
Copyright and use of this thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take
legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and
the right of integrity.

You may infringe the author’s moral rights if you:

- �fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

- �subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the University’s
Director of Copyright Services

sydney.edu.au/copyright

A Data Mining Toolbox for Collaborative Writing Processes

By

Vilaythong Southavilay

THESIS

Presented to the Graduate School of Engineering at

 The University of Sydney

 in Fulfilment

 of the Requirements

 for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF SYDNEY

2013

Thesis Supervisor: Dr. Kalina Yacef

i

ABSTRACT

Collaborative writing (CW) is an essential skill in academia and industry. The context

of this research focuses particularly on collaborative forms of writing in an academic

environment for the purpose of learning, in which writing activities are

collaboratively performed by groups of students in a period of multiple writing

sessions. CW combines the cognitive and communication requirements of writing

with the social requirements of collaboration. Cognitive studies show that these

requirements make CW a challenging endeavour. Providing support during the

process of CW can be useful not only for achieving better quality documents, but also,

more importantly, for improving the CW skills of the writers.

In order to properly support collaborative writing, it is essential to understand how

ideas and concepts are developed during the writing process, which consists of a

series of steps of writing activities. These steps can be considered as sequence

patterns comprising both time events (as used in other process mining research) and

the semantics of the changes made during those steps. Two techniques can be

combined to examine those patterns: process mining, which focuses on extracting

process-related knowledge from event logs recorded by an information system; and

semantic analysis, which focuses on extracting knowledge about what the student

wrote or edited.

This thesis contributes (i) techniques to automatically extract process models of

collaborative writing processes and (ii) visualisations to describe aspects of

collaborative writing. These two techniques form a data mining toolbox for

collaborative writing by using process mining, probabilistic graphical models, and

text mining. First, I created a framework, WriteProc, for investigating collaborative

writing processes, integrated with the existing cloud computing writing tools in

Google Docs. Secondly, I created new heuristic to extract the semantic nature of text

edits that occur in the document revisions and automatically identify the

corresponding writing activities. Thirdly, based on sequences of writing activities, I

propose methods to discover the writing process models and transitional state

diagrams using a process mining algorithm, Heuristics Miner, and Hidden Markov

Models (HMM), respectively. My thesis compares two models of HMM: a Heuristic

Markov Model and a Hidden Markov Model. The discovered process models and

ii

transitional state diagrams are used in the process analysis that quantitatively and

graphically identifies patterns in the text edit sequences that were performed by the

writers as they worked on their documents. Finally, I designed three types of

visualisations and made contributions to their underlying techniques for analysing

writing processes: (1) the revision map, which summarises the text edits made at the

paragraph level over time during the course of the writing; (2) the topic evolution

chart, which uses probabilistic topic models -- especially Latent Dirichlet Allocation

(LDA) and its extension, DiffLDA -- to extract topics and follow their evolution

during the writing process; (3) the topic-based collaboration network, which allows a

deeper analysis of topics in terms of author contribution and collaboration, using a

novel algorithm DiffATM in conjunction with a DiffLDA-related technique.

All components of the toolbox are validated against annotated writing activities of

real documents and a synthetic dataset. I also illustrate how the automatically

discovered process models and visualisations are used in the process analysis with

real documents written by groups of graduate students. I discuss how the analyses can

be used to gain further insight into how students work and create their collaborative

documents; and ultimately to help students write more efficiently and effectively, and

to assist teachers with monitoring writing groups, providing information that can

facilitate early detection of problems during the writing process.

iii

ACKNOWLEDGEMENTS

During the time of doing my research and writing this thesis, I received support and

help from many people. I would like to express my great appreciation to the following

people and resources, which are not listed in any particular order.

With all of my heart, I am very grateful to my supervisor Dr. Kalina Yacef, and to

my associate supervisor Associate Prof. Rafael A. Calvo for all the guidance, constant

encouragement and support that they gave me to complete this thesis. All the advice

given by them has been a great help to me in my research. I would like to thank them

for assisting me in getting an Australian Research Council scholarship and Google

Research Award so that I could work on this project under their supervision during

the past three years. In particular, I am profoundly indebted to my supervisor, who

was very generous with her time and knowledge and assisted me with each step in

completing this thesis.

I would like to offer my special thanks to all administrative staff members of the

school of information technologies (IT), especially the head of the school, Prof. David

Dagan Feng; the post graduate research director, Anastasios Viglas; and the post

graduate research officer, Evelyn Riegler, for their support so that I could finish

writing this thesis. I would like to thank all technical staff members of the school of

IT, headed by Greg Ryan, for their technical assistance and support during the

experiments conducted for my research.

My special thanks are extended to my colleagues at the school of IT, especially all

researchers and students of Computer Human Adapted Interaction (CHAI) for sharing

their ideas and experience in doing research. In addition, I would like to thank my

fellow friends in Learning and Affect Technologies Engineering (LATTE), especially

Dr. Jorge Villalon, Stephen O’Rourke, and Dr. Liu Ming for their help with text

mining library (TML), Google Document List API and for their advice on this

research and the experiments.

I am grateful to thank Prof. Michael J. Jacobson for his understanding of my

circumstances and his generosity in giving me an opportunity to work part-time for a

project that investigates the learning of scientific knowledge about climate change

through computational models at the Centre for Research on Computer Supported

Learning and Cognition (CoCo). In addition, I am thankful for the experience of

iv

working closely with Dr. Lina Markauskaite, who assisted me in developing my

research skills. I also would like to thank my colleagues Nick Kelly, Kate Thompson,

and Poly for their technical and administrative support for the project.

I would like to acknowledge the help provided by Prof. Peter Reimann and

Anindito Aditomo (Nino) in allowing me to make use of their course so that I could

conduct experiments for my research. I also appreciate their assistance in preparing

materials for the experiment such as mock-up visualisations and questionnaires; and

for distributing visualisations of writing processes to students. In addition, they

provided me with very valuable comments and suggestions with regard to the

visualisations.

I would like to acknowledge the Australian Research Council DP0986873 and a

Google Research Award for funding my research.

I am thankful to Maria Cristina Beato-Lanz for her wonderful assistance in

proofreading all chapters in this thesis, except chapter 3 (theoretical background) in a

timely manner. She also proofread two appendices (B and E). I really appreciate her

assistance.

I am grateful to my mother, who was the first teacher who taught me how to read

and write a word. Although she passed away about seven years ago and was not here

to see me complete this PhD thesis, she is always my inspiration that leads me to

work hard and to love science and technologies.

Special thanks is reserved for my wife who has been travelling and lived with me

during my candidature in Sydney for three years. After the birth of our twin sons, we

had to make a hard decision to separate for about six months so that I could work on

this thesis, and she travelled back to my home country where she has lot of support

with looking after our children. I will join her and my children after I submit this

thesis.

I am grateful to all my family, especially my father and my parents-in-law, for

providing financial support and assisting my wife in taking care my children while I

am in Sydney writing this thesis.

Finally, I would like to dedicate this thesis to all scientists, researchers and

educators from developing countries, especially from my home country, Laos. Since I

was young, I always dreamed of becoming a scientist. I was awarded an AusAID

scholarship to study for my bachelor's degree in Canberra, Australia. After that I was

v

awarded a Fulbright scholarship to study for my master's degree in Chicago, Illinois

before returning to Australia to pursue my PhD in Sydney. Along the way, I have

worked really hard to fulfil my dream to become a computer scientist. I hope my

journey will inspire many young generation students in their developing work to seek

an opportunity to work in the field of science and technologies.

vi

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS ... vi

LIST OF FIGURES ... x

LIST OF TABLES ... xiv

Chapter 1 Introduction .. 1

1.1 Summary of Contribution ... 5

1.2 Outline of the Chapters .. 6

1.3 Publication Related to This Thesis ... 7

Chapter 2 Literature Review ... 9

2.1 Theoretical Framework .. 11

2.1.1 Cognitive Models of Writing Processes .. 11

2.1.2 Taxonomies of Collaborative Writing Activities................................... 13

2.2 Text mining for Detecting Cohesion and Topics 15

2.2.1 Cohesion Measure .. 17

2.2.2 Topic Extraction and Topic Evolution .. 19

2.3 Process Mining .. 24

2.3.1 Analysing Writing Processes .. 26

2.3.2 Visualising Writing Processes .. 29

2.4 Tools to Support Collaborative Writing .. 31

2.5 Summary ... 34

Chapter 3 Theoretical Background ... 37

3.1 Text Mining ... 38

3.1.1 Latent Semantic Analysis ... 38

3.1.2 Lingo: Document Clustering Algorithm ... 40

3.1.3 Latent Dirichlet Allocation ... 41

3.2 Process Mining .. 43

3.2.1 Event Logs ... 45

3.2.2 Heuristic Mining .. 46

3.2.3 Mining Additional Perspectives of Writing Processes 50

3.3 Hidden Markov Model ... 51

vii

3.3.1 Markov Models .. 52

3.3.2 Hidden Markov Model ... 53

3.4 Summary ... 55

Chapter 4 Overview of the Approach .. 57

4.1 Framework for Analysing Writing Processes ... 59

4.2 Identifying Writing Activities Automatically ... 61

4.3 Extracting Process Models of Writing Processes 61

4.4 Visualising Writing Processes .. 61

4.5 Summary ... 63

Chapter 5 WriteProc: A Framework for Data Collection .. 65

5.1 Overall Conceptual Description ... 65

5.2 Writing Environment: Google Docs ... 66

5.3 Google Document List API .. 70

5.4 Dataset for Analysing Writing Processes .. 72

5.5 Summary ... 74

Chapter 6 Identifying Writing Activities ... 75

6.1 Heuristic for Determining Collaborative Writing Activities 76

6.1.1 Text Structures ... 79

6.1.2 Text Edits... 80

6.1.3 Number of Words and Phrases (F1) .. 81

6.1.4 Topic Overlap (F2)... 81

6.1.5 Cohesion Comparison (F3) ... 82

6.2 Pre-processing: Computing Cohesion Changes and Topic Overlap 83

6.3 Heuristic Validation ... 85

6.3.1 Matrices ... 86

6.3.2 Applying Evaluation Matrices to CWA Heuristic 87

6.3.3 Evaluating the Heuristic with All Revisions ... 91

6.3.4 Evaluating the Heuristic per Revision ... 91

6.3.5 Evaluating the Heuristic Per Document .. 92

6.3.6 Evaluating the Heuristic for All Five Writing Activities 94

6.4 Summary ... 95

Chapter 7 Mining Writing Processes... 97

7.1 Process Mining .. 98

viii

7.1.1 Writing Process Discovery ... 98

7.1.2 Case Study .. 101

7.2 Hidden Markov Models and Heuristic Markov Models 110

7.2.1 Extracting Heuristic Markov Model and Hidden Markov Model 110

7.2.2 Pre-processing ... 112

7.2.3 Case Study .. 114

7.3 Distilling Processes to Students and Instructors: A Pilot Study 120

7.3.1 Mockup Visualisations .. 121

7.3.2 Feedback from Interviews ... 126

7.4 Summary .. 128

Chapter 8 Visualising Collaborative Writing Processes ... 131

8.1 A Framework for Visualising Collaborative Writing Processes 132

8.2 Revision Maps .. 133

8.3 Topic Evolution Chart ... 136

8.3.1 Probabilistic Topic Models .. 138

8.3.2 DiffLDA for Mining Writing Processes ... 139

8.3.3 Hyper-parameter Selection .. 141

8.3.4 Selection of Number of Topics .. 141

8.4 Topic-based Collaboration Networks .. 142

8.4.1 Diff Author-Topic Model for writing processes 144

8.4.2 Construction of Networks from Topics .. 145

8.5 Technical Validation ... 146

8.5.1 Data Generation .. 146

8.5.2 Pre-processing and Study Setup .. 148

8.5.3 Results .. 149

8.6 Prototype Experiment ... 150

8.6.1 Experiment Setup .. 151

8.6.2 Analysis .. 154

8.6.3 Qualitative Evaluation ... 162

8.7 Summary .. 164

Chapter 9 Discussion, Future Work, and Conclusion ... 167

9.1 Validation of this thesis work in other domains 168

9.2 Limitations .. 170

ix

9.2.1 Google Docs API Limitations ... 170

9.2.2 Coding and Heuristic Limitations .. 171

9.2.3 Hidden Markov Model Limitations ... 172

9.2.4 Heuristic Mining Limitations .. 173

9.2.5 Visualisation Limitations .. 174

9.3 Implementation of the Toolbox ... 175

9.4 Future Work.. 176

9.4.1 Improving the Heuristic with Natural Language Processing 177

9.4.2 Improving Topic Extraction .. 178

9.4.3 Creating Interactive Visualisations .. 179

9.5 Conclusion .. 179

Appendix A Examples of Revision Histories and Text Edits 181

A.1 An Example of Revision Histories .. 181

A.2 An example of Multiple Text Edits ... 182

Appendix B Text differencing procedure .. 183

B.1 Paragraph Differencing: .. 183

B.2 Word Differencing: ... 185

Appendix C Dependency diagrams of dataset a .. 189

Appendix D Four Revision maps of a prototype experiment 191

Appendix E A survey for revision maps ... 195

E.1 An Example of Revision Maps: .. 195

E.2 Survey questions for revision maps .. 196

Bibliography .. 199

x

LIST OF FIGURES

Figure 2-1. Transitional state diagram of a writing process of an individual Wiki

author (from Heeter and Jeong (2012) – Permission has been authorised). 29

Figure 2-2. Graph visualisation of writing process: an example of novice writer (from

(Caporossi & Leblay, 2011) - permission has been authorised). 30

Figure 3-1. The three main types of process mining: discovery, conformance, and

enhancement (from (van der Aalst, 2011) – permission has been authorised). .. 44

Figure 3-2. An example of dependency graphs. ... 46

Figure 3-3. Dot chart of reviewed documents ordered by their first events’

timestamps. Grey denoted events generated by by authors; white by reviewers,

black by reviewers’ group member (indicated by ovals) and brown by others

(indicated by rectangles) (from (Southavilay et al., 2009)) 51

Figure 3-4. An example of Hidden Markov Model. ... 53

Figure 4-1. Overview of approach for extracting and analysing process models. 58

Figure 5-1. WriteProc: a frame work retrieving revisions and revision histories. 66

Figure 5-2. the web-based interface of revision history (on the right panel) of Google

Docs, which shows a list of revisions. Each revision contains a timestamp (date

and time) and an author ID (different colours for different authors). 68

Figure 5-3. Revision history before 2011 showing 13 revisions: R1-R13 written by 2

authors: U1 and U2. Each revision has timestamp associated with it. Σ and σ are

time difference of two consecutive revisions, where Σ>30 min and σ≤30 min. 69

Figure 5-4. Revision history since 2011. Only revisions displayed in “less detailed”

revision history have timestamp and user IDs. ... 70

Figure 5-5. Timeline of assignment due dates in the case study. 72

Figure 6-1. Pre-processing steps (from (Southavilay et al., 2010b)) 84

Figure 6-2. Precision (P), Recall (R), F1 score (F1) and Baseline (B) of detecting

drafting, revising, and editing activities using the heuristic. 92

Figure 7-1. Final marks (in green), total number of inactivities (pause) (in blue) and

writing activities (in red) of 26 groups in order of their final marks, lowest mark

on the left. .. 101

xi

Figure 7-2. Numbers of drafting (blue), revising (red), and editing (green) activities

performed by 26 groups (in order of their final marks, lowest mark on the left)

 ... 103

Figure 7-3. Dotted chart of 26 groups of students writing collaboratively (from ProM

tool) displayed in order of starting time. Circles represent drafting, triangles

depict revising, and squares denote editing. Author1 is identified by the colour

black and Author2 is shown in grey. ... 104

Figure 7-4. Process models of highest and lowest Achieving Groups (from ProM). 106

Figure 7-5. Sequence patterns of 4 groups (clockwise from top left 03, 19, 10, and 22)

of students writing collaboratively (from ProM). .. 108

Figure 7-6. Author collaboration based on writing activities. 109

Figure 7-7. HMM model created with semantic heuristic on the left (Heuristic MM)

and without the heuristic on the right (Hidden MM).. 111

Figure 7-8. Pre-processing steps. .. 112

Figure 7-9. MMs of the documents of High and Low Performing groups (Heuristic

MM and Hidden MM respectively). .. 116

Figure 7-10. Heuristic MMs of High Performing groups versus Low Performing

groups. .. 119

Figure 7-11. Mockup snapshot of writing processes, generated by Dot Chart Analysis

plugin of ProM ... 122

Figure 7-12. Mockup transition diagrams of writing activities based on hidden

Markov models. .. 123

Figure 7-13. Mockup topic evolution and topic-based collaboration 124

Figure 7-14. Mockup authors’ contribution based on writing activities: formatting (i.e.

editing) in green bar, revising in blue bar, and drafting in red bar. 125

Figure 8-1. Framework of approach producing revision maps, topic evolution charts,

and author-topic networks. .. 132

Figure 8-2. Revision map of a real document written by a group of five students: c1,

c2, c3, c4, and c5. “ad” is the administrator. .. 134

Figure 8-3. A topic evolution chart of four topics: T1, T2, T3, and T4. 136

Figure 8-4. Perplexity vs number of topics for a document written by graduate

students (from the case study described below). The selected number of topics is

equal to 12 as explained above. ... 142

xii

Figure 8-5. A topic-based collaboration network for collaborative writing. The

network is inspired by the social network proposed by Broniatowski and

Christopher (2012). Nodes represents students: a1 to a4. The square is the group

coordinator and circles are group members. A connection between two nodes

means that the two corresponding students have written about the same topics.

 ... 143

Figure 8-6. Topic-based collaboration networks of four different groups of students

writing documents. Squares represent group coordinators. Circles are group

members. Links between two nodes indicate that the two corresponding authors

have written about the same topics. ... 146

Figure 8-7. Topic evolution for the simulated scenarios. ... 149

Figure 8-8. Experiment setup of six cycles (fortnights). Two revision maps were

provided for each cycle: the first week revision map presented by a grey

diamond and the final revision map presented by a white diamond. 152

Figure 8-9. The first week revision map of Group c3g4. ... 156

Figure 8-10. The two-week revision map of Group c3g4. 157

Figure 8-11. Topic evolution map of three topics T3, T4 and T9 over 50 revisions of

Document 2. The table above shows the top 10 words of each topic. 159

Figure 8-12. Author-topic networks of 20 documents of four cycles. Each row shows

a cycle, which is a writing period of two weeks. Squares depict group

coordinators and circles are group members. The edge connecting between two

nodes represents two corresponding students writing the same topics. 160

Figure 8-13. The usefulness of revision maps - ranging from 1 as "strongly disagree"

to 7 as "strongly agree" ... 164

Figure 9-1. Summary of algorithms adapted and created in the toolbox, and

algorithms which can be used for improving the toolbox in the future. 176

Figure A-1. An example of revision histories. ... 181

Figure A-2. Two consecutive revisions showing three text edits. 182

Figure B-1. An example of text edits performed on 7 revisions. A revision has a diff

record associated with it. A rectangle represents a paragraph. Each circle shows a

text edit. Red and blue edits are detected by paragraph differencing, whereas red

ones are identified by a word differencing algorithm. 184

Figure B-2. An example of word edits performed on an existing paragraph. 185

xiii

Figure C-1. Process models, as dependency diagrams of documents written by 26

groups of two students. The final marks (out of 100) of individual groups are

shown in parenthesis. The fitness of each model is the decimal number below the

group number. .. 189

Figure D-1. Revision Map of Group c3g1. .. 191

Figure D-2. Revision Map of Group c3g2. .. 192

Figure D-3. Revision Map of Group c3g3. .. 193

Figure D-4. Revision Map of Group c3g5. .. 194

xiv

LIST OF TABLES

Table 2-1. Summary of topic extraction algorithms. .. 23

Table 3-1. Example of an event log. .. 45

Table 5-1. Number of Revisions and the final marks of 26 documents of Dataset A, in

which documents are ordered by the final marks. ... 73

Table 6-1. Heuristic for identifying collaborative writing activities based on text edits

(C1 – C8), text structure (S1 – S2), and functions (F1 – F3). 78

Table 6-2. Detecting surface change (C1) and alteration of form (C7). 82

Table 6-3. An example of four revisions of a hypothetical document. 87

Table 6-4. Evaluation using all revisions ... 91

Table 6-5. Evaluation per revision. .. 91

Table 6-6. Heuristic performance based on Zero R as baseline and F1 score for

detecting three activities: Drafting (D), Revising (R), and Editing (E) for major

revisions of 15 documents. The documents were ordered according to the

number of writing activities they contained. ... 92

Table 6-7. Heuristic performance based on Zero R as baseline and F1 score for

detecting 5 activities: Brainstorming (B), Outlining (O), Drafting (D), Revising

(R), and Editing (E) for all revisions of 6 documents. The documents were

ordered according to the number of writing activities contained in each. 94

Table 7-1. Text edits and their description .. 114

Table 7-2. Stationary Probabilities. ... 120

Table 8-1, the difference between DiffLDA for software repositories (Thomas, 2011)

and DiffLDA for writing processes. .. 138

Table 8-2, the dictionary and topic distribution of a simulated data 147

Table 8-3, event log file presenting text edition events of revisions of a simulated

document. ... 147

Table 8-4. Questionnaire for qualitative evaluation ... 153

Table 8-5. Numbers of revisions, vocabularies (unique words), delta documents,

authors per revision, and final marks of all documents. 154

1

CHAPTER 1

INTRODUCTION

The availability of the Internet has made collaborative writing very easy to

implement in schools and at work. One result of this circumstance has been the

development of new forms of writing, such as blogging and wiki writing. In addition,

the emerging of “cloud computing” tools and Web 2.0 applications, such as Google

Docs, have led to the creation and access of near desktop-quality online writing

environments.

Writing can be used not only as a method of acquiring better writing skills, but

also as an important tool for learning subject matter (Bereiter & Scardamalia, 1987;

Galbraith, 1999). The context of this research focuses particularly on collaborative

forms of writing in an academic environment for the purpose of learning, in which

writing activities are collaboratively performed by groups of students in a period of

multiple writing sessions. Lowry et al. (2003) describes collaborative writing (CW)

as “..an iterative and social process that involves a team focused on a common

2

objective that negotiates, coordinates, and communicates during the creation of a

common document”. Cognitive studies demonstrate that CW presents a challenge

with regard to all these aspects: negotiation, coordination, and communication

(Flower & Hayes, 1981). Because of the complexity of the CW process, both explicit

and scaffolding support need to be provided; these two types of support generally fall

into one of three classes: Specialised writing and document management tools;

document analysis technologies; and team process support. This thesis addresses the

last two of these three classes, as the first one is provided by commercial vendors

(e.g. Google) who provide the writing tools and store the documents written by

students.

Even though the use of cloud computing tools, such as the collaborative writing

tool Google Docs, is spreading in workplaces and classrooms, CW is not explicitly

taught in school or higher education systems. Providing support on the processes of

CW can be useful not only for improving the quality of the documents produced by

this process, but also – and more importantly – for improving the CW skills of those

involved. This research posits that in order to effectively support Higher Education

students in writing together and learning from the collaborative writing process, it is

necessary to develop computational support to provide visualisations of and/or

feedback with regard to the students' activities during the process. The visualisations

of and/or feedback on writing processes can be analysed in order to extract the

patterns of text edits and writing activities that are performed during the course of

writing. Analysing the discovered patterns of writing activities can assist in

understanding of how certain sequence patterns of writing activities (i.e. the steps

followed by a group of authors) lead to high quality outcomes and sequence patterns

that may lead to low quality outcomes.

Computer-supported writing has been studied for decades in the field of

Education. After ten years of collecting empirical data, Goldberg et al. (2003) found

in a meta-study “that when students write on computers, writing becomes a more

social process in which students share their works with each other”. The study also

noted that when using computers, students prefer to make revisions while producing

text, rather than afterwards; they also tend to make more revisions between initial

and final drafts and to produce longer passages.

3

Review feedback, especially from peer reviews, has been recognized as another

effective tool for learning writing (Carlson & Berry, 2008; Cho & Schunn, 2007).

When students use computers to write, they engage in the revising of their work

throughout the writing process; they more frequently share and receive feedback

from their peers; and they benefit from teacher input earlier in the writing process

than they do when writing manually. Although the studies show that computer-

supported writing, including automatic feedback tools, efficiently assists students in

writing and reviewing, it is still crucial to further understand the writing process in

order to develop support technologies for CW.

In order to properly support collaborative writing, it is essential to gain an

understanding of how ideas and concepts are developed during the writing process,

which consists of steps of writing activities. These steps can be considered as

sequence patterns comprising both time events and the semantics of changes made

during those steps.

Therefore, there are two effective techniques that can be combined and used to

obtain insight into students’ collaborative writing: Process mining, which focuses on

extracting process-related knowledge from event logs recorded by an information

system; and semantic analysis, which focuses on extracting knowledge about what

the student wrote (or edited). The field of process mining covers many areas, such as

process discovery (discovery of the control flow), performance characteristics (e.g.

throughput times), process conformance (checking if the event log conforms to

specifications), and social networks (e.g. collaboration) (Bozkaya et al., 2009; van

der Aalst, 2011). Process mining analysis, in particular, is necessary to understand

group awareness and writers' participation and collaboration. Text mining combines

indexing, clustering, latent semantic analysis (Landauer et al., 2007) and several

probabilistic topic modelling techniques (Blei & Lafferty, 2009).

For two decades, process mining techniques have been successfully applied to

extract process-related knowledge from event logs recorded by business information

systems; however, the techniques have only recently been applied to educational

data. For example, Pecheniskiy et al (2009) used process mining tools to analyse data

from online multiple choice examinations and demonstrated the use of process

discovery and analysis techniques; but the area of interest in this research was the

individual students' activities related to answering online multiple-choice questions

4

during assessment, not student activities related to writing and editing texts

collaboratively.

There is prolific disparate research in text mining with regard to improving

support for quality writing, such as tools for automatic scoring of essays (Shermis &

Burstein, 2003), visualisation of documents (O'Rourke et al., 2011; Villalon &

Calvo, 2011), automatic question generation (Liu & Calvo, 2011) and document

clustering (Andrews & Fox, 2007); however, these existing approaches all focus on

the final product, unlike the work in this research which examines the writing

process itself in an effort to provide insight on how students write their documents.

In addition to the above studies, one important benefit of cloud computing tools,

beyond allowing authors to edit text anywhere at any time and to collaborate

seamlessly, is their capacity to store all the document revisions and revision histories

(i.e. timestamps and authorship), providing unprecedented historical data of all the

text edits made by authors as they write. By exploiting this data, researchers can

gain insight into the processes that authors follow to write their documents, and

investigate and extract information about collaborative writing that may prove useful

for teachers and students.

Abundant research has recently been conducted with regard to exploiting

Wikipedia’s revision history for several tasks, such as Natural Language Processing

applications (Ferschke et al., 2013), including a number of studies that were

particularly interested in analysing the lifecycles and evolution of Wiki articles. The

article evolution extraction was based on human evaluated quality classes in

Wikipedia, aiming mainly at automatically assessing the quality and trustworthiness

of the articles. Although these techniques can be applied to extract collaborative

writing processes not only for Wikipedia articles but also for any jointly-authored

documents, the methods used in these studies do not provide adequate means for

coding the writing behaviours logged in the revision histories or to sequentially

analyse the collaborative writing processes observed. For this reason, these

techniques can not be used directly in supporting collaborative writing.

When students engage in collaborative writing processes, they produce higher

quality text (Palincsar & Brown, 1984; Scardamalia & Bereiter, 1996). However,

research shows that groups tend to choose approaches that result in members

working more on an individual than a collaborative basis (Ede & Lunsford, 1992). In

5

order to understand why groups tend to write individually rather than collaboratively

and to discover the factors that affect group collaboration on writing tasks, it is

crucial to employ techniques that identify writing activities and that model the actual

sequences of these activities.

To support collaborative writing skills, feedback about the writing processes can

be provided to students and teachers in the form of mirroring visualisations (Erickson

et al., 1999; Kay, Maisonneuve, Yacef, & Reimann, 2006; Upton & Kay, 2009)

which provide an awareness of the group’s writing activities to individual students,

thus enabling them to perform their collaborative writing tasks more efficiently and

effectively. In addition, teachers can use the support as tools to help them monitor

groups effectively and detect problems early.

In summary, providing support on the processes of CW can be useful not only for

improving the quality of the documents produced by this process, but also – and

more importantly – for improving the CW skills of those involved. In order to

properly support collaborative writing, it is essential to gain an understanding of how

ideas and concepts are developed during the writing process. Although there is

unprecedented historical data including all the document revisions and revision

histories (i.e. timestamps and authorship), provided by cloud computing tools, there

are problems with existing techniques for investigating into the development of ideas

and concepts during the course of collaborative writing:

• The existing approaches all focus on the final product of writing, not on the

process of writing.

• There is no adequate ways for coding and automatically identifying the

writing behaviours logged in the revision histories; and sequentially analysing

the collaborative writing processes observed.

• There is no appropriate feedback and/or visualisation for analysing the

development of ideas and concepts during collaborative writing processes and

mirroring the group’s writing activities to individual students and teachers.

1.1 Summary of Contribution

This thesis aims to develop techniques that automatically extract process models of

writing processes and provide visualisations that describe aspects of students’

collaborative writing. The outcomes of this work are the following:

6

• To identify the text features -- e.g. text editions, topics, and cohesion -- that

can be used to detect the purpose of text edits made to a document.

• To extract the corresponding collaborative writing activities or events based

on these text edits; the theories of cognitive models of writing processes; and

the taxonomy of collaborative writing activities and revisions.

• To create techniques for building a range of process models and

representation by using those collaborative writing activities which provide

different views of the collaborative writing processes.

• To design several visualisations that reflect important syntactic and semantic

changes made to a document during the writing process.

1.2 Outline of the Chapters

This chapter provides an introduction to this thesis, describes the overview and

motivation for the research, and outlines the contributions made by the research.

Chapter 2 reviews the current literature on the theoretical framework of cognitive

models of writing processes, taxonomies of collaborative writing activities, models

of analysing revisions, related process mining, and text mining works.

Chapter 3 reviews the theoretical background of the text mining and process

mining algorithms and techniques used in this thesis.

Chapter 4 explains the approach of this thesis, consisting of a framework for

extracting revisions and revision histories; and methods for automatically identifying

writing activities, extracting process models, and visualising collaborative writing

processes.

Chapter 5 introduces WriteProc, the framework for extracting revisions and

revision histories, provides an overview of the framework, the writing environment,

along with the approach for extracting revisions and revision histories, and describe

the dataset used in the following chapters: 6 and 7.

Chapter 6 presents my techniques for automatically identifying collaborative

writing activities, and the validation of these techniques, using real documents

written by groups of graduate students.

Chapter 7 presents my techniques for extracting process models: causal

dependency diagrams and transitional state diagrams by using process mining

algorithms and hidden Markov models, respectively. It also provides the process

7

analysis of writing processes of real documents written by groups of students

outlined in the studies in Chapter 5.

Chapter 8 presents my techniques for visualising collaborative writing processes;

introduces three visualisations; demonstrates the validation of the techniques used for

producing the visualisations based on a synthetic dataset; and provides a prototype

experiment to illustrate how the visualisations are used, what information they

provide, and whether they are useful.

Chapter 9 discusses the limitations of the techniques presented herein and offers

suggestions for future research, as well as summarizing the approach of this thesis.

1.3 Publication Related to This Thesis

This thesis is derived from the following publication:

Southavilay, V., Yacef, K., & Calvo, R. A. (2009). WriteProc: A Framework for

Exploring Collaborative Writing Processes. Paper presented at the

Australasian Document Computing Symposium, Sydney, Australia. –

incorporated in Chapter 5.

Southavilay, V., Yacef, K., & Calvo, R. A. (2010). Process Mining to Support

Students' Collaborative Writing. Paper presented at the the third International

Conference on Educational Data Mining, Pittsburgh, PA, USA. –

incorporated as in Chapter 6 and 7.

Southavilay, V., Yacef, K., & Calvo, R. A. (2010b). Analysis of Collaborative

Writing Processes Using Hidden Markov Models and Semantic Heuristics.

Paper presented at the Proceedings of the third International Workshop on

Semantic Aspect of Data Mining, Sydney, Australia. – incoporated as in

Chapter 7.

Southavilay, V., Yacef, K., Reimann, P, & Calvo, R. A. (2013). Analysis of Writing

Processes Using Revision Maps and Probabilistic Topic Models. Paper

presented at the Proceedings of the third International Conference on

Learning Analytics and Knowledge, Leuven, Belgium. – incorporated as in

Chapter 8.

8

9

CHAPTER 2

LITERATURE REVIEW

The subject of Computer-Supported Collaborative Work (CSCW), particularly

Collaborative Writing (CW), has received attention since computers were first used

for word processing. The ever increasing availability of the Internet has resulted in a

corresponding increase of people writing collaboratively by sharing their documents

in a number of ways. Relatedly, since writing individually and collaboratively are

considered essential skills in most industries, academia, and government, there has

also been an increase in research on how to support the production of better

documents.

Over the past two decades, an abundance of text-mining research has been

conducted with the purpose of improving the support of quality writing. Shermis and

Burstein (2003) described four different methods, as follows: (1) Project Essay

Grade (PEG), which used a large collection of surface features such as instances of

average sentence length, frequency of certain transitional words, number of

10

semicolons, and work rarity; (2) the Bayesian approach, which examined the

probabilities of each token (typically a word or a stemmed word) being used in

essays in each score group; (3) Intelligent Essay Assessor (IEA), which examined

content, style, and mechanics, with content expressed as independent measures of

semantic quality and the amount of such content; and (4) e-rater, which examined

discourse structure, syntactic structure, and vocabulary usage. The PEG and

Bayesian approaches are simpler to develop for real applications, although IEA and

e-rater have much deeper linguistic features.

Another active section of research in improving the support of quality writing is

the area of automatic question generation, exemplified by the work of Liu and Calvo

(2011), which used text-mining and natural language processing techniques to

provide feedback as types of questions to students based on their documents (i.e.

literature reviews). In addition, the works of O'Rourke et al (2011) and Villalon and

Calvo (2011) concentrated on visualising the cohesion of texts and concept maps of

students’ essays, using text mining techniques respectively. Nevertheless, these

studies all focus on the final product, not on the writing process itself. An

investigation of how ideas and concepts are developed during the actual process of

writing could be used to improve not only the quality of the documents but also --

and more importantly -- the writing skills of those involved.

Analysing the process of writing requires an understanding of how certain

sequence patterns (i.e. the steps followed by a group of writers) lead to high quality

outcomes. The sequence patterns of writing processes are comprised of time events

(as used in other process mining research) and the semantics of the changes made

during that step. Two techniques can be combined to examine the patterns: Process

mining, which focuses on extracting process-related knowledge from event logs

recorded by an information system; and semantic analysis, which focuses on

extracting knowledge about what the student wrote or edited.

This chapter begins with a discussion of the theoretical framework of the

cognitive models of writing processes and discusses the taxonomy of collaborative

writing and models of analysing revisions, followed by a presentation of related

works in the fields of text mining and process mining. It then reviews tools to

support collaborative writing.

11

2.1 Theoretical Framework

2.1.1 Cognitive Models of Writing Processes

In order to understand the writing process, it is important to review the theoretical

frame of cognitive models of writing processes and the taxonomy of collaborative

writing activities and revisions.

There are three classic cognitive models of writing processes: Knowledge-

telling, knowledge-transforming, and knowledge-constituting models (Galbraith,

2009). The first original model, proposed by Hayes and Flower (1980), was

developed based on an experiment with writers thinking aloud as they wrote. This

original model considers a writing process as an idea generation process that

retrieves content from long-term memory by using resources from the writing task

environment (including the writing assignment and the text produced so far) and

from the writer’s long-term memory, in which a “monitor” or central executive is

responsible for deciding which activities (tasks) should be carried out and when

(Galbraith, 2009).

According to this model, in order to work out what to write next about a topic,

the writer starts by using the specification in the writing assignment to construct a set

of cues with which to probe long-term memory. If content is successfully retrieved

and then positively evaluated, it is then either transformed into text immediately on

paper or stored mentally in the memory for later translation. This content then acts as

a new probe for memory, so that each retrieval episode consists of associated chains

of content being retrieved from memory. If appropriate content cannot be retrieved,

the “monitor” has to decide what to do next; it may decide to pursue a different goal -

- for instance, to read more books about the topic, or to read the assignment more

closely – or it may also carry on generating content by probing memory again with a

different set of cues. It is important to note that the central part of this model is the

“monitor”, which controls the decision process and the writer’s overall writing

strategy. Because the content was retrieved periodically from memory, this original

model was called the “knowledge-telling” model (Bereiter & Scardamalia, 1987).

In 1987, Bereiter and Scardamalia extended the original model of idea generation

and proposed the “knowledge-transforming” model of writing. Although this model

also includes the same basic mechanism of generating ideas (i.e. the retrieval of

12

content from long-term memory), it is focused on the rhetorical nature of goals

towards which the writing is directed. The model claims that the writing process is

not simply an evolution of a knowledge telling, but also a redefinition of writing

goals, in which content is formulated as the text develops. In other words, according

to this model, content is not only retrieved in response to a more elaborated

representation of the assignment as a rhetorical problem, but it is also formulated in

the context of, and as a contribution to, the series of rhetorical acts that emerge

gradually in the text.

Although this knowledge-transforming model captures important features of the

writing process, Galbraith argued that it has two problems (Galbraith, 2009). First,

although one of the attractive features of the model is the claim that it accounts for

the common experience of writing as a source of discovery, this is only implied in

the model, and was not directly tested during its development. Second, the

knowledge-telling model, which is embedded within the knowledge-transforming

model as its account of how content is generated to satisfy goals, does not explain

how novel content is formulated during writing. According to the knowledge-

transforming model, generating an idea is a matter of accessing pre-existing content

in the memory. Although this can account for the fact that the content retrieved is

different when the rhetorical context drives a memory search than it is when

retrieved associatively, it does not explain how new content that develops the

writers’ understanding is generated. Consequently, the idea implied by the model that

writing develops understanding cannot be justified without empirical testing.

Subsequent research has investigated this more directly, and examined the

condition under which writers discovered new ideas through writing. In 1999,

Galbraith presented writing as a knowledge constituting process. Rather than

presenting knowledge as static data stored in a memory system (as assumed by

Hayes and Flower), Galbraith considered that language production draws on a

different semantic memory system, which is represented by a network of units

analogical to neuron networks. This network is flexible in that units have different

patterns of activation for different inputs, and only develop these patterns of

activation in the presence of a particular input. Galbraith's model did not include a

long-term memory unit or a monitor, like the two models previously discussed.

According to the knowledge constituting model (Galbraith, 1999), the author's

13

semantic memory is represented by the network of units, and the author's knowledge

is represented by the weights connecting the units. Galbraith did not deny that

content sometimes represents individual events which can be accessed via a process

of retrieval, a component which is similar to the principles of the Hayes and Flower

model; and also similar to the knowledge-transforming model characteristics, the

inputs in Galbraith's model consist of a specification or a goal, and a series of

rhetorical acts that gradually emerge in the text. However, the weights of connections

and the activation of the units in the network of the knowledge constituting model

were reconfigured through a series of learning mechanisms similar to the neuron

networks of humans.

2.1.2 Taxonomies of Collaborative Writing Activities

In addition to the above cognitive models, writing processes can also be described by

using a taxonomy of writing activities, as proposed by Lowry et al. (2003). This

taxonomy of group writing activities that occur in collaborative writing fall into six

categories, as follows (Lowry et al., 2003):

1. Brainstorming: Developing new ideas for a paper draft.

2. Outlining: Creating a high-level direction in which the document will be

going, including major sections and subsections.

3. Drafting: Writing the initial incomplete text of a document (this is typically

synonymous with the term "writing", but the term "drafting" is used to

convey incompleteness in the writing).

4. Reviewing: Having a participant or an editor read and annotate the document

draft section for improvements in content, grammar, and style.

5. Revising: Responding to the above comments by making changes in the draft

that reflect the feedback provided in the review.

6. Editing: Making final changes that are universally applied to a document to

make it more consistent (such as copy edits, grammar, and logic).

It is important to note that generally these six activities do not occur in a linear

sequence. In the process of writing a document, reviewing activities may be done not

only by the authors of the document, but also by instructors or editors or peers who

read and annotate the document for with regard to improvements in content,

grammar, and style. To support authors during collaborative writing, it is important

14

to focus on those activities that are performed by the writers, and not by reviewers.

Toward that end, it is crucial to concentrate on automatically identifying the

following five collaborative writing activities that are performed by writers --

brainstorming, outlining, drafting, revising, and editing -- and leave the reviewing

aside.

Faigley and Witte (1981) categorized text revisions into surface changes and

meaning changes. Surface changes, as opposed to meaning changes, do not alter the

meaning of the text. Surface changes are further subcategorized into formal changes,

such as spelling, grammar, and punctuation; and meaning-preserving changes, which

“paraphrase the concepts in the text, but do not alter them”(Faigley & Witte, 1981).

Meaning, or text-based changes, are subcategorized into macrostructure or

microstructure changes. Macrostructure changes include text revisions that would

alter the summary of a text, while microstructure changes would not. The results of

Faigley and Witte’s study showed that experienced writers made a lot of meaning

changes, while novice writers made mainly surface changes (Faigley & Witte, 1981).

Boiarsky (1984) argued that Although Faigley and Witte’s taxonomy provides “a

means for describing the changes in the text based categories, which are for

analysing how writers make text-based changes, they do not provide a description of

why writers make such changes.” She further developed a model for analysing

semantic changes in the writing process (Boiarsky, 1984) in which she identified the

following 11 types of revision functions and operations: Alteration of form;

reorganization of information; improvement in coherence; deletion of information;

expansion of information; emphasis of information; subordination of information;

creation of immediacy; improvement of prosody; improvement in vocabulary; and

correction of grammar and mechanics. Authors used these text change operations in

their writing activities for different purposes in order to produce final pieces of

writing.

Boiarsky’s study examined three phases of writing -- during drafting, between

drafting, and rehearsal – and involved interviews with writers and examinations of

their drafts, including revisions made during the rehearsal phase. She concluded that

these 11 functions and operations could provide a comprehensive and discriminating

means of describing writers’ processes of revision, as well as a valid set of criteria

for analysing revisions. Boiarsky also observed that writers did not engage in every

15

form of revision function and operation in every work, which she suggests might be a

reflection of the writer’s previous knowledge.

The nature of the changes made by authors can be analysed by using two

techniques: text mining and process mining. Work that relates to these two methods

of analysis is described in the following section.

2.2 Text mining for Detecting Cohesion and Topics

During the process of writing, authors go through several revisions of text edits

before the final work is completed. Particularly, authors introduce ideas (topics) by

creating and editing sentences and paragraphs in the written text. In order to develop

and convey topics to readers, authors refer to the same topics across several

sentences and paragraphs and make connection between these topics in the content

text. These overlapping and connection of the topics make the text cohesive.

Therefore, detecting changes in cohesion and topics is important to understand how

authors develop the content text during their writing processes. Text mining

techniques can be used to extract semantic meaning from these editing processes,

particularly from textual features such as cohesion improvement and topic (concept)

changes. This subsection presents significant works related to the use of text mining

techniques for analysing these features of the written texts.

McNamara and her colleagues at the University of Memphis used Coh-Metrix

(Graesser et al., 2004; McNamara et al., 2010) to analyse writing quality (Crossley &

Mcnamara, 2007; McNamara et al., 2009; Ozuru et al., 2010; Weston et al., 2011).

Coh-Metrix is a computational tool that is used to assess text on more than 600

linguistic and lexical indices. These indices are related to conceptual knowledge,

cohesion, lexical difficulty, syntactic complexity, and simple incidence scores

(Weston et al., 2011). Coh-Metrix provides the following interesting indices:

• Syntactic complexity which computes the mean number of words before the

main verb and the mean number of high level constituents (sentences and

embedded sentence constituents) per word and per noun phrase.

• Connectives and logical Operators which measure the density of connectives.

These connectives are associated with positive additive (also, moreover),

negative additive (however, but), positive temporal (after, before), negative

temporal (until), and causal (because, so) measures. The logical operators

16

measured in Coh-Metrix include variants of or, and, not and if-then

combinations.

• Causality which measures causal cohesion by calculating the ratio of causal

verbs to causal particles. The causal verb count is based on the number of

main causal verbs identified through WordNet (Fellbaum, 2005).

• Lexical overlap which considers four forms of lexical overlap between

sentences: noun overlap, argument overlap, stem overlap, and content word

overlap.

• Cohesion which measures semantic coreferentiality using Latent Semantic

Analysis (LSA) (Landauer & Dumais, 1997; Landauer et al., 2007), a

mathematical technique for representing deeper world knowledge based on

large corpora of texts. Weston et al. (2011) explained that “Unlike lexical

overlap, LSA measures associations between words based on semantic

similarity, which can be used to assess the amount of semantic

coreferentiality in a text”.

• Spatiality which measures spatial cohesion using motion verbs and location

nouns.

• Word characteristics which reports on a variety of lexical indices such as

hypernymy and polysemy.

• Word frequency which indicates how often particular words occur in the

English language.

In light of the above, Coh-Metrix seems to fulfil the need of discourse

psychologists and other researchers to have access to one computational linguistic

tool that analyses various linguistic features of texts. In particular, Coh-Metrix has

been used to detect a wide variety of differences in text and discourse (Crossley &

Mcnamara, 2007; McNamara et al., 2009; Ozuru et al., 2010; Weston et al., 2011)

based on an investigation of the final writing product. Although the indices of Coh-

Metrix described above can be used in analysing the writing process, not all of those

indices are suitable for use at the writing stages during which some words and/or

sentences have not been completely written yet. Nevertheless, this thesis uses a

similar technique to compute the semantic similarities between sentences and

paragraphs in order to measure the cohesion, which is the overlapping of words and

topics, as explained in the following section.

17

2.2.1 Cohesion Measure

Cohesion refers to the presence or absence of explicit cues in the text that allow the

reader to make connections between ideas in the content. For example, overlapping

words and concepts between sentences indicate that the same ideas are being referred

to across sentences. Likewise, connectives such as "because", "therefore", and

"consequently" inform the reader that there are relationships between the ideas

expressed and the nature of those relationships. Both cohesion and coherence are two

similar terms used in natural language processing, particularly discourse analysis.

Cohesion differs from coherence in that cohesion refers to the explicit cues found in

the text, whereas coherence refers to the understanding that the reader derives from

these cues in the text, which may be more or less coherent depending on a number of

factors, such as the reader's prior knowledge and skill (McNamara et al., 1996;

O'Reilly & McNamara, 2007). For the purposes for this research, only cohesion is

taken into account in analysing the writing process, leaving coherence aside.

McNamara and her colleagues, interested in the roles played by cohesion with

regard to writing quality (Crossley & Mcnamara, 2007; McNamara et al., 2010;

Ozuru et al., 2010), applied the techniques as elaborated in the beginning of this

subsection to examine that factor; but again, their work was focused on the final

writing product. In order to acquire insight on how authors carry out their activities

during the course of the writing process, one must analyse changes in cohesion over

time from one revision to another, beginning by first measuring cohesion in the text;

to achieve this, the following text mining techniques proposed by researchers for

computing cohesion can be considered:

Latent Semantic Analysis (LSA) (Landauer & Dumais, 1997; Landauer et al.,

2007) has been widely used to measure deeper quality patterns in texts, especially

discourse cohesion. Traditionally, LSA semantic spaces were normally created from

large corpora that reflect an assumed background knowledge. However, Villalon and

Calvo (2009) proposed an elegant technique for creating a semantic space using a

single document and no background knowledge. Their technique measured the

semantic distance between consecutive sentences and paragraphs of a document in

order to identify possible breaks in cohesion in the text. For a particular document

comprised of several revisions produced during the writing process, the technique of

18

building LSA semantic space can be used for each revision of the document in order

to explore the improvement of cohesion during the writing of the text.

Standard text similarity measures (based on term frequency) perform poorly on

computing the distance between consecutive sentences and paragraphs for a single

document because of the lack of common words between the consecutive sentences

and paragraphs. Yin and Meek (2007) achieved an improved Web-relevance

similarity measure for calculating similarity between short segments of text with an

approach that extended the terms of text segments using information from the Web

(search engine), and computed the similarity scores based on the extended

representation of those text segments. This technique can be integrated into the

technique proposed by Villalon and Calvo (2009) to improve the computation of

cohesion measures in the text.

Although it is common for writers to repeat words to emphasize concepts in the

text, good writers usually use synonymy and pronouns to avoid annoying repetition;

and this issue was not taken into account in the technique proposed by Yin and Meek

(2007). Varelas et al. (2005) introduced a semantic similarity measure using Wordnet

as the underlying reference ontology. This method of measuring similarity as well as

those previously mentioned (Villalon & Calvo, 2009; Yih & Meek, 2007) can be

used to measure the distance between consecutive sentences and paragraphs in single

document semantic space in order to investigate the progressive improvement of

cohesion during writing processes.

The works discussed above were all focused on computing cohesion in the text of

the final written product; however, not much research exists with regard to analysing

cohesion changes made during the entire course of the writing process, except for

one interesting work by Thomas and Sheth (2007) on automatically identifying

semantic convergence in Wikipedia articles. The researchers define semantic

convergence as a notion of article stability (Thomas & Sheth, 2007). For a particular

Wikipedia article comprised from several revisions, they created a vector space

representation of the article's revision milestones using TF-IDF as a term-weighting

scheme (Salton & McGill, 1983). The vector space is computed using all the words

occurring in all revisions of the article. A revision milestone is a combination of all

revisions made in one week, with the word count for milestones calculated as

medians. Thoms and Sheth then computed two kinds of semantic distances, one

19

being the cosine distance between every pair of consecutive revision milestones and

the second being the cosine distance between every revision milestone and the final

revision. Based on these two computed semantic distances, the authors examined

how particular articles became mature or semantically stable despite the ongoing text

edits that were performed on them.

Using the technique developed by Thomas and Sheth, one could infer that text

edits that produced stable cohesion through revisions were intended to revise and/or

edit content without significantly changing the flow of ideas and the concept of the

text. Although the vector space model used in their work is similar to the previously

mentioned works using LSA such as Villalon & Calvo (2009), Thoms and Sheth

(2007) did not use singular value decomposition, which is the mathematical

technique underlying LSA, to transform the vector space. Overall, their work shed

light on possible methods of analysing cohesion during the writing process.

Another important feature of the writing process is topic evolution, which

represents how ideas and concepts have been developed during writing. Relevant

works in this area are the subject of the following subsection.

2.2.2 Topic Extraction and Topic Evolution

Blei and Lafferty (2009) define topics as the “collections of words that co-occur

frequently in a text collection, and can be used to provide structure to an otherwise

unstructured collection of text”. Topics can be discovered through the application of

two different techniques: (1) using probabilistic graphical models such as latent

Dirichlet allocation (LDA) or topic modelling (Blei et al., 2003), and (2) using a

document clustering algorithm such as Lingo (Osinski & Weiss, 2005). Each of these

two techniques has its own strengths and drawbacks when used for extracting topics

and discovering topic evolution.

Latent Dirichlet Allocation (LDA) is a popular probabilistic topic modelling

technique which, at the time of this research, has never been used to extract the

evolution of topics during the writing of a document. The closest method used for

this purpose is DiffLDA (Thomas et al., 2011), which has been applied for extracting

topic evolution in software repositories.

There has been an increase in research related to analysing the evolution of topics

in software development. Analysing topic changes over time in regard to software

20

source codes has several aspects in common with analysing topic changes in regard

to the writing process. Similar to jointly authored documents, software source codes,

are usually updated incrementally from one revision to another revision as

programmers developed the software. Although sometimes there can be lots of

changes occurring in one revision, there still exists some overlap of text contents

between the revision and the previous one.

Topic models such as LDA (Blei et al., 2003) -- statistical models used to

automatically extract the topics from a given corpus -- have proven to be an effective

tool for analysing, understanding, and describing software project artefacts (Hall et

al., 2008; Linstead et al., 2008; Thomas, 2011). The Hall model was originally

developed (Hall et al., 2008) to analyse topic evolution using conference proceedings

as the corpus. Linstead et al. (2008) and Thomas et al. (2010b) used the Hall model

on software repositories by simply applying LDA to all versions of all documents at

once and performing post hoc calculations based on the observed probability of each

document in order to map topics to software versions. The main advantage of this

approach is that no constraints are placed on the evolution of topics, which results in

flexibility for describing the large, seemingly random changes to a corpus that are

typical in software development.

However, topic models based on LDA assume that there are no duplicated

documents in the corpus (Thomas, 2011; Thomas et al., 2010a). In other words, LDA

treats each document as unique. This assumption holds for all kinds of texts used in

the topic modelling literature such as journals, blog posts, and newspaper articles.

During writing processes, however, documents are usually updated incrementally,

and there is a tremendous amount of text content overlap between revisions;

consequently, LDA can only be applied to the non-overlapping portions of two

consecutive revisions.

In 2010, Thomas et al proposed a new model, called DiffLDA, which addressed

LDA’s sensitivity to document duplication by operating on the difference (i.e. non-

overlapping portions) between versions of a source code document, resulting in a

more accurate, finer-grained representation of topic evolution (Thomas et al., 2010a).

Specifically, DiffLDA relied on a pre-processing step that used only the changes

between consecutive versions, instead of all versions, of a document. Each version of

source code document was considered to be a plain text consists of codes as words

21

(terms). For each source code document, DiffLDA first computed the edits between

consecutive versions using the standard UNIX diff utility, resulting edited texts

(difference between successive versions). Each text edit text was then classified as

either an add, change, or delete, depending on whether the edit resulted in more, the

same, or fewer lines of code, respectively; and an existing line that was changed was

considered to be deleted and then added again (Thomas et al., 2011) so that only two

types of text edits remained -- addition and deletion. For each version of the

document, DiffLDA created two delta documents to store these two types of edits,

after which LDA was applied to the entire set of delta documents at once, which

revealed a set of topics and membership values for each delta. Finally, the output of

LDA was examined to compute the metrics of interest such as the topic assignment

metric, which shows the distribution of topics in each version, and the hotness

metric, which represents how much edit activity a topic has received in each version

(Thomas et al., 2010a).

The DiffLDA model manifested a limitation in that when the two versions of a

source code document were compared, and the edits were saved into the delta

documents as explained above, although duplication was eliminated and the

document edits were captured, the context of the original documents was destroyed.

In other words, the words in the delta documents were no longer contextualized by

surrounding words and paragraphs as they were in the original document (Thomas et

al., 2010a). As a result, it was difficult to infer and interpret the topics (labels) in

order to understand the actual nature of the topic changes.

Other factors that must be taken into account when using topic models and LDA-

based models are the parameter setting and the exact inference problem. When

applying LDA, one needs to specify the number of topics as an input to the model,

along with document and topic smoothing parameters α and β, of the two Dirichlet

distributions: document topic distribution and topic-specific word distribution. At

present, there is no standard method for selecting the values for these input

parameters beforehand. One approach is to use the well-established values that have

been shown to work reasonably well (Griffiths & Steyvers, 2004; Wallach, 2008).

Another approach is to first learn the number of topics using algorithms such as the

Hierarchical Dirichlet Process (Teh et al., 2006). In addition, LDA is a generative

probabilistic model in which exact inference is intractable, and Gibbs sampling is

22

often used to sample the posterior probabilities of documents and topics.

Consequently, different sets of sampling iterations will produce slightly different

results (Thomas et al., 2011).

The link model, proposed by Mei and Zhai (2005) and first used on software

repositories by Hindle et al. (2009), took a different approach than the Hall model by

applying LDA to each version of the repository separately, followed by a post-

processing phase to link topics across versions. Once the topics were linked, the topic

evolutions could be computed in the same way as in the Hall model. This technique

involved the use of similarity thresholds to determine whether two topics were

similar enough to be called the same, since LDA is a probabilistic process and it is

not guaranteed to find identical topics in different versions of a corpus. As a result, at

each successive version, some topics are successfully linked while others are not,

causing past topics to “die” and new topics to be “born”.

Because of these limitations, this thesis also considers a deterministic approach

using a document clustering algorithm to extract topics. One such technique for

extracting topics was based on the document clustering algorithm, Lingo (Osinski &

Weiss, 2005). The Lingo algorithm was created originally for the purpose of

clustering web search results or snippets (Osinski & Weiss, 2004). Unlike other

document clustering algorithms, which determine description (labels) after

discovering the actual cluster content, Lingo emphasised indentifying clustering

description first, before allocating cluster content. In addition, unlike the previously

discussed topic modelling algorithms in which each document was considered to be a

probability distribution over some topics and each topic was presented as a

probability distribution over a number of words, Lingo builds a TF-IDF vector space

model from the input snippets and uses LSA to discover cluster labels or topics.

Finally, the algorithm identified cluster members by matching the input snippets

against a series of queries, each of which is a single cluster label. Particularly,

Osinski and Weiss (2005) also used the cosine distance to calculate the similarity

between the input snippets and the cluster labels.

Lingo created overlapping clusters and the “other topics” cluster for the input

snippets that did not match any of the cluster labels, and provided several advantages

over its counterpart, probabilistic topic modelling algorithms. First, Lingo could

automatically extract labels or topics with minimum human expert interaction and

23

was able to handle short text forms such as sentences. Second, unlike the topic

modelling algorithms, which required training several models and validating the

models in order to obtain the number of topics, Lingo could automatically discover

the number of topics during its execution time by using the singular value

decomposition technique in LSA. Consequently, the Lingo algorithm will perform

better in terms of running time if one wants to extract and compare topics between

several revisions for the purposes of analysing writing processes. Therefore, in this

thesis Lingo algorithm was selected to extract topics and compute topic overlapping

for semantic analysis in order to identify writing activities and discover writing

process models.

Table 2-1. Summary of topic extraction algorithms.

Features

Topic Extraction

Probabilistic graphical models (based on LDA) Document

clustering (based

on LSA)

Hall model (Hall

et al., 2008)

Link model (Mei

& Zhai, 2005))

DiffLDA

(Thomas et

al., 2011)

Lingo (Osinski &

Weiss, 2005)

Sensitivity to

document

duplication

Y Y N N

Automatic

discovery of the

number of topics

N N N Y

Automatic

discovery of topic

labels

N N N Y

 The works discussed so far are involved with extracting features of text

content, such as cohesion and topics, in order to identify the semantics of text edits

based on these features. Particularly, Latent Semantic Analysis (LSA) is used to

compute cohesion measure. In addition, topics can be discovered through the

application of two different algorithms: (1) probabilistic graphical models such as

latent Dirichlet allocation, and (2) a document clustering algorithm such as Lingo.

Table 2-1 summarises topic extraction algorithms by comparing their features and

highlighting similarity and differences. The semantics of text edits can be defined as

24

the actions or activities that authors intend to perform during their writing tasks. In

order to gain a deeper understanding of the way that authors develop their

documents, it is possible to examine the sequences of the identified actions or

activities and process mining techniques, as described in the following discussion.

2.3 Process Mining

The aim of process mining techniques is to discover the underlying patterns of

various processes by extracting knowledge from process observation data, such as

recorded event logs in organisational management systems, student interactions with

each other or software captured in learning software logs (Trčka et al., 2010; van der

Aalst, 2011). Process mining techniques have three broad uses: the first is the

discovery of process models without using any a priori information; the second is the

checking conformance of the observed behaviour to an a priori process model or

behaviour workflow model; and the third is the extension of a priori process models

by projecting discovered patterns back on the initial models and adjusting processes

accordingly (Rozinat et al., 2007; van der Aalst, 2011). This thesis focuses on

extracting process models of the entire writing procedure and on using these models

to perform an analysis for the purpose of discovering the patterns of text edits that

are carried out during writing processes. Toward this end, a review of the literature

relevant to discovering and analysing process models is presented below.

The open source process mining framework ProM (ProM, 2013) has been widely

used in extracting business process models. ProM provides several algorithms for

discovering process models, such as the α-algorithm (van der Aalst et al., 2004),

Heuristic Miner (Weijters & Ribeiro, 2010; Weijters & van der Aalst, 2003), and

genetic process mining (Medeiros et al., 2007) as well as plug-in utilities such as

Dotted Chart Analysis utility (Song & van der Aalst, 2007) and Performance

Sequence Analysis (Bozkaya et al., 2009). Of these process mining algorithms, the

Heuristic Miner algorithm (Weijters & Ribeiro, 2010; Weijters et al., 2006) has been

successfully employed in several applications for a number of reasons. Particularly,

the algorithm can be used to exploratory mine less structured process data when a

priori workflow model is not known. In addition, this mining algorithm can handle

event logs with various kinds of “noise”, such as diversions from common sequences

or incomplete traces of process information. Such noise is common in event logs,

25

particularly when event logs are derived from online Web 2.0 applications

supporting collaborative learning tasks. Overall, Heuristic Miner is considered to be

appropriate for mining processes that require flexibility and cannot strictly be

predefined in advance, such as writing process models.

Other types of works have focused on the automatic analysis of student learning

processes and patterns (Romero & Ventura, 2006; Xiaoli et al., 2010). Most of this

research primarily analysed student log files that were automatically generated from

the students' interactions with software and/or each other using various statistical,

data and text mining techniques, such as hidden Markov models (HMM), process

mining, time series and sequential pattern mining (Jeong et al., 2010; Pechenizkiy,

Trcka, Vasilyeva, Aalst, & Bra, 2009; Southavilay et al., 2010b). For example, Kay

et al.(2006) analysed student interaction sequences when they worked collaboratively

on software development, for the purpose of detecting learning patterns that are

indicative of team problems and success. Jeong et al. (2010) analysed student self-

learning behaviours in asynchronous learning environments for adult learners using

HMM; the analysis revealed that successful students had more linear learning

behaviours that remain consistent across different models than unsuccessful students.

Many other e-learning studies used different data mining algorithms for exploring

student learning in e-learning systems, such as analysing student navigational

behaviour in virtual campus environments and identifying gifted students' learning

paths (Romero & Ventura, 2006). The event logs of these studies, however,

considered student interaction sequences as sequences of activities, but did not

explore the semantics of activities (the nature of the interactions) that occurred in the

studies.

Recently researchers have used both semantic (content) analysis (i.e. text mining)

and workflow analysis (i.e. process mining) in their works to extract activities

(events) embodied in emails and other artefacts. For instance, Kushmerick and Lau

(2006) tried to discover process models from an email dataset of e-commerce

transactions. They first used identifiers, such as transaction numbers, to determine

the activities of each transaction. They then employed a hierarchical agglomerative

clustering method to establish the transitions of the activities and derive the process

model. In another study, Buffet and Geng (2010) proceeded to refine an initial

process model -- a priori information -- based on additional evidence (i.e. email

26

correspondence). They accomplished this by using text classification for labelling

events of email correspondence, and iteratively refined the existing process model

based on the labelled events.

Despite all the prior research described above, to the best of my knowledge, this

thesis constitutes the first example of using both semantic and process analyses to

identify (or label) writing activities based on text edits, cohesion and topic overlap,

and to extract writing process models for process analysis.

2.3.1 Analysing Writing Processes

The last thirty years have manifested an increasing interest in discovering writing

strategies and exploring the various stages of the writing process. During the 1980s,

researchers studied how authors went about writing and revising the many drafts of

their work, and proposed methods for analysing these procedures. Initially these

analytical methods were performed by hand, by tediously collecting hardcopies of

revisions and manually analysing them, as in the studies conducted by Faigley &

Witte (1981) and Boiarsky (1984). More recently, new software and advances in

computational linguistics have allowed researchers to collect revisions in electronic

formats, as well as securing logs or revision histories that include timestamp and

authorship information, thereby assisting by partially automating the collection of

revisions produced by authors and allowing researchers to concentrate on the

analysis of the writing process. Currently, there are many software applications used

in the study of writing processes, ranging from key-stroking, single-user logging

applications such as InputLog (Leijten & Van Waes, 2006) to version controlled

document applications which support collaborative writing, like Google Docs

(Google Docs, 2013), EtherPad (EtherPad, 2013), and Wikipedia (Wikipedia, 2013).

Several researchers (Caporossi & Leblay, 2011), (Leijten & Van Waes, 2006),

and (Tillema et al., 2011) have used InputLog to study and analyse the writing

processes of individual authors. Of particular interest is the analysis performed by

Tillema et al. (2011) from a study conducted to investigate whether the

(meta)cognitive activities (i.e. reading the assignment, planning, text production,

revising, etc) of secondary school students during writing tasks, as measured by

thinking aloud techniques and key-stroke logging, could be predicted by their

individual writing styles -- planning or revising. The researchers assumed that

27

writing style was determined by the temporal distribution of (meta)cognition across

the writing process. A multilevel regression model was employed to model the

occurrence of the (meta)cognitive activities over the period of the writing process.

The results showed that among all activities, the online temporal distribution of

reading the assignment and planning were different for different degrees of the

students’ writing styles. Although this study investigated single authors, the analysis

technique can nevertheless be applied for analysing collaborative writing by

computing the temporal distribution of (meta)cognitive activities across individual

students’ writing processes.

Although recently there has been a great deal of research using Wikipedia’s

revision history for applications in Natural Language Processing (Ferschke et al.,

2013), these studies used the revision data and its history record as the basis for

practical applications such as spelling correction, vandalism detection, automatic

article quality assessment, or trustworthiness. Research on extracting and analysing

collaborative writing processes automatically is still scarce.

Among the various individuals who used Wikipedia’s revision history to analyse

the evolution of Wikipedia articles, there was one particular researcher -- Han et al.

(2011) – who applied a Markov model technique to analyse the lifecycle of the

Wikipedia articles. In this study, the authors defined six stages through which an

article usually passed before reaching a convergence state. These states were

identified as 1) building structure, 2) contributing text, 3) discussing text, 4)

contributing structure and text, 5) discussing structure, and 6) text/content agreement.

Three features were used as observation variables to determine these states: 1)

Update type, including insertion, deletion, and modification; 2) content type,

including structure, text, format, structure + text, text + format, and structure+format;

and 3) revision granularity, including heading level, word level, sentence level,

paragraph level, section level, and link level. A sequence of these observation

variables was used to build a Markov model of a particular article, and revision cycle

patterns were extracted based on this model in order to find correlations between

human evaluated quality classes and revision cycle patterns to automatically assess

the quality of an article. It should be noted that although the authors made reference

to having used hidden Markov models, the hidden states applied were nevertheless

the six states mentioned above. A learning algorithm was not used to obtain the

28

hidden states; in fact, the Markov states are predefined based on the values of the

three features used as observation variables. For example, inserting a heading was

determined to be part of the “building structure” state, whereas inserting words in a

paragraph was deemed part of the “contributing text” state.

Nonetheless, the Han et al. approach outperformed the previous results in the

study by Dalip et al. (2009) that worked on the same task and data, but without using

features based on revision history data. Hence the features based on revision history

proved to be helpful elements for not only predicting quality of Wikipedia articles

but also analysing the history of jointly authored documents such as the Wikipedia

articles.

Another study also using Wikipedia revision history and types of text edits was

performed by Zeng et al. (2006), who were the first researchers to develop and

evaluate a model of article trustworthiness based on revisions histories. Their model

was based on author reputation, edit type features and the trustworthiness of the

previous revision. The edit type features chosen for use were addition and deletion;

the number of deleted and/or inserted words was measured. Interestingly, the authors

applied a Dynamic Bayesian network (DBN) based on these features to estimate the

trustworthiness of a revision based on a sequence of previous states, i.e. revisions.

Although this work was not related to the writing process, the proposed techniques,

especially DBN, could also be employed in analysing writing processes, using

revision history and different types of features.

Although the works discussed above all involved collaborative writing by a web

community like Wikipedia, small scale Wikis in classrooms, which also provide

revision histories, can also be used to identify students’ collaborative writing

patterns. Heeter and Jeong (2012) conducted a study to extract students’

collaborative processes in Wikis for the purpose of discovering whether group

members preferred to work individually (sequentially or in parallel) rather than

collaboratively (or reciprocally) in wikis. Interestingly, the authors systematically

generated a coding scheme and then manually coded text edits captured in the

revision histories of a Wiki. Based on sequences of coded text edits, they built

Markov models and identified patterns in the action-sequences that students

performed in a Wiki. The authors’ result was consistent with prior research, which

found that students preferred to work on an individual rather than a collaborative

29

basis (Heeter & Jeong, 2012). Although this study analysed sequentially the

individual and collaborative writing actions observed in the Wiki, the proposed

coding scheme was based on raw student text edit data captured in the Wiki’s

revision history and did not explore the semantic nature of those text edits.

This concludes the overview of representative modelling techniques for analysing

both individual and collaborative writing processes, such as multilevel regression

models, hidden Markov models, and Dynamic Bayesian networks. The following

section presents existing techniques that involve the use of graphs and visualisation

methods for analysing writing processes.

2.3.2 Visualising Writing Processes

The process mining tool ProM (ProM, 2013) includes several means of visualisation,

such as Dotted Chart Analysis (Song & van der Aalst, 2007) and causal dependency

diagrams (van der Aalst, 2011), but these charts and nets were tailored for business

workflow models. To model writing processes, some researchers use Markov models

representing transitional state diagrams. Particularly, Heeter and Jeong (2012) used

Markov models as forms of visualisation to study writing processes. Figure 2-2

depicts a transitional state diagram of individual author’s actions on own Wiki pages.

Figure 2-1. Transitional state diagram of a writing process of an individual Wiki author

(from Heeter and Jeong (2012) – Permission has been authorised).

30

Figure 2-2. Graph visualisation of writing process: an example of novice writer (from

(Caporossi & Leblay, 2011) - permission has been authorised).

Another visualisation tool specifically for the writing process was proposed by

Caporossi and Leblay (2011), based on the graph theory that captures the viewpoint

to understand the writing process. Their technique used nodes and links to create a

graph of a writing process, with the size and colour of each node indicating the

number of elementary events (i.e. text edits) that it represents and their nature,

respectively. For instance, yellow nodes represent additions that have later been

removed; red nodes depict additions that remain until the final text; and blue nodes

indicate deletions. These nodes are connected by links or edges representing a spatial

or temporal relationship, indicated by the shape and colour of the edges. Figure 2-2

shows an example of a graph visualisation of novice author’s writing process, taken

from (Caporossi & Leblay, 2011). By examining the graphs, Caporossi and Leblay

(2011) were able to analyse the writing process and discovered that the graph of an

expert writer was interconnected, whereas the graph of novice writer was quite

linear.

Although this technique for representing the writing process was able to take into

account changes in the position of the text (moving the words around) and allowed

researchers to identify the portion of the document that was modified by the writer, it

did not distinguish the various writing activities as defined by Faigley & Witte

(1981) and Boiarsky (1984). It also did not indicate the time and duration

corresponding to each text edit represented by the nodes. In addition, comparing to a

transitional state diagram as shown in Figure 2-2, it is difficult to gain insight how

individual text edits depend on each other (e.g. which text edits were likely to

immediately follow another text edit).

31

Recent work by Perrin and Wildi (2010) investigated the dynamics of cursor

movement during the process of writing and presented the movement in progression

graphs. Based on these graphs, they proposed a statistical method to discover the

stages of writing through which authors progress. Specifically, the progression

graphs were used to represent time series consisting of large “bursts of signals”, and

statistical signal extraction was used to decompose the series into sequences of

interesting features. Writing stages were then identified based on the changes of the

features. The Perin and Wildi analysis, however, focused only on the temporal

dynamics of cursor movements, not on the edits in the content of the text. This

research differs from that work in that this thesis is concerned with investigating how

the text content changes over time throughout the writing to derive an understanding

of the entire process.

Kim and Lebanon (2010) proposed a novel representation of document versions

based on the location of the content words. They built a matrix in which columns

correspond to the position of each word and rows represent versions (time), using the

space-time smoothing method to extract and visualise changes in words over time,

discovering revision patterns based on these changes. Although this method can

determine which parts (i.e. word content) of the documents change over time, it

cannot discern the intended writing activities, the stages of the process.

Although all the graphs and the underlying techniques that were discussed in this

subsection proved to be useful for analysing the writing processes of documents

written by single authors, they could not be applied in the context of investigating

collaborative writing.

2.4 Tools to Support Collaborative Writing

Aside from the above visualisation, there are other multiple aspects of

collaborative writing (CW) that can be supported by technology. Lowry and

Nunamaker (2003) were the first researchers to introduced an internet-based CW

tool, called Collaboratus to support enhanced coordination and group awareness.

Some of the key CW activities directly supported in Collaboratus that could be

conducted by group members simultaneously included group brainstorming, group

voting, group outlining, group writing, and group annotations that allow multiple

levels of group discussions. Having different screens and features, according to the

32

activity a group was working on, greatly increases coordination by focusing team

members on the appropriate task at hand. Lowry and Nunamaker also conducted a

one-month-long experiment to compare its features and support with those of

Microsoft Word. Their result showed that Collaboratus groups generally experienced

better outcomes than Word groups, in terms of productivity, document quality,

relationships, and communication, but not in terms of satisfaction. From the study,

Lowry and Nunamaker concluded that specialized collaborative writing (CW) tools

could improve group coordination, group awareness, and CW activities.

The research mentioned above was conducted in 2003. Since that time,

technology, especially machine learning and natural language processing (NLP) have

been advanced gradually. Recently, Calvo et al. (2011) created an environment,

iWrite, to support students’ collaborative writing. iWrite outsources the writing tool

and the storage of students’ documents to third party cloud-computing vendor (i.e.

Google). It consists of two main elements: 1) a functionality to manage writing

activities for both students and instructors in large cohorts, particularly the

management and allocation of groups, peer reviewing, and assessment; 2) an

intelligent feedback tool, Glosser (Villalón et al., 2008), which uses several machine

learning and NLP techniques to provide feedback on the text surface level and

concept level of a document, such as cohesion as well as automatic question

generation (Calvo et al., 2011). Although iWrite provides information on team

contribution, for instance which author contributed which sentences or paragraphs

and how these contributed to the overall topics of the document, it does not provide

feedback about team processes based on writing activities and their semantic

significance.

Cognitive visualisation, such as a Concept Map can also be used as a feedback

tool for supporting writing processes. Concept Maps (CM) were introduced by

Joseph Novak as a way to assess children's understanding of science with graphical

tools to organize and represent knowledge (Novak & Gowin, 1984). In a CM,

concepts are represented in boxes that are linked by labeled relationships; two related

concepts (including their link) form a proposition or semantic unit. Concepts are also

arranged hierarchically such that more general concepts are located higher on the

map and specific concepts such as examples are located lower. A concept by itself

33

does not provide meaning, but when two concepts are connected using linking words

or phrases, they form a meaningful proposition.

Villalon and Calvo (2011) proposed a concept map miner (CMM), a tool that

automatically generated concept maps from students’ writing assignments.

Particularly, they presented a novel approach in the educational application of CMs.

Here, CMs were embedded in writing (as opposed to reading) activities and were

used to summarize the students’ own writing. Unlike in the more typical scenarios of

using CMs to support reading, in Villalon and Calvo’s work the CMs become

approximate representations of students’ current state of knowledge. From the

students’ perspective, such CMs can be used to reflect on their own knowledge and

also to help students see their writing from a different perspective. From the

instructor’s point of view, such CMs can be used as a rapid assessment of students’

conceptual understanding.

Another work on using concept maps, as is the work by Macedo et al., who

presented a method for analysing concepts in the text which demonstrated a

collaborative writing system that enabled students to communicate with each other

and elaborate a text in a collaborative way (Macedo et al., 2009). Importantly, the

system had a text mining tool that enable teachers to extract concepts from students'

writings and generate a graphical representation of those concepts. Unlike the work

mentioned previously, the method for extracting topics (i.e. concepts) in Macedo's

work was simply based on the frequency of the appearance of compound terms in the

text.

These techniques based on concept maps can be applied to investigate the way in

which concepts and their semantic relationships change from one revision to another

during the course of the writing process, by comparing concepts and their semantic

relationships of concept maps of two consecutive revisions. However, the efficient

method for comparing two concept maps and computing their overlapping and

discrepancy is still an open research. In addition, the concept maps extracted from

revisions at the writing stages during which some words and/or sentences have not

been completely written yet, may not be meaningful.

This section provides review on tools to support collaborative writing. The first

tool, Collaboratus was based on user interface to facilitate group coordination and

awareness. The second tool, iWrite integrated data mining and NLP to support

34

students’ collaborative writing. The last two tools used concept maps to provide

feedback on writing processes. However, at the time of this research, there have been

no collaborative writing tools that provide ways to mine and access log data as

described in this thesis.

2.5 Summary

Since the first original model was proposed in 1980 by Hayes and Flower (1980),

much research has been conducted relating to the theoretical frameworks of cognitive

models of writing processes. These cognitive models can be categorized into three

main types -- knowledge-transferring, knowledge-transforming, and knowledge-

constituting models. In general, these theoretical frameworks focus on the writing

processes of particular documents written by only one author.

A new type of theoretical framework is needed to examine the collaborative

writing processes of groups of authors, because the collaborative writing context

presents different, additional, and greater organizational and cognitive demands. In

2003, Lowry et al.(2003) proposed a taxonomy of writing activities for the

collaborative environment. Two different proposed models for analysing revisions --

(Faigley & Witte, 1981) and (Boiarsky, 1984) – although based on revisions of

single-author documents, can be adapted for analysing documents written by groups

of authors. Based on the proposed taxonomy of writing activities, and models of

analysing revisions, this thesis creates techniques to automatically extract

collaborative writing activities and discover process models of the writing

processes.

Several text mining techniques have been proposed to automatically discover

document topics and compute document cohesion scores. These techniques can be

categorized into two different branches: Probabilistic graphical models such as topic

modelling or LDA; and document clustering algorithms such as Lingo, which in turn

uses LSA. Nevertheless, these techniques are still based on the final writing product;

research with regard to changes in topics and cohesion during collaborative writing

remains lacking. In this thesis, text mining techniques for extracting topics and

measuring cohesion are used to discover the purpose of text edits during

collaborative writing in order to identify the corresponding collaborative

writing activities.

35

Based on these writing activities, process mining techniques can be employed in

order to discover and analyse writing process models. Process mining developed for

business workflows involves three main uses: Discovering process models from

event logs files; checking conformance of the observed behaviour in the event logs

files to process models; and extending or adjusting process models to best fit the

observed behaviour. Different process models provide different views of workflow

processes and are suitable for different purpose of process analysis. These process

models of business workflows use process instances consisting of events (activities

or transactions) predefined in business information systems. Unlike business

workflows, the writing process consists of non-predefined events of text edits. In

addition, these text edits are interleaving during the period of collaborative writing.

In this thesis, several semantic levels of text edits are considered in order to

identify collaborative writing activities or events of writing processes and

discover writing process models representing different views of semantic levels

of text edits.

Much research exists with regard to visualising document versions and associated

text edits. One type of writing process visualisation proposed by Caporossi and

Leblay (2011) was based on graphs that consist of nodes as text editions and links as

spatial or temporal relations of these editions. Other works, such as (Perrin & Wildi,

2010) used graph techniques to analyse writing processes. Nevertheless, these

techniques for visualisation and analysis did not focus on the content of the text (the

meaning of the words and phrases used in the document). Although all these types

of visualisations and their underlying techniques were found to be useful for

analysing the writing processes of documents written by only one author, they could

not be applied for use in collaborative writing contexts. This thesis proposes a

range of visualisations for representing different views of collaborative writing

processes.

36

37

CHAPTER 3

THEORETICAL BACKGROUND

The sequence of writing activities are comprised of time events and the semantics of

the changes performed during those activities. Two techniques can be combined to

examine the sequence patterns: process mining, which focuses on extracting process-

related knowledge from event logs recorded by an information system; and text

mining, which focuses on extracting knowledge about what the student wrote or

edited.

This chapter provides theoretical backgrounds of both text mining and process

mining techniques used in this thesis. It is important to note that this research focuses

on collaborative writing (CW) with multiple writing sessions. Therefore, it does not

report any theories that distinguish action sequences of CW from those of individual

one. In addition, there is no particular theory that relates sequences of collaborative

writing activities to quality outcomes.

38

This chapter organises as the following. Section 3.1 describes text mining

techniques and algorithms including Latent Semantic Analysis, document clustering

algorithm, Lingo, and Latent Dirichlet Allocation. Process mining, including event

logs, process mining algorithm, Heuristic Miner, other process perspectives is

discussed in Section 2.3. Finally, Markov Model and Hidden Markov Model,

including techniques to construct those models are reviewed in Section 3.3.

3.1 Text Mining

In this section, theoretical background of text mining techniques and algorithms used

in this thesis is reviewed. First, a vector space of documents’ presentation and Latent

Semantic Analysis (LSA) is introduced in the following subsection. How the

semantic measure, i.e. sentences and paragraph similarities are computed will be also

discussed in this subsection. Then, two different types of algorithms for extracting

topics are described: one is based on LSA and the other one uses probabilistic

techniques.

3.1.1 Latent Semantic Analysis

A common problem encountered in information retrieval, document analysis and

visualization applications is that people use words for their collective meaning and

not just for the literal term. Linguistically the difficulties introduced are explained by

the synonymy and polysemy problems. The former refers to the many ways of

expressing the same concept, where people adapt their vocabulary based on the topic

being discussed, or on the particular background knowledge (both of the writer

and/or the reader). The latter refers to the many meanings that a word can have,

meanings that humans are able to disambiguate using information about the topic

being discussed or other contextual information. Synonymy and polysemy are known

to affect the accuracy of computer systems that use terms (instead of concepts) as the

main way of representing information. In information retrieval in particular

synonymy affects recall and polysemy affects precision.

Latent Semantic Analysis (LSA) is a statistical dimensionality reduction

technique proposed by Deerwester et al. (1990) to address these issues by indexing

documents based on concepts (or topics) rather than terms. This requires a semantic

representation for the corpus of documents and queries. LSA starts with a term-

39

document matrix and uses Singular Value Decomposition (SVD) to create a semantic

space where the distances between terms and/or documents reflect a semantic

proximity. When LSA is used for information retrieval tasks user queries are

projected in the semantic space as pseudo documents.

Formally, LSA defines the semantic space of a term-by-document (or term-by-

sentence) matrix �	 ∈ ℜ�	×	�	 (that can be called the knowledge base) by

decomposing it using Singular Value Decomposition as:

�	 =	�	�	
	�

where �	 ∈ ℜ�	×		, �	 ∈ ℜ		×		,
	 ∈ ℜ�	×		 and k < min(m,n).

In this representation the m columns �� represent the weighted term-frequency

vectors (of size n) of each of the documents used to create the semantic space. The

column vectors of orthonormal matrices �	 and
	 are the left and right singular

vectors respectively. �	 the non-negative diagonal matrix of the k biggest singular

values sorted in descending order. The rows of �	 and
	 can be interpreted as the

coordinates of points that represent terms and documents respectively in the k

dimensional space.

If new documents need to be represented in this semantic space, they can be

represented as �	 ∈ ℜ� and projected on the k-dimensional space as:

�� = 	���	�	��

The result �� is a k-dimensional vector that can be compared with other

documents in the original knowledge base corpora or with other query documents.

The criteria to decide the value of k still remains an open question for LSA and is

usually set for individual experiments. More detail of LSA can be found in (Dumais,

1991; Haley et al., 2005; Landauer et al., 1998).

As discussed in previous chapter, cohesion refers to a way establishing

connections or overlap within a discourse at all sort of different levels e.g. sections,

paragraphs, sentences, and even phrases. In order to calculate the cohesion of the

content text, the similarities or distances between consecutive sentences of the text

are computed. This thesis first builds a semantic space for a term-by-sentence for

each revision of a document using LSA technique as discussed above. Based on the

40

semantic space, it then computes the similarity or distance between consecutive

sentences using a cosine measure, as defined below:

cos��, �� = ��	.		���
|�|. |�|	

3.1.2 Lingo: Document Clustering Algorithm

In order to identify writing activities and discover writing process models, topics and

topic evolution, which represents how ideas and concepts have been developed

during writing, are discovered and semantically analysed. In this thesis, a document

clustering algorithm, Lingo (Osinski & Weiss, 2005) was used to extract topics. This

subsection describes Lingo algorithm for the purpose of extracting topics.

The Lingo algorithm was implemented in Carrot2, an open source search results

clustering library under a BSD like license and found at http://project.carrot2.org.

Lingo algorithm was created by Osinski and Weiss in 2004 originally for the purpose

of clustering web search results or snippets. Unlike other document clustering

algorithms, which determine description (labels) after discovering the actual cluster

content, Lingo emphasizes first on indentifying clustering description before

allocating cluster content.

Lingo algorithm operates in the following ways. First, it performs text-

preprocessing: stemming, indentifying stop words, segmenting text into words

sentences. Most document clustering algorithms remove stop words from the input

entirely. However, Lingo only marks stop words and leave them in the input because

they can help in understanding longer phrases (for instance, “Sydney University”

versus “University of Sydney”). After text-preprocessing, Lingo uses the semantic

hierarchical clustering algorithm (Dong, 2002) for extract phrases and single terms

that can potentially be the descriptions (labels). To achieve this, it uses the vector

space model (VSM) and singular value decomposition (SVD), which is the

mathematical technique underlying the latent semantic analysis (LSA) as described

above. It builds a term-document matrix from the input snippets using tfidf as term-

weighting scheme (Salton & McGill, 1983). It then discovers labels by using SVD

of the term-document matrix (please see (Osinski & Weiss, 2005) for full detail of

the cluster-label induction). Finally, the algorithm identifies cluster members by

using VSM-based document retrieval by matching the input snippets against a series

41

of queries, each of which is a single cluster label. Particularly, it uses the classic

cosine distance to calculate the similarity between the input snippets and the cluster

labels. If the similarity exceeds a predefined threshold (within the range of 0.15-0.30)

(Osinski & Weiss, 2005), the algorithm allocates the snippets to the corresponding

cluster. It is important to note that this assignment scheme naturally creates

overlapping clusters and effectively handles cross-topic documents (Osinski &

Weiss, 2005). In addition, the Lingo algorithm created the “other topics” cluster for

those snippets that do not match any of the cluster labels.

Cluster labels (phrases and single terms) can be used to identify topics of interest.

In order to extract topics, text (of each revision) is firstly segmented into sentences

using Carrot2 library mentioned above. Then, the system uses the sentences as input

snippets to the Lingo algorithm and produces cluster labels, which are listed as

topics. After extracting topics of individual revisions, the list of topics of a revision is

compared to the list of topics of the previous revision in order to compute topic

overlap between two consecutive.

3.1.3 Latent Dirichlet Allocation

Another technique used for extracting topics was based on LDA (Blei & Lafferty,

2009), which is a generative model that models each document in a corpus as multi-

membership mixture of T topics (Thomas et al., 2010b), and each topic as a multi-

membership mixture of the words in the corpus vocabulary. A multi-membership

mixture means that each document can contain more than one topic, and each word

can be contained in more than one topic. Therefore, LDA is able to discover a set of

ideas or themes that well describe the corpus as a whole (Blei & Lafferty, 2009).

As an example (adapted from (Thomas et al., 2010b)), there are three documents

below:

d1: “A student left his university to get a loan at the bank.”

d2: “University students prepare for their exams on the bank of a river.”

d3: “Banks make money by giving loans.”

From the corpus of the three documents above, we could have a vocabulary of

words ordered alphabetically: {bank, exam, loan, money, river, student, university}.

Applying LDA with T = 3 would produce topics similar to:

z1: {exam, student, university}

42

z2: {bank, loan, money}

z3: {bank, river}

Document d1 would have a 50% membership in both z1 and z2 and 0%

membership in z3 since it contains words from z1 and z2 to an equal degree, and none

from z3. On the other hand, document d2 would have a 50% membership in both z1

and z3, 0% membership in z2. Document d3 would have a 100% membership in z2

because it only contains words from z2. Therefore, we could represent each

document as a vector of their topic memberships:

d1 = [0.5,0.5,0.0]

d2 = [0.5,0.0,0.5]

d3 = [0.0,1.0,0.0]

In addition, based on the vocabulary listed above, each topic could be described

as a vector of their word memberships, in which each element represents the

normalized weight of each word (indexed according to the vocabulary) for that topic:

z1 = [0.0, 0.2, 0.0, 0.0, 0.0, 0.4, 0.4]

z2 = [0.4, 0.0, 0.4, 0.2, 0.0, 0.0, 0.0]

z3 = [0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0]

LDA defines the following generative process for each document in the

collection:

1. For each document, pick a topic from its distribution over topics.

2. Sample a word from the distribution over the words associated with the

chosen topic.

3. Repeat the process for all the words in the document.

More formally, in the generative process, LDA infers, for each of T topics, an N-

dimensional word membership vector z(φ1:N) that describes which words appear in

topic z, and to what extent. In addition, for each document d in the corpus, LDA

infers a T-dimensional topic membership vector d(θ1:T) that describes the extent to

which each topic appear in d. Both θ and φ have Dirichlet prior with hyper-

parameters α and β, respectively. LDA performs these inferences using Bayesian

techniques such as collapsed Gibbs sampling, a Markov-chain Monte Carlo (MCMC)

method, which is currently in widespread use as an inference tool among topic

modelers (Griffiths & Steyvers, 2004).

43

The extracted topics and topic evolutions provide an overview of how topics are

created and the way that they evolve. Knowing how authors collaboratively write

those topics assists in understanding how their written documents are developed. In

this thesis, author-topic model (Rosen-zvi et al., 2003) is used to extract topics per

auhtor in order to construct the topic-based collaboration networks, which are in turn

used in investigating how authors collaboratively write their documents, which will

be explained in Chapter 8. The Author-Topic model is described below.

The Author-Topic Model

The Author-Topic Model (AT Model) is an extension of LDA, which was first

purposed in (Rosen-zvi et al., 2003) and further extended in (Rosen-Zvi et al., 2010).

Under this model, each word w in a document is associated with two variables: au

author, x and a topic, z. Similar to LDA, each author is associated with a multinomial

distribution over T topics, denoted as θ. Each topic is associated with a multinomial

distribution over words, denoted as φ. Differently to LDA, the observed variables for

an individual document are the set of authors and the words in the document. The

formal generation process of Author-Topic Model is as follows (Rosen-Zvi et al.,

2010):

For each document, given the vector of authors, ad :

For each word in the document :

1. Conditioned on ad, choose an author xdi∼Uniform(ad).

2. Conditioned on xdi, choose a topic zdi.

3. Conditioned on zdi, choose a word wdi.

One important difference between the Author-Topic Model and LDA is that there

is no multinomial distribution over T topics for an individual document. Therefore, if

we want to model documents and authors simultaneously, further treatment is

needed. A detailed description can be found in (Rosen-Zvi et al., 2010).

3.2 Process Mining

Process mining is a relative young research discipline that sits between machine

learning and data mining on the one hand and process modeling and analysis on the

other hand. The idea of process mining is to discover, monitor and improve real

44

processes (i.e., not assumed processes) by extracting knowledge from event logs

readily available in today’s information systems (van der Aalst, 2011).

Learning management systems, intelligent tutoring systems and other learning

software usually offer recorded event data, such as event logs. Note that this thesis

does not assume the presence of a workflow management system. The only

assumption is that it is possible to construct event logs with event data. These event

logs are used to construct a process specification or representation, which adequately

models the behaviour captured. The term process mining is used for the method of

distilling a structured process description from a set of real executions.

Process mining techniques are used for a wide range of purposes, including: a) to

discover new patterns; b) to check conformance of the observed processes to an a

priori modelled pattern; and c) to extend a priori process models by using newly

discovered patterns (Rozinat et al., 2007; Weijters & Ribeiro, 2010; Weijters et al.,

2006). Figure 3-1 depicts the portioning of these three main types of process mining.

Figure 3-1. The three main types of process mining: discovery, conformance, and

enhancement (from (van der Aalst, 2011) – permission has been authorised).

In the following subsections, event logs as well as several terminology used in

process mining context are introduced first. After that a process discovery algorithm,

Heuristic Miner, including its conformance checking technique are discussed. Finally

techniques for mining additional perspectives of processes are described.

45

3.2.1 Event Logs

This thesis employs a process mining technique to identify and explore the

structure of writing processes. We assume that it is possible to record events such

that (i) each event refers to an activity (i.e., usually a well-defined step in the

process), (ii) each event refers to precisely a case (i.e., a process instance), (iii) each

event can have a performer also referred to as originator (the person executing or

initiating the activity), and (iv) events have a time stamp and are totally ordered.

Event logs such as the one shown in Table 3-1 are used as the starting point for

process mining. Each row of the event log shown in the table consists of an event, its

process case ID and its properties such as activity, timestamp, originator, and

revision ID. The recorded events are ordered by their timestamp. “Case ID” is the

unique identification of process case or instance. Originator is the unique

identification of user who generates the event. Note that there are more than 2

process cases in this event log; and more events of Process case 1 are listed below

those of Process case 2.

Table 3-1. Example of an event log.

Case ID Activity Timestamp Originator Revision ID

1 Brainstorming 5/20/2012 7:24 S01 2

1 Brainstorming 5/26/2012 7:44 S05 101

1 Outlining 5/27/2012 0:43 S04 132

1 Outlining 5/27/2012 13:11 S05 144

1 Outlining 5/27/2012 22:31 S03 147

1 Drafting 5/28/2012 2:56 S01 196

1 Drafting 5/28/2012 3:45 S01 269

1 Drafting 5/28/2012 4:57 S01 388

1 Drafting 5/28/2012 6:30 S03 428

1 Revising 5/28/2012 6:45 S01 524

1 Revising 5/28/2012 8:39 S03 531

1 Editing 5/28/2012 11:39 S03 612

2 Brainstorming 5/29/2012 4:50 S02 2

2 Outlining 5/29/2012 7:21 S06 16

2 Drafting 5/29/2012 9:31 S02 75

…. …. …. …. ….

46

In the context of process mining, properties of events are referred to as attributes.

This thesis assumes that each event, e has the following standard attributes:

• Activity associated to event e.

• Timestamp of event e.

• Originator or author ID associated to event e.

• Transaction type associated with event e. There are two transaction types:

start and complete.

These standard attributes are used in process discovery algorithms. Other

attributes like revision ID are used in mining other process perspective.

This thesis uses an event log with the standard format of XES (eXtensible Event

Stream) (Gunther, 2009), which is the successor of MXML (Mining eXtensible

Markup Language). Van der Aalst (2011) fully details these two standards for storing

and exchanging event logs.

3.2.2 Heuristic Mining

The purpose of this thesis is to construct a process model on the basis of an event

log, as described above. Assuming that there is a set of activity labels, A, the goal of

a process model is to decide which activities need to be executed and in what order.

Activities can be executed sequentially, activities can be optional or concurrent, and

the repeated execution of the same activity may be possible.

Figure 3-2. An example of dependency graphs.

47

This thesis focuses on process models representing causal dependencies, for

instance, if an activity (event) is always followed by another activity (event) it is

likely that there is a dependency relation between both activities (events). Process

mining algorithms like Heuristic Miner algorithm (Weijters & Ribeiro, 2010;

Weijters et al., 2006) can automatically generate these kinds of process models.

Figure 3-2 shows an example of dependency graphs of writing processes. The

numbers in the boxes indicate the frequency of the writing activities. The decimal

numbers along the arcs show the dependency measures (described below) of

transitions between two activities, and the natural numbers indicate the number of

times this order of activities occurs among the five types, start, end, drafting,

revising, and editing.

Heuristic mining algorithm as described in (Weijters & Ribeiro, 2010) generates

dependency graphs. Moreover, this algorithm takes frequencies of events and

sequences into account when constructing a process model. The basic idea is that

infrequent paths should not be incorporated into the model. Both the representational

bias provided by dependency graphs and the use of frequencies makes the approach

able to handle noise in the log files and much more robust than most other

approaches.

There are three basic relations between two activities based on the sequence of

their execution. The following a and b are two activities in a sequence of an event

log, W:

1. a>b: a is directly followed by b (direct successor)

2. a>>b: a is directly followed by b and then by a again (length-two loops)

3. a>>>b: a is eventually follow by b (indirect successor)

Note that length-one loops are the relations of a>a.

The heuristic mining algorithm only considers mainly the first two relations.

Particularly, the algorithm uses the dependency measure, defined below. |a>b| is the

number of time a > b occurs in the sequence W.

� → ! = 	 |� > !| − |! > �|
|� > !| +	 |! > �| + 	1 	&'	�� ≠ !�

� → � = 	 |� > �||� > �| + 1

� →) ! = 	 |� ≫ !| − |! ≫ �|
|� ≫ !| +	 |! ≫ �| + 1

48

First, remark that the value of � → ! is always between -1 and 1. Some simple

examples demonstrate the rationale behind the equations above. If in 5 traces,

activity A is directly followed by activity B but the other way around never occurs,

the value of + → , = 5/6 = 0.833 indicating that we can not be completely sure of

the dependency relation (only 5 observations possibly caused by noise). However if

there are 50 traces in which A is directly followed by B but the other way around

never occurs, the value of + → , = 50/51 = 0.980 indicates that the probability of the

dependency relation is high. If there are 50 traces in which activity A is directly

followed by B and noise caused B to follow A once, the value of + → , is 49/52 =

0.94 indicating that the probability of the dependency relation is high.

A high value of � → ! strongly suggests that there is a dependency relation

between activities a and b. The algorithm computes the dependency measures of all

relations of all pairs of activities and constructs the dependency diagrams based on

the dependency measures and user-defined parameters as explained below.

3.2.2.1 Parameters of Heuristic Miner

This thesis uses Heuristic Miner (HM) algorithm, which was implemented on a

process mining framework, ProM (ProM, 2013). There are two different options to

construct dependency graphs: with and without “all-tasks-connected”, in which

“tasks” refer to activities.

Without using the all-tasks-connected option, three threshold parameters are

available in the HM to indicate that we will accept a dependency relation: (i) the

dependency threshold, (ii) the length-one loops threshold and (iii) the length-two

loops threshold. However, by using different parameters it is, for instance, possible

to build a model without length-one loops (choose the length-one loops threshold =

1.0). With these thresholds, one can indicate what dependency relations are accepted

between activities that have a dependency measure above the value of the

dependency thresholds resulting in a control-flow model with only the most frequent

activities and behaviour. By changing the parameters one can influence how

complete the control-flow model becomes (Weijters & Ribeiro, 2010).

The advantage of using the all-tasks-connected heuristic is that many dependency

relations are tracked without any influence of any parameter setting. The result is a

relative complete and understandable control-flow model even if there is some noise

in the log. The underlying intuition in the all-tasks-connected heuristic is that each

49

non-start task must have at least one other task that is its cause, and each non-end

task must have at least one dependent task. Using this information HM builds a work

flow model taking the best candidates (i.e., with the highest � → ! measure).

Without the all-tasks-connected option, HM accepts dependency relations

between tasks that have (i) a dependency measure above the value of the dependency

threshold, and (ii) have a dependency measure close to the first already accepted

dependency value (i.e., for which the difference with the best dependency measure is

lower than the value of relative-to-best threshold). However, if this heuristic is used

in the context of a low-structured process the result is a very complex model with all

tasks and a high number of connections. Therefore, this option is not preferable for

this thesis. Full detail of parameters of Heuristic Miner can be found in (Weijters &

Ribeiro, 2010)

Therefore, to extract writing process model, dependency diagrams, this thesis

uses the all-tasks-connected option with the default threshold parameters. All three

thresholds are set to 0.9: (i) the Dependency threshold, (ii) the Length-one loops

threshold 0.90 and (iii) the Length-two loops threshold. This research also added two

artificial activities: start and end to all process cases in order to specify the initial and

final activities of the processes.

3.2.2.2 Conformance checking

Conformance checking is a technique to relate events in the event log to activities in

the process model and compares both. The goal is to find commonalities and

discrepancies between the modelled behaviour and the observed behaviour.

Particularly, conformance checking techniques can be used for measuring the quality

of process discovery algorithms. Determining the quality of a process mining result

is difficult and is characterized by many dimensions. In his book, van der Aalst

(2011) refers to four quality criteria of discovered process models: fitness, precision,

generalization, and simplicity. The description of these quality criteria is explained in

the book. Of the four quality criteria, fitness is the most related to conformance

checking. This thesis focused exclusively on fitness (i.e., the proportion of events in

the log that can be explained by a process model). Process models discovered by

using a process mining algorithm like Heuristic Miner are used to extract patterns of

writing activities in this research. Therefore, it is important to measure how much of

50

the observed behavior in the event log is captured by the process model. This

measurement is indicated by the fitness.

The computation of the fitness mainly relies on two data structures: (i) the

process model, which is the dependency graph (DG) and (ii) the event log that

contains information about the ordering of the activities. One way to measure the

fitness between event logs and process models is to replay the log in the model and

somehow measure the mismatch. The replay of every logical log trace starts with the

marking of the initial place in the model. Then, the transitions that belong to the

logged events (activities) in the trace are read one after another. While replay

progresses, we count the number of tokens that had to be created artificially (i.e., the

transition belonging to the logged event was not enabled and therefore could not be

successfully executed) and the number of tokens that were left in the model, which

indicate that the process was not properly completed. The value of fitness(L,N)

defined in (van der Aalst, 2011) is between 0 (very poor fitness) and 1 (perfect

fitness). The intuition of fitness(L,N) = 0.9 is that about 90% of the events can be

replayed correctly. This thesis calculates the fitness of a process model using the

fitness utility of ProM (ProM, 2013).

3.2.3 Mining Additional Perspectives of Writing Processes

The main focus of process discovery is on the control-flow perspective (i.e. the

ordering of activities). However, event logs as described in Subsection 3.2.1 usually

consist of a rich of information associated with other perspectives such as the process

case perspective, and the organisational perspective. This subsection will describe

these two perspectives.

A first step in any process mining project is to get a feeling for the process and

the data in the event log. Dotted Chart Analysis (Song & van der Aalst, 2007)

provides a way to achieve that. The dotted chart is similar to a Gantt chart (Song &

van der Aalst, 2007), and shows the spread of events over time by plotting a dot for

each event in the log. In other words, a dotted chart provides a snapshot of process

cases. In a dotted chart, each event is depicted as a dot in a two dimensional plane.

The horizontal axis represents the time of the event. The vertical axis represents the

class of the event. Different classes of events can be viewed, for instance, resources.

In addition, the shape and colour of a day may depend on other attributes. Figure 3-3

shows an example of dot charts provided by from ProM. In this figure, each row

51

presents a process of reviewing a document. Each dot depicts an event of reviewing

activity: grey denoted an event when a document was reviewed by by authors; white by

appointed reviewers, black by reviewers’ group member (indicated by ovals) and brown by

others (indicated by rectangles).

Figure 3-3. Dot chart of reviewed documents ordered by their first events’ timestamps. Grey

denoted events generated by authors; white by reviewers, black by reviewers’ group member

(indicated by ovals) and brown by others (indicated by rectangles) (from (Southavilay et al.,

2009))

Another way to get an overview of the process and the data in the event log is

based on resources like people and/or organizational structures (roles and

departments) in order gain an insight on how work is distributed and people

coordinated. Organizational mining focus on the organizational perspective (Song &

van der Aalst, 2008). The organizational mining is typically based on the resource

attribute present in event logs. The aim of this algorithm is to learn more about

people, organizational structures (roles and departments), work distribution, and

work patterns. In this thesis, organizational mining algorithm is used to extract the

collaboration based on types of writing activities. More detail about organisational

mining is covered in (van der Aalst, 2011).

3.3 Hidden Markov Model

This section describes the general Markov models and Hidden Markov Models

(HMMs). First, the Markov property and the characteristics of Markov models (or

Markov chains) will be introduced. After that, HMM and the main problems

52

involved with HMM will be described next. Rabiner (1989) provides a detail

introduction to Markov models and HMMs. The description in the section is used in

the analysis and validation of writing process, discussed in later chapters.

3.3.1 Markov Models

Markov models are used for training and recognizing sequential data, such as speech

utterances, temperature variations, biological sequences, and other sequence data. In

a Markov model, each observation in the data sequence depends on previous

elements in the sequence. Consider a system where there are a set of distinct states, S

= {1, 2, …, N}. At each discrete time slot t, the system takes a move to one of the

states according to a set of state transition probabilities P. The state at time t is

denoted as st.

In a Markov model, the prediction of the next state and its associated observation

only depends on the current state, meaning that the state transition probabilities do

not depend on the whole history of the past process. This is called a first order

Markov process. Give example.

-��./� = 0	|��, �), … , �.� = -��./� = 0	|�.�
Because of the state transition is independent of time, we can have the following

state transition matrix A:

��2 = -3�./� = 024�. = 0�5
��2 is a probability, therefore:

��2 ≥ 0, ∀&, 9	:��2
;

2<�
= 1	

Also we need to know the probability to start from a certain state, the initial state

distribution:

=� = -��� = 0��
Thus, ∑ =�;�<� = 1.

 In a Markov model, the states from which the observations are produced and the

probabilistic observation functions are known so we can regard the state sequence as

the observation. Therefore the state transition probability and the initial state

distribution are the only parameters.

53

3.3.2 Hidden Markov Model

In many real world applications, the Markov model described in the previous

subsection has limited power because states of a system may not be directly

observed. Therefore, we extend it to a model with greater representation power, the

Hidden Markov Model (HMM). In an HMM, one does not know anything about

what generates the observation sequence. The number of states, the transition

probabilities, and from which state an observation is generated are all unknown.

There are many types of representations of HMM such as a time-slice view,

stochastic finite-state automaton (SFSA), and dynamic graphical model (Bilmes,

2006). This thesis uses the SFSA presentation because it shows the underlying

hidden Markov chain topology. One example of this presentation is shown in Figure

3-4.

Figure 3-4. An example of Hidden Markov Model.

Instead of combining each state with a deterministic output (such as adding,

deleting , and changing paragraphs etc), each state of the HMM is associated with a

probabilistic function. At time t, an observation ot is generated by a probabilistic

function bj(ot), which is associated with state j, with the probability:

!2�?.� = 	-	�?.|�.=j)

In general, a HMM is composed of a five-tuple: (S,K,П,A,B).

1. S = {1, 2, …, N} is the set of states. The state at time t is denoted st.

2. K = {k1,k2, …, kM}is the output alphabet. In a discrete observation density

case, M is the number of observation choices. In our case, M equals the

number of writing activities.

3. Initial state distribution П = {πi}, & ∈ @. πi is defined as

=� = -�0� = &�

54

4. State transition probability distribution + = A��2B, &, 9	 ∈ @

��2 = -�0C/�|0C�, 1 ≤ &, 9	 ≤ D

5. Observation symbol probability distribution B = bj(ot). The probabilistic

function for each state j is:

!2�?.� = 	-	�?.|s.=j)

Based on above definition, three fundamental problems have been investigated

for hidden Markov models (Alpaydin, 2010):

• Given an observation sequence, how to compute the probability of the

sequence given a hidden Markov model?

• Given an observation sequence and a hidden Markov model, how to compute

the most likely “hidden path” in the model?

• Given a set of observation sequences, how to derive the hidden Markov

model that maximizes the probability of producing these sequences?

The last problem is related to this thesis. Given a set of observation sequences,

the algorithm that constructs HMMs derives an optimal set of the parameters (π, A,

B) that maximizes the likelihood of the input sequences. In addition, simpler models

are preferable because they are easier to interpret (Occam’s razor principle). In order

to achieved that, this thesis applies the technique described in Jeong et al. (2010).

The technique uses an algorithm developed by Li and Biswas (2002) that employs

the Bayesian information criterion (BIC) to trade off simplicity of the mode against

information provided by the model. BIC (Schwarz, 1978) is defined as

,EF = 	−2 ∗ ln
 + K ∗ ln�L�
k is the model size, n is the number of observations, K ∗ ln�L� is the penalty term.

The purpose of BIC is to find the model that strikes a balance between high

likelihood and low complexity (Li & Biswas, 2002).

Finding the optimal HMM parameters from data is an optimization problem. Two

common iterative convergence optimization schemes are the Baum-Welch (Rabiner,

1989) and the segmental K-Means (Juang & Rabiner, 1990) algorithms. The

technique described in (Jeong & Biswas, 2008; Jeong et al., 2010) uses the segmental

K-Means algorithm in conjunction with BIC for iterative segmentation and

optimization steps to achieve the optimal model parameters including (π, A, B) and

the number of states in the model, k. The segmentation step uses the Viterbi

algorithm (Viterbi, 2006) for sequential decoding, while the optimization step finds a

55

new set of model parameters as dictated by the K-Means method (Juang & Rabiner,

1990). A chief advantage of the K-Means algorithm is its faster execution time

gained by setting a restricted optimization objective.

3.4 Summary

This thesis combines two techniques to extract process models and visualisations:

process mining, which extracts process-related knowledge from event logs and text

mining, which extracts semantic knowledge about what students wrote or edit during

their writing tasks. This chapter provides the theoretical background of both

techniques. It begins with the discussion of text mining techniques, especially Latent

Semantic Analysis and two different types of algorithms for extracting topics: a

LSA-based document clustering algorithm, Lingo and probabilistic topic modelling

or Latent Dirichlet Allocation. In addition, this chapter discusses two types of

process models used in this thesis: dependency diagrams and transitional state

diagrams. The dependency diagrams are generated by a process mining algorithm,

Heuristic Miner implement in a process mining framework, ProM, whereas the

transitional state diagrams are created by Markov Model and Hidden Markov Model.

The techniques to construct these two types of process modes are discussed in this

chapter. This chapter also introduces event logs as well as several terminology used

in process mining context and described conformance checking technique used for

Heuristic Miner algorithm.

56

57

CHAPTER 4

OVERVIEW OF THE APPROACH

The purpose of this thesis is to develop techniques that can provide insights into the

process of collaborative writing, and to use these insights to give feedback to

students (authors) while they are engaged in collaborative writing and to education

researchers and teachers both during and after their involvement in the writing

process. To achieve these aims, a range of process models and representations that

offer different views of the writing processes are extracted. The process models and

representations are based on basic events that are considered to be collaborative

writing activities. These activities are discovered automatically, based on the

semantic changes of text edits made to each document revision, using text features

such as types of text edits, text structures, number of words, sentences, and

paragraphs, topics, and cohesion changes.

Before describing the approach, it is important to distinguish between two terms:

“revision” and “revision history”. In this thesis, a revision refers to one version of the

written document, whereas a revision history is a record of revisions and their

58

metadata such as timestamps and author IDs. Therefore, for a particular document,

there can be one or many revisions. However, a document has only one revision

history consisting of metadata of its revisions.

Figure 4-1. Overview of approach for extracting and analysing process models.

Figure 4-1 illustrates the steps of my overall approach:

• Automatically retrieval of content texts of document revisions and revision

history from writing tools in the cloud like Google Docs (A).

• Extraction of collaborative writing activities based on text features -- types of

text edits, text structures, number of words, sentences, and paragraphs, topic

and cohesion changes -- by using a set of heuristic. In order to extract the text

features, several text mining algorithms are used extensively (B). Note that

text structure refers to the structure of the written documents, such as

sections, and paragraphs. It does not involve syntactic analysis like part of

speech, coreferentiality, etc.

• Discovery of a range of process models and representations by using the

extracted writing activities and revisions, with techniques based on process

mining and machine learning algorithms (C).

• Creation of various types of visualisations of the process of writing activities

that provide several semantic levels of text edits and topic changes made to

documents during the writing processes (D).

As mentioned in the previous chapter, process mining techniques have been

applied successfully in extracting business process workflows and models. However,

unlike business workflows, which are sequences of predefined events considered in

advance to support business transactions for particular business organizations, a

writing process consists of text edits (text change operations) which are not

predefined. In this thesis, a document writing process is defined as a process

59

instance (or a process case) consisting of writing activities (events). Building on the

research related to writing process models and a taxonomy of collaborative writing

activities that were previously addressed in the literature review chapter herein, this

thesis proposes techniques to automatically extract writing activities and reveal new

process models based on the nature of text edits. A number of text mining

algorithms and techniques are utilised to infer the semantic meaning of text edits and

automatically reveal writing activities. Based on the activities discovered process

mining algorithms are then employed to identify writing states and process models.

Several process models can be discovered based on the semantic level of text edits.

As explored in the previous chapter of this thesis, research findings related to

supporting quality writing (Villalon & Calvo, 2011) all rest on the final product, not

the writing process itself; and the aforementioned studies (Caporossi & Leblay,

2011) that provide a type of visualisation of the writing process do not take into

consideration the semantic meaning of text changes. In contrast with these

precedents, this thesis presents the development of many types of visualisations that

include several embedded semantic levels of text edits to generate process models

through the use of text mining and process mining techniques already discussed.

These visualisations are then offered as feedback to writers, and provide increased

awareness with regard to the workings of writing activities of individual authors.

This chapter presents an overview of the approach proposed in this thesis, which

involves text and process mining and can is illustrated in Figure 4-1. The first step

consists of developing a framework to explore and analyse writing processes by

using a Web 2.0 writing tool in the cloud, such as Google Docs, followed by the

development of techniques to identify writing activities based on text mining

algorithms. After finding these writing activities, process models and visualisations

of writing activities are extracted and subsequently presented to the writers

themselves.

4.1 Framework for Analysing Writing Processes

Several writing tools exist that provide support for logging versions of written

documents. These tools can be classified according to the granularity of the logged

versions. At the two opposite extremes of the classification spectrum are key-stroke

logging tools and version controlled documents.

60

Key-stroke logging applications include tools such as InputLog (Leijten & Van

Waes, 2006), which was developed specifically for capturing every key stroke

(character) typed by individual writers as a method of analysing writing processes.

Although InputLog logs all types of input -- keyboard, mouse, and speech

recognition -- it can only run on stand-alone mode, which makes it an unsuitable tool

for collaborative writing (though it has been used, as mentioned before, to analyse

individual writer's processes in studies by Caporossi and Leblay (2011); Leijten and

Van Waes (2006); and Tillema et al. (2011).

On the other end of the granularity spectrum are applications that support

collaborative writing, such as EtherPad (EtherPad, 2013), Google Docs (Google

Docs, 2013), and Wikipedia (Wikipedia, 2013), which automatically store revisions

and provide revision histories including timestamp and authorship information. The

cloud tool Google Docs was selected to use as a front-end collaborative writing tool

for this thesis.

iWrite, as reviewed in Section 2.4 and WriteProc were chosen as the framework

for exploring and analysing collaborative writing processes in this thesis, with

students performing writing activities through iWrite, a system that supports the

authors’ collaborative writing (Calvo et al., 2011). iWrite manipulates the group and

individual interactions in Google Docs; a document is created in iWrite and assigned

to groups of students by administrators or instructors. WriteProc, described in detail

in the next chapter, retrieves the documents directly stored in Google Docs and uses

text mining and process mining algorithms to identify writing activities and extract

writing processes. Along the way as students write and edit on the documents, then

finally submit their final versions, they have access to a reviewing tool (Calvo et al.,

2011) provided by the system should they wish to use it. The main aspect of interest

for this thesis is the fact that Google Docs stores all revisions (versions) of a

document that students make including a revision history with timestamps and author

ID information for each revision of the document. Google Docs also provides an

application programming interface (API) for developers to retrieve document

revisions and their histories. Using the API, WriteProc downloads all revisions and

revision histories of individual documents in order to extract process models and

perform process analysis, as described below.

61

4.2 Identifying Writing Activities Automatically

A rule-based heuristic is used to extract the semantic meaning of text edits and to

identify the types of writing activities that are performed. The heuristic developed in

this thesis is based on types of text edits, cohesion changes, and topic overlap. First, a

text comparison unit consisting of text difference algorithms is developed to compare

the texts in two consecutive revisions and to identify the types of text edits, which

are adapted from (Boiarsky, 1984). In conjunction with finding the text edits, a layer

of semantics is also formed, using topic changes and cohesion changes. To achieve

this, topics are first extracted for each revision, and then compared with previous

revision topics to reveal the topic change. Likewise, for each revision, cohesion is

first computed by averaging the similarity of all pairs of consecutive paragraphs, then

compared with the previous revision to reveal the cohesion change. Based on the text

edits, topic changes and cohesion changes that are uncovered, writing activities can

be inferred using a heuristic set. The details and an evaluation of this technique for

identifying writing activities are presented in Chapter 5.

4.3 Extracting Process Models of Writing Processes

Based on sequences of the discovered writing activities, process models of writing

can be automatically derived using a process mining tool such as ProM (ProM, 2013)

and a dynamic graphical model such as the Hidden Markov Models (HMM). For the

purposes of this thesis, a Heuristics Miner algorithm (Weijters & Ribeiro, 2010;

Weijters & van der Aalst, 2003), implemented in ProM is applied to extract writing

process models presenting causal dependency diagrams. In addition, based on

several layers of semantic (i.e. text edits or writing activities), dynamic graphical

models embedded Markov assumption can be derived. These process models are

then utilised to carry out process analysis and identify the patterns of text edits and

writing activities that students perform during their tasks.

4.4 Visualising Writing Processes

The final item in the research approach of this thesis is to provide a representation

and visualisation of writing processes. In addition to exploring the existing process

visualisation provided by ProM, such as dotted charts (Song & van der Aalst, 2007),

causal dependency diagrams (van der Aalst, 2011), and performance sequence

62

graphs (Bozkaya et al., 2009), this thesis also proposes the following new

visualisations as feedback that can be offered to both instructors and students

(writers):

• Revision maps

• Topic evolution charts

• Topic-based collaboration networks

Revision maps are first created for showing a snapshot of the text edits performed

by students on their jointly authored documents. This form of visualisation depicts

the development of documents at the paragraph level over a period of time. Based on

the text edits made to the paragraphs, topics are then extracted through the use of

several types of probabilistic topic models. The resulting topic evolution charts

provide insights on how topics are created and developed during the writing process.

Finally, topic-based collaboration networks are established to analyse student

collaboration based on the topics found in their writing. The topic-based

collaboration networks present network diagrams that show those students who share

topics in common, i.e., who write about the same topics during their tasks.

Because collaborative writing is very demanding both organisationally and

cognitively, it is crucial to acquire a better understanding of text edition to achieve

effective and efficient collaborative writing (Lowry et al., 2003). All three types of

visualisations previously nominated here are intended as a feedback mechanism

about writing processes that can be given to instructors and the student writers. For

instance, by examining the revision maps, students can answer three basic questions

regarding text editions performed on their documents: They can see which portions

(sections or paragraphs) have been edited recently, when these changes were made,

and who made the modifications. Having this information helps writers to

understand and follow the development of their document, and makes it much easier

for them to coordinate work with their team members and carry out their tasks more

efficiently and effectively. The visualisations also provides support for teachers, who

can use them as a means for monitoring groups more effectively and detecting

problems early in the writing process.

63

4.5 Summary

This thesis proposes new methods of analysing collaborative writing, with the

purpose of obtaining information that can better understand the writing process. This

information can be a source of useful feedback for students (authors) while they are

engaged in collaborative writing, and can also be exploited by education researchers

and teachers both during and after collaborative writing exercises.

The first step in achieving this goal was the creation of a framework for

retrieving revisions and revision histories from the Web 2.0 writing tool Google

Docs. These revisions and revision histories retrieved are then used to develop a

technique for automatically extracting collaborative writing activities and to discover

process models of the writing processes. This technique development and process

model discovery are accomplished by employing text mining techniques for

extracting topics and measuring cohesion, from which the purpose of text edits

during collaborative writing can be inferred and the corresponding collaborative

writing activities can be identified. Process mining and machine learning algorithms

are applied to discover writing process models representing different views of

semantic levels of text edits. Finally, this thesis concludes by proposing a range of

visualisations that represent different views of collaborative writing processes.

64

65

CHAPTER 5

WRITEPROC: A FRAMEWORK FOR DATA

COLLECTION

This chapter introduces WriteProc as a framework for collecting all the data required

for semantic and process analysis as described in Chapter 6 and 7, respectively. This

framework corresponds to box A of Figure 4-1 in the previous chapter, and consists

of the writing tool Google Docs, which provides support for collaborative writing

activities; and an application, which retrieves necessary revisions and metadata (i.e.

identifications of authors who produce the revisions and timestamps indicating when

the revisions were created) from Google Docs.

5.1 Overall Conceptual Description

WriteProc integrates a front-end writing tool, Google Docs, which not only supports

collaborative writing activities, but also stores all revisions of documents created,

66

shared and edited by groups of writers. Each revision of a particular document

contains the following information:

• The entire text content of the revision.

• The timestamp (date and time) that the revision was created.

• The user identification of the writer who edited the text.

In order to analyse the writing process of a particular document, the information

pertaining to the three items above and all the document revisions must be retrieved

and traced by using an open-source application programming interface. The content

text of revisions is used for semantic analysis to specify the types of text edits, topics

and cohesion changes made by the authors. The resulting semantic analysis is utilised

to identify collaborative writing activities, which are explained in detail in the next

chapter. Based on the information delineated above (i.e. timestamp, author

identification, edited text) and on the identified writing activities, process analysis is

then employed to discover process models of writing processes.

Figure 5-1 depicts WriteProc, the framework composed of the Google Docs

writing environment and the Google Documents List API application used for

retrieving revisions and their information as previously explained. These two

components are described in detail in the subsequent section.

Figure 5-1. WriteProc: a frame work retrieving revisions and revision histories.

5.2 Writing Environment: Google Docs

Earlier in this thesis, it was established that in order to explore the workings of the

writing process, it is necessary to have a front-end writing tool that supports

collaborative writing (CW) and stores all revisions and their metadata. For this

reason, tools such as Microsoft Word or OpenOffice, which do not allow CW, were

not viewed as viable choices for this work, although these tools do provide some

67

functionality to detect changes and who produced those changes. Web 2.0 tools such

as Google Docs and the incipient Microsoft Word Live allow users to write on a web

application, or to write offline and synchronise the material later, with the service

provider storing the different versions of the document. For this reason, Google Docs

was selected as the front-end writing tool for this work.

Google Docs is a web-based utility with most of the functionalities necessary for

word processing which allows users to share documents with other team members

and to write synchronously. Authors can access Google Docs through their web

browsers from anywhere and at anytime they choose. Each author requires a Gmail

account in order to access the tool that he or she can obtain from Google free of

charge; this author’s Gmail account is referred to as the author ID in the framework

of this study.

The writing process begins with the creation of a particular document that is then

assigned to a group of students by course administrators/lecturers. Students work on

the documents by writing and editing, after which they submit a final version. As

previously noted, the crucial aspect of this particular writing process is the fact that

Google Docs stores all revisions and revision histories made from beginning to end.

Each document created in Google Docs created is assigned a unique document

identification number (i.e. document ID). Google Docs also keeps track of all

versions by incrementally numbering each subsequent one (i.e. revision ID) every

time the document is edited. Whenever an author makes changes and edits a

particular document, Google Docs stores the edited content text and keeps a record

of the following information in the revision history:

• The version number (revision ID).

• The identification of the author (author ID).

• The timestamp (date and time) of the changes made

There are occasions when many authors engage in editing the same content in a

document at almost the same time. In this case, since Internet connection speeds are

not instantaneous, when an author makes a change, he or she temporarily creates a

local version of the document that is different from the versions that other

collaborators see. When this occurs, Google Docs implements a mechanism to make

68

sure that all the text change operations eventually converge on the same correct

version of the document
1
.

Figure 5-2. the web-based interface of revision history (on the right panel) of Google Docs,

which shows a list of revisions. Each revision contains a timestamp (date and time) and an

author ID (different colours for different authors).

Authors can also access the revision history of their documents by using the web-

based interface via the command “see revision history” under the “file” main menu

on Google Docs, as shown in Figure 5-2. Google Docs displays the web-based

interface of the revision history on the right-hand panel, which includes a list of

revisions containing timestamps and author IDs of the corresponding edits. Different

authors are assigned different colours for identification. The web-based interface

incorporates two types of revision history for each document, designated as more and

less detailed revisions. For both types of revision history, an author can select a

particular revision to view the edited content.

Since Google Docs automatically saves documents every few seconds even when

no changes have occurred
2
, there may be any number of revisions for any particular

document.

1 Since 2011, Google Docs uses a new algorithm for merging changes called operational transformation. It also

uses the collaboration protocol to make sure that each author knows when there are changes that need to be

merged. Please see the three white papers “what’s different about new Google Docs” (Google Docs White

Paper, 2010a, 2010b, 2010c) for a thorough detailed explanation of the operational transformation and the

collaboration protocol (these two were originally developed as engines driving Google Wave).

2
 This framework was implemented in 2010. In 2011, Google has changed the auto-saving functionality so that

Google Docs only auto-saves when there is a change in the content text of the documents.

69

As previously elaborated, this research uses an application programming

interface (API) with the goal of automatically retrieving all authors' revisions and

revision histories of documents. Before describing the API, however, it is important

to first define some terminology used in this thesis.

A writing session, as defined for the purposes of this study, is composed of

consecutive revisions that are made less than 30 minutes apart. A time threshold of

30 minutes was established to distinguish between writing sessions, as used in the

data analysis for web usage mining (Markov & Larose, 2007). If two consecutive

revisions show a timestamp difference of more than 30 minutes, the later revision

becomes the first revision of a new writing session. Every author’s writing sessions

are determined according to this 30-minute cut-off. It is considered that students

perform their text edits continuously during a writing session. The inactive time that

occurs when students pause to read the text written so far and to think about what

they are going to write next should consist of a fairly short interval (pause). If this

inactive time becomes longer, it is assumed that a new writing session follows.

Since Google Docs automatically saves documents frequently, the resulting

number of revisions is very high and must be reduced to a more manageable size.

This is accomplished by grouping the revisions into major revisions, which are

defined as the final revisions that end a writing session. All revisions within a major

revision originate from the same author. In this thesis, the creation of major revisions

is performed by WriteProc after retrieving all revisions. Figure 5-3 shows an

example of revision history and major revisions.

Figure 5-3. Revision history before 2011 showing 13 revisions: R1-R13 written by 2 authors:

U1 and U2. Each revision has timestamp associated with it. Σ and σ are time difference of

two consecutive revisions, where Σ>30 min and σ≤30 min.

70

From 2011, Google has changed the auto-saving functionality so that Google

Docs only auto-saves when there is a change in the content text of the documents. In

addition, as mentioned previously, Google Docs implements a mechanism to make

sure that all the text change operations eventually converge on the same correct

version of the document. Therefore, the number of revisions has been reduced

significantly. For a particular document, the revision history retrieved by Google

Document List API (verstion 3.0) is the less detailed revision history shown in the

web-base interface, as described above. For data collected since 2011, the reduction

of the number of revisions is no longer needed. This thesis considers the revisions of

the less detailed revision history as major revisions, which have timestamps and

authors’ IDs associated with them. Although all revisions including the ones shown

in the more detail revision history can be downloaded, their timestamps and authors’

ID are not available. Figure 5-4 shows the revision history provided by Document

List API since 2011.

Figure 5-4. Revision history since 2011. Only revisions displayed in “less detailed” revision

history have timestamp and user IDs.

5.3 Google Document List API

The last component of the framework for this research is Google Document Lists

Data API (Google Documents List API, 2012) which is used to integrate Google

Docs to WriteProc, as shown in Figure 5-1. The API allows the framework to

retrieve and track all versions of documents that are created, shared and edited

among groups of students. Every time students make changes and edit a particular

document, the edited content text and the revision history of the document can be

retrieved and stored at the central relational database of the framework by using the

71

API. This information extraction is executed seamlessly in the background;

users/writers are not aware of it and are able to perform their writing tasks just as

seamlessly. The API also provides the ability to build an interface to create and share

documents in the collaborative writing environment. This can be very helpful for

instructors or supervisors to create and assign documents to groups of writers and

reviewers without accessing Google Docs. An appointed owner can edit a document,

whereas an assigned “viewer” can only review the document.

In this thesis, the framework uses Google Document List API version 3

implemented in Java. The API allows developers to create, retrieve, update, and

delete Google Docs (including but not limited to text documents, spreadsheets,

presentations, and drawings), files, and collections, and also provides advanced

features such as resource archives and revision history (Google Documents List API,

2012). As previously noted, for each document the Google Documents List API is

used to retrieve content texts of revisions and the revision history containing

metadata.

In order to access Google Docs using the API, WriteProc uses three Java classes:

folder, document, and revision. An instance of folders contains one or more

document instances, in which each document instance consists of one or more

revisions. The attributes of these classes are described below:

• Folder: folder ID, changestamps (a unique integer incremented every time there

is a change to the corresponding folder), and document list.

• Document: document ID, changestamps (similarly a unique integer incremented

every time there is a change to the corresponding document), and revision

history.

• Revision: revision ID, author ID, and timestamp.

In addition, WriteProc consists of a relational database containing three main

tables that represent the above three main classes. This database also indexes texts of

revisions using Apache Lucene (Lucene, 2013).

The procedure for retrieving revision history and revisions is described below,

assuming that the document ID is known for a particular document as created by

course administrators/lecturers, and that permission exists to access its revisions and

revision history:

72

1. For each document ID, retrieve the changestamps and use it to identify

changes made to the corresponding document.

2. If there is a change, download the updated revision history containing new

record: revision ID, author ID and timestamp, using document ID and storing

the record in Revision table.

3. For each record of new metadata, download (content) text using the

corresponding revision ID and indexing the text using Lucene.

This procedure is executed automatically every time there is a text edit performed

on particular documents monitored by WriteProc, and also operates offline without

the authors' awareness, allowing them to perform their writing tasks seamlessly.

5.4 Dataset for Analysing Writing Processes

A dataset is described here as it will be used in subsequent chapters (6 and 7) to

illustrate and validate techniques for identifying collaborative writing activities and

extracting writing process models. In the following chapters, this dataset will be

referred to as Dataset A. This is to distinguish it from the data collected during an

experimental study for visualising writing processes, which will be described later in

Chapter 8.

This dataset was collected during a course of E-business Analysis and Design

(ELEC3610), conducted during the first semester of 2010 at the University of

Sydney. In this course, 52 students were organised in groups of two and asked to

write a project proposal comprising of 1,500 to 2,000 words. This writing assignment

took one month to complete and was a graded assignment, which counted 30%

toward the course grade. iWrite (Calvo et al., 2011) was used to manage activities

and documents on Google Docs. The activities involved a draft submission after

which students peer-reviewed two other proposals (from different groups). After

getting feedback from their peers, students could revise and improve their documents

if necessary before submitting the final version two weeks later. Figure 5-5 depicts

the timeline of the course. In total there are 26 documents in this dataset.

Figure 5-5. Timeline of assignment due dates in the case study.

73

Each document consists of five sections: 1) Introduction; 2) Background; 3) risk

and opportunities, 4) total cost of ownership, and 5) conclusion. Section 1, 2 and 5

were required to be shared and written by all members of the groups, whereas each

member was required to select and write either Section 3 or 4 individually. The final

assessments of individual documents were added to the dataset for the analysis of the

writing processes.

Table 5-1. Number of Revisions and the final marks of 26 documents of Dataset A, in which

documents are ordered by the final marks.

Document
Number of All

Revisions

Number of

Major Revisions

Final

Mark

(out of

100)

3 2320 148 91

7 356 14 91

23 1434 101 90

16 1200 126 85

18 1276 27 78

22 1785 95 76

11 912 28 75

19 6688 432 74

4 1311 140 68

12 1690 113 68

13 2090 165 68

17 1105 42 68

25 1397 67 68

6 2172 161 65

20 2329 286 65

26 1040 79 65

1 583 46 64

8 1790 80 63

9 2354 242 61

21 2209 147 61

5 1394 81 58

14 1524 98 56

2 2111 39 54

24 1513 40 45

15 1062 15 39

10 1349 143 38

Total 44994 2955

Mean 1730.54 113.65

STD 1145.08 93.36

74

For each document, content texts of all revisions and its revision history were

obtained using WriteProc, described above. Table 5-1 shows the numbers of all

revisions and major revisions and the final marks of 26 documents in the dataset.

There are 2955 major revisions (M=113.65 revisions per document, STD=93.36) in

total. The maximum number of major revisions is 432, whereas the minimum

number of major revisions is 14. The final marks provide overall view of student’s

performance and will be referred to in the process analysis in Chapter 7.

5.5 Summary

This chapter describes WriteProc, the framework for retrieving revision and

revision histories used in writing process analysis and visualisation. The framework

uses a front-end writing tool -- Google Docs -- for collaborative writing and an

application using Google Documents List API to retrieve content texts of all

revisions and the revision history of the document written by groups of students.

These content texts and the revision history will be used for semantic and process

analysis in order to gain further insight into the way that students write their

documents, which will be explained in detail in the following chapters.

75

CHAPTER 6

IDENTIFYING WRITING ACTIVITIES

As a first step towards process mining and visualisations, the revisions and revision

histories retrieved by WriteProc (as introduced in the previous chapter) are gathered

for the purpose of identifying writing activities. Different process models and

visualisations provide diverse views of workflow processes that can be suitable for

use according to the specific purposes of the process analysis; but as noted in prior

discussions herein, these traditional systems for process models of business

workflows depend on the recording of predefined events (activities or transactions),

as opposed to the events that occur during the writing process. In order to achieve

writing process models that represent different views of semantic levels, the semantic

levels of text edits need to be taken into account. The purpose of the text edits that

are made during the collaborative writing process is used as a means of identifying

the corresponding collaborative writing activities. Based on these identified

76

activities, process mining techniques are then employed to extract and analyse

writing process models and visualisations.

This chapter will describe an automatic technique for identifying writing

activities based on several text features; the explanation will begin with a description

of the heuristic for detecting writing activities, followed by an evaluation of the

proposed heuristic, using real documents written by groups of students.

6.1 Heuristic for Determining Collaborative Writing Activities

The heuristic relevant to this study is intended to identify the nature of the writing

activities performed during writing processes. The text differences between a given

revision and the previous one are used to extract important indicators for estimating

the collaborative writing activities performed during that revision.

The heuristic for identifying writing activities, known as CWA heuristic, is based

on several features:

• Text edits (C1-C8).

• Structure of text (S1).

• Difference between the number of sentences and the number of paragraphs

(S2).

• Changes in the number of words (F1)

• Changes in topics or topic overlap (F2)

• Changes in cohesion measure (F3)

Based on the taxonomy of writing activities in a collaborative environment

proposed by Lowry et al. (2003) as described in Chapter 2, the five collaborative

writing activities nominated are brainstorming (B), outlining (O), drafting (D),

revising (R), and editing (E). In addition, eight types of text edits will be discussed in

subsection 6.1.2: C1 – C8. Table 6-1 summarizes the proposed heuristic.

Using this table, writing activities can be identified based on text features as

follows:

• Brainstorming and outlining activities are detected by examining the

structure of the text (i.e. bullet-point lists consisting of single and phrasal

words for brainstorming, and ordered lists for outlining). During

brainstorming, authors can reorder, add, or delete items of lists of

brainstorming ideas. They can also format the lists, alter all of the items on

77

the lists, or change selected items. Similarly, during outlining, authors can

add, delete, reorder, format, and change part of or entire sections of their

organised list.

• During drafting, revising and editing, text change operations become more

complicated. Drafting activities start when the structure of the written text

changes from bullet-point or structured lists to paragraphs. In other words,

alteration of form (C7) after either brainstorming or outlining usually

indicates the beginning of drafting activities (as depicted by x* in the table).

During drafting, information is added and removed on an ongoing basis;

hence, expansion of information (C5), deletion of information (C6),

consolidation of information (C3), distribution of information (C4) and

changes in micro-structure (C8) all imply drafting activities. In addition,

during drafting activities, the cohesion of the written text fluctuates greatly

and topic changes overlap dramatically.

• Common revising activities are categorised as reordering (C2), C3, C4, and

C8. These text edits first occur when authors begin drafting, then recur

frequently during the writing process; it is assumed that, as they draft, authors

may stop writing and revise their own edits in order to improve document

cohesion and effectively convey information and ideas to readers. The

cohesion of the text usually remains stable and topics are generally not

changed in the course of revising activities. In addition, during revising

authors may also delete the entire text and rewrite it from the beginning,

which represents a C7 operation

• Micro-structure change (C8), which pertains to text edits performed on

existing paragraphs, can happen during both drafting and revising activities

(as noted by √* in the table). If a text edit consists of appending words to an

existing paragraph, it is considered to be a drafting activity; whereas if a text

edit consists of inserting, deleting, moving or replacing words in an existing

paragraph, it is identified as a revising activity. During drafting, authors

usually append words at the end of existing paragraphs, whereas during

revising they tend to insert, delete, move or replace words in the body of the

paragraphs.

78

• For the sake of simplicity, all surface change operations (C1) including

formatting, spelling, and punctuation corrections are designated as editing

activities; and the number of words should not change during editing

activities. Similar to the outcome of revising activities, editing activities do

not produce a change in cohesion or topics.

Table 6-1. Heuristic for identifying collaborative writing activities based on text edits (C1 –

C8), text structure (S1 – S2), and functions (F1 – F3).

Writing

Activities

Features

 Brain-

storming (B)

Outlining (O) Drafting (D) Revising (R) Editing (E)

Surface change C1 √ √ × × √

Reorganization of

information

C2
√ √ × √ ×

Consolidation of

information

C3
√ √ √ √ ×

Distribution of

information

C4
√ √ √ √ ×

Addition of

information

C5
√ √ √ × ×

Deletion of

information

C6
√ √ √ × ×

Alteration of form

(Macro-structure

change)

C7

N/A N/A ×* √ ×

Micro-structure

change

C8
√ √ √* √* ×

Structure of text S1 List Structured

List

Sections &

Paragraphs

Sections &

Paragraphs

Sections &

Paragraphs

Sentences (s) vs

Paragraphs (p)

S2

s ≈ p
s ≈ p s > p s > p s > p

Changes in #words F1 × × √ √ ×

Topic overlap F2 N/A N/A √ × ×

Changes in

cohesion

F3
N/A N/A √ × ×

Abbreviation: An operation is allowed (√) or not allowed (×), and Not applicable (N/A).

From CWA heuristic shown in the table above, writing activities can be

identified based on text edits (C1-C8), text structure (S1-S2) and functions (F1-F3).

First, text edits of each revision are discovered before they are mapped into writing

activities using several text features. For example, if a revision contains a text edit

79

and the number of words is not changed from the previous revision, the text edit is

identified as C1. The heuristic then checks the structure (S1) of the text of the

revision and compares the number of sentences and the number of paragraphs (S2).

If the number of sentences is equal the number of paragraph, the structure of the text

is a list. If the list is ordered, specified by S1, this C1 text edit is classified as an

outlining activity. If the list is bullet-pointed, the text edit is identified as a

brainstorming activity. However, if the number of sentences is higher than the

number of paragraphs, the text edit is identified as an editing activity. Another

sample is a revision with a text edit and no change in topic overlap (F2). In this case,

the text edit associated with this revision is categorised as C7. Thus, it is identified as

a revising activity. The final example is a revision with a text edit C3, which is

discovered by using text comparison utility, described below. From Table 6-1, the

text edit can be classified either a drafting or revising. If the cohesion of the revision

is changed from the previous one, then it is identified as a drafting activity.

Otherwise it is a revising activity.

The subsections that follow will describe all the features used in CWA heuristic,

commencing with an explanation of the text structures employed. My prior research

(Southavilay et al., 2010) analysed text edits at the paragraph level, by identifying

adding, deleting, and changing paragraphs. Since that work, I have improved the

granularity of the analysis to include both paragraph and word edits. Algorithms that

compare the texts of two revisions to discover text edits are described in Subsection

6.1.2, followed by a description of the number of words and phrases, cohesion and

topic overlap used in the CWA Heuristic (Subsections 6.1.3, 6.1.4, and 6.1.5

respectively).

6.1.1 Text Structures

Writing activities can be determined by the structure of the written texts (S1) and the

number of sentences and paragraphs (S2). During brainstorming, authors normally

write bullet-point lists consisting of single words or phrasal words (compound

nouns). As a result, the number of paragraphs (the number of lines) is approximately

equal to the number of sentences (the number of words or items). Although during an

outlining phase the number of paragraphs and sentences still remain the same, the

text structure becomes more organised, separated into sections and subsections.

80

When authors start drafting their documents, the number of sentences and paragraphs

change dramatically. During this phase, the number of sentences is expected to be

higher than the number of paragraphs. This is also true with regard to the revising

and editing phases.

6.1.2 Text Edits

This thesis is concerned with the following eight types of text edits or text change

operations, based on the revision change functions proposed by (Boiarsky, 1984):

surface change (C1), reorganization of information (C2), consolidation of

information (C3), distribution of information (C4), addition of information (C5),

deletion of information (C6), alteration of form or macro-structure change (C7), and

micro-structure change (C8). During their writing activities, authors use these text

edits for different purposes during the process of producing the final document.

The technique for detecting these text edits began with my prior work

(Southavilay et al., 2010), in which the granularity of the text edits remained at the

paragraph level. Specifically, edits to text changes were only associated with

paragraphs, as in adding, deleting and changing paragraphs. In contrast, this thesis

identifies edits not only at the paragraph level, as in my aforementioned prior

research (Southavilay et al., 2010), but also at the word level – i.e. adding,

appending, deleting, moving, and replacing the words in existing paragraphs. A text

comparison utility is expressly developed to compare the text content of two

consecutive revisions and compute the difference between them; this technique is

intended to discover the specific text edits that were made during the writing process

in order to transform the previous revision into the current one.

This text comparison utility uses a text differencing algorithm based on two

levels of text edits, the paragraph level and the word level. At the first level, the

algorithm detects six types of text edits made to paragraphs: inserting (C5), deleting

(C6), moving (C2), replacing (C8), merging (C3), and splitting (C4). The first four

of these text edits at the paragraph level formed part of the research of Fong and

Biuk-Aghai (Fong & Biuk-Aghai, 2010), but merging and splitting paragraphs were

not acknowledged in that work. Furthermore, C8 can be interpreted as a paragraph

alteration; if the existing paragraphs are replaced or altered, the algorithm detects text

edits at the word level, in order to further clarify how authors alter the text.

81

At the second level, the text differencing algorithm identifies five types of text

edits made with regard to words: inserting (C8.1), deleting (C8.2), moving (C8.4),

replacing (C8.5), and appending (C8.3). The first four of these word level edits are

also delineated in the aforementioned Fong and Biuk-Aghai research (2010). This

thesis, however, differs from that study in that the algorithm used herein also

distinguishes whether new words have been appended to the existing paragraphs

during writing, thus differentiating between drafting (when authors usually append

words at the end of paragraphs) and revising (when authors tend to insert, delete, or

replace words in the paragraphs). These two differencing algorithms are explained in

Appendix B.

The number of words and topic overlap are the features used to detect text edit

types designated as surface change (C1) and alteration of form (C7); this aspect is

described in Subsection 6.1.4 below.

6.1.3 Number of Words and Phrases (F1)

The ratio between the number of words of two consecutive revisions is computed

(F1) and used in conjunction with topic overlap and cohesion measurement

(discussed below) to determine writing activities.

6.1.4 Topic Overlap (F2)

The CWA heuristic also uses a topic overlap measurement (F2) in analysing the

change in topics (concepts) for two consecutive revisions. If one intuits that when

people write about something, they usually repeat the subject (topics) to focus the

readers’ attention, it follows that identifying topics and comparing them between two

consecutive document revisions can expose more information about how authors

develop their ideas and concepts. Intuitively during drafting, F2 changes

dramatically, whereas during revising and editing, it should be constant.

Topics are extracted from each individual revision using a technique described in

Section 6.2. Topic overlap is then calculated by using the topic matching rate, which

is calculated for each two consecutive revisions using the formula described below

(similar to the word matching rate in Appendix B):

If we denote:

82

Ti as the number of topics in the old revision,

Tj as the number of topics in the new revision,

Tci,j as the number of common topics between the above two revisions,

Tmi,j as the topic matching rate between the above two revisions,

then the topic matching rate can be computed as follows:

MN�,2 =	
2	 × MO�,2
M� +	M2

The changes in the number of words and topic matching rate from old to new

revisions is computed to identify surface change (C1) and alteration of form (C7). If

there is a change in text (i.e. text replacement) to transform a prior revision into a

new one, but the number of words of the two revisions are the same (the ratio of the

number of words is 1) and all topics retrieved from the two revisions are also the

same (the matching rate is 1), it is concluded that the text change operation is C1. To

detect C7, it is only necessary to verify if the topic matching rate Tmi,,j is equal to

zero (i.e. no topics in common) regardless of what types of text editions have been

performed. In other words, if the two consecutive revisions have totally different

topics, a total change in the form of the entire text (i.e. macro-structure change) has

to have taken place. Table 6-2 illustrates a summary of the process for detecting C1

and C7.

Table 6-2. Detecting surface change (C1) and alteration of form (C7).

 C1 C7

Ratio of Number of Words 1 N/A

Topic matching rate 1 0

6.1.5 Cohesion Comparison (F3)

Another measurement used by the CWA Heuristic to detect writing activities is the

cohesion of the text. The cohesion of each individual revision is measured,

specifically calculating the distance between consecutive sentences and paragraphs,

to shed light on the development progression of particular paragraphs and of the

entire text. Thomas and Sheth (2007), who worked on automatically identifying the

semantic convergence of Wikipedia articles, suggested that “a document can be seen

as being mature, if, despite ongoing changes, it is semantically stable”. Text edits

83

performed on semantically mature revisions are considered to be revising activities.

In other words, during the drafting stage, a lot of text has been added and deleted to

paragraphs; thus, the semantic distance between these paragraphs is divergent.

Although paragraphs are also edited during the revising stage, the semantic distance

between them is stable. As a result, the cohesion of the text fluctuates significantly

during the course of drafting activities, whereas the cohesion of the text usually

remains stable during the course of revising activities. There should be no change in

the cohesion of the text during editing activities.

This research employs the Latent Semantic Analysis (LSA) technique to measure

the cohesion of the text. In particular, for each revision, average sentence similarity

is computed using LSA for single documents as described in Villalon & Calvo

(2009) and the result is compared with the previous document revision in order to

determine if there is an improvement in cohesion from one document revision to

another.

The proposed set of heuristic is based on the manner in which text edits, text

structure, the number of words, topics, and cohesion have changed. The subsequent

sections present a description of the pre-processing steps in computing cohesion

changes and topic overlap, followed by a presentation of the validation of the

heuristic.

6.2 Pre-processing: Computing Cohesion Changes and Topic Overlap

Figure 6-1 illustrates the pre-processing steps mentioned above. The first step filters

out all the revisions that do not contain changes, which reflect situations in which

authors may want to review their work without altering it in any way, since -- as

noted in Chapter 5 -- documents are saved automatically even when no changes are

made to the contents, thus creating these unaltered revisions.

 This initial filtering step is followed by determining the text edit operations in

two consecutive revisions, which is carried out through the use of a text comparison

utility that includes text differencing algorithms for both the paragraph and the word

levels (as discussed in the previous section).

84

Figure 6-1. Pre-processing steps (from (Southavilay et al., 2010b))

As mentioned earlier in 6.1.5, the LSA technique is applied to measure the changes

in cohesion in the text. The pre-processing step for LSA involves the extraction of

terms from all relevant document revisions. Each revision is first split into

paragraphs by simple matching to the newline character. Each paragraph is then

divided into sentences using Sun’s standard Java text library. After that step, each

sentence and the entire text are indexed using Apache’s Lucene (Lucene, 2013),

which performs the tokenization, stemming, and stop word removal. Porter’s

stemmer algorithm (Snowball analyser integrated in Lucene) is utilised for stemming

words, followed by the creation of a term-document matrix for each revision. Term

frequency (TF) and document frequency (DF) are selected as weight terms, and

terms that only appear once in each document revision are discarded. Singular Value

Decomposition is then applied to reduce the space of term-document matrix; Villalon

& Calvo's method (Villalon & Calvo, 2009) is adopted to reduce the dimension of

the LSA space to 75% of the total number of sentences.

Based on the created semantic space, the similarity or distance between

consecutive sentences is computed using a cosine measure, as defined below:

cos��, �� = ��	.		���
|�|. |�|	

For each document revision, average sentence similarity is computed and the

results are compared with those of the prior revision in order to determine if an

improvement in document cohesion has taken place.

85

In order to compute the topic overlap discussed in Subsection 6.1.4, topics are

first extracted from each document revision, using an approach based on the Lingo

clustering algorithm developed by Osinski et al. (2004), with particular attention to

extracting frequent phrases from each revision. The assumption and definition of the

term "frequent phrase" is discussed in detail in Osinski et al. (2004). Next, using the

reduced term-document matrix calculated for LSA mentioned above, any existing

latent structure of diverse topics is discovered for each and every revision. The detail

of Lingo algorithm is described in Subsection 3.1.2. After discovering the revision

topics, they are compared between two consecutive revisions of the same document

in order to calculate the topic overlap between the two revisions, by using the topic

matching rate as described in the previous subsection for computation of topic

overlap.

The proposed heuristic are applied by using the obtained types of text edits and

the results of LSA cohesion and topic overlap calculated as above. In conjunction

with timestamp and user identification information obtained from the revision

history, an event log is created of the writing activities for each document.

6.3 Heuristic Validation

This section addresses validation of the CWA Heuristic by deriving the writing

activities of a test set and comparing them to a gold standard of human expert

tagging, beginning with a description of the dataset.

For validating the heuristic for detecting writing activities, dataset A was used, as

described and explained in Section 5.5. In this section, 15 documents were selected

randomly from the 26 existing documents for the purpose of conducting an

evaluation with regard to extracting writing activities.

The heuristic was validated against 15 documents which contained a total of

1407 major revisions. The documents were chosen at random from our dataset

(described in Subsection 5.3.1). All major revisions were downloaded from Google

Docs.

Manual tagging: In each major document revision, every text change was

manually tagged as either a drafting, revising editing activity as defined in Lowry et

al. (2003). A total of 2335 writing activities were tagged. It is noted that since

revisions may contain more than one edit, there can be more than one writing activity

86

for each revision (see Figure A-2 in Appendix A for an example of multiple text edits

performed on one revision).

CWA heuristic tagging: After pre-processing the major revisions, the heuristic

was applied to each in order to determine which of the three core writing activities

(i.e. drafting, revising and editing) were involved. Since brainstorming and outlining

activities occurred very rarely and mostly at the beginning of the writing process, the

initial concentration centred around evaluating the detection of these three activities.

An evaluation of the heuristic for identifying brainstorming and outlining activities

using all revisions of five documents is described later in Subsection 6.3.6. The

details of the heuristic and the pre-processing steps are described above in Section

6.1 and 6.2, respectively.

6.3.1 Matrices

For each document, a comparison of the writing activities derived from the

heuristic against those found by manual tagging was achieved by computed

precision, recall and F1 scores according to the following formula adapted from

Olson & Delen (2008):

Precision: Of all the activities (i.e. either drafting, revising, editing, or all)

discovered by the heuristic, how many are correct?

- = 	 |PF?QQROS	�OS&T&S&R0U|
|PF?QQROS	�L�	ELO?QQROS	�OS&T&S&R0|

Recall: Of all the activities manually tagged, how many are discovered by the

heuristic?

V = |PF?QQROS	�OS&T&S&R0U||PM�WWR�	�OS&T&S&R0U|

F1 score:

V = 2 ∗ -QRO&0&?L ∗ VRO�XX-QRO&0&?L + VRO�XX

For each individual revision, it is important to note that the heuristic

identification of all text changes is 100% correct for every individual revision. Each

text change detected by the heuristic is designated as one of the five writing activities

(i.e. brainstorming, outlining, drafting, revising, and editing). The number of

activities identified by the heuristic is always equal to the number of activities

selected by manual tags.

87

The baseline is established from the human tagging. For each writing activity (i.e.

drafting, revising, and editing), the baseline is equal to the number of activities

divided by the total number of changed revisions (i.e. total number of revisions – the

number of pauses or no-change revisions). In other words, the baseline is the result

of Zero R classifier using the human ratings as our targets.

6.3.2 Applying Evaluation Matrices to CWA Heuristic

The task of evaluating the classification performance of the heuristic is concerned

with computing precision, recall, and F1 scores. Since there are several ways to

measure the evaluation matrices, this subsection illustrate this problem. Table 6-3

depicts an example of four revisions (R1, R2, R3, and R4) of a hypothetical

document, in which there is one activity for R1, two activities for R2, three activities

for R3, and five activities for R4 (11 revisions in total). Each activity was tagged

manually as either drafting (D), revisiting (R), or editing (E). In addition, each

activity was classified by the heuristic as belonging to one of these three categories.

Table 6-3. An example of four revisions of a hypothetical document.

Revisions Human

Tagging

Heuristic

Tagging

R1 D D

R2 D D

E R

R3 R D

E E

D R

R4 D D

D R

R R

E D

D E

There is a problem. It is difficult to compute the evaluation matrices. For R1, it is

straight forward because there is only one activity and heuristic tagging is matched

with human tagging. For R2, heuristic tagging and human tagging have different

types of activities: D and R for heuristic tagging, and D and E for human tagging.

One of them (i.e. D) is correctly matched. However, with the second activity,

88

heuristic tagging mistakenly classifies E as R. For R3, heuristic tagging derives all

three different types of activities: D, E, and R, which are the same as human tagging.

However, only one (i.e. E) is correctly matched with human tagging. The other two

are swapped. For R4, heuristic tagging also derives three different types of activities:

D, E, and R similar to human tagging. However, the numbers of individual activities

are different from those of human tagging. D has three in human tagging, whereas it

has two in heuristic tagging, in which only one is correctly matched. R has two in

heuristic tagging, but it has only one in human tagging, which is correctly matched. E

has one for both heuristic and human tagging, but it is not matched.

Therefore, for each document, there are two aspects of performance evaluation.

First, the precision, recall and F1 scores are computed using all revisions (11

activities in total). Another method of measuring is to calculate the scores using each

revision and then average out for all revisions to find the performance measure.

These are discussed for the hypothetical example below.

First, the performance measure is calculated for the revising (R) and drafting (D)

activities. The performance measure can be computed in a similar way for the editing

(E) activity.

6.3.2.1 Precision and Recall for Detecting Revising (R)

• Using all revisions (11 activities in total)

 Act Not Act

+ Predicted 1 3

- Predicted 1 6

Precision for R = 1/4 and Recall for R = ½

• Using revision R1 (1 activity)

 Act Not Act

+ Predicted 0 0

- Predicted 0 1

Precision for R = 0/0 = infinity and Recall for R = 0/0 = infinity

(I consider as 1)

• Using revision R2 (2 activities)

 Act Not Act

+ Predicted 0 1

- Predicted 0 1

89

Precision for R = 0/1 = 0 and Recall for R = 0/0 = infinity (I

consider as 1)

• Using revision R3 (3 activities)

 Act Not Act

+ Predicted 0 1

- Predicted 1 1

Precision for R = 0/1 = 0 and Recall for R = 0/1 =0

• Using revision R4 (5 activities)

 Act Not Act

+ Predicted 1 1

- Predicted 0 3

Precision for R = 1/2 and Recall for R = 1/1 = 1

6.3.2.2 Precision and Recall for Detecting Drafting (D)

• Using all revisions (11 activities in total)

 Act Not Act

+ Predicted 3 2

- Predicted 3 3

Precision for D = 3/5 and Recall for D = 3/6=1/2

• Using revision R1 (1 activities)

 Act Not Act

+ Predicted 1 0

- Predicted 0 0

Precision for D = 1/1 = 1 and Recall for D = 1/1 = 1

• Using revision R2 (2 activities)

 Act Not Act

+ Predicted 1 0

- Predicted 0 1

Precision for D = 1/1 = 1 and Recall for D = 1/1 = 1

• Using revision R3 (3 activities)

 Act Not Act

+ Predicted 0 1

- Predicted 1 1

Precision for D = 0/1 = 0 and Recall for D = 0/1 =0

90

• Using revision R4 (5 activities)

 Act Not Act

+ Predicted 1 1

- Predicted 2 1

Precision for D = 1/2 and Recall for D = 1/3

Finally, the accuracy in detecting all three activities per revision is shown below:

Revision Activity % Frequency

(Baseline)

(Zero R

Classifier)

Precision Recall F1 score

R1 D 100% 100% 100% 100%

R 0 100% 100% 100%

E 0 100% 100% 100%

R2 D 50% 100% 100% 100%

R 0 0 100% 0

E 50% 100% 0 0

R3 D 33% 0 0 - (considered as 0)

R 33% 0 0 - (considered as 0)

E 33% 100% 100% 100%

R4 D 60% 50% 33% 40%

R 20% 50% 100% 67%

E 20% 0 0 - (considered as 0)

Mean D 49%

R 50%

E 58%

The accuracy across all revisions of this document is shown below:

Activities Precision Recall F1 Score

D 60% 50% 54%

R 25% 50% 33%

E 50% 33% 39%

The above shows the method for computing performance scores with all

revisions and per revision for only one document. If there are several documents, the

performance measure can be calculated per document using similar method as per

revision by calculating the scores using all activities in the document.

91

Therefore, there are three types of evaluation methods:

• Evaluating with all revisions.

• Evaluating per revision.

• Evaluating per document.

These types of evaluation methods are discussed in the following subsections.

6.3.3 Evaluating the Heuristic with All Revisions

Using the calculation technique described above, the F1 scores are first calculated

globally for all activities of all revisions of the 15 documents and compared to the

result of Zero R classifier as shown in Table 6-4. F1 scores of drafting, revising, and

editing activities are 76.21%, 77.62%, and 62.50%, respectively, whereas the Zero R

classifier scores are 47.06%, 43.62%, 9.31%, respectively. Therefore, for all three

activities, heuristic performs better than the baseline.

Table 6-4. Evaluation using all revisions

 Drafting Revising Editing

Zero R classifier 76.21% 77.62% 62.50%

Heuristic 47.06% 43.62% 9.31%

6.3.4 Evaluating the Heuristic per Revision

As depicted in the example described above, for each revision, the accuracy of the

heuristic used for detecting the three activities is also calculated as shown in Table

6-5. F1 scores for drafting, revising, and editing activities in this type of evaluation

are 76.89%, 74.23%, and 67.70%, respectively. The scores from Zero R classifier

are M=35.77%, STD=23.36% for drafting, M=26.08%, STD=25.42% for revising,

and M=6.21%, STD=33.54% for editing. As a result, for all three activities, heuristic

detect writing activities more accurately.

Table 6-5. Evaluation per revision.

 Drafting Revising Editing

Zero R classifier 35.77% 26.08% 6.21%

Heurstic 76.89% 74.23% 67.70%

92

6.3.5 Evaluating the Heuristic Per Document

Figure 6-2. Precision (P), Recall (R), F1 score (F1) and Baseline (B) of detecting drafting,

revising, and editing activities using the heuristic.

We also computed the F1 scores for each type of writing activities (i.e. drafting,

revising, or editing) for all documents and compared them to the baseline. Figure 6-2

contains a summary of the results of precision, recall, F1 score, and baseline for

detecting drafting, revising, and editing activities in 15 document revisions. Table

6-6 presents detailed results of the baseline and F1 scores of all 15 individual

documents, which were ordered according to the number of their writing activities.

Overall, heuristic achieved higher F1 scores than the Zero R classifier for all

documents in drafting and revising activities. As shown in Table 6-6, across 15

documents, we have M=72.56%, STD=10.59% for drafting and M=75.02%,

STD=11.22%. The F1 scores vary considerably from 54.54% to 85.71% for drafting

and from 45.45% to 90.19% for revising. One reason for this variance is that

different groups of students produce different distributions of those writing activities

as presented by the result of Zero R classifier (M=45.70%, STD=11.37% for drafting

and M=43.67%, STD=8.35% for revising). Also, the F1 scores are quite low (less

than 60%) for documents with fewer major revisions. For instance, Group 7 (with 40

writing activities in 14 major revisions) has an F1 score of 55.31% for drafting and

only 45.45% for revising. Group 11 (with 65 writing activities in 28 major revisions)

has an F1 score of 54.54% for drafting, and a very high F1 score of 78.05%.

Table 6-6. Heuristic performance based on Zero R as baseline and F1 score for detecting

three activities: Drafting (D), Revising (R), and Editing (E) for major revisions of 15

93

documents. The documents were ordered according to the number of writing activities they

contained.

D
o

cu
m

en
t

#
M

aj
o
r

re
v
is

io
n
s

T
o
ta

l
W

ri
ti

n
g

A
ct

iv
it

ie
s

Zero R

(Baseline)
F1 Score

D R E D R E

15 15 39 48.57% 40.00% 11.43% 68.75% 75.68% 40.00%

7 14 40 38.46% 38.46% 23.08% 55.32% 45.45% 0.00%

1 46 60 53.45% 41.38% 5.17% 60.00% 65.57% 80.00%

11 28 65 25.42% 55.93% 18.64% 54.55% 78.05% 62.50%

2 39 91 46.51% 47.67% 5.81% 75.32% 78.16% 88.89%

17 42 101 36.08% 52.58% 11.34% 75.95% 90.20% 42.86%

25 67 107 37.76% 45.92% 16.33% 70.42% 84.31% 61.54%

26 79 107 51.43% 34.29% 14.29% 87.18% 80.00% 0.00%

24 40 109 39.18% 50.52% 10.31% 69.51% 82.40% 17.44%

18 27 116 42.73% 49.09% 8.18% 81.15% 72.75% 0.00%

10 143 178 75.69% 22.22% 2.08% 85.71% 60.98% 66.67%

4 140 184 52.08% 39.58% 8.33% 63.41% 68.42% 58.82%

21 147 185 49.66% 42.18% 8.16% 79.69% 83.92% 78.26%

3 148 235 50.52% 45.83% 3.65% 83.58% 82.56% 83.33%

19 432 718 38.02% 49.48% 12.50% 77.84% 76.92% 92.00%

Mean 93.8 155.67 43.67% 10.62% 75.16% 72.56% 75.02% 51.48%

STD 106.1 165.76 8.35% 5.74% 10.10% 10.59% 11.22% 33.17%

Total 1407 2335

Although the overall performance of the heuristic is better than the baseline for

editing activity as shown in Figure 6-2, for individual documents the performance on

detecting editing does not perform well comparing to the other two activities, as

shown Table 6-6. Across all 15 documents, the F1 score for editing is M=51.48%

and STD=33.17%. The F1 editing score varies the most among the F1 scores for all

three activities in all documents. Interestingly, the heuristic receive a score of 0 for

three documents (7, 26, and 18). Similar to the effect of the total number of writing

activities per document on the number of activities classified as drafting and revising,

the number of editing activities per document also affects the performance of the

heuristic on editing. The number of editing activities is relatively small compared to

the number of other types of writing activities. The low performance of the heuristic

with regard to editing can also be attributed to the fact that that the heuristic only

94

considers surface change operations as editing activities, so that other editing

activities (such as grammatical corrections) are not detected.

6.3.6 Evaluating the Heuristic for All Five Writing Activities

In order to evaluate the effectiveness of heuristic for detecting all five writing

activities, including brainstorming and outlining, all revisions were used (m’=13320)

of six documents (Document 4, 10, 15, 19, 24, and 25) selected randomly from the

15 document sample. Unlike the previous performance evaluation which uses major

revisions, each revision of these documents includes only one writing activity. The

writing activities derived from the heuristic were compared against those identified

by the manual tags along with computed precision, recall and F1 scores. Table 6-7

represents in detail the results of the baseline and F1 scores of the six individual

documents, which were ordered according to the number of writing activities

contained in each.

Table 6-7. Heuristic performance based on Zero R as baseline and F1 score for detecting 5

activities: Brainstorming (B), Outlining (O), Drafting (D), Revising (R), and Editing (E) for

all revisions of 6 documents. The documents were ordered according to the number of

writing activities contained in each.

Doc Revisions

Zero R (Baseline) F1 Score

B

(%)

O

(%) D (%) R (%) E (%) B (%) O (%) D (%) R (%) E(%)

15 1062 5.13 5.13 43.59 35.90 10.26 100.00 100.00 78.57 75.68 55.00

4 1311 0.00 2.70 50.68 38.51 8.11 100.00 40.00 73.41 68.87 58.82

10 1349 2.04 0.00 74.15 21.77 2.04 85.71 100.00 85.71 69.10 66.67

25 1397 0.00 2.97 36.63 44.55 15.84 100.00 80.00 82.46 76.31 59.54

24 1513 7.55 0.94 35.85 46.23 9.43 85.71 54.00 74.29 81.03 48.18

19 6688 1.03 0.00 37.63 48.97 12.37 66.67 100.00 78.31 76.92 92.00

Mean

2.62 1.96 46.42 39.32 9.68 89.68 79.00 78.79 74.65 63.37

STD

3.07 2.02 14.70 9.89 4.61 12.11 24.05 4.30 4.36 13.94

95

6.4 Summary

In conclusion, this chapter elaborates and evaluates a heuristic for automatically

identifying collaborative writing activities. The CWA Heuristic is based on several

features: the text structures, text edits, the number of words and phrases, cohesion

and topic changes. In order to detect text edits, a text comparison utility is created

which includes two text differencing algorithms for comparing the text content of

two consecutive revisions and computing the edits at paragraph and word levels. An

LSA technique is applied to compute cohesion and topic overlap is calculated

through the use of a Lingo algorithm. The effectiveness of the CWA Heuristic was

validated by obtaining writing activities from a test set consisting of revisions of real

documents, and comparing the results to a gold standard consisting of human expert

tagging. The results of the validation technique demonstrate that the CWA Heuristic

performs reasonably well in identifying writing activities. The next chapter presents

the use of these writing activities for extracting writing process models to use in

process analysis.

96

97

CHAPTER 7

MINING WRITING PROCESSES

Based on the sequences of text edits and writing activities automatically identified

using the technique explained in the previous chapter, writing processes can be

analysed in order to extract the patterns of text edits and writing activities that are

performed during the course of writing. The idea is to discover process models such

as the ones shown in Figure 3-2 and Figure 3-4. Analysing the discovered process

models can assist in understanding of how certain sequence patterns of writing

activities (i.e. the steps followed by a group of authors) lead to high quality outcomes

and sequence patterns that may lead to low quality outcomes. This thesis uses two

techniques for this analysis: the process mining framework ProM (ProM, 2013) and

one type of Markov models.

Process models can be automatically derived using the Heuristic Miner algorithm

(Weijters & Ribeiro, 2010; Weijters et al., 2006) in ProM 6.2 (ProM, 2013) and

Hidden Markov models (Hidden MM). The contribution of this chapter includes the

98

use of the Heuristic Miner algorithm to extract dependency diagrams of writing

process models, as well as the use of Hidden MM (Rabiner, 1989) to extract

transitional state diagrams of writing processes. In addition, based on several layers

of semantics (i.e. text edits, writing activities and writing states), process models are

created for analysis of writing processes.

 Section 7.1 of this chapter describes writing process analysis performed by

utilising a process mining framework, ProM, with several tools. Process models

presenting dependency diagrams are extracted and analysed in a case study in

subsection 7.1.2. Section 7.2 introduces two other types of process models based on

transitional state diagrams. A case study demonstrating the capability of the two

models for writing process analysis is included in subsection 7.2.3, and the chapter

ends with an outline of a pilot study conducted to provide process models as mock-

up visualisation to students.

7.1 Process Mining

This thesis employs a process mining technique to identify and explore the

structure of writing processes. Process mining is one of the data-driven data analysis

techniques that aims to discover underlying process patterns by extracting them from

recorded event data, such as event logs captured by learning management systems or

other learning software (Trčka et al., 2010; van der Aalst, 2011). Process mining

techniques are used for a wide range of purposes, including: a) to discover new

patterns; b) to check conformance of the observed processes to an a priori modelled

pattern; and c) to extend a priori process models by using newly discovered patterns

(Rozinat et al., 2007; Weijters & Ribeiro, 2010; Weijters et al., 2006). As the aim of

this research is to identify patterns of text edits performed by students during

collaborative writing tasks, a discovery technique is chosen to accomplish this goal.

7.1.1 Writing Process Discovery

7.1.1.1 Heuristic Mining

In this thesis, the heuristic miner algorithm is selected for extracting writing process

models. The algorithm was implemented in the open source process mining

framework ProM (Weijters & Ribeiro, 2010; Weijters et al., 2006). Heuristic Miner

99

has been developed for exploratory process mining of less structured data. This

algorithm is appropriate for mining process data that require flexibility and cannot be

strictly predefined in advance, and allows for the handling of data that contains

various kinds of “noise,” such as diversions from common sequences or incomplete

traces of process information. Such noise is common in collaborative writing data,

particularly the data derived from fine-grained text edits made by students as they

write.

The heuristic mining process is based on relationship items known as

dependencies between events (i.e., modelling actions). This frequency metric

represents a certainty that there is a dependency relation between two events (i.e., an

event is causally related to or dependent upon the events that precede it). This work

uses the nominated all-activities-connected heuristic with three threshold parameters:

a) the Dependency threshold, b) the Positive observations threshold, and c) the

Relative to best threshold. (The parameters are set to the default values of “ProM”.)

Using these thresholds, the accepted dependency relations between events are: a) a

dependency measure above the value of the Dependency threshold, and b) of a

frequency higher than the value of the Positive observations threshold, and c) a

dependency measure for which the difference with the “best” dependency measure is

lower than the value of the Relative to best threshold. This configuration allows all

distinctive events into the pattern and detects all possible causal dependencies

between them. Using this algorithm, one ingoing and outgoing connection with the

highest dependency value is identified and included into the model in each mining

step. This process is repeated until all activities are connected. As a result, the final

heuristic model does not necessary represent all possible links and dependencies

between all activities, but it does depict the most strongly dependent actions. Details

about this mining algorithm and how the above discussed parameters are calculated

are found in Chapter 3 and in the research of (Rozinat et al., 2007; Weijters &

Ribeiro, 2010; Weijters et al., 2006). Dependency graphs, i.e. the output of Heuristic

Miner, are explained in Chapter 3.

7.1.1.2 Pre-processing steps

In order to discover a process model (i.e. a dependency diagram) for each document

written by a group of students, pre-processing is required to create event logs for a

100

process mining algorithm. First, a process instance (or process case) is created for

each document, using all of its revisions and its revision history. After all the text

edits of all revisions are found, writing activities are identified using the heuristic

described in the previous chapter. In the context of process mining (van der Aalst,

2011), each writing activity has two transaction types: start and complete. Each

transaction has a timestamp associated with it. Timestamps belonging to the start and

complete transactions of all writing activities are computed on the basis of the

revision history. In this thesis, a complete transaction of a writing activity is the

timestamp of its corresponding revision; however, a timestamp of a revision recorded

on the revision history indicates the time when a document is automatically or

manually saved, and thus produces that revision. Therefore, the time at which the

author actually starts working on the document is not known. In this work, a start

transaction’s timestamp in a revision is a timestamp of its previous revision. The start

transaction timestamp of the first writing activity (of the first revision) is the same as

the transaction timestamp of the complete transaction, which is the first revision

timestamp. Each process instance in a document then consists of a trace of writing

activities which is ordered by their complete transaction timestamps. Process

instances of all documents are transformed into an event log with the standard format

of XES (eXtensible Event Stream) (Gunther, 2009). Subsection 3.2.1 provides

description of event logs used in the context of process mining.

Based on the event log that is created, process analysis can be executed by using

a process mining framework, ProM. Use of the Heuristic Miner algorithm extracts a

process model for every document. A process model presenting a dependency

diagram is then employed to discover the patterns of the authors' writing activities

that are formed throughout the course of the writing. Examining the causal

dependency between two activities and their frequency provides insight into the

manner in which individual writing activities are carried out during the writing

process, as exemplified in the following subsection.

101

7.1.2 Case Study

7.1.2.1 Dataset

This case study uses the same dataset (Dataset A) as the previous chapter, which is

taken from a case study conducted in an engineering course of E-business Analysis

and Design (ELEC3610) at the University of Sydney in 2010. As a reminder, Dataset

A consists of a total of 26 student groups with two students forming each group. All

the groups are asked to write a project proposal in 1,500 to 2,000 words. Details of

the course and the dataset, including the structure of the documents, are given in

Subsection 4.5.1. The total number of text edits and pauses performed by all 26

groups are shown (in ascending order of the groups’ final marks) in Figure 7-1. The

final marks are shown in Table 5-1. It is important to note that the "Pause” activity

refers to an event in which students made no change to the texts.

Figure 7-1. Final marks (in green), total number of inactivities (pause) (in blue) and writing

activities (in red) of 26 groups in order of their final marks, lowest mark on the left.

From the information in Figure 7-1, it is difficult to distinguish between high-

achieving and low-achieving groups based on the number of writing activities and

pauses. The highest achieving group (Group 3) produced 235 writing activities. The

lowest achieving group (Group 10) also performed numerous activities (178),

whereas the second highest group (Group 7) completed only 40 activities. Because of

the indeterminate nature of these results, it is necessary to extract process models and

0

10

20

30

40

50

60

70

80

90

100

0

100

200

300

400

500

600

700

800

3 7 23 16 18 22 11 19 4 12 13 17 25 6 20 26 1 8 9 21 5 14 2 24 15 10

Total Number of Text Edits Number of Pauses #Pauses#Text Edits

102

perform process analysis of all groups in order to better understand how the author

pairs developed their documents.

After deriving the writing activities in every revision of all the documents, a log

file consisting of the sequences of writing activities, their timestamps and author

identification is created by using the technique described in the previous subsection.

Based on this log file, three types of analyses are carried out:

1. Extracting a snapshot of the overall writing activities of all groups in order to

compare the start and end times of writing processes between different

groups. This snapshot demonstrates when students actually start their writing

tasks and how the activities are spread over time.

2. Discovering the process models of individual groups. The process models

represent the sequence patterns of writing activities, which illustrates the

manner in which the students undertake their writing tasks. For instance, we

can determine whether the writing process of a particular group is linear (e.g.

drafting is followed by revising which in turn is followed by editing) or

interleaving (e.g. drafting and revising activities are interleaved most of the

time).

3. Extracting information with regard to author collaboration and contribution.

Irrespective of how writing activities are performed, the dynamics of

collaboration over a working period remains a point of investigative interest,

particularly the sequential patterns that occur throughout the writing process.

Author contribution is another aspect for exploration, especially to reveal

whether all authors in a group carry out all of the writing activities, or

whether one of them dominates the tasks.

The result of the analyses is correlated to the final assessment of the documents.

ProM 5.2 (ProM, 2010) is used to execute Dotted Chart Analysis (Song & van der

Aalst, 2007), extract process models using Heuristic Miner algorithm (Weijters &

Ribeiro, 2010), and conduct Performance Sequence Analysis (Bozkaya et al., 2009)

and Organizational Mining (Song & van der Aalst, 2008).

7.1.2.2 Results

After pre-processing, the resulting event log records 3,720 events in total. Each

process case represents one document. The average number of events per document

is 143, with a minimum of 39 ev

This case study considers only three different types of events corresponding to three

types of writing activities

and outlining activities occurred v

meetings before commencement of the writing tasks.

of individual writing activities for all groups. As in the analysis conducted previousl

of the total number of text edits and pauses, here again it is difficult to distinguish

between high-achieving and low

activities produced (drafting, revising, and editing). Because of this result, dot char

analysis is implemented as described next, in order to obtain an overall snapshot of

student writing activities.

Figure 7-2. Numbers of drafting

performed by 26 groups (in order of their final marks, lowest mark on the left)

7.1.2.2.1 Dot Chart Analysis

 The Dotted Chart Analysis utility of ProM

writing activities. Figure

students writing their documents. All instances (one per document) are sorted by start

time. In the figure, dots (points) represent writing activities o

time. The three types of writing activities are represented by different shapes; circles

are used to designate drafting, triangles for revising, and squares to indicate editing.

The two authors in each group are differentiated by colo

grey colour represents author2. All writers who begin the process (i.e. the first ones

to perform a writing activity) are designated as author1 in each group.

0

50

100

150

200

250

300

350

10 24

103

is 143, with a minimum of 39 events and a maximum of 631 events per document.

This case study considers only three different types of events corresponding to three

types of writing activities -- drafting, editing, and revising -- because brainstorming

and outlining activities occurred very rarely and are done offline during

meetings before commencement of the writing tasks. Figure 7-2 depicts the number

of individual writing activities for all groups. As in the analysis conducted previousl

of the total number of text edits and pauses, here again it is difficult to distinguish

achieving and low-achieving groups based on the number of writing

activities produced (drafting, revising, and editing). Because of this result, dot char

analysis is implemented as described next, in order to obtain an overall snapshot of

student writing activities.

Numbers of drafting (blue), revising (red), and editing (green)

ormed by 26 groups (in order of their final marks, lowest mark on the left)

Dot Chart Analysis

The Dotted Chart Analysis utility of ProM (ProM, 2010) is used to examine student

Figure 7-3 illustrates the output of the dotted chart analysis of

students writing their documents. All instances (one per document) are sorted by start

time. In the figure, dots (points) represent writing activities occurring at a certain

time. The three types of writing activities are represented by different shapes; circles

are used to designate drafting, triangles for revising, and squares to indicate editing.

The two authors in each group are differentiated by colour; black identifies author1,

grey colour represents author2. All writers who begin the process (i.e. the first ones

to perform a writing activity) are designated as author1 in each group.

24 14 9 8 6 26 12 17 19 22 16 3

#drafting #revising #editing

ents and a maximum of 631 events per document.

This case study considers only three different types of events corresponding to three

brainstorming

ery rarely and are done offline during group

depicts the number

of individual writing activities for all groups. As in the analysis conducted previously

of the total number of text edits and pauses, here again it is difficult to distinguish

achieving groups based on the number of writing

activities produced (drafting, revising, and editing). Because of this result, dot chart

analysis is implemented as described next, in order to obtain an overall snapshot of

(green) activities

ormed by 26 groups (in order of their final marks, lowest mark on the left)

is used to examine student

illustrates the output of the dotted chart analysis of

students writing their documents. All instances (one per document) are sorted by start

ccurring at a certain

time. The three types of writing activities are represented by different shapes; circles

are used to designate drafting, triangles for revising, and squares to indicate editing.

ur; black identifies author1,

grey colour represents author2. All writers who begin the process (i.e. the first ones

104

Figure 7-3. Dotted chart of 26 groups of students writing collaboratively (from ProM tool)

displayed in order of starting time. Circles represent drafting, triangles depict revising, and

squares denote editing. Author1 is identified by the colour black and Author2 is shown in

grey.

Figure 7-3 shows most groups starting their writing tasks at approximately the

same time, about ten days before the peer review submission due date 26
th

 March

2010. Six groups begin their writing later than the others. Four groups receive above

average final marks: Group 11 (75) Group 12 (68), Group 16 (85), and Group 23

(90). Two groups show below average final marks: Group 21 (61) and 24 (45).

Interestingly, Group 12 begins the writing assignment three days before the due date

for peer review submission. It is inferred, however, that students from these six

groups these groups had actually begun the writing tasks earlier, using other word

processing applications such as MS Word, because it is observed that they started

writing on Google Docs with a substantial amount of text (containing sections and

paragraphs) that is obviously pasted in.

 Although no writing activities are expected to occur during the week of peer

review while students wait for the resulting feedback, activities are recorded in

Group 07 (91), Group 09 (61) and Group 25 (68) for this time period. Groups 07 and

25 only edit their texts, whereas Group 09 revises its text several times. An appraisal

105

of the Group 09 document revisions made during peer review week reveals that

substantial text changes resulted from these activities. Furthermore, after receiving

feedback from peer review (2
nd

 April 2010), students begin revising and editing their

documents before the final submission date (16
th

 April 2010). It is observed that most

of the groups revise their documents a few days before the final submission, except

for Groups 02 and 08, who start working on their documents soon after receiving

feedback.

The dotted chart is further analysed in detail by undertaking an assessment of all

writing activity events for each group. This assessment reveals that the writing

process in most groups includes periods of time during which both authors write

(perform text editions) synchronously. These events are identified by clusters of

different colour dots in the chart. According to Figure 7-3, the periods of

synchronous writing take place on the first day (i.e. 16 March 2010) and a few days

before the deadlines (i.e. between 23 and 25 March 2010 relating to the peer review

deadline, and between 14 and 16 April 2010 relating to the date of final submission).

It is surmised that students collaborate frequently during these times to plan their

writing assignments (on the first day) and to revise their documents (before the due

dates).

The dot chart analysis provides an overview snapshot of the writing process of

each group which makes it possible to compare the start time and end time of all the

groups to ascertain when students actually begin their writing tasks and to see how

the activities are spread over time. The chart also displays clusters of different colour

dots, specifying synchronous writing periods that occur during the process. It is also

of interest to know something about the writing path that students traverse in the

course of their activities. These paths are discovered by using the process models as

reported below.

7.1.2.2.2 Process Models of Students’ Collaborative Writing

The process model of all 26 documents is for each individual group is generated by

using the Heuristic Miner algorithm (Weijters et al., 2006) implemented in ProM 5.2.

Figure 7-4 depicts dependency diagrams of two models: Group 03 (who received the

highest final mark of 91/100) and Group 10 (who received the lowest final mark of

38/100). The numbers in the boxes indicate the frequency of the writing activities.

106

The decimal numbers along the arcs show the probabilities of transitions between

two activities, and the natural numbers indicate the number of times this order of

activities occurs among the three types, drafting (D), revising (R), and editing (E).

Artificial start and end activities were added to each process instance (of a document)

in the even log in order to indicate the start and end of the writing processing,

respectively. Both groups started their writing with drafting activities and finish with

revising activities, as shown in Figure 7-4. Figure 7-3 highlights timelines for writing

processes of the two groups.

Highest Achieving Group (03) Lowest Achieving Group (10)

Figure 7-4. Process models of highest and lowest Achieving Groups (from ProM).

The process models shown in the figure demonstrate that Group 03 perform most

of their drafting activities before revising their document, as evidenced by a one-way

dependency from drafting to revising, although the dependency between the two

activities is quite low (about 3%). Unlike Group 03, students in Group 10 commonly

revise their document as they are drafting it. Their drafting and revising activities are

interleaved most of the time as seen in the high dependency (approximately 91%)

between those two activities. In Group 03, however, editing activities are carried out

mostly during drafting and revising, evident from the high dependencies that exist

107

between editing and drafting (80%) and between editing and revising (50%); whereas

in Group 10, editing takes place after drafting and before revising. In addition, it

appears that whenever students in both groups start to draft or revise, they tend to

continue drafting or revising, as shown by the high percentages of loops for both

drafting and revising. In terms of editing activities, there is a loop for Group 10

which indicates that the group often started editing and continued to edit, as opposed

to Group 3 who did not edit as often but interleaving with drafting and revising

activities.

Appendix C contains the process models of all the groups. The fitness, which

measures “the proportion of behaviour in the event log possible according to the

model” (van der Aalst, 2011), is computed using the Heuristic Miner tool ProM 6.2.

The fitness measure of a dependency diagram is described in Chapter 3. The fitness

measures of the models shown in Appendix C range ranged from 0.64 to 0.99

(M=0.82, STD=0.08). Although process models are extracted and analysed in order

to shed light on the manner in which each group performs their writing activities, the

models do not show who (i.e. which group members) actually carry out the activities

during these processes. The following subsection further explores how students

collaborate and contribute during their writing tasks.

7.1.2.2.3 Performance Sequence Analysis

Performance Sequence Analysis (PSA), which is a plug-in to ProM, is used to study

how each group collaborates during the writing process. The sequence pattern of user

interaction in the event log (Bozkaya et al., 2009) is first discovered and the

collaboration patterns are extracted for all groups. Figure 7-5 illustrates sequential

diagrams of collaborative writing activities for four groups: Group 03, 10, 19 (final

mark 74), and Group 22 (final mark 76). For the sake of confidentiality and

simplicity, authors in each group are named author1 and author2. The author who

starts the first writing activity is designated as author1, so that author1 and author2

represent different authors for different groups.

108

Highest Achieving Group (03) High Achieving Group (19)

High Achieving Group (22) Lowest Achieving Group (10)

Figure 7-5. Sequence patterns of 4 groups (clockwise from top left 03, 19, 10, and 22) of

students writing collaboratively (from ProM).

 An examination of the sequence patterns of all 26 groups reveals that in most

groups, one author dominates the writing process. Only four groups display an

approximately equal contribution of writing activities from both authors: Group 16,

18, 19, and 25. These groups are above average in terms of their final marks (85, 78,

74, and 6.8, respectively). One of them (Group 19) is depicted in Figure 7-5. All

other groups except these four exhibit sequences of collaborative writing

predominantly authored by one of the writes. The difference in contributions ranged

from single-author domination, such as in Groups 03 and 22 (who obtained high

marks) to almost equal contribution, such as in Group 10 (who received the lowest

mark). In addition to this evaluation of the distribution contribution among authors,

the scope of each author's involvement across the various writing activities (i.e.

drafting, revising, and editing) is also appraised by applying the next process mining

technique.

7.1.2.2.4 Organizational Mining

 Organizational Mining provided by ProM (Song & van der Aalst, 2008) is used to

ascertain which activities each author performs during the writing process. The

writing activities of individual authors in four groups (Group 01, 03, 19, and 22) are

depicted in Figure 7-6. As in the previous subsection, author1 and author2 represent

different authors for different groups.

109

 Group 03 Group 19

Group 22 Group 01

Figure 7-6. Author collaboration based on writing activities.

 Use of the Organizational Mining tool contributes further knowledge with regard

to who did what during the writing processes. As expected, both authors in the four

groups that are characterised by equal contribution (Group 16, 18, 19, and 25

discussed above) carry out all three types of writing activities (for example, Group

19 in Figure 7-6 shows that the two authors contributed to all writing activities).

Single-author dominating groups, however, are quite interesting. Although Figure

7-5 above shows one author dominating the writing processes in Groups 03 and 22, it

is not clear whether the least dominating authors (author1 in Group 03 and author 2

in Group 22) perform all three categories of writing activities. Figure 7-6 clearly

displays that author1 in Group 03 conducts all three types of writing activities, even

though the contributions are fewer than those made by the dominating author2, as

shown in Figure 7-5. In Group 22, the situation is different. The dominating author1

performs all three types of writing activities, whereas author2 only revises the

document once in a while.

In most groups, authors carry out the same writing activities, as exemplified in

Group 03 and 19, for instance. Of the seven groups where both authors do not have

equal writing activities, two have high final marks (Groups 7 and 22) and five have

final marks below average (Groups 1, 2, 8, 15, and 24). In these groups, one author

performs either only one writing activity (for instance, Group 22) or two writing

activities (for example, Group 01) as depicted in Figure 7-6.

110

7.2 Hidden Markov Models and Heuristic Markov Models

In the previous section, application of the Heuristic Miner algorithm discovers

process models based on traces of writing activities which present a high semantic

level of text edits. Another type of process model -- the Hidden Markov Model --

which is an extension of Markov Models (Markov processes) depicts a transitional

state diagram consisting of a set of states and transition probabilities. Based on the

probability of state transition shown in the models, patterns of the writing activities

undertaken by the authors during the process are extracted. The theoretical

background of Hidden MMs is described in Chapter 3.

This section is organised as follows. First, the approach used in this thesis to

discover two models -- the Heuristic Markov Model and the Hidden Markov Model -

- of the collaborative writing process is presented. Second, the procedure in

constructing these two models is explained in the pre-processing steps. Third, the last

subsection illustrates the thesis approach with a case study in extracting the two

models of process writing of real documents written by groups of students.

7.2.1 Extracting Heuristic Markov Model and Hidden Markov Model

Using transitional state diagrams as process models, process analysis can be carried

out to discover patterns of student writing behaviour. There are two different ways to

extract transitional state diagrams for writing processes. For each text edit, one

corresponding writing activity is automatically identified using a heuristic. Using

these identified writing activities as states, a Markov model is easily extracted which

presents process models of writing activities. On the other hand, a writing state,

though it cannot be directly observed, can be represented by one or more text edits,

which are semantically grouped on the basis of larger behaviour patterns or strategies

performed by authors during writing. In this case, Hidden MM (Rabiner, 1989) are

good candidates for discovering writing behaviour patterns because they allow

identification of author writing behaviour patterns from sequences of text edits made

during their writing tasks. Based on a sequence of text edits which are measured and

observed, the Hidden MM extracts writing states, which cannot otherwise be directly

measured as well as the transitioning probabilities among these states.

111

Both writing activities and text edits are used as inputs to the Heuristic MM and

Hidden MM generating algorithm, called HMM constructor, to create two models of

writing processes, which are subsequently compared.

Figure 7-7. HMM model created with semantic heuristic on the left (Heuristic MM) and

without the heuristic on the right (Hidden MM).

The first model, which we call a Heuristic MM, is depicted on the left of Figure

7-7. A Heuristic MM is a Markov model created from a sequence of writing

activities, derived from text edits by applying the semantic heuristic explained in

Chapter 6. The full construction consists of the following: A sequence of text edits

made in each revision forms the input to our heuristic set. The result is a

corresponding sequence of writing activities, which become the states of the Markov

model. Using the HMM constructor described in Subsection 7.2.2 below, a Heuristic

MM of the collaborative writing process for the corresponding document is

discovered from the input sequence of writing activities. Figure 7-7 depicts the

process of extracting the Heuristic MM.

The second model, which we call a Hidden MM, is depicted on the right hand

part of Figure 7-7. Unlike a Heuristic MM, a Hidden MM is built directly from the

sequence of text edits. A Hidden MM is a model with writing states that are

unobserved. Using the sequence of text edits, the HMM constructor discovers the

structure of Hidden MM (i.e. a set of states and the output probability associated with

each state) and other parameters (e.g. transition probabilities from one state to others

112

or itself. The Hidden MM is then analysed to identify and interpret writing states to

discover sequences of writing patterns. The process of extracting the Hidden MM is

shown in Figure 7-7.

The difference between the two models is that in the first case (Heuristic MM),

writing states are derived prior to constructing the model; whereas in the second case

(Hidden MM), the model is built first, and the writing states are derived afterwards.

7.2.2 Pre-processing

 Pre-processing steps need to be performed in order to use revisions and revision

histories for generating the two models, Hidden MM and Heuristic MM. The pre-

processing involves two main steps: (i) identifying the text edits and, for the

Heuristic MM, the corresponding writing activity that produces each revision; (ii)

creating sequences of text edits and, for the Heuristic MM, writing activities. These

steps are detailed below.

Figure 7-8. Pre-processing steps.

 A method outlined in Chapter 6 is used to extract semantics of text changes

during the writing process. Illustrated in Figure 7-8 above, this method proceeds as

follows:

Two sets of data are accessible for each document; the first one is the revision

history, which contains timestamps and author IDs for all document revisions, and

the second one contains the text of each revision. A text edit type is identified for

every revision by applying the text comparison utility described in Chapter 6 to

compare the revision to its former version. The comparison results in a sequence of

text edits for that document. In parallel, text mining pre-processing techniques are

113

used to perform the tokenisation, stemming, and stop word removal for the text in all

revision. A topic change and a cohesion measure are calculated as well, using the

Lingo algorithm (Osinski et al., 2004) and LSA, respectively. Using the heuristic

proposed in Chapter 6, we then associate a writing activity with each revision,

obtaining a sequence of writing activities for each document.

In this case study, a “Pause” activity (corresponding to “p” type of text edits) is

added to represent an event where authors make no change to the text. This

(in)activity indicates a pause time in the writing, possibly because authors stop to

think or reflect before starting to write again, or the writer conducts further research

related to the writing, or any other related reason. The pauses in the writing and the

time taken to complete an activity have a potential impact on the interpretation of the

process. An activity sequence can include many consecutive long pauses. In this

process mining, the accumulated pauses are designated as a delay (wait) time of

activities or events.

Inactive events (Pause activities and p text change operations) represent pauses

in the writing process. In the Heuristic MM, these are replaced with the previous

writing activity. For example, a sequence composed of one Drafting activity

followed by three pauses and one Revising activity becomes four Drafting activities

followed by one Revising activity. In the Hidden MM, pause events are replaced

with the previous text edit. For example, adding information, followed by one pause

and one reorganisation of information, becomes two adding information events

followed by one reorganisation of information.

The numbers of these inactive events are also used in calculating stationary

probabilities (Jeong et al., 2010) to investigate whether the proportion of time that

students spend in each of the writing activities has any importance. The notion of

stationary probability is used as the relative proportion of activities that belongs to a

certain state. In other words, the stationary probability of a state A is the proportion

of occurrences of state A among all the states that occur in a sequence of length n

iterations generated by the model; n is normally the average number of activities in

the input sequences.

Each generated text change and activity sequence can be used to derive a Hidden

MM and Heuristic MM for a document, respectively. The HMM constructor uses the

algorithm developed by Li and Biswas (2002) to build Hidden MM and Heuristic

114

MM. The algorithm has to estimate the number of states as explained in Subsection

3.3.2 for constructing Hidden MM, whereas it uses number of distinct activities in

the activity sequence as the number of states for deriving the Heuristic MM.

7.2.3 Case Study

This case study uses the dataset A described in Section 5.4 and used in the process

mining case study also. This section illustrates the techniques applied to extract

student writing behaviour using both Heuristic MM and Hidden MM and reports the

results obtained for two documents, one written by a high performing group and one

by a low performing group (in terms of the group's final mark for the assignment). In

order to compare patterns extracted from the Heuristic MM and the Hidden MM to

those from the process mining algorithm, Heuristic Miner. The two documents are

the same documents used in a case study in Subsection 7.1.2.

Table 7-1 lists the text edits used in the heuristic and their description (the

complete heuristic is contained in the previous chapter). It is important to note that

text edits at both the paragraph and the word levels are used to identify writing

activities, thus the deriving Heuristic MM. For the hidden MM, text edits at both the

paragraph and the word levels are also taken into consideration. However, all word

edits on existing paragraphs -- such as inserting words (C8.1) and deleting words

(C8.2) -- are designated as C8.

Table 7-1. Text edits and their description

Text Edits

Code Description

C1 Surface Change

C2 Reorganization of Information

C3 Consolidation of Information

C4 Distribution of Information

C5 Addition of Information

C6 Deletion of Information

C7
Alteration of Form (Macro-

Structure change)

C8 Micro-Structure Change

p No change

115

7.2.3.1 Constructing the HMMs

The generated text edit and activity sequences are used to derive two Markov models

for each document (i.e. Heuristic MM and Hidden MM).

The writing process models for the documents written by High (H) and Low (L)

performing groups created by using the HMM algorithm described in Subsection

7.2.2 are shown in Figure 7-9. In the figure, the models at the top, with black states,

represent the Heuristic MM; and the ones at the bottom, with white states, represent

the Hidden MM. The Hidden MM models are made up of a set of states, the text

change edit patterns (the output probability) associated with each state, and the

transition probabilities between states. For example, the model discovers that authors

of document H in the C3(46%)C4(54%) state engaged in combining paragraphs

46% of the time and in distributing paragraphs 45% of the time. The transition

probability associated with a link between two states indicates the likelihood of the

authors transitioning from the current state to the indicated state. For instance, the

Hidden MM model of H document predicts that in the C3(46%)C4(54%) state, after

either consolidating or distributing text, the likelihood of authors adding new text is

14%; the likelihood of their deleting existing text is 7%; the likelihood of their

changing text is 50% and the likelihood of their remaining in the same state (i.e.,

continuing to consolidate or distribute text) is 28%. Likelihoods of less than 2% are

not represented in the figure, which explains why the probability numbers do not add

up to exactly 100%. Similar to the Hidden MM, the Heuristic MM consists of a set of

states and the transition probabilities. Since each state of the Heuristic MM

represents an entire writing activity, there are no output probabilities associated with

each state.

High Performing Group, Group 3 Low Performing Group, Group 10

Figure 7-9. MMs of the documents of High and Low Performing groups (Heuristic MM and Hidden MM respectively).

1
1
6

117

7.2.3.2 Analysis of MMs

These MMs are investigated to learn more about how students write their documents.

The Heuristic MMs provide a good overview of the manner in which the authors

develop their documents. The models reveal patterns of writing activities of the two

groups similar to those highlighted by Heuristic Miner. For the high performing

group, Group 03, the transitions between drafting and revising activities are quite

low, whereas in the low performing group, Group 10, there is high transition (33%)

from revising to drafting. In other words, students of Group 10 tend to start drafting

their document again after revising it. Editing activities were more likely followed by

drafting (80%) in Group 3, whereas the same activities were commonly followed by

revising (50%) in Group 10. In addition, students of both groups tend to perform the

same activities for a period of time as there were high percentages of loops for all

three activities, except editing activities of Group 03. Editing activities were

performed interleaving with drafting and revising activities in Group 3. The patterns

described above have also been discovered by Heuristic Miner. Therefore, the

Hidden MMs were used to gain deeper understanding in order to distinguish the high

from the low performing group based on finer activities such as text change edits.

Further analysis of the Hidden MMs furnished more information related to the

students' methods of editing and modifying their texts. In Figure 7-9, the model of

the high performing group (group H) has five states, whereas the model of the low

performing one (group L) has only four states. The alteration of form operation (C7)

happens only once in group H. This is interpreted as reflecting that when group H

students start drafting after completion of outlining or brainstorming, they begin

drafting activities by adding new paragraphs (C5). After that, they are most likely to

change existing paragraphs (C8) because the C5 state has a 56% likelihood of

transitioning to the C8 state, compared to a 14%, 6% and 22% likelihood of

transitioning to C6, C3/C4 states and itself, respectively; so the writers probably

continue changing the existing paragraphs to improve the cohesion of the text. This

is confirmed by the fact that the C8 state has the highest reiterating probability

(85%). After changing the text to their satisfaction, the students are most likely to

combine/distribute (C3/C4) the existing paragraphs to make the text more cohesive

or to start describing new topics in the text by adding new paragraphs (C5), because

the C8 state has a 7% and a 6% probability of transitioning to C3(46%)C4(54%) and

118

C5 states, respectively. After combining and dividing paragraphs in

C3(46%)C4(54%) state, the students are likely to come back and change the existing

paragraphs because this state has a 50% probability of transitioning to the C8 state.

In addition, there is a strong relationship between C5 and C8 states (56% probability

of transitioning) and C6 and C8 (48%). This indicates that the students are most

likely to modify text after adding and deleting. These interpreted patterns accorded

with common writing activities of the students in group H.

Comparing the Hidden MM of group L and group H reveals some similarities

and some differences in the group L students. The state transition behaviours

between the two models are quite similar, although the models have different

structures, i.e. number of states. With regard to structure difference, the model of

group L includes surface change or editing (C1) activities which never occur in the

model of group H. There are also stronger differences that distinguish the two

groups. First, there are more C7 activities in the writing process of L than in that of

H. This suggests that the students of this group alter the whole text completely

several times. This occurs particularly when the students change the topics of the

text. In addition, there is no obvious transition from the C5(65%)C6(35%) state to

the C1(8%)C3(92%), unlike in the model of group H, which has transitions from

both C5 and C6 states to C3 state. Importantly, there is a very strong relationship

between C1(8%)C3(92%) state and C8 state (85% transitioning probability) in group

L. This indicates that after editing and formatting texts, students continue to change

the text frequently.

The above analysis compares patterns of writing activities between the highest

and the lowest performing groups, Group 3 and Group 10, respectively. After

examining both Markov models (MMs) of all individual groups, we found that there

are different patterns for different groups. In order to distinguish clearly the better

from the weaker groups, aggregated MMs of the top and low groups are discovered

and comparatively analysed. Figure 7-10 depicts aggregated Heuristic MMs of the

high 8 groups (HS groups) and low 6 groups (LS groups). The HS groups are Group

3, 7, 11, 16, 18, 19, 22 and 23, which obtained final marks higher than 70%. The LS

groups are Group 2, 5, 10, 15, and 24, which received final marks below 50%. The

final marks are showed in Table 5-1.

From Figure 7-10,

aggregated groups similar to those

Particular, students of the two groups

activities for a period of time because

three activities. This pattern was also highlighted for

performing groups, Group 3 and 10,

Group3. In addition, editing activities we

in HS groups, whereas the same activities were commonly followed by revising

(41%) in LS groups. Furthermore,

conduct revising activities

probabilities of the transition from drafting to revising

and LS groups, respectively

only 7% and 2% for HS

low performing groups,

document again after revising it

to drafting of the low performing group, Group 10 was high (33%)

probabilities of both aggregated groups were similar and low (17

Figure 7-10. Heuristic MMs of High Performing groups versus

119

, the models reveal patterns of writing activities of the

aggregated groups similar to those of individual high and low performing groups.

students of the two groups were likely to perform the same writing

activities for a period of time because there were high percentages of loops for all

This pattern was also highlighted for all activities of the high and low

performing groups, Group 3 and 10, respectively, except for editing activities of

, editing activities were more likely followed by drafting (52%)

groups, whereas the same activities were commonly followed by revising

Furthermore, after drafting their documents, both groups

activities rather than editing activities. This is because t

probabilities of the transition from drafting to revising were 12% and 1

groups, respectively, whereas the transition from drafting to editing

S and LS groups, respectively. Similar to individual high and

 students of both aggregated groups tend to start drafting their

document again after revising it. However, the probability of transition from revising

to drafting of the low performing group, Group 10 was high (33%), whereas the

probabilities of both aggregated groups were similar and low (17-19%).

High Performing Groups

Low Performing Groups

. Heuristic MMs of High Performing groups versus Low Perform

models reveal patterns of writing activities of the

of individual high and low performing groups.

to perform the same writing

e were high percentages of loops for all

the high and low

, except for editing activities of

followed by drafting (52%)

groups, whereas the same activities were commonly followed by revising

both groups tend to

. This is because the

% and 14% for HS

, whereas the transition from drafting to editing were

dividual high and

groups tend to start drafting their

probability of transition from revising

, whereas the

19%).

Low Performing groups.

120

7.2.3.3 Analysis of stationary probabilities

Inactive activities (Pause) are incorporated in the calculation of stationary

probabilities. For example, if an activity A is followed by five consecutive Pause

activities, we would designate this as six occurrences of activity A for this interval.

The computed stationary probabilities are summarized in Table 7-2.

Table 7-2. Stationary Probabilities.

Document C1 C3 C4 C5 C6 C7 C8

H
- 4 5 9 5 0 77

L 1 5 - 10 8 5 71

The table obviously reflects that the models of group H and L are almost identical.

There is evidence that both groups spend a great deal of time changing paragraphs.

The main difference in terms of the proportion of time between H and L groups is

that the L group students spend 5% of their time changing topics, whereas the H

group students define their topics early on. The models mentioned in the previous

section make the same discovery.

7.3 Distilling Processes to Students and Instructors: A Pilot Study

A pilot study is conducted to assess four types of visualisations: a snapshot of

writing processes (shown in Figure 7-11); transitional state diagrams of writing

activities (shown in Figure 7-12); topic evolution and topic-based collaboration

charts (shown in Figure 7-13); and bar charts depicting the number of revisions

per writing activity performed by individual authors (shown in Figure 7-14). There

were mock-ups created manually using a synthetic data. The first two types of the

visualisations are based on a timeline and process model discussed in the previous

sections. The aim of this pilot study is to gain a better understanding of what types of

process models and visualisations student authors find helpful for their writing tasks

and what kind of information they would like to obtain while engaged in a

collaborative writing assignment. The result of this pilot study was used to derive the

design of the visualisations proposed in the next chapter.

The four visualisations were first presented to individual students who

voluntarily participate in the study. The students were enrolled in a postgraduate

course at the Faculty of Education and Social Work, and the assignments in this

course involve a substantial amount of writing. After being given the visualisations,

121

the students were interviewed individually by a course instructor. In the interview,

students were asked to describe what information is conveyed to them by each type

of visualisation; they are also asked for their suggestions on how to improve the

design of the visualisations. In addition, comments from one instructor with regard to

these types of visualisations are also included in the study. The following section

begins with a description of the four types of mock-up visualisations, followed by a

summary of the results drawn from the interview and the presentation of guidelines

for designing visualisations of writing processes to use as feedback for students

while they are engaged in collaborative writing activities.

7.3.1 Mockup Visualisations

Figure 7-11 is based on a timeline of the Dotted Chart Analysis tool of ProM (ProM,

2013). It depicts writing activities performed over time during the writing process.

Each dot represents a writing activity: red, blue, and green for drafting, revising, and

formatting, respectively. In this study, an editing activity is called a formatting

activity, including surface and formatting changes. Figure 7-11 illustrates four

groups with different writing processes. The figure shows that the four groups

perform the same number of writing activities (i.e. 22 activities); but a relative

comparison among the four groups indicates that the numbers of drafting and

revising activities are equal for both Group Alpha and Group Beta, whereas Group

Charlie and Group Delta perform more drafting activities than revising activities.

The number of editing activities is equal for all four groups. The distribution of

writing activities differs among the four groups. In particular, all drafting activities

are performed before revising activities for Group Alpha and Group Charlie, whereas

revising activities are produced interleaving with drafting activities for the other two

groups. This study asks participants to compare how writing activities are performed

by the four groups and tests whether they are able to convey the information

described above.

122

Figure 7-11. Mockup snapshot of writing processes, generated by Dot Chart Analysis plugin

of ProM

Figure 7-12 is based on a transition diagram output from Markov models. Each

state represents a writing activity. The size of each state is proportional to the total

number of words performed for the corresponding writing activity over the period of

the writing process. The figure depicts the transitions from individual writing

activities to themselves and to other activities. For instance, the figure shows the

interleaving of both drafting and revising activities of Group Beta and Group Delta.

For Group Alpha and Charlie, revising activities sometimes occurs only after

drafting activities. Because of the loops of drafting and revising activities, a drafting

activity is often followed by another drafting activity and similarly a revising activity

is often preceded by another revising activity. Although transition probabilities of the

three writing activities are different for different groups, the amounts of drafting and

revising are quite similar for Group Alpha and Group Beta. Group Charlie and Group

Delta perform considerably more drafting than revising. The four groups all perform

editing activities equally. Participants are tested to see if they are able to discern this

information from Figure 7-12.

123

Figure 7-12. Mockup transition diagrams of writing activities based on hidden Markov

models.

It is important to note that Figure 7-13 is created for viewing how topics evolve

and how they are collaboratively edited. There are three topics and three authors in

each group. A dot represents a writing activity through the use of a colour scheme as

depicted in the previous two mock-up visualisations. The size of the dot shows the

number of words produced by the corresponding writing activity. The topic-based

collaboration of individual authors shown in this figure is quite different for each

group. Every author in Group Alpha and Group Charlie writes about a different

topic, whereas two authors write about the same topic in Group Beta and Group

Delta. Participants are interviewed to see if they can understand the figure and gain

insight into the topic-based collaboration of different groups.

124

Figure 7-13. Mockup topic evolution and topic-based collaboration

125

Figure 7-14. Mockup authors’ contribution based on writing activities: formatting (i.e.

editing) in green bar, revising in blue bar, and drafting in red bar.

Figure 7-14 depicts a mock-up number of revisions categorised by writing

activities for the individual authors of four groups. Study participants are asked if

they can differentiate the different distribution of writing activities of different

groups. The figure shows that Group Alpha and Group Beta perform significantly

more revising activities than Group Charlie and Group Delta. In addition, one author

of both Group Beta and Group Delta does not carry out any editing activities at all,

whereas all members of Group Alpha and Group Data complete all writing activities

with different distribution of revisions. The interviews are discussed in the next

subsection.

126

7.3.2 Feedback from Interviews

Eight students participated in the interview. In addition, one course instructor

provides comments with regard to the four types of mock-up visualisations. The

following sections contain a summary of the interview results.

7.3.2.1 Timeline of Writing Processes

All participants understand and gather information from Figure 7-11 without any

problems at all in doing so. This suggests that students can perform process analysis

using the timeline.

7.3.2.2 Transitional State Diagrams

Students had the most difficulty in making sense of Figure 7-12. They mostly focus

on the size of the circles, which leads them to make inferences about the relative

amount of different writing activities. Although this is useful, they can obtain this

information from Figure 7-14 as well, so this does not reflect a unique value of

this visualisation.

Some students could see differences in end points of the group writing. This is

valuable because although this information can also be inferred from Figure 7-11, it

appears more salient in Figure 7-12.

Only one student was able to use the arrows to make inferences about

dependencies between writing activities. The source of confusion appears to relate to

finding out which arrows (or more precisely, which figures in the arrows) to

compare. Many students asked why the figures do not add to up 100%.

Because the unique value of Figure 7-12 lies in the information about the

dependencies between writing activities, the instructor suggested a way to make this

information more salient and intuitive by using different colours for arrows

stemming out from each circle. This device might help people to think in terms of,

e.g. "what activity most likely follows Drafting".

In addition, the most pedagogically relevant inference from Figure 7-12 involves

the dependencies between different writing activities (especially whether there is an

interplay between drafting and editing, which suggests the amount of revisiting or

127

rethinking of ideas). The instructor recommended an investigation into methods of

making this more salient.

7.3.2.3 Topic Evolution and Topic-based Collaboration

Figure 7-13 appears to contain too much information. It consists of information about

time, person, topic, and amount and types of writing activities. Students generally

were able to attend to two or three of these information categories, and only focus on

other types of information when prompted or explicitly cued to do so in the

interview.

Students differed in what type of information they direct their attention to; but

many focused on the size of the circles (which is not the unique information to be

gleaned from Figure 7-13), and this direction comes at the expense of attending to

the more unique information offered by Figure 7-13, which is the interplay between

different writing activities performed by different individuals for each topic. The

instructor suggested discarding information about the amount of activity, making the

circles the same size.

7.3.2.4 Writing Activity-based Contribution

The students perceived information about relative contributions by different

authors/group members fairly easily from looking at Figure 7-14. This suggests that

students are typically attuned to discerning whether the group members share equal

workloads, etc.

 Based on the feedback about the four types of visualisations, the following

guidelines can be created for visualising collaborative writing processes:

• A timeline element is preferable for visualising collaborative writing

processes.

• Visualisations need to be simple and not contain too much information.

• Topic evolution is an interesting aspect of collaborative writing.

• Author collaboration has to be presented in a simple manner.

These guidelines are used for creating the three types of visualisations explained in

the next chapter.

128

7.4 Summary

This chapter presents a case study conducted to analyse documents written jointly by

undergraduate students in an engineering course. The process mining tool ProM is

used to analyse the collaborative writing processes. The dotted chart analysis is

employed in order to obtain a bird's-eye view of writing processes and compare the

start and end time of those processes in order to determine when students actually

begin their writing tasks and how the activities spread over time. In addition, process

models of individual groups are extracted using the Heuristic Miner algorithm. The

models represent the dependency diagrams with frequencies of individual writing

activities and dependency probabilities between two activities. The knowledge

provided by the models sheds additional light on the mechanisms of the students'

writing activities. Process models of student groups with different performances are

compared and analysed. In addition, performance sequence analysis is utilised to

extract sequences of writing activities and interactions of authors during the writing

process; organisational mining uncovers writing activity-based collaboration events.

Based on several layers of semantics (i.e. text edits, and writing activities), a

technique is presented to derive the Heuristic and Hidden Markov models of the

documents written by groups of students. A case study is conducted to extract the

two models and perform process analysis of two student groups who achieve a high

and a low performance, respectively. The models represent the writing behaviours of

these students. The heuristic MM offers a concise model that gives a good overview

of the overall writing process, where each state of the model represents a defined

writing activity (such drafting, revising, editing and so on); however, the Hidden

MM, by discovering the states automatically, offers a finer-grained analysis by

showing the sequences of text operations and transitional probabilities.

A pattern of writing activities and text edits can be extracted for a particular

group using process models discovered by process mining techniques and Markov

models. However, there are different patterns for different groups. This research

would like to provide these patterns and behaviour models of writing activities as

feedback, in the form of visualisations, to students and instructors while the students

are engaged in writing their documents. As pointed out by Lowry (Lowry et al.,

2003), group awareness, participation, and coordination are crucial elements for

successful collaborative writing outcomes. For this reason, a pilot study is conducted

129

to provide mock-up visualisations to instructors and students (i.e. authors) such as a

timeline, transition diagram, topic evolution and topic-based collaboration, and

student collaboration based on statistics of writing activities. The first two types of

visualisations are based on dotted charts, Hidden MM process models. Students are

voluntarily interviewed to elicit their perceptions of the usefulness of the

visualisations as well as feedback with regard to author awareness and collaboration.

The feedback about the mock-up visualisations can be summarized as following: 1)

Visualisations need to be simple and not contain too much information; 2) a timeline

element is preferable for visualising collaborative writing processes; 3) Topic

evolution is an interesting aspect of collaborative writing; 4) Author collaboration

has to be presented in a simple manner. The result of this pilot study is used to

develop further new types of visualisations which will be described in the next

chapter.

130

131

CHAPTER 8

VISUALISING COLLABORATIVE

WRITING PROCESSES

This chapter proposes three visualisation approaches and their corresponding

underlying techniques for analysing the writing processes used in jointly authored

documents from different points of view: the nature of text edits that occurred at the

paragraph level (revision maps); the emergence and evolution of topics during

writing activities (topic evolution charts), and the authorship collaboration

information (topic-based collaboration networks).

First, revision maps are created which show a snapshot of the text edits

performed by students on the collaboratively written documents. This visualisation

depicts document development at the paragraph level over a period of time. Based on

these paragraph text edits, topics are then extracted by using several types of

probabilistic topic models. Topic evolution charts are used to obtain insight on the

development of topics during course of the writing processes. Finally, topic-based

collaboration networks are generated to analyse student collaboration with regard to

the writing topics. These topic-based collaboration networks present network

132

diagrams indicating those students who write about the same topics as the document

is developed.

This chapter begins by outlining an overview of the approach used in this

research. Sections 8.2, 8.3, and 8.4 present revision maps, topic evolution charts and

topic-based collaboration networks, in that order. The techniques are then validated

with simulated data in Section 8.5, and Section 8.6 illustrates the applicability of the

techniques using real world data of documents written by graduate students.

8.1 A Framework for Visualising Collaborative Writing Processes

This chapter extends the framework proposed in Chapter 5 to include visualising and

analysing writing processes based on text edits and topic evolutions. Figure 8-1

depicts the architecture of this approach, which consists of a writing environment,

i.e. Google Docs as the front end with Google Documents List API (GD API) for

retrieving revisions and their information; a text comparison utility; Topic Model;

and Author-Topic Model components. Chapter 5 describes GD API and its metadata:

revision ID, author ID, and timestamp.

Figure 8-1. Framework of approach producing revision maps, topic evolution charts, and

author-topic networks.

Three kinds of visualisations are generated. The first visualisation, the revision

map, depicts text edits performed on individual paragraphs during the writing

process. In order to understand the semantic of these text edits, the second

visualisation – the topic evolution chart -- illustrates how written topics were

created and developed during the writing process. The third visualisation, the topic-

based collaboration network, delineates a network of collaboration between the

authors based on the topics that they share in common. For example, the network

indicates instances of any two authors writing about the same topics during their

133

tasks. The three types of visualisations described above will be elaborated in the next

three sections.

As depicted in Figure 8-1, after retrieving the text content of all revisions and all

the revision history for a particular document, a text comparison utility is employed

to identify the text edits in successive revisions and establish a list of added and

deleted text. These identified text edits, mapped against the list of author IDs and the

timestamps of corresponding revisions, are used in the revision map; they are also

used as input to both the topic and author-topic modelling algorithms. The topic

modelling, especially DiffLDA (Thomas et al., 2011), creates the topic evolution

chart, while the author-topic modelling (Rosen-Zvi et al., 2010; Rosen-zvi et al.,

2003) outputs the topic-based collaboration network using author IDs provided in

the revision history. The method for generating these three visualisations is described

in detail the next three sections.

8.2 Revision Maps

It is necessary to obtain a chronological picture of the events during the course of

collaborative writing in order to obtain a better understanding of how students

develop their jointly authored document over a period of time. Revision maps

summarise text edits made at the paragraph level throughout the writing process.

Figure 8-2 depicts the revision map of a real document written by a group of students

during the prototype experiment, which will be described in Section 8.6. Each

column refers to a revision of the document. Each small rectangle represents a

paragraph of the document. Each row shows the evolution of an individual

paragraph, as it is created, altered, or deleted over a period of time.

Figure 8-2. Revision map of a real document written by a group of five students: c1, c2, c3,

 Rectangles are colour

made to the paragraph: green

means more words were deleted than added; and

paragraph. The intensity of these colours increases or decreases depending on the

extent of their corresponding edits. If the number of words added is the same as the

number of words deleted, the rectangle colour is yellow

bar under the row corresponding to author IDs indicates the aggregated

individual revisions; and the last vertical column represents the aggregated edits of

individual paragraphs across all revisions.

Each paragraph evolution

(final) revision. This means that the paragraph evolution rows can move up and

down over time, especially when a new paragraph is added. In addition, the

paragraph evolutions are grouped into sections

document.

134

. Revision map of a real document written by a group of five students: c1, c2, c3,

c4, and c5. “ad” is the administrator.

Rectangles are colour-coded to designate the nature and the extent of the edits

green indicates that more words were added than deleted;

means more words were deleted than added; and white represents no change in the

paragraph. The intensity of these colours increases or decreases depending on the

extent of their corresponding edits. If the number of words added is the same as the

number of words deleted, the rectangle colour is yellow-green. Lastly, the horizontal

bar under the row corresponding to author IDs indicates the aggregated

and the last vertical column represents the aggregated edits of

individual paragraphs across all revisions.

Each paragraph evolution is positioned relative to its position in the current

(final) revision. This means that the paragraph evolution rows can move up and

down over time, especially when a new paragraph is added. In addition, the

paragraph evolutions are grouped into sections based on the structure of the

. Revision map of a real document written by a group of five students: c1, c2, c3,

coded to designate the nature and the extent of the edits

indicates that more words were added than deleted; red

esents no change in the

paragraph. The intensity of these colours increases or decreases depending on the

extent of their corresponding edits. If the number of words added is the same as the

astly, the horizontal

bar under the row corresponding to author IDs indicates the aggregated edits of

and the last vertical column represents the aggregated edits of

is positioned relative to its position in the current

(final) revision. This means that the paragraph evolution rows can move up and

down over time, especially when a new paragraph is added. In addition, the

based on the structure of the

135

For instance, the revision map shown in Figure 8-2 represents the edits in a

document written by a group of students over a period of six days (from 04 to

09/05/2011). The text edits of four paragraphs as indicated in the revision map -- P1,

P2, P3 and P4 -- can be described as follows: Many words were added to the first

paragraph of Section A (P1) by c1 on 04/05/2011 22:29; it was not edited until

06/05/2011 16:48 (by author c1), when more words were deleted than added to it.

Towards the end of the week (on 08/05/2011 21:46), P1 was modified again by c1

when more words were added. The first paragraph of Section B (P2) was inserted on

05/05/2011 13:57 by author c2; it was not modified at all and was deleted altogether

from the document on 09/05/2011 02:38 by c2. A new paragraph (P3) was inserted

by c2 after P2 was removed. A paragraph can also be split and merged; for example,

paragraph P4 was inserted on 05/05/2011 13:57 by c2, changed once by the addition

of a few words on /05/2011 16:48 by c1, then split into two paragraphs on

09/05/2011 02:38 by c2.

The next subsection explains how to use the revision map depicted in Figure 8-2

to obtain further insight into how students collaboratively develop their document

during the six days of writing.

Using the Revision Maps to Analyse Writing Process

Revision maps help provide answers to the following five questions:

1. Which sections of the document were worked on the most and which were

worked on the least? (Location of text edits)

2. When (at what dates) did major edits (i.e. addition and deletion) occur during

the writing process? (Time)

3. Did students work sequentially or in parallel? (sequential work consisting of

single paragraphs written at different sessions or days; parallel work

consisting of many paragraphs written almost simultaneously during the

same writing sessions or days).

4. Who made the most or the least edits to the document? (Authorship)

5. How many authors worked on each paragraph and each section?

(Collaboration)

Question 1 is easily answered by examining the vertical bar that represents the

aggregated edits of individual paragraphs, which indicates that Section A of the

document contains more edits than Section B. Answering Question 2 leads to the

136

interesting observation that most text edits, especially additions, happen at the

beginning of the process when students first engage in their writing tasks, while

many text deletions occur towards the end of the writing process. There are a number

of extensive text edits made exclusively by author c3 during the middle of the

process. In answering Question 3, it is interesting to note that the work in Section A

is performed sequentially, especially on the first three paragraphs by two students, c1

and c5. In contrast, paragraphs in Section B were created almost at the same time by

student c2, although these particular Section B paragraphs are not found in the final

revision, but are replaced at the final stage of the writing process.

The revision map also provides information about how students collaborate

during the writing process, thus answering Questions 4 and 5. Of the five students,

we discern that c4 has the least amount of involvement with the development of the

document; that the work of c2 pertains mainly to Section B; and that a significant

amount of collaboration is evident from c1 and c5 with regard to their document

development.

 Although Figure 8-2 indicates very little editing activity from c4 as compared to

the work of the other four students, it is nevertheless difficult to conclude from this

evidence that c4 contributes the least to the development of the document. There is

no way of knowing whether small text editions made by c4 serve to increase the

assignment of a topic, thus improving the clarity and the coherence of the text.

This initial analysis derived from revision maps serves to further understand

some of the conditions and circumstances related to the creation of the students'

jointly authored document at the paragraph level. We will now look at ways to

investigate how the students develop their ideas throughout the course of the writing,

with particular emphasis on the evolution of the topics over time.

8.3 Topic Evolution Chart

Figure 8-3. A topic evolution chart of four topics: T1, T2, T3, and T4.

137

Recognising the manner in which topics evolve during text edits helps in achieving a

better understanding of how students develop their ideas and concepts while engaged

in writing tasks. To shed light on this subject, the topic evolution chart shown in

Figure 8-3 represents the development of four topics (T1, T2, T3, and T4) generated

from a synthetic dataset, which will be described in Section 8.5. A topic consists of a

cluster of words that frequently occur together in a revision, and each document

revision is represented by a set of topics. The topic evolution chart depicts changes in

the membership of topics throughout the sequence of revisions. For instance, in

Figure 8-3, T1-T3 appears at the start of writing (Revision 1), whereas T4 emerges in

the sixth revision (Revision 6) and disappears later in the writing process (Revision

7). The ratio of importance of the other three topics (T1-T3) changes over time. At

the beginning of the writing process, the document contains more text related to topic

T1 than to T2 or T3 (66% vs 17%.); however, towards the end of the process, topic

T2 is more dominant in the document than T1 and T3.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a popular probabilistic

topic modelling technique which, at the time of this research, has never been used to

extract the evolution of topics during the writing of a document. The closest method

used for this purpose is DiffLDA (Thomas et al., 2011), which has been applied for

extracting topic evolution in software repositories. In DiffLDA, the GNU diff utility

is used to identify text edits only at the paragraph level before using LDA. The work

in is research builds on the LDA and DiffLDA techniques in order to extract topics

and their evolution during the writing process.

 In this thesis, a text comparison utility is created to extract text edits at both

paragraph and word levels, as noted in Chapter 6. Unlike in DiffLDA, the number of

topics and hyper-parameters α and β (of the two Dirichlet distributions: author’s

topic distribution and topic-specific word distribution) are selected using a trade-off

between the model fitting (i.e. perplexity) and the simplicity of model structure (i.e.

the smallest number of topics). The number of topics is selected independently for

each document. The following subsections furnish an overview of the probabilistic

topic models Latent Dirichlet Allocation (LDA) and DiffLDA before describing the

method of extending DiffLDA for mining topic evolution of writing processes. Table

8-1 provides the differenfce between this work and DiffLDA proposed in (Thomas,

2011).

138

Table 8-1, the difference between DiffLDA for software repositories (Thomas, 2011) and

DiffLDA for writing processes.

DiffLDA for software repositories DiffLDA for writing processes

Text differencing at paragraphs (lines)

level

Text differencing at both paragraphs and

word levels

Predefined number of topics and hyper-

parameters

Inferred number of topics and hyper-

parameters (using the model fitting and

the simplicity of the model structure)

8.3.1 Probabilistic Topic Models

Topic modelling or Latent Dirichlet Allocation (LDA) automatically discovers topics

within a corpus of text documents (Blei & Lafferty, 2009), in which topics are

defined as collections of words that co-occur frequently in the corpus. Because of the

nature of language usage, the words that constitute a topic are often semantically

related (Thomas et al., 2010b). Each document is represented as a probability

distribution over some topics, while each topic is represented as a probability

distribution over a number of words. For instance, a topic consisting of the words

{bank finance money cash loan} can be described as "the financial industry". In topic

modelling, documents can be represented by the topics within them, and the entire

unstructured corpus can be structured in terms of this discovered semantic structure.

Subsection 3.1.1 provides the theoretical background of LDA including an example

of topics and the generative procedure for extracting topics.

Topic evolution models using LDA suffer from the duplication effect as

explained in Thomas et al. (2010a). These topic evolution models work on an

assumption that documents in the corpus are unique across time. This assumption

holds for the collection of journals, blog posts, and newspaper articles, which are

typically studied in the topic modelling. It is very unlikely that an article published in

one year is only slightly updated and republished the next year in the same

conference proceedings. Instead, each article (i.e. the specific combination of words

within an article) is unique across time. However, the nature of writing process is

quite different. Jointly authored documents are usually updated incrementally from

one revision to another revision as authors developed the documents. Although

sometimes there can be lots of text edits occurring in one revision, there still exists

139

some overlap of text contents between the revision and the previous one. This

particularity has been addressed with DiffLDA, which is described next.

8.3.2 DiffLDA for Mining Writing Processes

In order to address the data duplication effect found in software repositories, Thomas

et al. (Thomas, 2011; Thomas et al., 2010a) proposes a simple technique for use in

the pre-processing step before applying LDA to the source codes. On top of the

normal pre-processing steps, they include the diff step to identify text edits between

every pair of successive versions of each source code. In particular, for every pair of

successive versions, DiffLDA uses the standard GNU diff utility to compute the edits

(i.e. add, delete or change) at the line levels. According to DiffLDA (Thomas et al.,

2011), if an existing line is changed, it is considered to be deleted and then added

again. Identified edits (added and deleted lines) are then used as documents, called

delta documents (Thomas et al., 2011). The corpus then consists of all delta

documents in the software repository. This diff step effectively removes all

duplications, thus preventing the occurrence of the duplication effect when LDA is

applied to the corpus.

Nevertheless, the pre-processing step used in DiffLDA could not be applied

directly in the context of this thesis. During the writing process, it is common for

authors to revise a paragraph, which is a line in plain text, several times merely by

changing certain words in the text, so that the number of words in the revised

paragraph does not altered in any way. Using the pre-processing step of DiffLDA

will generate many change edits for particular paragraphs or lines; consequently, the

resulting delta documents will contain many duplicated words.

In this thesis, a text comparison utility (TCU) that consists of text differencing

algorithms is developed to compute the edits between successive revisions. The text

edits at paragraph levels are identified first; in other words, for each revision, it

compares individual paragraphs to the corresponding paragraphs in the previous

revision, using the GNU diff utility. This comparison classifies paragraphs as either

added, deleted or changed, depending on whether the text edits from the previous

revision that result in the current revision involve the creation of a new paragraph,

the removal of a paragraph, or alterations made to a paragraph. TCU then computes

text edits at word levels in the paragraphs that were altered, and classifies them as

140

either added, deleted, or equal (no change) depending on whether addition, removal,

or no alterations occurred. The added and deleted words and paragraphs are then

used as documents for LDA extraction of topics and topic evolution. The results

obtained by using the method developed in this research thus succeed in preventing

the duplication effect, as described below.

For each document, the text edits (at paragraph and word levels) of two

consecutive revisions are first identified Rj and Rj’(j’=j+1) using the text comparison

utility as explained above. For each document revision, two delta documents, δ2YZ and

δ2Y[are created that capture addition and deletion types of text edits, recalling

Thomas et al. (2011). We place all added word and paragraph edits between Rj and

Rj’ into δ2YZ and all deleted paragraph and word edits into δ2Y[. The whole of the first

revision (j=1) is classified as added paragraphs, and is therefore added in its entirety

to the delta document, δ�Z. Using this method, each revision has a maximum of two

delta documents, and a revision can have one delta document of either added or

deleted paragraphs. LDA is then applied to the entire set of delta documents to

produce a set of extracted topics and membership values for each delta document.

Finally, the topic membership values of the revisions is computed at each point in

time by using the obtained topics and their membership values for each delta

document. The following formula, proposed by Thomas et al. (2011), is applied to

compute the corresponding vector of a revision i defined recursively as

\� =
\���|Q���| +	\]_̂|`�Z|

|Q���| + |`�Z|
− 	a�\���|Q���| −	\]

_̂4`�[4
|Q���| − 4`�[4

�

 Where |`�Z| represents the number of words in `�Z, & − 1 is the index of the

previous revision of the document and φ() is the normalising function, Thomas et al.

(2011), suggests that this is necessary in a scenario where more words matching a

given topic were subtracted in a document than were subtracted in the previous

version of that document for that topic.

It is necessary to select the number of topics and set parameters, α and β, of the

two Dirichlet distributions -- document’s topic distribution and topic-specific word

distribution – before applying LDA to the entire set of delta documents. The

following section explains the method for selecting hyper-parameters and the number

of topics.

141

8.3.3 Hyper-parameter Selection

LDA and particularly DiffLDA require the setting of parameters, α and β, of the two

Dirichlet distributions: author’s topic distribution and topic-specific word

distribution. There has been relatively little work within the topic modelling

community on the appropriate selection method of hyper-parameters (Broniatowski

& Christopher, 2012) except for the algorithm proposed by Wallach (2008), which

overfit hyper-parameters for the purpose of this analysis; however, this algorithm can

slow the convergence of the Markov chain. This thesis uses a strategy to fix α and β

depending on the number of topics, T, and explores the consequence of every T. The

techniques proposed by Griffiths and Steyvers (Griffiths & Steyvers, 2004) is then

used to set the value of α=50/(#topics) and β=200/(#words).

8.3.4 Selection of Number of Topics

After defining the hyper-parameter values as mentioned above, the number of topics

(T) is chosen by using perplexity (Griffiths & Steyvers, 2004), which is a standard

measure for estimating the performance of a probabilistic model based on its ability

to predict the words contained in new unseen documents. The smallest possible T to

maintain a good model fit was selected as describe below. The number of topics is

selected independently for each document; LDA models are fitted to the delta

documents for t=1…50 topics, resulting in 50 models for each document. For each of

these models, 20 independent samples are generated from one randomly initialised

Markov chain after a burn-in of 1000 iterations, guaranteeing the independence of

the samples by having a lag of 100 iterations between each one. The smallest value

t0, is taken, so that the 95
th

 percentile of all samples for all larger values of t is greater

than the 5
th

 percentile of t0 (Broniatowski & Christopher, 2012). Figure 8-4 depicts

the typical trend of the perplexity of DiffLDA model fits. The recommended value of

T=t0+1 is selected (Broniatowski & Christopher, 2012) to ensure that the chosen

model is not too fit and can be generalised for modelling data.

142

Figure 8-4. Perplexity vs number of topics for a document written by graduate students (from

the case study described below). The selected number of topics is equal to 12 as explained

above.

After the number of topics, T, has been selected, a T-topic LDA model is fit to all

delta documents. Ten samples are taken from 20 randomly initialised Markov chains,

to obatin 200 samples in total. The results of the final samples are used to construct

topic evolutions of writing collaboration by showing the change of the distribution of

topics over time.

The extracted topics and topic evolutions provide an overview of how topics are

created and the way that they evolve. Knowing whether students collaborate and if

they often write about the same topics assists both instructors and learners in

understanding how the documents are developed. The topic-based collaboration

networks created in this thesis with the purpose of further investigating learner

collaboration are explained in the next section.

8.4 Topic-based Collaboration Networks

For further analysis, it is useful to visualise how students collaborate around topics,

with particular emphasis on ascertaining whether students develop their ideas and

concepts independently or whether they work together on the same topics. Figure 8-5

shows a topic-based collaboration network from a group of four students jointly

writing a document for the prototype experiment, which will be described in Section

8.6. Each node represents a student author. A square depicts a group coordinator.

Circles represent group members. A connection (link) between two nodes indicates

that those two students have written about the same topics during their tasks. Figure

8-5 shows that the group coordinator a1 and group member a2 have both worked

143

with all group members to draft, revise, and edit some of the document topics. The

group coordinator has a responsibility to assign writing tasks to individual members

and to make sure the assigned tasks progress according to plan. Group members a3

and a4, however, have not written about the same topics. In other words, a3 and a4

have both worked independently with a1 and a2 to develop some topics.

Figure 8-5. A topic-based collaboration network for collaborative writing. The network is

inspired by the social network proposed by Broniatowski and Christopher (2012). Nodes

represents students: a1 to a4. The square is the group coordinator and circles are group

members. A connection between two nodes means that the two corresponding students have

written about the same topics.

The contribution of this thesis toward accomplishing the visualisation resides in

the creation of a Diff Author-Topic Model (DiffATM), which is an extension of

Author-Topic Model (ATM) (Rosen-zvi et al., 2003). As DiffLDA overcomes the

duplication effect in LDA, DiffATM is developed to deal with the duplication effect

in ATM. In this research, similarly to DiffLDA, DiffATM is applied to text edits

identified at the paragraph and word levels in order to extract topics. The application

of DiffATM, however, instead of providing a cluster of topics per revision, provides

a cluster of topics per author. Based on a number of revisions, a particular author can

be represented by a membership of topics written in those revisions. Like DiffLDA

for writing processes, DiffATM is developed by selecting the number of topics and

hyper-parameters based on the trade-off between the model fitting and the simplicity

of model structure. In addition, social networks are applied as proposed by

Broniatowski and Christopher (2012) for collaborative writing tasks based on the

membership of topics of individual authors.

The subsequent section describes the Diff Author-Topic Model followed by a

description of the method used for constructions of topic-based collaboration

networks.

144

8.4.1 Diff Author-Topic Model for writing processes

This thesis develops Diff Author-Topic Model (DiffATM), which in turn uses a

variant of LDA known as the author-topic (AT) model (Rosen-zvi et al., 2003) which

adds probabilistic pressure to assign each author to a specific topic. Shared topics are

therefore more likely to represent common ideas and concepts. The DiffATM model

provides an analysis that is guided by the authorship data of the documents (provided

by revision histories) and the word co-occurrence data used by DiffLDA. Each

author is modelled as a multinomial distribution over a fixed number of topics that is

selected empirically as explained below. Each topic is, in turn, modelled as a

multinomial distribution over words.

As described in Subsection 8.1, the Text Comparison Utility (TCU) outputs the

delta documents (i.e. added and deleted paragraphs) and each revision is produced by

one or more authors. The authors of a revision are assigned to the delta documents

of that revision. The Author-Topic Model (ATM) is then applied to the entire set of

delta documents.

As in DiffLDA, the hyper-parameters defining each Dirichlet prior (α and β) of

DiffATM are dependent on the number of topics, which is selected independently for

each document using the trade-off between the model fitting and the simplicity of the

model structure as described in Subsection 8.3.4. The likelihood of two authors

writing the same topic will depend on the hyper-parameters chosen (Broniatowski &

Christopher, 2012). In general, larger values of α will lead to more topic overlap for

any given corpus, motivating the use of a consistent hyper-parameter selection

algorithm across all corpora analysed. All hyper-parameter settings used for the

analyses presented in this thesis follow the guidelines derived empirically by

Griffiths and Steyvers (2004). In particular, α = 50/(# topics), inducing topics that

are mildly smoothed across authors, and β = 200/(# words), inducing topics that are

specific to small numbers of words.

Like DiffLDA, the DiffATM model is fit by using a Markov-chain Monte Carlo

(MCMC) approach. Information about individual authors is included in the Bayesian

inference mechanism, so that each word is assigned to a topic in proportion to the

number of words by that author already in that topic, and in proportion to the number

of times that specific word appears in that topic. Thus, if two authors use the same

word in two different senses, the DiffATM model will account for this polysemy.

145

Details of the MCMC algorithm derivation are given in the paper by Rosen-Zvi et al.

(2003).

After the number of topics, T, has been selected, a T-topic DiffATM model is fit

to all delta documents. Ten samples are taken from 20 randomly initialised Markov

chains, such that there are 200 samples in total. The result of the final samples are

used to construct topic-based collaboration networks, as described below.

8.4.2 Construction of Networks from Topics

After an ATM has been fit, networks are constructed networks in order to analyse

student collaboration, with particular interest in linking together two students who

often use the same topics of discourse over the writing period. The same method

proposed by Broniatowski and Christoper is used (Broniatowski & Christopher,

2012), in computing the joint probability of each pair of authors writing about the

same topic as:

-��� ∩ �)� = 	:-�c = d�|���-�c = d�|�)�
�

�

A joint probability of two authors which exceeds 1/T (e.g. 0.1 if T=10) is

indicated by creating a link between the two nodes; the reason for choosing this

condition is explained in (Broniatowski & Christopher, 2012). A square author-

author matrix is constructed with entries equal to one for each linked author pair, and

entries equal to zero otherwise. This procedure is then repeated several times for

each document (Broniatowski & Christopher, 2012) to average across whatever

probabilistic noise might exist in the DiffATM fit. Authors who link across multiple

DiffATM fits more often than would be expected according to chance are considered

to be linked in the network for that document. The author-author matrix is obtained

after 200 samplings of DiffLDA. Each author pair with an entry higher than 125 is

considered as linked. Five topic-based collaboration networks of four student goups

are presented in

 Figure 8-6, showing different networks with different numbers of connections,

which demonstrates that the dynamic of topic sharing during the writing process

differs among groups.

146

 Figure 8-6. Topic-based collaboration networks of four different groups of students writing

documents. Squares represent group coordinators. Circles are group members. Links

between two nodes indicate that the two corresponding authors have written about the same

topics.

8.5 Technical Validation

This section formalises a validation of the accuracy of DiffLDA and DiffATM as

used in constructing topic evolution and topic-based collaboration networks. Since

there is no public dataset for evaluating the accuracy of topic evolution models, a

synthetic dataset is formulated for that purpose. Inspired by Thomas et al. (2011), a

simulation of text edits on a document, situated in two simple scenarios that

represent several types of text edits, is created in order to evaluate the accuracy of the

evolutions discovered by the models. Specifically, the dataset was intended to verify

if the text edit events detected by the models correspond with the actual changes that

were made during the writing, thus evaluating precision; and if the discovered

evolutions contained all the text edits that were actually performed during the

writing, thus evaluating recall.

8.5.1 Data Generation

Evaluation of the DiffLDA model for collaborative writing begins with the creation

of a document with 17 revisions (R1 – R17) consisting of three paragraphs which are

generated from three topic distributions that are equally weighted. Table 8-2 shows

the dictionary and topic distribution of the data. After each paragraph is created or

first added to the document, it is changed three times (these changed paragraphs are

also generated from the three topic distributions as presented in Table 8-2). Table 8-3

illustrates the text edits of these paragraphs. It is important to note that no text edits

were performed on some of the revisions. The 17 revisions form a baseline scenario.

147

Table 8-2, the dictionary and topic distribution of a simulated data

Words T1 T2 T3

River 0.37

Stream 0.31

Bank 0.22 0.28

Money 0.3 0.07

Loan 0.2

Debt 0.12

Factory 0.33

Product 0.25

Labor 0.25

News 0.05 0.05 0.05

Reporter 0.05 0.05 0.05

Table 8-3, event log file presenting text edition events of revisions of a simulated document.

Rev. P1 P2 P3 P4 P5 P6 C1 C2

R1 a a a1

R2 - - a1

R3 - a - a2 a5

R4 - - a d a3

R5 c - - a1

R6 - - - a a4 a1

R7 - - - d a4 a1

R8 - c - - a5

R9 - - c - a3

R10 c - - - a1

R11 - c - - a5

R12 - - c - a3

R13 c - - - a1

R14 - c - - a a2 a5

R15 - - - - - a2

R16 - - - - c a2

R17 - - c - - a3

Note: The baseline scenario consists of three paragraphs P1, P2, and P3. The first

controlled scenario (C1) is formed by adding and delete P4. The second one (C2)

adds and deletes P5 and adds and changes P6. There are four text edition events: no

change, adding, changing, and deleting a corresponding paragraph, presented as ‘-‘,

a, c, and d, respectively. Each revision is produced by no more than two authors.

There are five authors: a1 – a5.

148

Two simulated scenarios are set up as follows:

The first scenario modifies the baseline scenario by adding one paragraph in

revision R6, as shown in Table 8-3, and then deleting it in revision R7, thus

simulating the addition and deletion types of text edits, using a paragraph generated

from a new topic (i.e. the four code names of Ubuntu operating system) totally

unrelated to the three topics in the baseline scenario.

The second scenario is created by adding two paragraphs: First, a paragraph from

a new topic unrelated to the four topics mentioned above is added in the first

revision, R1; it remains (unchanged) in revisions R2 and R3; and is then deleted in

revision R4. Second, a paragraph from another unrelated new topic is added in R14

and R15. The first half of the paragraph is added in revision R14, while the second

half of the paragraph is added in the final revision, R16. This scenario demonstrates

multiple text edits happening simultaneously in the same revisions.

Table 8-3 displays the text edition events. The simulation is designed in such a

way as to ensure that there are no more than four paragraphs in any of the revisions.

at any given time.

8.5.2 Pre-processing and Study Setup

Pre-processing is performed after the process of identifying text editions and creating

delta documents described above. For the analysis reported in this chapter, a word-

document matrix and author-document matrix are constructed using doc2mat utility

from the CLUTO package (Steinbach et al., 2000), which removes all stop-words

and stems all words to their roots using the Porter stemming algorithm.

For Scenario 1, the pre-processing results in a total of 417 words (15 of which are

unique) in 23 delta documents. There are (M=18.13, STD=0.81) words per revision.

Scenario 2 consists of 485 words (23 of which are unique) in 26 delta documents.

There are (M=18.65, STD=4.25) words per revision in Scenario 2.

The Topic Modelling Toolbox (Toolbox, 2012) implemented in MATLAB is

used for the actual LDA and ATM computation. A total of 500 sampling iterations

are performed. Because the amount of simulated data is quite small, no parameter

optimisation is performed, thus setting the burning period.

149

8.5.3 Results

(a) The topic evolution of four topics T1-T4 in Scenario 1.

(b) The topic evolution of T4, T5, and T6 in Scenario 2.

Figure 8-7. Topic evolution for the simulated scenarios.

Scenario 1 consists of a change in Topic 4 when a paragraph is added. Figure

8-7(a) shows that the model detects the topic because the evolution of T4 has a value

of 0 in all revisions except in revision R6, where its distribution spikes to slightly

more than 20%. Upon checking the corresponding revision, especially the added

paragraph, it is discovered that the paragraph has high membership in this topic and

low membership in all other topics; and in fact, this is the only paragraph that has a

non-zero membership in this topic.

Figure 8-7(b) shows the discovered topic evolutions for Scenario 2. The model

indeed captured all three changes of the topic evolutions.

Based on the simulated authors a1-a5, an evaluation of the technique used in

constructing the topic-based networks is also conducted. A network diagram is

correctly obtained that shows five nodes and two links: the first link connects a2 and

a5, both of whom work on P2 either alone or at the same time; and the second link

connects a1 and a4, who together add and delete P4.

From the evaluation above, it is concluded that using DiffLDA does indeed

discover topic evolutions for writing processes, and constructs topic-based

collaboration networks that correctly identify authors who write about the same

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T4 T2 T3 T1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

T4 T5 T6

150

topics. The following section illustrates the applicability of the techniques proposed

in this research by using real documents in a real learning environment.

8.6 Prototype Experiment

This section presents a prototype experiment conducted in a semester-long graduate

course called “Foundation of Learning Science” at the Faculty of Education and

Social Work, University of Sydney, 2012, with the aim of deploying the techniques

discussed in this chapter within a course in order to illustrate how the three

visualisations described above are used, what information they provide, and whether

they are useful.

In the pilot study presented in the previous chapter, the visualisations were

produced manually by synthetic data based on several process models and used to

obtain guideline to develop the visualisations presented in this chapter. In this

prototype experiment, the three visualisations were extracted and given to students

(authors) while they were writing their documents in order to provide feedback

mirroring their writing activities. Therefore, for this purpose, it was required to

conduct a separate experiment. As a result, a different dataset was obtained and used

in process analysis based on the three visualisations for investigating how individual

paragraphs were developed, how topics were evolved, and how authors

collaboratively wrote about those topics. By contrast, Dataset A was used for

extracting process models (presented in the previous chapter) in offline manner to

extract patterns of writing activities that authors performed during writing processes.

The intension of this experiment is to discover how individual groups of students

collaboratively performed their writing tasks and developed their ideas during their

writing processes. Unlike the case study of extracting process models presented in

the previous chapter, we do not intend to use the visualisations to identify the writing

processes that produce high and low quality outcomes. Although in this experiment

individual groups also obtained final assessment of their written documents, the

topics of individual documents were different as described in the experiment setup

below. Consequently, their revision maps (especially the structure of written

paragraphs) and topic evolutions would be totally different and not appropriate to

compare. Although topic-based collaborative networks were extracted and presented

side by side in the analysis below, they were used to investigate if authors of

151

individual groups collaboratively wrote about the same topics. They were not used to

discover the types of collaboration that lead to high and low performance.

8.6.1 Experiment Setup

8.6.1.1 Course Setup and Dataset

There are 22 students in the course, which is structured in the following way: Every

two weeks, the students are divided into five different groups made up of four or five

members. During each fortnight, groups are required to write about a topic (which

varies every fortnight) in a jointly authored document of approximately 3000 words.

For this study, the writing duration of each fortnight is called a cycle. This writing

component of the course lasts for 12 weeks, i.e. six cycles; in other words,

throughout the semester, every student collaboratively writes six documents. At the

end of the semester, there are a total of 30 documents for analysis, all of which are

assessed and graded as either Pass (P), Credit (C), Distinction (D), or High

Distinction (HD).

During the two weeks of writing about an assigned topic, individual students in

each group are assigned reading materials, with six readings per group. Students are

encouraged to incorporate ideas and concepts learned in the class lectures and in the

reading material into their writing tasks. For every document, students are required to

make a plan for their writing tasks and discuss it with the group members during the

first week of the cycle.

Each document is comprised of two sections: in the first one, section A, students

are required to write about their assigned reading materials. They are asked to

describe the main ideas of the articles they read, to provide evidence that they are

grappling with these ideas, and to articulate difficult concepts and put them into

context. Evidence of the writer's ability to engage in critical thinking is also to be

included in this section.

In the second section (section B) students are required to identify relationships

between the assigned readings for this cycle and those of the previous cycle, and to

specify the “big ideas” contributed by the reading materials.

The visualisations in this experiment are also used as feedback for students

during their writing tasks. Revision maps are produced every week for all the groups

152

(i.e., two revision maps per cycle per group) to enable the students to see the

evolution of their work. For each cycle, at the end of the first week, revision maps

were created to depict the evolution during the first week. At the end of the cycle, the

final revision maps were produced to show the evolution in the past two weeks

(during the cycle). Figure 8-8 shows the timeline when the first and final revision

maps were created and provided to students during the experiment.

At the beginning of the experiment, the student groups receive an example of the

revision map, similar to Figure 8-2, with a description of what the map was about

and how it can be used, and a questionnaire is posted online so that students can

participate in the study on a voluntary basis (the example, description and

questionnaire are shown in Appendix E). Besides being voluntary, participation is

also anonymous; students use only their group IDs in recording answers to the

questions.

Figure 8-8. Experiment setup of six cycles (fortnights). Two revision maps were provided for

each cycle: the first week revision map presented by a grey diamond and the final revision

map presented by a white diamond.

8.6.1.2 Questionnaire for Qualitative Evaluation

The aim of this experiment is to help individual student authors recognise how the

text content of their documents changes over time by answering 12 questions as

shown in Table 8-4. The first five questions are concerned with the usability of the

visualisation, and the remaining seven questions seek information about the quality

of the visualisation.

153

Table 8-4. Questionnaire for qualitative evaluation

No. Question

1 Given a revision map, can student authors specify which parts

(sections/paragraphs) of the document have been revised significantly, slightly,

and not changed at all?

2 Given a revision map, can student authors indicate at what stage were a large

number of words added to or deleted from the document? How long does it takes

to produce each part (section/paragraph) of the document?

3 Given a revision map, can student authors specify who made the most and the

least changes to the document?

4 Given a revision map, can student authors report how many members of the group

work on individual parts (i.e. sections/paragraphs) of the document?

5 Overall, based on a revision map, can students identify text change patterns that

occur during the writing: sequential, parallel, or others?

6 Based on a revision map, what do students think about how their group wrote the

document? e.g. explaining and discussing problems that their group encountered

during writing.

7 How accurately does the visualisation represent what actually happened during

the writing process, especially with regard to question number 1-5?

8 From the visualisation, do students learn something that they did not know

before?

9 From the visualisation, would students do something differently in retrospect?

10 How do student authors use the visualisation during their writing? Do the

visualisation prompt them toward any problems (e.g. member contribution or

group coordination) thereby alerting them to do something, or plan an action,

regarding their group’s writing?

11 What do students want to know about the collaborative writing process that is not

represented in the visualisation?

12 Would students find the visualisation useful to be provided with this kind of

visualisation for their next group writing assignment? [on a scale from 1 (strongly

disagree) to 7 (strongly agree)]

It is necessary to refer to the groups' revision maps in order to answer the first

five questions. The remaining questions solicit student opinions on the usability and

accuracy of the revision maps.

154

8.6.2 Analysis

Four cycles are selected for our analysis from the six fortnightly cycles of writing:

the third, fourth, fifth and sixth. There are five groups of students in each cycle,

hence five documents are produced (20 documents in total). After downloading all

the revisions of these documents, the text comparison utility is applied to identify the

text changes that produce these revisions, which generate delta documents containing

the added and deleted paragraphs.

Table 8-5. Numbers of revisions, vocabularies (unique words), delta documents, authors per

revision, and final marks of all documents.

G
ro

u
p

#
re

v
is

io
n

s

#
d

el
ta

d
o
cu

m
en

ts

#
v

o
c
a

b
u

la
ri

es

#
to

ta
l

a
u

th
o
r
s

#
 i

n
fe

rr
ed

 t
o

p
ic

s

M
a

rk

c3g1 49 73 821 4 10 P

c3g2 61 85 1040 5 11 P

c3g3 144 229 1056 5 32 P

c3g4 36 47 640 5 9 D

c3g5 46 67 844 4 11 Upper C

c4g1 86 141 1038 5 18 Upper C

c4g2 46 68 753 4 11 D

c4g3 35 43 727 4 8 P

c4g4 37 47 864 5 9 P

c4g5 46 51 873 4 10 P

c5g1 137 225 1137 5 24 D

c5g2 120 104 1323 5 28 Upper C

c5g3 40 62 953 5 12 Upper C

c5g4 44 66 749 4 10 Upper P

c5g5 42 65 646 3 9 Upper C

c6g1 55 77 871 5 11 D

c6g2 150 255 868 4 18 Lower D

c6g3 26 36 727 4 7 C

c6g4 75 118 966 4 15 C

c6g5 54 75 1040 5 14 C

Mean 66.45 96.7 896.8

STD 39.33 65.50 173.86

 Table 8-5 summarises the number of revisions, delta documents, vocabularies

(unique words), and authors of the 20 documents. The table also shows the final

grades. Each group is identified by “cXgY”, where X is the cycle number and Y is the

group number in that cycle. For instance, c3g5 is the group number 5 of the third

155

cycle. This study is concerned mainly with major revisions as defined in Chapter 5.

The number of revisions (M=66.45,STD=39.33) varies from 150 for c6g2 (receiving

a grade of D) to 26 for c6g3 (receiving a grade of C). The number of delta documents

also varies from 255 for c6g2 to 36 for c6g3. It is important to note that the number

of delta documents is not proportional to the number of revisions. For example, c4g1

produced 141 delta documents within 86 revisions, whereas c5g2 which contained

120 revisions (i.e. 120 revisions) produced only 104 delta documents.

To further elucidate the document development process, the information that can

be obtained from the proposed visualisations is presented below.

8.6.2.1 Revision Maps

After identifying text edits made on all revisions for each document as described in

Section 8.1, revision maps are created for each document. Using the revision maps of

individual documents, it is possible to discern how individual paragraphs of the two

sections (A and B) are created and how they evolve during the process of writing.

The five questions presented in Section 8.2 are used to analyse the five documents of

the third cycle.

Based on the task description mentioned in Subsection 8.6.1.1, two hypotheses

are formed for analysis in this subsection. Firstly, for Section A, it is expected that

the individual students, working on their own, develop their own ideas and topics

from the assigned readings by writing several paragraphs that explain their ideas and

show evidence of their understanding of the material. Secondly, for Section B,

students are expected to engage in a significant amount of collaboration to relate the

ideas developed from the readings, with paragraphs in this section edited by several

group members.

Figure 8-9 shows the revision map of the first week of Group c3g4’ writing

process. Figure 8-10 shows the final revision map of the two-week period of Group

c3g4’ writing process. The revision maps of other 4 groups in this cycle are shown in

Appendix D. Note that for this experiment, the number of words affected by text

edits was shown in the revision maps.

Figure 8

156

8-9. The first week revision map of Group c3g4.

Figure 8

157

8-10. The two-week revision map of Group c3g4.

158

As expected, Section A was created before Section B in all five documents. In

fact, many text edits are made in Section A at the beginning of the writing process,

and a significant number of text changes are also produced in Section B towards the

end of the writing; this suggests that most students spend their time writing in the

beginning, then rush to finish their writing toward the end of the process. In all five

documents, more than 50% of the paragraphs are created and changed during the

same writing sessions or days, revealing that most students prefer to write in one

session rather than drafting sequentially over several days.

With regard to the authorship of the edits, in all five documents, most of the

paragraphs in Section A are edited and revised by only one student. For Section B,

many paragraphs are edited by more than one student. The number of paragraphs in

Section B written by several students is more than fifteen for c3g1, six for c3g2, nine

for c3g3, five for c3g4, and five for c3g5. This indicates that, as expected, most

students collaborated to write Section B.

8.6.2.2 Topic Evolution Charts

The pre-processing step outlined in Subsection 8.5.2 is first performed and the

number of topics for each individual document is chosen. As stated in Section 8.3,

unlike in other works (Thomas, 2011), the number of topics, T for each document

was determined by fitting the LDA models to their delta documents and selecting the

model providing the good perplexity. The number of topics chosen for each

document is shown in Table 8-5. After that, the technique described in Section 8.3 is

applied to extract topics and create topic evolution charts.

As the creation and development of every topic evolution chart for each

document, is examined, either topics in Section B emerge and develop later in the

process than topics in Section A, or vice versa. The expectation is that the former

scenario is more likely to occur because students begin their writing tasks and idea

development while working in Section A based on the assigned reading; and they

later work with others to further develop the writing in Section B.

159

T3 person learn hamilton student creat connect peer specif tool classroom

T4 individu develop phase affect posit support student type content time

T9 metacognit teacher recognitmotiv process appreci learn help goal mean

Figure 8-11. Topic evolution map of three topics T3, T4 and T9 over 50 revisions of

Document 2. The table above shows the top 10 words of each topic.

Figure 8-11 shows the topic evolution map of some of the topics of c4g2. There

are 11 topics for this document. The topic evolution chart depicts only three topics:

T3, T4, and T9. The top ten words used in the three topics are also shown below.

Again, the topic evolution map provides an insight into how topics are developed by

the students as they write. In particular, T4 is about the instructions for and

explanations of the assignment; it appears at the beginning of the document and

decreases over time. Unlike T4, T3 is about reading material related to the work of

Hamilton on a “theory of personalized learning communities”. Students wrote to

reflect on this topic, and it spikes up at the third revision. T9 arrives after the two

topics already mentioned because it is part of Section B of the document; it is about

“teacher’s recognition of their learners’ cognitive and motivational potential”.

Although the evolution of topics during the writing is detected, this research also

seeks to learn whether students write about the same topics over time. To answer

this question, purpose, an analysis based on the topic-based collaboration networks is

undertaken.

8.6.2.3 Topic-Based Collaboration Networks

In terms of topic based author collaboration, it is obvious to expect that for each

group (each topic-based collaboration network) there is at least one link connecting

two nodes, because at least two students collaborate and write about the same topics

in Section B, as previously explained. This link, if it exists, may be one that connects

a group coordinator (node) to another team member (node) depending on the nature

of the text change operations performed by individual group coordinators. If a group

coordinator only edits by performing surface changes, there will not be any links

160

connecting the coordinator with other group members; however, coordinator

revisions that elaborate topics developed by other group members create a link

between the coordinator and others. This event is not strictly required and is quite

difficult to check, since the group coordinator’s responsibility is to assign writing

tasks to individual members and to make sure the assigned tasks progress according

to plan, which means that the coordinator does not necessarily spend time

collaborating and writing about the same topics with other group members.

Figure 8-12. Author-topic networks of 20 documents of four cycles. Each row shows a cycle,

which is a writing period of two weeks. Squares depict group coordinators and circles are

group members. The edge connecting between two nodes represents two corresponding

students writing the same topics.

The technique described in Section 8.4 is used to obtain the networks shown in

Figure 8-12. Each row represents five groups of students writing collaboratively

during a period of two weeks as described in Section 8.6.1. Nodes depict individual

students with identification numbers from 1 to 22: squares represent group

161

coordinators and circles designate group members. There are a total of 22 nodes

(students) for each row. Nodes are clustered according to the students’ group

assignment. For each group, an edge linking between two nodes shows that the two

corresponding students have written about the same topics during the writing

process.

The networks can be categorised from single-edge graphs (i.e. c3g4, c6g2, and

c6g3) to connected graphs with all pairs of nodes linked (i.e. c3g1, c5g1, c5g2, and

c6g4).

According to the hypothesis formulated in this research, each network should

have at least one edge, because all the students in each group are required to write

about the same topics, especially for document section B; and as verified above, all

networks do indeed have one or more edges.

The next point to investigate is the appearance of at least one edge for all square

nodes. Since group coordinators are expected to collaborate with other group

members in order to draft, revise or edit topics, each group should display some

edges connecting a square to some circles. Fulfilling this expectation, most networks

exhibit at least one edge linking their square to a circle node. The only exception

appears in c6g2
3
; for this group, although there is one edge connecting two members

who write the same topics, neither of them is the coordinator.

The topic-based networks of third cycle documents is analysed next. This time,

all five groups in the cycle display at least one link to group members, indicating that

students who coordinated their groups worked with other members on the same

topics. Also reflected is the fact that except in Groups c3g2 and c3g4, the group

coordinator worked with all the group members on the same topic.

All of the networks except Group 4 exhibit a strong connection (i.e. all pairs of

nodes are connected). In some groups, notably Group c3g1, all students wrote about

the same topics.

The revision history of Group c3g4 demonstrates that although there are four

students in the group, only two of them (18 and 19 as shown in Figure 8-9 and Figure

8-10) are involved collaboratively in developing the document, which had 20

revisions in total. Upon checking the revision map shown in Figure 8-10, eleven

revisions were edited by 19 and four were wrote by 18, the group coordinator; an

3 There are two groups: c5g4 and c5g5 that their assigned group coordinators have drop out from the course.

Thus, there no particular group coordinators for these groups.

162

examination of the revision maps finds that 18 and 19 were the only two students

working in Section B. They wrote 5 paragraphs together. Therefore, they have a

connection in the group coloration network. Unlike 18 and 19, 16 and 20 spent their

time writing their own paragraph in Section A and only produce 2 and 1 revisions,

respectively.

8.6.3 Qualitative Evaluation

Five students in the course participated in the experiment. Although questionnaire

shown in Table 8-4 cannot be statistically evaluated from this small number of

participants, the following summary offers some information about the students'

perceptions with regard to the usability and the accuracy of the revision maps based

on their writing tasks (See the questions in Table 8-4):

• All five students correctly answered the first four Questions (1-4), which

implies that given a revision map, students are able to glean information

regarding the parts of the document that are revised, when these events occur,

and who makes these changes, thus addressing the first research question.

• For Question 5, only one student answers correctly (i.e., by answering

"other"). This might be owing to the fact that both sequential and parallel

patterns of text edits are present for all groups of students. During a week of

work on this assignment, most students wrote their documents very much at

the same time. As a result, different parts of documents show different

patterns of text edits, both sequential and parallel.

• For Question 6, after a review of their revision maps, two students report the

same problem of group coordination -- i.e. team members were unable to

schedule a time to work collaboratively, so that students had to write

separately on different days and times – as reflected in the map. Similarly, a

third student reports that group members initially had difficulty scheduling

time to work together, but were later able to work efficiently; according to

this author, the revision map shows a corresponding delay in text production

until the end of the first week. A fourth student, from a group in which the

coordinator leaves during the second week, reports seeing the coordinator's

contribution in the beginning of the first week. Another student author reports

no problem at all in the group.

163

• Question 7 asks the students if they find the revision maps to be consistent

with their view of what actually happened during their writing processes. All

the students respond affirmatively, and describe the revision maps as showing

the information that they expected. In one instance, a student reports that one

of the team members hardly contributed to the writing and the revision map

nicely demonstrates this lack of contribution.

o Based on the answers to questions 6 and 7, students opine that the

revision maps accurately represent the events that took place during

the writing process.

• Question 8, which asks the students if they learned something from the

revision maps that they did not already know, is answered in a variety of

ways. One student expresses surprise at seeing the amount of contribution

that she made. Another student relates that the revision map motivates her to

keep reminding herself to contribute more than others. And yet another

student reports that as she wrote separately in another Google Docs, the

revision map did not show her edit history.

• Question 9 inquires if, in retrospect, the students find something that they

would have liked to do differently. Most of them agreed that they should have

started earlier and completed the summarising of reading materials in the first

week, in order to get feedback from their team members.

• Question 10 probes whether the visualisation prompts the students to do

something or plan a course of action with regard to their group’s work. Three

students answer in the affirmative, explaining that they would like to redesign

the writing schedule and assign certain times for peer feedback. Two students

say "no"; one of them explains that the reason for the negative answer is that

regardless of whatever plan was designed, most group members performed

their tasks on the weekend before the due date. The other student who

answers in the negative relates that some peers did not cooperate or work on

their tasks, but merely waited for others to help them.

o As relevant to questions 8-10, all the information here suggests that

student use of revision maps differs considerably among different

students.

164

• In question11, four students agree that they would like to have additional

information about their group’s writing process that was not represented in

the revision map, namely information about other channels of communication

such as emails and chat utilities. Interestingly, one of these four students

mentions in her answer that the revision map only depicts contributions in

terms of text edits performed on revisions, and she would like to see topic-

based contributions; on the other hand, another student's answer mentions

that the amount of data supplied by the map is quite complete.

• Question 12 solicits an evaluation of the usefulness of the revision maps (by

assessing them on a scale from 1 to 7, ranging from 1 as "strongly disagree"

to 7 as "strongly agree"). The answers fall between a minimum score of 4 and

the maximum score of 7, with an average score of 5.8. Figure 8-13 depicts the

scores of five students. In other words, most students believe that the revision

maps were quite useful for their group writing tasks.

Figure 8-13. The usefulness of revision maps - ranging from 1 as "strongly disagree" to 7 as

"strongly agree"

8.7 Summary

This thesis contributes three new types of visualisations (along with their underlying

techniques) for analysing the writing processes of jointly authored documents. The

first type, the revision map, provides a visual representation of text edits made by

students at the paragraph level over a period of time. The second type, the topic

evolution chart, displays an image that illustrates how topics unfold as the writing

progresses. The third type, the topic-based collaboration network, exhibits the

165

connections between joint authors who write about the same topics during the

process. The proposed techniques used to constructing these visualisations are

successfully validated against a synthetic dataset. In addition, this thesis presents a

case study using real documents written collaboratively by graduate students that

demonstrates the use of the new visualisations in analysing writing processes. The

case study inclusion offsets the insufficient amount of information derived from

simple statistics and limited access to the final documents by contributing a

satisfactory amount of ancillary data that sheds further light on the writing process

investigation.

166

167

CHAPTER 9

DISCUSSION, FUTURE WORK, AND

CONLCUSION

The aim of my research is to create a toolbox, consisting of a set of algorithms and

visualisations, that allows the user to better understand and/or improve a

collaborative writing process. By applying this toolbox, we can gain insight into the

development of collaborative writing as it is taking place, and this insight is then

used to give feedback to student authors and/or to education researchers and

teachers as the writing tasks are being performed as well as after the document is

finished. This toolbox includes the following:

• A method for defining types of text edits that occur; this method is based on

the theories of cognitive models of writing processes, the taxonomy of

collaborative writing activities, and model for analysing revisions.

• A method for automatically identifying writing activities; this method is

based on the text edits that occur during the writing process and other text

features such as text structure, number of words, number of sentences,

number of paragraphs, cohesion change, and topic overlaps.

168

• Methods for extracting process models of collaborative writing processes

based on text edits and writing activities.

• Methods for visualising a snapshot and creating a chart of paragraph

evolution, topic evolution, and topic-based collaboration in writing processes.

Although the techniques described in this research are based on revision histories

of Google Docs as event logs, they can be fine-tuned and applied to event logs

captured in other writing environments, such as key-stroke logging tools like

InputLog (Leijten & Van Waes, 2006) or version controlled Wiki environments like

Wikipedia (Wikipedia, 2013).

This thesis research is the first work to systematically propose the coding scheme

for types of text edits based on the models for analyzing revisions proposed by

Faigley and Witte (1981) and later extended by Boiarsky (1984). In 2010, these types

of text edits were introduced and utilised to automatically identify collaborative

writing activities (Southavilay et al., 2010). Other researchers, especially

Daxenberger and Gurevych (2012), had used similar categories of text edits in their

work to automatically classify text change operations performed on Wikipedia

articles. Because of the nature of these articles, there were many types of edits: text

based edits; Wikipedia policy, such as vandalism and reversion; and surface edits

such as those affecting mark-up segments. Nevertheless, the text-based edits in the

work of Daxenberger and Gurevych (2012) are similar to text edits used in this thesis

This chapter first validates the work in this research in other domains, then

addresses the limitations of the approach used in developing the toolbox. An

explanation of implementation then follows, and the thesis concludes with a

discussion about future work in this area.

9.1 Validation of this thesis work in other domains

The techniques described in this thesis were applied in other domains, such as in

extracting process models of students’ model-based inquiry and problem-solving

strategies. Relevantly, a description is provided here of another area of my work,

which involves applying the Hidden Markov Model (HMM) and Heuristic Miner to

discover patterns of student interaction with agent-based computational models such

NetLogo models (Wilensky, 2013).

169

The work of Thompson et al. (2011) chronicles the methodological experiences

in capturing and analysing student learning processes and patterns in three different

cases. Agent-based models built in NetLogo were used for learning in two of the

cases, and a virtual world was used in the third one. First, students interacted in real

time for relatively short periods. Second, they interacted both with each other and

with interactive software tools that dynamically shaped, and were shaped by, their

learning process. The work of (Thompson et al., 2011) builds upon and integrates

process analytic approaches of dynamically captured video, as well as computer

screen activity and automatic e-learning process analysis techniques.

The first two cases identify areas in which analysis by hand of small amounts of

data produces findings of initial interest. My contribution takes place in the third

case, and consists of using an automatic pattern discovery technique based on HMM

to extract the problem-solving behaviours of students. This work demonstrates that

process analyses such as the use of HMM allow education researchers information

that helps them to understand how students learn in computer-supported

collaborative learning (CSCL) environments and what kind of learning processes

various combinations of particular collaborative pedagogies and computer supported

learning environments can afford.

A process analysis technique described in this thesis was also applied in a design-

based research project that investigates the learning of scientific knowledge about

climate change through agent-based computational models (Kelly et al., 2012;

Markauskaite et al., 2012). This design experiment uses two NetLogo models and

problem-based learning materials developed in partnership between this project’s

researchers and a high school science teacher. In the study, three classes of science

students in year nine are divided into two groups, based upon the different levels of

structure that are provided during learning activities with the models. Unlike the

study mentioned earlier in which screen capture is used and transcribed to event logs,

in this study, sequences of student interactions with the NetLogo models are

automatically recorded in log files. Based on the sequences, I uses HMM to extract

patterns of students’ interactions with the models, as well as to identify effective and

inefficient behaviours for learning with agent-based computer models. The results

indicate that successful learners adopt deeper and more systematic model exploration

strategies than less successful learners (Markauskaite et al., 2012).

170

I has also created a multilevel data pre-processing approach to use in

combination with process mining algorithms such as Heuristic Miner (Weijters &

Ribeiro, 2010; Weijters et al., 2006) for investigating students’ model-based inquiry

strategies. A traditional approach in exploring learning processes is to use event logs

of students’ interactions with computer software as input to process mining

algorithms; however, processes of students’ interactions with computational models

tend to be very flexible, unstructured, and composed from large numbers of fine-

grained technical events captured in the logs. As a consequence, the identified

patterns from the event-sequences can be hard to interpret and may be too far

removed from the intentions of the students. For this reason, it is necessary to

employ the heuristic technique described in Chapter 6 to transform sequences of

technical events into sequences of more abstract actions and semantic activities.

These sequences of actions and activities are then used for discovering patterns of

students’ interactions with computational models. My approach automatically

segmented sequences of events and clustering them into actions, then classifies the

discovered actions into higher semantic level activities using a heuristic set. A

notion of “bag of events”, analogous to the “bag of words” concept in text mining

was used to cluster the sequences of events into actions. The pilot study demonstrates

the usefulness of multilevel abstraction for extracting and exploring the main

characteristics that relate to how learners interact with computational models. The

study shows that each abstraction level helps to identify distinct characteristics of

students’ interaction.

All the material reported above constitutes proof of the successful application of

the contributions in this thesis to other domains. Limitations of the techniques used

herein are the subject of the following section.

9.2 Limitations

9.2.1 Google Docs API Limitations

Google Document List API is used extensively in this thesis to retrieve revisions and

revision histories for documents written by groups of students in the case studies and

experiments discussed so far. It is evident, however, that certain technical

adjustments need to be made. For example, although several authors can make

171

changes to the same content at almost the same time, the new version of GD API (i.e.

Google Document List API 3.0) only gives one main author for each revision. For

this reason, it became necessary to manually record the list of authors for each

revision by using the revision history function on the web interface of Google Docs,

described in Section 5.2. Although this could be done offline, during the user study

as discussed in the previous chapter, it was not possible to produce topic-based

author collaboration networks to use as feedback for students in real time as they

were performing their writing tasks. In addition, there are several text edits

performed on each revision. The authorship information of each edit can not be

obtained automatically.

9.2.2 Coding and Heuristic Limitations

There is a limitation in the level of text edit coding. As pointed out in the first

chapter, the context of this research includes jointly authored documents

collaboratively written by groups of students in the form of several writing sessions.

Any incorrect information or claim written on the document had to be resolved

among group members by online or face-to-face discussion. Unlike the writing in the

form of Wiki, the information of what information was incorrect and when it was

corrected was not posted and/or recorded in our study and experiment for further

analysis. Therefore, the coding of text edits did not include deleting erroneous claim

posted by other group members, clarifying, providing illustration/examples, inserting

statements to denote the limitation of a given claim, etc. In addition, this research did

not examine how action sequences affected the quality (e.g. relevance, accuracy,

veracity) of the revised content/idea/claim at the sentence level. Instead, the quality

of the whole document was considered based on the assessment of its final version.

Overall, the heuristic achieves higher accuracy than the baseline, as described in

Chapter 6. Among the five types of writing activities, however, there is a problem

with detecting editing activities. This is because the heuristic only considers surface

edits as editing activities, so that other editing activities (such as grammatical

corrections) are not detected. In order to detect edit types pertaining to grammatical

corrections and spelling -- thus improving the accuracy of the heuristic -- natural

language process techniques can be employed and will be described later in the

section that outlines future work.

172

In addition, for the validation of the heuristic as described in Section 6.3, manual

tagging was performed by one rater. In future studies where activities are greater in

number and are more difficult to distinguish, this type of manual tagging should be

conducted by two human raters to see what percentage of their tags are in agreement.

If agreement is poor, validating the heuristic’s tags with the human tags is

questionable.

9.2.3 Hidden Markov Model Limitations

The algorithm for constructing the Hidden Markov Model (HMM) suffers from the

problem of local maxima. This thesis follows the work developed by Jeong et al.

(2010) and executes the algorithm one hundred times with random initialisations (by

sampling the initial parameter values from uniform distributions). All of these

executions converge to the same configuration. A better solution is needed to execute

this algorithm in real time and provide feedback to students as they write.

Each HMM also has a space complexity problem in storing all parameters (i.e. a

transition matrix, emission matrix, and initial matrices) during the training process to

construct the HMM models. The number of free parameters of an HMM can be

calculated as D + D�D − 1� + 	D�e − 1�, where M is the number of observations

(i.e. the number of text edits) and N is the number of hidden states, which is also

estimated during the training process. Because the training process has to be

executed a hundred times to estimate the parameters, including the number of hidden

states, it requires a large amount of storage space for these parameters.

The transitional state diagrams obtained from Hidden MMs are difficult to

interpret intuitively, as described by students participating in the pilot study reported

in Chapter 7. Hidden MMs do not show the necessary number of occurrences of

writing activities and states for obtaining a general statistical overview of those

activities and states. In order to depict these transitional state diagrams to students or

authors, the models must depict extra information, such as the size of states or

writing activities, which represents the number words performed in those states or

writing activities.

173

9.2.4 Heuristic Mining Limitations

Heuristic Miner (HM) can handle noisy and incomplete event logs (i.e. process

instances) and process instances (i.e. sequences of writing activities and states) of

any length. In addition, the output of Heuristic Miner – dependency diagrams or

heuristic nets -- provides not only the dependency values between activities and

states but also the number of their occurrences, along with highlighting strong

dependencies, thus making it easier to interpret and extract patterns of writing

processes, comparing to Hidden Markov Models.

The algorithm used in HM, however, suffers from limitations. As discussed in

the previous section, this research uses the default setting of the three threshold

parameters of HM -- the dependency threshold, the positive observation threshold,

and the relative to best threshold -- in order to obtain fully connected dependency

graphs that represent writing process models. Most event logs, however, consist of

many different kinds of activities, some of which occur infrequently (especially

brainstorming and outlining); and since the algorithm had to discover the causal

dependencies of all events, the discovered models included a high number of

connections with low dependency values. In addition, HM does not guarantee that

the obtained models can replay all cases in the event logs (van der Aalst, 2011),

which results in some discovered models that are typically underfitting. An

underfitting model over-generalises the items seen in the log and allows for more

behaviours, which may not occur at all in the log. For this reason, when interpreting

and comparing models, the fitness is computed (i.e. the proportion of activities in the

log that can be explained by the process model) and only dominant dependencies are

used between activities to extract emerging patterns. These identified emerging

patterns represent a portion of the large number of possible behaviours. The

technique of measuring fitness between log and model is commonly used in process

mining research (van der Aalst, 2011; Weijters & Ribeiro, 2010). Although the

fitness indicates how much of the observed behaviour in the event log is captured by

the process model, it does not indicate how much of the behaviour not observed in

the event log can be recognised by using the process model. In other words, there

should be a measure to indicate to what degree the process model permits extra

allowed behaviour.

174

9.2.5 Visualisation Limitations

Because off-the-shelf process models (representations) obtained from process mining

algorithms like Hidden MMs are intuitively difficult to interpret as discussed above,

this thesis has developed three types of writing process visualisation. Each type of

the visualisation has its own uniqueness, in which they depict different types of

information and compromise each other to provide feedback to authors in order to

better understand writing processes. They can not be used individually. Therefore,

this thesis did not compare one another and evaluate each of them against process

models like MM diagrams in order to make explicit advantages and disadvantages of

using each individual type of visualisation.

However, the user study that was conducted to provide the three visualisations to

authors during their writing tasks (described in previous chapters) suffers from

certain technical limitations. As discussed in subsection 9.2.1, the unavailability of

authorship information records affected the experiment on constructing topic-based

collaboration networks in real time. In addition, it was necessary to infer the number

of topics in order to extract topics and topic evolution charts. As explained in the

prior chapter, Diff Latent Dirichlet Allocation (Diff LDA) and Diff Author-Topic

Models (Diff ATM) use delta documents created by identifying the text edits (added

and deleted words and paragraphs) of all revisions; but in this case, the number of

topics for each document was computed at the end of the writing process by using all

revisions of the document. The two visualisations were therefore only shown to the

instructor of the course at the end of the writing.

In topic evolution charts, each topic consists of several key words. It is important

to note that each key word can belong to more than one topic, because a topic is a

mix-membership of key words; consequently, analysts who are not experts in the

writing field found it quite difficult to interpret topics during the analysis of topic

evolution charts. Open research still exists with regard to analysing the word

distribution of topics and the accurate method for comparing these distributions. It is

possible to find the similarity of two topics using certain kinds of measures such as

DS convergence; but it is not clear if this measure actually works, because a corpus

of interest may have thousands of terms, and each term has its own membership for

particular topics (contributes to topic differently).

175

For topic-based collaboration networks, the links between two nodes can be

made directional links. The connection indicates that the two authors corresponding

to the linked nodes have written about the same topics. We can identify these topics

and analyse them by using the topic evolution charts. Based on the emergence of the

topics, we can see who first created the topics, thus leading the collaboration. The

directional link is created using this information, represented as an arrow-link that

starts at the node of the initiator of the common topics and goes in the direction of

the linked authors to connect the corresponding collaborators.

9.3 Implementation of the Toolbox

WriteProc, the framework for retrieving revisions and revision histories from

Google Docs (as explained in Chapter 4) is developed in Java (1.6) using Google

Document List API (V3). The content of revisions and revision histories are stored in

a relational database. The content texts of revisions are indexed using Apache

Lucene (Lucene, 2013). A graph database, Neo4J, is used in this thesis, in which

each paragraph in a revision is represented by a node and linked to its corresponding

paragraph node in the previous revision. Each node has several attributes, including a

text edit performed on this paragraph (node), the number of words affected by the

text edit, and a relative location of this paragraph (node) on the document. Using the

graph database, text edits performed on particular paragraphs are extracted by

traversing a chain that links all revisions of the paragraphs. These sequences of edits

are then used in visualising revision maps, as delineated in previous sections of this

thesis.

All algorithms -- except Heuristic Miner, which is implemented in ProM (ProM,

2013), and topic modelling algorithms: DiffLDA and DiffATM, which are used for

extracting topic evolution charts and topic-based collaboration networks -- are

created in Java. The current DiffATM is developed by using topic model toolbox

implemented in MATLAB for this thesis; however, it can be transferred into Java

codes quite easily by using MALLET library (McCallum, 2002). Therefore, the

framework and algorithms are developed to extract process models and provide their

process representations as visualisations (i.e the three types previously explained) in

real time. The code is provided as an open source.

176

9.4 Future Work

Figure 9-1. Summary of algorithms adapted and created in the toolbox, and algorithms which

can be used for improving the toolbox in the future.
Abbreviation: Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), Diff Latent

Semantic Analysis (DiffLSA), Diff Author-Topic Model (DiffATM), Natural Language Processing

(NLP), Hidden Markov Model (HMM), Dynamic Bayesian Network (DBN), and an open source

process mining framework, (ProM).

In this thesis, in order to build a toolbox for automatically extracting process models

of writing processes and providing visualisations that illustrate aspects of

collaborative writing, several algorithms are created and adapted from two main

fields: text mining and process mining.

Figure 9-1 summarises all the algorithms in the toolbox. The oval depicts an

algorithm developed in the two main fields. The grey ovals show the algorithms used

and created in this thesis. Text mining algorithms are used extensively in the

heuristic to automatically identify writing activities. Latent Semantic Analysis (LSA)

(Landauer & Dumais, 1997; Landauer et al., 2007) is used to compute the text

cohesion of each revision and to detect cohesion changes during the writing process.

The LSA-based document clustering algorithm Lingo (Osinski & Weiss, 2005) is

used for extracting topics and calculating topic overlap. A probabilistic graphical

modelling technique like Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is also

employed. DiffLDA (Thomas, 2011; Thomas et al., 2010a) is adapted to extract

topics for topic evolution charts and Diff Author-Topic Model (DiffATM) is created

to construct topic-based collaboration networks. From the field of process mining,

two techniques are used for extracting writing process models. The first one is based

on the process mining framework ProM (ProM, 2013), like Heuristic Miner (Weijters

& Ribeiro, 2010; Weijters et al., 2006). The other one is based on Markov models,

177

like Hidden Markov Model (HMM) (Rabiner, 1989). Obviously, several techniques

exist that can be integrated into the toolbox as shown in Figure 9-1. For instance,

Dynamic Bayesian Network can be used to model collaborative writing processes

and extract patterns of collaborative writing activities. Natural Language Processing

(NLP) techniques can be used to improve the heuristic for automatically identifying

collaborative writing activities. The following subsections are concerned only with

techniques that can be used to improve the toolbox in the future.

9.4.1 Improving the Heuristic with Natural Language Processing

In this thesis, the technique used in the heuristic for automatically identifying

collaborative writing activities is based purely on text mining methods. In the future,

the technique from this thesis can incorporate those used in natural language

processing (NLP). Recently, Bronner and Monz (2012) proposed a method for

automatically distinguishing between factual and fluency edits performed on

Wikipedia articles. Factual edits alter meaning, whereas fluency edits improve style

or readability. The Bronner and Monz approach was based on supervised machine

learning using language model probabilities, string similarity measured over different

representations of user edits, comparison of part-of-speech tags and named entities,

and a set of adaptive features extracted from large amounts of unlabelled user edits.

Although their method requires a huge amount of labelled data which can be

acquired from Wikipedia, it achieves high classification accuracy. Other techniques

of NLP that may be helpful to improve the accuracy and the effectiveness of

automatically identifying writing activities include work in recognising text

entailments, identifying paraphrases, and simplifying sentences. For instance, if a

sentence in the current revision can be identified as a paraphrase of the same

sentence in the previous revision, the text edit that transforms the sentence can be

designated as a revising activity; but when applying these techniques to collaborative

writing processes, a problem arises in ensuring that the sentence in the current

revision is the same sentence in the previous revision. Nevertheless, natural language

processing technique appears a promising avenue for automatically identifying

writing activities.

The aforementioned natural language processing techniques for classifying text

edits, especially those of (Bronner & Monz, 2012), are based on several features of

178

the writing process, chosen from hundreds of possible features. In Wikipedia text

edit classification, researchers use not only text-based features, similar to those in

this work, but also other types of features such as surface, vandalism, and revert.

Surface edits consist of edits affecting mark-up segments. Vandalism edits include

edits deliberately compromising Wikipedia’s integrity and revert edits representing

edits restoring a previous stage of a page. An open research question still exists that

asks what features should be included in the classification of text edits and how the

features should be weighted. Recently, neural network technique has reappeared,

using neural networks to learn features from a set of inputs and labelled outputs.

Interestingly, Sutskever et al. (2011) uses recurrent neural networks to generate text,

character by character, given an initial set of words or phrases. Although the

technique requires a great deal of resources for computation, in the future, when

powerful computers are easily available and accessible, it will be interesting to see if

neural network technique can be incorporated to improve the automatic detection of

collaborative writing activities.

9.4.2 Improving Topic Extraction

In order to extract topics for computing topic overlap, the heuristic prefers the

document clustering algorithm Lingo to topic modelling or Latent Dirichlet

Allocation. The reason for this preference is that unlike topic modelling, which

outputs a topic as a related group of words (thus creating the interpretation difficulty

previously noted), Lingo first finds the label for topics before performing the

clustering task. In addition, Lingo uses Latent Semantic Analysis, which is also used

to compute cohesion. Therefore, both topic overlap and cohesion changes can be

computed in one operation every time a new revision is produced. Recently, Liu et

al. (2009) proposed a new technique for measuring the cohesion of classes in

software repositories, based on the analysis of latent topics embedded in comments

and identifiers in source codes. This proposed approach, named Maximal Weighted

Entropy, utilises the topic modelling technique and information entropy measures to

quantitatively evaluate the cohesion of classes in software. Interestingly, based on

this technique and the topic evolution, the topics and cohesion measure of a revision

can be extracted by applying LDA only once. The only drawback of the approach is

the time factor, as the inference of the number of topics and the topic membership

179

can take a significant amount of time to accomplish (see Subsection 9.2.5). Again, at

a point in the future when more advanced technology exists, topic modelling is likely

to be a viable method for extracting topics and cohesion because of the availability of

powerful computer resources and the improvement of inference techniques that will

speed up the computation.

9.4.3 Creating Interactive Visualisations

All the visualisation types proposed in this thesis are created as prototypes for

proof of concept. The revision map provided to students as they were engaged in

writing their documents was intended to serve the purpose of the user study (as

described in Chapter 8). Obviously, more interactive types of visualisations can be

developed as well. For example, revision maps can be created by using a Javascript

library of D3.js (Bostock, 2012). This library can manipulate documents based on

data. D3 can bring data to life using HTML, SVG and CSS. The characteristic D3

emphasis on web standards offers the full capabilities of modern browsers without

ties to a proprietary framework, combining powerful visualisation components and a

data-driven approach to DOM manipulation.

As another example, revision maps can be created to have a split-attention effect:

to understand data, the teacher or researcher can juxtapose two windows. One

window shows the map, and the other window displays the text. We can then go

back and forth between the two windows to connect data with the contents of a

paragraph. With a bit of creativity, the visualisation could be integrated into the text

itself, by playing with multiple parameters such as the colour of the text, the colour

of the background and some type of bar chart placed vertically in the margins,

making the data more useful.

9.5 Conclusion

Collaboration and particularly collaborative writing is an increasingly essential skill

needed for the workplace and for use in education. Until recently, most of the focus

of research in this area has been placed on the final writing product, rather than on

the writing process. Investigations into the development of ideas and concepts as

they unfold during the course of the collaborative process can be used to improve not

only the quality of the final documents created jointly, but more importantly, the

180

writing skills of the authors. The process of writing consists of steps of writing

activities. These steps of writing activities can be considered as sequence patterns

comprising both time events and the semantics of changes made during those steps.

In order to obtain insight into the manner in which students undertake collaborative

writing tasks, two techniques can be combined: process mining, which focuses on

extracting process-related knowledge from event logs recorded by an information

system; and semantic analysis, which focuses on extracting knowledge about what

the student wrote (or edited). This thesis presents the development of a data mining

toolbox consisting of both process mining and text mining algorithms, as well as

visualisations for extracting writing process models and analysing collaborative

writing processes.

The work of this thesis constitutes a big step toward accomplishing the automatic

extraction of process models and visualisations with the purpose of gaining a better

understanding about how students work and create their documents collaboratively.

The ultimate aim of the efforts in this research is to support the collaborative writing

process by providing these process models and visualisations as feedback to groups

of students who are working together on a document. This feedback then enables

individual students to become aware of the group’s writing activities, so that all

authors can work more efficiently and effectively. This same feedback also provides

support for teachers, allowing them to monitor groups more skilfully by supplying

them with a tool for detecting problems early in the writing process.

181

APPENDIX A EXAMPLES OF REVISION HISTORIES AND TEXT EDITS

A.1 An Example of Revision Histories

Figure A-1 shows an example of revisions histories. Each row consists of revision

ID, timestamp, and author IDs of a revision. Note that a revision may have one or

more authors associated with it, for an example, see Figure A-2. Google API (version

3.0) only provides the first author ID in a revision history record. The remaining

author IDs were manually identified by using the web-based interface of revision

history, as described in Chapter 5.

Revision ID Timestamp Author IDs

2 5/20/2012 7:24 admin

101 5/26/2012 7:44 S05

132 5/27/2012 0:43 S05

144 5/27/2012 13:11 S05;S04;

147 5/27/2012 22:31 S05;S03;

196 5/28/2012 2:56 S01;S05;

269 5/28/2012 3:45 S01

388 5/28/2012 4:57 S01

428 5/28/2012 6:30 S01;S03;

524 5/28/2012 6:45 S01

531 5/28/2012 8:39 S01;S03;

612 5/28/2012 11:39 S01;S03;

1672 5/29/2012 4:50 S01

1674 5/29/2012 7:21 S01;S05;

1675 5/29/2012 9:31 S01;S05;

1791 5/29/2012 10:29 S01;S03;

1793 5/30/2012 3:43 S02;S01;

2578 5/31/2012 4:47 S01

2637 5/31/2012 7:07 S02;S01;

2732 5/31/2012 7:45 S02

2780 5/31/2012 9:55 S01;S05;

2782 5/31/2012 10:40 S01;S05;

2806 5/31/2012 10:53 S01

2881 5/31/2012 11:08 S01;S03;

3026 5/31/2012 11:21 S01;S03;

3082 5/31/2012 11:29 S01

3094 6/3/2012 10:47 S01;S04;

3142 6/4/2012 7:01 S01;S05;

3143 6/4/2012 8:50 S01;S05;S03

3203 6/4/2012 8:58 S01;S05;

3251 6/5/2012 7:42 S01;S05;

3444 6/5/2012 11:10 S01;S05;S03

….

Figure A-1. An example of revision histories.

182

A.2 An example of Multiple Text Edits

Figure A-2 show two consecutive real revisions of a document with three text edits

performed on the left revision, resulting in the right revision.

Figure A-2. Two consecutive revisions showing three text edits.

183

APPENDIX B TEXT DIFFERENCING PROCEDURE

The text comparison utility described in Chapter 6 uses a text differencing algorithm

which is based on two levels of text edits: paragraph and word. At the paragraph

level, the algorithm detects six types of text edits: inserting (C5), deleting (C6),

moving (C2), changing (C8), merging (C3), and splitting (C4) paragraphs. At the

word level, the text differencing algorithm identifies five types of text edits: inserting

(C8.1), deleting (C8.2), moving (C8.4), replacing (C8.5), and appending (C8.3)

words.

In order to identify text edits, paragraph differencing was first performed to

detect the types of edits that transform paragraphs from old revisions to those in the

current one. This operation successfully distinguished which paragraphs had been

inserted, deleted, moved and changed. After that, word differencing was performed

on all changed paragraphs in order to detect all word edits as well as which

paragraphs have been merged and distributed. These two differencing algorithms are

explained below.

B.1 Paragraph Differencing:

The paragraph level differencing is based on Longest Common Subsequence

(LCS)(Hunt & McIlroy, 1976), a text differencing method implemented with the

standard Unix diff utility. The texts of an old and a new revision are used as input to

produce a difference statement in terms of the insertion, deletion and replacement

events. The algorithm provides a diff record of triplets (Opt, Paraold, Paranew):

• Opt is either an insertion, or deletion, or replacement.

• Paraold consists of a starting position (OStart) and an ending position (OEnd)

of original paragraphs in the old revision (if Opt is an insertion, then OEnd is

0).

• Paranew consists of a starting position (NStart) and an ending position (NEnd)

of changed paragraphs in the new revision (if Opt is a deletion, then NEnd is

0).

Figure B-1 depicts an example of the evolution of paragraphs during the

document writing process. There are 7 revisions; each revision has a diff record

associated with it. Each rectangle represents a paragraph. Each circle shows a text

184

edit. The diff utility can identify three main types of text change operations: inserting

(a), deleting (d) and changing (c) paragraphs, shown in green, blue, and red circles,

respectively. The green and blue circles are C5 and C6 text edits, which are detected

by the paragraph differencing algorithm. In order to select other types of paragraph

edits (i.e. merging and splitting paragraphs) and word edits, a word differencing

algorithm is used.

Figure B-1. An example of text edits performed on 7 revisions. A revision has a diff record

associated with it. A rectangle represents a paragraph. Each circle shows a text edit. Red and

blue edits are detected by paragraph differencing, whereas red ones are identified by a word

differencing algorithm.

However, this kind of diff record does not report text movements (C2) explicitly,

i.e. a portion of text that now located up or down from its previous location.

Paragraph movement is detected by checking whether a formerly deleted paragraph

is now included elsewhere within the new revision. A paragraph split is detected

when any replaced paragraph in the new revision is formed from one paragraph in

the old revision (i.e. OEnd is 0 and NEnd is not 0) and the words in the new

paragraph match the words of the potential original paragraph in the old revision. If

the match value is higher than a predefined threshold, the paragraph edition is

designated as a distribution; otherwise, it is considered to be replacement and

insertion of new paragraphs. Similarly, paragraph merges between old and new

revisions are discovered when replaced paragraphs in the new version are formed

from several paragraphs in the old one (i.e. OEnd is not 0 and NEnd is 0) and the

words in the new revision match with those of the potential original paragraphs in the

old revision. The matching mechanism is performed by the word level differencing

algorithm described below. For all other reported replacements, word level

differencing is performed by comparing the text of each replaced paragraph in the

185

new revision to the text of its corresponding original paragraph in the old revision, as

described next.

B.2 Word Differencing:

Word differencing uses Myers’ algorithm (Myers, 1986), which inputs two blocks of

plain text-- old and new paragraphs -- and efficiently compares them to disclose

words that are equal, inserted, and deleted. Word differencing was specifically

created to produce a word diff list consisting of a sequence of words that are equal to,

inserted to, and deleted from the existing paragraphs. Figure B-2 depicts one

example of word edits performed on an existing paragraph and the corresponding

word diff list.

Figure B-2. An example of word edits performed on an existing paragraph.

Myer’s algorithm was used in this thesis for word differencing to identify text

edits at the word level within replaced paragraphs (i.e. changing existing

paragraphs), and computing word matching rates to detect whether paragraphs are

merged or split. The matching rate is inspired by the matching rate proposed by

(Fong & Biuk-Aghai, 2010).

If the following is denoted:

loi as the number of words in the i
th

 paragraph of the old version,

lnj as the number of words in the j
th

 paragraph of the new version,

lci,,j as the number of common words between the above two paragraphs,

mi,j as the word matching rate between the above two paragraphs,

then the matching rate can be computed by the formula below:

mi,j=)	×	fg^,hfi^/	f� 2

loi, and lnj are easily obtained. Mayer’s algorithm is used to compute lci,j. Since

the number of common words will never exceed the two numbers of words in both

186

paragraphs, the upper boundary of the matching rate is 100%, which occurs when

two paragraphs are identical. The lower boundary is 0%, which occurs when two

paragraphs have no common words.

Using the above formula, text distribution and consolidation can be achieved by

comparing the matching rate to a certain threshold. In order to detect text distribution

of the i
th

 paragraph in the old revision to the paragraphs from the j
th

to the j+k
th

 of the

new revision, the following computation applies:

N�,2	.i	2/	 =	
2	 × 	�XO�,2 +	XO�,2/� +	…+	 XO�,2/	�	
X?� +	XL2 +	XL2/� +	…+	XL2/	

If mi,j to j+k> 40%, as the same threshold used in Fong and Biuk-Aghai (Fong &

Biuk-Aghai, 2010), the utility detects the existence of a text distribution of the i
th

paragraph in the old revision to the paragraphs from j
th

 to j+k
th

 of the new revision.

Otherwise, the utility infers a replacement of the i
th

 paragraph in the old revision to

become the j
th

 in the new revision and an insertion of j+1
th

 to j+k
th

 paragraphs into

the new revision.

Similar computation and comparison are performed for detecting the

consolidation of paragraphs from the i
th

 to the i+k
th

 of the old revision to the j
th

paragraph of the new revision. The matching rate for this case can be calculated by:

N�	.i	�/	,2 =
2	 × �XO�,2 +	 XO�/�,2 +	…+	 XO�/	,2�
X?� +	X?�/� +	…+	X?�/	 +	 XL2

If mi to i+k,j> 40%, as the same threshold used in Fong and Biuk-Aghai (Fong &

Biuk-Aghai, 2010), an existing text consolidation of paragraphs from the i
th

 to the

i+k
th

 of the old revision to the j
th

 paragraph of the new revision is detected;

otherwise, a process of replacement of the i
th

 to the i+k
th

 paragraphs (i.e. deletion of

those paragraphs and insertion of the j
th

 paragraph) is inferred.

To detect the word edits performed on existing paragraphs, the text comparison

utility first counts the number of inserted, deleted, and equal words between the old

and new paragraphs and then checks the positions of those words using the word diff

lists (Figure B-2 shows word edits and the corresponding word diff list). For

instance, if the new paragraphs reflect words added to previously equal paragraphs,

the text edit is identified as “appending words”. If the new paragraphs consists of

previously equal paragraphs to which some words were inserted followed by equal

words toward the end, the text edit is identified as “inserting words”. If some words

187

in the old paragraphs were deleted and those same words inserted in the new

paragraphs at different locations, the text edit is identified as “moving words”.

188

APPENDIX C DEPENDENCY DIAGRAMS

Figure C-1. Process models, as depend

two students. The final marks (out of 100) of individual groups are shown in parenthesis. The

fitness of each model is the decimal number below the group number.

Group 01(64)

0.8833

Group 02 (54)

Group 05 (58)

0.87

Group 06 (65)

Group 09 (61)

0.8468

Group 10 (38)

189

DEPENDENCY DIAGRAMS OF DATASET A

. Process models, as dependency diagrams of documents written by 26 groups of

two students. The final marks (out of 100) of individual groups are shown in parenthesis. The

fitness of each model is the decimal number below the group number.

Group 02 (54)

0.764

Group 03 (91)

77.20

Group 04 (68)

0.9

Group 06 (65)

0.8

Group 07 (91)

0.78

Group 08 (63)

0.925

Group 10 (38)

0.93288

Group 11 (75)

0.7778

Group 12 (68)

0.7805

OF DATASET A

s of documents written by 26 groups of

two students. The final marks (out of 100) of individual groups are shown in parenthesis. The

Group 04 (68)

0.9

Group 08 (63)

0.925

Group 12 (68)

0.7805

Group 13 (68)

0.806

G

Group 17 (68)

0.88

Group 18 (78)

Group 21 (61)

0.7383

Group22 (76)

Group 25 (68)

0.7087

Group 26 (65)

190

Group 14 (56)

0.7113

Group 15 (39)

0.878

Group 16 (85)

0.642

Group 18 (78)

0.814

Group 19 (74)

0.8073

Group 20 (65)

0.9032

Group22 (76)

0.9909

Group 23 (90)

0.7596

Group 24 (45)

0.7963

Group 26 (65)

0.875

Group 16 (85)

0.642

Group 20 (65)

0.9032

Group 24 (45)

0.7963

APPENDIX D FOUR

191

APPENDIX D FOUR REVISION MAPS OF A PROTOTYPE EXPERIMENT

Figure D-1. Revision Map of Group c3g1.

ROTOTYPE EXPERIMENT

Figure D

192

Figure D-2. Revision Map of Group c3g2.

Figure D

193

Figure D-3. Revision Map of Group c3g3.

Figure D

194

Figure D-4. Revision Map of Group c3g5.

195

APPENDIX E A SURVEY FOR REVISION MAPS

This appendix shows an example of the revision maps that were provided to students

for use during their collaborative writing assignment, and the survey questions given

to the students at the end of the assignment, as part of the case study incorporated in

this thesis using real documents jointly-created over real time to evaluate the

usefulness of revision maps with regard to writing tasks.

E.1 An Example of Revision Maps:

This visualisation represents the changes in a document written by a group of

students over a period of six days (from 04 to 09/05/2011).

In this example, the text changes of four paragraphs (P1, P2, P3 and P4, as indicated

in the revision map) are described as follows: The first paragraph of Section A (P1)

is added on 04/05/2011 22:29 with a large number of words; this paragraph is not

edited until 06/05/2011 16:48, when more words are deleted than added to it. Toward

196

the end of the week (on 08/05/2011 21:46), P1 is modified again when more words

are added.

The first paragraph of Section B (P2) is inserted on 05/05/2011 13:57. After that, it is

never modified at all and is then suddenly deleted from the document on 09/05/2011

02:38. A new paragraph (P3) is inserted after the removal of P2.

A paragraph can also be split and merged. For example, P4 is inserted on 05/05/2011

13:57, then changed when a few are words added on 06/05/2011 16:48; after that, it

is split into two paragraphs on 09/05/2011 02:38.

E.2 Survey questions for revision maps

Your name:

Email address:

Date of completing this survey:

REVISION MAP

How to read the visualisation:

This visualisation represents the changes in your group’s document over the past 9

days (from 01 to 09/03/2012).

Each small rectangle depicts a paragraph of your document. Each column refers to a

revision of your document. Each row shows the evolution of an individual paragraph

over time, as it is created, altered, or deleted during the writing process.

These rectangles are colour-coded to depict the nature and the extent of the changes

made to the paragraph: green means more words were added than deleted; red means

more words were deleted than added; and white represents no change in the

paragraph. The intensity of these colours approximately denotes the extent of those

changes. If there are as many added words as deleted ones, the rectangle is colour is

very light green.

Lastly, the horizontal bar under the author ID row shows the aggregated changes of

individual revisions; and the last vertical column represents the aggregated changes

of individual paragraphs across all revisions during the 9 days.

Based on this visualisation, please answer the following questions.

197

1. According to this visualisation, which part (i.e. Section A, Section B, or Section

C) of your document:

- has been changed a lot?

- has been changed only a little?

- has not changed at all?

2. According to this visualisation, when (at what dates) were a lot of words:

- added to the document? and in which part (i.e. Section A, Section B, or

Section C) of your document?

- deleted from the document? and in which part (i.e. Section A, Section B, or

Section C) of your document?

3. According to this visualisation, who (which author(s): a1, a2, a3, or a4, or all

authors contributing equally) made:

- the most changes to the document?

- the least changes to the document?

4. According to this visualisation, how many authors worked on:

a) Part A:

b) Part B:

c) Part C:

5. According to this visualisation, do the following patterns of text changes apply to

your group’s writing?

a) Sequential: single paragraphs were written at different writing sessions or

days.

NO YES , for Part(s) …

b) Parallel: many paragraphs were written almost in parallel, i.e. at the same

writing session or day.

NO YES , for Part(s) …

c) Other: (please describe)

6. What does this visualisation tell you about how your group wrote the document?

Please explain and discuss problems that your group encountered during writing.

198

7. Is this visualisation consistent with what you think actually happened during your

writing?

- Please describe:

8. From the visualisation, do you learn something that you did not know before?

- Please discuss:

9. From the visualisation, would you do something differently in retrospect?

10. Does this visualisation prompt you to do something, or plan an action,

regarding your group’s writing?

YES NO

Please comment:

11. Is there other information about your group’s writing process that you would like

to get that is not represented in this visualisation?

YES NO

Please comment:

12. Would you find it useful to be provided with this kind of visualisation for your

next group writing assignment? [on a scale from 1 (strongly disagree) to 7 (strongly

agree)].

Please comment:

199

BIBLIOGRAPHY

Alpaydin, E. (2010). Introduction to Machine Learning: The MIT Press.

Andrews, N. O., & Fox, E. A. (2007). Recent Developments in Document Clustering.

Computer Science, Virginia Tech.

Bereiter, C., & Scardamalia, M. (1987). The Psychology of Written Composition:

Mahwah, NJ: Lawrence Erlbaum Plublishers.

Bilmes, J. A. (2006). What HMMs Can Do. IEICE Transactions on Information and

Systems., E89-D(3), 869-891.

Blei, D. M., & Lafferty, J. D. (2009). Topic models Text Mining: Theory and

Applications. London: Taylor and Francis.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal

of Machine Learning Research, 3, 993-1022. doi: 10.1162/jmlr.2003.3.4-

5.993

Boiarsky, C. (1984). Model for Analyzing Revision. Journal of Advanced

Composition, 5, 65-78.

Bostock, M. (2012). D3.js: Data-Driven Documents.

Bozkaya, M., Gabriel, J., & van der Werf, J. M. (2009). Process Diagnostics: A

Method based on Process Mining. Paper presented at the International

Conference on Information, Process, and Knowledge Management.

Broniatowski, D. A., & Christopher, L. M. (2012). Studying Group Behaviours: A

Tutorial on Text and Network Analysis Methods. IEEE Signal Processing

Magazine, 22-32.

Bronner, A., & Monz, C. (2012). User Edits Classification Using Document Revision

Histories. Paper presented at the the 13th Conference of the European

Chapter of the Association for Computational Linguistics.

Buffet, S., & Geng, L. (2010). Using Classification Methods to Label Tasks in

Process Mining. Software Process: Improvement and Practice, 22(6-7), 497-

517

Calvo, R. A., O’Rourke, S. T., Jones, J., Yacef, K., & Reimann, P. (2011).

Collaborative writing support tools on the cloud. IEEE Transactions on

Learning Technologies, 4(1), 88-97.

Caporossi, G., & Leblay, C. (2011). Online Writing Data Representation : A Graph

Theory Approach. Search, 80-89.

Carlson, P. A., & Berry, F. C. (2008). Using Computer-Mediated Peer Review in an

Engineering Design Course. IEEE Transactions on Professional

Communication, 51(3), 264-279.

Cho, K., & Schunn, C. D. (2007). Scaffolded writing and rewriting in the discipline:

A web-based reciprocal peer review system. Computers & Education, 48(3),

409-426.

Crossley, S. A., & Mcnamara, D. S. (2007). Cohesion , Coherence , and Expert

Evaluations of Writing Proficiency. Corpus, 984-989.

Daxenberger, J., & Gurevych, I. (2012). A Corpus-Based Study of Edit Categories in

Featured and Non-Featured Wikipedia Articles the 24th International

Conference on Computational Linguistics (COLING 2012).

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R.

(1990). Indexing by latent semantic analysis. Journal of The American

Society for Information Science, 41(6), 391-407.

200

Dong, Z. (2002). Towards Web Information Clustering. Doctoral Dissertation,

Southeast University.

Dumais, S. T. (1991). Improving the retrieval of information from external sources.

Behavior Research Methods, 23(2), 229-236.

Ede, L. S., & Lunsford, A. A. (1992). Singular Text/Plural Authors: Perspectives on

Collaborative Writing: Southern Illinois University Press.

Erickson, T., Smith, D. N., Kellogg, W. A., Laff, M., Richards, J. T., & Bradner, E.

(1999). Socially Translucent Systems: Social Proxies, Persistent

Conversation, and the Design of "Babble''. Paper presented at the the

SIGCHI conference on Human factors in computing systems.

EtherPad. (2013). http://etherpad.org.

Faigley, L., & Witte, S. (1981). Analyzing Revision. College Composition and

Communication, 32(4), 400-414.

Fellbaum, C. (2005). WordNet and wordnets. In Keith et al. (Ed.), Encyclopedia of

Language and Linguistics (pp. 665-670). Oxford: Elsevier.

Ferschke, O., Daxenberger, J., & Gurevych, I. (2013). A Survey of NLP Methods

and Resources for Analyzing the Collaborative Writing Process in Wikipedia,

The People’s Web Meets NLP: Collaboratively Constructed Language

Resources, p. (to appear).

Flower, L., & Hayes, J. (1981). A Cognitive Process Theory of Writing. College

Composition and Communication, 32(4), 365-387.

Fong, P. K., & Biuk-Aghai, R. P. (2010). What Did They Do? Deriving High-Level

Edit Histories in Wikis. Paper presented at the the 6th International

Symposium on Wikis and Open Collaboration, Gdansk, Poland.

Galbraith, D. (1999). Writing as a knowledge-constituting process. In M. Torrance &

D. Galbraith (Eds.), Knowing What to Write (pp. 139-160). Amsterdam:

Amsterdam Unversity Press.

Galbraith, D. (2009). Writing about what we know: Generating ideas in writing. In

R. Beard, D. Myhill, J. Riley & M. Nystrand (Eds.), The SAGE Handbook of

Writing Development (pp. 48-64): SAGE Publications.

Goldberg, A., Russell, M., & Cook, A. (2003). The effect of computers on student

writing: A meta-analysis of studies from 1992 to 2002. Journal of

Technology, Learning, and Assessment, 2.

Google Docs. (2013). http://docs.google.com,

Google Docs White Paper. (2010a). What’s different about the new Google Docs.

Retrieved from http://googledocs.blogspot.com.au/2010/09/whats-different-

about-new-google-docs_23.html

Google Docs White Paper. (2010b). What’s different about the new Google Docs (1).

Retrieved from http://googledocs.blogspot.com.au/2010/09/whats-different-

about-new-google-docs.html

Google Docs White Paper. (2010c). What’s different about the new Google Docs (2).

Retrieved from http://googledocs.blogspot.com.au/2010/09/whats-different-

about-new-google-docs_22.html

Google Documents List API. (2012). Version 3.0.

https://developers.google.com/google-apps/documents-list/.

Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z. (2004). Coh-Metrix:

Analysis of text on cohesion and language. Behavior Research Methods

Instruments and Computers, 36, 193-202.

201

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the

National Academy of Sciences of the United States of America, 101 Suppl

5228-5235. doi: 10.1073/pnas.0307752101

Gunther, C. W. (2009). XES Standard Definition, http://www.xes-standard.org/

Haley, D. T., Thomas, P., Roeck, A. D., & Petre, M. (2005). A research taxonomy

for latent semantic analysis-based educational applications. Technical

Report. Department of Computing, Faculty of Mathematics and Computing,

The Open University.

Hall, D., Jurafsky, D., & Manning, C. (2008). Studying the History of Ideas Using

Topic Models. Paper presented at the the Conference on Empirical Methods

in Natural Language Processing.

Han, J., Wang, C., & Jiang, D. (2011). Probabilistic Quality Assessment Based on

Article's Revision History. Paper presented at the the 22nd International

Conference Database and Expert Systems Applications, Toulouse, France.

Hasan Dalip, D., André Gon\ccalves, M., Cristo, M., & Calado, P. a. (2009).

Automatic quality assessment of content created collaboratively by web

communities: a case study of wikipedia. Paper presented at the the 9th

ACM/IEEE-CS joint conference on Digital libraries, Austin, TX, USA.

Hayes, J. R., & Flower, L. S. (1980). Identifying the organization of writing process.

In L. W. Gregg & E. R. Steinberg (Eds.), Cognitive Process in Writing (pp. 3-

30). Hillsdale, NJ: Lawrence Erbaum Associates.

Heeter, P., & Jeong, A. (2012). The sequential analysis of individual versus

collaborative writing processes in Wikis. Paper presented at the the 2012

American Educational Research Association conference, Vancouver, B.C.

Hindle, A., Godfrey, M. W., & Holt, R. C. (2009). What's hot and what's not:

Windowed devloper topic analysis. Paper presented at the The 25th

International Conference on Software Maintenance.

Hunt, J. W., & McIlroy, M. D. (1976). An Algorithm for Differential File

Comparison. Computing Science Technical Report. Bell Laboratories 41.

Jeong, H., & Biswas, G. (2008). Mining Student Behavior Models in Learning-by-

Teaching Environments. Paper presented at the Educational Data Mining

2008: 1 st International Conference on Educational Data Mining, Proceedings.

Jeong, H., Biswas, G., Johnson, J., & Howard, L. (2010). Analysis of Productive

Learning Behaviors in a Structured Inquiry Cycle Using Hidden Markov

Models. Paper presented at the International Conference on Educational Data

Mining, Pittsburgh, PA, USA.

Juang, B.-H., & Rabiner, L. R. (1990). The segmental K-means algorithm for

estimating parameters of hidden Markov models. IEEE Transactions on

Acoustics, Speech, and Signal Processing, 38, 1639-1641. doi:

10.1109/29.60082

Kay, J., Maisonneuve, N., Yacef, K., & Reimann, P. (2006). The big five and

visualisations of team work activity. Paper presented at the the 8th

International ConferenceIntelligent Tutoring Systems.

Kay, J., Maisonneuve, N., Yacef, K., & Zaïane, O. (2006). Mining patterns of events

in students’ teamwork data. Paper presented at the Educational Data Mining

Workshop, held in conjunction with Intelligent Tutoring Systems (ITS).

Kelly, N., Jacobson, M., Markauskaite, L., & Southavilay, V. (2012). Agent-Based

Computer Models for Learning About Climate Change and Process Analysis

Techniques. Paper presented at the 10th International Conference of the

Learning Sciences, Sydney, Australia.

202

Kim, S., & Lebanon, G. (2010). Local Space-Time Smoothing for Version Controlled

Documents. Paper presented at the the 23rd International Conference on

Computational Linguistics, Beijing, China.

Kushmerick, N., & Lau, T. A. (2006). Automaticed Email Activity Management: An

Unsupervised Learning Approach. Paper presented at the the 2005

International Conference on Intelligent User Interfaces, San Diego,

California.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's problem: the latent

semantic analysis theory of the acquisition, induction, and representation of

knowledge. Psychological Review, 104, 211-240.

Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An Introduction to Latent

Semantic Analysis. Discourse Processes(25), 259-284.

Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.). (2007). LSA: A

road to meaning. Mahwah, NJ: Lawrence Erlbaum Association.

Leijten, M., & Van Waes, L. (2006). Inputlog: New Perspectives on the Logging of

On-Line Writing Processes in a Windows Environment. In G. Rijlaarsdam,

K. P. H. Sullivan & E. Lindgren (Eds.), Studies in Writing (pp. 73-93):

Elsevier.

Li, C., & Biswas, G. (2002). A bayesian approach for learning hidden markov

models from data. Special issue on Markov Chain and Hidden Markov

Models, Scientific Programming, 10, 201-219.

Linstead, E., Lopes, C., & Baldi, P. (2008). An application of latent Dirichlet

allocation to analyzing software. Paper presented at the Proceeding of the 7th

International Conference on Machine Learning and Application.

Liu, M., & Calvo, R. A. (2011). Question Taxonomy and Implications for Automatic

Question Generation. Paper presented at the Artificial Intelligence in

Education, Auckland, New Zealand.

Liu, Y., Poshyvanyk, D., Ferenc, R., Gyimothy, T., & Chrisochoides, N. (2009).

Modeling class cohesion as mixtures of latent topics. Paper presented at the

IEEE International Conference on Software Maintenance.

Lowry, P. B., Curtis, A., & Lowry, M. R. (2003). Building a Taxonomy and

Nomenclature of Collaborative Writing to Improve Interdisciplinary Research

and Practice. Journal of Business Communication, 41, 66-99.

Lowry, P. B., & Nunamaker, J. F. (2003). Using Internet-based, distributed

collaborative writing tools to improve coordination and group awareness in

writing teams. Professional Communication, IEEE Transactions on, 46, 277-

297.

Lucene. (2013). Apache Lucene, http://lucene.apache.org

Macedo, A. L., Reategui, E., Lorenzatti, A., & Behar, P. (2009). Using Text-Mining

to Support the Evaluation of Texts Produced Collaboratively. Paper presented

at the Education and Technology for a Better World.

Markauskaite, L., Jacobson, M., Southavilay, V., & Kelly, N. (2012, April). Using

Process Analysis Techniques to Understand Students’ Learning Strategies

with Computer Models. Paper presented at the American Educational

Research Association (AERA) Annual Meeting, Vancouver, Canada.

Markov, Z., & Larose, D. T. (2007). Data Mining the Web: Uncovering Patterns in

Web Content, Structure, and Usage: Wiley.

McCallum, A. K. (2002). MALLET: A Machine Learning for Language Toolkit,

http://mallet.cs.umass.edu

203

McNamara, D., Louwerse, M., McCarthy, P., & Graesser, A. (2010). Coh-Metrix:

Capturing Linguistic Features of Cohesion. Discourse Processes, 47, 292-

330. doi: 10.1080/01638530902959943

McNamara, D. S., Crossley, S. a., & McCarthy, P. M. (2009). Linguistic Features of

Writing Quality. Written Communication, 27, 57-86. doi:

10.1177/0741088309351547

McNamara, D. S., Kintsch, E., Butler-Songer, N., & Kintsch, W. (1996). Are good

texts always better? Interactions of text coherence, background knowledge,

and levels of underdanstanding in learning from text. Cognition and

Instruction, 14, 1-43.

Medeiros, A. K. A. D., Weijters, A. J. M. M., & van der Aalst, W. M. P. (2007).

Genetic process mining: an experimental evaluation. Data Mining and

Knowledge Discovery, 14(2), 245-304.

Mei, Q., & Zhai, C. X. (2005). Discovering evolutionary them patterns from text: an

exploration of temporal text mining. Paper presented at the The 11th

International Conference on Knowledge Discovery in Data Mining.

Myers, E. (1986). O(ND) Difference Algorithm and Its Variations. Algorithmica,

1(2), 251–266.

Novak, J. D., & Gowin, D. B. (1984). Learning How To Learn. Cambridge:

Cambridge University Press.

O'Reilly, T., & McNamara, D. S. (2007). Reversing the reverse cohesion effect:

Good texts can be better for strategic, high-knowledge readers. Discourse

Processes, 43, 121-152.

O'Rourke, S., Calvo, R. A., & McNamara, D. (2011). Visualizing Topic Flow in

Students’ Essays. Journal of Educational Technology and Society, 14(3), 4-

15.

Olson, D. L., & Delen, D. (2008). Advanced Data Mining Technique: Springer.

Osinski, S., Stefanowski, J., & Weiss, D. (2004). Lingo: Search Results Clustering

Algorithm Based on Singular Value Decomposition. Paper presented at the

Advances in Soft Computing, Intelligent Information Processing and Web

Mining, Proceedings of the International IIS: IIPWM´04 Conference,

Zakopane, Poland.

Osinski, S., & Weiss, D. (2004). Conceptual Clustering Using Lingo Algorithm :

Evaluation on Open Directory Project Data. Paper presented at the Advances

in Soft Computing, Intelligent Information Processing and Web Mining,

Proceedings of the International IIS: IIPWM´04 Conference, Zakopane,

Poland.

Osinski, S., & Weiss, D. (2005). A Concept-Driven Algorithm for Clustering Search

Results. IEEE Intelligent Systems, 20, 48-54.

Ozuru, Y., Briner, S., Best, R., & McNamara, D. (2010). Contributions of Self-

Explanation to Comprehension of High- and Low-Cohesion Texts. Discourse

Processes, 47, 641-667. doi: 10.1080/01638531003628809

Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-

fostering and comprehension-monitoring activities. Cognition and

Instruction, 1(2), 117-175.

Pechenizkiy, M., Trcka, N., Vasilyeva, E., Aalst, W. M. P. v. d., & Bra, P. D. (2009).

Process Mining Online Assessment Data. Paper presented at the the Second

International Conference on Educational Data Mining, Cordoba, Spain.

204

Pechenizkiy, M., Trcka, N., Vasilyeva, E., Aalst, W. M. P. v. d., & De Bra, P.

(2009). Process Mining Online Assessment Data. Paper presented at the

Educational Data Mining.

Perrin, D., & Wildi, M. (2010). Statistical modeling of writing processes. In C.

Bazerman, R. Krut, K. Lunsford, S. McLeod, S. Null, P. Rogers & A.

Stansell (Eds.), Traditions of Writing Research (pp. 378-393): Routledge.

ProM. (2010). Version 5.2, http://prom.win.tue.nl/tools/prom/,

ProM. (2013). Version 6.2, http://www.promtools.org/prom6/,

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77, 257-286. doi:

10.1109/5.18626

Romero, A. C., & Ventura, S. (Eds.). (2006). Data mining in e-learning.

Southampton: WITpress.

Rosen-Zvi, M., Chemudugunta, C., Griffiths, T., Smyth, P., & Steyvers, M. (2010).

Learning author-topic models from text corpora. ACM Transactions on

Information Systems, 28, 1-38. doi: 10.1145/1658377.1658381

Rosen-zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2003, July 7-11). The

Author-Topic Model for Authors and Documents. Paper presented at the the

20th Conference on Uncertainty in Artificial Intelligence, Banff, Canada.

Rozinat, A., de Jong, I. S. M., Gunther, C. W., & van der Aalst, W. M. P. (2007).

Process Mining of Test Processes: A Case Study. BETA Working Paper

Series, WP 220. Eindhoven University of Technology. Eindhoven.

Salton, G., & McGill, M. (1983). Introduction to Modern Information Retrieval:

McGraw-Hill.

Scardamalia, M., & Bereiter, C. (1996). Engaging Students in a Knowledge Society.

Educational Leadership, 54(3).

Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics,

6(2), 461-464.

Shermis, M. D., & Burstein, J. (2003). Automated Essay Scoring: A Cross-

disciplinary Perspective (Vol. 16): MIT Press.

Song, M., & van der Aalst, W. M. P. (2007). Supporting Process Mining by Showing

Events at a Glance. Paper presented at the the Seventh Annual Workshop on

Information Technologies and Systems.

Song, M., & van der Aalst, W. M. P. (2008). Towards comprehensive support for

organizational mining. Decision Support Systems, 46(1), 300-317.

Southavilay, V., Yacef, K., & Calvo, R. A. (2009). WriteProc: A Framework for

Exploring Collaborative Writing Processes. Paper presented at the

Australasian Document Computing Symposium, Sydney, Australia.

Southavilay, V., Yacef, K., & Calvo, R. A. (2010). Process Mining to Support

Students' Collaborative Writing. Paper presented at the the third International

Conference on Educational Data Mining, Pittsburgh, PA, USA.

Southavilay, V., Yacef, K., & Calvo, R. A. (2010b). Analysis of Collaborative

Writing Processes Using Hidden Markov Models and Semantic Heuristics.

Paper presented at the Proceedings of the third International Workshop on

Semantic Aspect of Data Mining, Sydney, Australia.

Steinbach, M., Karypis, G., & Kumar, V. (2000). A Comparison of Document

Clustering Techniques. Paper presented at the Proceedings of the

International KDD Workshop on Text Mining 2000.

205

Sutskever, I., Martens, J., & Hinton, G. (2011, June). Generating Text with Recurrent

Neural Networks Paper presented at the the 28th International Conference on

Machine Learning (ICML-11), Bellevue, Washington, USA.

Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet

Processes. Journal of the American Statistical Association, 10, 1566-1581.

Thomas, C., & Sheth, A. P. (2007). Semantic Convergence of Wikipedia Articles

Web Intelligence (pp. 600-606).

Thomas, S. W. (2011, May 21-28). Mining Software Repositories Using Topic

Models. Paper presented at the the 33rd International Conference on Software

Engineering, Waikiki, Honolulu, HI, USA.

Thomas, S. W., Adams, B., Hassan, A. E., & Blostein, D. (2010a). DiffLDA : Topic

Evolution in Software Projects. Technical Report 2010-574. School of

Computting, Queen's University.

Thomas, S. W., Adams, B., Hassan, A. E., & Blostein, D. (2010b). Validating the

Use of Topic Models for Software Evolution. Paper presented at the EEE

International Working Conference on Source Code Analysis and

Manipulation (SCAM), imisoara, Romania.

Thomas, S. W., Adams, B., Hassan, A. E., & Blostein, D. (2011, May 21-28).

Modeling the Evolution of Topics in Source Code Histories. Paper presented

at the the 8th IEEE working conf on mining software repositories, Honolulu,

HI, USA.

Thompson, K., Kennedy-Clark, S., Markauskaite, L., & Southavilay, V. (2011).

Capturing and analysing the processes and patterns of learning in

collaborative learning environments. Paper presented at the The Ninth

International Conference on Computer-Supported Collaborative Learning,

Hong Kong, July.

Tillema, M., Bergh, H., Rijlaarsdam, G., & Sanders, T. (2011). Relating self reports

of writing behaviour and online task execution using a temporal model.

Metacognition and Learning. doi: 10.1007/s11409-011-9072-x

Toolbox, T. M. (2012). http://psiexp.ss.uci.edu/research/programs_data/toolbox.htm,

Trčka, N., Pechenizkiy, M., & van der Aalst, W. (2010). Process Mining from

Educational Data. In C. Romero, S. Ventura, M. Pechenizkiy & R. S. J. d.

Baker (Eds.), Handbook of Educational Data Mining. Boca Raton: CRC

Press.

Upton, K., & Kay, J. (2009). Narcissus: interactive activity mirror for small groups.

Paper presented at the User Modeling, Adaptation and Personalisation,

Trento, Italy.

van der Aalst, W. M. P. (2011). Process Mining: Discovery, Conformance and

Enhancement of Business Processes: Springer.

van der Aalst, W. M. P., Weijters, A. J. M. M., & Maruster, L. (2004). Workflow

Mining: Discovering Process Models From Event Logs. IEEE Transaction on

Knowledge and Data Engineering, 16(9), 1128-1142.

Varelas, G., Voutsakis, E., & Raftopoulou, P. (2005). Semantic Similarity Methods in

Wordnet and Their Application to Information Retrieval on the Web. Paper

presented at the ACM International Workshop on Web Information and Data

Management.

Villalon, J., & Calvo, R. A. (2009). Single Document Semantic Spaces. Paper

presented at the The Australasian Data Mining conference.

206

Villalon, J., & Calvo, R. A. (2011). Concept maps as cognitive visualizations of

writing assignments. Journal of Educational Technology and Society, 14(3),

16-27.

Villalón, J. J., Kearney, P., Calvo, R. A., & Reimann, P. (2008). Glosser: Enhanced

Feedback for Student Writing Tasks. Paper presented at the International

Conference on Advanced Learning Technologies, Sydney, Australia.

Viterbi, A. (2006). Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE Trans. Inf. Theor., 13(2), 260-269.

Wallach, H. M. (2008). Structured Topic Models for Language. Doctoral

Dissertation, University of Cambridge.

Weijters, A. J. M. M., & Ribeiro, J. T. S. (2010). Flexible Heuristics Miner (FHM).

BETA Working Paper Series, WP 334. Eindhoven University of Technology.

Eindhoven.

Weijters, A. J. M. M., & van der Aalst, W. M. P. (2003). Rediscovering workflow

models from event-based data using little thumb. Integrated Computer-Aided

Engineering., 10(2), 151-162.

Weijters, A. J. M. M., van der Aalst, W. M. P., & Medeiros, A. K. A. D. (2006).

Process Mining with the HeuristicsMiner Algorithm. Technology, 166(WP

166), 1-34.

Weston, J. L., Crossley, S. A., McCarthy, P. M., & McNamara, D. S. (2011).

Number of Words versus Number of Ideas: Finding a Better Predictor of

Writing Quality. Paper presented at the Twenty-Fourth International FLAIRS

Conference.

Wikipedia. (2013). http://www.wikipedia.org,

Wilensky, U. (2013). NetLogo. Evanston, IL: Center for Connected Learning and

Computer-Based Modeling. Northwestern University,

http://ccl.northwestern.edu/netlogo/

Xiaoli, F., Chaitanya, K., Valentina, G., & Margaret, B. (2010). Mining problem-

solving strategies from HCI data. ACM Transactions on Computer-Human

Interaction, 17(1), 1-22. doi: http://doi.acm.org/10.1145/1721831.1721834

Yih, W., & Meek, C. (2007). Improving Similarity Measures for Short Segments of

Text. Paper presented at the The 22nd National Conference on Artificial

Intelligence.

Zeng, H., Alhossaini, M. A., Ding, L., Fikes, R., & McGuinness, D. L. (2006).

Computing trust from revision history. Paper presented at the the 2006

International Conference on Privacy, Security and Trust: Bridge the Gap

Between PST Technologies and Business Services, Markham, Ontario,

Canada.

	Copyright_Statement
	southavilay_v_thesis.pdf

