameters:  X(0) = 2.26  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-11 Sensitivity of control variable to choice of prior bound - 'Learning' model 

(Non-preferred regime) 

 

The optimal level of the control variable is sensitive to the subjective choice of 

both bounds of the prior distribution (amin and amax); however, there is a non-

monotonic relationship in both cases. When there is very little uncertainty about the 

exact location of the threshold (i.e. the lower and upper bounds are close together), 

yet the threshold location is far from the current level of the state variable (note that 

X(0) = 2.26), there is a strong incentive for the decision-maker to apply a minimal 

amount of fertiliser, so the desirable threshold can be crossed as quickly as possible 

(bottom-left corner of Figure 6-11). 

 

When the upper bound of the prior distribution is very close to the current 

level of the state variable and the level of uncertainty about the unknown threshold 

location is low, the decision-maker will apply more fertiliser because the assimilative 

capacity of the system is likely bring about a desirable regime change without 

additional risk averse actions on the part of the decision-maker (top-right corner of 

Figure 6-11). 

 

When the variance of the prior distribution is increased, yet the upper bound 

(amax) is still far from the current stock of phosphorus, the optimal first-period level 
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distribution is increased, and the upper bound (amax) is close to the current stock of 

phosphorus, the optimal first-period level of the control variable decreases. This 

behaviour is reflective of the high probability37 of experiencing a desirable regime 

shift if a low level of phosphorus fertiliser is applied. 

 

 
Parameters:  X(0) = 2.26  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-12 Sensitivity of control variable to choice of prior bounds - 'No learning' model 

(Non-preferred regime) 

 

Figure 6-12 shows the sensitivity of the control variable to changes in the prior 

probability bounds when the ‘No learning’ model is used. There is a positive 

monotonic relationship between the optimal level of the control variable and the 

subjective choice of lower bound (amin). There is also a negative monotonic 

relationship between the optimal level of the control variable and the subjective 

choice of upper bound (amax), except for very low values of the upper bound. This is 

in contrast to the ‘Learning’ model, where there is a non-monotonic relationship 

between the optimal level of the control variable and each of the prior probability 

bounds (amin and amax). 

 

P3.3: For a system with an irreversibility that begins the problem in the 

economically-preferred regime, higher uncertainty about the location of the 

                                                                 
37 For some parameter values of the lower and upper bounds, a desirable regime shift will be 
guaranteed if a sufficiently low level of phosphorus fertiliser is applied. 
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(sole) undesirable threshold will result in a lower optimal level of first-period 

investment in effort to control the system away from the undesirable 

threshold. 

 

It is expected that higher variance of the prior distribution for an irreversible 

threshold will be associated with a higher optimal level of the control variable (less 

risk averse behaviour). This is because greater variance, as measured by the distance 

between the lower and upper bounds of the prior distribution for the unknown 

threshold location, means that perturbing the system in the direction of the threshold 

is associated with a smaller marginal increase in the probability of crossing the 

threshold, compared to a lower level of variance. In Figure 6-13, the upper bound of 

the prior distribution for the unknown threshold location is held fixed while the lower 

bound is varied. In Figure 6-14, the lower bound of the prior distribution for the 

unknown threshold location is held fixed while the upper bound is varied. The level of 

the other state variable, the stock of phosphorus carried over from the previous time 

period, is also held fixed. For both Figure 6-13 and Figure 6-14, one of the prior 

bounds is held fixed while increasing the variance of the prior distribution, as 

measured by the distance between the lower and upper bounds of the prior 

distribution. 

 

 
Parameters:  X(0) = 0.01  amax(0) = 2.01  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-13 Optimal first-period level of phosphorus when lower bound is varied 

(Irreversible threshold) 
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Unsurprisingly, the optimal level of phosphorus determined using the ‘No 

learning’ model will result in the decision-maker incurring zero risk of the undesirable 

and irreversible threshold being crossed. This is because the lower bound (amin) of 

the prior distribution will not be crossed, regardless of the subjective choice of lower 

bound. For the ‘Learning’ model, the decision-maker will incur a positive probability 

of crossing the threshold for low values of the lower bound (amin). For example, the 

implied probability of crossing the irreversible threshold, which is a function of the 

prior distribution and the level of fertiliser applied, is 21% when the lower bound is 

0.26 and 10% when the lower bound is 0.51. The decision-maker is willing to incur 

some risk because, if the threshold is not crossed and the prior distribution is 

favourably updated, a higher level of fertiliser can be applied in all future time periods 

while knowing that the threshold will not be crossed. 

 

 
Parameters:  X(0) = 0.01  amin(0) = 0.26  k = 1.5  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-14 Optimal first-period level of phosphorus when the upper bound is varied 
(Irreversible threshold) 

 

Once again, the optimal level of phosphorus determined using the ‘No 

learning’ model will result in the decision-maker incurring zero risk of the undesirable 

and irreversible threshold being crossed. This is because the lower bound (amin) of 

the prior distribution will not be crossed. Instead, the level of the control variable 

(phosphorus applied) is chosen such that the state variable (phosphorus stock) will 

remain marginally below the level of the lower bound (amin) of the prior distribution. 
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As such, the optimal level of the control variable is insensitive to changes in the upper 

bound (amax) of the prior distribution. 

 

For the ‘Learning’ model, the decision-maker will incur a positive probability 

of crossing the threshold for high values of the upper bound (amax). For example, the 

implied probability of crossing the irreversible threshold, which is a function of the 

prior distribution and the level of fertiliser applied, is 5% when the upper bound is 

1.01, 13% when the upper bound is 1.51, and 21% when the upper bound is 2.01. The 

decision-maker is willing to incur some risk because, if the threshold is not crossed 

and the prior distribution is favourably updated, a higher level of fertiliser can be 

applied in all future time periods while knowing that the threshold will not be crossed. 

 

6.3.4 Relative contributions of direct and consumption utility 

 

In the general form of an ecosystem management problem, utility can be 

sourced in the form of both consumption utility and direct utility. Consumption utility 

is that utility paid for using any profits acquired from the system. Direct utility is 

obtained based on the state, or health, of the system. For this case study, consumption 

utility is sourced from the production and sale of a crop on agricultural land adjacent 

to the lake. The output of the crop is modelled as a function of the amount of 

phosphorus fertiliser applied. Direct utility is modelled as disutility; however, could 

easily be modelled as positive utility relative to a different benchmark level. Direct 

utility is obtained based on the health of the lake, and captures utility from the 

aesthetics and recreational use of the lake. 

 

P4.1: For a system where utility is sourced from both consumption and direct 

utility, the optimal level of first-period investment in effort to control the 

system away from the undesirable threshold will be higher ceteris paribus 

when more weight is placed on direct utility, relative to consumption utility. 

 

The key difference between consumption utility and direct utility is that 

consumption utility is much more easily varied over time. For this problem, 
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consumption utility is simply a function of the level of fertiliser applied. This level 

can be chosen independently of the current state and previous states of the system. On 

the other hand, direct utility is a function of the current state of the system, where the 

current state is a function of the stock of phosphorus in the lake at the end of the 

previous time period, the current system regime, and the level of phosphorus added in 

the current time period. Therefore, direct utility is determined as a function of several 

variables, and is less easily varied than consumption utility. For this reason, it is 

expected that a decision-maker will be less inclined to risk crossing an undesirable 

threshold, and experiencing a temporary or prolonged decline in direct utility, when a 

higher proportion of total utility is sourced from direct utility. Figure 6-15 is used to 

show the optimal first-period level of phosphorus application for different 

proportional contributions of consumption and direct utility as the lower bound of the 

prior distribution is varied, while in Figure 6-16, the upper bound of the prior 

distribution is varied. The parameter value 𝑘 assigns a weighting of consumption 

utility relative to direct utility, where a higher value of 𝑘 denotes a higher relative 

weighting of consumption utility. 

 

 
Parameters:  X(0) = 0.01  amax(0) = 2.01  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-15 Optimal first-period level of phosphorus when the relative importance of 
consumption utility and the lower bound of the prior distribution are varied 
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Parameters:  X(0) = 0.01  amin(0) = 0.26  B = 0.1  b = 0.02  Ω = 0.2 

Figure 6-16 Optimal first-period level of phosphorus when the relative importance of 
consumption utility and the upper bound of the prior distribution is varied 

 

Figure 6-15 and Figure 6-16 show the optimal first-period level of phosphorus 

application as the lower bound and the upper bound of the prior distribution are 

varied, respectively. In both cases, a higher relative weighting of consumption utility 

relative to direct utility, as indicated by a higher value of 𝑘, results in a higher optimal 

first-period level of the control variable.38 This means that the decision-maker is 

willing to incur more risk of crossing the undesirable threshold and experiencing a 

temporary or prolonged decline in direct utility because the consumption utility 

obtained is of relatively more importance and is independent of the current system 

regime of the lake. 

 

Summary of model simulation results 

 

The results of two different dynamic optimisation models have been 

compared. One model explicitly factors in the possibility of learning about the 

unknown location of the ecological threshold in the shallow lake system, while the 

other model does not. First, the expected NPV of utility from the system will be 

higher when active learning is considered, compared to when it is not considered. 

                                                                 
38 The slightly different shapes of the curves in Figure 6-15 are likely to be a result of the numerical 
estimation method used. A translog, or flexible functional form, function was used to estimate these 
curves. Of more importance is the observed trend as the parameter 𝑘 is varied. 
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Second, the value of information is highest when the prior distribution has low 

variance and the system state variable is close to the prior distribution. However, the 

value of information is negligible when the closer bound of the prior distribution for 

the unknown threshold location is far from the current level of the underlying system 

variable. In this case, the optimal level of the control variable determined using the 

‘No learning’ model is only slightly sub-optimal. Third, the decision-maker will 

generally engage in riskier behaviour when active learning is considered because it is 

only possible to learn about the threshold’s location by incurring some risk of 

crossing it. This is also true for the case of an irreversible threshold. Fourth, the 

optimal level of the control variable is generally a function of both the lower and 

upper bounds of the prior distribution, and the associated variance of the prior. Fifth, 

the decision-maker will be less willing to incur risk of crossing an undesirable 

threshold when a greater proportion of total utility is sourced from direct utility, 

compared to consumption utility. This is because direct utility is a function of the 

current system regime and crossing an undesirable threshold will result in a temporary 

or prolonged downturn in utility. On the other hand, consumption utility is 

independent of the system state and is more easily varied. 

 

Finally, it is worthwhile to reiterate the ultimate objective of the decision-

maker. The conceptual model is not used to identify paths describing expected time 

trajectories of state and control variables, or optimal trajectories to a steady state. 

Instead, the conceptual model is used to determine the decision-maker’s optimal 

actions in the current time period (i.e. ‘today’), conditional on the acknowledgement 

that these actions will impact on the speed of learning about the unknown threshold 

location. Therefore, the decision-maker undertakes actions that maximise the 

expected return from the system, having made use of all available information. 

Following these actions, the decision-maker may learn about the unknown threshold 

location. This new information is then factored into the decisions made in the 

following time period, as per the iterative process of learning.  
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Chapter 7. Conclusions and implications 

 

This thesis aimed to examine (1) how active learning about unknown 

ecological threshold locations impacts management decisions, (2) the sensitivity of 

perceived optimal management decisions to the particular dynamics of an ecosystem, 

that is, the responsiveness of system ‘output’ to changes in system ‘input’, and (3) the 

sensitivity of perceived optimal management decisions to the subjective choice of 

prior distribution for unknown threshold locations. To meet these aims, a dynamic 

optimisation framework was developed to explicitly consider the role of active 

learning about unknown threshold locations in the modelling and management of 

ecological systems. The dynamic programming framework was applied to various 

ecological contexts, including numerical simulations of a shallow lake ecosystem 

using a wide range of alternative parameter values. 

 

The discussion below is based on comparisons between the results of two 

different mathematical models, where one model explicitly considers the impact of 

active learning about unknown threshold locations, and the other model does not 

consider this impact. Explicit consideration of the value of information, due to active 

learning, means the decision-maker will generally make decisions that incur a greater 

risk of crossing the threshold in order to learn about its location. This finding is 

independent of the initial prior probability distribution used to model threshold 

location and the type of ecosystem dynamics considered. More specific results, and 

the implications of these results, are discussed below. 

  

7.1 Impact of active learning on optimal decisions 

 

When managing a complicated ecological system, the decision-maker will 

frequently be confronted with a scenario where a critical ecological threshold is 

known, or presumed, to exist, but its exact location is unknown. In this case, the 

decision-maker can postulate a prior probability distribution for the unknown location 

of the threshold, based on the current level of understanding about the ecological 

system. This approach allows the state-space of the system to be partitioned into two 
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regions, similarly to the risk switching point concept introduced by Nævdal (2006). 

On one side of the boundary, the threshold could not possibly be located because the 

system has traversed this path previously without crossing the threshold – it is 

‘familiar territory’. Therefore, the threshold must be located on the other side of the 

boundary. By intelligently perturbing the system, a process known as active learning, 

the decision-maker is able to learn about the unknown threshold location and refine 

the prior distribution to encompass any new information. This means that an ‘optimal’ 

decision made using the initial prior distribution may no longer be perceived as 

optimal once new information is gathered. 

 

Rather than relying on the same set of information in every future time period, 

the decision-maker will progressively gather more information about the threshold’s 

location and use it to make better-informed decisions. However, learning can only 

occur by leaving the safety of the ‘familiar territory’ and perturbing the system into 

the region that must contain the threshold. If the decision-maker fails to acknowledge 

the benefits associated with learning about the unknown threshold location, they have 

less incentive to perturb the system in its direction. Therefore, a decision-maker who 

considers the impacts of learning will engage in riskier behaviour by undertaking 

actions that result in a higher probability of crossing the threshold, but also a higher 

probability of learning about the threshold’s location. 

 

There are only two cases where the value of information is equal to zero. First, 

if the locations of ecological thresholds are known with absolute certainty. Second, 

the value of information will be zero, in the limit, as the magnitude of damages from 

an undesirable regime shift approaches infinity – otherwise known as catastrophic 

damages. If either, or both, of these characteristics are present, alertness to learning 

provides no incentive to perturb the system out of the safety of the ‘familiar territory’. 

For these two cases, adaptive management is unnecessary and inappropriate, 

respectively. Conversely, for cases with unknown threshold locations and finite 

damages, the value of information will be positive. However, its magnitude may be 

large or small. 

 

Although the risk context considered in this thesis is of a limited nature, the 

modelling framework, nonetheless, provides insight into how alertness to learning 
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influences optimal decisions. The risk context considered is one where the locations 

of ecological thresholds are fixed within the state-space; however, these locations are 

unknown to the decision-maker. This type of uncertainty is referred to by Brozovic 

and Schlenker (2011, p. 627) as “threshold uncertainty”. Real-world systems involve 

several other sources of risk, such as unknown costs of reversion following an 

undesirable regime shift, unknown or stochastic dynamics in an alternative regime, or 

the presence of stochastic thresholds. None of these additional sources of risk are 

considered here, but nor does this absence detract from the general result that 

alertness to the value of learning leads to riskier behaviour. 

 

7.2 Sensitivity of optimal decisions to particular ecological dynamics 

 

A complicated ecological system may have a reversible threshold or an 

irreversible threshold, or different combinations of the two. The degree of 

reversibility of threshold effects has a significant bearing on the size of benefits 

resulting from active learning and the optimal level of risk incurred by the decision-

maker in order to learn about threshold locations. In almost all cases, the optimal 

management decision is determined after having considered how this decision will 

impact on the process of learning about the unknown threshold location. The 

exception to this statement is a system with an undesirable and irreversible threshold 

that has already been crossed. Beginning the decision problem in the less preferred 

regime presents the decision-maker with a standard unconstrained optimisation 

problem because the system will remain in the less preferred regime in perpetuity, 

regardless of the decision-maker’s actions. Therefore, the decision-maker will not 

need to consider the possibility of crossing a threshold or learning about its location. 

 

In the case of a system with an undesirable irreversible threshold that hasn’t 

been crossed, considering the benefits of learning will lead the decision-maker to 

incur more risk than would otherwise be perceived as optimal. If the system is 

perturbed into the ‘risky’ part of the state-space but the threshold is not crossed, the 

decision-maker will know that they can continue to operate in what is likely to be a 

more profitable region with zero probability of experiencing an undesirable regime 

shift. In the case of a reversible threshold, these same benefits will apply, but the 
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system is also able to recover to the preferred regime in the event of the undesirable 

threshold being crossed. Therefore, a decision-maker who considers the benefits of 

learning will incur even more risk when managing a system with a reversible 

threshold ceteris paribus. 

 

For a system that has already crossed an undesirable desirable threshold and is 

currently in the less preferred regime, the optimal actions of the decision-maker are 

less generalisable. The decision-maker faces a trade-off between (i) actions that 

increase the probability of remaining in the less preferred regime, but generate high 

immediate returns39 and (ii) actions that increase the probability of recovering the 

system to the economically preferred regime, but require sacrificing immediate 

returns. The optimal decision is a function of the difference in returns between the 

two alternative regimes and the ease with which the system can be recovered to the 

preferred regime. 

 

The impact of different ecosystem dynamics on optimal decisions is also 

dependent on which sources of utility are held in higher regard. Utility can be a direct 

function of the health of the system, direct utility, or result from any profits generated 

by the system, consumption utility. For example, direct utility could be sourced from 

the recreational value of a lake based on its water quality. Consumption utility is 

sourced from consumption paid for by any profits from the system. For example, from 

profits generated by selling a wheat crop grown on agricultural land that would 

become saline if poorly managed. 

 

When direct utility is more important, the decision-maker will be less inclined 

to risk damaging the health of the system. Therefore, they will choose management 

actions that are less likely to result in an undesirable threshold being crossed. 

Conversely, if consumption utility is more important, the decision-maker will choose 

riskier management actions ceteris paribus. This is because saved profits can be used 

to smooth consumption even if the system experiences an undesirable regime shift. 

The decision-maker can ‘ride out the storm’ until the system recovers to the preferred 

regime. 
                                                                 
39 These returns are ‘high’ in terms of what is achievable in the economically less preferred regime, but 
are lower than the returns that could be generated in the economically preferred regime. 
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7.3 Sensitivity of optimal decisions to the subjective choice of prior distribution 

 

The sensitivity of optimal decisions to changes in the prior distribution for the 

unknown threshold location can be viewed from two different perspectives. First, in 

terms of sensitivity to changes in the amount of risk associated with the unknown 

threshold location, as measured by the variance of the prior distribution. Second, in 

terms of sensitivity to changes in the expected proximity of the system to the 

unknown threshold location. This is measured as the physical distance between the 

underlying system variable and the closest possible location of the threshold (closer 

bound), as defined by the prior distribution for the unknown threshold location. If this 

closer bound is crossed by the underlying variable, the probability of experiencing an 

undesirable regime shift increases from zero to a positive amount. In other words, this 

closer bound represents the boundary of the current data set about where the threshold 

is not located. 

 

If the expected distance between the underlying system variable and the 

threshold is increased, while the degree of uncertainty about the threshold location40 is 

held fixed, the decision-maker will undertake actions that incur less risk of crossing 

the undesirable threshold. When the threshold is thought to be located far from the 

underlying system variable, it will act as a less binding constraint on ‘production’. 

Therefore, the potential benefits of learning about the threshold’s location are lower 

and there is less incentive to risk crossing the undesirable threshold. 

 

If the minimum distance to the threshold (i.e. closer bound) is held fixed, but 

the degree of uncertainty about the threshold location is increased41, there is a non-

monotonic relationship between the optimal amount of risk incurred and the degree of 

uncertainty about the threshold. First, when the degree of uncertainty about the 

threshold location is low, the benefits associated with learning are also low, but the 

likelihood of crossing the threshold by perturbing the system into the risky region is 

                                                                 
40 That is, the variance of the prior distribution for the unknown threshold location. For the model 
simulation reported in Chapter 6, a uniform distribution was used for the prior probability distribution 
associated with the unknown threshold location. This means the variance of the prior is a function of 
the distance between the lower and upper bounds of the prior distribution, where greater distance 
between the bounds implies a higher degree of uncertainty about the threshold location. 
41 That is, the variance of the prior probability distribution is increased. 
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high. Therefore, the decision-maker is less willing to incur risk. Second, when the 

degree of uncertainty about the threshold location is high, the benefits associated with 

learning are high, but the likelihood of crossing the threshold by perturbing the system 

into the risky region is low. Therefore, the decision-maker is more willing to incur 

risk. Third, when the degree of uncertainty about the threshold location42 is extremely 

high, the benefits associated with learning are low, and the likelihood of crossing the 

threshold by perturbing the system into the risky region is very low. This is because 

perturbing the system further and further in the direction of the undesirable threshold 

is associated with decreasing marginal returns from the system and, therefore, 

decreasing marginal benefits of learning. 

 

Brozovic and Schlenker (2011) also observed a non-monotonic relationship 

between the uncertainty of the decision-maker about the unknown threshold, 

modelled as a stochastic threshold, and risk averse behaviour. In addition, Brozovic 

and Schlenker (2011) observed a non-monotonic relationship between the degree of 

risk averse behaviour and the degree of natural variability of the system. These 

findings imply that the effects of considering the benefits of learning and considering 

the natural variability of the system work in opposite directions. The first effect 

provides an incentive for the decision-maker to engage in riskier behaviour, while the 

second effect encourages risk averse behaviour. 

 

Finally, for a system with an irreversible threshold that is currently in the 

preferred regime, a decision-maker who considers the benefits of learning will also be 

willing to incur more risk of crossing the undesirable threshold. The exception to this 

rule is when the system is thought to already be very close to the irreversible 

threshold and there is a low amount of uncertainty about the threshold’s exact 

location. Given these circumstances, the undesirable threshold will almost certainly be 

crossed if the system is perturbed in its direction. Even when the benefits of learning 

are considered, the decision-maker is unlikely to incur any additional risk of crossing 

the threshold, compared to the case where these benefits are not considered. 

 

 
                                                                 
42 That is, the variance of the prior probability distribution that characterises the unknown threshold 
location. 
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7.4 Avenues for future research 

 

The modelling framework developed in this thesis makes a significant 

contribution, to a specific class of management problem, by way of explicitly 

including within a decision framework the benefits of learning about the unknown 

locations of thresholds. However, the model includes only one source of uncertainty, 

which is uncertainty on the part of the decision-maker about the exact locations of 

critical thresholds. All other elements of the decision problem have been assumed 

deterministic. This approach has been taken to maintain tractability of the conceptual 

model and parsimony when introducing a new modelling approach concerning the 

management of complicated systems. Logical extensions of this model involve 

introducing other forms of uncertainty. The most notable of these are (i) uncertainty 

regarding the actual dynamics, or production function, for a system when within a 

particular system regime, (ii) the possibility of a stochastic threshold location, and (iii) 

uncertainty about the path of the underlying system variable. 

 

It is entirely possible that the dynamics of a system will be well understood 

within a small range of values of the underlying system variable. However, this 

degree of precision is unlikely to apply to the entire state-space of the underlying 

variable. Therefore, the modelling of some parts of the system may be associated with 

a substantial margin of error, which could be captured using a stochastic production 

function, such as that used by Brozovic and Schlenker (2011). These authors describe 

this concept as natural variability, or uncertainty embedded in the natural system. 

 

In the absence of risk aversion on the part of the decision-maker, only the 

expected returns from the system are of importance. Conversely, if the decision-

maker is risk averse, it will be the expected utility from the system that is important. It 

is expected that the decision-maker will undertake more risk averse behaviour if at 

least part of the ecological system is modelled using a stochastic production function. 

This is because crossing a threshold and experiencing a regime shift from a familiar to 

an unfamiliar regime, for which the dynamics are less well understood, increases the 

uncertainties associated with the environmental effects of management activities and 

the variability of economic returns (Arrow et al. 1995). However, the decision-maker 
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will still have an incentive to perturb the system into regions of the state-space where 

the system dynamics are poorly understood because such behaviour will allow 

learning to occur and may result in future benefits. 

 

Second, the location of a threshold within the state-space may be stochastic, 

rather than deterministic. This means that the state-space can no longer be easily 

partitioned into regions that could and could not contain the threshold. Instead, 

potentially all points within the state-space will be associated with a positive 

probability of containing a threshold. In this case, the prior probability distribution for 

the location of the threshold can be updated using a standard application of Bayes’ 

rule, rather than the updating rules used in this thesis. 

 

Although the threshold location may be viewed as stochastic from the point of 

view of the decision-maker, this will actually be the result of an incompletely 

specified model, rather than any stochasticity of the threshold location. Instead, the 

location of the threshold may be a function of multiple variables, rather than a single 

underlying variable. For example, in this thesis, the critical threshold in a shallow lake 

system is modelled as a function of a single underlying variable, phosphorus 

concentration. However, the threshold location is likely to also be a function of other 

omitted variables, such a nitrogen concentration and other measures of water quality. 

 

Third, the path of the underlying system variable may be poorly understood. 

This, too, is likely to be the result of an incompletely specified model. Drawing on the 

same shallow lake example, the stock of phosphorus in the lake is modelled as a 

function of the phosphorus stock retained from the previous time period and the 

amount of phosphorus fertiliser added in the current time period. However, the 

process of nutrient cycling in the lake is likely to be a function of several other 

variables, such as water temperature, the composition of organisms in the lake, and 

the presence of other nutrients. Therefore, it might also be necessary to model 

changes in the level of the underlying variable as being stochastic. 
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Conclusion 

 

This thesis aimed to examine (1) how active learning about unknown 

ecological threshold locations impacts management decisions, (2) the sensitivity of 

perceived optimal management decisions to the particular dynamics of an ecosystem, 

that is, the responsiveness of system ‘output’ to changes in system ‘input’, and (3) the 

sensitivity of perceived optimal management decisions to the subjective choice of 

prior distribution for unknown threshold locations. These aims were examined by 

developing a new mathematical modelling approach that factors into the decision-

making process the impact of active learning about threshold locations. The 

mathematical framework was applied to various ecological contexts, including 

numerical simulations of a shallow lake ecosystem, and used to demonstrate the role 

of learning. 

 

First, considering the impacts of active learning about unknown threshold 

locations means the decision-maker will generally make decisions that incur a greater 

risk of crossing the threshold in order to learn about its location. This finding is 

independent of the initial prior probability distribution used to model threshold 

location and the type of ecosystem dynamics considered; namely, whether threshold 

effects are reversible or irreversible. Second, the decision-maker will undertake 

management actions that incur more risk of crossing an undesirable threshold if the 

threshold effect is reversible rather than irreversible ceteris paribus. This is because 

the ability of the system to recover provides an additional source of economic value 

compared to a system with an irreversible threshold. 

 

Finally, there is a non-monotonic relationship between the optimal amount of 

risk incurred and the degree of uncertainty about the threshold location. When 

uncertainty about the threshold location is either low or very high, the decision-maker 

will incur less risk of crossing the threshold. For intermediate levels of uncertainty, 

the decision-maker will incur more risk of crossing the threshold because this case 

provides the most favourable trade-off between the potential benefits and costs of 

engaging in active learning. By explicitly modelling the value of information, this 

thesis better demonstrates the nature of optimal decision-making in the adaptive 

management of ecological systems.  
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Appendix A: Reverse framing of updating rules for prior distribution 

 

(i) 𝑎𝑗𝑃+1
𝑚𝑎𝑚 =
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⎪
⎨

⎪
⎧ 𝑎𝑗𝑃

𝑚𝑎𝑚 𝑚𝑓 𝐹𝑗𝑃 = 0 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐴

𝑚𝑚𝑚�𝑎𝑗𝑃
𝑚𝑎𝑚,𝑋𝑗𝑃 ≡ 𝑋𝑗𝑃−1

′ � 𝑚𝑓 𝐹𝑗𝑃 = 1 𝑎𝑚𝑑 𝑅𝑗𝑃 = 𝐴
𝑎𝑗𝑃
𝑚𝑎𝑚 𝑚𝑓 𝑅𝑗𝑃 = 𝐵

 

 

Where 
𝑎𝑗𝑃
𝑚𝑎𝑚 ≤ 𝑎0

𝑚𝑎𝑚  ∀ 𝑃  
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Where 
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Appendix B: MATLAB code for ‘Learning’ model 

 

%%% Define parameter values and initial values 

 

% problem time horizon 

T = 100; 

% absolute lower bound of A-distribution 

amin0 = 0.26; 

% absolute upper bound of A-distribution 

amax0 = 2.01; 

% initial level of wealth 

%W0 = 0; 

% initial concentration of phosphorus in the lake 

X0 = 0; 

% initial stock of abatement technologies 

%Ibar0 = 0; 

% pure rate of time preference 

rho = 0.02; 

% real interest rate (probably set to zero) 

r = 0; 

% marginal cost of harvest effort 

%h = 1; 

% price per unit of harvested crop 

%p = 3; 

% marginal cost per unit of fertiliser applied 

%n = 1; 

% marginal cost per unit of abatement technology acquired 

%k = 0.3; 

% etc., etc.  

B = 0.1; 

bb = 0.02; 

omega = 0.2; % equivalent to 'r' in Brozovic and Schlenker 

k = 1.5; % utility received from fertiliser use 
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penalty = 0.01; % penalty for terminal stock of X 

bonus = 10; % to ensure that terminal value function is positive 

%o = 0.5; % transfer coefficient of phosphorus from farm to lake 

%muP = 1; 

%gammaP = 0.3; 

%muA = 5; 

%gammaA = -0.25; 

%muB = 5; 

%gammaB = -0.25; 

%muq = 0.5; 

%gammaq = 0.5; 

%muI = 1; 

%gammaI = -0.5; 

%muX = 1; 

%gammaX = -0.5; 

%muW = 1; 

%gammaW = 1; 

%K = 3; % difference in direct utility from Ra and Rb when X=0 

%d = 0.8; % depreciation rate for abatement technologies 

%Ybar = 1; % crop yield when P=0 

%scale = 2; % scale factor to make W positive 

 

 

%%% For reference 

%%% Define EOMs for state variables (excluding A-distribution) 

 

% phosphorus concentration (i.e. X) when in Regime A 

% XAcurr = B*Xprev + bb + Pcurr; 

 

% phosphorus concentration (i.e. X) when in Regime B 

% XAcurr = B*Xprev + bb + Pcurr + omega; 

 

 

% specify bounds and step size for ndgrid of starting values for 
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% 'inherited' state variables 

 

Xlow = 0.01; 

Xstep = 0.25; 

Xhigh = 3.01; 

 

% specify bounds and step size for ndgrid of values for amin and amax 

astep = 0.25; 

aminlow = amin0; 

amaxhigh = amax0; 

 

% create ndgrid that includes all combinations of Xprev, Wprev, Ibarprev, 

% amin and amax 

sets = {Xlow:Xstep:Xhigh, aminlow:astep:amaxhigh-astep, 

aminlow+astep:astep:amaxhigh}; 

[x amin amax] = ndgrid(sets{:}); 

StateAbounds = [x(:) amin(:) amax(:)]; 

 

% total number of combinations of inherited state and Abounds variables - max. # 

iterations 

numrowsStateAbounds = length(StateAbounds(:,1)); 

 

% create indicator variable for whether amin/amax combination is feasible 

StateAbounds_test = zeros(numrowsStateAbounds,1); 

for i = 1:numrowsStateAbounds; 

    if StateAbounds(i,2) < StateAbounds(i,3); 

        StateAbounds_test(i,1) = 1; 

    else 

        StateAbounds_test(i,1) = 0; 

    end 

end 

 

% horizontally concatenate StateAbounds and StateAbounds_test 

StateAbounds_test2 = horzcat(StateAbounds,StateAbounds_test); 
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% delete rows where indicator variable (column 4) takes value zero 

indices = find(StateAbounds_test2(:,4)==0); 

StateAbounds_test2(indices,:) = []; 

 

% redefine StateAbounds 

clear StateAbounds 

StateAbounds = StateAbounds_test2(:,1:3); 

 

% redefine numrowsStateAbounds 

numrowsStateAbounds = length(StateAbounds(:,1)); 

 

% separate StateAbounds into its individual variables for use as regressors 

Xreg = StateAbounds(:,1); 

aminreg = StateAbounds(:,2); 

amaxreg = StateAbounds(:,3); 

 

% Define regressors for terminal value functions 

Xregression = [ones(size(Xreg)) log(Xreg) log(Xreg).^2]; 

 

% Define regressors for all other value functions 

XAregression = [ones(size(Xreg)) log(Xreg) log(aminreg) log(amaxreg) log(Xreg).^2 

log(aminreg).^2 log(amaxreg).^2 log(Xreg).*log(aminreg) log(Xreg).*log(amaxreg) 

log(aminreg).*log(amaxreg)]; 

 

%%% Solve for optimal value of objective function in Terminal time period 

%%% and when in Regime A 

 

% create empty matrix to contain optimal values of UAT 

% with dimensions (numrowsInheritState x 1) 

 

MaxUAT = zeros(numrowsStateAbounds,1); 

 

% create matrix to contain the optimal levels of choice variables 
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ChoiceAT = zeros(numrowsStateAbounds,1); 

ChoiceAT(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

             

% define optimisation problem and options 

% x(1)=Pcurr 

gs = GlobalSearch('StartPointsToRun','bounds-ineqs'); 

opts = optimset('Display','off','Algorithm','interior-point'); 

TerminalUA = @(x)(-(k*x(1) - (B*kX + bb + x(1))^2 - penalty*(B*kX + bb + 

x(1)))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',TerminalUA,'Aineq',[-

1],'bineq',[0],'options',opts); 

[xmintermA, fmintermA, flagtermA, outputtermA, manyminstermA] = 

run(gs,problem); 

 

MaxUAT(i,1) = -fmintermA; 

ChoiceAT(i,:) = xmintermA'; 

 

end 

 

logMaxUAT = log(MaxUAT + bonus); %%% bonus has been added to ensure value 

function is positive, so it can be logged 

 

% estimate regression for MaxUAT(Xprev) 

TermAregression = regress(logMaxUAT,Xregression); 

 

%%% Solve for optimal value of objective function in Terminal time period 

%%% and when in Regime B 

 

% create empty matrix to contain optimal values of UBT 

% with dimensions (numrowsInheritState x 1) 
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MaxUBT = zeros(numrowsStateAbounds,1); 

 

% create matrix to contain the optimal levels of choice variables 

 

ChoiceBT = zeros(numrowsStateAbounds,1); 

ChoiceBT(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

             

% define optimisation problem and options 

% x(1)=Pcurr 

 

TerminalUB = @(x)(-(k*x(1) - (B*kX + bb + x(1) + omega)^2 - penalty*(B*kX + bb 

+ x(1) + omega))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',TerminalUB,'Aineq',[-

1],'bineq',[0],'options',opts); 

[xmintermB, fmintermB, flagtermB, outputtermB, manyminstermB] = 

run(gs,problem); 

 

MaxUBT(i,1) = -fmintermB; 

ChoiceBT(i,:) = xmintermB'; 

 

end 

 

logMaxUBT = log(MaxUBT + bonus); %%% bonus has been added to ensure value 

function is positive, so it can be logged 

 

% estimate regression for MaxUBT(Xprev) 

TermBregression = regress(logMaxUBT,Xregression); 

 

 

%%% above are the value functions / instantaneous utility functions from 
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%%% the terminal time period when system is in Regime A or Regime B 

 

 

%%% link the utility functions of two consecutive (earlier and later) time 

%%% periods via the A-distribution - determine the corresponding value function 

 

 

%%% when system is in Regime A during earlier time period 

 

 

% case 1: earlier = Regime A, later = Regime A 

% constrained optimisation where Xend(formula) <= amin_earlier 

 

MaxUAAflag = zeros(numrowsStateAbounds,1); 

MaxUAA = zeros(numrowsStateAbounds,1); 

ChoiceAA = zeros(numrowsStateAbounds,1); 

ChoiceAA(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

   

% reset flag 

flagAA = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 

% XAend = (B*kX + bb + Pcurr) 

 

if kX > amin; 

    MaxUAA(i,1) = NaN; 
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else UAA = @(x)(-((k*x(1) - (B*kX + bb + x(1))^2) + 1/(1 + rho)*(-bonus + 

exp(TermAregression(1,1) + TermAregression(2,1)*log(B*kX + bb + x(1)) + 

TermAregression(3,1)*(B*kX + bb + x(1))^2)))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UAA,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint1(x,amin,B,kX,bb),'options',opts); 

[xminAA, fminAA, flagAA, outputAA, manyminsAA] = run(gs,problem); 

 

MaxUAAflag(i,1) = flagAA; 

 

if flagAA > 0; 

    MaxUAA(i,1) = -fminAA; 

else MaxUAA(i,1) = NaN; 

     

end 

 

if flagAA > 0; 

    ChoiceAA(i,:) = xminAA'; 

else ChoiceAA(i,:) = NaN; 

     

end 

 

end 

 

end 

 

% case 2: earlier = Regime A, later = Regime B 

% constrained optimisation where Xend(formula) >= amax_earlier 

 

MaxUABflag = zeros(numrowsStateAbounds,1); 

MaxUAB = zeros(numrowsStateAbounds,1); 

ChoiceAB = zeros(numrowsStateAbounds,1); 

ChoiceAB(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 
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    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagAB = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 

% XAend = (B*kX + bb + Pcurr) 

 

if kX > amin; 

    MaxUAB(i,1) = NaN; 

else UAB = @(x)(-((k*x(1) - (B*kX + bb + x(1))^2) + 1/(1 + rho)*(-bonus + 

exp(TermBregression(1,1) + TermBregression(2,1)*log(B*kX + bb + x(1)) + 

TermBregression(3,1)*(B*kX + bb + x(1))^2)))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UAB,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint2(x,amax,B,kX,bb),'options',opts); 

[xminAB, fminAB, flagAB, outputAB, manyminsAB] = run(gs,problem); 

 

MaxUABflag(i,1) = flagAB; 

 

if flagAB > 0; 

    MaxUAB(i,1) = -fminAB; 

else MaxUAB(i,1) = NaN; 

   

end 

 

if flagAB > 0; 

ChoiceAB(i,:) = xminAB'; 

else ChoiceAB(i,:) = NaN; 

 

end 
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end 

 

end 

 

% case 3: earlier = Regime A, later = Regime A or B 

% constrained optimisation where amin_earlier <= Xend(formula) <= amax_earlier 

 

MaxUA_AorBflag = zeros(numrowsStateAbounds,1); 

MaxUA_AorB = zeros(numrowsStateAbounds,1); 

ChoiceA_AorB = zeros(numrowsStateAbounds,1); 

ChoiceA_AorB(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagA_AorB = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 

% XAend = (B*kX + bb + Pcurr) 

 

if kX > amin; 

    MaxUA_AorB(i,1) = NaN; 

else UA_AorB = @(x)(-((k*x(1) - (B*kX + bb + x(1))^2) + 1/(1 + rho)*(-bonus + 

((max(min((amax - (B*kX + bb + x(1)))/(amax - 

amin),1),0)))*exp(TermAregression(1,1) + TermAregression(2,1)*log(B*kX + bb + 

x(1)) + TermAregression(3,1)*(B*kX + bb + x(1))^2) + (max(min(((B*kX + bb + 

x(1)) - amin)/(amax - amin),1),0))*exp(TermBregression(1,1) + 

TermBregression(2,1)*log(B*kX + bb + x(1)) + TermBregression(3,1)*(B*kX + bb + 

x(1))^2)))); 
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problem = createOptimProblem('fmincon','x0',[0.1],'objective',UA_AorB,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint3(x,amin,amax,B,kX,bb),'options',opts); 

[xminA_AorB, fminA_AorB, flagA_AorB, outputA_AorB, manyminsA_AorB] = 

run(gs,problem); 

 

MaxUA_AorBflag(i,1) = flagA_AorB; 

 

if flagA_AorB > 0; 

    MaxUA_AorB(i,1) = -fminA_AorB; 

else MaxUA_AorB(i,1) = NaN; 

     

end 

 

if flagA_AorB > 0; 

ChoiceA_AorB(i,:) = xminA_AorB'; 

else ChoiceA_AorB(i,:) = NaN; 

 

end 

     

end 

 

end 

     

% take supremum of cases 1-3 

 

supremumAT = zeros(numrowsStateAbounds,1); 

 

for i = 1:numrowsStateAbounds; 

    maxintermediate = max(MaxUAA(i,1),MaxUAB(i,1)); 

    maxvalue = max(maxintermediate,MaxUA_AorB(i,1)); 

    supremumAT(i,1) = maxvalue; 

end 
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logsupremumAT = log(supremumAT + bonus); %%% bonus has been added to 

ensure value function is positive, so it can be logged 

 

% estimate regression for supremumAT(Xprev,Wprev,Ibarprev,amin,amax) 

supremumATregression = regress(logsupremumAT,XAregression); 

 

% save levels of choice variables that correspond to optimal scenario (1-3) 

ChoiceApenult = zeros(numrowsStateAbounds,1); 

% check supremum for isnan 

isnan_supremumAT = isnan(supremumAT); 

 

for count = 1:numrowsStateAbounds 

    if isnan_supremumAT(count,1) == 1; 

        ChoiceApenult(count,:) = NaN; 

    elseif MaxUAA(count,1) == supremumAT(count,1); 

        ChoiceApenult(count,:) = ChoiceAA(count,:); 

    elseif MaxUAB(count,1) == supremumAT(count,1); 

        ChoiceApenult(count,:) = ChoiceAB(count,:); 

    elseif MaxUA_AorB(count,1) == supremumAT(count,1); 

        ChoiceApenult(count,:) = ChoiceA_AorB(count,:); 

     

    end 

 

end 

 

%%% when system is in Regime B during earlier time period 

 

% case 4: earlier = Regime B, later = Regime A 

% constrained optimisation where Xend(formula) <= amin_earlier 

 

MaxUBAflag = zeros(numrowsStateAbounds,1); 

MaxUBA = zeros(numrowsStateAbounds,1); 

ChoiceBA = zeros(numrowsStateAbounds,1); 

CHoiceBA(:,:) = NaN; 
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for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

   

% reset flag 

flagBA = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 

% XBend = (B*kX + bb + Pcurr + omega) 

 

if kX < amax; 

    MaxUBA(i,1) = NaN; 

else UBA = @(x)(-((k*x(1) - (B*kX + bb + x(1) + omega)^2) + 1/(1 + rho)*(-bonus + 

exp(TermAregression(1,1) + TermAregression(2,1)*log(B*kX + bb + x(1) + omega) 

+ TermAregression(3,1)*(B*kX + bb + x(1) + omega)^2)))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UBA,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint4(x,amin,B,kX,bb,omega),'options',opts); 

[xminBA, fminBA, flagBA, outputBA, manyminsBA] = run(gs,problem); 

 

MaxUBAflag(i,1) = flagBA; 

 

if flagBA > 0; 

    MaxUBA(i,1) = -fminBA; 

else MaxUBA(i,1) = NaN; 

     

end 

 

if flagBA > 0; 

ChoiceBA(i,:) = xminBA'; 

else ChoiceBA(i,:) = NaN; 
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end 

     

end 

 

end 

 

% case 5: earlier = Regime B, later = Regime B 

% constrained optimisation where Xend(formula) >= amax_earlier 

 

MaxUBBflag = zeros(numrowsStateAbounds,1); 

MaxUBB = zeros(numrowsStateAbounds,1); 

ChoiceBB = zeros(numrowsStateAbounds,1); 

ChoiceBB(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagBB = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 

% XBend = (B*kX + bb + Pcurr + omega) 

 

if kX < amax; 

    MaxUBB(i,1) = NaN; 

else UBB = @(x)(-((k*x(1) - (B*kX + bb + x(1) + omega)^2) + 1/(1 + rho)*(-bonus + 

exp(TermBregression(1,1) + TermBregression(2,1)*log(B*kX + bb + x(1) + omega) 

+ TermBregression(3,1)*(B*kX + bb + x(1) + omega)^2)))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UBB,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint5(x,amax,B,kX,bb,omega),'options',opts); 

[xminBB, fminBB, flagBB, outputBB, manyminsBB] = run(gs,problem); 
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MaxUBBflag(i,1) = flagBB; 

 

if flagBB > 0; 

    MaxUBB(i,1) = -fminBB; 

else MaxUBB(i,1) = NaN; 

     

end 

 

if flagBB > 0; 

ChoiceBB(i,:) = xminBB'; 

else ChoiceBB(i,:) = NaN; 

 

end 

 

end 

 

end 

 

% case 6: earlier = Regime B, later = Regime A or B 

% constrained optimisation where amin_earlier <= Xend(formula) <= amax_earlier 

 

MaxUB_AorBflag = zeros(numrowsStateAbounds,1); 

MaxUB_AorB = zeros(numrowsStateAbounds,1); 

ChoiceB_AorB = zeros(numrowsStateAbounds,1); 

ChoiceB_AorB(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagB_AorB = -10; 
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% define optimisation problem and options 

% x(1)=Pcurr 

% XBend = (B*kX + bb + Pcurr + omega) 

 

if kX < amax; 

    MaxUB_AorB(i,1) = NaN; 

else UB_AorB = @(x)(-((k*x(1) - (B*kX + bb + x(1) + omega)^2) + 1/(1 + rho)*(-

bonus + ((max(min((amax - (B*kX + bb + x(1) + omega))/(amax - 

amin),1),0)))*exp(TermAregression(1,1) + TermAregression(2,1)*log(B*kX + bb + 

x(1) + omega) + TermAregression(3,1)*(B*kX + bb + x(1) + omega)^2) + 

(max(min(((B*kX + bb + x(1) + omega) - amin)/(amax - 

amin),1),0))*exp(TermBregression(1,1) + TermBregression(2,1)*log(B*kX + bb + 

x(1) + omega) + TermBregression(3,1)*(B*kX + bb + x(1) + omega)^2)))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UB_AorB,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint6(x,amin,amax,B,kX,bb,omega),'options',opts); 

[xminB_AorB, fminB_AorB, flagB_AorB, outputB_AorB, manyminsB_AorB] = 

run(gs,problem); 

 

MaxUB_AorBflag(i,1) = flagB_AorB; 

 

if flagB_AorB > 0; 

    MaxUB_AorB(i,1) = -fminB_AorB; 

else MaxUB_AorB(i,1) = NaN; 

     

end 

 

if flagB_AorB > 0; 

ChoiceB_AorB(i,:) = xminB_AorB'; 

else ChoiceB_AorB(i,:) = NaN; 

 

end 

 

end 
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end 

 

% take supremum of cases 4-6 

 

supremumBT = zeros(numrowsStateAbounds,1); 

 

for i = 1:numrowsStateAbounds; 

    maxintermediate = max(MaxUBA(i,1),MaxUBB(i,1)); 

    maxvalue = max(maxintermediate,MaxUB_AorB(i,1)); 

    supremumBT(i,1) = maxvalue; 

end 

 

logsupremumBT = log(supremumBT + bonus); %%% bonus has been added to 

ensure value function is positive, so it can be logged 

 

% estimate regression for supremumAT(Xprev,Wprev,Ibarprev,amin,amax) 

supremumBTregression = regress(logsupremumBT,XAregression); 

 

% save levels of choice variables that correspond to optimal scenario (4-6) 

ChoiceBpenult = zeros(numrowsStateAbounds,3); 

% check supremum for isnan 

isnan_supremumBT = isnan(supremumBT); 

 

for count = 1:numrowsStateAbounds 

    if isnan_supremumBT(count,1) == 1; 

        ChoiceBpenult(count,:) = NaN; 

    elseif MaxUBA(count,1) == supremumBT(count,1); 

        ChoiceBpenult(count,:) = ChoiceBA(count,:); 

    elseif MaxUBB(count,1) == supremumBT(count,1); 

        ChoiceBpenult(count,:) = ChoiceBB(count,:); 

    elseif MaxUB_AorB(count,1) == supremumBT(count,1); 

        ChoiceBpenult(count,:) = ChoiceB_AorB(count,:); 
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    end 

     

end 

 

%%%%% rather than linking only two consecutive time periods, it is 

%%%%% necessary to link three consecutive time periods 

%%%%% the new information learnt at the end of the 1st time period cannot 

%%%%% be put to use until the 2nd time period and does not feed into a 

%%%%% value function until the 3rd period 

 

%%%%% what were previously referred to as cases will now be referred to as 

%%%%% scenarios; to differentiate between linking only two time periods and 

%%%%% linking three time periods 

 

% scenario 1: earlier = Regime A, later = Regime A (certain) 

% only feasible if kX <= amin 

% constrained optimisation where Xend(formula) <= amin_earlier 

 

%%% notation: started 1st period in Regime A, then scenario 1 occurred 

MaxUAS1flag = zeros(numrowsStateAbounds,1); 

MaxUAS1 = zeros(numrowsStateAbounds,1); 

ChoiceAS1 = zeros(numrowsStateAbounds,1); 

ChoiceAS1(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagAS1 = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 
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% XAend = (B*kX + bb + Pcurr) 

 

%XAregression = [ones(size(Xreg)) log(Xreg) log(aminreg) log(amaxreg) 

log(Xreg).^2 log(aminreg).^2 log(amaxreg).^2 log(Xreg).*log(aminreg) 

log(Xreg).*log(amaxreg) log(aminreg).*log(amaxreg)] 

 

if kX > amin; 

    MaxUAS1(i,1) = NaN; 

else UAS1 = @(x)(-((k*x(1) - (B*kX + bb + x(1))^2) + 1/(1 + rho)*(-bonus + 

exp(supremumATregression(1,1) + supremumATregression(2,1)*log(B*kX + bb + 

x(1)) + supremumATregression(3,1)*log(amin) + 

supremumATregression(4,1)*log(amax) + supremumATregression(5,1)*(log(B*kX + 

bb + x(1))^2) + supremumATregression(6,1)*(log(amin)^2) + 

supremumATregression(7,1)*(log(amax)^2) + 

supremumATregression(8,1)*log(B*kX + bb + x(1))*log(amin) + 

supremumATregression(9,1)*log(B*kX + bb + x(1))*log(amax) + 

supremumATregression(10,1)*log(amin)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UAS1,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint1(x,amin,B,kX,bb),'options',opts); 

[xminAS1, fminAS1, flagAS1, outputAS1, manyminsAS1] = run(gs,problem); 

 

MaxUAS1flag(i,1) = flagAS1; 

 

if flagAS1 > 0; 

    MaxUAS1(i,1) = -fminAS1; 

else MaxUAS1(i,1) = NaN; 

   

end 

  

if flagAS1 > 0; 

ChoiceAS1(i,:) = xminAS1'; 

else ChoiceAS1(i,:) = NaN; 

 

end 
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end 

 

end 

 

% scenario 2: earlier = Regime A, later = Regime B 

% only feasible if kX <=amin 

% constrained optimisation where Xend(formula) >= amax_earlier 

 

MaxUAS2flag = zeros(numrowsStateAbounds,1); 

MaxUAS2 = zeros(numrowsStateAbounds,1); 

ChoiceAS2 = zeros(numrowsStateAbounds,1); 

ChoiceAS2(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagAS2 = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 

% XAend = (B*kX + bb + Pcurr) 

 

if kX > amin; 

    MaxUAS2(i,1) = NaN; 

else UAS2 = @(x)(-((k*x(1) - (B*kX + bb + x(1))^2) + 1/(1 + rho)*(-bonus + 

exp(supremumBTregression(1,1) + supremumBTregression(2,1)*log(B*kX + bb + 

x(1)) + supremumBTregression(3,1)*log(amin) + 

supremumBTregression(4,1)*log(amax) + supremumBTregression(5,1)*(log(B*kX + 

bb + x(1))^2) + supremumBTregression(6,1)*(log(amin)^2) + 

supremumBTregression(7,1)*(log(amax)^2) + 
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supremumBTregression(8,1)*log(B*kX + bb + x(1))*log(amin) + 

supremumBTregression(9,1)*log(B*kX + bb + x(1))*log(amax) + 

supremumBTregression(10,1)*log(amin)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UAS2,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint2(x,amax,B,kX,bb),'options',opts); 

[xminAS2, fminAS2, flagAS2, outputAS2, manyminsAS2] = run(gs,problem); 

 

MaxUAS2flag(i,1) = flagAS2; 

 

if flagAS2 > 0; 

    MaxUAS2(i,1) = -fminAS2; 

else MaxUAS2(i,1) = NaN; 

     

end 

 

if flagAS2 > 0; 

ChoiceAS2(i,:) = xminAS2'; 

else ChoiceAS2(i,:) = NaN; 

 

end 

 

end 

 

end 

 

% scenario 3: earlier = Regime A, later = Regime A or B (uncertain) 

% only feasible if kX <= amin 

% constrained optimisation where amin_earlier <= Xend(formula) <= amax_earlier 

 

MaxUAS3flag = zeros(numrowsStateAbounds,1); 

MaxUAS3 = zeros(numrowsStateAbounds,1); 

ChoiceAS3 = zeros(numrowsStateAbounds,1); 

ChoiceAS3(:,:) = NaN; 
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for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagAS3 = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 

% XAend = (B*kX + bb + Pcurr) 

 

% for 2nd period, XAend becomes amin for Va and amax for Vb 

 

if kX > amin; 

    MaxUAS3(i,1) = NaN; 

else UAS3 = @(x)(-((k*x(1) - (B*kX + bb + x(1))^2) + 1/(1 + rho)*(-bonus + 

((max(min((amax - (B*kX + bb + x(1)))/(amax - 

amin),1),0)))*exp(supremumATregression(1,1) + 

supremumATregression(2,1)*log(B*kX + bb + x(1)) + 

supremumATregression(3,1)*log(B*kX + bb + x(1)) + 

supremumATregression(4,1)*log(amax) + supremumATregression(5,1)*(log(B*kX + 

bb + x(1))^2) + supremumATregression(6,1)*(log(B*kX + bb + x(1))^2) + 

supremumATregression(7,1)*(log(amax)^2) + 

supremumATregression(8,1)*log(B*kX + bb + x(1))*log(B*kX + bb + x(1)) + 

supremumATregression(9,1)*log(B*kX + bb + x(1))*log(amax) + 

supremumATregression(10,1)*log(B*kX + bb + x(1))*log(amax)) + 

(max(min(((B*kX + bb + x(1)) - amin)/(amax - 

amin),1),0))*exp(supremumBTregression(1,1) + 

supremumBTregression(2,1)*log(B*kX + bb + x(1)) + 

supremumBTregression(3,1)*log(amin) + supremumBTregression(4,1)*log(B*kX + 

bb + x(1)) + supremumBTregression(5,1)*(log(B*kX + bb + x(1))^2) + 

supremumBTregression(6,1)*(log(amin)^2) + 

supremumBTregression(7,1)*(log(B*kX + bb + x(1))^2) + 
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supremumBTregression(8,1)*log(B*kX + bb + x(1))*log(amin) + 

supremumBTregression(9,1)*log(B*kX + bb + x(1))*log(B*kX + bb + x(1)) + 

supremumBTregression(10,1)*log(amin)*log(B*kX + bb + x(1)))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UAS3,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint3(x,amin,amax,B,kX,bb),'options',opts); 

[xminAS3, fminAS3, flagAS3, outputAS3, manyminsAS3] = run(gs,problem); 

 

MaxUAS3flag(i,1) = flagAS3; 

 

if flagAS3 > 0; 

    MaxUAS3(i,1) = -fminAS3; 

else MaxUAS3(i,1) = NaN; 

   

end 

  

if flagAS3 > 0; 

ChoiceAS3(i,:) = xminAS3'; 

else ChoiceAS3(i,:) = NaN; 

 

end 

 

end 

 

end 

 

% take supremum of scenarios 1-3 

 

supremumAother = zeros(numrowsStateAbounds,1); 

 

for i = 1:numrowsStateAbounds; 

    maxintermediate = max(MaxUAS1(i,1),MaxUAS2(i,1)); 

    maxvalue = max(maxintermediate,MaxUAS3(i,1)); 

    supremumAother(i,1) = maxvalue; 

end 
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logsupremumAother = log(supremumAother + bonus); %%% bonus has been added 

to ensure value function is positive, so it can be logged 

 

% estimate regression for supremumAT(Xprev,Wprev,Ibarprev,amin,amax) 

supremumAotherregression = regress(logsupremumAother,XAregression); 

 

% save levels of choice variables that correspond to optimal scenario (1-3) 

ChoiceApenpen = zeros(numrowsStateAbounds,1); 

% check supremum for isnan 

isnan_supremumAother = isnan(supremumAother); 

 

for count = 1:numrowsStateAbounds 

    if isnan_supremumAother(count,1) == 1; 

        ChoiceApenpen(count,:) = NaN; 

    elseif MaxUAS1(count,1) == supremumAother(count,1); 

        ChoiceApenpen(count,:) = ChoiceAS1(count,:); 

    elseif MaxUAS2(count,1) == supremumAother(count,1); 

        ChoiceApenpen(count,:) = ChoiceAS2(count,:); 

    elseif MaxUAS3(count,1) == supremumAother(count,1); 

        ChoiceApenpen(count,:) = ChoiceAS3(count,:); 

         

    end 

     

end 

 

P_logChoiceApenpen = log(ChoiceApenpen(:,1) + 0.01); 

 

% estimate regression for choice 1 (i.e. P) 

PApenpenregression = regress(P_logChoiceApenpen,XAregression); 

 

 

% scenario 4: earlier = Regime B, later = Regime A (certain) 

% only feasible if kX >= amax 
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% constrained optimisation where Xend(formula) <= amin_earlier 

 

MaxUBS4flag = zeros(numrowsStateAbounds,1); 

MaxUBS4 = zeros(numrowsStateAbounds,1); 

ChoiceBS4 = zeros(numrowsStateAbounds,1); 

ChoiceBS4(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

  

% reset flag 

flagBS4 = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 

% XBend = (B*kX + bb + Pcurr + omega) 

 

if kX < amax; 

    MaxUBS4(i,1) = NaN; 

else UBS4 = @(x)(-((k*x(1) - (B*kX + bb + x(1) + omega)^2) + 1/(1 + rho)*(-bonus 

+ exp(supremumATregression(1,1) + supremumATregression(2,1)*log(B*kX + bb + 

x(1) + omega) + supremumATregression(3,1)*log(amin) + 

supremumATregression(4,1)*log(amax) + supremumATregression(5,1)*(log(B*kX + 

bb + x(1) + omega)^2) + supremumATregression(6,1)*(log(amin)^2) + 

supremumATregression(7,1)*(log(amax)^2) + 

supremumATregression(8,1)*log(B*kX + bb + x(1) + omega)*log(amin) + 

supremumATregression(9,1)*log(B*kX + bb + x(1) + omega)*log(amax) + 

supremumATregression(10,1)*log(amin)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UBS4,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint4(x,amin,B,kX,bb,omega),'options',opts); 

[xminBS4, fminBS4, flagBS4, outputBS4, manyminsBS4] = run(gs,problem); 
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MaxUBS4flag(i,1) = flagBS4; 

 

if flagBS4 > 0; 

    MaxUBS4(i,1) = -fminBS4; 

else MaxUBS4(i,1) = NaN; 

     

end 

 

if flagBS4 > 0; 

ChoiceBS4(i,:) = xminBS4'; 

else ChoiceBS4(i,:) = NaN; 

 

end 

 

end 

 

end 

 

% scenario 5: earlier = Regime B, later = Regime B (certain) 

% only feasible if kX >= amax 

% constrained optimisation where Xend(formula) >= amax_earlier 

 

MaxUBS5flag = zeros(numrowsStateAbounds,1); 

MaxUBS5 = zeros(numrowsStateAbounds,1); 

ChoiceBS5 = zeros(numrowsStateAbounds,1); 

ChoiceBS5(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagBS5 = -10; 
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% define optimisation problem and options 

% x(1)=Pcurr 

% XBend = (B*kX + bb + Pcurr + omega) 

 

if kX < amax; 

    MaxUBS5(i,1) = NaN; 

else UBS5 = @(x)(-((k*x(1) - (B*kX + bb + x(1) + omega)^2) + 1/(1 + rho)*(-bonus 

+ exp(supremumBTregression(1,1) + supremumBTregression(2,1)*log(B*kX + bb + 

x(1) + omega) + supremumBTregression(3,1)*log(amin) + 

supremumBTregression(4,1)*log(amax) + supremumBTregression(5,1)*(log(B*kX + 

bb + x(1) + omega)^2) + supremumBTregression(6,1)*(log(amin)^2) + 

supremumBTregression(7,1)*(log(amax)^2) + 

supremumBTregression(8,1)*log(B*kX + bb + x(1) + omega)*log(amin) + 

supremumBTregression(9,1)*log(B*kX + bb + x(1) + omega)*log(amax) + 

supremumBTregression(10,1)*log(amin)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UBS5,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint5(x,amax,B,kX,bb,omega),'options',opts); 

[xminBS5, fminBS5, flagBS5, outputBS5, manyminsBS5] = run(gs,problem); 

 

MaxUBS5flag(i,1) = flagBS5; 

 

if flagBS5 > 0; 

    MaxUBS5(i,1) = -fminBS5; 

else MaxUBS5(i,1) = NaN; 

  

end 

  

if flagBS5 > 0; 

ChoiceBS5(i,:) = xminBS5'; 

else ChoiceBS5(i,:) = NaN; 

 

end 
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end 

 

end 

 

% scenario 6: earlier = Regime B, later = Regime A or B (uncertain) 

% only feasible if kX >= amin 

% constrained optimisation where amin_earlier <= Xend(formula) <= amax_earlier 

 

MaxUBS6flag = zeros(numrowsStateAbounds,1); 

MaxUBS6 = zeros(numrowsStateAbounds,1); 

ChoiceBS6 = zeros(numrowsStateAbounds,1); 

ChoiceBS6(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

   

% reset flag 

flagBS6 = -10; 

     

% define optimisation problem and options 

% x(1)=Pcurr 

% XBend = (B*kX + bb + Pcurr + omega) 

 

% for 2nd period, XBend becomes amax for Va and amin for Vb 

 

if kX < amax; 

    MaxUBS6(i,1) = NaN; 

else UBS6 = @(x)(-((k*x(1) - (B*kX + bb + x(1) + omega)^2) + 1/(1 + rho)*(-bonus 

+ ((max(min((amax - (B*kX + bb + x(1) + omega))/(amax - 

amin),1),0)))*exp(supremumATregression(1,1) + 

supremumATregression(2,1)*log(B*kX + bb + x(1) + omega) + 

supremumATregression(3,1)*log(amin) + supremumATregression(4,1)*log(B*kX + 
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bb + x(1) + omega) + supremumATregression(5,1)*(log(B*kX + bb + x(1) + 

omega)^2) + supremumATregression(6,1)*(log(amin)^2) + 

supremumATregression(7,1)*(log(B*kX + bb + x(1) + omega)^2) + 

supremumATregression(8,1)*log(B*kX + bb + x(1) + omega)*log(amin) + 

supremumATregression(9,1)*log(B*kX + bb + x(1) + omega)*log(B*kX + bb + x(1) 

+ omega) + supremumATregression(10,1)*log(amin)*log(B*kX + bb + x(1) + 

omega)) + (max(min(((B*kX + bb + x(1) + omega) - amin)/(amax - 

amin),1),0))*exp(supremumBTregression(1,1) + 

supremumBTregression(2,1)*log(B*kX + bb + x(1) + omega) + 

supremumBTregression(3,1)*log(B*kX + bb + x(1) + omega) + 

supremumBTregression(4,1)*log(amax) + supremumBTregression(5,1)*(log(B*kX + 

bb + x(1) + omega)^2) + supremumBTregression(6,1)*(log(B*kX + bb + x(1) + 

omega)^2) + supremumBTregression(7,1)*(log(amax)^2) + 

supremumBTregression(8,1)*log(B*kX + bb + x(1) + omega)*log(B*kX + bb + x(1) 

+ omega) + supremumBTregression(9,1)*log(B*kX + bb + x(1) + omega)*log(amax) 

+ supremumBTregression(10,1)*log(B*kX + bb + x(1) + omega)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UBS6,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint6(x,amin,amax,B,kX,bb,omega),'options',opts); 

[xminBS6, fminBS6, flagBS6, outputBS6, manyminsBS6] = run(gs,problem); 

 

MaxUBS6flag(i,1) = flagBS6; 

 

if flagBS6 > 0; 

    MaxUBS6(i,1) = -fminBS6; 

else MaxUBS6(i,1) = NaN; 

  

end 

  

if flagBS6 > 0; 

ChoiceBS6(i,:) = xminBS6'; 

else ChoiceBS6(i,:) = NaN; 

 

end 
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end 

 

end 

 

% take supremum of scenarios 4-6 

 

supremumBother = zeros(numrowsStateAbounds,1); 

 

for i = 1:numrowsStateAbounds; 

    maxintermediate = max(MaxUBS4(i,1),MaxUBS5(i,1)); 

    maxvalue = max(maxintermediate,MaxUBS6(i,1)); 

    supremumBother(i,1) = maxvalue; 

end 

 

logsupremumBother = log(supremumBother + bonus); %%% bonus has been added 

to ensure value function is positive, so it can be logged 

 

% estimate regression for supremumBT(Xprev,Wprev,Ibarprev,amin,amax) 

supremumBotherregression = regress(logsupremumBother,XAregression); 

 

% save levels of choice variables that correspond to optimal scenario (4-6) 

ChoiceBpenpen = zeros(numrowsStateAbounds,1); 

% check supremum for isnan 

isnan_supremumBother = isnan(supremumBother); 

 

for count = 1:numrowsStateAbounds 

    if isnan_supremumBother(count,1) == 1; 

        ChoiceBpenpen(count,:) = NaN; 

    elseif MaxUBS4(count,1) == supremumBother(count,1); 

        ChoiceBpenpen(count,:) = ChoiceBS4(count,:); 

    elseif MaxUBS5(count,1) == supremumBother(count,1); 

        ChoiceBpenpen(count,:) = ChoiceBS5(count,:); 

    elseif MaxUBS6(count,1) == supremumBother(count,1); 

        ChoiceBpenpen(count,:) = ChoiceBS6(count,:); 
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    end 

     

end 

 

P_logChoiceBpenpen = log(ChoiceBpenpen(:,1) + 0.01); 

 

% estimate regression for choice 1 (i.e. P) 

PBpenpenregression = regress(P_logChoiceBpenpen,XAregression); 

 

%%% Repeat the above steps a further T-3 times, to reach the 1st time 

%%% period of the problem 

 

% ensure required number of iterations are performed 

itertotal = T-3; 

 

% iteration counter 

iter = 0; 

 

% create matrix of zeros to save values of sumpremumAotherregression at 

% each iteration 

Aregpara = zeros(10,itertotal); 

 

% create matrix of zeros to save values of sumpremumBotherregression at 

% each iteration 

Bregpara = zeros(10,itertotal); 

 

% create matrices for parameter values of choice variable regressions 

PAregpara = zeros(10,itertotal); 

PBregpara = zeros(10,itertotal); 

 

 

for s = 1:itertotal; 
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% scenario 1: earlier = Regime A, later = Regime A (certain) 

% only feasible if kX <= amin 

% constrained optimisation where Xend(formula) <= amin_earlier 

 

%%% notation: started 1st period in Regime A, then scenario 1 occurred 

MaxUAS1othflag = zeros(numrowsStateAbounds,1); 

MaxUAS1oth = zeros(numrowsStateAbounds,1); 

ChoiceAS1oth = zeros(numrowsStateAbounds,1); 

ChoiceAS1oth(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

   

% reset flag 

flagAS1oth = -10; 

     

% define optimisation problem and options 

% x(1)=qcurr, x(2)=Pcurr, x(3)=Icurr 

% XAend = (B*kX + ((d*kI + x(3) + 1)^gammaI)*(bb + o*x(2))) 

% WAend = ((1 + r)*kW + (p - h)*(Ybar + muP*x(2)^gammaP) - n*x(2) - x(1) - 

% k*x(3)) 

% IbarAend = (d*kI + x(3)) 

 

if kX > amin; 

    MaxUAS1oth(i,1) = NaN; 

else UAS1oth = @(x)(-((k*x(1) - (B*kX + bb + x(1))^2) + 1/(1 + rho)*(-bonus + 

exp(supremumAotherregression(1,1) + supremumAotherregression(2,1)*log(B*kX + 

bb + x(1)) + supremumAotherregression(3,1)*log(amin) + 

supremumAotherregression(4,1)*log(amax) + 

supremumAotherregression(5,1)*(log(B*kX + bb + x(1))^2) + 

supremumAotherregression(6,1)*(log(amin)^2) + 

supremumAotherregression(7,1)*(log(amax)^2) + 
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supremumAotherregression(8,1)*log(B*kX + bb + x(1))*log(amin) + 

supremumAotherregression(9,1)*log(B*kX + bb + x(1))*log(amax) + 

supremumAotherregression(10,1)*log(amin)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UAS1oth,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint1(x,amin,B,kX,bb),'options',opts); 

[xminAS1oth, fminAS1oth, flagAS1oth, outputAS1oth, manyminsAS1oth] = 

run(gs,problem); 

 

MaxUAS1othflag(i,1) = flagAS1oth; 

 

if flagAS1oth > 0; 

    MaxUAS1oth(i,1) = -fminAS1oth; 

else MaxUAS1oth(i,1) = NaN; 

   

end 

   

if flagAS1oth > 0; 

ChoiceAS1oth(i,:) = xminAS1oth'; 

else ChoiceAS1oth(i,:) = NaN; 

 

end 

 

end 

 

end 

 

% scenario 2: earlier = Regime A, later = Regime B 

% only feasible if kX <=amin 

% constrained optimisation where Xend(formula) >= amax_earlier 

 

MaxUAS2othflag = zeros(numrowsStateAbounds,1); 

MaxUAS2oth = zeros(numrowsStateAbounds,1); 

ChoiceAS2oth = zeros(numrowsStateAbounds,1); 

ChoiceAS2oth(:,:) = NaN; 
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for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagAS2oth = -10; 

     

% define optimisation problem and options 

% x(1)=qcurr, x(2)=Pcurr, x(3)=Icurr 

% XAend = (B*kX + ((d*kI + x(3) + 1)^gammaI)*(bb + o*x(2))) 

% WAend = ((1 + r)*kW + (p - h)*(Ybar + muP*x(2)^gammaP) - n*x(2) - x(1) - 

% k*x(3)) 

% IbarAend = (d*kI + x(3)) 

 

if kX > amin; 

    MaxUAS2oth(i,1) = NaN; 

else UAS2oth = @(x)(-((k*x(1) - (B*kX + bb + x(1))^2) + 1/(1 + rho)*(-bonus + 

exp(supremumBotherregression(1,1) + supremumBotherregression(2,1)*log(B*kX + 

bb + x(1)) + supremumBotherregression(3,1)*log(amin) + 

supremumBotherregression(4,1)*log(amax) + 

supremumBotherregression(5,1)*(log(B*kX + bb + x(1))^2) + 

supremumBotherregression(6,1)*(log(amin)^2) + 

supremumBotherregression(7,1)*(log(amax)^2) + 

supremumBotherregression(8,1)*log(B*kX + bb + x(1))*log(amin) + 

supremumBotherregression(9,1)*log(B*kX + bb + x(1))*log(amax) + 

supremumBotherregression(10,1)*log(amin)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UAS2oth,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint2(x,amax,B,kX,bb),'options',opts); 

[xminAS2oth, fminAS2oth, flagAS2oth, outputAS2oth, manyminsAS2oth] = 

run(gs,problem); 

 

MaxUAS2othflag(i,1) = flagAS2oth; 
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if flagAS2oth > 0; 

    MaxUAS2oth(i,1) = -fminAS2oth; 

else MaxUAS2oth(i,1) = NaN; 

    

end 

  

if flagAS2oth > 0; 

ChoiceAS2oth(i,:) = xminAS2oth'; 

else ChoiceAS2oth(i,:) = NaN; 

 

end 

 

end 

 

end 

 

% scenario 3: earlier = Regime A, later = Regime A or B (uncertain) 

% only feasible if kX <= amin 

% constrained optimisation where amin_earlier <= Xend(formula) <= amax_earlier 

 

MaxUAS3othflag = zeros(numrowsStateAbounds,1); 

MaxUAS3oth = zeros(numrowsStateAbounds,1); 

ChoiceAS3oth = zeros(numrowsStateAbounds,1); 

ChoiceAS3oth(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagAS3oth = -10; 
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% define optimisation problem and options 

% x(1)=qcurr, x(2)=Pcurr, x(3)=Icurr 

% XAend = (B*kX + ((d*kI + x(3) + 1)^gammaI)*(bb + o*x(2))) 

% WAend = ((1 + r)*kW + (p - h)*(Ybar + muP*x(2)^gammaP) - n*x(2) - x(1) - 

% k*x(3)) 

% IbarAend = (d*kI + x(3)) 

 

% for 2nd period, XAend becomes amin for Va and amax for Vb 

 

if kX > amin; 

    MaxUAS3oth(i,1) = NaN; 

else UAS3oth = @(x)(-((k*x(1) - (B*kX + bb + x(1))^2) + 1/(1 + rho)*(-bonus + 

((max(min((amax - (B*kX + bb + x(1)))/(amax - 

amin),1),0)))*exp(supremumAotherregression(1,1) + 

supremumAotherregression(2,1)*log(B*kX + bb + x(1)) + 

supremumAotherregression(3,1)*log(B*kX + bb + x(1)) + 

supremumAotherregression(4,1)*log(amax) + 

supremumAotherregression(5,1)*(log(B*kX + bb + x(1))^2) + 

supremumAotherregression(6,1)*(log(B*kX + bb + x(1))^2) + 

supremumAotherregression(7,1)*(log(amax)^2) + 

supremumAotherregression(8,1)*log(B*kX + bb + x(1))*log(B*kX + bb + x(1)) + 

supremumAotherregression(9,1)*log(B*kX + bb + x(1))*log(amax) + 

supremumAotherregression(10,1)*log(B*kX + bb + x(1))*log(amax)) + 

(max(min(((B*kX + bb + x(1)) - amin)/(amax - 

amin),1),0))*exp(supremumBotherregression(1,1) + 

supremumBotherregression(2,1)*log(B*kX + bb + x(1)) + 

supremumBotherregression(3,1)*log(amin) + 

supremumBotherregression(4,1)*log(B*kX + bb + x(1)) + 

supremumBotherregression(5,1)*(log(B*kX + bb + x(1))^2) + 

supremumBotherregression(6,1)*(log(amin)^2) + 

supremumBotherregression(7,1)*(log(B*kX + bb + x(1))^2) + 

supremumBotherregression(8,1)*log(B*kX + bb + x(1))*log(amin) + 

supremumBotherregression(9,1)*log(B*kX + bb + x(1))*log(B*kX + bb + x(1)) + 

supremumBotherregression(10,1)*log(amin)*log(B*kX + bb + x(1)))))); 
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problem = createOptimProblem('fmincon','x0',[0.1],'objective',UAS3oth,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint3(x,amin,amax,B,kX,bb),'options',opts); 

[xminAS3oth, fminAS3oth, flagAS3oth, outputAS3oth, manyminsAS3oth] = 

run(gs,problem); 

 

MaxUAS3othflag(i,1) = flagAS3oth; 

 

if flagAS3oth > 0; 

    MaxUAS3oth(i,1) = -fminAS3oth; 

else MaxUAS3oth(i,1) = NaN; 

     

end 

 

if flagAS3oth > 0; 

ChoiceAS3oth(i,:) = xminAS3oth'; 

else ChoiceAS3oth(i,:) = NaN; 

 

end 

 

end 

 

end 

 

% scenario 4: earlier = Regime B, later = Regime A (certain) 

% only feasible if kX >= amax 

% constrained optimisation where Xend(formula) <= amin_earlier 

 

MaxUBS4othflag = zeros(numrowsStateAbounds,1); 

MaxUBS4oth = zeros(numrowsStateAbounds,1); 

ChoiceBS4oth = zeros(numrowsStateAbounds,1); 

ChoiceBS4oth(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 
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    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

    

% reset flag 

flagBS4oth = -10; 

     

% define optimisation problem and options 

% x(1)=qcurr, x(2)=Pcurr, x(3)=Icurr 

% XBend = (B*kX + ((d*kI + x(3) + 1)^gammaI)*(bb + o*x(2)) + omega) 

% WBend = ((1 + r)*kW + (p - h)*(Ybar + muP*x(2)^gammaP) - n*x(2) - x(1) - 

% k*x(3)) 

% IbarBend = (d*kI + x(3)) 

 

if kX < amax; 

    MaxUBS4oth(i,1) = NaN; 

else UBS4oth = @(x)(-((k*x(1) - (B*kX + bb + x(1) + omega)^2) + 1/(1 + rho)*(-

bonus + exp(supremumAotherregression(1,1) + 

supremumAotherregression(2,1)*log(B*kX + bb + x(1) + omega) + 

supremumAotherregression(3,1)*log(amin) + 

supremumAotherregression(4,1)*log(amax) + 

supremumAotherregression(5,1)*(log(B*kX + bb + x(1) + omega)^2) + 

supremumAotherregression(6,1)*(log(amin)^2) + 

supremumAotherregression(7,1)*(log(amax)^2) + 

supremumAotherregression(8,1)*log(B*kX + bb + x(1) + omega)*log(amin) + 

supremumAotherregression(9,1)*log(B*kX + bb + x(1) + omega)*log(amax) + 

supremumAotherregression(10,1)*log(amin)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UBS4oth,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint4(x,amin,B,kX,bb,omega),'options',opts); 

[xminBS4oth, fminBS4oth, flagBS4oth, outputBS4oth, manyminsBS4oth] = 

run(gs,problem); 

 

MaxUBS4othflag(i,1) = flagBS4oth; 

 

if flagBS4oth > 0; 
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    MaxUBS4oth(i,1) = -fminBS4oth; 

else MaxUBS4oth(i,1) = NaN; 

     

end 

 

if flagBS4oth > 0; 

ChoiceBS4oth(i,:) = xminBS4oth'; 

else ChoiceBS4oth(i,:) = NaN; 

 

end 

 

end 

 

end 

 

% scenario 5: earlier = Regime B, later = Regime B (certain) 

% only feasible if kX >= amax 

% constrained optimisation where Xend(formula) >= amax_earlier 

 

MaxUBS5othflag = zeros(numrowsStateAbounds,1); 

MaxUBS5oth = zeros(numrowsStateAbounds,1); 

ChoiceBS5oth = zeros(numrowsStateAbounds,1); 

ChoiceBS5oth(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

   

% reset flag 

flagBS5oth = -10; 

     

% define optimisation problem and options 

% x(1)=qcurr, x(2)=Pcurr, x(3)=Icurr 
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% XBend = (B*kX + ((d*kI + x(3) + 1)^gammaI)*(bb + o*x(2)) + omega) 

% WBend = ((1 + r)*kW + (p - h)*(Ybar + muP*x(2)^gammaP) - n*x(2) - x(1) - 

% k*x(3)) 

% IbarBend = (d*kI + x(3)) 

 

if kX < amax; 

    MaxUBS5oth(i,1) = NaN; 

else UBS5oth = @(x)(-((k*x(1) - (B*kX + bb + x(1) + omega)^2) + 1/(1 + rho)*(-

bonus + exp(supremumBotherregression(1,1) + 

supremumBotherregression(2,1)*log(B*kX + bb + x(1) + omega) + 

supremumBotherregression(3,1)*log(amin) + 

supremumBotherregression(4,1)*log(amax) + 

supremumBotherregression(5,1)*(log(B*kX + bb + x(1) + omega)^2) + 

supremumBotherregression(6,1)*(log(amin)^2) + 

supremumBotherregression(7,1)*(log(amax)^2) + 

supremumBotherregression(8,1)*log(B*kX + bb + x(1) + omega)*log(amin) + 

supremumBotherregression(9,1)*log(B*kX + bb + x(1) + omega)*log(amax) + 

supremumBotherregression(10,1)*log(amin)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UBS5oth,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint5(x,amax,B,kX,bb,omega),'options',opts); 

[xminBS5oth, fminBS5oth, flagBS5oth, outputBS5oth, manyminsBS5oth] = 

run(gs,problem); 

 

MaxUBS5othflag(i,1) = flagBS5oth; 

 

if flagBS5oth > 0; 

    MaxUBS5oth(i,1) = -fminBS5oth; 

else MaxUBS5oth(i,1) = NaN; 

     

end 

 

if flagBS5oth > 0; 

ChoiceBS5oth(i,:) = xminBS5oth'; 

else ChoiceBS5oth(i,:) = NaN; 
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end 

 

end 

 

end 

 

% scenario 6: earlier = Regime B, later = Regime A or B (uncertain) 

% only feasible if kX >= amin 

% constrained optimisation where amin_earlier <= Xend(formula) <= amax_earlier 

 

MaxUBS6othflag = zeros(numrowsStateAbounds,1); 

MaxUBS6oth = zeros(numrowsStateAbounds,1); 

ChoiceBS6oth = zeros(numrowsStateAbounds,1); 

ChoiceBS6oth(:,:) = NaN; 

 

for i = 1:numrowsStateAbounds; 

    kX = StateAbounds(i,1); 

    amin = StateAbounds(i,2); 

    amax = StateAbounds(i,3); 

   

% reset flag 

flagBS6oth = -10; 

     

% define optimisation problem and options 

% x(1)=qcurr, x(2)=Pcurr, x(3)=Icurr 

% XBend = (B*kX + ((d*kI + x(3) + 1)^gammaI)*(bb + o*x(2)) + omega) 

% WBend = ((1 + r)*kW + (p - h)*(Ybar + muP*x(2)^gammaP) - n*x(2) - x(1) - 

% k*x(3)) 

% IbarBend = (d*kI + x(3)) 

 

% for 2nd period, XBend becomes amax for Va and amin for Vb 

 

if kX < amax; 
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    MaxUBS6oth(i,1) = NaN; 

else UBS6oth = @(x)(-((k*x(1) - (B*kX + bb + x(1) + omega)^2) + 1/(1 + rho)*(-

bonus + ((max(min((amax - (B*kX + bb + x(1) + omega))/(amax - 

amin),1),0)))*exp(supremumAotherregression(1,1) + 

supremumAotherregression(2,1)*log(B*kX + bb + x(1) + omega) + 

supremumAotherregression(3,1)*log(amin) + 

supremumAotherregression(4,1)*log(B*kX + bb + x(1) + omega) + 

supremumAotherregression(5,1)*(log(B*kX + bb + x(1) + omega)^2) + 

supremumAotherregression(6,1)*(log(amin)^2) + 

supremumAotherregression(7,1)*(log(B*kX + bb + x(1) + omega)^2) + 

supremumAotherregression(8,1)*log(B*kX + bb + x(1) + omega)*log(amin) + 

supremumAotherregression(9,1)*log(B*kX + bb + x(1) + omega)*log(B*kX + bb + 

x(1) + omega) + supremumAotherregression(10,1)*log(amin)*log(B*kX + bb + x(1) 

+ omega)) + (max(min(((B*kX + bb + x(1) + omega) - amin)/(amax - 

amin),1),0))*exp(supremumBotherregression(1,1) + 

supremumBotherregression(2,1)*log(B*kX + bb + x(1) + omega) + 

supremumBotherregression(3,1)*log(B*kX + bb + x(1) + omega) + 

supremumBotherregression(4,1)*log(amax) + 

supremumBotherregression(5,1)*(log(B*kX + bb + x(1) + omega)^2) + 

supremumBotherregression(6,1)*(log(B*kX + bb + x(1) + omega)^2) + 

supremumBotherregression(7,1)*(log(amax)^2) + 

supremumBotherregression(8,1)*log(B*kX + bb + x(1) + omega)*log(B*kX + bb + 

x(1) + omega) + supremumBotherregression(9,1)*log(B*kX + bb + x(1) + 

omega)*log(amax) + supremumBotherregression(10,1)*log(B*kX + bb + x(1) + 

omega)*log(amax))))); 

problem = createOptimProblem('fmincon','x0',[0.1],'objective',UBS6oth,'Aineq',[-

1],'bineq',[0],'nonlcon',@(x)constraint6(x,amin,amax,B,kX,bb,omega),'options',opts); 

[xminBS6oth, fminBS6oth, flagBS6oth, outputBS6oth, manyminsBS6oth] = 

run(gs,problem); 

 

MaxUBS6othflag(i,1) = flagBS6oth; 

 

if flagBS6oth > 0; 

    MaxUBS6oth(i,1) = -fminBS6oth; 
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else MaxUBS6oth(i,1) = NaN; 

     

end 

 

if flagBS6oth > 0; 

ChoiceBS6oth(i,:) = xminBS6oth'; 

else ChoiceBS6oth(i,:) = NaN; 

 

end 

 

end 

 

end 

 

% take supremum of scenarios 1-3 

 

supremumAother = zeros(numrowsStateAbounds,1); 

 

for i = 1:numrowsStateAbounds; 

    maxintermediate = max(MaxUAS1oth(i,1),MaxUAS2oth(i,1)); 

    maxvalue = max(maxintermediate,MaxUAS3oth(i,1)); 

    supremumAother(i,1) = maxvalue; 

end 

 

logsupremumAother = log(supremumAother + bonus); %%% bonus has been added 

to ensure value function is positive, so it can be logged 

 

% estimate regression for supremumAT(Xprev,Wprev,Ibarprev,amin,amax) 

supremumAotherregression = regress(logsupremumAother,XAregression); 

 

% take supremum of scenarios 4-6 

 

supremumBother = zeros(numrowsStateAbounds,1); 
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for i = 1:numrowsStateAbounds; 

    maxintermediate = max(MaxUBS4oth(i,1),MaxUBS5oth(i,1)); 

    maxvalue = max(maxintermediate,MaxUBS6oth(i,1)); 

    supremumBother(i,1) = maxvalue; 

end 

 

logsupremumBother = log(supremumBother + bonus); %%% bonus has been added 

to ensure value function is positive, so it can be logged 

 

% estimate regression for supremumBT(Xprev,Wprev,Ibarprev,amin,amax) 

supremumBotherregression = regress(logsupremumBother,XAregression); 

 

% save parameter estimates for supremumAotherregression 

Aregpara(:,itertotal-s+1) = supremumAotherregression; 

 

% save parameter estimates for supremumBotherregression 

Bregpara(:,itertotal-s+1) = supremumBotherregression; 

 

% save levels of choice variables that correspond to optimal scenario (1-3) 

ChoiceAoth = zeros(numrowsStateAbounds,1); 

% check supremum for isnan 

isnan_supremumAother = isnan(supremumAother); 

 

for count = 1:numrowsStateAbounds 

    if isnan_supremumAother(count,1) == 1; 

        ChoiceAoth(count,:) = NaN; 

    elseif MaxUAS1oth(count,1) == supremumAother(count,1); 

        ChoiceAoth(count,:) = ChoiceAS1oth(count,:); 

    elseif MaxUAS2oth(count,1) == supremumAother(count,1); 

        ChoiceAoth(count,:) = ChoiceAS2oth(count,:); 

    elseif MaxUAS3oth(count,1) == supremumAother(count,1); 

        ChoiceAoth(count,:) = ChoiceAS3oth(count,:); 

         

    end 
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end 

 

P_logChoiceAoth = log(ChoiceAoth(:,1) + 0.01); 

 

% estimate regression for choice 1 (i.e. P) 

PAotherregression = regress(P_logChoiceAoth,XAregression); 

 

% save parameter estimates for PAotherregression 

PAregpara(:,itertotal-s+1) = PAotherregression; 

 

 

% save levels of choice variables that correspond to optimal scenario (4-6) 

ChoiceBoth = zeros(numrowsStateAbounds,1); 

% check supremum for isnan 

isnan_supremumBother = isnan(supremumBother); 

 

for count = 1:numrowsStateAbounds 

    if isnan_supremumBother(count,1) == 1; 

        ChoiceBoth(count,:) = NaN; 

    elseif MaxUBS4oth(count,1) == supremumBother(count,1); 

        ChoiceBoth(count,:) = ChoiceBS4oth(count,:); 

    elseif MaxUBS5oth(count,1) == supremumBother(count,1); 

        ChoiceBoth(count,:) = ChoiceBS5oth(count,:); 

    elseif MaxUBS6oth(count,1) == supremumBother(count,1); 

        ChoiceBoth(count,:) = ChoiceBS6oth(count,:); 

         

    end 

     

end 

 

P_logChoiceBoth = log(ChoiceBoth(:,1) + 0.01); 

 

% estimate regression for choice 1 (i.e. P) 
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PBotherregression = regress(P_logChoiceBoth,XAregression); 

 

% save parameter estimates for PBotherregression 

PBregpara(:,itertotal-s+1) = PBotherregression; 

 

% iteration counter 

iter = iter + 1 

 

end 

% end of for s = 1, T-4; 
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