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Abstract 

Cellular senescence is a mechanism to inhibit the growth of mammalians cells after oncogenic 

activation, or in response to damage or stress. Senescence significantly changes the phenotype of 

the cell and permanently stops cell replication. Senescence was originally thought of as a cell 

culture artifact, but recent research has demonstrated a significant role in human pathologies, such 

as tumour development and cardiovascular disease. We describe here the identification of a novel 

gene, SENEX that regulates stress induced premature senescence pathways in endothelial cells 

(EC) involving p16INK4a and Rb activation. Endogenous levels of SENEX remain unchanged 

during replicative senescence but are regulated by H2O2 mediated stress. Indicating a role for 

SENEX in stress induced senescence and not in replicative induced senescence. In contrast to that 

previously described for senescence in other cell types, the SENEX induced senescent EC are 

profoundly anti-inflammatory.  The cells are resistant to TNFα induced apoptosis, adhesion of 

neutrophils and mononuclear cells and the surface (but not cytoplasmic) expression of E-selectin 

and VCAM1 is decreased after SENEX induced senescence. Furthermore they are resistant to 

thrombin induced vascular leak.  Senescent ECs such as those lining atherosclerotic lesions may 

therefore function to limit the inflammatory response. SENEX is also essential for EC survival 

since depletion either ectopically by siRNA or by high dose H2O2 treatment causes apoptosis. 

Preliminary results indicate that SENEX plays a role in the induction of apoptosis through the 

extrinsic pathway. Together, these findings expand our understanding of the role of senescence in 

the vasculature and identify SENEX as a fulcrum for driving the resultant phenotype of the 

endothelium.
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CHAPTER 1 

INTRODUCTION 

1.1 Cellular Senescence   

In 1961 Hayflick and Moorhead challenged the idea that cells are immortal by demonstrating that 

many cells enter a phase of irreversible growth arrest following serial cultivation in vitro [1]. 

This cellular phenomenon was referred to as ‘cellular senescence’ and for many years was 

considered to be an artefact of tissue culture [1]. This view has now been reversed. Senescent 

cells have been observed in vivo under both normal physiological conditions, for example in the 

skin of elderly people [2] and in pathological conditions such as cancer suggesting a 

physiological role for senescence [3-6]. Together with apoptosis, senescence is now considered a 

key mechanism for the control of cell proliferation and inappropriate activation [7]. Recent 

research also indicates that senescent cells are not an insignificant population of cells and since 

they are metabolically active, although halted from proliferation, it is proposed that they play a 

role in regulation of their microenvironment [8].  

 

1.1.1 Forms of Senescence  

Senescence can be divided into two types: 1) Replicative (telomere-dependent) senescence (RS), 

where telomere shortening during replication results in growth arrest and senescence and 2) 

Stress-induced premature senescence (SIPS) which is seen under situations of cellular stress and 

may be induced by DNA damage, oxidative stress, activated oncogenes and certain 

chemotherapeutic drugs [9]. The major characteristic of both RS and SIPS is that the cells 

permanently exit the cell cycle but remain metabolically active. This activity has profound effects 

on the phenotype of the senescent cell itself and on surrounding cells and the environment in 



Chapter 1: Introduction    

 22 

which they reside. With the possible exception of embryonic stem cells, most division-

component cells, including some tumour cells, can undergo senescence when appropriately 

stimulated [10].  

 

1.2 Features of Senescence 

Senescent cells are characterised by a markedly enlarged cell size. They have a flattened 

vacuolated morphology and are inhibited in their proliferative capacity and are not responsive to 

physiologic mitogenic stimuli. The growth arrest of senescent cells occurs mostly in the G1/S 

interface. Senescent cells often display polyploidy, and have accumulated senescence-associated 

β-galactosidase activity (SA β-gal), a widely used marker of senescence [2]. SA β-gal enables the 

detection of increased lysosomal β-galactosidase evident in senescent cells at a pH 6.0. It is 

visualised by means of a cytochemical reaction which stains cells blue. Although its function is 

unknown, SA β gal is generally accepted as a marker of senescence in vitro and in vivo (Figure 

1.1) [11]. Until recently SA-β-gal has been the most reliable marker of the senescence state, 

although there is some evidence that suggests that it is not specific for senescence [12]. Cotter et 

al found that given the fact that pH 6 -gal staining simply detects the lysosomal expansion 

associated with cellular passages and is not required for senescence development in vitro, they 

suggest the need for more specific and biologically relevant markers of senescence in vivo [13]. 

A further marker of senescent cells is the detection of Senescence Associated Heterochromatin 

Foci (SAHF).  Senescent cells undergo modifications in their chromatin structure due to the 

accumulation of heterochromatin proteins on E2F promoters [14] which can contribute to the 

gene expression profile characteristic of senescence. The organisation of DNA into 

heterochromatin contributes to nuclear organisation, chromosome structure and gene silencing. 

SAHF are observed in interphase nuclei and contain the heterochromatin associated proteins 

histone 3 methylated at lysine 9 (K9M-H3) and heterochromatin protein 1γ (HP1), exclude  
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Figure 1.1. Morphology of senescent human fibroblasts. Normal human dermal diploid 

fibroblasts exhibit a typically thin, elongated appearance with dense cytoplasm when 

subconfluent in culture (A). Senescent fibroblasts become much larger with diffuse, thin 

cytoplasm with prominent stress fibers becoming visible under phase contrast (B). Arrows, 

Areas of dark perinuclear staining due to SA -gal activity. (Muller, 2009) 
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histone modifications found in euchromatin and are not sites of active transcription. Their 

appearance is accompanied by an increase in HP1 incorporation into senescent chromatin and an 

enhanced resistance of senescent DNA to nuclease digestion. SAHF formation requires an intact 

Retinoblastoma (Rb) pathway and they contribute to cellular senescence by controlling the 

stability of the arrest. Rb acts directly on E2F target promoters to nucleate regions of 

heterochromatin leading to the silencing of E2F target genes. The decision for a cell to enter 

senescence is determined by a histone methyltransferase (HMT) that acts with Rb and HP1 

proteins to alter chromatin structure and silence E2F target genes. The failure to silence  

E2F target genes reduce the chances that a damaged cell will become senescent and/or makes the 

senescence state more difficult to sustain [14].  

Unfortunately no marker or hallmark of senescence identified thus far is entirely specific to the 

senescent state. Further, not all senescent cells express all possible senescence markers. 

Nonetheless, senescent cells display several phenotypes, which, in aggregate, define the 

senescent state [15].  

 

1.2.1 Apoptosis and Senescence 

Senescent cells also display a feature of altered responsiveness to apoptotic stimuli, a feature 

which can be cell type and stimuli specific. For example, senescent WI-38 fibroblasts are non 

responsive to serum removal and display increased levels of the antiapoptotic Bcl2 protein and 

the proapoptotic caspase, caspase 3 is downregulated [16].  Ceramide can induce apoptosis in 

both young and senescent fibroblasts and endothelial cells (ECs), but senescent fibroblasts are 

more resistant to apoptosis induction compared to young fibroblasts and ECs [17].  

Within the process of senescence development a small subset of normal human fibroblasts 

undergo apoptosis. The activation of caspases in H2O2 induced and spontaneously senescent 

fibroblast indicates that the apoptosis pathway is activated during senescence of fibroblasts. Thus  
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both the death receptor and the mitochondrial pathway are involved during senescent fibroblast 

development [18]. 

In the case of EC there is an increase in apoptosis when the cells become senescent [17].  When 

EC undergo a cell cycle arrest and become senescent there is a subpopulation of senescent cells 

that become apoptotic as measured by caspase 3. Also when premature senescence is induced by 

oxidative stress, a certain population of treated cells do not respond and continue to proliferate. 

The proportion of unresponsive cells depends on the experimental conditions. If the 

subpopulation is significant then over time the senescent cells will be diluted by the proliferating 

population [19].  

 

The diverse finding indicates that not all cell types respond in the same way when they become 

senescent. The ability of the senescent cell to become apoptotic seems to depend on the cell type, 

signaling pathways involved and the expression levels of the apoptotic machinery. The 

relationship between senescence and apoptosis is still at an early stage and needs further work to 

clarify what is really happening when the cell becomes senescent. 

 

1.3 Types of Senescence  

1.3.1 Replicative Senescence 

The process of DNA synthesis is made up of two essential steps: i) DNA polymerases 

synthesising a new complementary polynucleotide strand in the 5’ to 3’ direction and ii) DNA 

polymerases initiating DNA synthesis through an RNA primer which is subsequently removed.  

This results in the loss of sequences at the 5’ end of linear molecules with each round of cell 

division, the ‘end-replication problem’. Telomeres are sequences - (TTAGGG)n - that cap the 

ends of linear chromosomes and maintain the stability of the genome by preventing DNA ends 
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from degradation and recombination [20, 21]. Under normal conditions, DNA base pairs are lost 

from the telomeric ends of each chromosome with every round of cell division [22]. For each 

population doubling, telomeres lose approximately 100 base pairs. The ribonucleoprotein 

telomerase (which is upregulated in cancer cells), is able to compensate for the loss of terminal 

sequences encountered during replication through the addition of newly synthesised telomeric 

repeats to the 3’ end of chromosomal DNA.  However in primary human somatic cells the levels 

of telomerase are low to non-detectable and therefore in these cells there is a shortening of their 

chromosomes at each round of cell division. Thus, telomeres eventually reach a critical minimum 

length and cell division is inhibited through a DNA damage response (DDR), to prevent the 

chromosomes from becoming dysfunctional [23]. These cells are said to have undergone 

replicative senescence. 

The formation of RS has been found to follow a linear sequence of events which involve the 

transcriptional activator and tumour suppressor protein, p53, the cyclin dependent kinase 

inhibitor, p21 and the cell cycle regulator, retinoblastoma protein. The recognition of DNA 

damage resulting from telomere shortening leads to the activation of p53 and halts the cell in the 

G1 phase of the cell cycle preventing abnormal DNA being replicated in S phase.  This response 

limits the ability of damaged cells to pass on their altered DNA or to develop neoplastic potential 

[24]. 

 

1.3.2 Stress-Induced Premature Senescence (SIPS). 

Although RS has been studied extensively, SIPS has only been described relatively recently[25].  

In SIPS, senescence is induced in cells prematurely (before chromosomal dysfunction can trigger 

senescence) by various cellular stresses. These include suboptimal culture conditions, activated 

oncogenes, oxidative damage and several chemotherapeutic drugs [6, 26-29] (Figure 1.2). Some 

of these same extrinsic stimuli can also induce excessive proliferation of cells which ultimately 
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results in RS [29]. The “decision” to undergo proliferation or SIPS is unknown at present but 

appears to depend on the cell type and the strength and duration of the stimulant [30].  

 

 

Figure 1.2. The signals activating SIPS. Multiple types of stress can induce cells to undergo 

stress induced senescence. The combined levels of stress determine how rapidly the entry into 

senescence will occur (Ben-Porath, 2005).  
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1.4 Senescence signaling pathways 

The p53 and p16INK4a (p16) tumour suppressor networks are essential for initiation of senescence 

[31]. Although it was originally believed that RS induced a p53 response whereas SIPS was p16 

dependent, it is now clear that a senescent signal can activate multiple inhibitory pathways that 

may vary depending on the stimulus inducing the response and the signaling components present 

in the cell.  

1.4.1 The CDKN2A locus  

The CDKN2A locus, located on chromosome 9p21 in humans and chromosome 4 in mice, is 

highly conserved and encodes two critical tumour suppressor proteins and important induces of 

cellular senescence: p16INK4a and p14ARF (humans) or p19ARF (mice).  The p16Ink4a gene is 

encoded by the α transcript containing exons 1α, 2 and 3 whilst p14Arf is encoded by the β 

transcript comprised of exons 1 β, 2 and 3.  Although they share exons 2 and 3 they are unique as 

they are read in different open-reading frames [32].  

The p16 protein is normally expressed at low or undetectable constitutive levels in normal cells. 

Expression of p16 however, is significantly up-regulated during cellular senescence and functions 

as a negative regulator of cell proliferation. The p16 protein is a cyclin dependent kinase inhibitor 

(CDKI) which, through its binding to cyclin dependent kinase 4 (CDK4) and CDK6 is able to 

induce a conformational change that disrupts binding with D-type cyclins, antagonising cyclin 

binding and activation of the CDK [33]. Failure to activate CDK4/6 ultimately results in failure 

to phosphorylate the Rb protein. Rb in its active hypo-phosphorylated form inhibits the 

expression of genes regulated by the E2F transcriptions factor halting cells in the G1 phase of the 

cell cycle [34] (Figure 1.3).  The E2F family of cell cycle transcription factors facilitates the 

transcription of genes necessary for G1/S phase transition. pRb binds the transcription factor  
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Figure 1.3 The cell cycle. The cell cycle represents an ordered progression of events 

that result in cell replication with the production of two offspring cells. On entering the 

cycle, cells progress through phases G1 (Gap1), S (synthesis), G2 (Gap2), and M 

(mitosis) with check-points at the G1/S and G2/M interfaces to ensure that genomic 

integrity is maintained. DNA replication occurs during the synthesis (S) stage. Mitosis 

encompasses chromosomal separation and cytokinesis. After mitosis, cells reenter G0 

and leave the cell cycle. Failure to pass the G1/S check-point results in exit from the 

cycle and the onset of cellular senescence or, in some cases, apoptosis.  (Muller, 2009)  
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E2F, inhibiting it from facilitating gene transcription, and consequently repressing G1/S 

transition. Inactivation of the Rb protein is therefore essential for the progression of cells from 

the G1 phase to the S phase, where DNA synthesis takes place. Failure to phosphorylate the Rb 

protein results in a halt in the cell cycle and cells are induced to stop dividing [34]. 

 

1.4.2 The p53 pathway 

The p53/p21 Cip1 pathway (Figure 1.4), also known as the DNA damage pathway, is activated in 

response to critical telomere length [35, 36], DNA damage and in response to cellular stressors, 

such as oncogene activation [31, 37] and oxidative stress [38].  

DNA damage is sensed by a host of factors which leads to the recruitment of phosphatidyl-

inositol-3-OH kinase-like kinase (PIKK) ATM (ataxia telangicstasia mutated). This immediately 

phosphorylates the histone variant H2AX, into its modified form, γH2AX [10]. For this reason, 

γH2AX has become widely used as a marker for immediate detection of DNA double stranded 

breaks [39]. γH2AX recruits downstream mediators such as Checkpoint kinase 1 and 2 (Chk1 

and Chk2) to the site of damage. At this point, the signal is transduced to effector proteins 

including tumour suppressor and transcription factor p53 [10]. ATM phosphorylates and thus 

activates p53, leading to its stabalisation [37]. ATM increases p53 activation by two other means 

- it phosphorylates the transducing kinase Chk2 which phosphorylates p53 [40] and 

phosphorylates/deactivates ubiquitin ligase human double minute (HDM2), a negative regulator 

of p53 [35]. Evidence suggests that Chk2 phosphorylation does not lead to direct activation of 

p53, but rather, sensitizes it to acetylation by p300 which is ultimately responsible for its 

activation [41].  

The importance of these DNA damage signaling components in replicative senescence has been 

demonstrated through loss of function experiments. Inactivation of ATM alone allowed senescent 

cells to re-enter the cell cycle [42], while inactivation of Chk2 was shown to increase the lifespan 
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of cells [43]. If ATM and Chk2 are absent, the related PIKK ATR (AMT-andRad3-related) and 

transducing kinase Chk1 can perform the same roles but are mainly involved in the responses to 

dysfunction in DNA replication machinery, as opposed to DNA damage [35, 37]. 

p53 acts as a transcription factor [44] to induce a number of anti-proliferative cell states including 

G1 arrest, apoptosis and senescence [35, 37]. How cell fate is decided is not completely 

understood but is partly determined by cell type, type of stressor and intensity of signal [35]. 

These cell fates are aimed at preventing the proliferation of damaged cells which may allow 

accumulation of the mutations necessary for neoplastic transformation. The importance of this 

role is evidenced by the presence of a mutated or dysfunctional p53 protein in 50% of all human 

tumours [45, 46].  

p53 induces senescence by increasing transcription of the cdk inhibitor p21 Cip1 which silences the 

G1/S –promoting cyclinE/Cdk2 [47]and cyclinE/Cdk4 [48]. This prevents the phosphorylation of 

Rb and subsequent activation of E2F genes, resulting in G1 arrest [37] 

DNA damage-induced senescence strongly depends on p53 and expression of p21 [10]. However, 

in many cells, DNA damage can also induce p16 at a later stage which provides a second layer of 

reinforcement for the senescence program [49, 50] (Figure 1.4). 
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Figure 1.4 Senescence Pathways. The induction of senescence occurs through two pathways. 

Replicatve senescence induced by telomere shortening, typically induces senescence through 

the p53/p21 pathway. SIPS iduced senescence can also be induced through the p53/p21 

pathway, but can also involve the p16/pRb pathway. 
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1.5 Mediators of Senescence 

1.5.1 Oncogene induced senescence 

In response to the activation of mitogenic oncogenes, checkpoint mediated failsafe mechanisms 

such as apoptosis or cellular senescence may be recruited to terminate a pre-malignant condition 

before a fully transformed stage can develop[51]. When expressed in primary cells, activated 

oncogenes can also block cellular proliferation by inducing senescence or apoptosis. [24]. For 

example, BRAF is a protein kinase which is an immediate downstream effector of Ras. 

Activating BRAF mutations are present in up to 82% of melanocytic nevi, which are benign skin 

lesions that rarely progress to melanoma. The nevi are growth arrested and display hallmarks of 

senescence including β-gal staining and p16 expression. The oncogenic BRAF initiates a 

senescence response through the MAP kinase pathway, preventing the progression of nevi to 

malignancy. [52]. The importance of activated BRAF and the induction of senescence are 

demonstrated by the fact that BRAF mutations are found in high frequency in human cancers and 

are particularly prevalent in melanoma where they occur at a frequency of 50%-70% [53]. 

Theimportance of oncogene induced senescence is further demonstrated by the fact that 

inactivation of the senescence inducer p53 in mice overexpressing the oncogene Ras leads to the 

development of invasive T cell lymphomas. Mice overexpressing Ras but having wild type p53, 

develop a delayed non-lymphoid neoplasia. These studies show the importance of senescence 

mediated through p53 to prevent the development of a malignant tumour [3]. 

  

1.5.1.1 Mechanisms of oncogene induced senescence 

Oncogene induced senescence is thought to result from DNA damage caused in 2 ways. The first 

suggests that the DNA damage is caused by an oncogene driven accumulation of reactive oxygen 

species (ROS) [28]. The other model suggests the DDR is triggered by excessive replication 

caused by a sustained oncogenic signal which eventually leads to RS [26].  
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1.5.1.2 Ras 

Normal cells in culture will undergo senescence in response to the overexpression of the Ras 

oncogene or its downstream effectors such as RAF activated MAP kinase [29]. The activation of 

the MEK-ERK pathway by oncogenic Ras leads to the activation of another MAPK, P38 and the 

activated p38 then induces the accumulation of growth inhibitors and premature senescence. The 

activation of p38 is sufficient to induce the increases in protein levels of p16 and p53 and induce 

the senescence pathways. The increase in protein levels is a result of p38 stabilising p16 and p53 

mRNA [54]. Sun et al has also found that PRAK, a kinase downstream of Ras and p38 is 

essential for oncogenic Ras induced senescence of both murine embryonic fibroblasts (MEFs) 

and human diploid fibroblast (HDFs) in vitro. PRAK contributed to the senescence induction by 

directly phosphorylating and activating p53 in both cell lines [55]. 

Tumour senescence induced by Ras signaling can occur in the absence of p16 or Rb and is not 

interrupted by the inactivation of Rb, p107 or p130. In contrast the inactivation of p21 disrupts 

Ras induced tumour senescence [56]. Furthermore in murine cells the functional inactivation of 

p53 or its direct upstream regulator p19, is sufficient to bypass Ras induced senescence [29].  In 

human fibroblast the knockdown of p16 is able to prevent Ras induced senescence [57]. Brookes 

et al also found that human fibroblast cells which are p16 deficient do not form senescent after 

treatment with oncogenic Ras [58]. These results indicate that Ras driven senescence involves 

both the p53/p21 pathway and the p16/Rb pathway, and both pathways are essential for Ras 

induced senescence in certain cell lines.  

Ras-induced senescence also appears to be dose-dependent: low levels of Raf-1 expression 

induced proliferation in NIH3t3 dells whereas high levels of raf-1 caused cells to senesce [59].  

To confirm this further Sarkisian et al went on to demonstrate that the decision of mammary 

epithelial cells to proliferate, senesce or undergo malignant transformation was dependent on the 

intensity of Ras signaling [60]. Low levels of Ras activation - similar to those found in non-
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transformed mouse tissues expressing endogenous oncogenic KRas2 - stimulate cellular 

proliferation and mammary epithelial hyperplasias. In contrast, high levels of Ras activation - 

similar to those found in tumours bearing endogenous KRas2 mutations - induce cellular 

senescence. Chronic low-level Ras induction results in tumour formation, but only after the 

spontaneous upregulation of activated Ras and evasion of senescence checkpoints. Thus, high-

level, but not low-level, Ras activation activates tumour suppressor pathways and triggers an 

irreversible senescent growth arrest in vivo. 

 

The activation of endogenous Ras can also induce dramatically different phenotypes in different 

cell types. In MEFs the loss of the NF1 tumour suppressor results in sustained Ras activation, a 

hypersensitivity to growth factors and immortalisation. In normal diploid fibroblasts loss of NF1 

results in a transient activation of Ras and Ras effectors, followed by dramatic suppression of 

these signals to lower the baseline levels. These cells are not immortalised, they become 

senescent [30]. 

 

1.5.1.3 c-Myc 

Overexpression of c-myc causes proliferation and growth but also sensitises the cells to apoptosis 

and senescence [61]. C-myc is able to induce senescence through two mechanisms. Reduced 

levels of c-myc protein results in an induction of a telomere independent form of senescence. 

This is caused by a decrease in the activation of BMI-1 which normally represses p16, resulting 

in upregulation of p16 and the induction of senescence [62]. C-Myc can also directly act on E 

boxes within the p16 gene leading to the upregulation of p16 expression and senescence 

development [61].  

 

1.5.1.4 Akt 
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In mammalian cells, activation of Akt has been reported to induce proliferation and survival, 

thereby promoting tumourigenesis. In primary culture human endothelial cells the constitutive 

activation of Akt promotes a senescence-like growth arrest via a p53/p21 pathway. The inhibition 

of the forkhead transcription factor FOXO3a by Akt is essential for the growth arrest to occur. 

FOXO3a is able to induce the senescence response by regulating the ROS levels [63]. 

 

1.5.2 Oxidative stress 

There is strong evidence that acute or chronic exposure to sublethal doses of oxidative stress can 

induce both RS and SIPS in a variety of cell types.  

 

1.5.2.1 SIPS 

From an experimental point of view, oxidative stress is the most common inducer of SIPS. 

Reactive oxygen species (ROS), such as superoxide anions (O2
-) and hydrogen peroxide (H2O2) 

are toxic by-products of aerobic metabolism capable of damaging DNA.  A sustained increase in 

ROS can activate a premature senescence program, through the up-regulation of p53 and p16 

[27] [64] [65].  

In vitro H2O2 is a well known trigger of senescence and has been shown to act in a variety of 

cells including fibroblasts [66] and ECs [67]. However the pathways responsible can be different 

and may depend on the cell types. For example, treatment of  human diploid fibroblasts with 

sublethal doses of H2O2 caused cells to senesce prematurely as observed by the  arrest in G1 

stage of the cell cycle through the sustained up-regulation of p21 [27].  Iwasa et al also found that 

in WI-38 cells treated with low dose H2O2 a senescent phenotype is formed and this is induced by 

p38 [68]. Zhan et al [69] found that oxidative stress induced senescence in ECs occurs through 

the activation of a DDR which leads to an ATM/Akt/p53/p21 dependent signaling pathway.  
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V12Ras expression induces an increased intracellular level of ROS. ROS can  induce DNA 

damage resulting from oxidative modifications to DNA and then subsequent up regulation of p53 

and p21 and this may eventually lead to senescence [28]. The overexpression of p53 or p21 has 

also been associated with an increase in ROS and the induction of SIPS [70]. 

 

1.5.2.2 Replicative senescence 

Oxidative stress does not always induce SIPS. In normal EC mild chronic oxidative stress 

induced by interference with the glutathione-dependent anti-oxidant defenses accelerates 

telomere erosion and the onset of RS. In human EC the glutathione redox cycle has been shown 

to play a predominant role in the maintenance of redox homeostasis.  By changing this system the 

cells are placed under physiologically relevant oxidative stress [71]. The increased telomere 

erosion and induction of replicative senescence is caused by the inability of the cells to repair 

telomere damage induced through oxidative stress, compared to elsewhere on the chromosome 

[72]. 

1.6 Physiological Role of Senescence 

1.6.1 Senescence in Cancer 

The observation of senescent cells in tumours has been found in both mouse models and in 

humans [5, 6]. Apoptosis and senescence are cellular fail safe programs that protect against 

excessive mitogenic signals from activated oncogenes. For a tumour to become malignant, 

apoptosis and senescence responses need to be circumvented [73]. This theory is supported by 

the discovery of senescent cells in the pre malignant stages of tumorigenesis, but the absence of 

senescent cells in malignant tumours. The original identification of senescent tumour cells was 

obtained from lung adenomas, pancreatic intraductal neoplasias, PIN lesions and melanocytic 

nevi. By contrast senescence was absent in their corresponding malignant stages, which are lung 

adenocarcinomas, pancreatic ductal adenocarcinomas, prostate adenocarcinomas and melanomas 
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[4-6, 74]. Senescence was originally considered a cultured cell artifact. However the observation 

of senescent cells in premalignant tumours and the absence of senescence in malignant tumours 

exposed the possibility that senescence maybe a barrier to transformation. There have been a 

large number of reports confirming this possibility [51] (Figure 1.5).  

 

1.6.1.1 Senescence acts as a tumour suppressor 

It is believed senescence can serve as a tumour suppressor in two ways. First, since tumour 

growth depends on cell proliferation, senescence associated proliferation arrest would block 

tumour growth. Secondly the proliferation arrest should suppress the acquisition of additional 

oncogenic events during DNA replication and mitosis [75].  

The data to date supports the concept that senescence in human preneoplastic lesions is a result of 

oncogene induced DNA replication stress and together with apoptosis provides a barrier to 

malignant progression [26]. Human naevi are benign tumours of melanocytes that contain 

oncogenic mutations in BRAF, a protein kinase and downstream effector of Ras. The naevi 

typically remain in a growth arrested state and rarely progress into a malignant melanoma. 

Research has shown that the premalignant naevi in vivo and in vitro contain classical hallmarks 

of senescent cells including an increase in p16 expression and positive SA-β-gal activity [6]. A  

role for senescence in the prevention of melanoma development has been confirmed by Ha et al 

[76] who found a  genetic deficiency in Arf , which is a positive regulator of p53, facilitates a 

rapid development of melanoma in a genetically engineered mouse model. They found that the 

senescence control in melanocytes is strongly regulated by Arf and not p53 and Arf helps restrict 

melanoma progression by executing the oncogene-induced senescence program in benign nevi 

Similar results have also been found with p53 studies in prostate cancer. The Pten and p53 

tumour suppressors are among the most commonly inactivated or mutated genes in human cancer 

[77, 78]. In the prostrate, the inactivation of p53 fails to produce a tumour phenotype, while the  
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Figure 1.5 Senescence prevents tumour growth. Abnormal activation of oncogenic Ras, 

BRAF, or loss of the PTEN tumor suppressor can promote aberrant cell proliferation (purple 

cells), which eventually provokes the activation of a cellular senescence program. Senescent 

cells frequently exhibit SA- -galactosidase activity and heterchromatic foci (blue cells with 

prominent nuclei). If the program remains intact, the neoplastic growth may remain benign for 

many years. However, mutations that disable cellular senescence (such disruption of p53, 

p16INK4a,  orange cells) cooperate with the initiating lesions to promote tumor progression 

and, in some instances, contribute to drug resistance. (Narita 2005). 
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complete Pten inactivation in the prostrate causes a non lethal invasive prostrate cancer. The 

combined inactivation of Pten and p53 results in an invasive prostrate cancer. During the Pten 

inactivation, growth is arrested through a p53-dependent cellular senescence pathway both in 

vitro and in vivo, which can be fully rescued by the loss of transformation protein 53(Trp53), 

which encodes for the tumour protein p53. Therefore cellular senescence induced by p53 is able 

to prevent tumorigenesis in animals with a Pten mutation [4]. Similar results have also been 

found in the development of non lymphoid neoplasia into invasive T cell lymphomas. 

Proliferation of primary lymphocytes is stopped by senescent induced growth arrest in response 

to oncogenic Ras. This is able to halt lymphomagenesis at the initial step [3].  

 

Senescence caused by shortened telomeres also can prevent tumour growth. Short telomeres 

impair tumour formation by inducing apoptosis, but if the apoptosis is blocked the shortened 

telomeres are still able to suppress tumour development through the induction of senescence [79]. 

Cosme-Blanco et al found the same response in vivo where telomere dysfunction prevented 

spontaneous tumourigenesis by inducing p53 and p21. These changes were accompanied by the 

senescence marker SA β-gal [80]. These results indicate that telomere shortening can prevent the 

development of a malignant tumour by the induction of a p53 dependent senescence response.  

 

Together these results support the idea that the induction of senescence during tumour 

development is able to halt the tumour in a pre malignant stage and prevent the formation of a 

malignant tumour. 

 

1.6.1.2 Senescence contributes to tumour regression.  

p53 is an important tumour suppressor which acts to restrict proliferation in response to DNA 

damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle 
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checkpoints, apoptosis or cellular senescence [81, 82]. Consequently, p53 mutations increase cell 

proliferation and survival, and in some settings promote genomic instability and resistance to 

certain chemotherapies [7]. Using RNAi it is possible to conditionally regulate endogenous p53 

expression in a mosaic model of liver carcinoma. Brief reactivation of endogenous p53 in p53 

deficient tumours can produce complete tumour regressions. The primary response to p53 was 

not apoptosis, but instead involved the induction of cellular senescence, which was associated 

with differentiation and the upregulation of inflammatory cytokines. The upregulation of 

inflammatory cytokines produced an innate immune response that targeted the tumour cells and 

contributed to tumour clearance [83].  Similar results by Ventura et al [84] found that restoring 

endogenous p53 expression leads to regression of lymphomas and sarcomas in mice without 

affecting normal tissues. The mechanism responsible for tumour regression is dependent on the 

tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and 

suppression of cell growth with features of cellular senescence in sarcomas. 

 

 

1.6.1.3 Senescence and Anti Cancer Drugs 

Cyclophosphamide (CTX) has been successfully used to treat many human malignancies [85]. 

The anti-tumour activity of CTX depends on its ability to induce both apoptosis and senescence. 

Tumours lacking both programs rapidly progress to a lethal stage [86]. CTX induced senescence 

was accompanied by increases in the expression of p53, p16, PML and SA-β-gal activity. 

Knockdown of either the p53 or p16 pathway prevented senescence formation and allowed 

tumours to progress to a terminal stage. Senescence was therefore able to contribute to the 

treatment outcome, especially when apoptosis was not possible. In fact drug induced senescence 

was most prominent in the presence of an apoptotic block. This suggests that senescence can be a 

back up to apoptosis [86].  Topoisomerase inhibitors are commonly used anticancer drugs, and 
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like most cytotoxics are used to induce DNA damage in tumour cells, activating p53 and leading 

to cell cycle arrest or apoptosis [87]. Te Poele et al showed that DNA damage induced by 

clinically relevant concentrations of topoisomerase inhibitors is able to induce irreversible growth 

arrest involving p53, p21, and p16I. These cells had the morphological and biochemical 

characteristics of cellular senescence. The onset of the senescence program was coincident with 

increased levels of p53 and p21, whereas p16 levels remained unchanged during treatment. When 

cells were recultured in drug-free medium, the p53 and p21 levels decreased to normal. However, 

p16 levels increased soon after drug withdrawal, and cells remained senescent. These data 

suggest that p53 and p21 play a central role in the onset of senescence, whereas p16 may be 

involved in maintaining senescence [88]. 

 

1.6.2 Senescence and Liver fibrosis 

The senescence of activated hepatic stellate cells (HSCs) limits the accumulation of fibrotic 

tissue following chronic liver damage and facilitates the resolution of fibrosis following the 

withdrawal of the damaging agent. This is possible because the senescent activated stellate cells 

exhibit gene expression profiles consistent with cell cycle exit, reduced secretion of extracellular 

matrix components, enhanced secretion of extracellular matrix degradation enzymes and 

enhanced immune surveillance. The natural killer cells which are recruited into the area by the 

cytokines produced by the senescent cells themselves, preferentially kill the senescent activated 

stellate cells in vitro and in vivo. The increased expression of metalloproteinases (MMPs) also 

leads to the degradation of the extracellular matrix which is contributing to the development of 

the fibrotic scar [8]. 
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1.7 Senescence associated secretory phenotype 

Cellular senescence is accompanied by an increase in the secreted levels of factors involved in 

intercellular signaling. This phenotype has been termed the senescence associated secretory 

phenotype, or SASP [89]. The cells which have been shown to senesce and secrete the 

biologically active molecules are liver stellate cells [8], endothelial cells [90, 91], and epithelial 

cells [92]. The senescence associated changes in gene expression are specific and conserved 

within individual cell types [93]. The SASP includes several families of soluble and insoluble 

factors. The factors affect surrounding cells by activating cell surface receptors and initiate signal 

transduction pathways that can lead to multiple pathologies. The SASP factors can be divided 

into a number of major categories including soluble signaling factors (interleukins, chemokines 

and growth factors, secreted proteases), and secreted insoluble components. [94].  

 

1.7.1 Soluble factors 

The factors released from senescent cells are capable of regulating the phenotype of surrounding 

cells. In addition some factors can act in an autocrine manner to initiate the senescent phenotype. 

Two of these described to have such a role are interleukin (IL)-6 and insulin growth factor 

binding protein 7 (IGFBP7). 

IL-6 is a pro inflammatory cytokine and is associated with DNA damage and oncogenic stress 

induced senescence of mouse and human keratinocytes, melanocytes, monocytes, fibroblasts and 

epithelial cells [89]. In response to oncogenic stress, both IL6 and IL8 genes are activated by the 

transcription factor C/EBPβ upon its recruitment to either promoter. C/EBP deletion results in a 

bypass of oncogene induced senescence which correlated with a loss of expression of both 

interleukins. Because IL-6 depletion was followed by a decrease in the levels of both C/EBP and 

IL-8 it suggests that the C/EBP and IL-6 are involved in a positive feedback network regulating 

oncogene induced senescence [95]. 
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Similarly in primary melanocytes, the BRAF oncogene BRAFV600E results in the synthesis and 

secretion of IGFBP7, which then acts in an autocrine and paracrine fashion to inhibit BRAF 

signaling and induce senescence. [52]. 

Most senescent cells overexpress IL-8 and GROα and GROβ [93]. Fibroblasts undergoing 

oncogene arrest upregulate the cytokine receptor CXCR2 (IL-8RB) and its ligands and by 

manipulating their levels it is possible to promote or delay senescence. This suggests the 

existence of a positive feedback loop involving chemokine signaling via CXCR2 and acts to 

reinforce senescence [96]. Two of the ligands for CXCR2 are IL-8 and GROα. IL-8 has multiple 

paracrine and autocrine effects. As a paracrine agent, it controls endothelial cell migration and is 

a chemoattractant for neutrophils. As an autocrine agent IL-8 promotes the growth of different 

cancer cell types [97]. GROα is also an autocrine factor which stimulates melanoma cells to 

proliferate [98]. Cells in which CXCR2 signaling has been compromised are less able to engage 

senescence in response to oncogenic signaling from Ras or MEK. Expressing CXCR2 increases 

DNA damage and its depletion diminishes the activation of a DDR. Secreted CXCR2 binding 

chemokines mainly reinforce senescence in cells that have already upregulated CXCR2 as 

opposed to spreading senescence to proliferative neighbouring cells [96].  

   

1.7.2 Secreted Proteases 

SASP proteases have three major effects which include the shedding of membrane associated 

proteins resulting in soluble versions of membrane bound receptors, cleavage of signaling 

molecules and degradation of the extracellular matrix [94]. 

Senescent cells secrete increased levels of (MMPs). They are upregulated in mouse fibroblasts 

undergoing replicative or stress induced senescence. Senescent cells have been indentified in 

fibrotic livers of CCL4 treated mice and they arise from activated stellate cells, a cell type that 

initially proliferates in response to hepatocyte cell death and is responsible for the extracellular 
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matrix (ECM) production through the action of MMPs. The altered ECM is a hallmark of the 

fibrotic scar [8]. The secretion of MMPs also enhances the invasion of epithelial cells. Human 

fibroblasts which have undergone SIPS as a result of exposure to the DNA-damaging agent 

bleomycin increase the growth of transplanted cancer cells in immunodeficient mice. It is 

believed this response is the result of increased MMP expression by the senescent fibroblasts, 

which leads to an increase in the permeability of adjacent capillaries. This results in increased 

levels of mitogens, cytokines and other plasma products and causes increased proliferation of 

cancer cells [99].  

 

1.7.3 SASPs effect on cell behavior 

The factors secreted by senescent cells can promote tumour development in vivo and malignant 

phenotypes such as proliferation and invasiveness in cell culture models. These effects have been 

observed in a number of tissues including breast, skin, prostate and pancreas [93]. 

 

1.7.3.1 Cell Proliferation 

One of the most pro-tumorigenic effects of SASP is to promote cell proliferation. It has been 

found that senescent fibroblasts can stimulate the growth of premalignant and malignant 

mammary epithelial cells [100]. MMP secretion was found to be responsible for tumorigenicity 

of breast epithelial cell xenografts in mice when secreted by senescent fibroblast. It is believed 

that the MMPs allow mitogenic and chemotactic signals greater access to the breast cancer cells 

[99]. Fibroblasts from the human prostate gland that undergo senescence in culture have been 

shown to create a local tissue environment that favours prostate epithelial cell hyperproliferation, 

as a result of amphiregulin secretion [101]. 
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1.7.3.2 Cell Motility 

Senescent cells secrete factors which can create a gradient to promote cell migration and 

invasion. In breast cancer the high levels of IL-6 and -8 secreted by senescent fibroblasts are 

responsible for enhancing the invasiveness of cancer cell lines [102]. In cell culture models it has 

been found that EC are induced to migrate by vascular endothelial growth factor (VEGF) which 

can be secreted by senescent fibroblasts [103].  

 

1.7.3.3 Inflammation 

Gene expression profiles have demonstrated that senescence is associated with gene expression 

patterns similar to those observed in an inflammatory response. There is an increased expression 

of inflammatory associated genes including the chemokines monocyte chemotactic protein-1 

(MCP-1) and Groα, cytokines IL-15 and IL-1β and intercellular adhesion molecule-1 (ICAM1). 

The expression of these molecules was observed in replicative senescent fibroblasts [104] and 

replicative senescent human hepatic stellate cells [105]. The induction of the inflammatory 

network is also linked to premature senescence induced by oncogenes. The increased expression 

of the inflammatory regulators has been observed in primary human fibroblasts induced to 

undergo senescence by oncogenic Ras [106] and in senescent melanocytes expressing BRAF 

[95]. 

 Senescent tumour cells can be cleared by an innate immune response triggered by the 

inflammatory cytokines secreted by the senescent cells [83]. This was possible because the 

senescent cells caused a progressive infiltration of host leukocytes (neutrophils, macrophages and 

natural killer cells) into the tumour tissues. It was accompanied by increased production of 

inflammatory cytokines known to attract these leukocytes, and adhesion molecules including 

ICAM1 and vascular cell adhesion molecule-1 (VCAM1). On the other hand the inflammatory 

mediators produced by senescent cells are also known to enhance tumour angiogenesis and 
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tumour cell proliferation, invasion and metastasis. IL-6 stimulates the proliferation of tumour 

cells, protects tumour cells from apoptosis and promotes tumour metastasis and angiogenesis by 

inducing the expression of adhesion molecules and angiogenic factors.[107]. 

 

The work so far has shown that senescence can be both beneficial to tumour development by 

preventing tumours from becoming malignant, but can also enhance tumour progression with the 

secretion of pro-tumorigenic factors.  

 

The theory that a biological process such as cellular senescence can be both beneficial as a 

tumour suppressor and deleterious when pro-tumorigenic is consistent with a major evolutionary 

theory of aging termed antagonistic pleiotrophy. The theory states that natural selection has 

favoured genes conferring short-term benefits to the organism at the cost of deterioration in later 

life. This is occurring with senescence initially stopping the development of malignant tumours 

by stopping uncontrolled proliferation. But in the long term as more senescence develops, the 

microenvironment created by the senescence begins to become pro-tumorigenic and is therefore a 

negative influence on the organism. [10].  

1.7.4 SASP and the Senescence Pathways 

Although senescence induction and the development of SASP occur together, the pathways that 

regulate them do not completely overlap. For example, p16INK4a expression is sufficient to induce 

a senescence growth arrest, but does not induce or modify the SASP [93]. Likewise, p53 is 

required for the growth arrest [10], but not the SASP; in fact, cells lacking functional p53 secrete 

markedly higher levels of most SASP factors. The SASP is not an acute (rapid, transient) 

inflammatory response. It does not develop immediately after cells experience a senescence-

inducing stimulus but, once established, it persists for long intervals [89]. One regulator of the 
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SASP is the DNA damage response (DDR), the signalling cascade that senses and ultimately 

repairs DNA damage. ATM, CHK2, and NBS1 which are involved in the DDR pathway are 

essential for establishing and maintaining the expression of several SASP proteins, particularly 

inflammatory cytokines such as IL-6 and IL-8[108]. However, canonical DDR signalling is not 

sufficient for the SASP: a transient DDR, caused by low-level ionizing radiation, does not induce 

an SASP[108]. Additionally, the SASP, like some other features of the senescent phenotype (e.g., 

cell enlargement, SA-βgal activity), takes several days to develop after the damaging event, 

whereas the canonical DDR is activated immediately after damage. Thus, at least one additional, 

slower event which cooperates with the DDR, but is independent of rapid-response DDR factors 

must be required for the SASP [109]. 

1.8 Senescence and Aging 

Human aging is marked by the onset of a wide spectrum of pathologies. Many of these, for 

example, osteoporosis, Alzheimer’s disease, and heart disease, are degenerative, whereas others, 

like cancer, result from unregulated and excessive cell proliferation. Both situation represent 

uncontrolled age-associated decline in normal cells and tissue homeostasis. While controlled 

senescence may have a positive role in cancer, there is evidence that uncontrolled senescence 

promotes the degenerative and cancerous pathologies of aging [75]. 

Senescence may impact on aging through two mechanisms. The first is that accumulation of 

senescent cells in tissues may reach a point that compromises the tissues functionality, and, 

secondly, senescence may limit the regenerative potential of adult stem cells [110]. 

 

1.8.1 Evidence of senescence in aging 

Cells with the characteristics of senescence, such as β-gal staining and p16 expression, 

accumulate with age in multiple tissues from both humans and rodents. These cells are also 
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present at sites of age related pathologies, including atherosclerotic lesions, skin ulcers and 

arthritic joints [111]. The senescence observed is often the result of decreased telomeres and 

indeed, there is an inverse correlation between telomere length and age in a variety of tissues and 

between telomere length and diseases associated with aging [112]. Indeed, factors that can 

decrease longevity, such as physiological stress or obesity, decrease telomerase activity and 

telomere length. There is also an age associated accumulation of DNA damage which is 

attributed to an age related increase in ROS production and a decline in DNA repair capacity. 

The increase in DNA damage results in an increase in cellular senescence and leads to 

compromised tissue homeostasis [113]. The accumulation of senescent cells in animal organs 

may also contribute to the aging process by depleting the renewal capacity of tissues an/or by 

altering tissue structure and function through the secretion of MMPs, epithelial growth factors 

and inflammatory cytokines which could interfere with the tissue microenvironment [24]. Some 

studies have also shown 

 

1.9 Senescence and the Vascular System 

My thesis will concentrate on the impact of senescence in the vascular system. For this reason I 

have included a specific section on the role which senescence plays in the vascular system. 

 

One process that has been increasingly linked to both aging and vascular pathologies is EC 

senescence. In EC the changes result in a phenotype that is pro-inflammatory, pro atherosclerotic 

and pro-thrombotic. EC senescence can also be induced by a number of factors implicated in 

vascular pathologies, including sustained cell replication and oxidative stress [114]. The 

importance of senescence in EC has been demonstrated recently by the identification of senescent 

cells in a range of vascular pathologies. Using β-galactosidase staining evidence of senescent EC 
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has been found in rabbit carotid arteries after repeated balloon endothelial denudation, an injury 

model which promotes endothelial and smooth muscle proliferation [115] (Figure 1.6). Research  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. SA ß-gal–positive vascular cells in human atheroma. Photographs of the luminal 

surface of human coronary artery (CA) (left) and internal mammary artery (IMA) (right) stained 

with ß-gal staining. Senescent-associated ß-gal activity was observed in human coronary 

arteries but not in internal mammary arteries. Adapted from Minamino et al 2002.  
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has also shown the presence of EC senescence overlying atherosclerotic plaques of human aorta 

and coronary arteries [116] and on the aorta of diabetic rats [90].  

Studies on cultured EC have shown that the induction of senescence can be initiated by a number 

of factors which are also involved in vascular function.  

 

1.9.1 Telomere dependent senescence in vascular disease 

There is evidence indicating that telomere shortening occurs in human vessels, and this may be 

related to age associated vascular diseases. Telomere shortening is also more enhanced in  

coronary artery EC from patients with coronary heart disease compared with cells from healthy 

subjects. The enhanced telomere shortening leads to increased development of senescence at 

these sites [112]. The rate of telomere loss was also greater in the intimal cells of iliac arteries, a 

region of the arterial tree subjected to higher haemodynamic stress, than in the internal mammary 

arteries. It is likely that the increased rate of cell turnover in the region of disturbed flow 

accelerates telomere loss.[117] Telomere length can also be reduced by treatment with 

cardiovascular risk factors. The rate of endothelial senescence is increased after repeated addition 

of asymmetrical dimethyl l-arginine (ADMA), a novel cardiovascular risk factor. The telomere 

length in ADMA treated cells is significantly shortened compared with control cells, as a result of 

the significant reduction in telomerase activity in ADMA treated cells leading to the development 

of RS [118]. Similar results have been found with homocysteine, which is also a risk factor for 

atherosclerosis and can induce telomere shortening and accelerates EC senescence [119]. 

 

1.9.2 Telomere independent induction of senescence in vascular disease 

The duration of exposure to risk factors for cardiovascular disease (CVD), particularly to 

hypertension, was associated with an early onset of senescence. The senescent EC showed 

markers of both senescent pathways. The RS pathway was shown by a shortened telomere length 
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and lower levels of TRF-1 a telomeric repeat binding factor known to protect telomere integrity. 

There was also increased expression of ATM, the DNA damage signal inducer and of p53 and 

p21, known inducers of replicative senescence. But the telomeres were not significantly 

shortened which suggests that EC from patients with a heavy burden of risk factors for CVD 

enter senescence before telomeres shortened to their threshold length. Since risk factors for CVD 

are associated with an increase in oxidative stress, oxidative stress induced senescence was 

studied. Senescence was strongly associated with an increase in lipid peroxidation levels. Lipid 

peroxidation and the onset of cellular senescence were positively correlated with levels of 

caveolin-1. Cellular levels of cholesterol increased with aging and this is associated with an 

upregulation of caveolin-1, which is linked to senescence induction. Cox 2, an inflammatory 

marker known to increase in the presence of oxidative stress increased in expression after 

senescence. The increase in these markers confirmed that stress induced senescence is occurring 

in EC from patients with CVD [120] 

 

1.9.2.1 Angiotensin II contributes to atherosclerosis  

Arterial components of the angiotensin II (AngII) signaling cascade increase with aging and 

contribute to the pathogenesis of atherosclerosis [121]. Ang II has also been reported to induce 

premature senescence of human VSMCs via the p53/p21 pathway. Ang II also induces the 

production of pro-inflammatory cytokines. The increase in pro-inflammatory molecules 

associated with the induction of premature senescence contributes to the development of 

atherosclerosis [122]. Ang II is also able to activate the Ras signaling pathway. Consistent with 

the influence of Ang II on senescence, activated Ras has been found to induce vascular cell 

senescence and is also associated with inflammation. The activation of Ras leads to an increase in 

the expression of proinflammatory cytokines in EC. The introduction of Ras into balloon injured 

arteries enhances vascular inflammation and cellular senescence compared with responses seen in 
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control injured arteries. Thus the Ang II/Ras signaling pathway appears to promote atherogenesis 

in humans by inducing vascular cell senescence via the p53/p21 pathway [123]. 

 

1.9.2.2 Mitochondrial dysfunction 

There is a key role for mitochondrial dysfunction in the aging process in many species and the 

increased ROS production has the ability to lead to EC senescence. Mitochondria by themselves 

generate ROS during normal respiration. The importance of mitochondrial derived ROS in the 

induction of EC senescence has been highlighted in a study examining prohibitin-1 (PHB1). 

PHB1 is a constituent of the inner mitochondrial membrane and important for the maintenance of 

mitochondrial functional integrity. The knockdown of PHB1 in EC increases mitochondrial ROS 

generation leading to cellular senescence [124]. Mitochondrial dysfunction also correlates with 

the extent of atherosclerosis, with vascular complications often seen in young subjects with 

mitochondrial disease in the absence of risk factors for cardiovascular disease. These results 

suggest that mitochondrial dysfunction may promote atherogenesis by inducing vascular cell 

senescence [125]. 

 

1.9.2.3 PAI1 

Type 1 plasminogen activator inhibitor (PAI 1) is the primary inhibitor of plasminogen activator 

and is increased in a number of clinical conditions defined as prothrombotic. During EC 

senescence there is a correlated increase in the mRNA expression of PAI1. The EC expression of 

PAI1 is characteristic of an activated endothelium and has been detected in atherosclerotic human 

arteries and in the ECs surrounding invasive tumor cells. The expression of PAI1 is also 

increased in response to IL-1 a known marker of EC senescence [126].   

 

1.9.2.4 Akt 
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Akt is activated through phosphorylation. Detection of phosphorylated Akt is seen in human 

atheroma, but not in normal arteries In addition, Akt activity is increased in endothelial cells 

undergoing replicative senescence and the inhibition of Akt leads to prolonged cellular lifespan. 

The knockdown of p53 prevented Akt induced senescence suggesting a role of p53 in the Akt 

induced senescence pathway. Akt also increases the transcriptional activity of p53, resulting in 

upregulation of p21 and the induction of senescence [63].  

 

 

1.9.3 Senescence and cardiovascular disease  

Age associated changes of the blood vessels include a decrease in compliance and an increase of 

inflammation. Aging also decreases the antithrombogenic properties of the endothelium. These 

changes of vascular structure and function have been suggested to have a role in the increased 

risk of atherosclerotic cardiovascular disease in the elderly [127].  

A number of studies have shown that many of the changes seen in senescent vascular cells are 

consistent with those seen in human atherosclerosis. 

 

1.9.3.1 Contribution of senescent endothelial cells to plaque development. 

Not only are senescent EC present at the site of atherosclerotic plaques, they also have an effect 

on plaque development. Both nitric oxide production and endothelial nitric oxide synthase 

activity are reduced in senescent EC. NO regulates vascular tone, dilatation and homeostasis and 

the loss of NO leads to the progression of atherosclerosis [128]. The production of ROS is 

increased which leads to a further decrease in the bioavailability of NO [129]. There is also an 

upregulation of plasminogen activator inhibitor-1, which decreases fibinolytic activity [126]. 

These changes as a result of endothelial cell senescence formation will contribute to the 
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impairment of endothelium–dependent vasodilation and an increased occurrence of 

thrombogenesis in human atherosclerosis [130].  

The interaction between monocytes and the vascular endothelial cells is also enhanced after EC 

senescence. This interaction also promotes atherogenesis [131]. The increased interaction is 

caused by the upregulation of proinflammatory cytokines in the senescent cells along with the 

decreased production of NO. The main cytokine found to be upregulated is ICAM-1 [130].  

 

These features are all characteristic of the pro-inflammatory/pro-thrombotic phenotype of 

endothelial cells found in atherosclerotic human arteries. 

These results indicate that senescence is not only found on the surface of atherosclerotic plaques 

but the senescent cells contribute to the development of atherosclerosis [130, 132]. 

 

1.9.3.2 Prevention of atherosclerosis through prevention of senescence. 

Premature endothelial cell senescence becomes progressively worse in the aorta, especially in the 

areas surrounding branching points of the intercostal arteries in young ZDF rats, and is associated 

with signs of vasculopathy. These signs include impaired vasorelaxation and NO production and 

defective angiogenic competence. The premature senescence used in these studies was developed 

using cellular oxidative stress. Ebselen a peroxynitrite scavenger and antioxidant was able to 

prevent the development of senescent endothelial cells in the ZDF rats. The development of 

vasculopathy as judged by acetylcholine induced vasorelaxation, NO production, angiogenic 

competence and the number of circulating microparticles was almost completely prevented when 

ebselen was administered from 8 to 22 weeks. [133]. Hayashi et al found by maintaining a high 

expression of NO the development of atherosclerosis was reduced and there was a partial 

regression of advanced atherosclerosis. These changes are attributed to the decrease in 

development of endothelial cell senescence when the levels of NO are maintained [134].  
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1.9.4 Diabetes 

Senescent endothelial have also been found to play a role in diabetes. Constitutive activation of 

Akt in human vascular endothelial cells not only leads to vascular dysfunction, but also to 

cellular senescence. Akt dependent vascular senescence can also be induced by features of type 2 

diabetes, including insulin resistance and hyperinsulinemia [63]. Endothelial senescence occurs 

in the arteries of type 2 diabetic rats and   the expression of the cell cycle proteins p53 and p16 

are also induced in the endothelium of these rats. The animals also show evidence of vascular 

dysfunction such as impaired endothelium dependent relaxation and reduced angiogenesis [133]. 

Endothelial cells treated with glycated collagen I, an advanced glycation end product (AGEs) 

which are considered among the leading causes of diabetic complications, develop premature 

senescence within 3-5 days, as judged by an increase SA-B-gal staining, decreased proliferation 

and an increase in cell size. This treatment mimics a diabetic situation. During this process there 

is a dysfunction in the lysosomes. Aging affects many cellular components, but the mitochondria 

and lysosomes show some of the most significant changes.  After ECs are exposed to GC there is 

a collapse of the lysosomal pH gradient and lysosomal permeabilisation. The change in 

lysosomal pH is relevant to premature senescence, as the reduced proteolytic activity may 

contribute to age associated pathologies [135]. 

With these results taken together type 2 diabetes can be regarded as a premature aging syndrome 

in which dysregulation of insulin/Akt signaling promotes cellular senescence and leads to various 

complications. 
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1.10 Summary 

Senescence has made the transition from cell-culture artifact to potential regulator of cancer and 

ageing and the importance of senescence has been realised. But cellular senescence still remains 

enigmatic and continues to pose a host of questions. Precisely how do the p53 and p16–pRB 

pathways establish and, equally importantly, maintain the senescent growth arrest? Both of these 

tumour-suppressor pathways also cause transient or reversible cell-cycle arrests, so how are their 

activities modified by senescence-inducing signals? How do cells 'decide' whether to undergo a 

transient growth arrest, senescence or apoptosis in response to damage or stress signals? The 

signals that induce p16, both in culture and in vivo, are especially obscure at present.  

There is also little is known about the mechanisms that are responsible for the apparently 

deleterious senescent secretory phenotype. How and why does this phenotype develop? How 

does the senescence response balance tumour suppression, tissue regeneration and ageing 

phenotypes? It would be undesirable to reverse the senescence growth arrest — this would allow 

damaged, stressed or oncogene-expressing cells to proliferate and therefore increase the risk of 

cancer. But will it be possible to eliminate the deleterious (pro-ageing) aspects of cellular 

senescence (for example, the senescent secretory phenotype) without reversing the tumour-

suppressive growth arrest?  

The impact of senescence on vascular function, and in particular the effects on EC function are 

only just being elucidated. Studies of senescence in EC and the expression in atherosclerotic 

plaques, at this stage, would imply a detrimental effect. This may make anti-senescence therapy a 

novel strategy for the treatment of atherosclerosis. However it is not appreciated at this stage the 

effect of senescence on the initiation of early lesions and the transition of early fatty streaks to 

advanced full-blown atherosclerotic plaques. In order to move into more detailed analysis and 
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understanding of senescence in vascular disease, it is critical that more markers are available for 

senescence in EC. 

1.11 Project Aims 

My project has been made up in two parts. When I initially began my PhD the aim of the 

laboratory was to identify novel genes involved in the regulation of angiogenesis and was the 

basis for the first aim and the results in chapter 3. 

Aim 1: Establish the function of the gene repressor element 1 silencing factor (REST) in 

angiogenesis and determine if expression manipulation of REST would affect angiogenesis. 

The work for this aim was not successful and as my data will show a decision was made to 

change my projects. I began work on a new gene SENEX. The introduction in Chapter 1 is based 

on the following aims. 

Aim 2: To determine and confirm that overexpression of SENEX in endothelial cells is inducing 

a senescent phenotype. 

Aim 3: To identify the signaling pathway through which SENEX is able to induce the senescent 

phenotype. 

Aim 4: To determine whether, SENEX is expressed in atherosclerotic lesions and to determine 

the effect SENEX induced senescence has on the cellular function. 
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CHAPTER 2 

Materials and Methods 

2.1 Materials 

2.1.1 Chemical Reagents 

Agarose (DNA Grade)    Progen Industries Ltd, QLD, Australia 

Ampicillin/Kanamycin/Gentamicin   Roche, Mannheim, Germany 

MTS       Promega, WI, USA 

TRIZOL      Invitrogen Life Technologies, CA, USA 

 

2.1.2 Cells and Plasmids 

Human Umbilical Vein Endothelial Cells  Isolated from Human umbilical cords, 

(HUVEC)      obtained with ethics approval from the 

Royal Prince Alfred Hospital (Sydney) 

     

pEG       Invitrogen Life Technology, CA, USA 

pcDNA3                         Invitrogen Life Technology, CA, USA 

pAEAT-G Constructed by Samuel Yu, Vascular 

Biology Laboratory, Hanson Institute, 

Adelaide, SA, Australia 

 

2.1.3 Tissue Culture and Adenovirus Production Reagents 
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Endothelial cell growth Supplement (ECGS)  Becton Dickinson, MA, USA 

Fibronectin, Vitronectin, Laminin Boehringer, Mannheim, Germany 

Foetal Calf Serum     Hyclone, In Vitro, Vic, Australia 

Heparin      Sigma, MI, USA 

Gelatin       Sigma, MI, USA 

LIPOFECTAMINETM 2000    Invitrogen Life Technology, CA, USA 

Matrigel      Becton Dickinson, MA, USA 

Tissue Culture Reagents    CSL Ltd, Vic, Australia 

 

2.1.4 Kits 

 

Qiaquick® Gel Extraction Kit    QIAGEN, Vic, Australia 

Qiafilter® MIDI and MAXIprep Kit   QIAGEN, Vic, Australia 

Qiafiter® PCR Purification Kit   QIAGEN, Vic, Australia 

 

 

2.1.5 Enzymes 

 

Pfu Ultra      Stratagene, CA, USA               

AmpliTaq Gold     Applied Biosystems, CA, USA 

Calf Intestinal Alkaline Phosphotase   Boehringer Mannheim, Mannheim, Germany 

T4 DNA Ligase Boehringer Mannheim, Mannheim, Germany 

Bgl II, BstX I, EcoR I, Pac I, Stu I, Xho I New England Biolabs (NEB), Ontario, 

Canada OR Promega, WI, USA 
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LR Clonase Enzyme Mix    Invitrogen Life Technology, CA, USA 

Superscript™III     Invitrogen Life Technology, CA, USA 

 

2.1.6 Other 

 

QuantiTech SYBR Green PCR Master Mix  QIAGEN, Vic, Australia 

 

2.2 Cloning Procedures 

2.2.1 PCR Amplification 

Filtered tips were used to prepare all PCR amplification reactions and thermal cycling was 

performed on a Perkin Elmer 2400 thermal cycler.  

 

PCR conditions were as follows: 

 

Initial Denaturation 95°C,  1 min 

Denaturation  95°C,  30 sec 

Annealing  63°C,  30 sec  3 cycles 

Extension  72°C,  4 min 

 

 

 

Denaturation  95°C,  30 sec 

Annealing  68°C,  30 sec   
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Extension  72°C,  4 min  32 cycles 

Final Extension 72°C,  10 min 

 

In order to ensure high sequence integrity, the high fidelity proof-reading enzyme, Pfu Ultra 

(Applied Biosystems, CA, USA), was used to obtain PCR products. Following their 

amplification, all PCR reaction were purified via the QIAquick PCR Purification Kit (see 

QIAquick
 Spin Handbook, 2000, QIAGEN) and the product was viewed via agarose gel 

electrophoresis.  

The PCR temperature (Tp) of all designed primers was between 50 - 72°C, with the PCR reaction 

performed at 2-5°C below this value [136]. Tp refers to the maximum temperature value at which 

priming occurs within a given oligonucleotide pair and it is also the temperature at which 

maximum specificity is achieved [136]. Tp values were used over Tm which relate more 

specifically to hybridisation reactions. In order to calculate Tp the following formula was used:  

Tp = 22 + 1.46 (2GC+ AT), where GC + AT refers to the number of G and C residues and A and 

T residues, respectively [136]. 

2.2.2 Prparation of samples for Sequencing 

Sequencing of all clones was performed using the BigDye TM 3.0 system (Applied Biosystems, 

CA, USA). The sequencing primers used were T7 and SP6, which flanked the MCS containing 

the gene of interest. Internal primers, which were designed for specificity for each of the 

individual cloned cDNAs, enabled sequence determination beyond the range of the T7 and SP6 

primers.  

The cycling conditions for sequencing reactions were as follows: 
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Denaturation  96°C,  1 min 

Denaturation  96°C,  10 sec 

Annealing  50°C,  5 sec  30 cycles 

Extension  60°C,  4 min 

Subsequent to the sequencing reaction, the products were purified using isopropanol.  In brief, 

80µl of 75% isopropanol (made fresh) was added to the sequencing reaction which was vortexed 

and incubated at room temperature for 15 min in order to precipitate the sequencing products. 

After the incubation period, samples were centrifuged (13,000 x g, 20min, RT) and the 

supernatant was carefully aspirated. The pellet was then washed in 250µl of 75% isopropanol and 

vortexed briefly. Samples were subsequently centrifuged for a further 5 min and the supernatant 

was again aspirated.  After air-drying, samples were sent for sequencing.  

2.2.3 Restriction Endonuclease Digestion 

Restriction enzyme digestions were performed under conditions suiting each individual enzyme, 

according to the manufacturer’s instructions. Both New England Biolabs and Promega enzymes 

were used. Digested DNA fragments were subsequently separated via agarose gel electrophoresis 

(1-3% agarose) in order to determine the efficiency of digestion. 

2.2.4 Extraction of DNA Fragments from Gels 

DNA fragments were gel extracted following directions from the QIAquick®
 Gel Extraction Kit 

(see QIAquick®
 Spin Handbook, 2001, QIAGEN).  

2.2.5 Ligation of DNA fragments into Plasmid Vectors 

After appropriate restriction enzyme digestion, the 5’ ends of plasmid vectors with compatible 

termini were CIAP (Calf Intestine Alkaline Phosphatase) dephosphorylated. The vector and insert 
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were then ligated together using T4 DNA ligase (NEB, Canada) at a mole ratio of 1:1 and 1:3, 

with approximately 40-50ng of vector.  

2.2.6 Transformation of Plasmid DNA into competent E.coli DH5α  Cells 

Competent E.coli DH5α were produced via the calcium and magnesium chloride protocol at 

stored at -80°C. 1µl of the ligation reaction was added to 50µl of competent E.coli and mixed. 

This mixture was then incubated on ice for 30min and then subsequently placed in a 42°C water 

bath for 2 min, in ice water for 1 min, then 1ml of SOC medium (2% Tryptone, 0.5% Yeast 

Extract, 10mM NaCl,10mM MgSO4,10mM MgCl2) was added and this mix was incubated at 

37°C for 20-40 min. Transformed cells were then plated onto Luria Bertani (LB) agar which 

contained the necessary amount of the appropriate antibiotic (Ampicillin at 100µg/ml, 

Kanamycin at 50µg/ml or Gentamicin at 7µg/ml) and incubated at 37°C overnight.  

2.2.7 Small Scale Plasmid DNA Purification  

Desired colonies, picked using sterile toothpicks, were inoculated in 2ml of LB Broth containing 

the appropriate antibiotic and were incubated in a 37°C shaker overnight. An alkaline lysis 

method was used to purify the plasmid DNA from the 2ml cultures [137]. In brief, 1.5ml of each 

culture was centrifuged (13,000 x g, 20 sec, RT) and the supernatant was then discarded. The cell 

pellet was resuspending by vortexing in 100µl of TES (25mM Tris-HCl,pH 8.0, 10mM EDTA, 

15% sucrose). To this, 200µl of 0.2M NaOH, 1% SDS solution was added and then mixed by 

inversion and left for 5 min. Sodium acetate (3M,pH 5.2, 125µl) was then added, mixed by 

inversion and then left at RT for a further 5 min. The sample was centrifuged for 5 min and the 

supernatant transferred to a clean tube which contained 30µg/ml RNase (final concentration). 

This was then incubated at 37°C for 30 min. 700µl of phenol/chloroform/isoamyl alcohol 

(25:24:1 v:v:v) was then added, vortexed and centrifuged for 5 min and the upper phase was 
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transferred to a clean tube with care to avoid the interface. Plasmid DNA was then precipitated 

with 2 volumes of 100% ethanol (80µl), vortexed and centrifuged for 10 min. In order to remove 

residual salt, one volume of 70% ethanol (400µl) was added. The mixture was then vortexed well 

and then centrifuged for a further 5 min. The purified plasmid DNA pellet was air dried and 

resuspended on 20µl TE buffer (10 mM Tris-Cl,pH 7.5, 1 mM EDTA). All centrifugations were 

performed at room temperature using a microcentrifuge at 13,000 x g.  

2.2.8 Large Scale Plasmid DNA Purification 

In order to prepare large-scale plasmid DNA, the Qiafilter® MIDI or MAXI preparation 

procedures (see QIAGEN Plasmid Purification manual 2001) were performed and either the 

Qiagen 100 or 500 columns were used. Either 100ml or 500ml bacterial cultures were used 

depending on the amount of plasmid DNA required and this volume was passed over MIDI or 

MAXIprep columns, respectively. The quantity and purity of DNA was determined via UV 

spectrophotometry.  Purified DNA was also rum on an agarose gel in order to determine the level 

of RNA contamination and the proportion of plasmid that was nicked, dimerised or supercoiled. 

Following quantification and gel electrophoresis, samples were digested with appropriate 

restriction enzymes to confirm the validity of the cloned DNA.  

2.3 Generation of Adenoviral Constructs 

Adenoviral vectors were generated in accordance with the manufacturer’s instructions 

(http://www.qbiogene.com/products/adenovirus/adeasy.shtml), as described below. A gene of 

interest is cloned into a shuttle vector (pEG) and is then inserted into a much larger adenoviral 

vector (pAdEasy-AdTrackG) via homologous recombination in E.coli. pAEATG is a vector in 

which the GFP gene and gene of interest are driven by two strong CMV promoters/enhancers 

(see section 4.1.2). The vector also contains a kanamycin resistance gene and right and left arms 
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which are homologous to the adenoviral vector, pAEATG to enable insertion of the pEG cassette 

via homologous recombination. Firstly, the cDNA versions of the genes of interest were cloned 

into the pEG shuttle vector, which was followed by linerisation by Pac I. Next, E.coli which 

already contained the pAEATG plasmid, were transformed with the recombinant pEG constructs 

via Gateway recombination using the LR Clonase enzyme mix in accordance with 

manufacturer’s instruction (http://www.invitrogen.com/content.cfm?pageid=10600#lr). The 

transformation mixture was then resuspended in 1ml of SOC medium and incubated at 37°C for 

1h, in order to allow the cells to recover. The mixture was then plated on LB kanamycin 

(50µg/ml) plates and incubated overnight at 37°C. The colonies were then picked and cultured in 

2ml LB broth (Kan 50µg/ml) for a minimum of 24 h. Plasmid DNA was then purified and 

visualised on a 1% agarose gel, in order to confirm the size of the pAEAT recombinants. E.coli 

DH5α cells were transformed with the pAEATG recombinant plasmids, plated on LB agar (Kan 

50µg/ml) plates and incubated overnight at 37°C. The colonies were picked once again and 

500ml cultures were prepared and grown overnight at 37°C. The recombinant pAEATG plasmid 

DNA was purified via the Qiafilter® MIDIprep protocol, using Qiagen 100 columns. Purified 

plasmid DNA was then quantified and checked for successful recombination via Pac I and Bs tXI 

restriction enzyme digestion and visualisation on agarose gels.  

2.4 Real Time Quantitative Reverse Transcription PCR (Q-RT-PCR)  

RNA was isolated from HUVEC via an RNeasy Mini-Kit (QIAGEN, Australia) according to the 

manufacturer’s instructions. Isolated RNA was then run on a 1% agarose TAE gel to check the 

integrity of the RNA, which was subsequently quantified by spectrophotometry at A260. In order 

to remove residual DNA from isolated RNA, DNase treatment (DNA-free kit, Ambion) was 

performed according to manufacturer’s instructions.  
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Reverse transcription was used to generate the first strand cDNA for the Q-RT-PCR. Superscript 

III (Invirogen) was used. 

Q-RT-PCR was carried out on RotorGene 2000 (Corbett Research, Sydney, Australia) using the 

QuantiTech SYBR Green PCR Master Mix protocol (QIAGEN). The primers used were designed 

using the Primer3 program (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and made 

specific for the genes of interest.  

Q-RT-PCR conditions were as follows: 

 

Denaturation  95°C,  15 min 

Denaturation  95°C,  10 sec  

Annealing  60°C,  20 sec  40 cycles 

Extension  72°C,  30 sec 

Melt   72°C to 95°C 

 

All melting curves were checked to ensure an appropriate single PCR product was obtained.  

2.5 TISSUE CULTURING TECHNIQUES 

2.5.1 Human Umbilical Vein Endothelial Cells 

Human umbilical vein endothelial cells (HUVEC), were isolated by collagenase treatment [138]. 

The cells were cultured in  gelatin (Sigma Aldrich) coated 25cm2 flasks in HUVEC medium 

(M199 with Earles Salts, 20mM HEPES, 20% foetal calf serum, sodium bicarbonate (Invitrogen), 

2mM glutamine, 1% nonessential amino acids (Invitrogen), 1mM sodium pyruvate (invitrogen), , 

penicillin and gentamicin(Invitrogen). Cells were grown at 37°C, 5% CO2.  HUVEC formed a 
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confluent monolayer within two to four days and were then harvested by trypsin-EDTA 

(Invitrogen) treatment and transferred into a gelatin coated 75cm2 flask. Endothelial growth 

supplement (50µg/ml, BD, USA)) and 50µg/ml heparin (Sigma, Missouri, USA) were added. 

Cells were passaged (1:2 split) every three to four days and were used only up to passage four.  

2.5.2 Human Embryonic Kidney 293 Cells 

Human Embryonic Kidney 293 cells (HEK293 cells) were grown at 37°C, 5% CO2, in complete 

DMEM containing 1% 1M HEPES, 10% FCS and antibiotics (1% Penicillin/Streptomycin).  

2.5.3 Cell Counting 

Cells, which were plated in either a T75 or T25 flask, were harvested three days after plating 

(unless otherwise indicated) using trypsin and resuspended in the appropriate amount of medium. 

An equal volume of cell suspension and trypan blue were added to a haemocytometer and the 

viable cells were counted manually.  

2.6 Generation of Adenovirus 

2.6.1 Transfection of HEK293 Cells 

Human Embryonic Kidney 293 cells were plated, using antibiotic free DMEM, in a fibronectin-

coated T25 tissue culture flask at a density of 2x106 cells, so as to be approximately 90-95% 

confluent after 48 h. On the day of the transfection, 4µg (in 20µl) of PacI digested pAEATG 

recombinant DNA was mixed with 500µl of OPTI-MEM ® I Reduced Serum Medium 

(Invitrogen Life Technologies, CA, USA). 20µl of LipofectamineTM 2000 (LF2000, Invitrogen 

Life Technologies, CA, USA) reagent was also mixed with 500µl of OPTI-MEM ®. The two 

solutions were incubated separately for 5 min at room temperature before they were combined, 

mixed and incubated at room temperature for a further 15-30 min.  Subsequent to this, the entire 
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volume (1ml) of the LF2000/DNA mixture was added to the T25 flask of HEK293 cells. The 

transfected cells were incubated at 37°C, 5% CO2 for 48 h. After this 48 h period, the medium 

was changed to complete DMEM (with Penicillin/Streptomycin) and returned to the incubator 

until ready for viral harvesting. 

2.6.2 Harvesting Adenovirus 

Viral particles were harvested five to seven days after transfection when, upon observation, cells 

were floating and at least 50% of the cells were fluorescing green (due to the GFP gene located 

on the pAEATG plasmid) as visualised under the fluorescence microscope. Briefly, the cells 

were scraped from the bottom of the T25 flask and the cell suspension was transferred to a 10ml 

tube. After centrifugation (2000 x g, 5 min, RT), the medium was removed and the pellet was 

resuspended in 1ml of ice cold 1x Phosphate Buffered Saline (PBS) and then vortexed. Freeze-

thawing was then performed four times, using liquid nitrogen and a 37°C water bath, in order to 

ensure complete lysis of the cells. The suspension was then transferred into an eppendorf tube 

and centrifuged at 8,000 rpm for 10 min, with the centrifuge rotor pre-cooled to 4°C. Next, the 

‘transfection supernatant’ was stored at -20°C in 250µl aliquots until required. 

2.6.3 Large Scale production of Adenoviral Particles 

The titre and quantity of viral particles was increased by performing a series of three infections. 

For the first infection (infection #1), a 1/20 volume (250µl) of ‘transfection supernatant’ was 

mixed with 5ml of Complete DMEM (with Penicillin/Streptomycin) and then added to a T75 

flask of 70-90% confluent 293 cells.  The T75 was then incubated at 37°C, 5% CO2  for a 

minimum of 2 h and agitated periodically through the day. The volume of medium was kept to a 

minimum to enable closer contact between cells and viral particle which therefore increases the 

efficiency of infection. 5ml of complete DMEM (with Penicillin/Streptomycin) was then added 
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to the infected cells to give a total volume of 10ml. The fluorescence of the cells was checked 

every day and virus was harvested when a minimum of 50% of cells were floating and 

fluorescing green. Viral particles were harvested as described above, except that the cell pellet 

was resuspended in 0.5ml cold 1xPBS. 

 

A 1 in 50 volume (100µl) of infection #1 supernatant was used to infect each of two T75 flasks as 

described above. The remaining supernatant from infection #1 was stored at -20°C in 100µl 

aliquots for future use. In the same way, viral particles were harvested when at least 50% of cells 

were fluorescing green, to produce viral supernatant from infection #2. For the third infection, 

100µl of infection #2 supernatant was used to infect each of four T75 flasks as above. The 

supernatant was then collected and a small amount was used to perform an estimate viral titration 

in HEK293 cells. This estimate infection (see 2.2.5.4) was performed prior to the final large scale 

infection of HEK293 cells in T75 flasks at a dilution of 1/2500 for the sense and 1/2200 for the 

antisense.  

2.6.4 Estimate Titre of Adenovirus 

At dilutions ranging from 1/25 to 1/3200, the adenoviral supernatant was titrated in HEK293 

cells plated in a 24 well plate at 2 x 105 cells per well. After 48 h, the GFP production and 

cytopathic effect (CPE) of the virus was observed and recorded. The dilution chosen for the large 

scale infection is that which corresponds to the one which resulted in at least 4/5 of cells being 

detached and 100% green fluorescent.  

2.6.5 Purification of Adenovirus via a Double Caesium Chloride Gradient 

Recombinant adenovirus was purified via a caesium chloride (CsCl) purification procedure, as 

described in the Qbiogene Version 1.4 AdEasyTM Vector System manual 

(http://www.qbiogene.com/products/adenovirus/adeasy.shtml). Alterations to this protocol 
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included ultracentrifugation being performed in a SW41 Beckman rotor at 32,000 rpm rather than 

a SW28 rotor at 23,000 rpm as well as the collection of both upper and lower viral bands via 

bottom puncture rather than side puncture of the tube.  

2.6.6 Desalting and Concentration of Adenovirus by Dialysis 

The removal of CsCl via dialysis is a crucial step to this procedure, as high concentration of salt 

may potentially interfere with subsequent infection of cells with virus. The dialysis was 

performed using a Slide-A-Lyzer  Dialysis Cassettes (Pierce, IL, USA) and occurred according 

to the manufacturer’s procedure.  

2.6.7 Tissue Culture Infectious Dose 50 (TCID50) 

The TCID50 method for viral titration of viral particles is based on the development of a 

cytopathic effect in HEK293 cells via end point dilutions to estimate the titre. The TCID50 was 

performed in accordance with the Qbiogene Version 1.4 AdEasyTM Vector System manual 

(http://www.qbiogene.com/products/adenovirus/adeasy.shtml). In brief, various dilutions of virus 

were incubated with HEK293 cells in 96 well plates for ten days after which the presence or 

absence of a cytopathic effect (CPE) in each well was determined and the TCID50 was calculated 

as per the equation provided in the manual. The calculated values correspond to the number of 

infectious particles and their ratio with respect to the cells infected with adenovirus, which will 

be referred to as the multiplicity of infection (MOI).  

 

Also, the total number of viral particles (both infectious and non-infectious) which are present in 

the viral stock was calculated using an optical density (OD) of 260nm as described in the 

Qbiogene Version 1.4 AdEasyTM Vector System manual. Comparing the values obtained from 

this assay with the corresponding TCID50 allows a rough estimate of the ratio of infectious to 
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non-infectious viral particles. The optimal ratio is anything less than 1:50; however, a ratio of 

approximately 1:100 is satisfactory.  

2.6.8 Titration of Recombinant Adenovirus for Infection of HUVEC 

Various dilutions of virus were incubated with HUVEC, first in 24 well plates and later in T25 

flasks, for a period of 48 h. Cells were then harvested and analysed via FACS for mean GFP 

production (using a Coulter
 Epics XL2 Analyser). Results from FACS analysis relate to both 

efficiency of infection as well as the level of GFP expression which is assumed to reflect the 

specific level of gene expression which is occurring.  

2.7 HUVEC Proliferation Assay 

2.7.1 MTS 

MTS(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium, inner salt) is a colourless compound which is converted to a coloured compound by 

metabolically active cells. This is used as a measure of cell number. The MTS assay (Promega, 

WI, USA) was performed in accordance with the manufacturer’s protocol. Infected HUVEC were 

plated at 4 x 104 cells per well with eight replicates in each of two 96 well plates, coated with 

gelatin (one plate for ‘Day 0’ and one for ‘Day 3’ measurement). Cells were plated in a final 

volume of 150µl; 20% FCS + ECGS/Heparin. After 2 h incubation at 37°C, 5% CO2 , to allow 

for cell attachment, 30µl of MTS was added to each well of the ‘Day 0’ plate and it was then 

incubated for a further 2 h at the above conditions. Subsequent to this second incubation period, 

the ‘Day 0’ plate was read at 490nm on the ELISA plate reader. From previous work performed 

by members of the Vascular Biology Laboratory, the above conditions were established. There is 

a linear relationship between the absorbance reading at 490nm and the number of viable cells in 
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culture. The ‘Day 3’ plate was incubated for three days prior to the addition of MTS and the MTS 

readings were made as above. 

2.8 HUVEC Migration Assay 

2.8.1 Wounding Assay 

The migration assay was performed using a 6 well plate, coated with gelatin. Cells were plated at 

a density of 8 x 105 cells per well in 20% FCS + ECGS/Heparin and grown for at least 24 h post 

infection and at least 3 h prior to wounding. Cells were wounded using a rubber policeman, 

washed 3 times and the medium changed. Photographs of cells were taken at various time points 

over a 24h period so as to observe the rate of migration of cells over the wound until closure of 

the wound occurred.  

2.9 MATRIGEL®  TUBE FORMATION ASSAY 

The Matrigel® (Becton Dickinson, MA, USA) was thawed on ice overnight. Once thawed, using 

pre-cooled pipette tips, 100µl of Matrigel® was added per well to a pre-cooled 96 well plate. Care 

was taken to avoid air bubbles. The plate was then incubated at 37°C for approximately 30min to 

allow the Matrigel® to gel. Whilst this incubation period was occurring, HUVEC were harvested 

and counted. 4 x 104 cells are plated onto the Matrigel.Photographs are taken 30mins after plating 

and further photographs are taken every 6 hours for 24 hours. The tubes are compared between 

treated and untreated cells. 

2.10 ATTACHMENT ASSAY 

Ninety six well plates were coated in 70µl of gelatin, fibronectin or laminin in quadruplicate and 

were incubated at 37°C for approximately 30 min and then removed. Infected cells were 

harvested and collected in serum free medium and counted cells were plated in 2% Bovine Serum 
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Albumin (BSA) at 4 x 104 cells per 96 well. A 1:6 mix of MTS and serum free medium was made 

and on each plate 120µl of this mix was added to one non-coated well as a blank. 100µl of cells 

were also plated in duplicate into non-coated wells as plating controls. Cells were incubated at 

37°C for either 20 min or 60 min, then each well (excluding plating controls and blank) was 

washed twice with 1x PBS and then 120µl of the MTS mix was added to each well. 20µl of MTS 

was also added to the plating control wells at this point. Two hours after the addition of MTS, the 

plates were read on the ELISA plate reader. 
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2.11 Senescence staining 

Senescence-associated β galactosidase staining was performed at pH 6.0, as previously described 

(Dimri et al, 1995; Van der loo, 1998) and using the Cell signaling Technology Senescence β-

galactosidase staining kit. Cells believed to be exhibiting senescence characteristics, were 

washed once with 1 x PBS and fixed in 1x fixative solution (20% formaldehyde, 2% 

glutaraldehyde in 1 x PBS) for 15 mins at room temperature. Cells were washed twice with 1 x 

PBS and incubated at 37oC overnight in a solution containing 400mM citric acid/sodium 

phosphate 9pH 6.0), 1.5M NaCl, 20mM MgCl2, 500mM potassium ferricyanide, 500mM 

potassium ferrocyanide and 20mg/ml X-gal (5-bromo-4-chloro-3-indolyl-βD-galactopyranoside 

powder). Some improvements were made to the protocol which included not using a stock 

solution of X-Gal but rather making a 20mM solution in N-N-Dimethylformamide (DMF) with 

each use and the addition of 0.02% Nonidet® P40 Substitute (NP40) and 0.01% sodium 

deoxycholate to the staining solution. The pH of the staining solution was measured and adjusted 

with monobasic sodium phosphate NaH2PO4, to ensure that it was at a pH of 6.0 required to 

detect senescent cells. Stained cells were viewed under a microscope. The development of a blue 

colour is indiciative of SA-β gal positive cells.  

 

 

2.12 siRNA transfection 

HUVEC were transfected with validated Stealth siRNAs (50 nM (Invitrogen)) in parallel with 

corresponding non-specific Stealth siRNA negative control (50 nM Invitrogen). The cells were 

transfected using HiPerFect transfection reagent according to the manufacturer's protocol 

(Qiagen). 
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2.13 Protein Methodologies 

2.13.1 Protein Lysates 

Lysates were prepared from HUVEC for use in western blot analysis and caspase-3 assays. 

Media from each T25 was collected and centrifuged at 4oC, 14000 rpm for 15 min to ensure that 

any apoptotic cells floating in the media are accounted for. Cells were washed twice with ice cold 

PBS and 100ul of Lysis buffer (refer to appendix 1) was added to each well.  Cells were 

incubated on ice for 15 min and then removed with a cell scraper. Lysates were then transferred 

to a 1.5ml eppendorf tube and centrifuged at 4oC,14000 rpm for 15 min. The supernatant was 

transferred to a new eppendorf tube and protein concentration calculated using the Bradford 

Assay. 

2.13.2 Determining protein concentration: Bradford Assay 

Protein standards were made using Bio-Rad Protein Assay Standard II (Bio-Rad, NSW, 

Australia) in lysis buffer. 5µl of each of these, as well as 5µl of each protein extract was added in 

duplicate to a 96-well plate. 25µl of Bio-Rad Protein Assay Reagent A/S (1:50) (Bio-Rad) and 

200µl of Bio-Rad Protein Assay Reagent B was added to each well. The absorbance was read at 

690nm on the Labsystems Multiskan® Multisoft (Labsystems, VIC, Australia) plate reader. To 

prepare extracts for Western Blotting (Section 2.2.13), each was diluted in appropriate amounts 

of lysis buffer to achieve equal concentrations. NuPAGE® 4x LDS Sample Buffer (Invitrogen), 

and 10x Sample Reducing Agent (Invitrogen) were added to diluted samples and heated at 70°C 

for 10 minutes.  

2.13.3 Western blotting 

Protein samples were run using the SureLock™ Mini-Cell Apparatus (Invitrogen). 25µl of 

protein samples were loaded onto a NuPAGE® 4-12% Bis-Tris Gel (Invitrogen) and run 
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according to manufacturer’s instructions with either 1x MES running buffer (for small proteins) 

or 1x MOPs running buffer (refer to appendix 1) made by diluting 20x buffers in TDW. 4µl of 1x 

SeeBlue Pre-stained Standard (Invitrogen) was loaded as a protein ladder. Transfers were 

performed using XCell II™ Blot Module™ (Invitrogen) according to manufacturer’s instruction. 

Proteins were transferred onto a polyvinylidene difluoride (PVDF) membrane. Membranes were 

blocked for one hour with 5% skim milk powder in PBS with 0.1% Tween-20 (PBS-T). After 

blocking, membranes were put in primary antibody diluted in PBS-T (refer to appendix 3) and 

left overnight on a rotator at 4°C.  

Membranes were washed twice with PBS-T over a half an hour period. Appropriate secondary 

antibody (refer appendix 3) were added to membranes for 1 hour at RT with gentle rocking. 

Membranes were then washed 30 minutes. Protein was detected by the use of Enhanced 

ChemiLuminescence (ECL) Western Blotting Detection System (GE Healthcare, NSW, 

Australia) or ECL Plus (Thermo Scientific, Illinois, USA). Images were taken using the Kodak 

4000MM Image Station (IS4000, Kodak, Australia). Band intensity was quantified using Image J 

(National Institute of Mental Health, MD, USA).   

2.13.4 Caspase 3 ELISA 

20µl of lysates from adjusted samples (so that protein concentration in each sample is equivalent) 

was added to wells of a white 96 well plate in quadruplicate, with three repeats per lysate.  A 1x 

positive Caspase solution mix was prepared consisting of 1ml Caspase 3 Buffer (refer to 

appendix 7), 10µl 1M DTT and 5µl caspase-3 substrate The ‘negative’ mix was prepared as the 

positive mix, without the addition of the substrate. 100µl of ‘positive’ and ‘negative’ mix were 

added to corresponding wells (2 x ‘positive’ wells + 2 x ‘negative wells). The plate was 

incubated at room temperature overnight and read on a fluorescence plate reader. Caspase-3 is a 

protein expressed during apoptosis which enzymatically cleaves DVED-AFC to release a 
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fluorescent product and thus the level of fluorescence correlated to the level of apoptosis in the 

cells. 

2.14 Telomere length analysis  

Genomic DNA was extracted from cells using a DNA extraction kit (Qiagen). 20 µg of DNA was 

digested with Hinfl and RsaI (Boehringer Mannheim). The digested DNA was quantified by 

nanodrop (Thermo Scientific) and 1.0 µg was electrophoresed through a 0.8% agarose gel in 1x 

Tris-acetate-EDTA (TAE) buffer at 2 V/cm for 17 h. The gel was dried at 60°C for 2 h, 

denatured for 30-60 min in 0.5 M NaOH and 1.5 M NaCl and neutralized for 30-60 min in 1 M 

Tris-HCl, pH 8.0 and 1.5 M NaCl. The gel was then hybridized to a [γ-
32

P]dATP 5' end-labeled 

telomeric oligonucleotide probe [γ-
32

P-(TTAGGG)
3 

]. Hybridization and washing were carried 

out as described (77). The gel was autoradiographed on Kodak XAR-5 X-ray film for 12-24 h at 

room temperature. 

 

2.15 Transwell permeability assay  

Polycarbonate membrane (3µm) transwells (Corning Incorporated) were coated with 50 µg/ml 

fibronectin. Three x10
5 

passage two HUVEC in complete medium were added to each well and 

incubated for 24 h after which another 1x10
5 

cells were added to each well to produce a confluent 

monolayer. After 6 h, non-adhered cells were removed and the monolayer was infected with 

adenovirus (EV or SENEX) at an MOI sufficient to give 100% infection but without toxicity. 

After 48 h, the medium in both upper and lower wells was replaced with HUVEC medium 

containing 2% serum. To the upper well, 300 ng of FITC-dextran (Sigma-Aldrich) was added 

that contained 1.0U/ml thrombin (Sigma-Aldrich) where appropriate. 40 µl of medium was 

removed from the bottom well of each assay well after 50 minutes and fluorescence was 

quantified using a Wallac luminescence spectrometer (excitation 485 nm, emission 530 nm).  
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2.16 Neutrophil and mononuclear cell adhesion assay  

Neutrophils and mononuclear cells were prepared from fresh blood from healthy volunteers. 

Blood was dextran sedimented, cells were separated by Histopaque (Sigma-Aldrich) gradient 

centrifugation. The buffy coat was collected and purified to obtain mononuclear cells and the 

neutrophils were purified from the cell pellet with hypotonic lysis of the remaining red cells. 

HUVECs were plated on fibronectin coated labtek slides (Invitro technologies) at 6x10
4 

for 24 h. 

Monolayers cultured on the slides were preincubated with TNFα (5 ng/ml) for 5 h before the 

assay, and then washed. Neutrophils and mononuclear cells (10
6 

) were added to the HUVECs. 

After 60 min the wells were washed and photographed and counts of adherent cells were made. 

 

2.17 Dapi Staining  

HUVECs were plated on fibronectin coated labtek slides (Invitro Technologies) at 6x10
4 

for 24 h. 

They were then fixed with 100% methanol and stained with Dapi (1 µg/ml) (Sigma-Aldrich) for 

15 mins at 37°C, then washed and mounted.  

 

2.18 Cell Cycle Analysis  

Detached cells were washed with phosphate-buffered saline (PBS) and fixed in 70% ethanol at -

20°C for 30 min and stained at 37°C for 30 min in 1 ml of PBS containing 20 µg/ml propidium 

iodide and 20 µg/ml RNase A. Cells were analyzed using a FACS Canto, FACS Diva for data 

acquisition (BD Biosciences) and FlowJo software (Tree Star) for data analysis. 
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2.19 Immunostaining 

HUVECs were plated on fibronectin coated labtek slides (Invitro technologies) at 6x104 for 24 h. 

Monolayers cultured on the slides were preincubated with TNFα (5 ng/ml) for 5 h for E-selectin 

or 24h for VCAM1 before the assay, and then washed. The cells were fixed in 4% 

paraformaldehyde/PBS for 10 min, and when needed permeabilized by treatment with 0.1% 

Triton X-100. Primary antibodies were used at 20µg/ml and binding detected by incubation with 

Alexa 594 fluorophore-coupled secondary antibody (Invitrogen).  

2.20 Replicative Senescence 

 

EC were maintained under subconfluent conditions at all times and were passaged every 3–4 

days. During passaging, cells were lifted using 0.5% (w/v) trypsin and between 0.6x106 and 

1x106 cells were replated onto fresh 75-cm2 flasks. 

 

2.21 Cell Cycle Array 

HUVECs were infected with EV and SENEX containing adenovirus. After 24 and 72 hours RNA 

was harvested as previously described. RNA was pooled from 3 HUVEC lines and then analysed 

using the Cell Cycle Array (SuperArray) as per manufacturers instructions.  

 

2.22 FACS Analysis 

HUVECs were trypsinised and then washed with HUVEC wash. The cells were spun and re-

suspended in 100 µl of FACS fix (see appendix). Twenty µg/ml of primary antibody was added 

and the cells were incubated at 4°C for 30min. The cells are then spun and washed with 0.5ml of 

FACS fix. Then spun at 4°C for 5min. The pellet is re-suspended in 100 µl FACS fix. Then add 1 
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µl of secondary antibody and incubate in the dark at 4°C for 30min. Then spin and wash the 

pellet with 0.5ml of FACS fix. Spin and resuspend the pellet in 200 µl of FACS fix. Then 

analysis using the FACS Canto, FACS Diva for data acquisition (BD Biosciences) and FlowJo 

software (Tree Star) for data analysis. 

 

2.23 Virtual Northern Blot 

VN blots were performed using the SMART PCR cDNA synthesis procedure (Clontech). In 

brief, full-length double-stranded cDNAs were generated from 1 µg of total RNA by the SMART 

procedure according to the manufacturer's protocol, ensuring optimization of the number of PCR 

cycles (typically 18–21) to remain within the linear range of amplification. Approximately 1 µg 

of cDNA from each time point was run on a 1% agarose gel. The cDNA was transferred by 

capillary transfer to nylon membranes (Hybond-N, Amersham Biosciences) and cross-linked 

(Stratalinker, Stratagene) to the membrane. For probe generation, cloned cDNA fragments were 

PCR amplified using T7 and T3 primers, and the products were labeled with [α-32P]dATP using 

either a MegaPrime Kit (Amersham) or StripEZ Kit (Ambion). Hybridization was performed in 

ExpressHyb solution (Clontech) for 2 h, and blots were washed in 2x SSC and 0.1% SDS at 25°C 

(twice) and 0.1x SSC and 0.1% SDS at 60°C for 20 min. Blots were visualized and quantified 

using a Typhoon 9410 PhosporImager and Imagequant 3.3 software (Molecular Dynamics and 

Amersham Biosciences). All blots were exposed for the appropriate time to ensure that the signal 

was within the linear range of the machine for quantification. 

 

2.25 Plasmid Transfection 

pcDNA3-SENEX constructs were transfected into HUVECs using the Amaxa nucleofector kit 

according to the manufacturer's protocol (Amaxa Biosystems). 
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2.25 Statistics  

Statistical analyses using a two-tailed Student's t test and 2 way ANOVA with Bonferroni 

posttest were performed using Prism software (version 4; GraphPad Software, Inc.). Data that 

satisfy confidence levels of p < 0.05, 0.01 or 0.001 are noted. Data are presented as means ± 

SEM.  
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CHAPTER 3 

Functional Analysis of REST 

My PhD has been made up in two parts. I initially began my PhD working on the gene that will 

be covered in the following chapter. I spent a year working on this gene trying to determine its 

function in angiogenesis. As you will find from my results detailed in chapter 3 the study of the 

gene was unsuccessful. For this reason I then started research on a new gene which is the major 

part of my thesis. I have still included this chapter as the methods used were also involved in the 

development of the research involved in Chapters 4 and 5. 

 

Cancer is the second leading cause of death in the Western world. Despite advances in diagnosis 

and treatment, the overall survival of patients still remains poor. Tumour cells themselves have 

been the primary target for anticancer therapy. This has improved patient survival for several 

types of solid tumours, but treatment related toxicity and the emergence of drug resistant clones, 

together with consequent disease relapse, have been the major causes of morbidity and mortality. 

Since tumour growth is dependent on new blood vessel growth, through at least the process of 

angiogenesis, anti-angiogenic therapies have been proposed to have potential clinical importance. 

Indeed 80 anti-angiogenic drugs are currently in clinical trials, 12 of which target the key 

angiogenic factor vascular endothelial growth factor. A convincing regression of tumours has 

been reported for drugs against this target [139]. However, recent data has shown that targeting 

VEGF is selective for some tumours, and there are problems with longterm effects. It is apparent 

that further drug targets must be identified [140]. 

Thus the approach to understand the process of angiogenesis is still important in future attempts 

to prevent tumour growth. 
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In the tumour model of angiogenesis, tumour cells secrete angiogenic factors, which diffuse 

through the tissues to the host vasculature. At the same time, angiogenic inhibitors are also 

down-regulated. Tumour cells can also recruit macrophages and mast cells which secrete a 

number of angiogenic factors. The most important angiogenic promoters known in the literature 

include (VEGF), fibroblast growth factor (FGF), angiopoietins, Tie receptors, platelet derived 

growth factors, integrins and cadherins [141]. But the identification of more is essential.  

It is vital to further the understanding of the angiogenesis process. One way to achieve this is to 

identify the genes specifically involved.  

 

To do this an in vitro angiogenesis model developed in the Vascular Biology Laboratory of the 

Hanson Institute was used to obtain and characterise genes potentially involved in angiogenesis. 

Both in vitro and in vivo studies have shown that angiogenesis involves several discrete steps. 

These are the activation, migration, proliferation, differentiation and maturation.  It can be 

assumed that genes important in tube-formation will be regulated in the critical stages of 

angiogenesis at the mRNA level. The genes that are regulated at the mRNA level may be 

important in the angiogenic phenotype. But mRNA regulation is only being used as an indicator 

of a potential involvement in angiogenesis and regulation will need to be verified in future 

experiments. 

 

3.1. Isolation and Identification of a Gene Novel to Angiogenesis – REST 

 

3.1.1 Screen for Angiogenic Genes. 

Prior to commencing my PhD project, the Vascular Biology Laboratory embarked on a project to 

identify genes involved and crucial to angiogenesis. The approach taken was to utilize a well 
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characterized in vitro model of angiogenesis and to perform an array to screen for regulated 

genes.  The model uses Human Umbilical Vein Endothelial Cell (HUVEC) placed in  a 3D 

collagen gel, stimulated with the PKC activator, phorbol myristate acetate (PMA) and also with 

an  antibody (clone RMAC11) directed against the integrin anti-α2β1 [142]. This antibody promotes 

tube formation by inhibiting cell attachment to the collagen matrix and promotes cell-cell 

interactions, including migration vacuole formation and fusion, lumen formation and vessel 

stabilization but not the proliferative response [143]. The cells reorganize over 24 hours in a 

process that recapitulates most of the events known to take place in in vivo angiogenesis [143].  

The capillary tubes generated in this system are a combination of multicellular tubes similar to 

that seen for large vessels and unicellular similar to post capillary venules [143]. 

RNA was isolated at various time points (0, 0.5, 3, 6 and 24h) relating to distinct morphological 

events in the genesis of capillary tubes, being cell migration (0.5hours), vacuole coalescence and 

fusion (3 hours), lumen formation and apoptosis (6 hours) and capillary tube maturation and 

survival (24 hours). A suppression subtractive hybridisation approach was used to generate 

cDNA libraries enriched for genes whose transcripts were either upregulated or downregulated 

between adjacent time points. 

Colonies from the forward (upregulated) subtracted libraries (0–0.5 h, 3,200 colonies; 0.5–3 h, 

3,000 colonies; 3–6 h, 2,800 colonies; and 6–24 h, 1,000 colonies) were robotically picked, and 

glycerols stocks were generated. A total of 10,000 clones were picked. Each clone was then PCR 

amplified using primers to the T7 and T3 promoters in the vector that flank the cloning site. The 

PCR products were microarrayed onto glass slides in duplicate along with controls known to be 

regulated in this angiogenic model [e.g., prostaglandin endoperoxidase synthase 2 (PTGS2), 

matrix metalloproteinase 10 (MMP10), and connective tissue growth factor (CTGF)] together 

with genes predicted not to be regulated [thymosin-ß4 (TMSB4X) and heat shock protein 150 

kDa (HSPH1)]. A dilution series of a pool of the 10,000 clones was also incorporated, along with 
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cDNAs from other species as negative controls. We refer to these slides as "angiogenic" 

microarray chips. 

The angiogenic microarray chip was established and contained cDNA fragments of genes 

potentially upregulated during capillary tube formation. For probing of this, to identify those 

regulated genes, RNA isolated from cells taken at 0, 0.5, 3, 6, and 24 h after plating onto a 3-D 

collagen matrix was linearly amplified and subsequently labeled with Cy3 or Cy5 dyes. Labeled 

aRNA from each time point was hybridized against that at time 0. Individual spot (performed in 

quadruplicate) intensities were normalised to the entire microarray and the fold change with 

respect to time zero was calculated. After scanning, background subtraction, local and global 

normalization, and ratio determination, Bayesian analysis was used to rank clones according to 

the likelihood of their corresponding genes being truly regulated. Expression profiles for each 

clone were generated by plotting fold induction versus time for each spot in each individual 

experiment. This work was performed by Anna Tyskin [144]. Approximately 550 clones were 

identified as significantly regulated and were isolated and the inserts were sequenced by the 

Australian Genome Research Facility (Figure 3.1)[144].  
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Figure 1.8: Isolation and Characterisation of Genes Involved in Angiogenesis. A. Strategy 
for identification of genes regulated during capillary tube formation. From a well 
characterised in vitro 3D model of angiogenesis, RNA was prepared from cells isolated at 
specific time points over a 24h time period. Suppression subtractive hybridisation was used to 
generate four libraries of regulated cDNAs. A custom made microarray was generated 
containing 10,000 clones, known as the ‘AngioChip’. This microarray was probed for changes 
in gene expression during in vitro capillary tube formation. Approximately 550 regulated 
genes were isolated, one of them was Numb. B. Generation of custom-made AngioChip 
cDNA microarray. This figure demonstrates the number of clones isolated from each of the 
generated subtracted libraries which were enriched for on the microarray. 

Capillary Tube Formation
Time = 0, 0.5, 3, 6, 24 h

Generate Subtracted 
Libraries

Microarrays
10,000 clones

Sequence cDNAs
1,728 clones
(~550 genes)A

Clones on 
microarray

T 0 - 0.5 3,200
T 0.5 - 3 3,000
T 3 - 6 2,800
T 6 - 24 1,000

Total 10,000
(duplicate)

B

Figure 3.1: Isolation and Characterisation of Genes Involved in Angiogenesis. (A). The 

strategy for identification of genes regulated during capillary tube formation. From a well 

characterised in vitro 3D model of angiogenesis, RNA was prepared from cells isolated at specific 

time points over a 24h time period. Suppression subtractive hybridisation was used to generate 

four libraries of regulated cDNAs. A custom made microarray was generated containing 10,000 

clones, known as the ‘AngioChip’. This microarray was probed for changes in gene expression 

during in vitro capillary tube formation. Approximately 550 regulated genes were isolated, one of 

them was REST. (B).  Generation of custom made AngioChip cDNA microarray. This figure 

demonstrates the number of clones isolated from each of the generated subtracted libraries which 

were enriched for on the microarray. 
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3.1.2 Isolation of REST  

Selection of clones for further work was based on a number of criteria.  

1. Number of times the clone was isolated – as an indication of confidence in the regulation of 

the gene. 

2. The clone identification – as a possible gene with known or predicted involvement in 

angiogenesis or related differentiation processes. 

3. Whether there was EC specificity or enrichment. 

4. The pattern of regulation. 

From the 550 sequenced clones, 10 clones were selected for further study based on the above 

criteria. 

Of these 10, Repressor Element 1 Silencing Transcription Factor (REST) was chosen for further 

study in my PhD project because it was identified 10 times, and it’s interesting mRNA 

expression profile, being upregulated from 30min to 6h and then downregulated at the 24h time 

period back to time 0 levels. The rapid induction in its expression level may reflect a major 

regulator of the process (Figure 3.2).  
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Figure 3.2 Expression profile of REST from angiogenic microarray. Individual spot 

intensities from the microarray were normalised to the whole microarray and plotted as the fold 

induction (log2) with respect to time zero versus time. Expression of REST was upregulated at 3 

and 6 hours compared to time 0 and downregulated at 24 hours. 
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REST, or NRSF (neuron-restrictive silencing factor), is a transcriptional repressor regulating a 

number of genes. It binds to a 21–23 base pair repressor element 1 (RE1) of which there are 

1900 copies in the human genome. REST plays critical roles in preventing differentiation and 

maintaining the self-renewal capability of neuronal stem cells. In accordance with its function in 

silencing of both neuronal and nonneuronal genes, REST is essential for embryonic development 

and for a number of cellular responses in neurons and other cell types (Figure 3.3B). REST can 

function as either a tumor suppressor or an oncogene depending on the cellular context. 

Diminished REST expression is associated with colon cancer and transformation of human 

mammary epithelial cells (HMEC) [145]. High levels of forms truncated in the DNA binding 

domain due to alternative splicing, which are similar to a normally occurring alternative splice 

product, are implicated in small-cell lung cancer and neuroblastoma [146, 147]. Likewise, a 

frameshift mutant truncated just beyond the DNA binding domain (REST-FS) (Figure 3.3A) is 

found in colon cancer and can transform epithelial cells [145]. All of these truncated forms can 

presumably function to some extent as “dominant negatives.” An oncogenic role for REST has 

been established in medulloblastoma, an aggressive childhood malignancy of neural progenitors, 

where high REST levels coupled with Myc overexpression drive cells toward proliferation and 

tumorigenesis rather than differentiation [148, 149]. There have been many genes showing 

common regulation and function between the neuronal and vascular systems (eg, ephrins, slits, 

metrins and VEGF) [150]. Therefore this possibility was considered for REST. 

 

3.1.3 Confirmation of Regulation of REST 

It is well accepted that microarray data, while indicative of the direction of regulation, is not 

quantitative. Therefore, the expression profile of REST was determined by real time Q-RT-PCR 

using cDNA synthesised from RNA obtained from HUVEC in a 3D setting as given above 

(3.1.1). Total cell RNA was harvested at various time points (0, 0.5, 1, 3, 6, 12 and 24h), purified  



Chapter 3: Functional Analysis of REST    

 91 

Figure 3.3. Structure and Function of REST(A.) Schematic representation of REST/NRSF. REST 

has N and C terminal repressor domains (RD1 and RD2) that serve as scaffolds for distinct gene 

repressor/silencing complexes. The DNA binding domain is followed by lysine- and proline-rich 

domains and two β-TrCP binding sites. Alternative splicing leads to truncated forms of REST that 

terminate in the region indicated by the arrow. These include a naturally occurring neuron-specific 

form and forms associated with small-cell lung cancer and neuroblastoma. The position of an 

oncogenic truncation found in colon cancer resulting from a frameshift (REST-FS) is also indicated 

by an arrow. (B). Proposed functions of REST. (Upper panel) In neuronal stem/progenitor cells, 

REST suppresses expression of neuron-specific genes maintaining cells in an undifferentiated state. 

Likewise, in normal epithelial cells, REST protein level is maintained, and it functions as a tumor 

suppressor. REST also suppresses expression of MAD2, a component of the mitotic checkpoint 

complex/spindle-assembly checkpoint, until degradation of REST by SCFβ-TrCP during the G2 

phase of the cell cycle. (Lower panel) During neuronal differentiation, REST is degraded in a SCFβ-

TrCP-dependent manner, allowing for expression of genes necessary for differentiation. When β-

TrCP is overexpressed, as occurs in some epithelial cancers, REST levels are dysregulated, 

contributing to transformation. Weissman et al 2008 
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via an RNeasy column (QIAGEN) and DNase treated (DNA-freeTM, Ambion). First strand cDNA 

synthesis was performed to generate cDNA. Q-RT-PCR was performed on this cDNA using 

primers designed specifically to the 3’ UTR of the REST mRNA (Refer to appendix 2). The 

results were standardised to Peptidylprolyl isomerase A (PPIA), also called cyclophilin A, a 

mRNA previously shown to be unregulated during in vitro angiogenesis. REST was regulated at 

the 3 and 6h timepoints when measured by Q-RT-PCR, in a pattern very similar to that seen on 

the array data. Its expression peaked at 3h with a 2 fold induction. The increased expression was 

maintained throughout the 24hrs which was in contrast to that seen with the microarray data 

(Figure 3.4). 
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Figure 3.4. Confirmation of microarray expression profile of REST by Q-RT-PCR. 

Expression profile of REST using Q-RT-PCR. The expression profile of REST by Q-RT-PCR 

confirmed the upregulation of the gene at the early timepoints, but the peak upregulation 

occurred at 3h. The expression stayed elevated unlike the downregulation in the microarray. 

Results from each timepoint were standardised to PPIA. 
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3.2. Regulation of REST Expression Levels 

We initially investigated whether there was a link between REST regulation and proliferation. 

 

3.2.1 Confluent versus non confluent 

The levels of REST mRNA were investigated in response to confluency. HUVEC were plated at 

either 100% confluency where cells were ‘contact inhibited’ and therefore not proliferating or at 

subconfluent levels where there is little cell-cell contact and the cells are induced to undergo 

proliferation. REST mRNA expression levels were measured by Q-RT-PCR, in both confluent 

and non-confluent cells 3 and 24 hours after stimulation. REST was significantly more highly 

expressed in subconfluent proliferating cells compared to the confluent quiescent cells (Figure 

3.5A). Furthermore, after 24 hours the initial subconfluent cells were starting to grow to 

confluence and this was associated with a decrease in the levels of REST. 

 

3.2.2 Response to angiogenic stimuli 

To investigate whether REST mRNA levels are regulated by angiogenic factors, HUVEC were 

treated with stimuli including Tumour Necrosis Factor α (TNFα), VEGFA , bFGF and PMA. 

Confluent HUVECs, (thus eliminating the proliferative element in the regulation) were exposed 

to factors for 3 or 24h. Q-RT-PCR was performed using REST specific primers and the results 

were standardised to PPIA. After 3h exposure to the stimuli, little regulation was seen although 

TNFα induced REST mRNA levels slightly (by 1.2 fold) and bFGF reduced REST expression 

slightly (by 0.8 fold) (Figure 3.5B). Similarly, after 24h, no response to TNFα, VEGFA occurred 

although PMA induction rose slightly to 1.5 fold and bFGF rose 1.2 fold (Figure 3.5C). 

Therefore, at least at time points 3 and 24h, REST mRNA is not significantly regulated by TNFα, 

VEGFA or bFGF, but does increase marginally in response to PMA.  
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The above experiment was then repeated using subconfluent HUVECs which were stimulated in 

the same fashion. There were no significant changes seen after 3h stimulation (Figure3.5D).The 

only significant change was noticed after 24hrs of stimulation with PMA. This induced a 1.3 fold 

increase of REST expression (Figure 3.5E). There was no change with 3h or 24h treatment of 

HUVECs with TNFα, VEGFA, bFGF. These results indicate that REST is downregulated by 

confluency but is not regulated by classic regulators of EC function   

 

3.3 Cloning of REST cDNA 

 

To investigate the role of REST in EC function we adopted the strategy to regulate the levels 

either by using knockdown or overexpression.  However, HUVEC are notoriously difficult to 

transfect by physical or chemical methods. Adenoviral vectors provide the capacity to achieve 

high levels of gene transfer (even up to 100%) without the need for selection, as would be 

necessary with other viral systems such as retroviruses. To construct the adenovirus it was 

therefore necessary to clone the full length cDNA for REST. 

 

HUVEC were harvested and total cell RNA was extracted and reverse transcribed to produce 

cDNA. The cDNA was then used as a template for PCR amplification of the full coding region of 

REST. To do this, REST specific primers, REST(f) and REST(r), were designed (Refer to 

appendix 2). The reverse (r) primer added a myc-tag onto the C-terminus of REST. Both primers 

introduced EcoRI sites at the extremities of the product to aid in cloning.  These primers were 

used in combination with the high fidelity proof reading enzyme Pfu (Stratagene,CA) to amplify 

the cDNA. Confirmation of  
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Figure 3.5. Response of REST expression to various stimuli. (A). REST regulation in a 
proliferating vessel versus a quiescent vessel model of tube formation. The expression level of 
REST was measured in a proliferating (subconfluent HUVEC) versus a quiescent (confluent 
HUVEC) model of tube formation via Q-RT-PCR. Each group was performed in triplicate, result 
shown are mean +/- SEM and are standardised to PPIA.. ** p<0.01 and *** p<0.001 compared 
to subconfluent (B). Response of REST expression after 3h subject to various stimuli in 
quiescent vessel model. Confluent HUVEC were exposed to 0.5ng/ml TNFα, 20ng/ml VEGF, 
5ng/ml bFGF and 20ng/ml PMA for 3h and expression levels were determined via Q-RT-PCR. 
Each group was performed in triplicate, results shown are mean +/- SEM and are standardised to 
PPIA. (C). Response of REST expression after 3h subject to various stimuli in quiescent vessel 
model. Confluent HUVEC were exposed to 0.5ng/ml TNFα, 20ng/ml VEGF, 5ng/ml bFGF and 
20ng/ml PMA for 24h and expression levels were determined via Q-RT-PCR. Each group was 
performed in triplicate, results shown are mean +/- SEM and are standardised to PPIA.(D). 
Response of REST expression after 3h subject to various stimuli in proliferating vessel model. 
Subconfluent HUVEC were exposed to 0.5ng/ml TNFα, 20ng/ml VEGF, 5ng/ml bFGF and 
20ng/ml PMA for 3h and expression levels were determined via Q-RT-PCR. Each group was 
performed in triplicate, results shown are mean +/- SEM and are standardised to PPIA. (E). 
Response of REST expression after 3h subject to various stimuli in proliferating vessel model. 
Subconfluent HUVEC were exposed to 0.5ng/ml TNFα, 20ng/ml VEGF, 5ng/ml bFGF and 
20ng/ml PMA for 24h and expression levels were determined via Q-RT-PCR. Each group was 
performed in triplicate, results shown are mean +/- SEM and are standardised to PPIA. 
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the appropriate size product was via agarose gel electrophoresis. The PCR product was then 

purified via the QIAquick® PCR purification kit (QIAGEN), digested with EcoRI and cloned into 

the pEG shuttle vector for sequencing (Figure 3.6). The amplified cDNA sequence was 

confirmed and identified to be identical to the REST sequence accession, NM_005612, submitted 

to Genbank™.  

 

3.4 Generation of Recombinant Adenoviral Constructs 

Delivery of the gene of interest, in this case REST, to cells can be achieved by adenoviral 

infection, which provides efficient, transient expression. For the generation of recombinant 

adenovirus, the GATEWAY® system (Invitrogen, VIC) of recombination was employed to 

enable introduction of the REST cDNA into the very large 37kb adenoviral vector. This requires 

use of the pEG (entry vector) and pAEATG (destination vector). 

 

In order to generate recombinant adenoviral constructs the adenoviral entry vector pEG-REST-

myc and the destination vector pAEATG were recombined via the LR Recombinase protocol 

(Invitrogen) (Figure 3.7). This method homogously recombines attL1 with attR1 and attL2 with 

attR1 and then transforms recombination products in to E.coli which are then selected for with 

Kanamycin. Since the parent entry vector is only gentamicin resistant, its ccdB ‘death’ gene 

selects against it in non-permissive DH5∝. The construction which results from this 

recombination, pAEATG-REST-myc, was then linearised with PacI and used to transfect 

HEK293 cells for viral production. The pEG-REST-myc sense and antisense were recombined 

with pAEATG-F and pAEATG-R, respectively, to give adenoviral constructs in both 

orientations. In the antisense construct, the attR1 and attR2 sites are swapped. 
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Figure 3.6 Cloning Strategy for REST cDNA into the pEG Entry Vector. The shuttle 

vector pEG-REST was made from the PCR amplified coding region of REST-myc. The 

REST PCR product and the pEG were both EcoRI digested and ligated to give pEG-

REST-myc. This vector was then used for sequence confirmation of the REST insert. 
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Figure 3.7 Generation of Recombinant REST Adenovirus. The adenoviral entry vector 

pEG-REST-myc and destination vector pAEATG, were recombined in a test tube using LR 

clonase which recombines attL1 with attR1 and attL2 with attR2 in an orientation specific 

manner. The recombination products were then transformed into E.coli, and recombinants 

selected with Kanamycin. The parent entry vector is selected against, since it is only 

gentamicin resistant and the ccdB death gene selects against the parent destination vector in 

non-permissive DH5α cells. The resulting pAEATG-REST-myc, was then linearised with pac I 

and used to transfect HEK293 cells for viral production.  
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3.5 Generation of REST Adenovirus 

Prior to large-scale plasmid DNA production in competent E.coli DH5α cells, successful 

recombination to generate pAEATG-REST-myc recombinants was confirmed by PacI and BstXI 

restriction enzyme digestion patterns. The pAEATG empty vector (EV) was generously provided 

by Michelle Parsons from the Vascular Biology Laboratory. The EV can be used as a control for 

adenovirus infection when we knockdown or overexpress our gene of interest in this vector. 

 

Purification of plasmid DNA was performed using the Qiafilter™ MIDIprep procedure. After 

purification, plasmid DNA was linearised in preparation for transfection of HEK293 cells via 

digestion with PacI. This is required for efficient adenovirus production. Linearised pAEATG 

EV and REST-myc sense and antisense DNA was transfected into HEK293 cells (via the 

Lipofectamine™2000 procedure) to produce the  initial preparation of EV, sense and antisense 

adenovirus.  

 

After the initial viral particles were harvested from transfected HEK293 cells, up scaling of 

adenovirus required sequential adenovirus infection cycles with an increase in cell culture size as 

suggested in the Qbiogene Version 1.4 AdEasy™ Vector System manual. Each infection cycle (3 

expansion cycles) was synchronised with subsequent cell culture growth to attain optimal virus 

yield in a minimum time period (approximately 3-4 days after infection where cells were starting 

to aggregate and detach from the flask).  For the final virus growth approximately 30 T175 flasks 

were infected and the resultant virus collected for purification, through a three-step purification 

process. The first step required a discontinuous CsCl gradient aimed at removal of the majority of 

cellular components and defective viral particles generated in the large scale production.  The 

second step involved the use of a continuous CsCl gradient to completely separate the defective 

particles from infectious viral particles and required overnight centrifugation.  The final step was 
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dialysis to remove CsCl which is toxic to cells and may also interfere with subsequent cell 

infection. Large scale production and purification of the recombinant adenovirus was kindly 

performed by Michelle Parsons in the Vascular Biology Laboratory.  

 

In order to confirm the authenticity, completeness and orientation of the inserted cDNA and 

vector components, specific restriction digestions were performed throughout the entirety of the 

cloning procedure. To confirm both identity and orientation of each of the final recombinant 

adenoviral preparations, PCR amplification with vector specific primers (pAEAT(f) and 

pAEAT(r)) and a gene specific primer was performed. This also enabled detection of other 

contaminating adenoviruses due to the possibility of airborne cross contamination from other 

laboratory recombinant adenoviruses. All prepared viruses were found to be correct and 

contamination free (data not shown).  

.  

3.6  Determination of Recombinant Adenoviral Titres – TCID50 

Adenovirus should be used at an infection level that gives 100% or close to 100% transfection of 

the cells but at a level where cytotoxicity is not encounted. Furthermore the levels of virus used 

for the EV and the test viruses should give similar levels of infection. 

In order to obtain titres for each of the recombinant adenoviral constructs (REST sense (F), 

REST antisense (R) and the pAEATG empty vector control (EV)) the tissue culture infectious 

dose 50 (TCID50) was determined using HEK293 cells. This assay is a ten day assay relying on 

the development of a cytopathic effect (CPE) in HEK293 cells and uses end-point dilutions in 

order to estimate the titre (http://www.qbiogene.com/products/adenovirus/adeasy/shtml). It is a 

very sensitive assay designed to measure down to one infectious virus particle. This is becoming 

the standard assay used worldwide for determining adenovirus plaque forming units (pfu). For 

each of the recombinant adenoviruses, the TCID50 values were calculated according to the 
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equation available in the Qbiogne Version 1.4 AdEasy™ Vector System manual (website above). 

The TCID50 values measured were: EV = 0.5x1010 pfu/ml, REST F = 0.8x1010 pfu/ml and REST 

R = 1x1010 pfu/ml.  

 

3.7 Functional effects of REST sense and antisense constructs 

 

3.7.1 Determination of levels of Protein 

In order to ensure that overexpression and knockdown of REST F and REST R was occurring, 

levels of protein expression were confirmed via western blot by detection with an anti-myc 

antibody against the myc-tagged constructs. HUVECs were infected with EV, REST F and REST 

R at an MOI of 4, 0.9 and 0.8, respectively, which gave equivalent levels of GFP reporter 

expression. HUVECs were also infected with an adenovirus containing a control gene which is 

known to overexpress the gene and myc when HUVECs are infected. It was important to ensure 

expression and knockdown of REST protein was occurring at this level of infection for the 

functional assays to be relevant and determine if a change in phenotype occurred. From Figure 

3.8 it is unfortunately obvious that there is no myc-tagged REST protein present in EV or REST 

R as would be expected, but there is also no overexpression in REST F which is what we would 

expect if the overexpression was working. In an attempt to obtain expression of REST, a number 

of changes were investigated. The dose of virus was increased, and the time between infection 

and harvest of the cells was varied. However no obvious overexpression of REST was measured. 

Therefore, our overexpression construct was not functional.  

The determination of the functional effect of REST R to reduce endogenous REST levels was 

also a problem. Endogenous REST cannot be visualised via western blot since we did not have 

an antibody to REST that was able function on western blots.  Therefore we could not determine  
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Figure 3.8   Western blot of REST-myc using an anti-myc antibody. Cell lysates at 24h of 

EV and RESTF-myc (RF), RESTR-myc (RR) and a control adenovirus known to overexpress 

myc (CON) infected HUVECs. Lysates were run on 12% SDS-PAGE gel, and a Western blot 

carried out using an anti-myc antibody, then detected using the Amstersham ECL kit. The 

protein detected was 76Kd.  
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whether the antisense to REST was effective.  Also without a REST antibody we couldn’t 

determine if there was knockdown of REST when the antisense adenovirus was used. There is 

also no change in mRNA expression when using adenovirus with the antisense construct because 

using the adenovirus technique prevents translation of the mRNA but does not decrease the 

amount of total mRNA in the cells. 

 

3.7.2 Establishment of Viral Dose 

Because of the above detection problems we became reliant on the effects of knockdown of 

REST in order to determine the possible functions of REST in EC. A number of functional 

assays were performed using HUVEC as the cell model. These assays; attachment, proliferation, 

migration and tube formation are hallmarks of angiogenesis. The approach is to alter the 

expression of REST, and then analyse the functional phenotype. In this way I should be able to 

determine whether REST is essential for any of the functions or whether the level of REST plays 

a role in these functions. Due to the problems associated with the inability to overexpress REST, 

the functional analysis involved in REST knockdown was only performed. 

 

HUVEC were infected at passage 3 with adenoviral constructs containing REST antisense (R). 

Adenovirus constructs containing pAEATG empty vector (EV) were used as a control. In all 

experiments, unless stated otherwise, HUVEC were harvested 48h post infection and 

subsequently used for the chosen functional assay. 

 

Initially, each adenovirus was titred further on HUVEC in order to ascertain the dose of virus 

which should be used to give approximately 100% infection as judged by GFP expression 

without compromising cell viability. In the pAEATG recombinant adenoviral vectors, two 

identical expression cassettes drive GFP and the gene of interest. Both contain strong CMV 
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promoter/enhancer elements and an efficient polyadenylation signal. Therefore, measurement of 

GFP enables determination of not only the efficiency of the HUVEC infection, but also of the 

strength of the CMV promoter in the cells and an indirect indication of the amount of inserted 

gene being expressed. 

 

Previous experience has demonstrated that GFP readings between 100-200 mean fluorescence 

intensity, as determined by the analysis on the fluorescence activated cell sorter (FACS), results 

in good knockdown of expression of most proteins. From such titres of my viruses, I have used 

adenoviral constructs at MOI values from 2 to 4.16 for EV, and 0.125 to 0.80 for REST R, in 

order to obtain comparable levels of GFP and therefore comparable levels of infection.  

 

3.7.3 Effect of REST Knockdown on Capillary Tube Formation 

Matrigel® is a basement membrane matrix which provides the essential components required for 

tube formation to occur. This includes the provision of extracellular matrix (ECM) proteins as 

well as growth factors. The assay allows the formation of tubes to be visualised over a 1-2 day 

period. The assay is analysed microscopically at various times and cells are photographed. This 

assay was performed on 5 HUVEC lines and similar results were observed in all experiments. All 

groups received similar numbers of cells as can be seen in the photographs taken 15min after 

plating, at a time when the cells were just contacting the matrix (Figure 3.9A). In the first 2 

experiments performed when REST R infected cells were used the tubes formed at a slower rate 

and the tubes were of a poorer quality, but with further experiments these results were not 

confirmed and it was found that there was no difference between EV and REST R in tube 

formation after 23hrs (Figure 3.9B). The tubes in both EV control and REST R appeared very 

similar, and formed in a similar time.  
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Overall, these tube formation assays on Matrigel® showed that in HUVEC, REST R had no 

effect on either the quality, number or time of tube formation. The matrigel experiments were 

also repeated using siRNAs targeting REST. When 70% knockdown of REST mRNA was 

achieved there was still no change in tube formation between REST knockdown and control 

siRNAs. 
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A B 

Figure 3.9. Effect of REST Regulation on the matrigel tube formation assay. HUVEC were 

infected with pAEATG empty vector (Top Photos) and REST antisense (Bottom Photos) 48h 

prior to plating on Matrigel. (A).. Shows EV and REST R 15min after plating. (B) shows EV 

and REST R 23h post plating. Bar=250µm 



Chapter 3: Functional Analysis of REST    

 110 

3.7.4 Effect of REST on EC Proliferation.  

This assay measures the amount of cell division which occurs over a three day period. Previous 

work in the laboratory suggested that HUVECS double in cell number every 2-3 days. The 

conditions have been established so that either a decrease or increase in cell number will be 

measureable.  The number of cells is measured by the MTS assay in which a colourless 

compound is converted to a coloured formazan product when cells are metabolically active. This 

is measured at an absorbance of 490nm, and directly correlates to the number of viable cells in 

culture. For the number of cells used here, the absorbance and cell number are within the linear 

range.  

 

Two independent HUVEC lines were infected with EV and REST R and analysed for differences 

in proliferation (Figure 3.10). Both of these experiments were performed in normal medium 

(20% FCS plus growth factors and heparin). In no experiment was there a noticeable change in 

proliferation of the antisense infected cells.  

 

3.7.5 Effect of REST on HUVEC Migration 

The assay used was a very classic one to measure EC migration whereby, a wound was inflicted 

on the monolayer of EC and then the rate of closure of the wound was assessed. Photographs 

were taken over a 24h time frame to chart the progression of wound closure. The rate of wound 

closure is dependent on the initial size of the wound and therefore wounds of similar magnitude 

were compared. 

 

The results shown in Figure 3.11 of one of the 2 HUVEC lines assayed shows that in REST R 

infected cells the rate of wound closure was not changed compared to EV.  
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Figure 3.10. Regulation of EC proliferation by REST. HUVEC were infected with pAEATG 

empty vector (EV) and REST antisense (REST R) and proliferation was measured over 3 days 

and is given as OD (A490) +/- SEM. This is the pooled data from 2 experiments, each group 

was performed with 8 repeats. 
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Figure 3.11. Migration Assay of HUVEC infected with REST adenovirus. The response in cell 

migration to pAEATG empty vector (Top Photos) and REST antisense (Bottom Photos) was tested 

over 24 hours in 20% FCS + growth factors. Photographs were taken at (A). 10 min post wounding 

and (B). 18h post wounding. This is a representative of 3 experiments. 

A                                                 B 
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3.7.6 Effect of REST on Attachment 

The ability of HUVECS to attach to different matrices after depletion of REST was also tested. 

HUVEC infected with the various adenoviral constructs were plated on different matrices and the 

level of attachment was measured after 60min. The matrices were gelatin, collagen, fibronectin 

and laminin. Gelatin was chosen because it is denatured collagen, which is what the cells would 

experience in a wound. Laminin was chosen because it is the major component in tissues. The 

pooled results of 2 lines assayed are shown in Figure 3.12. There was a no significant change in 

attachment when compared with EV control.  
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Figure 3.12. Regulation of EC attachment by REST. Cells were infected with pAEATG 

empty vector (EV) and REST antisense (REST R). Attachment to gelatin, collagen, laminin and 

fibronectin after 60min is given as the mean percentage of cells attached +/- SEM. This is one 

experiment where each group was performed in quadruplicate.   
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3.8 Summary 

REST is upregulated between 3 and 6 hours after plating, at a time when cells are in contact but 

junctions are not mature and is classified as a time of sub-confluence. After 6 hours the 

expression of REST is decreased, at a time when the cells are starting to become confluent and 

the junctions are more mature. These observations were confirmed when the levels of the mRNA 

expression of REST were analysed in subconfluent and confluent cells over a 24 hour time 

period. The expression of REST was consistently and statistically downregulated in confluent 

cells. These results together suggested that REST was an important gene in angiogenesis. 

 

Although the regulation of REST during capillary tube formation indicates that the gene maybe 

playing a role in the angiogenesis process, our results have shown that the downregulation of 

REST does not change capillary tube formation significantly. These results are a surprise as 

REST is significantly upregulated during capillary tube formation and it would therefore be 

predicted that a decrease in REST expression would have some effect on this process. 

Unfortunately we were unable to overexpress REST and could therefore not determine if a 

significant upregulation would affect angiogenesis. This was despite extensive attempts. The 

REST insert cloned into the vectors was sequenced and found to be perfectly correct. We also 

repeatedly confirmed that the gene was inserted into the vector in the correct orientation to 

achieve overexpression. We also made attempts with cloning the myc tag at both ends of the 

gene and found this had no effect on overexpression.  For these reasons it was decided that I 

would stop working on REST for my PhD and move onto another gene which was also found to 

be regulated on the microarray. We did not attempt to transducer into other cell lines because 

REST was found to be involved in angiogenesis and we wanted to see the affect of 

overexpression and knockdown on HUVECs. We also did not use other non viral vectors because 
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the system we were using involved adenovirus which was the current best method for gene 

expression syudies in endothelial cells. 
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CHAPTER 4 

Functional Analysis of SENEX 

The gene ARHGAP18 (also called MacGAP) was chosen for further study based on its regulation 

profile during capillary morphogenesis, high expression in endothelial cells and that it was a gene 

with an unknown function. It will be referred to in all subsequent chapters as SENEX, based on 

its function in EC. The name SENEX was chosen by my supervisors Professor Jenny Gamble and 

Professor Mathew Vadas. SENEX was the second gene which I have worked on during my PhD. 

The remainder of my thesis will concentrate on SENEX.  

 

4.1 Isolation of ARHGAP18 

 

One gene found to be regulated in the angiogenesis screen was MacGAP (RefSeq NM_33515), 

named since it was originally isolated from a macrophage library, had a suspected role in 

macrophage degranulation, and because it contained a GTPase activating protein (GAP) domain. 

This gene has since been assigned to the ARHGAP family of proteins, as ARHGAP18 (Homo 

sapiens- a Rho GTPase activating protein 18), in accordance with the naming system for 

RhoGAPs but will be referred to as SENEX in this thesis. The microarray profile for SENEX 

during capillary tube formation showed that expression decreases through the first 6 hours and is 

at it’s lowest during the apoptosis stage of tube formation. SENEX expression then increases for 

the remainder of the tube formation up to the 24 hour timepoint when the cell survival stage of 

tube formation is occurring (Figure 4.1A). This is a unique profile with only two genes from the 

550 having this profile. The microarray data was confirmed by virtual northern blot and also 

showed a similar pattern of regulation (Figure 4.1B) and further confirmed by Q-RT-PCR (Figure 

4.1C). 



Chapter 4: Functional Analysis of SENEX   

 118 

 

A 

B 

C 

Figure 4.1. SENEX regulation during capillary tube formation. (A). A microarray profile was 

generated for the SENEX clone on the microarray slide. Plotted is the fold induction (log2) with 

respect to time 0 (y-axis) versus time (in h; x-axis). (B). Expression profile of SENEX mRNA 

during in vitro capillary tube formation. Total RNA was harvested at the time points shown from 

cells undergoing angiogenesis in a 3D collagen assay, and virtual northern blots were probed with 

SENEX cDNA fragment. (C). Expression profile of SENEX using Q-RT-PCR. The expression 

profile of SENEX by Q-RT-PCR confirmed the upregulation of the gene at the early timepoints, 

but the peak upregulation occurred at 3hours. The expression stayed elevated unlike the 

downregulation in the microarray. Results from each timepoint were standardised to cyclophilin 

A. 
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4.1.1 Cytogenic Location 

The gene is located on chromosome 6q22.33, spanning 133130 bp, from 130031370 to 129898241 

on the reverse strand of chromosome 6. (GeneView, UniGene, locus link, Acembly,). 

 

4.1.2 Expression 

The SENEX gene is conserved in chimpanzee, dog, cow, mouse, rat, chicken, and zebrafish. 

Acembly and Ensembl automatic analysis were used to derive the following information about the 

predicted gene expression. The sequence of this gene is defined by 246 GenBank accessions from 

233 cDNA clones, some from uterus (seen 22 times), lung (19), placenta (12), trachea (12), liver 

(11), kidney (10), leiomyosarcoma cell line (10) and 97 other tissues. 

In EC, there is likely only one predominant mRNA (214 cDNA clones out of 233 cDNA clones 

support this mRNA species) and one protein generated of 663 aa, although post-translational 

processing may act on this protein. The possibility of other mRNA and their role in EC biology 

has not been investigated to date.  

 

4.1.3 SENEX Protein 

The protein produced by this gene, (ID = NP_277050.2) is Rho GTPase activating protein 18 and 

predicted to consist of 663 aa, with a molecular weight of 76.5 kDa and isoelectric point of 6.4.  It 

belongs to the Ensembl protein family, ENSF00000002705  (AMBIGUOUS), which contains two 

other Ensembl gene members.  One of these members (HUGO ID= C20orf95) is a putative 

RhoGAP domain containing protein fragment and the other (RefSeq ID= NM_030672) has no 

description recorded.    
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4.1.4 Predicted Motifs and Localisation  

The most significant domain predicted to be contained within the protein is a RhoGAP domain 

found in 2 isoforms from this gene, (Pfam ID= PF00620, SMART ID = SM00324). In both 

isoforms this spans from 340 – 520 aa.   There are seventy-two other genes in the (Pfam) database 

which also contain this RhoGAP motif, also known as the breakpoint cluster region-homology 

(BH) domain (Figure 4.2).  

According to Psort2, the most likely localization of the protein is in the nucleus (52%) or 

mitochondria (30%), but possibly in the cytoplasm (8%), cytoskeleton (4%) or secreted (4%).  As 

the protein contains no signal peptides or transmembrane domains, it is unlikely the protein is 

secreted or directly inserted into the membrane.   

Functionally, the gene has been proposed to participate in signal transduction because of its 

RhoGAP domain, although this has not been formally demonstrated. Furthermore the protein is 

proposed to localize to the cytoplasm but, since it has a potential nuclear localization sequence it 

may have the possibility of shuttling between these compartments 

4.1.5 Publications 

Until this year there were no published data detailing a functional role for SENEX. Details on 

SENEX had only been published in papers screening for polymorphisms in disease. So far SENEX 

has been found to contain a polymorphisms in patients suffering from amyotrophic lateral 

sclerosis [151] and imaging genetics found a single nucleotide polymorphism in 

schizophrenia[152]. The work contained in this thesis has been recently published in Blood. Our 

work is the first published data detailing a functional role for SENEX [153].  
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Figure 4.2  SENEX protein. The SENEX protein consists of 663 amino acids. It contains a 

RhoGAP domain between residues 340 and 520, two lysine-rich regions and a glutamate rich 

region. It contains no apparent transmembrane domain or signal peptide. The calculated 

molecular weight of the protein is 76.5kDa.  
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4.1.6 Preparation of SENEX constructs and adenovirus 

SENEX constructs and adenovirus was prepared in the same manner as was described in Chapter 

3 for REST and were prepared by Dr Chris Hahn. An assay to determine the tissue culture 

infectious dose 50 (TCID50) was performed by titrating adenovirus in HEK293 cells. The TCID50 

values for each adenovirus, as shown in table 4.1, relate to the number of plaque forming units 

(viable virus particles) per ml (pfu/ml).   

In addition to determination of TCID50 assay, a titration of SENEX adenovirus in HUVECs was 

set up to determine infection efficiency as well as the strength of the CMV promoter by 

measurement of mean GFP production. This is important to determine the relative level of gene 

expression in infected cells so that comparisons between constructs may be made in functional 

assays. The level of GFP production in infected HUVECs after 48 hours was measured by flow 

cytometry analysis. The percentage of cells expressing GFP was determined for each construct to 

give an approximate level of infection of HUVECs (Figure 4.3). The adenoviral delivery system 

is quite efficient, and titres were determined which resulted in approximately 98-100% infection, 

with similar mean GFP levels. It should be noted that the mean GFP levels could be increased by 

increasing the MOI to a level that the adenovirus itself causes the cells to die. 

 

Multiplicities of infection (MOI) was calculated in order to relate levels of infection of cells to 

the literature. MOI for each construct as shown in table 4.1, were calculated by converting pfu/ml 

(TCID50 value) to pfu/cell. This was then multiplied by the ‘HUVEC titre’ value (µl), to give the 

ratio of infected cells with respect to the number of cells transfected. 

 However, subsequent to this we have prepared another 3 batches of virus and they all produce the   

same phenotype in the EC. 
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Figure 4.3. GFP expression levels of recombinant adenoviruses. The histograms show GFP 

expression levels, obtained by FACS analysis, of infected HUVEC. EV refers to pAEATG 

empty vector, SEN F to SENEX sense, and SEN R to SENEX antisense. Results show that 

mean GFP levels were quite comparable between the different adenoviruses.  
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Table 4.1 TCID50 and MOI Values for Recombinant Adenovirus  

Adenovirus TCID50 (pfu/ml) MOI 

SENEX F-myc 1.3 x1010 88 

SENEX F (wild type) 1.4 x1010 81 

SENEX R  1.58x1010 47 

EV (control)   3.16x1010 48 

 

Knockdown or overexpression of the gene was achieved by adenoviral infection of either 

antisense or sense constructs in EC, respectively. Essentially, HUVEC (passage 3 or 4) were 

infected with adenovirus containing the gene of interest, full length SENEX with (SENEX F-

myc) and without myc tag (SENEX F-wild type) and antisense (SENEX R) orientations, as well 

as a control, pAEAT empty vector (EV).  HUVEC were harvested 48 hours after infection. An 

aliquot was used for GFP measurement and the rest used for the desired assays.  A description of 

the effects of knockdown of SENEX is given in Chapter 5. 

 

4.2    Determination of SENEX expression. 

 

The pAEATG-SENEXF-myc and EV adenovirus was used to determine whether overexpression 

of SENEX was achieved.  HEK293 cells were used initially and lysates from EV (pAEATG) 

infected cells as a control. Lysates were run on a 12% SDS-PAGE gel and SENEXF-myc was 

detected with an anti-myc antibody. As seen in Figure 4.4, SENEXF-myc was highly expressed 

as compared to the control. It also showed a protein of approximately 76 kDa, similar to that 

predicted from the sequence (including myc tag). This work was completed by Milena Babic. 

This was repeated with HUVECs and a similar result obtained. The protein was found to be 

around 80kD. 
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Figure 4.4.  Western blot of SENEXF-myc using an anti-myc antibody. Cell lysates at 24 

and 48 hours of EV and SENEXF-myc infected HEK293 cells were run on 12% SDS-PAGE gel, 

and a Western blot carried out using an anti-myc antibody, then detected using the Amstersham 

ECL kit. The protein detected was 76Kd.  
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4.2.1 SENEX antibody 

The antibody to SENEX was raised in rabbits against the whole SENEX protein and was affinity 

purified. Western blots using the antibody against the purified protein and cell lysates showed 

that SENEX runs as an approximate 80kd protein with detection of 1 or 2 smaller proteins, which 

have not been identified but are presumed to be breakdown products. The increase in size of the 

detected protein from the predicted size of 75kD is likely a result from post translational 

modification. We are confident that the rabbit antibody is detecting SENEX since it detects 

similar sized products as that seen with the anti-myc antibody from cells infected with the 

SENEX-myc tagged construct  

 

4.3 SENEX overexpression induces a unique phenotype in EC 

 

In HUVECs using the adenovirus system for gene delivery we routinely achieved overexpression 

of 5-10 fold after 24hours and 15-25 fold after 48hours (Figure 4.5) compared to basal levels of 

SENEX. The change in protein expression was consistent over 5 HUVEC lines and when using 

two different batches of virus. During capillary tube formation SENEX expression increases by 

2.5 fold at the 24 hour timepoint. We are therefore increasing SENEX expression by a much 

greater degree when adenovirus is used. 

 

4.3.1 SENEX overexpression has no effect on capillary tube formation 

To determine whether overexpression of this protein influences angiogenesis we performed the in 

vitro capillary tube formation assay on Matrigel. The cells were harvested 24 hours after 

infection and then plated onto Matrigel. They aligned and formed capillary tubes to the same 

extent as the control cells and the timing of tube formation was also not altered, (Figure 4.6), 

suggesting that SENEX overexpression did not alter tube formation.  
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Figure 4.5. Western Blotting of SENEX overexpression using the SENEX antibody. 

Expression levels of SENEX protein in HUVECs at 24 and 48 h after infection with EV (EV) 

or SENEX (S) adenovirus and detected by western blot analysis using anti-SENEX antibody.  

Protein molecular masses (in kD) appear on the right. This is a  representatative of 5 

experiments  
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Figure 4.6. Effect of SENEX overexpression on Matrigel tube formation. HUVECs were 

infected with EV (i) or SENEX (ii) containing adenovirus. After 24 h cells were plated onto 

Matrigel, and capillary tube formation was observed over a 24 h time course. Photographs taken 

12 h after plating are shown. This is a representative of 3 similar experiments performed. Bars 

=100 µm. 
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4.3.2 SENEX overexpression alters EC phenotype 

Growth of the SENEX overexpressing cells however did result, after 2-3 days, in a substantially 

changed morphology of the cells. In comparison to the normal HUVECs infected with EV, the 

cells overexpressing SENEX became flattened and large cells were observed which contained 

large vacuoles and exhibited polyploidy, judged using DAPI staining of the nuclei (Figure 4.7).  

 

4.3.3 The SENEX overexpression phenotype is not adenoviral dependent 

One possibility is that the phenotype generated through the use of the adenovirus is due to the 

combination of the gene and the adenovirus. Therefore SENEX overexpression was also 

achieved through plasmid transfection. SENEX-3’myc was cloned into the mammalian 

expression vector, pcDNA3.   

Creation of these constructs was performed as follows (refer to Figure 4.8). SENEX-3’myc was 

excised from pEG-SENEX-3’myc (full length, sequenced) with EcoR I and inserted into the 

unique EcoR I site in pcDNA3 to create pcDNA-SENEX-3’myc. EcoR I digestion was performed 

to check for the insert. An Xho I/ BstE II digest was also conducted in order to confirm 

orientation of the insert, and purified plasmid containing the insert in both sense and antisense 

orientations, as well as pcDNA3, were prepared in large scale.  Plasmids were then purified using 

Qiagen EndoFree Plasmid MAXI kit as described in the manufacturer’s manual, ensuring that all 

equipment, tips and tubes used were endotoxin free. Endotoxin removal is important for 

nucleofection into HUVEC, as they are sensitive to endotoxin (a bacterial toxin responsible for 

pyrogenic fever).  All DNA was quantified by spectrophotometry and redigested to confirm 

authenticity prior to nucleofection into HUVEC. Constructs were then nucleofected into HUVEC 

using the Amaxa HUVEC (Vs.2) NucleofectorTM Kit.   
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Figure 4.7. SENEX overexpressions effect on the EC phenotype. (A).  HUVECs were 

infected with EV (i) or SENEX (ii) containing adenovirus. Infected cells are visualized with 

green fluorescent protein (GFP). Photographs were taken after 48 h. Bar=220 µm. (iii) Enlarged 

area of cells from (ii). Bar=80 µm. (B). Phase contrast photograph of a number of enlarged cells. 

Bar=80 µm  
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Figure 4.8. Generation of pcDNA-SENEX construct. pEG-A18-3’myc(f) and pcDNA3 were 

EcoR I digested and  purified fragments were ligated together to produce pcDNA-SENEXmyc in 

both sense and antisense directions (only the sense orientation is depicted above). Plasmids were 

then amplified and purified, including endotoxin removal before being nucleofected into 

HUVEC. 
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After 24-48 hrs a large flattened morphology was seen in the cells successfully transfected with 

SENEX. Thus, the induction of the large flattened cells was independent of the use of adenovirus 

(Figure 4.9). For the remainder of the experiments adenovirus will be used because of its superior 

ability to infect nearly 100% of the cells compared to about 5-20% for plasmid transfections.   

 

4.4. Confirmation that the morphological changes are a senescent cell 

 

The change in phenotype with SENEX overexpression was reminiscent of senescent cells. The 

characteristics of senescent cells are a large flattened morphology, polyploidy, resistance to cell 

death, irreversible exit from the cell cycle. The classic marker used to identify senescent cells is β 

Galactosidase and is known as senescence-associated β-galactosidase activity (SA-β-gal), [2]. 

SA-β-gal enables the detection of increased lysosomal β-galactosidase evident in senescent cells 

at a pH 6.0. It is visualised by means of a cytochemical reaction which stains cells blue. Although 

its function is unknown, β-gal is generally accepted as a marker of senescence in vitro and in 

vivo.  

 

4.4.1 Senescent-associated β-Galactosidase staining 

The SA-β-gal assay was performed in vitro as described previously by Dimri (1996). Infection 

with SENEX adenovirus significantly increased the number of HUVECs with SA-β-gal activity 

compared with the EV (Figure 4.10A). In 4 experiments performed the numbers of SA-β-gal 

positive staining cells were counted and the percentage positive was calculated based on the 

number of total cells. In SENEX overexpressing cells the number of positive staining cells 

peaked at 48 hrs at approximately 12% compared to 5% in the EV (Figure 4.10B).   
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 Figure 4.9. Overexpression of SENEX with plasmid transfection. HUVECs were transfected 

with control (i) or SENEX (ii) expressing plasmid using Amaxa nucleofector kit. Bar=100µm. 

(iii) Senescent cells induced by transfection of a plasmid containing SENEX. Bar=100µm 
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Figure 4.10. SENEX overexpressing ECs stained for the senescence marker, Senescent 

Associated β- galactosidase. (A). HUVECs were infected with EV (i) and SENEX (ii) 

adenovirus for 72hrs. The cells were then fixed and stained SA-β-Gal for 24 hrs. The blue 

staining represents cells positive for SA-β-Gal. Photographs were then taken at 20x 

magnification. The photographs are a representation of 4 separate experiments. Bars =220 µm  

(B). EV (white bars) and SENEX (black bars) overexpressing cells were harvested after 24, 48 

and 72 h of culture and stained for SA-β-gal expression. At least 1000 cells on each day were 

counted. The percentage of cells positive for SA-β-Gal +/-SEM is given for 3 different HUVEC 

lines analysed. *p<0.05 compared to EV. 
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4.4.2 Cell Cycle arrest 

Senescent cells also enter a state of permanent growth arrest and the cells are normally trapped in 

the G1 phase of the cell cycle [154]. ECs were infected with EV and SENEX adenovirus for 24 

hours and then reseeded at the same confluence in normal growth factor and medium. Using 

MTS to determine the number of the ECs after 3 days we found, there was a 61 ± 4% inhibition 

in cell proliferation after SENEX overexpression compared to EV (Figure 4.11). We also looked 

at which stage of the cell cycle SENEX overexpression was able to stop EC proliferation. ECs 

were infected with EV and SENEX adenovirus at a very low confluence. After 24 hours when 

the cells are still sub confluent and proliferating they were harvested and stained with propidium 

iodide to detect what stage of the cell cycle the cells were in. After analysis by flow cytometry 

(Figure 4.12), we observed an increase of 5.8+/- 2% in cells in the G1 phase and a 3+/-1% 

decrease in the S and G2 phases confirming the cell cycle arrest is at the G1 phase, as would be 

expected. The results are not statistically significant but with only a small number of cells been 

senescent at this time we would only expect a small increase in the number of cells halted in the 

G1 stage. Further experiments are needed at later timepoints to determine if all the senescent 

cells are stuck in the G1 phase of the cell cycle. 

 

4.4.3 eNOS expression 

Senescent EC have been reported to show decreased expression of the endothelial specific nitric 

oxide synthase, eNOS [128]. SENEX induced senescent cells also showed decreased eNOS 

expression when measured by western blotting after 48 hours of infection (Figure 4.13).  
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Figure 4.11. Regulation of EC proliferation by SENEX overexpression. HUVECs infected 

with EV (white bars) or SENEX  (black bars) containing adenovirus were assessed for cell 

proliferation after 3 days using the MTS assay. OD490nm for cells at Day 0 and Day 3 are given. 

Results are the mean +/-SEM of  4 replicates of each group. This is a representative of 3 

experiments, * p<0.05 compared to EV on Day 4.  
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Figure 4.12. Determination of the stage in the cell cycle of ECs overexpressing SENEX. EV 

(white bars) and  SENEX (black bars) overexpressing cells were harvested after 24h then fixed 

with 80% methanol and stained with propidium iodide and flow cytometry was performed to 

determine the cell cycle status of the cells after infection.  The results are a combination of 3 

individual HUVEC lines. 
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Figure 4.13. Regulation of  eNOS protein expression by SENEX. HUVECs were infected 

with SENEX and EV adenovirus for 48 h. Total protein was used for western blotting with a 

eNOS antibody.  β-actin was used as a loading control. This is a representative of 3 experiments.  
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4.4.4 Resistance to Apoptosis 

Senescent cells have been found to be resistant to apoptotic stimuli [155]. ECs overexpressing 

SENEX showed increased survival under growth factor deprivation. Cells survived in the cell 

culture flask for over a month without any addition of new media or growth factors (Figure 4.14). 

This is in contrast to cells infected with EV which became apoptotic after 7 days if no new media 

containing growth factors was added to the cells.  
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Figure 4.14. Effect of SENEX overexpression on EC apoptosis from growth factor 

deprivation. HUVECs were infected with SENEX and EV adenovirus. The cells were then left 

for 40 days without splitting or media change. The cells above are senescent cells which are 

overexpressing SENEX and are still alive after the 40 day period. There are no photographs of 

the EV overexpressing cells as these have all died. 
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Thus, on the basis of morphology, expression of β-gal, cell cycle arrest, longevity of maintenance 

in culture and eNOS downregulation, overexpression of SENEX induces senescence in EC. 

 

4.4.5 Timecourse of morphological change 

To determine a timecourse of the development of the altered morphology, HUVECs were 

infected with adenovirus and then photographed over 72hrs (Figure 4.15). The number of 

senescent cells, based on morphology and a percentage was calculated based on total cell 

numbers. Approximately 34% of the cells had a senescent morphology compared to 11.5% in the 

EV (Figure 4.16) after 72hrs. The percentage of cells that become senescent did slowly increase 

with further time and we found that the non senescent cells began to die after this point, 

especially in the EV infected cells. For this reason 72hrs was the limit for which we extended 

experiments when looking at the effects of SENEX overexpression. Senescent cells are known to 

have multi nuclei and for this reason cells overexpressing SENEX were stained with DAPI to 

highlight the nuclei (Figure 4.17A). We then counted the number of cells which became 

polyploidy and a percentage was calculated based on total cell numbers (Figure 4.17B).  After 72 

hours approximately 25% of the total cells were multi nucleated in the cells overexpressing 

SENEX compared to 12% of the total cells in the EV. The increase in SENEX overexpressing 

cells was not as high as when we counted based on morphology most likely because not all 

senescent EC exhibit polyploidy. At the time point chosen we did not observe any 

heterochromatin foci present in the senescent cells. 

4.4.6  The senescent phenotype is not dependent on the RhoGAP domain in SENEX 

SENEX is a member of the RhoGAP family of proteins. Rho GTPases are a subgroup of the 

family of Ras GTPases, which also includes the small G proteins Ras, Rab, Arf and Ran.  

GTPases act as molecular switches which cycle between an active, GTP-bound form and an 

inactive, GDP-bound form in response to extracellular stimuli. They mediate a number of  
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72hrs 

EV SENEX 

Figure 4.15. Timecourse of senescence development after SENEX overexpression. HUVECs 

were infected with EV and SENEX adenovirus. The cells were then visualised over a 72 hr 
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Figure 4.16. Timecourse of senescence development after SENEX overexpression 

quantification. HUVECs were infected with EV (white bars) or SENEX (black bars) 

containing adenovirus. Photographs were taken at 24 h time intervals for 4 days. The number of 

senescent cells, based on an enlarged morphology, were counted and presented as a percentage 

of total cells counted. At least 1000 cells were counted for each of the three individual HUVEC 

lines. The mean +/-SEM is shown. ** p<0.01 and *** p<0.001 compared to EV.  
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Figure 4.17. Quantification of the number of polyploidy cells after SENEX overexpression. 

(A). HUVECs were infected with SENEX containing adenovirus. The cells were stained with 

DAPI every 24 hrs for the next 3 days. Left photo shows the cells at 24 hrs with the GFP field 

with cells exhibiting polyploidy marked with an arrow. DAPI stain is shown in the right photo. 

Bar=100um. (B).  SENEX overexpression induces polyploidy. HUVECs infected with EV 

(white bars) or SENEX (black bars) containing adenovirus and were assessed for polyploidy. At 

least 1000 cells were counted each day in each group for each of  3 individual cell lines and are 

presented as a percentage of senescent cells. The mean+/- SEM is shown. ***p<0.001 compared 

to EV. 
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complex signal transduction pathways in response to extracellular stimuli, including 

reorganisation of the actin cytoskeleton to cause changes in cell shape polarity, migration, 

adhesion and proliferation, membrane trafficking and vesicular transport, gene transcription, 

apoptosis, cell survival and enzymatic reactions including NADPH oxidase production [156, 

157].  To determine whether the GAP domain is essential for SENEX induced senescence, an 

R365A mutant was generated. A single amino acid mutation changed an arginine to an alanine in 

the GAP domain. The positive charged alanine is crucial for the RhoGAP activity and by 

changing it to a neutral alanine the mutation eliminated the Rho activity (data not shown). 

However, overexpression of this mutant protein with adenovirus was still able to confer the 

senescence phenotype on ECs (Figure 4.18), suggesting that the GAP domain is not essential for 

this aspect of its function. We are currently looking at creating different mutations of SENEX in 

an attempt to determine the senescence induction domain of the protein. 

 

4.5 SENEX does not induce replicative senescence 

 

There are two broad forms of senescence, replicative and stress induced senescence. Replicative 

senescence (RS) is mediated through the shortening of telomeres that occurs during each cell 

division. This shortening eventually registers as DNA damage and triggers ATM activation and 

initiates a program of cell cycle arrest. Stress induced premature senescence (SIPS) is induced by 

oncogene activity, oxidative stress, or suboptimal culture conditions and occurs independent of a 

change in telomere length [158]. 

Overexpression of SENEX induced senescence within 24 hours using gene delivery through 

adenovirus or by transient transfection. Given the rapidity of induction of senescence with 

SENEX in EC, it was unlikely that it was a replicative form of senescence and this was 

confirmed using two criteria.  
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Figure 4.18. Overexpression of SENEX containing a mutation of the RhoGAP domain. 

HUVECs were infected with SENEX -R365A mutant construct and EV containing adenovirus. 

Cells were visualized 48 h after infection. Large flattened and vacuolated cells were seen in the 

SENEX mutant overexpressing cells (red arrows) and at a similar frequency to the wild type 

SENEX. Bar=220µm  
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4.5.1 SENEX does not alter telomere length 

A shortening in telomeres after in vitro passaging of cell lines is the cause of replicative 

senescence. Telomeres are sequences - (TTAGGG)n - that cap the ends of linear chromosomes 

and maintain the stability of the genome by preventing DNA ends from degradation and 

recombination [159]. Under normal conditions, DNA base pairs are lost from the telomeric ends 

of each chromosome with every round of cell division. Telomeres eventually reach a critical 

minimum length and cell division is inhibited to prevent the chromosomes from becoming 

dysfunctional. A DNA damage response is initiated and cells are induced to stop dividing 

permanently [160]. Firstly we investigated telomere length by Southern blot analysis in SENEX 

induced senescent ECs. We found that even at 72 hours after infection with SENEX there was no 

change in telomere length compared to EV, even though at least 35% of the cells had become 

senescent as judged by a change in morphology (Figure 4.19). 

 

4.5.2 SENEX overexpression does not induce a replicative senescence gene profile  

We then induced replicative senescent ECs by repeatedly passaging the cells. EC were 

maintained under subconfluent conditions at all times and were passaged every 3–4 days. In 

general the cells become senescent after 15-20 passages. We used 4 different HUVEC lines. 

They all took on the enlarged flattened senescent morphology and were stained with SA-β-gal. 

There was a significant increase in senescent cells after 20 passages compared to endothelial cells 

passaged twice (Figure 4.20). These replicative senescent cells also displayed increased 

expression of 3 genes considered markers of replicative EC senescence, PAI-1[161], IL1-α[162] 

and cyclooxygenase-2 (COX2)[163]. However there was no concurrent increase in SENEX 

expression (Figure 4.21A). There was also no significant change in the expression level of these 

same genes in SENEX induced senescent EC (Figure 4.21B). The experiment was only 

performed twice so further experiments may be needed to conclusively say that SENEX does not  
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Figure 4.19. Measurement of telomere length in ECs after SENEX overexpression. 

HUVECs were infected with SENEX (S) or EV (EV) containing adenovirus. Cells were 

harvested after 24, 48 and 72 h of culture and telomere length was measured by southern blot 

analysis.  
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Figure  4 20. Induction of replicative senescence in ECs. Replicative senescence in HUVECs 

was induced through constant passaging of the cells. After 20 passages (ii) the cells stained 

positive for the senescent marker β-galactosidase compared to cells only passaged twice (i) 

which did not stain. The positive staining confirmed we had induced replicative senescence. 

Bar= 220 µm 
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 Figure 4.21. Role of SENEX in replicative senescence.  (A). Replicative senescence in 

HUVECs was induced through constant passaging and the cells were harvested when the 

senescent morphology was evident in the majority of cells. mRNA expression was measured 

by Q-RT-PCR of COX2, IL-1α, PAI-1 and SENEX and standardized to cyclophilin A. The 

mean +/-SEM of 6 replicates from two lines of HUVECs is shown. Early passage cells 

(white bar) and late passage senescent cells (black bar). *** p<0.001 compared to early 

passage. (B). HUVECs were infected with SENEX (black bars) and EV (white bars) 

containing adenovirus. After 2-4 days when at least 50% senescence was seen, the cells were 

harvested and mRNA levels determined for PAI-1, COX-2 and IL-1α by Q-RT-PCR. There 

were no significant differences seen between the EV and SENEX groups. This is a 

representative of the mean +/-SEM of 2 experiments performed.  
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regulate these genes. Together these results suggest that SENEX overexpression is not causing 

replicative senescence. Given the rapidity of induction of the senescence phenotype we would 

suggest that this is an example of stress induced premature senescence (SIPS) and not replicative 

senescence.  

 

4.6. SENEX induces Senescence through the p16 pathway 

 

There are currently two signaling pathways known to be involved in senescence formation in 

either the RS or SIPS. They involve the p16/pRb pathway and the p53/p21 pathway [155].  

 

 

4.6.1 SENEX regulates p16 and pRb expression  

To determine the potential pathway through which SENEX induces senescence, mRNA arrays 

were performed on known cell cycle genes. Cells were taken at 24 and 72 hrs after infection, at a 

time when the morphological changes are becoming evident. Of the 96 genes analysed on the 

array 2 changed significantly at the 24h time point and 3 at the 72h timepoint. One gene of 

interest was p16 (INK4A) CDKN2A, or p16. This was increased in expression at the 72 hr time 

point when the amount of senescence is reaching its peak (Figure 4.22). The increase in 

expression of p16 was confirmed using Q-RT-PCR on the same samples (Figure 4.23). SENEX 

overexpression also induced an increase in the protein levels for p16. Retinoblastoma (Rb) is a 

downstream target of p16 and p16 activation prevents the phosphorylation of Rb. Rb in its active 

hypo-phosphorylated form inhibits the expression of genes regulated by the E2F transcriptions 

factor halting cells in the G1 phase of the cell cycle. SENEX overexpression resulted in a 

decrease in the protein expression of the inactive hyper-phosphorylated form of Rb (Figure 4.24). 

These results indicate that SENEX overexpression is initiating the p16/pRb pathway.   
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Figure 4.22. Measurement of  p16 mRNA expression after SENEX overexpression using 

PCR arrays. A PCR array from superarray was used to look at the mRNA changes after ECs 

were infected with SENEX adenovirus for 24 and 72 hrs. 3 lines of HUVECs were combined after 

mRNA was harvested. The results for 72 hours are shown as a volcano plot. The Y axis represent 

the p value for each gene measured. Any point above the blue line represent a change with a p 

value less than .05. The x axis represents the fold change of each gene. The pink line indicate a 

fold change of 2. The circled dot represent p16 
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Figure 4.23. Q-RT-PCR of p16 mRNA expression after SENEX overexpression. HUVECs 

were infected with SENEX (black bar) or EV (white bar) adenovirus for 24 and 72 h. Total RNA 

was extracted and Q-RT-PCR used to determine levels of p16 standardized to Cyclophilin A. 

This is a representative of3 experiments. Results are the mean +/-SEM of 3 replicates of each 

group. * p<0.05 compared to EV.  
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Figure 4.24. Western blot of p16 and pRb after SENEX overexpression. HUVECs were 

infected with SENEX and EV adenovirus for 48 h. Total protein was used for western blotting 

using p16 or phosphorylated Rb specific antibodies. β-actin was used as a loading control. This 

is a representative of 3-4 experiments performed using different EC lines. 
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4.6.2 SENEX expression does not change the p53 pathway. 

SIPS has been reported to initiate both the p16/pRb and the p53/p21 pathways in endothelial cells 

[67]. Therefore the p53/p21 pathway was also investigated. Western blotting showed that there 

was no change in the protein expression of p53 or p21 at 48hours when 30-50% of the cells 

display the senescence phenotype and at the same timepoint which p16 and pRb are regulated 

(Figure 4.25). Thus SENEX activates the p16/pRb pathway but not the p53/p21 pathway in the 

senescence induction. To determine whether activation of p16 is essential for SENEX induced 

senescence we attempted to knockdown p16 using siRNA and then induce senescence using 

SENEX overexpression. To date this experiment has not been successful. We have been unable 

to determine if the p16 siRNA is actually working because the basal levels of p16 in ECs are 

undetectable. It is also very difficult to use two different techniques to manipulate gene 

expression in the primary cells. This experiment would involve transfection of the siRNAs to 

deplete p16 followed by an infection to overexpress SENEX. This is an important experiment but 

more work is needed to optimize the experiment. 

 

 

4.7 Hydrogen peroxide induced EC senescence regulates SENEX expression 

 

Hydrogen peroxide (H2O2), a ROS implicated in cardiovascular disease and in cancer is a known 

inducer of senescence when delivered in a subcytotoxic dose [27]. The senescence that results 

can occur through the oxidative stress pathway, without a shortening in telomere length, similar 

to that for SENEX. To investigate whether our SENEX overexpression is biologically relevant 

and not just an artifact of protein overexpression we investigated whether H2O2 may act to induce 

senescence through SENEX regulation.  
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Figure 4.25. Western blot of p53 and p21 after SENEX overexpression. HUVECs were 

infected with SENEX and EV containing adenovirus for 48 h. Total protein was used for western 

blotting with p53 and p21 antibodies. β-actin was used as a loading control. Analysis of each 

protein was performed in 3-5 different HUVEC lines  
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4.7.1 H2O2 induced senescence increases SENEX expression 

Subcytotoxic doses of hydrogen peroxide (10µM and 100µM) were administered to EC for 2 hrs 

and the cells were then placed in fresh normal medium for a further 24-48 hours. The H2O2 

treatment induced senescence after 48 hours as judged by the enlarged cellular morphology and 

β-gal staining (Figure 4.26A). Furthermore, these cells showed an increase in SENEX protein 

levels in a dose dependent manner (Figure4.26B). This indicates that SENEX may be playing a 

role in H2O2 induced senescence. To confirm the role of SENEX in oxidative stress induced 

senescence a knockdown of SENEX with siRNA during hydrogen peroxide induced senescence 

would be the next experiment to attempt. But due to the apoptotic effects of SENEX knockdown 

which will be explained in Chapter 5 the cells are not viable after siRNA transfection. This 

makes it very difficult to then create senescence with H2O2.  

At present we cannot conclusively conclude that SENEX is crucial for oxidative stress induced 

senescence but since low dose H2O2 induces senescence and upregulates SENEX the results 

suggest that this could be the case.  

 

4.8 SENEX produces a senescence which is anti-inflammatory 

 

4.8.1 SENEX induced senescence does not support neutrophil or mononuclear cell 

adhesion. 

Published work has suggested that senescent cells are proinflammatory [93]. To determine the 

inflammatory phenotype of the SENEX induced EC, we tested their capacity to support 

neutrophil adhesion. HUVECs were infected with SENEX and EV adenovirus and left for 72 

hours. They were then treated with TNFα (5 ng/ml) for 5 hours in order to upregulate the 

expression of adhesion molecules such as E-selectin which is critical for neutrophil adhesion to 

the EC [164, 165]. The TNFα was removed by washing. The neutrophils and mononuclear cells  
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Figure 4.26. Regulation of SENEX by hydrogen peroxide induced senescence. (A). HUVECs 

were stimulated with 100 µM H2O2 for 2 h and then placed in normal HUVEC medium for 48 h 

(ii) or kept in normal HUVEC medium for 48 h (i). Cells were then stained for β-galactosidase 

activity. Bar= 220 µm  (B). HUVECs were stimulated with 10 µM or 100 µM H2O2 for 2 h and 

then placed in normal HUVEC medium for 48 h. SENEX expression was measured by western 

blot. β-actin was used as a loading control. This is a representative of 3 experiments.  
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separated from blood using histopaque gradient separation, were plated onto the pretreated 

HUVECs and left for 2 hours. There was a striking lack of neutrophil adhesion to TNFα 

stimulated morphologically enlarged senescent EC (Figure 4.27). ECs which had been infected 

with SENEX but did not show the change in cell size in general displayed levels of neutrophil 

attachment similar to that seen with EV control cells. Quantification based on the number of 

neutrophils attached per large senescent cell versus non-enlarged ECs occupying the same area 

showed a 75% inhibition in the capacity of neutrophils to adhere to senescent ECs (Figure 4.28). 

There was no preferential binding of the neutrophils to the junctions of the senescent cells and we 

saw little or no neutrophil transmigration across the senescent EC (data not shown).  

Mononuclear cell adhesion was also measured and the results were very similar to that seen for 

neutrophils, where there was a significant decrease in the number of mononuclear cells adhering 

to large senescent cells compared to the surrounding non senescent cells (Figure 4.29). There was 

a 74% inhibition of mononuclear cells attached to the large SENEX induced senescent cells 

compared to smaller infected cells (Figure 4.30). 

 

4.8.2 SENEX induced senescence decreases adhesion molecule expression 

Neutrophil attachment is mediated predominantly through the adhesion molecule E-selectin [164, 

165], which is induced with 4-6 hours upon inflammatory cytokines stimulation. Therefore the 

levels of E-selectin were measured following stimulation for 5 hours with 5ng/ml of TNFα. 

Immunostaining was used to measure the amount of E-selectin on individual cells. ECs were 

infected with SENEX and after 48 hours the cells were harvested and plated onto labtek slides. 

The cells were then left for a further 24 hours before stimulated with TNFα and then fixed with 

4% paraformaldehyde and stained for E-selectin. The large senescent cells induced by SENEX 

infection had a significant decrease in E-selectin staining on the cell surface (Figure 4.31A). This  
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Figure 4.27. Neutrophil attachment to TNFα stimulated SENEX induced senescent ECs. 

HUVECs were plated on fibronectin coated labtek slides at 6x10
4
 for 24 h, then infected with 

SENEX and EV containing adenovirus and after 48 h stimulated with TNFα (5 ng/ml) for 5 h (i). 

Adhesion of neutrophils was then assessed (ii). This is a representative of 3 experiments. Arrows 

show senescent cells from the corresponding fluorescence view (i). Bar= 220 µm.  
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Figure 4.28. Quantification of neutrophil adhesion to SENEX induced senescent ECs. From 

the photographs taken in (Figure 4.27) counts were made of the number of adherent neutrophils 

on a senescent cell (black bar). Neutrophils were then counted in the same surface area on 

neighboring nonsenescent cells (white bar). This is a representative of 42 senescent cells and the 

corresponding area of non-senescent cells from three HUVEC lines. *** p<0.001 compared to 

non senescent cells..  
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Figure 4.29. Mononuclear cell attachment to TNFα stimulated SENEX induced senescent 

ECs. HUVECs were plated on fibronectin coated labtek slides at 6x10
4
 for 24 h, infected with 

SENEX and EV containing adenovirus and after 48 h stimulated with TNFα (5 ng/ml) for 5 h (i). 

Adhesion of mononuclear cells was then assessed (ii). This is a representative of 3 experiments. 

Arrows show senescent cells from the corresponding fluorescence view (i). Bar= 220 µm. 
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Figure 4.30. Quantification of mononuclear cell adhesion to SENEX induced senescent 

ECs. From the photographs taken in (Figure 4.29) counts were made of the number of adherent 

mononuclear cells on a senescent cell (black bar). Mononuclear cells were then counted in the 

same surface area on neighboring nonsenescent cells (white bar). This is a representative of 102 

senescent cells and the corresponding area of non-senescent cells from three HUVEC lines. *** 

p<0.001 compared to non senescent cells. 
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Figure 4.31. E-selectin immunostaining of SENEX induced senescent ECs.  HUVECs were 

infected with SENEX adenovirus for 72 h. They were treated with 5 ng/ml of TNFα in normal 

HUVEC medium for 5 h and then stained for surface expression of E selectin (A) Bar= 220 µm. 

GFP photos of the area photographed for adhesion molecule expression is given in the left hand 

panels. In (B) the cells were permeabilised and then stained for intracellular E-selectin Bar= 220 

µm. 
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decrease in expression as judged by immunostaining could be because of the size of the cell. It is 

possible that there is the same amount of E-selectin been expressed in the large senescent cells  

but it is spread over a significantly larger area. To account for this possibility the levels of E-

selectin staining were measured using mean pixel intensity measurements for each individual 

cell. This was quantified using image J pixel intensity calculations (Figure 4.32). The results 

demonstrate that on a per cell basis there is a 35% decrease in the amount of E-selectin staining 

on the surface of large senescent cells compared to the amount on the surface of  surrounding non 

senescent cells. 

Interestingly when the cells were permeabilised to investigate the intracellular levels of E-

selectin, similar levels of E-selectin were seen between senescent and non senescent cells (Figure 

4.31B). This indicates that SENEX induced senescent cells are able to make E-selectin in 

response to TNFα stimulation but it is not translocated to the cell surface.  

We next measured VCAM1 expression, a major adhesion molecule for leucocytes and which is 

also induced after cytokine stimulation [166]. ECs were infected with SENEX adenovirus and 

then treated with TNFα for 24 hours since VCAM1 requires a longer period of cytokine 

stimulation to induce maximum levels.  The VCAM1 was then measured using immunostaining. 

There was a decrease in cell surface expression but no change in intracellular expression of 

VCAM1 (Figure 4.33). The levels of VCAM1 staining were measured using mean pixel intensity 

measurements for each individual cell. This was quantified using image J pixel intensity 

calculations (Figure 4.34). The results demonstrate that on a per cell basis there is a 50% 

decrease in the amount of VCAM1 staining on the surface of large senescent cells compared to 

the surrounding non senescent cells. In a similar fashion to E-selectin there was similar 

cytoplasmic staining of VCAM1 in senescent and non senescent cells. 

Flow cytometry was used to confirm the immunostaining data.  The ECs were treated in the same 

method as was used for immunostaining but instead of visualizing the cells, they were trypsinised  
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Figure 4.32. Quantification of surface expression of E-selectin staining on SENEX induced 

senescent ECs. Senescent and non senescent cells were analysed for cell surface expression of 

E-selectin. The mean pixel intensity per cell was measured using Image J for senescent cells 

(black bar) and for non senescent cells (white bar). The E-selectin data is a representative of the 

mean +/-SEM of 14 senescent cells and the corresponding area of non-senescent cells from two 

HUVEC lines. *** p<0.001 compared to non senescent cells. 
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Figure 4.33. VCAM1 immunostaining of SENEX induced senescent ECs. HUVECs were 

infected with SENEX adenovirus for 48 h. They were treated with 5 ng/ml of TNFα in normal 

HUVEC medium for 24 h and then stained for surface expression of VCAM1 (A) Bar= 220 µm. 

GFP photos of the area photographed for adhesion molecule expression is given in the left hand 

panels. In (B) the cells were permeabilised and then stained for intracellular VCAM1. Bar= 220 

µm. 
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Figure 4.34. Quantification of surface expression of VCAM1 staining on SENEX induced 

senescent ECs. Senescent and non senescent cells were analysed for cell surface expression of 

VCAM1. The mean pixel intensity per cell was measured using Image J for senescent cells 

(black bar) and for non senescent cells (white bar). The VCAM1 data is a representative of the 

mean +/-SEM of 25 senescent cells and non-senescent cells from two HUVEC lines. *** 

p<0.001 compared to non senescent cells.  
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and fixed in FACS Fix and the surface expression of E-selectin and VCAM was measured using 

FACS. As with the immunostaining there was a decrease in the amount cell surface staining of E- 

selectin and VCAM1 in SENEX overexpressing cells compared to EV (Figure 4.35). These 

results together indicate that SENEX induced senescence is in fact anti-inflammatory which is 

the opposite that what has been found in published work on senescence to date.  

 

4.8.3 H2O2 induced senescence decreases the expression of adhesion molecules 

Since SENEX appears to be involved in H2O2 induced senescence we would predict that H2O2 

induced senescence would show similar changes in the expression of E-selectin and VCAM1. 

Cells were given low dose H2O2 and then treated with TNFα. As with the SENEX overexpression 

experiments the levels of E-selectin and VCAM1 were measured using immunostaining (Figure 

4.36) and the staining intensity measured using mean pixel intensity. We found with both E-

selectin and VCAM1 there was a 50% decrease in the surface expression of both E-selectin and 

VCAM1 (Figure 4.37). Thus, both SENEX overexpression and H2O2 induced senescent cells 

demonstrate an anti-inflammatory phenotype suggesting that our overexpression studies may 

reflect a biologically meaningful phenotype. 

 

4.8.4 SENEX induced senescent cells have a reduced permeability response 

Inflammation is also associated with an increase in the permeability of the endothelium. 

Thrombin is a major inducer of EC permeability acting rapidly, within 10-30 minutes to induce 

the response [167]. Endothelial cells were infected with SENEX and EV and then stimulated 

with thrombin. The amount of EC permeability was measured by the passage of FITC-dextran 

across the monolayer. There was a small but not significant change in the basal permeability with 

SENEX overexpression. The SENEX induced senescent ECs had a significantly lower response 

to thrombin than did the control EV infected cells (Figure 4.38).  
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These results further confirm that SENEX induced senescence is resulting in an anti-

inflammatory phenotype. 
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Figure 4.35. FACS analysis of E-selectin and VCAM1 surface expression after SENEX 

overexpression.  EV and SENEX infected cells were left for 3 days and then were either 

stimulated or unstimulated with 5 ng/ml of TNFα for 5 h for E-selectin or 24 h for VCAM1,, 

then stained for E-selectin and VCAM1 expression. Cells were analysed for E-selectin and 

VCAM1 expression using FACS analysis. No TNFα stimulated EV = purple line, No TNFα 

stimulated SENEX = blue line, TNFα stimulated EV = green line, TNFα stimulated SENEX = 

red line. This is a representative of 3 experiments. 
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4.9 SENEX in atherosclerotic plaques 

Increases in oxidative stress are associated with atherosclerosis and are postulated to lead to EC 

damage and aging. Furthermore, senescent ECs, as judged by β galactosidase positivity, have 

been detected in human atherosclerotic plaques [130] and in vascular cells in injured rabbit 

carotid arteries [115]. To determine whether SENEX is regulated during atherosclerosis, we 
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investigated the mRNA levels in the aortic region of apoE gene knockout mice fed a western 

diet. Sections were taken from the aorta. No atherosclerosis is seen after 1 month of Western diet. 

However after 5 months on the diet there is an increase in atherosclerotic plaques and at the same 

time there is an increase in mRNA levels of SENEX in relation to Pbgd and Hrpt (Figure 4.39). 

These results were obtained in collaboration with Roland Stockers group at the Bosch institute. 

The data is preliminary and has not conclusively shown that the SENEX overexpression is related 

to an increase in senescent cells at the site of the atherosclerotic plaques. We are currently using 

immunohistochemistry to try and show co-staining of β-galactosidase and SENEX on the surface 

of the plaques. These results will hopefully confirm that senescence is actually occurring as a 

plaques forms and the senescence that is forming requires the regulation of SENEX.  
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4.10 Summary 

SENEX or MacGAP or ARHGAP18 gene is a novel gene that to date had no biological function.  

The work described in this thesis, shows that SENEX, named from the Latin, senex, for old age 

or old man induces senescence in EC. Thus our work describes a new gene responsible for this 

major phenotypic change in cells.  
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The induction of senescence by SENEX in EC is a striking and robust observation, with 

overexpression resulting in 35 % of the ECs becoming senescent in 3 days and this proportion 

increases over several weeks. Furthermore, SENEX induced senescent endothelial cells exhibit 

the established senescence criteria of inhibited proliferation, a flattened, large vacuolated cellular 

morphology, polyploidy, positive staining with the senescence marker, S-A β-galactosidase and a 

reduction in the endothelial specific nitric oxide synthase, eNOS [132].The senescent phenotype 

induced by SENEX overexpression with adenovirus is reproducible with each new infection and 

each new batch of virus. These results indicate that SENEX can now be classified as a senescent 

inducing gene in EC.  

 

The p53/p21/Rb and the p16/Rb axes are both important signaling pathways involved in the 

induction of senescence [158]. SENEX activates the p16/Rb pathway by increasing both p16 

mRNA and protein levels together with the hypophosphorylation of the p16 downstream 

mediator of cell cycle arrest Rb. The reduced phosphorylation of Rb leads to its activation and 

causes the cell cycle arrest. In contrast, SENEX overexpression did not alter the expression of 

either p53 or p21 at the protein level. We also show that SENEX induced senescence is the result 

of stress and does not cause replicative senescence since it fails to affect telomere length [42], 

induces senescence within a few days and does not induce the usual RS gene profile in EC. 

Consistent with this, SENEX is not induced upon RS formation in our EC. Currently p16 and Rb 

are the only proteins known to be involved in SENEX induced senescence. Further work is being 

performed to identify both upstream and downstream molecules which may contribute to the 

SENEX -induced senescence in EC. 

 

SENEX not only is capable of inducing senescence when overexpressed, it also is likely to be 

involved in low dose H2O2 induced senescence. H2O2 induces an oxidative stress form of 
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senescence which also can occur without any change in telomere length [27, 168]. SENEX 

protein expression increases in a dose dependent manner after H2O2 is added and is at its highest 

expression with a dose that also causes senescence. These results would indicate that SENEX is 

playing a role in H2O2 induced senescence. We have currently not been able to conclusively 

demonstrate that SENEX is essential for H2O2 induced senescence. To demonstrate that SENEX 

is crucial during H2O2 induced senescence we are currently attempting the knockdown of 

SENEX with siRNAs and then the induction of senescence with H2O2. We would predict that 

there will be a significant decrease in the level of senescence formation when SENEX expression 

is reduced in the ECs. This would indicate that the H2O2 induced senescence requires that 

SENEX is expressed and would demonstrate that SENEX is essential in this process.  

 

The most notable feature of SENEX induced senescent cells and contrary to SIPS induced in 

other cell types,[8] is their anti-inflammatory nature. SENEX- induced senescent EC are not 

activated by TNFα to support neutrophil or mononuclear cell adhesion. The lack of immune 

adhesion seems to be the result of a decrease in cell surface expression of TNFα induced E-

selectin and VCAM1, although there is some induction of these proteins in the cytoplasm of the 

cells. These results would suggest that the signaling pathway is partially intact but there is a 

block in the translocation of these proteins to the cell surface. Furthermore the SENEX induced 

senescent cells also exhibit reduced permeability in response to thrombin, again confirming their 

anti-inflammatory phenotype. 

Since H2O2 induced senescent EC display a similar phenotype the results suggests that our results 

have biological meaning and also suggest that SIPS in EC displays an anti-inflammatory nature 

in contrast to SIPS induced in all other cell types investigated by others where they display a pro-

inflammatory state [169].  
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The results obtained for SENEX overexpressing have so far produced very exciting results. The 

members of the Vascular Biology Laboratory are currently trying to expand on these areas to 

solidify a place for SENEX in the senescence field. 
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CHAPTER 5 

The role of SENEX knockdown in Endothelial Cell Apoptosis 

5.1 SENEX and Endothelial Cell Survival 

Although SENEX overexpression induced senescence as demonstrated in Chapter 4, the question 

remained as to whether the basal levels of SENEX expression have a specific function in the 

cells. As was shown in the previous chapter, SENEX expression during tube formation increases 

after the 6 hour timepoint and is increased compared to the 0 timepoint at 24 hours. For this 

reason we would expect that a certain level of SENEX needs to remain for angiogenesis to occur. 

To address this question we chose to knockdown the basal levels of SENEX with either 

adenovirus containing the antisense version of SENEX or siRNA techniques against SENEX and 

determine the phenotype of the cells and how knockdown of SENEX effects tube formation. 

 

5.1.1 SENEX knockdown prevents capillary tube formation 

To determine whether SENEX basal expression is important in EC function, HUVECs were 

infected with adenovirus containing constructs of SENEX in the antisense orientation or empty 

vector (EV) as control. At the time of the experiments we were unable to determine if the 

expression of SENEX was actually decreased as there is no change in mRNA expression when 

using adenovirus with the antisense construct because using the adenovirus technique prevents 

translation of the mRNA but does not decrease the amount of total mRNA in the cells and the 

antibody specifically detecting SENEX was not yet available.  Therefore functional analysis was 

conducted on the assumption that we had achieved knockdown. Capillary tube formation on 

Matrigel was used to determine if SENEX expression is important for EC function. The EV 

control cells formed tubes normally. In contrast, cells infected with antisense containing 

adenovirus failed to form capillary tubes with changes evident as early as 3 hrs after plating. 
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Although they initially aligned, the antisense infected cells failed to join and were unable to form 

tubes and the cells appeared to undergo apoptosis (Figure 5.1). 

 

5.2 SENEX knockdown results in cell death. 

 

Initially the knockdown of SENEX was performed with adenovirus. As an alternate approach 

knockdown was also achieved using siRNA. A set of Invitrogen validated stealth siRNAs were 

trialed in the HUVECs. With the purchase of a Stealth Select RNAi™ siRNA Set, Invitrogen 

guarantees the results that at least 2 out of the 3 sequences will result in at least 70% transcript 

knockdown, given that the transfection efficiency in your experiment is at least 80%. Following 

Invitrogens instructions we initially tested the set of 3 siRNAs at concentrations of 15nM and 

25nM. With these concentrations we were unable to achieve a knockdown greater than 50% 

(Figure 5.2). We did not believe that this was a high enough knockdown so the amount of siRNA 

was increased to 50nM and we found that 80% knockdown was achieved in two of the three 

siRNAs (Figure 5.3). During the capillary tube formation array we found that SENEX expression 

was decreased by 50% at the 6 hour timepoint. We are therefore knocking down a greater 

percentage using siRNA. From these results one siRNA from the set was chosen and for the 

experiments in this chapter this siRNA was used at 50nM for all knockdown experiments. We 

then repeated the capillary tube formation assay using the siRNAs. HUVECS were transfected 

with either the siRNA to SENEX or a control siRNA and then 24 hours later plated onto Matrigel. 

After a further 12 hours photos were taken (Figure 5.4). In a similar manner to when we infected 

the cells with SENEX antisense containing adenovirus, we found that the tubes started to form as 

would be expected but cells would begin to die which would lead to the disintegration of the 

tubes.  
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5.2.1 Confirmation that SENEX knockdown causes apoptosis 

siRNA treatment achieved a depletion of SENEX mRNA expression by 70% and at the protein 

level by 75% (Figure 5.5) and after siRNA treatment cell death was observed. To determine 

whether this cell death was apoptotic in nature, caspase 3 levels were measured. There are two 

types of apoptotic caspases: initiator (apical) caspases and effector (executioner) caspases. 

Initiator caspases (e.g., caspase-2, -8, -9 and-10) cleave inactive pro-forms of effector caspases, 

thereby activating them. Effector caspases (e.g., caspase-3, -6, -7) in turn cleave other protein 

substrates within the cell resulting in the apoptotic process. At least fourteen caspases have so far 

been implicated in human apoptotic pathway cascade. Among these, caspase-3 is considered to 

be a major executioner protease in apoptosis [170]. Detection of active caspase-3 in cells and 

tissues is an important method for assessing apoptosis induced by a wide variety of apoptotic 

signals. Knockdown of SENEX caused a >2 fold increase in apoptosis as measured by caspase 3 

expression (Figure 5.6). Apoptosis was further confirmed by DAPI staining. DAPI is a DNA-

specific dye that displays a blue fluorescence. This dye can pass through intact, living cell 

membranes, but apoptosis increases cell membrane permeability and uptake of DAPI, leaving a 

stronger stain. In addition, the nuclear morphology of normal cells is round, clear-edged, 

uniformly stained. Apoptotic cells show irregular edges around the nucleus, chromosome 

concentration in the nucleus, heavier coloring, and, with nuclear pyknosis, an increased number 

of nuclear body fragments. For these reasons, the intensity of the fluorescence can help 

researchers identify apoptotic samples [171]. Staining for DAPI showed an increase in apoptosis 

after SENEX knockdown (Figure 5.7). 

Together, these results indicate that SENEX expression is essential for EC survival because 

without a normal basal level of SENEX the ECs will die. 
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5.2.2 SENEX knockdown does not act through the intrinsic pathway 

There are currently two well known pathways controlling the initiation of apoptosis. The death 

receptor or extrinsic pathway mediated by the activation of death receptors, and the BCL2 

regulated mitochondrial or intrinsic pathway, which is mediated by noxious stimuli that 

ultimately leads to mitochondrial injury. In the intrinsic pathway, BCL-2 or BCL-XL inhibit the 

action of BAX and BAK to prevent mitochondrial leak. Activation of the pro-apoptotic BH3  

proteins by the apoptotic stimuli, for example, in a serum free environment inhibits the action of 

BCL-2 and  allows Bax and Bak to induce mitochondrial permeabilisation and the release of 

cytochrome c. This ultimately activates the caspase pathway and leads to apoptosis [172]. We 

initially looked at the levels of a range of proteins in the intrinsic pathway. They included the 

BH3 proteins Bid and Bax, and the antiapoptotic proteins BCL2 and MCL1. Cells were harvested 

for protein 48 hours after siRNA transfection as this is a time when the cells are starting to show 

signs of apoptosis. There was no change in the amount of Bid, Bax, MCL1 or BCL2 protein 

levels as measured by western blotting (Figure 5.8). Cells were also taken at 24 hours after 

siRNA transfection in case the signals for apoptosis were time dependent. However no changes 

in any of these proteins were seen (data not shown). These results suggest that the apoptosis 

induced by downregulation of SENEX is not occurring through the intrinsic apoptosis pathway. 

To help confirm no involvement of the intrinsic pathway a larger panel of proteins should be 

included.  We further analysed SENEX involvement in the intrinsic pathway by using low serum 

containing media to induce apoptosis and there was no change in the levels of SENEX mRNA 

expression (Figure 5.9). Indicating that the mRNA levels of SENEX do not need to be regulated 

for the intrinsic pathway of apoptosis to occur. To confirm no involvement of the intrinsic 

pathway in SENEX knockdown further experiments are needed. 
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5.2.3 SENEX knockdown occurs during TNFα induced apoptosis 

TNFα initiates apoptosis through an alternative mechanism than the intrinsic pathway, which is 

known as the extrinsic pathway [173]. ECs were treated with high dose TNFα and apoptosis was 

measured using the caspase 3 assay. At the same doses of TNFα which caused apoptosis the 

10 
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mRNA levels of SENEX were down regulated (Figure 5.10A). At the same time periods the 

protein expression of SENEX was also downregulated (Figure 5.10B). This indicates that 

SENEX may play a role in TNFα induced apoptosis which acts through the extrinsic apoptosis 

pathway, but has no role in serum deprivation induced apoptosis which is induced through the 

intrinsic pathway.  

 

 

5.2.4 SENEX overexpression protects against TNFα induced apoptosis 

Since TNFα induces apoptosis and SENEX downregulation, the question was raised as to 

whether SENEX is directly involved in the TNFα induced apoptosis pathway. Therefore, EC 

were infected with SENEX containing adenovirus to induce SENEX overexpression for 24hrs 

and then treated with high dose TNFα or serum free HUVEC media. The amount of apoptosis 

induced by the conditions was then measured using the caspase 3 assay. High dose TNFα 

induced apoptosis (Figure 5.11, middle columns) and overexpression of SENEX protected 

against this TNFα induced apoptosis. Interestingly, SENEX overexpression did not protect 

against serum deprivation (Figure 5.11 last columns). These results further confirmed the 

involvement of SENEX in the induction of the extrinsic apoptosis pathway and no involvement 

in the intrinsic apoptosis pathway. 

 

As was shown earlier in Chapter 4 SENEX is regulated by low dose H2O2 when senescence is 

formed. It is also known that a high dose of H2O2 will cause apoptosis in endothelial cells and for  
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this  reason we also investigated whether SENEX was regulated during H2O2 induced apoptosis. 

 

5.2.5 SENEX is regulated during hydrogen peroxide induced apoptosis. 

HUVECs were treated with 500 µM of H2O2 for 6 hours and then the protein was harvested from 

attached and detached cells. The amount of apoptosis induced by high dose H2O2 was then 

measured using a caspase 3 assay. We found a 3 fold increase in the amount of apoptosis after 

treatment (Figure5.12A). SENEX protein levels were also decreased in cells treated with the 

same high dose H2O2 for the same period (Figure 5.12B). These results demonstrate that SENEX 

is not only regulated during H2O2 induced senescence but also during H2O2 induced apoptosis. 

Initial results indicate that SENEX expression needs to be downregulated for apoptosis to occur 

when it is caused by H2O2. 
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5.3 Summary 

 

The work in this chapter demonstrates that SENEX is essential for endothelial cell survival. Loss 

of expression, as can be induced by siRNA or by high dose H2O2 or high dose TNFα results in 

the induction of apoptosis. The apoptosis which results from the knockdown of SENEX makes 

tube formation impossible and therefore has a serious effect on angiogenesis. Thus the 

maintenance of a basal level of SENEX not only is vital for EC survival but also for 

angiogenesis. This theory is further confirmed by the fact that all knockdown experiments were 

performed on subconfluent. Indicating the importance of SENEX expression during a time when 

the cells are active and dividing in a similar fashion during angiogenesis.  

Our results indicate that SENEX is not involved in regulation of the intrinsic apoptosis signaling 

pathway and the overexpression of SENEX also does not protect against apoptosis initiated by 

this pathway. There is also no regulation of the BH3 proteins or BCL family which are all 

essential for the intrinsic pathway to cause apoptosis.  High dose TNFα results in apoptosis 

which is mediated through the extrinsic pathway of apoptosis and here SENEX expression was 

downregulated. Also when we overexpressed SENEX to prevent its downregulation we found 

that the ECs were protected from TNFα induced apoptosis. These results indicate that the 

knockdown of SENEX is essential for apoptosis to occur and that this is through the extrinsic 

pathway. This area of research involving SENEX is still on going and more work is needed to 

determine how SENEX maybe involved in the extrinsic apoptosis pathway.
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Chapter 6  

Conclusion and future directions 

 

The aim of my project was to identify novel genes which have integral functions during the 

angiogenesis process. From an angiogenesis array to identify genes regulated during capillary 

tube formation, a short list of interesting genes was made. The criteria for selection was a) high 

level of expression in EC, b) previous information about the gene, c) a pattern of regulation 

which was appropriate for the information about the gene, d) the uniqueness of the gene for 

angiogenesis. The first gene chosen for my studies was REST. REST has been implicated in 

neuronal development [145].  Since previous work has shown a link between the neuronal and 

vascular systems[150], REST appeared a potentially interesting possibility. I determined that the 

expression of the gene is regulated by the confluence level of endothelial cells, but there were no 

significant differences in any of the functional processes upon downregulation of REST 

expression levels.  Furthermore, there were problems in overexpressing REST which limited 

analysis.  Therefore, after 12 months of work to clone, sequence and manipulate the levels of 

expression of REST, it was decided to switch focus to another novel gene found on the 

angiogenesis array. 

 

SENEX was the gene chosen for further work since some interesting results were being generated 

by other members of the laboratory. SENEX had been cloned and produced in the adenovirus 

system in both the forward and reverse orientations, using techniques analogous to those which I 

had used for REST. SENEX was a novel gene which although had been submitted to the data 

base as MacGAP, was without a described function. The dramatic alteration in phenotype of the 
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EC upon overexpression of SENEX formed the basis for the new project, to determine the 

phenotype induced and the consequences to EC function. 

 

My investigations showed that the large flattened highly vacuolated, polyploidy cells were in fact 

senescent EC. The cells which resulted from overexpressing SENEX had all the features of a 

senescent EC.  They had the morphological features of senescence, they stained positive for the 

published marker of senescence SA β-galactosidase, they had withdrawn from the cell cycle at 

the G1 stage and could no longer proliferate when stimulated with growth factors. The senescent 

cells were also resistant to the apoptotic stimuli and had a decreased expression of eNOS, which 

is a published marker of senescent endothelial cells [132]. These results together confirmed that 

by overexpressing SENEX we were inducing the EC to become senescent. 

 

There are two well described signaling pathways which lead to the development of senescence. 

They are the p53/p21 pathway and the p16/Rb pathway [155]. SENEX was able to increase the 

expression of p16 which resulted in hypophosphorylated Rb but did not alter the p53/p21 

pathway. These results further confirmed that SENEX was able to initiate senescence through a 

known signaling pathway. To determine the importance of the p16/Rb pathway in SENEX 

induced senescence it would be interesting in the future to use siRNA to knockdown the 

expression of p16 and determine if SENEX is still capable of inducing senescence. This 

experiment would also confirm the importance of p16 in SENEX induced senescence. 

 

There are two known forms of senescence, replicative senescence which results from the 

shortening of telomeres during repeated replication and stress induced premature senescence 

which results from different stimuli,  causes a rapid development of senescence and does not 

involve telomere shortening [174].  We found that SENEX does not alter telomere length and 
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causes a rapid induction of the senescent phenotype. These results point to the involvement of 

SENEX in SIPS and not RS development. 

 

Oxidative stress is able to induce senescence either by causing DNA damage [69], but can also 

induce senescence through the p38 pathway[68]. Oxidative stress is an inducer of senescence in 

EC and is also involved in cardiovascular disease[130]. For these reasons we chose to determine 

if SENEX is involved in oxidative stress induced senescence. Low dose H2O2 induces an 

increase in the protein levels of SENEX and also induces senescence.  The upregulation of 

SENEX after hydrogen peroxide treatment points to the involvement of SENEX during 

senescence formation after oxidative stress. Furthermore it suggests that the phenotype seen after 

SENEX overexpression is not purely a result of excess protein expression but rather has a 

biological foundation.  We are currently performing the experiments to determine if SENEX is 

essential for oxidative stress induced senescence in endothelial cells. To do this we will 

knockdown the expression of SENEX with siRNA and then attempt to induce senescence with 

H2O2. The aim would be to knockdown expression at a reduced level from which causes 

apoptosis, but prevents the upregulation indiced by hydrogen peroxide. If there is a reduction in 

the amount of senescence this will establish that SENEX has an integral role in oxidative stress 

induced senescence. 

 

Our results have shown that SENEX is a novel gene that is able to induce a new and important 

physiological change to EC which is senescence. We currently have shown a role for SENEX in 

oxidative stress but there are also many other published inducers of stress induced senescence. 

These include a range of oncogenes and chemotherapeutic agents [175]. We are currently 

inducing senescence in the EC with different oncogenes and agents and looking for regulation of 

SENEX. If SENEX is shown to be regulated during other forms of stressed induced senescence 
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in EC, then SENEX may be used in the future as a marker of SIPS in EC. Since there are limited 

markers for senescence, especially a marker of SIPs the possibility of SENEX being such a 

marker is very exciting. 

 

 

 The most surprising result from investigations into the effects of SENEX overexpression 

however was the functional consequence on ECs. These senescent cells were powerfully anti-

inflammatory since they failed to support neutrophil and lymphocyte adhesion after TNFα 

activation, they failed to show surface expression of appropriate adhesion molecules E-selectin 

and VCAM1 and the permeability response to thrombin was impaired. This phenotype of SIPS 

induced EC is in contrast to SIPS induced in other cell types where a strongly pro-inflammatory 

phenotype has been reported [24]. Indeed senescence is associated with the secretion of multiple 

factors (hence the name, senescence-associated secretory phenotype)[103] which are strongly 

pro-inflammatory. These include increased levels of IL-8, IL-6, MCP-1 and shed proteins such as 

uPAR, VCAM1and ICAM1/[83, 176] 

 

Thus, we have postulated that this SIPS phenotype in EC may serve a protective role in the 

vasculature at sites of chronic inflammation. In support of this it was shown that SENEX, at least 

at the mRNA level is increased in atherosclerotic plaques in ApoE knockout mice fed a western 

diet. Further work now is focusing on confirming that SENEX is expressed on the EC in such 

lesions. Thus, the phenotype of SENEX induced senescence maybe beneficial and protective to 

decrease inflammation at known senescent sites such as in atherosclerotic plaques, and thus may 

serve as a mechanism to limit the progression of plaque formation. The work published to date in 

the atherosclerotic plaque area has concentrated on late chronic lesions. It may be possible that 

the induction of senescence in early lesions by SENEX would provide a way to prevent the 
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progression of atherosclerosis. The decrease in eNOS observed in our SENEX induced senescent 

cells would appear contradictory. However, since it is the “available’ NO derived from eNOS 

rather than eNOS expression per se which is critical, further work is required to delineate the role 

of NO in our observed phenotype. 

The phenotype of senescent cells maybe cell type and inducer specific. In non vascular cells the 

pro-inflammatory phenotype seen in senescent cells may have specific disease related 

consequences.  For example, senescence in tumours may not only inhibit tumour growth but may 

also recruit in immune cells. The stimulation of immune cells, particularly the innate immune 

system contributes to tumour clearance [83].  Induction of senescence in hepatic stellate cells 

prevents the progression of liver fibrosis by inhibiting the proliferation of these activated cells. 

The senescent stellate cells upregulate a pattern of gene expression associated with enhanced 

immune surveillance and indeed these senescent cells are sensitive to NK mediated killing as a 

mechanism for their removal from the fibrotic lesion.[8] Thus although senescence was 

originally considered to be a mechanism, together with apoptosis, for controlling cell 

proliferation and malignant transformation, the data would suggest that senescence plays a 

broader role in disease progression or resolution.  

 

In contrast to what we have shown here,  replicative senescent EC, as  induced by Akt,[63] 

Rac1,[177] Duffy Antigen/Receptor for Chemokines (DARC) [177] and the metabolite 

homocysteine [119] result in an endothelium that is pro- inflammatory as judged by increased 

monocyte adhesion with upregulation of adhesion molecule expression [119, 177] and 

upregulation of IL-8.[96] Interestingly, IL-8 is not only a cytokine responsible for neutrophil 

transendothelial cell migration [178] but is also a downstream effector of C reactive protein, an 

activator of EC and involved in promoting the inflammatory response during atherogenesis 

[179]. Thus, my work together with previous publications would suggest that the mechanism and 
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signaling pathway (RS versus SIPS) activated to achieve senescence in EC clearly impacts on the 

consequence to cellular function (inflammatory versus anti-inflammatory, respectively).  

 

SENEX is of further interest since its expression is essential for EC survival. Knockdown of 

SENEX in EC results in apoptosis. In addition, SENEX overexpression inhibits TNFα induced 

EC apoptosis. These studies were performed at times where there is a significant level of 

senescent cells and could be merely explained by the previously documented, anti-apoptotic 

phenotype of senescent cells.[16] However, the failure of SENEX to protect against growth 

factor and serum deprivation suggests that the protection seen in TNFα treated cells is through 

SENEX effects on specific signaling pathways, not a general effect of the senescence. The most 

likely apoptotic pathway activated by depletion of SENEX is the extrinsic pathway. SENEX does 

not protect against serum starvation induced apoptosis and the knockdown of SENEX does not 

regulate any of the BH3 proteins or the BCL family, proteins known to be important in the 

induction of intrinsic apoptosis. .Further work on delineating these signaling pathways is 

currently being done.  

 

The fact that overexpression of SENEX induces senescence whereas depletion induces apoptosis 

highlights the fact that the SENEX dosage (or a more complicated change in its subcellular 

distribution) governs a balance between these two vital cellular mechanisms. The changes 

induced by oxidative stress in the form of H2O2 support this notion. Low doses of H2O2 induce 

SENEX and senescence, whereas higher doses inhibit SENEX expression and induce apoptosis. 

H2O2 has been implicated in senescence induction in other cell types. Although in primary 

fibroblasts H2O2 targets TGFβ and caveolin-1 to induce the senescence phenotype,[180] these 

downstream targets are not involved in apoptosis signaling. Thus, the characterization of SENEX 
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shows novel features of being highly expressed in EC but that further changes regulate a 

senescence/apoptosis arm.  

 

The structure function analysis of SENEX is still to be elucidated. SENEX is a member of the 

RhoGAP family of proteins. However, mutation of one of the essential amino acids in the 

RhoGAP domain that eliminates the Rho activity, does not affect the senescence inducing 

capacity of the protein. Thus, it is likely that SENEX can exert multiple functions. In this regard, 

it is interesting to note that SENEX is predicted to interact with the RNA binding protein m phase 

phosphoprotein 6 (MPP6) (www.thebiogrid.org/SearchResults/summary/119675) and MPP6 

interacts with the RNA polymerase II (POL II) binding protein, Che-1. Che-1 is a protein 

involved in the control of cell proliferation through interactions with Rb and regulation of the 

transcription of E2F target genes. More recently Che-1 has been shown to regulate DNA damage 

and cell-cycle checkpoint control [181]. Further investigations are underway to determine 

whether such potential interactions are involved in the senescence inducing ability of SENEX. In 

addition, we are performing yeast 2 hybrid screens in order to identify any interacting proteins 

which may function to regulate SENEX levels or function. 

The SENEX gene is located on chromosome 6q22.33.and recently this locus has been identified 

as a novel susceptibility locus for breast cancer [182]. This is also another area which we may be 

looking at in the future. 

 

In summary, we have described the gene SENEX as a major fulcrum for the fine tuning of 

function in EC, regulating senescence and apoptosis. The identification of SENEX as a 

senescence-inducing gene, specifically through the SIPS pathway, allows us to probe the 

consequences of this on cellular function and its role in disease. Our results indicate that SIPS not 

only limits excessive proliferation but also activates an anti-inflammatory profile in EC. Thus 
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while SENEX mediated senescence is likely to be beneficial in limiting vascular disease, we 

would predict that excessive and prolonged accumulation of these cells in the vasculature may 

ultimately result in chronic vascular dysfunction.       
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Appendices 

Appendix 1. Buffers 

FACs analysis  

FACS wash  0.02% sodium azide (Chem-Supply, SA, Australia), 5% FCS, in PBS 

FACS fix  2% glucose (Chem-Supply), 0.02% sodium azide, 2.5% formaldehyde 

(Chem-Supply), in PB 

Whole cell protein fractionation 

Lysis solution  Lysis buffer (100 mM Tris/HCl, 1% NP40, 150 mM NaCl, 1 mM EDTA, 

100 µM NaF (Chem-Supply), 100 µM Sodium pyrophosphate) 1x Protease inhibitor (Sigma-

Aldrich)  

Western blotting 

20X MOPS buffer 50 mM MOPS, 50 mM Tris Base, 0.1% SDS, 1 mM EDTA (pH 7.7) 

20X MES buffer 50 mM MES, 50 mM Tris base, 0.1% SDS, 1 mM EDTA (pH 7.3) 

20X transfer buffer 25 mM Bicine, 25mM Bis Tris, 1mM EDTA (pH 7.2)  
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Appendix 2. PCR Primers 

 

REST – Cloning Primers 
Forward – CGGAATTCACAGTTATGGCCACCCAGGTAATG 
Reverse – CGGAATTCATGGCTTCTCACCTGAATGAGTACG 
 
REST-Q-RT-PCR Primers 
Forward – CTGTTTTGCGTATGAGTGCTGAT 
Reverse – GGTATTCCTTCCATTGTCAACATTC 
 
REST – Myc Primer 
Reverse 
CGGAATTCACAGGTCCTCCTCGCTGATCAGCTTCTGCTCCTCCTGCCCTTGAGCTGCT
TC 
 
Cyclophilin A 
Forward – GGCAAATGCTGGACCCAACACAAA 
Reverse – CTAGGCATGGGAGGGAACAAGGAA 
 
SENEX 
Forward – TTGCTCTGTTTTCCAGATTGGA 
Reverse – GCCCCAGTGCTTGAGGCT 
 
PAI1 
Forward – GGTAGGGCACAAAGATGGATGA 
Reverse – CCCAGGCTGGTCTTGAACTC 
 
IL-1α  
Forward – TTACCTGGGCATTCTTGTTTCA 
Reverse – CAGTGGTCTCATGGTTGTCAAAGT 
 
Cox2 
Forward – TGTTATTAACATTGATCTGCTGACAAAA 
Reverse – ACACATTTGTCTGAGGCACTGAA 
 
p16 
Forward – TGCCTTTTCACTGTGTTGGAGTT 
Reverse – GCAAGAAATGCCCACATGAAT 
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Appendix 3. Antibodies 

 

ANTIBODY CLONALITY SOURCE DILUTION MANUFACTURER 

Anti-
SENEX           Polyclonal Rabbit 1/500 

Vascular Biology 
Lab 

Anti-p16    Polyclonal Rabbit 1/200 Santa Cruz  

Anti-p53 Monoclonal Mouse 1/1000  Invitrogen 

Anti-p21 Monoclonal Mouse 1/1000 Zymed Laboratories 

Anti-phosph 
Rb 

Polyclonal Rabbit 1/200 
Cell Signalling 
Technologies (Ser807/811)   

Anti-actin Monoclonal Mouse 1/1000 Sigma Aldrich 

Anti-myc Polyclonal Rabbit 1/1000 BD Biosciences 

Anti-Bid Monoclonal Mouse 1/1000 BD Biosciences 

Anti-BCL2 Polyclonal Rabbit 1/1000 BD Biosciences 

Anti-MCL Polyclonal Rabbit 1/1000 BD Biosciences 

Anti-Bax Polyclonal Rabbit 1/1000 BD Biosciences 
Anti-E-
selectin Polyclonal Rabbit 20µg/ml 

Vascular Biology 
Lab 

Anti-
VCAM1 Polyclonal Rabbit 20µg/ml 

Vascular Biology 
Lab 
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ANTIBODY CONJUGATE HOST MANUFACTURER 
Anti-rabbit  

IgG            Alexa Fluor® 594 Goat Invitrogen 

Anti-mouse 
IgG Alexa Fluor® 594 Goat Invitrogen 

Anti-mouse 
IgG HRP Goat Cayman Chemical 

Anti-rabbit  
IgG            HRP Goat Cayman Chemical 
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