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Abstract

This thesis discusses the creation of a means of pitch-based data representation which allows 

automated logging and analysis of melodic motivic material. This system also allows analysis 

of a number of attributes of a composition which are not readily apparent to human analysis. 

By using a numerical  data format which treats motivically related material  as  equivalent, 

groups of tonally equivalent intervals (n-tuples) can be logged and have statistical procedures 

carried out on them. This thesis looks at four applications of this approach: measuring the 

most commonly occurring motivic material; creating a transition matrix showing probabilities 

of movement between intervals; measuring the extent of disjunct or conjunct writing;  and 

measuring  concentration  of  motivic  writing  (the  extent  to  which  motives  are  reused). 

Following the discussion of the data representation system, a set of expositions taken from the 

piano  sonatas  of  Haydn,  Mozart,  and  Clementi  are  converted  to  this  method  of  data 

representation, and results are collected for the above four applications. The implications of 

the results of this analysis are discussed, and further potential applications of the system are 

explored.
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1 - Introduction

1.1 - Existing Related Research

Human analysis of music, whatever form it takes, is a highly subjective process guided by 

complex rules and aesthetic  inferences.  In  addition to requiring a thorough knowledge of 

stylistic  idioms,  numerous  exceptional  cases  require  the  formation  of  intelligent  personal 

judgements.  Given the inherent  complexity in  defining the very  task  of musical  analysis, 

many  computer-science  researchers  have  found  that  the  process  of  automating  musical 

analysis offers a wide variety of fascinating challenges.

Approaches towards automating musical analysis with computers were first proposed in the 

1960s, where an initial wave of research into computer-based Natural Language Processing 

(NLP)  was  taking  place.  A significant  early  paper  by  Winograd (1968)  discusses  the 

application of rules relating grammatical structures to music analysis, and looks at issues of 

information representation (an issue which continues to be a contested area in all research in 

the field). After the ‘AI Winter’ — a period from the late 1960s to early 1980s during which 

funding for artificial-intelligence research was difficult to obtain due to a lack of grants from 

the American government1 — numerous other theorists worked on the problems of computer-

based analysis from different perspectives. Several writers attempted to consolidate existing 

research  while  looking  forward:  Meehan (1980) draws  heavily  from  early  grammatical 

research, while Roads (1980) expands the scope of computer analysis discourse to include 

algorithmic  composition.  Such  areas  received  greater  attention  in  the  years  to  follow, 

becoming a  significant  branch  of  ‘AI Creativity’.  While  not  directly related  to  computer 

analysis,  Lerdahl  and  Jackendoff's  influential  book  A  Generative  Theory  of  Tonal  

Music (published in 1983) outlined an algorithmic means of parsing musical structures of all 

lengths. This study has been cited by almost every subsequent paper discussing automated 

analysis.

Many papers from the 1980s do not discuss the possibility of an analytical program making 

complex  aesthetic  judgements  (such  as  the  ability  to  make  decisions  about  ambiguous 

structures, or partitioning areas of different tonalities) and are more concerned with creating 

1 While research in this field is now occurs globally,  most early artificial-intelligence research originated in 

the United States; hence the unique importance of American research funding.
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tools for human theorists to use. Brinkman (1986) discusses the use of the DARMS notational 

format to represent scores for computer analysis, and Smoliar (1980) looks at the preparation 

of  Schenkerian  analyses  using transformation  programs.  Schenkerian  analysis  has  been  a 

salient problem in AI analysis, and many researchers have approached it in the last decade — 

examples include Kirlin's (2009)  work to produce foreground reductions based on algorithms 

by Pardo  and  Birmingham (2002),  and  Marsden's (2007) software  for  gradually  reducing 

structural complexity.

Intimately tied up with the area of musical analysis is computer-based composition. There 

have been innumerable approaches to this topic, and many of these studies are not limited 

merely to  traditional  tonal  systems.  While a  discussion of  the entirety of  the field  of  AI 

composition is  outside the scope of this literature review, numerous papers make links to 

computer analysis by citing statistical systems or algorithmic construction techniques and are 

worth mentioning. In his article Computer Improvisation (1980), Fry creates a robust system 

for the generation of improvised jazz music which can have many factors modified at both the 

global and local scale. In one of the few papers attempting to examine human response to 

computer-generated  music,  Brown (2004)  creates  melodies  using  algorithmic  and  genetic 

systems, and analyses their aesthetic quality. Much research has been undertaken examining 

chorale melody generation, as it is a field where compositional principles are easily examined 

by  human  judges.  Pearce (2005)  uses  a  variety  of  statistical  approaches  to  generate 

stylistically  appropriate  chorale  melodies,  and  Pearce  and  Wiggins (2007)  use  perceptual 

heuristics based on the feedback of expert judges to improve the quality of chorale melodies 

generated by a Markov chain system. One of the most interesting bodies of work related to 

algorithmic music generation has been undertaken by David Cope. Cope has put forward a 

program which is capable of analysing atonal voice leading parts and creating rule sets from 

this  input  to  produce  new polyphonic  music (2002).   In  Cope's  Virtual  Music:  Computer  

Synthesis  of  Musical  Style (2001),  he details  the workings of the  Experiments  in Musical  

Intelligence  program — a  piece  of  software  using various  perceptual  heuristics  which  is 

capable of mimicry of arbitrary stylistic features at both a surface and deep structural level. 

More recently, Cope wrote a paper which outlines how a compositional AI can learn rules 

from an  arbitrary  corpus,  and  quickly  overtake  human  proficiency  in  basic  contrapuntal 

writing (2004). In the last decade, papers have started to acknowledge that any program which 

imitates  human  compositional  processes  will  necessarily  feature  complex  algorithmic 

processes,  even  if  it  is  trained  on  a  corpus  of  works.  Dubnov et  al. (2003)  discuss  how 
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compositional programs have rapidly increased in complexity and success since the 1980s, 

and they put forward their own programs which are capable of extremely flexible and realistic 

composition in a variety of genres.

From the late 1990s to the present day there has been a great amount of research in divergent 

areas related to computer-based musical analysis. This research often justifies its relevance in 

the relatively new field of Music Information Retrieval (MIR). Since analytical AI research is 

no longer  new,  papers  have  either  begun to  approach more esoteric  subject  matter,  solve 

problems which have historically been more difficult, or use more advanced mathematical and 

statistical tool sets. Pachet (1997) uses hierarchical element trees combined with numerous 

rules related to jazz composition to create a program capable of deducing musical structure 

even when such structures are obscured by extraneous elements. This has the potential  to 

create a quantifiable computational metric of any music structure, and connects much more 

deeply  with  the  notion  of  large  scale  structures  than  studies  had  previously.  Hörnel  and 

Menzel created a system they titled HARMONET, which uses trained neural networks to 

harmonise melodies in the style of an arbitrary composer. This concept was then expanded to 

create variations of melodies, using a system called MELONET. While it could be argued that 

functions such as this could be created using rule systems (which have been present since 

much  earlier),  works  based  on  randomisation  and  rules  are  generally  felt  to  be  less 

aesthetically pleasing than works created using statistically trained neural net systems (Hörnel 

&  Menzel,  1998).  In  addition,  while  their  study  was  primarily  focused  on  composition, 

analysis  of  the  weightings  of  neural  net  nodes  reveals  idiomatic  patterns  in  composers' 

outputs.  This is  of  great  interest  to analysts  seeking to  understand the concept of  ‘style’. 

Several researchers have turned their attention to testing phrase boundary algorithms outlined 

in Lerdahl and Jackendoff's A Generative Theory of Tonal Music, and testing other statistical 

methods of perceptual grouping. Pearce and Wiggins have contributed heavily in this field; in 

a paper from 2008 (with Müllensiefen), they compared statistical and rule based methods of 

melodic segmentation; in 2006, they proposed their own method of boundary prediction based 

around  unpredictability  of  subsequent  melodic  events  (linking  to  the  Gestalt  psychology 

research mentioned on page 6). Thom et al. (2002) compared the phrase structures generated 

by several  researchers'  algorithms  to  phrase  structures  intuitively created  by  professional 

musicians. There are many more novel and new approaches to old problems that could be 

listed in addition to these, and the number is growing. To name a short few: Raphael (2003) 

uses probabilistic graphs in determining correct analysis of harmony; Abdallah et al. (2005) 
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uses Bayesian models to elicit musical structures; Manaris et al. (2007) look at how previous 

mathematical methods of analysis can be united with an approach based around repertoire 

learning; and Whorley et al. (2004) uses element cross-matching predictive systems operating 

on numerous musical criteria in the study of four-part harmony.

Despite the many attempts to devise reliable means of assessing harmony and (stemming from 

this) larger-scale structure, comparatively little research has been undertaken into any other 

forms of analysis. At the time of writing, there has been no academic writing regarding Neo-

Riemannian AI analysis tools, and work related to semiotic or narratological analysis is (at 

least  for  now)  quite  impractical.  While  some  research  makes  use  of  set  theory,  the 

mathematical reductions required to transfer sonorities into interval class vectors is trivial. 

The larger issue in analysis of post-tonal  works is probably deducing points of structural 

division, and this is a problem which invites analogous approaches to those employed in tonal 

music.

Artificial-intelligence based motivic analysis is a thriving field of research which is separate 

to  the  previously  discussed  tonal  and  structural  analytical  systems.  There  are  two  main 

researchers who are linked to almost every significant paper in this area so far — Emilios 

Cambouropoulos  in  Austria,  and  Olivier  Lartillot  in  Finland.  Cambouropoulos  has  done 

research  into  algorithms  usable  for  determining  similarity  and  relatedness  of  musical 

material (Cambouropoulos & Widmer, 2000),  and hence produced an interesting structural 

analysis of Schumann's Träumerei (Cambouropoulos, 2000). He acknowledges the significant 

overlap  that  motivic  analysis  has  with perception and  psychology,  and  so  avoids  making 

definite labels and classes for motivic relations — they are simply organised in priority based 

on context. Lartillot has produced algorithms capable of finding patterns in music, and solves 

intractability  issues  by a  variety  of  heuristics  to  avoid  combinatorial  explosion (Lartillot, 

2005b,  2005c).  In  acknowledging  the  significant  extent  to  which  perception  influences 

motivic  analysis,  Lartillot  also  tries  to  recreate  human  cognitive  means  of  ‘redundancy 

suppression’ — a series of heuristic algorithms which exclude insignificant motivic patterns 

from analysis (Lartillot, 2005a).

In addition to traditional types of analysis, the second half of the twentieth century saw the 

integration of information theory into traditional musicology. Information theory is a field of 

mathematics dealing with the transferral  of information in signal  form. It  is a field which 

4



utilises statistical analysis to understand information redundancy and entropy2 in any piece of 

data. Applying its processes to music using statistical logging of musical events yields some 

surprising  insights  and  reinforces  inferences  from traditional  analysis.  Meyer (1957) was 

among the first to discuss the possibilities for information theory analysis to quantify stylistic 

idioms. Following this, Youngblood (1958) applies information theory analysis to melodies by 

Schumann, Mendelssohn and Schubert and discusses the significance of his statistical results. 

Information theory has been proposed as an automated means of separating musical styles and 

genres: research from the 1950s and 1960s suggests that the difference in idiolects between 

composers  might  be  found in  signal  information analysis.  In  addition  to  this  application, 

however, it has also been used as an analytical tool in its own right. Hiller & Bean (1966) 

produced  graph-based  analyses  of  four  contrasting  sonata  expositions  which  can  be 

interpreted  to  give information about the  intensity or  chromaticism of  different  pieces  of 

music  (or  different  sections  within  a  single  composition).  Hiller  &  Ramon (1967) then 

followed this  study with  an  in-depth analysis  of  Webern's  Symphonie  Op. 21,  comparing 

traditional structural analysis with an information theory analysis. While information theory 

as a field does not require computers, the statistical logging and processing which it requires 

are far more easily carried out with the aid of automated programs.

While information theory itself relies on statistics, there have been numerous studies which 

can be seen as purely statistical. In addition to the studies already mentioned which make use 

of  graphical  models  using  statistics-based  learning,  some  researchers  have  attempted  to 

quantify features of music based on event frequencies: Toiviainen & Eerola (2001) used a 

self-organising map on a large collection of folk songs to discern regional differences, while 

Manaris et al. (2005) established how composers can be identified by the extent to which their 

output has features following a Zipf distribution (Zipf distributions and their relevance to this 

study will be covered in sections 2.4.1 and 3.2.1). Most statistics-based musical analysis is 

conducted  on  audio  signals  with  application  in  information  retrieval,  such  as  Beran  & 

Mazzola's  study (1999) which  used  statistics  to  draw  conclusions  regarding  the  musical 

structure of a composition from a collection of recordings. There have also been attempts to 

create systems allowing clear quantification of stylistic features. A thesis by Bellman (2011) 

uses detailed information about musical score events in combination with statistical pattern 

recognition algorithms to form clear metrics when analysing musical genres. As a result of 

this, his system proved capable of predicting the composer of an unknown work (comparing it 

2 Entropy, as the term is used in information theory, is analogous to the amount of possible combinations of 

stored data in any given signal. In musical information theory analyses, it is generally seen as a measure of 

complexity.

5



to data from a representative corpus) with up to 75% accuracy, even when operating on works 

of  significant  perceptual  similarities  (such  as,  for  instance,  separating  some  works  of 

Beethoven and Mozart). 

Statistical analysis of scores has also often been used to test  hypotheses on the nature of 

human musical perception. Vos (1989) carried out a study on melodic intervals in Western 

music  and  found  that  descent  by  scale  was  a  generalised  contour.  This  was  then 

experimentally  tested  against  subjects'  perceptual  inferences.  In  the  same  year,  Eugene 

Narmour  published  a  formal  outline  of  the  ‘implication-realization’  model  of  melodic 

prediction,  which  argued  that  there  are  certain  sequences  of  intervallic  direction  and 

magnitude  which  humans  naturally  find  predictable  and  satisfying,  following  principles 

similar to those from Gestalt theories of visual analysis. This model has been experimentally 

tested  and  verified  in  a  number  of  psychological  and  computational  studies. 

Schellenberg (1996)  showed  that  the  ‘implication-realization’  model  explained  melodic 

prediction tendencies in test subjects regardless of the ethnicity of their upbringing or their 

level of musical education. This was further proved in research using melody creativity by 

Thompson  et  al. (1997).  Thompson  and  Stainton (1998)  proved  the  accuracy  of  both 

Narmour's closural and implication theories in a large corpus of folk songs, while Pearce and 

Wiggins (2004b) used a statistical analysis of folk songs, ballads, and chorale melodies to 

show that Narmour's supposed instinctive principles may simply be the result of exposure to a 

wide corpus of music which embodies Narmour's contour tendencies. Narmour also theorised 

that melodic expectation arises not only from intrinsic human nature, but through long term 

cultural exposure (extraopus style) and short term knowledge about a piece of music as it is 

being  listened  to  (intraopus  style).  Most  studies  referencing  the  ‘implication-realization’ 

theory focus on the innate associations it outlines, but studies such as Thompson et al. (2000) 

have also psychologically tested the validity of intraopus information. Since the ‘implication-

realization’  model  is  very  clearly  defined,  it  is  straightforward  to  produce  annotated 

automated analyses  of melodies,  showing their  structure in terms of Narmour's  intervallic 

transitions. Grachten et al. (2005) did just this, creating a system which was very capable of 

demonstrating structural similarities in melodic construction.

In  addition  to  studies  which  provide  evidence  for  Narmour's  theory,  there  also  exists  a 

significant body of work devoted to inductively forming broad hypotheses regarding general 

melodic  contour.  In  Sweet  Anticipation (2006),  David  Huron's  book  discussing  musical 

6



expectancy, an analysis of folk song corpora produced surprisingly consistent contour data, 

even  though  most  of  this  information  is  already  understood  intuitively  by  any  musical 

professional. While results differed slightly with folk song corpora from different regions, 

Huron shows that there are several unanimous results:

� Stepwise motion predominates,  accounting for  the largest  proportion of intervallic 

motion in all corpora by far.

� There  is  a  general  pattern  that  ascents  by leap  are  followed  by descents  by step 

(interestingly, Huron also makes the point in a paper from 2000 that this is largely due 

to the effect of vocal ranges on folk song composition).

� Stepwise motion tends to precede stepwise motion.

Many of these consistent  observations are supported by Narmour’s theory.  These findings 

were further reinforced in David Temperley's  Music and Probability (2007). An analysis of 

the Essen folk song collection (comprising 6252 folk songs of mostly Germanic and European 

origin)  revealed that  roughly 40% of material  was accounted for  by descending step and 

unison intervals, and slightly less than 10% was accounted for by ascending step. Temperley's 

research  then  proceeds  to  attempt  quantification  of  subtle  musical  phenomena  (such  as 

ambiguity, tonalness, and tension) and to further the argument of Pearce and Wiggins that 

experience is the most significant factor in shaping perceptual expectation. In Huron (1996), 

another  exhaustive  study  of  the  Essen  folk  song  collection,  the  intuitive  hypothesis  that 

Western  music  largely  possesses  an  arch  shaped  phrase  contour  is  supported  through 

statistical  analysis.  This  paper  also  shows  a  relatively  early  generalisation  of  intervallic 

movement which is in concordance with the findings above.

1.2 - Research Aims

The research presented in this thesis is related to existing work in the field of motivic analysis, 

while also drawing from research which attempts to quantify compositional idiolects through 

statistical analysis. Like all of the work presented by Lartillot and Cambouropoulos, and much 

of  the  existing  statistics-based  work,  this  thesis  focuses  solely  on  analysis  of  monodic 

structures. When the source being examined originally features a homophonic texture, the 

melodic line is first extracted to form a monodic reduction. The systems used in this thesis do 

also not take into account any rhythms or rhythmic relationships. The reasons for this are 

discussed in section 2.1.

It is not the intention of this thesis to propose alternate methods of motivic analysis to those 
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put forward by Cambouropoulos and Lartillot. Previous research in that field has attempted to 

use motivic analysis to propose structural divisions within a piece, or to test the extent of 

relationships between different pieces of musical material. Recent studies have proposed an 

algorithmic means of pattern recognition which models human perception. Areas of research 

such as these, while wholly legitimate, are outside the scope of this study. Additionally, this 

thesis does not intend to incorporate information theory analysis, as this is a field which has 

already been thoroughly pursued by other researchers. However, this research does draw upon 

some  of  the  existing  statistical  work  done  by  researchers  such  as  Youngblood,  Leon  & 

Hutchinson (1983), and Hiller, as it shares their concern with the quantification of the concept 

of  ‘style’.  This  research  employs  statistical  analysis  procedures  on  patterns  which  have 

significance as small musical structures, examining their re-use and what this data may imply 

about the concept of musical style. 

Unlike  the  approach  adopted  by  Bellmann  and  many  others,  this  research  relies  on  the 

analysis of scores without making use of tonality or scale degrees, in order to keep the motivic 

information it generates in a very practical generic form. This thesis details the construction of 

a data format into which monodic music is converted. In the process of conversion, motives3

which  are  diatonically  similar  (but  may  be  chromatically  different)  are  treated  as  equal 

entities. This data is scanned by a program, and tables of recurrent motivic sequences are 

created. These sequences, referred to as n-tuples (intervallic sequences featuring n number of 

notes) form almost the entirety of the raw data which is analysed. Statistical operations are 

then carried out on these sequences which quantify significant aspects of composition which 

are not easily humanly assessed. These statistical assessments allow comparison of melodic 

idioms between corpora of works — section 2.4 details four ways in which the data can be 

compared.

A main outcome of this research will be to test the concordance of results with the verified 

hypotheses  put  forward  by Cope,  Huron,  Temperley,  Narmour,  Pearce  and  Wiggins,  and 

others. Comparison will be drawn between the results of this research operating on a classical-

piano corpora, to those bodies of work operating on folk song corpora.

3 This thesis uses the term ‘motive’ as it is understood in texts by Schoenberg: a small amount of musical 

material which gains significance by its re-use and development. Note, however, that the term is also used 

here  to  describe  n-tuple  intervallic  groupings  which  may  occur  as  little  as  once,  and  have  no  greater 

significance within a work. The term 'motive' is used despite any perceptual significance that may connote, 

because despite many n-tuples having no perceptual significance, they may still have relevance as repeated 

material.
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The corpora of works used in this thesis come from the piano sonatas of Mozart, Haydn, and 

Clementi. The rationale behind this choice of repertoire is discussed in section 3.1. From the 

data  gathered  from  these  corpora,  generalised  observations  regarding  melodic  idiom  are 

formed,  and  a  means  of  discriminating  between  the  attributes  of  the  melodies  of  these 

composers is stated. From these results, the idiolects of individual composers is quantified, 

and a means of comparing their motivic vocabulary is given.
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2 - Methodology

While  the  works  which  this  thesis  intends  to  examine  are  all  essentially  homophonic 

(featuring an admixture of polyphonic elements), statistical operations in this study are all 

carried out on purely monodic lines. This is done with the intention of isolating features of 

melodic idiom, rather than any other features related to texture or harmony. The first step in 

subjecting these works to statistical  tests is  the reduction of their homophonic textures to 

single melodic lines.

2.1 - Melodic Line Reduction

It is the intention of this thesis to examine melodic lines without imposing any perceptual or 

algorithmic heuristics to limit  the material which is analysed. In  order to avoid having to 

make subjective decisions about the textural identity of voices in a piece of music, works 

being analysed by the system outlined by this study should feature a constant melodic voice in 

a continuous register. The texture of many works from the classical period features a clear 

distinction  between  melody  and  accompaniment  functions.  While  there  are  obviously 

numerous  exceptions,  it  is  widely  recognised  that  most  works  of  the  classical  era  (in 

opposition to earlier periods) tend to feature a clear melody sitting above other accompanying 

parts (Burkholder, Grout, & Palisca, 2010, pp. 300-301). All of the works chosen for analysis 

in section 3 generally fit this description, but there are still several areas where the reduction 

of the music to a single melodic line requires subjective decision making, and at  times, a 

concession to the local polyphony. Some of these examples are discussed in section 3.1.1, and 

an exhaustive list of all the issues arising in melodic reduction in this experiment is given in 

the appendix.

It  must  also be acknowledged that  the task of identifying which of a set  of voices is  the 

melodic line is non-trivial. This is an issue that has been grappled with several times in music 

information retrieval and automated analysis (León, Rizo, & Iñesta, 2007; Madsen & Widmer, 

2007b). One identifying criteria put forward by Madsen & Widmer et al. (2007a) is that of 

entropy (as the term is understood in the field of information technology). Under this system 

of identification, the more information that is required to express all the detail of a musical 

line, the more likely that line is to be melodic. This observation is probably valid for most 

classical era music (and many other genres) but issues still arise in the interchange of melody 
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between different voices in a musical texture. Without the prior formation of partition points 

where it  is  known that  the melody changes voices,  this  definition is  still  problematic  for 

automated  analysis.  This  research  makes  no  attempt  to  establish  strict  guidelines  for 

identifying melodic lines, and instead relies on a general educated listener's understanding of 

what constitutes a melody. 

2.1.1 - On Rhythmic Significance

As stated in the research aims, this project  ignores all  rhythms in the process of melodic 

reduction and data representation. This does not betoken a lack of recognition of rhythmic 

importance in motivic analysis, but rather an acknowledgement of the many problems facing 

those who would attempt the incorporation of rhythmic data.

It stands to reason that rhythms should play a part in motivic analysis because rhythms are 

inherently motivic (and vice versa). Motives contain a rhythmic element, and classical works 

(such as the ones under analysis in this thesis) tend to re-use and develop rhythmic material 

heavily (Schoenberg,  1967,  pp.  8-15).  As a  small  example,  consider  figure  1,  the  famous 

opening of Mozart's Serenade No. 13 in G:

   Fig. 1

The motivic relationship between the antecedant and consequent phrase in these four bars is 

reinforced by both pitch and rhythm. In terms of pitch, the consequent phrase is a non-exact 

inversion of the shape of the antecedant, and both move entirely within arpeggios (outlining 

the tonic in the antecedant, and the dominant in the consequent). However, the strongest link 

between  these  two  phrases  is  definitely  rhythmic  —  they  are  rhythmically  identical. 

Perceptually,  this  feature  is  obvious,  even  to  non-musicians.  Even  though  the  intervallic 

patterns used in each phrase are different, listeners are able to identify a motivic link between 

the phrases because of their rhythmic congruence.

If  this  research  was  attempting  to  analyse  the  relationship  between  motives,  rhythmic 

relationships would obviously need to be taken into account.  But in order to limit  ‘false-

positive’ automated tallies of  material  which aren't  motivically significant,  some rhythmic 

heuristic rules would need to be introduced. Potentially,  only the motives which occur on 
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metrically  strong  beats  could  be  tallied,  but  this  would  discount  anacruses,  or  rhythmic 

motives which are altered with anacruses. The rhythmic fragmentation of motives (as well as 

diminution  or  augmentation)  is  also  difficult  to  account  for  without  introducing  other 

perceptual  rules.  The  frequent  ornamentation  of  classical  motives  with  extra  rhythmic 

embellishments adds to the difficulty of formulating a program to define ‘significant’ motives. 

Additionally, due to the open-ended nature of rhythmic interpretation for many ornaments, 

more issues arise if the rhythmic component of ornamentation is treated motivically.

Since  a  broad  set  of  rules  which  could  discern  motivic  significance  based  on  rhythmic 

location are difficult to implement, this study ignores rhythm based analyses and only looks at 

a contiguous series of melodic pitches. Analysis of this sequence of pitches intends not to 

discern  motivic  relationships,  but  to  form  more  general  conclusions  about  the  nature  of 

melodic  writing  in  a  work  (or  corpus  of  works).  While  there  will  be  numerous  entries 

appearing in the motive-incidence tables which would not be considered motivic (for instance, 

groups of notes split  between two phrases, or a portion of a theme which is rhythmically 

displaced) the greater number of incidences of the most significant pitch patterns will still rise 

to the top of any frequency tables. 

Also, it should be noted that the size of motives being examined in this study is very small — 

only up to six pitches. This is enough size to identify common embellishing figures, short 

melodic motives, and common shapes in general melodic writing. It is not enough to examine 

most full themes or phrases. It is intended that through analysis of melodies from a corpus of 

works, the most common motivic pitch patterns will emerge. These short patterns can appear 

in any rhythm, and through studying them the pitch based idiolects of a composer can be 

identified more easily without considering metrical relationships.

2.2 - Data Representations

Once the work being analysed has been reduced to a single melody, and considering that 

rhythms do not factor into the data representation, the next step is to convert the melody into a 

useful  format for  motivic analysis.  The  primary aim of  this data format  is  to render  any 

contour  motion  which  is  motivically  similar  as  identical,  despite  potential  intervallic 

incongruence. This is done through the use of a series of numbers representing not specific 

pitches, but ‘staff position classes’ — a number which can stand for any note in a certain 

position on the staff. For instance, using scientific pitch notation, the notes C4, C 4, and C�4 
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are all the same staff position class — they all appear in the position of middle C on the staff, 

regardless of further chromatic designation. Double sharps and double flats also fall into the 

same  staff  class  as  the  letter  they  are  appended  to.  By  using  this  designation,  motivic 

relationships are maintained even when transpositions are not exact. For instance, the first 

three notes of C major in sequence are recognised as similar to the first three notes of C minor 

in sequence, because E and E  are the same staff position class. 

These staff position classes have been given numerical designations. Labelling begins with 

1.5 for C0 (and all  possible chromatic  inflections of  this  pitch which appear  in that  staff 

position) and rises by one for each ascending letter. The .5 decimal designation is used to 

assist in expressing some chromatic passages, and will be explained shortly. Continuing this 

system of designation yields the following table:

C0 1.5 D0 2.5 E0 3.5 F0 4.5 G0 5.5 A0 6.5 B0 7.5

C1 8.5 D1 9.5 E1 10.5 F1 11.5 G1 12.5 A1 13.5 B1 14.5

C2 15.5 D2 16.5 E2 17.5 F2 18.5 G2 19.5 A2 20.5 B2 21.5

C3 22.5 D3 23.5 E3 24.5 F3 25.5 G3 26.5 A3 27.5 B3 28.5

C4 29.5 D4 30.5 E4 31.5 F4 32.5 G4 33.5 A4 34.5 B4 35.5

C5 36.5 D5 37.5 E5 38.5 F5 39.5 G5 40.5 A5 41.5 B5 42.5

C6 43.5 D6 44.5 E6 45.5 F6 46.5 G6 47.5 A6 48.5 B6 49.5

This system of designation allows considerable flexibility for identifying motivic similarity 

not just diatonically, but also where a motive can be chromatically altered — consider figure 

2, a short passage in C major:

     Fig. 2

In each bar, there is a pattern which is repeated, diatonically transposed up a step. This pattern 

is ascending second, ascending second, descending third. Chromatically, in terms of semitone 

movement, each bar contains a different pattern, but the motivic relationship between each is 

obvious. Expressed in staff position classes, the passage becomes 29.5, 30.5, 31.5, 29.5, 30.5, 

31.5, 32.5, 30.5, 31.5, 32.5, 33.5, 31.5. In this format, the +1, +1, -2 pattern of the passage is 

clear, and this pattern of movement is the same regardless of the key in which it is presented.4

4 Note that all references to intervallic movement in this thesis using positive and negative integers are not 

using the traditional musical notion of scale degrees, but of steps between notes. For example, using this 

notation, an ascending second is +1, while a descending fifth is -4.
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In baroque, classical, or early romantic music, chromaticism most often arises through long 

and short term modulations and tonicisations, and through melodic embellishment (such as 

chromatic neighbour notes or chromatic passing tones).  In this system of reduction, some 

chromatic melodic embellishment must necessarily find a means of representation, because 

not  doing so  would  produce  an  extremely innaccurate  depiction  of  the  pitches  involved. 

However,  most  chromaticism  related  to  tonicisation  is  ignored  to  preserve  motivic 

congruence. Figure 3 shows a short passage in which chromaticism is ignored:

      Fig. 3

In this passage, three occurrences of a motivically similar set of pitches have been shown with 

braces. Despite the presence of chromaticism, the motivic congruence between these three 

incidences is clear. The C� in the first bar is a non-diatonic note in C major, but can be dealt 

with by assigning it the same staff position class as the C  in the third bar. This reduces to the 

following numeric sequence: 34.5, 29.5, 30.5, 37.5, 32.5, 33.5, 28.5, 29.5. By representing the 

pitches this way, all three motivic occurrences have the same identity: -5, +1. This is why 

chromatic notes are generally ignored in the melodic reduction — to recognise incidences of 

repeated motives that can either be intervallically different within a single key, intervallically 

the same but in different keys, or slightly intervallically different and in different keys.

Some passages do however require chromaticism to be acknowledged in the reduction. This is 

most often seen in passages featuring ascending or descending chromatic scalic movement. 

Figure 4.1 and 4.2 are two passages featuring chromaticism.

       Fig. 4.1           Fig. 4.2

In figure 4.1, the F� arises as chromatic neighbour note to G. If the three note figure of the 

last three pitches is transposed onto an F or a C, it is no longer chromatic in C major. To 

preserve the relationships between these transposed motives, the F� is treated as any other 

staff position class on F, making figure 4.1 represented by 29.5, 30.5, 31.5, 32.5, 33.5, 32.5, 

33.5. Some information is lost by this representation though — using that numeric sequence, 
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the passage is considered the same as if it contained no chromatic note at all.

Reduction  of  chromatic  elements  into  this  data  format  is  not  always  a  straight-forward 

process, and subjective analytical decisions must sometimes be made. If, in figure 4.1, the last 

four notes, and not just the last three notes, are deemed to be motivically significant by their 

continued occurrence, then it could be argued that attempt should be made to better represent 

instances with that melodic contour in the motive frequency tables. In cases such as these, 

0.25 can be added to a staff position class to represent a sharpened pitch, and 0.25 can be 

subtracted to represent a flattened pitch.  By doing this,  the non-decimal portion of a staff 

position  class  will  always  represent  the  underlying  position  of  that  note  on  the  staff. 

Representing the data this way, the last four notes of figure 4.1 are 32.5, 33.5, 32.75, 33.5. 

The non-decimal portion of the F and F� (32) represents that position on the staff, and the 

motive is now uniquely represented.

Repeated  chromatic  passages  where that  kind  of  four-note  figure  re-occurs  enough to  be 

considered motivic are generally rare in the repertoire used experimentally in this thesis. It is 

far more common that the passages which require chromatic expression use passing chromatic 

notes, such as in figure 4.2. Here, without taking the passing F� into account, the reduction 

would be 29.5, 30.5, 31.5, 32.5, 32.5, 33.5, 29.5. This implies that the fourth pitch in this 

passage is immediately repeated, which is not the case. To better represent this, 0.25 is added 

to the fifth note in the passage, making 29.5, 30.5, 31.5, 32.5, 32.75, 33.5, 29.5. This is a 

much better representation of this passage, and any future occurrences of the same passage 

will share this motivic identity. Most examples of chromaticism in the repertoire analysed in 

this thesis feature chromatic scalic passages such as this one.

2.2.1 - Representation Limitations

This manner of reduction and representation is most effective on entirely diatonic music, and 

as music becomes increasingly chromatic, more issues in its data format emerge. While it is 

still highly functional for most classical melodies (hence the focus of this thesis), there are 

occasional problems with representation of chromatic passages. Consider the examples shown 

in figures 5.1, 5.2, and 5.3:
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   Fig. 5.1                                                                                     Fig. 5.2

                                                    Fig. 5.3

Figure 5.1 is simple and entirely tonal. It is easily represented numerically as 29.5, 33.5, 30.5, 

34.5, 31.5, 35.5 or intervallically as +4, -3, +4, -3, +4. Similarly, under the systems outlined in 

the previous paragraphs, the passage in figure 5.2 should represent the same series of intervals 

when reduced to this data format (since the G  becomes 33.5 like all other notes built on G). 

However, figure 5.3 is intervallically identical to 5.2, yet can not be represented by the same 

intervals.  Without  making  use  of  chromaticism on  the  C�  and  G�,  the  passage  can  not 

logically be represented, because 29.5, 33.5, 29.5, 33.5, 30.5, 34.5 implies the first pitches are 

simply repeated. Considering that this data format intends to make similar motivic passages 

identical for purposes of analysis, it seems strange that two passages which are perceptually 

(ignoring transposition) identical are numerically different. 

The justification of this is that while the passages in figures 5.2 and 5.3 are aurally extremely 

similar,  as  motivic  constructs  on  a  page  they  are  significantly  different.  5.2  features  an 

ascending scale in fifths, while 5.3 is written with a clear chromatic passing note. Issues such 

as this arise due to the asymmetry of the tonal system and the non-identity of enharmony. 

Situations which are this contentious are relatively rare, however, and this data representation 

system is adequate for the expression of most motivic constructs in classical music.

Before concluding this section, a brief discussion must be made of the relevance of 

‘signatures’, as defined in David Cope's Virtual Music. Cope defines signatures as 

“contiguous note patterns which recur in two or more works of a single composer and 

therefore indicate aspects of that composer's musical style”. Signatures are often perceptually 

similar figures which may appear on the surface to be quite different. Figure 6 shows two 

perceptually related examples from the piano sonatas of Mozart, given as an example by 

Cope. Example a is from K. 279, movement 2, and example b is from K. 280, movement 2.
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Fig. 6

While the number of notes, intervals, and rhythmic durations and relationships are different, 

there is clearly a perceptual relationship between these two examples: they both feature a 

chromatic ascent, then a descent by leap, followed by descent by step. Following the descent 

by leap, note duration is increased, and notes occur on points of agogic significance. Since 

there is a perceptual relationship between these examples, and there is convincing evidence 

behind Cope's conclusion that many stylistic idioms of composers occur by way of these 

altered signature shapes, it is worth asking: would the data reduction techniques in this thesis 

find any relationship between these patterns?

The short answer to this question is no, usually. While some of the recurring ascending 

chromaticism would show up in n-tuple tables for both examples, and the descent by step 

following a descending leap would show up as entries in the interval transition matrices, there 

would be no clear logging of the relationship between these two passages. The identification 

of these passages as significantly similar requires a pattern-matching algorithm which looks 

for general features, rather than congruent pitch shapes on the score. While the detection of 

signatures is clearly an ingenious line of investigation into musical style, this paper argues 

against Cope's declaration that “matching patterns exactly yields little of consequence because 

precisely repeating sequences are the exception rather than the norm”. If the patterns being 

analysed are of short length, and care is taken so that musical shapes, and not just 

chromatically identical intervallic patterns, are identified, results are produced which have 

stylistic significance at a lower level of musical construction than signatures.

There are also examples where signatures would be picked up and logged as statistically 

significant n-tuples. Figure 7 shows some more melodic signatures demonstratively used by 

David Cope, this time from the mazurkas of Chopin. They originate from, in the order as 

listed here, Op. 24 No. 3, Op. 30 No. 2, Op. 50 No. 3, Op. 33 No. 2, Op. 33 No. 4, and Op. 41 

No. 3.
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Fig. 7

While it could be argued that the rhythm of these signatures is the most significant part of 

their shared identity, their consistent shapes are clearly a strong unifying figure. Examples a, 

b, and c would be included in 6-tuple tables as (1, -1, -1, -1, -1) and d, e, and f would occur as 

(1, -1, -1, -1, 1). Cope lists many variations of this pattern which usually feature an altered 

‘tail’ — sometimes the last three notes descend by thirds, sometimes by third then second, 

sometimes the six note figure is curtailed to five notes. However, in all these cases, the 

perceptually strong triplet figure is the same, and in every instance of this pattern, the triplet 

shape would be included in the 3-tuple tables as (1, -1).

In general, this research makes no effort to link figures of perceptual similarity which are 

separated by numerous shape and length alterations. Instead, it only looks at the statistical 

occurrence of  very short  perceptual  shapes,  and extrapolates  what the occurrence or non-

occurrence of these building blocks imply in quantifying musical style.

2.3 - Applications of the Data

Once a  piece  has  been  reduced  to  a  single  melodic  line,  and  this  line  is  converted  to  a 

numerical  sequence,  statistical  operations  can  be  carried  out.  This  thesis  proposes  the 

following four means of analysis and comparison which can be applied to the data. 

2.3.1 - Most Common Motivic Material

In order to examine recurring motivic material, the melodies (in numerical form) are entered 

into a program which produces a list of all the unique motives in the data, along with a tally of 

their  incidences.  As  no limiting heuristics  are  applied,  this  program looks at  all  possible 

sequential  note groupings in a set  of melodies. Separate lists are produced for motives of 

different  lengths.  In  this  study,  motives  of  up to  six  notes  are  analysed,  so five lists  are 
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produced of n-tuples: a table of 2-tuples, 3-tuples, 4-tuples, 5-tuples and 6-tuples.5 These lists 

form almost the entirety of the data used in these four analytical procedures.

The program being used can operate on as much or as little musical material as is required, 

but  statistical  significance of results  will obviously increase with a larger data input. It  is 

intended that this system of analysis be applied to a corpus of works in order to permit general 

statements to be made about a composer's stylistic tendencies. However, it can also be used on 

single  works  (or  even  individual  sections  of  works)  to  compare  motivic  use  in  different 

pieces, rather than just different composers. By comparing the analyses of individual works 

within a corpus with the analysis of a corpus as a whole, it can be seen which works most 

strongly reinforce the idiomatic tendencies of a composer.

Even  without  further  analysis,  these  lists  of  motives  provide  insight  into  compositional 

idiolects. From them, we can see the most common patterns which occur in a set of works, 

and  compare  these  between  composers.  These  lists  provide  empirical  reinforcement  of 

traditional musical inferences — for instance,  whether or not a particular pitch contour is 

strongly idiomatic of a composer's output. The most frequently occurring motives in these 

lists will show the most common building blocks which a composer uses in the creation of 

phrases, themes, and general melodic figuration.

The significance of these results is best demonstrated by example — figure 8 shows a short 

passage which is converted into the following numeric sequence: 29.5, 30.5, 31.5, 30.5, 29.5, 

33.5, 32.5, 33.5, 34.5, 33.5, 32.5, 31.5, 30.5, 31.5, 32.5, 30.5, 29.5, 30.5, 31.5, 29.5, 33.5, 

32.5, 31.5, 30.5, 31.5, 29.5.

  Fig. 8

Here are the 2-tuple, 3-tuple, and 4-tuple motive banks generated from this example:

5 Note that the value n in a given n-tuple is a measure of notes, not intervals. Hence, each n-tuple contains (n-

1) intervals — a 2-tuple is the smallest grouping possible, containing one interval between two notes.
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2-tuples

Motive Incidences Percentage of total incidences

-1 11 44.00%

1 9 36.00%

-2 3 12.00%

4 2 8.00%

3-tuples

Motive Incidences Percentage of total incidences

-1, -1 6 25.00%

+1, +1 4 16.66%

-1, +1 4 16.66%

+1, -2 3 12.50%

+1, -1 2 8.33%

+4, -1 2 8.33%

-1, +4 1 4.16%

-2, -1 1 4.16%

-2, +4 1 4.16%

4-tuples

Motive Incidences Percentage of total incidences

-1, +1, +1 3 13.04%

-1, -1, -1 3 13.04%

+1, +1, -1 2 8.70%

+1, -1, -1 2 8.70%

-1, -1, +1 2 8.70%

+1, +1, -2 2 8.70%

-1, -1, +4 1 4.35%

-1, +4, -1 1 4.35%

+4, -1, +1 1 4.35%

+1, -2, -1 1 4.35%

-2, -1, +1 1 4.35%

+1, -2, +4 1 4.35%

-2, +4, -1 1 4.35%

+4, -1, -1 1 4.35%

-1, +1, -2 1 4.35%
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These figures reflect what an experienced listener might intuitively elicit from the melody in 

figure 8. The highest incidence figures are either scalic or stepwise enclosures. Towards the 

bottom of the list (less frequency) are unique figures which mostly occur in non-intuitive 

division points, such as the 3-tuple (-1, +4) which begins in the middle of the second beat in 

bar 1. If a motive occurs with sufficient frequency to appear towards the top of the table, it 

may be relevant despite not appearing at intuitive metrical division points. For instance, in the 

above example,  every ascending fifth  is  followed by a  descending second (+4,  -1).  This 

pattern may be viewed as a compositional idiom, despite the fact that this motion occurs over 

bar-lines and is less obvious than other motives in the passage.

The incidences of unique motives can also be analysed by testing how appropriately they fit 

various statistical distributions. One such distribution that has found use in musical aesthetics 

studies in the past  is  the Zipf  distribution (Manaris,  Vaughan, Wagner,  Romero, & Davis, 

2003),  which is a type of power law. Zipf's law states that for a set of objects which are 

ranked by frequency, the occurrence of the object rank i will occur 1/i times the frequency of 

the most frequent object. This sort of distribution occurs often in physical and social sciences, 

describing features such as word usage in written texts, or populations in cities. Applied to 

this study, a Zipfian distribution could mean that in a list of motives, if the most frequent 

motive appeared 300 times, the second most frequent would appear 150 times, the third most 

frequent would appear 100 times, and so on.6 Whether or not a distribution such as this says 

anything significant about musical aesthetics is a matter of personal opinion. Regardless, if 

motive  occurrence  in  a  given  genre  of  music  follows  such  a  distribution,  it  provides  an 

interesting light on unconscious pattern formation in the human compositional process.7

2.3.2 - Interval Transition Matrices

While this  thesis  primarily examines  interesting features  in  the use of  short  motives,  the 

program being used can also analyse intervallic transitions. By analysing all of the 3-tuples in 

a corpus, a table can be made which shows the probability of any transition from one interval 

to another. This is easily explained through demonstration — the interval transition matrix of 

6 Many of the motive-incidence tables shown here feature equal positions; for instance, there are two motives 

ranked equal first and four motives ranked equal third in the table of 4-tuples in figure 6. Equal positions 

such as these invalidate a Zipf distribution, but in larger corpus sizes, equal positions occur much lower in the 

frequency tables and are less relevant.

7 There are hundreds of frequency distributions against which corpus data could be analysed. Zipf's law is 

isolated here as an example for  two main reasons: it  finds use in other  human artistic  corpora (such as 

literature and MIDI data),  and it  has been applied to musical analysis  in the past (although not in same 

manner as in this thesis).
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the passage in figure 8 is shown below:

From \ To -2 -1 1 4

-2 1(50.00%) 1(50.00%)

-1 6(54.55%) 4(36.36%) 1(9.01%)

1 3(33.33%) 2(22.22%) 4(44.44%)

4 2(100.00%)

  

This table shows the incidences and probabilities for any interval in the left-most column to 

be followed by the interval in the top-most row. For instance, there are only three descending 

thirds (-2) that occur in figure 8. One of these is not followed by anything because it is the 

final  interval,  so it  is not entered into this table.  Of the two that are followed by another 

interval, one descends by a second (-1) and one ascends by a fifth (+4). There is therefore a 

fifty-percent chance of finding either of those transitions in the analysed material.

It is a valid question to ask whether this table could be used with a random number generator 

to create pitch patterns which are idiomatic of an analysed corpus of works. This possibility is 

explored briefly in section 3.2.2. However, it is unlikely that a table such as this could offer 

any significant stylistic composition tool — without factoring in context, it is unlikely that the 

results from such a process would produce typical shapes beyond a very short length. Meyer 

(1957) argued that for statistical data regarding musical events to have meaning and be able to 

make justifiable predictions, it needs to be employed with a sensitivity to context and musical 

structures. I  agree completely,  and the main proposed application of these tables is not to 

make  predictions  or  produce  compositions,  but  to  offer  another  sort  of  compositional 

‘fingerprint’ by which composers and works can be compared.8

2.3.3 - Measure of Disjunct Writing

By analysing the bank of 2-tuples from a work or corpus, it is possible to make a simple 

measure of the extent of disjunct writing employed. The approach that has been taken in this 

study to quantify the disjunctness of a melody is given by the following expression:

8 It  is  worth  mentioning  that  the  use  of  a  transition  matrix  in  analysing  music  is  not  at  all  new. 

Youngblood(1958) proposed  a  matrix  showing  probabilities  of  transitions,  but  used  scale  degrees  (for 

instance,  probability  of  a  supertonic  moving  to  submediant)  rather  than  isolated  intervallic  movement.

Almost every work testing the ‘implication-realization’ model uses interval transition tables of some kind.
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where S is a set containing all intervals in a corpus,  i are all the elements of  S which are 

greater than +1 or less than -1, and n is the total amount of elements in S. In other words, for 

each interval in the analysed corpus which has an absolute value greater than 1 (which means 

it appears on the staff as a third or wider), the portion of the absolute value greater than 1 is 

summed, and this total sum of these values is then divided by the total number of intervals in 

the corpus. In effect, this averages the disjunct value of every note. In this thesis, this value is 

called the ‘disjunct writing score’.

While  the  disjunct  writing  score  has  no  explicit  meaning  in  itself  (besides  that  outlined 

above), it is a means of comparison between composers. Since it is averaged over all notes in 

a corpus, the size of the set S does not skew the results as it scales. Both larger intervals and 

more frequent disjunct motion increase this score. The minimum disjunct writing score is 0, 

for a corpus which features no movement greater than a step. The maximum disjunct writing 

score is equal to the widest interval possible in the medium being analysed, minus 1. These 

values mean very little in isolation, and their application is best shown with a comparison. 

The disjunct writing score of the passage in figure 8 is 0.36. This excerpt is almost entirely 

scalic, and hence gives a very low score. Compare this to the disjunct writing score of the first 

four bars of the Mozart  Serenade  in figure 1 (which contains only one conjunct interval), 

which is  1.41. This score is  an efficient  one-figure summary of how disjunct the melodic 

writing is within a corpus.

It is worth noting that a graph of intervals in a corpus and their frequency reveals a more 

thorough description of the nature of disjunct writing employed. This will be discussed with 

the results in section 3.2.3.

2.3.4 - Motivic Concentration

In this thesis, ‘motivic concentration’ is a term used to describe the extent to which motives 

are re-used. A work which has a small number of motives which are re-used often has a high 

level of motivic concentration. Conversely, a work which uses many different motives, and 

has  fewer  which  are  re-used  heavily,  has  a  low level  of  motivic  concentration.9 This  is 

something which is less easy to quantify objectively.  However,  there are still  some easily 

quantifiable ratios within the results tables which, while not foolproof, will usually generate a 

9 The other two theoretical constructs (many motives used heavily, few motives used sparsely) are feasible, but 

practically  non-existant  within  musical  corpora.  All  real  examples  fall  somewhere  between  these  four 

cardinal extremes.
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useful metric for comparison. Consider the table of 3-tuples derived from figure 8, and the 

table of 3-tuples from figure 9, a contrasting passage:

              Fig. 9

3-tuples from Figure 9

Motive: Incidences: Percentage of total incidences:

+1, +1 9 47.37%

+1, -2 5 26.31%

-2, +1 4 21.05%

-2, +3 1 5.26%

While figure 9 has slightly fewer notes, it has dramatically fewer unique motives than figure 

8. The reason why is obvious — figure 9 is simply a repeating four-note figure, while figure 8 

features more variation. The table of 3-tuples for figure 9 shows that almost 95% of the total 

material in the excerpt can be created using only three motives. While Figure 8 also has a 

relatively high level of motivic concentration, eight motives are required to create 95% of the 

material. We can also see that in figure 8, there are nine unique motives, with twenty-four 

total  3-tuples  in  the  excerpt.  This  is  a  higher  ratio  than  figure  9,  which  has  four  unique 

motives, with nineteen total 3-tuples in the excerpt.  These general observations suggest that 

by considering  a  corpus's  total  unique  n-tuples,  total  n-tuples,  and  proportion of  motives 

needed to account for a particular percentage of the corpus, it is possible to create some sort 

of numerical quantifier of motivic concentration. While discussion of results with the use of 

full tables and graphs is  obviously going to be more enlightening as to the full nature of 

motivic concentration in a corpus, the following two metrics for comparison are proposed 

(these are all in reference to the 3-tuple tables only):

� Unique Motives over Length (UML score): This score is simply the total number of 

unique motives  divided by the total  amount  of  motives  in  a  corpus.  In  the above 

examples, the UML score of figure 8 is 0.374, and the UML score of figure 9 is 0.21. 

A lower score implies  higher  motivic concentration, since it  is  lowered by having 

fewer total unique motives, and raised by having more unique motives. The highest 

theoretical  score is 1, for a corpus which contains no repeated motives.  The UML 

score approaches a limit of 0 as the total number of motives increases (assuming a 
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static number of unique motives).

� Motives to Cover n% (MCn): This value is the minimum amount of unique motives 

required to account for n% of the material. The value of n is variable because corpora 

of different sizes may require different values of n to make meaningful comparisons. 

In the above example, figure 8 has a MC50 value of 3 (the first three motives in the 

table account for 58.33% of the material) while figure 9 has an MC50 value of 2 (the 

first  two  motives  in  the  table  account  for  73.68%  of  the  material).  It  is  also 

illuminating to see that there is a bigger contrast between excerpts when the value of n 

is higher: MC90 in figure 8 is 7, while in figure 9 it is 3. This generally suggests that 

for any value of  n used to compare two corpora, the corpus with the smaller MCn 

score is probably more motivically concentrated. When comparing corpora larger than 

single excerpts, smaller values of n are required to see meaningful results. Because the 

amount of unique motives used will naturally increase as the amount of entries in the 

corpus  grows,  comparisons  between  corpora  of  very  uneven  sizes  will  produce 

confusing  results  —  smaller  corpora  will  tend  to  appear  to  be  more  motivically 

concentrated.  Despite  this,  the  MCn value  is  a  meaningful  form  of  comparison 

between corpora which are of similar size.

There are other factors which can be assessed subjectively in discussing motivic concentration 

— graphs showing motives against  incidences produce curves which demonstrate motivic 

concentration much more thoroughly than a single number. Such graphs are shown in section 

3.2.4. It is also important to remember that a different set of results will be produced for each 

n-tuple table — the values above only examine three-note figures. Section 3.2.4 discusses 

results and values for 3-tuples, 4-tuples, 5-tuples and 6-tuples. 2-tuples are not addressed in 

terms of motivic concentration, because they represent only single intervals, and do not merit 

the same sort of analysis as longer musical elements. The re-use in a work or corpus of a 

small  number  of  intervals,  or  a  wide  variety  of  intervals,  is  instantly  recognisable  upon 

examination of the 2-tuple tables. The applicability of different length  n-tuples depends on 

attributes of the corpora being analysed. One example which shows how this is the case is the 

consideration  of  metre:  due  to  the  frequency  of  typical  shapes  and  rhythmic  groupings, 

compound time signatures will often feature more repeated three and six note patterns than 

simple time signatures. 

Motivic concentration is much more difficult to identify and label with a single figure than the 
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other  attributes  which  have  been  outlined.  Despite  this,  by  comparing  motive  frequency 

graphs,  along with UML and MCn values,  a  meaningful  comparison between composers'

stylistic reuse of pitch material is made apparent.
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3 - Application to Classical Repertoire

Classical-era melodies feature frequent reuse and development of small pitch-based motives, 

and  thus  form  an  ideal  experimental  environment  for  this  research.  The  experimental 

application of the systems outlined in previous sections of this thesis is here applied to twelve 

piano sonata expositions.  From this application, compositional  features are compared, and 

conclusions  are  drawn  regarding  the  differences  in  style  between  individual  works  and 

composers.

3.1 - Choice of Repertoire

This research looks at the expositions from the first movements of the following piano 

sonatas:

By Wolfgang Amadeus Mozart:

� Sonata No. 1 in C Major (1774)

� Sonata No. 6 in D Major (1775)

� Sonata No. 7 in C Major (1777)

� Sonata No. 13 in B  Major (1783)

By Muzio Clementi:

� Sonata Op. 1 No. 2 in G Major (1771)

� Sonata Op. 1 No. 4 in F Major (1771)

� Sonata Op. 2 No. 4 in A Major (1781)

� Sonata Op. 8 No. 3 in B  Major (1782)

By Joseph Haydn:

� Sonata No. 37 in E Major (1773)

� Sonata No. 46 in E Major (1776)

� Sonata No. 50 in D Major (1780)

� Sonata No. 51 in E  Major (1780)

These works have been chosen because they fit a common set of criteria. They are all in major 
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keys, all in common time, and feature roughly similar tempo markings (moderato and faster). 

Historically, they all fit within a compositional period of about 20 years (around the 1770s to 

1780s). Also, they all feature melodic lines which are mostly confined to the highest sounding 

voice, and their texture is almost entirely homophonic. By controlling these variables, and 

selecting  works  of  similar  characteristics,  it  is  intended  that  any comparisons  drawn  are 

between the composers' idiolects, and not due to other factors such as differing compositional 

forms or differing historical trends.

It  is  acknowledged  that  each  of  these  composers'  compositional  styles  changed  over  the 

course of  their  life.  The  data  from this  analysis  allows only limited comparison between 

composers  —  the  corpora  represent  only  a  small  selection  of  writing  from  immense 

collections  of  works.  As  such,  the  conclusions  formed,  while  potentially  allowing  more 

general  extrapolation, can only directly apply to a very small  portion of each composer's 

output.  The results  discussed in section 3.2 therefore do not aim to compare the melodic 

idiolects of these three composers in a general sense, but draw conclusions about the nature of 

their piano melody writing during the late eighteenth century.

3.1.1 - Melody or Figuration?

This study uses works which predominantly feature melodic lines occurring in the highest 

sounding voice in their texture. Because of this, with very few exceptions, the top sounding 

voice at any point in the music can be taken as the principal melodic line.10 This approach 

does run into some complications due to inner-voice melodic figures and typical classical-era 

embellishing figuration. While every case needs to be dealt  with individually,  the general 

approach followed in this thesis is discussed with the following examples: figure 10 is the 

third bar from Haydn's Sonata No. 40 in E  (which isn't used in this experiment, and is just 

shown here for demonstration purposes), and figure 11 is a passage from Clementi's Sonata 

No. 3 from the Op. 8 set.

10 In most cases. Obviously, if a bass or accompaniment figure continues through a short rest in the melody, the 

melodic line is still the top voice.
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                                  fig. 10

        fig. 11

In  most cases in the piano repertoire of these three composers,  when there are two upper 

voices which are moving melodically,  it  is clear that the bottom voice is functioning in a 

purely  harmonic  capacity.  The  harmonisation  of  melodic  figures  in  thirds  or  sixths  is 

extremely common.  In  these cases,  the perceptual  significance of  the top voice is  reason 

enough  to  exclude  the  bottom voice  from a  melodic  reduction.11 Figure  10  represents  a 

potential complication for the reduction process previously outlined — in a work which is 

predominantly homophonic, this bar clearly implies a duplicity of melodic voices. The dotted 

rhythm arpeggio figure is shared between the two voices in a similar style to that of a two part 

invention. It is not appropriate to consider that the bar contains a single melody which jumps 

between registers on each beat because the top voice sustains during beats one and three and 

the bottom voice is  still  active in beats two and four  — both voices  are continuous.  For 

passages of limited polyphony such as this which occur in the works being analysed, the top 

voice alone is reduced, and the bottom voice is ignored. While this is partially justified by the 

perceptual significance of top voices in music, this is still an unfortunate concession which 

must be made in the process of monodic reduction. However,  it  should be noted that  the 

works chosen for analysis in this thesis feature very few significant polyphonic passages.

11 It is treated as axiomatic that the outer (and most active) voices in a texture are the most easily perceived. 

This is supported by the notion of perceptual streaming in auditory psychological research — test subjects 

tend  to  organise  pitch  fields  of  general  continuous  register  into  disparate  lines,  as  discussed  by 

Deutsch (1991). It stands to reason that an upper melodic line, which has the largest frequency spectrum 

range to itself would suffer the least from auditory ‘masking’ and therefore be the most easily perceptible. 

However, it should be noted that algorithmic research which models melody extraction on human perception 

most strongly correlates pitch salience with melody (Paiva, 2005). This suggests that any line could be made 

perceptually melodic by the decisions of a skilled performer.
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Another  problematic  issue  which  forces  us  to  reconsider  our  definition  of  melody  is 

demonstrated in figure 11. Here, the top voice is embellishing the harmonic movement in the 

left hand with a quaver pattern which suggests an inverted pedal point. This line does not 

possess many of the characteristics which musicologists would intuitively associate with a 

melody —  its  rhythm  is  constant,  and  if  the  voicing  between  the  treble  and  bass  were 

reversed, it would clearly form an accompanying line. However, there is still obviously some 

significance to this being the top voice in the texture, and the question of where the melody 

ends and figuration begins is extremely subjective. In these analyses, figuration such as this is 

treated as melodic, and taken in the melodic reduction with all the other top voice material. 

This significantly reduces the subjectivity involved in producing a monodic reduction, but 

requires a broadening of what is encapsulated under the term ‘melody’. If figuration such as 

the above is included, then it must be stated that this thesis is not only analysing melodic 

idioms in piano writing, but idioms of all top voice figuration in the piano corpora being 

analysed, melodic or otherwise.

A full listing of the passages in this study which were problematic to reduce to monophony 

are listed in the appendix, along with details of how they are dealt with in the reductions.

3.1.2 - On Ornamentation

Ornamentation,  both  explicitly  written  or  implied  with  symbols,  is  an  important  part  of 

melody writing in many musical genres. Since this study intends to look at melodic idioms, 

and  ornamentation is  a  part  of  melodic writing,  ornamentation should be  included in  the 

reduction.  An  obvious  problem  emerges  with  the  open-ended  nature  of  ornament 

interpretation.  As any specialist  in early music can attest,  how an ornament  is  performed 

depends on compositional context, historical and geographical context, and a performer's own 

tastes and musical intuitions. In converting an ornament on the score to a series of pitches for 

the purposes of this analysis, a subjective decision is being made. This is acknowledged as a 

concession to subjective interpretation for the purpose of representing ornamental figuration 

in the analysis.

While all ornaments could be left out of the analysis, this would exclude many figures which 

may  have  motivic  significance.  If  turns,  mordents,  or  similar  figures  occur  frequently 

melodically, then some effort should be made to represent these figures in motivic frequency 
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tables. While the interpretation of turns and trills may imply numerous possible sequences of 

pitches, some ornaments, such as mordents, acciaccaturas, and appoggiaturas tend to have a 

relatively  standardised  pitch  interpretation,  even  if  they  are  rhythmically  open  to 

interpretation (Blood, 2011).  No attempt is  made to generalise the entry of all  ornamental 

material for this system of reduction, but for the repertoire examples used in this experiment, 

the  following  conventions  are  used  to  maintain  consistency  (note  that  the  rhythmic 

interpretations are shown purely for example and are irrelevant to the reduction):

Ornament 

symbol

Data format 

interpretation

Mordents  are  uniformly  interpreted  as  the  initial 

note, the note in the present key immediately above

the initial note, and a return to the initial note.

Inverted mordents are uniformly interpreted as the 

initial note, the note in the present key immediately 

below the  initial  note,  and  a  return  to  the  initial

note.

Turns, whether they are placed on a note or between

two notes,  are  interpreted  as  a  diatonic enclosure 

pattern consisting of five notes.

This  figure,  sometimes  called  a  half-mordent, 

occurs in the works of Haydn and is treated as a 

openly interpretable curiosity. In parts of the Vienna 

Urtext edition of his piano works where it has been

editorially  changed  to  a  mordent  or  other 

conventional  sign,  the  editorial  mark  is  used.  In 

situations where it is left as is, it is interpreted here 

as an inverted turn (primarily to differentiate it from 

the  traditional  turn  figure).  Note  that  this 

interpretation  is  still  relatively  arbitrary,  but  of 

relatively  minor  significance  due  to  the  low 

occurrence of this figure.

All trills which are indicated by symbols are ignored. This is because they are mostly not used 

motivically, instead finding use as typical cadential embellishment or highlighting structural 

divisions. Attempting to standardise any interpretation of trills is a far more subjective process 

than with other  ornaments,  and would introduce many extraneous entries  into the motive 
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tables which would potentially skew the results. Despite this, any figuration which could be 

considered embellishing but is written out in pitches is included in the analysis like any other 

material. While also termed as ‘ornamentation’, appoggiaturas and acciaccaturas present no 

problems in melodic reduction as they are closed in terms of pitch. 

3.2 - Presentation and Analysis of Results

3.2.1 - Most Common Motivic Material

The tables of incidences of motives for each set of four works are far too long to list in their 

entirety here — the 6-tuple incidence table for the Mozart corpus, for instance, is 1008 lines 

long.  For  the  sake  of  concision,  the  incidence-tables  here  feature  only the  thirty  highest 

ranked  n-tuples.12 2-tuple tables will be discussed in section 3.2.3, because they summarise 

musical motion in general, rather than specific motives.

The thirty highest ranked n-tuples (with incidences and percentage of total material accounted 

for by each motive) from the 3-tuple, 4-tuple, 5-tuple, and 6-tuple banks are shown on the 

following pages:

12 All n-tuple lists for all corpora and all individual expositions are included on the accompanying compact 

disc. It should also be noted that these tables have been truncated to the first thirty entries, ignoring equal 

rankings. Equally ranked motives are placed in the lists in the order that they occur in the analysed corpora, 

so the inclusion and exclusion of some equally ranked motives is arbitrary. 
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3-tuple Incidences

Clementi Haydn Mozart

Motive Incid. Perc. Motive Incid. Perc. Motive Incid. Perc.

-1, -1 178 13.44 -1, -1 263 18.37 -1, -1 353 19.07

1, 1 171 12.92 1, 1 133 9.29 1, 1 161 8.7

-1, 1 134 10.12 -1, 1 114 7.96 2, -1 108 5.83

1, -1 112 8.46 1, -1 91 6.35 -1, 1 99 5.35

0, -1 27 2.04 0, -1 46 3.21 1, -1 89 4.81

1, -3 25 1.89 -1, 0 46 3.21 -1, 2 75 4.05

-2, 1 24 1.81 2, -1 31 2.16 1, -2 49 2.65

1, -2 21 1.59 0, 0 25 1.75 -2, 1 46 2.49

2, -1 20 1.51 -1, 2 24 1.68 -1, 0 44 2.38

-1, 0 20 1.51 -2, -2 23 1.61 -2, -2 44 2.38

0, 1 18 1.36 -2, -1 23 1.61 0, -1 42 2.27

3, -3 16 1.21 1, -2 22 1.54 1, 2 31 1.67

2, -2 16 1.21 2, 2 20 1.4 -1, -2 26 1.4

1, 2 15 1.13 -2, 1 18 1.26 0, 0 22 1.19

-2, -2 15 1.13 0, 1 17 1.19 2, 2 20 1.08

-1, 2 14 1.06 3, -3 14 0.98 -2, -1 18 0.97

-7, 7 14 1.06 1, 2 13 0.91 2, 3 17 0.92

-3, 1 13 0.98 2, 3 13 0.91 5, -1 17 0.92

-3, -1 12 0.91 -1, -2 12 0.84 1, 0 16 0.86

-3, -2 12 0.91 3, 2 12 0.84 0, 1 16 0.86

0, 0 12 0.91 2, -2 12 0.84 -1, 5 15 0.81

-3, 3 11 0.83 3, -1 11 0.77 -3, -2 15 0.81

5, -5 11 0.83 -3, 2 11 0.77 2, 1 13 0.7

-3, 0 10 0.76 -1, 3 11 0.77 3, 2 13 0.7

-2, 0 10 0.76 -3, -1 10 0.7 -2, 2 13 0.7

-2, -3 10 0.76 -3, -2 10 0.7 -2, -3 13 0.7

-2, -1 9 0.68 -2, 3 9 0.63 2, -2 12 0.65

1, 3 9 0.68 4, -4 9 0.63 0, -2 12 0.65

6, -6 9 0.68 5, -2 9 0.63 1, -3 11 0.59

-1, 7 8 0.6 1, 0 8 0.56 -5, 5 11 0.59
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4-tuple Incidences

Clementi Haydn Mozart

Motive Incid. Perc. Motive Incid. Perc. Motive Incid. Perc.

1, 1, 1 100 7.58 -1, -1, -1 162 11.34 -1, -1, -1 228 12.34

-1, -1, -1 82 6.21 -1, -1, 1 57 3.99 1, 1, 1 81 4.39

-1, -1, 1 67 5.08 1, 1, 1 55 3.85 -1, 2, -1 61 3.3

-1, 1, -1 64 4.85 -1, 1, 1 51 3.57 -1, -1, 1 49 2.65

1, -1, -1 58 4.39 1, 1, -1 48 3.36 1, -1, -1 46 2.49

1, 1, -1 35 2.65 1, -1, -1 43 3.01 2, -1, 2 43 2.33

-1, 1, 1 29 2.2 -1, 1, -1 31 2.17 -1, 1, 1 38 2.06

1, -1, 1 29 2.2 -1, 0, -1 27 1.89 2, -1, -1 37 2

1, 1, -3 11 0.83 1, -1, 1 22 1.54 1, 1, -1 36 1.95

0, -1, 1 10 0.76 0, -1, 0 19 1.33 -1, -1, 0 31 1.68

-1, -1, 0 10 0.76 -1, 2, -1 17 1.19 -1, 1, -1 26 1.41

1, -2, 1 10 0.76 0, -1, -1 14 0.98 1, -1, 1 19 1.03

-3, 1, 1 10 0.76 -2, -1, 1 14 0.98 1, 2, -1 17 0.92

-1, 1, -3 9 0.68 2, -1, -1 13 0.91 -1, 0, -1 17 0.92

-1, 2, -1 9 0.68 0, 0, 0 13 0.91 0, -1, -1 17 0.92

2, -1, -1 9 0.68 1, -2, -1 10 0.7 -2, -2, 1 17 0.92

0, -1, -1 9 0.68 1, 1, -2 10 0.7 1, 1, -2 16 0.87

-1, 1, 2 9 0.68 1, -1, 0 9 0.63 -2, 1, 1 14 0.76

0, 1, 1 9 0.68 3, -1, -1 9 0.63 -1, 1, -2 14 0.76

-2, 1, 1 8 0.61 -1, 1, 3 8 0.56 1, -2, -2 14 0.76

-1, 0, 1 8 0.61 1, -2, 1 8 0.56 -1, 5, -1 12 0.65

2, 0, -1 7 0.53 2, -1, 2 8 0.56 1, -2, 1 12 0.65

1, 1, -2 7 0.53 -1, 1, 2 7 0.49 2, -1, -2 12 0.65

1, -3, 1 7 0.53 -2, 1, 1 7 0.49 -1, 1, 2 11 0.6

-2, 1, -2 7 0.53 -1, -1, 2 7 0.49 -1, -1, 2 11 0.6

1, -3, 0 6 0.45 -3, -2, -2 7 0.49 -1, -1, 5 11 0.6

-2, 0, -1 6 0.45 -7, 0, 0 7 0.49 -3, -2, -2 11 0.6

-1, -1, 2 6 0.45 -1, -1, 4 6 0.42 -1, -2, 1 10 0.54

-1, 0, -1 6 0.45 -1, -1, 0 6 0.42 2, 3, 2 10 0.54

1, -1, 7 6 0.45 3, 2, 2 6 0.42 2, 2, 3 10 0.54
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5-tuple Incidences

Clementi Haydn Mozart

Motive Incid. Perc. Motive Incid. Perc. Motive Incid. Perc.

1, 1, 1, 1 57 4.33 -1, -1, -1, -1 101 7.09 -1, -1, -1, -1 134 7.27

-1, -1, -1, -1 52 3.95 -1, -1, 1, 1 32 2.25 1, 1, 1, 1 41 2.22

-1, -1, 1, -1 41 3.12 -1, -1, -1, 1 31 2.18 2, -1, 2, -1 36 1.95

1, -1, -1, 1 39 2.96 1, 1, 1, 1 31 2.18 -1, 2, -1, 2 30 1.63

-1, 1, -1, -1 32 2.43 -1, 1, 1, -1 29 2.04 2, -1, -1, -1 29 1.57

1, 1, -1, -1 21 1.6 1, -1, -1, -1 29 2.04 1, -1, -1, -1 29 1.57

-1, 1, -1, 1 20 1.52 1, 1, -1, -1 24 1.69 -1, -1, -1, 1 28 1.52

-1, -1, 1, 1 15 1.14 -1, 1, -1, 1 17 1.19 -1, -1, -1, 0 26 1.41

-1, -1, -1, 1 15 1.14 -1, 0, -1, 0 13 0.91 1, 1, -1, -1 24 1.3

1, 1, 1, -1 14 1.06 -1, -1, 1, -1 13 0.91 -1, -1, 1, 1 19 1.03

-1, 1, 1, 1 13 0.99 -1, 1, 1, 1 12 0.84 -1, 1, 1, 1 19 1.03

-1, 1, 1, -1 13 0.99 1, -1, -1, 1 11 0.77 -1, 2, -1, -1 18 0.98

1, -1, -1, -1 12 0.91 0, -1, 0, -1 11 0.77 -1, -1, 1, -1 16 0.87

1, 1, 1, -3 11 0.84 1, 1, 1, -1 11 0.77 1, 1, 1, -1 15 0.81

1, -1, 1, 1 9 0.68 -1, 1, -1, -1 10 0.7 0, -1, -1, -1 14 0.76

0, -1, 1, -1 8 0.61 1, 1, -1, 0 9 0.63 -1, 1, 1, -1 14 0.76

-3, 1, 1, 1 8 0.61 -1, 0, -1, -1 8 0.56 -1, -1, 0, -1 13 0.71

1, 1, -1, 1 7 0.53 1, -1, 1, 1 8 0.56 1, -1, -1, 1 12 0.65

1, -1, 1, -1 7 0.53 -1, 2, -1, -1 8 0.56 -1, 1, -1, -1 11 0.6

1, 1, -3, 1 7 0.53 -1, 1, 1, -2 8 0.56 1, 2, -1, -1 10 0.54

1, -3, 1, 1 7 0.53 2, -1, 2, -1 8 0.56 -1, -1, -1, 5 10 0.54

-1, -1, 1, -3 6 0.46 0, 0, 0, 0 8 0.56 1, -2, -2, 1 10 0.54

-1, 1, -3, 0 6 0.46 0, -1, -1, -1 7 0.49 -1, -1, 1, 2 9 0.49

-1, 2, -1, -1 6 0.46 1, -1, 1, -1 7 0.49 5, -1, -1, -1 9 0.49

-2, 1, -2, 1 6 0.46 1, -2, -1, 1 7 0.49 -2, 1, 1, 1 9 0.49

1, -1, 0, -1 6 0.46 0, -1, -1, 1 6 0.42 -1, -1, -1, 2 8 0.43

-1, 0, 1, 1 6 0.46 1, -1, 0, -1 6 0.42 -1, -1, 2, -1 8 0.43

-1, -1, 2, -1 5 0.38 -1, -1, -1, 4 6 0.42 -1, -1, 5, -1 8 0.43

0, -1, -1, 1 5 0.38 3, -1, -1, -1 6 0.42 -1, 5, -1, -1 8 0.43

-1, -1, -1, 0 5 0.38 -2, -1, 1, 1 6 0.42 1, 1, -2, -2 8 0.43
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6-tuple Incidences

Clementi Haydn Mozart

Motive Incid. Perc. Motive Incid. Perc. Motive Incid. Perc.

1, 1, 1, 1, 1 39 2.97 -1, -1, -1, -1, -1 73 5.14 -1, -1, -1, -1, -1 76 4.13

-1, -1, -1, -1, -1 35 2.67 1, 1, 1, 1, 1 21 1.48 -1, 2, -1, 2, -1 26 1.41

1, -1, -1, 1, -1 32 2.44 -1, -1, 1, 1, -1 20 1.41 1, 1, 1, 1, 1 23 1.25

-1, -1, 1, -1, -1 25 1.91 1, 1, -1, -1, -1 14 0.99 -1, -1, -1, -1, 1 21 1.14

-1, 1, -1, -1, 1 23 1.75 -1, -1, -1, 1, 1 14 0.99 2, -1, 2, -1, 2 19 1.03

1, 1, -1, -1, 1 13 0.99 -1, -1, -1, -1, 1 13 0.92 2, -1, -1, -1, -1 19 1.03

-1, -1, 1, -1, 1 12 0.91 1, -1, -1, -1, -1 13 0.92 1, -1, -1, -1, -1 19 1.03

-1, 1, 1, -1, -1 10 0.76 -1, 1, 1, -1, -1 12 0.85 1, 1, -1, -1, -1 18 0.98

1, 1, 1, 1, -1 9 0.69 -1, -1, 1, 1, 1 10 0.7 -1, 2, -1, -1, -1 17 0.92

-1, -1, 1, 1, 1 8 0.61 -1, 1, -1, -1, -1 10 0.7 -1, -1, 1, 1, 1 13 0.71

1, -1, -1, -1, -1 7 0.53 1, -1, -1, 1, 1 9 0.63 -1, -1, -1, 0, -1 12 0.65

-1, -1, -1, -1, 1 7 0.53 0, -1, 0, -1, 0 9 0.63 -1, 1, 1, -1, -1 12 0.65

-1, 1, -1, 1, 1 7 0.53 1, 1, 1, -1, -1 9 0.63 -1, -1, -1, -1, 0 12 0.65

1, 1, 1, -3, 1 7 0.53 -1, -1, -1, 1, -1 9 0.63 -1, -1, -1, 1, 1 12 0.65

1, 1, -3, 1, 1 7 0.53 -1, 1, 1, -1, 0 8 0.56 -1, -1, -1, 1, -1 11 0.6

-1, -1, 1, -3, 0 6 0.46 -1, 0, -1, 0, -1 8 0.56 2, -1, 2, -1, -1 10 0.54

1, 1, 1, -1, 1 6 0.46 -1, -1, 1, -1, -1 8 0.56 5, -1, -1, -1, -1 9 0.49

-1, -1, -1, 1, 1 6 0.46 1, -1, -1, -1, 1 7 0.49 1, 1, 1, -1, -1 9 0.49

-1, -1, -1, 1, -1 6 0.46 1, 1, -1, -1, 1 7 0.49 -1, -1, -1, -1, 5 8 0.44

1, 1, 1, -1, -1 6 0.46 -1, 1, 1, 1, 1 7 0.49 -1, 5, -1, -1, -1 8 0.44

1, -1, 0, 1, 1 6 0.46 0, 0, 0, 0, 0 7 0.49 -1, 1, 1, 1, 1 8 0.44

1, -3, 1, 1, 1 6 0.46 1, 1, -1, 0, -1 6 0.42 1, 1, 1, 1, -1 8 0.44

-3, 1, 1, 1, -3 6 0.46 1, -1, 0, -1, -1 6 0.42 0, -1, -1, -1, 0 7 0.38

-1, -1, 1, 1, -1 5 0.38 1, -1, 1, 1, -1 6 0.42 -1, -1, -1, 5, -1 7 0.38

-1, 1, -1, -1, -1 5 0.38 -1, 1, -1, 1, -1 6 0.42 1, 1, -2, -2, 1 7 0.38

1, 1, -1, -1, -1 5 0.38 1, -1, 1, -1, 1 6 0.42 -1, -1, -1, 2, -1 6 0.33

-7, 1, 1, 1, 1 5 0.38 -1, 2, -1, 2, -1 6 0.42 1, 2, -1, -1, -1 6 0.33

1, -2, 1, -2, 1 5 0.38 -1, 1, 1, 1, -1 5 0.35 6, -6, 6, -6, 6 6 0.33

0, -1, 1, -1, 1 5 0.38 -2, -1, 1, 1, -2 5 0.35 -5, 5, -5, 5, -5 6 0.33

-1, 1, -1, 1, 2 5 0.38 1, 1, 1, 1, -1 5 0.35 5, -5, 5, -5, 5 6 0.33

These tables show the extent  to which the corpora under analysis reuse short  pitch-based 

motivic  fragments.  Naturally,  since  these  works  are  all  chosen  to  feature  similar 

characteristics, the motivic data extracted from these corpora shows many similarities. Many 
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of the highest scoring motives are shared between the corpora. These similarities are largely 

accounted for by idioms of eighteenth-century music theory — Robert Gjerdingen discusses 

at length in Music in the Galant Style how classical-era composers were educated in the use of 

a collection of typical recurring melodic figures (Gjerdingen, 2007). As a theorist writing in 

the 1730s, Johann Mattheson describes melodic formulation as the reuse and manipulation of 

short, typical motives (Lester, 1992, pp. 158-174). This recurring figuration is shown in many 

of the highest ranked motives in the tables. Each table shows melodic figures typical of the 

length being analysed; for instance, all 3-tuple tables feature mordent (1, -1) and inverted 

mordent (-1, 1)  figures within the first five entries, while 6-tuple tables show mostly varied 

scalic passages in their thirty highest entries. 4-tuple tables show typical four-note ornaments 

or figuration, such as turns (-1,  1, 1) or incomplete neighbour note enclosures (-1,  2, -1). 

Other  commonly  appearing  melodic  figures  which  are  represented  with  relatively  high 

rankings in the tables include scales in thirds (-1, 2, -1, 2), appoggiatura sequences (-1, 0, -1 

or similar) and arpeggiation figures (2, 2 or -2, -2 or 2, 3 or similar).

A particularly striking feature of all the material in the tables is the predominance of scalic 

writing, especially descending motion. In both the Mozart and Haydn corpora, descending 

scales  are  the highest  ranked  motives  by far,  and in  the Clementi  corpus,  ascending and 

descending  scales  appear  at  the  top  of  the  lists  nearly  equally.  While  the  corpora  being 

examined here are too small to make generalisations about larger musical genres, this analysis 

confirms what is found in the previous study by Vos — that Classical music has the broad 

tendency to feature contours which ascend by leap and descend by step (1989). Comparison 

with other fields drawing this conclusion occurs in section 3.3.1. 

While there are many obvious similarities between these corpora, these tables also allow the 

examination of what is different. In a now famous review of Beethoven's Fifth Symphony, 

composer and critic E. T. A. Hoffman described the output of Haydn as being ‘dominated by 

childlike  optimism’,  in  contrast  to  Mozart's,  which  ‘leads  us  deep  into  the  realm  of 

spirits’ (Hoffmann,  1989).  It  is  a  valid  question  to  ask  whether  such contrasting emotive 

perceptual responses are at all justified by varied patterns of motivic use. This thesis makes no 

attempt to engage this question — instead, curious dissimilarities between corpora will be 

discussed, and the implications of these results for the fields of perception or psychology are 

left to future scholars.
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The most striking contrast between the three corpora has already been stated — where the 

Mozart and Haydn works have descending scalic movement as their highest ranked motive in 

every  bank,  the  Clementi  corpus  has  ascending  and  descending  scales  ranked  relatively 

equally. This seems to  reflect a difference in the ‘ascent by leap, descent by step’ relation 

previously mentioned. Out of the three corpora, the Clementi expositions appear to feature the 

most occurrences of embellishing figuration in scalic form (as opposed to arpeggio figures). 

While many of the motives in these tables are shared, there is a significant curiosity in the 

works of Mozart which is highlighted by examining the banks of 4-tuples. There are eight 

possible combinations of ascending and descending seconds in a four-note group.13 All of 

these eight combinations appear within the first eight entries of the Clementi corpus, and as 

entries 1-7, and 9 of the Haydn corpus. Mozart's tables seem to reflect a greater use of figures 

containing leaps: these eight figures are contained within the first twelve 4-tuples, and the first 

non-scalic motive is ranked third, much higher than in the Clementi and Haydn corpora. This 

pattern also occurs in the other banks: in the 6-tuple banks, the first disjunct Clementi motive 

is ranked 14th, the first disjunct Haydn motive 27th, and the first disjunct Mozart motive 

much higher up in 2nd position. While they are not shown in the truncated tables presented 

here, the motives in the Mozart 6-tuple table in ranks 31 and onwards feature many more 

disjunct  intervals  than  entries  of  similar  rank  in  the  Clementi  or  Haydn  tables.  Fuller 

discussion of conjunct and disjunct motion is reserved for section 3.2.3, but it seems highly 

significant that Mozart's corpus demonstrates a predilection for disjunct motion in the material 

most frequently used.

In section 2.3.1, it was mentioned that motivic frequencies could be tested to fit statistical 

distributions.  While  none  of  the  motive  banks  shown  so  far  follow  precisely  Zipfian 

distributions, they definitely follow the general shape of a power law distribution. Consider 

figure 12, a graph which shows the distribution of rank against frequency in the Haydn 3-

tuple table:

13 As outlined in information theory — with two possible states (1, -1) and three intervals in a 4-tuple, the total 

combinations possible are 23. More generally, with n possible states and i intervals, there are ni combinations.
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Fig. 12

Due to the fact that all banks feature many motives with only one or two incidences, this 

distribution is made clearer on a graph where the  x-axis is displayed logarithmically, as in 

figure 13:

Fig. 13
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Section 3.2.4 looks at these incidence distributions in more detail. This graph is simply one 

typical example which demonstrates the general trend in these results — one or two motives 

in the highest  ranking positions which occur dramatically more than any other,  a  gradual 

decrease in frequency over roughly the next thirty-percent of the graph, followed by a long 

‘tail’ of  low incidence  motives  which  occur  very few times.  In  all  the  tables  of  motives 

analysed in these corpora, this shape is relatively constant.

In conducting these analyses, incidence tables were not only collected from the entire corpora, 

but also from the individual expositions which make up the corpora. Comparison of these 

tables to those of the entire corpora demonstrate which works are most typical and atypical of 

the attributes seen in the corpora. The inclusion of all of these tables would not offer enough 

information to justify their space, but one example is included here, with interesting features 

highlighted. The tables below show the top ten highest incidence 4-tuples in the individual 

works of each corpus.14 The percentages shown refer to percentage of material within each 

individual piece.

4-Tuple incidence table for works within the analysed corpus of Clementi

Op. 1 No. 2 in G Op. 1 No. 4 in F Op. 2 No. 4 in A Op. 8 No. 3 in B

Motive Inc. Perc. Motive Inc. Perc. Motive Inc. Perc. Motive Inc. Perc.

1, 1, 1 32 10.49 1, 1, 1 19 5.38 1, -1, -1 42 9.55 -1, -1, -1 23 10.36

-1, -1, 1 17 5.57 -1, -1, -1 14 3.97 -1, 1, -1 41 9.32 1, 1, 1 10 4.5

-1, -1, -1 15 4.92 -1, 1, -1 12 3.4 1, 1, 1 39 8.86 -1, -1, 1 8 3.6

-1, 1, -1 11 3.61 1, -2, 1 7 1.98 -1, -1, 1 38 8.64 7, -7, 7 5 2.25

-1, 1, 1 8 2.62 -2, 1, -2 7 1.98 -1, -1, -1 30 6.82 1, 1, -1 4 1.8

1, -1, -1 7 2.3 1, -1, 1 6 1.7 1, 1, -1 19 4.32 1, -1, -1 4 1.8

1, 1, -1 6 1.97 1, 1, -1 6 1.7 1, -1, 1 18 4.09 -1, 1, -3 4 1.8

0, -1, -1 5 1.64 0, 1, 1 5 1.42 -1, 1, 1 16 3.64 1, -3, 0 4 1.8

1, -1, 1 5 1.64 1, -1, -1 5 1.42 1, 1, -3 8 1.82 -3, 0, 0 4 1.8

-1, -1, 0 5 1.64 1, 1, -2 4 1.13 -3, 1, 1 7 1.59 0, 0, 1 4 1.8

14 Unlike the frequency tables for the entire sets of expositions, these lists are truncated to only ten entries. This 

is because the extended ‘tail’ section of the graph appears in higher rankings when the analysed corpora are 

smaller. 
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4-Tuple incidence table for works within the analysed corpus of Haydn

No. 37 in E No. 46 in E No. 50 in D No. 51 in B

Motive Inc. Perc. Motive Inc. Perc. Motive Inc. Perc. Motive Inc. Perc.

0, -1, 0 14 5 -1, -1, -1 90 29.03 -1, 1, 1 20 4.33 -1, -1, -1 48 12.77

-1, 0, -1 13 4.64 1, 1, -1 15 4.84 1, 1, -1 15 3.25 1, 1, 1 33 8.78

-1, -1, -1 12 4.29 -1, -1, 1 14 4.52 1, 1, 1 15 3.25 1, -1, -1 21 5.59

-1, -1, -1 9 3.21 -1, 1, 1 13 4.19 -1, -1, 1 14 3.03 -1, -1, 1 20 5.32

1, 1, -1 9 3.21 1, -1, -1 10 3.23 -2, -1, 1 13 2.81 -1, 1, -1 13 3.46

-1, 1, 1 6 2.14 1, 1, 1 7 2.26 -1, -1, -1 12 2.6 -1, 1, 1 12 3.19

0, -1, -1 5 1.79 3, -1, -1 6 1.94 1, -1, 1 11 2.38 0, 0, 0 11 2.93

1, -1, -1 4 1.43 -1, 1, -1 5 1.61 -1, 0, -1 10 2.16 1, 1, -1 9 2.39

-1, 1, 0 4 1.43 1, -1, 1 5 1.61 -1, 1, -1 10 2.16 3, 1, 1 5 1.33

1, 0, -1 4 1.43 -1, 3, -1 4 1.29 -1, 2, -1 9 1.95 -1, 2, -1 4 1.06

4-Tuple incidence table for works within the analysed corpus of Mozart

No. 1 in C No. 6 in D No. 7 in C No. 13 in B

Motive Inc. Perc. Motive Inc. Perc. Motive Inc. Perc. Motive Inc. Perc.

-1, -1, -1 69 16.31 -1, -1, -1 42 8.59 -1, -1, -1 39 10.4 -1, -1, -1 78 13.93

-1, -1, 1 16 3.78 1, 1, 1 17 3.48 1, 1, 1 25 6.67 1, 1, 1 32 5.71

2, -1, -1 13 3.07 -1, 2, -1 15 3.07 1, -1, -1 14 3.73 -1, 2, -1 25 4.46

-1, 2, -1 12 2.84 2, -1, -1 13 2.66 1, 1, -2 14 3.73 2, -1, 2 21 3.75

2, -1, 2 10 2.36 -1, 1, 1 11 2.25 -1, -1, 1 11 2.93 1, -1, -1 16 2.86

-1, 1, 2 10 2.36 1, 1, -1 11 2.25 -1, -1, 0 10 2.67 -1, 1, 1 15 2.68

2, 3, 2 10 2.36 -1, -1, 1 10 2.04 -1, 2, -1 9 2.4 -1, -1, 0 13 2.32

1, -1, 1 10 2.36 1, -1, -1 9 1.84 0, -1, -1 9 2.4 1, 1, -1 12 2.14

1, 2, -1 8 1.89 6, -6, 6 7 1.43 -2, -2, 1 7 1.87 -1, -1, 1 12 2.14

1, -1, -1 7 1.65 -5, 5, -5 7 1.43 -2, 1, 1 7 1.87 -1, 1, -1 11 1.96

These  tables  show  some  interesting  contrasts  between  the  summaries  of  the  individual 

composer’s corpora and the works within them. Some outliers which skew the corpus results 

are much clearer to see in this context — for instance, the fourth 4-tuple in the Op. 8 No. 3 

Sonata by Clementi is a passage of alternating octaves. Octave figures occur surprisingly high 

in the Clementi tables in comparison to the Haydn and Mozart tables, but most of these are 

accounted for by only one work in the corpus. Similarly, Mozart's Sonata No. 6 features the 

disjunct (6, -6, 6) and (-5, 5, -5) passages in its ten highest ranked 4-tuples. While not high 

enough to make an appearance in the 4-tuple table for the entire corpus (those passages are 
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ranked forty-fifth and forty-sixth), they still appear quite high in the rankings considering that 

they only occur in one bar in one exposition. 

It is also curious to see that the Mozart corpus is the only one in which all four works have 

descending scalic figures as their highest ranked tuples, regardless of the results of the corpora 

as a whole. Descending scalic passages are the highest ranked tuples in the Haydn corpus, but 

not the highest ranked motive in each Haydn exposition — they reach this rank in the corpus 

as an average from the expositions.

For the most part,  however,  these single exposition tables reinforce the data found in the 

corpus tables.  All  of  the scalic passages which occur frequently in the corpora are found 

within the most frequent material of the expositions. While an occasional section of figuration 

within an exposition may skew the results (such as in the Mozart Sonata No. 6 example), in 

general the highest ranked material in the expositions is the highest ranked material in the 

corpora.

3.2.2 - Interval Transition Matrices

All 3-tuple data in these corpora has been analysed, tallying the incidences of any interval 

being followed by any other interval. This data is shown in the tables on the following three 

pages, where each cell indicates the probability within each corpus (shown as a percentage) of 

the interval in the left-most column being followed by the interval in the top row.15

The transition values support what is generally found in the motivic incidence tables — for 

instance, since descending scalic motives feature so prominently in all composer's works, the 

transition probability from -1 to -1 is very high: 53.81% in Mozart; 51.47% in Haydn; and 

46.11% for Clementi. These different values also reinforce the differences between corpora 

found  in  the  incidence-tables,  because  Mozart's  corpus  features  the  highest  ratio  of 

descending scalic motives to other motives, and Clementi's corpus features the lowest. While 

the variations in statistical movement are significant, by colouring the cells which contain 

non-zero values (as is shown here), it  is easy to see the variety of intervallic shapes each 

composer uses. As two examples of this, Mozart's corpus features a greater variety of possible 

intervals following an ascending fifth (ten against Haydn's seven and Clementi's five), while 

15 A version of these tables which shows incidences, rather than percentages, is on the accompanying compact 

disc.
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Clementi's  corpus  features  a  greater  variety  of  possible  intervals  following  an  ascending 

octave (seventeen to Haydn and Mozart's seven).  

As with the incidence tables, these matrices also display the many similarities these corpora 

share. The matrices all display clustering around their centre when the intervals are ordered by 

magnitude (ignoring relatively empty rows and columns produced by non-integer intervals). 

This provides further confirmation of the generally conjunct nature of writing in these corpora 

— transitions to disjunct intervals are generally always less likely than transitions to conjunct 

intervals. If the table is imagined as a Cartesian plane, where x and y axis values are provided 

by interval magnitude, clustering appears in quadrants I and III (this happens in all matrices 

but is especially visually noticeable in the Clementi corpus). This seems to suggest a general 

trend that melodic lines and figuration tend to change direction following a disjunct leap. This 

inference may be skewed by the amount of intervals in the corpus which follow tremolo-like 

patterns, where one interval is followed by the interval of the same distance in the opposite 

direction (as  in  figure  9).  The  occurrence  of  these patterns  forms  a  diagonal  line  with  a 

positive gradient; this is immediately noticeable in quadrants I and III of the Mozart corpus.

Before this experiment was conducted, it was postulated by the author that since these three 

composers would be well acquainted with the rules governing sixteenth-century counterpoint, 

that these rules may be apparent in interval transitions. Many of these rules are obviously 

inappropriate for this context (for instance, numerous intervals wider than a major-sixth occur 

melodically).  However,  one  rule  which  these  matrices  allow  to  be  tested  empirically  is 

described as follows: 

An ascending leap of a minor sixth or an octave must be followed by a  

step  back  down  within  the  compass  of  the  leap.  In  the  same  way,  a  

descending leap of an octave must be followed by a step back up within 

the compass of the leap (McConnell). 

This rule is often generalised to apply to any leap in either direction greater than a major or 

minor third (Cope, 2004, p. 13).16 If this rule is followed by any of the composers, then there 

would be a clear tendency for disjunct intervals to be followed by a step in the opposite 

direction.  Looking  at  the  matrices,  this  hypothesis  is  supported  to  varying  degrees.  The 

Haydn corpus does not seem to favour opposite-direction-step transitions from any disjunct 

16 Cope's paper actually goes so far as to disallow movement in the same direction following a leap of a third.
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intervals — the highest percentage of transitions to a step from an opposite-direction leap is 

31% (not including leaps greater than an octave). The Clementi corpus is similar, with one 

exception — leaps of an ascending seventh are followed by a descending second 63.64% of 

the time, with the other 36.36% of transitions accounted for entirely by inverted pedal-point 

figuration in Sonata Op. 8 No. 3 (6, -7 patterns). In contrast, 58.7% of ascending thirds and 

36.17% of ascending sixths are followed by descending seconds in the Mozart corpus. It is 

unlikely that these differences are the result of the internalisation of any Fuxian aesthetic on 

the part of these composers, but they do expose some curious idiosyncrasies of the motivic 

vocabulary of each corpus. The agreement of these transition tables (and the other datasets) 

with Narmour's ‘implication-realization’ theory is discussed in section 3.3.1.
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These matrices also have the potential to generate short pitch-based motivic material in the 

style of any individual corpus. Any material longer than about 6 notes becomes functionally 

meaningless,  because  construction  of  themes  and  phrases  requires  more  contextual 

information than mere averaged statistics (Meyer, 1957). While a random number generator 

may still  produce some functionally nonsensical  patterns  by only picking the statistically 

insignificant outliers (consider a possible pattern in the Haydn corpus: 21, -3, -2, 21: a five 

note pattern spanning 5 octaves) for the sake of experiment and curiosity, several examples of 

different lengths are shown in figure 14 below:

Fig. 14

These  numbers  were  the  first  unique  motives  produced  using  random  numbers  from 

random.org (Haahr, 1998). Any numbers which produced chromatic intervals (non-integers) 

were re-generated, because chromatic intervals need to be in pairs to make sense under this 

system of notation (this only happened twice in the production of the above examples). These 

motives have been shown without any rhythm, but with possible harmonic implications in C 

major.17 As predicted, the results contain a mixture of typical and atypical shapes, many of 

which could be expanded into themes and phrases typical of the corpora. For example, the 3-

tuples,  4-tuples,  and  5-tuples  in  the  Clementi  line  outline  chord  shapes  and  common 

figuration, such as the turn (first 5-tuple). Some passages seem less typical of the figuration 

found in the corpora, however, such as the first Clementi 6-tuple, which is extremely disjunct. 

As the examples become longer, the potential for disorganisation increases, and this method 

of random construction becomes much less useful as a practical tool for musical composition.

17 It is important to remember that it is not these tonal patterns of scale degrees which are generated, but raw 

melodic contour — these patterns could start on any note, in any key.
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3.2.3 - Measure of Disjunct Writing

The table below shows the disjunct writing score for all works and complete corpora.18

Muzio Clementi

Op. 1 No. 2 in G Op. 1 No. 4 in F Op. 2 No. 4 in A Op. 8 No. 3 in B Whole corpus

0.706840 1.326761 0.531109 2.400670 1.099774

Joseph Haydn

No. 37 in E No. 46 in E No. 50 in D No. 51 in E Whole corpus

0.918440 0.637821 1.193966 0.635582 0.872040

Wolfgang Amadeus Mozart

No. 1 in C No. 6 in D No. 7 in C No. 13 in B Whole corpus

0.722941 1.351833 0.588196 0.706406 0.857008

Looking only at the disjunct writing scores for the whole corpora, it may be surprising that 

the Clementi corpus scores highest, despite the fact that the Clementi motive-incidence tables 

contain scalic material more prominently than either Mozart or Haydn. However, looking at 

the scores for individual works within the corpus reveals why this is so: the Op. 8, No. 3 

sonata contains  a much higher  proportion of  disjunct  motion than the other  works in the 

corpus. This is almost entirely due to the predominance of octave figuration in the right hand, 

and octaves appear much higher in this work's incidence table than in the rest of the corpus (7 

is ranked third and -7 is ranked fifth in the 2-tuple table).

Given  that  a  single  work  can  heavily skew these  figures  for  a  whole  corpus,  it  is  more 

illuminating to examine the scores of single works. Doing this, we see that there is actually a 

surprising variation of disjunct writing between different pieces, but the averages between 

composers are not dramatically different.  If  the Op.  8 No. 3 sonata is  removed from the 

Clementi corpus, the disjunct writing scores for each corpus are all between 0.8 and 0.9. The 

similar levels of variation in individual works suggests that perhaps each composer's use of 

disjunct or conjunct material can not be generalised over a corpus, but rather it is dynamic, 

and dependent on other compositional decisions made in each piece.

Despite this,  curious trends can still  be seen over entire  corpora in  the 2-tuple incidence 

tables.  These  function  as  tables  showing the  occurrence  of  all  intervals  within a  corpus. 

Shown below are the entire 2-tuple tables for each corpus, ranked by incidence.

18 Note that the disjunct writing score for the whole corpus is not equal to the average of the four scores of the 

individual expositions — this is a similar, but different calculation.
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Muzio Clementi Joseph Haydn Wolfgang Amadeus Mozart

Motive Incidence Percent. Motive Incidence Percent. Motive Incidence Percent.

1 388 29.22 -1 511 35.58 -1 657 35.42

-1 387 29.14 1 318 22.14 1 387 20.86

-2 88 6.63 0 116 8.08 2 184 9.92

0 71 5.35 -2 102 7.1 -2 173 9.33

-3 69 5.2 2 100 6.96 0 118 6.36

2 61 4.59 3 59 4.11 -3 47 2.53

3 40 3.01 -3 49 3.41 5 47 2.53

7 40 3.01 4 29 2.02 3 37 1.99

5 29 2.18 5 29 2.02 4 31 1.67

-7 25 1.88 -4 23 1.6 -5 25 1.35

-5 22 1.66 -5 20 1.39 7 24 1.29

6 20 1.51 -7 18 1.25 -4 21 1.13

4 20 1.51 7 13 0.91 6 21 1.13

-4 18 1.36 -6 13 0.91 -6 17 0.92

-6 18 1.36 6 11 0.77 0.25 10 0.54

-8 8 0.6 9 6 0.42 0.75 8 0.43

8 4 0.3 0.25 3 0.21 -3.75 8 0.43

9 3 0.23 0.75 3 0.21 3.75 8 0.43

0.25 3 0.23 -8 1 0.07 -7 8 0.43

0.75 3 0.23 11 1 0.07 -8 3 0.16

-14 2 0.15 -11 1 0.07 8 3 0.16

11 2 0.15 13 1 0.07 -15 2 0.11

-6.75 2 0.15 14 1 0.07 -0.25 2 0.11

12 1 0.08 -10 1 0.07 10 2 0.11

1.75 1 0.08 8 1 0.07 1.75 2 0.11

-7.25 1 0.08 -21 1 0.07 -16 1 0.05

-7.75 1 0.08 12 1 0.07 -14 1 0.05

-6.25 1 0.08 21 1 0.07 1.25 1 0.05

-0.25 1 0.07 18 1 0.05

1.25 1 0.07 -17 1 0.05

10 1 0.07 16 1 0.05

9 1 0.05

-9 1 0.05

14 1 0.05

-0.75 1 0.05
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This table shows some surprising similarities. Both the Mozart and Haydn corpus have almost 

exactly the same proportion of their material accounted for by descending seconds — there is 

only 0.16% difference in this percentage between these two corpora. Looking further down, 

the first  five most common intervals for both corpora are identical,  even if  they are in a 

different  order.  Clementi's  table  shows a  curious  counter-trend,  but  offers  an  even  more 

startling fact: there are nearly exactly the same number of ascending seconds as descending 

seconds in the Clementi corpus (a difference of only 0.08%, or one interval). It is debatable 

whether or not these differences and similarities are significant features of the idiolect of each 

composer, but what is obvious for all three corpora is the limited number of intervals needed 

to  construct  most  musical  material.  Using  only  unisons  and  ascending  and  descending 

seconds and thirds, 75.11% of the Clementi corpus, 79.86% of the Haydn corpus, and 81.89% 

of the Mozart corpus can be constructed.

The lower incidence intervals at the bottom of this table tend to indicate leaps which do not 

occur melodically,  but  rather  indicate  changes of  register  or  incidences  of  widely voiced 

compound melody. If we acknowledge intervals larger than a ninth (8 or -8) to imply this shift 

in register, then we can quantify the occurrence of such passages in the corpus.19 Under this 

criteria,  the  Clementi  corpus  features  eight  leaps  from four  unique  intervals,  the  Haydn 

corpus features fifteen leaps from ten unique intervals, and the Mozart corpus features twelve 

leaps  from ten  unique  intervals.  This  supports  the  conclusion  that  (at  least  within  these 

corpora) Mozart and Haydn have a tendency to make a greater amount of registral leaps in 

their piano melodies and figuration than Clementi.

3.2.4 - Motivic Concentration

The following table shows the unique motives divided by total motives in each work and 

corpus for 3-tuples, 4-tuples, 5-tuples, and 6-tuples (the UML score).

19 Compound melodies can of course occur with much smaller intervallic separation, but smaller intervals occur 

melodically in addition to implying changes of register.
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3-Tuple UML 4-Tuple UML 5-Tuple UML 6-Tuple UML

Clementi Corpus 0.123867 0.296970 0.445289 0.558689

Cle. Op. 1 No. 2 0.212418 0.442623 0.598684 0.716172

Cle. Op. 1 No. 4 0.248588 0.498584 0.670455 0.777778

Cle. Op. 2 No. 4 0.158730 0.279545 0.382688 0.474886

Cle. Op. 8 No. 3 0.291480 0.423423 0.502263 0.545455

Haydn Corpus 0.115922 0.303221 0.459972 0.590141

Hay. No. 37 0.277580 0.503571 0.641577 0.744604

Hay. No. 46 0.196141 0.335484 0.469256 0.597403

Hay. No. 50 0.196544 0.389610 0.531453 0.623913

Hay. No. 51 0.204244 0.385638 0.512000 0.609626

Mozart Corpus 0.098325 0.246887 0.409116 0.548124

Moz. No. 1 0.162736 0.338061 0.495261 0.617577

Moz. No. 6 0.193878 0.388548 0.540984 0.655031

Moz. No. 7 0.151596 0.322667 0.489305 0.630027

Moz. No. 13 0.185383 0.364286 0.525939 0.655914

Since  a  lower  UML score  implies  a  higher  motivic  concentration  in  a  corpus,  this  table 

implies that the Mozart corpus features the most reuse of pitch-based motives. This is far 

from a complete picture of a corpus's pattern of motivic reuse, however. Looking at the UML 

scores  for  the  individual  expositions,  two  points  about  the  data  are  striking.  Firstly,  all 

individual  exposition  UML scores  are  higher  than  those  of  the  corpora.  This  may seem 

counter-intuitive at first: it is reasonable to presume (from a musicological perspective) that 

there would probably be fewer unique motives in a single work than in a corpus of works, and 

that the addition of all the unique motives from the individual works would make the UML of 

the corpus higher. In actuality, many of the unique motives in the individual expositions are 

the  same,  so  the  total  amount  of  unique  motives  in  a  corpus  does  not  grow directly  in 

proportion to the amount of pieces it contains. The ratio of unique motives to the total amount 

of  material  actually  diminishes  with  each  addition  to  the  corpus,  and  this  trend  would 

continue with the addition of more works with similar musical vocabularies to those already 

used. 

Secondly, there is a  significant amount of variation in the UML scores between individual 

works. In the Mozart corpus, UML scores between works are significantly similar, generally 

not  straying from the range of  about 0.05. Haydn and Clementi  both feature much more 

variation in scores between their individual works. Haydn's variation in UML scores occupies 
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a  range  of  around  0.08  to  0.18,  Clementi's  scores  occupy a  range  of  0.14 to  0.3. It  is 

interesting that this level of variation occurs despite the fact that these expositions were all 

chosen  because  of  their  similar  musical  specifications  (as  outlined  in  section  3.1).  This 

perhaps suggests that  any comparison between composers based on a limited corpus will 

produce easily misinterpretable results, and that a much larger selection of works may be 

needed to make inferences about idiomatic motivic reuse.

Another interesting application of this data is in showing how the length of motives under 

examination factor into varying motivic concentration scores between pieces and corpora. 

Since there are more possible permutative possibilities as n increases, it is logical that UML 

scores will increase as they operate on longer length n-tuples. This is reflected in the table. 

However,  these results  do not increase equally for all  works,  as  some works will  have a 

predisposition towards motivic 'chunks' of certain lengths (as mentioned in section 2.3.4). 

This can be seen, for example, in the scores of Haydn's No. 50 and No. 51 expositions. No. 51 

has a higher 3-tuple UML score than No. 50, but the 4-tuple, 5-tuple, and 6-tuple scores are 

all higher in No. 50. This suggests, even if only slightly, that the No. 50 exposition is better 

able to account for repeated 4,  5,  and 6 pitch figures,  yet  No. 51 better accounts for  the 

repetition of 3 pitch figures. Looking at the results between the corpora, the only overlap in 

scaling occurs between the Haydn and Clementi corpora. It may be tentatively postulated that 

the Clementi corpus better accounts for 3-tuples, while there is more concentration of longer 

n-tuple figures in the Haydn corpus.

The table below shows another set of results — various MCn scores, with different values of 

n used for 3-tuples,  4-tuples,  5-tuples, and 6-tuples. The values of  n have been chosen to 

focus on the top of each incidence-table because that is where there is the most interesting 

variation in  incidences  between  each  motive.20 In  order  to  examine  a  similar  quantity of 

motives from each motive bank, the value of  n must decrease as the length of the motives 

being examined becomes longer. This is because in the longer motive-incidence tables there 

are more possible combinations, and musical material tends to be spread between a greater 

quantity of unique motives.

20 Also,  the  inclusion  of  any  attempt  at  an  exhaustive  list  of  MCn values  for  various  n-tuples  would  be 

extremely space-consuming, and largely, not illuminating.
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3-Tuple 

MC50%

4-Tuple

MC30%

5-Tuple

MC20%

6-Tuple

MC15%

Clementi Corpus 7 6 8 9

Cle. Op. 1 No. 2 7 7 9 13

Cle. Op. 1 No. 4 12 16 17 19

Cle. Op. 2 No. 4 3 4 4 3

Cle. Op. 8 No. 3 11 10 9 7

Haydn Corpus 7 7 8 12

Hay. No. 37 10 11 10 10

Hay. No. 46 3 2 1 1

Hay. No. 50 12 12 12 12

Hay. No. 51 4 4 5 6

Mozart Corpus 7 8 9 13

Moz. No. 1 6 6 6 7

Moz. No. 6 11 11 11 11

Moz. No. 7 6 6 9 12

Moz. No. 13 6 5 5 6

Here again, there are similar figures in the results for all the corpora, with a much greater 

level  of  variation between single  works.  This seems to  reinforce the conclusion from the 

previous table — that the similarity of results between corpora, considering the differences in 

the expositions, is probably co-incidental. A larger corpus of works is needed to investigate 

this. The most interesting entries in this table are the outliers. Mozart's Sonata No. 6, Haydn's 

Sonata  No.  50,  and  Clementi's  Op.  1  Sonata  No.  4  show  examples  of  low  motivic 

concentration,  where many motives  are  needed to  account  for  the  musical  material.  This 

suggests a high level of pitch motive variety in the melodic contour of work. Conversely, 

Clementi's Op. 2 Sonata No. 4 and Haydn's Sonata No. 46 show examples of high motivic 

concentration, where a large amount of musical material is accounted for by a smaller amount 

of unique motives. This suggests a more limited amount of variety in the melodic contour of 

the work. Looking at the score, this is exactly what we see — these two sonatas are mostly 

scalic and filled with repeated figures which easily reduce to recurring motives.

While general agreement between the trends of the UML and MCn tables is expected, it is 

interesting to see that the disjunct writing scores also follow the trends shown above. This is 

easy to understand — an excerpt which features a large amount of scalic writing (having a 

low disjunct writing score) has a large amount of material which can be accounted for in a 
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few scalic motives. This causes low UML and MCn scores, and hence implies a high level of 

motivic concentration.

The UML and MCn scores, while providing a general summary of motive distribution, do not 

provide a complete explanation. They can still be manipulated to provide misleading results. 

For a full understanding of motive distribution in a corpus, every motive and its incidence 

needs to be shown. This can be done graphically. The following four graphs show the motivic 

incidences for the three corpora.21 The x-axis on each (motive rank) is shown logarithmically, 

to provide detail of the variation at the top of the incidence tables, and to compress the large 

quantity of motives following this. Figure 15 shows the 3-tuples, figure 16 shows the 4-tuples, 

figure 17 shows the 5-tuples, and figure 18 shows the 6-tuples. In each graph, the Clementi 

corpus n-tuples are shown in red, Haydn corpus  n-tuples in blue, and Mozart corpus n-tuples 

in green.

Fig. 15

21 While this set of incidence and rank co-ordinates is obviously a set of points which is non-contiguous, it is 

shown in these graphs as a line for clarity.
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Fig. 16

Fig. 17
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Fig. 18

These graphs all show that while the initial few entries of each incidence table may be quite 

different, the distributions all start to converge after around the twentieth rank. It is interesting 

that the results for the corpora of the three composers all converge to the same shape, despite 

them consisting of different amounts of material — there are more motives (both unique and 

repeated) in the Mozart corpus than the Haydn or Clementi corpus, yet all three lines follow 

an extremely similar distribution as incidences become lower. This suggests that regardless of 

the sample sizes used in this study, there is a similar logarithmic distribution which occurs, 

with a steep drop off of incidences after the first 10-20 motives. It is hypothesised from these 

results that increasing the amount of works in the corpora (or the length of material that is 

examined) would maintain the shape of the above distributions, while simply increasing the 

magnitude of the incidences and ranks to be shown.

As mentioned in 3.2.1, the distribution of all of these rank\incidence co-ordinates follows a 

logarithmic distribution. As we move from 3-tuples to 6-tuples, this distribution stays similar, 

but  the  y-axis  is  compressed,  and  the  x-axis  is  stretched.  Since  the  results  for  individual 

expositions also follow this general distribution, it is probable that for any genre of music 

which relies upon a significant degree of pitch contour repetition (classical-era music is but 
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one example of many) a logarithmic distribution of motive incidences will  emerge if  this 

system is used.

3.3 - Discussion

These results probably do not, by themselves, say anything profound about the differences 

between  these  corpora.  On the  whole,  the Clementi  corpus  is  the  most  disjunct,  and the 

Mozart  corpus  frequently  features  disjunct  shapes  more  prominently  than  the  other  two 

corpora. Also, the Clementi corpus features ascending and descending scalic motion in equal 

amounts, unlike the Haydn and Mozart corpora, where descending scalic passages dominate. 

Certainly,  these  facts  could  be  seen  as  significant  conclusions,  but  many  of  the  most 

interesting differences occur between works in a single corpus. The large amount of variation 

found between these individual expositions in sections 3.2.3 and 3.2.4 suggests that these 

composers have a variable pitch-based vocabulary which is utilised differently in different 

pieces. Even in these sonata expositions, which were selected to be similar, there are very 

different sets of motives in the incidence tables for each work. 

Possibly more  than highlighting the trivial  differences  between each corpus,  this  research 

highlights many striking similarities.  The highest  ranking entries in  the  n-tuple frequency 

tables between all the pieces and composers show many shared motives. This indicates that 

much of the common figuration in each piece draws from a set of typical classical-era shapes 

and patterns. The extremely high reuse of scalic passages in the corpora is also shown to be 

common, by the most frequent intervals and the highest motives of every n-tuple table. Also, 

the graphs in section 3.2.4 suggest that the distribution of motive use in all of these corpora 

follows a typical logarithmic curve. While these conclusions are only supported by limited 

sampling from the classical repertoire, perhaps the most important idea to take away from this 

research is that these results are incapable of proving or disproving anything profound about 

the nature of composition by themselves. There may be other attributes of these pieces which 

are not examined here which reveal shocking revelations when compared between composers. 

However,  the  data  generated  so  far  seems  to  suggest  more  than  anything  else  that  the 

differences  in  melodic  figuration  between  these  corpora  are  trifling  and  insignificant  in 

comparison to their similarities.
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3.3.1 - Concordance with Existing Research

While occasional references to pre-existing informal notions or specific research have been 

made in previous sections, some conclusions from existing research are supported by multiple 

applications of the results, and hence merit discussion in a separate section.

David Huron's research into the melodic contour of folk song corpora reveals many of the 

same  conclusions  as  the  data  shown above.  In  particular,  the  fact  that  descending  scalic 

passages account for  so much material in the pieces in this study seems to be something 

which is at least a generalisation of Western tonal music. In Huron's study of 'The Melodic 

Arch in Western Folksongs', he generalises phrase motion in his conclusion; “What goes up is 

likely to come down, but what goes down is less likely to come back up”. Additionally, he 

summarises intervallic tendencies as generally conforming to a pattern of ascent by leap, and 

descent by step in Sweet Anticipation. These tendencies are expressed by the overwhelming 

tendency towards descending scalic figures in the n-tuple tables, and the scarcity of ascending 

skip-ascending skip transitions in the interval transition matrices. 

Additionally,  both  von  Hippel  and  Huron  make  reference  to  the  following  table,  which 

describes all stepwise movement probabilities over a set of two intervals for a large collection 

of Western and non-Western works:

Percentages of Transitions which Involve only Stepwise Intervals

Descending followed by Descending 70% Descending followed by Ascending 30%

Ascending followed by Descending 51% Ascending followed by Ascending 49%

These intervallic transitions are very similar to the findings in this study. The following table 

expresses the above statistical  combinations as they are found in the Haydn, Mozart,  and 

Clementi corpora (extracted from 3-tuple tables, where D stands for Descending and A for 

Ascending):
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Percentages of Transitions which Involve only Stepwise Intervals in each Corpus

Clementi Haydn Mozart

D, D 57% D, A 43% D, D 70% D, A 30% D, D 78% D, A 22%

A, D 40% A, A 60% A, D 41% A, A 59% A, D 36% A, A 64%

Percentages of Stepwise Transitions Combining the Three Corpora Above

D, D 70% D, A 30%

A, D 39% A, A 61%

These results  agree strongly with the findings of von Hippel and Huron. It  is  particularly 

striking that when the corpora are combined, the proportions of descent-descent to descent-

ascent transitions are within a percent of the same results operating on a much wider corpus of 

works. Clementi's corpus possesses the weakest propensity towards descending scale rather 

than  ascending  scale  figures,  as  shown in  the  n-tuple  lists,  and  this  is  reflected  in  these 

percentages. The increased bias towards ascending scalic rather than ascent-descent figures 

(in comparison to the almost equal split in the general corpus) may well be a feature of the 

particular  style  of  music  undergoing analysis  here.  For  this  information to  be  conclusive 

requires a much larger analysed corpora.

It is also worth examining to what extent the intervallic transitions of this study satisfy the 

innate principles of Narmour's ‘implication-realization’ theory. The way this theory explains 

the majority of interval transitions can be summarised as follows (small intervals are defined 

as  up to 5  semitones,  large  intervals  are 7  or  more,  and tritones  can go both either  way 

depending on their spelling)22:

1. Small intervals imply a following small interval in the same direction.

2. Large intervals imply a change in direction by the following interval.

3. Small intervals imply a following similarly sized interval.

4. Large intervals imply a following smaller interval.

Narmour's system can not be perfectly implemented with the figures of this analysis, as it 

relies on knowledge of chromatic interval states, and in the research in this thesis intervals of 

22 These four points only summarise the Principle of Registral Direction (PRD) and the Principle of Intervallic 

Difference (PID) from Narmour's system. The ‘implication-realization’ theory actually covers much more

than this, with separate coverage of what devices constitute musical closure, and a thorough discussion of the 

role  of  learned  musical  associations.  Additionally,  there  are  other  cases  not  covered  here,  such  as  the 

perception of some altered processes retrospectively. However, the above four cases are the most frequently 

cited and tested principles from the theory, and account for a massive amount of musical material.
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different chromatic proportions can be treated as identical (depending on context). However, 

it is still possible to quantify the general proportion of interval transitions that are covered by 

these principles. The second and fourth principle above describe typical Fuxian counterpoint 

writing conventions, so the observations made in support of these conventions in 3.2.2 also 

apply to Narmour's theory. Looking again at the table of the 30 most frequently occurring 3-

tuples, there is only one motive which does not conform to these tendency patterns — the (-1, 

7) interval which occurs 8 times in the Clementi corpus. Many more exceptions to the above 

principles exist,  but  don't  show up on the tables because they occur so infrequently.  This 

supports what intuition would suggest — the vast majority of material here is accounted for 

by  predictable  intervallic  transitions,  with  a  comparitively  miniscule  amount  of  less 

predictable transitions. These unpredictable transitions may occur between phrases, signifying 

registral shifts, or they may simply occur as novel melodic figures.
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4 - Further Applications

While the system as outlined above could find further use as a means of corpus-based melodic 

comparison, there is also the potential for different applications in the future.

4.1 - Identifying Compositional Idiolect

As used so far, the programs for collecting and comparing n-tuple data have only operated on 

very small corpora. If these corpora were expanded to be more representative of a composer's 

output as a whole, then it may be possible to establish some more firm conclusions and make 

more definitive claims. For example, it would be possible to say which shapes are the most 

prominent in all the melodic writing of Mozart. Or perhaps it could be seen if the distribution 

patterns seen in section 3.2.4 are typical of the compositional idiolect of each composer in this 

study, rather than just a select subset of their works. 

With a larger set of works from which to draw conclusions, the specialised measurements of 

motivic idiom used in this study (such as the UML and MCn scores),  may become more 

significant if their value is reinforced by hundreds of works. It will be fascinating if trends 

emerge which are consistent over a large amount of analysed works.  It  will  be especially 

significant  if  these  trends  are  consistent  within  corpora  from single  composers,  but  vary 

between  different  composers.  If  these  outcomes  occur  when  the  entire  output  of  the 

composers used in this study is examined, this would suggest that composers of the classical-

era do tend to reuse motives in significantly different ways from each other. Classical-era 

music provides only one practical area of examination, however — the analytical methods 

outlined in this thesis may be used on any composer from any era to make judgements about 

their melodic motivic idiolect.

To carry out analysis on a composer's entire compositional output would require that many 

scores are reduced to melodic lines, and these melodic lines then converted to the numeric 

format used here. In this thesis, for relatively small corpora, this was done by hand by a single 

researcher. For larger corpora, either a team or automation is necessary. The latter option is 

discussed in section 4.2.
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4.1.1 - Jazz Improvisation

The comparison of motivic use in jazz improvisation is another area of possible exploration 

outside traditional  written scores.  While less  useful  in modern ‘post-tonal’ genres  of  jazz 

(such as ‘free jazz’), in any genre of jazz where a recorded artist has performed a solo over an 

established set of chord changes, meaningful comparisons regarding motivic idiolect can be 

made. It  is  relatively easy to discuss an artist's  use of tonality — this can be done either 

aurally or through analysing transcriptions of solos. It is less easy to make more generalised 

statements about which particular motives occur most frequently in an artist's solos, or the 

extent to which the patterns which make up these solos are reused.

It is widely acknowledged that jazz musicians rely on permutations of enclosures and scale 

and  chord  shapes  as  the  fundamental  building  blocks  of  their  vocabularies  in  tonal 

jazz (Nelson,  1966).  Such  a  comparison  is  far  outside  the  scope  of  this  research,  but  in 

practice it would be possible to compare motivic use in the recorded solos of Charlie Parker 

against the recorded solos of Dizzy Gillespie, for example. What results this might produce 

cannot even be conjectured, but the comparison would no doubt be interesting. Potentially, 

with enough researchers, or enough time, comparison could be made across a large group of 

artists. As an example, it would be possible to see the most frequent shapes employed by all of 

the leading Bebop alto saxophonists of the 1950s. Such answers may have implications for 

future pedagogy, and may even assist in tracing historical stylistic influences. 

For this to be a valid method of analysis, care must be taken with the transcription to account 

for  enharmonic  ambiguities  which  arise  in  extended  harmonies.  But  even  if  harmonic 

ambiguities are included in the transcriptions, if shapes are uniformly presented, the current 

method of representation is perfectly suited for the tonal fragments which are employed in 

most jazz improvisation.

4.1.2 - Composer Identification

Much as corpus-based algorithms are used to differentiate composers for the field of music 

information retrieval, predictions about the origin of works of unknown authorship could be 

made with the systems of comparison outlined in this thesis. This may be difficult if the level 

of variation shown in sections 3.2.3 and 3.2.4 proves to be a general trend for all of a typical 

composer's output. It still may be possible to make meaningful matches, however, if a work is 
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compared with a subsection of a composer's corpus which has similar features as the work 

being identified.

If  such  a system of  classification  were  even  possible,  this  might  change the conclusions 

reached in section 3.3 — when taken all together, the values generated by this system of 

analysis  could  provide  a  unique  ‘fingerprint’ of  a  composer's  motivic  reuse.  This  seems 

unlikely, however, given that even relatively small changes in a composer's style may produce 

works which are more typical  of  a  different  composer's  corpus.  It  is  more likely that  the 

general level of variation present makes the classification of works by composers of similar 

styles extremely difficult (or even impossible) with this system.

If  the  works  being  identified  fall  into  very  different  genre  classifications,  however,  the 

situation  may  be  quite  different.  In  this  case,  significant  differences  in  motivic  idiolect 

probably do exist, making automated classification by this system possible.

4.1.3 - Limitations in Chromatic Writing

If this system is used in the analysis of Western music written after the classical era, problems 

are encountered as chromaticism becomes a distinctly motivic feature in a manner different to 

that found in classical-era works. Any works which use symmetrical divisions of the octave as 

a tonal device will have elements which are fundamentally inexpressable with this system, 

because it is based around traditional tonal key structures. Notes in tonal systems which use 

enharmonic spellings interchangeably will not be properly motivically represented. For these 

to be represented properly, the system would need to be adapted to function chromatically, 

and  for  motives  to  be  stated  in  chromatic,  rather  than  diatonic  steps.  Potentially,  this 

modification (which would only affect the nature of the notation, not the operations involved) 

would then allow this method to be used on a corpus of atonal melodies. Obviously, for some 

serialist structures, this may mean a combinatorial explosion of single-occurrence motives, 

and no new useful information gained. But in some cases, it may highlight repeated patterns 

which are otherwise difficult to perceive within a corpus.

There is, however, a large body of works of modern idiom which could still be analysed by 

the system as is. Works which use quartal or quintal harmony (such as those by Hindemith) 

tend to preserve motivic relations on the staff — for instance, a chord comprised of layered 

fifths will generally have this spelling of fifths preserved wherever it appears on the staff. A 
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chord made out of  stacked tritones, however, may change if the spelling of a diminished 

fourth and augmented fifth are interchangeable. Also, works which utilise seven-note modes 

(such as many folk songs presented by  Bartók, Kodály,  and others)  will  still  use a  tonal 

structure which is compatible with this system. There is also nothing stopping this system 

from being used with any purely modal music using modes with six or fewer notes, provided 

the notation is selected so that the modes appear with the same spacing on the staff in each 

piece.

4.2 - Integration with Existing Software

For this thesis, numeric reduction was done by hand from the original piano scores. This is a 

very time-consuming process, and it is not practical when using large corpora. If the process 

was automated, the analysis of long or numerous works becomes trivial. This is feasible, by 

incorporation  of  the  system of  numeric  reduction  into  music  engraving  software  such  as 

Finale or Sibelius. Many classical scores exist in files which are readable by this software. 

The reduction to a single melodic line can be done either perceptually using human analysis, 

or with heuristic devices from other research. Once this is completed, all that remains is to 

convert a single melodic line into the numerical format.

The process of numeric reduction is almost entirely algorithmic, featuring only rare moments 

where  a  musicologist  must  exercise  judgement  about  how  to  represent  a  passage.  These 

moments of subjective judgement can be handled by chromatic heuristics, which can have 

adjustable thresholds for dealing with the representation of chromatic passages. This would be 

easily implementable as a plug in, which could automatically output a text file which is ready 

to  be  entered  into  the  motive  programs  being  used.  Inbuilt  scripting  languages,  such  as 

ManuScript (Sibelius),  or  FinaleScript (Finale)  would  allow  the  relatively  easy 

implementation of melodic extraction algorithms or data format encoding. An intuitive text 

based system of score encoding such as that used by Lilypad would make encoding operations 

especially easy.

4.3 - Closing Comments

The  systems  presented  in  this  research  provide  a  new and  unique  means  of  comparison 

between  melodic  corpora.  While  there  are  acknowledged  limitations  in  the  data 

representation, it is my hope to see a system such as this incorporated into future analytical 
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musicology. If  this research does nothing more than inspire other scholars with the future 

possibilities of statistical analysis, this alone is a highly positive outcome. The incorporation 

of scientific quantification into traditional areas of musical analysis is still a field which is 

thoroughly worthy of fresh exploration.
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Appendix: All Contentious Sections in 

Melodic Reductions

For most of the material  which was used in this research, numeric reduction is  relatively 

straight-forward,  following  the  guidelines  established  in  sections  2.1  and  2.2.  There  are, 

however, several exceptions where difficulties arise. All the excerpts of the expositions used 

which present certain difficulties in melodic reduction are shown here, along with details of 

how each case was treated. While there are also numerous subjective decisions regarding the 

treatment of chromaticism in these melodies, it is extremely rare that chromatic notation is 

employed  in  this  study (evidenced  by the  extremely small  amount  of  chromatic  motives 

present in the incidence tables). The justification for this, wherever it occurs, is to maximise 

the amount of material  that  is  related purely by generalised shape. Each of the following 

examples, by contrast, requires specialised explanation.

Example 1: Clementi Sonata Op. 1 No. 2, bars 38-39

In this excerpt, although the arpeggio melodic figure continues into the bass, the treble line is 

taken as the melody. This is  because it  is necessary to create some (potentially arbitrary) 

division point between bass and treble voices, and the fact that the arpeggiation in the bass 

continues  into  a  bass-line  figure  in  bar  39  implies  that  the  left  hand  is  functioning as  a 

separate voice. The numeric reduction of this excerpt is 37.5, 39.5, 37.5, 34.5, 32.5, 27.5, 

30.5.
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Example 2: Clementi Sonata Op. 1 No. 4, bars 19-21

Perceptually, it could be argued that the downbeats in the left hand starting on beats three and 

four  in  bar  19  could  function  melodically,  especially  since  they  don't  sustain.  However, 

because this figure continues underneath the melody on the third beat of bar 20, it is taken in 

the reduction to be a separate line which is not melodic. The numeric reduction of this excerpt 

is 36.5, 35.5, 44.5, 42.5, 39.5, 42.5, 39.5, 37.5, 39.5, 37.5, 35.5, 37.5, 35.5, 32.5, 30.5, 31.5, 

32.5, 31.5, 33.5, 32.5, 31.5, 30.5, 31.5, 38.5, 36.5, 32.5, 33.5.

Example 3: Clementi Op. 8, No. 3, bars 34-36

There  is  some ambiguity here about  which  voices  are  functioning melodically.  Since  the 

descending crotchets in bar 35 step down to a sustained voice in bar 36 which is not melodic, 

they are taken to be part of the bass figuration, and are not included in the reduction. The 

octave C3 and C4 in bar 34 is treated as a continuation of bass pattern, despite appearing in a 

melodic ‘space’. The numeric reduction of this excerpt is 43.5, 42.5, 41.5, 40.5, 38.5, 39.5, 

33.5, 34.5, 37.5.
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Example 4: Haydn Sonata No. 37, bar 17

In this passage, although there is an upper and lower part played between both hands, neither 

is sustained. This perceptually creates a single monodic structure. As such, all notes here are 

treated as part of a single melody. The numeric reduction of this excerpt is 38.5, 40.5, 35.5, 

39.5, 36.5, 38.5, 30.5, 35.5, 31.5, 36.5, 33.5, 38.5, 32.5, 35.5, 31.5, 34.5.

Example 5: Haydn Sonata No. 46, bar 8

Although the semi-quaver triplet in the left hand at the end of this bar is a continuation of the 

semi-quaver triplets heard previously, it overlaps with the final note of the upper voice, and is 

therefore treated as a separate bass voice. The reduction of this passage is 40.5, 39.5, 38.5, 

37.5, 36.5, 35.5, 34.5, 33.5, 32.5, 31.5, 30.5, 34.5, 33.5, 32.5, 31.5, 31.5.

Example 6: Haydn Sonata No. 46, bars 12-13

This  example  shows  a  continuation  of  a  line  similar  to  that  in  example  1.  Here,  the 
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semiquaver triplets at the end of bar 12 in the left hand are taken to be separate to the melody, 

because even though they continue melodic motives, they descend into a separate sustained 

voice. Acknowledgement must be made that this passage is open to interpretation, however. 

The numeric reduction of this excerpt is 35.5, 37.5, 36.5, 35.5, 37.5, 39.5, 42.5, 41.5, 40.5, 

39.5, 38.5, 37.5, 37.5, 36.5, 35.5, 34.5, 33.5, 32.5, 31.5.

Example 7: Haydn Sonata No. 50, bars 30-34

This passage shows several examples of melodic voice splitting. The semi-quavers taken over 

by the left hand in beat three of bar 30 overlap, and create overlap, with the semi-quavers in 

the right hand. They are thus taken to be part of bass figuration, and not a melodic figure. 

However, the change of register of the quaver figure between bars 33 and 34 does not create 

any overlap. In this case, all the quavers are included melodically. The numeric reduction of 

this excerpt is 46.5, 44.5, 46.5, 42.5, 44.5, 39.5, 42.5, 37.5, 37.5, 39.5, 42.5, 44.5, 39.5, 42.5, 

44.5, 46.5, 39.5, 42.5, 44.6, 46.5, 43.5, 41.5, 43.5, 39.5, 41.5, 37.5, 39.5, 36.5, 37.5, 34.5, 

36.5, 32.5, 34.5, 30.5, 32.5, 31.5, 34.5, 36.5, 38.5, 41.5, 43.5, 45.5, 24.5, 26.5, 28.5, 30.5, 

42.5.
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Example 8: Haydn Sonata No. 51, bar 16

It must be conceded that in this example, polyphonic imitation clearly occurs between the two 

upper voices. While the semiquavers in beats three and four are clearly a continuation of the 

preceding semiquaver melodic material, the top voice is taken to be the most perceptually 

significant. Apart from simply being the top sounding voice, it is is also chosen to maintain 

continuity and uniformity throughout the rest of the reduction. The numeric reduction of this 

excerpt is 36.5, 37.5, 38.5, 34.5, 35.5, 39.5, 39.5, 38.5.

Example 9: Mozart Sonata No. 1, bar 9

The writing here is split evenly between left and right hands, but perceptually, there is one 

continuous melody. In figures such as these, all notes are taken into account as part of the 

melody. The numeric reduction of this excerpt is 24.5, 26.5, 29.5, 31.5, 33.5, 36.5, 38.5, 40.5, 

25.5, 27.5, 29.5, 32.5, 34.5, 36.5, 39.5, 41.5.
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Example 10: Mozart Sonata No. 1, bars 27-28

This  passage  is  problematic,  because the quaver  accompaniment  figure  is  still  within the 

range of the upper line, and could easily be an example of compound melody. However, this 

interpretation does not take into account the rhythmic overlap between the crotchets in the 

right hand, and the quavers in the left hand. For this reason, only the right hand is included in 

the melodic reduction. The numeric reduction of this excerpt is 35.5, 37.5, 36.5, 35.5, 33.5, 

34.5, 35.5, 36.5, 37.5, 38.5.

Example 11: Mozart Sonata No. 6, bars 34-36

This is another excerpt, like example 8, where there are clearly two independent upper voices. 

The upper voice achieves prominences through its greater disjunct motion and activity, and its 

notes alone are taken solely as the melodic reduction. The numeric reduction of this excerpt is 

40.5, 38.5, 38.75, 39.5, 39.5, 37.5, 38.5, 38.5, 41.5, 37.5, 37.5, 35.5, 36.5.
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Example 12: Mozart Sonata No. 6, bar 45

In this bar, the fact that this figuration has no accompaniment precedent (unlike in example 3) 

means that it can function as a single disjunct melodic line. The top voice of each chord is 

taken to be melodic. The numeric reduction of this excerpt is 26.5, 44.5, 27.5, 43.5.

Example 13: Mozart Sonata No. 7, bars 21-22

This excerpt is included not because of any difficulty in reduction to a single melodic line, but 

because it serves as an example of the difficulty in numerically reducing chromatic passages. 

There is  clearly a pattern here where chord tones are embellished with chromatic passing 

notes,  which are all a semi-tone beneath each note of the C major triad.  This figure later 

occurs again, on a different chord, so the chromaticism is clearly motivic. There is difficulty 

in  representing  this  however  —  most  chord  tones  can  have  their  chromatic  neighbour 

represented in numbers,  but the same interval when it occurs from B to C has no unique 

representation. In the interest of maintaining a generic notation which can apply to all keys, 

the  chromaticism  of  this  passage  must  sadly  be  abandoned,  turning  a  chromatically 

embellished arpeggio into a scalic motive. The numeric reduction of this excerpt is therefore 

36.5, 37.5, 36.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 42.5, 43.5, 44.5, 45.5.
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Example 14: Mozart Sonata No. 7, bars 33-35

The passage in bars 33 and 34 in the bass could be taken to be melodic — it is the only voice, 

and it is not chordal. However, considering the continued left hand figuration of this part of 

the exposition, it is more likely that this passage is simply an accompaniment figure which 

bridges two melodies. This makes the staccato entry in the right hand in bar 35 the ‘true’ 

melody. This is the interpretation used in the melodic reduction in this thesis. As such, the 

numeric reduction of this excerpt is 42.5, 43.5, 44.5, 42.5, 40.5.

Example 15: Mozart Sonata No. 13, bar 22

In  passages  such  as  this,  it  is  debatable  whether  the  left  hand  octave  on  the  third  beat 

constitutes  a  continuation  of  the  melodic  arpeggiation,  or  a  continuation  of  the 

accompaniment figure suggested by the octave in the left hand on the first beat. Since the 

accompaniment figure in this bar is without precedent in this exposition up to this point, and 

because it perceptually sounds as a continuation of the arpeggio, it is taken to be melodic. The 

numeric reduction of this excerpt is 38.5, 43.5, 40.5, 38.5, 36.5, 33.5, 31.5, 29.5, 22.5.
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Example 16: Mozart Sonata No. 13, bars 30-31

The left hand passage in beats three and four of bar 30 presents a similar situation to that 

shown in example 3 and example 6. Even though the figure takes the melodic rhythm from 

beats one and two of bar 30, it causes rhythmic overlap with the top voice in beat three, and 

leads into a clearly accompanying octave on the first two beats of bar 31. For this reason, it is 

taken  as  accompaniment  figuration  and  is  not  included  in  the  reduction.  The  numeric 

reduction of this excerpt is 31.5, 32.5, 33.5, 34.5, 35.5, 36.5, 35.5, 36.5, 29.5, 36.5, 37.5, 36.5, 

35.5, 34.5, 33.5, 32.5.

Example 17: Mozart Sonata No. 13, bars 43-44 and 46-47

The two passages above are clearly rhythmically related. Identifying a single melody in them 

is not straightforward — in the first excerpt, the top voice could be a accompanying figure for 

the  rising  pattern  in  the  left  hand.  It  is  equally  valid  to  say  that  the  quavers  form  an 

accompaniment for the melody in minums above them. Identification becomes even trickier in 
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bars 46-47, where the voicing is reversed. In this situation, the somewhat arbitrary decision 

has  been  made  to  isolate  the  top  voice  as  melodic,  citing  its  perceptual  significance. 

Therefore,  the numeric reduction of bars 43-44 is  44.5, 38.5, 42.5, 41.5, and the numeric 

reduction of bars 46-47 is 39.5, 38.5, 39.5, 38.5, 37.5, 38.5, 37.5, 44.5, 44.5, 44.5, 37.5, 37.5.
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