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Summary 

Elastic fibres provide structural integrity and elasticity to tissues such as skin, lungs 

and blood vessels. The major component of elastic fibres is elastin, which is formed from its 

soluble precursor, tropoelastin. The tropoelastin nanostructure, which has only recently been 

described, is characterised by an elastic N-terminal coil region, a flexible hinge region, an 

exposed bridge region, and a cell-interactive C-terminal foot region. The process of 

assembling tropoelastin into elastic fibres, known as elastogenesis, consists of distinct stages 

of tropoelastin synthesis, coacervation, microfibrillar deposition, and cross-linking into 

mature, insoluble fibres. However, the contributions of specific structural regions in 

tropoelastin to elastic fibre assembly are insufficiently understood.  

 This thesis explores the functional significance of specific residues and regions in 

human tropoelastin. Mutant tropoelastin constructs were designed in which the R515 residue 

in the bridge region, the E345/E414 residues near the hinge region, or the D72 residue in the 

N-terminal region have been inactivated by alanine substitution. Another mutant construct 

that contains domain 22 (EX22), which is typically spliced out in the hinge region of native 

human tropoelastin, was also produced.  

As functional impairment of the R515A isoform has previously been reported in 

assays modelling individual stages of assembly, a system was optimised to define the 

elastogenic potential of R515A tropoelastin in a cellular environment. When added 

exogenously to human dermal fibroblasts and human retinal pigmented epithelium cells, 

R515A tropoelastin assembled less efficiently into elastic fibres possessing atypical 

morphology. This may be partially attributed to a significantly altered structure around the 

bridge and C-terminal regions.  

The E345A, E414A, E345A+E414A, D72A and EX22 constructs were extensively 

characterised de novo, via their ability to coacervate, to cross-link into hydrogels with 
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standard compositional and swelling properties, to interact with cells, and to form elastic 

fibres in elastogenic environments. All mutant constructs displayed varying degrees of 

impaired self-assembly. The solution shapes of the mutant species were further analysed to 

correlate their observed functional attributes to structural effects of the mutation/s. All 

mutant constructs possessed conformational changes consistent with their biochemical 

properties and the expected location of the mutation site.  

The results described in this work identify for the first time the role of several 

residues, or the advantage of specific domain exclusion, in maintaining the wild-type 

structure of human tropoelastin, and the importance of this native structure to normal 

tropoelastin assembly and function. 
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1. General Introduction 

1.1 Elastic fibres 

 Elastic fibres are a component of the extracellular matrix of vertebrate tissues such as 

blood vessels, lungs, skin, and elastic ligaments [1]. Elastic fibres have distinct tissue-

specific architectures, forming thin concentric lamellar sheets in vascular walls [2], large 

three-dimensional honeycomb structures in elastic cartilage, and highly-branched networks 

in lungs and skin [3, 4]. Apart from maintaining the structural integrity of elastic tissues [5, 

6], they also confer the elastic and recoil properties required for repetitive and reversible 

stretching during normal function [1, 2, 7].  

 Elastic fibres have been shown to consist of peripheral microfibrils and a core 

material identified as elastin [8-10]. Microfibrils are beaded structures 8-16 nm in diameter 

[6], and are composed of proteins such as fibrillins, matrix-associated glycoproteins, and 

fibulins [4]. Interspersed with the unbranched microfibrils is the elastin core, which 

comprises more than 90% of the elastic fibre [4, 11]. Initially, elastin was thought to be 

amorphous [12], but has since been described as hydrated, laterally-packed 5 nm-wide 

filaments [8, 13] with a twisted structure [14].  

 Elastin imparts the elastic properties of elastic fibres, as evidenced by the loss of 

tissue resilience in diseases arising from elastin mutations [15]. In addition, elastin also 

regulates various cellular processes. Its biological activity is supported by elastin knockout 

studies where phenotypic abnormalities cannot be attributed to loss of tissue elasticity alone 

[16]. Through interactions with cell receptors, elastin can promote the formation of actin 

fibres [2], inhibit smooth muscle cell proliferation [17], regulate cell migration [18], and 

facilitate arterial morphogenesis, vasodilation, and chemotaxis of monocytes [1, 19]. 
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1.2 Tropoelastin 

1.2.1 The ELN gene 

The elastin polymer is assembled from a soluble precursor known as tropoelastin [1, 

20]. Tropoelastin is coded by a single vertebrate-specific gene (ELN) [7, 21], believed to 

have coincided evolutionarily with the development of a closed, high pressure circulatory 

system [22]. The human ELN was mapped by in situ hybridisation to the q11.2 locus of 

chromosome 7 [23]. It has been sequenced [24] and its regulatory elements are well-

characterised [21, 25]. The tropoelastin gene sequence is highly repetitive [26] and contains 

numerous Alu repeats, which may contribute to the occurrence of disease due to frequent 

recombination events [4]. 

The human ELN spans 45 kb of genomic DNA [21]. Interspersed between large 

introns are 34 exons [4, 7], each coding for a hydropathically distinct domain [21]. Intron-

exon splice junctions are well-conserved and functionally equivalent [7, 21, 27, 28]. This 

allows extensive alternative splicing of almost 30% of exons [8], particularly exons 22, 23, 

24, 26A, 32, and 33 [29, 30]. For instance, exon 22 appears to be constitutively spliced out 

in tropoelastin transcripts of humans but not in other mammals [31-35]. Exon 26A is unique 

to the human ELN, but is commonly excluded [29, 31, 36] except in aged [4] or disease 

states [37]. The alternate usage of exons conceptually allows the production of functionally 

diverse tropoelastin isoforms from a single gene sequence [30], which is supported by the 

tight regulation of the splicing process [38]. To date, at least 13 human tropoelastin isoforms 

have been documented, which appear to be age-related [4] rather than tissue-specific [39, 

40]. 
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1.2.2 Sequence features of tropoelastin 

 Tropoelastin has alternating hydrophilic and hydrophobic domains [4]. This unique 

arrangement of domains has evolved convergently in elastomeric proteins, and if altered can 

significantly affect protein assembly and function [41, 42]. Hydrophilic regions are shorter 

[43] and possess lysines separated by proline or poly-alanine residues [27, 44], which give 

rise to the cationic nature of these domains [45, 46]. While hydrophilic regions are relatively 

conserved among species [27, 47], hydrophobic sequences are more variable. They 

commonly contain three- to nine-peptide repeats of glycine, valine, alanine, and proline in 

varying arrangements, which comprise up to 75% of the tropoelastin sequence [4, 28]. The 

hydrophobic peptides, when liberated from tropoelastin by protease digestion, are bioactive 

[36] and can stimulate the expression of matrix proteins including tropoelastin itself [48]. 

 Another distinct feature of tropoelastin is the C-terminal domain 36. Over 70% of its 

sequence is highly conserved among different species, particularly the terminal RKRK 

residues [24, 49]. The C-terminus contains both hydrophobic and highly basic residues, as 

well as the only two cysteines in the protein which are stabilised by a disulfide bond to 

create a positively-charged pocket [27, 50, 51]. The domain structure of human tropoelastin 

is illustrated in Figure 1.1. 
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Figure 1.1. Schematic representation of the domain structure of human tropoelastin 

obtained from [7]. Domains are traditionally numbered to maintain consistency 

between homologous domains in the bovine tropoelastin. Domains outlined in bold are 

subject to alternative splicing. 

 

1.2.3 Structure of tropoelastin 

 The earliest structural insights into elastin originated from infrared absorption and 

circular dichroism (CD) studies on α-elastin, a product derived from acid hydrolysis of 

elastin [52]. These reports indicated that solubilised elastin has a predominantly disordered 

structure. Nuclear magnetic resonance studies revealed that the majority of backbone 

carbonyl carbon atoms in the polypeptides are highly mobile [53]. Sequence-based structure 

prediction algorithms likewise estimated approximately 75% disorder in the structure of the 

tropoelastin monomer [54]. Subsequent CD and Raman spectroscopy studies on 

recombinant tropoelastin and elastin-like peptides also confirmed a large proportion of 

highly disordered regions, which were attributed to hydrophobic domains [54, 55]. 

 The abundance of disordered structures in tropoelastin, defined as a preferential 

adoption of transient local structural motifs over stably-bonded secondary structures, is 

manifested in the flexibility of the molecule [56]. Elastin-based polypeptides oscillate 

between different conformations in equilibrium, giving rise to a conformational ensemble 
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that includes β-turns, β-strands and polyproline II (PPII) structures [57-60]. PPII structures 

are defined by an absence of intramolecular and intermolecular hydrogen bonds, and can 

therefore interconvert into other conformations [58]. In a hydrated environment, tropoelastin 

presents a highly flexible form [54]. The structural dynamics of the elastin backbone is 

mainly achieved by the proportion of rigid proline and flexible glycine residues [61]. The 

steric constraints imposed by proline and the entropic disadvantage of glycine confinement 

determine the possible backbone conformations [56, 62]. The placement of recurring proline 

and glycine residues promotes the formation of labile β-turns, which contribute significantly 

to flexibility within the protein [63]. Accordingly, skewing the ratio of proline to glycine in 

elastic-like polypeptides has been shown to promote the formation of β-structure-rich 

amyloid-like fibrils, which show a greater degree of conformational restriction than the 

native elastin structure [62]. 

 In addition to PPII and other labile structures, the hydrophobic repeat units in 

tropoelastin also form more compact motifs such as short β-sheets or β-turns [27, 55, 64, 65]. 

In contrast, the hydrophilic domains are associated with a small percentage of α-helices [27, 

66-68]. The presence of independent clusters of structure in tropoelastin is consistent with 

the gradual unfolding transition observed upon urea treatment [54]. 

 Obtaining the tertiary structure of tropoelastin has been hindered by its inability to 

form resolvable crystals. In addition, the insoluble nature of polymerised elastin precludes 

the use of classical spectroscopic techniques [69]. Nevertheless, the binding of hydrophobic 

probes to tropoelastin and the ability of hydrophobic sequences to be cleaved in protease 

mapping experiments indicate the presence of solvent-exposed hydrophobic regions, which 

suggests that tropoelastin hydrophobic domains are not restricted to the core unlike classical 

globular proteins that have buried hydrophobic residues and solvent-contacting polar 
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residues [54, 70]. Furthermore, a large percentage of the monomer, including hydrophobic 

regions, remain partially accessible in the cross-linked elastin structure [71].  

 Small angle X-ray and neutron scattering analyses of recombinant human 

tropoelastin in solution revealed an extended asymmetrical shape with a long narrow rod 

from one terminus that branches into a larger region at the other terminus [72] (Figure 1.2). 

By comparing the solution structures of full-length tropoelastin and mutant isoforms 

truncated at various lengths from the N-terminus, specific domains were assigned to distinct 

spatial locations within the model. An elongated coil region encompasses the N-terminus to 

domain 18, and leads downstream to a spur containing domains 20-24 that corresponds to a 

predicted hinge region [73, 74]. The model shows a protrusion around domains 25-26 that 

was assigned as a bridge region, which connects to an open foot region at the C-terminus.  

 

Figure 1.2. Model of full-length tropoelastin with the proposed locations of the N-

terminal coil, spur and bridge regions, and the C-terminus. Obtained from [72].  

  

 The tropoelastin structure provides an indication of how the elastomeric properties of 

the protein are conferred [47, 69, 75]. The flexibility of the polypeptide chains contributes to 

the high entropy of the relaxed state. When elastin is stretched in an aqueous environment, 
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the hydrophobic sequences, most likely those in the coil region [72], become more exposed 

to the solvent and constrain the local order of water molecules [55]. This decrease in entropy 

acts as a driving force for spontaneous elastic recoil back to the native disordered state [76-

78].  

 

1.3 Elastogenesis 

 Elastogenesis refers to the assembly of tropoelastin monomers into elastic fibres. In 

the classical model, this process is marked by distinct stages of tropoelastin synthesis, 

coacervation, microfibrillar deposition, and cross-linking to form mature elastic fibres. A 

summary of the steps is illustrated in Figure 1.3. 
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Figure 1.3. The classical model of elastic fibre assembly. Tropoelastin is secreted by 

elastogenic cells and coacervate into assemblies that remain attached to the cell-surface 

until deposition onto microfibrils. Microfibrillar proteins recruit lysyl oxidase (LOX), 

which cross-links tropoelastin at specific lysine residues for the formation of stable and 

insoluble elastic fibres. Adapted from [7]. 
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1.3.1 Tropoelastin synthesis 

Tropoelastin is produced by elastogenic cells such as smooth muscle cells, 

endothelial cells and fibroblasts [1, 8] in response to stimuli, including mechanical stress [8], 

glucocorticoids, cytokines such as tumour necrosis factor- and interleukin-1 [79]. The 

rate of tropoelastin synthesis is age-dependent and maximal during perinatal development 

[80, 81]. While elastin synthesis in adults is minimal, it may be reactivated to repair 

damaged or degraded elastic fibres in aging and pathological conditions such as 

atherosclerosis and chronic obstructive pulmonary disease [82, 83]. 

Human tropoelastin is initially translated as a 724-residue polypeptide, but the 26-

amino acid signal sequence is cleaved in the endoplasmic reticulum to yield the mature ~60 

kDa form [7]. Tropoelastin is not glycosylated and undergoes little, if any, post-translational 

modification [84, 85]. Hydroxylation of some proline residues has been reported [10], 

although this does not appear to be functionally important for elastogenesis and if in excess, 

even appears to be detrimental for fibre maturation [80]. 

 Intracellular tropoelastin may be bound by the elastin binding protein (EBP) via 

hydrophobic residues located in the central domains, predominantly in domain 24 [45]. This 

is thought to prevent premature intracellular aggregation and direct tropoelastin secretion to 

specific elastin assembly sites on the cell surface [3, 80, 86, 87]. Tropoelastin is secreted 

from elastogenic cells as nanoparticles consistent with the size of tropoelastin-enriched 

secretory vesicles [88, 89]. Once the protein complexes are localised to the extracellular 

space, the EBP chaperone protein is thought to interact with cell-surface galactosides, which 

leads to the release of tropoelastin [80, 90]. 
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1.3.2 Coacervation 

 In the extracellular space, tropoelastin self-aggregates in a process known as 

coacervation.  The soluble 15 nm monomers assemble outward to form progressively larger 

spherical globules of 2-6 m [3, 11, 91], which appear unfused under light microscopy [11]. 

This process may be facilitated by glycosaminoglycans (GAGs) abundant on the surface of 

elastogenic cells [92], particularly at low tropoelastin concentrations [91]. Tropoelastin-

GAG interactions neutralise positive charges on the tropoelastin chain that may contribute to 

intermolecular repulsion [93, 94], which results in molecular conformational transitions that 

trigger self-aggregation into the droplets observed on the cell surface [3]. 

 Coacervation is a thermodynamically favourable process, which occurs due to the 

energy-driven disruption of hydrogen bonds in clathrate water around surface hydrophobic 

domains at physiological temperature [95]. This exposes the hydrophobic segments, which 

spontaneously interact and result in protein aggregation [4, 96]. The collapse of tropoelastin 

chains into a more ordered, assembled state decreases the entropy of the protein. This, 

however, is overcompensated by the increase in solvent entropy associated with the 

conversion of clathrate water into bulk water [97]. While water molecules can be present 

between associating tropoelastin filaments [98], they are fewer in number and less structured 

than the clathrate water surrounding hydrophobic regions of tropoelastin monomers [99]. 

The tropoelastin backbone also remains disordered even after coacervation due to limited 

self-interactions, and this contributes favourably to the entropy increase driving the 

coacervation process [56]. 

 The requirement for hydrophobic domains in coacervation is supported by studies 

demonstrating the aggregation of elastin-like peptides containing hydrophobic motifs [47], 

and the abolishment of this ability in peptides with only hydrophilic sequences [100]. 

Furthermore, in vitro models have demonstrated that coacervation follows a rapid inverse 
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temperature transition, which is classically indicative of hydrophobic interactions [11, 101]. 

Specifically, the hydrophobic domains 16, 18, 20, 24, 26 and 30 are proposed to be 

important for self-assembly [70, 102, 103], because of their ability as isolated domains to 

exhibit reversible phase separation similar to the full-length tropoelastin in vitro [58]. 

Domain 20 may be a major contributor to coacervation, since it uniquely displays 

supramolecular fibril-like features similar to full-length tropoelastin [64]. Domain 26 is also 

thought to play a central role in coacervation, as its deletion or disruption abolishes the self-

association ability of tropoelastin [70]. Furthermore, it represents the longest hydrophobic 

unit repeat in tropoelastin [26], and is well-conserved [104] and surface exposed for optimal 

intermolecular contacts [70]. Its proximity to the anti-parallel domain 25-domain 19 cross-

link [105] places it in a position to interact with domain 18. This arrangement also implies 

hydrophobic contacts between domains 20 and 24 [70]. There is also evidence that domains 

16-17 are involved in coacervation, as tropoelastin constructs without these domains gave 

rise to atypically small aggregates with a reduced propensity to form mature elastin [103].  

While coacervation has classically been defined as an intrinsic property of 

hydrophobic sequences, the process may also be regulated by additional electrostatic 

contacts between charged residues [11], as suggested by pH dependence of the assembly 

process [106]. However, these interactions are believed to be insignificant during critical 

assembly conditions where hydrophobic forces play the dominant role [107].  

 Nevertheless, coacervation does not seem to be governed by overall hydrophobicity 

alone. Amino acid sequence is crucial, as evidenced by deficient or abnormal aggregation of 

peptides with scrambled hydrophobic residues [64, 70]. Furthermore, contextual position of 

the hydrophobic domains appears significant, as indicated by the decreased coacervation of 

a construct in which domain 26 was translocated to the C-terminus [108]. These findings 

suggest that self-assembly of tropoelastin is intrinsically dictated by protein sequence, and is 
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further supported by the propensity of isolated domains to form different structures during in 

vitro coacervation [64].  

 The specific requirements for coacervation suggest that the process does not result in 

a simple aggregated protein mass. Numerous studies have shown that tropoelastin is more 

ordered in the coacervate state than as monomers in solution [54, 62, 98, 101, 109-114], 

although it is unclear whether these structural changes precede or follow the changes in 

hydration state [115]. It is believed that coacervation induces the formation of regularly-

spaced -turns in hydrophobic domains which promote monomer-monomer interactions [60, 

116]. The increasingly hydrophobic environment, as evidenced by enhanced surface binding 

of hydrophobic probes [54], also leads to a structural transformation of KA-rich domains 

from nascent helices into -helices [117]. These changes limit the accessible protein 

conformations and stabilise the coacervate [67]. An important consequence of this process is 

the concentration and alignment of tropoelastin monomers essential for downstream events 

[44, 60, 67, 100, 101, 118-120]. The crucial role of coacervation in elastogenesis is 

supported by cellular studies in which incubation of smooth muscle cells below the 

coacervation temperature of tropoelastin led to decreased elastic fibre formation [119].  

 

1.3.3 Microfibrillar deposition 

 Coacervated tropoelastin remains attached via the C-terminus to cell-surface 

integrins and glycosaminoglycans [3, 45] until deposition on microfibrillar bundles [121] as 

observed via time-lapse microscopy [3] and electron microscope immunohistochemistry [5]. 

Microfibrillar association is most likely dominated by domain 36, as suggested by deletion 

[102] and targeted antibody [45] studies. The disulfide-bonded cysteine residues in domain 

36 are proposed to form a hairpin loop, creating a positively-charged pocket which contacts 

acidic glycoproteins in microfibrils [50]. In support of this model, disruption of the disulfide 
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bond and oxidation of the C-terminal tetrabasic residues decreased the integration of 

tropoelastin into elastic fibres [83].  However, tropoelastin constructs lacking domain 36 still 

bound microfibrils to some degree, suggesting the involvement of other regions in the 

molecule [122]. Possible candidates include domains 16, 17 and 30, as deletion constructs 

also exhibited reduced microfibrillar deposition [103].   

 The microfibrillar proteins known to interact with tropoelastin to aid extracellular 

deposition include matrix-associated glycoproteins, fibrillins, and fibulins [123-126]. 

MAGP-1 is thought to bind tropoelastin in the presence of Ca
2+

 at multiple sites spanning 

the entire molecule, including the domain 25-26 junction [124, 127]. Fibrillins, the major 

component of microfibrils [128], are thought to contact tropoelastin lysine residues [129] via 

glycine- and cysteine-rich domains [130] and EGF-like motifs [128]. Fibrillin-1 has been 

shown to regulate the expansion of tropoelastin coacervates and facilitate deposition onto 

microfibrils [131]. The same role is shared by fibulins such as fibulin-2, fibulin-4 and 

fibulin-5 [83]. As evidence, fibulin-4 and fibulin-5 deficiencies in humans are associated 

with abnormally large tropoelastin globules that are not optimal for incorporation into 

microfibrils [132, 133]. The role of fibulins in tropoelastin deposition is further supported by 

a lack of elastin assembly in fibulin-free fibroblast cultures [12], and the disorganised and 

fragmentated elastic fibres in fibulin-knockout mice [125, 126]. 

 Microfibrillar deposition of tropoelastin is essential in elastogenesis, since 

microfibrils act as scaffolds which direct elastic fibre shape and orientation [3, 64, 80]. This 

is consistent with reports that microfibrils are the first ultrastructural indication of elastic 

fibres and precede the appearance of elastin [9, 134]. Binding of tropoelastin with 

microfibrillar proteins may also promote further self-assembly [12, 125, 126, 135] and 

alignment of intermolecular cross-linking domains required for elastin maturation [121, 128].  
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1.3.4 Cross-linking 

 Tropoelastin cross-linking is mediated by at least two copper-dependent lysyl 

oxidases, LOXL1 and LOX [123, 136, 137]. LOXL1 has been found to localise specifically 

to elastogenic sites [138], while LOX is widely-distributed and may cross-link both elastin 

and collagen [136, 137]. Lysyl oxidase function has been demonstrated in vitro after 

incubation with tropoelastin led to the disappearance of the monomer and concurrent 

appearance of insoluble, high molecular weight particulates [139]. In vivo, LOX gene 

inactivation [138] and LOX inhibition by either BAPN [5, 140] or copper deprivation [137] 

independently resulted in decreased elastin cross-linking and an impaired ability of 

tropoelastin aggregates to form mature fibres. The resultant elastic fibres also possessed a 

disorganised structure [141]. In the same manner, knockout mice lacking LOXL1 lack 

normal elastic fibres concomitant with extracellular tropoelastin accumulation [136].  

 Lysyl oxidase is thought to be recruited and activated by microfibrillar proteins such 

as fibulin-5 [12, 136, 142], where it recognises specific lysine residues on deposited 

tropoelastin. Due to variability in the sequences flanking these residues [137], substrate 

recognition by lysyl oxidase is believed to be at least partly dependent on local conformation 

[143].  This is consistent with the need for prior alignment of tropoelastin monomers during 

coacervation, wherein cross-linking regions are surface-exposed and -helical [100, 117, 

144], with lysines oriented on one side of the helix to allow the spontaneous condensation of 

cross-link intermediates [30, 128, 145-147]. 

Lysyl oxidase oxidatively deaminates the -amino group of lysine side chains to 

form allysines [30]. These may react either with other allysines via aldol condensation, or 

with unoxidised lysines via Schiff base reactions, to form bifunctional allysine aldol and 

dehydrolysinonorleucine cross-links, respectively [45, 140]. As elastin fibres mature, some 

of these covalent intra- and inter-molecular linkages [137] may further condense to form 
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tetrafunctional desmosine and isodesmosine cross-links [28, 140]. These allow elastin fibres 

to extend into the three-dimensional networks observed in extracellular matrices of elastic 

tissues [80]. 

 Approximately 88% of all tropoelastin lysine residues, spanning 16 domains, are 

involved in cross-link formation [3, 36, 148]. The region spanning domains 19 to 25 has 

been reported to contain a particularly high number of cross-links [1, 143]. The initial point 

of contact is purported to involve the K353 residue of domain 19, since it participates in 

cross-links at the lowest cross-linker concentrations [44]. A well-characterised cross-link 

involves domains 19 and 25 of two anti-parallel elastin chains linked by desmosines, which 

are bridged by lysinonorleucine links with domain 10 from a third chain [105]. In addition, 

there may be intramolecular cross-links at the N-terminal domains 12 to 14 [1, 143]. 

While cross-linking imposes structural restrictions on elastin, the cross-linked 

material still retains hydration and flexibility due to the highly disordered backbone of the 

tropoelastin monomer [58]. The presence of covalent linkages render elastic fibres insoluble 

and stable under mechanical stretching [80, 139]. It has been reported that an increased 

number of cross-links improves the mechanical stability of elastin, including a higher stress 

and strain at break [41]. Evolutionarily, this may account for the domain expansion of 

elastomeric proteins such as tropoelastin and spider silk [41]. The elastic fibres also become 

more resistant to proteolysis, due to the inaccessibility of cleavage sites in the cross-linked 

structure [36]. Conversely, the inhibition of cross-linking has been correlated to increased 

elastin fragmentation [149]. Due to the stability of elastic fibres conferred by the cross-

linking process, elastin turnover is very low in healthy tissues [4, 7, 80].  
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1.4 Elastin mutations and disease 

 Polymorphisms in the tropoelastin sequence can significantly impact upon the self-

assembly of the monomer, as well as the properties of the cross-linked elastin polymer [150]. 

This is clearly demonstrated in pathological conditions associated with tropoelastin 

mutations.  

 Supravalvular aortic stenosis (SVAS), which may be inherited as an isolated trait or 

as part of Williams-Beuren syndrome [151], is characterized by aortic narrowing caused by 

the thickening of the media or intima layers of the arterial wall [152]. If left untreated, it can 

lead to complications such as increased blood pressure, myocardial hypertrophy and heart 

failure [153]. SVAS is associated with a number of point or translocation mutations in exons 

8, 16, 18, 20, 21, 25, 26 of the elastin gene [15, 151, 153-157]. These mutations often 

prematurely truncate the reading frame and lead to nonsense-mediated decay of the mutant 

transcript [152, 158]. Accordingly, a decreased level of tropoelastin expression has been 

reported in skin fibroblasts and smooth muscle cells of SVAS patients [159]. This supports 

elastin haploinsufficiency as the underlying pathomechanism of the disease [152, 158, 160, 

161].  

 In some cases of SVAS where the mutated tropoelastin is secreted at normal levels, 

the monomer assembles poorly into elastic fibres despite the ability to interact with 

microfibrillar components [103]. The mutant isoform, which lacks domains 16-17, displays 

impaired coacervation and forms atypical fibrils upon aggregation. Similarly, two other 

truncated tropoelastin mutants associated with SVAS do not coacervate at physiological 

temperatures, which precludes their participation in fibre assembly and mimics a 

hemizygous disorder where only products from one allele are functional [153].  

 Cutis laxa is another elastin-linked disease which comprises a heterogeneous 

spectrum of acquired and inherited conditions characterised by loose, sagging skin and a 
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wide range of clinical symptoms [162]. Autosomal dominant cutis laxa (ADCL) presents 

with redundant skin folds resulting in a prematurely aged appearance, typically with no 

severe effects on internal organs and neurodevelopment [163, 164]. Unlike SVAS mutations 

which usually occur in the 5′ and central regions of the elastin gene, ADCL arises from 

missense or frameshift mutations in the 3′ end, specifically in exons 25, 30, 32 and 33 [15, 

43, 162, 165]. These changes are predicted to enable protein translation to proceed into the 3′ 

untranslated region, resulting in an extended C-terminal missense sequence [166-170]. 

ADCL-associated tropoelastin has a higher propensity for aggregation, leading to enhanced 

globule formation in the extracellular space [162].  Consistent with the role of the C-

terminus in microfibrillar protein binding, it is poorly deposited onto microfibrils and forms 

fewer, fragmented and disorganised elastic fibres [159, 162]. The abnormal packing of fibres 

is also proposed to affect cross-link formation [168], which may deleteriously affect the 

strength and elasticity of connective tissues [167].   

 Autosomal recessive cutis laxa (ARCL) is often more severe, and is characterised by 

vascular abnormalities, pulmonary emphysema, developmental delay, or skeletal defects [35, 

132]. Although ARCL commonly arises from mutations in elastogenic proteins other than 

tropoelastin, such as fibulin-4 and fibulin-5 [132, 171], it has recently also been attributed to 

a non-conservative substitution in tropoelastin domain 12 [35]. On the other hand, acquired 

cutis laxa has been linked to missense mutations in exon 4 and 36 [172]. The C-terminal 

mutation, in particular, introduces additional proteolytic cleavage sites in tropoelastin that 

renders the protein more susceptible to degradation [166].  

 However, not all mutations in the elastin gene are associated with diseases. Such 

sequence variations are typically single nucleotide polymorphisms (SNPs), in contrast to the 

broader truncation or frameshift mutations previously described. Currently, 110 SNPs have 

been identified in the human ELN, the majority of which are located in introns [55]. Out of 
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24 exonic mutations, 17 result in non-synonymous substitutions in the amino acid sequence, 

of which 13 are non-conservative and occur throughout the molecule. Examples include the 

introduction of a proline in the tropoelastin signal peptide hypothesised to affect protein 

secretion; the addition of charged residues in conserved hydrophobic domains; the 

replacement of a cross-linking lysine with an arginine; and the placement of a charged 

residue in the C-terminus [55]. While these sequence polymorphisms are not currently 

linked to disease states, their introduction in elastin-like polypeptides and full-length 

tropoelastin affected the self-assembly and structural integrity of the constructs [55]. These 

findings confirm a tight correlation between sequence and function in tropoelastin, wherein 

even single tropoelastin mutations can impact the assembly and mechanical properties of the 

elastic matrix.  
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1.5 Project aims 

 This project identifies previously uncharacterised sites within tropoelastin, which are 

unique in their conservation among mammalian tropoelastin variants, or conversely, in their 

rare occurrence within the human tropoelastin sequence. The regions of interest include the 

highly-conserved, protease-susceptible R515 in domain 26; the only three negatively-

charged tropoelastin residues, E345 in domain 19, E414 in domain 21, and D72 in domain 6; 

and the constitutively spliced domain 22. This study employs targeted mutagenesis of 

tropoelastin at these sites, and characterises the assembly and structural properties of the 

resulting mutant isoforms. These findings identify functionally important residues or regions 

within the tropoelastin molecule, and help improve current understanding of the sequence-

structure-function relationship in tropoelastin. 

 The specific aims of the work described in this thesis are: 

1) To express and purify tropoelastin constructs mutated at the site/s of interest  

2) To explore the elastogenic potential of the constructs via independent assays that 

simulate in vivo tropoelastin self-assembly and cell interactions 

3) To determine the ability of the constructs to form elastic fibres in a cellular 

environment 

4) To characterise the structural features of the constructs  

5) To clarify the potential roles of the identified sites in tropoelastin structure and 

function 
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2. General materials and methods 

2.1 Materials 

2.1.1 Reagents 

The reagents and suppliers used in this work are listed in Table 2.1. 

 

Table 2.1. List of reagents and suppliers. 

Reagents Supplier 

Agar Difco Laboratories, USA 

Ammonium acetate (CH3COONH4) Ajax Finechem Pty Ltd, Australia 

Ampicillin Sigma-Aldrich, USA 

Anti-C-terminal peptide rabbit antibody Biomatik, USA 

Anti-elastin antibody (BA4) Sigma-Aldrich, USA 

Anti-mouse IgG conjugated with 

horseradish peroxidase 

Sigma-Aldrich, USA 

Anti-mouse IgG conjugated with FITC Sigma-Aldrich, USA 

Anti-rabbit IgG conjugated with 

horseradish peroxidase 

Sigma-Aldrich, USA 

Boric acid ICN Biomedicals Inc., USA 

Bovine serum albumin Sigma-Aldrich, USA 

Bromophenol blue International Biotechnologies Inc., USA 

Bis-(sulfosuccinimidyl)-suberate (BS3) School of Chemistry, University of Sydney 

Coomassie Blue G Sigma-Aldrich, USA 

Crystal violet Sigma-Aldrich, USA 

Deoxyribonuclease I Sigma-Aldrich, USA 

Disodium hydrogen phosphate (Na2HPO4) Ajax Finechem Pty Ltd, Australia 
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Dulbecco’s modified eagle medium Sigma Aldrich, USA 

Ethylenediaminetetraacetic acid Sigma-Aldrich, USA 

Ethidium bromide International Biotechnologies Inc., USA 

Foetal bovine serum Life Technologies, USA 

Glucose Ajax Finechem Pty Ltd, Australia 

Glycerol ICN Biochemicals Inc., USA 

Glycine Ajax Finechem Pty Ltd, Australia 

Isopropyl -D-1-thiogalactopyranoside  Sigma-Aldrich, USA 

L-glutamine Sigma-Aldrich, USA 

Lysozyme Sigma-Aldrich, USA 

Lys-C Calbiochem, USA 

Magnesium chloride (MgCl2)  Ajax Finechem Pty Ltd, Australia 

Magnesium sulfate (MgSO4) Ajax Finechem Pty Ltd, Australia 

Mark12™ Unstained Standard Life Technologies, USA 

Mercaptoethanol Sigma-Aldrich, USA 

2-(N-morpholino)ethanesulfonic acid  Sigma-Aldrich, USA 

Paraformaldehyde Sigma-Aldrich, USA 

Penicillin/streptomycin Sigma-Aldrich, USA 

Phenylmethylsulphonyl fluoride Sigma-Aldrich, USA 

Potassium chloride (KCl) Ajax Finechem Pty Ltd., Australia 

ProLong Gold anti-fade reagent with 

DAPI 

Life Technologies, USA 

SDS-PAGE gel, pre-cast Life Technologies, USA 

SDS-PAGE loading dye Life Technologies, USA 

SDS-PAGE running buffer Life Technologies, USA 
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Sodium acetate (CH3COONa) Ajax Finechem Pty Ltd, Australia 

Sodium chloride (NaCl) Ajax Finechem Pty Ltd, Australia 

Sodium dihydrogen phosphate 2-water 

(NaH2PO4·2H2O) 

Ajax Finechem Pty Ltd, Australia 

Sodium fluoride (NaF) Ajax Finechem Pty Ltd, Australia 

Sucrose Ajax Finechem Pty Ltd, Australia 

Tris(hydroxymethyl)aminomethane Sigma-Aldrich, USA 

Triton X-100 Sigma-Aldrich, USA 

Trypsin-EDTA Sigma-Aldrich, USA 

Tryptone  Becton-Dickinson, USA 

Yeast extract Becton-Dickinson, USA 
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2.1.2 Solutions 

 The solutions used in this study are listed in Table 2.2. 

 

Table 2.2. List of solutions and solution components. 

Solution Components 

2TY-ampicillin 1.6% (w/v) tryptone, 1% (w/v) yeast extract, 0.5% (w/v) NaCl, 

50 g/mL ampicillin 

ABTS solution 1.04 mg/mL ABTS, 0.05% (v/v) H2O2, 10 mM CH3COONa,   5 

mM Na2HPO4 

Coomassie stain 0.125% (w/v) Coomassie Blue G, 45% (v/v) methanol, 10% 

(v/v) acetic acid  

LB broth 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 2% 

(w/v) glucose 

LB-ampicillin agar 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 

1.5% (w/v) agar, 100 g/mL ampicillin 

Lysis buffer 50 mM Tris, 1 mM EDTA, 100 mM NaCl 

PB 7.76 mM Na2HPO4, 2.24 mM NaH2PO4·2H2O 

PBS  7.76 mM Na2HPO4, 2.24 mM NaH2PO4·2H2O, 150 mM NaCl, 

pH 7.4 

SOC 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 10 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose 
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2.2 Methods 

2.2.1 Bioinformatics analysis of tropoelastin sequences 

Mammalian tropoelastin sequences were aligned with the ClustalW 2.0 online 

program (http://www.ebi.ac.uk/Tools/msa/clustalw2/) using default parameters. 

 

2.2.2 Production of tropoelastin constructs 

Recombinant wild-type human tropoelastin (WT) corresponding to amino acid 

residues 27–724 of GenBank entry AAC98394 was produced in-lab via a large-scale high 

cell density fermentation process and purified as previously described [26, 153]. Mutant 

tropoelastin constructs were produced using a small-scale expression system described 

below. 

 

2.2.2.1 Mutagenesis of tropoelastin sequence 

Purified pET-3d plasmid containing the WT tropoelastin sequence was sent to 

Genscript, USA for site-directed mutagenesis. 

 

2.2.2.2 Bacterial transformation 

 The pET-3d plasmid construct containing the mutant tropoelastin sequence was 

added to electrocompetent E. coli BL21 cells (2.5 ng DNA/L cells). Electroporation was 

performed on a Micropulser™ Electroporation Apparatus according to the protocol supplied 

by Bio-Rad. Electroporated cells were recovered in SOC medium and incubated at 37˚C for 

1 hr with agitation. Cultures were plated on LB-ampicillin agar and incubated at 37˚C 

overnight. Transformed colonies were identified by growth on the selective medium.  
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2.2.2.3 Extraction of plasmid DNA 

 Transformed colonies were used to inoculate LB broth containing 100 g/mL 

ampicillin and cultured overnight at 37˚C. Plasmid DNA was extracted using the QIAGEN® 

QIAprep Spin Miniprep Kit. DNA yield and purity were estimated using a NanoDrop™ 

spectrophotometer. 

 

2.2.2.4 Sequencing of plasmid DNA 

 The extracted plasmid DNA was sequenced to confirm that the insert carried the 

correct mutation/s at the nucleotide level. Plasmid DNA (100 ng/L) was mixed with 0.8 

pmol/L sequencing primer (Table 2.3). Sequencing was carried out by the Australian 

Genome Research Facility.  

 

Table 2.3. List of sequencing primers used in this study. The sequence, length and 

melting temperature of each primer are indicated.  

Primer Sequence (5′-3′) Length (bases) Tm (°C) 

pNeoSeqFor AAGGCTAGAGTACTTAATACGA 22 65.7 

pNeoSeqRev CTCATCAATGTATCTTATCATG 22 63.9 

pNeoSeqMid AAGGCAGCAGCAAAATTCGG 20 68.3 

pNeoSeqMid2 CGGGTGCAGGTGTAAAACC 19 59.5 

pNeoSeqMid3 TACCCAGGCGCGGGTCTGGGT 21 77.3 

pNeoSeqMid4 GTTTCGGCGTTGGTGTTGGTGG 22 65.8 

 

2.2.2.5 Glycerol storage of transformants 

 An overnight culture of transformed E. coli was mixed with 15% (v/v) sterile 

glycerol, frozen rapidly in liquid nitrogen, and stored at –80˚C.  
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2.2.2.6 Tropoelastin expression 

Transformants from glycerol stocks were streaked on LB-ampicillin agar plates and 

incubated overnight at 37˚C. To prepare starter cultures, a single colony from each plate was 

grown overnight at 37˚C in LB broth containing 50 g/mL ampicillin. Starter culture (5% 

(v/v)) was added to 2TY-ampicillin medium and incubated at 37˚C and 260 rpm for ~1.5 hrs 

until the absorbance at 600 nm reached 0.8. Protein expression was then induced with 1 mM 

IPTG for 2 hrs.  

 

2.2.2.7 Tropoelastin purification 

 Bacterial culture was pelleted at 10,000 rpm for 10 min at 4˚C and lysed in 10 

volumes of chilled lysis buffer containing 0.1% (w/v) lysozyme and 1 mM PMSF in 

isopropanol. The cell suspension was divided into ~5 mL aliquots and freeze-thawed five 

times until highly viscous. Aliquots were pooled and mixed with 10 mM MgCl2, 10 mg/mL 

deoxyribonuclease and 1 mM PMSF at 4˚C for 45 min until viscosity was reduced. This 

allowed degradation of DNA while inhibiting proteolysis of the tropoelastin species. To 

remove cell debris, the cell suspension was centrifuged at 15,000 rpm for 20 min at 4˚C. The 

supernatant was progressively mixed with 1.5 volumes of n-propanol and 2.5 volumes of n-

butanol over a 5-hr period for the selective solubilisation of tropoelastin overnight at 4˚C. 

The mixture was centrifuged at 12,000 rpm for 10 min at 4˚C, and the solubilised 

tropoelastin was recovered via rotary evaporation at 60˚C and 25 mbar. The residue was 

washed overnight with chloroform, air-dried and dissolved in 50 mM ammonium acetate, 

pH 5.0. The tropoelastin solution was dialysed with SnakeSkin® 10 kDa-cutoff pleated 

dialysis tubing against 50 mM ammonium acetate at 4˚C for 2 days, then further purified via 

centrifugation at 5,000 rpm for 5 min. Finally, the supernatant was lyophilised to obtain dry, 

purified tropoelastin. 
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2.2.3 Confirmation of purified tropoelastin 

2.2.3.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

 Purified tropoelastin was analysed via SDS-PAGE to estimate the molecular weight 

and extent of degradation. Samples were mixed with 1x SDS-PAGE loading dye and 

denatured at 70 ˚C for 10 min, then loaded into a NuPAGE® 4-12% Bis-Tris gel with 

Mark12™ Unstained Standards. Electrophoresis was performed in SDS-PAGE running 

buffer at 200 V until the marker dye was ~1 cm from the base of the gel. The gel was fixed 

in 50% (v/v) methanol for 1 hr, stained with Coomassie stain solution overnight, and 

destained with 25% (v/v) methanol and 10% (v/v) acetic acid for 5 hrs.  

 

2.2.3.2 Mass spectrometry 

 WT and mutant tropoelastin constructs were dissolved to 5 mg/mL in water and 

digested with 0.05 mg/mL excision grade Lys-C at 25˚C overnight. The samples were then 

subjected to comparative matrix-assisted laser desorption ionization time-of-flight (MALDI-

TOF) mass spectrometry using a QSTAR XL mass spectrometer with the assistance of Dr. 

Steven Wise (Weiss Lab, School of Molecular Bioscience). A mass/charge window of 800-

5000 was applied and the resulting peaks were assigned by comparison with expected 

monoisotopic peptide masses from a theoretical Lys-C digest. These theoretical mass values, 

obtained using PeptideMass (http://au.expasy.org/tools/peptide-mass.html), were of singly-

charged peptides ([M+H]
+
) containing up to one missed cleavage. The mass peaks from the 

WT and mutant tropoelastin samples were then overlaid and peptide mass shifts 

corresponding to the mutation were identified.  
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2.2.4 Coacervation 

2.2.4.1 Light spectrophotometry 

Tropoelastin constructs dissolved in PBS to 10 mg/mL were placed in quartz 

cuvettes and monitored in a Shimadzu UV-1601 spectrophotometer heated to a set 

temperature by a Julabo F4 recirculation waterbath. Light scattering was examined by 

measuring the absorbance at 300 nm over 600 s at temperatures from 20 to 60˚C. Between 

each temperature shift, the sample was cooled at 4˚C until turbidity was visibly reduced. The 

tropoelastin species were assessed according to the time taken to reach maximum turbidity 

at each temperature, as well as the temperature at which maximum sample turbidity was 

attained.  

 

2.2.4.2 Particle size analysis 

 The particle sizes of tropoelastin solutions over a temperature range of 20 to 60˚C 

were determined via dynamic light scattering using a Malvern Zetasizer Nano (Malvern 

Instruments, UK). Solutions of 10 mg/mL tropoelastin were equilibrated for 5 min at the set 

temperature. Three runs of measurements, each with at least 12 data acquisitions, were taken 

and averaged to obtain the relative percentages of particle sizes present in each tropoelastin 

solution. 
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2.2.5 Cross-linking 

2.2.5.1 Construction of hydrogels 

 Tropoelastin constructs were dissolved in PBS to 100 mg/mL at 4 ˚C  overnight. The 

solutions were mixed with BS3 at 4˚C to a final concentration of 10 mM, and 200 L 

aliquots were transferred to LabTek® Chamber Slides™. The tropoelastin solutions were 

cross-linked at 37˚C for 16 hrs, then washed in PB and lyophilised. The extent of 

tropoelastin cross-linking was estimated by SDS-PAGE analysis of the aqueous solutions 

left after hydrogel formation. 

 

2.2.5.2 Swelling of hydrogels 

 Triplicate freeze-dried and pre-weighed hydrogels were swelled in MQW for 24 hrs 

at 37˚C, 25˚C and 4˚C. Between each temperature shift, excess water was removed and the 

hydrogels were weighed. At each temperature, the amount of liquid absorbed per gram of 

hydrogel was recorded.  

 

2.2.5.3 Micro-computed tomography (Micro-CT) 

 The three-dimensional x-ray structures of freeze-dried hydrogels were determined 

with a SkyScan 1072 micro-computed tomography system at the Australian Centre for 

Microscopy and Microanalysis. Each hydrogel was scanned with a 60 kV x-ray beam at a 

resolution of 3.23 m. The resulting x-ray projection images were converted into a stack of 

cross-sections with the cone-beam reconstruction program NRecon 1.4.4. (SkyScan, 

Belgium) and rendered into a three-dimensional structure with VGStudio Max 1.2.1 

(Volume Graphics GmbH, Germany). Images of the 3D structures, as well as horizontal and 

vertical sections, were taken with the same software. Hydrogel porosity was estimated from 

the cross-section images using the CTan program (SkyScan, Belgium).  
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2.2.5.4 Scanning electron microscopy (SEM) 

 Water-swollen hydrogels were lyophilised, mounted using carbon tape and 

conductive Silver DAG, and coated with ~20 nm gold. Sample imaging was performed at 

different magnifications using the Zeiss EVO / Qemscan electron microscope at the 

Australian Centre for Microscopy and Microanalysis. 
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2.2.6 Cell attachment assay 

 Triplicate cell culture wells were coated with 1.25, 2.5, 5, 10, 20 or 30 g/mL of 

each tropoelastin construct at 4˚C overnight. After incubation, wells were washed three 

times with PBS to remove unbound tropoelastin. BSA (10 mg/mL in PBS) was denatured at 

80˚C for 10 min then cooled on ice to prevent renaturation. Non-specific binding to wells 

was blocked with the denatured BSA for 1 hr at room temperature. 

 GM3348 fibroblast cells grown in DMEM with 10% (v/v) foetal bovine serum were 

trypsinised with trypsin-EDTA at 37˚C for 2 min. The cells were centrifuged at 800 g for 4 

min and resuspended in serum-free DMEM. The blocked wells were washed three times in 

PBS and seeded with 1.56 x 10
5
 cells/cm

2
 well surface. To estimate the percentage of cell 

attachment, cells were diluted in DMEM to 10%, 20%, 50%, 80% and 100% of the cell 

density used for the experimental wells and added to uncoated and unblocked wells. Cells 

were allowed to attach at 37˚C in 5% CO2 for 1.5 hrs. After incubation, non-adherent cells in 

the experimental wells were removed with two PBS washes. Adherent cells and cells in the 

standard wells were fixed with 3% (w/v) formaldehyde in PBS for 20 min. All wells were 

washed three times with PBS and the fixed cells were stained with 0.1% (w/v) crystal violet 

in 0.2 M MES, pH 5.0 at room temperature for 1 hr. Excess stain was removed with four 

washes of reverse osmosis water, and the crystal violet was solubilised with 10% (w/v) 

acetic acid. Absorbance was measured at 570 nm using a plate reader. Absorbance readings 

from the standard wells were fitted to a linear regression, which was used to convert 

experimental absorbances into percentage of cell attachment.  
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2.2.7 Enzyme-linked immunosorbent assay (ELISA) 

2.2.7.1 With BA4 anti-elastin antibody 

 The amount of tropoelastin bound to cell culture wells after overnight coating was 

determined. Triplicate wells were coated with 1.25, 2.5, 5, 10, 20 or 30 g/mL of 

tropoelastin at 4˚C overnight. Unbound tropoelastin was removed with three PBS washes 

and non-specific antibody binding was blocked with 3% (w/v) BSA for 1 hr at room 

temperature. Excess BSA was washed off with PBS and the bound tropoelastin was detected 

with 1:2000 dilution of mouse anti-elastin BA4 antibody for 1 hr at room temperature. Wells 

were washed thrice with PBS and incubated with 1:5000 dilution of goat anti-mouse IgG 

conjugated with horseradish peroxidase. Unbound secondary antibody was removed with 

three PBS washes while the bound species was visualised by incubation with ABTS solution 

at 37˚C for 1 hr. Sample absorbances at 405 nm were read with a plate reader, and 

subtracted by the absorbance of BSA-blocked wells without tropoelastin. 

 

2.2.7.2 With anti-domain 6 antibody 

 To determine the accessibility of the N-terminal domain 6 on surface-coated 

tropoelastin species, an ELISA was performed following the protocol previously described. 

A 1:5000 dilution of mouse anti-domain 6 antibody and a 1:5000 dilution of goat anti-mouse 

horseradish peroxidase-conjugated IgG were used as the primary and secondary antibody, 

respectively.  

 

2.2.7.3 With anti-C-terminus antibody 

 To compare the exposure of the C-terminus on surface-coated tropoelastin constructs, 

another ELISA was performed as described. A 1:5000 dilution of rabbit anti-C-terminal 
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peptide antibody and a 1:5000 dilution of goat anti-rabbit horseradish peroxidase-conjugated 

IgG were used as the primary and secondary antibody, respectively.  
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2.2.8 Immunofluorescent staining of elastin fibers 

2.2.8.1 Cell culture 

Human dermal fibroblasts (GM3348; obtained from the Coriell Research Institute, 

Camden, NJ) were cultured in DMEM supplemented with 10% (v/v) fetal bovine serum and 

1% (v/v) penicillin/streptomycin. Human retinal pigmented epithelium cells (ARPE-19; 

obtained from Dr. M. Madigan, Save Sight Institute, NSW, Australia) were cultured in 

DMEM:Nutrient mixture F12 supplemented with 10% (v/v) fetal bovine serum, 2 mM L-

glutamine and 1% (v/v) penicillin/streptomycin. 

 

2.2.8.2 Sample preparation 

 GM3348 and ARPE-19 cells were seeded on glass coverslips at a density of 18,400 

cells/cm
2
. At 10 and 14 days post-seeding, respectively, 20 or 200 g/mL tropoelastin was 

added to culture medium. At 1, 4, 7 and 10 days after tropoelastin addition, cells were fixed 

with 4% (w/v) paraformaldehyde for 20 min and quenched with 0.2 M glycine. The cells 

were incubated with 0.2% (v/v) Triton X-100 for 6 min, blocked with 5% bovine serum 

albumin at 4 °C overnight, and stained with 1:500 mouse anti-elastin BA4 antibody for 1.5 

hr and 1:100 FITC-conjugated anti-mouse IgG antibody for 1 hr. The coverslips were then 

mounted onto glass slides with ProLong Gold anti-fade reagent with DAPI. 

 

2.2.8.3 Confocal microscopy 

Slides from each elastogenic time point were visualized with an Olympus FluoView 

FV1000 confocal microscope under identical laser settings. Z-stacks were taken from areas 

distributed across each sample and converted to maximum projection images.  
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2.2.8.4 Analysis of elastic fibres 

Confocal images of elastic fibres were analyzed using ImageJ 

(http://rsbweb.nih.gov/ij/). To compare fibre fluorescence, a threshold was set to exclude 

background and saturated pixel intensities. The average intensity of pixels within this 

threshold was measured for each projection image and averaged for each sample. To 

compare fibre number, two perpendicular reference lines were drawn in each projection 

image. The number of fibers intersecting either reference line was counted and averaged for 

each sample. Fibre width was measured and averaged from a total of ~150 randomly 

selected sections of elastic fibres. Fibre area was measured by the percentage of fluorescent 

pixels over the total number pixels per image, then averaged for each sample. The area 

occupied by cell nuclei was used as a control indicative of cell number and viability in all 

samples. 
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2.2.9 Far-UV circular dichroism (CD) 

Tropoelastin constructs were dissolved to 0.15 mg/mL in 10 mM phosphate and 150 

mM NaF. CD spectra were recorded on a Jasco J-815 spectrometer equipped with a Peltier-

controlled sample chamber. Samples were scanned with a band width of 1.0 nm at 20 

nm/min. Each spectrum was averaged from five scans, buffer-corrected, and smoothed using 

3 point adjacent averaging. Secondary structure composition was estimated from the CD 

spectrum using the CONTINLL and CDSSTR methods [173] with a reference set of 37 

soluble proteins. 

 

2.2.10 Small angle x-ray scattering (SAXS) 

Tropoelastin constructs dissolved in PBS were mixed with 2 mM dithiothreitol. 

SAXS data were collected on the European Molecular Biology Laboratory beamline X33 at 

the DORISIII light source facilities at Hamburger Synchrotronstrahlungslabor/Deutsches 

Elektronen-Synchrotron (HASYLAB/DESY). Data were acquired using 4 x 30 sec 

exposures and a 2.4 meter sample-to-detector distance to cover a momentum transfer 

interval 0.008 
 
< q < 0.54 Å 

-1
. The modulus of the momentum transfer is defined as q = 

4пsinθ/λ, where 2θ is the scattering angle, and λ is the wavelength. The q range was 

calibrated using silver behenate powder based on diffraction spacings of 58.38Å. The 

scattering images obtained were spherically averaged using in-house software and buffer 

scattering intensities subtracted using PRIMUS [174]. Particle shapes were generated ab 

initio using GASBOR [175]. Multiple GASBOR runs were performed to generate 10 similar 

shapes that were combined and filtered to produce an averaged model using the DAMAVER 

software package [176].  
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2.2.11 Statistical analyses 

All data were reported as mean ± standard error. One- or two-way analysis of 

variance and Bonferroni post-test were performed using GraphPad Prism version 5.5 for 

Windows (GraphPad Software, CA). Statistical significance was set at p<0.05 or higher, and 

indicated in the figures as * (p<0.05), ** (p<0.01) or *** (p<0.001). 
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3. In vitro elastic fibre assembly of WT and R515A tropoelastin 

3.1 Introduction 

3.1.1 The tropoelastin bridge region 

 Comparative analyses of the nanostructures of tropoelastin species truncated at 

different lengths from the N-terminus have enabled the mapping of functional regions of 

tropoelastin to spatial locations within the molecule [72]. Most of the elasticity of the 

molecule has been proposed to be conferred by the coiled region [177] that extends from the 

N-terminus to domain 18. A protrusion from the coil region formed by domains 20-24 

corresponds to a predicted hinge region [73, 178]. The hinge region then leads to a bridge 

region that most likely encompasses domains 25-26. The tropoelastin molecule terminates in 

a foot-like region containing the cell-interactive C-terminus [179].  

Unlike the N-terminal elastic spiral and C-terminal cell-interactive foot regions of 

tropoelastin, little has been described about the functional role of the bridge region. One 

model proposes that the bridge region may be involved in elastic fibre assembly, as it 

includes domain 26 which is essential for coacervation, and lies near other large central 

hydrophobic domains implicated in the process [70, 108]. The bridge region also either 

partially encompasses or resides proximally to domains 19-25 which dominate inter-

molecular cross-linking to form elastin [44, 105, 143]. Structurally, the bridge region 

directly leads from a region of high flexibility [178] and may therefore contribute to the 

extensive conformational changes associated with monomer alignment and organisation 

during elastin assembly [67].  
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3.1.2 The arginine 515 site 

 The tropoelastin bridge region contains an arginine 515 (R515) residue at the 

junction of domains 25 and 26 [70], which is highly conserved within various mammalian 

tropoelastin sequences (Table 3.1). Interestingly, the R515 site is solvent-exposed, and 

susceptible to cleavage by a number of serine proteases including kallikrein, thrombin and 

plasmin [70].  

The evolutionary preservation of such a hypersensitive proteolytic cleavage site in 

tropoelastin implies a significant role in protein function. It has been proposed that specific 

cleavage of tropoelastin may occur during tissue injury or inflammation to induce cell 

migratory and chemotactic responses for wound repair [120, 149, 180]. Cleaved tropoelastin 

peptides may also be a means of regulating tropoelastin expression and synthesis [181, 182]. 

The significance of the R515 residue may also be unrelated to its protease susceptibility. 

R515 may modulate important functions associated with the tropoelastin bridge region 

during elastin assembly, which may account for the selective retention of this potentially 

disadvantageous proteolytic cleavage site within tropoelastin. 
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Table 3.1. Alignment of domains 25-26 of various mammalian tropoelastin sequences, 

partially adapted from Piontkivska et al. (2004) [183]. The human, cow, mouse and rat 

sequences were obtained from GenBank, while the cat, dog, baboon and chimpanzee 

sequences were predicted from genomic sequences based on homology with the human 

sequence. The corresponding arginine 515 site in all sequences are indicated in bold 

type. 

Mouse GAGSPAAAKSAAKAAAKAQYRAAAGLGAGVPGFGAGAGVPGFGAGAGVPGFGAGAGVPGFGAGAGVPGFGAGA 

Rat GAGTPAAAKSAAKAAAKAQYRAAAGLGAGVPGLGVGAGVPGFGAGAG----GFGAGAGVPGFGAGA------------------- 

Cat RVGTPAAAKAAAKAAAKAQYRAAAGLPAGVPGFGVGAGVPGFGVGAGVPGFGAGVGVPGFGAGA------------------- 

Dog GVGTPAAAKAAAKAAAKAQYRAAAGLPAGVPGFGVGAGVPGFGVGAGIPGFGVGAGVPGFGAGA-------------------- 

Cow GAGVPAAAKSAAKAAAKAQFRAAAGLPAGVPGLGVGVGVPGLGVGVGVPGLGVGAGVPGLGA------------------------ 

Baboon GVGAPEAAKSAAKAAAKAQLRAAAGLGA--VPGLGVGA--VPGLGVGVGVPGLGVGAGVPGFGAGA-------------------- 

Chimpanzee ----------AAAKSAAKVAAKAQLRAAAGLGAGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGA------------------------ 

Human ----------AAAKSAAKVAAKAQLRAAAGLGAGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGA------------------------ 
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3.1.3 Consequences of an R515A mutation in tropoelastin 

Previous work has characterised a protease-resistant tropoelastin construct in which 

the bridge region was disrupted by substituting the R515 residue with an alanine (R515A) 

(Figure 3.1). When compared to mature, full-length human tropoelastin (WT), the R515A 

mutant displayed impaired or atypical behaviour at each stage of elastogenesis [184].  

 

 

Figure 3.1. Domain structures of WT and R515A tropoelastin constructs. Hydrophobic 

domains are represented by black boxes, while hydrophilic domains are shown as 

white boxes. At the 515 site, WT has an arginine residue while R515A has an alanine.  

 

3.1.3.1 Impaired coacervation 

R515A tropoelastin possessed greater thermal and temporal requirements for 

coacervation [184]. Maximum coacervation was achieved at a higher temperature of 40 °C 

and after a ~30% longer time course compared to WT.  

Classically, the number of hydrophobic domains determines the critical temperature 

[185] and rate [70] of coacervation, but this model does not explain the difference between 

WT and R515A. The unexpected increase in R515A coacervation temperature conceptually 

reflects a higher energy requirement for the disruption of bound water and therefore 

indicates an increase in protein hydration [185, 186] most likely due to a structural deviation 

from wild-type tropoelastin. The increase in R515A coacervation time also supports a model 

of a conformational change that affects its ability to associate through either steric hindrance 

and/or altered relative positions of associating hydrophobic domains.  
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As coacervation represents the crucial first step that determines the subsequent 

incorporation of tropoelastin monomers into the elastic fibre [187], the decreased propensity 

of R515A for self-association may affect its potential for elastogenesis. 

 

3.1.3.2 Abnormal hydrogel formation 

Chemical cross-linking of R515A with the amine-reactive bis-sulfosuccinimidyl 

suberate (BS3), which approximates in vivo lysyl oxidase-mediated crosslinking [143], 

produced hydrogels with obvious morphological differences to the WT constructs [184]. The 

WT hydrogel consisted of overlapping fibres interspersed with large channels, consistent 

with the filamentous nature of natural elastin [8, 13]. In contrast, the R515A hydrogels were 

less porous and composed wholly of compact spherules similar in size to partially cross-

linked nascent elastin [11, 94].  

The low porosity of R515A hydrogels was coupled with a significantly reduced 

water uptake compared to the WT constructs. Since the extent of solvent influx in hydrogels 

is defined by the junctions of the polymer network [188, 189], the decreased swelling of 

R515A hydrogels suggests atypical cross-linking [190, 191]. 

The cross-linking of tropoelastin strongly corresponds to its ability to assemble into 

stable, insoluble elastic fibres [102]. The inability of R515A to form mature cross-linked 

structures may likewise impact upon its elastogenic capacity. 

 

 

3.1.3.3 Decreased fibroblast attachment  

R515A tropoelastin supported significantly reduced adhesion to human dermal 

fibroblasts [184], consistent with the decreased exposure of its C-terminal cell-binding motif 

[179]. In an elastogenic context, tropoelastin-cell interactions are important. During the in 
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vivo coacervation process, weak cell adhesion may lead to the detachment of tropoelastin 

monomers from the cell surface and therefore preclude incorporation into elastic fibres [18]. 

Signalling between cells and tropoelastin molecules has also been proposed to be crucial for 

cell anchorage of the elastic network [179], maintenance of the elastic fibre architecture [3, 6, 

94, 172], and regulation of cellular activity [45]. The decreased cell binding ability of 

R515A may therefore affect its propensity for elastic fibre formation as well as the 

organisation and stability of the formed fibres. 

 

3.1.3.4 Structural distortion in the bridge and C-terminal regions 

The solution structure of R515A, solved by SAXS, revealed greater conformational 

variability around the bridge and C-terminal regions compared to WT [184]. The structural 

flexibility adopted by the R515A bridge and C-terminal regions resulted in an averaged 

shape that exhibited substantial dislocation of the C-terminal foot towards the central axis of 

the molecule (Figure 3.2). This altered structure may lead to the masking of functionally 

important domains and contribute to steric hindrances during elastin assembly, which are 

likely to influence the elastogenic capability of R515A.  

SAXS has a resolution limit of ~1.5 nm. In this and subsequent chapters, slight shape 

changes between the WT models can be attributed to the resolution limit of the technique. 
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Figure 3.2. (A) Solution structures of WT (green) and R515A (purple) tropoelastin 

from SAXS [184]. The elastic N-terminal coil region (NC), bridge region (BR) and cell-

interactive C-terminal foot region (CF) are indicated.  (B) Superimposition of the WT 

and R515A models illustrates a conformational difference in the R515A bridge and C-

terminal regions.   
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3.1.4 Models of elastic fibre assembly 

Early studies modelling elastic fibre assembly utilised the intrinsic ability of 

elastogenic cells such as aortic smooth muscle cells [192], vascular endothelial cells [193], 

dermal fibroblasts [194] and auricular chondroblasts [195, 196] to synthesise and assemble 

elastin in vitro. However, the unstable elastogenic phenotype of these cultured cells proved 

unconducive for longer term studies, as levels of tropoelastin expression decreased with 

serial passaging [197].  

More recently, pigmented epithelial cells obtained from the ciliary body or retina of 

the eye have been selected as a model system for elastic fibre assembly. The ciliary body 

pigmented epithelium directly contacts the microfibril-rich connective tissue matrix of the 

ciliary body [198]. It is continuous with the retinal pigmented epithelium, which likewise 

rests against a basement membrane that contains matrix proteins including elastic fibre 

components [199, 200]. Accordingly, pigmented epithelial cells have been shown to produce 

major elastogenic components including microfibrillar proteins and lysyl oxidase, but not 

tropoelastin [140, 201]. They therefore represent an ideal model system for assaying the 

elastogenic capability of tropoelastin species. 

Constitutive tropoelastin expression can be initiated in pigmented epithelial cells via 

stable transfection of the tropoelastin cDNA into the genome. Immortalised ciliary body 

pigmented epithelial cells transfected with bovine tropoelastin cDNA have been shown to 

assemble the secreted tropoelastin into elastic fibres [201]. While variations in transfection 

efficiency may affect tropoelastin expression levels and therefore limit the quantification of 

assembled fibres [140], this approach still serves as a powerful means of simulating the in 

vivo elastogenic process of WT and mutant tropoelastin constructs.  

Another method for studying elastic fibre assembly relies on the direct addition of 

purified tropoelastin to the culture medium. Previous studies have demonstrated successful 
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incorporation of exogenous tropoelastin into an elastic fibre network by non-elastogenic 

cells [202, 203]. Similarly, recombinant human and bovine tropoelastin added to the 

extracellular environment of retinal pigmented epithelial cells were shown to be assembled 

into elastic fibres [140]. This model represents a convenient method to study the elastic fibre 

formation of wild-type or modified tropoelastin molecules. 

 

3.1.5 Aims 

This chapter aims to establish a cellular system for assessing the elastogenic potential 

of WT and R515A tropoelastin constructs. Comparative analysis of WT and R515A elastic 

fibres will determine if the observed structural deviation and functional impairment of 

R515A in independent assays modelling various stages of assembly impacts upon its ability 

to form normal elastic fibres in a cellular environment. These results will improve our 

understanding of the role of the tropoelastin bridge region in elastic fibre assembly.  
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3.2 Materials and Methods 

3.2.1 Materials 

Chemical reagents are listed in Table 3.2. Solutions and solution components are 

outlined in Table 3.3 General reagents and solutions not specific to this set of work are 

described in Section 2.1. 

 

Table 3.2. Reagents and suppliers of reagents used in this study. 

Reagent Supplier 

1 kb DNA ladder New England Biolabs, USA 

100 bp DNA ladder New England Biolabs, USA 

Ab21610 rabbit anti-elastin antibody Abcam, USA 

BA4 mouse anti-elastin antibody Sigma Aldrich, USA 

BamHI New England Biolabs, USA 

BSA Sigma Aldrich, USA 

DEPC Sigma Aldrich, USA 

DMEM Sigma Aldrich, USA 

DMEM/F12  Sigma Aldrich, USA 

DMSO Sigma Aldrich, USA 

DNA polymerase I Klenow fragment New England Biolabs, USA 

EcoRI New England Biolabs, USA 

FITC-conjugated anti-mouse antibody Sigma Aldrich, USA 

Foetal bovine serum Life Technologies, USA 

GlutaMAX™ Life Technologies, USA 

Lipofectamine® LTX Life Technologies, USA 

MAB1919 mouse anti-fibrillin antibody Millipore, USA 
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NcoI New England Biolabs, USA 

NotI New England Biolabs, USA 

Paraformaldehyde  Sigma Aldrich, USA 

pCI-neo mammalian expression vector Promega Corporation, USA 

PLUS™ reagent Life Technologies, USA 

ProLong® Gold anti-fade reagent with DAPI Life Technologies, USA 

Rhodamine phalloidin Life Technologies, USA 

SmaI New England Biolabs, USA 

SYBR Green Applied Biosystems, USA 

T4 DNA ligase New England Biolabs, USA 

TRITC-conjugated anti-rabbit Sigma Aldrich, USA 

TRIzol® Life Technologies, USA 

XbaI New England Biolabs, USA 
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Table 3.3. Solutions and solution components used in this study. 

Solution Components 

Annealing buffer 10 mM Tris, 50 mM NaCl, 1 mM EDTA 

DEPC-MQW 0.1% (v/v) DEPC in Milli-Q water 

DNA loading dye 40% (w/v) sucrose, 0.25% (w/v) bromophenol blue 

LB broth 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl 

LB-ampicillin agar 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 1.5% (w/v) 

agar, 100 g/mL ampicillin 

LB-ampicillin broth 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 2% 

(w/v) glucose, 100 g/mL ampicillin 

PBS 10 mM phosphate, 150 mM NaCl 

SOC 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 

mM MgCl2, 10 mM MgSO4, 20 mM glucose 

TBE 1.08% (w/v) Tris, 0.55% (w/v) boric acid, 2 mM EDTA 
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3.2.2 Methods 

3.2.2.1 Bioinformatics analysis of WT/R515A expression in a human cell system 

The likelihood that synthetic WT and R515A tropoelastin sequences could be 

expressed in human cells was determined using the online Rare Codon Analysis Tool 

(www.genscript.com/cgi-bin/tools/rare_codon_analysis). Specifically, the codon adaptation 

index, GC content adjustment, and codon frequency distribution of the tropoelastin 

constructs in a human expression host were assessed. 

 

3.2.2.2 Extraction of the pET-3d-tropoelastin plasmid 

Glycerol stocks of Escherichia coli BL21 transformed with pET-3d-WT or pET-3d-

R515A were streak plated on Luria-Bertani (LB)-ampicillin agar and incubated at 37 °C 

overnight. LB broth was inoculated with a single colony from either plate and incubated in a 

shaking water bath at 37 °C overnight. Plasmid DNA was extracted from the bacterial 

cultures using the QIAGEN® QIAprep Spin Miniprep Kit. DNA yield and purity were 

estimated using a NanoDrop™ spectrophotometer.  

 

3.2.2.3 Polymerase chain reaction (PCR) amplification of the tropoelastin insert 

3.2.2.3.1 Design of PCR primers 

Primers for polymerase chain reaction amplification of the tropoelastin sequence 

were designed to incorporate an EcoRI restriction site at the 5′ end and an XbaI restriction 

site at the 3′ end. Primers were checked for similar melting temperatures, potential 

dimerization and secondary structure formation using Oligonucleotide Primer Check 

(http://depts.washington.edu/bakerpg/primertemp/primermelttemp.html) and NetPrimer 

(www.premierbiosoft.com/netprimer/index.html). The primers used are outlined in Table 3.4. 
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Table 3.4. Primers for polymerase chain reaction amplification of tropoelastin. The 

engineered restriction sites are underlined. 

Primer Sequence (5′ to 3′) Tm (°C) 

pEcoRIFor GGAATTCATGGGTGGCGTTCCGGGT 58 

pXbaIRev GCTCTAGACTATCATTATTTACGTTTACGG 58 

 

3.2.2.3.2 Polymerase chain reaction  

Plasmid DNA (~200 ng) extracted from WT and R515A bacterial transformants was 

mixed with 1x AccuTaq buffer, 0.5 L AccuTaq polymerase, 0.5 mM dATP, 0.5 mM dCTP, 

0.5 mM dGTP, 0.5 mM dTTP, 0.4 nmol/mL pEcoRIFor, 0.4 nmol/mL pXbaIRev, and 2% 

(v/v) DMSO. A no-template control was included. PCR was performed using a GeneAmp 

PCR System 2400 following the protocol listed in Table 3.5.  

 

Table 3.5. Running time and temperature of the PCR cycles. 

Step No. of cycles Time (s) Temperature (°C) 

Initial denaturation 1 30 94 

Denaturation 35 10 94 

Annealing 30 55/60 

Extension 180 68 

Final extension 1 600 68 

 

3.2.2.3.3 Gel electrophoresis of PCR products 

PCR products were mixed with 10% (v/v) DNA loading dye and loaded onto a 1% 

(w/v) agarose gel together with a 1 kb DNA ladder. Electrophoresis was performed at 100 V 

for 1 hr in Tris/borate/EDTA (TBE) buffer. The gel was stained with 1 g/mL ethidium 
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bromide for 25 min, destained with reverse osmosis water for 5 min, and viewed under UV 

transilluminescence. 

3.2.2.3.4 Gel extraction of PCR-amplified tropoelastin sequences 

Bands on the agarose gel corresponding to the expected size of the WT and R515A 

tropoelastin inserts were excised and processed according to the QIAGEN® QIAquick Gel 

Extraction Kit. The yield and purity of extracted DNA were confirmed with a NanoDrop™ 

Spectrophotometer. 

 

3.2.2.4 Restriction digests of pCI-neo and tropoelastin sequences 

3.2.2.4.1 With EcoRI and XbaI 

The pCI-neo mammalian expression vector (60 ng/L) and gel-extracted WT and 

R515A tropoelastin inserts (30 ng/L) were digested with EcoRI (0.7 U/L) and XbaI (0.7 

U/L) in 1x NEB Buffer 4 and 1x BSA for 1 hr at 37 °C. The restriction enzymes were heat 

inactivated at 65 °C for 20 min.  

3.2.2.4.2 With SmaI 

The pCI-neo expression vector was digested with SmaI (1 U/L) in 10% (v/v) Roche 

Buffer A at 25 °C for 1 hr. To prevent spontaneous re-ligation, alkaline phosphatase (5% v/v) 

and alkaline phosphatase buffer (10% v/v) were added to the digest and incubated at 37 °C 

for 1 hr. The reaction was stopped at 65 °C for 20 min. 

 

3.2.2.5 Gel extraction of digested pCI-neo and tropoelastin sequences 

The digested pCI-neo and tropoelastin insert sequences were visualised via agarose 

gel electrophoresis and excised using a QIAGEN® QIAquick Gel Extraction Kit. DNA 

yield and purity were measured with a NanoDrop™ spectrophotometer. 
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3.2.2.6 Ligation of pCI-neo and tropoelastin sequences 

3.2.2.6.1 Sticky-end ligation 

Purified EcoRI- and XbaI-digested pCI-neo vector and tropoelastin sequences were 

mixed at a vector:insert ratio of 1:3, 1:5 or 1:10 and ligated with 40 U/L T4 DNA ligase in 

1x T4 buffer at 16 °C overnight. The ligase reaction was inactivated at 70 °C for 10 min. 

3.2.2.6.2 Direct ligation 

Purified SmaI-digested vector DNA was mixed with PCR-amplified WT or R515A 

sequence from Section 3.2.2.3.4 at a 1:5 molar ratio and ligated with 40 U/L T4 DNA 

ligase in T4 buffer at 16 °C overnight. The ligase reaction was inactivated at 70 °C for 10 

min. 

3.2.2.6.3 Blunt-end ligation 

WT and R515A insert sequences were obtained by digesting pET-3d-tropoelastin 

plasmid constructs from Section 3.2.2.2 with NcoI (1 U/L) and BamHI (1 U/L) at 37 °C 

for 2 hrs. The digests were visualised by agarose gel electrophoresis and extracted similarly 

as described in Section 3.2.2.3.4. The insert sequences were end-filled by incubating with 33 

M each of dATP, dGTP, dCTP, dTTP, 6.8 U/L DNA polymerase I Klenow fragment, and 

10% (v/v) NEB Buffer 4 at 25 °C for 15 min. The reaction was stopped by adding 10 mM 

EDTA and heating to 75 °C for 20 min. The product was purified by ethanol precipitation. 

Purified SmaI-digested vector DNA was mixed with the end-filled tropoelastin insert 

sequence at a 1:5 molar ratio and ligated with 40 U/L T4 DNA ligase in T4 buffer at 16 °C 

overnight. The ligase reaction was inactivated at 70 °C for 10 min. 
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3.2.2.7 Linker cloning of tropoelastin insert sequences into pCI-neo 

3.2.2.7.1 Linker construction 

Custom-made single-stranded oligonucleotides described in Table 3.6 were dissolved 

in annealing buffer to equimolar concentrations. Equal volumes of the forward and reverse 

strands of each linker were mixed, incubated at 95 °C for 2 min, then allowed to cool to 

room temperature over 1 hr to form the double-stranded EcoRI-NcoI and BamHI-XbaI linker 

constructs. 

 

Table 3.6. Sequences of single-stranded oligonucleotides used in linker construction. 

Linker Strand Sequence (5′-3′) 

EcoRI-NcoI Forward AATTCCGGCGTCGACGTCCATGC 

Reverse CATGGCATGGACGTCGACGCCGG 

BamHI-XbaI Forward GATCCCGAACTGCAGAACCGCT 

Reverse CTAGAGCGGTTCTGCAGTTCGG 

 

3.2.2.7.2 Ligation of pCI-neo, linker constructs and tropoelastin insert sequences 

The EcoRI- and XbaI-digested pCI-neo expression vector (from Section 3.2.2.4.1) 

was mixed with the EcoRI-NcoI linker, the NcoI- and BamHI-digested tropoelastin insert, 

and the BamHI-XbaI linker in a 1:1:1:1 and 1:3:3:3 molar ratio. A four-way ligation was 

done with 40 U/L T4 DNA ligase in T4 buffer at 16 °C overnight and terminated at 70 °C 

for 10 min. 

 

3.2.2.8 Preparation of electrocompetent E. coli 

A volume of LB broth was inoculated with a single colony of E. coli DH5α and 

incubated at 37 °C overnight. The overnight culture was used to inoculate 100 volumes of 
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LB broth and incubated at 37 °C until its absorbance at 600 nm reached 0.6. The culture was 

placed on ice for 20 min and centrifuged at 4000 g for 15 min at 4 °C. The supernatant was 

discarded and the pellet was resuspended in 25
 
volumes of cold 10% (v/v) glycerol. The 

mixture was centrifuged again at 4000 g for 15 min at 4 °C. The supernatant was discarded 

and the pellet was resuspended in 2 volumes of cold 10% (v/v) glycerol. The mixture was 

spun again at 4000 g for 15 min at 4 °C. The supernatant was discarded and the pellet was 

resuspended in 1/5 volume of cold 10% (v/v) glycerol. Aliquots (40 L) of the 

electrocompetent bacteria were stored at -80 °C. 

 

3.2.2.9 Transformation of E. coli  

Competent E. coli cells were gently mixed with ligated pCI-neo-tropoelastin (2.5 ng 

DNA/L cells) from Section 3.2.2.6 or 3.2.2.7 and incubated on ice for 1 min. Control 

samples were mixed with non-ligated vector and insert. Electroporation was performed 

using a Micropulser™ Electrporation Apparatus according to the protocol supplied. 

Electroporated cells were recovered in SOC medium and incubated at 37 °C for 1 hr. 

Cultures were plated on LB-ampicillin agar and incubated at 37 °C overnight. Transformed 

colonies were identified by growth on the selective medium.  

 

3.2.2.10 Confirmation of transformed colonies 

3.2.2.10.1 Extraction of the pCI-neo-tropoelastin expression vector 

Plasmid DNA was extracted from randomly selected transformed colonies in Section 

3.2.2.9 using the QIAGEN® QIAprep Spin Miniprep Kit. DNA yield and purity were 

estimated using a NanoDrop™ spectrophotometer. 

3.2.2.10.2 Restriction analysis of the pCI-neo-tropoelastin expression vector 
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Extracted plasmid DNA was digested with either NotI (2 U/L) or EcoRI (2 U/L) 

and XbaI (2 U/L) in 1x NEB Buffer 4 and 1x BSA for 1 hr at 37 °C. The digests were 

terminated by incubation at 65 °C for 20 min, then analysed via agarose gel electrophoresis 

following the same protocol described in Section 3.2.2.3.3. 

3.2.2.10.3 Design of sequencing primers 

Sequencing primers were designed to confirm the tropoelastin insert within the pCI-

neo expression vector (Table 3.7). The pNeoSeqFor and pNeoSeqRev primers flank the 

EcoRI and XbaI cloning sites of the pCI-neo expression vector, while pNeoSeqMid anneals 

to a region within the insert.  

 

Table 3.7. Primers used to sequence the insert between the EcoRI and XbaI cloning 

sites of the pCI-neo vector. The primer sequence, length and melting temperature are 

shown. 

Primer Sequence (5′-3′) Length (bases) Tm (°C) 

pNeoSeqFor AAGGCTAGAGTACTTAATACGA 22 65.7 

pNeoSeqRev CTCATCAATGTATCTTATCATG 22 63.9 

pNeoSeqMid CGGGTGCAGGTGTAAAACC 19 59.5 

 

3.2.2.10.4 Sequencing of the pCI-neo-tropoelastin expression vector 

The vector construct extracted from transformants (100 ng//L) was separately 

mixed with 0.8 pmol/L sequencing primer and sent to the Australian Genome Research 

Facility for sequencing.  
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3.2.2.11 Cell culture  

3.2.2.11.1 Human retinal pigmented epithelial cells (ARPE-19) 

ARPE-19 cells (American Type Culture Collections) were obtained from Dr M. 

Madigan (Sydney Eye Hospital, NSW, Australia). The cells were cultured in DMEM/F12 

nutrient medium supplemented with 10% (v/v) foetal bovine serum, 1% (v/v) GlutaMAX 

and 1% (v/v) penicillin/streptomycin. 

3.2.2.11.2 Human dermal fibroblasts (GM3348) 

GM3348 cells (Coriell Cell Repositories) were cultured in DMEM supplemented 

with 10% foetal bovine serum and 1% (v/v) penicillin/streptomycin.  

3.2.2.11.3 Neonatal human fibroblasts (NHF8909) 

NHF8909 cells were obtained from Dr X. Q. Wang (University of Queensland, QLD, 

Australia).  The cells were cultured in DMEM supplemented with 10% foetal bovine serum 

and 1% (v/v) penicillin/streptomycin. 

 

3.2.2.12 Testing for mycoplasma contamination in ARPE-19 

Conditioned media from ARPE-19 cells was used to test for mycoplasma 

contamination using LookOut® Mycoplasma PCR Detection Kit (Sigma Aldrich). 

 

3.2.2.13 Production of frozen cell stocks 

Cells cultured until ~90% confluency were washed with PBS, trypsinised at 37 °C 

for 3 min, and dislodged by light tapping. The trypsin was then neutralised with 2.5 volumes 

of serum-containing culture media. Cells were pelleted at 800 g for 10 min and resuspended 

in fresh culture media. Approximately 10
6
 cells were placed in each cryogenic vial and 

mixed with 10% (v/v) DMSO. The vials were placed in a rack submerged in isopropanol, 

incubated overnight at -80 °C, then stored in liquid nitrogen. 
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3.2.2.14 Transfection 

3.2.2.14.1 Optimisation of the transfection protocol 

The pCI-neo-WT vector was diluted in serum-free DMEM/F12 (10 g/mL), mixed 

well with 1% (v/v) PLUS™ Reagent, and incubated at room temperature for 10 min. 

Lipofectamine® LTX Reagent was serially diluted in serum-free DMEM/F12 to a 

concentration range of 1 to 6% (v/v). An equal volume of the pCI-neo-WT:PLUS™ Reagent 

solution was then added and incubated at room temperature for 30 min to form stock 

transfection complexes with increasing ratios of vector DNA to lipid. Different volumes of 

each stock transfection complex were slowly added to wells containing ~70% confluent 

ARPE-19 cells to test the transfection efficacy of various amounts of vector DNA. The cells 

were cultured for another 24 hrs and assayed for WT tropoelastin expression. 

3.2.2.14.2 Stable transfection  

ARPE-19 cells were seeded onto cell culture wells at a density of 15,000 cells/cm
2
. 

After 24 hrs, cells were confirmed to be between 50-80% confluent. Solutions of pCI-neo-

WT, pCI-neo-R515A and the empty pCI-neo vector in serum-free DMEM/F12 (390 ng/cm
2
 

well surface) were mixed 1:1 with the PLUS Reagent and incubated at room temperature for 

5 min. The vector DNA solutions were added 1:4 to Lipofectamine® LTX in serum-free 

DMEM/F12 and incubated at room temperature for 30 min. The ARPE-19 cells were then 

washed with PBS and provided with fresh medium. The DNA-Lipofectamine® complex 

was added drop-wise to each well and mixed by gentle rocking. 

After 24 hrs, cells were passaged 1:3 into fresh medium. After 48 hrs, 0.6 mg/mL 

Geneticin® (G418) was added to the culture media. This selective media was changed daily 

until all cells transfected with the empty vector had died, after which the antibiotic 

concentration was lowered to 0.3 mg/mL.  
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3.2.2.14.3 Transient transfection  

Cells were transfected as described in Section 3.2.2.14.2 and assayed after 24 hrs. No 

selective agents were added to the culture media.  

 

3.2.2.15 Assaying for gene expression by real-time reverse transcriptase 

polymerase chain reaction (RT-PCR) 

3.2.2.15.1 RNA extraction 

Cells were washed twice with PBS made up in DEPC-MQW and lysed with 

TRIzol® (0.05 mL/cm
2
 well surface). Cell lysates were homogenised through a 21G needle 

five times and mixed thoroughly with chloroform (300 L/mL TRIzol) by vortexing for 15 s. 

The solution was incubated at room temperature for 5 min and centrifuged at 12000 g for 15 

min. The aqueous phase was collected in an RNase-free tube and mixed by inversion with an 

equal volume of 70% (v/v) ethanol in DEPC-MQW. Total RNA was extracted from the 

mixture using the QIAGEN® RNeasy Mini Kit. RNA yield and purity were analysed with a 

NanoDrop™ spectrophotometer. 

3.2.2.15.2 cDNA synthesis 

Reverse transcription of the extracted RNA was undertaken using the SuperScript® 

VILO™ cDNA Synthesis Kit (Life Technologies).  

3.2.2.15.3 Design of real-time RT-PCR primers 

 For each gene to be assayed, forward and reverse primers were designed using the 

Primer3 program (http://frodo.wi.mit.edu/). Amplicons were optimised to be between 80-

150 base pairs. The primer sequences are listed in   
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Table 3.8. 
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Table 3.8. Real-time RT-PCR primers. 

Target Primer Sequence (5′-3′) 

18S 
18S_For CCTGCGGCTTAATTTGACTC 

18S_For AACTAAGAACGGCCATGCAC 

WT/R515A 
SHEL_For GCGTAGGTGGTGCTGGCGTT 

SHEL_Rev AGCTGCCGCTTCCGGGGATA 

Endogenous human tropoelastin 
HTE_For AGGGGTTGTGTCACCAGAAG 

HTE_Rev CAGCTCCAACCCCGTAAGTA 

Cellular retinaldehyde-binding protein 

(CRALBP) 

CRALBP_For ACAAGTATGGCCGAGTGGTC 

CRALBP_Rev CATTCTCCAGCAGCTTCTCC 

Retinal pigmented epithelium-specific 

65 kDa protein (RPE65) 

RPE65_For AGGCTGACACAGGCAAGAAT 

RPE65_Rev TCAGGCTCCAGCCAGATAGT 

Fibrillin-1 [140] 
Fib1_For CACCCTATGCCAAGTTGATC 

Fib1_Rev TGACACTTAAAGCTGCCAATG 

Fibulin-4 
Fib4_For CGTCATCAACGACCTACACG 

Fib4_Rev CACACAGCTGTCCTGATCGT 

Fibulin-5 
Fib5_For GCCTGCCGAGGAGACATGAT 

Fib5_Rev TGCACACTCGTCCACATCCA 

Lysyl oxidase 
LOX_For GATATTCCTGGGAATGGGCAC 

LOX_Rev GCCAGGACTCAATCCCTGTG 

Lysyl oxidase-like 1 
LOXL1_For GTCGCTACGTTTCTGCAACA 

LOXL1_Rev GCTTTGGAAGGGGAGAGATT 

Lysyl oxidase-like 2 
LOXL2_For GAGTTGCCTGCTCAGAAACC 

LOXL2_Rev GTTGTGGATCTGGGAGGAGA 
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3.2.2.15.4 Real-time RT-PCR 

Replicate cDNA samples (1.25-10 ng/L) were mixed with 50% (v/v) SYBR Green, 

0.375 M forward primer and 0.375 M reverse primer. No-template controls containing 

only the RT-PCR reagents were included. All samples were incubated on ice for 10 min. 

RT-PCR was performed on an Applied Biosystems StepOnePlus Real-time PCR System. 

 

3.2.2.16 Immunohistochemistry analysis of the extracellular matrix 

3.2.2.16.1 Preparation of stable transfectants 

Transfected ARPE-19 cells that have been cultured in selective media were seeded 

on sterile glass coverslips at a density of 25,000 cells/cm
2
. Cells were fixed and stained 1 

and 5 days post-seeding. 

3.2.2.16.2 Preparation of transient transfectants 

ARPE-19, GM3348 and NHF8909 cells were seeded on glass coverslips at a density 

of 25,000 cells/cm
2
. ARPE-19 cells were transfected 14 days post-seeding, while GM3348 

and NHF8909 fibroblasts were transfected 10 days post-seeding. Samples were fixed and 

stained 1, 4, 7 and 10 days after transfection. 

3.2.2.16.3 Exogenous addition of tropoelastin 

 ARPE-19, GM3348 and NHF8909 cells were seeded on glass coverslips at a density 

of 18400 cells/cm
2
. Cells were stained for fibrillin at various time points to determine the 

extent of microfibril formation.  

When a microfibrillar network has been established (10 and 14 days post-seeding for 

fibroblasts and ARPE-19 cells, respectively), 20 g/mL of purified WT or R515A in PBS 

was added to triplicate wells of each cell type. The culture media was changed every 2 days. 

Samples were fixed and stained 1, 4, 7 and 10 days after tropoelastin addition. 
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This experiment was also undertaken with WT or R515A being supplemented during 

each media change. Samples were fixed and stained 1, 4, 7 and 10 days after the initial 

tropoelastin addition. 

3.2.2.16.4 Fixing and immunostaining  

Cells were washed twice in PBS and fixed with 4% (w/v) paraformaldehyde for 20 

min. Excess paraformaldehyde was washed off three times with PBS and quenched with 

0.2M glycine for 20 min. The cells were rinsed three times in PBS, incubated in 0.2% (v/v) 

Triton-100 for 6 min, washed again with PBS three times, and coated with 5% (w/v) BSA at 

4 °C overnight. Excess BSA was removed with three PBS washes. The cells were then 

incubated with a primary antibody for 1.5 hrs, washed three times with PBS, and incubated 

with a fluorophore-conjugated secondary antibody for 1 hr. The sets of antibodies used are 

listed in Table 3.9. Unstained, no-primary-antibody, and isotype controls with non-specific 

mouse or rabbit IgG were also prepared. Actin fibres were visualised with 1:1000 rhodamine 

phalloidin. The cells were washed three times in PBS and mounted on glass microscope 

slides with ProLong® Gold anti-fade reagent with DAPI.  

 

Table 3.9. Primary and secondary antibodies used to detect extracellular matrix 

components. 

Target Primary Antibody Dilution Secondary Antibody Dilution 

Elastin Mouse anti-elastin (BA4) 1:500 FITC-conjugated anti-

mouse 

1:100 

Elastin Rabbit anti-elastin 

(ab21610) 

1:250 TRITC-conjugated anti-

rabbit 

1:100 

Fibrillin Mouse anti-fibrillin 

(MAB1919)  

1:500 FITC-conjugated anti-

mouse 

1:100 
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3.2.2.16.5 Confocal microscopy 

Samples were imaged with an Olympus FluoView FV1000 confocal microscope 

under the 60x oil immersion objective. DAPI, FITC and TRITC fluorescence were detected 

using the 405, 488 and 559 nm lasers, respectively. Z-stacks were taken from at least 3 areas 

distributed across each sample and converted to maximum projection images. 

3.2.2.16.6 Analyses of elastic fibres 

Fibre analyses were performed on maximum projection images from WT and R515A 

samples. To compare elastic fibre fluorescence, a threshold was set to exclude background 

and saturated pixel intensities in the FITC or TRITC channel. The average intensity of pixels 

within the threshold was measured and averaged for each sample. To compare fibre density, 

two perpendicular reference lines were drawn in each projection image. The number of 

fibres intersecting either reference line was counted and averaged for each sample. The area 

occupied by cell nuclei, measured by the number of DAPI-fluorescent pixels above 

background intensity, was used as a control of cell number and viability in all samples. 

 

3.2.2.17 Fluorescence lifetime imaging (FLIM) 

The presence of elastic fibres in ARPE-19 cells transiently transfected with pCI-neo-

WT or pCI-neo-R515A was determined by FLIM. Cells were fixed and stained after 1 and 4 

days as described in Section 3.2.2.16.4. Time-correlated single-photon-counting 

fluorescence lifetime imaging was performed using a Leica SP5 II multi-photon microscope. 

The excitation wavelength was set at 800 nm, and the emission spectrum from 510-560 nm 

was collected over 200 s. A decay matrix was calculated and used to obtain the fluorescence 

lifetimes of specific components within each sample. 
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3.3 Results 

3.3.1 Bioinformatics analysis of WT/R515A expression in human cells 

The potential for synthetic WT and R515A tropoelastin cDNA to be expressed in a 

human host system was assessed by analysing the compatibility of the sequences with 

human-specific codon usage bias. The likely success of heterologous gene expression is 

directly related to the codon adaptation index (CAI). The CAI of endogenous human 

tropoelastin was 0.68, while both WT and R515A sequences were calculated to have a 

slightly lower CAI of 0.55, which was predictive of moderate expression levels in human 

cells (Figure 3.3).  

 The majority of codons in the WT and R515A sequences were used at moderate to 

high frequencies in a human expression system (Figure 3.4). While 12% of the WT and 

R515A codons were categorised to have low usage frequencies (codon values <30), in 

contrast with 1% of the native human tropoelastin sequence, they still represented codons 

that appear naturally in human genes (codon values >20). 

The average GC content of endogenous human tropoelastin (64.3%) was similar to 

that of the WT and R515A sequences (65.7%) (Figure 3.5). Both values fell within the ideal 

GC content range of 30-70% observed in human sequences, indicating likely heterologous 

expression of WT and R515A in human cells. 
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A  

B  

C  

Figure 3.3. Codon adaptation index of (A) endogenous human tropoelastin, (B) WT 

and (C) R515A DNA sequences. The distribution of codon usage frequency along the 

length of the 2100 bp sequence in a human expression system is shown. The likelihood 

of protein expression is directly correlated to the relative frequency of codon usage in 

the specified host. 
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A  

B  

C  

Figure 3.4. Codon frequency distribution of (A) endogenous human tropoelastin, (B) 

WT and (C) R515A DNA sequences. The percentage distribution of codons in 

computed ‘codon quality’ groups are shown. A value of 100 is set for the codon with 

the highest usage frequency for a given amino acid in the human expression system. 

Codons with values lower than 30 may decrease expression efficiency. 
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A  

B  

C  

Figure 3.5. GC content of (A) endogenous human tropoelastin, (B) WT and (C) R515A 

DNA sequences.  
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3.3.2 Construction of the pCI-neo-WT and pCI-neo-R515A expression vectors 

To construct the pCI-neo-WT and pCI-neo-R515A mammalian expression vectors, 

the tropoelastin insert flanked by NcoI and BamHI restriction sites within a bacterial pET-3d 

plasmid had to be cloned into a pCI-neo vector that did not contain NcoI and BamHI sites. 

This was achieved after attempts with several cloning strategies.  

3.3.2.1 Cohesive-end cloning 

The pET-3d plasmid containing either WT or R515A cDNA (Figure 3.6) was 

extracted from stock E. coli transformants at high purity (A260:A280 ~ 1.8).  

 

 

Figure 3.6. Schematic representation of the pET-3d plasmid with the 2107 bp WT or 

R515A insert. Features of the plasmid construct including the T7 promoter (PT7), 

ribosome binding site (RBS), T7 terminator (TT7) and ampicillin resistance gene 

(Amp
R
) are indicated. 

  

  

  

 

AmpR 

NcoI BamHI 

pET-3d-WT/pET-3d-R515A 
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RBS TT7 2107 bp insert 
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PCR primers that annealed to flanking regions of the tropoelastin insert were 

engineered to introduce an EcoRI restriction site at the 5′ end and an XbaI restriction site at 

the 3′ end of the insert sequence. PCR amplification of pET-3d-WT and pET-3d-R515A 

with these primers produced a dominant ~2.1 kb species corresponding to the expected size 

of the tropoelastin sequences (Figure 3.7). No amplification products were observed for the 

no template control. The WT and R515A PCR products were gel-extracted and confirmed to 

be of high purity. 

 

 

Figure 3.7. Polymerase chain reaction amplification of the WT or R515A tropoelastin 

insert sequence in pET-3d plasmids extracted from transformed E. coli colonies. The 

~2.1 kb bands corresponding to the expected size of the tropoelastin sequences are 

indicated by arrowheads. Lanes: M – DNA ladder (kb); 1 – pET-3d-WT PCR products; 

2 – pet-3d-R515A PCR products; 3 – no template control. 

 

The WT/R515A insert sequences and pCI-neo vector sequence (Figure 3.8) were 

double digested with EcoRI and XbaI to produce cohesive ends for subsequent directional 

ligation. DNA gel electrophoresis of the vector digests revealed a ~5.5 kb band 

corresponding to the pCI-neo sequence, while the insert digests showed a ~2.1 kb band 
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consistent with the WT/R515A sequence (Figure 3.9). The revelant bands were purified 

from the agarose gel at high purity. 

 

 

Figure 3.8. Diagram of the ~5.5 kb pCI-neo mammalian expression vector obtained 

from the manufacturer (Promega).  

 

 

Figure 3.9. Agarose gel showing gel-purified EcoRI + XbaI digested pCI-neo vector and 

WT/R515A tropoelastin insert sequences. The main ~5.5 kb vector and ~2.1 kb insert 

digest products are indicated. Lanes: M – DNA ladder (kb); 1, 2 – pCI-neo vector 

digests; 3, 4 – WT insert digests; 5, 6 – R515A insert digests. 
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 The digested pCI-neo and WT/R515A sequences were ligated at various vector:insert 

ratios and used to transform competent E. coli cells via electroporation. Colony growth was 

observed on selective medium, which indicated successful uptake of the ampicillin 

resistance-conferring pCI-neo. Plasmid DNA was extracted from randomly selected colonies 

at high yield and purity and screened for the tropoelastin sequence. Restriction analysis with 

EcoRI and XbaI showed only a ~5.5 kb band corresponding to the empty vector (Figure 

3.10A). Similar results were observed for putative clones analysed with NotI (Figure 3.10B). 

It appeared that the tropoelastin inserts were not incorporated into pCI-neo, and the bacterial 

cells were subsequently transformed with re-ligated vector DNA. 

 

 

Figure 3.10. Restriction analysis of pCI-neo vector DNA extracted from transformed 

colonies with (A) EcoRI + XbaI or (B) NotI. Only ~5.5 kb bands corresponding to the 

empty vector were seen for all samples. Lanes: M – DNA ladder (kb); 1, 2 – EcoRI + 

XbaI digest of putative pCI-neo-WT; 3 – undigested pCI-neo; 4, 5, 6 – EcoRI + XbaI 

digest of putative pCI-neo-R515A; 7 – undigested pCI-neo; 8 - NotI digest of putative 

pCI-neo-WT; 9, 10 - NotI digest of putative pCI-neo-R515A. 
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3.3.2.2 Direct cloning 

A more direct cloning approach was adopted to minimise handling steps that may 

induce damage to the DNA sequences. The pCI-neo vector was digested with SmaI to 

produce a linearised sequence with blunt ends. DNA gel electrophoresis of the vector digest 

together with PCR-amplified WT and R515A insert sequences enabled purification of the 

relevant products (Figure 3.11).  

 

 

Figure 3.11. Agarose gel showing gel-purified PCR-amplified tropoelastin insert 

sequences and SmaI digested pCI-neo. Lanes: M – DNA ladder (kb); 1 – WT PCR 

product; 2 – R515A PCR product; 3 – SmaI digest of pCI-neo. 

 

PCR-amplified WT/R515A directly ligated with the linearised pCI-neo vector was 

used to transform competent E. coli. These cells did not grow on selective plates, while 

those transformed with pCI-neo alone exhibited colony formation, suggesting incomplete 

ligation of the vector and insert sequences. 
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3.3.2.3 Blunt-end cloning 

An alternative cloning method was used to eliminate the need for restriction sites at 

the ends of the tropoelastin insert that would be compatible with available cloning sites in 

pCI-neo. The pET-3d-WT and pET-3d-R515A plasmid DNA extracted from transformed E. 

coli stocks were treated with NcoI and BamHI to release the WT and R515A cDNA 

sequences. Gel electrophoresis of the digests enabled purification of the ~2.1 kb tropoelastin 

insert from the larger ~4.6 kb plasmid fragment (Figure 3.12). 

 

 

Figure 3.12. NcoI and BamHI double digest of pET-3d plasmid containing the WT or 

R515A insert sequence. The ~2.1 kb bands corresponding to the tropoelastin inserts 

are indicated. Lanes: M – DNA ladder (kb); 1 – undigested pET-3d-WT; 2 – NcoI + 

BamHI digest of pET-3d-WT; 3 – undigested pET-3d-R515A; 4 - NcoI + BamHI digest 

of pET-3d-R515A.  

 

 The WT and R515A sequences were filled at the overhanging 5′ NcoI and 3′ BamHI 

sites to produce blunt-ended constructs, and ligated with SmaI-digested pCI-neo. Only 2-3 

transformed colonies were observed on selective plates. Screening of the clones via NotI 

restriction analysis of extracted plasmid DNA showed only a ~5.5 kb band consistent with 
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the empty pCI-neo vector (Figure 3.13), indicating unsuccessful incorporation of the 

tropoelastin insert into the vector sequence.  

  

 

Figure 3.13. Screening for possible pCI-neo-WT and pCI-neo-R515A clones by NotI 

restriction analysis of plasmid DNA extracted from transformed E. coli. Only ~5.5 kb 

bands corresponding to the size of the empty vector were observed. Lanes: M – DNA 

ladder (kb); 1 – undigested pCI-neo; 2, 3, 4 – NotI digests of putative pCI-neo-WT 

clones; 5, 6 - NotI digests of putative pCI-neo-R515A clones. 

 

3.3.2.4 Linker-mediated cloning  

A different cloning approach was attempted using linker sequences to attach vector-

compatible restriction sites at the ends of the tropoelastin insert. Two linker sequences were 

constructed (Figure 3.14): an EcoRI-NcoI linker to adjoin the upstream EcoRI site in pCI-

neo with the 5′ NcoI site in WT/R515A; and a BamHI-XbaI linker to connect the 3′ BamHI 

site in WT/R515A with the downstream XbaI site in pCI-neo.  

Simultaneous ligation of the EcoRI+XbaI-digested pCI-neo, EcoRI-NcoI linker, 

NcoI+BamHI-digested WT/R515A and BamHI-XbaI linker was performed. Transformed E. 

coli colonies were screened by NotI restriction analysis of extracted plasmid samples. NotI 

will cut pCI-neo-WT or pCI-neo-R515A within the insert and vector sequences to produce 
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~1.3 kb and ~6.3 kb fragments. This characteristic digest profile was seen in 10 putative WT 

and 8 putative R515A clones sampled (Figure 3.15).  

 

 

Figure 3.14. Schematic representation of the (A) EcoRI-NcoI and (B) BamHI-XbaI 

linkers. Restriction enzyme recognition sites are labelled in coloured font. 

 

 

Figure 3.15. NotI restriction analysis of putative pCI-neo-WT and pCI-neo-R515A 

clones extracted from transformed E. coli. A ~6.3 kb band and a ~1.3 kb band were 

seen in all WT and most R515A colonies, indicating the presence of the tropoelastin 

insert within the vector. Lanes: M – DNA ladder (kb); 1-10 – NotI digests of pCI-neo-

WT; 11-20 - NotI digests of pCI-neo-R515A. 
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3.3.2.5 Sequence confirmation 

Sequencing of plasmid DNA extracted from presumptive WT and R515A 

transformants confirmed successful cloning of the WT or R515A sequence into the pCI-neo 

expression vector (Appendix 8.1). 
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3.3.3 Stable transfection  

3.3.3.1 Validation of the ARPE-19 cell line 

The ARPE-19 cells were found to be free of mycoplasma contamination (Figure 

3.16). Mycoplasma markers were not detected by PCR analysis of the incubation media 

from different cell passages.  

The cultured ARPE-19 cells displayed characteristic retinal pigmented epithelial cell 

features, including defined cell borders and a general cobblestone appearance. The transcript 

levels of two retinal pigmented epithelium-specific markers, the cellular retinaldehyde-

binding protein (CRALBP) and the retinal pigmented epithelium-specific 65 kDa protein 

(RPE65), were also detectable (Figure 3.17). Expression levels increased with longer periods 

in culture and were significantly higher than the background levels in human dermal 

fibroblasts cultured for the same duration. 
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Figure 3.16. PCR detection of mycoplasma markers in the culture media of ARPE-19 

cells. Lanes: M – DNA ladder (bp); 1 – positive control; 2 – negative control; 3-6 – 

culture media from different passages of ARPE-19. All test samples showed the ~489 

bp internal control band but not the ~259 bp mycoplasma-specific band. 

 

 

Figure 3.17. Transcript levels of ARPE-19 specific markers after 3 and 21 days in 

culture. Human dermal fibroblasts (HDF) cultured for 21 days were used as a negative 

control for gene expression. 
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3.3.3.2 ARPE-19 RNA expression of elastogenic components 

The ARPE-19 cells were shown to express several extracellular matrix proteins 

involved in elastogenesis, including crucial components such as the major microfibrillar 

protein fibrillin-1, and the cross-linking enzyme lysyl oxidase (Figure 3.18). ARPE-19 cells 

displayed variable expression of these genes compared to human dermal fibroblasts (HDF) 

which have an established elastogenic phenotype. Both fibrilin-1 and fibulin 5 transcript 

levels were lower in ARPE-19 than HDF, while lysyl oxidase expression was similar in both 

cell types. In contrast to HDF, however, ARPE-19 did not produce detectable levels of 

endogenous tropoelastin mRNA. 
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A  

B  

C  

D  

Figure 3.18. Comparative expression levels of (A) fibrillin-1, (B) fibulin 5, (C) lysyl 

oxidase, (D) tropoelastin by ARPE-19 and human dermal fibroblasts. 
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3.3.3.3 Optimisation of the transfection protocol 

ARPE-19 cells were transfected with varying amounts of pCI-neo-WT vector DNA 

at increasing ratios of the lipid transfection agent to determine optimum transfection 

parameters (Figure 3.19). Optimal transfection efficiency was found to occur with the 

following conditions: 750 ng DNA per 2 cm
2
 well surface at 4-fold excess of Lipofectamine. 

Twenty-four hours after transfection, cells exhibited a 4.5 million fold increase in 

tropoelastin expression compared to untransfected cells. 

Introduction of the WT tropoelastin gene into ARPE-19 and the consequent 

induction of WT tropoelastin mRNA expression did not affect endogenous levels of other 

elastogenic components.  Transfected ARPE-19 displayed similar transcript levels of 

fibrillin-1, fibulin 5 and lysyl oxidase to untransfected cells (Figure 3.20).  
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Figure 3.19. WT expression levels of ARPE-19 cells transfected with increasing 

amounts of pCI-neo-WT and at different ratios of Lipofectamine:DNA. WT 

tropoelastin transcript levels of transfected cells were assayed 24 hrs after transfection 

and denoted by the fold increase over expression levels of untransfected cells.  

 

 

Figure 3.20. Expression of elastogenic components in transfected and untransfected 

ARPE-19 cells. 
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3.3.3.4 Propagation of stable transfectants 

ARPE-19 transfected with pCI-neo-WT, pCI-neo-R515A or the empty pCI-neo 

vector were cultured in G418-supplemented nutrient media to select for cells with the 

neomycin resistance-conferring pCI-neo constructs. Untransfected ARPE-19 cells were 

cultured under the same conditions to monitor the progress of the antibiotic selection.  

Over two weeks after the initial addition of G418 to the culture media, untransfected 

cells steadily diminished in number with only a few cells visible per field of view on the 16
th

 

day (Figure 3.21). In contrast, cells transfected with the empty pCI-neo vector survived and 

proliferated into dense clusters. Likewise, cells transfected with pCI-neo-WT and pCI-neo-

R515A persisted with increasing cell numbers after 16 days in selective media. However, 

there were visibly more WT than R515A transfectants, suggesting variable transfection rates 

between samples. 
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Figure 3.21. Light microscope images of untransfected, pCI-neo transfected, pCI-neo-

WT transfected, and pCI-neo-R515A transfected ARPE-19 at various time points after 

initial addition of G418 into the culture medium.  

 

3.3.3.5 Probing for elastic fibre formation by transfected ARPE-19 

ARPE-19 cells transfected with WT, R515A or the vector alone were propagated for 

90 days to achieve sufficient cell numbers for study. Confocal microscopy of the cells 

stained for fibrillin-1 and elastin showed no definitive elastic fibre network (Figure 3.22). 

Punctate species and thin microfibres corresponding to fibrillin-1 staining were observed in 

the extracellular matrix of the cells, suggesting formation of nascent microfibrils. However, 

there was no discernible elastin production in all samples.  

Analysis of WT and R515A transcript levels in the transfectants confirmed a 

dramatic loss of WT tropoelastin expression that occurred over the course of propagating the 

transfected cultures (Figure 3.23). This represents a ~300,000-fold decrease in expression 

levels over three months. 
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Figure 3.22. Confocal microscopy of transfected ARPE-19 cells stained for cell nuclei 

(blue), fibrillin-1 (green), and elastin (red). Cells were fixed and stained 1 and 5 days 

post-seeding. 

 

Figure 3.23. Expression levels of WT and R515A tropoelastin in transfected ARPE-19 

cells after 90 days in culture. 
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3.3.4 Transient transfection 

3.3.4.1 RNA expression of elastogenic components 

ARPE-19 cells and GM3348/NHF8909 fibroblasts were shown to express a number 

of extracellular matrix proteins involved in elastogenesis, including microfibrillar proteins 

fibrillin-1, fibulin 4 and fibulin 5, as well as several lysyl oxidase family proteins (Figure 

3.24). As previously described, no endogenous tropoelastin transcripts were detected in 

ARPE-19 cells. However, GM3348 and NHF8909 fibroblasts expressed low levels of 

tropoelastin consistent with their elastogenic phenotype. 

 

 

Figure 3.24. Expression of elastogenic components by ARPE-19, GM3348 and 

NHF8909 cells.  

  

Fib
ri
lli

n-1

Fib
ulin

 5

Fib
ulin

 4
LO

X

LO
X
L1

LO
X
L2

Tro
poel

as
tin

0

250

500

750

1000

1250
ARPE-19

GM3348

NHF8909

C
o

p
ie

s
 p

e
r 

1
0

6
 1

8
S



__________________________________________________________________Chapter 3 

90 

 

3.3.4.2 Tropoelastin expression in transiently transfected cells  

Analysis of WT/R515A transcript levels in transiently transfected cells suggested a 

steep decline in tropoelastin expression within a few days after transfection (Figure 3.25). 

Transfection of ARPE-19 cells induced a 150,000-fold increase in tropoelastin expression, 

which rapidly decreased after 24 hrs. In contrast, tropoelastin expression persisted slightly 

longer in GM3348 and NHF8909 fibroblasts until 4 days after transfection, but had similarly 

returned to near-baseline levels by 10 days.  
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A  

B  

C  

Figure 3.25. Transcript expression levels of WT and R515A tropoelastin in transiently 

transfected (A) ARPE-19, (B) GM3348 and (C) NHF8909 cells. Samples at day 0 

represent untransfected cells. 
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3.3.4.3 Establishment of the microfibrillar network 

The temporal progression of microfibrillar development in ARPE-19 cells and 

human dermal fibroblasts was determined so that ARPE-19 cells could be transfected and 

tropoelastin expression induced only after a defined network of microfibrils had been 

established (Figure 3.26). Six days after seeding, ARPE-19 and GM3348 cells stained for 

fibrillin-1, the dominant component of microfibrils, did not show any visible fibre formation. 

Ten days after seeding, short fibrillin fibres were observed in ARPE-19 cells, while an 

extensive fibrillar network was already present in GM3348 fibroblasts. By day 14 post-

seeding, microfibrillar development was comparable in both cell types. The staining controls 

showed no detection of fibrillin species. 
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Figure 3.26. Development of a microfibril network in ARPE-19 and GM3348 cells. (A) 

Fibrillin-1 immunostaining in ARPE-19 and GM3348 cells at 6, 10 and 14 days post-
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seeding. (B) Staining controls confirm antibody specificity. Cell nuclei in all samples 

are indicated by DAPI fluorescence. 

 

3.3.4.4 Elastic fibre assembly by transiently transfected cells 

The presence of elastic fibres was probed in ARPE-19 cells and dermal fibroblasts 

that were transfected with pCI-neo-WT or pCI-R515A after the cultures had established a 

microfibrillar network, i.e. on days 14 and 10 of culture, respectively. Confocal images were 

taken in the 500-550 nm range, which captured elastin-specific staining, and in the 600-650 

nm range, which reflected sample autofluorescence.  

At 1, 4, 7 and 10 days after transfection, ARPE-19 cells transfected with pCI-neo 

containing either the WT or R515A sequence exhibited no visible elastic fibre formation 

(Figure 3.27). All sample images showed a diffused background fluorescence without any 

defined structure similar to those of control cells transfected with the empty pCI-neo.   
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Figure 3.27. Confocal images of WT and R515A transfected ARPE-19 cells stained for 

elastin with the mouse BA4 and FITC-conjugated anti-mouse antibodies. Images show 

FITC fluorescence, autofluorescence, and merged channels (A) 1, (B) 4, (C) 7 and (D) 

10 days after transfection. (E) Cells 10 days after transfection with the empty pCI-neo 

vector. (F) Staining controls: no primary or secondary antibody; FITC-conjugated 

secondary antibody only; non-specific mouse IgG and FITC-conjugated secondary 

antibody. Controls show images from merged FITC and autofluorescence channels. 
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 In contrast, transiently transfected GM3348 dermal fibroblasts produced fine fibres 

that were detected by elastin immunostaining (Figure 3.28). However, the faint fibres 

necessitated visualisation under a high laser power, which also intensified background 

fluorescence. To isolate these fibres, structures that emitted visibly higher elastin-specific 

fluorescence than autofluorescence, and hence appeared green rather than yellow/orange on 

the merged images, were identified. 

 Fine fibre structures with similar abundance and morphology were seen in both WT 

and R515A transfected cells at 1, 4 and 7 days after transfection. No such fibres were 

observed in the samples 10 days after transfection. These structures were also absent in cells 

transfected with the empty pCI-neo vector and in the staining controls. 

 Similar results were demonstrated in transiently transfected NHF8909 neonatal 

human fibroblasts (Figure 3.29). Fibrous assemblies that exhibit elastin-specific staining 

were present in transfected cells within 7 days after transfection. The fibres were 

indistinguishable between WT and R515A samples, and were not seen in vector-transfected 

cells and unstained controls.  
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Figure 3.28. Confocal imaging of WT and R515A transfected GM3348 cells stained for 

elastin with the mouse BA4 and FITC-conjugated anti-mouse antibodies. Images show 

FITC fluorescence, autofluorescence, and merged channels (A) 1, (B) 4, (C) 7 and (D) 

10 days after transfection. Elastic fibres are indicated by arrows in the merged channel. 

(E) Cells 10 days after transfection with the empty pCI-neo vector. (F) Staining 

controls: no antibody; FITC-conjugated antibody only; mouse IgG and FITC-
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conjugated antibody. Controls show images from merged FITC and autofluorescence 

channels. 
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Figure 3.29. Confocal imaging of WT and R515A transfected NHF8909 cells stained 

for elastin with the mouse BA4 and FITC-conjugated anti-mouse antibodies. Images 

show FITC fluorescence, autofluorescence, and merged channels (A) 1, (B) 4, (C) 7 and 

(D) 10 days after transfection. Elastic fibres are indicated by arrows in the merged 

channel. (E) Cells 10 days after transfection with the empty pCI-neo vector. (F) 

Staining controls: no antibody; FITC-conjugated antibody only; mouse IgG and FITC-
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conjugated antibody. Controls show images from merged FITC and autofluorescence 

channels. 

 

3.3.4.5 Fluorescence lifetime imaging of elastic fibres 

Fluorescence lifetime imaging was utilised to confirm the nature of the fibre 

structures observed in the transfected fibroblasts at early time points. Fluorescence lifetimes 

were acquired for distinct regions within the cell and extracellular milieu to establish 

characteristic profiles of various fluorescent components. These values were compared 

among untransfected, WT- and R515A- transfected cells, and cells with defined elastic 

fibres derived from exogenously added tropoelastin. 

A single fluorescence lifetime was observed within the DAPI-stained cell nuclei of 

all samples. This value, averaging 2.7 ns, was not significantly different among the samples 

(Figure 3.30A).  

Background fluorescence lifetimes were then obtained from regions within the 

extracellular space that did not encompass putative elastic fibres. A number of fluorescence 

lifetime peaks were recorded, most likely corresponding to different autofluorescent 

extracellular components. Three distinct fluorescent lifetimes at 1.1-1.2 ns, 1.5-1.6 ns and 

1.8-1.9 ns appeared consistently in all samples, with an additional lifetime at 0.9 ns detected 

in the untransfected sample (Figure 3.30B).  

Fluorescence lifetimes were subsequently acquired for extracellular regions 

containing the previously described fine fibres (Figure 3.30C). Several lifetime peaks were 

obtained for each sample: 0.9, 1.2, 1.8 and 2.3 ns in WT-transfected cells; 1.1, 1.5, 1.8, 2.2 

ns in R515A-transfected cells; and 1.5, 1.9, 2.4 ns in cells with defined elastic fibres. With 

the exception of the 2.2-2.4 ns peak, the other fluorescence lifetimes could be attributed to 

non-specific background values. This ~2.3 ns lifetime was not observed in untransfected 
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cells and has been attributed to elastin [204], supporting identification of the fine fibre 

structures as elastic fibres.   

 

A  

B  

C      

Figure 3.30. Fluorescence lifetime imaging of WT and R515A transfected GM3348 cells. 

Untransfected cells and cells with tropoelastin added into the culture medium were 

respectively treated as the negative and positive controls for elastic fibre formation. 
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Fluorescence lifetimes were acquired from areas containing (A) cell nuclei, (B) 

extracellular space and (C) elastic fibres.  
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3.3.5 Addition of tropoelastin to the extracellular matrix of cells 

3.3.5.1 Optimisation 

Purified WT and R515A tropoelastin constructs were confirmed via SDS-PAGE to 

be of the expected size (60 kDa) and free from degradation (Figure 3.31).  

 

 

Figure 3.31. SDS-PAGE of purified WT and R515A tropoelastin showing a ~60 kDa 

band corresponding to the full-length construct. Lanes: M – Mark12 protein standards 

(kDa); 1 - WT; 2 – R515A. 

 

Elastic fibres formed from WT and R515A tropoelastin monomers added to the cell 

culture medium were to be detected using an elastin-specific BA4 antibody. The optimum 

concentration of BA4 required for staining was determined by targeting elastic fibres with 

increasing dilutions of the antibody. All tested concentrations of BA4 allowed visualisation 

of WT and R515A elastic fibres; although a 1:600 antibody dilution resulted in noticeably 

fainter staining, particularly in thinner fibres (Figure 3.32). A 1:500 dilution of BA4 was 

selected for subsequent elastic fibre detection. 
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Figure 3.32. Elastic fibres formed by ARPE-19 cells seven days after the addition of 

200 g/mL WT or R515A tropoelastin to the culture medium. The fibres were 

visualised with 1:400, 1:500 or 1:600 dilutions of the BA4 anti-elastin antibody followed 

by a 1:500 dilution of FITC-conjugated anti-mouse antibody.  

 

The optimum concentration of tropoelastin to be added to the culture media was 

determined. The amount of exogenously added WT or R515A directly correlated to the 

quantity and fluorescence of resulting elastic fibres (Figure 3.33). At the lowest tropoelastin 

concentration of 4 g/mL, both WT and R515A fibres were insufficiently defined to allow 

proper characterisation. A higher tropoelastin concentration of 20 g/mL was selected for 

subsequent experiments to magnify potential differences between WT and R515A elastic 

fibres and allow better comparative analyses of fibre formation.  
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Figure 3.33. Elastic fibres assembled by ARPE-19 cells from 4, 20 or 200 g/mL of 

exogenously added WT or R515A. Elastic fibres were visualised 7 days after 

tropoelastin addition with the BA4 anti-elastin and FITC-conjugated anti-mouse 

antibodies. 
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3.3.5.2 Elastic fibre assembly from exogenous tropoelastin  

In the presence of an established microfibrillar network, addition of WT or R515A to 

the culture medium of ARPE-19 cells enabled incorporation of the tropoelastin constructs 

into elastic fibres (Figure 3.34). However, the time course of fibre formation and the 

properties of the resulting fibres were significantly different between WT and R515A. One 

day after tropoelastin addition, WT spherules had arranged linearly while R515A particles 

remained dispersed across the extracellular environment. By four days, an extensive 

branched network of WT elastic fibres had formed, which persisted with comparable 

abundance and a similar morphology through the 10-day experimental period. In contrast, 

R515A elastic fibres were 34-45% fewer in number, stained 27-36% less intensely, and 

displayed 24-35% decreased autofluorescence compared to WT fibres (Figure 3.35). This 

trend was consistent at 4, 7 and 10 days after tropoelastin addition. No elastic fibres were 

seen when tropoelastin was not added to ARPE-19 cells.  
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Figure 3.34. (A-H) ARPE-19 cells with 20 µg/mL WT or R515A tropoelastin added to 

the culture media 14 days post-seeding. The cells were fixed at 1, 4, 7 and 10 days after 

tropoelastin addition. Elastin fibres were stained with BA4 and FITC-conjugated 

secondary antibody. Cell nuclei were stained with DAPI. (I) ARPE-19 cells with no 
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tropoelastin in the culture media. (J) Microfibrils prior to tropoelastin addition, 

stained with anti-fibrillin-1 and FITC-conjugated secondary antibody. Each pair of 

images represents the same field of view; the left image shows merged DAPI and FITC 

channels while the right image shows the FITC channel only. 
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A  

B  

C  

Figure 3.35. Characterisation of fluorescence, autofluorescence and density of WT and 

R515A elastic fibres in ARPE-19.  
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 The differences between WT and R515A elastic fibre formation were magnified in 

the fibroblast systems. In both GM3348 and NHF8909 cells with developed microfibrils, 

WT followed the previously described elastogenic time course, with particles organised 

linearly one day after tropoelastin addition and a well-defined network appearing by four 

days. Remarkably, R515A remained as punctate species and did not assemble into elastic 

fibres in GM3348 cells (Figure 3.36), while it formed only faint individual fibres in 

NHF8909 cells (Figure 3.37).  
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Figure 3.36. (A-H) GM3348 cells with 20 µg/mL WT or R515A tropoelastin added to 

the culture media 10 days post-seeding. The cells were fixed at 1, 4, 7 and 10 days after 

tropoelastin addition. Elastin fibres were stained with BA4 and FITC-conjugated 

secondary antibody. Cell nuclei were stained with DAPI. (I) GM3348 cells with no 
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tropoelastin in the culture media. (J) Microfibrils prior to tropoelastin addition, 

stained with anti-fibrillin-1 and FITC-conjugated secondary antibody. Each pair of 

images represents the same field of view; the left image shows merged DAPI and FITC 

channels while the right image shows the FITC channel only. 
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Figure 3.37. (A-H) NHF8909 cells with 20 µg/mL WT or R515A tropoelastin added to 

the culture media 10 days post-seeding. The cells were fixed at 1, 4, 7 and 10 days after 

tropoelastin addition. Elastin fibres were stained with BA4 and FITC-conjugated 

secondary antibody. Cell nuclei were stained with DAPI. (I) NHF8909 cells with no 
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tropoelastin in the culture media. (J) Microfibrils prior to tropoelastin addition, 

stained with anti-fibrillin-1 and FITC-conjugated secondary antibody. Each pair of 

images represents the same field of view; the left image shows merged DAPI and FITC 

channels while the right image shows the FITC channel only. 

 

Interestingly, when the tropoelastin concentration was maintained throughout the 

experimental period by addition of fresh WT or R515A during every media change, there 

were no significant differences between the WT and R515A elastic fibres in ARPE-19 cells 

(Figure 3.38). An initial lag was observed on the day after the first tropoelastin addition, 

during which R515A spherules remained disorganised in the extracellular space unlike the 

linearly arranged WT species. Despite a decreased efficiency in early-stage elastogenesis, 

the developed R515A fibres exhibited similar fluorescence and density as WT fibres ( 

Figure 3.39).  

However, this rescue of elastogenic ability in R515A was not observed in GM3348 

fibroblasts (Figure 3.40). Despite the maintained presence of R515A within the extracellular 

environment, the mutant construct remained as linearly-clustered punctate species and were 

unable to progress beyond this stage to form defined fibres.  
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Figure 3.38. (A-H) ARPE-19 cells with 20 µg/mL WT or R515A tropoelastin added to 

the culture media 14 days post-seeding and supplemented every 2 days. The cells were 

fixed at 1, 4, 7 and 10 days after the initial tropoelastin addition. (I) ARPE-19 cells with 

no added tropoelastin. Elastin fibres were stained with BA4 and FITC-conjugated 
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secondary antibody. Cell nuclei were stained with DAPI. Each pair of images 

represents the same field of view; the left image shows merged DAPI and FITC 

channels while the right image shows the FITC channel only. 
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A  

B  

C  

Figure 3.39. Characterisation of fluorescence, autofluorescence and density of WT and 

R515A elastic fibres formed by ARPE-19 cells. Tropoelastin was supplemented every 

two days after the initial addition.  
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Figure 3.40. (A-H) GM3348 cells with 20 µg/mL WT or R515A tropoelastin added to 

the culture media 10 days post-seeding and supplemented every 2 days. The cells were 

fixed at 1, 4, 7 and 10 days after the initial tropoelastin addition. (I) GM3348 cells with 

no added tropoelastin. Elastin fibres were stained with BA4 and FITC-conjugated 
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secondary antibody. Cell nuclei were stained with DAPI. Each pair of images 

represents the same field of view; the left image shows merged DAPI and FITC 

channels while the right image shows the FITC channel only. 
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3.4 Discussion 

3.4.1 Analysis of potential WT/R515A expression in a human host 

The production of WT and R515A elastic fibres in a transfected human host system 

is reliant on successful expression and synthesis of the tropoelastin species. However, the 

WT and R515A cDNA sequences had been synthesised for optimal codon usage in E. coli 

[26] and may therefore have a significant number of ‘rare’ codons that can hamper 

expression in human cells. The predictive level of WT and R515A expression in a human 

host was provided by their CAI, which measures the deviation of coding sequences against a 

reference set of highly-expressed genes [205].  The CAI assumes that highly-expressed 

genes selectively use codons for tRNA species that are abundant in the cell. The CAI of WT 

and R515A were identical, implying a similar likelihood of expression in the human system. 

The CAI of WT/R515A (0.55) was only slightly lower than that calculated for endogenous 

human tropoelastin (0.68), indicating likely success of WT/R515A expression in human 

cells.  

The WT and R515A sequences contained 12% of codons with a computed value 

below 30, the threshold set by the algorithm to represent codons with low usage frequency 

for a given amino acid. The endogenous human tropoelastin transcript also had a small 

percentage of codons in this category, which may reflect the tightly regulated nature of 

native tropoelastin expression [80, 81]. 

In the genome of a number of species including humans, coding sequences are 

associated with a higher GC content, with sharp changes in GC content observed at the 

transcription boundaries [206, 207]. The GC contents of the WT and R515A sequences were 

comparable to that of the endogenous tropoelastin sequence and within the range exhibited 

by human genes. This supports the potential for heterologous WT and R515A expression in 

human cells. 
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3.4.2 Construction of an expression vector containing WT/R515A 

The intracellular introduction of WT and R515A tropoelastin into a human system 

firstly required cloning each sequence into a mammalian cell-specific pCI-neo expression 

vector.  

3.4.2.1 Cohesive-end cloning 

 The first cloning strategy utilised PCR to engineer distinct restriction sites at the 

termini of the tropoelastin sequence, which would allow directional ligation into the pCI-neo 

vector after digestion with corresponding restriction enzymes [208]. The EcoRI and XbaI 

restriction sites selected to flank the tropoelastin sequences fulfilled a number of criteria. 

First, both restriction sites are present in the pCI-neo cloning region to enable ligation of 

complementary ends of the vector and insert sequences. Second, both sites are not located 

within the WT and R515A coding sequences, which prevents intragenic cleavage during 

restriction digestion to produce the cohesive ends for cloning. Third, both sites are 

recognised by restriction enzymes that exhibit sufficient activity under the same buffer and 

temperature conditions, in order to facilitate double digestion of vector and insert sequences. 

Finally, the EcoRI and XbaI restriction enzymes, unlike most endonucleases [209], are able 

to cleave at the restriction sites despite a location proximate to the termini of linear 

sequences.  

PCR amplification of the WT and R515A sequences was largely specific, as 

indicated by a dominant band consistent with the expected size of the tropoelastin template. 

Subsequent digestion of the tropoelastin insert and pCI-neo vector with EcoRI and XbaI was 

also specific, as evidenced by a single product corresponding to the full-length tropoelastin 

sequence or the linearised vector. The DNA fragments were extracted from the 

electrophoretic gel, a method that has been demonstrated to increase sample yield while 

preserving purity for downstream purposes including ligation and transformation [210].   
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Ligation of the WT or R515A sequence with pCI-neo was expected to proceed 

directionally due to the preferential annealing of complementary EcoRI or XbaI cohesive 

ends. Moreover, re-ligation of the vector should be hindered by the distinct overhanging 

sequences at both ends. However, screening of bacterial colonies transformed with the 

ligated constructs showed only the empty pCI-neo vector. This most likely signifies 

inefficient vector-insert ligation, which may be brought about by incompatible ends due to 

incomplete restriction digestion or non-functional restriction sites. 

 

3.4.2.2 Direct cloning 

 To avoid the technical complexities of engineering restriction sites to flank the 

tropoelastin sequences, a second cloning approach was attempted to directly ligate the PCR-

amplified WT or R515A template into the linearised pCI-neo vector. Digestion of pCI-neo 

by SmaI to produce blunt ends appeared to be complete and specific, as indicated by the 

single band corresponding to the size of the linear plasmid. To prevent spontaneous re-

circularisation and re-ligation of the vector DNA, alkaline phosphatase was added to the 

digest reaction to catalyse the removal of 5′ phosphate groups [211, 212]. However, 

transformation of electrocompetent bacterial cells with the ligated constructs did not support 

colony formation on ampicillin selective media. This suggests no uptake of the antibiotic 

resistance-conferring pCI-neo, which in turn may be due to incomplete ligation of the vector 

and insert sequences. A likely cause is the non-complementarity of the PCR-amplified 

tropoelastin sequences with the blunt-ended pCI-neo due to the template-independent 

terminal transcriptase activity of Taq polymerase [213, 214]. This may have resulted in an 

overhanging adenosine in the insert sequences that proved incompatible with the linearised 

vector, despite the accompanying use of a proofreading enzyme with 3′ to 5′ exonuclease 

activity with the Taq polymerase. 
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3.4.2.3 Blunt-end cloning 

 The third cloning method used eliminated the need for PCR amplification of the 

insert sequences. Instead, the WT and R515A sequences were isolated by restriction digest 

from the pET-3d bacterial plasmid extracted from transformed E. coli stocks. The recessed 3′ 

ends were filled in using the Klenow fragment of DNA polymerase I [215], a widely-utilised 

technique to create blunt-ended sequences [216, 217]. The resulting constructs were ligated 

with the SmaI-digested pCI-neo vector. However, screening of the transformed colonies 

indicated only the presence of the empty vector, indicating unsuccessful incorporation of the 

WT and R515A sequence. This is consistent with the lower ligation efficiency of blunt-end 

sequences compared to those with staggered ends [218].  

 

3.4.2.4 Linker-mediated cloning 

 An alternative cloning strategy employed linker sequences to attach the WT and 

R515A sequences to the pCI-neo vector. Linker sequences are short oligonucleotides 

containing recognition sites that can serve as receptors for DNA fragments with compatible 

cohesive ends [219]. Previous studies have documented the use of two different linker 

sequences to directionally clone a double-digested insert sequence into another double-

digested vector, in which none of the restriction sites are complementary [220, 221]. In this 

instance, the EcoRI site of the pCI-neo vector was ligated to the 5′ NcoI site of the 

tropoelastin insert via an EcoRI-NcoI linker, while the 3′ BamHI end of the insert was 

ligated to the XbaI cloning site of the vector via a BamHI-XbaI linker. The efficiency of 

linker-mediated cloning was very high, with 100% of WT transformants and 80% of R515A 

transformants possessing the tropoelastin sequence as confirmed by plasmid restriction 

analysis and sequencing. The pCI-neo-WT and pCI-neo-R515A expression vectors were 

successfully constructed from this method. 
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3.4.3 Stable transfection 

3.4.3.1 Validation of the ARPE-19 cell line 

 Mycoplasma commonly plagues up to 35% of cell cultures, inducing extensive 

alterations in cell metabolism and physiology without presenting visible morphological 

changes [222]. It exhibits resistance to most antibiotics and remains visually undetectable 

under the inverted microscope or by the turbidity of the culture media [223]. Infection can 

be uncovered using PCR primers that anneal to the evolutionarily conserved 16S rRNA of 

several mycoplasma species [224]. This method allows identification of mycoplasma at high 

specificity, sensitivity and accuracy. Through a PCR-based detection method, the ARPE-19 

cells used in this study tested negative for mycoplasma contamination.  

 ARPE-19 is a stable cell line that arose spontaneously from cultured retinal 

pigmented epithelial cells, and also exhibits similar cellular characteristics to the primary 

cells [225]. The ARPE-19 cells used in this study had morphological features consistent 

with previous descriptions of the cell line. Furthermore, the cells showed expression of two 

retinal pigmented epithelium-specific markers, CRALBP and RPE65, at significantly higher 

levels than the background expression in control human dermal fibroblast cells. Both marker 

proteins are involved in the mammalian visual process. CRALBP is a carrier protein for the 

11-cis-retinol or 11-cis-retinaldehyde ligands in visual pigment regeneration [226, 227]. On 

the other hand, RPE65 modulates the isomerization of 11-trans to 11-cis-retinol in the visual 

cycle [228, 229]. While CRALBP was expressed by early ARPE-19 cultures, RPE65 was 

expressed only by cells that had been cultured for 21 days. This level of expression is 

supported by previous findings of lower RPE65 expression in ARPE-19 cells compared to 

primary cultures, most probably due to changes induced by immortalisation and serial 

passaging of the cells [230]. Furthermore, synthesis of CRALBP and RPE65 is associated 

with retinal pigmented epithelial cell differentiation, a process that has been observed in 
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ARPE-19 after 3 weeks in culture [225]. These results indicate that the ARPE-19 cells used 

in this work display the expected properties of the cell line. 

 

3.4.3.2 Expression of elastogenic components 

 The assembly of recombinant tropoelastin into elastic fibres in ARPE-19 cells 

greatly relies on the presence of other extracellular matrix components. ARPE-19 cells 

expressed essential elastogenic components including fibrillin-1 and lysyl oxidase consistent 

with previous findings [140, 201]. Fibrillin-1 is the core component of microfibrils [231], 

which are believed to act as a scaffold for tropoelastin deposition during elastic fibre 

formation [232]. As evidence, disruption of fibrillin-1 production resulted in the 

fragmentation and reduction of elastic lamellae in the aortic wall [233]. On the other hand, 

lysyl oxidase triggers cross-linking between specific tropoelastin lysine residues crucial for 

elastic fibre maturation [80, 234].  

 The expression levels of fibrillin-1 and lysyl oxidase in ARPE-19 cells differed from 

those in an elastogenic cell type such as dermal fibroblasts. Furthermore, minimal fibulin-5 

expression was observed in ARPE-19. Fibulin-5 is reportedly located at the interface 

between elastin and microfibrils [150], and was initially proposed to facilitate adhesion of 

elastic fibres to the cell surface [125], although it has now been deemed unnecessary for 

elastogenesis. More recently, fibulin-5 has been shown to regulate tropoelastin deposition on 

microfibrils [133]. Its decreased presence in ARPE-19 cells may therefore negatively affect 

elastic fibre formation, although the possibility of functional compensation from other 

fibulin proteins remains unclear. 

 No endogenous tropoelastin transcripts were detected in ARPE-19 cells as 

previously described [140]. This indicates that elastic fibres assembled in this system would 
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be solely derived from recombinantly expressed or exogenously added tropoelastin, making 

ARPE-19 cell line useful for comparative studies on WT and R515A elastic fibre formation.  

 

3.4.3.3 Transfection protocol 

 Transfection of ARPE-19 with pCI-neo-WT or pCI-neo-R515A was performed with 

Lipofectamine, a 3:1 (w/w) liposome formulation of the polycationic lipid 2,3-dioleyloxy-N-

[2(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA) 

and the neutral lipid dioleoyl phosphatidylethanolamine (DOPE) [235]. The use of cationic 

lipids for transfection utilises the cell membrane permeability of the lipid subunit and the 

DNA binding function of the charged unit [236]. The amount of vector DNA and lipid-to-

DNA ratio required optimisation for efficient transfection. As was observed, a lower amount 

of vector DNA would decrease the gene expression of transfected cells, while an excessive 

amount would inhibit transfection [236]. Similarly, increasing the lipid:DNA ratio would 

increase transfection efficacy; however, significant toxicity may occur depending on the cell 

type, duration of exposure to the lipid, and confluency of the cell culture [237]. Transfection 

efficiency was also increased by pre-complexing the vector DNA with the PLUS reagent 

enhancer [238]. Under optimal transfection conditions, ARPE-19 exhibited a several million 

fold increase in tropoelastin expression over untransfected levels. 

 

3.4.3.4 Propagation of transfected cells 

 Stable maintenance of the WT or R515A sequence within the transfected cells was 

selected for by culturing the cells in G418-supplemented nutrient media, as antibiotic 

resistance is conferred by the neo gene within pCI-neo [239]. This was demonstrated by the 

progressive reduction of untransfected cell numbers in contrast to the survival and gradual 

proliferation of transfected cells over two weeks after G418 addition. However, the 
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proliferative rate of transfected cells was still dramatically reduced by the presence of G418 

in the culture medium, resulting in a lengthy propagation time before sufficient cell numbers 

could be achieved for downstream experiments. The negative impact of G418 selection on 

the expansion of neo-expressing cultures has been documented [239]. Furthermore, the 

extent of growth retardation has been correlated with neo expression levels, which are in 

turn dependent on transfection efficiency. Variable transfection efficacies may account for 

the decreased cell numbers of R515A transfectants compared to the WT or vector-only 

transformants. 

 

3.4.3.5 Elastic fibre assembly 

 Elastic fibres were not detected in ARPE-19 cells transfected with WT or R515A. 

This may be due to the absence of a microfibrillar scaffold on which the secreted 

tropoelastin can be deposited for cross-linking, which suggests that the cells were assayed 

too soon after seeding. More significantly, tropoelastin may no longer be expressed by the 

transfectants, which was confirmed when both WT and R515A expression of the G418-

resistant cells were shown to have decreased 300,000-fold to background levels. This 

unstable expression may be attributed to the unsuccessful chromosomal integration of the 

tropoelastin sequences.  

During transfection, vectors bind to the cell surface via electrostatic interactions 

between the positively-charged complexes and the negative charges of the cell membrane 

[240]. DNA uptake normally proceeds via clathrin-mediated endocytosis into the cytoplasm 

[241]. The DNA molecules possess low mobility and are susceptible to degradation by 

cytoplasmic exonucleases [240]. It is unlikely that the tropoelastin sequences were degraded 

at this stage, as an initial spike in tropoelastin expression was observed in the early 

transfectants. This suggests that the vector DNA had entered the nucleus and was expressed 
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as an extrachromosomal sequence [242]. Loss of the tropoelastin sequence may have 

occurred over multiple cycles of cell division, when the DNA is released upon dissolution of 

the nuclear membrane but not repartitioned after membrane reformation. Unlike the neo 

gene which may have been retained chromosomally, there was no selective advantage for 

the maintenance of WT/R515A expression. 
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3.4.4 Transient transfection 

The unstable expression of tropoelastin in long-term transfected ARPE-19 cells 

demonstrated the advantage of studying elastic fibre assembly in a transiently transfected 

system. Also, since the intracellular uptake and trafficking of vector DNA, and therefore the 

persistence of recombinant gene expression, are thought to be cell type dependent [243, 244], 

two other fibroblast cell lines were transfected with WT or R515A to compare elastic fibre 

formation in an intrinsic elastogenic environment. 

3.4.4.1 Expression of elastogenic components 

 Compared to ARPE-19 cells, GM3348 and NHF8909 fibroblasts were shown to 

possess similar or higher transcript levels of extracellular matrix proteins involved in 

elastogenesis, including fibrillin-1, fibulin-4, fibulin-5, and lysyl oxidase family proteins, 

consistent with their elastogenic phenotype. The interactions between these elastogenic 

components are thought to be crucial for elastic fibre formation. Fibulin-4 and -5 bind 

tropoelastin for optimal coacervation and incorporation into fibrillin-rich microfibrils [133, 

245]. These molecules also contact lysyl oxidase enzymes to regulate their spatial 

distribution and substrate specificity [150]. The lysyl oxidase family proteins mediate cross-

link formation under different tissue- and development-specific conditions [246], with 

LOXL1 localising specifically to elastogenic sites [136]. Expression of the major elastogenic 

components in all three cell lines suggests sufficient capacity for elastic fibre assembly.  

 Unlike ARPE-19 cells, GM3348 and NHF8909 fibroblasts expressed endogenous 

tropoelastin. Nevertheless, the detected transcript levels were markedly lower than the 

expected levels of recombinant tropoelastin mRNA after transfection. Elastic fibres formed 

in the fibroblast systems are hence expected to be predominantly assembled from the WT or 

R515A species. 
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3.4.4.2 Establishment of a microfibrillar network 

 Microfibrils have consistently been co-localised with elastin in elastic fibres in vivo, 

and are thought to serve as an essential framework for tropoelastin organisation and cross-

linking [247-250]. To enable the immediate deposition and assembly of tropoelastin 

monomers secreted by transfected cells, a microfibrillar network must be established prior to 

transfection. Based on this rationale, production of the main microfibrillar protein fibrillin-1 

by ARPE-19 cells and fibroblasts was tracked to determine the time required for microfibril 

development. 

 The GM3348 fibroblasts formed a well-defined network of microfibrils earlier than 

ARPE-19 cells at 10 days post-seeding. This corresponded to the higher expression of 

fibrillin-1 in GM3348 as previously described. Nevertheless, ARPE-19 cells exhibited a 

similar extent of microfibrillar production by 14 days post-seeding. Consistent with previous 

findings [201], the ARPE-19 microfibrils were observed to be of similar morphology and 

abundance to those in a natural elastogenic system such as fibroblasts.  

 

3.4.4.3 Elastic fibre assembly  

 Transient transfection of fibroblasts and ARPE-19 cells were respectively performed 

on days 10 and 14 after seeding, when an adequate microfibrillar scaffold is expected to 

have been established. Despite this preparative step, elastic fibres were not detected in 

ARPE-19 at any tested time point after transfection. On the other hand, very fine fibre 

structures were observed with WT- and R515A-transfected GM3348 and NHF8909 cells 

until 7 days after transfection. The size and width of the fibres hindered imaging under 

typical conditions and compelled the use of a relatively high laser power which also 

unfavourably magnified background autofluorescence. However, these fibres exhibited 

elastin-specific immunofluorescent staining that was discernibly more intense than 
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background autofluorescence. The fibres were also not seen with cells transfected with the 

empty pCI-neo vector, and in unstained or non-specifically stained samples. In combination, 

these findings strongly suggest that the observed fibre structures are nascent elastic fibres. 

 The nature of the fibre structures was subsequently confirmed with fluorescence 

lifetime imaging microscopy (FLIM). This technique analyses the lifetime of the excited 

state of a fluorescent molecule and provides a spatially resolved distribution of fluorescence 

lifetimes within a sample area [251]. As fluorescence lifetimes are characteristic of certain 

molecules, FLIM can identify the composition of biological tissues [204], such as an 

extracellular matrix with heterogeneous autofluorescent components [252, 253]. 

 As a control, the fluorescence lifetime of DAPI-stained cell nuclei was compared 

across all samples. This value, at ~2.7 ns, was similar for transfected and untransfected cells 

and matched the previously reported two-photon excitation fluorescence lifetime of DAPI-

bound DNA [254]. Multiple fluorescence lifetimes were obtained for regions within the 

extracellular space that did not encompass definitive fibre structures, which is consistent 

with contributions from various autofluorescent extracellular components. Similar lifetimes 

were observed across both transfected and untransfected samples, suggesting that elastin is 

unlikely to be represented within this set of values. Fluorescence lifetimes acquired for 

extracellular regions containing the fine fibres mostly reflected the background values, 

except for a ~2.3 ns peak that was observed only in WT- or R515A-transfected cells and in 

cells with established elastic fibres. Previous studies have also identified the fluorescence 

lifetime of elastin to be ~2.3 ns when captured within a similar spectral range [204, 255, 

256]. This strongly supports the elastic fibre nature of the fibrous structures observed in the 

transfected fibroblasts. 

 The formation of elastic fibres by GM3348 and NHF8909 fibroblasts but not by 

ARPE-19 cells may be accounted for by differences in tropoelastin expression after 
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transfection. Prior to transfection, expression of native tropoelastin by all cell types was 

negligible. Post-transfection, WT and R515A expression increased significantly, but rapidly 

declined after only one day in ARPE-19 cells. Consequently, the levels of secreted 

tropoelastin may have been insufficient for fibre assembly. On the other hand, WT and 

R515A transcript levels in fibroblast cells persisted slightly longer until 4 days after 

transfection, which would have resulted in a higher cumulative amount of tropoelastin 

monomers in the extracellular environment for elastogenesis. From subsequent experiments 

with added tropoelastin, four days was required for the monomers to be irreversibly 

deposited onto the microfibrillar network to form elastic fibres. Furthermore, fibroblasts are 

known to have a more stable elastogenic phenotype compared to other elastin-producing 

cells [197]. Nevertheless, elastic fibres were not detected in both GM3348 and NHF8909 

fibroblast systems at 10 days after transfection. This suggests that the fine fibres may be 

unstable and hence inadvertently removed during media washes, while the decrease in 

tropoelastin expression after 4 days would have precluded formation of new fibres. 

Alternatively, increased autofluorescence of the elastic fibres associated with cross-link 

maturation [257, 258] may have masked their elastin-specific staining and made 

visualisation of the structures difficult.  

The overall low extent of elastic fibre formation hindered the characterisation of 

potential differences between WT and R515A fibres. The high transcript levels of WT and 

R515A in early transfectants did not translate to the observed quantity of secreted 

tropoelastin spherules or assembled elastic fibres. This may be due to transcript instability or 

a tightly-regulated translation step leading to inefficient tropoelastin synthesis.  
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3.4.5 Addition of exogenous tropoelastin to culture medium 

The main challenge with establishing differences between WT and R515A elastic 

fibre formation has thus far been the de novo production of tropoelastin species by cells. To 

address this, purified WT and R515A constructs were directly added to the culture medium 

for assembly into elastic fibres. The tropoelastin constructs were confirmed to be full-length, 

and an optimum tropoelastin concentration was demonstrated to result in distinct fibre 

formation.  

 ARPE-19 cells serve as an ideal model for elastic fibre assembly that depends on 

exogenous tropoelastin since they express the major elastogenic components except for 

tropoelastin. This is demonstrated by the absence of elastic fibres when tropoelastin was not 

added to the culture medium. Elastic fibres in ARPE-19 were solely derived from the 

supplied constructs, as the addition of exogenous tropoelastin does not trigger endogenous 

tropoelastin expression [140].  

In the ARPE-19 system, both WT and R515A were able to form defined and 

sustained elastic fibres, which supports the ability of the cell line to integrate tropoelastin 

monomers into cross-linked structures as previously reported [140, 201, 203]. However, 

R515A particles were less efficient in forming linear clusters than WT in the first day after 

tropoelastin addition, which may be associated with the reduced propensity of the mutant for 

self-association [184]. The R515A elastic fibres also displayed significantly lower 

fluorescence and density than WT fibres. Decreased antibody staining would be expected to 

result from reduced exposure or number of tropoelastin epitopes in the elastic fibre. Reduced 

fibre autofluorescence [259] may be correlated to decreased elastin cross-linking [257, 258] 

that could similarly have arisen from fewer or differently-organised monomers. These 

results demonstrate the impaired or abnormal elastic fibre assembly of R515A compared to 

WT.  
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The decreased elastogenic ability of R515A was magnified in the fibroblast systems, 

in which the mutant constructs predominantly remained as spherical clusters in GM3348 

cells, or formed only very sparse and faint fibres in NHF8909 cells. This sharply contrasted 

with the extensive WT elastic fibre network observed in both cell lines. The detected elastic 

fibres were exclusively assembled from exogenously supplied tropoelastin, as evidenced by 

the lack of fibre formation in untreated fibroblasts. The inability of R515A to form defined 

elastic fibres may be a compounded effect of decreased self-assembly as well as impaired 

interactions with fibroblast cells [184] and extracellular matrix components.  

The expression of cell-surface receptors such as integrins has been shown to be 

spatially and temporally regulated [260]. Likewise, lysyl oxidase enzymes [141] and 

microfibrillar proteins including fibrillins [261-265] and microfibril-associated 

glycoproteins [266, 267] exhibit tissue- and development-specific expression. Furthermore, 

certain proteins such as fibrillin-1 have multiple splicing isoforms that are alternatively 

expressed [268]. The subset of expressed microfibrillar proteins can recruit various lysyl 

oxidases [150, 269] with different substrate specificities [136]. These strongly support the 

evolution of tissue- and age-specific elastogenic environments that may select against non-

native tropoelastin monomers or assemblies to varying degrees, in compliance with specific 

functional requirements for the assembled elastic fibre. This would account for differences 

in the extent of R515A fibre formation between ARPE-19 cells and fibroblasts, and between 

the GM3348 and NHF8909 fibroblasts.  

 Interestingly, the impaired elastic fibre assembly of R515A by ARPE-19 was 

rescued by multiple additions of the construct to the culture medium. In this instance, the 

immunofluorescence, autofluorescence and abundance of the R515A fibres were 

indistinguishable from the WT fibres. This suggests that the previously described 

differences in R515A fibres have mainly stemmed from an inefficient early time course 
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assembly process. A delay in R515A coacervation, microfibrillar anchorage, or cross-linking 

may have allowed some monomers to be displaced during media washes, leading to an 

overall decrease in available molecules for fibre assembly. The supplementation of 

tropoelastin during each media change would have replenished the lost monomers and 

allowed elastogenesis to proceed to the same extent as WT. In contrast, multiple tropoelastin 

additions did not improve R515A fibre formation by GM33348 fibroblasts. This supports a 

cell-specific bias against R515A fibre assembly that cannot be compensated for by an excess 

of the mutant construct in the extracellular environment.  

 These results indicate that the previously documented impaired behaviour of R515A 

at each major stage of elastogenesis [184] translates to an inadequate ability to form elastic 

fibres in a cellular environment. The properties of R515A tropoelastin have been associated 

with a structural deviation originating from the bridge region and encompassing the C-

terminal region [184]. R515 may stabilise the tropoelastin bridge region in via charge-based 

interactions with neighbouring residues. Potential candidates include the negatively-charged 

E354 or E414 residues in domains 19 and 21, respectively. Consequences of the altered 

monomer conformation may include not only the functional deficiency of R515A during 

stages of self-assembly, but also changes in interactions with cells and the extracellular 

matrix during elastic fibre formation. This study confirms the functional significance of the 

R515 residue, and the importance of the tropoelastin bridge region in elastogenesis.   
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4. Characterisation of E345A, E414A and E345A+E414A 

tropoelastin 

4.1 Introduction 

4.1.1 Roles of charged tropoelastin residues in elastin assembly 

Tropoelastin has a unique domain structure consisting of alternating hydrophobic 

and hydrophilic regions [4]. The hydrophilic domains are highly basic, and are typically rich 

in lysines situated near a polyalanine tract or a proline residue [24, 270]. The C-terminus of 

tropoelastin contains a highly-conserved stretch of positively-charged arginine and lysine 

residues [183]. The abundance of charged sites in tropoelastin has been associated with 

distinct roles at various stages of elastic fibre assembly. 

In the early stage of elastogenesis after the secretion of tropoelastin into the 

extracellular space, the monomers are proposed to contact cell-surface glycosaminoglycans 

(GAGs) such as heparin and chondroitin sulfate B [271]. Interactions are thought to occur 

between the positive lysine residues in tropoelastin and the negative charge densities in 

GAGs [91, 93]. The binding of GAGs even at low concentrations neutralises the potentially 

repulsive charges on tropoelastin molecules [93, 271] and promotes the accumulation and 

aggregation of nanoparticles into larger-sized assemblies observed on the cell surface [3, 

272]. The efficiency of tropoelastin coacervation may be modulated by the subset of bound 

lysines and the nature of charge densities in GAGs [93]. 

In addition to an increased intermolecular association, tropoelastin binding to GAGs 

can facilitate secondary structure changes which are an essential consequence of the 

coacervation process. Modifications to the lysine residues of tropoelastin can reduce the 

extended polyproline II helical conformation [271] that is highly favoured in an aqueous 

environment [58]. Instead, the formation of alpha-helices is promoted, which crucially 

position lysine residues in close proximity for cross-linking [58, 67]. Circular dichroism 
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monitoring of tropoelastin during coacervation has similarly demonstrated a transition from 

an unordered structure to an alpha-helical conformation [273, 274]. 

The strategic location of positively-charged residues within tropoelastin allows the 

specific binding of extracellular moieties that promote coacervation. However, the 

introduction of even a single polar amino acid in its charged state into a hydrophobic 

sequence increases the solvent accessible surface area and dramatically decreases the 

propensity of the construct for self-association [112]. This demonstrates how charged 

residues may regulate tropoelastin coacervation, despite the process being one driven mainly 

by hydrophobic interactions [275]. 

The tethering of tropoelastin molecules on the cell surface is also mediated by 

charged residues. For instance, tropoelastin attachment to the alpha-v-beta-3 integrin on 

human dermal fibroblasts [179], or to heparan sulfate on smooth muscle cells [83], is 

predominantly mediated by the C-terminal RKRK cluster. This region is believed to form a 

charged pocket arising from a disulphide bond between proximal cysteine residues [50]. 

Masking of the positively-charged structure by oxidising the cysteine residues to negatively-

charged sulfonic acid derivatives has been shown to prevent tropoelastin binding to dermal 

fibroblasts and chondrocytes [83]. 

The deposition of tropoelastin assemblies onto microfibrils, which act as a scaffold 

for elastic fibre formation, is likewise proposed to be modulated by electrostatic interactions 

between the tropoelastin C-terminus and microfibril-associated glycoproteins [45, 50, 102, 

276]. This is supported by the detection of glycosaminoglycan components within the elastic 

fibre [277, 278]. Addition of GAGs to the culture medium has been shown to directly 

influence the incorporation of tropoelastin monomers into elastic fibres [279]. Following the 

same principle, tropoelastin molecules that lack the C-terminal region do not assemble into 

elastic fibres [122, 280, 281]. 
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After tropoelastin deposition onto microfibrils, cross-linking of the monomers is 

required for the development of mature and stable elastic fibres. Tropoelastin cross-linking 

directly involves the positively-charged lysine residues within the molecules, as lysyl 

oxidase enzymes oxidatively deaminate lysine side chains which triggers the formation of 

bifunctional or tetrafunctional intra- and inter-molecular cross-links [137, 139]. Studies 

modelling elastin cross-linking with either lysyl oxidase [282] or an amine-reactive chemical 

linker [143] have reported distinct tropoelastin domains that are enriched in cross-linking 

sites. Furthermore, within these regions, specific lysine residues are favoured while others 

remain under-utilised during cross-linking. This is consistent with the specific presentation 

of a subset of lysine residues when tropoelastin monomers align during coacervation [273, 

274]. 

The involvement of charged tropoelastin residues in elastin assembly may extend 

beyond simple electrostatic or ionic interactions with elastogenic components, as evidenced 

by the specificity of the contacts formed. It has been proposed that the recognition of these 

residues relies heavily on their local conformation [105, 143], which may also be maintained 

by the charged moieties. KA-rich hydrophilic domains preferentially adopt an alpha-helical 

secondary structure [283], which are stabilised by negative polar residues at the N-terminus 

and positive polar residues at the C-terminus [284, 285]. Accordingly, the substitution of an 

end-capping polar residue with a neutral alanine has been shown to disrupt interactions with 

the helical dipole and alter the alpha helix structure into a random coil [284]. 

Charged residues in tropoelastin may also be involved in maintaining the tertiary 

structure of the protein, as was observed for the R515 residue [184]. The mutation of R515 

to an alanine was described in the previous chapter to affect the conformation of the 

tropoelastin bridge and C-terminal regions, which correlated to a decrease in elastic fibre 

assembly. While the mechanism by which R515 influences structural stabilisation is unclear, 
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one hypothesis is via its participation in charge-based interactions. Conceptually, it follows 

that the positively-charged arginine may be involved in contacts with proximal negatively-

charged residue/s. 

 

4.1.2 Negatively-charged residues in tropoelastin 

Interestingly, the human tropoelastin sequence [104] contains only three residues 

with negatively-charged side chains at physiological pH. Despite their relative rarity 

compared to the abundance of positively-charged lysines and arginines, their significance to 

tropoelastin structure or function has never been characterised. Two of the three negative 

residues, glutamate 345 (E345) in domain 19 and glutamate 414 (E414) in domain 21, are 

predicted to be located in close proximity to R515 and the bridge region based on the 

tropoelastin nanostructure [72] (Figure 4.1).  Therefore, one or both residues may feasibly 

contact R515 via charge interactions to stabilise this region of tropoelastin. 

E345 and E414 may also have functional roles in tropoelastin independent of those 

of R515, as they reside within domains of known functional or structural importance. 

Domains 19 and 21 are located within the region spanning domains 19-25 that is enriched 

for cross-links [143, 282]. In particular, a specific lysine in domain 19 has been reported to 

participate in cross-linking even at low cross-linker concentrations, which points to this 

region as the initial point of alignment during tropoelastin coacervation [44]. Consistent with 

this is the greater propensity of domain 19 for alpha helix formation compared to other 

hydrophilic domains, which aids the alignment of lysine residues for cross-linking [69, 75]. 

Specifically, domain 19 has been identified to form cross-links with domain 25 and domain 

10 [105], which forms the basis of the head-to-tail model of elastin assembly [72]. 

Domain 21 is uniquely positioned preceding another hydrophilic domain 23 due to 

the constitutive splicing of domain 22 in human tropoelastin [33]. The juxtaposition of 
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domains 21 and 23 is predicted to form a hinge region [74] that has been evidenced by 

nuclear magnetic resonance [75], SAXS [44] and cross-linking experiments. The hinge 

region may contribute to the elasticity of the tropoelastin molecule. It is structurally flexible, 

and fluctuates between open and closed conformations until converging to a hairpin 

structure [73]. This region is hypothesised to be primarily stabilised by van der Waals 

interactions, and to a limited extent by a salt bridge between the side chains of E414 and 

K441. Substitution of the charged groups with neutral residues is predicted to result in 

significant changes in the hinge structure [73]. 
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Figure 4.1. (A) Solution structure of wild-type human tropoelastin. The estimated 

spatial locations of the R515, E345 and E414 residues are indicated. (B) Schematic 

representation of tropoelastin domains 18-26, adapted from Baldock et al. (2011) [72]. 

A hinge region is formed by domains 21/23. A proposed tetra-functional cross-link 

occurring between domains 19 and 25 [105] is represented by red dotted lines.  
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4.1.3 Aims 

This chapter aims to explore the functional significance of two negatively-charged 

tropoelastin residues, E345 and E414, which are spatially situated proximal to the bridge 

region. Three tropoelastin mutant constructs will be produced: E345A, where the E345 

residue has been mutated to an alanine; E414A, where the E414 residue has similarly been 

replaced with an alanine; and E345A+E414A, where both E345 and E414 residues have 

been substituted for alanines (Figure 4.2). By comparing the elastogenic properties of these 

constructs with WT and R515A tropoelastin, the likelihood of R515 binding to one or both 

glutamate residues will be determined. Additionally, the possibility of E345 and E414 

possessing a significance that is unrelated to R515 function will be investigated. 

 

 

Figure 4.2. Domain structures of the WT, R515A, E345A, E414A, and E345A+E414A 

tropoelastin constructs. Hydrophobic domains are represented by dark grey boxes, 

while hydrophilic domains are drawn as white boxes. The domain locations of the 

mutated residues are indicated. 
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4.2 Results 

4.2.1 Negatively-charged residues in mammalian tropoelastin sequences 

Analysis of nine predicted or confirmed mammalian tropoelastin sequences revealed 

the infrequent occurrence of residues that have negatively-charged side chains at 

physiological pH (Figure 4.3). All of the surveyed tropoelastin sequences contained four or 

less such residues. Alignment of the sequences showed that these negatively-charged 

residues were predominantly located around domain 6 of the N-terminal region or within 

domains 19-25 of the central hinge and bridge regions. However, the presence of negative 

residues at the specific 345
th

 and 414
th

 positions was observed only in the primate 

tropoelastin sequences. The E345 residue in domain 19 was conserved in humans and 

chimpanzees, while E414 in domain 21 was conserved in humans and baboons. 

Nevertheless, other mammalian tropoelastin sequences contained negative residues in close 

proximity to these sites, including two aspartates in domains 17 and 21 of the cow sequence, 

an aspartate in domain 22 of the dog sequence, an aspartate and a glutamate in domains 22 

and 25 of the cat sequence, a glutamate in domain 22 of the pig sequence, an aspartate in 

domain 25 of the rat sequence, and a glutamate in domain 25 of the baboon sequence. An 

exception is the mouse sequence, which did not have any negative residues. 
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Dog             MAGLRAAALRPGVLLLLLS-VARPSQPGGVPGAVPG--------GVPGGVYYPGAGIGG- 50 

Cat             MAGLRTAALRPGVLLLLLS-IVHPSQPGGVPGAVPG--------AVPGGVYYPGAGLGG- 50 

Mouse           MAGLTAVVPQPGVLLILLLNLLHPAQPGGVPGAVPG----GLPGGVPGGVYYPGAGIGGL 56 

Rat             MAGLTAAVPQPGVLLILLLNLLHPAQPGGVPGAVPGGVPGGLPGGVPGGVYYPGAGIGG- 59 

Cow             MRSLTAAARRPEVLLLLLC-ILQPSQPGGVPGAVPG--------GVPGGVFFPGAGLGG- 50 

Pig             MAGLTAAALRPGVLLLLLS-IIHPSQPGGVPGAVPG--------GVPGGVFFPGAGLGG- 50 

Human           MAGLTAAAPRPGVLLLLLS-ILHPSRPGGVPGAIPG--------GVPGGVFYPGAGLGA- 50 

Chimpanzee      MAGLTAAAPRPGVLLLLLS-ILHPSRPGGVPGAIPG--------GVPGGVFYPGAGLGA- 50 

Baboon          ----------------------------GVPGAIPG--------GVPGGVYYPGAGLGG- 23 

                                            *****:**        .*****::****:*.  

 

Dog             -LGGGALGPGGKPPKPGAGLLGAFGPGAAGLAGGGPGAG--LGAFPAGAFPGGLVPG--G 105 

Cat             -LGGGALGPGGKPPKPGAGLLGAFGPGAGGLAGAGPGAGERLGAFPAGTYPGALVPG--G 107 

Mouse           GGGGGALGPGGKPPKPGAGLLGTFGAGPGGLGGAGPGAGA-----------GALVPG--G 103 

Rat             GLGGGALGPGGKPPKPGAGLLGAFGAGPGGLGGAGPGAG------------GVLVPG--G 105 

Cow             -LGVGGLGPGVKPAKPGVG--GLVGPGLGAEGSALPG-AFP----------GGFFGAGGG 96 

Pig             -LGGGALGPGGKPPKPGVG--GLAGAGLGAGLGAFPAGAFP----------GALVPG--G 95 

Human           -LGGGALGPGGKPLKPVPG--GLAGAGLGAGLGAFPAVTFP----------GALVPG--G 95 

Chimpanzee      -LGGGALAPGVKPLKPVPG--GLVGAGLGAGLGAFPAVTFP----------GALVPG--G 95 

Baboon          -LGGGALGPGGKPLKPGPG--GLAGTGLGAGLGAFPAGAFP----------GALVPG--G 68 

                  * *.*.** ** **  *  *  *.* ..  .. *.              * :. .  * 

 

Dog             VAGAAAAYK-AAKAGAGLG---------------------------GVGGI-GGVGGIGG 136 

Cat             VAGAAAAYKAAAKAGAGLG---------------------------GVG-------GIGG 133 

Mouse           AAGAAAAYKAAAKAGAGLGGVGGVPGGVGVGGVPGGVGVGGVPGGVGVGGVPGGVGGIGG 163 

Rat             GAGAAAAYKAAAKAGAGLG---------GIGGVPGGVGVGGVPGAVGVGGVPGAVGGIGG 156 

Cow             AAGAAAAYKAAAKAGAAGL----------------------------------GVGGIGG 122 

Pig             VADAAAAYKAAAKAGAG-------------------------------------LGGVGG 118 

Human           VADAAAAYK-AAKAGAGLG-------------------------------------GVPG 117 

Chimpanzee      VADAAAAYK-AAKAGAGLG-------------------------------------GVPG 117 

Baboon          VADAAAAYK-AAKAGAGLG-------------------------------------GVPG 90 

                 *.****** ******.                                       *: * 

 

Dog             VGGLGVSTGAVVPQPGAGVGVGVGAGGKPGKVPGVGLPGVYPGGVLPGTGARFPGVGVLP 196 

Cat             VGGLGVSTGAVVPQPGAGVGVGVG--GKPGKVPGVGLPGVYPGGVLPGTGARFPGVGVLP 191 

Mouse           IGGLGVSTGAVVPQVGA--GIGAG--GKPGKVPGVGLPGVYPGGVLPGTGARFPGVGVLP 219 

Rat             IGGLGVSTGAVVPQLGA--GVGAG--GKPGKVPGVGLPGVYPGGVLPGTGARFPGVGVLP 212 

Cow             VGGLGVSTGAVVPQLGA--GVGAG--VKPGKVPGVGLPGVYPGGVLPGAGARFPGIGVLP 178 

Pig             VGGLGVSTGAVVPQLGA--GVGAG--AKPGKVPGVGLPGVYPGGVLPGTGARFPGVGVLP 174 

Human           VGGLGVSAGAVVPQPGAG--------VKPGKVPGVGLPGVYPGGVLP--GARFPGVGVLP 167 

Chimpanzee      VGGLGVSAGAVVPQPGAG--------VKPGKVPGVGLPGVYPGGVLP--GARFPGVGVLP 167 

Baboon          VGGLGVSTGAVVPQPGAG--------VKPGKVPGVGLPGVYPGGVLPGTGARFPGVGVLP 142 

                :******:****** **          ********************  ******:**** 

 

Dog             GVPTGTGVKAKAPGGGG-AFAGIPGVGPFGGQQPGVPLGYPIKAPKLPGGYGLPYSTGKL 255 

Cat             GVPTGTGVKAKTPGGGG-AFAGIPGVGPFGGQQPGVPLGYPIKAPKLPGGYGLPYSTGKL 250 

Mouse           GVPTGTGVKAKAPGGGG-AFAGIPGVGPFGGQQPGVPLGYPIKAPKLPGGYGLPYTNGKL 278 

Rat             GVPTGTGVKAKVPGGGGGAFSGIPGVGPFGGQQPGVPLGYPIKAPKLPGGYGLPYTNGKL 272 

Cow             GVPTGAGVKPKAQVGAG-AFAGIPGVGPFGGQQPGLPLGYPIKAPKLPAGYGLPYKTGKL 237 

Pig             GVPTGTGVKAKAPGGGG-AFAGIPGVGPFGGQQPGVPLGYPIKAPKLPGGYGLPYSTGKL 233 

Human           GVPTGAGVKPKAPGVGG-AFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL 226 

Chimpanzee      GVPTGAGVKPKAPGVGG-AFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL 226 

Baboon          GVPTGAGVKPKAPGVGG-AFAGIPGVGPFGVQQPGVPLGYPIKAPKLPGGYGLPYSTGKL 201 

                *****:***.*.   .* **:*********  ***:************.******..*** 

 

Dog             PYGYGPGGVAGAAGKAGYPTGTGVG---TQAAAAAAKAAKFGAGGAGVLP--GVGGAGIP 310 

Cat             PYGYGPGGVAGAAGKAGYPTGTGVG---PQAAAAAAKAAKFGAGGAGVLP--GVGGGGIP 305 

Mouse           PYG-----VAGAGGKAGYPTGTGVG---SQAAAAAAKAAKYGAGGAGVLP--GVGGGGIP 328 

Rat             PYG-----VAGAGGKAGYPTGTGVG---SQAAVAAAKAAKYGAGGGGVLP--GVGGGGIP 322 

Cow             PYGFGPGGVAGSAGKAGYPTGTGVG--PQAAAAAAKAAAKLGAGGAGVLPGVGVGGPGIP 295 

Pig             PYGFGPGGVAGAAGKAGYPTGTGVGTQAAAAAAAAKAAAKYGAPGAGVLPGVGVGGVGVP 293 

Human           PYGYGPGGVAGAAGKAGYPTGTGVGP-QAAAAAAAKAAAKFGAGAAGVLP--GVGGAGVP 283 

Chimpanzee      PYG--------------------------------------------------------- 229 

Baboon          PYGYGPGGVAGAAGKAGYPTGTGVGP-QAAAAAAAKAAAKLGAG---VLP--GVGVGGVP 255 

                ***                                                          
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Dog             GGAGAIPGIGGIAGAGTP---AAAAKAAAKAAKYGAAGGLVPGGP----GFGVPGVGVP- 362 

Cat             GGAGAIPGIGGIAGAGTPAAAAAAAKAAAKAAKFGAAGGVVPGGPGFVPGVGVPGVGVP- 364 

Mouse           GGAGAIPGIGGIAGAGTP-AAAAAAKAAAKAAKYGAAGGLVPGGP----GVRLPGAGIP- 382 

Rat             GGAGAIPGIGGITGAGTP-AAAAAAKAAAKAAKYGAAGGLVPGGP----GVRVPGAGIPG 377 

Cow             GAPGAIPGIGGIAGVGAPDA-AAAAAAAAKAAKFGAAGGLP--------GVGVPGVGVPG 346 

Pig             GGAGAIPGIGGIAGAGAP----AAAAAAAKAAKYGAAGGLVPGAPGFGPGVGVPGVGVPG 349 

Human           GVPGAIPGIGGIAGVGTP-AAAAAAAAAAKAAKYGAAAGLVPGGP----GFGPGVVGVP- 337 

Chimpanzee      -----------------------------------AAAGLVPGGP----GFGPGVVGVP- 249 

Baboon          GVPGAIPGIGGIAGAGTP-AAAAAAAAAAKAAKYGAAAGLVPGGP----GFGPGVVGVP- 309 

                                                   **.*:         *.    .*:*  

 

Dog             ----------GVG-VPGVG-VPGVGVPGVGGPGI---------VGGPGAVSPAAAAKAAA 401 

Cat             ----------GVG-VPGVG-VPGVGVPGVGVPGVGVPGVGVPGVGVPGAVSPAAAAKAAA 412 

Mouse           ----------GVGGIPGVGGIPGVGGPGIGGPGI---------VGGPGAVSPAAAAKAAA 423 

Rat             VGIPGVGGIPGVGGIPGVGGIPGVGGPGIGGPGI---------VGGPGAVSPAAAAKAAA 428 

Cow             VGVPGVG-VPGVG-VPGVG-VPGVGVPGVGVPGVGVPGVGVPGVGVPGALSPAATAKAAA 403 

Pig             VGVPGVG-VPGVG-VPGVG-VPGVGVPGVGVPGVGVPGVGVPGVGVPGAVSPAAAAKAAA 406 

Human           ----------GAG-VPGVG-VPGAGIP--VVPGAGIP-----GAAVPGVVSPEAAAKAAA 378 

Chimpanzee      ----------GAG-VPGVG-VPGAGIP--VVPGAGIP-----GAAVPGVVSPEAAAKAAA 290 

Baboon          ----------GAG-IPGVG-VPGAGIPGVGVPGAGIPVV--PGAGVPGAVSPAAAAKAAA 355 

                          *.* :**** :**.* *    **          .. **.:** *:***** 

 

Dog             KAAKYGARAGVGVGGIPTYGVGVGAGGFPGYGIGAGG------VPGAPLSP-AA-----Q 449 

Cat             KAAKYGARAGVGVGGIPTF--GIGAGGFPGYGVGAGVGAVPGAVPGAGLSPAAA-----Q 465 

Mouse           KAAKYGARGGVG---IPTY--GVGAGGFPGYGVGAGAG--------------LG-----G 459 

Rat             KAAKYGARGGVG---IPTY--GVGAGGFPGYGVGAGAG--------------LG-----G 464 

Cow             KAAKFGARGAVGIGGIPTF--GLGPGGFP--GIGDAA----------------------- 436 

Pig             KAAKYGARGGVGVGGIPTF--GVGAGGFPGFGVGVGA----------------------- 441 

Human           KAAKYGARPGVGVGGIPTY--GVGAGGFPGFGVGVGGIPGVAGVPGVGGVPGVGGVPGVG 436 

Chimpanzee      KAAKYGARPGVGVGGIPTY--GVGAGGFPGFGVGVGGIPGVAGVPSVGGVPGVGGVPGVG 348 

Baboon          KAAKYGARAGVGVGGIPTF--GVGAGGFPGYGVGVGGIP------GVGGVPGVGGVPGAG 407 

                ****:*** .**   ***:  *:*.****  *:* .                         

 

Dog             AAAAAQAAAAAKAAKYGAGGVGALGGLVPGVGDGVAG----------VPGTG-----GVP 494 

Cat             AAAAAQAAAAAKAAKYGAGGVGGLGGLVPGIGDGVAG----------VPGVG-----GVP 510 

Mouse           AS-PAAAAAAAKAAKYGAGGAGALGGLVPGAVPGALPGAVP-----AVPGAG-----GVP 508 

Rat             ASQAAAAAAAAKAAKYGAGGAGTLGGLVPGAVPGALPGAVPGALPGAVPGALPGAVPGVP 524 

Cow             ---AAPAAAAAKAAKIGAGGVGALGGVVPGAPGAIPG----------LPGVG-----GVP 478 

Pig             ---AAQAAAAAKAAKLGAAGAGALGGLVPGAEGAVPG----------VPGAG-----AVP 483 

Human           ISPEAQAAAAAKAAKYGAAGAGVLGGLVPGAPGAVPG----------VPGTG-----GVP 481 

Chimpanzee      ISP--QAAAAAKAAKY---------GLVP--------------------GVG-----VAP 372 

Baboon          ISPEAQAAAAAKAAKYGAAGAGVLGGLVPGAGGIVPG----------VPGVG-----GVP 452 

                      *********          *:**                    *.       .* 

 

Dog             GAG--------TPAAAA----------AKAAAKAAQFGLGPGVG----VGPGVGPGVGPG 532 

Cat             GVG--------TPAAAA----------AKAAAKAAQFGLGPGIG----VAPGVAPGVAPG 548 

Mouse           GAG----TPAAAAAAAA----------AKAAAKAG---LGPGVGG---VPGGVGVGGIPG 548 

Rat             GTGGVPGTPAAAAAAAA----------AKAAAKAGQYGLGPGVGG---VPGGVGVGGLPG 571 

Cow             GVG--------IPAAAA----------AKAAAKAAQFGLGP------GVGVAPGVGVVPG 514 

Pig             GVG--------APAAAA----------AKAAAKAAQFGLGPGIGVAPGVGVAPGVGVAPG 525 

Human           GVGTPAAAAAKAAAKAAQFALLNLAGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVGVAPG 541 

Chimpanzee      GVG-----------------------VAPGVGVAPGVGVAPGVGVAPGVGVAPGVGVAPG 409 

Baboon          GVGTPAAAAAKAAAKAAQFG------LVPGVGVAPGVGVAPGVGVAPGVGVAPGVGVAPG 506 

                *.*                        . ... *    :.*       *  . . *  ** 

 

Dog             -IGPG-----VGPGIGPGIGIGPGGVTGVGTPAAAKAAAKAAAKAQYRAAAGLPAGVPGF 586 

Cat             -VAPG-----VAPGIGIGPGGVIGELLRVGTPAAAKAAAKAAAKAQYRAAAGLPAGVPGF 602 

Mouse           GVGVGGVPGGVGPGGVTGIGAGPGGLGGAGSPAAAKSAAKAAAKAQYRAAAGLGAGVPGF 608 

Rat             GVGPGGVTG-IGTG--PGTGLVPGDLGGAGTPAAAKSAAKAAAKAQYRAAAGLGAGVPGL 628 

Cow             -VGVVP-----GVGVAPGIGLGPGGVIGAGVPAAAKSAAKAAAKAQFRAAAGLPAGVPGL 568 

Pig             -VGVAP-----GVGVAPGIGIGPGGVIGAGAPAAAKSAAKAAAKAQFQAAAGLPAGVPGF 579 

Human           -VGVAP-----GVGVAP--GIGPGGVA-----AAAKSAAKVAAKAQLRAAAGLGAGIPGL 588 

Chimpanzee      -VGVAP-----GVGVAP--GIGPGGVA-----AAAKSAAKVAAKAQLRAAAGLGAGIPGL 456 

Baboon          -VGVAP-----GVGVAPGVGIGPGGVAGVGAPEAAKSAAKAAAKAQLRAAAGLGA-VPGL 559 

                 :.        . *     *   * :       ***:***.***** :***** * :**: 
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Figure 4.3. Alignment of mammalian tropoelastin sequences by ClustalW. Identical 

residues are denoted by “*”, conserved residues by “:”, and semi-conserved residues 

by “.”. The degree of conservation was based on the similarity score of all residues at 

Dog             GVGAGVPGFGVGAG---------IPGFGVGAGVPGFGAG--------------------- 616 

Cat             GVGAGVPGFGVGAG---------VPGFGAGVGVPGFGAG--------------------- 632 

Mouse           GAGAGVPGFGAGAGVPGFGAGAGVPGFGAGAGVPGFGAG--------------------- 647 

Rat             GVGAGVPGFGAGAG-----------GFGAGAGVPGFGAG--------------------- 656 

Cow             GVGAGVPGLGVGAG---------VPGLGVGAGVP--GPG--------------------- 596 

Pig             GVGAGVPGFGVGAG---------VPGFGAGA----------------------------- 601 

Human           GVGVGVPGLGVGAG---------VPGLGVGAGVPGFGAGADEGVRRSLSPELREGDPSSS 639 

Chimpanzee      GVGVGVPGLGVGAG---------VPGLGVGAGVPGFGA---------------------- 485 

Baboon          GVGA-VPGLGVGVG---------VPGLGVGAGVPGFGAG--------------------- 588 

                *.*. ***:*.*.*           *:*.*.                              

 

Dog             ----------AVPGTLAAAKAAKYG--AGG-VGALGGAGVPGGVAGAG------------ 651 

Cat             ----------AVPGSLAAAKAAKYG--AAG-VGALGGVGVPG---GAG------------ 664 

Mouse           ----------AVPGSLAASKAAKYG--AAGGLGGPGGLGGPGGLGGPGGLGG-------- 687 

Rat             ----------AVPGSLAASKAAKYG--AAGGLGGPGGLGGPGGLGGPGGLGGPGGLGGPG 704 

Cow             ----------AVPGTLAAAKAAKFGPGGVGALGGVGDLGGAGIPGGVAG----------- 635 

Pig             -----------VPGPLAAAKAAKYG--AAGALGGVGDLGGAGIPGGVAG----------- 637 

Human           QHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVG----------- 688 

Chimpanzee      -----------VPGALAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVG----------- 523 

Baboon          ----------AVPGALAAAKAAKYGAGVPGALGGVGALGGVGIPGGVVG----------- 627 

                           ***.***:****:*    * :*. *  *  *   *               

 

Dog             -----------PAASAAAAKAAAKAAQFGLGGAGALGAGGLGAGGAIPG---VGGFGGE- 696 

Cat             -----------PAASAAAAKAAAKAAQFGLGGAGALGVGGLGAGGAIPG---VGGFGG-- 708 

Mouse           ------AGAAPPAAAAAAAKAAAKAAQYGLGGAGGLGAGGLGAGGLGAGGLGAGGLGAGG 741 

Rat             GLGGVPGGVAGAPAAAAAAKAAAKAAQYGLGGAGGLGAGGLGAGGLGAGGLGAGGLGAGG 764 

Cow             ----------VVPAAAAAAKAAAKAAQFGLGGVGGLGVGGLGA---VPG---AVGLGG-- 677 

Pig             ----------VGP---AAAKAAAKAAQFGVGGVGGLGVGGLGA---VPG---AGAFGG-- 676 

Human           ---------AGPAAAAAAAKAAAKAAQFGLVGAAGL--GGLGVGGLG-VPG-VGGLGG-- 733 

Chimpanzee      ---------AGPAAAAAAAKAAAKAAQF---GAAGL--GGLGVGGLG-VPG-VGGLAG-- 565 

Baboon          ---------AGPAAAAAAAKAAAKAAQFGLGGPAGLGVGGLGVGGLGAVPG-VGGLGG-- 675 

                            .   ***********:   * ..*  ****.         . .:..   

 

Dog             ---------------GVSPAAAAKAAKYGATGLGGVLGATRPFQVGGVAARPGFGLSPIY 741 

Cat             ----------------VSPAAAAKAAKYGATGLGSVLGATRPFPVGGVAARPGFGLSPIY 752 

Mouse           LGAGGLGAGGLGAGGGVSPAAAAKAAKYGAAGLGGVLGA-RPFPG--VAARPGFGLSPIY 798 

Rat             LGAGGVIPGAVGLGG-VSPAAAAKAAKYGAAGLGGVLGA-RPFPGGGVAARPGFGLSPIY 822 

Cow             ----------------VSPAAAAKAAKFGAAGLGGVLGAGQPFPIG-------------- 707 

Pig             ----------------VSPAAAAKAAKYGAAGLGGVLGVTRPFPLGGVAPRPGFGLSPIF 720 

Human           ----------------IPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIF 777 

Chimpanzee      ----------------IPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIF 609 

Baboon          ----------------VSPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIF 719 

                                :.*********:**:***.***    *                  

 

Dog             PGGGAGGLGIGGKPPKPYGGALGALGYQGGACLGKSCGRKRK 783 

Cat             PGGGAGGLGIGGKPPKPFGGALGALGYQGGACLGKSCGRKRK 794 

Mouse           PGGGAGGLGVGGKPPKPYGGALGALGYQGGGCFGKSCGRKRK 840 

Rat             PGGGAGGLGVGGKPPKPYGGALGALGYQGGGCFGKSCGRKRK 864 

Cow             --GGAGGLGVGGKPPKPFGGALGALGFPGGACLGKSCGRKRK 747 

Pig             PGGGAGGLGIGGKPPKPFGGALGALGYQGGACLGKSCGRKRK 762 

Human           PGG---------------------------ACLGKACGRKRK 792 

Chimpanzee      PGG---------------------------ACLGKACGRKRK 624 

Baboon          PGGGAGGLGVGGKPPKPFGGALGALGYQGAACLGKSCGRKRK 761 

                  *                           .*:**:****** 
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each position, calculated using the Gonnet Pam250 matrix (conserved: score >0.5, 

semi-conserved: score =<0.5) [286]. With the exception of the signal peptide and the 

human domain 26A (in greyed out font), all negative residues within the sequences are 

highlighted. The human tropoelastin E345 and E414 residues are bold underlined. The 

human (GeneID: 2006), cow (GeneID: 280781), mouse (GeneID: 13717), and rat 

(GeneID: 25043) tropoelastin sequences are confirmed protein sequences. The dog 

(NCBI: NC_006589.3), cat (NCBI: XM_003998576.1), pig (Gene Index: TC373476), 

chimpanzee (NCBI: XM_003318598.2), and baboon (NCBI: XM_003919412.1) 

sequences are translated from predicted elastin gene sequences.  
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4.2.2 Production of tropoelastin constructs 

4.2.2.1 DNA sequencing 

 To produce the E345A, E414A and E345A+E414A constructs, E. coli cultures were 

transformed with a pET-3d vector containing the mutant tropoelastin sequence. Sequencing 

of the 2.1 kb tropoelastin insert within the plasmid following extraction from transformed 

colonies confirmed the relevant mutation/s at the DNA level (Appendix 8.3-8.5). In the 

E345A and E414A clones, an alanine-encoding GCA was found at the codon location 

corresponding to the 345
th

 and 414
th

 tropoelastin residue, respectively. In the E345A+E414A 

clone, a GCA was located at both codon positions encoding for tropoelastin residues 345 

and 414. 

 

4.2.2.2 Mass spectrometry 

 Comparative mass spectrometry of purified and Lys-C digested WT and E345A 

showed overlapping peaks within the 4000-6500 mass/charge window, except for a WT-

specific peak at 5076.77, labelled B, and an E345A-specific peak at 5018.76, labelled B* 

(Figure 4.4). Both mass peaks were assigned to the same peptide fragment containing 

residue 345 (  
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Table 4.1). The observed mass shift of 58 m/z corresponded to the monoisotopic mass 

difference between a glutamate and an alanine residue, consistent with an E345A 

substitution in the mutant construct at the protein level.  

 Similarly, the mass spectrometry profiles of WT and E414A differed only by a single 

peak (Figure 4.5). The 5711.01 peak, labelled D in the WT spectrum, was shifted to a 

5653.01 peak, labelled D* in the E414A spectrum. Both mass peaks corresponded to the 

peptide fragment containing residue 414 (  
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Table 4.1). The peak shift represented the 58 Da mass difference between the wild-type 

E414 and the mutant A414 residues, and confirmed the presence of an amino acid mutation 

in the E414A construct. 

 In the same manner, the WT and E345A+E414A constructs displayed identical mass 

spectra except in two locations (Figure 4.6). Both the 5076.77 and 5711.01 peaks in the WT 

profile appeared as 5018.76 and 5653.01 peaks in the E345A+E414A profile, respectively. 

The first peak was assigned to the tropoelastin peptide containing residue 345, and the 

second to that containing residue 414. The mass shifts corresponded to the mass difference 

between glutamate and alanine at both positions, and supported the presence of a double 

mutation in the E345A+E414A construct. 
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A  

B  

Figure 4.4. Comparative mass spectrometry of WT (green) and E345A (blue) 

tropoelastin. The peaks within the (A) 4000-6500 and (B) 4490-5280 m/z windows are 

shown. The 4526.57, 5127.88 and 5711.01 mass peaks, corresponding to peptide 

sequences common to WT and E345A, were present in both profiles. The 5076.77 peak 

in the WT spectrum was shifted to a 5018.76 peak in the E345A spectrum (arrow), 

confirming the mutation at the protein level. 
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A  

B  

Figure 4.5. Comparative mass spectrometry of WT (green) and E414A (blue) 

tropoelastin. The peaks within the (A) 4000-6500 and (B) 4490-5280 m/z windows are 

shown. The 4526.57 and 5076.77, mass peaks, corresponding to peptide sequences 

common to WT and E414A, were present in both spectra. A mass shift occurred from 

5711.01 peak in the WT to the 5653.01 peak in the E414A (arrow), confirming the 

mutation at the protein level. 
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A  

B  

Figure 4.6. Comparative mass spectrometry of WT (green) and E345A+E414A (blue) 

tropoelastin. The peaks within the (A) 840-6000 and (B) 4875-6000 m/z windows are 

shown. Within the 4000-6500 m/z range, the 4526.57 and 5127.88 mass peaks, 

corresponding to peptide sequences common to WT and E345A+E414A, were present 

in both spectra. The 5076.77 and 5711.01 peaks in the WT profile were shifted to 

5018.76 and 5653.01 peaks in the E345A+E414A profile, respectively, confirming the 

double mutation at the protein level. 
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Table 4.1. Assignment of peaks from mass spectrometry analyses of Lys-C digested 

tropoelastin constructs within a mass/charge window of 4000-6500. The residues at 

positions 345 and 414 are underscored. 

Peak Mass Residues Peptide Sequence 

A 4526.5720 512-565 
AQLRAAAGLGAGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGF

GAVPGALAAAK 

B 5076.7671 290-349 
YGAAAGLVPGGPGFGPGVVGVPGAGVPGVGVPGAGIPVVPGA

GIPGAAVPGVVSPEAAAK  

B* 5018.7616 290-349 
YGAAAGLVPGGPGFGPGVVGVPGAGVPGVGVPGAGIPVVPGA

GIPGAAVPGVVSPAAAAK  

C 5127.8831 442-503 
AAQFGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVGVAPGVGV

APGVGVAPGIGPGGVAAAAK 

D 5711.0130 357-422 
YGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPSVG

GVPGVGGVPGVGISPEAQAAAAAK 

D* 5653.0076 357-422 
YGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPSVG

GVPGVGGVPGVGISPAAQAAAAAK 
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4.2.2.3 SDS-PAGE 

SDS-PAGE analysis of purified E345A, E414A, and E345A+E414A indicated a ~60 

kDa product corresponding to the expected size of the tropoelastin constructs (Figure 4.7). 

There was no visible contamination with bacterial proteins. The constructs were 

predominantly full-length with minimal degradation. 

 

 

Figure 4.7. SDS-PAGE analysis of purified tropoelastin constructs. Lanes: M – protein 

standards (kDa); 1 – E345A; 2 – E414A; 3 – E345A+E414A. 
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4.2.3 Coacervation studies 

 All tropoelastin constructs displayed temperature-dependent coacervation (A 

 

B  

Figure 4.8A). As each sample reached a critical temperature, a sharp increase in turbidity 

was detected and interpreted as a rapid rise in coacervation level. Negligible increases in 

sample turbidity were observed beyond this transition temperature, which was distinct for 

each tropoelastin construct. Full coacervation was achieved at 35°C by WT, but only at 

40°C by R515A, E345A, E414A and E345A+E41A. At 35°C, the mutant constructs 

coacervated to variable extents. Both single E to A mutants displayed similar self-

association relative to R515A (p>0.05), while the E345A+E414A species exhibited 

significantly reduced coacervation compared to either R515A, E345A or E414A (p<0.001). 
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 The time required for full coacervation to occur was also temperature-dependent for 

all tropoelastin constructs (A 

 

B  

Figure 4.8B). Coacervation time decreased exponentially with increasing temperature. A 

difference in the coacervation time of the constructs was observed below the transition 

temperature of the mutants at 40°C. Similarly to R515A, the Glu-to-Ala constructs required 

a significantly longer time to aggregate compared to WT (p<0.01). Among the Glu-to-Ala 

mutants, E345A+E414A coacervated significantly more slowly than either E345A 

(p<0.001) or E414A (p<0.01). 
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A  

B  

Figure 4.8. Coacervation profiles of WT, R515A, E345A, E414A and E345A+E414A 

tropoelastin. (A) The extent of coacervation at each temperature, expressed as a 

percentage of the maximum coacervation achieved by each tropoelastin sample. (B) 

The time taken by each construct to coacervate at each temperature. 
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 The differences in the coacervation profiles of WT and mutant species were 

confirmed by the analysis of solution particle sizes over a range of temperatures (Figure 4.9). 

At or below 30°C, all tropoelastin constructs were present as ~10 nm monomers in solution. 

At 35°C, all WT species had associated into ~400 nm particles, while the mutant species 

were composed of distinct populations of ~10 nm monomers and aggregates ranging from 

800 nm to 3.5 m. At this temperature, the tropoelastin mutants differed in the extent of 

coacervation: 32% of R515A, 66% of E345A, 67% of E414A, and 66% of E345A+E414A 

species remained as monomers. At 40°C, all mutant species had coacervated into 400-500 

nm particles similarly to WT. The same trend was observed at 45°C. At 50°C, however, WT 

tropoelastin had further assembled into ~2 m aggregates, while the R515A, E345A and 

E414A constructs formed similar-sized particles only at 55°C. Notably, the E345A+E414A 

coacervates did not reach this end size even at 55°C. 

  



__________________________________________________________________Chapter 4 

166 

 

A  B   

C  D  

E  F  

G  H  

Figure 4.9. Particle sizes of WT, R515A, E345A, E414A and E345A+E414A 

tropoelastin solutions at (A) 20, (B) 25, (C) 30, (D) 35, (E) 40, (F) 45, (G) 50 and (H) 

55°C. 

 

1 10 100 1000 10000 100000
0

10

20

30

40
WT

R515A

E345A

E414A

E345A+E414A

Diameter (nm)

%
 V

o
lu

m
e

1 10 100 1000 10000 100000
0

10

20

30

40
WT

R515A

E345A

E414A

E345A+E414A

Diameter (nm)

%
 V

o
lu

m
e

1 10 100 1000 10000 100000
0

10

20

30

40
WT

R515A

E345A

E414A

E345A+E414A

Diameter (nm)

%
 V

o
lu

m
e

1 10 100 1000 10000 100000
0

10

20

30

40
WT

R515A

E345A+E414A

E345A

E414A

Diameter (nm)

%
 V

o
lu

m
e

1 10 100 1000 10000 100000
0

10

20

30

40
WT

R515A

E345A

E414A

E345A+E414A

Diameter (nm)

%
 V

o
lu

m
e

1 10 100 1000 10000 100000
0

10

20

30

40
WT

R515A

E345A

E414A

E345A+E414A

Diameter (nm)

%
 V

o
lu

m
e

1 10 100 1000 10000 100000
0

10

20

30

40
WT

R515A

E345A

E414A

E345A+E414A

Diameter (nm)

%
 V

o
lu

m
e

1 10 100 1000 10000 100000
0

10

20

30

40
WT

R515A

E345A

E414A

E345A+E414A

Diameter (nm)

%
 V

o
lu

m
e



__________________________________________________________________Chapter 4 

167 

 

4.2.4 Cross-linking studies 

4.2.4.1 Hydrogel construction 

 Addition of a six-fold molar excess of the chemical cross-linker BS3 to tropoelastin 

solutions allowed successful production of hydrogels from each tropoelastin construct 

(Figure 4.10). The hydrogels appeared visually similar with smooth translucent surfaces.  

 SDS-PAGE analysis of the aqueous solution left after tropoelastin polymerisation 

revealed the absence of monomer species in all samples (Figure 4.11). This indicated the 

complete cross-linking of WT and mutant constructs into elastin hydrogels. 

 

 

Figure 4.10. Pre-lyophilised hydrogels constructed from the chemical cross-linking of 

WT, R515A, E345A, E414A and E345A+E414A with BS3. Scale bar: 0.5 cm. 
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Figure 4.11. SDS-PAGE analysis of the aqueous solution left after tropoelastin cross-

linking into hydrogels. Lanes: M – protein standards (kDa); 1 – purified WT; 2 – WT 

with BS3; 3 – purified R515A; 4 – R515A with BS3; 5 – purified E345A; 6 – E345A 

with BS3; 7 – purified E414A; 8 – E414A with BS3; 9 – purified E345A+E414A; 10 – 

E345A+E414A with BS3. 
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4.2.4.2 Micro-CT of hydrogels 

 Micro-CT imaging revealed discernible differences in the structural composition of 

the lyophilised hydrogels (Figure 4.12). The WT hydrogel consisted of a filamentous 

network interspersed with numerous pores that were visible across the top surface and 

throughout the cross-section of the material. In contrast, this predominantly porous network 

structure was not observed in any of the mutant hydrogels.  

 The mutant species formed hydrogels that were morphologically distinct from each 

other. The cross-linked R515A hydrogel was composed of compactly-arranged bead-like 

spherules. The E345A, E414A and E345A+E414A hydrogels also appeared as a dense 

material; however, the presence of globular structures was not obvious either on the surfaces 

or within the cross-sections. While the finer structural features of these hydrogels remained 

largely undefined at this resolution, subtle differences between them could be visibly 

detected. The E345A hydrogel appeared more compact than the E414A or E345A+E414A 

constructs, as evidenced by its reduced thickness despite having a mass comparable to the 

other hydrogels. The E414A hydrogel comprised of more loosely-packed, wispy structures 

that were easily dislodged during sample handling. The E345A+E414A hydrogel exhibited a 

fibrous structure reminiscent of the WT material; however, its structure was more compact, 

with pores significantly smaller than those seen in the WT. 
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Figure 4.12. Three-dimensional reconstruction of WT, R515A, E345A, E414A and 

E345A+E414A hydrogels by micro-CT imaging. For each hydrogel, the whole 

construct and a cross-section are shown. Scale bar: 0.8 mm.  

 

 The most apparent difference between the WT and mutant hydrogels was the 

abundance of large pore structures in the former that were absent in the mutant constructs. 

Calculations of hydrogel porosity from micro-CT cross-sections estimated the WT material 

to be 87% porous and the mutant hydrogels to be significantly denser at 70% porosity for 

R515A and 76% for E345A, E414A and E345A+E414A (Figure 4.13). There was no 

statistical difference between the porosities of the mutant hydrogels. 

 

 

Figure 4.13. Porosity of wild-type and mutant elastin hydrogels calculated from micro-

CT analyses. 
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4.2.4.3 Hydrogel swelling 

 The elastin hydrogels exhibited profound but differential swelling after being 

submerged in water for a 24-hr period at various temperatures (Figure 4.14). At the 

physiological temperature, WT hydrogels absorbed water up to 60 times their dry weight. In 

contrast, water influx into the mutant hydrogels was significantly reduced. The R515A, 

E345A, E414A and E345A+E414A hydrogels swelled approximately 8-, 2-, 3- and 5-fold 

less compared to the WT, respectively. This trend was consistent at each temperature 

(Figure 4.15). There were no significant differences between the swelling properties of the 

mutant hydrogels. 

 

Figure 4.14. WT, R515A, E345A, E414A and E345A+E414A hydrogels swollen in 

water at 37°C overnight. Triplicate samples are shown. Scale bar: 0.5 cm. 
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Figure 4.15. Water uptake by hydrogels submerged in water at 4, 25 and 37°C 

overnight. 

 

4.2.4.4 SEM of hydrogel surfaces 

 SEM of the hydrogels demonstrated distinct differences in the structural composition 

of their surfaces (Figure 4.16). The top surface of the WT hydrogel appeared as a flat layer 

with large pores ~100 m in size. In contrast, the top surfaces of the R515A, E345A, E414A 

and E345A+E414A hydrogels were marked by an abundance of ~10 m globules that were 

interlinked differently among the mutant hydrogels. In the R515A hydrogel, the globules 

were clustered to form branching structures across the surface. In the E345A hydrogel, the 

spherules appeared as discrete entities connected by very fine fibres. In the E414A hydrogel, 

the particles were interspersed among sheet-like fragments containing a number of ~10 m 

pores. In the E345A+E414A hydrogel, the globules were joined by thick fibres that appeared 

to have arisen from the coalescence of clustered globules themselves. Unlike the top 

surfaces, the bottom surfaces of the elastin hydrogels shared a similar morphology, 
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consisting of a smooth sheet-like structure with pores ranging from 20-100 m in size 

(Figure 4.17). 
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Figure 4.16. SEM imaging of the top surface of hydrogel constructs, shown at low and 

high magnification. 
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Figure 4.17. SEM imaging of the bottom surface of hydrogel constructs, shown at low 

and high magnification. 
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4.2.5 Cell attachment 

 Tissue culture wells coated with the tropoelastin constructs supported attachment of 

human dermal fibroblasts in a dose-dependent manner until saturation at ~10 g/mL 

tropoelastin 

(  

Figure 4.18). At tropoelastin concentrations supporting maximum cell attachment, WT 

allowed the adhesion of up to 80% of seeded cells. In contrast, all mutant constructs were 

associated with significantly reduced cell interactions. Compared to the WT construct, 

R515A, E345A, E414A and E345A+E414A supported the attachment of 53%, 61%, 58% 

and 50% of seeded cells, respectively. There was no statistical difference between cell 

adhesion to the tropoelastin mutants. 
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Figure 4.18. Attachment of GM3348 human dermal fibroblasts to WT, R515A, E345A, 

E414A and E345A+E414A tropoelastin. 
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4.2.6 Detection of tropoelastin by ELISA 

 To elucidate the observed differences in fibroblast attachment to the tropoelastin 

constructs, the coating of WT and mutant species on cell culture wells was characterised by 

ELISA. 

 The amount of bound tropoelastin detected by the BA4 anti-elastin antibody 

increased proportionally to the coating concentration until saturation at ~10 g/mL 

tropoelastin (Figure 4.19A). At excess concentrations of tropoelastin, similar levels of WT, 

R515A, E345A, E414A and E345A+E414A were detected. 

 The accessibility of the tropoelastin C-terminus on the surface-bound constructs was 

compared using an antibody directed against domain 36 of tropoelastin (Figure 4.19B). The 

specificity of the antibody was confirmed with the low levels of epitope detection in the 

M155n construct, which is truncated after domain 25 and therefore does not contain the 

tropoelastin C-terminus. At the maximum tropoelastin coating concentration, a significantly 

decreased amount of C-termini was detected in all mutant constructs compared to WT. At 

most, only 55%, 79%, 66% and 75% of R515A, E345A, E414A and E345A+E414A domain 

36 was accessible to the antibody, respectively.  
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A  

B  

Figure 4.19.  Detection of tropoelastin bound on tissue culture wells by the (A) BA4 

anti-elastin antibody and (B) anti-C-terminus antibody. 
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4.2.7 Elastic fibre assembly 

 The ability of the tropoelastin constructs to form elastic fibres in a cellular 

environment was determined by the addition of WT, R515A, E345A, E414A and 

E345A+E414A to the culture medium of human dermal fibroblasts (Figure 4.20). One day 

after tropoelastin addition, WT spherules were arranged in a linear fibre-like morphology. In 

contrast, the mutant species remained randomly dispersed or were clustered in a globular 

organisation in the extracellular space. By day four, fine well-defined WT elastic fibres were 

visible. Elastic fibre structures were likewise observed in the R515A, E414A and 

E345A+E414A samples. However, these fibres respectively displayed a 26%, 21% and 23% 

reduction in immunofluorescence, and were 27%, 65% and 37%% less abundant than WT 

fibres despite comparable cell numbers in all samples 

(  

Figure 4.21). Remarkably, the E345A construct remained as punctate species and did not 

form definitive elastic fibres. These differences in the elastogenic ability of the tropoelastin 

constructs were consistently observed at seven and ten days after tropoelastin addition, 

although the number of E414A fibres eventually increased to levels comparable with the 

E345A+E414A fibres. No elastic fibres were detected when tropoelastin was not added to 

the culture medium of cells. The faintly fluorescent fibres observed in the staining controls 

are due to elastin autofluorescence.  
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Figure 4.20. Elastic fibre assembly by GM3348 human dermal fibroblasts at 1, 4, 7 and 

10 days after addition of 20 g/mL WT, R515A, E345A, E414A or E345A+E414A 

tropoelastin into the culture medium. Elastic fibres were stained with the mouse BA4 

anti-elastin antibody and a FITC-conjugated anti-mouse antibody. Staining controls 

consist of samples to which WT tropoelastin was added, but were treated with no 

antibody, with the secondary antibody only, or with a non-specific primary antibody 

and the secondary antibody. Cell nuclei were stained with DAPI.  
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A  

B  

C  

Figure 4.21. (A) Elastin-specific fluorescence and (B) density of elastic fibres. (C) Cell 

numbers as measured by the area occupied by cell nuclei per field of view. 
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4.2.8 Structural studies 

4.2.8.1 Far-UV CD 

 Far-UV CD analysis indicated that the tropoelastin constructs possessed comparable 

spectral features, including a negative minimum at 200 nm and a slight shoulder at 220 nm 

(Figure 4.22). This computationally translated to a similar secondary structure composition 

of the constructs, consisting predominantly of unordered regions (49%), with a small 

percentage of alpha-helices (10%), beta-sheets (19%), turns (12%), and polyproline-2 

helices (9%). 
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A  

B  

Figure 4.22. (A) CD spectra and (B) secondary structure composition of WT, R515A, 

E345A, E414A and E345A+E414A tropoelastin constructs. Ahel: alpha-helix; BSht: 

beta-sheet; PP2: polyproline-2 helix; UNR: unordered. 
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4.2.8.2 SAXS  

 SAXS analysis of the E345A, E414A and E345A+E414A mutant constructs revealed 

solution structures that exhibited the same characteristic features as WT tropoelastin (Figure 

4.23). Each structure possessed an N-terminal coil region connected to a C-terminal foot 

region by a bridge region. Overlaying the WT and mutant nanostructures indicated an 

aligned N-terminal region. However, structural divergence began to occur around the hinge 

region downstream of the N-terminal coil, leading to conformational differences in the 

bridge and C-terminal regions. For instance, the E345A model displayed a longer N-

terminus-to-hinge distance and a highly contracted bridge which increased the proximity of 

the C-terminus to the central axis of the molecule. In contrast, E414A showed a mass-dense 

hinge region and an elongated bridge and C-terminus. On the other hand, the double 

E345A+E414A mutant structure exhibited an enlarged but shortened hinge region with no 

dramatic change in either the length of the bridge region or the distance of the C-terminus 

from the central axis of the molecule. The distance between the hinge and C-terminal foot 

regions, taken to be an estimate of the bridge length, was measured to be 8.0, 6.9, 10.0 and 

8.2 nm for WT, E345A, E414A and E345A+E414A, respectively. 
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Figure 4.23. Solution structures of WT, E345A, E414A and E345A+E414A tropoelastin 

constructs obtained from SAXS. N: N-terminus; BR: bridge region; C: C-terminus. 

The rows indicate different views of the models as they are rotated clockwise around 

the vertical axis. 
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4.3 Discussion 

4.3.1 Negatively-charged residues in tropoelastin 

 Examination of nine mammalian tropoelastin sequences confirmed that residues with 

negatively-charged side chains at physiological pH appear infrequently, occurring on the 

average at three positions within each sequence. These residues did not seem to be randomly 

scattered throughout the sequence; instead, they were clustered either in domain 6 or in the 

segment spanning domains 19-25. This chapter focused on the negative residues within the 

central regions of tropoelastin, which in the human sequence corresponded to the E345 in 

domain 19 and the E414 in domain 21.  

 Both sites are located in hydrophilic domains, which typically display a higher extent 

of sequence conservation among different species compared to hydrophobic regions [27, 47]. 

This was supported by the conservation of residues flanking the E345 and E414 sites in the 

aligned mammalian tropoelastin sequences. However, the E345 and E414 residues 

themselves were not conserved among all mammalian sequences. These positions were 

occupied by an alanine residue in most sequences. The E345 appeared only in human and 

chimpanzee tropoelastin, while E414 was present only in human and baboon tropoelastin. 

This suggests a primate-specific divergence resulting from at least three mutation events in 

the evolutionary tree (Figure 4.24). In the absence of sequence data from other primates, the 

simplest scenario would involve either an A345E or an A414E mutation in the nearest 

common ancestor of humans, chimpanzees and baboons. In the first case, an A414E would 

then be hypothesised to occur independently in the human and baboon sequences. In the 

second case, an A345E mutation could then have arisen in the nearest common ancestor of 

humans and chimpanzees, followed by a loss of the A414 in the chimpanzee sequence. The 

lineage-specific evolutionary activity surrounding these sites may be suggestive of their 

significance in primate tropoelastin.   
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Figure 4.24. Phylogenetic tree of primates, adapted from Gilad et al. (2004) [287]. 

OWM: Old World Monkeys; NWM: New World Monkeys. 

 

 Interestingly, negatively-charged glutamate and aspartate residues were also found in 

other mammalian tropoelastin sequences in close proximity to the 345 and 414 positions. 

Such residues were located at different sites in the sequences of mammals belonging to 

distinct evolutionary clades [288], which suggests the convergent evolution of select 

negative moieties within the domain 19-25 cluster. Coupled with the association of this 

region to tropoelastin coacervation [44], cross-linking [105, 178], and structure [74], this 

posits a functional importance to the presence of negative residues in this region of 

tropoelastin. 
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4.3.2 Production of E345A, E414A, and E345A+E414A tropoelastin 

 To explore the role of the E345 and E414 residues in human tropoelastin, mutant 

constructs in which one or both sites were replaced with an alanine were recombinantly 

produced using an established small-scale bacterial expression system [153]. The purified 

constructs were shown by SDS-PAGE analysis to be predominantly full-length with an 

expected molecular weight of ~60 kDa. The presence of an E345A and/or E414A mutation 

in the constructs was verified by sequencing the tropoelastin insert within plasmid DNA 

extracted from transformed E. coli stocks. In the E345A, E414A and E345A+E414A clones, 

an alanine-coding GCA had replaced the wild-type glutamate-coding GAA at the codon 

positions corresponding to the residue 345, residue 414, and residues 345 and 414, 

respectively. 

 Comparative mass spectrometry of E345A, E414A and E345A+E414A against WT 

tropoelastin further confirmed the mutations at the protein level. Lys-C, which specifically 

cleaves at the carboxyl side of lysine residues, was used to digest the constructs as it would 

generate large peptides for analysis owing to a maximum of 35 cleavage sites in tropoelastin 

[143]. Within the examined mass window, only peaks assigned to peptide fragments 

containing the mutated residues displayed a mass shift between the WT and mutant species. 

Each shift corresponded to the mass difference between glutamate and alanine. The mass 

spectrometry profiles of the mutant constructs supported the presence of a glutamate-to-

alanine substitution at the 345, 414, or 345 and 414 positions.  
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4.3.3 Coacervation 

 The capacity of the tropoelastin constructs for coacervation was examined as this 

process represents the first crucial stage in elastogenesis and greatly impacts upon their 

assembly into elastic fibres [101]. Following previous studies [93, 153, 275], coacervation 

was modelled in vitro in salt and pH conditions approximating the extracellular environment. 

All tropoelastin species displayed a sharp transition from the monomer to coacervate stage 

over a narrow temperature range (within 10°C), which has consistently been observed in 

similar assays of various tropoelastin isoforms [70, 108, 275]. However the temperature at 

which this transition occurred varied among the tropoelastin constructs. WT achieved full 

coacervation at physiological temperatures, which was consistent with previous findings for 

recombinant human tropoelastin [93]. In contrast, E345A, E414A and E345A+E414A 

coacervated fully at a higher temperature of 40°C similar to R515A. 

 The coacervation temperature of tropoelastin corresponds to the endothermic energy 

required to disrupt the hydrogen bonds in the clathrate water shielding hydrophobic domains, 

which leads to the exposure and interaction of hydrophobic segments [62, 289]. The stability 

of the clathrate water has been proposed to be influenced by protein hydrophobicity. 

Accordingly, studies have shown a strong inverse correlation between coacervation 

temperature and the number of hydrophobic domains in tropoelastin [62, 97, 99, 186, 289]. 

However, this model does not explain the higher transition temperature of the tropoelastin 

mutants compared to WT, as all the constructs possess the same number of hydrophobic 

domains. Furthermore, the substitution of charged glutamate residues with neutral alanines 

in E345A/E414A/E345A+E414A would theoretically increase protein hydrophobicity and 

therefore decrease coacervation temperature. This is supported by studies describing the 

reduced hydrophilic surface area of a Glu-containing elastin-like peptide at low pH when the 

Glu residues have no net charge [112]. Conversely, at pH 7, the presence of charged 
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functional groups increased the transition temperature and disrupted the conformation of the 

coacervated peptides. The unexpected increase in the coacervation temperature of the 

E345A/E414A/E345A+E414A mutants conceptually reflects a higher energy requirement 

for the disruption of bound water, which indicates an increase in protein hydration [185, 

186]. As was the case for R515A, this may be due to structural differences between the WT 

and Glu-to-Ala constructs. The varying levels of coacervation by each mutant at 35°C 

further suggest a distinct conformation for each species. 

 Potential mechanistic differences in the coacervation of WT and mutant tropoelastin 

were explored by analysing solution particle sizes over a temperature range, as this would 

illustrate the presence of static species including stable intermediates. Below 35°C, all WT 

and mutant constructs were in a ~10 nm monomer form consistent with the lack of sample 

turbidity observed at these temperatures. At 35°C, all WT species shifted from the monomer 

to a ~400 nm aggregate state, while only one-third of the R515A and two-thirds of the 

E345A/E414A/E345A+E414A populations exhibited this phase transition. These results 

mirrored the full and partial coacervation observed respectively in WT and mutant 

tropoelastin solutions during light spectrophotometry assays at this temperature. At 40°C, all 

mutant species formed similar-sized particles as WT, reflecting their previously described 

maximum coacervation at this temperature. Apart from the disparity in the monomer-to-

polymer transition temperature of WT and E345A/E414A/E345A+E414A, a difference was 

also observed in the temperature at which end-sized ~2 m coacervates were formed. This 

occurred at 50°C for WT and at 55°C for R515A, E345A and E414A, but not within the 

tested temperature range for E345A+E414A. This is consistent with the impaired self-

association of the Glu-to-Ala constructs, and indicates a more severe phenotype of the 

double E345A+E414A mutant compared to the single E345A or E414A mutants.  
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 Despite these differences, common features were observed in the coacervation of 

WT and mutant tropoelastin constructs. First, the shift from monomer to polymer was rapid 

and corresponded to the sharp increase in sample turbidity seen in light spectrophotometric 

assays. This is reflective of the coacervation process being driven mainly by hydrophobic 

interactions [101]. Second, all constructs appeared to initially form ~500 nm intermediates 

prior to forming full-sized coacervates. Third, the coacervates of all constructs did not 

exceed ~2 m, indicating an upper size threshold similar to previously reported values [11]. 

These observations suggest that although the coacervation of the mutant species had a higher 

energy requirement, it proceeds in a similar manner to that of WT tropoelastin. 

 In addition to the thermodynamic differences, kinetic differences were also observed 

in the coacervation of WT and mutant constructs. In all constructs, the temporal requirement 

for coacervation was directly related to temperature, which was consistent with previous 

findings [275]. At physiological temperatures, mutant species coacervated more slowly than 

WT to varying degrees (WT>R515A>E345A>E414A>E345A+E414A). The rate of 

coacervation has likewise been linked to protein hydrophobicity, as greater cooperativity 

among a larger number of hydrophobic segments would hasten coacervation [70]. However, 

this model again does not account for the variable coacervation times of the WT and mutant 

tropoelastin constructs. This may suggest a possible structural change in the E345A, E414A 

and E345A+E414A tropoelastin that displaces hydrophobic domains and results in 

decreased cooperative interactions during coacervation. Because the differences in 

coacervation time were minimised once the transition temperature of the mutant constructs 

was reached, the initial delay in coacervation may also be due to the inadequate removal of 

bound water surrounding hydrophobic regions.  

 Based on the impaired coacervation properties of the E345A, E414A and 

E345A+E414A constructs, both the E345 and E414 residues appear to have significant roles 
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in tropoelastin function. It is unlikely that the residues play a direct role in coacervation, as 

the process is known to be driven by hydrophobic interactions. More probably, both residues, 

either independently or in tandem, may be involved in maintaining the local tropoelastin 

structure. Mutation of these sites may have resulted in conformational changes which can 

alter the nature of protein-bound water and displace hydrophobic domains, leading to the 

observed increase in coacervation temperature and time.   
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4.3.4 Cross-linking 

 The ability of tropoelastin to be cross-linked strongly reflects its propensity to be 

incorporated into stable elastic fibres. Cross-linking of the tropoelastin constructs was 

modelled in extracellular temperature, pH and salt conditions with BS3, a primary amine-

reactive homobifunctional chemical cross-linker targeted to lysine residues within a 

maximum distance of 11.4 Å [290]. This identifies regions aligned by coacervation [44] and 

approximates in vivo cross-linking by lysyl oxidase [143], as demonstrated by the 

similarities between BS3-cross-linked and native elastin [1]. Consistent with previous 

findings, a six-fold molar excess of BS3 [20] allowed the incorporation of all WT and 

mutant monomer constructs into the cross-linked hydrogel material.  

 The hydrogels displayed strikingly different morphological and functional properties. 

Micro-CT reconstruction of the WT material showed a fibrous and porous network similar 

to microscopic images of previously-characterised elastin hydrogels [20] and consistent with 

the filamentous nature of natural elastin [8, 13, 14]. This markedly contrasted with the 

compressed structures of the mutant hydrogels. The E345A, E414A and E345A+E414A 

hydrogels did not possess the bead-like granules evident on the R515A surface. Hydrogels 

produced from the three EA constructs also differed in appearance. Surprisingly, the 

double E345A+E414A mutant hydrogel resembled the WT material most closely, albeit 

with visibly smaller channels. The compositional heterogeneity between WT and mutant 

hydrogels, and among the mutant hydrogels, suggest differences in the cross-linking of each 

tropoelastin construct. 

 The compact nature of the mutant hydrogels was reflected in their decreased 

porosities compared to the WT material. The porosity of polymers such as hydrogels is 

thought to be determined by the separation kinetics of the homogeneous multi-component 

system into polymer-rich and polymer-lean phases [291]. This may be influenced by various 
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mechanical techniques during biomaterial construction [292]. Since the WT and mutant 

hydrogels were formed in the same manner, variations in their phase separation, and 

therefore in hydrogel porosity, are most likely due to differences in the polymerisation phase, 

which would have arisen from differences in the cross-linking process. 

 Cross-linking differences may also account for the differential swelling properties of 

WT and mutant hydrogels in water. Water absorption by WT hydrogels amounted to ~60 

times the protein mass, consistent with the established swelling ability of cross-linked elastin 

[293, 294] and elastin-mimetic peptides [295]. In contrast, the mutant hydrogels exhibited a 

comparable decrease in water intake, which reflects their reduced porosities compared to the 

WT construct. Hydrogel swelling is defined by interactions between the solvent and the 

polymer. The influx of solvent stretches the junctions of the hydrogel [188, 189] and 

decreases the mobility of the flexible hydrophobic segments within the rigid cross-linked 

domains [28]. This is balanced by the entropic increase associated with the mixing of 

solvent and bound water within the polymer [189]. The reduced water absorption of mutant 

hydrogels may therefore be due to changes in polymer-associated hydration brought about 

by a non-native conformation of the cross-linked assemblies. Hydrogel swelling is also 

conventionally thought to be inversely related to cross-link density [1, 188, 190, 191], which 

suggests probable differences in the abundance or nature of cross-links formed in the mutant 

hydrogels compared to WT.  

 The surfaces of the swollen hydrogels were analysed at a higher resolution with SEM. 

While the bottom surfaces were similar between constructs, the top surfaces showed distinct 

structural morphologies. The porous sheet-like structure of the WT surface was similar to 

that observed in the micro-CT studies and existing SEM images of synthetic elastin [20], 

indicating the structural consistency of the cross-linked WT material. In contrast, the upper 

surface of the R515A hydrogel consisted entirely of globular clusters similar to previous 
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findings [184]. The spheres have sizes consistent with those of partially cross-linked nascent 

elastin prior to their condensation into fibrous structures [11, 94]. Based on the assumption 

that the globules represent precursors of mature fibrous or sheet-like structures [296], cross-

linking of the E345A, E414A and E345A+E414A constructs appeared to have progressed 

further than R515A. While the top surfaces of these hydrogels retained the presence of the 

globules, they were linked by coalesced structures to form closed networks. This differs 

from the open-link clusters on the R515A surface. Among the Glu-to-Ala mutants, however, 

the elastin spheres were connected by morphologically distinct assemblies – fine fibrils in 

E345A, sheet-like fragments in E414A, and thick fibers which seemed intermediate between 

a fibrillar and a flat structure in E345A+E414A. These are indicative of differences in the 

extent and/or nature of cross-linking among the tropoelastin constructs. The presence of 

nascent elastin globules particularly suggests that E345A, E414A and E345A+E414A, like 

R515A, have a decreased ability to form mature cross-linked structures characteristic of 

normal elastin. 

 The aberrant or incomplete cross-linking of E345A, E414A and E345A+E414A is 

unlikely to be directly due to the elimination of negatively-charged residue/s, as cross-

linking involves specific lysine residues [143] that remain present in the mutant constructs. 

It is also unlikely to be caused by inadequate coacervation at the cross-linking temperature, 

since no monomer species were left in the aqueous phase after hydrogel formation. Possibly, 

some regions within the mutant coacervate are misaligned, which may displace contacting 

sites and detrimentally affect the formation of cross-links [44]. This would again be 

consistent with structural modifications in the mutant constructs that shift or block important 

cross-linking domains in the molecule.  
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4.3.5 Cell and antibody interactions 

 The tropoelastin constructs promoted the attachment of human dermal fibroblasts in 

a saturable manner similar to previous observations [45, 179]. Cell attachment to each 

construct plateaued at tropoelastin concentrations at or above 10 g/mL, which most likely 

represents full coverage of the cell culture wells by the protein molecules. At these 

concentrations, the majority of the seeded cells bound to WT tropoelastin, while 31%, 21%, 

24% and 34% fewer cells adhered to the R515A, E345A, E414A and E345A+E414A 

constructs, respectively.  

 Previous studies have demonstrated that fibroblasts bind via the αvβ3 adhesion 

receptor to the tropoelastin C-terminus [297], specifically the terminal GRKRK residues 

[179]. In all the tropoelastin mutants, the altered residues are located distally from the C-

terminus, indicating that the observed decrease in cell attachment is not due to the 

mutational disruption of cell binding sites. The decreased fibroblast attachment of E345A, 

E414A and E345A+E414A therefore suggests a limited accessibility of their C-termini to 

fibroblast adhesion receptors when the constructs are physisorbed on a surface. This 

hypothesis was confirmed via antibody detection of the C-terminal domain 36 on surface-

coated tropoelastin constructs. Antibody specificity was indicated by the low level of 

detection in M155n tropoelastin, which is truncated after domain 25 and therefore does not 

contain the C-terminus [153]. With each construct, the amount of detected C-termini 

increased directly with the coating concentration and corresponded to the extent of fibroblast 

attachment. At excess tropoelastin concentrations, 44%, 19%, 33% and 23% fewer C-

termini were observed in R515A, E345A, E414A and E345A+E414A, respectively. This 

decrease reflects a comparable magnitude of reduction in the cell attachment of the mutant 

species, suggesting that a less exposed C-terminus is the likely reason for their decreased 

fibroblast attachment.  
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 The decreased C-terminal availability of the mutant species was not due to the 

reduced adsorption of the constructs to the tissue culture wells, as evidenced by the 

comparable protein levels detected by the anti-elastin BA4 antibody. The BA4 antibody is 

known to predominantly target the hydrophobic VGVAPG pentapeptide in domain 24 [298], 

and to some extent, other similar sequences with a xGxxPG or xGxPGx motif [299]. These 

sequences were unmodified in the WT and mutant tropoelastin species, which allows the 

extent of BA4 antibody binding to be correlated to protein concentration. This confirms that 

the detection of fewer C-termini in the mutant constructs was due to reduced exposure rather 

than a decrease in the number of surface-bound tropoelastin molecules. This supports a non-

localised structural modification in the E345A, E414A and E345A+E414A tropoelastin 

species that involves a spatial displacement or partial obscuring of the C-terminal region. 

 The mechanisms by which other cell types bind to tropoelastin are not yet fully 

understood. While integrins are the major adhesion receptors for most extracellular matrix 

components, other cell-surface receptors including glycosaminoglycans such as heparin 

sulfate and chondroitin sulfate may also mediate attachment to tropoelastin [18]. These 

molecules are also thought to interact with tropoelastin at or near its C-terminus [45]. The 

importance of this region to cell interactions is consistent with its high sequence 

conservation among tropoelastin sequences of various species [21, 49]. The decreased 

accessibility of the E345A, E414A and E345A+E414A C-terminus therefore implies 

similarly reduced interactions with other cell types that utilise this region as a receptor 

ligand.  

 Interactions between cells and tropoelastin molecules are believed to be important in 

the assembly of elastic fibres. For instance, tropoelastin coacervation is thought to occur at 

specific cell-surface sites on which newly synthesised molecules are deposited [3, 45]. Weak 

cellular binding of mutant constructs may hence allow for the easy detachment of monomers 
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from the cell surface and preclude their incorporation into elastic fibres [18]. In support of 

this, a previously described tropoelastin mutant that supported minimal cell attachment also 

exhibited a profoundly reduced ability to assemble into elastic fibres [172]. In addition, 

tropoelastin-cell interactions may be involved in the anchorage of the elastic network [179], 

and the regulation of tissue-specific elastic fibre architecture by mechanical manipulation of 

cell-surface elastin [3, 6, 94]. Consequently, the decreased adhesion of fibroblasts to the 

mutant tropoelastin constructs may lead to reduced elastic fibre assembly, and/or the 

formation of fibres with non-native morphology.   
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4.3.6 Elastic fibre assembly 

 To determine the ability of the different tropoelastin species to form elastic fibres in 

a cellular environment, purified constructs were added to the culture medium of cells 

following previous approaches [184, 202, 203]. Consistent with findings reported in the 

previous chapter, WT tropoelastin added to cultured GM3348 fibroblasts assembled into a 

linear morphology after one day, while the R515A species remained dispersed in the 

extracellular space. The E345A, E414A and E345A+E414A constructs displayed a similar 

lack of linear organisation; however, the E414A and E345A+E414A spherules appeared to 

cluster in a globular arrangement in contrast to the more random placement of the E345A 

species. These differences in the early-stage assembly of WT and mutant tropoelastin, and 

those among the mutant constructs, again suggest a differential presentation of interacting 

domains most likely arising from inherent conformational changes within each molecule.  

 By four days after tropoelastin addition, the WT, R515A, E414A and E345A+E414A 

constructs had formed visible elastic fibres. The fibres shared a similar general branched 

structure consistent with the known architecture of the skin elastic network [3, 4], which 

supports the cell-specific shaping of elastic fibre morphology [6]. However, relative to the 

WT fibres, the E414A and E345A+E414A fibres, like R515A, exhibited significantly 

reduced immunofluorescence and abundance. The elastic fibres detected by immunostaining 

represent those formed solely from exogenous tropoelastin, as evidenced by the absence of 

visible fibres in control samples with no added constructs. The decreased staining of mutant 

elastic fibres by BA4 contrasts against the comparable antibody detection of all WT and 

mutant constructs previously observed in ELISA experiments. This strongly suggests that 

the BA4 epitopes, predominantly in domain 24, are equally accessible in the surface-bound 

monomers, but become differentially exposed in the assembled elastic fibres. This implies 

that the E414A and E345A+E414A constructs may be arranged in an atypical manner within 
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the elastic fibre. Abnormal association of the mutant species, which is supported by the non-

native morphology of their cross-linked hydrogels, may also hinder the expansion of the 

elastic fibre network and account for the markedly reduced number of mutant fibres 

compared to WT. It is also possible that the early-stage assembly of the mutant species is 

inefficient, as extrapolated from their longer coacervation time even at high monomer 

concentrations at physiological temperature. Compounded with their decreased binding to 

fibroblasts, these may contribute to the loss of mutant tropoelastin constructs during cell 

culture media changes prior to their incorporation into stable fibres, leading to the observed 

scarcity of E414A and E345A+E414A elastic fibres.          

 While most of the mutant tropoelastin constructs displayed only subtle differences in 

elastogenic ability, E345A did not form defined elastic fibres in GM3348 fibroblasts. This 

was unexpected in light of its comparable functionality with the other mutants in assays 

simulating the various stages of elastin assembly. The absence of E345A elastic fibres is 

unlikely to be caused by a lack of other elastogenic components in the cellular environment, 

as a similar number of cells passaged from the same stock were present in all samples. This 

then suggests impaired interactions of E345A with extracellular matrix components such as 

microfibrillar proteins and lysyl oxidase enzymes that are necessary for elastic fibre 

formation. Possibly, the E345A may also self-associate in a manner that is incompatible 

with the elastic fibre structure of dermal fibroblasts. The assembly of tropoelastin monomers 

into a fibrillar morphology is proposed to involve intra- and intermolecular contacts between 

specific domains in the N-terminal and C-terminal regions [72, 105]. Accordingly, structural 

changes in the E345A C-terminus as suggested by ELISA experiments may inhibit the 

specific head-to-tail assembly process crucial for fibre formation.  

 The inability of the Glu-to-Ala tropoelastin mutants to form wild-type elastic fibres 

strongly indicates the importance of the E345 and E414 residues in elastin assembly. 
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Counter-intuitively, the E345A+E414A construct did not possess the same or greater degree 

of elastogenic impairment as E345A. Furthermore, the double mutant formed significantly 

more fibres than E414A at the early stages of fibre assembly. This interestingly suggests that 

the abolishment of both E345 and E414 is more conducive to elastic fibre formation than the 

removal of either site alone. Structurally, this may be reflected by a closer resemblance of 

the E345A+E414A conformation to that of WT compared to either E345A or E414A. 
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4.3.7 Structural analysis 

 CD analysis of WT and mutant tropoelastin showed similar spectra consisting of a 

large negative peak at ~200 nm, which corresponds to disordered hydrophobic regions, and 

a negative shoulder at ~220 nm, which is assigned to the alpha-helical structure of cross-

linking domains [109, 110, 273]. The CD profiles of the tropoelastin constructs are 

consistent with those previously observed in bovine tropoelastin [300], α-elastin [273], -

elastin  [301]elastin polypeptides [302] and recombinant human tropoelastin [275], 

indicating the presence of the same types of secondary structure. 

 The secondary structure of the tropoelastin constructs was estimated from the CD 

spectra using established algorithms [173]. As expected, all WT and mutant species showed 

similar structural composition, consisting mainly of unordered regions and a small 

percentage of alpha-helices, beta-sheets, turns, and polyproline-2 helices. This trend was 

comparable to results obtained from nuclear magnetic resonance [53] and Raman 

spectroscopic data [303, 304]. The high amount of unordered regions and the contrasting 

low level of helical structures in the tropoelastin constructs were previously observed in 

hydrolysed elastin peptides [274], and consistent with a monomer form. After coacervation, 

the helical content of tropoelastin can increase to 50% following the increased ordering of 

monomer species [110]. On the other hand, the presence of β-turns is thought to occur in 

hydrophobic domains and is proposed to be responsible for the elasticity of the elastin 

polymer in a hydrated environment [305]. 

 The CD results suggest that conformational modifications in the E345A, E414A and 

E345A+E414A constructs are unlikely to be due to changes in their secondary structures. 

For instance, the tropoelastin domain 19 which contains E345 has been shown to have the 

greatest propensity for helix formation in an aqueous solution than any other cross-linking 

domain [69, 75]. Since charged residues are known to stabilise helical structures [284], the 
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substitution of E345 with a neutral alanine can potentially disrupt helix formation and affect 

the molecular structure. There was, however, no evidence of significant changes in the 

secondary structure composition of all mutant constructs.   

 In light of this, the solution structures of the WT and mutant tropoelastin species 

were determined by SAXS analyses. The constructs showed structural features similar to 

those previously described in recombinant wild-type human tropoelastin, including an 

elastic coil region thought to span the N-terminus to around domain 18, a turn/hinge region 

containing domains 21/23, a bridge region from domains 25-26, and a cell-interactive C-

terminal foot region [72].  

 Comparison of the WT and E345A structures demonstrated a slight elongation of the 

hinge region accompanied by a significant shortening of the bridge region and a contraction 

of the C-terminus towards the central mass of the molecule. Due to a proposed turn formed 

by the adjoining hydrophilic domains 21 and 23 [74], a conformational symmetry occurs 

around this region that positions domain 19 in close proximity with domain 25 (Figure 4.25). 

This supports the formation of a well-characterised intra-molecular cross-link between the 

two domains [105]. This conformation also potentially allows the E345 residue to contact 

one of several positively-charged residues in domains 25 and 26, such as K507, K511 or 

R515. (The charged group in K507, however, may be modified by its participation in cross-

linking [143]; hence, contact with E345 is unlikely if interactions should persist in cross-

linked elastin.) Removal of the E345 site in the E345A mutant may therefore enable the free 

lysine or arginine to bind to an alternative site, possibly the E414 residue. This would result 

in an apparent lengthening of the hinge region and a dramatic contraction of the bridge 

region similar to the observed structure of E345A tropoelastin. Apart from the obvious 

repositioning of the C-terminus, such a conformational change may also displace or obscure 

the large hydrophobic domains within the region, such as domains 20, 24 and 26, as well as 
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the essential cross-linking domains 19 and 25. This would lead to the observed impairment 

of E345A coacervation and cross-linking. Furthermore, the shortening of the bridge region 

may sterically prevent the head-to-tail assembly of E345A monomers, which may account 

for the described lack of elastic fibre formation in fibroblast cultures.  

 In marked contrast to E345A, the nanostructure of the E414A construct displayed an 

enlarged hinge and an extended bridge region. The tropoelastin hinge, formed by the 

adjacent domains 21 and 23, is proposed to undergo a number of fluctuations between open 

and closed states prior to converging into a hairpin structure [73]. This structure is predicted 

to be stabilised by a salt bridge between the E414 residue within domain 21 and the K441 

residue within domain 23 (Figure 4.25). Abolishment of the E414 site may therefore disrupt 

the stability of the hinge and contribute to a structural change in this region as observed in 

the E414A construct. This is supported by the altered hairpin shape of a mutant sequence in 

which both E414 and K441 were mutated to a glutamine and a leucine, respectively [73]. In 

addition, the positively-charged residue normally bound to E414 may then interact with an 

upstream negative site such as E345, which is consistent with the high flexibility of this 

region [44, 54]. This would result in the elongation of the bridge region as seen in the 

E414A SAXS structure. Such a conformational shift may likewise mask or alter the native 

positions of the proximal hydrophobic and hydrophilic domains, as well as that of the C-

terminal foot, resulting in the decreased assembly and cell binding of E414A.  
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Figure 4.25. Schematic representation of tropoelastin domains 18-26, adapted from 

Baldock et al. (2011) [72]. A hinge region is formed by domains 21/23. A proposed 

tetra-functional cross-link occurring between domains 19 and 25 [105] is represented 

by red dotted lines. Potential contacts formed by the E345 and E414 residues are 

indicated by green dashed lines. 

 

Interestingly, the structure of the E345A+E414A construct also exhibited a bulkier 

hinge region but showed no significant changes in the length of the bridge region and the 

distance of the C-terminus from the vertical axis. In the absence of both the E345 and E414 

residues, the available positively-charged sites can remain unbound without forming 

aberrant local structures that contract or extend the bridge region. However, the elimination 

of stabilising interactions within the tropoelastin hinge may increase the torsional flexibility 

of this region and/or modify its equilibrated conformation [73], resulting in the enlarged 

hinge structure observed in the E345A+E414A shape. This may similarly contribute to the 

spatial dislocation of coacervation and cross-linking regions within domains 18-26, as well 

as steric hindrances during monomer self-association and fibre assembly. Specific cell 

receptor binding sites in the C-terminal foot may also be oriented differently to those in WT 

tropoelastin, resulting in reduced cell and antibody binding properties. 
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These findings support a model wherein the central tropoelastin domains 19-25 are 

positioned symmetrically from the hinge region formed by domains 21/23. This large loop 

area may be stabilised by charge interactions involving the E345 and E414 residues and 

proximal lysines or arginines. E345 appears closely positioned to K507 and K511 in domain 

25, and to R515 in domain 26. However, the participation of K507 in cross-linking, and the 

observed differences between the functional and structural properties of the E345A and 

R515A species suggest that binding of E345 to either K507 or R515 is less probable. On the 

other hand, E414 most likely contacts the K441 in domain 23. Removal of a glutamate 

residue at either the 345 or 414 positions may enable non-native interactions to occur 

between the free positively-charged side chain and the remaining negatively-charged site. 

This may alter the length of the adjoining bridge which consequently affects the position of 

the C-terminal region. The abolishment of both E345 and E414 may preclude the formation 

of abnormal charge interactions and preserve the bridge length. Similarly, the charge 

abolishment of one or both pairs of potentially interacting residues (E345/K511 or 

E414/K441) would prevent uncompensated charges and theoretically maintain the bridge 

distance. However, any resulting destabilisation of the loop region can result in 

conformational changes to the tropoelastin hinge and bridge regions. This model strongly 

suggests the importance of both E345 and E414 residues in maintaining the structure of the 

central tropoelastin region, which in turn is essential for functional tropoelastin assembly. 
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5. Characterisation of tropoelastin with domain 22 

5.1 Introduction 

5.1.1 Sequence diversity of the tropoelastin gene 

 The human ELN gene that codes for tropoelastin [21] represents a dynamically 

evolving genomic region [183]. It is susceptible to mutation events, as evidenced by a 

number of polymorphisms associated with the tropoelastin sequence [306-308]. These 

polymorphisms may occur at a single nucleotide position, or may involve the deletion or 

insertion of longer gene segments. The altered coding sequences can translate to amino acid 

substitutions [172], truncations [155, 158], or frame shift mutations [121, 168, 170] in the 

expressed protein. While the majority of changes to the tropoelastin sequence pose no 

phenotypic consequences, several are associated with clinical diseases such as supravalvular 

aortic stenosis [309, 310], Williams-Beuren syndrome [311] and cutis laxa [33, 162].  

 Other tropoelastin gene mutations may occur at a species or lineage level, such as the 

loss of exons 34 and 35 at the 3′ end of the human ELN gene [312]. This was thought to be 

facilitated by downstream Alu-repeat mediated recombination events [21, 24, 312], due to 

selective advantages conferred by functional changes in the arterial wall [312] during the 

evolutionary divergence of primates in the last 70 million years [313]. Since then, the human 

ELN has undergone further sequence modifications [32, 33]. Alignment of the human 

tropoelastin gene with orthologous sequences has revealed numerous exonic insertions and 

deletions, which provide species-specific characteristics while preserving the overall 

properties of the protein [183].  
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5.1.2 Alternative splicing of tropoelastin 

 Apart from genetic mutations, another main contributor to the diversity of the 

tropoelastin protein sequences is the extensive but tightly-regulated alternative splicing of 

tropoelastin transcripts at well-conserved and functionally-equivalent splice junctions [21, 

24, 29, 31, 38, 104, 270, 314]. The exon:intron ratio of tropoelastin at  approximately 1:19 

[270] is unusually low for a GC-rich sequence [315]. Out of 34 exons in the human 

tropoelastin transcript, six exons including exons 22, 23, 24, 26A, 32 and 33 have been 

reported to be spliced with varying frequencies [24, 31, 314, 316]. Exon 26A, for instance, is 

constitutively spliced out [29] except in aged [4] or diseased [37] states. Conceptually, the 

alternate usage of exons enables the production of functionally diverse tropoelastin isoforms 

from a single gene sequence, which is supported by the tight regulation of the splicing 

process [38]. The tropoelastin splice variants may be secreted in specific cellular 

environments to accommodate the different functional and structural requirements of the 

elastic fibre network in various tissues [55]. 

Interestingly, exon 22 appears to be always spliced out in human tropoelastin 

transcripts [31-35]. It is absent in all 13 human tropoelastin isoforms currently recorded in 

the UniProt database. The retention of exon 22 in the human ELN gene [183] is unexpected 

considering its disuse in the mature transcript. The constitutive post-transcriptional splicing 

of exon 22 may have evolved relatively recently in the mammalian lineage, since exon 22 

remains expressed in bovine [317], mouse [33] and rat [318, 319] tropoelastin mRNA 

obtained from various tissues.  
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5.1.3 Effects of domain 22 splicing 

5.1.3.1  The tropoelastin hinge region 

 Exon 22 codes for a short hydrophobic sequence, 

GAAGAGVLGGLVPGAPGAVPG VPGTGGVP, in the central region of tropoelastin [44]. 

Exclusion of domain 22 interrupts the highly-conserved structure of alternating hydrophobic 

and hydrophilic domains in tropoelastin [4]. The resultant adjoining hydrophilic domains 21 

and 23 contain a central GVGTP peptide, which was computationally predicted to form a 

flexible turn or hinge region [74]. The presence of a tropoelastin hinge was subsequently 

empirically confirmed by SAXS [320] and nuclear magnetic resonance analyses [75].  

 The hinge sequence is unstructured with neither alpha-helical or beta-sheet content 

[74, 75, 321], and is hence postulated to contribute substantially to the structural flexibility 

of the tropoelastin molecule [178]. In support of this, molecular dynamic studies have 

demonstrated that the hinge region can adopt a closed conformation in which the flanking 

helical segments are in an anti-parallel arrangement, or an open structure where the 

neighbouring regions are parallel and extended [73]. The hinge region is proposed to 

oscillate between these models before converging into a closed hairpin structure (Figure 5.1). 

This conformational equilibration is consistent with the broad spatial distribution accessed 

by elastin peptides [322] and the significant motions exhibited by hydrated elastin [323, 

324]. Accordingly, an elastin-like peptide corresponding to domains 21/23 has been reported 

to display a more rigid structure and less mobility upon alanine substitution of the central 

turn sequence [325]. These findings support the involvement of the hinge region in 

tropoelastin elasticity. 
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Figure 5.1. Ribbon structures showing the converging trajectories of the domain 21/23 

hinge region with an initial open or closed conformation. This figure is obtained from 

Djajamuliadi et al. (2009) [73]. 

 

 The conformational flexibility of the hinge region appears to be intricately linked 

with tropoelastin function during elastic fibre assembly. The hinge structure may contribute 

to the position and dynamics of hydrophobic regions involved in coacervation [325]. The 

hinge also lies within a stretch of domains enriched in cross-linking sites [143, 282]. The 

geometry adopted by this region is proposed to enable inter- and intra-molecular contacts 

between lysine residues, allowing spontaneous condensation into cross-links upon 

modification by lysyl oxidase [178].  

 

5.1.3.2   Human-specific elastic fibre properties 

 The specific exclusion of domain 22 in human tropoelastin, which is particularly 

well-documented in samples obtained from dermal fibroblasts [31], suggests unique 

properties of human skin elastic fibres distinct from those in other species that may express 

domain 22. Skin biopsies from 13 different animals showed that human skin contains the 
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highest percentage of desmosine, approximately 2- to 106-fold higher than any other animal 

skin [326]. For example, humans have 2-, 3- and 32-fold more desmosine per area of skin 

compared to the pig, cow and mouse, respectively, which express exon 22 in their 

tropoelastin. As desmosines are direct products of cross-linking, this suggests a higher 

elastin content in human skin compared to skin from other species [327]. This is supported 

by the uniform distribution of elastic fibres across the entire dermis in human skin [326]. In 

contrast, elastic fibres in most animals were consistently confined to the upper dermis near 

the follicle area and pili muscle attachment. It has been proposed that while elastic fibres in 

human skin originate from dermal fibroblasts [328], those in most mammalian skin are 

solely derived from epithelial-like cells lining the hair follicles [329]. Significantly, the 

elastic fibre architecture in human skin differs markedly from that in other animals [326]. 

Human dermal elastic fibres are predominantly long, straight and aligned in organised sheets. 

In avian skin, elastic fibres are heavier and highly-branched. In sheep, rabbit and other 

mammalian skin, elastic fibres associated with the follicle area are long and thick with very 

fine radiating fibrils. The unique properties of human skin elastic fibres are not common to 

other primates, as non-human primate skin samples retained the features observed in other 

animals.  

 Differences in the skin elastic fibres of various species conceivably reflect 

differences in their functional requirements [326]. In birds, elastic fibres anchor feather 

follicles to smooth muscle bundles and transmit signals for movement. In most animals, the 

organisation of skin elastic fibres are likely modified to meet the reduced obligation for 

mechanical performance. Nevertheless, the elastic fibres similarly attach hair follicles to pili 

muscles for movement and hair placement. In humans, however, skin elastic fibres are not 

limited to areas of hair follicles and muscle tissue, but are located throughout the dermis, 

suggesting a primary role in the maintenance of skin integrity rather than movement. This 
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change in the functional requirement of elastic fibres in human skin may be associated with 

the unique loss of domain 22 in human tropoelastin.  

 

5.1.4 Aims 

 This chapter explores the functional significance of exon 22 splicing in human 

tropoelastin. This study describes the properties of an EX22 tropoelastin variant in which 

domain 22 is inserted between domains 21 and 23 (Figure 5.2). The elastogenic potential 

and nanostructure of the EX22 construct will be compared against WT tropoelastin, 

allowing the development of a model for the selective advantage of domain 22 exclusion in 

human tropoelastin.  

 

 

Figure 5.2. Domain structure of WT and EX22 tropoelastin. The placement of domain 

22 is indicated. Hydrophobic and cross-linking domains are indicated by grey and 

white boxes, respectively.  
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5.2 Results 

5.2.1 Analysis of splicing sequences for exons 21-23 

 Analysis of the genomic sequence encompassing exons 21 to 23 of human 

tropoelastin indicated the potential splice signals utilised during mRNA processing to 

determine the expression of exonic segments (  
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Table 5.1). The algorithm used by the Human Splicing Finder tool evaluated the similarity 

of the splice signals, including donor and acceptor splice sites and the branch point, to the 

consensus sequences. In human transcription/translation systems, the donor and acceptor 

sties typically follow the [C/A]AGGTRAGT [330] and YYTTYYYYYYNCAGG motifs 

[331], respectively; while the branch point sequence consists of YNYCRAY [332], where Y 

is a pyrimidine (T/C), R is a purine (A/G) and N is any nucleotide. 

 The acceptor splice site and branch point sequences that determine the inclusion of 

exons 21 and 23 in the mature transcript have high similarity to the consensus sites 

(consensus values >80), and are therefore predicted to be highly expressed in human 

tropoelastin. However, the acceptor splice site and branch point sequences of exon 22 have 

lower consensus values than those of the neighbouring exons 21 and 23. Accordingly, exon 

22 is predicted to have decreased recognition by the splicing machinery, which may be a 

contributing factor in its exclusion from the mature human tropoelastin transcript.  

 Furthermore, in the human ELN, the distance of the branch point from the 3′ splice 

site is greater in exon 22 (62 bases) than for either of its neighbors exon 21 (28 bases) and 

exon 23 (24 bases). Branch points are optimally located 16-25 bases and typically within 40 

bases from the acceptor splice site, with those situated further upstream often associated 

with skipped exons [333, 334]. 
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Table 5.1. Splice site and branch point sequences of human tropoelastin exons 21-23 

predicted by the Human Splicing Finder tool [330]. Their position within the human 

tropoelastin gene (NCBI reference: NG_009261.1) and similarity to the consensus 

sequence (consensus values 0-100) are indicated. 

Exon Splice signal Position Sequence Consensus 

21 

Donor splice site 33337-33345 CCCGTGAGC 80.9 

Branch point 33541-33547 TTCTGAG 87.4 

Acceptor splice site 33564-33577 GTTTCCTTGTAGCC 82.9 

22 

Donor splice site 33615-33623 ACGGTAAGT  94.3 

Branch point 34231-34237 CACCCAC 84.1 

Acceptor splice site 34274-34287 CCACTCCCCGAGGT 80.7 

23 

Donor splice site 34370-34378 CAGGTGAGC  96.7 

Branch point 34516-34522 CTCTCAC 96.6 

Acceptor splice site 34532-34545 TCACACCTCCAGGA 90.4 
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5.2.2 Production and validation of EX22 tropoelastin 

5.2.2.1 Exon 22 sequence design 

 The exon 22 sequence was derived from the reverse translation of the human domain 

22 sequence GAAGAGVLGGLVPGAPGAVPGVPGTGGVP and optimised for E. coli 

codon usage. The majority of the utilised codons represented that with the highest usage 

frequency for each amino acid. To improve translational efficiency, a percentage of such 

codons for glycine and alanine, which account for 55% of the exon 22 sequence, were 

substituted with synonymous codons with the second highest usage frequency.  

 The exon 22 sequence designed for optimal E. coli expression was as follows: 

5′- GGT GCG GCG GGT GCG GGT GTT CTG GGT GGC CTG GTT CCG GGT GCG 

CCG GGC GCG GTT CCG GGT GTG CCG GGT ACC GGC GGT GTT CCG -3′ 

 The exon 22 sequence was inserted between exons 21 and 23 of the wild-type 

tropoelastin gene via site-directed mutagenesis (GenScript, USA) to create the EX22 

tropoelastin DNA construct.  

 

5.2.2.2 Plasmid sequencing 

 E. coli was successfully transformed with the pET-3d plasmid containing the EX22 

tropoelastin gene. Plasmid DNA extracted from the transformed bacterial colonies was 

sequenced, which confirmed the insertion of exon 22 between exons 21 and 23 of the 

tropoelastin sequence (Appendix 8.6).  
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5.2.2.3 Mass spectrometry 

 The EX22 tropoelastin construct was produced via a small-scale E. coli expression 

system following the same methods previously described for other tropoelastin mutants. 

Comparative mass spectrometry of Lys-C-digested WT and EX22 indicated similar peak 

profiles, except for a shift from the 1077 m/z peak in the WT spectrum, labeled A, to a 3367 

m/z peak in the EX22 spectrum, labeled D (Figure 5.3). Both peaks were assigned to a 

peptide fragment containing the junction of exons 21 and 23. The mass increase of the peak 

in the EX22 spectrum corresponded to the cumulative mass of the 25 residues comprising 

domain 22 (  
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Table 5.2) and confirmed the presence of the domain 22 insert between domains 21 and 23 

in the mutant construct. 

 Within the 3134-3500 m/z window, two additional peaks assigned to peptide regions 

common to WT and EX22 tropoelastin (labeled B and C) were detected in both spectra. Salt 

adducts of peptides were also visible as secondary peaks with a increased m/z of 23 relative 

to the main peaks.   
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A  

B  

Figure 5.3. Comparative mass spectrometry of WT (green) and EX22 (blue) 

tropoelastin showing overlaid profiles. (A) The 1077 m/z peak in the WT spectrum, 

labeled A, is absent in the EX22 spectrum. (B) The 3367 m/z peak, labeled D, only 

present in the EX22 spectrum. Other peaks are seen in both spectra. Salt adducts are 

indicated by a prime symbol after the label. 

 

  

A 

A′ 

B 

B′ 
C 

D 

D′ 



__________________________________________________________________Chapter 5 

225 

 

Table 5.2. Assignment of peaks in the mass spectra of WT and EX22 tropoelastin. The 

domain 22 sequence is underlined. 

Peak Mass Residues Sequence 

A 1076.6 426-437 YGVGTPAAAAAK 

B 3154.8 610-647 AAQFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPA

AAAK 

C 3294.9 115-150 VPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGA

GVK 

D 3366.8 426-466 YGAAGAGVLGGLVPGAPGAVPGVPGTGGVPGVG

TPAAAAAK 
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5.2.2.4 SDS-PAGE analysis 

 SDS-PAGE analysis of purified WT and EX22 tropoelastin showed bands consistent 

with the expected size of WT (60 kDa) and EX22 (62 kDa) (Figure 5.4). The constructs 

appeared to be fully intact. There was no evidence of degradation or contamination with 

bacterial proteins.  

 

 

Figure 5.4. SDS-PAGE of purified WT and EX22. The bands correspond to the 

expected size of the full-length constructs (WT: 60 kDa, EX22: 62kDa). Sizes of the 

protein standards are indicated in kDa.  
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5.2.3 Coacervation  

5.2.3.1 Light spectrophotometry 

 WT and EX22 tropoelastin exhibited similar temperature-dependent coacervation 

profiles (Figure 5.5A). WT and EX22 solutions remained clear under UV light 

spectrophotometry below 30°C, but both underwent a rapid increase and subsequent plateau 

in turbidity at and above 35°C. The critical temperature at which WT and EX22 tropoelastin 

displayed maximum coacervation was identified at 35°C and was identical for both 

constructs.    

 WT and EX22 differed slightly in the time required to achieve full coacervation at 

each temperature (Figure 5.5B). Between 35 to 45°C, EX22 coacervated almost twice as 

rapidly compared to WT. However, the differences in coacervation time decreased with 

increasing temperature and converged above 45°C.  

 

5.2.3.2 Particle size analysis 

 Analysis of the particle sizes within WT and EX22 tropoelastin solutions at various 

temperatures revealed an identical process of self-association (Figure 5.6). At 30°C and 

below, WT and EX22 molecules were predominantly in a ~10 nm monomer form. At 35°C, 

both WT and EX22 had rapidly aggregated into 600-700 nm assemblies. Similarly-sized 

coacervates were also observed at higher temperatures, with no evidence of further 

association into larger coacervates. 
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A  

B  

Figure 5.5. Coacervation properties of WT and EX22 tropoelastin. (A) The extent of 

tropoelastin coacervation at each temperature. (B) The time taken by each construct to 

reach maximum coacervation at each temperature. 
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A B  

C D  

E F  

G H  

Figure 5.6. Analysis of particle sizes in WT and EX22 tropoelastin solutions at (A) 20, 

(B) 25, (C) 30, (D) 35, (E) 40, (F) 45, (G) 50 and (H) 55°C.  
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5.2.4 Cross-linking 

5.2.4.1  Hydrogel construction 

 WT and EX22 tropoelastin formed elastin hydrogels after incubation with an amine-

reactive bi-functional BS3 cross-linker at physiological temperature, salt and pH conditions 

(Figure 5.7). The EX22 hydrogels showed decreased thickness but possessed a similarly 

pliable texture compared to WT hydrogels. 

 Cross-linking of the WT and EX22 constructs with BS3 proceeded to completion. 

SDS-PAGE analysis of the aqueous solution left after WT and EX22 hydrogel formation 

showed the absence of monomer species, indicating complete incorporation into the cross-

linked material (Figure 5.8). 
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Figure 5.7. Hydrogels constructed from WT and EX22 tropoelastin cross-linked with 

10 mM BS3. Scale bar: 0.5 cm.  

 

 

Figure 5.8. SDS-PAGE analysis of the extent of WT and EX22 cross-linking. Lanes: M 

– Mark12 protein standards (kDa); 1 – WT; 2 – WT + 10 mM BS3; 3 – EX22; 4 – 

EX22 + 10 mM BS3.  
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5.2.4.2 Micro-CT of hydrogels 

 Micro-CT imaging of WT and EX22 hydrogels enabled a 3-D reconstruction of the 

cross-linked products (Figure 5.9). The WT hydrogel had a fibrous and extensively porous 

composition that was maintained across the entire thickness of the material. In contrast, the 

EX22 hydrogel appeared to be highly compact, with a thickness 2.5-5.5 times less than that 

of the WT hydrogel of a similar mass. Consistent with the dense structure was the absence 

of fibrous structures or discernible channels on or within the EX22 hydrogel.  

 

Figure 5.9. Micro-CT reconstruction of (A) WT and (B) EX22 hydrogels. Each panel 

shows the top (left) and cross-section (right) views of the hydrogel. Scale bar: 0.5 mm. 
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 Automated analyses of each slice of the hydrogel reconstructions allowed calculation 

of the overall porosity of the materials (Figure 5.10). The EX22 hydrogel was estimated to 

be 23% less porous than the WT, which represented a significant decrease in open channel 

formation in the mutant construct during cross-linking. 

 

 

Figure 5.10. Porosity of WT and EX22 hydrogels calculated by automated analyses of 

micro-CT cross-sectional images.   
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5.2.4.3 Hydrogel swelling 

 Both WT and EX22 hydrogels displayed remarkable expansion when submerged in 

water, although the extent of swelling was significantly different between the wild-type and 

mutant constructs (Figure 5.11). WT hydrogels underwent a 17- to 24-fold increase in 

volume, while EX22 hydrogels showed a narrower 6- to 7-fold increase compared to pre-

swelling volumes.  

 Differences between the post-swelling volumes of WT and EX22 hydrogels could be 

accounted for by differences in fluid influx into the cross-linked materials (Figure 5.12). At 

4, 25 and 37°C, water intake by EX22 hydrogels was consistently less than WT hydrogels. 

While WT hydrogels absorbed 73-110 g of water per gram of protein, EX22 hydrogels 

absorbed only 24-26 g of water per gram of protein. This represented a 67-76% decrease in 

water intake by the EX22 mutant hydrogels compared to the wild-type. 
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Figure 5.11. WT and EX22 hydrogels swollen in water for 24 hrs at 37°C. Triplicate 

samples are shown. Scale bar: 0.5 cm. 

 

 

Figure 5.12. Swelling of WT and EX22 hydrogels in water at 4, 25 and 37 °C. 
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5.2.4.4 SEM of hydrogels 

 Scanning electron microscopy of WT and EX22 hydrogels demonstrated distinct 

differences in their surface morphology (Figure 5.13). The top surface of the WT hydrogel 

was characterised by a highly porous network with open channels ranging from ~80-120 m 

in diameter. In contrast, the EX22 hydrogel top surface was composed of a dense, solid sheet 

to which fragments of shard-like or fibrous structures are attached. Pores on this surface 

were also markedly smaller, with an average diameter of ~10 m.  

 The bottom surfaces of WT and EX22 hydrogels were comparatively devoid of 

features. Both consisted of a smooth and flat layer in which majority of pores had coalesced 

together.  

 The edges of the hydrogels clearly highlighted prominent differences in the cross-

linked structures of the WT and EX22 constructs. The WT hydrogel appeared inflated, with 

open channels traversing across the thickness of the material. In contrast, the EX22 hydrogel 

was likely formed from closely-stacked layers of sheet-like structures, which gave rise to a 

highly compact polymer. 
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Figure 5.13. Scanning electron microscope images of WT and EX22 hydrogels. The (A) 

top, (B) bottom and (C) edge of each hydrogel are shown at low (left) and high (right) 

magnifications. 
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5.2.5 Cell attachment 

 WT and EX22 tropoelastin coated on tissue culture wells supported the attachment of 

GM3348 human dermal fibroblasts in a concentration-dependent manner (Figure 5.14). 

Increasing amounts of surface-bound tropoelastin allowed adhesion of a greater percentage 

of seeded cells, until saturation at 5 g/mL tropoelastin. At tropoelastin concentrations 

enabling maximum cell attachment, up to 80% of seeded cells adhered to both the WT and 

EX22 constructs. There was no perceived difference in the ability of either species to 

interact with dermal fibroblast cells. 

 

 

Figure 5.14. Attachment of GM3348 human dermal fibroblasts to tissue culture wells 

coated with increasing concentrations of WT and EX22 tropoelastin.  
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5.2.6 Antibody detection 

 Antibodies targeted against epitopes situated across the tropoelastin molecule were 

used to compare the exposure of specific regions in the WT and EX22 constructs (Figure 

5.15). The antibody against domain 6 detected equivalent levels of the epitope on both WT 

and EX22, indicating similar exposure of the N-terminal segment of both constructs. 

However, the BA4 antibody, which primarily recognizes a sequence in domain 24, bound 

~15% less to EX22 than to WT. This suggested a slightly reduced exposure of the central 

region of EX22. Additionally, the antibody against domain 36 also detected ~30% fewer 

epitopes in EX22 compared to WT, indicating decreased accessibility of the C-terminus in 

EX22 tropoelastin. 
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A  

B  

C  

Figure 5.15. Enzyme-linked immunosorbent assay of WT and EX22 tropoelastin. The 

primary antibody used was targeted against (A) domain 6, (B) domain 24, or (C) 

domain 36. 
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5.2.7 Elastic fibre assembly 

5.2.7.1 By GM3348 dermal fibroblasts 

 The elastogenic ability of WT and EX22 tropoelastin with GM3348 human dermal 

fibroblasts was determined by the addition of purified constructs to the culture media of cells. 

At a lower concentration of exogenous tropoelastin (20 g/mL), WT monomers had begun 

to assemble linearly after one day, and progressively formed long branched fibres within 4-

10 days (Figure 5.16). These WT elastic fibres displayed characteristic autofluorescence 

which intensified over time. In stark contrast, EX22 tropoelastin did not assemble into 

elastic fibres. The mutant species remained as dispersed spherules in the extracellular space 

even after 10 days.  

 At a higher concentration of added tropoelastin (200 g/mL), WT species followed 

the same elastogenic process, but formed a more extensive elastic fibre network (Figure 

5.17). Interestingly, EX22 tropoelastin was also able to form elastic fibres, which, however, 

appeared as close clusters of punctate species rather than as continuous structures. This was 

most prominent until 7 days after tropoelastin addition. The EX22 fibres were also less 

abundant and stained significantly less than the WT fibres, although the autofluorescence of 

both types of fibres were comparable (Figure 5.18). Differences in the properties of WT and 

EX22 elastic fibres were not due to differences in cell numbers. 
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Figure 5.16. Confocal microscope images of WT and EX22 elastic fibres formed from 

20 g/mL tropoelastin by GM3348 human dermal fibroblasts. Samples were fixed and 

stained with a mouse anti-elastin antibody and a FITC-conjugated anti-mouse 

antibody at 1, 4, 7 and 10 days after tropoelastin addition. Elastin-specific 
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immunofluorescence (green) and autofluorescence (red) of the elastic fibres are shown. 

Controls include a no tropoelastin sample, and samples with added WT but with no 

antibody, with the secondary antibody only, or with a non-specific mouse antibody and 

the secondary antibody. Controls show merged fluorescence images with DAPI-stained 

cell nuclei.  
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Figure 5.17. Confocal microscope images of WT and EX22 elastic fibres formed from 

200 g/mL tropoelastin by GM3348 human dermal fibroblasts. Samples were fixed and 

stained with a mouse anti-elastin antibody and a FITC-conjugated anti-mouse 

antibody at 1, 4, 7 and 10 days after tropoelastin addition. Elastin-specific 
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immunofluorescence (green) and autofluorescence (red) of the elastic fibres are shown. 

Controls include a no tropoelastin sample, and samples with added WT but with no 

antibody, with the secondary antibody only, or with a non-specific mouse antibody and 

the secondary antibody. Controls show merged fluorescence images with DAPI-stained 

cell nuclei. 

 

A  B  

C D  

Figure 5.18. Comparative (A) immunofluorescence, (B) autofluorescence and (C) 

abundance of WT and EX22 elastic fibres produced from 200 g/mL exogenous 

tropoelastin in GM3348 cells. (D) Cell numbers as indicated by the area occupied by 

cell nuclei per field of view. 
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5.2.7.2 By ARPE-19 cells 

 The ability of WT and EX22 to form elastic fibres with human retinal pigmented 

cells was also determined by the addition of exogenous tropoelastin to the cellular 

environment. At low concentrations of added tropoelastin (20 g/mL), elastic fibres were 

successfully established from both WT and EX22, although the elastogenic time course and 

elastic fibre characteristics differed between both constructs (Figure 5.19). One day after 

tropoelastin addition, WT spherules had organised linearly while EX22 species remained 

randomly distributed across the extracellular environment. By 4 days, a well-defined 

network of WT elastic fibres had developed, which stably persisted throughout the 

experimental period. While EX22 also formed visible fibres within this time frame, they 

were significantly fewer in number and exhibited markedly reduced immunofluorescence 

and autofluorescence (Figure 5.20). Moreover, the EX22 fibres appeared as dispersed rather 

than defined structures, which was represented by an increased average fibre width relative 

to the WT (Figure 5.21). 
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Figure 5.19. Confocal microscope images of WT and EX22 elastic fibres formed from 

20 g/mL tropoelastin by ARPE-19 cells. Samples were fixed and stained with a mouse 

anti-elastin antibody and a FITC-conjugated anti-mouse antibody at 1, 4, 7 and 10 

days after tropoelastin addition. Elastin-specific immunofluorescence (green) and 
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autofluorescence (red) of the elastic fibres are shown. Controls include a no 

tropoelastin sample, and samples with added WT but with no antibody, with the 

secondary antibody only, or with a non-specific mouse antibody and the secondary 

antibody. Controls show merged fluorescence images with DAPI-stained cell nuclei. 

 

A  B  

C  D  

Figure 5.20. Comparative (A) immunofluorescence, (B) autofluorescence and (C) 

abundance of WT and EX22 elastic fibres produced from 20 g/mL exogenous 

tropoelastin in ARPE-19 cells. (D) Cell numbers as indicated by the area occupied by 

cell nuclei per field of view. 
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A  

B  

C  

Figure 5.21. Width of WT and EX22 elastic fibres formed from the addition of 20 

g/mL tropoelastin by ARPE-19 cells. The fibres were measured (A) 4, (B) 7 and (C) 10 

days after tropoelastin addition. 
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 At a higher concentration of exogenous tropoelastin (200 g/mL), both WT and 

EX22 constructs established a more extensive system of elastic fibres (Figure 5.22). 

However, the same differences were observed between WT and EX22 fibre formation. An 

initial lag in EX22 elastogenesis was evident after one day, wherein short WT fibrils were 

already visible while EX22 globules remained as separate clusters. The EX22 fibres that 

subsequently formed after 4 days were, as previously described, significantly less abundant 

and displayed dramatically decreased fluorescence compared to WT fibres (Figure 5.23). 

The average width of EX22 fibres was also consistently greater than that of WT fibres 

(Figure 5.24). 
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Figure 5.22. Confocal microscope images of WT and EX22 elastic fibres formed from 

200 g/mL tropoelastin by ARPE-19 cells. Samples were fixed and stained with a 

mouse anti-elastin antibody and a FITC-conjugated anti-mouse antibody at 1, 4, 7 and 

10 days after tropoelastin addition. Elastin-specific immunofluorescence (green) and 
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autofluorescence (red) of the elastic fibres are shown. Controls include a no 

tropoelastin sample, and samples with added WT but with no antibody, with the 

secondary antibody only, or with a non-specific mouse antibody and the secondary 

antibody. Controls show merged fluorescence images with DAPI-stained cell nuclei. 

 

A  B  

C  D  

Figure 5.23. Comparative (A) immunofluorescence, (B) autofluorescence and (C) 

abundance of WT and EX22 elastic fibres produced from 200 g/mL exogenous 

tropoelastin in ARPE-19 cells. (D) Cell numbers as indicated by the area occupied by 

cell nuclei per field of view. 
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A  

B  

C  

Figure 5.24. Width of WT and EX22 elastic fibres formed from the addition of 200 

g/mL tropoelastin by ARPE-19 cells. The fibres were measured (A) 4, (B) 7 and (C) 10 

days after tropoelastin addition. 
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5.2.8 Structural studies 

5.2.8.1 Far-UV CD 

 The CD spectra of WT and EX22 possessed similar features, including a minimum at 

~200 nm and a negative shoulder at ~220 nm (Figure 5.25). From the CD spectra, the 

secondary structure composition of both WT and EX22 were calculated to be similar, 

comprising predominantly of unordered structure (49-50%) and a small percentage of alpha-

helix (9-10%), beta-sheet (19%), turn (12%) and polyproline II helix (9%) structures. 

A  

B  

Figure 5.25. Circular dichroism analysis showing the (A) CD spectra and (B) 

secondary structure composition of WT and EX22 tropoelastin. The percentages of 

alpha-helix (AHel), beta-sheet (BSht), turn, polyproline II helix (PPT) and unordered 

(UNR) structures are indicated. 
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5.2.8.2 SAXS 

 Structural analysis of EX22 by SAXS indicated a nanostructure with similar length 

along the central axis (~14 nm) and similar general features to the WT shape, including an 

elastic coil region spanning the N-terminal segment, a hinge/turn connected to the central 

bridge region, and a C-terminal foot region (Figure 5.26). However, overlaying the WT and 

EX22 shapes revealed an increased mass in the area assigned to the hinge and bridge regions 

of the EX22 structure, consistent with the expected placement of the additional 29 residues 

comprising domain 22. This conformational change around the EX22 bridge region also 

resulted in a slight spatial deviation of the C-terminus. 

 The WT and EX22 structures were separately fitted together in a head-to-tail model 

to simulate the assembly of tropoelastin monomers during elastogenesis (Figure 5.27). This 

approach highlighted potential differences in the self-assembly of the WT and EX22 

constructs. The buried surface area between contacting EX22 molecules, calculated to be 

6693.754 Å2
, was substantially greater than the 1743.191 Å2

 calculated between a WT pair. 

In addition, the helical structure produced by the assembled EX22 molecules displayed a 

different periodicity to the WT model. Three EX22 monomers, but only two WT monomers, 

were required per full turn of the helix. 
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Figure 5.26. Solution structures of WT and EX22 tropoelastin obtained from SAXS 

studies. Panels show the WT (green), EX22 (magenta) and merged structures rotated 

laterally. The tropoelastin N-terminus (N), bridge region (BR) and C-terminus (C) are 

indicated.  
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Figure 5.27. Model showing the head-to-tail tandem assembly of WT (green) and EX22 

(magenta) molecules. WT and EX22 monomers were not drawn to scale. 

  

WT EX22 
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5.3 Discussion 

5.3.1 Analysis of splicing signals 

 The lack of exon 22 in mature human tropoelastin transcripts [33], despite its 

presence in the tropoelastin gene [183], indicates that the sequence is likely removed during 

pre-mRNA processing. Exon 22 has been identified as one of the six tropoelastin exons 

subject to alternative splicing [31, 314].   

 Splicing typically occurs via a series of spliceosome-catalysed reactions at specific 

sequences within the intron separating the two exons [335]. These sequences include a donor 

site at the 5′ end of the intron, an acceptor site at the 3′ end, and a branch point up to 50 

bases upstream of the acceptor site. Analysis of the potential splice sequences associated 

with exons 21-23 of human tropoelastin revealed a high similarity of all donor splice sites to 

the consensus sequence, which strongly suggests that exon 22 skipping is not due to a weak 

5′ splice site. This is not surprising, given that the site may also regulate the splicing of exon 

23 to exon 21. However, the acceptor splice site and branch point sequences of exon 22 have 

lower consensus values compared to exons 21 and 23. Disruptions to these motifs are known 

to decrease splicing efficiency [334, 336, 337] and increase the usage of alternative sites 

[338]. In particular, mutations to the branch site can allow the formation of lariats that 

encompass an exon and lead to its exclusion from the final transcript [334]. Similarly, exon 

22 skipping may result from inferior spliceosomal recognition of the acceptor splice and 

branch sites due to their increased divergence from consensus sequences. In such cases, 

alternative sequences, i.e. those of exon 23, are utilised instead. 

 Moreover, the distance of the branch point from the 3′ splice site is greater in exon 

22 (62 bp) compared to that in exon 21 (28 bp) or exon 23 (24 bp). Branch points are 

optimally located 16-25 bp from the acceptor splice site, with those situated further upstream 
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often associated with skipped exons [334]. A distal branch point relative to the acceptor 

splice site may also have contributed to the poor splicing of exon 22.  

 Since the tropoelastin exon 22 does not appear to be expressed in humans, there may 

be no impetus for its preservation in the tropoelastin gene. Similar to the circumstances 

leading to the deletion of exon 35 from the human tropoelastin sequence [312], the loss of 

constitutive splice signals for exon 22 may likewise herald its eventual loss from the genome. 
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5.3.2 Production of EX22 tropoelastin 

 Expression of the native human exon 22 in E. coli may be hindered by differences in 

the codon usage pattern of the two organisms. For this reason, a strategy was adopted 

following the design of the synthetic wild-type human elastin gene [26], in which the exon 

22 sequence of the EX22 gene was backtranslated from domain 22 of human tropoelastin 

using codons optimised for high-level expression in E. coli. This avoids the occurrence of 

‘rare’ codons which can reduce protein yield and lead to aberrant constructs [339]. However, 

the resulting sequence was extremely biased towards codons that represented the most 

frequently occurring for each amino acid in E. coli genes. The sequence was therefore 

refined by utilising all highly-used codons for the two most repeated residues in domain 22, 

glycine and alanine.  

 The synthetic exon 22 sequence was incorporated into the wild-type tropoelastin 

gene to give rise to the EX22 gene construct. DNA sequencing of plasmids from 

transformed colonies confirmed the correct placement of exon 22 between exons 21 and 23. 

The expressed protein was subsequently confirmed by comparative mass spectrometry 

against WT to possess a mass spectrum consistent with the presence of domain 22. SDS-

PAGE analysis further indicated that the EX22 tropoelastin was pure and full-length.  
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5.3.3 Coacervation studies 

 As the first essential stage of elastogenesis [101, 187], the coacervation of 

tropoelastin species directly determines their ability to assemble into elastic fibres. 

Following previous studies on recombinant human tropoelastin [153, 275], the coacervation 

of WT and EX22 was modelled in vitro under extracellular salt and pH conditions, in which 

sample turbidity was directly correlated to the extent of self-association [340].  

 WT and EX22 possessed similar temperature-dependent coacervation profiles. Both 

samples exhibited rapid aggregation over a narrow temperature range (30-35°C), similar to 

previous observations on the coacervation of various tropoelastin isoforms [70, 108, 275] 

and consistent with the entropic nature of the process [4]. Maximum coacervation was 

reached by both constructs at physiological temperatures. This critical temperature is 

reproducible for a given tropoelastin or elastin-like polypeptide [131], as it reflects the 

energy required to disrupt the clathrate water shielding hydrophobic domains from self-

interactions [62, 97, 185, 341]. As such, coacervation temperature is greatly dependent on 

the number [186] and contextual arrangement [62, 108, 342] of hydrophobic domains in 

tropoelastin. Interestingly, the presence of a hydrophobic domain 22 in EX22 did not affect 

its coacervation temperature. This may be interpreted as a lack of significant change in 

overall protein hydration, due to a minimal increase in protein hydropathy, or to 

conformational changes eclipsing the potential hydration effects of the additional 

hydrophobic domain. The latter scenario may feasibly arise from the placement of domain 

22 within the tropoelastin hinge, as disruptions to this region have been associated with local 

changes in secondary structure [74]. 

 Analysis of the particle sizes in the tropoelastin solutions confirmed the similar 

coacervation behaviour of WT and EX22. Both constructs existed in the ~10 nm monomer 

form at 30 °C and below, but sharply transited into the ~1 m coacervate phase at 35°C and 
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remained as similar sized aggregates until 55°C. These results were identical to the pattern 

of temperature-dependent turbidity increase previously observed during light 

spectrophotometry of WT and EX22 solutions. The rapid shift from monomer to polymer 

was consistent with coacervation being driven mainly by hydrophobic associations [11, 101]. 

Furthermore, the establishment of a stable end size for the WT and EX22 assemblies 

indicates a cessation of tropoelastin aggregation, which is thought to be regulated by the 

organisation of monomers at the coacervate surface [115]. From these results, there appears 

to be no mechanistic differences between WT and EX22 coacervation.  

 While the thermodynamic requirements for WT and EX22 coacervation are similar, 

temperature-dependent kinetic differences were observed. EX22 coacervated more rapidly 

than WT below 45 °C, although the coacervation time of both constructs decreased and 

converged at higher temperatures. The rate of coacervation relates to the cooperativity of 

interactions among hydrophobic regions [70]. Addition of the hydrophobic domain 22 may 

have contributed to a higher coacervation rate of EX22 by increasing potential hydrophobic 

contacts or altering the relative positions of existing contacts to favour self-association. In 

particular, the insertion of domain 22 may interrupt the native conformation of the hinge 

region formed by the adjoining hydrophilic domains 21 and 23. Studies on elastin-like 

polypeptides focused on this region have found that disruptions to the central turn between 

domains 21 and 23 can affect the dynamics of proximal hydrophobic domains and promote 

coacervation [74, 325].   

 The ability of EX22 to coacervate comparably to WT in an in vitro environment 

represents an intrinsic property of tropoelastin that is not abolished or hampered by the 

inclusion of domain 22. This is not surprising, since domain 22 is expressed in the 

tropoelastin of non-human mammals such as cows and rats [33, 39]. The evolutionary 

reasons for the exclusion of domain 22 in human tropoelastin may be more apparent in a 
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heterogeneous cellular environment, where a number of matrix components are known to 

interact with tropoelastin monomers to facilitate and regulate their assembly into higher 

order structures [125, 127, 128, 276]. These proteins and proteoglycans, including fibrillins, 

fibulins and matrix-associated glycoproteins, can affect the rate, but not temperature, of 

tropoelastin coacervation [131]. The level of control afforded by matrix proteins is suited to 

subtler differences in coacervation properties, such as those observed between WT and 

EX22. 
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5.3.4 Cross-linking studies 

 Tropoelastin crosslinking, mediated by lysyl oxidase enzymes in vivo [136, 137], 

occurs between specific lysine residues [143, 282] to form intra- and intermolecular linkages 

that give rise to mature and insoluble elastic fibres. Cross-linking of WT and EX22 was 

modelled in vitro with BS3, an amine-reactive homobifunctional cross-linker [343] targeted 

to lysine residues at most 11.4 Å apart [290]. Addition of a six-fold molar excess of BS3 

allowed complete incorporation of both WT and EX22 into the hydrogel material, indicating 

that the inclusion of domain 22 in human tropoelastin does not inhibit the formation of 

cross-links. This was also expected given the functionality of non-human tropoelastin 

isoforms in which domain 22 is present. 

 Despite the similar propensity of WT and EX22 constructs for BS3 cross-linking, 

micro-CT imaging of the resulting hydrogels revealed remarkable differences in their 

structural composition (Fig 4). The WT hydrogel comprised of interwoven fibres 

interspersed with large pores that spanned the surface and cross-section of the sample. This 

morphology is consistent with the filamentous nature of natural elastin [8, 13, 14] and 

similar to previous descriptions of synthetic elastin hydrogels [20]. In contrast, the EX22 

hydrogel appeared as a dense material with no visible channels. This was quantifiably 

reflected in the decreased porosity calculated for the EX22 hydrogel compared to the WT. 

Hydrogel porosity is defined by the separation kinetics of the initially homogenous system 

into polymer and aqueous phases, followed by the removal of the latter phase [291]. While 

hydrogel porosity can be influenced by mechanical techniques [344] or the addition of 

extrinsic components that increase viscosity [345, 346], variations in phase separation in a 

two-component system of BS3 and tropoelastin alone are most likely due to differences in 

the cross-linking process. 
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 The compositional dissimilarities between the WT and EX22 hydrogels may account 

for their functional differences. Elastin hydrogels characteristically swell in an aqueous 

environment [190, 295, 345], as demonstrated by the ability of WT and EX22 hydrogels to 

support the intake of water multiple fold their dry weight. However, in accordance with their 

reduced porosity, EX22 hydrogels consistently swelled significantly less than WT hydrogels. 

Hydrogel swelling is dictated by interactions between the polymer and the solvent. Solvent 

influx extends the network junctions of the hydrogel and constrains the flexible hydrophobic 

segments within rigid cross-linked regions [188]. This is balanced by the entropic increase 

associated with the mixing of solvent and hydration water within the polymer [189]. The 

extent of hydrogel swelling is conventionally thought to be inversely related to cross-link 

density [188, 190, 191]. This suggests that EX22 hydrogels may have more extensive cross-

links than the WT material.  

 Scanning electron microscopy confirmed distinct structural differences in the WT 

and EX22 hydrogel surfaces. The WT hydrogel showed a highly porous and fibrous network 

top surface that appeared to have coalesced into a sheet-like layer on the bottom surface. 

This is similar to previous findings [20, 296, 347], demonstrating the structural consistency 

of synthetic elastin hydrogel constructs. In contrast, the EX22 hydrogel, except for several 

short fibrous structures on the top surface, was mainly composed of a compact sheet on both 

top and bottom surfaces. The edges of the WT and EX22 hydrogels clearly demonstrated 

these compositional differences. A large open network of fibres was visible across the full 

thickness of the WT hydrogel, while compressed sheet-like layers comprised the EX22 

hydrogel. These results strongly suggest a difference in the organisation of EX22 molecules 

during cross-linking into higher-order structures.  

The compositional differences between the cross-linked WT and EX22 material 

reflect the morphological differences in the native elastic fibres produced by species that 
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differentially express domain 22 in tropoelastin. Like the highly porous nature of WT 

hydrogels, human dermal elastic fibres are long and branched. In contrast, sheep, rabbit and 

other mammalian skin have elastic fibres that are thick with only very fine radiating fibrils 

[327] that appear to simulate the compactness of EX22 hydrogels. 

 The effect of domain 22 inclusion on tropoelastin cross-linking may arise from 

differences in the arrangement of EX22 molecules during coacervation. Since cross-link 

formation relies greatly on the proximity of specific lysine residues that are aligned during 

tropoelastin self-association [44, 60, 67, 100, 119], slight variations in the coacervate 

structure can affect the number or nature of cross-links. In addition, the placement of domain 

22 within the cross-link enriched domains 19-25 [143, 282] increases the probability of 

altering the relative positions of lysine residues important in native cross-linking. The hinge 

region, in particular, is thought to adopt open and closed conformations that determine the 

formation of intra-molecular and intermolecular contacts, respectively [178]. Disrupting the 

tropoelastin hinge region, a possible consequence of domain 22 inclusion, is associated with 

an increased local structure [74], which may then impact upon the distribution of cross-links 

within the tropoelastin monomer and between contacting molecules. These differences in 

cross-linking are manifested by the formation of EX22 hydrogels that are structurally and 

functionally dissimilar to the WT elastin polymer.  
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5.3.5 Cell and antibody interactions 

 Cells interact with tropoelastin throughout the elastogenic process, from the 

coacervation of monomers on cell surface receptors [3] to the instigation of cellular 

responses as a component of the extracellular matrix [348]. WT and EX22 tropoelastin 

coated on cell culture wells supported the adhesion of human dermal fibroblasts in a 

saturable manner [45, 179], and to the same extent. At coating concentrations allowing 

maximum cell attachment, up to 80% of seeded cells adhered to both species. Fibroblasts are 

known to bind via the αvβ3 integrin to the tropoelastin C-terminus [18, 83, 297], primarily 

the terminal RKRK residues [179]. The equivalent level of fibroblast attachment on WT and 

EX22 suggests comparable accessibility of fibroblast binding site/s on the C-terminal region 

of both constructs. 

 To perceive conformational changes within the tropoelastin molecule caused by the 

addition of domain 22, surface-bound WT and EX22 were probed using antibodies targeted 

against specific tropoelastin domains. The antibody against tropoelastin domain 6 detected 

equivalent levels of the epitope on both WT and EX22, indicating similar exposure of the N-

terminal segment of both constructs. However, the BA4 antibody, which predominantly 

recognizes the hydrophobic hexapeptide VGVAPG in tropoelastin domain 24 [298], showed 

decreased binding to EX22 than to WT. This suggests a reduced exposure of the central 

hinge/bridge region of EX22, which coincides with the expected location of domain 22, and 

is likely due to a conformational change in this region.  

 Interestingly, the hydrophobic sequences recognised by the BA4 antibody have been 

shown to be ligands of the elastin binding protein (EBP) [299]. This implies that EX22 

tropoelastin may also show decreased binding to EBP. EBP has been proposed to facilitate 

the intracellular transport of tropoelastin to specific cell-surface sites [349]. Additionally, as 

part of the elastin receptor complex, it can mediate a number of cellular responses including 
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chemotaxis [350, 351], adhesion [352], proliferation [353], and vasodilation [354]. 

Decreased interactions with either EBP or the elastin receptor may therefore lead to an 

inefficient transit through the secretory pathway [299] and reduced biological activity.  

 In addition, the antibody against the tropoelastin C-terminus also detected fewer 

epitopes in EX22 than WT. This implies a partially inaccessible C-terminus in EX22 that 

may have been displaced or obscured by an upstream conformational change. While this was 

initially unexpected given the similar extent of fibroblast attachment to both constructs, 

fibroblasts and the anti-domain 36 antibody may recognise different sequence motifs within 

the C-terminus. Moreover, fibroblasts may bind to secondary sites independent of the 

RKRK sequence in domain 36 (Lee et al., in preparation). The reduced exposure of specific 

C-terminal sites in EX22 may affect its ability to form elastic fibres, as this highly-

conserved region [183] has been implicated in contacting microfibrillar proteins crucial for 

tropoelastin incorporation into elastic fibres [276, 355, 356]. Other studies have also 

demonstrated that certain structural changes to the C-terminus do not affect fibroblast αvβ3 

integrin binding [297] but can affect tropoelastin assembly [356]. 
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5.3.6 Elastic fibre assembly 

 To determine the elastogenic potential of the WT and EX22 tropoelastin, purified 

constructs were added to cultured human cells with an established microfibrillar network, as 

this acts as an essential scaffold for elastin deposition [94, 249]. Elastic fibres were formed 

by dermal fibroblasts even from low concentrations of exogenous WT tropoelastin, while 

EX22 species remained as spherules and only assembled into elastic fibres at high 

concentrations within the extracellular environment. The stark contrast between the 

elastogenic capacity of WT and EX22 was not reflective of their relative functionality in 

previous tropoelastin-focused assays. This suggests some selectivity against the non-native 

EX22 isoform on a cellular level, similar in principle to the observed bias against the 

incorporation of a cutis laxa-associated tropoelastin mutant into vascular elastic fibres [33]. 

The decreased efficiency of EX22 fibre assembly was only partially compensated by an 

excess of added monomers, as evidenced by the early lag in the EX22 elastogenic time 

course and the formation of significantly fewer fibres than WT. Furthermore, the diffused, 

weakly-stained nature of EX22 fibres, in contrast to the continuous, highly-fluorescent WT 

fibres, suggests an irregular distribution of the mutant species on microfibrils [33] plausibly 

due to aberrant interactions with microfibrillar proteins and/or differential packing of 

monomers within the elastic fibre. However, the autofluorescence of EX22 fibres was 

similar to that of WT fibres. Since elastin autofluorescence has been attributed to its cross-

linked structure [257, 258], this implies that EX22 and WT fibres undergo a similar extent of 

maturation over time.  

 The elastogenic capability of EX22 was tested in another model system using human 

retinal pigmented epithelial cells, a cell line that naturally expresses the major elastogenic 

components except tropoelastin [140]. At low and high concentrations of supplied 

tropoelastin, WT established an elastic fibre network similar to that described in the 
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fibroblast environment. In contrast to fibroblasts, EX22 fibres were formed even at low 

concentrations by ARPE-19 cells. This demonstrates a tissue-specific tolerance for EX22 

that is higher in ARPE-19 cells compared to GM3348 fibroblasts. Interestingly, the dermal 

elastic fibres of mammals which produce tropoelastin with domain 22 are proposed to 

originate from hair follicular cells, which have an epithelial lineage similar to ARPE-19 cells 

[326, 329]. In contrast, dermal elastic fibres of humans are known to be derived from 

fibroblastic cells [328]. This may account for the differential fibre assembly of EX22 in the 

GM3348 and ARPE-19 cellular environments. 

 EX22 fibres, while present in ARPE-19 cells, were significantly fewer in number, 

confirming a decreased efficiency of EX22 incorporation into the elastic matrix. The 

reduced immunofluorescence and autofluorescence of EX22 elastic fibres likewise suggest a 

non-native organisation of monomers within the assembled fibre, and/or impaired 

interactions with elastogenic proteins including cross-linking enzymes within the ARPE-19 

environment. The increased average width of EX22 fibres further confirms the propensity of 

EX22 to form morphologically different elastic fibres, consistent with reports that sequence 

polymorphisms in tropoelastin can alter the architecture of resulting elastic fibres [55]. The 

thicker EX22 fibres reflect a characteristic of skin elastic fibres in mammals which express 

tropoelastin with domain 22 [326]. This morphology is most likely linked to the primary 

function of such elastic fibres for movement, in contrast to that of hair placement or the 

maintenance of skin integrity in humans [326].     

 The presence of domain 22 in human tropoelastin severely impacts upon its 

elastogenic ability, perhaps due to slight structural changes within the monomer that affect 

the arrangement of assembled molecules and their interaction with extracellular matrix 

components essential for fibre formation. This leads to a fibre morphology that deviates 

from the wild-type, and which, accordingly, may be functionally inferior [55].  
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5.3.7 Structural analysis 

 The far-UV CD spectra of WT and EX22 tropoelastin showed characteristic features, 

including a large negative peak at 200 nm associated with the disordered nature of 

hydrophobic domains, and a minor negative peak at 220 nm associated with the limited 

alpha-helical structure of cross-linking domains [117, 274]. Calculation of the secondary 

structure composition from the WT and EX22 CD spectra using a number of algorithms 

[173] consistently indicated no difference between the constructs. In tropoelastin species 

containing domain 22, this hydrophobic region is predicted to form a coil structure [44]. 

Previous studies on an elastin mimetic focused on domains 20-21-23-24 indicated that 

disrupting the hinge between domains 21 and 23 significantly changes the alpha-helical 

content of the peptide [73, 325]. While the addition of domain 22 in tropoelastin may disturb 

the hinge region, the local changes in secondary structure may not be detected as changes in 

the overall percentage of coil or alpha-helical structures in the EX22 molecule. 

 The solution structure of human tropoelastin consists of an elastic coil region 

spanning the N-terminus to domain 18, continuing to the hinge region in domains 21/23, 

then a bridge region around domain 25-26, which connects to the C-terminal foot region 

[72]. SAXS analysis of WT and EX22 produced nanostructures that possess these 

characteristic features. However, the EX22 structure exhibited an increased mass in the 

hinge and bridge regions corresponding to the expected location of domain 22. The 

conformational change around the EX22 bridge region was also associated with a slight 

protrusion of the C-terminus, consistent with the role of the tropoelastin bridge in orienting 

the C-terminal region [184]. The structural changes around the central and C-terminal 

domains supported the previously described differential exposure of antibody epitopes in 

these areas. 
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 The domain 21/23 hinge in tropoelastin represents a highly flexible region, which 

can adopt a range of conformations wherein the flanking helical segments are either looped 

or extended [73]. In a hydrated environment, the hinge is thought to fluctuate between 

closed and open states until converging via van der Waals interactions to a hairpin structure 

that is stabilised by a salt bridge. The proposed motions of the hinge region may contribute 

to the broad conformational distribution of the tropoelastin molecule [322-324], which plays 

an important role in biological elasticity [28]. Sequence alterations to the hinge have been 

shown to introduce steric constraints that interfere with its native configuration [322] and 

increase the rigidity of the structure [325]. Consequently, the addition of domain 22 in the 

EX22 hinge region may likewise decrease the number of conformations accessible to the 

molecule. 

While the conformational changes in EX22 were not linked to any discernible 

difference in the overall secondary structure composition of the WT and EX22 constructs, 

local conformational differences were modeled by replica exchange molecular dynamics, an 

accelerated structure prediction algorithm (Tarakanova, A. and Buehler, M., pers. comm.). 

The WT hinge displayed a high presence of helices, while the EX22 hinge had a high beta 

sheet content with significantly reduced helical content (Figure 5.28). Coil and turn 

composition did not vary significantly between the constructs. Representative structures of 

the EX22 construct displayed a high propensity for double beta strand formation between 

amorphous domains, which may be essential in stabilising the hinge region. A reduced 

flexibility of the hinge supports the observed limited exposure of the central and C-terminal 

regions in EX22.  
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Figure 5.28. (A) Representative structures of WT and EX22 hinge region. Percentages 

indicate significance of cluster from which the lowest energy representative 

conformation is extracted. (B) Secondary structure content [helix, beta strand (BS), 

coil, turn] compared for molecular models of the hinge regions of WT and EX22 

constructs. 
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 Possible consequences of the altered EX22 structure were manifested by modelling 

monomer assembly according to the proposed head-to-tail mechanism of elastin microfibre 

formation [72]. In this model, domains 19 and 25 bracketing the hinge region of one 

molecule were juxtaposed with the N-terminal domain 10 from a second molecule to allow 

the formation of a well-defined cross-link [105]. WT and EX22 molecules fitted to this 

model produced different coil structures, in which the buried surface area between two 

EX22 monomers was greater than that between a WT pair. This indicates potential 

variations in intermolecular contacts between WT and EX22 monomers during elastin 

assembly. These properties may account for the differences in WT and EX22 tropoelastin 

incorporation during elastogenesis, as well as the organisation of molecules within the 

elastic fibre structure.  

 This chapter helps to shed light on the evolutionary impetus behind the exclusion of 

domain 22 in human tropoelastin, by demonstrating that the inclusion of domain 22 greatly 

impacts upon the native assembly of tropoelastin into higher order structures, including 

hydrogels in cross-linking assays, or elastic fibres in model cellular environments. These 

properties may be attributed to conformational changes affecting the hinge, bridge and C-

terminal regions of tropoelastin, which potentially translate into differences in 

intermolecular interactions and supramolecular structure during assembly. These results 

support a strong functional advantage for the maintenance of the native hinge structure in 

human tropoelastin, as inserting domain 22 markedly disrupts the hinge and reduces the 

efficiency of tropoelastin to assemble into an abundant elastic fiber system such as that 

found in the human dermis.  
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6. Characterisation of the D72A tropoelastin construct 

6.1 Introduction 

6.1.1 The tropoelastin N-terminal region 

 The solution structure of human tropoelastin comprises a distinct narrow (2-3 nm), 

elongated segment that persists for ~11 nm before branching into the bridge and foot regions 

[72]. Structural comparison of the full-length species with constructs truncated at various 

distances from the N-terminus allowed the assignment of this linear section to the 

tropoelastin N-terminal region encompassing domains 2-18. This spring-like coil region is 

proposed to account for tropoelastin elasticity, which is characterised by the ability of the 

single molecule to reversibly extend to 8 times its resting length [72]. The N-terminal region 

displays the typical structural motif of the tropoelastin molecule comprising of alternating 

hydrophobic and hydrophilic domains [357]. Mechanistically, the elasticity of tropoelastin 

molecules arises from the substantial entropy associated with the flexibility of hydrophobic 

domains in the relaxed state [77, 78]. Extending the monomer increases order by restricting 

the range of accessible conformations [358]. Furthermore, the increased solvent exposure of 

hydrophobic regions induces local ordering of water molecules and contributes to a decrease 

in entropy. The spontaneous recoil manifested by tropoelastin after release of the stretching 

force is driven by the return to a more favourable disordered state [76]. 

 Previous studies on the functional significance of specific tropoelastin domains in 

elastogenesis have primarily implicated the central and C-terminal regions in the 

coacervation, microfibrillar deposition and cross-linking stages of elastic fibre assembly [44, 

70, 122, 143, 276]. However, the N-terminal region may also play important but less well-

characterised roles in elastin assembly. For instance, it likely contributes to the overall 

structure of the coacervate, as evidenced by the conformational transition from beta-strand 

to alpha-helix displayed by the isolated domain 2-7 peptide upon an increase in ambient 
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hydropathy between different solvents [357]. The N-terminal segment may also facilitate 

tropoelastin integration into the microfibrillar scaffold. While fibrillin-1, the most abundant 

microfibrillar protein, binds multiple sites within tropoelastin, its primary point of contact is 

localised within the N-terminal domain 4 of tropoelastin [135]. Several N-terminal domains 

may also participate in cross-linking. Studies have observed the presence of at least three 

intra-molecular lysinonorleucine links in the region spanning domains 6-15, including 

contacts between domains 6 and 8, domains 12 and 13, and domains 14 and 15 [282]. 

Intermolecular cross-links may likewise exist between the N-terminal region of one 

monomer and the central or C-terminal regions of another. In particular, interactions are 

proposed to occur between domains 6 and 36, domains 8 and 23, domains 12 and 21/23, 

domains 13 and 19, domains 13 and 23, and domains 15 and 23 [143, 282]. A major cross-

linking site in elastin is formed through the association of domains 10, 19 and 25, in which 

the domain 10 sequence of one tropoelastin strand bridges the desmosine-linked domains 19 

and 25 of a second molecule via two lysinonorleucine links [105]. The importance of the 

tropoelastin N-terminal region in elastogenesis is supported by the association of a P211S 

mutation in domain 12 with an autosomal recessive cutis laxa phenotype [35] that is 

characterised by deficient dermal elastic fibres [359, 360].  
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6.1.2 The N-terminal D72 site  

 A number of assembly and structural properties of tropoelastin are modulated by 

charged residues within the molecule. The attachment of secreted tropoelastin monomers on 

the cell surface is predominantly mediated by the basic C-terminal RKRK cluster [83, 179]. 

The efficiency of coacervation may be regulated via the neutralisation of repulsive lysine 

charges by negatively-charged groups in cell-surface GAGs [93]. These transient 

interactions can also promote the formation of alpha-helical secondary structure which 

crucially positions lysines in close proximity for cross-linking [58, 67]. Tropoelastin 

deposition onto microfibrils is likewise proposed to be facilitated by electrostatic 

interactions with microfibril-associated glycoproteins [45, 50, 102, 276]. Cross-linking 

reactions that stabilise the nascent elastic fibre directly involve the positively-charged lysine 

residues within tropoelastin [137, 139]. Charged residues may also be involved in 

maintaining the tertiary structure of the protein, as demonstrated by the conformational 

changes exhibited by tropoelastin constructs with mutations at the R515, E345 and E414 

sites.  

 In contrast to the more recognised roles of the positively-charged residues in 

tropoelastin function, little has been described of the rarely occurring negatively-charged 

residues. The significance of two of three such residues located in the central hinge and 

bridge regions has been explored in a previous chapter. The third negatively-charged residue 

in tropoelastin is an aspartate (D72) in the hydrophilic KA-rich cross-linking domain 6 of 

the N-terminal region. This region within the tropoelastin gene may have undergone 

remodelling events during evolution, as demonstrated by the relative sequence divergence 

[183]. Such circumstances are rare in the hydrophilic domains, which are typically 

conserved to maintain the primary and spatial structure required for cross-linking, unlike 

hydrophobic regions which generally tolerate mutations if overall hydrophobicity is 
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preserved [183]. The human tropoelastin domain 6 is also susceptible to degradation by 

matrix metalloproteinases (MMP) such as MMP-7, MMP-9 and MMP-12 [361-363]. This 

supports the solvent exposure of the region and its accessibility to potential interactions with 

other tropoelastin monomers and extracellular matrix proteins during assembly, which may 

be mediated by the negatively-charged D72 site. 
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6.1.3 Aims 

 This chapter investigates the significance of the D72 residue to tropoelastin structure 

and function. A tropoelastin construct with an alanine substitution at the D72 site (D72A) 

(Figure 6.1) was produced and assayed for its propensity for coacervation, cross-linking, cell 

interaction, and elastic fibre assembly in comparison to the wild-type isoform (WT). The 

solution structures of WT and D72A were compared to identify variations in monomer 

conformation that may account for differences in assembly properties. These results may 

help indicate the evolutionary benefits gained by the presence of a negatively-charged D72 

site in the N-terminal region of human tropoelastin, and further our understanding of the role 

of this under-characterised region in tropoelastin function. 

 

 

Figure 6.1. Domain structures of WT and D72A tropoelastin. Hydrophobic and 

hydrophilic domains are represented by grey and white boxes, respectively. 
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6.2 Results 

6.2.1 Conservation of D72 in mammalian tropoelastin sequences 

 Alignment of domains 2-6 of mammalian tropoelastin sequences indicated the 

common presence of an N-terminal negatively-charged site in the majority of the sequences 

(Figure 6.2). The D72 site itself is conserved in human, chimpanzee, baboon and pig 

tropoelastin. Although both cat and cow tropoelastin do not possess the D72 residue, a 

negatively-charged glutamate lies upstream of this site within the same domain. The rodent 

sequences do not contain a negatively-charged residue in the N-terminal region.  

 In the tropoelastin sequences that maintain a glutamate or aspartate in domain 6, 

preservation of such a site appears to have occurred despite greater sequence deviation 

within this domain compared to neighbouring regions. 
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Cat            GGVPGAVPG--------AVPGGVYYPGAGLGG--LGGGALGPGGKPPKPGAGLLGAFGPG 

Mouse          GGVPGAVPG----GLPGGVPGGVYYPGAGIGG-GGGGGALGPGGKPPKPGAGLLGTFGAG 

Rat            GGVPGAVPGGVPGGLPGGVPGGVYYPGAGIGGGGLGGGALGPGGKPPKPGAGLLGAFGAG 

Cow            GGVPGAVPG--------GVPGGVFFPGAGLGG--LGVGGLGPGVKPAKPGVG--GLVGPG 

Pig            GGVPGAVPG--------GVPGGVFFPGAGLGG--LGGGALGPGGKPPKPGVG--GLAGAG 

Human          GGVPGAIPG--------GVPGGVFYPGAGLGA--LGGGALGPGGKPLKPVPG--GLAGAG 

Chimpanzee     GGVPGAIPG--------GVPGGVFYPGAGLGA--LGGGALAPGVKPLKPVPG--GLVGAG 

Baboon         -GVPGAIPG--------GVPGGVYYPGAGLGG--LGGGALGPGGKPLKPGPG--GLAGTG 

Human          GGVPGAIPG--------GVPGGVFYPGAGLGA--LGGGALGPGGKPLKPVPG--GLAGAG 

                *****:**        .*****::****:*.  * *.*.** ** **   *  *  *.* 

 

Cat            AGGLAGAGPGAGERLGAFPAGTYPGALVPG--GVAGAAAAYKAAAKAGAGLG--------- 

Mouse          PGGLGGAGPGAGA-----------GALVPG--GAAGAAAAYKAAAKAGAGLGGVGGVPGGV 

Rat            PGGLGGAGPGAG------------GVLVPG--GGAGAAAAYKAAAKAGAGLG--------- 

Cow            LGAEGSALPG-AFP----------GGFFGAGGGAAGAAAAYKAAAKAGAAGL--------- 

Pig            LGAGLGAFPAGAFP----------GALVPG--GVADAAAAYKAAAKAGAG----------- 

Chimpanzee     LGAGLGAFPAVTFP----------GALVPG--GVADAAAAYK-AAKAGAGLG---------

Baboon         LGAGLGAFPAGAFP----------GALVPG--GVADAAAAYK-AAKAGAGLG--------- 

Human          LGAGLGAFPAVTFP----------GALVPG--GVADAAAAYK-AAKAGAGLG--------- 

                 ..  .. *.              * :. .  * *.****** ******.    

 

Cat            ------------------GVG-------GIGGVGGLGVS 

Mouse          GVGGVPGGVGVGGVPGGVGVGGVPGGVGGIGGIGGLGVS 

Rat            GIGGVPGGVGVGGVPGAVGVGGVPGAVGGIGGIGGLGVS 

Cow            -------------------------GVGGIGGVGGLGVS 

Pig            --------------------------LGGVGGVGGLGVS 

Chimpanzee     ----------------------------GVPGVGGLGVS 

Baboon         ----------------------------GVPGVGGLGVS 

Human          ----------------------------GVPGVGGLGVS 

                                           *: *:****** 

             

 

Figure 6.2. Alignment of domains 2-7 of mammalian tropoelastin sequences using 

ClustalW. Identical residues are denoted by “*”, conserved residues by “:”, and semi-

conserved residues by “.”. The degree of conservation was based on the similarity score 

of all residues at each position, calculated using the Gonnet Pam250 matrix (conserved: 

score >0.5, semi-conserved: score =<0.5) [286].  Domain 6 is in red font. Negatively-

charged residues are highlighted in yellow. The human tropoelastin D72 residue is bold 

underlined. The human (GeneID: 2006), cow (GeneID: 280781), mouse 

(GeneID: 13717), and rat (GeneID: 25043) tropoelastin sequences are confirmed 

protein sequences. The cat (NCBI: XM_003998576.1), pig (Gene Index: TC373476), 

chimpanzee (NCBI: XM_003318598.2), and baboon (NCBI: XM_003919412.1) 

sequences are translated from predicted elastin gene sequences. 
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6.2.2 Production and confirmation of D72A tropoelastin 

6.2.2.1 DNA sequencing 

 Plasmid DNA extracted from transformed E. coli colonies was sequenced to confirm 

the presence of the D72A mutation in the tropoelastin gene. The resulting sequence 

indicated an alanine-encoding GCA codon at the position encoding residue 72 of 

tropoelastin, confirming the mutation at the DNA level (Appendix 8.7).  

 

6.2.2.2 Mass spectrometry 

 Comparative mass spectrometry of purified WT and D72A tropoelastin that had been 

digested with Lys-C showed two peaks within the 5000-6800 m/z window common to both 

species (Figure 6.3). These 5076.8 and 5711.0 m/z peaks, labelled A and B respectively, 

were assigned to peptide fragments that lie outside the mutated region (Table 6.1). However, 

the 6713.6 m/z peak labelled C was present only in the WT spectrum, while the 6669.7 m/z 

peak labelled C* was present only in the D72A spectrum. Both peaks corresponded to the 

same peptide encompassing residues 1-78 of tropoelastin, with the mass shift between the 

peaks coinciding with the mass difference between an aspartate and an alanine residue. 

These results were consistent with a D72A mutation in the mutant tropoelastin construct at 

the protein level.  
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Figure 6.3. Comparative mass spectrometry of WT (green) and D72A (red) 

tropoelastin showing the peaks within the 5000-6800 m/z window. 

 

Table 6.1. Assignment of mass spectrometry peaks of WT and D72A tropoelastin 

observed within the 5000-6800 m/z window. Residue 72 is underlined. 

Peak Mass Residues Sequence 

A 5076.8 290-349 
YGAAAGLVPGGPGFGPGVVGVPGAGVPGVGVPGAGIPVV

PGAGIPGAAVPGVVSPEAAAK 

B 5711.0 357-422 
YGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVP

SVGGVPGVGGVPGVGISPEAQAAAAAK 

C* 
6669.7 

 
1-78 

 

GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKP

VPGGLAGAGLGAGLGAFPAVTFPGALVPGGVAAAAAAYK 

C 6713.6 
1-78 

 

GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKP

VPGGLAGAGLGAGLGAFPAVTFPGALVPGGVADAAAAYK 

  

A 

B 

C* 

C 



__________________________________________________________________Chapter 6 

286 

 

6.2.2.3 SDS-PAGE 

 SDS-PAGE analysis of purified WT and D72A tropoelastin indicated bands 

corresponding to constructs of the expected size (~60 kDa) (Figure 6.4). Moreover, the 

samples were full-length, non-degraded, and free from protein contaminants from the 

bacterial expression and purification process.  

 

 

Figure 6.4. SDS-PAGE of purified WT and D72A tropoelastin. Lanes: M – protein 

standards in kDa; 1 – WT; 2 – D72A. 
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6.2.3 Coacervation studies 

6.2.3.1 Light spectrophotometry 

 Solutions of WT and D72A tropoelastin were analysed spectrophotometrically to 

determine light absorbance, which was used as a measure of the extent of coacervation. WT 

tropoelastin achieved full coacervation at 35°C, beyond which no further increase in sample 

turbidity was observed (Figure 6.5A). In contrast, the D72A mutant displayed only partial 

aggregation at 35°C, and attained maximum coacervation at a higher temperature of 40°C. 

Both tropoelastin species also differed in the time taken to coacervate at each temperature, 

particularly within the physiologically relevant temperature range of 35-40°C (Figure 6.5B). 

At these temperatures, D72A coacervated substantially more slowly than WT. Differences 

between the coacervation times of the constructs decreased with increasing temperatures. 

 

6.2.3.2 Particle size analysis 

 To confirm differences in the coacervation behaviour of WT and D72A, the particle 

sizes of the tropoelastin solutions were assessed over a temperature range via dynamic light 

scattering (Figure 6.6). At 20-25°C, both WT and D72A species were in the 10-15 nm 

monomer form. At 30°C, 43% of WT tropoelastin had aggregated while all D72A species 

remained as monomers. At 35°C, all of WT but only 76% of D72A constructs had 

assembled into coacervates. At 40°C, all of the D72A species had fully coacervated, but the 

diameter of the mutant assemblies (~0.5 m) is significantly smaller that of the WT (~2.3 

m). This difference between the WT and D72A coacervate sizes was observed even at 

higher temperatures up to 55°C. 
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A  

B  

Figure 6.5. Coacervation profiles of WT and D72A tropoelastin. (A) The extent of 

coacervation at each temperature indicated by relative sample turbidity. (B) The time 

required to achieve maximum coacervation at each temperature. 
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A  B  

C  D  

E  F  

G  H  

Figure 6.6. Particle sizes of WT and D72A tropoelastin solutions at (A) 20, (B) 25, (C) 

30, (D) 35, (E) 40, (F) 45, (G) 50 and (H) 55°C.  
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6.2.4 Cross-linking studies 

6.2.4.1 Hydrogel construction 

 WT and D72A tropoelastin cross-linked with 10 mM BS3 for 16 hrs produced 

hydrogels as illustrated in Figure 6.7. All WT and D72A species polymerised under these 

conditions, as evidenced by the absence of tropoelastin monomers in the aqueous solution 

left after hydrogel formation (Figure 6.8).  

 

6.2.4.2 Micro-CT of hydrogels 

 Micro-CT reconstruction of the WT and D72A hydrogels indicated distinct structural 

differences between the constructs (Figure 6.9). The D72A hydrogel was composed of 

discrete thin layers of material which were stacked to form an overall dense and compact 

structure. This morphology contrasted greatly with the open fibrous network that spanned 

the entire thickness of the WT hydrogel. Analysis of the x-ray projection slices across the z-

axis of the hydrogels confirmed visual observations that the WT material had a significantly 

higher porosity at 90.2 ± 0.6% than the D72A material at 59.4 ± 1.3% (Figure 6.10).  

 

6.2.4.3 Hydrogel swelling 

 The WT and D72A hydrogels also exhibited differences in swelling behaviour. 

When submerged in water for 24hrs, the mutant hydrogels visibly expanded less than the 

WT constructs (Figure 6.11). Consistent with this smaller volume increase, the amount of 

water absorption by D72A hydrogels was 58-62%  less than that by WT hydrogels. This 

significant decrease in swelling by mutant hydrogels was observed consistently at three 

different temperatures. 

  



__________________________________________________________________Chapter 6 

291 

 

 

Figure 6.7. Hydrogels constructed from cross-linking of WT and D72A tropoelastin 

with 10 mM BS3 for 16 hr at 37°C.  

 

 

Figure 6.8. SDS-PAGE of the aqueous layer left after tropoelastin cross-linking with 

BS3 into hydrogels. Lanes: M – protein standards in kDa; 1 – WT; 2 – WT + 10 mM 

BS3; 3 – D72A; 4 – D72A + 10 mM BS3.  
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Figure 6.9. Micro-CT reconstruction of WT and D72A hydrogels. Scale bar: 0.5 mm. 

 

Figure 6.10. Porosity of WT and D72A hydrogels calculated from micro-CT cross-

sectional images. 
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Figure 6.11. Representative image of WT and D72A hydrogels swollen in water for 24 

hrs at 37°C. Triplicate samples are shown. Scale bar: 1 cm. 

 

 

Figure 6.12. Swelling of WT and D72A hydrogels in water at 4, 25 and 37°C. The 

amount of water absorbed is expressed as a ratio to hydrogel mass. 
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6.2.4.4 SEM of hydrogels 

 SEM imaging of the hydrogels revealed differences between the surface structures of 

the WT and D72A constructs at high resolution. While the top surface of the WT hydrogel 

showed a highly porous, honeycomb-like network with open channels approximating 150-

200 m in diameter, the top surface of the D72A hydrogel comprised a solid sheet with 

fewer and smaller pores averaging 20-40 m (Figure 6.13). Thin fibres were present on the 

D72A hydrogel surface, which appeared to be in the process of coalescing into the surface 

layer. The top surface of the D72A hydrogel reflected a similar morphology to the bottom 

surfaces of both WT and D72A cross-linked constructs, which were characterised by a 

smooth dense sheet with rarely-occurring pores ~20 m in size (Figure 6.14).  

 

Figure 6.13. SEM images of the top surface of WT and D72A hydrogels under two 

magnifications. 

WT 

D72A 
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Figure 6.14. SEM images of the bottom surface of WT and D72A hydrogels under two 

magnifications. 
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6.2.5 Cell attachment 

 Both WT and D72A tropoelastin exhibited no significant difference in their ability to 

support the attachment of human dermal fibroblasts (Figure 6.15). Cell adhesion to WT- or 

D72A-coated tissue culture plastic increased dependently on tropoelastin concentration until 

a plateau at ~5 g/mL. At saturation levels of tropoelastin coating, ~75% of seeded cells 

attached to WT and D72A. 

 

 

Figure 6.15. Attachment of GM3348 human dermal fibroblasts to WT and D72A 

tropoelastin. 
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6.2.6 Elastic fibre assembly 

6.2.6.1 By GM3348 fibroblasts 

 WT and D72A tropoelastin showed markedly different capacities for elastic fibre 

formation when added to the culture medium of GM3348 human dermal fibroblasts (Figure 

6.16). One day after tropoelastin addition, WT globules were clustered linearly as a 

precursor step to fibre development. In contrast, D72A particles assembled into few visible 

spherules, which were dispersed across the extracellular medium. The tropoelastin species 

excited at 488 and 559 nm were detected in the 515-545 nm channel due to FITC-conjugated 

immunostaining, as well as in the 563-610 nm channel due to autofluorescence. Four days 

after tropoelastin addition, a branched network of WT elastic fibres was visible, but no 

D72A spherules or fibres were present. The same trend was observed seven and ten days 

after tropoelastin addition. Control samples without exogenous tropoelastin showed no 

elastic fibre formation. Staining controls containing WT tropoelastin but with missing or 

non-specific antibodies showed faintly visible elastic fibres mainly due to elastin 

autofluorescence. 



__________________________________________________________________Chapter 6 

298 

 

 

WT 

D72A 

Day 1 



__________________________________________________________________Chapter 6 

299 

 

 

WT 

D72A 

Day 4 



__________________________________________________________________Chapter 6 

300 

 

 

WT 

D72A 

Day 7 



__________________________________________________________________Chapter 6 

301 

 

 

WT 

D72A 

Day 10 



__________________________________________________________________Chapter 6 

302 

 

 

Figure 6.16. Confocal microscope images of elastic fibres formed from 20 g/mL 

exogenous WT and D72A tropoelastin by GM3348 human dermal fibroblasts. Cells 

were fixed and stained 1, 4, 7 and 10 days after tropoelastin addition. The 

immunofluorescence and autofluorescence signals from each field of view are shown. 

Staining controls include cells with no added tropoelastin, and samples with added 

tropoelastin but no primary or secondary antibody, no primary antibody, and a non-

specific primary mouse antibody with the anti-mouse secondary antibody. Staining 

No tropoelastin 

No 1° Ab 

Controls 

No 1° or 2° Ab 

Mouse IgG + 2° Ab 
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controls show merged fluorescence and autofluorescence signals as well as DAPI-

stained cell nuclei. 

 

6.2.6.2 By ARPE-19 cells 

 The elastogenic capability of WT and D72A tropoelastin was also assessed with 

ARPE-19 human retinal pigmented epithelial cells, a cell line that naturally expresses major 

extracellular matrix components but not tropoelastin (Figure 6.17). One day after the 

addition of WT and D72A tropoelastin to the culture medium, WT spherules were organised 

linearly while D72A spherules were more scattered throughout the extracellular space. Four 

days after tropoelastin addition, an expansive WT elastic fibre network had assembled. 

Several D72A elastic fibres were also visible, but they were significantly fewer in number 

and exhibited significantly decreased immunofluorescence and autofluorescence than WT 

fibres. The same pattern was maintained until seven and ten days after tropoelastin addition. 

D72A elastic fibres consistently stained 45-48% less intensely, displayed 41-47% reduced 

autofluorescence, and exhibited 57-71% decreased abundance compared to WT fibres 

(Figure 6.18). Cell numbers were comparable between WT and D72A samples at each time 

point. Control samples without exogenous tropoelastin showed no elastic fibre formation. 

Staining controls containing WT tropoelastin but with missing or non-specific antibodies 

showed faintly visible elastic fibres mainly due to elastin autofluorescence. 
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Figure 6.17. Confocal microscope images of elastic fibres formed from 20 g/mL 

exogenous WT and D72A tropoelastin by ARPE-19 cells. Cells were fixed and stained 1, 

4, 7 and 10 days after tropoelastin addition. The immunofluorescence and 

autofluorescence signals from each field of view are shown. Staining controls include 

cells with no added tropoelastin, and samples with added tropoelastin but no primary 

or secondary antibody, no primary antibody, and a non-specific primary mouse 

antibody with the anti-mouse secondary antibody. Staining controls show merged 

fluorescence and autofluorescence signals as well as DAPI-stained cell nuclei. 
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A  B  

C  D  

Figure 6.18. Analysis of WT and D72A elastic fibre properties formed with ARPE-19 

cells. The (A) immunofluorescence, (B) autofluorescence and (C) abundance of the 

elastic fibres are indicated. (D) Cell numbers between WT and D72A samples are 

comparable, as represented by the similar area occupied by cell  nuclei. 
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6.2.7 Structural studies 

6.2.7.1 Antibody detection of tropoelastin 

 Antibodies targeted against different regions within the tropoelastin molecule were 

used to examine potential conformational changes between WT and D72A species (Figure 

6.19). Immunodetection of surface-coated tropoelastin increased as expected with rising 

tropoelastin concentrations until antibody-specific saturation levels of 5-10 g/mL 

tropoelastin. Significantly decreased epitope levels were detected in D72A compared to WT 

when using a specific antibody against domain 6 which encompasses the mutation site. 

However, no differences were observed between WT and D72A with antibodies targeted 

against domains 24 and 36. 
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A  

B  

C  

Figure 6.19. Detection of surface-bound WT and D72A tropoelastin by ELISA, using 

antibodies targeted against (A) domain 6, (B) domain 24 and (C) domain 36.  
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6.2.7.2 Secondary structure analysis 

 The secondary structures of WT and D72A tropoelastin were analysed using far-UV 

CD. The spectra of both species displayed similar features characteristic of tropoelastin, 

including a large negative peak at ~200 nm and a negative shoulder at ~220 nm (Figure 

6.20A), although there were slight differences in the CD spectra around these wavelengths 

corresponding to a slight increase in the alpha-helical content of D72A (Figure 6.20B). The 

secondary structure composition of WT and D72A tropoelastin were predicted to be 

statistically similar, consisting of 5.4 and 5.0% alpha helix; 24.6 and 24.4% beta sheet; 13.2 

and 13.0% turn region; 10.2 and 10.6% polyproline II helix; and 46.5 and 47% unresolved 

structure, respectively (Figure 6.20C). 

 

6.2.7.3 Solution structure 

 The shapes of the tropoelastin constructs in an aqueous environment were 

determined via small-angle x-ray scattering. Both WT and D72A solution structures 

possessed similar features including the N-terminal coil region, hinge region, bridge region, 

and C-terminal foot region (Figure 6.21). Alignment of the WT and D72A structures 

indicated congruent lengths of their bridge regions, and consequently, a similar distance of 

their C-termini from the central axis. However, conformational changes were observed 

along the N-terminal coil. The central section of the D72A coil region displayed a more 

prominent bend or twist, resulting in an altered curvature compared to that of WT 

tropoelastin.  
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 A  

 B  

 C  

Figure 6.20. Secondary structure analysis of WT and D72A tropoelastin. (A) Far-UV 

CD spectra from 184-240 nm. (B) Difference obtained by subtracting the WT spectrum 

from the D72A spectrum. (C) Secondary structure composition of both species 

estimated by the CONTINLL and CDSSTR algorithms. The percentage of alpha-helix 

(AHel), beta-sheet (BSht), turn, polyproline II helix (PP2) and unresolved structures 

are indicated. 
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Figure 6.21. (A) Solution structures of WT (green) and D72A (blue) tropoelastin 

obtained by small-angle x-ray scattering. The N-terminal coil region (NC), hinge region 

(HR), bridge region (BR), and C-terminal foot region (CF) are indicated. (B-E) Aligned 

WT and D72A structures rotated around the y-axis. Arrows indicate the structural 

changes occurring in the N-terminal region. 
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6.3 Discussion 

6.3.1 Conservation of D72A tropoelastin in mammalian tropoelastin 

 The rarely-occurring negatively-charged residues in mammalian tropoelastin have 

previously been described as localised around the bridge and N-terminal regions of the 

monomer protein. In human and several mammalian tropoelastins, only one negatively-

charged residue lies within the N-terminal region. This D72 residue in the hydrophilic 

domain 6 of human tropoelastin is also conserved in the chimpanzee, baboon and pig 

sequences. Interestingly, in the absence of a D72 site, the bovine and feline tropoelastin 

species both possess a glutamate residue, which is similarly negatively-charged at 

physiological pH, at separate positions within domain 6. This suggests that the presence of 

an N-terminal negatively-charged residue in these mammalian tropoelastin sequences has 

arisen from at least three independent evolutionary events. Furthermore, such an aspartate or 

glutamate has been maintained despite significant genetic remodelling of exon 6 among 

mammalian tropoelastin genes [183]. This includes expanded regions of insertion in the cat 

sequence, and an alanine insertion in the cat, cow, pig, mouse and rat sequences, all of 

which are absent in the primate lineage [183]. Such a degree of sequence divergence is 

atypical in hydrophilic domains, which tolerate fewer substitutions to preserve the spatial 

arrangement of cross-linking sites. These observations suggest a possible functional 

significance for the N-terminal domain 6 that involves a negatively-charged residue such as 

D72, and is likely separate to the conventional cross-linking role of hydrophilic domains in 

tropoelastin. 
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6.3.2 Production and confirmation of D72A tropoelastin 

 Bacterial plasmid containing the WT tropoelastin gene was modified by site-directed 

mutagenesis to obtain the D72A tropoelastin sequence within the same pET3d vector. Upon 

transformation of electrocompetent E. coli with the mutated vector construct, plasmid DNA 

was extracted from the transformed bacterial culture and sequenced. Results confirm the 

presence of a codon change that would give rise to a D72A mutation in the expressed 

tropoelastin protein.  

 Production of D72A tropoelastin via a small-scale fermentation system [153] was 

confirmed by comparative MALDI-TOF mass spectrometry of the purified construct against 

WT tropoelastin. The Lys-C enzyme, which specifically cleaves at the carboxyl side of 

lysine residues, was selected to digest the protein constructs to generate large peptides for 

analysis, due to a maximum of 35 possible cleavage sites in tropoelastin [143]. Within the 

5000-6800 m/z window, the WT and D72A spectra were overlapping, with the exception of 

a mass shift in the peak assigned to the peptide fragment containing residue 72. The shift 

corresponded to the 43.9 Da mass difference between aspartate and alanine, confirming the 

presence of a D72A mutation in the purified construct. 

 SDS-PAGE analysis of the D72A tropoelastin further confirmed an expected size of 

~60 kDa and minimal protein degradation, indicating suitable quality for comparison studies 

with WT tropoelastin.  
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6.3.3 Coacervation studies 

 Since coacervation represents the first crucial step of elastogenesis, the ability of 

tropoelastin molecules to coacervate greatly impacts upon their assembly into elastic fibres. 

The initial alignment and organisation of tropoelastin monomers during this process are 

believed to be non-reliant on extracellular components such as microfibrillar proteins due to 

the excess concentrations of secreted tropoelastin [282]. For this reason, coacervation can be 

suitably modelled in vitro with tropoelastin-only assays in salt and pH conditions 

approximating the extracellular environment.  

 Similar to WT tropoelastin and various other tropoelastin isoforms [70, 108, 153, 

275], the D72A construct exhibited temperature-dependent aggregation occurring over a 

narrow temperature range of less than 5°C. This rapid shift from the monomer to polymer 

state is consistent with the initial assembly process being driven mainly by hydrophobic 

associations [4] However, the temperature at which D72A achieved maximum coacervation 

(40°C) was higher compared to WT (35°C). This result paralleled the findings from dynamic 

light scattering of the tropoelastin solutions at different temperatures. Below 30°C, both 

constructs were in the monomer form, which corresponded to the absence of sample 

turbidity observed during light spectrophotometry. At 30°C, a portion of the WT population 

had aggregated, while the same extent was achieved by D72A only at 35°C, consistent with 

the partial turbidity of each sample at these temperatures. At 35 and 40°C respectively, all 

WT and D72A constructs had formed aggregates, reflecting the maximum turbidity seen for 

both samples at their transition temperatures.  

 The coacervation temperature of tropoelastin species is conventionally linked to the 

endothermic energy required to disrupt hydrogen bonds in the structured water shielding 

hydrophobic domains from self-interaction [289]. The stability of the clathrate water is 

known to be dictated by protein hydrophobicity, as supported by studies showing a strong 
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inverse correlation between coacervation temperature and the number of hydrophobic 

domains [62, 97, 185, 186, 364]. However, WT and D72A possess an equal number of 

hydrophobic regions, and the substitution of the charged aspartate with a more hydrophobic 

alanine [97] in D72A should negligibly increase overall hydrophobicity and decrease 

coacervation temperature. Instead, the increased coacervation temperature of D72A reflects 

a higher energy requirement for the disruption of bound water, indicating altered protein 

hydration that is likely unrelated to changes in protein hydropathy. Such changes in protein 

hydration may conceivably arise from structural differences between WT and D72A.  

 Kinetic differences were also observed in the initial assembly of WT and D72A 

tropoelastin. At temperatures up to 50°C, D72A consistently required a longer coacervation 

time than WT, although the difference was more pronounced within the physiological 

temperature range. The coacervation time of both constructs decreased with increasing 

temperatures, similar to previous findings on tropoelastin isoforms [275], until reaching 

parity at 55-60°C. The rate of tropoelastin coacervation has likewise been associated with 

protein hydropathy, as greater cooperativity between a larger number of hydrophobic 

segments would increase the efficiency of self-assembly [70]. However, the slower 

coacervation of D72A cannot be attributed to a loss of hydrophobic regions, which again 

suggests possible conformational changes in the mutant construct that alter the exposure or 

proximity of interacting hydrophobic domains.  

 Apart from the differences in the coacervation temperature and time of WT and 

D72A tropoelastin, the full-sized WT coacervates were more than four times larger than 

those of D72A. This was observed even at high temperatures which allow WT and D72A 

coacervation to proceed fully and at a similar rate. Tropoelastin assemblies cannot expand 

indefinitely and reach a maximum of 2-6 m [11], which suggests an inherent size limitation 

due to the arrangement of monomers within the coacervated species. The smaller end size of 
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D72A assemblies therefore implies a different self-organisation of mutant constructs that 

precludes expansion to the same extent as WT. This may also potentially result from 

structural changes in the individual D72A monomers that affect intermolecular packing 

within the coacervated species. 

 It is interesting that a single amino acid mutation in the hydrophilic domain 6 of 

tropoelastin impairs its ability to coacervate normally, since the process is thought to be 

dominated by the large hydrophobic domains in the central region of tropoelastin, such as 

domains 18, 26, 28 and 30 [70, 108]. Furthermore, multiple site mutations in the more 

proximal domain 20 did not affect the coacervation profile of full-length tropoelastin 

variants [35], concordant with the relatively high allowance for sequence polymorphisms in 

the hydrophobic regions of tropoelastin [21]. The impact of the D72A mutation on 

tropoelastin coacervation implicates the involvement of the N-terminal segment in this 

initial assembly process. This is supported by the ability of elastin peptides containing 

domains 2-7 to coacervate into structures reminiscent of those formed by the full-length 

monomer [357]. 
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6.3.4 Cross-linking studies 

 The ability of tropoelastin to be cross-linked strongly corresponds to its propensity to 

be incorporated into insoluble elastic fibres. Cross-linking of WT and D72A was modelled 

in extracellular temperature, salt and pH conditions with the amine-reactive 

homobifunctional chemical cross-linker BS3 [290]. This approach identifies tropoelastin 

regions aligned by coacervation and approximates in vivo enzymatic cross-linking by lysyl 

oxidase [44, 178]. A six-fold molar excess of BS3 allowed complete cross-linking of WT 

and D72A, as evidenced by the absence of monomers in the aqueous solution left after 

hydrogel formation.  

 The WT and D72A elastin hydrogels showed distinct differences in morphological 

and functional properties. Three-dimensional reconstruction of the hydrogels by micro-CT 

illustrated the stark contrast between the open porous network of the WT construct, which 

was consistent with the fibrous nature of physiological elastin [8, 13, 14, 365], and the 

compact layered structure of the D72A material. This compositional difference 

corresponded to a 34% decrease in the calculated porosity of D72A hydrogels compared to 

WT hydrogels. The porosity of a polymer is known to depend on the separation kinetics of 

the initially homogeneous mixture into the polymer and aqueous phases [291, 292]. Since 

the WT and D72A hydrogels were constructed under identical conditions, variations in 

phase separation are likely due to inherent differences in the rate and extent of the 

polymerisation, i.e. cross-linking, process between molecules.  

 The observed structural differences between WT and D72A hydrogels are congruent 

with their differential swelling properties in water. The D72A material allowed significantly 

less water uptake compared to the WT, which reflected their reduced porosity and dense 

structure. The extent of hydrogel swelling is classically reliant upon solvent-polymer 

interactions. Solvent influx elongates the junctions of the cross-linked material and 
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decreases the conformational space of flexible hydrophobic segments within the rigid cross-

linked domains [76, 188]. This resulting decrease in entropy is compensated for by an 

increase in entropy attributed to the mixing of solvent and the bulk water within the polymer 

[189]. In these swelling experiments where the nature of the solvent is kept constant, the 

primary determinant of hydrogel fluid uptake is the extent and nature of cross-linking within 

the material. 

 High resolution analyses of WT and D72A hydrogel surfaces via SEM confirmed the 

morphological differences initially observed with micro-CT imaging. The top surface of WT 

hydrogels consisted of a fibrous network with large pore sizes consistent with previously 

reported values [20]. This composition reflects that expected at the final stage of synthetic 

elastin assembly, in which linked tropoelastin spheres consolidate to form porous structures 

[296]. In contrast, the top surface of D72A hydrogels was characterised by a minimally 

porous, smooth, dense sheet that mirrors the structure formed after tropoelastin coalescence 

[366], as well as the bottom surfaces of WT and D72A hydrogels. The vastly dissimilar 

surface features of both types of hydrogels strongly suggest differences between WT and 

D72A cross-linking and in the resultant cross-linked structures.  

 Tropoelastin cross-linking, whether by lysyl oxidase or BS3, is known to be enriched 

in the central region spanning domains 19-25 [143, 282]. The abnormal cross-linking of 

D72A tropoelastin may result from differential assembly of the initial coacervated species, 

as misalignments between monomers can potentially affect the formation of native cross-

links within the central domains. In addition, domain 6 has also been shown to directly 

participate in tropoelastin cross-linking. Its K78 residue is thought to bind to the K696 of 

domain 36 in an intermolecular linkage [143], while its K81 contacts K111 of domain 8 via 

an intramolecular bond [282]. The involvement of domain 6 in cross-linking is consistent 

with the surface accessibility of the N-terminal region [362], as supported by the presence of 
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a protease susceptible K152 site in domain 10 [367]. The participation of domain 6 in cross-

linking therefore suggests that the process may be affected even by subtle local 

conformational shifts arising from the D72A mutation that disturb the juxtaposition of 

interacting lysine residues. Depending on the scale of the structural changes that occur, 

cross-link formation by the proximal domains 12-14 [143, 282] may also be altered. 
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6.3.5 Attachment to human dermal fibroblasts 

 WT and D72A tropoelastin coated on tissue culture plastic promoted the adhesion of 

human dermal fibroblasts in a concentration-dependent but saturable manner similar to 

previous reports [45, 179]. At each tropoelastin concentration, there was no difference in the 

extent of cell attachment to WT and D72A. However, the comparative binding properties of 

both tropoelastin constructs cannot be extrapolated to other cell types. Human dermal 

fibroblasts are known to attach via the αvβ3 integrin primarily to the tropoelastin C-terminus 

[18, 297], specifically the terminal GRKRK residues [179]. While integrins are the major 

adhesion receptors for most extracellular matrix molecules [45], other cell type-specific 

receptors also mediate attachment to tropoelastin [18]. These cell-surface 

glycosaminoglycans such as heparin sulfate and chondroitin sulfate are also thought to 

interact with tropoelastin at or near its C-terminal domain [45]. 

 The comparable levels of fibroblast adhesion to WT and D72A therefore indicate a 

similar extent of C-terminal accessibility in the surface-bound tropoelastin constructs. The 

results further suggest that any structural changes in D72A tropoelastin are most likely 

localised to the N-terminal segment, as conformational adjustments to the central bridge 

region can still influence the orientation of the C-terminus [184].  
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6.3.6 Elastic fibre assembly 

 Exogenous tropoelastin added to the culture media of elastogenic cells has been 

shown to be capably assembled into elastic fibres [202, 203]. The addition of WT 

tropoelastin to human dermal fibroblast cultures induced the linear clustering of tropoelastin 

spherules after one day, the establishment of defined elastic fibres after four days, and their 

progressive development into a more extensive network by seven and ten days. In stark 

contrast, D72A tropoelastin added to the fibroblast cells was unable to form large spherules 

or elastic fibres. This is less likely to be caused by impaired cellular binding proposed to be 

essential for the anchorage of the elastic network [179], as D72A displayed comparable 

fibroblast adhesion to the WT isoform. Rather, its inability to form elastic fibres may be a 

cumulative effect of impaired self-assembly and deficient interactions with extracellular 

matrix components. For instance, early contacts between tropoelastin and fibrillin-1, the 

main component of microfibrils, are thought to be dually important for further alignment of 

the tropoelastin coacervates prior to cross-linking [368], and for tropoelastin deposition onto 

microfibrils [128, 130, 369]. The microfibrillar deposition of tropoelastin has classically 

been attributed to its C-terminal domains [122]; however, the N-terminal domains 4-6 of 

tropoelastin have also been found to bind the shoulder interbead region [130] of fibrillin-1 

with high affinity [135]. This suggests that structural changes in D72A occurring around 

residue 72 of domain 6 may negatively affect contacts with fibrillin-1, thus impairing 

tropoelastin deposition on the microfibrillar scaffold and subsequent cross-linking into 

stable elastic fibres.  

 The addition of WT and D72A monomers to ARPE-19 cells, which express the 

major elastogenic components except tropoelastin [140], confirmed the impaired elastogenic 

ability of the D72A construct, albeit to a lesser degree than that observed in dermal 

fibroblasts. The WT species efficiently organised into linear assemblies after one day and 
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into an abundant elastic fibre network after four days. In contrast, the D72A constructs 

initially remained dispersed in the extracellular space, which may be associated with their 

reduced propensity for self-association, but subsequently formed elastic fibres with atypical 

properties. The decreased immunofluorescence of D72A fibres may arise from a fewer 

number of tropoelastin monomers within the fibre, or from reduced accessibility of 

antibody-targeted motifs that implies differential tropoelastin packing within the fibre. The 

decreased autofluorescence of D72A fibres implicates altered elastin cross-linking [257, 

258], which may at least partially result from disruptions or modifications to linkages 

participated in by domain 6 [282]. The impaired coacervation and cross-linking of D72A, 

coupled with posited deficient interactions with elastogenic proteins, all potentially 

contribute to the lower abundance of D72A elastic fibres compared to WT.  

 In addition, the variable elastogenic capability of D72A tropoelastin between 

fibroblast and ARPE-19 cell types is likely due to the different environments created by 

tissue-specific expression of cell receptors [260] and extracellular matrix components 

including fibrillins [261-265], lysyl oxidase enzymes [141] and microfibril-associated 

glycoproteins [266, 267]. The tissue-specific elastogenic environments may select against 

D72A constructs to varying degrees, in accordance with specific functional prerequisites for 

the assembled elastic fibre. This is supported by the visibly different morphology of WT 

elastic fibres formed in fibroblast and ARPE-19 cell lines. 

 

  



__________________________________________________________________Chapter 6 

326 

 

6.3.7 Structural studies 

6.3.7.1 Antibody detection 

 The altered self-assembly and elastogenic properties of D72A tropoelastin provide 

strong support for the presence of conformational changes in the monomer. Antibodies 

targeted against specific tropoelastin regions were used in ELISAs as a preliminary tool for 

probing the location and extent of these potential structural changes in D72A. Compared to 

the WT species, D72A displayed equal levels of detection by both the BA4 and the anti-C-

terminal peptide antibodies. The BA4 anti-elastin antibody is known to react predominantly 

with the VGVAPG hexapeptide in domain 24 that serves as the elastin binding protein 

ligand, and to lesser extent other hydrophobic sequences throughout the molecule that 

follow the xGxxPG or xGxPGx motifs [298, 299]. On the other hand, the anti-C-terminal 

peptide antibody has been designed and experimentally validated to specifically target the 

tropoelastin domain 36, which also contains the main binding site to dermal fibroblasts. 

Comparable binding of both antibodies to WT and D72A indicates similar exposure of their 

central and C-terminal regions, thus suggesting preservation of the native conformation of 

these regions in the D72A mutant.  

 In contrast, the polyclonal antibody targeted against domain 6 exhibited significantly 

reduced binding to D72A compared to WT, even at excess tropoelastin coating 

concentrations. This decreased antibody detection may be caused in part by the mutation-

derived abolishment of the recognition site of a number of antibodies within the polyclonal 

population, and in part by the partial inaccessibility of domain 6 in the D72A construct. This 

strongly points to the likelihood of a conformational shift in this region of D72A.  
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6.3.7.2 Secondary structure analysis 

 The far-UV CD profiles of WT and D72A tropoelastin were compared to determine 

potential differences in secondary structure composition. The CD spectra of both constructs 

possessed features characteristic of tropoelastin, such as the negative peak at ~200 nm 

corresponding to unstructured hydrophobic domains, and the negative shoulder at ~220 nm 

attributed to alpha-helical content [109, 110, 273]. The secondary structure compositions of 

WT and D72A were calculated to be similar, with a major percentage allocated to unordered 

regions consistent with the flexible nature of tropoelastin [54, 320], and decreasing amounts 

of beta-sheet, turn, polyproline II helix and alpha-helix structures.  

 By directly comparing the WT and D72A CD spectra, small local differences in 

secondary structure may not be resolved, particularly in the context of the whole tropoelastin 

molecule. Subtracting the WT spectrum from that of D72A may help magnify such 

differences. Using this approach, D72A appears to have a slight reduction in alpha-helical 

structure, with a concurrent increase in unordered regions. These differences, however, were 

not statistically significant. 

The propensity for alpha-helix formation in peptides has been directly correlated to 

the number of consecutive alanine residues [75]. As evidence, peptides corresponding to 

tropoelastin domains 6 and 31, which have 4 alanines each, possessed fewer alpha-helices 

than the domain 21 peptide which contains 5 alanines [75]. The aspartate-to-alanine 

mutation in the D72A construct would adjoin the preceding A71 residue to the downstream 

A73 to A76 tetra-alanines to form a hexa-alanine sequence that would theoretically have a 

higher predisposition for alpha-helix formation. However, the stability of this nascent helix 

structure may be affected by the substitution of the N-terminal alpha-helical capping residue 

from the native aspartate at position 72 to a valine at position 70 in the mutant isoform. 

While the negatively-charged aspartate is the second most preferred N-capping residue in 
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alpha-helical peptides, valine is the third least favourable among the 20 amino acids [370]. 

Given the established role of alpha-helices in positioning lysine residues for cross-linking 

[58], potential changes to the alpha-helical formation of domain 6 may mechanistically 

explain the observed impairment in D72A assembly.   

 

6.3.7.3 Solution structure 

 The WT and D72A solution structures modelled from SAXS data showed a similar 

overall shape consisting of the rod-like N-terminal coil region, the looped hinge and bridge 

regions, and the open C-terminal foot region, which are consistent with the reported 

structural features of human tropoelastin [72]. Alignment of the WT and D72A models 

localised the main structural difference between the constructs to the N-terminal region. 

Previous structural characterisation of a truncated tropoelastin isoform spanning domains 2-

18 indicated shape congruence with the N-terminal coil, and thus allowed the assignment of 

domains 2-18 to this region [72]. Domain 6, which contains D72, is expected to lie within 

this coil region of tropoelastin.  

 The D72A mutation in tropoelastin is clearly associated with an altered curvature and 

orientation of the segment spanning the N-terminus to the mid-section of the coil region. 

This structural deviation may be contributed to by possible destabilisation of alpha-helices 

in domain 6. These results suggests for the first time a role for the D72 residue in 

maintaining the native conformation of the tropoelastin N-terminal coil, potentially by 

stabilising local secondary structure and/or contacting proximal residues via charge 

interactions. D72 was modelled to contact the positively-charged K78 residue in domain 6 

(Figure 6.22). Such an interaction would constrain this region and allow the formation of the 

reported intra-molecular linkage between K81 of domain 6 and K111 of domain 8 [282] 

during in vivo zero-length cross-linking by lysyl oxidase [371, 372]. The D72A mutation 
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would potentially preclude the formation of a stabilising D72-K78 salt bridge and lead to the 

altered N-terminal orientation of the mutant construct.  

 

Figure 6.22. Molecular modelling of potential interactions between the D72 and K78 

residues of tropoelastin, obtained from Anna Tarakanova. The N-terminal coil, hinge, 

bridge and C-terminal foot regions are indicated. 

 

 An N-terminal structural change at the monomer level may account for the altered 

assembly of D72A tropoelastin. Protein hydration changes associated with the 

conformational shift can affect the thermodynamic requirements of coacervation, while 

modifications to the relative position of domains can decrease the efficiency of association 

and hinder native molecular packing within the assembled species. The misalignment of 

cross-linking domains may contribute to deficient or aberrant formation of intramolecular 

and intermolecular linkages, particularly those involving domain 6 and neighbouring 
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domains. Atypical cross-linking of the D72A species is consistent with the structural and 

functional abnormalities of its hydrogel constructs. Evidence of a domain 6-domain 36 

cross-link [143] strengthens a head-to-tail model of tropoelastin assembly [72]. The 

impaired elastogenic ability of D72A tropoelastin directly supports a model in which the 

assembly and architecture of elastin are affected upon perturbations to the tropoelastin N-

terminal segment. 
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7. General discussion 

 This thesis explores the structural and functional properties of a number of 

tropoelastin constructs with sequence mutations at strategic locations within the molecule. 

The observed effects of these mutations on the elastogenic ability of tropoelastin help shed 

light on the significance of these classically under-characterised regions in the monomer 

protein. 

7.1 The R515 residue of the tropoelastin bridge region 

  The tropoelastin bridge region contains a highly-conserved, protease-susceptible 

R515 site situated at the junctions of domains 25 and 26. However, the functional 

significance, if any, of the R515 residue and of the tropoelastin bridge region were 

previously unknown. In vitro characterisation of an R515A tropoelastin mutant 

demonstrated a dramatically impaired self-assembly compared to wild-type tropoelastin, 

including inefficient coacervation, atypical hydrogel formation, and decreased dermal 

fibroblast attachment [184]. These properties of the R515A construct were linked to an 

altered nanostructure which displays greater conformational flexibility around the bridge 

region and C-terminal regions.  

 To assess the elastogenic ability of R515A tropoelastin in a cellular environment, the 

initial approach involved the transfection of ARPE-19 cells and dermal fibroblasts with the 

synthetic WT or R515A gene. The mammalian cell-specific expression vectors were 

successfully constructed via linker-mediated cloning after trialling several cloning strategies. 

The ARPE-19 cells were confirmed to express retinal pigmented epithelium-specific 

markers CRALBP and RPE65 [227, 229], and essential elastogenic components such as 

fibrillin-1 and lysyl oxidase but not tropoelastin [140, 201]. Two types of fibroblasts were 

likewise shown to express the major elastogenic proteins including endogenous tropoelastin, 

although at transcript levels markedly lower than that expected of the recombinant 
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tropoelastin after transfection. However, the propagation of stable transfectants in both 

ARPE-19 cells and fibroblasts was hampered by the loss of the tropoelastin gene over time. 

In contrast, transiently transfected fibroblasts produced fine fibre structures that were 

confirmed by FLIM to be elastic fibres. However, the low extent of elastic fibre assembly 

prevented meaningful analyses of WT and R515A fibre properties. 

 To circumvent the difficulties with tropoelastin synthesis, purified WT and R515A 

constructs were directly added to the culture medium of cells following an in vitro elastic 

fibre assembly model [140]. In the ARPE-19 environment, R515A tropoelastin showed a 

delayed initial self-assembly, and formed fewer fibres with decreased immunofluorescence 

and autofluorescence compared to WT. However, multiple additions of R515A restored the 

resulting fibres to a WT morphology, suggesting that the previously observed differences 

mainly stemmed from monomer loss due to inefficient early-stage assembly. With 

fibroblasts, R515A exhibited a magnified degree of elastogenic impairment, remaining 

predominantly as spherical clusters or as sparse fibres even with repeated additions of the 

construct to the culture medium. These results provide direct evidence of the functional 

consequences of an altered tropoelastin bridge, and elucidate the critical importance of the 

R515 site in stabilising this region for elastic fiber assembly. 
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7.2 The E345 and E414 residues near the tropoelastin hinge region 

 Negatively-charged residues occur rarely in mammalian tropoelastin sequences, but 

consistently appear to be clustered in either domain 6 or the central segment spanning 

domains 19-25. Human tropoelastin contains an E345 in domain 19 and an E414 in domain 

21, which are spatially primed for potential interactions with R515 in the bridge region [72]. 

Three tropoelastin constructs with mutations at either or both glutamate sites were produced 

to explore the previously undetermined role/s of these negatively-charged residues in 

tropoelastin function.  

 Similar to the R515A construct, the E345A, E414A and E345A+E414A mutants all 

displayed higher temperature and time requirements for self-association than the WT species. 

At the temperature at which WT tropoelastin achieved full coacervation (35°C), the mutant 

constructs only partially coacervated to different degrees. They also assembled into full-

sized aggregates at a higher temperature and at a slower rate than WT. In addition, the 

double E345A+E414A mutant showed a more severe impairment than the E345A or E414A 

species in terms of coacervation.  

 Chemically cross-linked E345A, E414A and E345A+E414A hydrogels possessed a 

more compact structure in contrast to the highly porous nature of the WT material. 

Consequently, the mutant hydrogels swelled 2- to 5-fold less than WT. Their surfaces,  

partially reminiscent of the bead-like composition of R515A hydrogels, are composed of 

globules linked by coalesced structures that varied between thin fibres to sheet-like 

fragments among the mutant constructs. Such structures suggest a variably deficient cross-

linking process [271] that appears, however, to have progressed further than that of R515A.  

 The Glu-to-Ala mutants also exhibited a 21-34% decrease in dermal fibroblast 

attachment compared to WT, most likely due to a confirmed decrease in the accessibility of 

their cell-interactive C-terminal regions [179]. The mutant constructs displayed significant 
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elastogenic impairment when added to cultured fibroblasts. While WT monomers assembled 

into defined elastic fibres, E414A and E345A+E414A tropoelastin, like R515A, formed 

fibres with reduced immunofluorescence and abundance, indicating inefficient early-stage 

assembly and an atypical monomer arrangement within the elastic fibre. The E345A species 

did not form elastic fibres at all, suggesting an incompatibility of the monomer or assembled 

species with the elastogenic requirements of the fibroblastic environment.  

 The WT and mutant constructs indicated no differences in their secondary structure 

composition. Their solution structures exhibited the known features of normal tropoelastin 

[72], but with distinct conformational changes in the central to C-terminal regions. E345A 

possessed a slightly elongated hinge and shortened bridge, leading to a contracted C-

terminus. In marked contrast, E414A showed an enlarged hinge and an extended bridge, 

resulting in a protruded C-terminus. The E345A+E414A shape also possessed a bulkier 

hinge but without significant changes in the length of the bridge and C-terminal regions. 

These results contribute to a model in which the central domains 19-25 are positioned 

symmetrically from the established domain 21/23 hinge [74]. This loop region may be 

stabilised by interactions between E345 and domains 25/26, and between E414 and domain 

23 [73]. The loss of one glutamate may induce aberrant local structures that contract or 

extend the bridge, which in turn affects the tropoelastin C-terminal orientation as previously 

reported. The loss of both glutamates may reduce this occurrence, but potential 

destabilisation of the loop region can alter the positions of coacervation and cross-linking 

domains that affect elastin assembly. These findings strongly illustrate the significance of 

negatively-charged sites in the central region of tropoelastin. 
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7.3 The domain 22 of tropoelastin 

 The tropoelastin hinge region is formed by the consecutive hydrophilic domains 

encoded by exons 21 and 23 [73, 74]. The formation of this flexible structure results from 

the constitutive splicing out of exon 22 in human tropoelastin transcripts [34], which may 

mechanistically be due to the deviation of the exon 22 acceptor splice and branch point from 

consensus sequences, and a greater than optimum distance between the branch point and 

acceptor site. The reasons for the constitutive exclusion of exon 22 in human tropoelastin 

were previously unknown, particularly since this exon remains expressed in bovine, mouse 

and rat tropoelastin [33, 317, 318]. The selective pressures against exon 22 in human 

tropoelastin were explored with an EX22 construct, which contains the hydrophobic domain 

22 between domains 21 and 23.    

 EX22 exhibited normal self-association with a similar coacervation temperature and 

a slightly higher coacervation rate than WT, indicating that the presence of domain 22 does 

not significantly affect the intrinsic coacervation ability of tropoelastin. However, EX22 

showed aberrant assembly into higher order structures. EX22 hydrogels were densely 

stacked with very low porosity, and accordingly displayed reduced swelling on hydration. 

Their atypical composition relative to the WT material is consistent with differential cross-

linking. 

 EX22 was inefficiently utilized by cells for incorporation into the elastic matrix. 

When added to dermal fibroblasts, EX22 species did not progress beyond spherule assembly 

at lower concentrations of exogenous tropoelastin. This was only partially compensated for 

by the addition of excess EX22 monomers. With ARPE-19 cells, EX22 formed elastic fibers 

that were morphologically different and fewer in number than WT fibres. The thicker EX22 

fibres appear characteristic of skin elastic fibres in mammals which express tropoelastin 

containing domain 22 [326]. 
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 The solution structure of EX22 revealed a bulkier hinge/bridge region and a 

displaced C-terminus, consistent with the decreased antibody exposure of the central and C-

terminal regions. The domain 21/23 tropoelastin hinge represents a highly flexible region 

that can access a broad conformational space [324]. The insertion of domain 22 into the 

hinge region would most likely induce steric constraints that disrupt the native hinge 

structure [325]. These structural changes were observed to translate into differences in 

intermolecular interactions during assembly, and consequentially in the assembled structure. 

These findings identity for the first time the deleterious impact of domain 22 expression on 

the structure and assembly of human tropoelastin, supporting strong functional advantages 

for its constitutive exclusion in human elastin. 
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7.4 The D72 residue of the tropoelastin N-terminal region 

 The only other negatively-charged residue in human tropoelastin, other than E345 

and E414, lies within the N-terminal domain 6. This D72 site is conserved in a number of 

mammalian tropoelastin sequences, while others contain a negatively-charged glutamate 

residue similarly localised in domain 6 [183]. The role of D72 in tropoelastin function has 

never been explored; in fact, the tropoelastin N-terminal region is largely uncharacterised in 

terms of its participation in elastin assembly. 

 A D72A construct was produced to determine the effects of abolishing this D72 site 

in tropoelastin. The mutant displayed a lower propensity to coacervate, as evidenced by the 

higher temperature and longer time requirements for self-association. The full-sized D72A 

coacervates were also markedly smaller than the WT assemblies, suggesting that D72A not 

only undergoes less efficient early stage assembly but also forms differently-arranged 

coacervates. Hydrogels constructed from D72A likewise possessed an abnormally compact 

structure of stacked sheets with significantly reduced porosity and swelling capacity. This 

strongly implies an altered cross-linking process in D72A tropoelastin, potentially due in 

part to affected contacts involving the cross-linking domain 6 [143, 282].  

 Upon addition to a cellular environment, D72A monomers did not assemble into 

elastic fibres in fibroblast cultures, and formed only sparse, morphologically atypical fibres 

in ARPE-19 cells. This elastogenic deficiency of D72A is unlikely due to decreased cellular 

attachment, as evidenced by a comparable cell binding ability to WT. Rather, it is probably 

attributed to its intrinsically impaired self-assembly and interaction with extracellular matrix 

components such as fibrillin-1 [135].  

 Antibody detection of surface-bound D72A indicated equal exposure of the central 

and C-terminal regions to those of the WT species; however, the D72A N-terminal region is 

partially inaccessible, suggesting a conformational change in this section of the mutant 
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construct. The nanostructure of D72A confirmed an altered curvature of the N-terminal coil 

extending from the N-terminus to the midsection of this region. While no significant 

secondary structure change was observed in the whole protein, small local changes arising 

from alpha-helix destabilisation may be present and potentially contribute to the structural 

deviation of the N-terminal region. These results point to the role of D72 in maintaining the 

structure of the N-terminal region, which is also critical for normal elastogenic function of 

tropoelastin. 

 

7.5 Conclusion 

 This thesis identifies specific residues and regions of human tropoelastin necessary 

for maintaining its native structure and function. The described results clarify the 

significance of the R515 residue in the bridge region, the negatively-charged E345, E414 

and D72 sites in the central and N-terminal regions, and the constitutive exclusion of domain 

22 in the hinge region. The non-conservative substitution of these residues, as well as the 

addition of domain 22, are associated with conformational changes at specific regions of 

tropoelastin and a dramatic impairment of protein self-assembly, which ultimately translate 

to a markedly reduced elastogenic potential. By recognising the independent and cooperative 

roles of the tropoelastin bridge, hinge and N-terminal regions, this work contributes to an 

improved understanding of the structure-function relationship in and between human 

tropoelastin molecules. 
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8. Appendices 

8.1 WT DNA sequence 

WT         ATGGGTGGCGTTCCGGGTGCTATCCCGGGTGGCGTTCCGGGTGGTGTATTCTACCCAGGC 60 

WT         GCGGGTCTGGGTGCACTGGGCGGTGGTGCGCTGGGCCCGGGTGGTAAACCGCTGAAACCG 120 

WT         GTTCCAGGCGGTCTGGCAGGTGCTGGTCTGGGTGCAGGTCTGGGCGCGTTCCCGGCGGTT 180 

WT         ACCTTCCCGGGTGCTCTGGTTCCGGGTGGCGTTGCAGACGCAGCTGCTGCGTACAAAGCG 240 

WT         GCAAAGGCAGGTGCGGGTCTGGGCGGGGTACCAGGTGTTGGCGGTCTGGGTGTATCTGCT 300 

WT         GGCGCAGTTGTTCCGCAGCCGGGTGCAGGTGTAAAACCGGGCAAAGTTCCAGGTGTTGGT 360 

WT         CTGCCGGGCGTATACCCGGGTGGTGTTCTGCCGGGCGCGCGTTTCCCAGGTGTTGGTGTA 420 

WT         CTGCCGGGCGTTCCGACCGGTGCAGGTGTTAAACCGAAGGCACCAGGTGTAGGCGGCGCG 480 

WT         TTCGCGGGTATCCCGGGTGTTGGCCCGTTCGGTGGTCCGCAGCCAGGCGTTCCGCTGGGT 540 

WT         TACCCGATCAAAGCGCCGAAGCTTCCAGGTGGCTACGGTCTGCCGTACACCACCGGTAAA 600 

WT         CTGCCGTACGGCTACGGTCCGGGTGGCGTAGCAGGTGCTGCGGGTAAAGCAGGCTACCCA 660 

WT         ACCGGTACTGGTGTTGGTCCGCAGGCTGCTGCGGCAGCTGCGGCGAAGGCAGCAGCAAAA 720 

WT         TTCGGCGCGGGTGCAGCGGGTGTTCTGCCGGGCGTAGGTGGTGCTGGCGTTCCGGGTGTT 780 

WT         CCAGGTGCGATCCCGGGCATCGGTGGTATCGCAGGCGTAGGTACTCCGGCGGCCGCTGCG 840 

WT         GCTGCGGCAGCTGCGGCGAAAGCAGCTAAATACGGTGCGGCAGCAGGCCTGGTTCCGGGT 900 

WT         GGTCCAGGCTTCGGTCCGGGTGTTGTAGGCGTTCCGGGTGCTGGTGTTCCGGGCGTAGGT 960 

WT         GTTCCAGGTGCGGGCATCCCGGTTGTACCGGGTGCAGGTATCCCGGGCGCTGCGGTTCCA 1020 

WT         GGTGTTGTATCCCCGGAAGCGGCAGCTAAGGCTGCTGCGAAAGCTGCGAAATACGGAGCT 1080 

WT         CGTCCGGGCGTTGGTGTTGGTGGCATCCCGACCTACGGTGTAGGTGCAGGCGGTTTCCCA 1140 

WT         GGTTTCGGCGTTGGTGTTGGTGGCATCCCGGGTGTAGCTGGTGTTCCGTCTGTTGGTGGC 1200 

WT         GTACCGGGTGTTGGTGGCGTTCCAGGTGTAGGTATCTCCCCGGAAGCGCAGGCAGCTGCG 1260 

WT         GCAGCTAAAGCAGCGAAGTACGGCGTTGGTACTCCGGCGGCAGCAGCTGCTAAAGCAGCG 1320 

WT         GCTAAAGCAGCGCAGTTCGGACTAGTTCCGGGCGTAGGTGTTGCGCCAGGTGTTGGCGTA 1380 

WT         GCACCGGGTGTTGGTGTTGCTCCGGGCGTAGGTCTGGCACCGGGTGTTGGCGTTGCACCA 1440 

WT         GGTGTAGGTGTTGCGCCGGGCGTTGGTGTAGCACCGGGTATCGGTCCGGGTGGCGTTGCG 1500 

WT         GCTGCTGCGAAATCTGCTGCGAAGGTTGCTGCGAAAGCGCAGCTGCGTGCAGCAGCTGGT 1560 

WT         CTGGGTGCGGGCATCCCAGGTCTGGGTGTAGGTGTTGGTGTTCCGGGCCTGGGTGTAGGT 1620 

WT         GCAGGGGTACCGGGCCTGGGTGTTGGTGCAGGCGTTCCGGGTTTCGGTGCTGTTCCGGGC 1680 

WT         GCGCTGGCTGCTGCGAAAGCGGCGAAATACGGTGCAGCGGTTCCGGGTGTACTGGGCGGT 1740 

WT         CTGGGTGCTCTGGGCGGTGTTGGTATCCCGGGCGGTGTTGTAGGTGCAGGCCCAGCTGCA 1800 

WT         GCTGCTGCTGCGGCAAAGGCAGCGGCGAAAGCAGCTCAGTTCGGTCTGGTTGGTGCAGCA 1860 
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WT         GGTCTGGGCGGTCTGGGTGTTGGCGGTCTGGGTGTACCGGGCGTTGGTGGTCTGGGTGGC 1920 

WT         ATCCCGCCGGCGGCGGCAGCTAAAGCGGCTAAATACGGTGCAGCAGGTCTGGGTGGCGTT 1980 

WT         CTGGGTGGTGCTGGTCAGTTCCCACTGGGCGGTGTAGCGGCACGTCCGGGTTTCGGTCTG 2040 

WT         TCCCCGATCTTCCCAGGCGGTGCATGCCTGGGTAAAGCTTGCGGCCGTAAACGTAAATAA 2100 

 

Figure 8.1. DNA sequence of the WT tropoelastin construct. 
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8.2 R515A DNA sequence 

R515A        ATGGGTGGCGTTCCGGGTGCTATCCCGGGTGGCGTTCCGGGTGGTGTATTCTACCCAGGC 60 

R515A        GCGGGTCTGGGTGCACTGGGCGGTGGTGCGCTGGGCCCGGGTGGTAAACCGCTGAAACCG 120 

R515A        GTTCCAGGCGGTCTGGCAGGTGCTGGTCTGGGTGCAGGTCTGGGCGCGTTCCCGGCGGTT 180 

R515A        ACCTTCCCGGGTGCTCTGGTTCCGGGTGGCGTTGCAGACGCAGCTGCTGCGTACAAAGCG 240 

R515A        GCAAAGGCAGGTGCGGGTCTGGGCGGGGTACCAGGTGTTGGCGGTCTGGGTGTATCTGCT 300 

R515A        GGCGCAGTTGTTCCGCAGCCGGGTGCAGGTGTAAAACCGGGCAAAGTTCCAGGTGTTGGT 360 

R515A        CTGCCGGGCGTATACCCGGGTGGTGTTCTGCCGGGCGCGCGTTTCCCAGGTGTTGGTGTA 420 

R515A        CTGCCGGGCGTTCCGACCGGTGCAGGTGTTAAACCGAAGGCACCAGGTGTAGGCGGCGCG 480 

R515A        TTCGCGGGTATCCCGGGTGTTGGCCCGTTCGGTGGTCCGCAGCCAGGCGTTCCGCTGGGT 540 

R515A        TACCCGATCAAAGCGCCGAAGCTTCCAGGTGGCTACGGTCTGCCGTACACCACCGGTAAA 600 

R515A        CTGCCGTACGGCTACGGTCCGGGTGGCGTAGCAGGTGCTGCGGGTAAAGCAGGCTACCCA 660 

R515A        ACCGGTACTGGTGTTGGTCCGCAGGCTGCTGCGGCAGCTGCGGCGAAGGCAGCAGCAAAA 720 

R515A        TTCGGCGCGGGTGCAGCGGGTGTTCTGCCGGGCGTAGGTGGTGCTGGCGTTCCGGGTGTT 780 

R515A        CCAGGTGCGATCCCGGGCATCGGTGGTATCGCAGGCGTAGGTACTCCGGCGGCCGCTGCG 840 

R515A        GCTGCGGCAGCTGCGGCGAAAGCAGCTAAATACGGTGCGGCAGCAGGCCTGGTTCCGGGT 900 

R515A        GGTCCAGGCTTCGGTCCGGGTGTTGTAGGCGTTCCGGGTGCTGGTGTTCCGGGCGTAGGT 960 

R515A        GTTCCAGGTGCGGGCATCCCGGTTGTACCGGGTGCAGGTATCCCGGGCGCTGCGGTTCCA 1020 

R515A        GGTGTTGTATCCCCGGAAGCGGCAGCTAAGGCTGCTGCGAAAGCTGCGAAATACGGAGCT 1080 

R515A        CGTCCGGGCGTTGGTGTTGGTGGCATCCCGACCTACGGTGTAGGTGCAGGCGGTTTCCCA 1140 

R515A        GGTTTCGGCGTTGGTGTTGGTGGCATCCCGGGTGTAGCTGGTGTTCCGTCTGTTGGTGGC 1200 

R515A        GTACCGGGTGTTGGTGGCGTTCCAGGTGTAGGTATCTCCCCGGAAGCGCAGGCAGCTGCG 1260 

R515A        GCAGCTAAAGCAGCGAAGTACGGCGTTGGTACTCCGGCGGCAGCAGCTGCTAAAGCAGCG 1320 

R515A        GCTAAAGCAGCGCAGTTCGGACTAGTTCCGGGCGTAGGTGTTGCGCCAGGTGTTGGCGTA 1380 

R515A        GCACCGGGTGTTGGTGTTGCTCCGGGCGTAGGTCTGGCACCGGGTGTTGGCGTTGCACCA 1440 

R515A        GGTGTAGGTGTTGCGCCGGGCGTTGGTGTAGCACCGGGTATCGGTCCGGGTGGCGTTGCG 1500 

R515A        GCTGCTGCGAAATCTGCTGCGAAGGTTGCTGCGAAAGCGCAGCTGGCAGCAGCAGCTGGT 1560 

R515A        CTGGGTGCGGGCATCCCAGGTCTGGGTGTAGGTGTTGGTGTTCCGGGCCTGGGTGTAGGT 1620 

R515A        GCAGGGGTACCGGGCCTGGGTGTTGGTGCAGGCGTTCCGGGTTTCGGTGCTGTTCCGGGC 1680 

R515A        GCGCTGGCTGCTGCGAAAGCGGCGAAATACGGTGCAGCGGTTCCGGGTGTACTGGGCGGT 1740 

R515A        CTGGGTGCTCTGGGCGGTGTTGGTATCCCGGGCGGTGTTGTAGGTGCAGGCCCAGCTGCA 1800 

R515A        GCTGCTGCTGCGGCAAAGGCAGCGGCGAAAGCAGCTCAGTTCGGTCTGGTTGGTGCAGCA 1860 

R515A        GGTCTGGGCGGTCTGGGTGTTGGCGGTCTGGGTGTACCGGGCGTTGGTGGTCTGGGTGGC 1920 

R515A        ATCCCGCCGGCGGCGGCAGCTAAAGCGGCTAAATACGGTGCAGCAGGTCTGGGTGGCGTT 1980 
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R515A        CTGGGTGGTGCTGGTCAGTTCCCACTGGGCGGTGTAGCGGCACGTCCGGGTTTCGGTCTG 2040 

R515A        TCCCCGATCTTCCCAGGCGGTGCATGCCTGGGTAAAGCTTGCGGCCGTAAACGTAAATAA 2100 

 

Figure 8.2. DNA sequence of the R515A tropoelastin construct. The underlined codon 

encodes the A515 residue. 
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8.3 E345A DNA sequence 

E345A        ATGGGTGGCGTTCCGGGTGCTATCCCGGGTGGCGTTCCGGGTGGTGTATTCTACCCAGGC 60 

E345A        GCGGGTCTGGGTGCACTGGGCGGTGGTGCGCTGGGCCCGGGTGGTAAACCGCTGAAACCG 120 

E345A        GTTCCAGGCGGTCTGGCAGGTGCTGGTCTGGGTGCAGGTCTGGGCGCGTTCCCGGCGGTT 180 

E345A        ACCTTCCCGGGTGCTCTGGTTCCGGGTGGCGTTGCAGACGCAGCTGCTGCGTACAAAGCG 240 

E345A        GCAAAGGCAGGTGCGGGTCTGGGCGGGGTACCAGGTGTTGGCGGTCTGGGTGTATCTGCT 300 

E345A        GGCGCAGTTGTTCCGCAGCCGGGTGCAGGTGTAAAACCGGGCAAAGTTCCAGGTGTTGGT 360 

E345A        CTGCCGGGCGTATACCCGGGTGGTGTTCTGCCGGGCGCGCGTTTCCCAGGTGTTGGTGTA 420 

E345A        CTGCCGGGCGTTCCGACCGGTGCAGGTGTTAAACCGAAGGCACCAGGTGTAGGCGGCGCG 480 

E345A        TTCGCGGGTATCCCGGGTGTTGGCCCGTTCGGTGGTCCGCAGCCAGGCGTTCCGCTGGGT 540 

E345A        TACCCGATCAAAGCGCCGAAGCTTCCAGGTGGCTACGGTCTGCCGTACACCACCGGTAAA 600 

E345A        CTGCCGTACGGCTACGGTCCGGGTGGCGTAGCAGGTGCTGCGGGTAAAGCAGGCTACCCA 660 

E345A        ACCGGTACTGGTGTTGGTCCGCAGGCTGCTGCGGCAGCTGCGGCGAAGGCAGCAGCAAAA 720 

E345A        TTCGGCGCGGGTGCAGCGGGTGTTCTGCCGGGCGTAGGTGGTGCTGGCGTTCCGGGTGTT 780 

E345A        CCAGGTGCGATCCCGGGCATCGGTGGTATCGCAGGCGTAGGTACTCCGGCGGCCGCTGCG 840 

E345A        GCTGCGGCAGCTGCGGCGAAAGCAGCTAAATACGGTGCGGCAGCAGGCCTGGTTCCGGGT 900 

E345A        GGTCCAGGCTTCGGTCCGGGTGTTGTAGGCGTTCCGGGTGCTGGTGTTCCGGGCGTAGGT 960 

E345A        GTTCCAGGTGCGGGCATCCCGGTTGTACCGGGTGCAGGTATCCCGGGCGCTGCGGTTCCA 1020 

E345A        GGTGTTGTATCCCCGGCAGCGGCAGCTAAGGCTGCTGCGAAAGCTGCGAAATACGGAGCT 1080 

E345A        CGTCCGGGCGTTGGTGTTGGTGGCATCCCGACCTACGGTGTAGGTGCAGGCGGTTTCCCA 1140 

E345A        GGTTTCGGCGTTGGTGTTGGTGGCATCCCGGGTGTAGCTGGTGTTCCGTCTGTTGGTGGC 1200 

E345A        GTACCGGGTGTTGGTGGCGTTCCAGGTGTAGGTATCTCCCCGGAAGCGCAGGCAGCTGCG 1260 

E345A        GCAGCTAAAGCAGCGAAGTACGGCGTTGGTACTCCGGCGGCAGCAGCTGCTAAAGCAGCG 1320 

E345A        GCTAAAGCAGCGCAGTTCGGACTAGTTCCGGGCGTAGGTGTTGCGCCAGGTGTTGGCGTA 1380 

E345A        GCACCGGGTGTTGGTGTTGCTCCGGGCGTAGGTCTGGCACCGGGTGTTGGCGTTGCACCA 1440 

E345A        GGTGTAGGTGTTGCGCCGGGCGTTGGTGTAGCACCGGGTATCGGTCCGGGTGGCGTTGCG 1500 

E345A        GCTGCTGCGAAATCTGCTGCGAAGGTTGCTGCGAAAGCGCAGCTGCGTGCAGCAGCTGGT 1560 

E345A        CTGGGTGCGGGCATCCCAGGTCTGGGTGTAGGTGTTGGTGTTCCGGGCCTGGGTGTAGGT 1620 

E345A        GCAGGGGTACCGGGCCTGGGTGTTGGTGCAGGCGTTCCGGGTTTCGGTGCTGTTCCGGGC 1680 

E345A        GCGCTGGCTGCTGCGAAAGCGGCGAAATACGGTGCAGCGGTTCCGGGTGTACTGGGCGGT 1740 

E345A        CTGGGTGCTCTGGGCGGTGTTGGTATCCCGGGCGGTGTTGTAGGTGCAGGCCCAGCTGCA 1800 

E345A        GCTGCTGCTGCGGCAAAGGCAGCGGCGAAAGCAGCTCAGTTCGGTCTGGTTGGTGCAGCA 1860 

E345A        GGTCTGGGCGGTCTGGGTGTTGGCGGTCTGGGTGTACCGGGCGTTGGTGGTCTGGGTGGC 1920 

E345A        ATCCCGCCGGCGGCGGCAGCTAAAGCGGCTAAATACGGTGCAGCAGGTCTGGGTGGCGTT 1980 
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E345A        CTGGGTGGTGCTGGTCAGTTCCCACTGGGCGGTGTAGCGGCACGTCCGGGTTTCGGTCTG 2040 

E345A        TCCCCGATCTTCCCAGGCGGTGCATGCCTGGGTAAAGCTTGCGGCCGTAAACGTAAATAA 2100 

 

Figure 8.3. DNA sequence of the E345A tropoelastin construct. The underlined codon 

encodes the A345 residue. 

  



________________________________________________________________Appendices 

345 

 

8.4 E414A DNA sequence 

E414A        ATGGGTGGCGTTCCGGGTGCTATCCCGGGTGGCGTTCCGGGTGGTGTATTCTACCCAGGC 60 

E414A        GCGGGTCTGGGTGCACTGGGCGGTGGTGCGCTGGGCCCGGGTGGTAAACCGCTGAAACCG 120 

E414A        GTTCCAGGCGGTCTGGCAGGTGCTGGTCTGGGTGCAGGTCTGGGCGCGTTCCCGGCGGTT 180 

E414A        ACCTTCCCGGGTGCTCTGGTTCCGGGTGGCGTTGCAGACGCAGCTGCTGCGTACAAAGCG 240 

E414A        GCAAAGGCAGGTGCGGGTCTGGGCGGGGTACCAGGTGTTGGCGGTCTGGGTGTATCTGCT 300 

E414A        GGCGCAGTTGTTCCGCAGCCGGGTGCAGGTGTAAAACCGGGCAAAGTTCCAGGTGTTGGT 360 

E414A        CTGCCGGGCGTATACCCGGGTGGTGTTCTGCCGGGCGCGCGTTTCCCAGGTGTTGGTGTA 420 

E414A        CTGCCGGGCGTTCCGACCGGTGCAGGTGTTAAACCGAAGGCACCAGGTGTAGGCGGCGCG 480 

E414A        TTCGCGGGTATCCCGGGTGTTGGCCCGTTCGGTGGTCCGCAGCCAGGCGTTCCGCTGGGT 540 

E414A        TACCCGATCAAAGCGCCGAAGCTTCCAGGTGGCTACGGTCTGCCGTACACCACCGGTAAA 600 

E414A        CTGCCGTACGGCTACGGTCCGGGTGGCGTAGCAGGTGCTGCGGGTAAAGCAGGCTACCCA 660 

E414A        ACCGGTACTGGTGTTGGTCCGCAGGCTGCTGCGGCAGCTGCGGCGAAGGCAGCAGCAAAA 720 

E414A        TTCGGCGCGGGTGCAGCGGGTGTTCTGCCGGGCGTAGGTGGTGCTGGCGTTCCGGGTGTT 780 

E414A        CCAGGTGCGATCCCGGGCATCGGTGGTATCGCAGGCGTAGGTACTCCGGCGGCCGCTGCG 840 

E414A        GCTGCGGCAGCTGCGGCGAAAGCAGCTAAATACGGTGCGGCAGCAGGCCTGGTTCCGGGT 900 

E414A        GGTCCAGGCTTCGGTCCGGGTGTTGTAGGCGTTCCGGGTGCTGGTGTTCCGGGCGTAGGT 960 

E414A        GTTCCAGGTGCGGGCATCCCGGTTGTACCGGGTGCAGGTATCCCGGGCGCTGCGGTTCCA 1020 

E414A        GGTGTTGTATCCCCGGAAGCGGCAGCTAAGGCTGCTGCGAAAGCTGCGAAATACGGAGCT 1080 

E414A        CGTCCGGGCGTTGGTGTTGGTGGCATCCCGACCTACGGTGTAGGTGCAGGCGGTTTCCCA 1140 

E414A        GGTTTCGGCGTTGGTGTTGGTGGCATCCCGGGTGTAGCTGGTGTTCCGTCTGTTGGTGGC 1200 

E414A        GTACCGGGTGTTGGTGGCGTTCCAGGTGTAGGTATCTCCCCGGCAGCGCAGGCAGCTGCG 1260 

E414A        GCAGCTAAAGCAGCGAAGTACGGCGTTGGTACTCCGGCGGCAGCAGCTGCTAAAGCAGCG 1320 

E414A        GCTAAAGCAGCGCAGTTCGGACTAGTTCCGGGCGTAGGTGTTGCGCCAGGTGTTGGCGTA 1380 

E414A        GCACCGGGTGTTGGTGTTGCTCCGGGCGTAGGTCTGGCACCGGGTGTTGGCGTTGCACCA 1440 

E414A        GGTGTAGGTGTTGCGCCGGGCGTTGGTGTAGCACCGGGTATCGGTCCGGGTGGCGTTGCG 1500 

E414A        GCTGCTGCGAAATCTGCTGCGAAGGTTGCTGCGAAAGCGCAGCTGCGTGCAGCAGCTGGT 1560 

E414A        CTGGGTGCGGGCATCCCAGGTCTGGGTGTAGGTGTTGGTGTTCCGGGCCTGGGTGTAGGT 1620 

E414A        GCAGGGGTACCGGGCCTGGGTGTTGGTGCAGGCGTTCCGGGTTTCGGTGCTGTTCCGGGC 1680 

E414A        GCGCTGGCTGCTGCGAAAGCGGCGAAATACGGTGCAGCGGTTCCGGGTGTACTGGGCGGT 1740 

E414A        CTGGGTGCTCTGGGCGGTGTTGGTATCCCGGGCGGTGTTGTAGGTGCAGGCCCAGCTGCA 1800 

E414A        GCTGCTGCTGCGGCAAAGGCAGCGGCGAAAGCAGCTCAGTTCGGTCTGGTTGGTGCAGCA 1860 

E414A        GGTCTGGGCGGTCTGGGTGTTGGCGGTCTGGGTGTACCGGGCGTTGGTGGTCTGGGTGGC 1920 

E414A        ATCCCGCCGGCGGCGGCAGCTAAAGCGGCTAAATACGGTGCAGCAGGTCTGGGTGGCGTT 1980 
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E414A        CTGGGTGGTGCTGGTCAGTTCCCACTGGGCGGTGTAGCGGCACGTCCGGGTTTCGGTCTG 2040 

E414A        TCCCCGATCTTCCCAGGCGGTGCATGCCTGGGTAAAGCTTGCGGCCGTAAACGTAAATAA 2100 

 

Figure 8.4. DNA sequence of the E414A tropoelastin construct. The underlined codon 

encodes the A414 residue. 
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8.5 E345A+E414A DNA sequence 

E345A+E414A    ATGGGTGGCGTTCCGGGTGCTATCCCGGGTGGCGTTCCGGGTGGTGTATTCTACCCAGGC 60 

E345A+E414A    GCGGGTCTGGGTGCACTGGGCGGTGGTGCGCTGGGCCCGGGTGGTAAACCGCTGAAACCG 120 

E345A+E414A    GTTCCAGGCGGTCTGGCAGGTGCTGGTCTGGGTGCAGGTCTGGGCGCGTTCCCGGCGGTT 180 

E345A+E414A    ACCTTCCCGGGTGCTCTGGTTCCGGGTGGCGTTGCAGACGCAGCTGCTGCGTACAAAGCG 240 

E345A+E414A    GCAAAGGCAGGTGCGGGTCTGGGCGGGGTACCAGGTGTTGGCGGTCTGGGTGTATCTGCT 300 

E345A+E414A    GGCGCAGTTGTTCCGCAGCCGGGTGCAGGTGTAAAACCGGGCAAAGTTCCAGGTGTTGGT 360 

E345A+E414A    CTGCCGGGCGTATACCCGGGTGGTGTTCTGCCGGGCGCGCGTTTCCCAGGTGTTGGTGTA 420 

E345A+E414A    CTGCCGGGCGTTCCGACCGGTGCAGGTGTTAAACCGAAGGCACCAGGTGTAGGCGGCGCG 480 

E345A+E414A    TTCGCGGGTATCCCGGGTGTTGGCCCGTTCGGTGGTCCGCAGCCAGGCGTTCCGCTGGGT 540 

E345A+E414A    TACCCGATCAAAGCGCCGAAGCTTCCAGGTGGCTACGGTCTGCCGTACACCACCGGTAAA 600 

E345A+E414A    CTGCCGTACGGCTACGGTCCGGGTGGCGTAGCAGGTGCTGCGGGTAAAGCAGGCTACCCA 660 

E345A+E414A    ACCGGTACTGGTGTTGGTCCGCAGGCTGCTGCGGCAGCTGCGGCGAAGGCAGCAGCAAAA 720 

E345A+E414A    TTCGGCGCGGGTGCAGCGGGTGTTCTGCCGGGCGTAGGTGGTGCTGGCGTTCCGGGTGTT 780 

E345A+E414A    CCAGGTGCGATCCCGGGCATCGGTGGTATCGCAGGCGTAGGTACTCCGGCGGCCGCTGCG 840 

E345A+E414A    GCTGCGGCAGCTGCGGCGAAAGCAGCTAAATACGGTGCGGCAGCAGGCCTGGTTCCGGGT 900 

E345A+E414A    GGTCCAGGCTTCGGTCCGGGTGTTGTAGGCGTTCCGGGTGCTGGTGTTCCGGGCGTAGGT 960 

E345A+E414A    GTTCCAGGTGCGGGCATCCCGGTTGTACCGGGTGCAGGTATCCCGGGCGCTGCGGTTCCA 1020 

E345A+E414A    GGTGTTGTATCCCCGGCAGCGGCAGCTAAGGCTGCTGCGAAAGCTGCGAAATACGGAGCT 1080 

E345A+E414A    CGTCCGGGCGTTGGTGTTGGTGGCATCCCGACCTACGGTGTAGGTGCAGGCGGTTTCCCA 1140 

E345A+E414A    GGTTTCGGCGTTGGTGTTGGTGGCATCCCGGGTGTAGCTGGTGTTCCGTCTGTTGGTGGC 1200 

E345A+E414A    GTACCGGGTGTTGGTGGCGTTCCAGGTGTAGGTATCTCCCCGGCAGCGCAGGCAGCTGCG 1260 

E345A+E414A    GCAGCTAAAGCAGCGAAGTACGGCGTTGGTACTCCGGCGGCAGCAGCTGCTAAAGCAGCG 1320 

E345A+E414A    GCTAAAGCAGCGCAGTTCGGACTAGTTCCGGGCGTAGGTGTTGCGCCAGGTGTTGGCGTA 1380 

E345A+E414A    GCACCGGGTGTTGGTGTTGCTCCGGGCGTAGGTCTGGCACCGGGTGTTGGCGTTGCACCA 1440 

E345A+E414A    GGTGTAGGTGTTGCGCCGGGCGTTGGTGTAGCACCGGGTATCGGTCCGGGTGGCGTTGCG 1500 

E345A+E414A    GCTGCTGCGAAATCTGCTGCGAAGGTTGCTGCGAAAGCGCAGCTGCGTGCAGCAGCTGGT 1560 

E345A+E414A    CTGGGTGCGGGCATCCCAGGTCTGGGTGTAGGTGTTGGTGTTCCGGGCCTGGGTGTAGGT 1620 

E345A+E414A    GCAGGGGTACCGGGCCTGGGTGTTGGTGCAGGCGTTCCGGGTTTCGGTGCTGTTCCGGGC 1680 

E345A+E414A    GCGCTGGCTGCTGCGAAAGCGGCGAAATACGGTGCAGCGGTTCCGGGTGTACTGGGCGGT 1740 

E345A+E414A    CTGGGTGCTCTGGGCGGTGTTGGTATCCCGGGCGGTGTTGTAGGTGCAGGCCCAGCTGCA 1800 

E345A+E414A    GCTGCTGCTGCGGCAAAGGCAGCGGCGAAAGCAGCTCAGTTCGGTCTGGTTGGTGCAGCA 1860 

E345A+E414A    GGTCTGGGCGGTCTGGGTGTTGGCGGTCTGGGTGTACCGGGCGTTGGTGGTCTGGGTGGC 1920 

E345A+E414A    ATCCCGCCGGCGGCGGCAGCTAAAGCGGCTAAATACGGTGCAGCAGGTCTGGGTGGCGTT 1980 
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E345A+E414A    CTGGGTGGTGCTGGTCAGTTCCCACTGGGCGGTGTAGCGGCACGTCCGGGTTTCGGTCTG 2040 

E345A+E414A    TCCCCGATCTTCCCAGGCGGTGCATGCCTGGGTAAAGCTTGCGGCCGTAAACGTAAATAA 2100 

 

Figure 8.5. DNA sequence of the E345A+E414A tropoelastin construct. The underlined 

codons encode the A345 and A414 residues. 



________________________________________________________________Appendices 

349 

 

8.6 EX22 DNA sequence 

EX22           ATGGGTGGCGTTCCGGGTGCTATCCCGGGTGGCGTTCCGGGTGGTGTATTCTACCCAGGC 60 

 

EX22           GCGGGTCTGGGTGCACTGGGCGGTGGTGCGCTGGGCCCGGGTGGTAAACCGCTGAAACCG 120 

 

EX22           GTTCCAGGCGGTCTGGCAGGTGCTGGTCTGGGTGCAGGTCTGGGCGCGTTCCCGGCGGTT 180 

 

EX22           ACCTTCCCGGGTGCTCTGGTTCCGGGTGGCGTTGCAGACGCAGCTGCTGCGTACAAAGCG 240 

 

EX22           GCAAAGGCAGGTGCGGGTCTGGGCGGGGTACCAGGTGTTGGCGGTCTGGGTGTATCTGCT 300 

 

EX22           GGCGCAGTTGTTCCGCAGCCGGGTGCAGGTGTAAAACCGGGCAAAGTTCCAGGTGTTGGT 360 

 

EX22           CTGCCGGGCGTATACCCGGGTGGTGTTCTGCCGGGCGCGCGTTTCCCAGGTGTTGGTGTA 420 

 

EX22           CTGCCGGGCGTTCCGACCGGTGCAGGTGTTAAACCGAAGGCACCAGGTGTAGGCGGCGCG 480 

 

EX22           TTCGCGGGTATCCCGGGTGTTGGCCCGTTCGGTGGTCCGCAGCCAGGCGTTCCGCTGGGT 540 

 

EX22           TACCCGATCAAAGCGCCGAAGCTTCCAGGTGGCTACGGTCTGCCGTACACCACCGGTAAA 600 

 

EX22           CTGCCGTACGGCTACGGTCCGGGTGGCGTAGCAGGTGCTGCGGGTAAAGCAGGCTACCCA 660 

 

EX22           ACCGGTACTGGTGTTGGTCCGCAGGCTGCTGCGGCAGCTGCGGCGAAGGCAGCAGCAAAA 720 

 

EX22           TTCGGCGCGGGTGCAGCGGGTGTTCTGCCGGGCGTAGGTGGTGCTGGCGTTCCGGGTGTT 780 

 

EX22           CCAGGTGCGATCCCGGGCATCGGTGGTATCGCAGGCGTAGGTACTCCGGCGGCCGCTGCG 840 

 

EX22           GCTGCGGCAGCTGCGGCGAAAGCAGCTAAATACGGTGCGGCAGCAGGCCTGGTTCCGGGT 900 

 

EX22           GGTCCAGGCTTCGGTCCGGGTGTTGTAGGCGTTCCGGGTGCTGGTGTTCCGGGCGTAGGT 960 

 

EX22           GTTCCAGGTGCGGGCATCCCGGTTGTACCGGGTGCAGGTATCCCGGGCGCTGCGGTTCCA 1020 

 

EX22           GGTGTTGTATCCCCGGAAGCGGCAGCTAAGGCTGCTGCGAAAGCTGCGAAATACGGAGCT 1080 

 

EX22           CGTCCGGGCGTTGGTGTTGGTGGCATCCCGACCTACGGTGTAGGTGCAGGCGGTTTCCCA 1140 

 

EX22           GGTTTCGGCGTTGGTGTTGGTGGCATCCCGGGTGTAGCTGGTGTTCCGTCTGTTGGTGGC 1200 

 

EX22           GTACCGGGTGTTGGTGGCGTTCCAGGTGTAGGTATCTCCCCGGAAGCGCAGGCAGCTGCG 1260 

 

EX22           GCAGCTAAAGCAGCGAAGTACGGTGCGGCGGGTGCGGGTGTTCTGGGTGGCCTGGTTCCG 1320 

 

EX22           GGTGCGCCGGGCGCGGTTCCGGGTGTGCCGGGTACCGGCGGTGTTCCGGGCGTTGGTACT 1380 

 

EX22           CCGGCGGCAGCAGCTGCTAAAGCAGCGGCTAAAGCAGCGCAGTTCGGACTAGTTCCGGGC 1440 

 

EX22           GTAGGTGTTGCGCCAGGTGTTGGCGTAGCACCGGGTGTTGGTGTTGCTCCGGGCGTAGGT 1500 

 

EX22           CTGGCACCGGGTGTTGGCGTTGCACCAGGTGTAGGTGTTGCGCCGGGCGTTGGTGTAGCA 1560 

 

EX22           CCGGGTATCGGTCCGGGTGGCGTTGCGGCTGCTGCGAAATCTGCTGCGAAGGTTGCTGCG 1620 

 

EX22           AAAGCGCAGCTGCGTGCAGCAGCTGGTCTGGGTGCGGGCATCCCAGGTCTGGGTGTAGGT 1680 

 

EX22           GTTGGTGTTCCGGGCCTGGGTGTAGGTGCAGGGGTACCGGGCCTGGGTGTTGGTGCAGGC 1740 

 

EX22           GTTCCGGGTTTCGGTGCTGTTCCGGGCGCGCTGGCTGCTGCGAAAGCGGCGAAATACGGT 1800 

 

EX22           GCAGCGGTTCCGGGTGTACTGGGCGGTCTGGGTGCTCTGGGCGGTGTTGGTATCCCGGGC 1860 

 

EX22           GGTGTTGTAGGTGCAGGCCCAGCTGCAGCTGCTGCTGCGGCAAAGGCAGCGGCGAAAGCA 1920 

 

EX22           GCTCAGTTCGGTCTGGTTGGTGCAGCAGGTCTGGGCGGTCTGGGTGTTGGCGGTCTGGGT 1980 
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EX22           GTACCGGGCGTTGGTGGTCTGGGTGGCATCCCGCCGGCGGCGGCAGCTAAAGCGGCTAAA 2040 

 

EX22           TACGGTGCAGCAGGTCTGGGTGGCGTTCTGGGTGGTGCTGGTCAGTTCCCACTGGGCGGT 2100 

 

EX22           GTAGCGGCACGTCCGGGTTTCGGTCTGTCCCCGATCTTCCCAGGCGGTGCATGCCTGGGT 2160 

 

EX22           AAAGCTTGCGGCCGTAAACGTAAATAA                                  2187 

 

Figure 8.6. DNA sequence of the EX22 tropoelastin construct. Exon 22 is underlined. 
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8.7 D72A DNA sequence 

D72A             ATGGGTGGCGTTCCGGGTGCTATCCCGGGTGGCGTTCCGGGTGGTGTATTCTACCCAGGC 60 

 

D72A             GCGGGTCTGGGTGCACTGGGCGGTGGTGCGCTGGGCCCGGGTGGTAAACCGCTGAAACCG 120 

 

D72A             GTTCCAGGCGGTCTGGCAGGTGCTGGTCTGGGTGCAGGTCTGGGCGCGTTCCCGGCGGTT 180 

 

D72A             ACCTTCCCGGGTGCTCTGGTTCCGGGTGGCGTTGCAGCAGCAGCTGCTGCGTACAAAGCG 240 

 

D72A             GCAAAGGCAGGTGCGGGTCTGGGCGGGGTACCAGGTGTTGGCGGTCTGGGTGTATCTGCT 300 

 

D72A             GGCGCAGTTGTTCCGCAGCCGGGTGCAGGTGTAAAACCGGGCAAAGTTCCAGGTGTTGGT 360 

 

D72A             CTGCCGGGCGTATACCCGGGTGGTGTTCTGCCGGGCGCGCGTTTCCCAGGTGTTGGTGTA 420 

 

D72A             CTGCCGGGCGTTCCGACCGGTGCAGGTGTTAAACCGAAGGCACCAGGTGTAGGCGGCGCG 480 

 

D72A             TTCGCGGGTATCCCGGGTGTTGGCCCGTTCGGTGGTCCGCAGCCAGGCGTTCCGCTGGGT 540 

 

D72A             TACCCGATCAAAGCGCCGAAGCTTCCAGGTGGCTACGGTCTGCCGTACACCACCGGTAAA 600 

 

D72A             CTGCCGTACGGCTACGGTCCGGGTGGCGTAGCAGGTGCTGCGGGTAAAGCAGGCTACCCA 660 

 

D72A             ACCGGTACTGGTGTTGGTCCGCAGGCTGCTGCGGCAGCTGCGGCGAAGGCAGCAGCAAAA 720 

 

D72A             TTCGGCGCGGGTGCAGCGGGTGTTCTGCCGGGCGTAGGTGGTGCTGGCGTTCCGGGTGTT 780                                                                              

 

D72A             CCAGGTGCGATCCCGGGCATCGGTGGTATCGCAGGCGTAGGTACTCCGGCGGCCGCTGCG 840                                                                              

 

D72A             GCTGCGGCAGCTGCGGCGAAAGCAGCTAAATACGGTGCGGCAGCAGGCCTGGTTCCGGGT 900                                                                             

 

D72A             GGTCCAGGCTTCGGTCCGGGTGTTGTAGGCGTTCCGGGTGCTGGTGTTCCGGGCGTAGGT 960                                                                            

 

D72A             GTTCCAGGTGCGGGCATCCCGGTTGTACCGGGTGCAGGTATCCCGGGCGCTGCGGTTCCA 1020 

 

D72A             GGTGTTGTATCCCCGGAAGCGGCAGCTAAGGCTGCTGCGAAAGCTGCGAAATACGGAGCT 1080 

 

D72A             CGTCCGGGCGTTGGTGTTGGTGGCATCCCGACCTACGGTGTAGGTGCAGGCGGTTTCCCA 1140 

 

D72A             GGTTTCGGCGTTGGTGTTGGTGGCATCCCGGGTGTAGCTGGTGTTCCGTCTGTTGGTGGC 1200 

 

D72A             GTACCGGGTGTTGGTGGCGTTCCAGGTGTAGGTATCTCCCCGGAAGCGCAGGCAGCTGCG 1260 

 

D72A             GCAGCTAAAGCAGCGAAGTACGGCGTTGGTACTCCGGCGGCAGCAGCTGCTAAAGCAGCG 1320 

 

D72A             GCTAAAGCAGCGCAGTTCGGACTAGTTCCGGGCGTAGGTGTTGCGCCAGGTGTTGGCGTA 1380 

 

D72A             GCACCGGGTGTTGGTGTTGCTCCGGGCGTAGGTCTGGCACCGGGTGTTGGCGTTGCACCA 1440 

 

D72A             GGTGTAGGTGTTGCGCCGGGCGTTGGTGTAGCACCGGGTATCGGTCCGGGTGGCGTTGCG 1500 

 

D72A             GCTGCTGCGAAATCTGCTGCGAAGGTTGCTGCGAAAGCGCAGCTGCGTGCAGCAGCTGGT 1560 

 

D72A             CTGGGTGCGGGCATCCCAGGTCTGGGTGTAGGTGTTGGTGTTCCGGGCCTGGGTGTAGGT 1620 

 

D72A             GCAGGGGTACCGGGCCTGGGTGTTGGTGCAGGCGTTCCGGGTTTCGGTGCTGTTCCGGGC 1680 

 

D72A             GCGCTGGCTGCTGCGAAAGCGGCGAAATACGGTGCAGCGGTTCCGGGTGTACTGGGCGGT 1740 

 

D72A             CTGGGTGCTCTGGGCGGTGTTGGTATCCCGGGCGGTGTTGTAGGTGCAGGCCCAGCTGCA 1800 

 

D72A             GCTGCTGCTGCGGCAAAGGCAGCGGCGAAAGCAGCTCAGTTCGGTCTGGTTGGTGCAGCA 1860 

 

D72A             GGTCTGGGCGGTCTGGGTGTTGGCGGTCTGGGTGTACCGGGCGTTGGTGGTCTGGGTGGC 1920 

 

D72A             ATCCCGCCGGCGGCGGCAGCTAAAGCGGCTAAATACGGTGCAGCAGGTCTGGGTGGCGTT 1980 
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D72A             CTGGGTGGTGCTGGTCAGTTCCCACTGGGCGGTGTAGCGGCACGTCCGGGTTTCGGTCTG 2040 

 

D72A             TCCCCGATCTTCCCAGGCGGTGCATGCCTGGGTAAAGCTTGCGGCCGTAAACGTAAATAA 2100 

 

Figure 8.7. DNA sequence of the D72A tropoelastin construct. The underlined codon 

encodes the A72 residue. 
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