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Conditional value at risk (CVaR) has been widely used as a risk measure in finance. When the confidence

level of CVaR is set close to 1, the CVaR risk measure approximates the extreme (worst scenario) risk

measure. In this paper, we present a quantitative analysis of the relationship between the two risk measures

and its impact on optimal decision making when we wish to minimize the respective risks measures. We

also investigate the difference between the optimal solutions to the two optimization problems with identical

objective function but under constraints on the two risk measures. We discuss the benefits of a sample average

approximation scheme for the CVaR constraints and investigate the convergence of the optimal solution

obtained from this scheme as the sample size increases. We use some portfolio optimization problems to

investigate the performance of the CVaR approximation approach. Our numerical results demonstrate how

reducing the confidence level can lead to better overall performance.

Key words : CVaR approximation; robust optimization; minimax; semi-infinite programming; distributional

robust optimization; sample average approximation

History :

1. Introduction

A fundamental problem in financial optimization is to choose decision variables x from a compact

set X in order to minimize the risk of loss, where losses are given by a continuous function f(x, ξ)

with ξ a random variable having a known distribution. There are many options for risk measures

to use in this framework, but here we will be concerned with Conditional Value at Risk (CVaR)

where CVaRβ is defined as the average value of the highest 1− β proportion of the distribution.

* The research is supported by EPSRC grant EP/J014427/1.
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The parameter β here is usually referred to as the confidence level. If we use the CVaR risk measure

then we obtain the problem

MnCV (β) : min
x∈X

CVaRβ(f(x, ξ)).

In practice it may not be easy to determine what value of confidence level should be chosen, i.e. how

extreme the risks are that should be considered in the risk minimization. Essentially confidence

levels β that are very close to 1 will correspond to more conservative behavior, in which we focus

on more and more unlikely events. In this paper we will investigate what happens to this problem

as β is increased towards 1.

It is not too hard to see that, under certain circumstances, in the limit of β→ 1 the problem

MnCV (β) approaches the minimax problem

MnMx : min
x∈X

sup
y∈Y

f(x, y),

where the set Y ⊂ IRm simply corresponds to the range of the random variable ξ.

Minimax problems in this form occur in enormous numbers of applications in economics and

engineering (for examples see the review on this topic by Polak (1987)). If we view y as an uncertain

parameter, then we can see this as a robust minimization problem where an optimum decision on

x is made in a way that protects against the impact of uncertainty in y. This kind of robust formu-

lation dates back to the early work of Soyster (1973). Over the past decade, robust optimization

has rapidly developed into a new area of optimization with substantial applications in operations

research, finance, engineering and computer science, see the monograph by Ben-Tal et al. (2009).

In broad terms we consider a framework in which the problem MnMx is viewed as a robust version

of the original risk minimization problem, while in the other direction we can see the minimum

risk problem MnCV (β) as an approximation of the minimax problem MnMx.

In applications we may not have access to the complete distribution of ξ, and so we will consider

a situation in which the solution to MnCV (β) must be carried out through a sampling procedure.

Our particular interest is in circumstances where we cannot control the samples directly, but must

accept samples drawn from the original distribution for ξ. This may happen for example when the

risk optimization model generates ξ from a complex simulation. The model also applies when we

have access only to a historical set of values ξ1, ξ2, ..., ξN without the opportunity to sample again.

In the same way for MnMx we suppose that, for any given value of x, the possible values f(x, y)

for y ∈ Y are not given directly, but can be obtained by sampling from the states of nature Y .

In this situation we will estimate the value of CVaRβ(f(x, ξ)) simply from looking at the average

of the top 1−β of the sample values f(x, ξi), i= 1,2, ...,N . For values of β greater than 1−1/N this
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will mean simply looking at maxf(x, ξi). We note that there are other more complex approaches

to this problem. An attractive option with a large number of samples is to assume that we have

enough samples to make the assumptions of extreme value theory hold. In that case we can assume

that threshold exceedences are distributed as a Generalized Pareto Distribution and estimate the

parameters of this from the sample as a route to the estimation of the CVaR value (or the absolute

maximum). However our simpler approach of a sample average approximation to CVaR will be

required when the sample size is not large enough for extreme value theory to be applied, and our

approach is also useful in establishing some specific bounds on convergence.

It is important to remember that we aim to provide good values of the decision variables x rather

than simply estimate risk. We should note that even where there is agreement that risk should be

measured at a particular value of the confidence level there may be an advantage, in the sample

framework, from using a lower confidence level in order to gain from the information provided by

using more data points. In particular even if we are concerned about extreme risk and wish to solve

the minimax problem MnMx, there may be an advantage in looking at a value of β low enough to

include multiple samples for each value of x. To illustrate this we now consider a simple motivating

example.

1.1. A simple example

We consider a small example of a minimax problem where we want to choose a scalar x to minimize

maxy∈Y f(x, y) where the set Y is unavailable to us, but we have some sort of simulation mechanism

that, for a given value of x, allows us to sample ξ ∈ Y and evaluate f(x, ξ). Thus in order to deal with

the inner maximization we need to take a sample ξ1, ξ2, ..., ξN from Y and evaluate maxi f(x, ξi) in

order to find an estimate of the largest f(x, y) value for a given x. So we can carry out a numerical

optimization process that iterates the value of x and for each trial value of x uses a large sample

{f(x, ξi) : i= 1, ...N} in order to estimate maxy∈Y f(x, y).

As an alternative we can consider estimating the CVaRβ value using the sample of values

ξ1, ξ2, ..., ξN and using these estimates to solve the minimum risk problem: MnCV (β). This may

seem odd since we know that the CVaR value will always underestimate the maximum. But the

problem with the direct approach is that sampling to estimate maxy∈Y f(x, y) will produce erratic

values that then make it hard for the optimization over x to proceed smoothly. It turns out to be

better to use a CVaR approximation to the supremum.

To illustrate this we suppose that we are dealing with an underlying function f(x, y) = 6x2 + y

where y ∈ Y = [−5,5] and samples from Y are taken according to a (truncated) N(0,1) distribution.

Hence maxy∈Y f(x, y) = 6x2 +5 and the optimal solution occurs at x∗ = 0. However if we are forced

to solve this problem numerically purely on the basis of sample evaluations f(x, ξi) with ξi drawn



Anderson, Xu and Zhang: CVaR Risk Measures and Minimax Limits
4

from Y , but without direct knowledge of the set Y , then the problem is harder. Suppose that

we look at 100 different x values spread from −0.5 to +0.5 and at each x value take 2000 ξi

samples, then we obtain the results shown in Figure 1. It is easy to see that the erratic behavior of

the maximum sampled value leads to a poor estimate of the minimax point, x∗, while the better

behavior of both VaR and CVaR at the 0.95 level gives a better estimate of the right value for x∗.

When we repeat this multiple times we get the results given in Figure 2 which shows the spread

of x∗ values found over 200 separate runs: from this it is clear that the CVaR approach produces

superior estimates.

Figure 1 The minimax values, VaR and CVaR approximations of maxy∈Y f(x, y) = 6x2 + y.

Figure 2 The distribution of solutions to minx∈X maxy∈Y f(x, y) = 6x2 + y and its VaR/CVaR approximations.
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1.2. The constrained risk problem

The second type of problem we consider is closely related. Alongside our study of the minimum

risk problem MnCV (β) and its minimax limit, we will also consider a constrained risk problem

MnCnCV (β), in which we seek to minimize some objective function h over x ∈X, subject to a

constraint on the maximum value U that the CVaR risk measure may take. We write this as

MnCnCV(β) :

{
min
x∈X

h(x)

s.t. CVaRβ(f(x, ξ))≤U.

Again we can consider what happens to this problem as we vary β , reflecting a more and more

conservative decision maker. Now we find that as β approaches 1 the problem approaches the

following optimization problem with a semi-infinite constraint

MnCnMx :

{
min
x∈X

h(x)

s.t. f(x, y)≤U , for all y ∈ Y,

where as before we define Y to be the range of the random variable ξ.

We may (redefining f as necessary) take U = 0 and obtain a standard optimization problem sub-

ject to the condition that a solution is feasible for all possible instances of the uncertain parameter

y. In other words MnCnMx is an optimization problem with robust feasibility. Unless we spec-

ify otherwise we will assume that U = 0 in what follows. This problem has been considered by

Calafiore and Campi (2005) and special cases with applications in engineering design and portfolio

optimization can be found in Apkarian and Tuan (2000), Ben-Tal and Nemirovski (1997, 1998,

1999), Ghaoui and Lebret (1998).

For the constrained risk problem MnCnCV (β) we will need to determine the value of β that is

appropriate: for example we may need to decide between minimizing h subject to the 99% CVaR

being less than $10,000 or minimizing h subject to the 99.5% CVaR being less than $20,000. We will

investigate the case where the solution of MnCnCV (β) is estimated through a sample ξ1, ξ2, ...ξN

and this means that the choice of β value will affect the degree of inaccuracy in the estimation of

the feasible region of the problem, with lower values of β giving more accurate estimations. The

idea is that it may be better to opt for lower values of β in order to avoid the optimization being

dependent on too small a number of samples. The need to make these kinds of decisions provides

a motivation for an analysis of the convergence behavior of the solutions to MnCnCV(β) as β→ 1.

The use of a sampling approach is also found in Calafiore and Campi (2005, 2006) and Calafiore

(2010). These authors have investigated the problem MnCnMx when h(x) is a linear function and

f(x, ξ) is convex in x. Specifically, they consider taking a Monte Carlo sample from the set of

uncertain parameters Y and then approximating the semi-infinite constraints with a finite number

of sample indexed constraints. They show that the resulting randomized solution fails to satisfy
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only a small proportion of the original constraints if a sufficient number of samples is drawn. An

explicit bound on the measures of the original constraints that may be violated by the randomized

solution is derived. The approach has been shown to be numerically efficient and it has been

been extensively applied to various stochastic and robust programs including chance constrained

stochastic programs and multistage stochastic programs, see Calafiore and Campi (2006), Calafiore

(2010), Calafiore and Garatti (2008, 2010), Vayanos et al. (2012) and references therein.

1.3. Plan of the paper

Since the numerical approaches to be discussed in this paper are fundamentally based on the

properties of CVaR for different values of β, we need to look more closely at the properties of

the CVaR approximation. In particular, we will give a comprehensive analysis of upper and lower

bounds for the value of CVaR in Theorem 1.

When the constraints for an optimization problem with robust feasibility are replaced with

a CVaR approximation then there will be a change in the feasible set. Section 3 is a kind of

counterpart to section 2, but instead of looking at bounds on the CVaR values we look at bounds

on the sets involved.

Having completed these preliminaries in sections 2 and 3 we return to our underlying problems

of robust minimax and optimization with robust constraints. In section 4 we give a discussion of

how these two problems can be solved using a sample average approximation scheme and the CVaR

approximation. We also explore the connection between these two problems, through considering

a distributionally robust form of the minimax problem and showing how a dualization converts

this to a problem of optimization with robust feasibility. Finally in section 5 we illustrate our work

through applications to simple portfolio optimization problems.

2. Mathematical foundations and CVaR bounds

In this section, we will set up the problem more carefully and establish bounds for CVaR. Let

f : IRn × IRm→ IR be a continuous loss function. Let X and Y be closed subsets of IRn and IRm

respectively. Let ξ : Ω→ Y ⊂ IRm be a vector of random variables defined on the probability space

(Ω,F , P ) with support set Y . We suppose that ξ(ω) ∈ Y is a continuous random variable with

density function ρ(y), and we treat f(x, ξ) for x∈X ⊂ IRn as a random variable induced by ξ(ω).

Since we are interested in the problem MnMx as a limit when β → 1 and this involves the

supremum of f , we need to be careful to link the set of all values that ξ(ω) can take and the

density function. We make the additional assumption that the density function ρ has a non-zero

integral on any ball around a point ξ(ω). This condition does no more than rule out the possibility

of isolated points, since these can have an impact on supy∈Y f(x, y) but will have no effect on the
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value of CVaR. The formulation of the assumption is simpler when ξ is real valued: in this case we

can set ρ to be the derivative of the cumulative distribution function and simply ask for ρ to be

non-zero at all points ξ(ω).

As a function of α for fixed x, we let F (x,α) be the cumulative distribution function for f(x, ξ(ω)),

the loss associated with x. Hence

F (x,α) = Pr(f(x, ξ)≤ α) =

∫
{y : f(x,y)≤α}

ρ(y)dy. (1)

Following Rockafellar and Uryasev (2000), we may define the value at risk (VaR) of f(x, ξ) at a

level β ∈ (0,1) as

VaRβ(f(x, ξ)) := inf{α : F (x,α)≥ β}.

We will often consider x as fixed and write Fx(·) for F (x, ·). In the case that Fx(α) is strictly

monotonically increasing with respect to α, we will have a well defined inverse function for Fx and

then

VaRβ(f(x, ξ)) = F−1
x (β).

Now we define the conditional value at risk at a confidence level β as

CVaRβ(f(x, ξ)) :=
1

1−β

∫
{y : f(x,y)≥VaRβ(f(x,ξ))}

f(x, y)ρ(y)dy.

Since the probability that f(x, y)≥VaRβ(f(x, ξ)) is equal to (1−β) we can interpret this expression

as the conditional expectation of the loss associated with x given that this loss is VaRβ(f(x, ξ)) or

greater. If there is an inverse function for Fx then we can write

CVaRβ(f(x, ξ)) =
1

1−β

∫ 1

β

F−1
x (t)dt,

see for instance (Pflug and Römisch 2007, Theorem 2.34).

The theorem below summarizes the properties of VaRβ(f(x, ξ)), CVaRβ(f(x, ξ)) and their rela-

tionships with supy∈Y f(x, y). Proofs of the theorems throughout the paper are given in the

appendix.

Theorem 1. Let x be some fixed element of X. Then the following assertions hold.

(i)

VaRβ(f(x, ξ))≤CVaRβ(f(x, ξ))≤ sup
ξ∈Y

f(x, ξ)

and

lim
β→1

VaRβ(f(x, ξ)) = lim
β→1

CVaRβ(f(x, ξ)) = sup
ξ∈Y

f(x, ξ). (2)
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(ii) If there exists α0 such that Fx(α) is continuously differentiable with a non-increasing positive

derivative for all α∈ (α0, supy∈Y f(x, y)) then for β >Fx(α0), the function VaRβ(f(x, ξ)) is convex

in β and

VaR(1+β)/2(f(x, ξ))≤CVaRβ(f(x, ξ))≤ 1

2

[
VaRβ(f(x, ξ)) + sup

ξ∈Y
f(x, ξ)

]
. (3)

(iii) If supy∈Y f(x, y) = f∗(x) <∞ and there exist positive constants α0 (depending on x), K

and τ such that

1−Fx(α)≥K (f∗(x)−α)
τ
, for all α∈ (α0, f

∗(x)), (4)

holds, then for β >Fx(α0),

f∗(x)−CVaRβ(f(x, ξ))≤ 1

K1/τ

τ

1 + τ
(1−β)1/τ . (5)

Notice that parts (i) and (ii) of this theorem do not assume that f(x, ξ) is bounded for fixed x,

though this assumption is needed for part (iii). Part (i) of the theorem is enough to establish that

MnMx is the limit of MnCV (β) as β→ 1. Later we will look in more detail at this convergence.

Essentially the bounds given in parts (ii) and (iii) of the theorem rely on the good behavior

of the cumulative distribution function Fx. However the requirements are quite minimal and will

almost always be met in applications.

The condition for part (ii) that the derivative of Fx(α) is decreasing (not necessarily strictly) for

α large enough amounts to saying that the density function of f(x, ξ) has a largest mode (beyond

which it is automatically decreasing). This is a very mild condition.

Condition (4) requires the cumulative distribution function to approach 1 faster than some

power of the distance to f∗(x). This is a natural constraint and will be available whenever the

corresponding density function is bounded as α→ f∗(x), (even less of a restriction than part(ii)

requires). We can think of τ as related to the way in which the density function of f(x, ξ) approaches

zero when α approaches its limit. If the density function approaches zero like an n’th power then

we can set τ = n+ 1. Cases where the density function is bounded away from zero in this region

(for example, when f(x, ξ) follows a uniform distribution) correspond to τ = 1.

A great advantage of the CVaR risk measure is that it can be reformulated as the result of a

minimization. We define

Φβ(x,η) := η+
1

1−β

∫
y∈Y

(f(x, y)− η)+ρ(y)dy (6)

where (t)+ = max(0, t). Rockafellar and Uryasev (2000) proved that

CVaRβ(f(x, ξ)) = min
η∈IR

Φβ(x,η), (7)
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and this allows us to reformulate the the problem MnCV (β) as

min
x∈X

CVaRβ(f(x, ξ)) = min
(x,η)∈X×IR

Φβ(x,η). (8)

We want to consider the problem MnCV (β) as a route to the solution of the minimax problem

MnMx. Traditional deterministic methods for the minimax problem would typically require f(x, ·)

to be concave for global convergence: this condition is not required.

Let X∗(β) denote the set of optimal solutions of problem MnCV (β) and X∗ the set of optimal

solutions of the minimax problem MnMx. We write d(x,D) := infx′∈D ‖x−x′‖ for the distance from

a point x to a set D. For two compact sets C and D,

D(C,D) := sup
x∈C

d(x,D)

denotes the deviation of C from D and H(C,D) := max(D(C,D),D(D,C)) denotes the Hausdorff

distance between C and D. We investigate the relationship between the two sets, specifically, we

estimate D(X∗(β),X∗). We do so by making use of a result from (Liu and Xu 2013, Lemma 3.8).

We will make use of the condition (4) that was introduced in Theorem 1.

Definition 1. We will say that f(x, y) has consistent tail behavior on X if there are constants K

and τ independent of x such that for each x ∈X we can find α0(x)< f∗(x) = supy∈Y f(x, y)<∞

with

1−Fx(α)≥K (f∗(x)−α)
τ
, for all α∈ (α0(x), f∗(x)). (9)

Let us give a simple example to explain condition (9).

Example 1. Consider f(x, ξ) = xξ, where x∈ [0,1]⊂ IR and ξ follows a uniform distribution over

interval [−1,1]. Then f∗(x) = x for x ∈ [0,1]. When x = 0, f(0, ξ) = 0 which is deterministic. In

what follows, we consider the case when x∈ (0,1]. It is easy to derive that for α< x,

Fx(α) =
x+α

2x

Let K ∈ (0,0.5) be a fixed constant and τ = 1. Then (9) holds uniformly for x∈ (0,1] and α∈ (0, x).

It is also convenient in this case (where supy∈Y f(x, y)<∞) to define ∆β(x) as the error when

the CVaR value is used as an approximation to the supremum:

∆β(x) := sup
y∈Y

f(x, y)−CVaRβ(f(x, ξ)). (10)
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Theorem 2. Assume that X is a compact set and f(x, ξ) has consistent tail behavior on X. Then

lim
β→0

X∗(β)⊂X∗. (11)

Moreover, if the minimax robust optimization problem MnMx satisfies the second order growth

condition at X∗, i.e., there exists a positive constant K > 0 such that

sup
y∈Y

f(x̂, y)≥min
x∈X

(
sup
y∈Y

f(x, y)

)
+Kd(x̂,X∗)2, for all x̂∈X, (12)

then

D(X∗(β),X∗)≤

√
3

K
sup
x∈X

∆β(x), (13)

where ∆β(x) is defined as in (10).

The theorem says that the optimal solution to MnCV (β) is consistent with that of MnMx when

β is close to 1 and under the second order growth condition the deviation of the former from the

latter is bounded by the maximal difference of the objective function values of the two problems.

When f(x, ξ) has consistent tail behavior, it means that a small change of the confidence level from

1 will have a marginal impact on the optimal decision.

From the numerical point of view, an obvious advantage of the formulation of MnCV (β) given

by (8) is that, when f is convex in x, then it is a convex program whatever dependence f has on

y. On the other hand, since Φβ contains a nonsmooth term, it might be difficult or numerically

expensive to compute the multidimensional integral when ξ has several components.

A well-known method to tackle the estimation of an expectation is sample average approximation

(SAA) which is also known as the Monte Carlo method. The basic idea of SAA can be applied in this

case as follows. Let ξ1, · · · , ξN be an iid sampling, that is, these are independent random variables

all having the same distribution to that of ξ. We construct the following SAA to MnCV (β):

MnCVSA(β) :

min
x,η

η+
1

(1−β)N

N∑
j=1

(f(x, ξj)− η)+

s.t. x∈X,η ∈ IR.

(14)

We refer to MnCV (β) as the true problem and MnCVSA(β) as its sample average approxima-

tion. Existence of an optimal solution of MnCVSA(β) and asymptotic convergence of the optimal

solutions as N →∞ has been well documented, see Section 5 in Xu and Zhang (2009).

3. Approximation of a semi-infinite convex inequality system

An interest in the connection between the constrained risk problem MnCnCV (β) and the opti-

mization with robust feasibility problem MnCnMx leads us to a comparison of the solutions to the

following semi-infinite convex system of inequalities:

f(x, y)≤ 0, for all y ∈ Y, (15)
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where x ∈X, and its CVaR approximation, CVaRβ(f(x, ξ)) ≤ 0 which we can rewrite using the

equivalence (7) as follows:

min
η∈IR

(
η+

1

1−β
E[(f(x, ξ)− η)+]

)
≤ 0. (16)

In this section, we continue to assume that X is a closed convex set in IRn, f : IRn→ IR is a

continuous function and Y is a closed subset of IRm. For each fixed y ∈ Y , f(·, y) is convex in IRn.

Throughout this section, we assume that the set of solutions of (15) is nonempty. Problem (15) is

said to satisfy Slater constraint qualification if there exists a positive number δ̄ and a point x̄∈X

such that

max
y∈Y

f(x̄, y)≤−δ̄.

Our aim in this section is to understand the difference between the solution sets of the two

systems, and to make some estimate of the error bound. So we will discuss the difference between

G, which we define as the solution set of (15), and G(β) which is defined as the solution set of (16)

within X. It is easy to observe that G(β) provides an outer approximation of G (i.e. G ⊂ G(β) ).

We would like to know the excess of G(β) over G for β ∈ (0,1). The theorem below addresses this

through the use of the Hausdorff distance H between the sets involved.

Theorem 3. Assume that X is a compact set and for each y ∈ Y , f(·, y) is convex on X and

f(x, y) has consistent tail behavior on X. Then

(i) for any ε > 0, there exists a β0 ∈ (0,1)> 0 such that when β ∈ (β0,1),

H(G(β),G)≤ ε;

(ii) in the case when (15) satisfies the Slater constraint qualification, then for any β ∈ (0,1)

there exists a positive constant C such that

H(G(β),G)≤C sup
x∈X

∆β(x)

where ∆β(x) is given by (10).

The theorem says that the solution set of the CVaR system coincides with that of the semi-infinite

system when β is driven to 1 and under the Slater constraint qualification, we may quantify the

distance between the two solution sets. Since ∆β(x) can be estimated when f(x, ξ) has consistent

behavior, the latter result provides information on the impact on the solutions when β is reduced

from 1.

Next we give an error bound for the approximating system (16) in the case that the original

system (15) has a nonempty solution set.
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Proposition 1. Assume that G 6= ∅, then there exists positive number β0 and C (dependent on β)

such that

d(x,G(β))≤C
(

min
η∈IR

Φβ(x,η)

)
+

(17)

for all x∈X and β ∈ (β0,1].

Note that the positive constant C may be estimated through Robinson’s theorem in Robinson

(1975). Indeed, if we let D be the diameter of G(β) and

δ :=−min
x∈G

CVaRβ(f(x, ξ)). (18)

Then we can set

C := (δ− γ)−1D,

where γ is any positive number smaller than δ. Note also that since G is usually unknown, then

the minimization in (18) may be taken over X. In the case when (15) satisfies the Slater constraint

qualification, the δ value estimated from (18) is strictly positive for all β > 0. Moreover, since

G(β)⊂X, the diameter of G(β) is upper bounded by that of X. This means that we may choose

a positive constant C which is independent of β for (17).

4. Optimization with robust feasibility

In this section, we return to consider the constrained risk optimization problem MnCnCV(β) with

U = 0. Using the characterization in terms of Φβ this problem can be written as

min
x∈X

h(x)

s.t. min
η∈IR

Φβ(x,η)≤ 0,
(19)

where Φβ(x,η) is defined as in (6). For the simplicity of discussion, we assume throughout this

section that X is a compact set.

Note that the constraint minη∈IR Φβ(x,η)≤ 0, of (19) can also be written supy∈Y f(x, y)≤∆β(x).

Thus we can see that the formulations (19) and MnCnCV(β) are equivalent to a relaxation of the

problem MnCnMx, so that the constraints become

f(x, ξ)≤∆β(x), ∀ξ ∈ Y .

Theorem 1 gives a route to some bounds on ∆β(x) which may be used to explore the extent of this

relaxation of the constraints.

Our focus in this section will be on the numerical solution of problem MnCnMx through an

approximation by MnCnCV(β). To do this we need to carry out some quantitative analysis of the

approximation in terms of optimal value and optimal solutions, and so we will look at the way that

solutions to the problem (19) approach those of MnCnMx as β→ 1.
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Theorem 4. Let ϑ̂ and X̂ denote the optimal value and set of optimal solutions of MnCnMx. Let

ϑ̂(β) and X̂(β) denote the optimal value and set of optimal solutions of MnCnCV(β). Assume that

X is a compact set, MnCnMx satisfies the Slater constraint qualification and f(x, y) has consistent

tail behavior on X. Then

(i) ϑ̂(β) converges to ϑ̂ as β→ 1;

(ii) limβ→1 X̂(β)⊂ X̂;

(iii) there exists a positive constant Ĉ such that

|ϑ̂(β)− ϑ̂| ≤ Ĉ sup
x∈X

∆β(x), (20)

where ∆β(x) is defined in (18).

Parts (i) and (ii) ensure consistency of optimal value and optimal solution when β converges to

1 while Part (iii) quantifies the difference of the two optimal values.

We now return to our discussion of numerical methods for solving problem MnCnCV(β). We

begin with the formulation (19) and observe that we can rewrite this in a way that treats η as a

variable:
min

x∈X,η∈IR
h(x)

s.t. η+
1

1−β
E[(f(x, ξ)− η)+]≤ 0,

(21)

To see the equivalence, note that the constraint in (21) is simply Φβ(x,η) ≤ 0. Let x∗ be an

optimal solution to problem (19) and v∗ be the optimal value, let (x̂, η̂) be an optimal solution to

problem (21) and v̂ be the optimal value. Then there exists a finite η∗ (see Rockafellar and Uryasev

(2000)) such that

Φβ(x∗, η∗) = min
η∈IR

Φβ(x∗, η)≤ 0,

which means (x∗, η∗) is a feasible solution to (21). This shows v∗ ≥ v̂. Conversely, since

min
η∈IR

Φβ(x̂, η)≤Φ(x̂, η̂)≤ 0,

it means x̂ is a feasible solution to (19). This shows v̂= h(x̂)≥ v∗. The equivalence follows.

Problem (21) is a nonlinear stochastic optimization problem with deterministic objective and a

stochastic constraint. The main challenge here is to handle the expected value E[(f(x, ξ)− η)+].

This motivates us to consider sample average approximation as in the previous subsection. Let

ξ1, · · · , ξN be an independent and identically distributed (i.i.d.) sampling of ξ. We consider the

following sample average approximation for MnCnCV (β) (using formulation (21)):

MnCnCVSA(β) :


min
x,η

h(x)

s.t. η+
1

(1−β)N

N∑
j=1

(f(x, ξj)− η)+ ≤ 0,

x∈X,η ∈ IR.
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For a fixed sample, MnCnCVSA(β) is a deterministic nonlinear programming (NLP) and therefore

any appropriate NLP code can be applied to solve the problem.

At this point, it is helpful to link our SAA approach to Calafiore and Campi’s randomization

approach in Calafiore and Campi (2005, 2006) in which the following problem is taken as a sample-

based approximation to MnCnMx:

min
x∈X

h(x)

s.t. f(x, ξj)≤ 0, for j = 1, · · · ,N,
(22)

where ξ1, · · · , ξN are randomly taken from set Y . A clear benefit of the randomization approach

is to replace the continuum of the constraints of the problem MnCnMx with a finite number of

constraints. In doing so, the latter provides an outer approximation to the feasible set of the true

problem, and hence the optimal value of (22) gives rise to a lower bound for the optimal value of

MnCnMx. From a practical point of view, an important issue of this kind of approximation scheme

concerns feasibility of the optimal solution of (22) to its true counterpart. It has been shown that

the solution satisfies most of the constraints of MnCnMx if the number of points N is sufficiently

large, see Calafiore and Campi (2005) and Calafiore and Garatti (2008). Moreover, Calafiore and

Garatti (2008) demonstrated an exact universal bound on the number of samples required to ensure

that only a small portion of the constraints of the original problem is violated.

Analogous to (22), our approximation scheme MnCnCVSA(β) also gives an outer approximation

to MnCnMx in terms of the feasible set and provides a lower bound for the optimal value provided

the sample size is sufficiently large. The main differences can be summarized as follows.

1. Writing the constraints of (22) as maxNj=1 f(x, ξj)≤ 0, we can see that the difference between

η+
1

(1−β)N

N∑
j=1

(f(x, ξj)− η)+ and maxNj=1 f(x, ξj) is that the former uses a few samples at the

tail of the distribution of f(x, ξ) whereas the latter only uses the largest sample value of f(x, ξ);

the averaging effect will make the former change less drastically as the sample changes.

2. Problem MnCnCVSA(β) always satisfies the Slater constraint qualification as long as

MnCnMx is feasible, whereas (22) might not in the case when MnCnMx fails the Slater condition.

3. There is a single nonsmooth convex constraint in MnCnCVSA(β) whereas (22) has N smooth

constraints.

Let (xN , ηN) be an optimal solution which is obtained from solving the sample average approx-

imation MnCnCVSA(β) with sample size N . In the next result we estimate the probability of a

significant violation, that is the probability of xN deviating from the feasible set G for problem

MnCnMx by more than an amount ε as we take more and more samples (N →∞).

Theorem 5. As before let X̂ and X̂(β) denote the set of optimal solutions of MnCnMx and

MnCnCV(β). Assume: (a) the feasible set of problem MnCnMx is nonempty, (b) f(x, ξ) is convex
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as a function of x, (c) we may choose a measurable function κ(ξ) as the Lipschitz constant for f ,

so that

|f(x′, ξ)− f(x, ξ)| ≤ κ(ξ)‖x′−x‖

for all ξ ∈ Y and all x′, x∈X, and the moment generating function of κ(ξ) (as a function of t) is

finite for t in a neighborhood of zero, (d) for every x the moment generating function for f(x, ξ),

is finite for t in a neighborhood of zero, (e) h(x) is Lipschitz continuous on X with modulus L and

it satisfies some growth condition on G(β), that is, there exists δ0 > 0 such that

R(δ) := inf
x∈G(β),d(x,X̂(β))≥δ

h(x)− ϑ̂(β)> 0 (23)

for any δ ∈ (0, δ0]. Then

(i) for any positive number ε there exist positive constants C(ε) and α(ε) (independent of N)

such that

Prob(d(xN , X̂(β))≥ ε)≤C(ε)e−α(ε)N

for N sufficiently large, where xN is an optimal solution to MnCnCVSA(β).

(ii) If, in addition, problem MnCnMx satisfies the Slater constraint qualification and f(x, ξ) has

consistent tail behavior on X, then for any ε > 0 there exist positive constants β0, C(ε) and α(ε)

(independent of N) such that for β > β0

Prob(d(xN , X̂)≥ ε)≤C(ε)e−α(ε)N

for N sufficiently large.

It might be helpful to make some comments about the conditions. Conditions (c) and (d) involv-

ing moment generating functions simply mean that the probability distributions for the associated

random variables κ(ξ) and f(x, ξ) die exponentially fast in the tails. In particular, they will be sat-

isfied when the random variable has a distribution supported on a bounded subset of IR. Condition

(c) requires f to be Lipschitz continuous in x but this is implied by the convexity of f(x, ξ) as a

function of x. These conditions are standard for deriving exponential rate of convergence, see for

example Shapiro and Xu (2008). Condition (e) requires the objective function h to satisfy certain

growth condition when x deviates from solution set X̂(β). This is implied by similar growth con-

dition when x deviates from X̂. Growth conditions are often needed to derive stability of optimal

solutions, see for instance Klatte (1987).

The theorem says that xN converges to an optimal solution of MnCnMx in distribution and it

does so at an exponential rate as the sample size increases. The proof exploits the uniform law of

large numbers for random functions. Note that xN is not necessarily a feasible solution of MnCnMx

but it is rN -feasible where

rN := max
y∈Y

f(xN , y)−max
η

(
η+

1

(1−β)N

N∑
j=1

(f(xN , ξj)− η)+

)
.
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4.1. Application in distributional robust optimization

The uncertain convex program models and numerical schemes presented in the preceding discus-

sions may be applied to distributional robust optimization when the distributional set is specified

through moment conditions. Here we outline how this may be done but we will not go into much

detail as it is not the main focus of this paper. To simplify the discussion, let us consider the

following distributional robust optimization problem:

min
x∈X

max
P∈P

EP [f(x, ξ(ω))] (24)

where X is a nonempty closed convex set of IRn, f : IRn× IRk→ IR is a continuous function, ξ(ω) is

a random vector defined on a probability space (Ω,G, P ) with support set Ξ⊂ IRd, and P is a set

of probability distributions. In this model we are assuming that the true probability distribution

P of ξ is unknown. The only information available is that the distribution P is located in set P.

Assume that P is specified through first order moment conditions:

P :=

{
P :

EP [ψs(ξ(ω))] = µs, for s= 1, · · · , p
EP [ψs(ξ(ω))]≤ µs, for s= p+ 1, · · · , q

}
, (25)

where ψi : IRk → IR, i = 1, · · · , q, are measurable functions (In general, ψ does not have to be a

function of ξ.) In other words, we know the random variable ξ satisfies certain moment conditions

albeit its true distribution is unknown.

This is a classical moment problem. To simplify our discussion, we assume ψi, i= 1, · · · , q, are

continuous functions, Ω is a compact subset of a finite dimensional space and f is convex in x

for every ξ. Under these circumstance, we can reformulate (24), by taking the dual of its inner

maximization through Shapiro’s duality theorem (Shapiro 2001, Proposition 3.1), as:

min
x∈X,λ0,··· ,λq

λ0 +
q∑
s=1

λsµs

s.t. λs ≥ 0, for s= p+ 1, · · · , q,

f(x, ξ(ω))≤ λ0 +
q∑
s=1

λsψs(ξ(ω)), a.e. ω ∈Ω,

(26)

which is a semi-infinite programming problem. To simplify the exposition, let

g(x,λ0, · · · , λq, ξ(ω)) := f(x, ξ(ω))−λ0−
q∑
s=1

λsψs(ξ(ω)), a.e. ω ∈Ω.

Thus (26) can be written as

min
x∈X,λ0,··· ,λq

λ0 +
q∑
s=1

λsµs

s.t. λs ≥ 0, for s= p+ 1, · · · , q,
sup
ξ∈Ξ

g(x,λ0, · · · , λq, ξ)≤ 0.

(27)



Anderson, Xu and Zhang: CVaR Risk Measures and Minimax Limits
17

This is a convex optimization problem with robust feasibility. The CVaR approximation of the

problem is:

min
x∈X,λ0,··· ,λq

λ0 +
q∑
s=1

λsµs

s.t. λs ≥ 0, for s= p+ 1, · · · , q,
CVaRβ(g(x,λ0, · · · , λq, ξ))≤ 0.

(28)

Let ξ1, · · · , ξN be an independent and identically distributed (i.i.d.) sampling of ξ. We may construct

a SAA scheme for the problem:

min
x∈X,η∈IR,λ0,··· ,λq

λ0 +
q∑
s=1

λsµs

s.t. λs ≥ 0, for s= p+ 1, · · · , q,

η+
1

(1−β)N

N∑
j=1

(g(x,λ0, · · · , λq, ξj)− η)+ ≤ 0.

(29)

The underlying argument of this formulation can be explained as follows: we don’t know the

distribution of random variable ξ but know it satisfies certain moment conditions and it is possible

to obtain some empirical data of ξ. Using the moment condition and the empirical data, we may

construct a SAA scheme for (24). Thus (29) provides an approximation scheme which combines

moments and Monte Carlo sampling for the classical distributional robust optimization problem.

Note that the same approach can also be applied to an optimization problem with a distributional

form for the robust constraint

min
x∈X

h(x)

s.t. max
P∈P

EP [f(x, ξ(ω))]≤ 0,

for which we can construct a SAA of the CVaR approximation through dualization:

min
x∈X,η∈IR,λ0,··· ,λq

h(x)

s.t. λ0 +
q∑
s=1

λsµs ≤ 0

λs ≥ 0, for s= p+ 1, · · · , q,

η+
1

(1−β)N

N∑
j=1

(g(x,λ0, · · · , λq, ξj)− η)+ ≤ 0.

5. Numerical Experiments

In this section, we consider a robust portfolio optimization problem and formulate it as a MnMx

problem where the maximum is taken as occurring at the worst scenario of the underlying ran-

dom variables. Using the approach of section 3, we approximate the maximum by CVaR and then

solve the minimization as MnCV(β), through SAA. We compare the results of this approximation

scheme with a direct approach to the MnMx problem. We also consider a risk constrained portfolio

optimization problem using the same numerical example. So we start with a MnCnMx formulation
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of the portfolio optimization problem under (semi-infinite) risk constraints and consider reformu-

lating the constraint through a CVaR approximation, as we have discussed in section 4. This leads

to a MnCnCV(β) problem. Again we will compare the performance of portfolios generated through

this approximation scheme using different values of the confidence level β.

5.1. Minimax formulation

5.1.1. Problem Setting Consider a market consisting of n stocks. The investment period

starts at t = 0 and finishes at time t = T , which is the end of the investment horizon. In the

investment portfolio problem, an investor decides on a vector of weights w ∈ IRn, whose elements

add up to 1 with the i’th component wi being the proportion of total wealth to be invested in

the i’th stock at time t= 0 for i= 1,2, · · · , n. Let r̃ denote the random vector of the stock returns

over the investment horizon, where the components r̃i, i= 1,2, · · · , n, take nonnegative values. By

definition, the investor will receive r̃i dollars at time T for every dollar invested in stock i at time

0. Here, we use the notation R⊂ IRn to denote the support set of the random variable r̃. We do

not need to specify the overall capital to be invested since this just acts to scale up the returns.

In the robust framework we consider, the return vector r̃ over the investment horizon remains

unknown but is believed to lie within support set R. To immunize the portfolio against the inherent

uncertainty in the investment horizon, we maximize the worst-case portfolio return, where the

worst-case is calculated with respect to all asset returns in R, and can be formulated as a max-min

problem
max
w∈IRn

min
r̃∈R

w′r̃

s.t. w′1 = 1,
wL ≤w≤wU.

(30)

where the components in the n-dimensional vectors wL := (0,0, · · · ,0)′,wU := (1,1, · · · ,1)′ are used

to denote the lower and upper bounds of investment weight for the corresponding stock wi for

i= 1,2, · · · , n, and 1∈ IRn denotes a vector of ones with an appropriate dimension. Here, we define

the feasible set Wn ⊂ IRn for problem (30) as Wn := {w |w′1 = 1,wL ≤w≤wU} .

We can reverse the objective function to minw∈IRn maxr̃∈R−wT r̃ so that this is a MnMx problem

and then use MnCV(β) as an approximation to (30) with parameter β, that is,

min
w∈Wn

CVaRβ(−wT r̃).

In the numerical tests, we study the portfolio optimization problems over the stocks in the

FTSE-100 index. Due to the limited availability of historical prices, we removed five of these stocks

from our investigation giving a total of 95 stocks that are available in the portfolio optimization

problems, i.e. n= 95.
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We denote the return by r̃ = (r̃1, r̃2, · · · , r̃n)
′

with components corresponding to the 95 stocks

and we use the vector w := (w1,w2, · · · ,wn)
′

to denote the portfolio split between these 95 stocks.

The corresponding MnMx problem can be written as

min
w∈W95

max
r̃∈R

−
95∑
i=1

wir̃i. (31)

The MnCV(β) version of this problem can be written as

min
w∈W95

CVaRβ

(
−

95∑
i=1

wir̃i

)
. (32)

We will look at a case where the investor is concerned with the portfolio return over a five day

time horizon and where the only information available to the investor about possible returns R

arises from historical data. In this model, we use a set of data over a four-year period spanning

from Dec 2008 to Nov 2013 including a total of 1200 records on the historical stock returns (these

are obtained from http://finance.google.com with adjustment for stock splitting).

5.1.2. Test on real data In the first set of numerical tests, we consider a case where

the investor makes an optimal decision based on the MnMx problem using historical data

between Dec 2008 and Jul 2011 (with sample size being 895). Let r̃j :=
(
r̃j1, r̃

j
2, · · · , r̃

j
95

)′
and R̃ :=

{r̃j, j = 1,2, · · · ,895} denote the data on returns (based on a five day rolling time horizon). By

replacing R with the data set, we may rewrite (31) as

min
w∈W95

max
r̃j∈R̃

−
95∑
i=1

wir̃
j
i .

Solving the problem, we obtain an optimal solution to (31) in Figure EC.1.

We have also applied the SAA of MnCV(β) to solve (31), that is,

min
w∈W95,η∈IR

η+
1

(1−β)N

N∑
j=1

((
−

95∑
i=1

wir̃
j
i

)
− η

)
+

(33)

where N = 895 and parameter β ranges from 0.95 to 0.995.

The tests are carried out in MATLAB 7.2 installed in a PC with Windows XP where the optimiza-

tion problems in MnMx and its MnCV(β) approximation are solved by the built-in optimization

solver Linprog with ‘interior-point’ algorithm by transferring MnCV(β) into linear programming in

Krokhmal et al. (2002). The numerical results for the optimal values of (33) and (31) are displayed

in Figure 3. The detailed values of the weights wi for different values of β are given in Figure EC.1

in the electronic companion. It is easy to observe the convergence of the optimal solutions and

optimal values of MnCV (β) problems to w∗ and the optimal value of MnMx denoted by f∗ as
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Figure 3 Optimal values and worst returns of MnCV (β) and MnMx portfolios with real data.

β tends to 1. Note that there was no significant difference in the computation times required to

solve MnMx and MnCV(β).

Next we want to test the quality of the MnCV(β) approximation to the MnMx solution on

‘out of sample’ data. The idea parallels the motivating example given in the introduction. In that

example we found that using a MnCV(β) approximation provided a better solution x∗ (w∗ in this

example) for the underlying (unobserved) MnMx problem than simply taking the maximum of the

sampled set at different x (w in this example) values. Here we ask how a set of portfolio weights

based on a historical data window of two years (more precisely 500 days) will perform if the aim

is to maximize the worst case result over the next quarter (more precisely 50 days). The idea is

that, by using more information from the sample of different results over 500 days, the MnCV(β)

approximation may do a better job than the straightforward MnMx solution in selecting a portfolio

which will avoid a bad performance over the next 50 days. However in deliberately choosing the

“wrong” objective we may also expect some degradation of performance: the lower line in Figure

3 shows this for the in-sample data where optimizing with lower beta values leads to lower values

for the worst case return.

To reduce the effects of chance factors we repeat the test with a rolling window, always using

500 days to determine the weights and then checking the worst performance over the next 50 days.

More than 1050 data points then allow for a total of 500 experiments, as we let the start date move

from day 1 to day 500, and the start of the test window of 50 days moves from 501 to 1000. In each

experiment we compare the performance of the solution to MnMx problem (31) and its MnCV(β)

approximation of (33).

The results of these experiments are shown in Figure 4, where the graphs give the worst return

rate over a 50 day period for the investment of the MnMx portfolio of (31) and its MnCV(β)

approximate portfolio of (33). The comparison is not clearcut with periods where the MnCV(β)

approximate portfolio achieves a better worst case return during the 50 day window, and periods
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Figure 4 The worst return scenario of MnMx portfolio and MnCV (β) portfolios.

Figure 5 The differences between worst return rates of MnMx portfolio and MnCV (β) portfolios.

where the reverse is true. Notice that the rolling procedure through which these experiments are

generated often gives rise to a portfolio choice for MnCV(β) that is constant for a period of time

and a worst scenario that occurs in a whole set of adjacent 50-day windows. This explains the

horizontal sections that appear in the graphs of Figure 4. Figure 5 gives a plot of the difference

between the MnMx portfolio and its approximation solved from MnCV (β). From this we can
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see that there is a very slight advantage in using a β value of 0.95 over against 0.97 or 0.99. The

average worst case returns are as follows: 0.9895 for the MnMx portfolio, and 0.9898, 0.9897, and

0.9897 for the MnCV (β) portfolios with β = 0.95,0.97 and 0.99 respectively. This single example,

with relatively small differences observed, shows that the advantage of using a lower value of β

can more than compensate for the change in the objective function and gives some support for the

approach we have proposed, but leaves open the question of whether the MnCV (β) approach will

be superior in general.

5.1.3. Test on modified data The experiment reported above on real data is not very

conclusive. We have also carried out the numerical tests with synthetic data. We consider a situation

where actual historical data R̃ is used to construct a set of distributions and we then check the

performance of different approaches using data drawn from these distributions.

We will model stock returns using log-normal distributions with parameters set to match the

historical data. Specifically we suppose that the components of the return vector are independent

and each follows a log-normal distribution, denoted by LogNormal(mi, σi) for i= 1,2, · · · ,95. Here

mi and σi are the mean and standard deviation of the stock i for i= 1,2, · · · ,95 respectively, where

the values of mi and σi are estimated from the historical data used in Section 5.1.2. The assumption

of independence is clearly very different from the real data, but we do not think that in the present

context independence or lack of it will favour portfolios generated either from the MnMx problem

of from the MnCV (β) approximation scheme.

We will use synthetic data sampled from the log-normal distributions and this will help us in

exploring the behavior of the MnCV (β) approximation schemes. Notice though that the log-normal

distribution implies a minimum return of 0, so the underlying minimax problem implied by the

MnMx problem (31) is not very meaningful.

Figure 6 Optimal values and worst returns of MnCV (β) and MnMx portfolios with modified data.
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Using random samples of size 5000, we obtain optimal solution and optimal return of MnMx

portfolio problem (31). Similar tests were implemented to MnCV(β) optimization problem (33)

and the results are displayed in Figure 6 (the details of these solutions are shown in Figure EC.2

in the electronic companion). We can see similar convergence behavior with this synthetic data to

that we observed for the real data.

5.1.4. The distribution of solutions When we solve (31) and (33), the solutions change

for different samples (even though these samples are generated from an identical distribution). We

expect that lower values of the confidence level β will lead to more consistent solutions, as a greater

part of the distribution of returns is used. Here, we present some numerical results to test this

conjecture through looking at the distributions of solutions to (31) and (33) with the samples from

the same log-normal distribution in Section 5.1.3.

Figure 7 The box diagram for the deviations of εl and ε∗,l.

To this end, we generate L samples each of size N , denoted by R̃l :=
{
r̃j,l, j = 1,2, · · · ,N

}
, l=

1,2, · · · ,L. By using these samples, we will obtain L different solutions to the portfolio optimization

problem, denoted by w∗,l := (w∗,l1 ,w∗,l2 , · · · ,w∗,l95 )′ to (31) and L solutions to the MnCV (β) problems

(33), denoted by wl := (wl1,w
l
2, · · · ,wl95)′ for l = 1,2, · · · ,L. Let w̄i := (1/L)

∑L

l=1w
l
i and w̄∗i :=

(1/L)
∑L

l=1w
∗,l
i denote the mean value of each set of solutions. We consider the distribution of

deviations (measured as the sum of the absolute values of the component differences) from a single

solution wl to the mean w̄i, that is,

εl :=
95∑
i=1

|wli− w̄i|
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and the corresponding distribution of deviations from a single solution w∗,l to the mean w̄∗i given

by

ε∗,l :=
95∑
i=1

|w∗,li − w̄∗i |.

We look at the case with L = 200 and N = 5000. Figure 7 gives the distributions of the sets

{εl, l= 1,2, · · · ,L} and {ε∗,l, l= 1,2, · · · ,L} in a box diagram. We can observe from Figure 7 that,

as we expected, the MnCV (β) problems yield a set of approximate optimal portfolios with less

variance induced by the sampling as β is reduced. The greatest variance occurs when we consider

optimal portfolios arising from the MnMx problems.

The more consistent behavior we observe from the solution to MnCV (β) in comparison to the

solution to the MnMx problem is similar to the behavior we see in the simple example of Figure 1.

We can expect this to result in better performance out of sample when we are trying to maximize

the worst portfolio return.

Figure 8 The worst return scenario of MnMx portfolio and MnCV (0.97) portfolios.

With this simulated data we no longer need to use the rolling window approach of section 5.1.2.

Figure 8 shows the result of finding an optimal portfolio on one set of 5000 days of data and then

applying this portfolio to another set of 5000 data points. We do this sequentially, generating 200

different sets of 5000 days of data. We can see that the worst returns observed out of sample for

the portfolios generated from MnMx are not as good as the worst returns observed out of sample

for the MnCV (0.97) portfolios.

In fact the average of the worst returns for the MnMx portfolios is 0.9877 and this is improved

to 0.9896 using the MnCV (0.97) portfolios. A value of β = 0.97 is not critical here; we get very

similar results with β = 0.95 and β = 0.99.
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5.2. Constrained risk problem

In this section, we consider a MnCnMx formulation of the portfolio optimization problem, corre-

sponding to the problem of optimizing the expected return over a set of portfolios subject to a

constraint on the minimum value U that the worst return scenario may take.

The constrained robust counterpart of (30) can be written as

max
w∈W95

E[w′r̃]

s.t. w′r̃≥U, for all r̃ ∈R,
(34)

where random variable r̃ represents the return vector of the stocks with support set R. In (34),

wL and wU are defined the same as their counterparts in Section 5.1. We can reverse the objective

function to minw∈IRn−w′r̃ and the first constraints to −w′r̃ ≤ −U so that this is a MnCnMx

problem. Then the MnCnCV(β) approximation to (34) with parameter β, is given by

min
w∈W95

−E[w′r̃]

s.t. CVaRβ(−w′r̃)≤−U.
(35)

In the numerical tests, we study the portfolio optimization problems over the same stocks and their

historical prices investigated in Section 5.1. We denote the return by r̃ = (r̃1, r̃2, · · · , r̃n)′ and use

the vector w := (w1,w2, · · · ,wn)′ to denote the split between these 95 stocks. The corresponding

MnCnMx problem can be written as

min
w∈W95

−E
[

95∑
i=1

wir̃i

]
s.t. −

95∑
i=1

wir̃i ≤−U, for all r̃ ∈R.
(36)

The corresponding MnCnCV(β) can be written as

min
w∈W95

−E
[

95∑
i=1

wir̃i

]
s.t. CVaRβ

(
−

95∑
i=1

wir̃i

)
≤−U, for all r̃ ∈R.

(37)

In the same way as for Section 5.1 we will look at a case where the investor is concerned with the

portfolio return over a five day time horizon and uses information from historical data to generate

the required portfolio.

5.2.1. Test on real data We first consider a set of numerical tests where the investor makes

an optimal decision based on the MnCnMx problem using historical data between Dec 2008 and

Jul 2011 (with sample size being 895). Let r̃j :=
(
r̃j1, r̃

j
2, · · · , r̃95

)′
and R̃ denote the data on returns

(based on a five day rolling time horizon). We may rewrite (36) as

min
w∈W95

− 1

N

N∑
j=1

95∑
i=1

wir̃
j
i

s.t. −
95∑
i=1

wir̃
j
i ≤−U, for all r̃j ∈ R̃.
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We have also applied the SAA of MnCnCV(β) to solve (36), that is,

min
w∈W95,η∈IR

− 1

N

N∑
j=1

95∑
i=1

wir̃
j
i

s.t. η+
1

(1−β)N

N∑
j=1

((
−

95∑
i=1

wir̃
j
i

)
− η

)
+

≤−U.

Solving the problem with different values of U , we obtain optimal solutions to (36) and (5.2.1)

with β ranging between 0.97 to 0.99 in Figure EC.3 to Figure EC.5 (the details of these solutions

are shown in the electronic companion).

The tests are carried out by using the same built-in solver ‘Linprog’ and ‘interior-point’ algorithm

as in Section 5.1. For each value of parameter U ranging between 0.97 to 0.99 we can observe that

there is some convergence of the optimal solutions and optimal values to MnCnCV (β) problems

(5.2.1), denoted respectively by w̃∗(β,U) and f̃∗(β,U) to optimal solution w̃∗(U) and optimal

value f̃∗(U) of problem (36).

In Figure 9 we show the average portfolio performance for the risk constrained problem with

different values of β and U . We can see the way that the optimal value converges to the MnCnMx

value as β approaches 1. This Figure also demonstrates how the more conservative behavior associ-

ated with trying to avoid a loss in value gives rise to a lower average portfolio performance. Lower

values of β and lower values of U correspond to a higher risk and allow portfolios to be chosen

with better average performance.

Figure 9 The return rate of MnCnCV (β) and MnCnMx portfolios with real data.

5.2.2. The performance of solutions We carry out a set of numerical experiments in this

section to test the performances of different optimal portfolios solved from MnCnCV (β0) problems

where we denote the optimal portfolio by w∗(β0,U0) for different U0.
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We first consider an MnCnCV (β) problem with a parameter pair of U0 and β0. By solving the

problem, we obtain the optimal portfolio w∗(β0,U0) from MnCnCV SA(β0) for U0, and imple-

ment the portfolio into the sample averaged MnCnCV (β) problem and also the out of sample

MnCnCV (β) problem with different values of U and β.

Our aim is to show that if we wish to find a portfolio having good performance while meeting a

constraint on return U0 at a certain β level, β0, and we need to do this out of sample (i.e. relying on

historical data on returns) then we are better off using a portfolio w∗(β,U) with a lower confidence

level and a higher level of U (so β < β0 and U >U0).

To carry out the tests, we use the historical data from Dec 2008 with sample size being 1000.

We divide the data into two sets: a sample set (the first 500 points in the sample) used for solving

the optimal portfolio of MnCnCV SA(β) and an out-of-sample set (the second part of the sample

with size being 500) to test the performances of the optimal portfolios. The two sets of samples

are denoted by r̃s ∈Rs×95 being a matrix with its (j, i)th element being r̃ji for j = 1,2, · · · ,500, and

r̃t ∈Rt×95 being a matrix with its (j, i)th element being r̃ji for j = 501, · · · ,1000. Figure 10 presents

a set of test results, where the optimal portfolios w∗(β0,U0) for the values of β0 ranging between

0.95 to 0.99 and the values of U0 ranging between 0.97 to 0.99 for sample set r̃s and out of sample

set r̃t. The figure shows how the value of -CVaRβ(−w∗(β0,U0)>r̃s) varies on the sample data (day

1 to day 500) for different values of β (in the left column of Figure 10 (a), (c) and (e)) and how

the value of -CVaRβ(−w∗(β0,U0)>r̃t) varies on the out of sample data (day 500 to day 1000) for

different values of β (in the right column of Figure 10 (b), (d) and (f)) .

Suppose that our aim is to find a portfolio w to maximize average return subject to a risk

constraint that CV aR0.97(w′r̃s) > 0.98. So U = 0.98 and β = 0.97 and the optimal solution is

w∗(0.97,0.98). If we look at Figure 10 (a) and (c) we can see that portfolios w∗(0.95,0.985) and

w∗(0.99,0.975) are close to achieving the risk constraint required. This makes sense: moving to

a lower value of β and a higher value of U gives roughly the same result. Naturally the average

return from these portfolios is less since they are not optimal.

As we can see from Figure 10 (d) in the out-of-sample period the portfolio w∗(0.97,0.98) no

longer meets the risk constraint at level U = 0.98; in fact we have CV aR0.97(w∗′r̃s) = 0.951. Of

course this is to be expected; the risk of poor performance is bound to increase out-of-sample. The

degradation in performance out-of-sample is also shared by the alternative portfolios w∗(0.95,0.985)

and w∗(0.99,0.975) which achieve CV aR0.97 values of 0.953 and 0.946 respectively when applied

to out-of-sample data (as can be seen in Figure 10 (b) and (f)). So the question arises: if we wish

to satisfy a risk constraint CV aR0.97(w∗′r̃s)≥ 0.95 on out of sample data would we be better off

just boosting the U value to 0.98 and optimizing with a β value of 0.97 or would it be better to

change both β and U?
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(a) -CVaRβ(−w∗(0.95,U)′r̃s) (b) -CVaRβ(−w∗(0.95,U)′r̃t)

(c) -CVaRβ(−w∗(0.97,U)′r̃s) (d) -CVaRβ(−w∗(0.97,U)′r̃t)

(e) -CVaRβ(−w∗(0.99,U)′r̃s) (f) -CVaRβ(−w∗(0.99,U)′r̃t)

Figure 10 The performance of MnCnCV(β) portfolios.

To investigate this question we carry out an experiment on a rolling basis. For each of 500 sets

of data from period t to period t + 499 where t = 1,2, ...,500 we calculate the three portfolios

w∗(0.95,0.985), w∗(0.97,0.98) and w∗(0.99,0.975) and then check their performance over the next

50 days. In each case we look at both the average out-of-sample portfolio return and an estimate

for the out-of-sample CV aR0.97 value obtained by taking a point half way between (a) the average
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of the lowest two returns (corresponding to an estimate of CV aR0.96 given 50 data points) and (b)

the lowest return (corresponding to an estimate of CV aR0.98).

Figure 11 shows the out-of-sample CV aR0.97 estimates over the 500 rolling-window tests. Because

we are looking less far ahead, the reduction in CVaR values by moving out of sample is much

less than we see in Figure 10. We can see that there is substantial variation over the 500 days,

but that the portfolio based on β = 0.95, U = 0.985 has uniformly better CVaR values than that

based on β = 0.97, U = 0.98. The mean values for CV aR0.97 for w∗(0.95,0.985), w∗(0.97,0.98)

and w∗(0.99,0.975) are 0.9858, 0.9836 and 0.9821 respectively. So w∗(0.95,0.985) is significantly

less risky, but what about its average performance? Figure 12 shows the mean out-of-sample

performance over the 500 rolling-window tests. We find that a lower β value gives a slightly

better performance, with w∗(0.95,0.985) achieving higher average returns after day 610 except for

a short period around day 775. The average portfolio returns for w∗(0.95,0.985), w∗(0.97,0.98)

and w∗(0.99,0.975) are 1.0114, 1.0112 and 1.0106 respectively. Though it would be wrong to read

too much into a single example, this shows how an approach based on deliberately choosing lower

values of the confidence level β can lead to significantly better performance.

Figure 11 Out-of-sample CV aR0.97 estimates over the 500 rolling-window tests.

6. Conclusion

This paper explores the effect of changing the confidence level β when using a CVaR risk measure

within an optimization problem. In particular we are interested in the convergence behavior as β
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Figure 12 Average out-of-sample performance over the 500 rolling-window tests.

approaches 1. It is well known that CVaR is a risk measure which ranges between the expected value

(risk neutral) and the extreme value (most conservative risk aversion). However the convergence

behavior has not received much attention in the literature so far and the results we obtain in

Theorem 1 do not seem to have been given before.

One reason for looking carefully at this question is the way that sample approximations will

be better behaved as the confidence level is reduced from 1. This gives a potential advantage

to the use of a CVaR-based approximation even when the problem of interest has a minimax

form. We explore this possibility through a numerical investigation of certain risk-based portfolio

optimization problems. For these examples we show that there can be an advantage in moving to

a CVaR approximation when we wish to optimize worst case performance. Moreover when the aim

is to optimize average portfolio performance with a risk constraint, then it is best to adjust the

risk constraint in a way that makes use of lower β levels.

An underlying theme in this paper relates to the use of CVaR approximations in a context where

the original problem is one of robust optimization. We can replace the CVaR approximation with

any risk measure which approximates the extreme value, e.g., an entropic risk measure Föllmer

and Knispel (2011), for our approximation schemes discussed in this paper. Indeed, the relation-

ship between an uncertain set and a risk measure has been well investigated by Natarajan et al.

(2009). One interesting avenue for exploration is the development of similar approximation schemes

for distributional robust optimization problems where the dual formulation cannot be obtained

explicitly as in Section 4.1. In this context we could consider randomizing over the distributional
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set, in order to approximate the worst probability distribution with CVaR of the random variable.

Consequently the minimax operation in the distributional robust optimization is reduced to min-

imization of a risk function (e.g., CVaR or entropic risk measure) of the random variable defined

over the distributional set.
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Föllmer H, Knispel T (2011) Entropic risk measures: coherence vs. convexity, model ambiguity, and robust

large deviations. Stochastics and Dynamics, 11:333–351.

El Ghaoui L, Lebret H (1998) Robust solutions to uncertain semidefinite programs. SIAM Journal on Opti-

mization, 9:33–52.

Klatte D (1987) A note on quantitative stability results in nonlinear optimization. Seminarbericht Nr. 90,

Sektion Mathematik, Humboldt-Universität zu Berlin, Berlin, 77–86.

Krokhmal P, Palmquist J, Uryasev S (2002) Portfolio optimization with Conditional Value-at-Risk objective

and constraints. Journal of Risk, 4:43–68.



Anderson, Xu and Zhang: CVaR Risk Measures and Minimax Limits
32

Liu Y, Xu H (2012) Stability and sensitivity analysis of stochastic programs with second order dominance

constraints. Mathematical Programming Series A, 142:435-460.

Natarajan K, Pachamanova D, Sim M (2009) Constructing risk measures from uncertainty sets. Operations

Research, 57:1129–1147.

Pflug G, Römisch W (2007) Modeling, Measuring and Managing Risk, World Scientific, Singapore.

Polak E (1987) On the mathematical foundations of nondifferentiable optimization in engineering design.

SIAM Review, 29:21–89.

Robinson SM (1975) An application of error bounds for convex programming in a linear space. SIAM Journal

on Control and Optimization, 13:271–273.

Rockafellar RT and Uryasev S (2000) Optimization of conditional value-at-risk. The Journal of Risk, 2:21–41.

Shapiro A (2001) On duality theory of conic linear problems, Miguel A. Goberna and Marco A. López, eds.,
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7. Appendix

Proof of Theorem 1. Part (i) The inequalities follow immediately from the definition of

CVaRβ(f(x, ξ)) since the values of f in the integral all lie between VaRβ(f(x, ξ)) and supξ∈Y f(x, ξ).

To establish the statement about limits we suppose first that supξ∈Y f(x, ξ) = f∗(x)<∞. Then it
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is enough to show that limβ→1 VaRβ(f(x, ξ)) = f∗(x). Observe that for any ε > 0 we can find an ω

with f(x, y0)> f∗(x)−ε where y0 = ξ(ω). Since f is a continuous function we can deduce that ρ(y)

has a positive integral over the open set f−1(A) where A=(f(x, y0)− ε/2, f(x, y0) + ε/2). Thus

β0 := F (x, f(x, y0) + ε/2)>F (x, f(x, y0)− ε/2).

Since F (x,α) is increasing in α, this implies

VaRβ0(f(x, ξ))≥ f(x, y0)− ε/2≥ f∗(x)− 3ε/2.

As ε is arbitrary this shows the result we need. When supξ∈Y f(x, ξ) =∞ we can use a similar

approach to find values of β with VaRβ(f(x, ξ))≥N for any integer N .

Part (ii). By the classical implicit function theorem, F−1
x (β) is continuously differentiable and

dF−1
x (β)

dβ
=

1

dFx(α)/dα
,

where β = F (x,α). The assumption that dFx(α)/dα is monotonically decreasing is then enough

to show that F−1
x (β) has an increasing derivative and hence is convex (i.e. that VaRβ(f(x, ξ)) is

convex w.r.t. β). By the definition of CVaR

CVaRβ(f(x, ξ)) =
1

1−β

(∫ (1+β)/2

β

F−1
x (t)dt+

∫ 1

(1+β)/2

F−1
x (t)dt

)

=
1

1−β

∫ (1−β)/2

0

[
F−1
x

(
1 +β

2
− s
)

+F−1
x

(
1 +β

2
+ s

)]
ds

≥ 1

1−β

∫ (1−β)/2

0

2F−1
x

(
1 +β

2

)
ds= F−1

x

(
1 +β

2

)
.

and this establishes the first inequality of (3).

To show the second inequality of (3) we first observe that it is trivial in the case that

supξ∈Y f(x, ξ) =∞. So we can assume that f achieves its maximum value, and this is given by

F−1
x (1). Now let t= β+ (1−β)s and then, using the convexity of F−1

x (t), we have

1

1−β

∫ 1

β

F−1
x (t)dt≤

∫ 1

0

[
sF−1

x (1) + (1− s)F−1
x (β)

]
ds≤ 1

2

[
F−1
x (1) +F−1

x (β)
]

=
1

2
[VaRβ(f(x, ξ)) + VaR1(f(x, ξ))] .

Part (iii). If we set t= Fx(α) then the condition on Fx(α) can be rewritten

1− t≥K
(
f∗(x)−F−1

x (t)
)τ
.
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Hence we have

f∗(x)−CVaRβ(f(x, ξ) =
1

1−β

∫ 1

β

(f∗(x)−F−1
x (t))dt≤ 1

1−β

∫ 1

β

(
1− t
K

)1/τ

dt

=
1

K1/τ

1

1 + (1/τ)
(1−β)1/τ .

The proof is complete.

Proof of Theorem 2. Applying (Liu and Xu 2013, Lemma 3.8) to MnCV (β) (treating it as a

perturbation ofMnMx), we know that for any ε > 0, there exists a δ > 0 such that D(X∗(β),X∗)≤ ε

when ∆β(x) ≤ δ. This shows (11) because limβ→0 supx∈X ∆β(x) = 0 from Theorem 1. Inequality

(13) is straightforward from the second order growth condition (12) again from (Liu and Xu 2013,

Lemma 3.8).

Proof of Theorem 3. Part (i). The conclusion follows from (Xu 2010, Lemma 4.2 (i)). Here we

provide a proof for completeness. Let ε be a fixed small positive number. Define

R(ε) := inf
{x∈X,d(x,G)≥ε}

sup
y∈Y

f(x, y). (38)

Then R(ε)> 0 as we take an infimum over x values outside of G. Let δ :=R(ε)/2 and Φβ(x,η) be

defined as in (6). Under the condition that f(x, y) has consistent tail behavior on X, then Theorem

1 implies that minη∈IR Φβ(x,η) approximates supy∈Y f(x, y) uniformly w.r.t. x over X as β→ 1,

i.e. if we choose β sufficiently close to 1 then

sup
x∈X

[
sup
y∈Y

f(x, y)−min
η∈IR

Φβ(x,η)

]
≤ δ.

Then for any x∈X with d(x,G)≥ ε,

min
η∈IR

Φβ(x,η) = sup
y∈Y

f(x, y) + min
η∈IR

Φβ(x,η)− sup
y∈Y

f(x, y)≥R(ε)−R(ε)/2> 0,

which implies x 6∈ G(β). This is equivalent to saying that d(x,G) < ε for every x ∈ G(β), that is,

D(G(β),G)≤ ε. The conclusion follows by noting that G ⊂ G(β).

Part (ii). Under the Slater constraint qualification and convexity of f(·, y), it follows by (Tiba

and Zalinescu 2004, Proposition 2.8), that (15) satisfies the metric regularity condition, that is,

there exists a positive constant C such that

d(x,G)≤C
(

sup
y∈Y

f(x, y)

)
+

, ∀x∈X. (39)
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Let x̂∈ G(β). Then minη∈IR Φβ(x̂, η)≤ 0 and

d(x̂,G)≤C
(

sup
y∈Y

f(x̂, y)

)
+

−Cmin
η∈IR

Φβ(x̂, η)≤C sup
x∈X

[
sup
y∈Y

f(x, y)−min
η∈IR

Φβ(x,η)

]
.

The proof is complete.

Proof of Proposition 1. By Theorem 2 in Rockafellar and Uryasev (2000), minη∈IR Φβ(x,η) is a

convex function of x. Under the feasibility condition, it follows from our previous discussion that

the system (16) satisfies the Slater constraint qualification. Through Robinson’s error bound for a

convex system (see Robinson (1975)), we obtain the error bound (17) for some constant C.

Proof of Theorem 4. Parts (i) and (ii). Write the constraints of MnCnMx as maxy∈Y f(x, y)≤ 0.

Since the two problems have identical objective functions, it suffices to look into the impact of

the difference of the constraints on the optimal value and optimal solutions. Under conditions

(a) and (b), it follows by Theorem 3 that the feasible set of (19) is closed in β at β = 1. By

classical stability results (see e.g. (Bank et al. 1982, Theorem 4.2.1)), ϑ̂(β) converges to ϑ̂ as β→ 1

and limβ→1 X̂(β) ⊂ X̂. Part (iii). By Theorem 3 (ii), the feasible set of (19) is pseudo-Lipschitz

continuous in β at β = 1. By applying Klatte’s stability result (Klatte 1987, Theorem 1), we obtain

(20) with some positive constant Ĉ.

Proof of Theorem 5. We can write MnCnCV SA(β) in the following equivalent form

min
x

h(x)

s.t. minη ΦN
β (x,η)≤ 0,

x∈X,
(40)

where

ΦN
β (x,η) := η+

1

(1−β)N

N∑
j=1

(f(x, ξj)− η)+.

Thus xN is an optimal solution of (40). Let G(β) be defined as in Section 3, that is, the set of

solutions to inequality (16). Then G(β) is the feasible set of minimization (19). Let GN(β) denote

the feasible set of (40). We give the proof in 6 steps.

Step 1. Since MnCnMx is feasible, then problem (19) satisfies the Slater condition which means

there exists a positive constant δ and a point x̂∈ G ⊂ G(β) such that

min
η∈IR

Φβ(x̂, η)<−δ < 0.

Let xβ ∈ X̂(β) be a solution of MnCnCV(β). Let

xt = (1− t)xβ + tx̂.
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Since f(x, ξ) is convex as a function of x, the function minη∈IR Φβ(x,η) is also convex (see Rockafellar

and Uryasev (2000)) and

min
η∈IR

Φβ(xt, η)≤−tδ. (41)

Let ε be a positive number and R(·) be defined as in (23). For x ∈ G(β), d(x, X̂(β)) ≥ ε implies

h(x)− ϑ̂(β)≥R(ε)> 0. Let t̄ be small enough that

Lt̄‖xβ − x̂‖<R(ε)−Lγ (42)

where L is the Lipschitz modulus of h(x) and γ <R(ε)/L is some small positive number.

Step 2. Let σ be a small positive number. Using conditions (c) and (d) on bounded moment

generating functions we may apply the result of (Shapiro and Xu 2008, Theorem 5.1) to show that

there exist positive constants C(σ), α(σ) and N(σ) such that

Prob

(
sup
x∈X

∣∣∣∣min
η

ΦN
β (x,η)−min

η
Φβ(x,η)

∣∣∣∣≥ σ)≤C(σ)e−α(σ)N (43)

for N ≥N(σ).

Step 3. Let δ and t̄ be given as in Step 1. We estimate Prob (xt̄ 6∈ GN(β)).

Prob (xt̄ 6∈ GN(β)) = Prob

(
min
η∈IR

ΦN
β (xt̄, η)> 0

)
= Prob

(
min
η∈IR

ΦN
β (xt̄, η)−min

η∈IR
Φβ(xt̄, η)>−min

η∈IR
Φβ(xt̄, η)

)
≤Prob

(
min
η∈IR

ΦN
β (xt̄, η)−min

η∈IR
Φβ(xt̄, η)> δt̄

)
(by (41))

<C(σ)e−α(σ)N (44)

for N ≥N(σ). The last inequality is due to (43) by setting σ < t̄δ. This shows that xt̄ ∈ GN(β)with

probability 1−C(σ)e−α(σ)N .

Step 4. Suppose that xN 6∈ G(β) then minη∈IR Φβ(xN , η) > 0 and we define the point yN =

(1− s)xN + sx̂ by choosing s so that minη∈IR Φβ(yN , η) = 0 (where s depends on N). Then from

the convexity of minη∈IR Φβ(yN , η) we have

min
η

Φβ(xN , η)>
s

1− s
δ.

LettingD be the diameter of G(β), we have d(yN , x̂)≤D so d(yN , xN)≤ s
1−sD. Hence if d(yN , xN)≥

γ, where γ is given in Step 1, then

min
η

Φβ(xN , η)≥ δ

D
γ.

Thus, setting σ= δγ/D, and since minη ΦN
β (xN , η)≤ 0, we can deduce that

Prob(min
η

Φβ(xN , η)≥ σ)≤Prob

(
sup
x∈X

∣∣∣∣min
η

ΦN
β (x,η)−min

η
Φβ(x,η)

∣∣∣∣≥ σ)≤C(σ)e−α(σ)N .
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Therefore

Prob(d(xN , yN)≥ γ)≤C(σ)e−α(σ)N .

Step 5. We will establish that if d(xN , X̂(β))≥ ε+ γ then either xt̄ 6∈ GN(β); or xN 6∈ G(β) and

d(xN , yN)≥ γ (these are the two cases dealt with in steps 3 and 4). Hence suppose that xt̄ ∈ GN(β)

and xN 6∈ G(β). If d(yN , X̂(β))≥ ε. Then h(yN)−h(xβ)≥R(ε). So

h(xN)−h(yN) = (h(xN)−h(xβ))− (h(yN)−h(xβ))

≤ h(xt̄)−h(xβ)−R(ε)

≤ Lt̄‖xβ − x̂‖−R(ε)<−Lγ,

which implies that d(yN , xN)>γ through the Lipschitness of h. On the other hand if d(yN , X̂(β))<

ε then (using the triangle inequality)

d(yN , xN)>d(xN , X̂(β))− d(yN , X̂(β))>γ.

The only case that remains is when xt̄ ∈ GN(β) and xN ∈ G(β). But if d(xN , X̂(β))≥ ε+ γ, then

h(xN)−h(xt̄) = (h(xN)−h(xβ))− (h(xt̄)−h(xβ))

> R(ε)− (R(ε)−Lγ)> 0

using the growth condition on h and inequality (42). However this inequality contradicts the opti-

mality of xN .

Summarizing the discussion above we can conclude that

Prob(d(xN , X̂(β))≥ ε+ γ)≤ 2C(σ)e−α(σ)N .

for N ≥N(σ). Since ε and γ were chosen arbitrarily we can make ε= ε+ γ to conclude the proof

of Part (i).

Step 6. Finally, we show Part (ii). We estimate Prob(d(xN , X̂). By the properties of D, we have

Prob(d(xN , X̂)≥ ε)≤Prob(d(xN , X̂(β)) +D(X̂(β), X̂))≥ ε) (45)

Let ε = 2ε. Under the consistent tail condition of f , we can set β sufficiently small by virtue of

Theorem 4 such that

D(X̂(β), X̂))≤ ε.

By (45)

Prob(d(xN , X̂)≥ 2ε)≤Prob(d(xN , X̂(β)) +D(X̂(β), X̂))≥ 2ε)

≤Prob(d(xN , X̂(β))≥ ε)

≤C(σ)e−α(σ)N

and this gives the result of Part (ii).
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E-Companion

EC.1. Figures in Section 5.1.2.

Figure EC.1 MnCV (β) and MnMx portfolios with real data.
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EC.2. Figures in Section 5.1.3.

Figure EC.2 Optimal portfolio solved from MnCV (β) and MnMx with modified data.
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EC.3. Figures in Section 5.2.1.

Figure EC.3 MnCnCV (β) and MnCnMx portfolios with real data and U = 0.97.
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Figure EC.4 MnCnCV (β) and MnCnMx portfolios with real data and U = 0.98.

Note that when U is increased to a value of 0.99 (corresponding to the portfolio not losing more

than 1% of its value over a five day period in the worst case) the number of stocks included in the

portfolio increases and the proportion of the investment allocated to any stock is reduced to less

than 20%, compared with maximum proportions of more than 53% when U = 0.97.
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Figure EC.5 MnCnCV (β) and MnCnMx portfolios with real data and U = 0.99.


