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ABSTRACT 

Introduction 

Vigilance in obstructive sleep apnoea (OSA) does not correlate well with measures of 

severity of the disease or symptoms. There is a need for a simple objective test to 

identify patients with reduced vigilance. One such method could be quantitative 

analysis of the awake electroencephalogram (qEEG). 

qEEG is conventionally analysed using Power Spectral Analysis (PSA) looking at 

different EEG frequencies of delta, theta, alpha and beta. A novel method of analysing 

the qEEG: De-trended fluctuation analysis (DFA) provides a single value: the scaling 

exponent (SE), which measures the fluctuations in the EEG signal. DFA SE and PSA 

are two different measurements (measuring fluctuations of EEG versus EEG 

frequencies respectively) used to examine the same effect: EEG slowing, which implies 

increased drowsiness. 

Artefact removal from EEG is of utmost importance with the gold standard being 

manual scoring. Another method of automated artefact removal is independent 

component analysis (ICA).  

Objective 

1. Investigate the role of conventional and newer methods of EEG analysis as an 

objective and quantitative measure of testing vigilance in patients diagnosed with 

OSA by comparing it with subjectively rated sleepiness, as well as a battery of 

neurobehavioral performance testing. 

2. Validate the use of ICA in a group of patients diagnosed with OSA. 
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Methodology 

Retrospective cross-sectional study of untreated OSA patients.  

Results 

ICA and manual artefact removal gave well-correlated interchangeable results in the 

DFA scaling exponent, but not PSA measurements.  

EEG slowing measured by PSA metrics and DFA did not correlate to impaired 

performance during a battery of 14 separate performance tests, as well as AusEd driving 

task in this group.  

Conclusion 

ICA and manual artefact removal can be interchangeably used in extracting DFA 

measurements with confidence. PSA metrics have shown to be highly influenced by 

artefact, therefore, the use of ICA may not be reliable.  

The novel EEG measurement, DFA scaling exponent was superior to that of power 

spectrum measurements in withstanding artefact.  

DFA is complementary to the currently used PSA metrics and will be valuable during 

circumstances of increased artefacts, for example, EEG measurements during a driving 

task. 
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1. INTRODUCTION  

1.1 An overview of obstructive sleep apnoea (OSA) 

1.1.1 Pathophysiology of OSA 

In obstructive sleep apnoea (OSA), the muscles of the upper airway collapse during 

sleep, causing a temporary obstruction. This cuts off the airflow to the lungs for a period 

of time causing a drop in oxygen saturation in the blood. This oxygen desaturation leads 

to an arousal response, causing the patient to wake up and take a breath, abolishing the 

cycle of obstruction. The level of desaturation that needs to occur to cause an arousal, as 

well as the length of the apnoea, varies markedly from one patient to another. However, 

as apnoeas become more frequent and oxygen desaturation becomes more pronounced, 

OSA is considered to be severe.  

For technical purposes, apnoeic events are categorised in two groups according to 

the American Academy of Sleep Medicine Guidelines (1), as listed below: 

1.  Apnoea – A drop in airflow by ≥90% of pre-event baseline using an oro-nasal 

thermal sensor for ≥10 seconds. 

2.  Hypopnea – A drop in the airflow by ≥30% of pre-event baseline using nasal 

pressure for ≥10 seconds in association with either ≥3% arterial oxygen 

desaturation or an arousal. 

There were two main factors that lead to the development of OSA (2) (Appendix Table 

1.1): (i) acquisition of a small upper airway; and (ii) loss of upper airway dilator muscle 

activity. 

A small upper airway could be the result of obesity, upper airway lesions such as 

enlarged tonsils or tumours, or hormonal factors, for example, acromegaly or 

hypothyroidism. 
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A loss of upper airway dilator muscle activity tends to occur due to extrinsic factors 

such as using sedatives and alcohol, as well as intrinsic factors, for example, cerebral 

vascular accidents and Arnold-Chiari malformations. 

1.1.2 OSA epidemiology  

OSA is a common condition. Approximately 2-4% of middle-aged men and 1-2% of 

middle-aged women have clinically significant OSA (3). There is a strong association 

between obesity and the development of OSA (4). This is likely to become more 

pronounced in the coming decades due to the increasing rates of obesity worldwide. 

OSA has an association with age. In children, it is commonest between the ages of two 

and six mainly due to the increased size of adenoids and tonsils during this period (5). 

In adults, OSA becomes more frequent with increasing age. The odds ratio of 

developing OSA doubles with every decade until age 60 (2) . After 60 years of age, 

OSA becomes even more frequent. The prevalence rate in elderly patients has been 

recorded up to 24% (6). With the increase in the elderly population, OSA will become a 

common co-morbid condition in the future (7). There is a familial tendency for 

development of OSA where the risk of developing OSA is doubled if a parent or a 

sibling has OSA (8).  

There is also an ethnic variation to OSA. For example, individuals with Polynesian and 

Chinese ancestry are reported to have a greater likelihood of developing sleep apnoea, 

even when adjusted to the body mass index (BMI) (2). 

1.1.3 Clinical symptoms of OSA 

Patients with OSA can present with a variety of symptoms. Loud snoring, witnessed 

apnoeas and excessive daytime somnolence are the hallmark features of OSA. However, 

not all patients present with these symptoms. There is a marked individual variation in 

symptomatology. It is not uncommon to present with disrupted sleep at night-time, 

lethargy, insomnia or frequent nocturnal urination. OSA could also cause sleep 

fragmentation resulting in parasomnias and confusional arousals. Nocturnal angina and 
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nocturnal arrhythmias have also been linked to OSA. Other daytime symptoms are 

frontal headaches, sore throat, reduced libido and impotence. 

The severity of OSA does not always co-relate well to the symptoms of the patients. 

Some patients may have mild OSA and yet complain of severe daytime functional 

impairment, while other patients present with severe OSA and have minimal daytime 

impairment. Hence, the measurement of daytime impairment has become a challenging 

task (9, 10). 

1.1.4 OSA impact on health  

Patients may have had the OSA for many years before they seek medical attention (11). 

Some patients adjust their lives to cope with the symptoms and most of the time they 

consider their ill-health to be ‘normal’ and are surprised to see how well they felt after 

initiating effective treatment (12). 

Severe OSA is associated with cardiovascular morbidity and mortality (13), and 

hypertension (14). It may also be a risk factor for CVA and myocardial infarction (15). 

Patients with OSA are more likely to have diabetes mellitus and hyperlipidaemia. The 

link between OSA and increased metabolic risk is now well recognised (16).  

Severe OSA may lead to low libido and erectile dysfunction (17). OSA in pregnancy 

may be associated with low birth weight (18). 

The presence of severe OSA was associated with an increase in all-cause mortality. 

Middle-aged men with an Apnoea-Hypopnea Index (AHI) of more than 20 events per 

hour had mortality as high as 20% at five years and 35% at eight years. The cause of 

death ranged from accidents, cerebral vascular accidents, myocardial infarction, cardiac 

arrhythmias or hypertension associated conditions (19). However, this study had 

limitations of being a retrospective and uncontrolled trial. 

More recent data of well controlled long term longitudinal studies have confirmed 

increased cardiovascular mortality in patients with OSA (20). 
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Beyond its impact on an individual, OSA is also an important public health issue. The 

most marked concern from a public health issue is daytime hypersomnolence and 

reduced vigilance in OSA patients, including its effect on others. This reduced 

neurocognitive function not only puts patients at risk, for example, accidents when 

operating heavy machinery, but also puts the individual patient at risk, for example, 

motor vehicle accidents (21).  

1.2 OSA and Vigilance 

1.2.1 OSA and vigilance 

Patients with OSA experience neuropsychological deficits falling broadly into three 

areas of daytime sleepiness: (i) cognitive deficits; (ii) reduced driving competence; and 

(iii) impaired psychosocial well-being (22). Most OSA patients perform poorly 

compared to controls in vigilance and attention tasks such as continuous performance 

testing and driving simulator tests (23). These impairments are thought be a result of 

sleep fragmentation and intermittent nocturnal hypoxia secondary to OSA (24, 25) . 

The risk of motor vehicle accident (MVA) in severe OSA is two to 10 times higher than 

that of the general population (26). A previous meta-analysis of nine observational 

studies examining the MVA of drivers with OSA before and after CPAP treatment 

found a significant reduction in risk with CPAP use (27). The rate of workplace 

accidents is at least doubled in patients with OSA (28). There is a high prevalence of 

minor psychiatric morbidity and reductions in functional and health status among 

patients with OSA (22). 

Although daytime sleepiness is commonly associated with severe OSA, this is not true 

in all cases. Not all patients with OSA develop excessive daytime sleepiness (EDS); the 

severity of OSA is not directly proportional to the EDS in all patients and neither is 

there a consistent relationship between patient-reported EDS and measured tendency to 

sleep by objective testing, for example, maintenance of wakefulness testing (MWT) 

(29).  
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The relationship between reduced daytime performance in OSA and currently available 

and widely used measures of subjective self-reported sleepiness, for example, the 

Epworth Sleepiness Scale (ESS) has been documented to be elusive (30). Hence, there 

is a need for a test to measure impaired function in OSA patients so that we may target 

treatment, evaluate the response to treatment and assess safety at driving or work 

reliably and objectively. 

1.2.2 Existing methods for testing for vigilance 

Daytime performances in OSA patients are conventionally measured using 

questionnaires and performance of tasks to test attention and concentration. The 

standard questionnaires used are the Epworth Sleepiness Scale (ESS) (31), Karolinska 

Sleepiness Scale (KSS) (32), Functional Outcomes of Sleep Questionnaire (FOSQ) (33) 

and Depression and Anxiety Stress State (DASS) (34). The routine performance tests 

that have been used in research previously are driving simulations (23, 35), four choice 

reaction time (36) and finger tapping test (37). 

Two of the most commonly used ‘objective’ testing for vigilance in clinical practice to 

determine somnolence are the Mean Sleep Latency Test (MSLT) and Maintenance of 

Wakefulness (MWT) test (38). 

1.2.3 Problems with existing methods 

Problems with the above questionnaires are that they are self-rated. Some patients with 

OSA may be excessively sleepy while they perceive themselves to be functioning well. 

Hence, they will underscore the severity of their symptoms. Sometimes a fear of 

consequences such as a loss of their driving license pushes patients to under-report 

certain components of the questionnaires. For example, the last question of the ESS: Do 

you feel sleepy during driving? is often marked as ‘0’ by most patients despite all other 

areas of the questionnaire having a disproportionately higher scoring for sleepiness.  

This presents a barrier that is overcome with performance testing. However, the 

problem here is that the severity of daytime performance impairment does not correlate 

well with OSA severity. One individual with severe OSA may perform the driving task 
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well while another with mild OSA may be markedly poor in performance. There is also 

a question as to what extent a driving tests under laboratory circumstances could assess 

real world driving ability such as the risk of MVA. Furthermore, some patients would 

perform better at one test compared to another one. Hence, testing for vigilance is not 

uniformly available and applicable for all patients and does not give a good correlation 

between severity of the disease and symptoms. 

The MSLT and MWT testing are the most objective testing currently used. The MSLT 

is aimed at measuring the physiological tendency to fall asleep in the absence of 

stimulating factors while the MWT measures the ability to stay awake under the same 

conditions during a predefined time duration of 20 or 40 minutes. However, MSLT and 

MWT tests have their own limitations. Both tests are affected by physiological, 

psychological and test protocol variables (38). 

There is a wide variability in both MSLT and MWT sleep latencies in normal 

population which makes interpretation of an individual test result difficult (39). 

It has been argued that ESS may be a better predictor of sleepiness than MSLT/MWT as 

the later measures only one situational sleep propensity while the former provides 

estimate of average sleep tendency (40). 

There is a need for simple objective tests that can easily be administered to find which 

patients are more vulnerable to reduced daytime vigilance.  

1.2.4 Using awake EEG as test for vigilance (qEEG) 

Finding a reliable method of measuring vigilance would be very useful in assessing 

patients who may have impaired daytime performance. This will assist clinical decision-

making when applying appropriate restrictions to driving or operating heavy machinery. 

One possibility is a quantitative analysis of the awake electroencephalogram (qEEG) of 

individuals diagnosed with OSA. EEG consists of different frequency waveforms that 

are generated in the brain. During wakefulness, EEG patterns are different to those of 

sleeping. This difference could be utilised in assessing sleepiness in an individual. 
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During a full diagnostic sleep study, measuring EEG activity is a mandatory component 

of the montage. EEG leads were placed in accordance with an international system of 

10-20 electrode placements (Figure 1.1). Each EEG recording can be divided into small 

sections called ‘epochs’ to help analysis. A conventional sleep study was scored 

visually with 30-second epochs. For this project, the qEEG was analysed in 5-second 

epochs. 

There are many models developed to analyse EEG waveforms. Two methods discussed 

in this project were: 

1. Power Spectral Analysis (PSA) 

2. De-trended Fluctuation Analysis (DFA): Novel method of EEG analysis 

1.2.5 Power spectral analysis of qEEG and its use in sleep disorders 

Each 5-second epoch comprises of different EEG frequencies. Arbitrarily these 

frequencies are classified into bands of beta, alpha, theta and delta frequency (Table 

1.1). 

Table 1.1 EEG waveforms and frequencies 

EEG waveform Frequency Hz Most prominently occurs in 

Beta 12-25 Awake eyes open 

Alpha 8-12 Awake eyes closed 

Theta 4-8 Awake slightly drowsy (Eyes open or closed) 

Delta 0.5-4 Very drowsy (Eyes Open or Closed) 

 

In each 5-second epoch, there would be a different density in each of these waveforms. 

The relative power of each individual waveform can be calculated to obtain an objective 

measure of what waveform predominates. For example, the delta power density of a 

given epoch would be the absolute power of the delta frequency range (0.5-4Hz) 

divided by the sum of absolute powers in delta, theta, alpha and beta (0.5-25 Hz) 

frequency ranges. 
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Delta waves are low frequency larger waves that occur during periods of drowsiness 

when awake, as well as being the predominant waveform during slow wave sleep. 

Hence, higher delta power during awake periods should theoretically indicate increased 

drowsiness in an individual. Theta waves are not as large as delta waves and have a 

higher frequency than delta waves. During wakefulness, a higher amount of theta and 

delta power reflects increased drowsiness. 

Alpha waves are the usual waveform that occurs during resting wakefulness when the 

eyes are closed. However, if alpha waves occur during wakefulness when the eyes are 

open, this may reflect increased drowsiness as well.  

Beta waves are the usual waveform frequency occurring during the restful awake state 

when the eyes are open. 

Use of power spectral analysis (PSA) in sleep disorders 

PSA was used to assess sleep-deprived healthy individuals. In healthy individuals who 

were subjected to 40 hours of extended wakefulness, the theta/alpha density seemed to 

progressively increase. Furthermore, there was a proportional increase in their self-rated 

fatigue score (41). This increase of PSA in low frequency (delta, theta) bands was 

shown again in extended wakefulness of 24 hours in both OSA patients and the healthy 

controls (42). However, the OSA group tended to underestimate their subjective 

sleepiness when both groups were assessed using the KSS (42). 

In OSA patients, EEG slowing (higher ratio of delta and theta power to alpha and beta 

power) was observed in both wakefulness and REM sleep. During wakefulness all 

cortical areas had shown EEG slowing. This explains the reduced functional capacity 

attached to different cortical areas observed in OSA patients, and shows that the effect 

is not limited to the frontal area alone as sometimes speculated (43). 

The same group had looked at whether initiating Continuous Positive Airway Pressure 

(CPAP) treatment for OSA patients would correct this EEG slowing. Following six 
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months of treatment with CPAP, the EEG slowing was corrected in the frontal and 

central cortical regions during REM sleep as well as wakefulness (44). 

Another study shows that when OSA patients underwent treatment with CPAP for three 

months and then were exposed to a sustained awake period of 24 hours, they showed 

reduced theta power compared to pre-CPAP treatment (45). 

EEG slowing seems to be more pronounced with age, as shown when comparing 

patients aged over 50 years, to less than 50 (46). 

1.2.6 Novel method of EEG analysis: De-trended fluctuation analysis 

A newer method of analysing EEG is called de-trended fluctuation analysis (DFA), 

which is a method used to analyse the randomness of an event occurring. This method 

looks at fluctuations in EEG as a function of time after removing artefacts (47). DFA 

provides a single value called a scaling exponent (SE). The scaling exponent increases 

during transition from wake to sleep, continues to increase with deeper stages of non-

rapid eye movement sleep (NREM) and correlates with traditional PSA metrics (47). 

Recently published data from our group that analysed resting awake EEG data at 

baseline and after 40 hours of sustained wakefulness by using DFA measurements 

found that the higher the scaling exponent recorded at baseline and while the eyes were 

open, correlated well with impaired driving performance after 24 hours of wakefulness 

in OSA patients. This baseline DFA measurement gives information as to how the 

subject would perform when they are sleep deprived. Subjects with higher DFA SE at 

baseline showed increased impairment of driving ability if subjected to sleep 

deprivation. Furthermore, the scaling exponent had positive correlation to the delta 

power (increased sleepiness) in PSA and negative correlation to beta power (increased 

alertness) (48). 

1.2.7 Use of DFA in non-sleep disorders 

In anaesthesia, DFA had been used to measure the depth of anaesthesia. It was used to 

measure the difference between the awake, sedated and anesthetised states as a non-

invasive methodology allowing real-time implementation (49).  
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1.2.8 Use of DFA in sleep disorders 

The use of DFA has been looked at in narcolepsy patients. The overnight sleep study of 

10 narcoleptic patients when compared to eight healthy controls showed that there was a 

higher DFA scaling exponent noted during deep sleep stages in narcoleptic patients 

compared with the controls, suggesting a potential application of DFA in diagnosing 

narcolepsy (47).  

Possible use of DFA in OSA patients to assess vigilance 

Preliminary work suggests that DFA of the qEEG recorded at rest may correlate with 

performance on a simulated driving task in patients with OSA. However, this is after 24 

hours of extended wakefulness (48). These findings need to be confirmed in larger 

groups of patients.  

The studies are sparse on the use of DFA in subjects with OSA to assess vigilance in 

non-sleep deprived conditions.  

1.2.9 Advantages of using DFA in place of PSA 

The DFA scaling exponent has some advantages over the power spectral method of 

EEG analysis.  

1. The limitation of PSA is that it assumes the EEG to be linear and stationary, 

which is not accurate (50). 

2. The scaling exponent is the single measure that is extracted from the DFA 

method. This is in place of the four different waveforms explained earlier in the 

power spectral analysis. The frequency bands of each of these PSA waveforms 

are not strictly defined and sometimes have an overlap. For example, Beta 

frequency, in some instances, is defined as 12-25 Hz frequency and at other 

times divided into sigma frequency 12-15Hz and beta 16-25Hz. 
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3. The DFA scaling exponent would be more robust at withstanding artefacts like 

muscle movements and eye blinking that changes the waveforms in PSA. 

If the DFA scaling exponent was found to have a good correlation to vigilance testing 

and performance tasks in patients with OSA, this would be a single metric appropriate 

for non-linear data and more robust to ‘noise’. As with the PSA method, DFA also 

requires a larger set of data to be give a more accurate result (50). Hence, this would be 

a valuable method in analysing the overnight PSG with a large amount of EEG data. 

1.3 Introduction to artefact removal in EEG 

To analyse an EEG accurately, the signal should be as clean as possible to represent 

waves that originate from the cerebral cortex. This is never easy as physiological signals 

such as muscle movements, eye blinking and heart beat may be superimposed on the 

EEG. There could also be artefacts due to equipment interference. Hence, removing 

artefacts or ‘noise’ is very important to get a clean signal for analysis. This can be done 

in two ways: (i) either manually removing the epochs that have artefacts; or (ii) using an 

automated method to identify epochs with artefacts. 

1.3.1 Manual artefact removal 

This is considered the ‘gold standard’ for artefact removal. The conventional method of 

artefact removal is done by an individual trained in this task, for example, a certified 

sleep technologist, and excludes the epochs that have eye blinking or muscle 

movements. While this is the gold standard method, it is time-consuming because each 

5-second epoch needs to be examined. In terms of analysing lengthy timeframes, this is 

very tedious and not practical. The other disadvantage is that when manual artefact 

removal is used, ‘noisy’ epochs have to be excluded completely, thereby reducing the 

power of the recordings as fewer epochs can be included in the analysis. Furthermore, 

when epochs are excluded, valuable information about the artefacts will be lost and a 

full representation of the EEG activity during the examined time period is not obtained. 
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1.3.2 Independent Component Analysis (ICA) 

Several methods of artefact removal from EEG recordings have been published before 

(50, 51) One such method of automated artefact removal is independent component 

analysis (ICA). Most of the work in ICA relates to epileptiform activity monitoring, as 

it is a complex task separating ictal waveforms from artefacts for accurate interpretation 

of the seizure activity (53). In ICA, a reference signal is used for an artefact (e.g. eye 

movement extracted from EOG channel), which is then subtracted from the EEG after 

scaling it by an appropriate factor determined by regression in the time or frequency 

domains (53).  

Figure 1.1 illustrates the mechanism of artefact removal. Section A demonstrates a 

seizure contaminated by marked ocular activity on channels Fp1-F7, F7-T3, Fp2-F8, 

F8-T4, Fp1-F9, and Fp2-F10. To a lesser degree, there is muscle activity in channels 

Fp1-F7, F7-T3, and Fp1-F9.  

In section B, the ICA is applied and most of the artefacts have been removed, 

preserving the underlying EEG activity (53). 

 

Figure 1.1 ICA artefact removal method demonstrated in an ictal EEG 
 

Our research group internally developed a program incorporating ICA to automatically 

‘correct’ the EOG artefacts in the EEG components without excluding the epochs from 
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analysis. We had validated this artefact removal method previously (48). The EEG data 

of 17 individual healthy controls (each patient had five recordings consisting of 7.5 

minutes of qEEG data) comprising of 85 EEG recording in total were analysed for 

artefact using three methods: (i) ICA; (ii) manual scoring; and (iii) raw data without 

artefact removal.  

When values of DFA scaling exponent obtained by the manual scoring and ICA were 

compared to driving performance, the results did not show any significant difference 

between the two methods (48). For example, AusEd steering deviation ICA: r = 0.62 

and manual: r = 0.61. 

Hence, using the ICA improved the power of the data as more data was preserved and 

was also less labour intensive and time efficient.  
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2. OBJECTIVE 

The aims of this project are to: 

1. Investigate the role of conventional and newer methods of EEG analysis as an 

objective and quantitative measure of testing vigilance in patients diagnosed with 

OSA by comparing it with subjectively rated sleepiness, as well as a battery of 

neurobehavioral performance testing. 

2. Validate the use of ICA in a group of patients diagnosed with OSA.  

If validated, these techniques will enable the researcher to accurately quantify reduced 

vigilance in OSA patients and find characteristics that determine the patients who are at 

higher risk of drowsiness by using EEG recordings routinely collected as part of a 

polysomnogram used in the clinical evaluation of sleep apnoea. 
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3. METHODOLOGY  

3.1 Study design 

The study design is a retrospective cross-sectional observational study of untreated OSA 

patients. 

3.1.1 Ethics approval 

The Sydney South West Area Health Services Human Research Ethics Committee 

(RAPH zone) granted the ethics approval for the initial project titled ‘Neurobiological 

effects of sleep apnoea and sleepiness’ Protocol No. X06-0299 (Appendix 4). The 

research student was included as an associate investigator for this project to enable 

student to extract the data from this study to use in this project.  

The original study from which data was extracted was registered with the Australian 

Clinical Trials Registry as an observational study (ACTRN 012605000089639). 

3.1.2 Participants 

Previously collected data on patients with untreated OSA by our research group as per 

Protocol No. X06-0299 was used to validate this novel methodology.  

The participants were adults aged 18-75, with diagnosed or suspected OSA but not 

commenced on treatment for OSA with reasonable fluency in written and spoken 

English enabling them to perform neurocognitive tasks satisfactorily. 

Participants with sleep disorders other than OSA were excluded. Other exclusion 

criteria were epilepsy, previous stroke, significant uncontrolled co-morbidities like 

cardiac failure, respiratory failure or malignancy and regular use of medications known 

to affect sleep architecture or EEG (e.g. antidepressants and antipsychotic drugs). 
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3.1.3 Protocol and measurements  

The protocol explained here is that of the initial study (Clinical Trials Registry No. 

ACTRN 012605000089639) from which the student had extracted data for this project. 

Screening and recruitment 

Potential participants who were clinically suspected of OSA and booked for a 

diagnostic sleep study were contacted prior to the diagnostic study. The study rationale 

and procedure were explained and eligibility was determined. Those verbally 

consenting participants were requested to attend the overnight polysomnography during 

the usual time. Bookings were made at the Brain Resource Company for an 

neurocognitive functioning appointment. 

Sleep laboratory visit 

Testing was performed prior to the diagnostic sleep study and on the morning after the 

sleep study. Participants were requested to refrain from caffeine from 0900h of the date 

of the sleep study until all investigations were completed. They arrived at the sleep 

laboratory at 1630h, which is the usual requested time of arrival for preparing the 

overnight study. The study procedure was explained, written consent was obtained, and 

testing schedules were explained. External sensors used for overnight polysomnography 

were attached to the subject, including seven extra EEG leads. Additional leads were 

placed in the Fz, Cz, Pz and Oz regions, left lateral, right lateral and right supra-ocular 

electrooculogram (EOG). 

After checking for signal accuracy, the waking EEG recording was performed for the 

above described five-minute duration. This was followed by the Tower of London task 

(3 minutes practice run and 8-12 minutes of test) and the AusEd driving task (5 minutes 

practice and 30 minutes of testing). After testing, dinner was provided (as per routine 

sleep unit practice). The participants were then administered questionnaires. The 

overnight polysomnography recording commenced at 2130h and terminated at 0600h. 

After breakfast, the participants were asked to attend neurocognitive testing at the Brain 

Resource Company (0900 to 1200h). 
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3.1.4 Statistical analysis 

Data was analysed using SPSS statistics 21.0 for Mac (IBM SPSS, Somers, NY, USA). 

Statistical support was given by Ms Anne-Sophie Valliard (biostatistician) from Sydney 

University and Dr Keith Wong, Staff Specialist from Royal Prince Alfred Hospital, 

(Camperdown NSW). 

3.2 Measurements of vigilance 

3.2.1  Diagnostic polysomnography  

Polysomnography was performed at the Sleep Unit of Royal Prince Alfred Hospital 

using Compumedics E series acquisition hardware. The setup was similar to a routine 

diagnostic sleep study. EEG leads were placed according to the international 10-20 

specifications (Figure 3.1). Seven additional leads in the Fz, Cz, Pz and Oz regions, left 

lateral, right lateral, right supra-ocular electrooculogram (EOG) were placed. All EEG 

leads were sampled at a rate of 256Hz, with a high pass filter placed at 0.3Hz and low 

pass filter at 50Hz. Sleep staging and manual scoring of arousal and respiratory events 

were performed using standard criteria (1). 

 

Figure 3.1 International 10-20 system of electrode placement 
 

F= Frontal Lobe 
T= Temporal Lobe 
C=Central Lobe 
p=p=Parietal Lobe 
O=Occipital Lobe 
Z= electrode placed in the midline 
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3.2.2 Awake EEG (qEEG) 

Awake EEG is acquired prior to commencing the sleep study. Patients would be 

attached to EEG scalp electrodes as above in preparation for their overnight study. The 

signal accuracy is checked when the patient is awake. All EEG acquisitions at the sleep 

laboratory used the same Compumedics E series hardware that was used for the 

polysomnogram. A five-minute resting awake EEG was performed using the above-

described leads. This component of awake EEG measurement is named the Karolinska 

Drowsiness Test (KDT), and it may be used as a test to measure vigilance in patients. 

During the KDT, patients were required to sit upright in bed in a quiet room with 

ambient indoor lighting. They were requested to fix their gaze on a dot placed two to 

three metres away at eye level on a wall, staying relaxed but awake. The signal integrity 

was checked before recording commenced. After two minutes, the subject was 

instructed to close their eyes. The recording was terminated after another two minutes.  

3.2.3 Self rating questionnaires  

Questionnaires commonly used to assess vigilance were used to assess the impact of 

sleepiness. 

Epworth Sleepiness Score (ESS) 

The ESS is an eight scenario self-rated questionnaire used extensively in sleep research 

and clinical practice. It has been validated in healthy volunteers and in sleep apnoea 

(31). In each given scenario, the subject is asked to indicate their likelihood of falling 

asleep. The response for an individual item being a score of 0 indicates no chance of 

dozing, up to a score of 3 which indicates a high chance of dozing. The total score 

would be out of 24 (Appendix Table 2).  

Karolinska Sleepiness Scale (KSS) 

The KSS is a single item measurement of sleepiness in an individual at that moment. 

There are nine possible responses ranging from 1 indicating ‘very alert’ to 9 ‘very 

sleepy; great effort to keep awake; fighting sleep (Appendix Table 3). This scale is used 
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to indicate an individual’s current state of sleepiness as opposed to a ‘trait’ of 

sleepiness. 

The KSS has been validated against performance and EEG variables in a small group of 

healthy individuals (n=16). The variables of median reaction times and the number of 

lapses in the psychomotor vigilance task, as well as alpha and theta power density have 

shown significant increase with the increase of the KSS score (32). 

Depression Anxiety Stress Scale (DASS) 

A questionnaire on depression and anxiety was included because both these conditions 

can make a subject feel sleepy, resulting in mood disorders becoming a compounding 

factor. At the same time, mood disorders can occur as a secondary consequence of 

OSA. The depression and anxiety score is a 21-item questionnaire (Appendix Table 4) 

to self-rate depression, anxiety and stress (a shorter version of the 42-item full DASS 

questionnaire). The DASS is a widely used instrument in research (34). Subjects are 

asked to use a 4-point severity/frequency scale to rate the experience of each state over 

the past week. 

The scale has questions relating to three components: (i) depression; (ii) anxiety; and 

(iii) stress. Each sub-class has seven questions to rate that particular mood. Scores are 

calculated by adding the ratings from items belonging to each of the three subscales: (i) 

depression, items 3,5,10,13,16,17,21; (ii) anxiety, items 2,4,7,9,15,19; and (iii) stress, 

items 1,6,8,11,12,14,18. 

The answers were added and multiplied by two to give a final score that was 

comparable to the 42 question standard DASS questionnaire. 

Functional Outcome of Sleep Questionnaire (FOSQ) 

The functional outcomes of the FOSQ is a 30-item self-reported scale that explores the 

extent to which sleepiness affects five aspects of daily living (33) (Appendix Table 5).  

1. General productivity (items 11-4 and 8-11) 
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2. Social outcome (items 12 and 13) 

3. Activity level (items 5, 14-16, 22-26) 

4. Vigilance (items 6-7, 17-21) 

5. Intimacy and sexual activities (items 27-30) 

The test requested subjects to mark the degree of difficulty experienced in performing 

each activity. The response was given a mark from 1 to 4 with smaller values 

representing greater difficulty. If participants indicated they did not engage in that 

activity, it was marked as ‘missing’. The arithmetic mean of the non-missing responses 

formed the subscale results. 

3.2.4 Performance testing  

AusEd driving simulator 

The AusEd driving simulator assesses multiple performance areas, including attention, 

concentration and executive functioning. The AusEd driving task (Woolock Institute of 

Medical Research, Sydney, Australia) (35) is a PC-based task simulating driving on a 

country road at night. It is sensitive to performance decrement from driver fatigue in the 

laboratory setting, potentially making it useful as a laboratory or office-based test for 

driver fatigue risk management. 

The test was performed after satisfactory understanding of the instructions and controls 

were achieved on a 5-minute practice run. The practice run was supervised by the 

researcher who repeated the practice task if needed. 

The actual test was 30 minutes in duration and comprised of alternating 2-minute 

winding and 5-minute straight periods. Participants were asked to drive in the centre of 

the left-hand lane. They were requested to maintain a speed between 60-80 km/h. A 

speedometer was available on the top left-hand corner of the display. Ten trucks were 

presented at random intervals during the task. As soon as trucks appeared, the 

participant was requested to remove his/her foot from the accelerator pedal and depress 

the brake pedal, followed by returning the foot to the accelerator panel and continue 

driving. 
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The measurements taken during this task were: 

1. Steering deviation (stdvm) 

2. Speed deviation (spdev) 

3. Mean reaction time to braking (rtmn) 

4. Number of crashes (crash) 

Data from the first six minutes were excluded from analysis to reduce the effects of 

acclimatization to the task. 

Previously published data demonstrated that patients with OSA had more lane 

variability, speed variability, steering rate variability and a higher number of crash 

frequency over a 60-minute driving task compared to the control (55). 

The AusEd simulator has shown to be a sensitive marker in measuring mean reaction 

time and speed deviation following 30 hours of extended sleep deprivation in OSA and 

healthy individuals (56). In another study, the AusEd task was used for 70 minutes and 

a small dose of alcohol was added to give a mean blood alcohol concentration of 

0.037g/dl, in addition to one night’s sleep restriction of five hours in bed. The result 

indicated a worsening of the steering deviation and mean reaction time to break when 

compared with sleep restriction alone (57).  

Tower of London Task (Executive functioning) 

The Tower of London task was used to assess executive functioning. It has been shown 

to assess executive planning in healthy elementary students and young adults (58). The 

task involves moving coloured balls stacked on pegs into a goal position by using a 

minimal number of moves (Figure 3.2). 

This test has not been used to assess vigilance in OSA patients in past research. 

However, functional MRI had shown that when comparing a hard condition relative to 

an easy task (difficulty based on the number of moves required to solve a problem) in a 

healthy adult, there was prominent frontal lobe activation (Figure 3.3). This is a region 
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thought to be vulnerable to EEG slowing during wakefulness and sleep in OSA patients 

(44). 

 

Figure 3.2 Tower of London Task 
 

A computerised version of this task was administered (Colorado assessment tests, 

version 1.2, Colorado Springs, Colorado USA). The software automated the process of 

administering the test and produced written and spoken instructions at the start of the 

testing session. A brief practice session lasting three minutes was given prior to the 

actual test, which lasted 8-12 minutes. The subject had to move the coloured balls 

between pegs by using a computer mouse. Trials from the practice test were not 

repeated during the actual test, however, computer software automated the scoring. 

Measurements observed in this task were: 

1. Total number of moves, above the minimum required to solve the problem 
(t.excess) 

2. Average time taken per trial to solve the problem (t.avtrial) 
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Figure 3.3 Functional MRI enhancement in the frontal lobe while performing difficult 
tower of London task (Roth et al. (2006) Brain Imaging Laboratory, 
Dartmouth Medical School 

 

Four choice reaction time test (Attention) 

This test assesses reaction time and is a measure of attention. There are four circles on 

the computer screen and one would randomly light up. The subject is instructed to touch 

that circle as quickly as possible. This test has been used in OSA patients. In a test of 

90-minute duration, random appearance of a choice every 20-40 seconds showed that 

the reaction time was linearly correlated to the vigilance state (36). The measurement 

taken was the average speed of response (Ch_avrt). 

Visual timing (Attention) 

This task determines visual attention and subjective sense of time intervals. When a 

circle appears on the screen for 1-12 seconds, the participant is requested to indicate 

how long the circle was visible. The time estimation task has been associated with 

changes in frontal brain of healthy aging adults (59). 

The measurement from this task was the value of the average difference between the 

(actual lengths of the stimulus – subjects estimate) weighted by the actual length of the 

stimulus (t_prbias). 
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Sustained attention task (Attention) 

A series of letters (e.g. B, C, D and G) are presented for 200ms each. The participant is 

requested to press the button if the same letter appears twice in a row. 

Measurements from this task were: 

1. Number of incorrect responses, or false positives (Wmfp) 

2. Number of targets the subject did not respond to, or false negatives (wmfn) 

Switching of attention (Attention and executive functioning) 

This test has two components: (i) Part A: a participant is requested to touch a sequence 

of 25 numbers scattered across the screen in ascending order (Figure 3.4) (60); and (ii) 

Part B: the subject touches alternating numbers 1-13 and letters (A-L). The second part 

is dealing with executive functioning. 

 

Figure 3.4 Trail-marking test – Part A 
 

Measurements from these tests were: 

1. Time to complete test A successfully (Swoadur 1) 

2. Time to complete test B successfully (Swoadur 2) 
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Finger tapping test (Manual dexterity/attention) 

The manual dexterity test requires the participant to tap a circle with the index finger as 

many times as possible within 30 seconds. The task is performed using both hands. 

Slowing of the tapping has been associated with sleep onset drowsiness (37). 

Measurements from this task were: 

1. Number of taps over 30 seconds – dominant hand (tapdomn) 

2. Number of taps over 30 seconds – non-dominant hand (tapndmn) 

Memory recall and recognition (Memory) 

This is a test to determine delayed memory recall and memory recognition. A list of 12 

words is read to the subject four times. The participant is asked to recall the words after 

each reading (recall trials 1-4). A second distracter list is presented that has to be 

memorised. Twenty minutes later, the subject is asked to recall the original list (memory 

recall). In the second part of the test, the participant is shown a list of words and asked 

if they belonged to the original set of words (memory recognition). 

Measurements from the memory recall and recognition tasks were: 

1. Total number of words recalled over trials 1-4 (memtot14) 

2. Number of words recalled after the trial at 25 minutes (memrec7) 

3. Words correctly recognised as from the original list (memrecco) 

Digit span (Memory) 

This is a test of memory. After a hearing sequence ranging from 3 to 9 digits, the 

participant enters the numbers on a numeric keypad in the order they were presented. 

(Forward digit span). The reverse digit span is when the subject is asked to enter the 

digits in the reverse order of presentation (61). 

Measurements taken during this test were: 
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1. Forward digit span – Longest sequence correctly completed (digitot) 

2. Backward digit span – Longest sequence correctly completed (rdigitot) 

Span of visual memory (Memory) 

This task assesses the working memory. This is also known as the modified Corsi 

block-tapping test (62). Up to nine identical squares light up on the display in a random 

fashion. The participant has to tap the sequence in the order they lit up once they hear a 

tone. The sequence starts out simply, usually using two blocks, but becomes more 

complex until the subject’s performance suffers (Figure 3.5). 

The measurement from this test is the longest sequence correctly completed (Spvm) 

 

Figure 3.5 Corsi block tapping test  

Note: Yellow is the current block in sequence. 
 

Verbal interference (Verbal fluency) 

Also referred to as the Stroop test (63), this test consists of two parts. In the first part, a 

coloured word (red, yellow, green or blue) appears on the screen (Figure 3.6). The 

participant is requested to indicate the colour the word is spelling out by pressing a 

button allocated to the four colours mentioned. Then the participant is requested to 

indicate the colour of that word . The words and colours are always incongruent. 
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Measurements in these tests are: 

1. Stroop (text) – number of words correctly identified (Vi_scol) 

2. Stroop (colour) – number of colours correctly identified (Vi_sco2) 

RED 

YELLOW 

GREEN 

BLUE 

 

Figure 3.6 Stroop test – incongruent text and colours 
 

Word generation FAS test (Verbal fluency) 

Also known as the controlled oral word association test (FAS test), this test requests the 

participant to recall as many words as possible beginning with each of the letters F, A 

and S. One minute is allowed for each letter. Responses are recorded and manually 

scored. 

The measurement taken from this test is the FAS score – Number of words recalled 

across the three letters (fas). 

Word generation animal test (Verbal fluency) 

In this task, the participant is requested to recall the names of as many animals as they 

can starting with a selected letter. The time allocated for this task is one minute. The 

measurement taken was the number of words recalled (animals). 
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Spot the real world (Intelligence) 

The participant is presented with two pairs of words (64): one has a true meaning; and 

(ii) the other is a non-word. The measurement of this task is the number of real words 

recognised (spotscor). 

Maze task (Executive functioning) 

The task combines memory and planning with self-monitoring. The participant is 

required to remember a hidden path through a maze. The task is completed either when 

the participant traces the same path twice in a row successfully or when the time limit of 

eight minutes is reached.  

Measurements from this task are: 

1. The number of trials completed before the end of the task. (mazetrls) 

1. The total number of off-path moves (mazeerr) 

3.3 Comparing EEG artefact removal methods (ICA vs manual 
scoring)  

3.3.1 EEG preparation for analysis 

Each individual awake EEG recorded in Compumedics E series software was extracted 

into a universal viewing program called EDF viewer that was able to run the analysis 

using the software program developed by our group (47). Each 5-minute awake EEG 

segment would have a 2.5 minute ‘eyes open’ segment followed by a 2.5 minute ‘eyes 

closed’ segment. During the awake EEG recording, procedural instructions were given 

by the technician to the participant, to initiate each ‘eyes open’ and ‘eyes closed’ 

component. Consequently, 30 seconds at the beginning of each 2.5-minute segment was 

discarded. Hence, the final EEG data would have two minutes of eyes open (EO) and 

two minutes of eyes closed (EC) segments. 
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Eighty-three awake EEG recordings were extracted from the data set, each consisting of 

two minutes of ‘eyes open’ (EO) and two minutes of ‘eyes closed’ (EC) resting awake 

EEG extracted to a EDF viewer. For each recording, the Cz channel was selected for 

analysis. It was the preferred instrument because it was a midline channel that would 

not have been influenced by the hand dominance of the patient. All 83 awake EEG 

recordings were then manually screened in 5-second epochs to look at signal integrity 

and artefacts.  

3.3.2 Manual method of EEG artefact removal  

As mentioned above, artefact removal is of paramount importance for obtaining a clean 

signal in the awake EEG. This is especially important when EEG data are being used to 

correlate the testing of vigilance to assess drowsiness. Muscle movements and eye 

blinking can generate large low frequency waves that can be interpreted as delta waves 

if not correctly excluded. 

Manual removal of artefacts is the gold standard. However, adequate training and 

pattern recognition is required to do this accurately. The manual artefact removal is time 

consuming and labour intensive. In this project data of 83 recordings of 4-minute 

duration for each recording, involving 3984 epochs in total was analysed for artefact by 

the student. The student was trained in EEG analysis for artefact removal prior to 

commencement of the study. 

The student was requested to perform manual scoring of 20 randomly selected patient 

qEEG data from the 83 patient records to assess the adequacy of training prior to 

analysis of the entire data set. These EEG scoring was then discussed with the student in 

a group meeting by Dr Jon Wong Kim and Ms. Angela Denotti for agreement of 

marking of the ‘noisy’ epochs and discussion regarding ICA and manual scoring. The 

student was found to be scoring artefacts at the expected level. 
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Figure 3.7 A screen shot of a 5-second epoch with marked artefacts (‘noisy’ epoch 
excluded during manual scoring) 

 

 

Figure 3.8 A screen shot of a 5-second epoch with minimal artefacts (‘clean epoch’ 
included during manual scoring) 
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Figure 3.9 A screen shot of 5 second ‘clean’ epoch without artefact 
 

 
Figure 3.10 A screen shot of the same 5 second epoch analysed by ICA (marked in 

green), demonstrating overlapping waveform without corrections 
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Figure 3.11 A screen shot of 5-second epoch showing a ‘noisy’ epoch with an eye blink 

artifact 
 

 
Figure 3.12 A screen shot of the same 5 second epoch with ICA correction marked in 

green 
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During manual artefact removal each of the epochs are marked as ‘noisy’ (has artefact) 

(Figure 3.7) or clean (no artefacts) (Figure 3.8) and the software has the capability to 

store these changes. Once marking was completed for all four minutes, the manual 

artefact removal can be saved in the same patient folder. The epochs marked as ‘noisy’ 

were excluded from the analysis. Following this the analysis for both DFA scaling 

exponent and PSA can be run on the saved manual data by using the software developed 

by our group. 

3.3.3 ICA for artefact removal 

The above process is made much simpler by using the automated ICA artefact removal 

method. Once the 4-minute qEEG was selected from a participant, then the software 

allows the operator to select ICA option for artefact removal (instead of manual), and 

then directly obtains the analysis for PSA and DFA measurements.  

This ICA option automatically analyses each 5-second epoch and the noisy epochs 

identified, however they are not excluded. Instead they are normalised by removing the 

eye blink artefacts. Artefacts due to heart rate or other muscle movements were not 

removed by this method. 

3.3.4 Analysing the EEG data to obtain PSA and DFA measurements by 
using both artefact removal methods 

Once artefacts have been removed the clean EEG segments was analysed for PSA and 

DFA measurements. This gives two sets of results; one for manual artefact removal and 

one for the ICA. During the PSA analysis, the results are displayed as individual 

absolute values of delta, theta, alpha and beta frequencies for each five seconds. Each of 

these waveforms are then individually summed across the 48 epochs of each patient to 

give final values for the previously mentioned delta, theta, alpha and beta for each of the 

eyes open (24 epochs) and eyes closed (24 epochs) segments.  

DFA analysis however gives only one parameter called the scaling exponent for each 5-

second epoch. These values of the DFA SE across the 48 epochs for each patient are 
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then summed to give the total scaling exponent during eyes open (24 epochs) and eyes 

closed (24 epochs) state. 

During this study, EEG slowing was measured in three ways: 

1. Using PSA ratio of delta power and theta power to alpha power and beta power, 

this was a ratio of slow frequencies: delta and theta (indicating sleepiness) to the 

faster frequencies: alpha and beta (indicating alertness). It was selected as a 

global index for EEG slowing. A higher value indicates reduced alertness. A 

study done by Morrison et al. (43) involving 21 OSA patients compared to 10 

normal controls demonstrated increased EEG slowing using this method during 

REM sleep in frontal, central and parietal regions while EEG slowing during 46 

wakefulness occurred in all cortical regions. This may explain the wider range of 

performance impairment seen in OSA patients and not limited to executive 

functioning. 

2. Using PSA ratio of theta to alpha power waves (measuring the ratio between 

more drowsy waves to the more alert waves), a higher value indicated reduced 

alertness. A study by Greneche et al. (41) demonstrated increased theta/alpha 

density when nine healthy women were subjected to 40 hours of extended 

wakefulness. There was a correlated increase in the self-rated fatigue score as 

well. 

3. Using DFA scaling exponent (higher the value of scaling exponent, more 

sleepier the subject), Rozeraio et al. (48) demonstrated higher DFA scaling 

exponent and higher delta power during wakefulness in OSA patients than 

controls. The baseline DFA scaling exponent was found to be a marker for 

impaired driving performance after 24 hours of extended wakefulness in patients 

with OSA. 

Each EEG slowing parameters were measured during eyes open and eyes closed state. 
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During the statistical analysis of multiple correlation testing for EEG slowing and 

performance testing there is a one in 20 chance of a false positive result. The results 

could also be falsely positive due to outliers in the given sample. Hence once the co-

relation tests are carried out they will then be plotted in a scatter plot to assess the 

validity of the results (65). 

3.4 Statistical methods used to compare the two 
methodologies of artifact removal (Manual vs ICA) 

A literature review identified several statistical methods that measure the agreement 

between two measurements, as is the case with this study. One single statistical method 

was not superior or accurate in drawing conclusions, hence five statistical methods 

namely: (i) student t-tests; (ii) effect size measurement; (iii) Bland-Altman plots; (iv) 

Pearson’s correlation coefficient; and (iv) intra-class correlation coefficient 

measurement were used to draw a combined inference. 

3.4.1 Student’s t-test 

The paired sample student’s t-test was used to ascertain whether their is a difference in 

the sample mean when using ICA and manual artifact removal method in each of the 

PSA wave densities and DFA scaling exponent measurements during EO and EC states. 

A P value <0.05 was considered to be the statistical significant level. 

3.4.2 Effect size 

Effect size was used to measure the clinical significance of the difference noted between 

two measurements as statistical significance does not automatically transform to clinical 

significance. This was measured by dividing the mean difference between the 2 groups 

of each EEG measurement by the standard deviation of the manually extracted data of 

the same measurement, e.g. effect size of delta power = mean difference of delta power 

(i-n)/SD of delta power(n). 
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3.4.3 Bland-Altman plots 

To further clarify the scatter of the difference between the measurements of the two 

artefact removal methods, Bland-Altman plots (B&A plots) were used. The mean of the 

two measurement methods were to be plotted against the standard deviation of the 

difference between the two methods to decide if the limits of agreement are narrow or 

wide, e.g. Bland-Altman plot for delta power would comprise of the X axis (delta power 

i+n/2) plotted against the Y axis; the mean difference of the two values (delta power 

i-n). 

3.4.4 Pearson’s correlation coefficient 

Person’s co-relation was calculated to find out the strength of the association between 

the two methodologies of artifact removal. The results are then explored further for 

validity and outliers by use of scatter plots. 

3.4.5 Intra-class correlation coefficient for agreement 

To test the absolute agreement between the two methods of artifact removal, intra-class 

correlation coefficient was performed. 

3.5 Comparing the EEG measurements (PSA and DFA) with 
vigilance testing 

There is limited data on using PSA power spectrum EEG slowing to assess vigilance. 

Using DFA scaling exponent our group had recently published data on driving 

performance in patients with OSA after extended wakefulness with encouraging results. 

The use of DFA is novel and data is unavailable on vigilance testing in non-sleep 

deprived OSA patients.  

In the current project, four main domains were included for vigilance testing: (i) 

attention and concentration; (ii) memory; (iii) verbal fluency; and (iv) executive 

function. 
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The above vigilance testing elements were compared against PSA and DFA parameters 

to determine whether there was a good relationship that enabled awake EEG measures 

to be used as an objective method of assessing vigilance. The DFA and PSA 

measurements were then compared against each other to assess if they gave comparable 

results. 

3.6 Assessing the relationship between PSA and DFA in 
awake EEG 

Previous studies done by our group showed that the conventional EEG PSA measures 

significantly correlated with DFA scaling exponent in both eyes open and eyes closed 

states. The DFA scaling exponent was positively correlated to delta power density (eyes 

open/eyes closed r=0.75, p<0.0001/r=0.86, p<0.0001) and negatively correlated to alpha 

power density (r=-0.56, p<0.0001/r=-0.73, p<0.0001) (40). This association would be 

explored further using this data set. 
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4. RESULTS 

4.1 Participant Demographics 

Eighty-three study participants completed satisfactory awake EEG testing prior to the 

overnight sleep study. The majority of the patients were male 67 (81%). Mean age was 

45 years (SD +/-11 years). The mean BMI was 32kg/m2. (SD +/-5.5kg/m2). The mean 

Epworth Sleepiness Scale score in this group was 11 (range 0-22). The overnight 

diagnostic sleep study showed a mean total Apnoea Hypopnea Index (AHI) of 30/h 

(SD +/-26/h). The range for AHI was 0-113.  

4.2 Comparing two methods of artefact removal (manual vs 
ICA) 

4.2.1 Checking data for normal distribution 

Extracted qEEG data were checked for the normality of the distribution by calculating 

the mean and median, as well as using boxplots and histograms. All qEEG 

measurements obtained either with manual artefact removal or ICA in alpha, delta, theta 

and beta power, as well as the DFA scaling exponent in eyes open and eyes closed 

status were suitable for parametric statistical analysis. 

4.2.2 Preparation of data for analysis 

For manual analysis of the 83 patient qEEG data, the student screened a total of 3990 

epochs. If an artefact was identified, the epoch was marked as ‘noisy’ and was excluded 

from the manual analysis. During manual artefact removal of the EO section, 909 (46%) 

out of 1992 epochs were excluded as noisy. The EC section had 287 (14%) 5-second 

epochs removed from 1998 epochs.  

During manual scoring, six patients did not have acceptable EEG data in the EO state 

due to gross contamination by eye blinks. Hence, in the manual analysis, data from 76 

patients were used in the eyes open state and all 83 patient’s data were used in the eyes 

closed state. 
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In the automated analysis, epochs with artefacts were not excluded, however, artefacts 

were ‘corrected’ by the ICA. 

To explore the agreement and interchangeability of both methodologies of artefact 

removal, the following tests were conducted in each of the 10 EEG parameters 

measured below (Table 4.1). 

Table 4.1 Defining EEG measurements compared between manual (n) and ICA 
(i) artefact removal methods 

EEG frequency bands 
Manual artefact 

removal result (n) 
ICA artefact 

removal result (i) 

Delta power Eyes Open Delta EO n Delta EO i 

Theta power Eyes Open Theta EO n Theta EO i 

Alpha power Eyes Open Alpha EO n Alpha EO i 

Beta power Eyes Open Beta EO n Beta EO i 

Delta power Eyes Closed Delta ECn Delta EC i 

Theta power Eyes Closed Theta ECn Theta EC i 

Alpha power Eyes Closed Alpha ECn Alpha EC i 

Beta power Eyes Closed Beta ECn Beta EC i 

DFA scaling exponent Eyes Open DFA SE EO n DFA SE EO i 

DFA scaling exponent Eyes Closed DFA SE EC n DFA SE EC i 

 

4.2.3 Paired t-tests 

Ten EEG parameters, namely, Delta power EO and EC, Theta power EO and EC, Alpha 

power EO and EC, Beta power EO and EC, and DFA scaling exponent EO and EC were 

tested for differences between the two artefact removal methods. Paired t-tests were 

performed using SPSS statistics software. 

The eyes-open theta density (p=0.207) and eyes open DFA scaling exponent (p=0.136) 

did not show a statistically significant difference between the mean power densities 

when comparing manual artefact removal with ICA. However, rather surprisingly, the 

Delta density EO (p=0.034), EC (p< 0.001), Theta density EC (p=0.006), Alpha density 
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EO (p=0.03), EC (p<0.001) and Beta density (0.002) all showed statistically significant 

differences of the mean power density of each of the waveform frequencies.  

The DFA scaling exponent EC also showed statistically significant differences between 

the values of manual and ICA scoring.  

Higher power density values were observed in ICA artefact removal method in Delta 

EO, Beta EO, Theta EC, Alpha EC, Beta EC and DFA SE EC and EO. The manual 

scoring showed higher power density values in Theta EO, alpha EO and Delta EC. 

However, the absolute difference between the means obtained by the two methods of 

artefact removal for each EEG measurement was small (Table 4.2). 

Table 4.2 Comparison of ICA (i) and manual (n) artefact removal measurements 
using paired t-test 

EEG 
Pair 

Comparison between ICA (i) 
And manual (n) EEG power 

spectrum and DFA during EO 

Mean 
Difference 

SD t df 
Statistical 

Significance 

Pair 1 Delta EO i -Delta EO n  0.036 0.14 2.16 76 p<0.05 

Pair 2 Theta EO i – Theta EO n -0.004 0.03 1.27 76 p=0.207 

Pair 3 Alpha EO i –Alpha EO n -0.014 0.05 2.20 76 p<0.05 

Pair 4 Beta EO i – Beta EO n 0.089 0.08 8.76 76 p<0.001 

Pair 5 Delta EC i- Delta EC n -0.040 0.08 4.40 82 p<0.001 

Pair 6 Theta EC i – Theta EC n 0.006 0.02 2.80 82 p<0.01 

Pair 7 Alpha EC i – Alpha EC n 0.017 0.03 4.95 82 p<0.001 

Pair 8 Beta EC i – Beta EC n 0.017 0.04 3.26 82 p<0.01 

Pair 9 DFA SE EO i - DFA SE EO n  0.019 0.11 1.50 76 p=0.136 

Pair 10 DFA SE EC i - DFA SE EC n 0.037 0.08 4.25 82 p<0.001 

 

4.2.4 Effect size 

As there was a significant difference in means between the manual and ICA artefact 

removal methods in eight out of the 10 EEG parameters tested, the effect size was 

calculated to explore the magnitude of the difference between the two methods on each 

of the measurements.  
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Results showed delta power EO 0.2/EC 0.2, theta power EO 0.1/EC 0.15, alpha power 

EO 0.16/EC 0.16, beta power EO 1.0/EC 0.17. In the DFA scaling exponent, the effect 

size was EO 0.1/ EC 0.2 (Table 4.3). 

Table 4.3 Effect size for changes observed between two artefact removal 
methods 

Paired sample of EEG measurement Effect size Interpretation 

Delta EO i -Delta EO n  0.2 small 

Theta EO i – Theta EO n 0.1 small 

Alpha EO i –Alpha EO n 0.1 small 

Beta EO i – Beta EO n 1.0 large 

Delta EC i- Delta EC n 0.2 small 

Theta EC i – Theta EC n 0.1 small 

Alpha EC i – Alpha EC n 0.1 small 

Beta EC i – Beta EC n 0.1 small 

DFA SE EO i - DFA SE EO n  0.1 small 

DFA SE EC i - DFA SE EC n 0.2 small 

 

Although there was a significant difference in the mean power density in eight out of 

the 10 EEG parameters calculated for the two artefact removal methods, the effect size 

was found to be very small <0.2. Based on Cohen’s rule of thumb for interpreting effect 

sizes, a ‘small’ effect size is considered to be <0.20, a ‘medium’ effect size is 

approximately 0.50 and a ‘large’ effect size is considered to be >.80 (66). The beta 

power density during EO state demonstrated a large effect size. 

4.2.5 Bland-Altman plots 

To further clarify the scatter of the difference between the measurements of the 2-

artefact removal methods, Bland-Altman plots (B&A plots) were used to identify if the 

differences between the measurements were similar across a range of values and to 

decide if limits of agreement were narrow. The limitation with our measurements when 

using Bland-Altman plots was that the measurements for PSA and DFA scaling 
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exponents did not have an established measurement range, unlike other common 

physiological measurements, for example, blood pressure in mmHg or height in 

centimetres. However, a tighter scatter around the mean would imply that there were 

narrow-based limits of agreement.  

The Bland-Altman plots demonstrated a tight scatter around the mean during the eyes 

closed segment in comparison to the eyes open segment in all 10 EEG measures 

investigated. The beta power density during the eyes open segment had the most 

amount of scatter in keeping with the higher effect size noted during earlier testing.  

 

Figure 4.1 Bland-Altman plots for delta 
power EO 

Figure 4.2 Bland-Altman plots for delta 
power EC 

 

 

Figure 4.3 Bland-Altman plots for theta 
power EO 

Figure 4.4 Bland-Altman plots for theta 
power EC 
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Figure 4.5 Bland-Altman plots for alpha 
power EO 

Figure 4.6 Bland-Altman plots for alpha 
power EC 

 

  

Figure 4.7 Bland-Altman plots for beta 
power EO 

Figure 4.8 Bland-Altman plots for beta 
power EC 

 

Figure 4.9 Bland-Altman plots for DFA EO Figure 4.10 Bland-Altman plots for DFA EC
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4.2.6 Pearson’s correlation coefficient 

Given the small effect size, to further explore the correlation between the two 

methodologies of artefact removal, scatter plots were created for both manual and ICA 

methods in the 10 EEG measures explored above.  

Pearson’s correlation was calculated to find out the strength of the association between 

the two methodologies in each of the power densities of delta, theta, alpha and beta 

during the eyes closed and eyes open states, as well as scaling exponent both eyes open 

and eyes closed states. There was a very strong correlations displayed between all 

power densities across both eyes closed and open states, with the eyes closed state 

having an even tighter association. 

The Delta power EO 0.609/EC 0.871, Theta power EO 0.666/EC 0.871, Alpha power 

EO 0.783/EC 0.954 and Beta power EO 0.664/EC0.874 associations were highly 

statistically significant (p<0.0001). 

The DFA scaling exponent analysis in both eyes closed and open states showed an even 

tighter association between the two methods of artefact removal (DFA scaling exponent 

EO 0.773/EC 0.898). This association was highly statistically significant (p<0.0001) 

(Table 4.4). 

Table 4.4 Pearson’s correlation coefficient comparing the correlation between 
two different artefact removal methods 

Paired sample of EEG measurement N Correlation Sig. 

Delta EO i -Delta EO n  77 0.609 p<0.001 

Theta EO i – Theta EO n 77 0.666 p<0.001 

Alpha EO i –Alpha EO n 77 0.783 p<0.001 

Beta EO i – Beta EO n 77 0.664 p<0.001 

Delta EC i- Delta EC n 83 0.871 p<0.001 

Theta EC i – Theta EC n 83 0.871 p<0.001 

Alpha EC i – Alpha EC n 83 0.954 p<0.001 

Beta EC i – Beta EC n 83 0.874 p<0.001 
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DFA SE EO i - DFA SE EO n  77 0.773 p<0.001 

DFA SE EC i - DFA SE EC n 83 0.898 p<0.001 

 

These associations were further explored with scatter plots. 

Figure 4.11 Correlation between manual 
and ICA artefact removal 
methods in delta power (EO) 

Figure 4.12 Correlation between manual 
and ICA artefact removal 
methods in delta power (EC) 

 

  

Figure 4.13 Correlation between manual 
and ICA artefact removal 
methods in theta power (EO) 

Figure 4.14 Correlation between manual 
and ICA artefact removal 
methods in theta power (EC) 
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Figure 4.15 Correlation between manual 
and ICA artefact removal 
methods in alpha power (EO) 

Figure 4.16 Correlation between manual 
and ICA artefact removal 
methods in alpha power (EC) 

 

  

Figure 4.17 Correlation between manual 
and ICA artefact removal 
methods in beta power (EO) 

Figure 4.18 Correlation between manual 
and ICA artefact removal 
methods in beta power (EC) 
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Figure 4.19 Scaling exponent (EO) 
correlation between manual 
and ICA artefact removal 
methods in DFA (EO) 

Figure 4.20 Scaling exponent (EO) 
correlation between manual 
and ICA artefact removal 
methods in DFA (EO) 

 

4.2.7  Intra-class correlation for absolute agreement  

By using the two artefact removal methods the results obtained for each EEG 

measurement essentially would be similar if the two methodologies had absolute 

agreement. If this was true, one method could be interchanged for the other without 

errors and with good reproducibility.  

To test the absolute agreement between the two methods of artefact removal, intra-class 

correlation coefficient was performed. All PSA power densities and DFA scaling 

exponents in both eyes open and eyes closed states showed statistically significant 

absolute agreement (Table 4.5).  

All PSA parameters obtained by the two methodologies showed good agreement 

although the degree of agreement varied between 0.2 and 0.8.  

The DFA scaling exponents demonstrated a stronger agreement between the two 

artefact removal methods (0.6-0.9) with the eyes closed segment showing perfect 

agreement enabling good interchangeability (ICC 0.9; 95% CI 0.8-0.9). 
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Table 4.5 Intra-class correlation coefficient for absolute agreement of the two 
artefact removal methods 

Pair Absolute agreement and 95% CI Significance 

Delta EO i -Delta EO n  0.6 (0.4-0.7) p<0.0001 

Theta EO i – Theta EO n 0.7 (0.5-0.7) p<0.0001 

Alpha EO i –Alpha EO n 0.7 (0.6-0.8) p<0.0001 

Beta EO i – Beta EO n 0.6 (0.5-0.7) p<0.0001 

Delta EC i- Delta EC n 0.3 (0.2-0.5) p=0.002 

Theta EC i – Theta EC n 0.3 (0.1 - 0.4) p=0.006 

Alpha EC i – Alpha EC n 0.8 (0.7-0.8) p<0.0001 

Beta EC i – Beta EC n 0.2 (0.01-0.4) p=0.02 

DFA SE EO i - DFA SE EO n  0.8 (0.6 - 0.8) p<0.0001 

DFA SE EC i - DFA SE EC n 0.9 (0.8 - 0.9) p<0.0001 
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Table 4.6 Summary of the results of statistical methods used in comparing the ICA and manual artefact removal methods 

Paired T test Effect size 
Pearson’s correlation 

coefficient 
Intra class correlation 

coefficient 
Bland Altman Plots 

Pair 

Mean 
difference 

Sig. 
Effect 
size 

Interpretati
on 

Correlation Sig. 
Absolute 

agreement 
Sig. 

Scatter around the 
mean 

Limits of 
agreement 

Delta EO i -Delta EO n  0.036 P<0.05 0.2 Small 0.609 P<0.001 0.6 P<0.0001 Tight Narrow 

Theta EO i – Theta EO n 0.004 P=0.207 0.1 Small 0.666 P<0.001 0.7 P<0.0001 Tight Narrow 

Alpha EO i –Alpha EO n 0.014 P<0.05 0.1 Small 0.783 P<0.001 0.7 P<0.0001 Tight Narrow 

Beta EO i – Beta EO n 0.089 P<0.001 1.0 Large 0.664 P<0.001 0.5 P<0.0001 
Scatter around the 

mean is large 
Broad 

Delta EC i- Delta EC n 0.040 P<0.001 0.2 Small 0.871 P<0.001 0.3 P=0.002 Tighter Narrower than EO 

Theta EC i – Theta EC n 0.006 P<0.01 0.1 Small 0.871 P<0.001 0.3 P=0.006 Tighter Narrower than EO 

Alpha EC i – Alpha EC n 0.017 P<0.001 0.1 Small 0.954 P<0.001 0.8 P<0.0001 Tighter Narrower than EO 

Beta EC i – Beta EC n 0.017 P<0.01 0.1 Small 0.874 P<0.001 0.2 P=0.02 Tighter Narrower than EO 

DFA SE EO i - DFA SE EO n  0.019 P=0.136 0.1 Small 0.773 P<0.001 0.8 P<0.0001 Very tight Extremely narrow 

DFA SE EC i - DFA SE EC n 0.037 P<0.001 0.2 Small 0.898 P<0.001 0.9 P<0.0001 Very tight Extremely narrow 
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4.2.8 Correlation of manual and ICA artefact removal methods to 
performance test results 

In this study, two artefact removal methods (manual and ICA) were compared with a 

battery of performance testing. The results obtained by both artefact removal methods 

were correlated to performance testing to identify if both methods gave similar results. 

DFA scaling exponent: Comparison of DFA scaling exponent (manual vs ICA) and 
performance tasks 

A significant correlation for using DFA scaling exponent was observed only during the 

finger tapping task and four-choice reaction time tasks. These two tasks were used to 

compare the results obtained by manual and ICA artefact removal (Appendix Table 6): 

(i) finger tapping test ICA EO r=0.41, manual EO r=0.41 (Figures 4.21 & 4.22)’ and (ii) 

four-choice reaction time ICA EC r=-0.26, manual EC r=-0.26 (Figures 4.23 & 4.24).  

  

Figure 4.21 Correlation between DFA 
extracted by ICA and finger 
tapping task 

Figure 4.22 Correlation between DFA 
extracted manually and finger 
tapping task 

 

When a statistically significant result occurred, both artefact removal methods gave 

identical results with similar trends in DFA analysis. This was further explored using 

scatter plots. 
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Figure 4.23 Correlation between DFA 
extracted by ICA and 
4-choice reaction time task 

 

Figure 4.24 Correlation between DFA 
extracted manually and 
4-choice reaction time task 

 

PSA analysis: Comparison of PSA (manual vs ICA) and performance tasks 

PSA analysis was done using combined frequencies to measure EEG slowing. One 

method used in this study to calculate EEG slowing was using delta and theta over the 

alpha and beta equation. In this study, two artefact removal methods were used to obtain 

separate PSA values for statistically significant results and to compare the agreeability.  

PSA measurements had significant correlations only in mean reaction time and median 

reaction time in the AusEd driving task (Appendix Table 7). A comparison was made 

between the manual and ICA results. The mean reaction time to braking in response to 

trucks was ICA EC r=0.23, manual r=0.29 and the median reaction time in response to 

trucks was ICA EC r=0.24, manual EC r=0.3. 

When a statistically significant result was obtained by PSA measurements, there was a 

correlation of a similar trend between manual and ICA artefact removal methods. 

However, the absolute numbers of the correlation coefficient were different. This was 

further explored using scatter plots (Figures 4.25 to 4.28). 
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Figure 4.25 Correlation between PSA 
extracted by ICA and mean 
reaction time 

Figure 4.26 Correlation between PSA 
extracted manually and mean 
reaction time 

 

  

Figure 4.27 Correlation between PSA 
extracted by ICA and median 
reaction time 

Figure 4.28 Correlation between PSA 
extracted manually and median 
reaction time 

 

4.3 Correlation of EEG parameters to vigilance testing  

The gold standard artefact removal method uses manual scoring. During manual 

scoring, very tight screening was done to rule out all muscle artefacts and eye blinks 

that could be interpreted as delta waves, thereby giving false high ‘sleepy EEG’ values. 

Due to the observed differences between the two artefact removal methods, as 

previously explained, from this point onwards all correlations to performance testing 
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was done using the manual artefact removal method alone as the gold standard. The full 

results of the comparison between EEG measurements and performance testing are 

described later in Section 4.2.5. 

During this study, EEG slowing was measured in three ways: 

1. Using PSA ratio of delta power and theta power to alpha power and beta power, 

this was a ratio of slow frequencies: delta and theta (indicating sleepiness) to the 

faster frequencies: alpha and beta (indicating alertness). It was selected as a 

global index for EEG slowing. A higher value indicates reduced alertness (43).  

2. Using PSA ratio of theta to alpha power waves (measuring the ratio between 

more drowsy waves to the more alert waves) a higher value indicated reduced 

alertness (41). 

3. Using DFA scaling exponent (higher the value of scaling exponent, more 

sleepier the subject) (48). 

Each EEG slowing parameters were measured during eyes open and eyes closed state. 

In the next step, Pearson’s correlation coefficient was used to determine the correlations 

between EEG slowing and the results of sleep study data, self-rated questionnaires, 

AusEd driving simulator testing, anxiety and depression scales and vigilance testing.  

4.3.1 Sleep study data 

Sleep study data looked at sleep efficiency, arousal index, proportion of time with 

saturations below 90%, total apnoea hypopnea index (AHI), non-rapid eye movement 

(NREM) AHI, rapid eye movement (REM) AHI and minimum saturations recorded 

during the sleep period. The sleep study parameters were correlated against the 

measurements for EEG slowing (Appendix Table 8).  
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Only a single EEG slowing parameter: delta+theta/alpha+beta (EC) was associated with 

higher arousal index (r=0.299, p<0.01), increased NREM AHI (r=0.268, p<0.05) and 

total AHI (r=0.263, p<0.05). The correlations were statistically significant but weak.  

To explore the validity of these results, scatter plots were constructed (Figures 4.29, 

4.31 and 4.33). They suggested that the correlations seen were secondary to two outliers 

in the dataset.  

The analysis was repeated following removal of these two outliers who had 

delta+theta/alpha+beta (EC) value >15.00. Following removal of the outliers, the EEG 

slowing measured by delta+theta/alpha+beta (EC) did not show significant correlations 

to total AHI (r=-0.05, p=0.7), arousal index (r=0.005, p=0.96) or NREM AHI (r=-0.024, 

p=0.8) (Figures 4.30, 4.32 and 4.34). 

  

Figure 4.29 Correlation between EEG 
slowing (delta+theta/alpha+ 
beta) EC and total AHI  

Figure 4.30 Correlation between EEG 
slowing (delta+theta/alpha+ 
beta) EC and total AHI 
(following removal of two 
outliers) 

 

Sleep efficiency and nocturnal hypoxia did not have an association with EEG slowing. 

Other EEG slowing measurements of theta/alpha and DFA scaling exponent did not 

show any correlation for all tested sleep study parameters. 
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Figure 4.31 Correlation between EEG 
slowing (delta+theta/alpha+ 
beta) EC and arousal index 

Figure 4.32 Correlation between EEG 
slowing (delta+theta/alpha+ 
beta) and arousal (following 
removal of two outliers) 

 

  

Figure 4.33 Correlation between EEG 
slowing (delta+theta/alpha+ 
beta) and NREM AHI  

Figure 4.34 Correlation between EEG 
slowing (delta+theta/alpha+ 
beta) and NREM AHI (following 
removal of two outliers) 

 

In summary, EEG slowing did not show any significant correlation to sleep study data 

of total AHI, NREM AHI, arousal index, nocturnal hypoxia or sleep efficiency. 
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4.3.2 Questionnaires for sleepiness (ESS and KSS)  

The EEG slowing measured by combined frequencies of delta+theta/alpha+beta EO 

(r=-0.2, P=0.01) and EC (r=-0.2, p=0.07) state or theta/delta during EO (r=-0.08, p=0.4) 

did not show any correlation with ESS. However, the theta/alpha densities during EC 

(r=-0.3, p=0.01) did show weak correlations but the direction of the association was 

opposite to what was expected. This was not clinically acceptable (worsened EEG 

slowing associated with improved sleepiness), therefore, it was not taken as a valid 

correlation. The DFA scaling exponent during eyes open (r=-0.2, p=0.1) and eyes 

closed (r=-0.13, p=0.3) states did not correlate with ESS (Appendix Table 9). 

Furthermore, the KSS score did not show correlations to PSA or DFA measurements of 

EEG slowing (Appendix Table 9) 

In summary, there was no significant correlation noted between EEG slowing measured 

by PSA or DFA and subjective self-rated sleepiness scores.  

4.3.3 AusEd driving simulator 

The AusEd driving simulator measured domains of steering deviation from the centre of 

the lane, steering deviation from the median lane position, speed deviation outside the 

60-80 km/h zone, mean breaking time in reaction to trucks, standard deviation of the 

reaction time, median reaction time in response to trucks and the number of crashes 

(Appendix Table 7). These parameters were correlated to the three measurements of 

EEG slowing as outlined above during the EO and EC states. 

Again, the same EEG slowing measurement as before (delta+theta/alpha+beta EC) had 

weak but statistically significant correlation to the mean reaction time in response to 

trucks (r=0.296, p<0.01) and the median reaction time (r=0.302 p<0.01). This 

relationship was explored further by using scatter plots (Figures 4.35 and 4.37). 

The same two outliers noted previously for the delta+theta/alpha+beta EC measurement 

also influenced these results. Following removal of the two outliers, the mean reaction 

time (r=0.063, p=0.6) and median reaction time (r=0.09, p=0.4) did not show significant 

correlations to the EEG slowing (Figures 4.36 and 4.38). The EEG slowing measured 
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by theta/alpha and DFA scaling exponent during the EO and EC states did not correlate 

with driving performance.  

  

Figure 4.35 Correlation between mean 
reaction time and EEG slowing 
(delta+theta/alpha+delta) 

Figure 4.36 Correlation between mean 
reaction time and EEG slowing 
(delta+theta/alpha+delta) 
(following removal of two 
outliers) 

 

  

Figure 4.37 Correlation between median 
reaction time and EEG slowing 
(delta+theta/alpha+delta) 

Figure 4.38 Correlation between median 
reaction time and EEG slowing 
(delta+theta/alpha+delta) 
following removal of two 
outliers 

 

In summary, EEG slowing measured by PSA and DFA did not show any correlation to 

driving performance. 
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4.3.4 Questionnaire for anxiety and depression (DASS and FOSQ) 

The depression and anxiety questionnaire and the functional assessment of sleep 

questionnaire were compared with EEG slowing measured by PSA and DFA methods. 

Again, the same EEG measurement delta+theta/alpha+beta (EC) demonstrated statically 

significant correlation with the DASS score for anxiety (r=0.297, p<0.01) (Appendix 

Table 10). However, the scatter plot below (Figure 4.39) showed that the correlation 

was a result of two outliers identified before changing the slope of line for best fit.  

Following removal of the outliers, the correlations of EEG slowing to DASS score for 

anxiety became non-significant (r=-0.09, p=0.4) (Figure 4.40). The other subgroups of 

the DASS questionnaire, including the score for stress and depression, did not show any 

correlations to the measurements of EEG slowing. The FOSQ score for vigilance did 

not show any correlation to EEG slowing either, as measured by all three methods 

during the EO and EC states. 

 
 

Figure 4.39 Correlation between EEG 
slowing (delta+theta/alpha+ 
beta) EC and DASS score for 
anxiety 

Figure 4.40 Correlation between EEG 
slowing (delta+theta/alpha+ 
beta) EC and DASS score for 
anxiety (following removal of 
outliers) 

 

In summary, the EEG slowing measurements with PSA and DFA were not associated 

with the DASS questionnaire or FOSQ scores.  
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4.3.5 Tests for performance  

Fourteen individual tests were performed to assess daytime functioning (Appendix 

Tables 11, 12 & 13). 

1. Attention: Four choice reaction test; finger tapping test; visual attention test; 

attention switching (trail marking test A) and sustained attention task. 

2. Tests for memory: Digit span; memory recall; and span of visual memory.  

3. Tests for executive functioning: Tower of London, trail marking test, Stroop test 

and Maze test. 

4. Verbal fluency: Spot the real word test; word generation (FAS test); and word 

generation (animal test). 

EEG slowing was measured using PSA measurements (delta+theta/alpha+beta and 

theta/ alpha) and DFA scaling exponent. 

The only positive results obtained from Pearson’s correlation coefficient were ‘spot the 

real word’ test. This test had a negative correlation to the EEG slowing measured by 

delta+theta/alpha+beta EC state (r=-0.247, p<0.05) (Figure 4.41).  

However, the scatter plot demonstrates that this result is again secondary to the one 

extreme outliers noted with this EEG measurement during the previous analysis. 

Following removal of the outlier, the correlations became non-significant (r=-0.12, 

p=0.24) (Figure 4.42). 
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Figure 4.41 EEG slowing measured by 
(delta+theta/alpha+beta) EC 
and spot the real word test 

Figure 4.42 EEG slowing measured by 
(delta+theta/alpha+beta) EC 
and spot the real word test 
(following removal of two 
outliers) 

 

In summary, the measured performance tests did not show any correlation to EEG 

slowing when measured using PSA or DFA. 

4.4 Assessing the relationship between PSA and DFA in 
awake EEG 

The DFA scaling exponent and PSA measurements measured by individual frequency 

densities had previously been shown to correlate well with each other (48). All 

frequencies of the power spectrum were shown to be either positive (delta power) or 

negative (alpha power) correlated to the DFA scaling exponent in both eyes closed and 

eyes open states. 

4.4.1 Comparing individual PSA frequencies to DFA scaling exponent 

In this dataset, the DFA scaling exponent was compared with individual delta, alpha, 

theta and beta power densities and correlations assessed using Pearson’s correlation co-

efficient (Table 4.6). There was a very strong positive correlation between the DFA 

scaling exponent and delta power during both eyes open (r=.800, p <0.01) and eyes 

closed (r=0.872, p<0.01) states.  
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There was a strong negative correlation between the DFA scaling exponent and alpha 

power in both eyes open (r=-.672, p<0.01) and eyes closed (r=-.788, p<0.01) states, 

which was in keeping with the previous published data (48). 

All other power spectrum densities were correlated significantly except for theta power 

when the eyes were open (r=0.064, p=0.579). 

Table 4.7 Pearson’s correlation of DFA scaling exponent versus individual 
power spectrum frequencies  

Comparison between KDT SE and individual power 
densities 

Pearsons correlation 
coefficient 

KDT EO Delta power EO r=0.80 
p<0.01 

 Theta power EO r=0.06 
p=0.56 

 Alpha power EO r=-0.67 
p<0.01 

 Beta power EO r=-0.43 
p<0.01 

KDT EC Delta power EC r=0.87 
p<0.01 

 Theta power EC r=-.26 
p=0.02 

 Alpha power EC r=-.79 
p<0.01 

 Beta power EC 
 

r=-.58 
p<0.01 

 

Comparing combined PSA frequencies to DFA scaling exponent 

Following this, the EEG slowing measured by combined PSA frequencies of 

delta+theta/alpha+beta and theta/alpha was correlated against the DFA scaling exponent 

to determine the correlations. This analysis was done for corresponding eyes open and 

eyes closed states of the DFA scaling exponent.  



62 

Table 4.8 Pearson’s correlation of DFA scaling exponent versus combined 
power spectrum frequencies 

EEG slowing measurement 
using PSA (EO) 

DFA (EO) 
EEG slowing measurement 

using PSA (EC) 
DFA (EC) 

Alpha/theta (EO) r=0.581 
p<0.0001 

Alpha/theta (EC) r=0.627 
p<0.0001 

Delta+theta/alpha+beta(EO) r=0.750 
p<0.001 

Delta+theta/alpha+beta (EC) r=0.683 
p<0.0001 

 

Comparing the relationship between the DFA scaling exponent and EEG slowing 

measured by PSA, there was an excellent correlation between the two measurements as 

demonstrated below. These relationships are consistent in both eyes open and eyes 

closed states (Table 4.7). A graphical representation of this correlation was made by 

using scatter plots and found the correlations to be robust (Figures 4.43, 4.44, 4.45 and 

4.46). 

  

Figure 4.43 Correlation between DFA and 
PSA measured by theta/alpha 
(EC) 

Figure 4.44 Correlation between DFA and 
PSA measured by theta/alpha 
(EO) 
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Figure 4.45 Correlation between DFA and 
PSA measured by delta+ 
theta/alpha+beta (EC) 

Figure 4.46 Correlation between DFA and 
PSA measured by delta+ 
theta/alpha+beta (EO) 

 

Correlating three EEG slowing measurements to performance testing 

Correlating to performance testing assessed the degree of agreement between three 

individual methods of EEG slowing. Steering deviation from the left lane was taken as a 

random outcome measure. All three methods of EEG slowing showed similar 

correlations although the numerical value for the correlation coefficient was not 

identical (Table 4.8) and the correlations were not statistically significant. 

Scatter plots were used to demonstrate the similar trend between the three methods of 

EEG slowing even though the correlation was not significant (Figures 4.47, 4.48 and 

4.49).  

Table 4.9 Comparing three EEG slowing methods and the steering deviation 
test 

EEG slowing during Steering deviation from the left lane. 

Delta+theta/alpha+beta EO  r=-0.14, 

Theta/alpha manual EO r=-0.15 

DFA Eyes Open  r=-0.13 
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Figure 4.47 Correlation between PSA (delta+theta/alpha+beta) EO and steering deviation

 

 

Figure 4.48 Correlation between PSA (theta/alpha) EO and steering deviation 

 

 

Figure 4.49 Correlation between DFA scaling exponent (EO) and steering deviation 
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5. DISCUSSION 

5.1 Summary of Findings 

Overall, DFA and PSA look at the same effect of EEG slowing in different ways, that 

is, measuring EEG fluctuations versus EEG frequencies respectively. During a 

comparison of the two artefact removal methods using multiple statistical tests, PSA 

metrics were found to be vulnerable to the influence of artefacts in contrast to the novel 

EEG analysis method DFA which was far superior to PSA metrics in withstanding 

artefact. When a statistically significant result was present, both manual and ICA 

artefact removal methods produced identical results with DFA but not with PSA. 

The battery of performance testing gave statistically significant but weak correlations 

only with one measurement of EEG slowing: delta+theta/alpha+beta EC. Further 

exploration of these correlations using scatter plots demonstrated that positive results 

were due to two significant outliers. Following removal of the outliers, no significant 

association between EEG slowing and performance testing was found. 

5.2 Comparing two methodologies of artefact removal 

When drawing inferences from EEG parameters, artefact removal is of paramount 

importance, as we should ensure that the waves analysed to ascertain drowsiness 

originates from the brain and not an artefact that occurred due to muscle movements and 

eyes blinks. 

Several methods of eye artefact removal have been noted in the literature. Berg and 

Scherg (67) in 1991 proposed a method of eye artefact removal using aspatio-temporal 

dipole model. In this method priori assumptions are made about the number of dipoles 

for blinks and other eye movements, which then led to inaccuracies in the dipole model 

that subsequently lead to inaccuracies in the contributions from EOG to EEG. To 

overcome this problem they later on proposed another technique for removing ocular 

artefacts, by using principal component analysis (PCA) (68). Here, EEG and EOG 
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signals were simultaneously collected while the subject performed standard eye 

movements and blinks. Then, a PCA of the variance in these calibration signals gave 

major components representing blinks and other eye movements. Corrected EEG data 

could be obtained by removing these components through the simple inverse 

computation. The PCA method was demonstrated to be superior to the spatiotemporal 

dipole model of removing eye artefacts (68). 

The problem noted with PCA was that it cannot completely separate some artefacts 

from cerebral activity, especially when they both have comparable amplitudes (69).  

The ICA method was originally proposed to solve this blind source separation problem 

to recover independent source signals (70). The ICA algorithms have since been used to 

separate neural activity from muscle and blink artefacts in spontaneous EEG data and 

had been shown to help tracking alertness (71). 

The two EEG artefact removal methods analysed here were ICA (automated) and 

manual scoring. During the eyes open state, artefacts are more troublesome as expected 

due to the eye blinking more frequently. 

With manual scoring, the ‘noisy’ epochs were stringently marked in order to obtain as 

‘clear’ a signal as possible. While this resulted in a clean measure of the EEG 

waveforms, a larger number of epochs had to be excluded from the analysis. During the 

eyes open state, 45% epochs were rejected while during the eyes closed state, only 14% 

were rejected. This carries the disadvantage of having sparse data for some patients who 

have more artefacts in the EEG. Due to the sparse data, the mean value of the ‘clean’ 

epochs may not be a true representation of all EEG epochs. Furthermore, the ‘clean’ 

epochs alone may not be a true representation of all the EEG data of that patient. 

This shows the obvious advantage in using ICA as an artefact removal method because 

ICA does not ‘reject’ epochs. Instead it identifies the artefactual waveforms by using a 

reference from the EOG and ‘corrects’ the EEG waveform. Therefore, all measured 

epochs were included, making the full use of the EEG data which would provide a more 

reliable EEG representation for that patient. 
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The gold standard measurement for artefact removal is by manually scoring individual 

epochs. Given the above advantage of increased power in measurements, as well as the 

ability to analyse large amounts of data in a short time in a consistent pattern, ICA could 

be an alternative to manual scoring of artefacts. Hence, it is important to establish the 

interchangeability and degree of agreement between ICA and manual scoring.  

A literature review identified several statistical methods that measure the agreement 

between two measurements, as is the case with this study. Students’ t-tests, effect size 

measurement, intra-class correlation coefficient measurement, Bland-Altman plots and 

Pearson’s correlation coefficient were described as statistical methods that were used to 

compare agreement between two measurements. However, all statistical methods had 

their inherent limitations and a single superior method was not found. Because all 

methods for the measurement of agreement have limitations, the overall impression 

given from several statistical approaches were thought to give a better measure of 

reliability and agreement (72). However, it is also important to realise that there are 

specific drawbacks in every method. Hence, when interpreting the results of an 

individual statistical method, the applicability of that result depends on the clinical 

context (73).  

Throughout this discussion the comparison is made between 10 EEG waveforms 

measured by ICA and manual artefact removal methods, namely delta power EO/EC, 

theta power EO/EC, alpha power EO/EC, beta power EO/EC and DFA scaling exponent 

EO/EC (Table 4.1). 

5.2.1 Paired t-test 

The paired t-test was measured for 10 EEG waveforms, namely delta power, theta 

power, alpha power, beta power in EO and EC states, and the DFA scaling exponent EC 

and EO. Overall, there was a statistically significant difference in eight out of 10 

waveforms measured. This showed a definite difference of the arithmetic mean in eight 

out of the 10 EEG measurements. However, the mean difference between the two 

methods in each waveform was very small, ranging from 0.006 to 0.089.  
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5.2.2 Effect size 

The effect size of the above difference is important to make clinical decisions, as 

statistical significance does not automatically imply clinical significance. The effect size 

varies from 0 to 1.0 based on Cohen’s article for interpreting effect sizes: a ‘small’ 

effect size is considered to be <0.20 (66). Calculating an effect size is also a good 

measure for a clinician to understand the magnitude of the effect to make a clinical 

judgement over a statistical value. With prior knowledge of the scale of a measurement, 

an effect size could be calculated clinically to be small, medium or large. In this data 

set, nine out of the 10 EEG measurements had a small effect size statistically and 

clinically. This indicates that although there was a statistically significant difference 

between the variables measured with the paired t-tests, the magnitude of the difference 

was small.  

Only beta power EO had a large effect size. Bland-Altman plots were used to explore if 

this large effect size of the beta power EO could be due to a random error or bias. 

However, beta waves (low amplitude, high frequency waves) are seen during 

wakefulness. When measuring drowsiness of an individual, the usual frequencies of 

interest are in the delta, theta and alpha ranges with beta activity being less relevant as it 

is a frequency of wakefulness rather than that of drowsiness. Beta activity is not 

commonly reported to be related to sleepiness, therefore, although there is a difference 

between manual and ICA markings of beta power, it may not be of relevance in the 

measurement of sleepiness.  

5.2.3 Pearson’s correlation coefficient 

To explore this noted difference in means during the paired t-test, the Pearson’s 

correlation coefficient was used. Pearson’s correlation coefficient assesses the closeness 

of the data to the line of best fit (74). Between manual and ICA measurements in each 

of the 10 EEG measurements, there was a significant correlation <0.001 in all 

waveforms measured. This was well demonstrated by the scatter plots showing a close 

relationship, which was stronger when eyes closed (range: r=0.871 to 0.954) to eyes 

open (range: r=0.609 to 0.783). This reflects a larger number of artefacts during the EO 
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state than the EC state. This correlation was much greater for DFA during both EO 

(r=0.773) and EC (r=0.898) than PSA metrics in keeping with the known robustness of 

the scaling exponent to withstand artefacts. 

5.2.4 Intra-class correlation coefficient (ICC) (2-way mixed model for 
agreement) 

The two artefact removal methods look at the same population, extracting the results for 

the same 10 EEG measurements. Hence, the results from the two methods should show 

agreement for them to be interchangeable in clinical practice. The intra-class correlation 

coefficient was used to assess this. 

McGraw and Wong defined the intra-class correlation coefficient for assessing 

agreement. The measurement obtained could be ICC for consistency or ICC for absolute 

agreement; this was either by excluding or not excluding the observer variance from the 

denominator mean square, respectively (75). The systematic variability due to observers 

is irrelevant for ‘ICC for consistency’ and relevant for ‘ICC for agreement’. The ICC 

ranges from 0 (no agreement) to 1 (perfect agreement), but it can be negative. 

Consequently, ICC values have no absolute meaning but the cut-off value of 0.75 

proposed by Fleiss (76) is used to signify a good agreement. This cut-off value had 

been disputed by another group led by Lee who argued that the absolute agreement in 

interclass correlation coefficient is considered interchangeable only when r>0.75, as 

well as the lower limit of 95% of CI for ICC is >0.75% (77). 

All 10 EEG measurements showed statistically significant correlations between the two 

artefact removal methods used. The analysis of EEG frequencies in delta, theta, alpha 

and beta EC/EO states showed a variable correlation between 0.2 and 0.8 between the 

two methods. Both EO and EC states had similar correlations. The tightest correlations 

were noted during DFA analysis (EO 0.8, EC 0.85). Again, this is a measure of the 

robustness of DFA to withstand artefact, hence, giving comparable results irrespective 

of the methodology used for artefact removal.  

An important limitation of ICC is that it is strongly influenced by the variance of the 

trait in the sample in which it is assessed (78). This may explain the lesser correlation 
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expressed by power spectrum parameters (lesser variability of the sample) versus the 

stronger correlation expressed by DFA measures showing a greater variance. 

5.2.5 Bland-Altman plots 

To assess agreement between two methods of clinical measurement, Bland and Altman 

proposed the limits of agreement approach (79). They emphasised that neither the 

paired t-test nor the intra-class correlation is appropriate for validating the 

interchangeability of two measurement methods and proposed using the mean of the 

two measurement methods to be plotted against the standard deviation of the difference 

between the two methods. 

Based on limits of agreement, deciding whether the agreement is acceptable or not is 

always clinical and not a statistical judgement because there is no measure of what a 

‘good’ agreement is (73). In general, the tighter the scatter around the mean difference, 

which demonstrates a narrower 2SD for that measurement, shows smaller difference 

between the measurements.  

The other important information that can be derived from the Bland-Altman plots are to 

ascertain if there is a systematic bias, as well as clarifying if the scatter about the mean 

difference increases as the magnitude of the measurement increases. 

The PSA metrics show a tight scatter around the mean difference. This tightness is more 

during the EC state than the EO state, therefore, demonstrating increased artefacts 

occurring during the EO state and PSA metrics vulnerability to artefacts during the EO 

state. The beta power EO shows most scatter around the mean in keeping with wider 

limits of agreement. The beta power EO (Figure 4.7) also demonstrates that there is 

existence of systematic bias. 

Once again, irrespective of the eyes closed or eyes open state, the DFA scaling exponent 

has very tight scatter around the mean with very small (95%) confidence interval of the 

mean difference. This shows the robustness of DFA to artefact. For the same reason, the 

EO and EC states give similar results in DFA. 
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5.2.6 Comparing manual and ICA measurements to performance test 
results 

All the above tests show that there is a significant arithmetic mean difference between 

the two methodologies of artefact removal in each of the EEG measurements. The effect 

size of this difference is small and a tight correlation exists between the two 

methodologies. This was explored further to identify if a statistically significant 

difference was clinically significant as well. 

PSA (using ICA and manual) versus a performance test with a significant 
association  

The results obtained for EEG slowing by using combination PSA frequencies of delta 

and theta over alpha and beta were correlated to performance testing. Positive results 

were obtained only from the AusEd driving simulator task domains of mean reaction 

time and median reaction time. (See Section 5.2 for EEG measurements and 

performance testing results.) 

The statistically significant correlations to the performance testing measured by PSA 

using either manual or ICA artefact removal method demonstrated results of similar 

trend. For example, the mean reaction time to braking in response to trucks ICA EC 

r=0.23, manual r=0.29. Median reaction time in response to trucks ICA EC r=0.24, 

manual EC r=0.3 

DFA (using ICA and manual) versus a performance test with a significant 
association  

When correlating the DFA to performance testing, a statistically significant result was 

noted only during the finger tapping test and four-choice reaction time (Section 5.2). 

The correlation was weak, however, when the DFA was obtained from the manual and 

ICA artefact removal methods were compared to the performance testing, identical 

correlations were obtained. There was no difference between the EO and EC states, and 

the trend was always the same, for example, finger tapping test ICA EO r=0.41, manual 

EO r=0.41; four choice reaction time ICA EC r=-0.26, manual EC r=-0.26. 
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Hence, with both manual and ICA artefact removal methods used, the DFA gave similar 

results for correlation to performance tasks. This was in keeping with previous research 

published by our group in validating the use of ICA as an artefact removal method in 

calculating DFA (48).  

This again showed how the novel EEG measurement DFA can withstand isolated 

artefacts like eye blinks without much influence on the outcome of the DFA 

measurement, hence, making it a very robust to artefacts.  

5.3  Using EEG as a method of assessing performance in OSA 
patients 

Impairment of vigilance in OSA patients was shown to affect not just one specific task 

but impairment over a wide range of attention tasks. In this study, we used a range of 

performance tasks that could be categorised broadly into tasks of attention (AusEd 

driving simulator (35); four choice reaction test (36); finger tapping test (37); visual 

attention test (59); attention switching (trail making test A) (60) and sustained attention 

task), tasks of memory (digit span (61); memory recall, span of visual memory (62)), 

executive tasks (Tower of London (44), trail making test, Stroop test and maze test), 

and verbal fluency (spot the real word test (64), FAS test and the animal test). The aim 

of this study is to investigate if there is a correlation between EEG slowing (indicative 

of drowsiness/lack of vigilance) and impaired performance.  

For this component of the analysis, only the manual artefact removal method results 

were used due to the previously explained difference noted with ICA. 

EEG slowing was calculated using the following three methods:  

1. PSA – delta & theta power/alpha & beta power (EO and EC state) 

2. PSA – theta power/alpha power (EO and EC state) 

3. DFA – scaling exponent (EO and EC state) 
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In correlating the above-mentioned three EEG slowing measurements to performance 

testing only a few tests yielded correlations. All statistically significant correlations 

were noted only with PSA (delta+theta/alpha+beta) EC measurements. Positive 

correlations were noted for total AHI, NREM AHI, arousal index, DASS score for 

anxiety, mean reaction time, median reaction time of the breaking in response to trucks 

during the AUSEd driving task and spot the real word test. All correlations were 

statistically significant but weak. When these correlations were explored further by 

using scatter plots, it was obvious that there was influence from two outliers, drastically 

changing the line of best fit. When the analysis was repeated after removing the two 

outliers, all the above results became non-significant. Hence, all three EEG slowing 

measurements of delta+theta/alpha+beta, theta/alpha and DFA did not show any 

significant correlations over the 14 individual performance tasks and AusEd driving 

simulator task.  

The battery of testing contained an array of tests that had been previously tested on 

OSA patients and had been found to be impaired compared to the controls (35, 36, 37, 

55, 56, 57, 81). Therefore, the correct tests had been applied, but none of the 

performance tests showed any significant correlation to EEG slowing. The possible 

explanation for a negative finding is outlined below.  

Firstly, performance testing was carried out the day after the awake EEG testing. Hence, 

the lag time between EEG testing from which we obtained measurements for EEG 

slowing and the actual performance test was about 15 hours. This may explain the lack 

of relationship. 

Secondly, the tests were carried out between 9 am and 12 noon after a full night’s sleep 

and at a time when the homeostatic drive for sleep was at its nadir, thus possibly 

contributing to improved performance during the testing period and attenuating the 

ability of a test to detect impairment. 

Thirdly, the inter individual variability that could occur during neurocognitive testing 

may have contributed to a negative study (80). 
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Finally, because testing was done under ‘controlled’ conditions, it did not give a true 

indication of how a participant would behave in real life when participants could be 

sleep-restricted and possibly had varying degrees of alcohol consumption that would 

impair their performance the next day. Add to this personal factors such as children, 

pets and environmental noises that impair sleep. These conditions were artificially 

controlled during the testing period, possibly leading to improved performance. This 

assumption is not applicable to all patients. Furthermore, some patients may have done 

the test poorly due to the first night effect in the laboratory resulting in more fragmented 

sleep with less sleep efficiency.  

The driving performance task did not yield positive results after dismissing the 

influential outliers, even though the driving performance task was executed soon after 

the 5-minute recording of awake EEG. Hence, the test was conducted in the evening 

(between 1600 and 1900 hours) when the participants have been awake throughout the 

day, the homeostatic sleep drive was high and the lag time between the EEG 

measurement and the tests was small.  

It could be determined that the test was not sensitive enough because it lasted only 30 

minutes. If the driving test was prolonged, a more positive result would be achieved as 

previously published data demonstrating significant driving impairment in OSA patients 

had utilised the driving task of more than 60 minutes (81). Another reason for a lack of 

positive results was that this was a simulated computer task and not a real life situation, 

hence, patients may not have the same level of motivation to perform at their best when 

their physical safety is not at risl. The breaking to trucks only appeared 10 times during 

the entire period, hence, this domain does not measure the attention during the total 

driving period.  

Once again, measuring EEG activity at the time of the task would give a more accurate 

understanding in correlation to performance. However, the disadvantage would be the 

marked muscle and eye blink artefact that would be expected in the EEG when the 

subject is constantly moving his/her eyes and head.  
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The performance tests were correlated against the subjective sleepiness scores of KSS 

and ESS, both of which did not show any correlation to performance. The anxiety and 

depression score, as well as the FOSQ score, failed to show correlation to performance 

testing as well. All sleep study data that was compared, including the total 

apnoea/hypopnea index; arousal index and nocturnal hypoxia did not correlate 

significantly to performance testing.  

5.4 Comparing the use of the novel method of EEG slowing 
(DFA scaling exponent) with PSA metrics  

The EEG slowing measured by activity in individual PSA densities correlated well with 

DFA measurements. There were strong positive correlations to delta activity and a 

negative correlation to alpha activity in keeping with previously published research 

(40). This shows that the DFA scaling exponent increases with an EEG indicator of 

increased drowsiness, and decreases with increased alertness. 

The EEG slowing measured by using combined PSA densities were then compared with 

the novel method of the DFA. DFA has very good correlation to both PSA measures of 

EEG slowing (delta+theta/alpha+beta) as well as (theta/alpha) when assessed using 

Pearson’s correlation coefficient. The combined power densities of PSA showed 

consistently tighter correlation than the individual power densities measured. 

There were not adequate statistically significant results to say which EEG slowing 

measurement is the most sensitive in detecting performance impairment.  

The use of EEG as a measure of sleepiness or of performance ability should be explored 

further with more sensitive measures of performance, for example, extended driving 

tests as the results of this study did not yield adequate statistically significant results to 

draw a conclusion. 

However, the results are sufficiently convincing to use the ICA in place of manual 

scoring for artefact removal during DFA measurements. This is not recommended for 



76 

PSA as identical results were not obtained for both scoring systems and further 

validation in a group of patients with more positive results are required. 

5.5 Limitations 

The limitations are as follows: 

1. During manual scoring of the awake EEG, almost 50% of the epochs were 

excluded during the EO state. As there were only two minutes of recording in 

total per EO/EC state, 50% would include only one minute of recordings. This 

exclusion facilitated analysis of a clear signal but reduced the precision of the 

measurement. 

2. For some tasks, a greater time separation between EEG recording and 

performance testing may have attenuated any association between EEG and 

measured performance. While some tasks such as the driving task were 

performed within minutes of the EEG recording, many other tests were 

performed the next morning approximately 12 hours later. Timing of the EEG 

acquisition may also influence the test results as there is evidence to suggest a 

presence of diurnal variation in the cortical quantitative EEG (82, 83). 

3. Individual tests may not have been conducted in optimal conditions to show 

performance impairment in the patients tested. Firstly, some tasks were 

performed in the morning when the homeostatic and circadian drive to sleep was 

at its nadir. Secondly, the tasks may not have been sufficiently challenging. The 

AusEd task was applied for 30 minutes. While this testing duration has been 

shown to be sensitive to the effects of sleep loss (35), a recent study has found 

that a 90-minute drive to be better in revealing differences in performance 

between patients (81).  

4. All tests were performed in laboratory conditions that do not simulate real life 

occurrences, therefore, the results may have been adversely affected. 
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5.6 Future needs 

The future needs are as follows: 

1. Using an effective CPAP for a period of time and measuring the EEG slowing, 

comparing the pre- and post-treatment values would give a good indicator as to 

the benefit of treatment in improving vigilance.  

2. If manual artefact removal was to be used, increasing the duration of the awake 

EEG to 7.5 minutes as opposed to five minutes would give a larger sample of 

epochs to be included in the measurement, thus increasing the precision of the 

measurement. 

3. This current study has identified DFA as a measure that is robust to artefacts 

sustained during a recording done at rest while awake, however, the EEG testing 

should be performed while the task is being performed in order to accurately plot 

how EEG slowing is associated with performance. 

4. If a participant’s usual circumstances can be simulated, for example, alcohol 

intake and the usual number of hours in bed, more realistic measures of the 

performance testing can be acquired. 

5. More sensitive results would have been expected if the AusEd driving task was 

extended. 

6. This study group had an AHI ranging from 0 to 112. Patients with AHI <5 were 

not considered to have significant sleep disordered breathing. Hence, excluding 

patients with AHI <5 may have given performance data of a more robust OSA 

group. 

7. In this study, all patients diagnosed with OSA were invited to participate in the 

project. If a selective group was chosen with known daytime impairment such as 

previous MVA, higher ESS or higher AHI, the performance results may have 

been more significant. 
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6. CONCLUSION 

6.1 Comparison of manual versus ICA artefact removal 
methods 

In this study, two electroencephalographic artefact removal methods were compared: (i) 

manual ‘gold standard’; and (ii) automated method based on Independent Components 

Analysis. Ten EEG measurements were explored, of which eight used power spectral 

data measuring different EEG frequencies of delta (0.5-4Hz), theta (4-8Hz), alpha (8-12 

Hz) and beta (12-25Hz) in both eyes open and eyes closed states. The other two EEG 

measurements were from a novel measure, the DFA scaling exponent, which measures 

the randomness or fluctuations of the EEG signal. 

No single statistical method has been proven to be superior in identifying the 

interchangeability of two methods of measurement. Combined impressions from a 

number of statistical tests were encouraged to draw clinical conclusions. When 

comparing manual versus ICA artefact removal methods by using a paired t-test, there 

was a statistically significant difference between the two measurements in eight of the 

10 EEG waveforms measured. However, the calculated effect sizes and the difference 

between the means were small. The only exception to this was the comparison for beta 

power EO state, which showed a large effect size. The Bland-Altman plots 

demonstrated a tight scatter around the mean difference in all EEG measurements 

except for beta power EO. The examination of the beta power EO plot showed that the 

measurements are scattered around the mean, but with a higher mean difference. There 

is also systematic bias that would explain the higher effect size noted previously. Since 

the beta frequency range is of less interest in investigating drowsiness with changes 

more frequently described in the lower frequencies, this would not affect the overall 

measurements of drowsiness, which is measured by slower waves of delta and theta.  

Pearson’s correlation coefficient and intra-class correlation coefficient for agreement 

demonstrated good agreement between the manual and ICA artefact removal methods in 

all 10 EEG measurements. A tighter relationship was demonstrated during the EC state 

compared to the EO state, and correlation was greater for DFA than for PSA 
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measurements. This implies that the influence of artefact on the measured parameters 

was less during the eyes closed state, and also that DFA was a more robust 

measurement compared to PSA metrics in withstanding artefacts.  

The intra-class correlation further strengthens this argument and showed a near perfect 

absolute agreement between the ICA and manual artefact removal methods in 

measuring DFA. This correlation was less strong for PSA metrics.  

Overall, DFA and PSA look at the same effect (EEG slowing or drowsiness) in different 

ways, measuring fluctuations of EEG versus measuring EEG frequency respectively. 

PSA metrics are vulnerable to the influence of artefacts as eye blinks and muscle 

movements create larger waves with slower frequencies similar to the delta wave 

frequency. In contrast, the novel EEG analysis method, DFA, is far superior to PSA 

metrics in withstanding artefact. This robustness was proven during comparison of the 

two artefact removal methods that showed perfect interchangeability when measuring 

DFA with either artefact removal method, but not PSA. 

Next, an attempt is made to look at the clinical applicability of the results obtained from 

the two artefact removal methods. To do this, each artefact removal method was 

correlated to the performance testing.  

With use of PSA, when a statistically significant correlation was observed a similar 

trend was observed regardless of whether artefact removal was performed automatically 

by ICA or manually, although the exact correlation coefficient numerical value was 

slightly different. 

With the use of DFA, when a statistically significant correlation is present, the manual 

and ICA methods derived identical results.  

Our group had previously validated the use of ICA by comparing DFA to performance 

testing in a group of normal controls using both methods of manual scoring and ICA, 

demonstrating comparable results (48). The result of this study where the ICA was used 
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in 83 patients with OSA is consistent with the previous results, and strengthens the 

validation of ICA use in OSA patients in giving similar results when using DFA.  

This current study shows that ICA and manual artefact removal can be interchangeably 

used in extracting DFA measurements with confidence.  

The PSA metrics have shown to be highly influenced by artefact, hence 

interchangeability of artefact removal methods is not advisable. When analysing PSA 

metrics, only the manual artefact removal method should be used. 

6.2 Comparison of EEG slowing with performance testing 

The battery of performance testing yielded weak but statistically significant positive 

results only with delta+theta/alpha+beta EC in tasks of AusEd driving test parameters of 

mean reaction time and median reaction time to trucks and spot the real word test, the 

total AHI, NREM AHI, arousal index and the DASS score for anxiety. When the 

correlations were explored further with scatter plots, it was evident that the above 

results were due to two influential outliers. Following removal of these outliers, no 

significant association between EEG slowing and the other variables was found.  

Hence, there were no significant correlations between the 10 EEG metrics examined, 14 

individual performance tests and the AusEd driving task. This is despite choosing a set 

of individual tests previously reported to demonstrate performance impairment in OSA 

patients. The lack of significant impairment in performance may be due to the lag time 

between the awake EEG recording that was done in the evening and performance tests 

that were conducted in the morning on the following day, the reduced homeostatic drive 

to sleep at the time of testing (9 am) and the modified laboratory conditions that would 

have either improved or disrupted the participant’s sleep, as well as using the AusEd 

driving task that was too short in duration, therefore, reducing its sensitivity to detect 

performance impairment. 

It is possible that measuring the awake EEG at a greater temporal proximity to task 

performance would give a better understanding of the electrophysiological state of the 
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brain at that time and hence provide a better indicator of the impairment of task 

performance. For example, if EEG were measured at the time of driving, a stronger 

association between EEG slowing and driving task performance may have been 

obtained. The main disadvantage of this strategy would be the increased artefacts that 

one would expect with eye blinking and head movement. We would expect data like 

this to be best analysed using a DFA scaling exponent due to its resilience to withstand 

artefacts. 

It is not known what causes EEG slowing in OSA patients. This study found that there 

was no relationship to subjective sleepiness, sleep study measures of arousal, nocturnal 

hypoxia or sleep apnoea severity, as defined by the AHI that would explain EEG 

slowing. 

The performance testing did not yield any statistically significant correlations with any 

measure of EEG slowing, hence, there is inadequate data to evaluate what method of 

EEG slowing is most sensitive to performance impairment.  

The novel DFA measurement is a robust measurement with minimal influence from 

artefacts. It is complementary to the currently used PSA metrics, especially during 

circumstances with increased artefacts. 

 

 



82 

BIBLIOGRAPHY 

1. Iber C, Israel S, Chesson Jr A, Quan S. The AASM manual for scoring of sleep 
and associated events: rules, terminology and technical specifications. 1st ed. 
Westchester, Illinois: American Academy of Sleep Medicine; 2007. 

2. Shneerson J. Sleep Medicine. 2nd ed. United Kingdom: Blackwell Publishing. 
2005. 

3. Stradling JR. Predictors and prevalence of OSA and snoring in 1001 middle aged 
men. Thorax. 1991; 46:85-90. 

4. Young T, Peppard PE, Taheri S. Excess weight and sleep-disordered breathing. J 
Appl Physiol. 2005; 99:1592-9. 

5. Mora R, Salami A, Passali FM, Mora F, Cordone M.P, Ottoboni S, et al. OSAS 
in children. International Journal of Pediatric Otorhinolaryngology. 2003; 
67:S229-S31 

6. Israel S. Gehrman P, Kripke DF, Stepnoswsky C, Mason W, Cohen-Zion M. 
Long-term follow up of sleep disordered breathing in older adults. Sleep 
Medicine. 2001; 2:511-6. 

7. Kuzminska M. Obstructive Sleep Apnoea – Is this a problem in elderly people? 
Postepy Nauk Medycznych 2011; 24(5):440-5. 

8. Redline S, Tishler PV. The genetics of sleep apnoea. Sleep Medicine Review. 
2000; 4(6):583-602. 

9. Chervin RD, Aldrich MS. The Epworth Sleepiness Scale may not reflect 
objective measures of sleepiness or sleep apnoea. Neurology. 1999; 52(1):125-
31. 

10. Redline S, Strauss ME, Adams N, Winters M, Roesbuck T, Spry K, Rosenberg 
C, Adams K. Neurophysiological functioning in mild sleep-disordered breathing. 
Sleep. 1997; 20(2):160-7. 

11. Rahaghi F, Basner RC. Delayed Diagnosis of Obstructive Sleep Apnea: Don’t 
Ask, Don’t Tell. Sleep Breath. 1999; 3(4):119-24. 

12. Lamphere J, Roehrs T, Wittig R, Zorick F, Conway WA, Roth T. Recovery of 
Alertness After CPAP in Apnea. Chest. 1989; 96:1364-67. 

13. Drager, Luciano F, Polotsky, Vsevolod Y, Lorenzi-Filho, Geraldo. Obstructive 
Sleep Apnoea An Emerging Risk Factor for Atherosclerosis. Chest. 2011; 
140(2):534-42. 

14. Calhoun DA, Harding SM. Sleep and hypertension. Chest. 2010; 138(2):434-43. 



83 

15. Neau JP, Paquereau J, Meurice JC, Chavagnat JJ, Gil R. Stroke and sleep 
apnoea: Cause or consequence? Sleep Medicine Review. 2002; 6(6):457-69. 

16. Vgontzas AN, Bixler EO, Chrousos GP. Metabolic disturbances in obesity 
versus sleep apnoea. Journal of Internal Medicine. 2003; 254:32-44. 

17. Zias N, Bezwada V, Gilman S, Chroneou A. Obstructive sleep apnoea and 
erectile dysfunction: Still a neglected risk factor? Sleep & Breathing = Schlaf & 
Atmung. 2009; 13(1):3-10. 

18. Yi-Hua Chena Y-H, Kang J-H, Lin C-C, Wang T, Keller JJ, Lin H-C. 
Obstructive sleep apnea and the risk of adverse pregnancy outcomes American 
Journal of Obstetrics and Gynecology. 2012; 206(2):136.e1-e5. 

19. He J, Kryger MH, Zorick FJ, Conway W, Roth T. Mortality and apnoea index in 
obstructive sleep apnoea. Chest. 1998; 94(1):9-14. 

20. Marin JM, Carrizo SJ. Mortality in Obstructive Sleep Apnea. Sleep Med Clin. 
2007; 593-601. 

21. Karimi M, Eder DN, Eskandari D, Zou D, Hedner JA, Grote L. Impaired 
vigilance and increased accident rate in public transport operators is associated 
with sleep disorders. Accident Analysis and Prevention. 2013; 51:208-14. 

22. Engleman H, Joffe D. Neurophysiological function in obstructive sleep apnoea. 
Sleep Medicine Review. 1999; 3:59-78. 

23. Mazza S, Pepin JL, Naegele B, Plante J, Deschaux C, Levy P. Most obstructive 
sleep apnoea patients exhibit vigilance and attention deficits on an extended 
battery of tests. The European Respiratory Journal: Official journal of the 
European Society for Clinical Respiratory Physiology. 2005; 25(1):75-80. 

24. Beebe DW, Gozal D. Obstructive sleep apnoea and the pre-frontal cortex: 
Towards a comprehensive model linking nocturnal upper airway obstrcution to 
daytime cognitive and behavioural deficits. Journal of Sleep Research. 2002; 
11:1-16. 

25. Beddard MA, Montplaisir J, Richer F, Rouleu I, Malo J. Obstructive sleep 
apnoea syndrome: pathogenesis of neurophysiological deficits. J Clin Exp 
Neuropsychology. 1991; 13:950-64. 

26. George CF. Sleep apnoea, alertness and motor vehicle crashes. American Journal 
of Respiratory and Critical Care Medicine. 2007; 176:954-6. 

27. Tregear S RJ, Schoelles K, Phillips B. Continuous positive airway pressure 
reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: 
systematic review and meta-analysis. Sleep. 2010; 33(10):1373-80. 



84 

28. Lindberg E, Carter N, Gislason T, Janson C. Role of snoring and daytime 
sleepiness in occupational accidents. American Journal of Respiratory and 
Critical Care Medicine. 2001; 164:2031-5. 

29. Sagaspe P, Taillard J, Chaumet G, Guilleminault C, Coste O, Moore N, et al. 
Maintenance of Wakefulness Test as a Predictor of Driving Performance in 
Patients With Untreated Obstructive Sleep Apnea. Sleep. 2007; 30(3):327-30. 

30. Fong SY, Ho CK, Wing YK. Comparing MSLT and ESS in the measurement of 
excessive daytime sleepiness in obstructive sleep apnoea patients. J Psychosom 
Res. 2005; 58(1):55-60. 

31. Johns MW. A new method for measuring daytime sleepiness: The Epworth 
sleepiness scale. Sleep. 1991; 14(6):540-5. 

32. Kaida K, Takahashi M, Akerstedt T, Nakata A, Otsuka Y, Haratani T, et al. 
Validation of the Karolinska sleepiness scale against performance and EEG 
variables. Clinical Neurophysiology. 2006; 117(7):1574-81. 

33. Weaver TE, Laizner AM, Evans LK, Maislin G, Chugh DK, Lyon K, et al. An 
instrument to measure functional status outcomes for disorders of excessive 
sleepiness. Sleep. 1997; 20(10):835-43. 

34. Lovibond SH, Lovibond PF. Manual for the Depression Anxiety Stress Scales. 
2nd.ed. Sydney: Psychology Foundation. 1995. 

35. Desai AV, Wilsmore B, Bartlett DJ, Unger G, Constable B, Joffe D, et al. The 
utility of the AusEd driving simulator in the clinical assessment of driver fatigue. 
Behav Res Methods. 2007; 39(3):673-81. 

36. Kinnari K, Peter JH, Pietarinen A, Groete L, Penzel T,Varri A, et al. Vigilance 
stages and performance in OSAS patients in a monotonous reaction time task. 
Clinical Neurophysiology. 2000; 111:1130-6. 

37. Casagrande M, De Gennaro L, Violani C, Braibanti P, Bertini M. A finger-
tapping task and a reaction time task as behavioral measures of the transition 
from wakefulness to sleep: Which task interferes less with the sleep onset 
process. Sleep. 1997; 20(4):301-12. 

38. Arand D, Bonnet M, Hurwitz T, Mitler M, Rosa R, Sangal B. The clinical use of 
MSLT and MWT. Sleep. 2005; 28(1):123-44. 

39. Pizza F, Contardi S, Mondini S, Trentin L. Daytime sleepiness and driving 
performance in patients with obstructive sleep apnea: Comparison of MSLT, the 
MWT and simulated driving task. Sleep. 2009; 32(3):382-91. 

40. Johns MW. Sensitivity and specificity of multiple sleep latency test (MSLT), the 
maintenance of wakefulness test and the Epworth sleepiness scale: Failure of the 
MSLT as the gold standard. J Sleep Res. 2000; 9:5-11. 



85 

41. Cajochen C, Brunner DP, Krauchi K, Graw P, Wirz-Justice A. Power Density In 
Theta/Alpha Frequencies Of The Waking EEG Progressively Increases During 
Sustained Wakefulness. Sleep. 1995; 18(10):890-4. 

42. Grenèche J, Krieger J, Erhardt C, Bonnefond A, Eschenlauer A, Muzet A, et al. 
EEG spectral power and sleepiness during 24h of sustained wakefulness in 
patients with obstructive sleep apnoea syndrome. Clinical Neurophysiology. 
2008; 119(2):418-28. 

43. Morisson F, Lavigne G, Petit D, Nielsen T, Malo J, Montplaisir J. Spectral 
analysis of wakefulness and REM sleep EEG in patients with sleep apnoea 
syndrome. European Respiratory Journal. 1998; 11:1135-40. 

44. Morisson F, Decary A, Petit D, Lavigne G, Malo J, Montplaisir J. Daytime 
sleepiness and EEG spectral analysis in apneic patients before and after 
treatment with continuous positive airways pressure. Chest. 2001; 119:45-52. 

45. Greneche J, Krieger J, Bertrand F, Erhardt C, Muzet A, Tassi P. Effect of 
continuous positive airways pressure treatment on the subsequent EEG spectral 
power and sleepiness over sustained wakefulness in patients with obstructive 
sleep apnea-hypopnea syndrome. Clinical Neurophysiology. 2011; 122:958-65. 

46. Mathieu A, Mazza S, Petit D, Decary A, Massicotte-Marquez J, Malo J, et al. 
Does age worsen EEG slowing and attention deficits in obstructive sleep apnoea 
syndrome? Clinical Neurophysiology. 2007; 118:1538-44. 

47. Kim JW, Shin H, Kim E, Koo Y, Choi C, Park KS, et al. Characteristic time 
scales of electroencephalograms of narcoleptic patients and healthy controls. 
Computers in Biology and Medicine. 2010; 40:831-8. 

48. D’Rozario A, Kim JW, Wong K, Bartlett D, Marshall N, Dijk D-J, et al. A new 
EEG biomarker of neurobehavioural impairment and sleepiness in sleep apnea 
patients and controls during extended wakefulness. Clinical Neurophysiology. 
2013; http://dx.doi.org/10.1016/j.clinph.2013.02.022. 

49. Jospin M, Caminal P, Jensen EW, Litvan H, Vallverdu M, Struys MMRF, et al. 
Detrended fluctuation analysis of EEG as a measure of depth of aesthesia. IEEE 
transactions on biomedical engineering. 2007; 54(5):840-6. 

50. Seely AJ, Macklem PT. Complex systems and the techonology of variability 
analysis. Crit Care. 2004;8:R367-84. 

51. Kobayashi K, Merlet I, Gotman J. Separation of spikes from background by 
independent component analysis with dipole modeling and comparison to 
intracranial recording. Clinical Neurophysiology. 2001; 112:405-13. 

52. Ille N, Berg P, Scherg M. Artifact correction of the ongoing EEG using spatial 
filters based on artifact and brain signal topographies. Clinical Neurophysiology. 
2002; 19:113-24. 



86 

53. LeVan P, Urrestaraz E, Gotman J. A system for automatic artifact removal in 
ictal scalp EEG based on independent component analysis and Bayesian 
classification. Clinical Neurophysiology. 2006; 117(4):912-27. 

54. Gratton G, Coles MG, Donchin E. A new method for off-line removal of ocular 
artifact. Electroencephalogr Clin Neurophysiol. 1983; 55:468-84. 

55. Risser MR, Ware JC, Freeman FG. Driving simulation with EEG monitoring in 
normal and obstructive sleep apnoea patients. Sleep. 2000; 23(3):1-6. 

56. Desai A, Marks GB, Jankelson D, Grunstein RR. Do Sleep Deprivation and 
Time of Day Interact with Mild Obstructive Sleep Apnea to Worsen 
Performance and Neurobehavioral Function? Journal of Clinical Sleep Medicine. 
2006; 2(1):63-70. 

57. Banks S, Catcheside P, Lack LC, Grunstein R, McEvoy RD. Low Levels of 
Alcohol Impair Driving Simulator Performance and Reduce Perception of Crash 
Risk in Sleep Restricted Subjects. Sleep. 2004; 27(6):1063-7. 

58. Krikorian R, Bartok J, Gay N. Tower of London procedure: a standard method 
and developmental data. J Clin Exp Neuropsychology. 1994; 16(6):840-50. 

59. Gunstad J, Cohen RA, Paul RH, Luyster FS, Gordon E. Age effects in time 
estimation: Relationship to frontal brain morphology. Journal of Integrative 
Neuroscience. 2006; 05(01):75-87. 

60. Reitan RM. The relation of the trail making test to organic brain damage. Journal 
of Consulting Psychology. 1955. 

61. Wechsler. Wechsler adult intelligence scale. 1981. 

62. Kessels RPC, Van Zandvoort MJE, Postma A, Kappelle L, Haan EHF. The Corsi 
Block-Tapping Task: Standardization and Normative Data. Applied 
Neuropsychology. 2000; 7(4):252-8. 

63. Stroop JR. Studies of interference in serial verbal reactions. Journal of 
Experimental Psychology. 1935; 18(643-662). 

64. Baddeley A, Emslie H, Nimmo-Smith I. The Spot-the-Word test: A robust 
estimate of verbal intelligence based on lexical decision. British Journal of 
Clinical Psychology. 1993; 32:55-65. 

65. Bland JM, Altman DG. Multiple significance tests: The Bonferroni Method. 
BMJ. 1995; 310(6973):170. 

66. Cohen J. Statistical power analysis for the behavioural sciences, 2nd ed. Erlbaum 
NJ: Hillsdale. 1988. 

67. Berg P, Scherg M. Dipole models of eye movements and blinks. 
Electroencephalography and Clinical Neurophysiology. 1991a; 79:36-44. 



87 

68. Berg P, Scherg M. Dipole models of eye activity and its application to the 
removal of eye artefacts from the EEG and MEG. Clinical Physics and 
Physiological Measurements. 1991; 12 (Supplement A):49-54. 

69. Lagerlund TD, Sharbrough FW, Busacker NE. Spatial filtering of multichannel 
electroencephalographic recordings through principal component analysis by 
singular value decomposition. Journal of Clinical Neurophysiology. 1997; 14:73-
82. 

70. Comon P. Independent component analysis: A new concept? Signal Processing. 
1994; 36:287-314. 

71. Makeig S, Bell AJ, Jung TP, Sejnowski TJ. Independent component analysis of 
electroencephalographic data. Advances in neural information processing 
systems. 1996; 8(145-151). 

72. Luiz RR, Szklo M. More than one statistical strategy to assess agreement of 
quantitative measurements may usefully be reported. J Clin Epidemiol. 2005; 
58(3):215-6. 

73. Santos CMN. Statistical methods for assessing agreement of measurements: 
Examples on obstetrics and gynecology. Protugal: Universidade do Porto. 2010. 

74. Lin LI. A concordance correlation coefficient to evaluate reproducibility. 
Biometrics. 1989; 45(1):225-68. 

75. McGraw K, Wong S. Forming inferences about some intraclass correlation 
coefficients. Psychological Methods. 1996; 1:30-46. 

76. Fleiss J. Design and Analysis of Clinical Experiments. New York: John Wiley & 
Sons. 1986. 

77. Lee J, Koh D, Ong CN. Statistical evaluation of agreement between two methods 
for measuring a quantitative variable. Computers in Biology and Medicine. 
1989; 19(1):61-70. 

78. Muller R, Buttner P. A critical discussion of intraclass correlation coefficients. 
Stat Med. 1994; 13(23-24):2465-76. 

79. Bland JM, Altman DG. A note on the use of intraclass correlation coefficient in 
the evaluation of agreement between two methods of measurement. Computers 
in Biology and Medicine. 1990; 30(5):337-40. 

80. Frey DJ, Badia P. Inter and intra individual variability in performance near the 
circadian nadir during sleep deprivation. J Sleep Res. 2004; 13:305-15. 

81. Vakulin A, Stuart D, Baulk PG, Catcheside NA, Antic CJ, Van Den Heuvel JD, 
et al. Effects of Alcohol and Sleep Restriction on Simulated Driving 
Performance in Untreated Patients with Obstructive Sleep. Annals of Internal 
Medicine. 2009; 151:447-55. 



88 

82. Cummings L, Dane A, Rhodes J, Lynch P, Hughes AM. Diurnal variation in the 
quantitative EEG in healthy adult volunteers. Br J Clin Pharmacol. 2000; 
50(1):21-6. 

83. Cajochen C, Dikj D. Electroencephalographic activity during wakefulness, rapid 
eye movement and non-rapid eye movement sleep in humans: Comparison of 
their circadian and homeostatic modulation. Sleep and Biological Rhythms. 
2003; 1:85-95. 

 

 



App 1 

APPENDICES 

Appendix 1 –Tables 

Table 1 Factors predisposing to OSA 

Factors Causes Example 

Obesity Menopause, lack of exercise, poor diet 

Hormonal factors Hypothyroidism 
Acromegaly 
Cushing’s syndrome 

Supine position  

Upper airway lesions Enlarged tonsils and adenoids 
Congenital laryngeal cysts and webs 
Crico-arytenoid arthritis 

Skeletal abnormality Retrognathia 
Micrognathia (Pierre Robin syndrome, 
Treacher –Collins syndrome) 
Marfan’s syndrome 
Mid face hypoplasia (Craniosynostes, 
Achondroplasia, Down’s syndrome 

Small upper 
airway 

Mucopolysaccharriodoses Hunter, Herler and Sachie sydnromes 

Sleep deprivation and sleep 
fragmentation 

 

Medication Benzodiazepam 
Opioids 

Alcohol  

Reduction of 
upper airway 
dilator muscle 
activity 

Neuromuscular conditions Strokes 
Cerebral palsy 
Arnold-Chairi malformations 
Prader-Willi Syndrome 
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Table 2 Epworth Sleepiness Scale 

 

 

Table 3 Karolinska Sleepiness Scale 

1 = extremely alert 

2 = very alert 

3 = alert 

4 = rather alert 

5 = neither alert nor sleepy 

6 = some signs of sleepiness 

7 = sleepy, but no effort to keep awake 

8 = sleepy, some effort to keep awake 

9 = very sleepy, great effort to keep awake 
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Table 4 Depression and Anxiety Stress Scale (DASS) 

1. I found it hard to wind down  0 1 2 3

2. I was aware of dryness of my mouth  0 1 2 3

3. I couldn’t seem to experience any positive feeling at all  0 1 2 3

4. I experienced breathing difficulty (e g, excessively rapid 
breathing, breathlessness in the absence of physical exertion) 

0 1 2 3

5. I found it difficult to work up the initiative to do things  0 1 2 3

6. I tended to over-react to situations  0 1 2 3

7. I experienced trembling (e g, in the hands)  0 1 2 3

8. I felt that I was using a lot of nervous energy  0 1 2 3

9. I was worried about situations in which I might panic and 
make a fool of myself 

0 1 2 3

10. I felt that I had nothing to look forward to  0 1 2 3

11. I found myself getting agitated  0 1 2 3

12. I found it difficult to relax  0 1 2 3

13. I felt down-hearted and blue  0 1 2 3

14. I was intolerant of anything that kept me from getting on 
with what I was doing 

0 1 2 3

15. I felt I was close to panic  0 1 2 3

16. I was unable to become enthusiastic about anything  0 1 2 3

17. I felt I wasn’t worth much as a person  0 1 2 3

18. I felt that I was rather touchy  0 1 2 3

19. I was aware of the action of my heart in the absence of 
physical exertion (e.g., sense of heart rate increase, heart 
missing a beat)  

0 1 2 3

20. I felt scared without any good reason  0 1 2 3

21. I felt that life was meaningless  0 1 2 3

 

0 Did not apply to me at all Never 

1 Applied to me to some degree or some of the time Sometimes 

2 Applied to me to a considerable degree, or a good part of the time Often 

3 Applied to me very much, or most of the time Almost always 
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Table 5 Functional Outcome of Sleep Questionnaire (FOSQ) 

FOSQ Test 

 Note: In this questionnaire, when the words “sleep” or “tired are used, it describes the 

feeling that you can’t keep your eyes open, your head is droopy, that you want to nod off 

or that you feel the urge to nap. These words do not refer to the tired or fatigued feeling 

you may have after you exercised. 

FOSQ questions are answered using numbers from 0 to 4 (see answer key below ): 

0= I don’t do this activity for other reasons 

1= Yes, extreme 

2= Yes, moderate 

3= Yes, a little, 

4=No  

 

 

 

Q1) Do you generally have difficulty concentrating on things you do because you are sleepy 

or tired? 

 0     1     2     3     4  

Q2) Do you generally have difficulty remembering things because you are sleepy or tired? 

 0     1     2     3     4  

Q3) Do you have difficulty finishing a meal because you become sleepy or tired? 

 0     1     2     3     4  

Q4) Do you have difficulty working on a hobby (for example: sewing, collecting, gardening) 

because you are sleepy or tired? 

 0     1     2     3     4  
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Q5) Do you have difficulty doing work around the house (for example: cleaning house, 

doing laundry, taking out the trash, repair work) because you are sleep or tired? 

 0     1     2     3     4  

Q6) Do you have difficulty operating a motor vehicle for short distances (less than 100 

miles) because you become sleepy or tired? 

 0     1     2     3     4  

Q7) Do you have difficulty operating a motor vehicle for long distances (greater than 100 

miles) because you become sleepy or tired? 

 0     1     2     3     4  

Q8) Do you have difficulty getting things done because you are too sleepy or tired to drive 

or take public transportation? 

 0     1     2     3     4  

Q9) Do you have difficulty take care of financial affairs and doing paperwork (for example: 

writing checks, paying bills, keeping financial records, filling out tax forms, etc.) 

because you are sleepy or tired? 

 0     1     2     3     4  

Q10) Do you have difficulty performing employed or volunteer work because you are sleepy 

or tired? 

 0     1     2     3     4  

Q11) Do you have difficulty maintaining a telephone conversation because you become 

sleepy or tired? 

 0     1     2     3     4  

Q12) Do you have difficulty visiting with you family or friends in your home because you 

become sleepy or tired? 

 0     1     2     3     4  

Q13) Do you have difficulty visiting with your family or friends in their homes because you 

become sleepy or tired? 

 0     1     2     3     4  
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Q14) Do you have difficulty doing things for your family or friends because you become 

sleepy or tired? 

 0     1     2     3     4  

 

(For Question 15, answer using only 1, 2, 3 or 4)  

Q15) Has your relationship with family, friends or work colleagues been affected because you 

are sleepy or tired? 

 1     2     3     4  

Q16) Do you have difficulty exercising or participating in a sporting activity because you are 

too sleepy or tired? 

 0     1     2     3     4  

Q17) Do you have difficulty watching a movie or videotape because you become sleepy or 

tired? 

 0     1     2     3     4  

Q18) Do you have difficulty enjoying the theatre or a lecture because you become sleepy or 

tired? 

 0     1     2     3     4  

Q19) Do you have difficulty enjoying a concert because you become sleepy or tired? 

 0     1     2     3     4  

Q20) Do you have difficulty watching television because you are sleepy or tired? 

 0     1     2     3     4  

Q21) Do you have difficulty participating in religious services, meeting or a group club 

because you are sleepy or tired? 

 0     1     2     3     4  

Q22) Do you have difficulty being as active as you want to be in the evening because you 

are sleepy or tired? 

 0     1     2     3     4  
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Q23) Do you have difficulty being as active as you want to be in the morning because you 

are sleepy or tired? 

 0     1     2     3     4  

Q24) Do you have difficulty being as active as you want to be in the afternoon because you 

are sleepy or tired? 

 0     1     2     3     4  

Q25) Do you have difficulty keeping a pace with others your own age because you are 

sleepy or tired? 

 0     1     2     3     4  

Q26) How would you rate yourself in your general level of activity?  

 0     1     2     3     4 

Q27) Has your intimate or sexual relationship been affected because you are sleepy or tired? 

 0     1     2     3     4  

Q28) Has your desire for intimacy or sex been affected because you are sleepy or tired? 

 0     1     2     3     4  

Q29) Has your ability to become sexually aroused been affected because you are sleepy or 

tired? 

 0     1     2     3     4  

Q30) Has your ability to have an orgasm been affected because you are sleep or tired? 

 0     1     2     3     4  

 

Table 6 Correlations between DFA with performance test (manual and ICA) 

DFA Eyes Open ICA 
Eyes Open 

Manual 
Eyes Closed 

ICA 
Eyes Closed 

Manual 

Finger tapping 
test 

r=0.41 
p<0.01 

r=0.41 
p<0.01 

r=0.27 
p=0.08 

r=0.29 
p=0.14 

Four choice 
reaction time 

r=-0.26 
p<0.05 

r=-0.17 
p=0.2 

r=-0.26 
p<0.05 

r=-0.26 
p<0.05 
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Table 7 Correlation between EEG slowing and AusEd driving simulation test  

Steering deviation 

EEG slowing 
Centre of the left 

lane 
Median lane 

position 

Speed deviation 
outside the 

60-80km/h zone 

Mean reaction 
time (braking in 

response to 
trucks) 

Standard 
deviation of 

reaction time 

Median reaction 
time 

Number of 
crashes 

Delta+theta/ 
alpha+betaEO 

r=-0.14 
p=0.2 

r=-0.12 
p=0.3 

     

Delta+theta/ 
alpha+betaEC 

r=0.12 
p=0.3 

r=0.16 
p=0.2 

r=0.08 
p=0.5 

r=. 296 
p=0.01 

r=-0.06 
p=0.6 

r=. 302 
p<0.01 

r=0.08 
p=0.5 

Theta/alpha EO r=-0.15 
p=0.2 

r=0.06 
p=0.6 

r=-0.1 
p=0.4 

r=-0.08 
p=0.5 

r=0.01 
p=0.9 

r=-0.11 
p=0.4 

r=0.12 
p=0.3 

Theta/alpha EC r=-0.07 
p=0.5 

r=0.11 
p=0.4 

r=-0.17 
p=0.2 

r=0.14 
p=0.2 

r=-0.03 
p=0.8 

r=0.13 
p=0.3 

r=0.15 
p=0.2 

DFA SE EO  r=-0.13 
p=0.3 

r=0.02 
p=0.9 

r=-0.13 
p=0.3 

r=-0.12 
p=0.3 

r=-0.14 
p=0.2 

r=-0.13 
p=0.3 

r=0.22 
p=0.1 

DFA SE EC r=0.02 
p=0.9 

r=0.04 
p=0.7 

r=-0.08 
p=0.5 

r=0.11 
p=0.3 

r=-0.03 
p=0.8 

r=0.10 
p=0.4 

r=0.08 
p=0.5 
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Table 8 Correlation between EEG slowing and sleep study data 

EEG slowing Sleep efficiency Arousal index 
Proportion of 

time below 90% 
NREM RDI REM RDI Total RDI 

Minimum 
saturations 

Delta+Theta/ 
Alpha+Beta) (EO) 

r=0.05 
p>0.05 

r=-0.17 
p>0.05 

r=-0.17 
p>0.05 

r=-0.21 
p>0.05 

r=-0.23 
p>0.05 

r=-0. 22 
p>0.05 

r=0.26 
p>0.05 

 Delta+Theta/ 
Alpha+Beta (EC) 

r=0.08 
p>0.05 

r=0.3 
p<0.01 

r=0.09 
p>0.05 

r=0.27 
p=0.01 

r=0.18 
p>0.05 

r=0.26 
p=0.01 

r=-0.09 
p>0.05 

Theta/alpha (EO) r=0.06 
p>0.05 

r=-0.29 
p>0.05 

r=-0.17 
p>0.05 

r=-0.33 
p>0.05 

r=-0.28 
p>0.05 

r=-0.34 
p>0.05 

r=0.19 
p>0.05 

That/alpha (EC) r=0.02 
p>0.05 

r=-0.02 
p>0.05 

r=-0.004 
p>0.05 

r=0.03 
p>0.05 

r=-0.01 
p>0.05 

r=0.02 
p>0.05 

r=-0.005 
p>0.05 

DFA (EO) r=0.08 
p>0.05 

r=-0.12 
p>0.05 

r=-0.08 
p>0.05 

r=-0.14 
p>0.05 

r=-.24 
p>0.05 

r=-0.15 
p>0.05 

r=0.09 
p>0.05 

DFA (EC) r=0.04 
p>0.05 

r=0.14 
p>0.05 

r=0.08 
p>0.05 

r=0.18 
p>0.05 

r=0.05 
p>0.05 

r=0.17 
p>0.05 

r=-0.11 
p>0.05 
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Table 9 Correlation between measurements of EEG slowing and self-rated 
questionnaires on sleepiness 

Measurement for EEG slowing ESS KSS 

Delta+theta/alpha+beta EO  r=-0.2 
p=0.06 

r=0.2 
p=0.2 

Delta+theta/alpha+beta EC  r=-0.2 
p=0.07 

r=-0.1 
p=0.4 

Theta/alpha manual EO r=-0.1 
p=0.5 

r=0.1 
p=0.4 

Theta/alpha manual EC r=-0.3 
p=0.01 

r=0.01 
p=0.9  

DFA scaling exponent EC r=-0.1 
p=0.3 

r=-0.01 
p=0.9 

DFA scaling exponent EO r=-0.2 
p=0.1 

r=0.1 
p=0.3 

 

 

Table 10 Correlation between EEG slowing and depression and anxiety scale 
and functional assessment of sleep questionnaire 

 FOSQ 
vigilance 

DASS score for 
depression 

DASS score for 
anxiety 

DASS score for 
stress 

Delta+theta/ 
alpha+beta EO 

r=-0.01 
p=0.92 

r=-0.04 
p=0.72 

r=-0.06 
p=0.6 

r=-0.03 
p=0.78 

Delta+theta/ 
alpha+beta EC 

r=0.09 
p=0.41 

r=0.09 
p=0.41 

r=0.297 
p<0.01 

r=0.11 
p=0.33 

Theta/alpha 
EO 

r=0.07 
p=0.51 

r=-0.14 
p=0.2 

r=-0.11 
p=0.34 

r=0.03 
p=0.77 

Theta/alpha 
EC 

r=0.22 
p=0.05 

r=0.05 
p=0.64 

r=0.06 
p=0.58 

r=0.03 
p=0.78 

KDT SE 
EO  

r=-0.05 
p=0.68 

r=0.04 
p=0.72 

r=0.01 
p=0.91 

r=0.04 
p=0.75 

KDT SE 
EC 

r=-0.02 
p=0.89 

r=0.09 
p=0.43 

r=0.17 
p=0.13 

r=0.06 
p=0.6 
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Table 11 (Part 1: Tests for attention) Correlation between EEG slowing and tests for performance 

Sustained attention 

 
Finger 
tapping 

dominant hand 

Finger 
tapping 

non-dominant 
hand 

4-choice reaction 
time 

Switching 
attention 

trail marking 
part A 

Longest sequence 
correctly completed 

No of incorrect 
responses 

Visual attention 
timing 

Delta+theta/ 
alpha+beta EO  

r=0.1 
p=0.3 

r=0.2 
p=0.1 

r=-0.1 
p=0.5 

r=0.12 
p=0.4 

r=-0.06 
p=0.6 

r=0.01 
p=0.9 

r=-0.15 
p=0.56 

Delta+theta/ 
alpha+beta EC 

r=0.03 
p=0.8 

r=0.1 
p=0.5 

r=-0.2 
p=0.2 

r=-0.03 
p=0.8 

r=-0.02 
p=0.9 

r=-0.03 
p=0.8 

r=-0.03 
p=0.78 

Theta/alpha EO r=0.2 
p=0.1 

r=0.22 
p=0.2 

r=-0.1 
p=0.5 

r=0.08 
p=0.6 

r=-0.04 
p=0.8 

r=0.04 
p=0.7 

r=-0.04 
p=0.7 

Theta/alpha EC r=0.06 
p=0.6 

r=0.13 
p=0.4 

r=-0.16 
p=0.2 

r=-0.2 
p=0.3 

r=-0.03 
p=0.8 

r= -0.02 
p=0.9 

r=-0.09 
p=0.45 

DFA EO r=0.2 
p=0.1 

r=0.4 
p=0.01 

r=-0.17 
p=0.2 

r=-0.1 
p=0.4 

r=0.09 
p=0.4 

r=0.163 
p=0.18 

r=0.11 
p=0.4 

DFA EC r=0.2 
p=0.3 

r=0.2 
p=0.1 

R-0.250 
p<0.05 

r=-0.2 
p=0.1 

r=0.08 
p=0.5 

r=-0.01 
P-0.9 

r=0.06 
p=0.6 
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Table 12 (Part 2: Tests for intelligence) Correlation between EEG slowing and tests for performance 

Stroop test Tower of London  
 
 
 

Switching 
attention 

trail marking Part 
B 

No. ofwords 
identified 

 

No. of colours 
identified 

 
No. of moves 

Average time 
taken to complete 

the task 

Maze test 

Delta+theta/ 
alpha+beta EO  

r=0.0 
p=1.0 

r=0.04 
p=0.7 

r=-0.02 
p=0.9 

r=0.02 
p=0.8 

r=-0.05 
p=0.6 

r=-0.03 
p=0.8 

Delta+theta/ 
alpha+beta EC 

r=0.07 
p=0.6 

r=0.04 
p=0.7 

r=-0.06 
p=0.6 

r=0.08 
p=0.5 

r=-0.07 
p=0.5 

r=0.1 
p=0.4 

Theta/alpha EO 
 

r=0.002 
p=0.98 

r=0.14 
p=0.25 

r=0.06 
p=0.6 

r=0.1 
p=0.3 

r=-0.01 
p=0.4 

r=0.05 
p=0.69 

Theta/alpha EC 
 

r=-0.01 
p=0.9 

r=0.08 
p=0.5 

r=0.05 
p=0.7 

r=0.1 
p=0.4 

r=-0.2 
p=0.2 

r=0.02 
p=0.9 

DFA Scaling 
Exponent EO 

r=0.03 
p=0.8 

r=0.27 
p<0.05 

r=0.1 
p=0.3 

r=0.1 
p=0.4 

r=-0.1 
p=0.4 

r=-0.02 
p=0.8 

DFA Scaling 
Exponent EC 

r=0.0 
p=1.0 

r=0.2 
p=0.11 

r=0.11 
p=0.4 

r=0.08 
p=0.5 

r=-0.09 
p=0.5 

r=-0.01 
p=0.94 
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Table 13 (Part 3: Tests for memory and verbal fluency) Correlation between EEG slowing and tests for performance 

Memory recall Word generation 

 
Span of 
visual 

memory 
Digit span R-digit spans Words 

correctly 
recognised as 
from the list 

No of words 
recalled over 

trials 1-4 

No of words 
recalled after 

25 mins 

FAS test 
 

Animal test 
 
 

Spot the real 
word test 

Delta+theta/ 
alpha+beta EO  

r=-0.02 
p=0.9 

r=0.05 
p=0.6 

r=-0.05 
p=0.7 

r=-0.1 
p=0.2 

r=0.2 
p<0.05 

r=0.1 
p=0.3 

r=0.1 
p=0.5 

r=0.07 
p=0.5 

r=-0.04 
p=0.7 

Delta+theta/ 
alpha+beta EC 

r=-0.09 
p=0.45 

r=-0.02 
p=0.9 

r=-0.2 
p=0.1 

r=-0.2 
p=0.1 

r=0.01 
p=0.9 

r=-0.2 
p=0.1 

r=-0.03 
p=0.8 

r=-0.03 
p=0.7 

r=-0.25 
p<0.05 

Theta/alpha EO r=-0.02 
p=0.9 

r=0.06 
p=0.6 

r=-0.12 
p=0.2 

r=0.01 
p=0.9 

r=0.03 
p=0.8 

r=0.04 
p=0.8 

r=-0.04 
p=0.7 

r=-0.04 
p=0.7 

r=-0.02 
p=0.8 

Theta/alpha EC r=-0.04 
p=0.7 

r=0.05 
p=0.6 

r=-0.09 
p=0.4 

r=-0.1 
p=0.6 

r=-0.04 
p=0.73 

r=0.04 
p=0.8 

r=-0.09 
p=0.4 

r=-0.09 
p=0.4 

r=-0.03 
p=0.8 

 DFA EO r=-0.01 
p=0.94 

r=0.1 
p=0.4 

r=-0.08 
p=0.5 

r=-0.08 
p=0.5 

r=0.08 
p=0.5 

r=0.02 
p=0.9 
-0.046 

r=0.1 
p=0.4 

r=0.1 
p=0.4 

r=-0.1 
p=0.4 

DFA EC r=-0.05 
p=0.7 

r=0.1 
p=0.2 

r=-0.07 
p=0.5 

r=-0.001 
p=0.9 

r=0.03 
p=0.8 

r=-0.05 
p=0.7 

r=0.1 
p=0.6 

r=0.06 
p=0.5 

r=-0.1 
p=0.4 
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Appendix 2: RPAH Zone Ethics Approval 

 


