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Chapter 1

Introduction

BPAY is an innovative bill payment platform in Australia established in 1997

and accounts for over 30% of the market, processing over 250,000,000 transac-

tions in 2009. This dissertation involves developing a detailed understanding

of the dynamics of a two-sided four-party Bill Payment market utilising propri-

etary data obtained from BPAY. The operating structure of BPAY is similar to

that of other payment providers. BPAY is a four-party payment provider and

involves four parties. Each transaction involves a consumer, merchant and their

respective banking institutions. This di¤ers from a three-party payment plat-

form, such as Diners Club which includes a merchant, consumer and payment

platform. BPAY facilitates the transaction by administrating the information

transfer between the respective banking institutions. The other main payment

providers in Australia include Visa, American Express and Australia Post. How-

ever, Australia Post is not included in this thesis due to data limitations.

1



1. Introduction 2

The attention that the market for payments has received from the Reserve

Bank of Australia (RBA) has brought about a need for greater understanding

of the dynamics of the industry. Interchange fees have been the focus of Central

Banks and antitrust lawsuits throughout the globe. The interchange fee is the

payment made in a four-party payment platform from the merchant�s bank to the

consumer�s bank per transaction. The interchange fee is the key component in

formulating the bene�ts or fees provided to end-users. To date, data availability

has been the main restriction in investigating the determinants of demand for

bill payments. The data to be employed in this thesis will reveal insights into

the key drivers of transactions.

In the past several years in the United States of America, merchants and trade

associations �led approximately �fty civil lawsuits against Visa, MasterCard, and

several card-issuing banks alleging, among other charges, that interchange fees

are too high and that the collective setting of interchange fees by members of the

payment card associations constitutes illegal price �xing under antitrust laws.

In Australia, the RBA introduced a number of reforms to credit and debit card

arrangements that sought to moderate, in its opinion, the excessive use of credit

and debit cards. This introduction was aimed at increasing the e¢ ciency of the

payments system.

A joint investigation by the RBA and Australian Competition and Consumer

Commission (ACCC) in 2000 recommended several changes to the operation of
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the payments market to increase innovation, competition and social welfare. At

the time of the investigation, the cost of a $100 transaction through EFTPOS was

estimated to be approximately $0:50, once a given amount of fee-free transactions

using EFTOS was reached. The e¤ective price for a credit card transaction with

a rewards program and interest free period, based on the same transaction value,

was estimated to be -$1:30 by Simon et al. (2009). Hence, consumers therefore

receive a rebate equal to $1.30 on purchases.

Chapter 2 reviews the academic literature relevant to the Bill Payements

market. Chapter 3 models the demand for merchant acceptance and consumer

usage of a four-party payment scheme in the Bill Payment market. The frame-

work of the model proposed by Rysman (2004) for the Yellow Pages market can

be applied to the Bill Payments market as it is an incompatible product mar-

ket and due to the presence of network e¤ects. For example, the Bill Payments

market is an incompatible market as an additional merchant subscribed to the

BPAY platform confers no bene�t to consumers of an alternative payment plat-

form. Even though Yellow Pages operates as a three-party services provider,

from their perspective of the end-users, the demand equations of the end-users

will be identical to that of a four-party provider as the consumer and merchant

only deal with one other party. Hence, the price and cross price elasticities of

the three-party and four-party payment providers are expected to be the same.

Within a cointegrating framework, demand equations are estimated using vector
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error correction models using proprietary data between March 2003 and Decem-

ber 2010. The sampling period is of interest as it is contains a period of rapid

change in the market of payments with intervention by the RBA to reduce the

high merchant fees of credit card providers.

Results from Chapter 3 illustrate the importance of network e¤ects in deter-

mining consumer usage and merchant demand. Additionally, price elasticities

suggest the market for payments in Australia is competitive with consumers

being price sensitive to other platforms in the Bill Payment market. This is re-

�ected by the magnitude of the cross-price elasticities of Visa and Diners Club.

Based on the demand equations estimated of consumer usage and merchant ac-

ceptance, it can be deduced that consumers are more vital to the growth of

the bill payment platform than merchants. Chapters 4 and 5 seek to develop a

deeper understanding of the motivations of consumers to transact with BPAY,

with transaction related data and demographics used as explanatory variables.

Credit card holding is the main covariate of interest in this thesis. Chapter 4

models the factors that contribute to new consumers on the BPAY platform

to cease usage. Whereas, Chapter 5 investigates the in�uence that credit card

membership has on consumer usage.

Empirical studies provide a micro view of the key drivers of transactions.

The determinants of a transaction commonly modelled include demographics,

the attributes of the payment instrument, and the characteristics of the trans-
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action. Chapter 4 exploits a unique data set that details the demographics and

transactions of individuals over a 30 month observational window. Such a data

set allows individuals behaviour on the payment platform to be observed over

time. Survival analysis techniques are employed to quantify the risks of indi-

viduals leaving the platform. Cox (1972) models are estimated in the �xed and

mixed framework with the transaction covariate varying in both instances to

determine the most appropriate model. Results suggest support for the Hayashi

and Klee (2003) �nding in the Bill Payment market with individuals having a

credit card 10% and 12% less likely to leave the BPAY platform at any point

in time after employing a �xed and mixed Cox (1972) model. Also of note is

that males are approximately 3% more likely to leave the BPAY platform at any

point in time, while there is a geographical in�uence on whether an individual

adopts an innovative bill payments platform, or not.

The motivation of Chapter 5 is to establish whether a link existed between the

usage of the BPAY platform by consumers with the adoption of prior payment

method technologies, given by credit card holding. Unlike Hayashi and Klee

(2003) there is an added layer of complexity as credit cards are another payment

instrument individuals can use for bill payments. Hence the impact of credit

card holding on the adoption of a new technology in the Bill Payment market

is unknown and answered empirically in Chapter 5. Segmenting individuals

into usage frequency categories, an ordered generalized logit model is estimated
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to determine the in�uence of credit card holding on frequency of usage. The

results lend support to the Hayashi and Klee (2003) hypothesis that the adoption

of a technology based payment instrument is in�uenced by the usage of prior

technologies. Other �ndings include a positive relationship between the age of a

consumer and being in a high category of usage and gender, with females more

likely to be in the higher categories of usage than males.



Chapter 2

Literature Review

The primary factor in�uencing the e¤ective price of a four-party payment instru-

ment is the interchange fee. By 2007, numerous interventions in the payments

market have been made by the RBA. Some of these included the removal of the

no-surcharge rule imposed on merchants, a cost-based approach to regulating

interchange fees, and the removal of the strict �honour all cards�rule applied by

platforms to merchants. Dawson and Hugener (2006) note that rewards account

for 44% of the level of interchange fees and in 2006 approximately $USD 30 bil-

lion was collected by Visa and MasterCard card issuing banks from interchange

fees. The remaining sources of funding that card issuers use include annual fees,

penalty fees and interest paid by card holders. These changes have since brought

about several interventions in the payments market by the RBA. This had the

e¤ect of decreasing the rewards attached to cards and increasing the average

amount required to be spent on a credit card in order to receive reward points.

7
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The average amount required to be spent in order to receive enough points to

merit a reward of a $100 shopping voucher increased from $12; 400 in 2003 to

$16; 700 in 2009.

The primary pricing decision faced by four-party payment providers is in

setting the level of interchange fees. Interchange fees directly impacts the costs

and bene�ts faced by consumers and merchants alike, upon using a payment

instrument. Interchange fees are paid by the merchant�s bank (acquirer) to the

consumer�s bank (issuer) to locate the account holder�s name and to transfer

funds over the platform (within the network) to the merchant�s nominated bank

account. Interchange fees are the main component of fees charged to merchants

by their banks for each transaction processed and are usually used by the issu-

ing bank to promote the use of a platform to consumers. The bene�ts o¤ered

to consumers include loyalty reward points and having access to credit for an

interest free period.

The literature exploring the market for payments is largely theoretical. It

examines the two-sided nature of the payments market which focuses on the

interchange fee set by the platform. A two-sided market is characterised as a

platform providing goods and services to two distinct end-users with prices set for

each type of end-user. Examples of a two-sided market include videogame plat-

forms that match game developers and consumers, dating agencies that match

partners, and shopping malls that house a variety of stores. Of central impor-
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tance to two-sided markets are usage and membership (network) externalities.

Usage externalities arise because each party in a given transaction evaluates their

own costs and bene�ts associated with a particular payment method, but do not

consider the costs and bene�ts of the other end-user. Network externality refers

to the fact that the value of a particular platform to an end-user increases as the

number of end-users on the other side of a transaction increases. For example, in

relation to the payments market, the more merchants o¤er a particular payment

instrument, the higher the value that consumers place on being part of that

platform and induced to join the platform. With more consumers joining the

platform, the higher the value merchants place in o¤ering the payment method.

This results in an increase in the demand of merchants to join the platform.

2.1 Theoretical Background

Until recently, the set of assumptions assigned to models developed in the liter-

ature were limited in their applicability and ability to describe the market for

payments. The set of unrealistic assumptions relate to the �xed per-transaction

fees imposed on merchants or consumers, and the extent to which consumers

and merchants have access to multiple payment instruments. Other assump-

tions include homogeneity in the bene�ts received by consumers and merchants

from transacting on a given platform; the identical costs faced by platforms in

providing payment services; and identical services to consumers and merchants
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o¤ered by competing payment platforms.

Guthrie and Wright (2007) model the interaction between merchants in a

Hotelling world within a game theory framework. The authors analyse the im-

pact of the level of interchange fees set and the structure of fees charged to

consumers and merchants through competition between competing four-party

card associations. The assumptions of the model developed include no annual

fee for consumers, no �xed fee for merchants in joining a platform, as well as

both sides having the option of joining both platforms.

The appealing aspect of the model considered by Guthrie and Wright (2007)

is the incorporation of the utility of consumers into the bene�ts that merchants

gain by having their preferred payment option. Chapter 3 incorporates this char-

acteristic into the demand equations of consumers and merchants by having the

demand of consumers in the merchant demand equation and merchant demand

for the platform in the consumer demand equation. This feature is apparent

in retail �rms where merchants rarely refuse a payment instrument preferred by

their consumers due to the bene�ts derived from a transaction. Additionally, in a

competitive market, refusing a payment option will put the �rm at a competitive

disadvantage and send negative signals to consumers regarding the merchant�s

quality. The �ndings suggest that, in a single payment scheme, sellers consider

the joint payo¤ in determining whether to accept the card. Merchants will ac-

cept the card if joint utility is greater than zero. Consequently, the resulting
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interchange fee is the upper bound of the range of possible interchange fees and,

assuming the card association will maximise volume, this will result in the over-

usage of cards. With two competing card schemes, the equilibrium interchange

fee is dependent upon the initial behaviour of consumers and merchants. As-

suming consumers always hold both cards whenever it is an equilibrium for them

to do so, competing card schemes set interchange fees at the socially optimum

level. If merchants always accept both cards whenever it is equilibrium for them

to do so, competing card schemes set interchange fees at the same level as in

the single card scheme. Thus, unlike other markets, competition does not drive

down prices. This is a unique characteristic of two-sided markets.

The �chicken and egg�equilibrium outcome is not isolated to Guthrie and

Wright (2007). A series of non-unique equilibria is presented in Gardner and

Stone (2009) based on the presumptions of consumers and merchants. One

such example includes merchants subscribing to both payment platforms (multi-

homing) based on the assumption that consumers will join at most one platform.

This would provide an incentive to consumers to subscribe to their preferred

platform and thereby, validating the merchant�s assumption. The majority of

theoretical papers modelling the e¤ects of interchange fees on equilibrium out-

comes describe a series of equilibria based on assumptions concerning the initial

behaviour of merchants or consumers.

In a variate of Guthrie and Wright (2007), Gardner and Stone (2009) model
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competition between three-party payment schemes. A three-party payments

platform consists of a consumer, merchant and platform. All fees are directly

payable to the platform in a three-party payment scheme. The main di¤erence

between the three-party and four-party payment model relate to the recruiting

of consumers and merchants to join the platform and the extension of credit.

Both these functions in a four-party payment scheme are assumed by the respec-

tive banks of the consumer and merchant. Whereas, in a three-party scheme,

the platform takes responsibility for these functions. Examples of three-party

payment platforms include American Express and Diners Club.

The model developed by Gardner and Stone (2009) seeks to replicate the con-

ditions under which consumers and merchants decide to use a payment platform

in a competitive market. The key feature of the model developed by Gardner

and Stone (2009) relates to the average cost per transaction of the consumer

being inversely related to the quantity of transactions placed on the respective

platform. The assumption that consumers pay a �xed cost to join a platform and

pay no fees per transaction, allows this parameter to vary between consumers.

This is in contrast to Guthrie andWright (2007), where consumers pay no joining

fee but are charged per-transaction. The second crucial assumption lacking in

prior literature is common in both Guthrie and Wright (2007) and Gardner and

Stone (2009). This assumption relates to the ability of consumers and merchants

to subscribe to both platforms. Other assumptions include per-transactions fees
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for merchants, and with platforms facing di¤erent �xed and variable costs per-

transaction. Fixed costs relate to the costs in signing up the consumer. Any

non-uniqueness in equilibrium outcomes are steered via temporary incentives to

consumers and merchants to become Pareto e¢ cient outcomes. An example of

a non-unique equilibrium is where no consumers join any platform. In this case,

it is optimal for merchants to reject any proposal by platform providers to join

also. Through temporary incentives to both sides of the market (preferably the

value adding side), the development of network externalities will spur greater

pick-up of platform registration. Thereby, removing the need for any incentives

promoted by the platform once the market reaches maturity.

Gardner and Stone (2009) numerically simulate their model to determine

the pricing strategies of platforms for di¤erent assumptions relating to the costs

involved in operating the platform. The platform costs involved in this simpli�ed

model are the cost to process a transaction and the �xed cost associated with

registering a consumer or merchant. The results suggest merchants are trying

to steer consumers to their preferred payment method by only accepting one

platform to carry out transactions. The allocation of the total cost directed to

the two-sides of the market has long been argued in the literature to favour the

side that joins one platform (single-home). The intuition behind this theory

suggests platforms price competitively to the single-homing side to attract them

to the platform. In doing so, increasing the network externalities as the scale
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of the network grows. This result, that the single-homing side attracts a lower

cost allocation in relation to the multi-homing side, is based on models that

were developed with the assumption that one side cannot multi-home and costs

do not vary with transactions on the platform. The simulation results provide

evidence to the contrary. The multi-homing side pays less as a proportion of

total fees charged than the side that is more likely to single-home. Gardner and

Stone (2009) attribute this result to average transaction costs varying between

consumers.

A platform�s incentive to allocate prices when revenue is �xed per consumer

is to price more aggressively to consumers that are not currently subscribed to

the platform as the fees extracted as a proportion of the consumer�s transactions

on the platform will be higher. Whereas, if fees were charged on a transaction

basis, then the platform seeks to maximise volume. Hence, the platform will try

and induce the single-homing side to join and, since the platform has monopoly

access to the single-homing side, are able to extract higher fees from the multi-

homing side. This is veri�ed in the model once it is adapted to charge consumer�s

per-transaction costs.

Gardner and Stone (2009) also alter their parameters to consider the impact

of payment instrument choice on the price allocation of total fees. The evidence

supports the hypothesis that platforms price less favourably to the side initi-

ating the transaction, commonly the consumer. The favourable pricing to the
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merchants (the side that doesn�t have the �nal choice at the check-out), may

be done by platforms to prevent merchants from steering consumers to their

preferred payment option. The bias in price allocation between consumers and

merchants decreases as the costs per-transanction incurred by the platform rises.

Theoretical papers provide a regulatory perspective on the pricing motiva-

tions of platforms in the market for payments. Gardner and Stone (2009) and

Guthrie and Wright (2007) provide insights to the pricing motivations of plat-

forms and di¤erent equilibrium outcomes that can eventuate from the preferences

of consumers and merchants. Although several hypothesis�can be developed,

such as the impact of pricing decisions of platforms on social welfare, empirically

testing models developed in the literature and extracting the demand elasticities

of consumers and merchants is a di¢ cult task since models are developed with a

high level view of the payments market. The di¤erent assumptions and platform

structures also present challenges in comparing results in the literature.

Rochet and Wright (2010) improve upon the model of Guthrie and Wright

(2007) by considering two classi�cations of credit card consumers and the re-

sultant consumer surplus that eventuates from a monopoly four-party credit

card platform setting interchange fees. Credit cards allow consumers to make

purchases in the present that they would otherwise delay or avoid, due to the

mismatch of cash in�ows and out�ows. The additional sales that the liquidity

functionality of credit cards o¤er is a key reason merchants accept it as a pay-
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ment method as a comparison with cheaper forms of payment platforms such as

direct debit or cash. Theoretical studies provide the context for Chapter 3. It

adds to the literature by examining the demand of platform users, inclusive of

the in�uence of pricing on the demand of consumers and merchants.

2.2 Empirical Background

Humphrey (2010) provides details of the cost to society of transactions from

di¤erent platforms and shows debit cards are more cost e¤ective than credit

cards in processing a transaction. Hayashi and Keeton (2012) notes that the

cost to society as a proportion of GDP of di¤erent payment platforms varies by

country, therefore, the bene�ts to moving to a electronic payments system are not

uniform across di¤erent regions. To maximise volume and hence pro�tability,

credit card platforms encourage the over usage of cards via reward programs.

In the event that no incremental purchases are made by consumers that need

the credit facility that a credit card provides, the welfare of merchants and the

e¢ ciency of the payments system is lowered as it is more expensive to process a

credit card transaction than their debit card counterpart. The alternative option

available to merchants that can remedy the consumers liquidity problem is the

provision of store credit. However, this is relatively ine¢ cient in comparison

with credit cards as it is costly for every merchant to evaluate the credit risk of

a consumer and consumers that don�t need store credit receive no bene�t.
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Rochet and Wright (2010) model consumers having the option to use cash

(debit cards), store credit or credit cards at the check-out. Merchants make the

decision to accept credit cards if it is more cost e¤ective in providing credit rel-

ative to their own capacity. The acquiring banks of the platform are assumed to

be perfectly competitive so that merchant discount is the sum of the acquiring

cost of processing a transaction and the interchange fee. Whereas, issuing banks

are modelled to not face perfect competition so that the fee to consumers is equal

to net issuer cost (transaction fee minus interchange fee) plus a pro�t margin.

The motivation for modelling issuing banks as imperfectly competitive is to pro-

vide an incentive in the model to maximise joint pro�t amongst issuing banks.

Rochet and Wright (2010) suggest in the past interchange fees were set by mem-

ber banks to maximise pro�t between all banks and to do so, volume needs to

be maximised. Much like Guthrie and Wright (2007), Rochet and Wright (2010)

model merchants competing in a Hotelling framework with merchants operating

under a no-surcharge rule. Equilibrium interchange fee arising from the model

derived by Rochet and Wright (2010) suggests an unregulated monopoly credit

card platform will set the maximum possible interchange fee too high to max-

imise consumer surplus and regulatory intervention by authorities is bene�cial

to moving to a more e¢ cient outcome. The extent of the cap that Rochet and

Wright (2010) suggest is dependent upon the cost savings merchants gain by

accepting credit cards as opposed to providing store credit and the interchange
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fee with bene�ts removed, or a cost-based approach.

The �nding relating to equilibrium interchange fees being greater than the

social optimal level in an unregulated market is not isolated to Rochet andWright

(2010) and Guthrie and Wright (2007). In an alternative market environment

of a monopolistic card network and a perfectly competitive environment for

acquirers and issuers, Wang (2010) models the demand of end-users to join

the platform and the resultant equilibrium interchange fee. Wang (2010) models

card networks seeking to maximise the value of card transactions placed through

their network. This is in contrast to Rochet and Wright (2010) and Guthrie and

Wright (2007) who aim to maximise volume for the card platforms objective

function, with free entry and exit of issuing banks, an oligopolistic card market

and consumers have an elastic demand function for the card platform. The

results of the model applied by Wang (2010) imply interchange fees depend

upon the cost advantage of cards relative to alternative payment instruments and

consumer demand elasticity. Furthermore, cost e¢ ciencies on the card platform

eventuating from economies of scale or advancement of technology, may not

translate to a reduction in interchange fees.

Wang (2010) suggests issuers may increase rewards to consumers to further

stimulate demand and increase the values of transactions placed on the net-

work. Additionally, the card platform may increase interchange fees to extract

the e¢ ciency gains in the market for payments. However, social welfare does



2. Literature Review 19

not improve as measured by consumer and merchant surplus. In addition, the

outcome relating to equilibrium interchange fees being greater than the social op-

timal level is robust to relaxing the no-surcharge rule. Rochet and Tirole (2003)

deduce similar results to Wang (2010) by considering the existence of network

e¤ects of the card platform. However, their �ndings suggest that interchange

fees become irrelevant in the event that the no-surcharge rule is removed.

Empirical studies provide a micro view of the key drivers of transactions.

The determinants of a transaction commonly modelled include demographics,

the attributes of the payment instrument, and the characteristics of the trans-

action. Empirical studies in the payments market to date have been limited.

Restrictive access to propriety data has con�ned studies to collecting data from

surveys and investigating the factors that in�uence decisions made at checkouts

by consumers. In overcoming the restrictive data problem, Rysman (2007) em-

ployed a rich data set consisting of two parts. The �rst part consisted of a panel

of households that held multiple payment cards from 1994� 2004, while the sec-

ond part contained the number and amount of transactions by month of every

merchant in the Visa network. Rysman (2007) �nds consumers maintain cards

on multiple networks but tend to use only one network. This result is found to

be robust across consumer characteristics such as income, education and spend-

ing. This suggests that while consumers have a preference for using a single

platform, they recognise that some purchases are valuable enough to warrant
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using a less preferred network. This type of scenario was re�ected in a model

developed by Rochet and Tirole (2003) in which consumers have heterogeneous

preference for networks. They de�ne a �preference for using a sole payment

method� that re�ects the level of lost business a merchant faces on abandon-

ment of a network. Additionally, individual consumers may change platforms

or networks from transaction to transaction, based on the characteristics of the

product and the availability of substitutes. This suggests merchants must accept

multiple payment methods, or risk a decrease in sales.

The in�uence of technology and the adoption of electronic methods of trans-

actions by merchants and consumers on check usage is examined by Schuh and

Stavins (2010). The 1995 and 2004 Survey of consumer payment choice in the

United States of America notes that the adoption of debit cards, direct debit

and internet banking has increased signi�cantly from 18%, 22% and 3% in 1995

to 59%, 47% and 32% in 2004, respectively. On the other hand, the 1995 and

2006 Survey of Consumer Payment Choice shows there has been a decline in the

use of checks as a proportion of all noncash payments from 77% in 1995 to 36%

in 2006.

Schuh and Stavins (2010) model consumer payment adoption and usage si-

multaneously using the Heckman (1976) selection model to account for the pos-

sible selection bias in payment platform usage. The model includes demographic

related covariates, payment instrument characteristics and attitudinal data of in-
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dividuals. Data is obtained from the 2006 Survey of Consumer Payment choice

that includes the adoption and usage of several payment instruments and de-

mographic covariates. The results indicate that 25% of the reduction in check

usage as a proportion of total noncash transactions between 2003 and 2006 can

be attributed to the number of adopted payment platforms by consumers. Rel-

ative to alternative payment methods, the convenience of cheques and the cost

transacting with cheques represent 34% and 11% of the total cross-sectional vari-

ation in cheque usage. Thus, consumers optimally choose their payment method

over time as the relative characteristics of each payment instrument and costs

of transacting change. However, in all four models the R-squared value was

less than 40%, indicating the model leaves unexplained much of the variation in

payment choice at the check-out.

The removal of the no surcharge rule by the RBA locally, as well as countries

abroad, allows merchants to communicate to consumers the true cost of di¤erent

payment instruments and steer consumers to their preferred choice. Rochet and

Tirole (2003) show that removing the no surcharge rule enables merchants to

completely transfer the cost of a payment instrument to a consumer. Thereby,

the allocation of costs between consumers and merchants becomes an irrelevant

decision for the platform enabling the transaction. The motivation of central

banks to remove the no surcharge rule is to improve the composition of payments

between cash, debit cards and credit cards to generate cost savings that eventuate
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from having an e¢ cient payments system and improve social welfare. Rochet and

Tirole (2003) argue social welfare can be improved if there is strong merchant

resistance to accept cards in a high interchange fee environment, such that the

merchant discount applied by the acquiring bank is not overly high.

Bolt et al. (2010) empirically investigates the behaviour of consumers in

choosing payment instruments in the presence of surcharging by merchants, the

characteristics of a merchant that applies surcharges, and the impact on the

total costs of the payments system in the Netherlands. Without the ability to

surcharge, consumers perceive the true cost of all payment instruments to be

identical, leading to a socially ine¢ cient outcome.

Data from an EIM (2007) report reveals approximately 84% and 82% of all

transactions are completed with cash for transactions below EUR 5 and between

EUR 5�10, respectively. However, the percentage of all transactions completed

in cash drops to 64% for transaction amounts between EUR 15 � 20, and the

proportion of transactions accounted for cash continues to decrease as the value

associated with the transaction rises. The share of debit usage increases with

the value of the transaction as cash usage declines.

The dominance of cash for low transaction values implies a surcharge is be-

ing placed by merchants for transaction values between 10 � 15 Euro. Brits

and Winder (2005) study the costs associated with the payments system in the

Netherlands using data compiled in 2002. By considering the costs bourne by
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the central bank, retail sector and the banking industry, Brits and Winder (2005)

deduce that the socially optimal payment instrument is dependent on the trans-

action amount. For transactions that are relatively low in value, cash is the most

e¢ cient payment instrument, otherwise, debit cards is the preferred payment in-

strument. Furthermore, Brits and Winder (2005) conclude that for values less

than EUR 11:63, it is more cost e¢ cient to pay in cash, otherwise paying by debit

card is the most cost e¢ cient payment instrument. Thus, allowing merchants

to surcharge is bene�ting the payments system in the Netherlands as consumers

are directed to the most cost e¢ cient payment instrument for transaction values

less than EUR 10� 15.

Bolt et al. (2010) source data from a 2006 DNB Household survey, which

observes the behaviour of 2000 households over time that is representative of

the Dutch population. The questions include the payment instrument choice of

individuals, attitudes relating to merchants applying surcharges and the e¤ect

of surcharges on debit cards on payment instrument choice. A separate survey

was done in 2006 to obtain merchant data relating to payment instrument ac-

ceptance, payment behaviour of customers, debit card surcharges, motivation of

surcharging and the e¤ect of surcharging on payment instrument choice.

Overall, 22% of all merchants applied surcharges to debit cards and 80% of

all merchants apply surcharges to a transaction that is valued less than EUR

12:50. The average surcharge and transaction value during the study is EUR
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0:23 and EUR 10, implying a surcharge of 2:3% by merchants that choose to

surcharge. An EC (2006) report notes that the average merchant discount rate

on debit cards in the Euro area has been decreasing steadily over time, from

1:7% and 1:2% for a VISA debit card and national debit card scheme in 2000,

to 1:3% and 1:1% in 2004, respectively. The further advancement of technology

in telecommunication and information technology contributes to the lowering

of the costs of card providers to merchants. However, the average surcharge of

2:3% of merchants in the Netherlands implies these savings are not being passed

down to consumers. This causes the number of transactions to be settled in cash

relative to debit cards to be greater than the optimal amount, resulting in an

ine¢ cient outcome for the payments system.

An ordered linear probit model is estimated by Bolt et al. (2010) to quan-

tify the impact of surcharges on the demand for debit card transactions with

covariates that controlled for �rm speci�c in�uences and other external factors.

Results indicate merchants that surcharge can expect the share of transactions

accounted by debit cards to be less than retailers with no surcharge in place,

with merchants successful at steering consumers to their more preferred pay-

ment instrument. In an alternative model, the level of the surcharge is included

as the key explanatory variable in comparison to a dummy variable to quantify

the impact of surcharging. The second model reveals there is a positive relation-

ship between the level of the surcharge and the share of debit transactions of a
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merchant. Additionally, marginal e¤ects of the model reveal that removing the

surcharge causes the share of debit card transactions to rise 8% as a proportion of

total transactions for a merchant. Scenario analysis reveals that if the surcharg-

ing is removed, the cost savings to �ow through the payments system suggests

cost savings of up to EUR 50 million. However, the more suitable option would

be to allow surcharging but encourage merchants to adjust surcharging to re�ect

the reduction in costs associated with processing debit card transactions.

The sensitivity of consumers to pricing has implications on the regulation

of interchange fees, the strategy issuing �rms employ in setting fees and bene-

�ts to end-users. Zinman (2009) and Simon et al. (2010) investigate the rate

of substitution between payment instruments. The availability of credit, sur-

charges, �xed fees, per-transaction fees and the accumulation of reward points

causes consumers to optimise their choice at the checkout. Empirical studies

examining the behaviour of individuals in choosing their preferred payment in-

strument attempt to extract the behaviour of marginal consumers to a change

in pricing to determine the impact of changes in pricing, and consequently, the

new composition of payment platforms chosen by consumers.

Zinman (2009) investigates the choice of consumers in choosing between debit

and credit cards by modelling the payment instruments as direct substitutes. The

primary distinguishing attribute that Zinman (2009) models to explain whether

debit or credit is used is the relative pricing between the two payment instru-
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ments. Debit and credit cards are close substitutes, given their similarity in

relation to acceptance, security, time costs and portability. The debit and credit

card di¤erentiate on the basis of pricing, more speci�cally, access to liquidity, the

scale of rewards, interest rate, outstanding balance owing and the credit limit

on the credit card.

Data was obtained from the 1995 � 2004 surveys of Consumer Finances,

a nationally represented survey from over 4000 American households. Probit

models are estimated to quantify the impact of the pricing attributes of credit

cards on debit card usage. The results suggest individuals that have binding

credit constraints and that are revolvers (that is, individuals paying interest

on their amounts owing), are more likely to use debit than credit cards. More

speci�cally, the probability of debit card usage is 9:8% greater when an individual

is classi�ed as being a revolver. Additionally, the correlation between revolvers

and debit card usage has grown over time, implying the number of individuals

viewing debit cards as a direct substitute for credit cards has been steadily

increasing with merchant acceptance and fraud in recent years. For example, by

only considering the data obtained in 2004, the marginal e¤ect of being a revolver

on the probability of debit card usage is 17:3%. The results are robust to several

control variables, some of which include proxies for preference for credit cards,

consumer spending, internet banking and multi-homing. The impact of holding a

credit card on debit usage is expected to be negative and results validate a-priori
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expectations. An individual holding a credit card is expected to decrease the

probability of debit card usage by 6:3%. In addition to the pricing characteristics

of credit cards that sought to explain the motivation of individuals in choosing

between debit and credit cards, Zinman (2009) found evidence for non-monetary

motivations for debit card use, such as the time costs associated with paying a

bill at a later date. Using a similar framework to Zinman (2009), Chapters 4 and

5 investigate the underlying themes motivating consumers usage of the BPAY

platform.

Simon et al. (2010) study the impact that a reward program and interest

free period has on credit card usage. Data collection was outsourced to Roy

Morgan Research. Reward programs attached to credit cards enable consumers

to observe a negative price in using the payment platform, assuming there is

no surcharge attached to the transaction, or the transactional bene�t to the

consumer is greater than the surcharge imposed by the merchant. The welfare

consequences of rewards on the aggregate payments system are unclear. Re-

ward programs can be used as an incentive to shift consumers from ine¢ cient

payment methods to more cost e¤ective payment methods, thereby improving

the e¢ ciency of the payments system. Additionally, rewards attached to cards

can induce consumers to spend more at the checkout, bene�ting all stakeholders

on the payments platform, which include the platform, merchant, the issuing

bank and the acquiring bank. However, rewards may cause the excess usage of
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credit cards and cause the costs of the payments system to exceed that of an

e¢ cient payments market. This imposes unnecessary additional costs on soci-

ety. In addition, in a no-surcharge environment, merchants that don�t observe

an increase in spending by consumers that have a rewards program attached to

their cards may increase prices to be compensated for the greater costs observed

in processing transactions.

The dataset used by Simon et al. (2010) consisted of a sample of consumers

whose payment details were recorded in a diary over a two-week period, along

with information relating to each transaction. The demographic data relating to

these individuals was provided by Roy Morgan Research, along with whether the

individual had a rewards program attached to his/her credit card. Simon et al.

(2010) initially model the probability that an individual holds a credit card and

the probability an individual has a reward program o¤ered on their credit card

prior to modelling the e¤ect price incentives have on payment instrument usage.

A consumer is assumed to have a interest free period feature on their credit card

if the consumer regularly pays o¤ their credit card bill (transactor), otherwise

the individual has no access to these interest free funds (revolver).

The authors follow the methodology of Borzekowski et al. (2008) in which a

series of probit models are estimated to estimate the e¤ects of various factors, in-

cluding price incentives on debit card usage. Results indicate income has a large

e¤ect on the probability of holding a card. Relative to the base case of a income
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of $40; 000 � $59; 999, there is a statistically signi�cant drop in the likelihood

of low income individuals owning a card. Holding a debit card also plays a role

in determining the probability of card ownership. Ownership of a scheme debit

card decreases the probability of ownership by 13:2%. Income has a signi�cant

e¤ect on having a loyalty program attached to card membership. For consumers

earning less than $20; 000, the probability of being part of the loyalty program is

32:3% less likely, relative to consumers earning between $40; 000�$59; 999. This

result may be due to the high annual fees or interest rates attached to loyalty

programs, where the consumer needs to reach a particular level of expenditure

to be compensated. Part-time employment and being retired increase the prob-

ability of being part of a loyalty program with a card association, relative to a

full-time worker. A retired consumer, will on average have a 22:2% increase in

probability of being part of a loyalty program relative to full-time workers. A

consumer with a credit card and no loyalty program has a reduced probability of

card usage by as much as 22:9% relative to being part of a loyalty program. An

individual that is classi�ed as a revolver as opposed to a transactor, reduces the

probability of card usage on a given transaction by 15:9%. Furthermore, owning

a scheme debit card relative to not owning a debit card, reduces the probability

of card use by 14:1%.

Ching and Hayashi (2010) evaluate the contribution of rewards on credit card

usage in a similar framework to that of Simon et al. (2010). However, Ching and
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Hayashi (2010) study the market for card usage in the United States, which does

not allow merchants to surcharge across payment platforms. Such a restriction

on merchants may result in the over usage of cards due to negative price that

consumers receive via this pricing. Consequently, the contribution of the reward

program on credit card usage is expected to be greater than that found in Simon

et al. (2010). In addition, Ching and Hayashi (2010) improve upon Simon et al.

(2010) by collecting attitudinal data related to payment method choice so as to

remove the endogeneity of choosing to have a rewards program attached to the

credit card. Consumers may prefer to use a credit card regardless of whether it

o¤ers a rewards program. By collecting attitudinal data and using it as a control

variable, the direct in�uence of the rewards program can be observed.

The data set used by Ching and Hayashi (2010) was obtained by consumers

completing a survey and it consisted of whether the individual was a member

of a card reward program, demographics of the individual, preferences of the

individual regarding each payment method, the most frequently used payment

method by merchant type and the payment methods the individual perceives

is available at di¤erent merchant types. Multinomial logit models are used to

study the impact of reward programs using four speci�cations. The four di¤erent

models depend on whether a homogenous or heterogenous speci�cation of the

choice set available to consumers at the checkout is used and whether the atti-

tudinal variable of consumers towards di¤erent payment instruments is included
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as a control variable.

Regression results of Ching and Hayashi (2010) indicate that the coe¢ cients

satisfy a-priori expectations that the availability of rewards increases card usage.

In addition, the coe¢ cient for both the credit and debit card reward program

is statistically signi�cant and robust across all four speci�cations of the model.

The impact of removing reward programs on overall card usage is estimated by

determining the marginal change in the probability of using credit cards. It is ex-

pected that removing credit card rewards will reduce the volume of transactions

of credit cards by 3:3% to 11:4%, the extent of the reduction is dependent upon

the industry of the merchant. The e¤ect of removing credit card rewards on us-

age is most evident in department stores and consumers will typically substitute

their rewards credit card with the non-reward card equivalent.

Hayashi and Klee (2003), much like Simon et al. (2010), study the contri-

bution of consumer demographics and transaction characteristics on the choice

of payment method chosen in completing a transaction. However, Hayashi and

Klee (2003) extend the literature by hypothesising and testing whether consumer

technological adoption positively in�uences the likelihood of adopting an alter-

native new technology. Hu¤man and Mercier (1991) �nd evidence for farmers

adopting one type of new computing technology is strongly in�uenced by the

decision to adopt an alternative technology-based product. In relation to the

payments market, Hayashi and Klee (2003) test whether technology adoption of
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alternative electronic services or products strongly in�uence the propensity to

pay bills electronically. Covariates that proxy for technology adoption includes

completing the survey via the internet, cell phone, internet shopping and direct

deposit. Separate logit models are employed on debit usage, paying bills direct

and online bill payments to evaluate the hypothesis. Regression results suggest

transaction related variables, such as merchant type and transaction value, in�u-

ence payment instrument usage. Hayashi and Klee (2003) also �nd evidence in

support of their hypothesis and notice that the signi�cance of demographics and

�nancial related variables become insigni�cant in explaining payment instrument

usage, contradicting the results of Simon et al. (2010), Ching and Hayashi (2010)

and Zinman (2009).

The majority of the �ndings in the literature are fairly represented in the

theoretical and empirical papers discussed thus far, with a particular focus on

credit cards. The overall focus of these studies is interchange fees. The level

of interchange fees set by a payment platform provide price signals to both the

consumer and merchant, once costs and bene�ts are distributed via their re-

spective banking institution (four-party scheme). Thus far, no model has been

developed that describes the demand of consumers�and merchants� for trans-

actions to variations in interchange fees. Rysman (2004) proposes a framework

to model demand in a two-sided market for the market for Yellow Pages that

can be applied to the payments market with network e¤ects and incompatible
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markets. The market for payments satis�es these conditions. All payment mar-

ket platforms are incompatible markets as bene�ts provided to a set of payment

platform subscribers, or an increase in platform participants, does not create

value for alternative platforms.

Rysman (2004) seeks to model the demand of merchants to place adver-

tisements in Yellow Pages directories and consumers�demand for usage. The

Yellow Pages directory is the platform in this two-sided market, with advertise-

ments in the directory (platform) representing the service o¤ered by the platform

to merchants. Consumers value the platform to get into contact with a suitable

merchant. The network e¤ect in the market for Yellow Pages directories con-

cerns consumer usage and advertising. The more consumers use a Yellow Pages

directory, the more advertising merchants wish to place in the directory, which

increases the likelihood of the consumer to �nd worthwhile information that in-

creases usage. Hence, consumer usage and merchant advertising create a network

e¤ect.

The data consists of several sources. The data collected to model consumer

usage, is obtained from the National Yellow Pages Monitor (NYPM) and con-

sists of the number of consumer references per month in a household in every

metropolitan statistical area for the 476 directories in the sample. The number

of pages of the directory is used as a proxy for advertising. The Yellow Pages

Publishers Association (YPPA) maintains reserves of directories and the Boston
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Consulting Group has collected data detailing the number of pages in each di-

rectory. Pricing information of advertisements in a directory is obtained by the

YPPA, which has prices for advertisements that vary by size and style.

Rysman (2004) formulates the model of merchant demand for advertising

by deriving the �rst-order conditions of maximising pro�t from advertising in

the Yellow Pages directory. The expression for the demand of consumer usage

is obtained by the model used in Berry (1994). The �rst-order condition of

maximising pro�t for the publisher of the directory is also derived to complete

the model to calculate equilibrium outcomes for di¤erent assumptions relating

to social welfare by comparing the outcomes estimated under concentrating the

market to a single directory and through competition. The results suggest con-

sumer usage of a directory is positively related to the quantity of advertising in

the directory and a merchants willingness to pay increases with consumer usage.

Both these results suggest a positive network e¤ect in the market for Yellow

Pages directories. Equilibrium outcomes suggest the bene�ts of competition im-

prove social welfare in comparison with coordinating the two-sides of the market

on a single platform (monopoly). Thus, the network e¤ect is not strong enough

to compensate consumers and merchants for increased prices.

Milne (2006) develops a model that seeks to describe the di¤erences in adopt-

ing technological advancement in the market for payments in Eastern European

countries, United States of America and the United Kingdom. From a macro
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economic perspective, the Milne (2006) model suggests the adoption of innova-

tions in the market for payments is driven by the positive account externality

of increasing market share and improving the quality of service o¤ered to bank

customers and the degree of concentration in the banking sector. The take-up

of a new technology requires banks to coordinate and share costs in establishing

the platform. As such, a highly concentrated banking market with coordination

amongst the banks and pro�t to be shared from the e¢ ciencies that arise is

predicted by the model.



Chapter 3

Competition in the Bill Payment

Market

3.1 Introduction

The Bill Payment market is a two-sided market and the key drivers of transac-

tions are yet to be de�ned. The literature concerning the market for payments is

largely theoretical and have not been con�rmed empirically in the Bill Payment

market. The focus is on the interchange fee set by the payment platform. A

two-sided market is characterised as a platform providing goods and services to

two distinct end-users with prices set for each type of end-user.

The motivation of Chapter 3 is to empirically test for the presence of net-

work e¤ects in the market for payments. Network e¤ects refers to the fact that

the value of a particular platform to an end-user increases as the number of

36
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end-users on the other side of a transaction increases. The literature emphasises

the importance of network e¤ects to the number of transactions placed over a

platform. There has been marginal progress in establishing empirically the role

network e¤ects has on transactions in the Bill Payment market. The key limi-

tation in extending the literature empirically is the unavailability of data. This

is re�ected in the lack of empirical studies on network e¤ects in the literature.

The data to be used in this chapter will be provided by BPAY and the Re-

serve Bank of Australia. BPAY is a dominant platform within the Bill Payment

market, accounting for approximately 30% of all transactions. Multivariate Er-

ror Correction Models will be used to determine whether the network e¤ects

hold via a cointegrating framework. Furthermore, impulse response functions

are estimated to determine the number of quarters required for equilibrium to

be established following an innovation to one of the covariates in the consumer

usage and merchant acceptance demand equations.

3.2 Background

The conventional supply and demand theory applied to a good or service cannot

be applied to payment instruments. Platform providers o¤er a joint product to

both consumers and merchants. The bene�t a consumer receives from using a

payments platform to facilitate a transaction, also confers a separate bene�t to

the merchant. The consumer may receive rewards points, access to credit, while
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the merchant receives the funds directly into their banking accounts without

having to handle cash.

Unlike other markets, the presence of network externalities adds complexity

to the pricing decisions faced by platforms to maximise the scale of their net-

works. The greater the size of the network, that is, the number of merchants

and consumers, the greater the value any participant that adopts the network

realises from being part of the scheme. Another unique characteristic of the

market for payments relates to the party that initiates the transaction not being

directly a¤ected by the price signals of the platform. The consumer decides the

payment instrument from the platforms to which the consumer and merchant

are subscribed to; however, the merchant pays the fee associated with the trans-

action. Thus the demand of the platform in a given transaction is driven by the

consumer; however, merchants pay a fee to be associated with it.

The setting of interchange fees is the main strategic decision faced by plat-

forms, as a means to balance the demand of the service by consumers and the

supply of the service by merchants. Prior to the RBA reforms, merchants were

not able to convey to consumers the extent of the fees charged by platforms. Sub-

sequently, the lifting of the no surcharge and the no-steering rules has enabled

merchants to pass on the costs to the consumer and direct them to preferable

platforms.

In traditional markets, prices are expected to be driven downward due to
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competitive pressures. The presence of network externalities, along with the

fact that consumers dictate on which platform a transaction takes place, can

lead to prices trending upward over time. Standard economic theory suggests

raising prices in a competitive market will result in a decrease in the quantity

demanded by consumers and a loss in market share. On the other hand, raising

the interchange fee (price) in the payments market, will allow more bene�ts to be

supplied to the consumer. Additionally, a higher fee per transaction will be paid

by the merchant, as fees are passed directly from the acquirer to the merchant,

thus decreasing merchant demand of the platform. However, the increased con-

sumer demand shifts the demand curve of merchants outward. Thus competition

in the market for payments, with network externalities and consumers initiat-

ing transactions, may drive prices upward to increase market share. Figure 3.2

presents the outcome of an increase in the interchange fee set by a platform.

An increase in the interchange fee, decreases the price consumers face from P (c)

to P 0. Issuers provide consumers with more incentives, such as access to more

credit or reward points, increasing the quantity demanded from Q (c) to Q (c)
0

as the network e¤ect between consumer usage and merchant acceptance shifts

the demand curve outward. Note that, issuers may not pass through all the

bene�ts to the consumer from an increase in the interchange fee and may retain

the pro�ts from a price rise.

However, merchants will experience a price rise, the increase in costs by



3. Competition in the Bill Payment Market 40

the acquirer are passed to the merchant and consequently, some may leave the

platform. The network e¤ects between consumers and merchants will shift the

demand curve of merchants and consumers outward repeatedly, as the positive

loop created by the network externalities takes e¤ect. Thus, even though there

is a price rise for merchants, the increased demand for consumer usage of the

platform feeds into the demand function of merchants to transact on the platform

simultaneously. The total transactions demanded by merchants thereby rises

from Q (m) to Q (m)
0
. The platform consequently becomes more pro�table.

Figure 3.2. An increase in Interchange Fees in a Payments Market.

The payments market, left unregulated will inevitably lead to high inter-

change fees, over-usage of electronic payment platforms and ine¢ cient outcomes

for the economy. Merchants have the option of leaving a platform if fees are

excessive; however, this conveys negative signals to consumers and puts them at

a competitive disadvantage.
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The penetration of cards and BPAY within the Australian market is high. Up

to half the value of non-cash retail spending takes place over the card network,

while approximately 30% of total transactions are placed over the BPAY plat-

form alone in the bill payments market. To improve social welfare and remove

the possibility of entering into a unstable equilibrium of continual interchange

price hikes, central banks have intervened in payment markets to improve social

outcomes. In addition, a high concentration of transaction volume amongst a

few market participants will create arti�cial barriers to entry, decreasing compe-

tition.

The locus of points consisting of platform volume from changes in interchange

fees or pricing is the focus of this paper. The circular nature of demand between

consumers and merchants requires network externalities to form the basis of

demand expressions of their respective demand equations. A platform�s goal

is to maximise market share through competitive pricing on both sides of the

market and thus, maximise network externalities.
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3.2.1 Pricing Structure of the Bill Payments Market in

Australia

The Australian Bill Payment market is dominated by BPAY, direct debit, Aus-

tralia Post and credit card providers. The pricing structure to end-users of

these platforms is dependent on whether bene�ts are provided to consumers by

transacting on the platform. BPAY, Direct Debit and Australia Post provide no

monetary bene�t to consumers that choose their platform to pay a bill. However

credit cards, such as those belonging to Visa and MasterCard, provide reward

points that can be transformed into shopping vouchers or discounts in future

purchases. A platform�s decision to not allocate bene�ts or costs to consumers

that use the platform suggests growth in volume can only be achieved by max-

imising merchant acceptance. Choosing whether a platform will allocate fees or

bene�ts to consumers is a strategic decision and it is bene�cial to model both

scenarios by applying the theory of two-sided markets to the Bill Payment mar-

ket. This study will concentrate on BPAY and Visa as they best represent the

two scenarios of the Billing Payment market in Australia. Figure 3.2 provides a

representation of the pricing structure that Visa adopts. The rewards program

attached to usage is illustrated by considering the prices of consumers P (c) and

P 0 to be less than zero. The more rewards there are available to consumers for

using the Visa platform, the lower the cost in using that payment platform for

consumers.
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3.2.1.1 BPAY

The BPAY platform has no cost or bene�t to consumers that use their platform

to pay bills. Figure 3.2.1.1 presents the outcome of a decrease in the interchange

fee set by BPAY. The price to the consumer of using BPAY is hypothesised

to be a constant whose value is close to zero, and will be modelled as such.

This assumption is required in modelling and estimating the demand function

of consumers. The positive price, P (c), may be interpreted as the cost to the

consumer of going through the process of using BPAY. Some costs may include

the disutility of the time and e¤ort required logging into their internet banking

portal and inputting the biller and customer reference number. Even though

some of these costs are trivial, they are non-zero and must be incorporated into

the modelling and estimation process.

To increase consumer usage, the platform must increase retailer acceptance.

A decrease in the interchange fee has no �nancial impact on consumers. Issuers

do not provide consumers with any incentives, such as access to credit or reward

points. Thereby, there is no increase initially in the demand of consumers to use

BPAY.

However, with a decrease in the interchange fee, merchants will experience

a price fall. The decrease in costs by the acquirer are passed to the merchant

and consequently, more merchants will join the platform. Merchant acceptance

increases from Q (m) to Q (m)0. The network e¤ects between consumers and
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merchants will shift the demand curve of merchants�and consumers�outward

repeatedly, as the positive loop created by the network externalities takes ef-

fect. Thus, even though there is a constant price for consumers, the increased

demand in merchant acceptance of the platform feeds into the demand function

of consumers to transact on the platform simultaneously. The total transactions

demanded by consumers rises from Q (c) to Q� (c) and merchant acceptance in-

creases from Q (m) to Q� (m). These respective increases are due to the network

e¤ects present in the Bill Payments market.

Figure 3.2.1.1. A decrease in Interchange Fees by BPAY.

3.3 The Bill Payment Model

To determine the key drivers of transactions in the Bill Payment market, the

network e¤ects between consumer usage and merchant acceptance needs to be

modelled. The approach of Rysman (2004) will be modi�ed and used to model
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the interaction between consumers and merchants in order to capture the network

e¤ects underlying their respective demand functions.

In a simpli�ed framework, the role of the issuer (consumer�s bank) and ac-

quirer (merchant�s bank) will not be initially modelled. The network e¤ects

within the Billing Payment market can then be described by the following sys-

tem of equations:

U cj = a (CVj) ; (3.3.1)

Rj = b
�
U cj ; P

m
j ; P̂

m
k

�
; (3.3.2)

CVj = c
�
Rj; P

c
j ; P̂

c
k

�
; (3.3.3)

where: CVj = Consumer value for platform j.

U cj = Consumer usage of platform j.

Rj = Retailer acceptance of platform j.

Pmj = Merchant fees of accepting platform j.

P̂mk = Merchant fees of accepting platform k.

P cj = Consumer bene�ts of transacting over platform j.

P̂ ck = Consumer bene�ts of transacting over platform k.

Equation (3:3:1) describes the number of transactions placed over platform j

as a function of the value (CVj) a consumer places on that platform. The value

placed on a platform may be dependent upon the ease of use, probability of

fraud, bene�ts provided to the consumer via the platform and merchant accep-

tance. However, from the perspective of modelling the network e¤ects between
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consumer usage and merchant acceptance, the primary variable of interest is

consumer value. Other factors will also be considered in the estimation process

in order to formulate a more robust expression for consumer usage. The impact

of the network e¤ect is captured in equation (3:3:2), with merchant acceptance

(Rj) being a function of consumer usage
�
U cj
�
. Lastly, equation (3:3:3) completes

the network e¤ect between consumers and merchants. The value placed by con-

sumers (CVj) on using the platform
�
U cj
�
is a function of merchant acceptance

(Rj), as well as the fees or bene�ts of transacting on the platform and that of a

competing platform k. This framework can easily be extended to consider mul-

tiple payment platforms by modelling P̂mk and P̂ ck as vectors, with each element

representing the prices of alternative platforms.

The three �rst-order conditions that are consistent with network e¤ects in

the Billing Payment market are as follows:

@U cj
@CVj

> 0; (3.3.4)

@Rj
@U cj

> 0; (3.3.5)

@CVj
@Rj

> 0 (3.3.6)

These three �rst-order conditions detail the network e¤ects within the Billing

Payment market and complete the network between merchant acceptance and

consumer usage. All three equations describe a-priori expectations in modelling
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the demand functions of consumers and merchants. Equation (3:3:4) expresses

the positive relationship between consumer value and consumer usage, while

equation (3:3:5) dictates how merchant acceptance increases with consumer us-

age. Similarly, equation (3:3:6) details how the consumer value placed on a

platform increases with retailer acceptance. The work of Rysman (2004) �nds

that equation (3:3:4) and (3:3:6) are su¢ cient for identi�cation of the network

e¤ects.

Estimating equations (3:3:1) to (3:3:3) is problematic as consumer value

(CVj) is di¢ cult to estimate empirically. It is hypothesised some of the fac-

tors that in�uence CVj include merchant acceptance, time using the platform,

wealth, occupation, access to alternative platforms, fees and rewards. Such a

data set will be time consuming to obtain and it does not hinder modelling net-

work e¤ects. Consumer usage will be used as a proxy for CVj. In the above

framework, this amounts to estimating the following equations:

U cj = a
�
c
�
Rj; P

c
j ; P̂

c
k

��
; (3.3.7)

Rj = b
�
U cj ; P

m
j ; P̂

m
k

�
; (3.3.8)

Network e¤ects are thereby identi�able by expressions (3:3:7) and (3:3:8).

Therefore, the modi�ed �rst-order conditions that are consistent with network

e¤ects in the Billing Payment market are as follows:

@U cj
@Rj

> 0; (3.3.9)
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@Rj
@U cj

> 0; (3.3.10)
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3.3.1 Models of Consumer Usage and Merchant Accep-

tance

Estimation of equation (3:3:7) and (3:3:8) is of central importance in testing

for network e¤ects. In empirical macroeconomics, the Cobb-Douglas production

function is used to govern the functional forms of a set of outputs to inputs.

The framework for the equations that follow was established in section 3.3. Net-

work e¤ects within the Bill Payments market considers the total usage of both

end-users. This macroeconomic perspective of the Billing Payment market pro-

vides an opportunity to model equation (3:3:7) and (3:3:8) using Cobb-Douglas

functions.

V
�
M;Pc;P̂c; X

�
= aM�P �c P̂

#
c
~P �c X

 (3.3.11)

M
�
V; Pm; P̂m

�
= bV �P �mP̂

�
m
~P �m (3.3.12)

where: V = Volume of transactions.

M = Number of Merchants o¤ering the BPAY platform.

X = Vector of deterministic variables.

Pc = Usage fees or bene�ts of the BPAY platform.

P̂c = Usage bene�ts of transacting on the Visa platform.

~Pc = Usage bene�ts of transacting on the Diners Club platform.

Pm = Merchant fees of the BPAY platform.

P̂m = Merchant fees of the Visa platform.
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~Pm =Merchant fees of the Diners Club platform.

Equation (3:3:11) and (3:3:12) form the basis of estimation by applying the

Cobb-Douglas production function to the Bill Payments market. Taking loga-

rithms of equation (3:3:11) and (3:3:12) has the attractive property of transform-

ing parameters into elasticities. The parameters of interest in this Chapter are �

and �, where a statistically signi�cant value supports the existence of a network

e¤ect in the Bill Payments market. Taking logarithms, enables the parameters

of equation (3:3:11) and (3:3:12) to be linear. This transforms equation (3:3:11)

and (3:3:12), as provided below:

v (m; p̂; x) = �a+ �m+ �pc + �p̂c + �~pc + x (3.3.13)

v (m; p̂; x) = �a+ �m+ �p̂c + �~pc + x

�a = �a+ �pc

m (v; p; p̂) = �b+ �v + �pm + �p̂m + �~pm (3.3.14)

where: v = log(V )

m = log(M)

pc = log(Pc)

p̂c = log(P̂c)

~pc = log
�
~Pc

�
x = log(X)

pm = log(Pm)

p̂m = log(P̂m)
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~pm = log( ~Pm)

BPAY and the consumers� bank do not charge consumers to transact on

BPAY�s platform. Therefore pc will be modelled as a constant with a value

close to zero. The resulting model for consumer usage of BPAY is given by

expression (3:3:13), with �a = �a + �pc. Australia post is a key �rm in the Bill

Payment market, however, data relating to the merchant fees is not available

and is thereby omitted by the model.

Of additional interest is the price elasticity of merchants to costs imposed by

the platform. It has commonly been hypothesised in the literature that � < � in

the development of theoretical models in the market for payments as, in practice,

the price allocation by the platform has been in the consumers favour as they

are less likely to multihome. For example, there is typically no cost in using

the BPAY platform for consumers, however, merchants are typically charged a

fee per-transaction. Empirically estimating the values of � and � provides an

opportunity to evaluate theory with practice.

The price variables in expression (3:3:14) allows the platform to gauge its

market power in the Bill Payments market. In absolute terms, the lower the

value of �, the greater the market power of the platform. Similarly, the greater

the value of � and �, the lower the market power of the platform. Theoretically,

there should be a sole platform that exists in the long-run in any two-sided

market. It is in the best interest of end-users to use the platform with the
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largest scale or greatest network e¤ect.

Consider a repetitive game in the Billing Payment�s market, with n con-

sumers, m merchants, k platforms and t time periods. Let all consumers and

merchants have the ability of subscribing to multiple platforms and let the sub-

scription fees and per-transaction cost of joining a platform be identical. There

is no restriction on the allocation of costs to merchants and consumers. This

assumption is realistic as all platforms provide identical services. At every time

period of the game a joining fee is charged by all platforms to all end-users. In

the �rst stage of the game, the consumers and merchants�subscriptions to the

k platforms are governed by expectations. Utility is maximised for consumers

when they can transact with the greatest number of merchants, and vice verca.

Due to the fees involved in joining a platform, both the consumer and merchant

have the ability to choose platforms they wish to join and neglect. In the next

period of the game, the utility of consumers is maximised when they join the

platform with the highest market share of merchants subscribing to the platform

in the previous period, and vice verca. Hence, platforms with the highest market

share will increase their market share in the next period. As this game is re-

peated for T time periods, the Nash equilibrium of all consumers and merchants

will be to subscribe to a single platform.
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3.3.2 Data

The lack of access to proprietary data in the market for payments has been the

primary cause of limited empirical studies of network e¤ects. BPAY has made

available quarterly data between March 2003 and December 2010 relating to

consumer usage, merchant acceptance and interchange fees. Quarterly statistics

from the Reserve Bank of Australia complete the data set. There are two limi-

tations associated with this data set. Prior to outlining the data that are used

to estimate the demand equations of merchants and consumers, it is bene�cial

to view the structure of the BPAY platform.

The structure of the BPAY four-party scheme is similar to that of Visa and

MasterCard and is illustrated in Figure 3.3.2. A fee is paid by both the acquirer

and issuer to BPAY per-transaction, along with a payment (interchange fee)

made by the acquirer to the issuer for services performed in transmitting the

information to BPAY. These fees are set by the platform. The merchant is

charged a merchant fee per-transaction by their �nancial institution which is

commonly a �xed percentage of the value of the transaction. The cost imposed

on the consumer for using BPAY is normally zero and is part of a bundle of

services provided by their bank. As such, it is di¢ cult to isolate the pricing of

such a service. There is no contact made by either the consumer or merchant

with BPAY. It acts as a platform that enables information to be sent between

the banks.
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Figure 3.3.2. Four-Party Payment Scheme

To estimate the demand equations of merchants and consumers, the merchant

fees and the account fees and charges of consumers that use BPAY are required.

However, these costs are not publicly available. It has been observed in practice

that there is a high correlation between the interchange fee set by the platform

and the merchant fee the acquiring bank sets per transaction. Therefore, the

interchange fee for BPAY is used as a proxy for merchant fees for this platform.

The RBA publishes quarterly the average merchant fee of Visa/MasterCard and

Diners Club, thus no proxy is required for p̂m and ~pm in equation (3:3:14).

The second data shortcoming relates to the ability to estimate the bene�ts

of using an alternative platform to BPAY. The literature in the market for pay-

ments describes a positive relationship between interchange fees, merchant fees

and bene�ts supplied by the platform or the issuing bank, to the consumer. Ef-
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fectively, merchants subsidise the cost for consumers to use the platform. The

greater the interchange fee, the greater the merchant fee that the acquiring bank

charges and therefore, the greater the revenue for the issuing bank. The revenue

that is raised by the issuing bank is used to provide bene�ts to consumers to

use the platform. There is no �nancial bene�t or cost in transacting over the

BPAY platform. However, there are rewards attached to using a credit card.

Data relating to the bene�ts of using a Visa/MasterCard is only available an-

nually. Average bene�ts and fees of the credit card providers will be considered

as each issuing bank has on o¤er several cards available with di¤ering reward

programs. To increase the number of degrees of freedom in estimation, a proxy

is required. The correlation between the average merchant fees and bene�ts of

Visa/MasterCard is 98:5%. Thus, merchant fees will be used as a proxy for ben-

e�ts in equation (3:3:13). The list of the variables that is required to estimate

the parameters of interest are provided succinctly below:

� v : Quarterly transaction volume.

� m : Number of active biller codes.

� p̂c : Quarterly average merchant fees of Visa/MasterCard. Expressed as a

percentage of the value of a transaction.

� ~pc : Quarterly average merchant fees of Diners Club. Expressed as a per-

centage of the value of a transaction.
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� x : Quarterly dummy variables.

� pm : Quarterly merchant fee of �rms accepting BPAY, expressed as a per-

centage of the value of a transaction. This is estimated by dividing the

interchange fee by the average value of a transaction in that respective

quarter.

� p̂m : Quarterly average merchant fees of Visa/MasterCard. Expressed as a

percentage of the value of a transaction.

� ~pm : Quarterly average merchant fees of Diners Club. Expressed as a

percentage of the value of a transaction.

3.4 Methodology

The estimation of merchant and volume elasticities in equation (3:3:13) and

(3:3:14) is obtained within Johansen�s Maximum Likelihood cointegration frame-

work. The Vector Autoregressive (VAR) model is advocated by Sims (1980) as

a way of estimating dynamic autoregressive relationships between endogenous

variables without presupposing exogeneity restrictions on some variables.

In testing for network e¤ects, the time series properties of the data set must

be considered in the estimation of the parameters of interest, namely � and �.

Assuming stationarity in all the variables enables equation (3:3:13) and (3:3:14)

to be estimated via Ordinary Least Square (OLS). The parameters are then eval-
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uated using conventional t-tests, assuming the assumptions underlying (OLS) are

met. However, the presence of unit roots complicates estimating and evaluat-

ing the elasticities representing network e¤ects. This typically occurs when the

dependent and explanatory variables are trending consistently over time, which

implies falsely that there is a valid relationship. However, in the event of an

cointegrating relationship between the non-stationary variables, OLS is a valid

estimator.

The use of univariate error correction models (UECM) to determine the es-

timates of the network e¤ects elasticities requires the assumptions of one cointe-

grating vector, as well as the explanatory variables of the model being strongly

exogenous to the dependent variable. Such restrictions are not realistic due to

the network e¤ects in the Bill Payments market. The usage of the platform

by consumers and merchants are in�uenced by network e¤ects, as shown by

equation (3:3:13) and (3:3:14). Consequently, consumser usage and merchant

acceptance are classi�ed as endogenous variables. Thereby, imposing the strong

exogeneity assumption of merchant acceptance in equation (3:3:13) is an incor-

rect assumption. Similarly, assuming consumer usage in equation (3:3:14) is

strongly exogenous is also inappropriate. Thus, by employing a UECM, the

parameter estimates will be biased.

Prior to the implementation of Johansen�s Maximum Likelihood Cointegra-

tion procedure to estimate the elasticities of interest, it is necessary to determine
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the time series properties of the variables in the model and establish possible

cointegration. The sections that follow describe the panel unit root tests to be

implemented, followed by the formulation of a Vector Error Correction model

(VECM), Johansen�s Maximum Likelihood Cointegration procedure and Impulse

Response Functions.

3.4.1 Univarite Unit Root Tests

To evaluate the time series properties of the variables in the consumer usage

and merchant acceptance demand equations, the Dickey and Fuller (1979) and

Kwiatkowski et al. (1992) tests are implemented. The problem of testing for unit

roots using a Dickey and Fuller (1979) test in �nite samples is the tendency to not

reject the null hypothesis when the alternative is true. A further problem is the

low statistical power to distinguish between unit and near unit roots and between

trend and drift. Therefore, it has become the norm to test for stationarity in

the data series using the Augmented Dickey Fuller Test (ADF) and Kwiatkowski

et al. (1992) (KPSS) tests jointly. The ADF test evaluates the null hypothesis

that the series contains a unit root. This is in contrast to the null hypothesis of

stationarity in the KPSS framework.

However given the relatively short time dimension of the sample, the ADF

test and KPSS test may have low power. Thereby, the conclusions reached have

the potential to be misleading. By employing a panel data approach to the
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testing of the time series properties of the variables, more power can be gained.

The Dickey-Fuller (DF) approach tests the null hypothesis that a series con-

tains a unit root, H0 : �a = 1, against the alternative of stationarity, H1 : �a < 1.

The DF test amounts to estimating equation(3:4:1) :

yt = �ayt�1 + ut; (3.4.1)

�yt = (�a � 1) yt�1 + ut;

ut � IID
�
0; �2

�
;

Under the null hypothesis of a unit root, the test statistic follows a non-normal

distribution. Critical values are computed using Monte Carlo simulations, and

are commonly referred to as DF statistics.

The Augmented Dickey Fuller Test (ADF) is comparable to the simple DF

test, but it involves adding an unknown number of lagged �rst di¤erences of

the dependent variable to capture autocorrelated omitted variables that would

otherwise, by default, enter into the error term, ut. Choosing the appropriate

lag length is also important. Over-speci�ying the model (too many lags) will

reduce the power of the test as additional parameters are estimated, decreasing

the degrees of freedom; too few lags may result in over-rejecting the null when it

is true, decreasing the size of the test. It is important that the model has little

autocorrelation, as too few lags may result in the autocorrelation in the residual

term and the inapplicability of applying critical values.

The KPSS test assumes stationarity of the series as the null hypothesis.
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As the consequences of non-stationarity are important in relation to spurious

regressions and cointegration, it is best to take a conservative approach with

non-stationarity being the null hypothesis. However, it is useful to test using

both alternatives of the null.

3.4.2 Panel Unit Root Tests

To augment the information in trying to evaluate the time series properties of

the variables in the consumer and merchant acceptance demand models, several

panel unit root tests were conducted. The common panel unit root test is based

on the following regression:

�yit = �iyit�1 + �zit + uit; (3.4.2)

where i = 1; 2; : : : ; N represents each individual, t = 1; 2; : : : ; T the time se-

ries observations, zit the deterministic components such as individual speci�c

intercept or time trend and uit is the random error term.

Panel unit root tests can be divided by the degree of homogeneity imposed

in the alternative hypothesis. The null and alternative hypothesis adopted by



3. Competition in the Bill Payment Market 61

panel unit root tests are:

Ho : �i = 0 for all i = 1; 2; :::; N (3.4.3)

H1a : �i = � < 0 for i = 1; 2; ::N;

or

H1b : �i < 0 for i = 1; 2; ::N1 where N1 < N

The null hypothesis provided in equation (3:4:3) is a test for a panel unit root,

with the alternative hypothesis di¤ering by whether the rejection of the null

hypothesis is supported for the panel to be stationary as a whole or whether

there is a mixture of stationary and non-stationary individuals in the panel as

denoted by the alternative hypothesis of H1b. In other words, the null hypothesis

is rejected for N1 < N cross-sections of the panel such that, for consistency as

N !1, N1
N
! 0 < � � 1. The Levin et al. (2002) (LLC) and Hadri (2000) test

for a panel unit root share the common characteristic of imposing a large degree

of homogeneity in the null and alternative hypothesis. The main disadvantage

with such a test is the degree of homogeneity imposed on the autoregressive

coe¢ cients which results in low power, or the failure to reject the null hypothesis

when it is false. The Hadri (2000) test is unique in the sense it is a test for

stationarity of the panel as opposed to the LLC and Baltagi (2000) tests of a

panel unit root. It has also been found by Harris and Tzavalis (1999), that

the LLC test su¤ers from a dramatic loss of power when individual trends are

included and it is sensitive to the inclusion of deterministic trends.
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In contrast Im et al. (2003) (IPS) and Fisher�s ADF share a common null

hypothesis of a panel unit root and alternative hypothesis of at least some cross-

sections being stationary as denoted by H1b. Simulation results from IPS show

in the case of no serial correlation in the error term, the LLC test has a tendency

to over-reject the null hypothesis as N increases. For samples with a small T

dimension, the IPS test has more power relative to the LLC test, but the LLC

test has better size. The tests that impose the restriction of a common unit root

process across all cross-sections may be preferred in the case where it is logical to

assume that the autoregressive parameter �i; is the same across all cross-sections.

Thereby, pooling the data may be advantageous.

The panel unit root tests rely heavily on the assumption of the independence

of the errors across cross-sections. However, when the errors are cross-sectionally

dependent, all tests su¤er from size distortion. The Monte Carlo simulation

performed by Maddala and Wu (1999) provides evidence that this problem is less

severe with Fisher Type tests in comparison with IPS. In addition, only T needs

to approach in�nity for the test statistics to approach its limiting distribution.

Thus, more weight will be attributed to the Fisher Tests in comparison with the

other proposed panel unit root tests in evaluating the time series properties of

the data.

However, Pesaran (2007) develops a panel unit root test that does not rely on

the assumption of the errors being independent across cross-sections. Pesaran
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(2007) proposes estimating the standard ADF regression with the lagged cross-

sectional mean and its �rst di¤erence to capture the cross-sectional dependence

that arises through a single factor model.

3.4.2.1 Panel Unit Root Test Allowing for Cross-Sectional Depen-

dence of the Error Terms

All panel unit root tests1 discussed rely heavily on the assumption of the errors

not being cross-sectionally correlated. This assumption is required for the test

statistics to approach their limiting distributions. Given that the data involved

are economic variables and the sample consists of �rms competing �ercley in the

Bill Payments market to attract both consumers and merchants, it is likely that

the variables of di¤erent cross-sections are correlated. For instance, pressure by

the RBA and merchant groups to decrease the interchange fees has resulted in

the uniform decrease of merchant fees in the Bill Payments market across all

platforms. Even though Diners Club has no interchange fee, the threat of losing

merchants has forced them to mirror the actions of Visa and decrease merchant

fees directly.

Pesaran (2007) Pesaran (2007) develops a modi�cation to the IPS test that

accounts for the cross-sectional dependence of the errors while sharing the same

null and alternative hypothesis. Additionally, the new test can be modi�ed for

1Refer to Appendix A for a detailed explanation of the panel unit root tests employed.
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serially correlated errors. The following data generating process is assumed:

yit = (1� �i)�i + �iyit�1 + uit; (3.4.4)

uit = ift + "it;

where �i is the deterministic component and it is assumed the initial values

(yio) are known and the errors follow a one-factor structure. Pesaran (2007) also

states the following assumptions:

� The idiosyncratic shocks, "it, i = 1; 2; :::; N and t = 1; 2; :::; T are inde-

pendently distributed both across i and t, have mean zero, variance �2"i ,

and �nite fourth order moment.

� The unobserved common factor, ft, is serially uncorrelated with mean zero

and a constant variance �2f , and �nite fourth moment. Without loss of

generality �2f can be set to unity.

� "it, ft and i are independently distributed for all i.

� � = N�1PN
j=1 j 6= 0 for a �xed N or N !1

Pesaran (2007) extends the IPS test by including in the ADF test, the cross-

sectional mean of the data series, �y�t = N�1PN
i=1 yit, and its lagged values.

The unobserved common factor that is causing the errors to be cross-sectionally

dependent is essentially proxied by the cross-sectional mean of the data series
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and its lagged values. The cross-sectionally augmented Dickey Fuller (CADF)

regression is expressed as follows:

�yit = ai + biyit�1 + ci�yt�1 + di��yt + eit; (3.4.5)

The test statistic is the average of the N individual t-statistics of the CADF

tests. Pesaran (2007) shows the N individual t-statistics of the CADF tests are

asymptotically similar due to their dependence on the sole common factor and

are independent of the factor loadings. The test statistic thereby has no standard

distribution and its critical values are estimated using Monte Carlo methods.

As stated previously, the assumption of the errors being cross-sectionally

independent is necessary for the test statistics of LLC, Baltagi (2000), IPS, Hadri

(2000) and Fisher Tests to achieve their limiting distribution and a violation of

such an assumption will lead to severe size distortion. To evaluate the assumption

of cross-sectional dependence of the error terms, the Breusch and Pagan (1980)

Lagrange Multiplier Test will be utilised. The characteristics of the sample, with

T = 32 and N = 3 suggest that a test that is designed for �xed N and T !1 is

the most suitable for this study. Hence the Breusch and Pagan (1980) Lagrange

Multiplier Test is the most suitable test given the dimensions of the sample to

test whether the errors are cross-sectionally independent.
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The null and alternative hypothesis evaluated are given by:

Ho : �̂ij = �̂ji = 0 for all i 6= j; (3.4.6)

H1 : �̂ij = �ji 6= 0 for some i 6= j;

where �ij is the ijth residual correlation coe¢ cient and is estimated by:

�̂ij =

PT
t=1 ûitûjt�PT

t=1 û
2
it

� 1
2
�PT

t=1 û
2
jt

� 1
2

; (3.4.7)

the rejection of the null hypothesis implies the assumption of the errors being

cross-sectionally independent being violated.

The Breusch and Pagan (1980) Lagrange Multiplier Test The Breusch

and Pagan (1980) Lagrange Multiplier (LM) Test evaluates the hypothesis that

the residual correlation matrix, computed over all common observations, is an

identity matrix of order Nc, where Nc is the number of cross-sections in the

sample. The LM test statistic is given by:

hLM = T
NcX
i=2

i�1X
j=1

�̂2ij; (3.4.8)

The Breusch and Pagan (1980) LM test statistic is distributed as �2 (d),

where d = Nc (Nc � 1) =2, under the null hypothesis.
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3.4.3 Cointegration

3.4.3.1 The Engle-Granger (EG) Approach

As a rule, if there are two time series that are I (d), any linear combination of

this set of time series will also be I (d) : In the event that there exists a vector

�, for which the resulting error term is of a lower order of integration I (d� b),

then Engle and Granger (1987) de�ne the series yt and xt to be cointegrated of

order (d; b). Thus, assuming v and m of equations (3:3:13) and (3:3:14) were

both I (1), and the associated error term was stationary ("t � I (0)), then it can

be said the two series are cointegrated of order (1; 1).

Assuming cointegration, estimating equations (3:3:13) and (3:3:14) using or-

dinary least squares (OLS) achieves super-consistent parameters. The para-

meters converge to their true value at a faster rate as T increases, relative to

applying OLS with variables that are I (0). Hence, �rst di¤erencing the vari-

ables in equation (3:3:13) and (3:3:14) to �nd estimates of the parameters is not

e¢ cient. All dynamics and endogeneity issues are invalid asymptocially due to

this super-consistent property. Further, in small samples, it has been shown bias

is a problem. Consequently, there is an inability to draw inferences about the

signi�cance of the parameters of the static long-run model.
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3.4.3.2 Problems with the Single Equation Approach

It is convenient to assume that there is only one cointegrating vector in esti-

mating a economic model. However, if there are more than two variables, there

is a possibility of more than one cointegrating vector. That is, the variables

in a model may feature as part of several equilibrium relationships governing

the joint evolution of the variables. This is re�ected in the model for merchant

acceptance in equation (3:3:14), which includes four variables.

Assuming there is only one cointegrating vector when there is more, leads

to ine¢ ciency in the sense that we can only obtain a linear combination of

these vectors when estimating a single equation model. Statistically, estimating

the cointegrating vector using a single equation is not e¢ cient, that is, there are

alternative estimators that obtain a smaller variance. This is due to information

being lost, unless each endogenous variable appears on the left hand side of the

equation. The exception is when all the variables in the cointegrating relationship

are weakly exogenous. However, due to the circular nature of network e¤ects in

the Bill Payments market, such an assumption is incorrect.

The problems with estimating an ECM using a single equation with more

than two variables can be shown in the example below are given in Appendix B.

In the event y2;t and xt are weakly exogenous to y1;t, �21 = �31 = 0. The coin-

tegrating vector from equation (B:5) can be e¢ ciently estimated by OLS. The

cointegrating relationship does not enter into the expressions of �y2;t and �xt
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and hence, there is no loss of information by estimating the model using a single

equation. Hence, when all variables in a cointegrating relationship are weakly ex-

ogenous to the left hand side variable, the OLS estimator for the ECM is e¢ cient.

Johansen (1992a) provides support for the multivariate approach and shows the

standard error associated with estimating the cointegrating vector by OLS is

greater than that by adopting a multivariate approach
�
��OLS > ��V ECM

�
.

3.4.4 Johansen Full InformationMaximum Likelihood Pro-

cedure

Consider the following Vector Autoregressive (VAR) model applied to the con-

sumer usage equation of (3:3:13) with 4 endogenous variables in the vector zt and

the number of lags in the VAR, p, equal to 4:

zt = �1zt�1 +�2zt�2 +�3zt�3 +�4zt�4 + "t; (3.4.9)

where: zt = (mt; vt; p̂c;t; ~pc;t)
0

"t = ("1t; "2t; "3t; "4t)
0

�1 =

0BBBBBBBBBB@

�11:j �12:j �13:j �14:j

�21:j �22:j �23:j �24:j

�31:j �32:j �33:j �34:j

�41:j �42:j �43:j �44:j

1CCCCCCCCCCA
for j = 1; 2; 3; 4

Note "t is a vector of serially uncorrelated errors, such thatE ("t) = 0; E ("t"0s) =

0 8 t 6= s and E ("t"0s) = �.
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The above VAR given by equation (3:4:9) can be repararamterised to give

the general expression for the VECM with p lags:

�zt = ��zt�1 +
p�1X
s=1

�s�zt�s + "t (3.4.10)

where � = (I �
Pp

s=1�s) and �s = �
Pp

j=s+1�s

The VECM expressed in equation (3:4:10) expresses all variables in terms of

their di¤erences, with the exception of the lag of the endogenous vector, zt�1.

Therefore, assuming all variables contained in equation (3:4:10) are integrated

of order one, then in order for the system to be stationary, �zt�1 must also be

stationary.

As previously shown in Appendix B, the matrix � can be decomposed into

two matrices:

� = ��; (3.4.11)

where: � is the speed of adjustment parameter to disequilibrium, and � is a

matrix of long run coe¢ cients such that the term �zt�1 in equation (3:4:10)

represents up to (n� 1) cointegrating relationships.

There are three alternatives for which the VECM in equation (3:4:10) is sta-

tionary. Firstly, all variables are stationary. Secondly, the matrix � contains

(n� n) elements of zeros which can eventuate if no cointegrating relationship is

observed between the endogenous variables in zt. Lastly, there is at least one

cointegrating relationship amongst the variables that cause �zt�1 to become a

stationary process. Assuming all variables are integrated of order one, which is a
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valid assumption with economic time series data, the r cointegrating vectors in �

form r linearly independent combinations of the variables in zt which are station-

ary. Only the cointegrating vectors in � enter equation (3:4:10) ; which implies

the last (n� r) columns of � are e¤ectively zero as each of the r cointegrating

vectors in � are associated with at least one non-zero element. Consequently,

testing for cointegration is equivalent to testing for the rank of �: For example, if

it is deduced that � is of rank 2, then there exists two cointegrating relationships

between the variables in zt:

Johansen recommends estimating the VECM of equation (3:4:10) and per-

forming a reduced rank regression to correct for short-run dynamics. This pro-

cedure involves estimating the following regressions:

�yt = A1�yt�1 + A2�yt�2 + :::+ Ak�1�yt�(k�1) +R0t; (3.4.12)

yt = B1�yt�1 +B2�yt�2 + :::+Bk�1�yt�(k�1) +Rkt; (3.4.13)

The residuals obtained from estimating equation (3:4:12) and (3:4:13) are then

used to calculate the product matrices given by:

Sij =

PT
t=1RitR

0
jt

N
for i; j = 0; k (3.4.14)

The maximum likelihood estimates of � are then subsequently obtained as the

eigenvectors corresponding to the r largest eigenvalues from solving the equation:

���Skk � Sk0S�100 S0k�� = 0; (3.4.15)
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The n eigenvalues from equation (3:4:15) are then ordered in descending

order. The test for cointegration is a test for the number of non-zero eigenvalues

and the estimated cointegration space is the space spanned by the eignenvectors

associated with these non-zero eigenvalues. The following test statistics are used

to test the null hypothesis of r cointegration vectors against the alternative that

r + 1 exist:

� Trace Statistic:

�trace = �T
nX

i=r+1

log
�
1� �̂i

�
for r = 0; 1; 2:::; n� 1; (3.4.16)

� Max Eigenvalue Statistic:

�max = �T log
�
1� �̂r+1

�
for r = 0; 1; 2; :::; n� 1; (3.4.17)

3.4.5 Impulse Response Functions

The VAR model speci�ed by equation (3:4:9) can be expressed as a moving

average (MA). The MA representation provides an opportunity to model the

impact of a shock from one of the explanatory variables over time as it �lters

through the VAR representation of the consumer and merchant demand models.

From an academic perspective, it would be interesting to know how shocks to

one of the variables are �ltered through both demand equations and how long it

would take for equilibrium to be restored within the system.

Consider a more general speci�cation of the VAR model with p lags and n

variables:
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zt = �+�1zt�1 +�2zt�2 +�3zt�3 + :::+�4zt�p + "t; (3.4.18)

As opposed to the previous VAR speci�cation of equation (3:4:9), zt is a (n� 1)

vector of variables, � is a a (n� 1) vector of constants and "t is a (n� 1) vector

of errors. Equation (3:4:18) can then be transformed by using lag operator

notation:

zt = �+�1Lzt + :::+�pL
pzt + "t;(3.4.19)

zt
�
In � L� L2 � L3 � :::� Lp

�
= �+ "t;

�(L) zt = �+ "t;

In order to estimate impulse response functions (IRF), the vector zt must be co-

variance stationary. To be considered covariance stationary, E (zt) and E (ztzt�j)

must be independent of time. Assuming zt is covariance stationary, expectations

can be taken in equation (3:4:19).

E
�
zt
�
In � L� L2 � L3 � :::� Lp

��
= E (�) + E ("t) ; (3.4.20)

�
�
In � L� L2 � L3 � :::� Lp

�
= �;

� =
�
In � L� L2 � L3 � :::� Lp

��1
�;

Hamilton (1994) shows a MA(1) representation of the VAR can then be ex-

pressed as follows:

zt = �+ "t +�1"t�1 +�2"t�2 +�3"t�3 +�4"t�4 + ::: (3.4.21)
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with �j
� In for j=0
�jk=1�j�k�k for j=1;2;::

The �j matrices signify impulse response functions. More speci�cally, row

i, column l element of �j identi�es the impact of a unit increase in the lth

variable�s innovation at time t, "lt, on the ith element of zt after j periods,

holding all other innovations at all periods constant. Therefore, the ith row and

lth column element of �j as a function of j gives rise to a visual representation

of the impulse response function
h
@zi;t+j
@"l;t

= �jl;j

i
.

The covariance stationary assumption is not expected to hold for all the vari-

ables contained in the vector zt. Therefore, impulse response functions can not

be estimated for MA representation of VAR equation (3:4:21). Assuming there

is cointegration, impulse response functions can be formulated by estimating a

VECM and by noting that:

�1 = �+ �1 + In (3.4.22)

�j = �j � �j�1

�p = ��p�1

Expressions for � and �j were derived previously in section 3:4:4: However, the

existence of serial correlation among the innovations, implies that we cannot

assume that all other innovations are held constant for a given change in "l;t.

Hence, it is anticipated a shock in the lth variable will be associated with shocks

to the other variables in the system that will consequently a¤ect the lth variable.

Additionally, IRF�s may be sensitive to the ordering of the variables in the VAR.
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Pesaran and Shin (1998) provide an alternate estimator of impulse response

functions that recti�es these shortcomings. Hence, the methodology suggested

by Pesaran and Shin (1998) will be used to assess the impacts of shocks on the

demand for merchant acceptance and consumer usage.

3.5 Results

3.5.1 Data Analysis

Prior to the implementation of unit root tests, the attributes of the time series

data need to be determined. Figure 3.5.1 illustrates the behaviour of the �ve

variables of interest from the consumer usage and merchant acceptance demand

models of BPAY between March 2003 and December 2010. All variables in the

sample are either upward trending or downward trending over time. The volume

of transactions and merchant acceptance are increasing over time, in comparison

with the vector of prices, which are decreasing over the same time period. Thus,

all variables have either a long term increase or decrease over time, indicating

non-stationary means.

The decrease in the average merchant fee of Visa is a direct result of RBA

intervention and pressure applied to four-party payment platforms to decrease

the set interchange fee, and subsequently, reduce the cost imposed on merchants.

However, as Diners Club is a three-party payment scheme that deals with mer-
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chants and consumers directly, the fall in its merchant fees can be directly at-

tributed to competitive pressures to respond to the fall in merchant fees of Visa.

The threat of merchants surcharging and rejecting the Diners Club payment

method is re�ected by the consistent decrease in merchant fees from 2:36% in

March 2003 to 2:11% in December 2010. The interchange fee of BPAY varies four

times over the sample period. In expressing the interchange fee as a percentage

of the average value of a transaction in each respective quarter, the result is a

steady decrease from March 2003 to June 2007. However, beyond June 2007 the

interchange fee expressed as a percentage of the average value of a transaction

has stabilised. Therefore, based on Figure 3.5.1, all univariate and panel unit

root tests are applied with both a trend and drift term. Otherwise, all unit root

tests are void. All variables have been transformed, as described in section 3:3:1:
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Figure 3.5.1: Demand Equation Time-Series Variables.
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3.5.1.1 Descriptive Statistics

Figure 3.5.1.1: Normalised cdf of All Time-Series Variables
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To assess whether the variables in the respective demand functions were

normally distributed, it is bene�cial to graphically depict the standardised cu-

mulative density function (cdf). Each variable was standardised and its cdf

computed. Figure 3.5.1.1 plots the standardised cdf of each variable against the

cdf of a standard normal random variable. The closer the blue curve (variable

cdf) approximates the red curve (standard normal cdf), the greater the likeli-

hood that the respective variable is normally distributed. Volume and merchant

acceptance appear to be approximately normally distributed with their respec-

tive cdfs closely approximating that of the standard normal cdf. The probability

of extreme outcomes for both variables is less than that given by a normal distri-

bution, hence the distributions are expected to have negative kurtosis relative to

the normal distribution. The skewness of both volume and merchant acceptance

is also expected to be negative.

From the cdfs of volume and merchant acceptance, it can be seen that the

distributions are centred above their respective means with the magnitude of

the domain of the standardised values not symmetric around the origin (z = 0).

Volume and merchant acceptance have a standardised domain of �2 � zv � 1:3

and �2:1 � zm � 1:8, respectively with P (0 < zv < 1:3) = P (�2 < zv < 0) =

0:5 and P (0 < zm < 1:8) = P (�2:1 < zm < 0) = 0:5. Therefore, relative to

the normal distribution, there is negative skewness for volume and merchant

acceptance as their respective distributions are centred above their means. The
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standardised cdfs of merchant fees for Visa, BPAY and Diners Club do not

approximate the cdf of a standard normal random variable as well as that of

volume of transactions and merchant acceptance. The distributions of merchant

fees all appear to be asymmetric and have kurtosis that is di¤erent to that of

the normal distribution.

Table 3.5.1.1. Descriptive Statistics.

Statistic vt �vt mt �mt p̂t pt ~pt

Mean 17.46 3.35% 9.58 1.94% 0.98% 0.08% 2.22%

Std. Dev 33.35% 2.59% 16.10% 2.04% 16.84% 1.35% 9.51%

Jarque-Bera 2.44 1.47 1.04 55* 29.3* 4.9 3.25

Minimum 16.83 -0.02 9.24 -0.06 0.86 0.06 2.07

Maximum 17.91 0.08 9.86 0.08 1.45 0.11 2.37

Table 3.5.1.1 presents some descriptive statistics with volume and merchant

acceptance expressed in logarithms and merchant fees as a percentage of the value

of a transaction. �vt and�mt represent approximations of the respective growth

rates of volume and merchant acceptance per quarter. Between March 2003 and

December 2010, volume and merchant acceptance have increased at a average of

3:35% and 1:94% per quarter. Diners Club has had the highest merchant fee on

average, followed by Visa and BPAY. This is consistent with a-prori expectations

as Diners Club is not directly a¤ected by the RBA intervention in regulating the

interchange fee. Diners Club is a three-party platform and as such, sets merchant
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fees directly. Therefore, Diners Club has been able to sustain high rewards for

their consumers and this is re�ected in high merchant fees. BPAY has the lowest

interchange fee of the three platforms. This result for BPAY conforms with their

strategy of o¤ering no bene�ts to consumers using their platform. The lower the

bene�ts made available by a platform to consumers per transactions, the lower

the interchange fee charged and, consequently, the lower the merchant fee.

All variables with the exception of pt, have high standard deviations. This

attribute is desirable from a modelling perspective as the greater the variation in

a variable, the more accurate its parameter estimate. The standard deviations

of �vt and �mt are signi�cantly lower in comparison with those of vt and mt.

Therefore, modeling the demand equations via a cointegrating framework will

induce greater information and accuracy in the estimated parameters.

BPAYs interchange fee is chosen to proxy for merchant fees. It is likely that

scheme fees and charges (Figure 3.3.2) that the acquiring bank pays BPAY per

transaction in�uences merchant fees and induces greater variation in merchant

fees than interchange fees alone. However, such data on scheme fees and charges

is proprietary in nature and is not available.

To assess normality, the Jarque-Bera (JB) test was employed. A requirement

for inferential procedures in estimating a VAR is for its error term to be multi-

variate normal. A useful way in testing for multivariate normality is to assess

whether each variable is normally distributed and if so, any linear combination of
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normally distributed random variables is also normally distributed and, as such,

the assumption for normality is satis�ed2. In Table 3.5.1.1 an asterisk denotes

the rejection of the null hypothesis at the 5% level of signi�cance (los). The test

statistic is chi-squared distributed with two degrees of freedom with the critical

value of the JB test at the 5% los being 5:99. All variables in the model appear to

be normally distributed, with the exception of the merchant fees of VISA, where

the null hypothesis of normality is rejected at the 5% los. This may indicate

the error term from the VAR may not be multivariate normal. However, the

JB test has poor �nite sample properties, a characteristic of this data set. As a

consequence, the JB test lacks size for this data which increases the probability

of rejecting the null hypothesis when it is in fact true. Therefore, it is assumed

the distribution of the error term is approximately multivariate normal, due to

the small time dimension attached to the data set making make any normality

testing procedure sensitive to type-1 error.

2Each variable being normally distribued is a necessary condition for multivariate normality
but not a su¢ cient condition.
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3.5.1.2 Correlations

Table 3.5.1.2: Correlation Matrix.

�x;y vt mt p̂t pt ~pt

vt 1

mt 0.98 1

p̂t -0.85 -0.83 1

pt -0.94 -0.89 0.92 1

~pt -0.95 -0.94 0.78 0.88 1

Table 3.5.1.2 presents the correlations between all the variables of interest.

Network e¤ects imply volume is highly correlated with merchant acceptance.

Network e¤ects is re�ected by the results in Table 3.5.1.2 by observing the cor-

relation between volume and merchant acceptance having a value of 0:98. Mer-

chant fees have been decreasing over the sampling period due to intervention

by the RBA and the competitive nature of the market. It is therefore not sur-

prising to observe the high correlations between the merchant fees of the three

respective platforms. The high correlations between the merchant fees of all

platforms suggest, that the errors from panel unit root tests to evaluate whether

the (3T � 1) vector P = (p0t; p̂0t; ~p0t)
0 contains a unit root, will be cross-sectionally

dependent. Panel unit root tests that rely on the assumption of cross-sectionally

independent errors are invalid if such an assumption is violated.
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3.5.1.3 Univariate Unit Root Tests

Table 3.5.1.3. ADF and KPSS Unit Root Tests.

Variable ADF KPSS

vt 3.13 0.2*

�vt 9.36* 0.16**

mt -2.42 0.06

�mt -5.26* NA

pm;t -1.77 0.2*

�pm;t -5.79* 0.25*

p̂m;t -2.44 0.17**

�p̂m;t -4.93* 0.11

~pm;t -3.02 0.13

�~pm;t -5.85* NA

Table 3.5.1.3 reports the test statistics from employing the ADF and KPSS

test for each data series in the merchant acceptance and consumer usage demand

equations. The Schwarz Information Criterion determined the number of lags

to include in the respective tests. When appropriate, additional lags were used

to handle serial correlation. The critical values for the ADF test at the 1%

and 5% level of signi�cance are �4:3 and �3:6 respectively. Whilst, the critical

values for the KPSS test at the 1% and 5% level of signi�cance are 0:22 and

0:15 respectively. A (*) and (**) represents a rejection of the null hypothesis at

the 1% and 5% level of signi�cance, respectively. The results indicate that all
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variables are I (1) based on the ADF test. However, results using the KPSS test

imply only p̂m;t contains a unit root. Hence, not all variables in the sample are

found to be I(1) across both univariate unit root tests.

The ADF test is more reliable in small samples in comparison with the KPSS

test, hence more weight will be placed upon its conclusions to determine the

time series properties of the data. As cointegration requires that the variables

are integrated of the same order, based on the ADF tests, a cointegration vector

may be found as all the variables in the consumer usage and merchant acceptance

equations of (3:3:13) and (3:3:14) are of the same order. However, to gain more

power in our testing procedure, we examine unit root tests in a panel data context

by stacking the pricing variables, where Pt = (pm;t; p̂m;t; ~pm;t). The dimensions

of this pricing panel is n = 3, t = 32.

3.5.1.4 Panel Unit Root Tests

Table 3.5.1.4 Panel Unit Root Tests.

Variable LLC Baltagi IPS Fisher-ADF Hadri Pesaran

Pt -2.42* 0.9 -0.5 6.7 4.2* -2.1

�Pt NA -6.6* -7.67* 51.2* 3.2* -4.6*

Results from the panel unit root tests on both the level of the price vector

and �rst di¤erences are presented in Table 3.5.1.4. An (*) and (**) represents

a rejection of the null hypothesis at the 1% and 5% level of signi�cance. All

tests with the exception of Hadri (2000) have a null hypothesis of a panel unit
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root. All panel unit root tests with the exception of Hadri (2000) and LLC,

do not meet the a-prori of all the levels of the variables being I (1). This is in

contrast to the Baltagi (2000), Fisher-ADF, IPS and Pesaran (2007) tests, which

conclude the price vector, Pt, in the panel is I (1) with the null hypothesis not

being rejected, while the null hypothesis is rejected when Pt is expressed in �rst

di¤erences.

In order to determine whether the panel unit root tests that rely on the errors

being cross-sectionally independent are valid, the errors need to be examined

using a Breusch and Pagan (1980) (BP) test. From the results of Table 3.5.1.4

with two out of the six tests not concluding that the variable of interest is I (1),

it is expected that the errors will be cross-sectionally dependent.

To examine whether the errors are cross-sectionally independent, it is su¢ -

cient to evaluate the residuals of individual ADF tests of each pricing variable

by employing a BP test. The test statistics are chi-squared distributed with 3

degrees of freedom. The critical value at the 5% level of signi�cance is 7:82. The

observed LM statistic of the BP test is 5:5, hence the null hypothesis of the errors

being cross-sectionally independent is not rejected at the 5% los. The implica-

tions of the BP test on all panel unit root tests employed, with the exception

of Pesaran (2007), is that the test statistics will converge to their asymptotic

distribution, rendering the tests valid.

Four out of a possible six panel unit root tests indicate there is strong sup-
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port for all the pricing variables being I (1), with the null hypothesis not being

rejected for all variables in their levels. On the other hand, the null hypothesis

is rejected at the 5% level of signi�cance when the pricing variable is expressed

in �rst di¤erences. Thus, there is support for all variables being I (1), and the

VECM can be estimated to evaluate whether a cointegrating vector exists in the

respective demand equations.

3.5.2 Johansen Maximum Likelihood Procedure

The Johansen cointegration tests satis�ed all the assumptions relating to the

residuals being serially uncorrelated, homoscedastic and normally distributed.

The lag length was chosen to maximise the degrees of freedom in estimation.

Accordingly, the residuals were subject to a LM test for serial correlation. In

the event that the residuals were serially correlated, additional lags were added

to the model to solve the problem.

Table 3.5.2. Johansen Cointegration Tests

Demand Equation
�Max H0 : rank = r

r = 0 r = 1 r = 2

�Trace H0 : rank = r

r = 0 r = 1 r = 2

Consumer Usage 36:1� 18:9 9:6 66:4� 30:2� 11:3

Merchant Acceptance 85:5� 45:7 29:6 39:8� 16:0 14:7

Table 3.5.2 contains the Johansen cointegration test results for the respective

demand equations. The cointegrating rank is determined by a sequential testing
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procedure, which initially starts with examining Ho : r = 0. A large test statistic

is evidence against the Ho and assuming it is rejected, Ho : r � 1 is evaluated.

The process continues untilHo is not rejected and the cointegrating rank attained

is the number of cointegrating vectors present in the VAR.

The critical values di¤er between the consumer usage and merchant accep-

tance demand equations due to the presence of dummy variables in the demand

equation for consumer usage. The critical values for the �Max and �Trace test

statistics at the 5% level of signi�cance in testing for cointegration in the con-

sumer usage demand equation are 27:6 and 47:9 for Ho : r = 0, 21:1 and 29:8

for Ho : r � 1 and 14:3 and 15:5 for Ho : r � 2 respectively. For the merchant

acceptance demand equation, critical values for the �Max and �Trace test statis-

tics at the 5% level of signi�cance in testing for cointegration are 33:9 and 69:8

for Ho : r = 0, 27:6 and 47:9 for Ho : r � 1 and 21:1 and 29:8 for Ho : r � 2,

respectively. An (�) represents a rejection of the null hypothesis at the 5% level

of signi�cance.

The results indicate there is one cointegrating vector in the consumer usage

demand equation based on the maximum eigenvalue (�Max) test statistic and two

cointegrating vectors based on the Trace (�Trace) test statistic at the 5% los. At

the 1% los, both test statistics suggest that there is only one cointegrating vector

with a p-value of 0:045 associated with �Trace = 30:2. Hence the null hypothesis

of more than one cointegrating vector can not be rejected. As the rejection of
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the null hypothesis that r = 1 is marginal based on �Trace, the con�dence in

rejecting the null hypothesis and the corresponding theory that there is only one

cointegrating vector is minimal. The test based on the �Max does not reject the

null hypothesis that r = 1. It does so with high con�dence, with the p-value

associated with the test statistic of 18:9 being 0:1:

The consequences of establishing cointegration are vital and considering the

poor �nite sample properties of the Johansen Maximum Likelihood Procedure,

a more cautious approach in selecting the los is required. Therefore, a los of 1%

seems more appropriate, thereby concluding there is one cointegrating vector in

the consumer usage demand equation.

Based on the two test statistics, there appears to be a single cointegrating

vector in the merchant acceptance demand equation. At both the 1% and 5%

los, the null hypothesis that r = 0 is rejected based on the �Max and �Trace test

statistics. In comparison, the non-rejection of the null hypothesis that r = 1 at

the 1% and 5% los. Therefore, it can be concluded that there is evidence for

a single long-run relationship between all variables in the consumer usage and

merchant acceptance demand equations of (3:3:13) and (3:3:14).
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3.5.3 Vector Error Correction Model

3.5.3.1 Consumer Usage

�vt = 0:02 + 0:034X1 � 0:12et�1 � 0:14�vt�1 + (3.5.1)

(3:19) (3:83) (�2:15 ) (�0:89)

0:34�mt�1 + 0:012�p̂t�1 + 0:006�~pt�1 + "t

(1:46) (0:14) (0:05)

R2 = 0:54; LM-Stat = 20:8; FH0:�i=0 8 i = 4:58

The ECM given by equation (3:5:1) partially presents the VECM estimated.

For the sake of brevity, only the ECM of consumer usage is presented in this

subsection. The estimated model is statistically valid, with errors being serially

uncorrelated, the errors being normally distributed and the parameters being

jointly statistically signi�cant. Autocorrelation was tested up to three lags, by

applying a LM test (Breusch�Godfrey test). The p-value associated with the

observed test statistic of 20:8 is 0:19, thereby not rejecting the null hypothesis

of the errors being independent at the 5% los. The critical F-statistic to test

whether the model is empirically valid at the 5% los is approximately 2:55. The

observed F-statistic is 4:58, thereby rejecting the null hypothesis and concluding

that the model is empirically valid. In addition, there is no evidence of the errors

being heterosckedastic. As the data set consists of multiple time series variables,

observing that the errors are homoscedastic is expected. The model �ts the data
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well with 54% of the variation in the growth of volume being explained by the

model. Equation (3:5:2) below provides an autoregressive distributed lag model

(ADRL) representation of equation (3:5:1).

vt = 1:76 + 0:34X1 + 0:34mt + 0:012p̂t + 0:006~pt � 0:27mt�1 (3.5.2)

+0:116p̂t�1 + 0:084~pt�1 + 0:91vt�1 + 0:14vt�2 + "t

In establishing that the model is empirically valid by observing that the

errors follow the classical assumptions of linear regression and testing for the joint

signi�cance of the parameters, the parameters can be used to assess the expected

impact of various variables on consumer usage. To account for the seasonality

in the data, the model initially had three deterministic dummy variables that

represent the March, June and September quarters. The base quarter was the

December quarter. However, the t-statistics observed for the March and June

quarters were 1:6 and 0:27 respectively, which implies at the 5% los that both the

March and June quarters are no di¤erent to that of the December quarter. Thus,

only the September dummy variable was included in the model as it attained a

observed t-statistic of 3:83, which implies it is statistically signi�cant at the 5%

los with a p-value of approximately zero. Therefore on average, in the September

quarter the volume of transactions is 3:4% greater than that of other quarters,

holding all other factors constant.

The parameters of the variables that are expressed as rates of change provide
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the short-run impacts on consumer usage. A one percent increase in merchant

acceptance is expected to increase volume by 0:34%, other things being held

constant. Whereas a 1% increase in the bene�ts of transacting on the Visa

or Diners Club platform is expected to increase volume by 0:012% and 0:006%

respectively, other factors being held constant. The impact on volume from an

increase in the bene�ts of an alternative platform is expected to be negative.

However, as the magnitude of the increase in volume is small in magnitude, it

can be argued in the short-run there is no impact on volume from a change in

the bene�ts of alternative platforms as consumers take time to adjust to billing

payment habits and to become members of the respective credit card platforms.

vt = 14:9 + 0:55mt � 1:07p̂t � 0:75~pt (3.5.3)

� = 0:12

The long-run relationship between consumer usage, merchant acceptance and

the bene�ts of transacting on the Visa and Diners Club platform is given by

equation (3:5:3). All prior conditions regarding the signs of the parameters are

satis�ed. The �rst condition of network e¤ects in the Bill Payments market is met

with the parameter of merchant acceptance being positive. More speci�cally, a

one percent increase in the merchant acceptance of BPAY is expected to increase

consumer usage by 0:55% in the long run. As expected, the impact of alternative

platforms to BPAY increasing the bene�ts to consumers has a long-run negative



3. Competition in the Bill Payment Market 93

e¤ect on volume. A one percent increase in the bene�ts to the usage of the Visa

and Diners Club platform is expected to decrease consumer usage on the BPAY

platform by 1:07% and 0:75% respectively, other things being held constant.

The results indicate that the growth of the BPAY platform has been driven

by the actions of competing platforms. The magnitude of the parameter asso-

ciated with Visa is almost twice that of merchant acceptance. The downward

trend in interchange fees and, thereby, the fall in bene�ts to consumers, has

had a positive e¤ect on the volume of transactions placed with BPAY. The Bill

Payments market appears competitive, with consumers being price sensitive to

other platforms in the Bill Payment market, as re�ected by the magnitude of

the cross-price elasticities of VISA and Diners Club.

To increase future volume BPAY has two options; increase merchant accep-

tance, or provide bene�ts (additional value) to consumers relative to alternative

platforms. Increasing merchant acceptance increases the demand of consumers

to use the BPAY platform, as predicted by the network e¤ects that are expected

to exist in the Bill Payments market. It is important to observe that the cross-

price elasticities of Visa and Diners Club for the consumers of BPAY can be

considered symmetric, in that these are bene�ts relative to BPAY. For example,

the RBA notes in the 2010 Payments System Annual Report that the average

bene�t provided to consumers that hold a standard credit card that o¤ers re-

wards is approximately 0:67% of the value of the transaction. Assuming BPAY
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o¤ers consumers modest bene�ts, such as 0:1% of the value of the transaction,

the attractiveness of the Visa platform falls and is equivalent to Visa directly

decreasing the bene�ts to consumers by 0:1%.

Figure 3.5.3.1. The Disequilibrium Error of Consumer Usage.
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Figure 3.5.3.1 illustrates the disequilibrium error given by the long-run re-

lationship of consumer usage (et = vt � (14:9 + 0:55mt � 1:07p̂t � 0:75~pt)). The

adjustment coe¢ cient is quite low at 0:12, meaning 12% of the disequilibrium

error is made up in the following period. Hence, consumer usage does not adjust

quickly back to equilibrium following deviations from the equilibrium relation-

ship. Figure 3.5.3.1 indicates, that for the past several quarters, consumer usage

has consistently been greater than what is predicted by the cointegrating rela-

tionship. It is expected that in future periods, the disequilibrium error will mean

revert and consequently, consumer usage will be less than that predicted by the

cointegrating relationship of equation (3:5:3).
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3.5.3.2 Merchant Acceptance

�mt = 0:02� 0:41et�1 � 0:16�mt�1 � 0:03�vt�1 � 0:53�pt�1 �(3.5.4)

(3:2) (�5:7) (�1:03) (�0:25) (�0:64)

0:18�p̂t�1 � 0:12�~pt�1 + "t

(�2:8) (�1:34)

R2 = 0:65; LM-Stat = 17; FH0:�i=0 8 i = 6:4

Equation (3:5:4) is the �rst of a system of equations estimated via a VECM.

There is no evidence of autocorrelation and the model as a whole is valid, with

the null hypothesis associated with �i = 0 8 i being rejected at the 5% los.

Autocorrelation was tested up to two lags, by applying a LM test. The p-value

associated with the observed test statistic of 17 equaled 0:84, implying the errors

are not serially correlated. The critical F-statistic to test whether the model is

empirically valid at the 5% los is 2:55, while the observed F-statistic given by

equation (3:5:4) is 6:4. Hence the model is empirically valid. The data �ts the

model well with 65% of the variation in the growth of merchant acceptance being

explained by the model. Equation (3:5:5) provides the ADRL representation of

the merchant acceptance ECM above.

mt = �1:91� 0:03vt � 0:53pt � 0:18p̂t � 0:12~pt + 0:76vt�1 (3.5.5)

�0:05pt�1 + 0:6p̂t�1 + 0:32~pt�1 + 0:43mt�1 + 0:16mt�2 + "t
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The short-run changes in merchant acceptance are all negative to changes in

volume and the merchant fees of BPAY, Visa and Diners Club. It is expected

that a one per cent increase in consumer usage is expected to decrease merchant

acceptance initially by 0:03%; other things being equal. An increase of one

percent in the merchant fee of BPAY is expected to decrease merchant acceptance

by 0:53%, other things being constant. Additionally, a one percent increase in

the merchant fees of Visa and Diners Club are expected to decrease merchant

acceptance by 0:18% and 0:12% respectively, holding all other factors constant.

mt = �4:69 + 0:75vt � 0:27pt + 0:53p̂t + 0:27~pt + "t (3.5.6)

� = 0:41

The long-run relationship between merchant acceptance, volume and the mer-

chant fees of all platforms is given by equation (3:5:6). In the long-run, a one

percent increase in volume is expected to increase merchant acceptance by 0:75%.

Hence, as the coe¢ cient of volume is positive, the second condition for the exis-

tence of network e¤ects is satis�ed in the Bill Payments market. Thus, it can be

concluded that volume increases with merchant acceptance from equation (3:5:3)

and merchant acceptance increases with volume, as shown by equation (3:5:6).

A second observation can be made in reference to the magnitude of the net-

work e¤ect parameters, given by equations (3:5:3) and (3:5:6). Currently, the

allocation of costs between end-users in the Bill Payments market is weighted
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towards the merchant. The results given by the two demand functions of con-

sumer usage and merchant acceptance support the decision of payment platforms

to have merchants subsidise the cost of consumers using the platform. This is

supported by the parameter of volume in equation (3:5:6) being greater than

the parameter of merchant acceptance in equation (3:5:3). Therefore, consumers

have a greater in�uence on merchant acceptance than does merchant accep-

tance on consumer usage. Thus, the bill payment platform is directed to entice

consumers to use the platform in order to increase merchant acceptance. The

platform does so by having merchants subsidise the cost of consumers using the

platform. For example, BPAY has no usage and joining fees for consumers to

pay their bills, however merchants are required to pay merchant fees and a cost

for subscribing to the platform.

Its interesting to observe that the short-run e¤ect of an increase in the mer-

chant fee of BPAY is much greater than the long term e¤ect of such a change.

The immediate impact of increasing the merchant fee of BPAY by 1% is an

expected decrease of 0:53%, other things being held constant. However the long-

term change in merchant acceptance is a decrease of 0:27%. The increase in

merchant acceptance after the initial fall from an increase in merchant fees sug-

gest merchants react quickly to changes in the cost of payment instruments. This

result may be explained by the expected network e¤ects within the Bill Payments

market and competition between merchants to attract marginal consumers.
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Marginal consumers are a segment of a market that views merchants in a

selected industry equally and di¤erentiates according to the payment options

available. In a competitive market, merchants price goods and services at similar

prices that don�t vary considerably across merchants. Merchants therefore try to

attract consumers by o¤ering their preferred payment method; thereby providing

incentives for merchants that didn�t o¤er BPAY to join the platform and capture

those marginal consumers. Consequently, the merchant that withdraws from the

BPAY platform may re-join the platform to attract those marginal consumers

back to the merchant.

The cross-price elasticity of demand for merchant acceptance shares similar

attributes to that of the price elasticity of BPAY. There is a clear distinction be-

tween the short-run and long-run impact on merchant acceptance from a change

in merchant fees. The initial e¤ect of a increase in the merchant fees of Visa and

Diners Club is a fall of 0:18% and 0:12% in the merchant acceptance of BPAY.

Whereas the long-run e¤ect of a increase in the merchant fees of Visa and Din-

ers Club is an increase in the merchant acceptance for the BPAY platform of

0:53% and 0:27%, respectively. This slight fall in demand may be in response by

merchants to decrease the overall costs of payment instruments made available

to consumers in the short term. However, merchants that may not have o¤ered

BPAY previously will have incentives to do so due to the cost of o¤ering the

more expensive alternative, VISA and Diners Club, has risen. Therefore, over
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the long-run, merchant acceptance will increase. From a competitive perspective,

if a merchant in a competitive market does not o¤er a particular platform that

others in the market are o¤ering, the perceived value of that merchant declines

and marginal consumers will purchase elsewhere. Thus, those platforms that

initially left the BPAY platform due to the rise in the merchant fees of Visa and

Diners Club may re-join the platform.

The price and cross-price elasticities provide a gauge to how competitive the

Bill Payments market is. The magnitude of the cross-price elasticity of Visa

is almost double that of the price elasticity of BPAY. This implies Visa is a

dominant platform in the market for bill payments. Merchants in aggregate are

therefore more sensitive to changes in pricing from Visa compared to that of

BPAY in deciding whether to join the BPAY platform.

Figure 3.5.3.2. The Disequilibrium Error of Merchant Acceptance

.15

.10

.05

.00

.05

.10

.15

4 6 8 10 12 14 16 18 20 22 24 26 28 30

Figure 3.5.3.2 illustrates the disequilibrium error of the long-run relationship

of merchant acceptance for the BPAY platform. The disequilibrium error is
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the di¤erence between the actual merchant acceptance and that predicted by

merchant demand equation (3:5:6). The adjustment coe¢ cient is reasonably

high at 41%, hence 41% of the disequilibrium error is made up in the following

period. Thus, merchant acceptance adjusts quickly back to equilibrium following

deviations from the equilibrium relationship. Between June 2006 and December

2010 the disequilibrium error has been quite low, �uctuating around zero. Thus

implying, no shocks have occurred in recent times and the model has explained

variations in merchant acceptance well.

3.5.4 Impulse Response Functions

Following the establishment of cointegration in the demand functions of con-

sumer usage and merchant acceptance, impulse response functions (IRF) were

estimated from their respective VECM. The IRF of consumer usage and mer-

chant acceptance were estimated from the VECM of equations (3:5:1) and (3:5:4),

respectively. The graphs to follow provide a visual representation of the partial

lagged response of consumer usage and merchant acceptance to a unit standard

deviation innovation from all variables that are contained in their respective

demand functions, and themselves.
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3.5.4.1 Consumer Usage

Figure 3.5.4.1: IRF of Consumer Usage.

The impulse response functions of consumer usage to shocks to the variables

that de�ne its demand equation are shown in Figure 3.5.4.1. The e¤ects of the

majority of shocks on consumer usage die out after 12 quarters, as displayed by

the �attening of the curves of all variables in Figure 3.5.4.1. Consumer usage

displays a positive and permanent increase of approximately 3% from a shock to

its own series. An innovation to merchant acceptance results in a long-run in-

crease of 2:4%: More interesting is the response of consumer usage from a shock
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to the bene�ts of Visa and Diners Club. Consumer usage falls 1:7% over 8 quar-

ters, before improving 0:13% over the next successive 6 quarters. The response

of consumer usage to a shock to Visa then dies out after the 14th quarter for an

overall decrease of 1:57% in volume. This suggests consumers react strongly to

the increase in bene�ts from Visa and act irrationally by placing a sub-optimal

volume of transactions on the Visa platform. As the ability of consumers to

realise the bene�ts relies on the capability of a consumer to be a transactor

(not pay interest on required payments), consumers increase their usage of the

BPAY platform after changing payment habits. In doing so, consumers decrease

their minimum repayments on their credit card and bene�t from the increase in

rewards being o¤ered by the Visa platform.

In contrast, a shock to Diners Clubs bene�ts cause consumer usage to rise,

then fall sharply in the �rst two quarters. Consumer usage then improves for

the following 12 quarters for an overall increase of 0:09%. The positive response

to consumer usage from a shock to the bene�ts of Diners Club is against prior

expectations, however, the magnitude of the increase is not substantially di¤erent

from zero. This is consistent with the views of BPAY, who view Visa as their

main competitor.
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3.5.4.2 Merchant Acceptance

Figure 3.5.4.2: IRF of Merchant Acceptance.
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The merchant acceptance impulse response functions to shocks to the vari-

ables that de�ne its demand equation are shown by Figure 3.5.4.2. The e¤ects

of the majority of shocks on merchant acceptance become negligible after 16

quarters, as shown by the �attening of the curves of all variables in Figure

3.5.4.2. There is a immediate increase of 1:4% in merchant acceptance following

an innovation to its time-series. Following the �rst quarter, merchant accep-

tance consistently falls from the initial increase for the next 8 quarters and has

a long-run e¤ect of increasing merchant acceptance by 0:4%. Over the �rst 3

quarters, merchant acceptance displays a sharp increase of 1:3% from a shock to

consumer usage. The response of merchant acceptance to the shock of consumer

usage then falls for the next 5 quarters before stabilising for an overall increase

of 0:8%. Of more note is the response of merchant acceptance to shocks to the

merchant fee of BPAY and its competitors in the Bill Payments market.

An innovation to the merchant fee of BPAY is consistent with the �ndings

from the VECM; merchant acceptance decreases sharply following an increase to

merchant fees, however, following this fall, merchant acceptance improves over

the long-term for a smaller overall decrease in merchant acceptance. It decreases

by 0:65% in the �rst 3 quarters following a shock then improves 0:4% between

quarters 4 and 7, before stabilising for an overall decrease of 0:33%. Thus, there

is support for the hypothesis that merchants will react too quickly to movements

in the merchant fees of BPAY and leave the platform, and subsequently re-join
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to o¤er the platform to consumers. The response of merchant acceptance to an

innovation to the merchant fees of Visa meets prior expectations with a positive

overall response. Following the shock to the merchant fees of Visa, merchant

acceptance rises sharply by 1:5% over 5 quarters, then stabilisers in successive

quarters for an overall increase of 1:18% in merchant acceptance over the long

term. Once again, the e¤ect of a shock to Diners Clubs merchant fees is against

prior expectations, with merchant acceptance falling. However, the long term

e¤ect of such a fall is small in magnitude.

3.6 Conclusion - Competition in the Bill Pay-

ments Market

This paper has developed a model for consumer usage and merchant acceptance

to test for the presence of network e¤ects in the Bill Payments market. Using

data from the RBA and proprietary data provided by BPAY between March 2003

and December 2010, Johansen�s maximum likelihood procedure was employed to

estimate and test for a cointegrating vector in the demand models of consumer

usage and merchant acceptance. In comparison to earlier studies, like that of

Rysman (2007), the endogeneity that network e¤ects imply in two-sided markets

is accounted for by the vector autoregressive framework. Additionally, this is the

�rst study to estimate price elasticities and cross-price elasticities of a platform
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in the Bill Payments market.

The results indicate the existence of a network e¤ect between consumer usage

and merchant acceptance in the Bill Payments market. Consumer usage is more

valuable to the BPAY platform as consumers�e¤ect on merchants is greater than

that of merchant acceptance on consumer usage. There is also a clear distinction

between short-run and long-run e¤ects from changes to the variables that de�ne

the consumer usage and merchant acceptance demand models. The pricing elas-

ticities indicate the Bill Payments market is competitive, with consumers and

merchants reacting strongly to changes in the bene�ts and merchant fees. The

next logical step is to investigate the drivers of transactions for consumers and

merchant acceptance from a microeconomic perspective.



Chapter 4

Survival Analysis of BPAY

Consumers

4.1 Introduction

The market for payments in Australia has undergone substantial change over the

last decade. Central bank intervention, internet connectivity and technological

advancement has accelerated the use and the growing importance of electronic

payment methods. The market for bill payments is a derivative of the market for

payments. The bene�ts of the adoption of electronic payment methods for the

economy is documented in Humphrey et al. (2003). Cost savings and time costs

associated with substituting paper based payment instruments with electronic

methods, such as that of BPAY and direct debit, are signi�cant and the speed

of adoption is not uniform across di¤erent countries.

107
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Milne (2006) develops a model that seeks to describe the di¤erences in adopt-

ing technological advancement in the market for payments in Eastern European

countries, United States of America and the United Kingdom. The take-up of

a new technology requires banks to coordinate and share costs in establishing

the platform. As such, what is predicted by the model is a highly concentrated

banking market with coordination amongst the banks and shared pro�t from the

e¢ ciencies that arise. However, there has been insu¢ cient research into the fac-

tors at the individual level that determine whether adoption of a new technology

will be successful.

The motivation of this paper is to examine the risk factors of individuals

transacting on an innovative technological bill payments platform. BPAY is a

dominant participant in the Bill Payments market and is a service that is owned

by the major banking institutions in the Australian market. A unique data set

allows the transactions of an individual on the BPAY platform to be followed

over time. Survival analysis is employed to examine to key demographics that

contribute to individuals leaving the BPAY platform by applying semiparametric

models of Cox (1972). In doing so, the hypothesis that technology adoption

in�uences the probability of adopting an alternative technology is also evaluated,

as in Hayashi and Klee (2003), by estimating the e¤ect that having a credit card

has on an individual leaving the BPAY platform.
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4.2 Methodology and Modelling Framework

4.2.1 Data

Daily transaction level data was obtained from BPAY and the Commonwealth

Bank of Australia (CBA) between May 2004 and October 2006. Every trans-

action on the BPAY platform is matched to the unique payer reference number

such that a consumers payment patterns can be tracked over time. In addition,

the demographics attached to the individual were supplied by the CBA. In order

for an individual to be included in the data set, a CBA bank account must be

held, otherwise the individual is not observed.

The data consists of over 100 million recorded transactions being made by

approximately 1:8 million individuals. The transaction related data include the

payment method, payment value and merchant. Demographic information of

the individuals in the data include gender, date account opened, credit card

ownership, location and the bank segment of which the individual is part of

within the bank.

The characteristics of the data set are unique in the sense that an individual

can be tracked for 30 months. In that time individuals �rstly initiate the use of

the BPAY platform by making their �rst payment, either by phone or internet

banking. Of main interest is when an individual ceases to transact on the BPAY

platform. To establish the context of the data to be examined, the characteristics

of the Bill Payments market needs to be re�ected in the data to ensure the



4. Survival Analysis of BPAY Consumers 110

survival analysis results are not misleading.

The Bill Payments market in Australia is highly concentrated. The platforms

available to consumers include paying with cash at a post o¢ ce, direct debit,

credit cards and BPAY. The frequency of receiving a bill is dependent on the

nature of the goods and services obtained. Infrequent bills include payments for

council rates, parking �nes, car insurance premiums and tax payments. Whereas,

bills that consumers receive more frequently include telephone line rental, credit

card usage and mobile phone carrier charges. Thus, to classify an individual as

leaving the BPAY platform, a time period of at least three months needs to con-

sidered in the decision rule in order to classify such an individual. Accordingly,

this is the classi�cation period used in this paper. The frequency of the data to

be considered is monthly. Consequently, the timing of the bill payment is highly

accurate and the issue of interval censoring is not applicable to estimation.

Event-time analysis depends heavily on the order of the data and the time

period attached to an individual is highly important. Given that an observa-

tion window of 30 months is available, the issue of left truncation needs to be

addressed such that results are not overly biased. Left truncation arises from

delayed entry and, as a result, length of time any individual has been using

the BPAY platform cannot be accurately deduced. Hence, the ordering of the

individuals based on their survival time renders event-time analysis subject to

bias.
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To overcome the issue of left truncation, it has been suggested in the literature

to remove all those individuals that have the potential for delayed entry. The

resulting hazard ratios of the Cox (1972) semiparametric model can then be

considered unbiased, but there will be a loss of e¢ ciency as some individuals will

be removed from the data set. Given the lowest frequency a bill can be received

is six months and to have results that are e¢ cient, only those individuals that

place their �rst transaction on the BPAY platform after the �fth month will

be included in the data set and be analysed using survival analysis models and

methods. An individual that ceases to use the BPAY platform over the last three

months of the data is classi�ed as having left the BPAY platform. Even though

billing frequencies may be as long as six months, it is highly unlikely no other

bills would be received with greater frequency.

Figure 4:2:1 illustrates the procedure of re�ning the data set to include only

those individuals that �t the decision rule criteria. Both consumer �A� and

�B�place their last transaction on the BPAY platform during July 2006 and

be classi�ed as having left the platform. However, only consumer �B�will be

included in the data set as this consumer places their �rst transaction on the

platform in the observational window. Consumer �A�places his �rst transaction

at the beginning of the observational window. Even though it will be more

e¢ cient to include individual �A�, it can�t be determined that this is indeed

their �rst transaction and, therefore, they are excluded from the analysis. All
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individuals that place their �rst transactions on the BPAY platform between

April 2004 and August 2004 will be removed from the data set, resulting in a

loss of e¢ ciency in estimating the hazard parameters. Unfortunately, this loss

of e¢ ciency is unavoidable.

Figure 4:2:1. Data Selection

The introduction of systematically identifying new customers on the BPAY

platform and customers that have left the platform is subject to two limitations.

Firstly, an individual may hold multiple bank accounts. At any given time,

an individual can choose to pay bills via the BPAY platform with a �nancial

institution other than the CBA. Such an individual will be classi�ed as having left

the BPAY platform if the individual does not transact over the BPAY platform

in the last three months. Secondly, the bank account of a given individual may

be closed over the observational window. And lastly, an account may be idle if an

individual becomes deceased during the time period. The limitations attached to

the data set in identifying individuals that leave the BPAY platform causes the

number of individuals estimated to have left the platform to be over-estimated.



4. Survival Analysis of BPAY Consumers 113

However, given the large size of the data set, such resultant biases in the results

will be minimal.

The motivation of the paper is to model the time individuals use the BPAY

platform. The demographics attached to the individuals in the data allow the use

of semiparametric models to be estimated to determine the in�uence of covariates

on survival time. The Cox (1972) proportional hazard (PH) model will be used

to model time to failure as provided by the following hazard function:

h (t; x; �) = h0 (t) exp (x
0�) (4.2.1)

where h0 (t) = Baseline hazard function

x0 = Vector of covariates

� = Vector of regression coe¢ cients.

Two alternatives of model (4:2:1) are used to model failure time. The �rst

is a �xed Cox (1972) PH model incorporating only �xed covariates. The second

model is a mixed Cox (1972) PH model incorporating both time-varying and

�xed covariates. The �xed covariates and time-varying variables to be included

in equation (4:2:1) are listed below:

� Age

� Gender

� State
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� Banking segment. This includes retail, premium banking and wealth man-

agement

� Dummy variable indicating whether an individual holds a credit card with

the bank

� Number of transactions processed in the current period.

Table 4:2:1. BPAY Consumer Classi�cations

Total Transactions De�nition

1 One-O¤

1 to 8 Very Light

9 to 48 Light

49 to 120 Average

121 to 240 Medium

> 240 Heavy

Table 4:2:1 classi�es the categorical variable that serves as the proxy for the

number of transactions placed on the BPAY platform of individuals. The proxy

for the number of transactions placed by individuals is utilised in the �xed model.

Whereas, the number of transactions placed per month on the BPAY platform

is incorporated in the alternative model to be estimated.

Individuals that placed a single payment on the BPAY platform are removed

prior to modelling. One-o¤ payers cannot be considered to be BPAY consumers
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as such behaviour suggests that the payer has no alternative payment platforms

from which to pay their bill.

4.2.2 Survival Analysis

Survival analysis involves analysing the time to an event of interest. Modelling

time to an event presents challenges to conventional regression methods in de-

termining the impact covariates have on survival time. For example, consider

the following ordinary least squares (OLS) approach to analyse survival time:

tj = �0 + �1xj + "j, j = 1; 2; :::; n (4.2.2)

tj � N
�
�0 + �1xj; �

2
�

where tj is time to an event and xj is the sole explanatory variable. The as-

sumption of normality in the errors is incorrect. Firstly, if the risk of the event

occurring is constant over-time, an exponential distribution is more appropriate.

Secondly, time to an event is strictly positive, whereas the normality assump-

tion places a positive probability on negative values of time. Thus, an entirely

di¤erent modelling framework is required in event time analysis.

The unique characteristics of event time analysis have developed models and

methods that can be classi�ed as either nonparametric, parametric or semi-

parametric. Equation (4:2:2) is completely parameterised, the e¤ect of time

is assumed normal and the covariate variable, xj, is a linear function of time.
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Specifying di¤erent distributions for time results in di¤erent covariate parame-

ter estimates in a parametric model, a cause for concern as parameter estimates

associated with the explanatory variables is the primary interest in modelling

event time data in this thesis. Whereas, semiparametric modelling imposes no

restriction on the distribution of time and time serves no purpose other than the

ordering of the data. The covariates in equation (4:2:2) however, are parame-

terised by assigning a functional form.

Nonparametric models make no assumption regarding the distribution of time

and explanatory variables. For example, the Kaplan and Meier (1958) method

to estimate the probability of survival past a certain time or to compare the

survival probability of each qualitative covariate is popular in the literature.

Nonparametric and semiparametric methods account for censoring and other

characteristics unique to survival data.

In a parametric model, assuming the distribution for the time to event or

failure time is correctly speci�ed, the parameter estimates associated with the

covariates are more e¢ cient than the semiparametric or nonparametric approach.

The time between failures is informative in a parametric model, whereas time

simply orders the survival data in a semiparametric model. However, due to the

risk of incorrectly specifying the distribution of failure time, a semiparametric

approach is employed.
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4.2.3 Describing the distribution of failure times

4.2.3.1 The Survival and Hazard Functions

Let T be a nonnegative random variable denoting the time to the event. Rather

than referring to T 0s probability density function, f (t), or the cumulative density

function, F (t) = Pr (T � t), it is convenient to refer to T 0s survivor function.

The survivor function is simply the complement of the cumulative distribu-

tion function (cdf) of T :

S (t) = 1� F (t) (4.2.3)

= Pr (T > t)

The survivor function reports the probability of surviving beyond time t, or the

probability that there is no failure event prior to t. The function is equal to 1

at t = 0 and decreases to 0 as t ! 1. The survivor function is a monotone,

nonincreasing function of t.

The density function, f (t), can be obtained from either S (t) or F (t):

f (t) =
dF (t)

dt
=
d

dt
(1� S (t)) = �S 0

(t) (4.2.4)

The hazard function, h (t), also known as the conditional failure rate, is the

instantaneous rate of failure. It is the limiting probability that the failure event

occurs in a given interval, conditional upon the subject having survived to the

beginning of that interval, divided by the length of the interval with 1=t units.
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h (t) = lim
�t!0

Pr (t+�t > T > tjT > t)
�t

=
f (t)

S (t)
(4.2.5)

The hazard rate can vary from 0 with no risk at all, to 1, with certainty of

failure at that instant. Over time, the hazard rate can increase, decrease, remain

constant, or take any unique shape through time. It is the underlying process of

the event of interest that determines the shape of the hazard function.

Given one of the four functions that describe the probability distribution of

failure times, the other three are completely determined. The cdf of the hazard

function is given by:

H (t) =

Z t

0

h (u) du (4.2.6)

=

Z t

0

f (u)

S (u)
du

= �
Z t

0

1

S (u)

�
d

du
S (u)

�
du

= � ln fS (t)g

The cumulative hazard function measures the total amount of risk that has

been accumulated up to time t. There is an inverse relationship between the

accumulated risk and survival. We can now conveniently write:

S (t) = exp f�H (t)g (4.2.7)

F (t) = 1� exp f�H (t)g

f (t) = h (t) exp f�H (t)g
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4.2.4 Characteristics of Survival Time Data

Censoring and truncation are common characteristics of survival time data. To

distinguish among the di¤erent types of censoring and truncation that apply to

the BPAY consumer transaction data, it is important to de�ne the onset of risk

and the observational window.

Figure 4:2:4 (a). Snapshot of Consumers in Calender Time
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All transactions by CBA customers placed on the BPAY network are observed

between April 2004 and October 2006. The onset of risk, t = 0, is de�ned as the

moment an individual places his �rst transaction on the BPAY platform. After

which, the individual is at risk of leaving the BPAY platform.

The four individuals captured by �gure 4:2:4 (a) characterise the di¤erent

types of censoring and truncation that is observed in the data set. The �rst

individual places his �rst transaction on the BPAY platform in April 2004; and

subsequently stops using the platform by October 2004. Then the �rst individual
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is fully observed in the data set. It is assumed for individual one that, if no

further transactions are captured in the data set, they have left the platform.

There may be instances of individuals changing �nancial institutions and being

classi�ed as leaving the BPAY platform. In these cases, being classi�ed as right

censored is more appropriate. However, information surrounding whether the

departure of an individual from the study is attributed to competing events such

as death, changing �nancial institutions, or merging bank accounts is unknown.

Consequently, the study is limited in the sense that the rate of failure, number

of individuals leaving the BPAY platform, will be over-estimated.

On the other hand, individual two�s �rst transaction is not observed in the

data set. That person�s �rst transaction is placed on the BPAY platform in Janu-

ary 2004; before he/she leaves the platform during February 2005. Individual two

is classi�ed as being left-truncated as only those individuals whose event times

lie within the observation window are completely observed. Individual three is

the most common case represented in the data set. Individual three places his

�rst transaction prior to April 2004, and continues to place transactions until the

end of the study. The individual is both left-truncated and right censored as the

event of interest, leaving the BPAY platform, is not observed prior to October

2006. Right censoring is most common in the data as an individual may enter

at any time prior to October 2006, but are not observed beyond that point in

time. The predetermined end time of the observation window is the primary
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cause of the large number of right censored individuals in the study. Individual

four places their �rst and last transaction on the BPAY platform prior to the

observational window and is not observed in the data set. Such cases are known

as right-truncated data.

Figure 4:2:4 (b) denotes the analysis times, t, of all the individuals in �gure

(4:2:4). The onset of risk, t = 0, begins once the �rst transaction is placed

on the BPAY platform. Classifying individuals in event time as opposed to

calendar time is crucial in conducting semiparametric modelling. Arranging

data in calendar time assigns explanatory power to time in the hazard functions

of all individuals. It is plausible to assume that given a set of covariates of several

individuals, their instantaneous risk of leaving the platform at any given point

in time is constant within the 30 month observation window. In addition, the

quantity and quality of the covariates available in the data set further diminishes

the need of analysing the data in calendar time. Consequently, assigning a role

to time.
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Figure 4:2:4 (b). Snapshot of Consumers in Event Time.
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4.2.5 Modelling Event Time Data

Modelling event time data is typically done in the following form:

hj (t; x; �) = f
�
t; �0 + x

0

j�x

�
(4.2.8)

The hazard for individual j is some function f (�) of �0 + x0j�x, with the hazard

being systematically a¤ected by several covariates via the row vector x0j; and the

�x column vector of regression coe¢ cients. Alternatively, there is the option to

model event times directly:

tj = �0 + x
0
j�x + "j

or

ln (tj) = �0 + x
0
j�x + "j

There is a one-to-one mapping relationship from distributions to hazard func-



4. Survival Analysis of BPAY Consumers 123

tions. Consequently, the distributional assumption chosen for "j, implies the

nature of the hazard function. However, event times are commonly modelled by

equation (4:2:9) in order to incorporate semiparametric models:

hj (t; x; �) = somefunction
�
h0 (t) ; �0 + x

0

j�x

�
(4.2.9)

where h0 (t) is called the baseline hazard function. That is, the hazard for

individual j is somefunction (�) of the common baseline hazard of all individuals,

modi�ed by the set of covariates for individual j, x0j.

4.2.5.1 Semiparametric Regression Models

A semiparametric model can be expressed as follows:

h (t; x; �) = h0 (t) r (x; �) (4.2.10)

The baseline hazard function, ho (t), characterises how the hazard function changes

as a function of survival time. Whereas, the function, r (x; �), incorporates in-

formation about a set of covariates x and the resulting impact on the hazard

function via the regression coe¢ cients � and functional form r (�). The func-

tional form, r (�), is chosen such that h (t; x; �) > 0. The choice of r (�) may

depend on the characteristics of the data. Three speci�c forms detailed by Feigl

and Zelen (1965) include:

1. r (x; �) = 1 + x0�;

2. r (x; �) = 1
1+x0�
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3. r (x; �) = exp (x0�).

The �rst two functional forms place restrictions on the value of regression

coe¢ cients, �, to ensure h (t; x; �) > 0. The third functional form ensures

r (x; �) > 0 and places no undue restrictions on �. It is the functional form

suggested by Cox (1972); as displayed below:

h (t; x; �) = h0 (t) exp (x
0�) (4.2.11)

From equation (4:2:11), the ratio of the hazard functions for a pair of indi-

viduals with covariate values denoted by x1 and x0 is:

HR (t; x1; x0) =
h0 (t) exp (x1�)

h0 (t) exp (x0�)
(4.2.12)

=
h0 (t) r (x1; �)

h0 (t) r (x0; �)

= exp (� (x0 � x1))

The hazards of the pair of individuals are multiplicatively related and constant

over time. The baseline hazard is cancelled in the numerator and denominator

of expression (4:2:12). Consequently, expressing the hazard function as equation

(4:2:11) is known as the proportional hazards or relative risk model. The Cox

(1972) model is �exible in the sense it allows for the presence of �xed covariates,

time-varying covariates and time-varying regression coe¢ cients.

The Cox (1972) hazard function results in the following survival function:
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S (tjx) = exp

�
�
Z t

0

h (tjx) dt
�

(4.2.13)

= exp

�
�
Z t

0

h0 (t) exp (x
0�) dt

�
=

�
exp

�
�
Z t

0

h0 (t) dt

��exp(x0�)
= S0

exp(x0�)

where S0 is an arbitrary baseline survivor function corresponding to x0 = 0.

The above implies that:

ln [� lnS (tjx)] = x0� + ln [� lnS0] (4.2.14)

The logarithms of the negative logarithm of the survival functions of T , for

a set of covariates x; are parallel. This relationship can be used to verify if the

proportional hazard assumption is correct.

4.2.5.2 Cox (1972) Proportional Hazard Model

For simplicity, assume the covariate values of xi are �xed. Let the event time,

covariate and censoring variables be denoted as (ti; xi; ci). The likelihood func-

tion is derived by isolating the impact of the vectors (ti; xi; 1) and (ti; xi; 0) on

the likelihood function in a Bernoulli fashion. The former vector refers to in-

dividuals that have left the BPAY platform with exact survival time known to

be t. Therefore, the likelihood function for these individuals will be given by

the density function f (t; �; x) for a given a set of covariate values, xi. For the
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vector (ti; xi; 0), the individual is censored and the survival time is at least ti

units. Their probability is given by the survival function S (t; �; x). Assuming

the survival times are independently and identically distributed, the full likeli-

hood function is given by multiplying the respective contributions of the observed

vectors. This is given by:

f (t; �; x)ci S (t; �; x)1�ci (4.2.15)

where ci = 1 for an individual that leaves the BPAY platform and ci = 0 for

a censored observation. As the observations are assumed to be independent,

the likelihood function is the product of the expression (4:2:15) over the entire

sample and is denoted by,

l (�) =
nY
i=1

�
[f (ti; �; xi)]

ci [S (ti; �; xi)]
1�ci	 ; (4.2.16)

or by the log likelihood function,

L (�) =
nX
i=1

fci ln [f (ti; �; xi)] + (1� ci) ln [S (ti; �; xi)]g

The monotone shape of the log function will yield the same vale for � as

that for the likelihood function in equation (4:2:16). However, it is computa-

tionally e¢ cient to maximise the log likelihood. The procedure to obtain values

of the maximised log likelihood function (MLE) involves taking the derivative of

(4:2:16) with respect to �, setting the partial derivative to zero and solving for

�. Rearranging equation (4:2:5), yields:

f (t; x; �) = h (ti; �; xi)� S (ti; �; xi)
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It follows from equation (4:2:5) and (4:2:16) that:

L (�) =

nX
i=1

fci ln [ho (ti)] + cixi� + exp (xi�) ln [S0 (ti)]g (4.2.17)

Full information likelihood requires that we maximise (4:2:17) with respect to

the unknown parameter of interest, �, and the unspeci�ed baseline hazard and

survival functions. Kalb�eisch and Prentice (2002) discuss in detail why it is

not possible to use the log-likelihood function in (4:2:17). Cox (1972) suggests

�nding estimates of the value of � by forming partial likelihood functions. The

de�nition and some properties of partial likelihood functions, along with the

estimation of the survival function are explained in detail in Appendix C

4.2.5.3 Regression Diagnostics

Any model must be assessed to determine whether the assumptions underlying

the model are satis�ed and the model best �ts the data. The PH model is no

di¤erent, the primary assumption of constant proportional hazards over time

must be satis�ed, otherwise the results can be misleading. Other aspects of the

model to be checked include examining the functional form of the covariates, the

leverage on covariate coe¢ cients of individuals in the study and the prediction

accuracy of individuals leaving the BPAY platform.

The combination of data, model and likelihood framework utilised to estimate

parameter values, �, causes the de�nition attached to a residual di¢ cult in

comparison with OLS or binary regression. For example in time to event analysis,
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for those individuals that are censored, there is no alternative for the observed

minus predicted residual used as in OLS. There is no obvious method to de�ne

a residual in a PH model due to censoring and the use of partial likelihoods to

obtain parameter estimates. As a consequence, several residuals are proposed by

the literature to evaluate di¤erent measures of model adequacy in a PH Model.

In summary, Cox-Snell residuals are used to examine how the model �ts

the data overall. Score and scaled form residuals can be used to assess lever-

age of speci�c individuals on parameter estimation, while martingale residuals

are useful in determining the optimal functional form of the covariates in the

model. Scaled Schoenfeld residuals are commonly used to evaluate whether the

proportional hazards assumption is correct.

Residuals Schoenfeld (1982) was one of the �rst to propose a residual to ac-

company the PH model. Schoenfeld residuals are based on the individual contri-

butions to the derivative of the log partial likelihood. Assume there are n inde-

pendent observations of time, p covariates and a censoring indicator provided by

the vector (ti; xi; ci), with i = 1; :::; n; and ci = 1 for uncensored observations and

zero otherwise. According to equation (C:6), the derivative for the kth covariate
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is expressed as:

@ logL

@�k
=

kX
j=1

ci

26664xjk �
X
`2R(tj)

x0`k exp [x
0
`�]X

`2R(tj)

exp [x0`�]

37775 (4.2.18)

=
kX
j=1

ci [xjk � �xwik]

The estimator of the Schoenfeld residual for the ith subject on the kth covariate

is derived from equation (4:2:18) by substituting the partial likelihood estimator

of the parameter, �̂:

@ logL

@�k
=

kX
j=1

ci

26664xjk �
X
`2R(tj)

x0`k exp
h
x0`�̂
i

X
`2R(tj)

exp
h
x0`�̂
i
37775 (4.2.19)

=
kX
j=1

ci [xjk � x̂wik]

As the solution to � involves setting the value of equation (4:2:18) to zero, the

sum of the Schoenfeld residuals is zero. Additionally, the Schoenfeld residuals

are equal to zero for all individuals that are censored.

Grambsch and Therneau (1994) propose scaling the Schoenfeld residuals by

an estimator of its variance and this results in a residual with greater diagnostic

power than their unscaled counterparts. Let the vector of p Schoenfeld residuals

for the ith subject be expressed as r̂0i =
�
r̂0i1; :::; r̂

0
ip

�
; where r̂0ik is the estimator

provided by equation (4:2:19). Let the estimator of the (p� p) covariance matrix

of the residuals for the ith subject be denoted by V̂ (r̂i), with the estimator
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missing if the individual is censored. The vector of scaled residuals is given by:

r̂�i =
h
V̂ (r̂i)

i�1
r̂i (4.2.20)

Grambsch and Therneau (1994) suggest using an approximation to equation

(4:2:20) in estimating scaled Schoenfeld residuals. The intuition underlying the

approximation involves the observation that the distribution of V̂ (r̂i) is rela-

tively constant over time. This observation is true whenever the distribution of

the covariates are similar in di¤erent risk sets. This assumption simpli�es the

estimator for the scaled Schoenfeld residuals and is provided below:

r̂�i = mV
�
�̂
�
r̂i (4.2.21)

where m is the number of events.

The counting process formulation of time to event analysis derives the next

set of residuals used in evaluating the PH model. Assume a sole individual with

covariates x is observed from time zero: The counting process representation of

the PH model counts whether the event occurs at time t and is denoted by:

N (t) = � (t; x; �) +M (t) (4.2.22)

where N (t) is the count that represents the observed part of the model that is

equal to zero until the event occurs and equals one thereafter, � (t; x; �) is the

systematic component of the model and M (t) is the error component. Thus,

function N (t) attains its maximum value at the end of follow-up and is equal

to its censoring indicator variable. Hosmer et al. (2008) show the systematic
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component of the model is equal to the cumulative hazard at time t under a PH

model. Hence, equation (4:2:22) can be expressed as the following:

N (t) = H (t; x; �) +M (t) (4.2.23)

The function M (t) in equation (4:2:23), under suitable mathematical assump-

tions, is a martingale and is the error component of the model with zero mean.

The most appropriate time to compute the martingale residual is at the end of

follow up and substituting the partial likelihood estimator of � yields:

M̂i (t) = ci � Ĥ
�
t; x; �̂

�
(4.2.24)

In an alternative derivation of the martingale residuals using the counting process

approach, the next set of residuals is obtained. Assume for simplicity that there

are tied event times and the value of the baseline hazard and cumulative baseline

hazard at time ti are provided by:

h0 (ti) =
ciX

j2R(i)

exp
�
x
0
j�
� (4.2.25)

H0 (ti) =
X
tj�ti

h0 (tj) (4.2.26)

It follows that the derivative in (4:2:18) may be expressed as:

nX
i=1

xik [ci �H (ti; x; �)] (4.2.27)

The score residuals are obtained by transforming the martingale residuals of

equation (4:2:27). The derivation for the score and scaled score residuals are
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provided in Hosmer et al. (2008). The computational formula for the vector of

score residuals, L̂i =
�
L̂i1; :::; L̂ip

�
;is given by:

L̂ik = ci (xik � x̂wik)�xikĤ
�
ti; x; �̂

�
+exp (x0i�)

X
tj�ti

x̂wjk
cjX

l2Rj

exp (x0l�)
(4.2.28)

The scaled score residual are de�ned as follows:

L̂�
0

i = V
�
�̂
�
L̂i (4.2.29)

Evaluating the Proportional Hazard Assumption The PH assumption

allows the covariates to completely describe the risk factors of the survival time

of individuals without parameterising the e¤ect of time. Assuming there is a

binary covariate, xj, the PH assumption describes the ratio of the hazards for

xj = 1 and xj = 0 to be constant through time. It is the deviation from this

constant relationship that is used in examining the PH assumption.

Grambsch and Therneau (1994) consider the following model to test the

assumption of PH:

ln [h (t; x; �)] = ln [h0 (t)] + x
0�j (t) (4.2.30)

�j (t) = �j + jgj (t)

where gj (t) is some function of time. Equation (4:2:30) allows the e¤ect of

any covariate to vary over time. In the event that the PH is incorrect, the

parameter j in equation (4:2:30) is statistically signi�cant and di¤erent from

zero. As an alternative test, Grambsch and Therneau (1994) deduce that the
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scaled Schoenfeld residuals in equation (4:2:20) or their approximation have the

following mean for the jth covariate:

E
�
r�j (t)

�
~=jgj (t) (4.2.31)

Equation (4:2:31) suggests graphing the scaled Schoenfeld residuals against gj (t)

can provide an informal test of the PH assumption. Assuming that PH is correct,

the graph should have zero slope. Grambsch and Therneau (1994) propose a

formal test by formulating a generalised least squares estimator of the coe¢ cients

and a score test of the hypothesis that j = 0. A variety of functions for

gj (t) have been suggested and these include gj (t) = ln (t) ; gj (t) = t; gj (t) =

H0 (t) and gj (t) = rank (t). Simulated results in Quantin et al. (1996) and

Ng�andu (1997) show the functional form given by gj (t) = ln (t) yields a test

with associated power that is as high as alternative functions of time.

4.3 Results

A total of 581; 063 individuals remain in the data set once individuals are �l-

tered, as explained in section (4:2:1) and one-o¤ payers are removed. Overall,

10; 334; 634 transactions were recorded between September, 2004 and July, 2006;

while 179; 922 payers left the BPAY platform during the study.
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4.3.1 Descriptive statistics

Figure1 4:3:1 (a) illustrates the rise in the number of consumers leaving the BPAY

platform between September 2004 and July 2006. There is a consistent upward

trend in the number of payers leaving the BPAY platform between September

2004 and March 2006. However, there is an substantial increase in the attrition

of BPAY payers towards the end of the observational period. The number of

payers that left the platform rose from 13; 110 in October 2004 to 29; 723 in

June 2006.. A similar pattern of consumers leaving the BPAY platform when

light users are excluded from the sample is also observed.

Figure 4:3:1 (a). Attrition of BPAY payers
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The upward trend in the number of payers leaving the BPAY platform can be

explained by the increase in the number of consumers in the BPAY market. This

is re�ected in �gure 4:3:1 (b), with the number of active payers in the sample

increasing seven fold between April 2006 and June 2006. A similar pattern is

1Further descriptive statistics can be found in Section 5.3.1 in Chapter 5.
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observed with all consumers excluding those belonging in the very light category

with the number of active payers increasing from 34,000 to 280,000.

Figure 4:3:1 (b). Number of Active BPAY payers
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The rate of attrition amongst active payers of the BPAY platform is re-

�ected in �gure 4:3:1 (c). The proportion of active BPAY consumers leaving

the platform was relatively stable between September 2004 and January 2006,

consistently between 1% � 2%. However, the rate of attrition amongst active

BPAY payers started increasing rapidly beyond January 2006, reaching a peak

of 8% in June 2006. This sudden increase may be just a one-o¤ as it is also

apparent in consumers excluding those belonging in the very light user category.

Hence, the construction of consumers leaving the BPAY platform does not su¤er

from severe measurement error.
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Figure 4:3:1 (c). Proportion of Active payers leaving the BPAY platform
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Figure 4:3:1 (d) denotes the rate that payers leave the BPAY platform be-

tween states. Northern Territory has the highest proportion of BPAY consumers

that leave the BPAY platform with 34% of payers ceasing to further transact on

the platform during the study. Tasmania, on the other hand, has the lowest rate

of attrition with 28:6% of individuals leaving the BPAY platform. The remain-

ing states have similar percentages of payers leaving the platform, with attrition

rates of between 30% and 31:6%, respectively.
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Figure 4:3:1 (d). Rate of Attrition of BPAY payers between States

The percentage of attrition amongst BPAY payers is shown by �gure 4:3:1

(e). Unsurprisingly, there is an inverse relationship between usage of the BPAY

platform and the percentage of attrition within consumer usage categories. Very

light and light users have the highest rates of attrition with 49% and 22% of

payers leaving the platform, respectively. While, average, medium and heavy

payers of the BPAY platform have relatively low rates of attrition with 6%; 3%

and 2%, respectively.
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Figure 4:3:1 (e). Rate of Attrition of BPAY payers between Usage Categories

Figure 4:3:1 (f) depicts the relationship between age and the rate of attrition

of BPAY payers. There is an upward trend between age and the percentage

of payers within that given age category to leave the BPAY platform. Young

BPAY users that are aged less than 21 have the lowest rate of attrition with

27%. Whereas, individuals aged 56 � 65 and greater than 65 have the highest

rates of attrition with 35% and 39%, respectively.
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Figure 4:3:1 (f). Rate of Attrition of BPAY payers amongst Age Categories

Further descriptive statistics are provided in chapter 6.

4.3.2 Cox (1972) Proportional Hazard Model

Two Cox (1972) proportional hazard models are estimated and di¤er through

the proxy used to identify consumer usage. The �xed and mixed Cox (1972)

proportional hazard models can be de�ned by the following set of equations:

h (t; x; �) = h0 (t) exp

0BB@ agei�1 + �
4
j=1�jUsagej + �

7
k=1�kStatej + �2Mi+

�2m=1�mSegmentm + �3Cardi

1CCA
(4.3.1)

h (t; x; �) = h0 (t) exp

0BB@ �1Transit + agei�2 + �
7
k=1�kStatej + �3Mi

+�2m=1�mSegmentm + �4Cardi

1CCA
(4.3.2)
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The base hazard, ho (t), di¤er by the transaction proxy used in equation (4:3:1)

and (4:3:2). The base hazard for equation (4:3:1) comprises of the following:

age = 15

Usage = Very light payer on the BPAY platform.

State = ACT.

Gender = Female.

Segment = Premium Banking.

Card = No credit card.

The base hazard for the mixed model does not contain the variable usage. The

base value for the transactions variable, Transit, is one. Otherwise, the base

hazards of equation (4:3:1) and (4:3:2) are identical.

All variables were introduced and described at the start of section (4:2:1).

The �xed model given in equation (4:3:1) uses consumer type, introduced in sec-

tion (5:3:1:2), to incorporate a covariate for the number of transactions placed on

the BPAY platform. Table 5:3:1:2 (a) in section (5:3:1:2) de�nes consumer types

by total transactions placed on the BPAY platform. The greater the frequency

of usage of the BPAY platform, the less likely a payer will leave the BPAY plat-

form. Hence, it is expected that the parameter value associated with the very

light dummy variable will be greater than that of the light payer, other things

being held constant. This characteristic is expected to hold true as individuals
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are compared across usage categories, from very light to heavy.

The mixed model de�ned by equation (4:3:2) has a time-varying variable to

incorporate consumer usage. It is hypothesised that the greater the number of

transactions an individual places on the BPAY platform in any given month, the

less likely the individual will leave the BPAY platform. Hence, the parameter

value associated with the transaction variable is expected to be negative.

A-priori expectations concerning the value for the parameter value for age is

positive. It is anticipated that younger individuals will appreciate the ease of use

and convenience of paying bills through internet banking. The security concerns

of younger individuals that have grown up adopting new technologies and em-

bracing the internet into every aspect of their lives will be lower in comparison

to that of older Australians. In addition, older individuals may not be aware of

all the bene�ts of using BPAY (such as BPAY view) and having the option of

scheduling bill payments as they may not be as �tech savy�as the young.

The 2006 Census of Population and Housing report, commissioned by the

Australian Bureau of Statistics (ABS), provides the expected parameter values

of the location dummies in equations (4:3:1) and (4:3:2). It can be hypothe-

sised that the greater the internet connectivity of the state in which an individ-

ual resides, the lower the parameter value associated with the location dummy

variables. Findings in the ABS report suggests that the ACT had the highest

internet connectivity with 75%. The ACT is followed by NSW, VIC, QLD and
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WA with approximately 64% of the states having access to the internet. TAS

had the worst rate of internet access with 55%. The ranking of states in relation

to broadband connectivity is identical to that of internet access, with ACT and

TAS being the most and least connected, respectively. Thus, it is expected that

the parameter values in the Cox (1972) proportional hazard models will be all

positive as ACT has the highest internet connectivity. Hence, the likelihood of

an individual leaving BPAY will be lower for an individual that resides in ACT,

in comparison with alternative states. In addition, it is expected TAS will have

the highest parameter value as it is the least connected state to the internet.

The expected parameter values for the gender and banking segment is not

as clear. Banking segment categories may proxy for wealth, with individuals in

the wealth management category being the most wealthy, followed by individ-

uals that are categorised in premium banking and retail payers. However, the

contribution of wealth to risk of leaving the BPAY platform is not clear. It can

be hypothesised that women generally like routine and are, therefore, more resis-

tant than men in changing habits. Thus, it can be expected that the parameter

value for the gender dummy variable will be positive as men are more likely to

change billing payment habits than woman.

Individuals that own credit cards are expected to be less likely to leave the

BPAY platform than individuals that don�t have a credit card. Individuals with

a credit card are more likely to pay their bills electronically and be more tech-
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nologically savy than individuals with no credit card facility attached to their

bank account. In addition, individuals with a credit card can be considered less

likely to change banks, thereby decreasing the bias created from over-estimating

the number of individuals leaving the BPAY platform.
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4.3.2.1 Fixed Covariate Model

Table 4:3:2:1 (a). Fixed Model Proportional Hazard Regression Results

Variable �i ��i z p > jzj 95% C.I

Agei 0:02 0:0001 10:9 0:00 0:001 0:002

Light i �2:64 0:005 �508 0:00 �2:65 �2:63

Averagei �4:64 0:017 �270 0:00 �4:67 �4:6

Mediumi �5:4 0:071 �77 0:00 �5:57 �5:29

Heavy i �5:87 0:29 �20 0:00 �6:43 �5:3

NSW i 0:07 0:16 4:5 0:00 0:4 0:11

NT i 0:16 0:31 5:2 0:00 0:99 0:22

QLD i 0:09 0:17 5:1 0:00 0:05 0:12

SAi 0:11 0:19 5:8 0:00 0:07 0:15

TAS i �0:004 0:02 �0:2 0:86 �0:05 0:04

VIC i 0:05 0:016 3:1 0:00 0:02 0:08

WAi 0:13 0:018 7:3 0:00 0:09 0:16

Malei 0:01 0:005 2:3 0:02 0:001 0:02

Retail i 0:06 0:009 6:8 0:00 0:04 0:08

Wealthi 0:85 0:04 20:5 0:00 0:77 0:93

Card i �0:1 0:005 �21:3 0:00 �0:11 �0:1

Table 4:3:2:1 (a) summarises the regression output of the Cox (1972) propor-

tional hazards model de�ned by equation (4:3:1). All parameters are statistically
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signi�cant and di¤erent from zero at the 5% level of signi�cance, with the ex-

ception of the dummy variable for TAS. The majority of the parameters satisfy

the a-priori expectations established in section (4:3:2).

The estimated parameter for age is strictly positive, implying the older an

individual, the greater the likelihood of leaving the BPAY platform, holding

other factors constant. The usage frequency dummy variables estimated coef-

�cients also adhere to a-priori expectations. There is an inverse relationship

between total usage of the BPAY platform and the hazard rate of an individual,

as re�ected by the decrease of value in the estimated coe¢ cients of the total us-

age dummy variable. For example, the estimated parameter for the total usage

dummy variable Heavy is less than that for Medium, and so on.

Results from the 2006 ABS census suggested that the estimated parameters

for all state dummy variables should be positive, as the ACT had the highest

internet connectivity in 2006. The greater the internet connectivity, the greater

the convenience and cost savings of consumers in obtaining the internet due

to competition between telecommunication providers. All estimated parameter

values for the state dummy variables are positive, with the exception of TAS.

Estimated coe¢ cient values of the state dummy variables imply residents in the

NT and WA are most at risk of leaving the BPAY platform. The estimated

parameters for NT and WA are the highest amongst all states with values of

0:16 and 0:13, respectively. Residents in the ACT and VIC are the least at risk
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of leaving the BPAY platform.

The estimated parameter estimate for gender satis�es the a-priori expecta-

tion that males are more likely to leave the BPAY platform. The positive value

attained for the coe¢ cient of the male dummy variable increases the instanta-

neous probability of an individual leaving the BPAY platform, in the case that

an individual is male. However, the estimated parameters for segment do not

satisfy a-priori expectations. Segment was thought as a proxy for wealth, how-

ever, the positive values attached to the coe¢ cient of individuals categorised as

of both retail and wealth management is con�icting.

The estimated coe¢ cient of the card dummy variable satis�es the hypothesis

outlined earlier in section 4:3:2. Individuals owning a credit should be more

comfortable with using a payment platform like BPAY. They are more likely

to use internet banking, of which BPAY is an extension of the existing services

o¤ered as part of online banking. The negative value attached to the coe¢ cient

of the credit card dummy veri�es this hypothesis.
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Table 4:3:2:1 (b) : Fixed Model Estimated Hazard Ratios.

Variable Hazard Ratio 95% CI

All Ex VL Upper Lower

Agei 1:0018 1; 002 1:0015 1:002

Light i 0:071 NA 0:071 0:072

Averagei 0:01 0:13 0:009 0:01

Mediumi 0:004 0:06 0:004 0:005

Heavy i 0:003 0:04 0:002 0:005

NSW i 1:08 1:06 1:04 1:11

NT i 1:17 1:21 1:1 1:24

QLD i 1:09 1:08 1:05 1:13

SAi 1:12 1:09 1:08 1:16

TAS i 0:999 0:95 0:95 1:04

VIC i 1:05 1:02 1:02 1:09

WAi 1:14 1:14 1:1 1:18

Malei 1:011 1:002 1:002 1:02

Retail i 1:06 1:06 1:05 1:08

Wealthi 2:33 4:8 2:15 2:53

Card i 0:9 0:9 0:9 0:91

The hazard ratio and their corresponding 95% con�dence interval of all con-

sumers for the �xed Cox (1972) PH model are provided in Table 4:3:2:1 (b) of
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all consumers. For robustness, the hazard ratio�s of the all consumers excluding

very light (VL) users is also estimated. The hazard ratio provides an intuitive

measure to quantify the risks of an individual leaving the BPAY platform. The

hazard ratio for a variable is equal to the exponential of the estimated parameter

listed in Table 4:3:2:1 (a).

The interpretation of the hazard ratio plays a similar role as the odds ratio in

logistic regression. However, the hazard ratio is a measure of rates as opposed to

odds in logistic regression. There is no material change in the interpretation of

the hazard ratio between all consumers and the sample that excludes very light

users of the BPAY platform. The 95% con�dence interval of the majority of

variables in the total sample includes the point hazard ratio parameter estimates

of all variables in the sub-sample, with the exception of the wealth dummy

variable. In addition, all parameters are statistically signi�cant once very light

users are excluded.

The hazard ratio for a consumer being categorised as a light user is 0:071.

Such a light user can be interpreted as being 0:071 times more likely to leave

the BPAY platform at any point in time in comparison with an individual who

is a very light user of the BPAY platform. Alternatively, the hazard ratio of

the individual that is classi�ed as light can be interpreted as being 92:9% less

likely to leave the BPAY platform at any point in time in comparison with an

individual that is a very light user of the BPAY platform. The smaller the
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standard errors of the estimated parameters in Table 4:3:2:1 (a), the smaller

the con�dence intervals (CI) and the greater the accuracy of the hazard ratios

listed in Table 4:3:2:1 (b). There is 95% con�dence that a light user is between

92:8% and 92:9% less likely to leave the BPAY platform at any point in time in

comparison to a very light user of the BPAY platform.

Residents located in the ACT have the lowest risk of leaving the BPAY

platform at any point in time, as con�rmed by the positive hazard ratios of

all states and territories in Table 4:3:2:1 (b). In order of region, VIC, NSW

and QLD, share similar hazard ratio values of between 1:05 � 1:09. Hence, an

individual residing in VIC is 5% more likely to leave the BPAY platform in

comparison to an individual in ACT. Residents in the NT are the most likely to

leave the BPAY platform with a hazard ratio of 1:17. Thus, individuals in the

NT are 17% more likely to leave the platform in comparison to an individual

in the ACT. The segment dummy variables indicate individuals being part of

the wealth management arm of CBA are most at risk of leaving the BPAY

platform. In relation to premium banking customers, individuals in the wealth

management segment are 2:33 times more likely to leave the BPAY platform.

Meanwhile, individuals that are part of the retail segment are 6% more likely

than premium banking customers to stop using the BPAY platform.

The hazard ratio of variables that have a continuous scale can be interpreted

in much the same way as categorical variables. The hazard ratio of 1:0018
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for age implies that for a unit increase in age, the individual is 1:0018 times

more likely to leave the BPAY platform at any point in time. Thus, the hazard

ratio of 1:0018 for age suggests that for two individuals that have an x-year age

di¤erence, the older individual is 1:0018x more likely to leave the BPAY platform.

Additionally, the con�dence intervals increases to the power of the age di¤erence,

x, in comparing two di¤erent individuals. For example, an individual that is aged

30 is 1:0933 times more likely to leave the BPAY platform at any point in time

in comparison with an individual aged 25. Alternatively, an individual aged 30

is 9:3% more likely to leave the BPAY platform in comparison with an individual

aged 25.

The standard error for the estimated coe¢ cient for males is larger than that

for individuals owning a credit card, as illustrated by the wider con�dence in-

tervals for the hazard ratio for males in relation to individuals owning a credit

card. Other things being equal, males are 1.011% more likely to leave the BPAY

platform at any point in time in comparison to females. In addition, there is

95% con�dence that males are between 0.2% and 2% more likely to leave the

BPAY platform at any point in time in comparison to female payers. Whereas,

individuals holding a credit card are 10% less likely to leave the BPAY platform

at any point in time in comparison with payers that don�t hold a credit card.

There is 95% con�dence that individuals with a credit card are between 9% and

10% less likely to leave the BPAY platform at any point in time.



4. Survival Analysis of BPAY Consumers 151

Testing the Proportional Hazard Assumption The assumption of pro-

portional hazards is vital to the interpretation of covariates in the Cox (1972)

hazards model. Two methods have been proposed to evaluate the assumption

of proportional hazards. Firstly, scatterplots of the scaled Schoenfeld residuals

are graphed versus functions of time for each covariate. Any linear trend that is

apparent in the residuals indicates that the assumption of proportional hazards

is incorrect. The second method to evaluate the assumption of proportional haz-

ards is the procedure outlined by Grambsch and Therneau (1994). A series of

score tests are suggested by Grambsch and Therneau (1994) to evaluate whether

the proportional hazards assumption is incorrect by incorporating functions of

time in the Cox (1972) hazards model, as outlined in section 4:2:5:3.
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Figure 4:3:2:1. Scatterplot of Scaled Schoenfeld residuals for Age.

Figure 4:3:2:1 displays the scaled Schoenfeld residuals for age as a function of

the logarithm of time, time, Kaplan-Meier estimate and rank of time. Any trend

that is observed by the red curve in each plot of Figure 4:3:2:1 indicates there

may be a violation of the proportional hazard assumption. All four plots of the

scaled Schoenfeld residuals as a function of time do not appear to contain any

substantial deviations from the proportional hazard assumption as the smoothed

red curve in all four plots appears relatively horizontal, indicating no trend.

However, Hosmer et al. (2008) notes that graphs are di¢ cult to interpret to

identify violations of the assumption of proportional hazards and any violations

of the assumption can be subtle and hard to detect.
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Table 4:3:2:1 (c). Score Test for Proportional Hazards

g (t) = t g (t) = ln (t) g (t) = ŜKM (t) g (t) = r (t)

Variable df �2 p �2 p �2 p �2 p

Agei 1 29 0:00 431 0:00 252 0:00 305:3 0:00

Light i 1 8404 0:00 6663 0:00 8370 0:00 8151 0:00

Averagei 1 1923 0:00 1053 0:00 1838 0:00 1624 0:00

Mediumi 1 123 0:00 65 0:00 118 0:00 103 0:00

Heavy i 1 7 0:01 3:7 0:06 6:3 0:01 5:7 0:02

NSW i 1 1:5 0:22 0:98 0:32 1:5 0:23 1:3 0:26

NT i 1 3 0:08 2:4 0:13 3:1 0:08 2:9 0:09

QLD i 1 5 0:02 4 0:045 5:2 0:03 5 0:03

SAi 1 4 0:049 2:6 0:11 3:8 0:05 3:4 0:06

TAS i 1 1:3 0:26 0:1 0:73 1:1 0:3 0:8 0:38

VIC i 1 3:9 0:05 3:9 0:05 4:1 0:04 4:1 0:04

WAi 1 4:5 0:03 3:1 0:08 4:4 0:04 3:9 0:05

Malei 1 7:5 0:01 4:2 0:04 7:2 0:01 6:6 0:01

Retail i 1 0:1 0:78 2 0:15 0:01 0:9 0:1 0:08

Wealthi 1 3:8 0:05 7:3 0:01 3:8 0:05 5 0:03

Card i 1 3:3 0:07 16 0:00 3:5 0:06 7:4 0:01

Global 16 10; 044 0:00 8016 0:00 9983 0:00 9695 0:00
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Table 4:3:2:1 (c) evaluates the score test based on the Schoenfeld residuals

using four functions of time
h
t; ln (t) ; ŜKM (t) ; rank (t)

i
. There appears to be

evidence, for all four functions of time, of the hazard being not proportional

in age and the indicators for consumer usage (Light, Average, Medium, Heavy)

at the 5% level of signi�cance (los). The p-value associated with the score test

for both age and the consumer usage dummies are all less than 0:02, with the

exemption of Heavy with a function of time given by g (t) = ln (t). Thus, there

is evidence the null hypothesis of proportional hazards is rejected in age and

consumer usage.

The score tests for the state dummy variable largely support the assumption

of proportional hazards. With the exception of QLD, all state indicator variables

have evidence for proportional hazards with at least two of the four score tests

of each state dummy variable not rejecting the null hypothesis of the hazard

being proportional. For example, NSW and NT have p-values of greater than

0:05 for all four speci�cations of time in the score test, hence the null hypothesis

of proportional hazards can not be rejected at the 5% los.

Segment and the credit card indicator variables also support the assump-

tion of proportional hazards with at least two of the four score tests not re-

jecting the null hypothesis of proportional hazards at the 5% los. The Retail

dummy variable supports the assumption of proportional hazards with p-values

of 0:78; 0:15; 0:9 and 0:08 for the four score tests with time being speci�ed as
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t; ln (t) ; ŜKM (t) ; rank (t), respectively. The evidence for proportionality in the

hazards for Wealth and Card dummy variables is not clear. The p-values as-

sociated with the proportionality test for Wealth are 0:05; 0:01; 0:05 and 0:03;

respectively. Hence, evidence for rejecting the null hypothesis of proportionality

is marginal with the null hypothesis being rejected for two of the four tests. The

results of hypothesis tests evaluating the assumption of proportional hazards

for the Card dummy variable is similar to that of the wealth indicator vari-

able. The p-values associated with the tests of proportional hazard for Card are

0:07; 0:00; 0:06 and 0:01, respectively. Therefore, the assumption of proportional

hazards in Card cannot be rejected with certainty at the 5% los, with two of the

four tests do not reject the null hypothesis.

The global test for proportional hazards is rejected comfortably at the 5% los

for all functions of time listed in Table 4:3:2:1 (c), with p-values of approximately

zero in all four cases. The strong non-proportionality of age and the consumer

usage indicator variables strongly in�uences this outcome. However, it is more

important when considering tests of proportionality to consider covariate speci�c

tests in order to identify the cause of the nonproportionality. The majority of the

interpretations, therefore, hold true for all variables in the �xed model. However,

interpreting the hazard ratio for age and the consumer usage dummy variables

should be done with due care as the test suggested by Grambsch and Therneau

(1994) reveals evidence of nonproportional hazards.
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4.3.2.2 Mixed Covariate Model

Table 4:3:2:2 (a). Mixed Model Proportional Hazard Regression Results

Variable �i ��i z p > jzj 95% C.I

Transactions it �0:28 0:002 �147 0:00 �0:28 �0:27

Agei 0:006 0:0002 36 0:00 0:0057 0:006

NSW i �0:002 0:016 �0:15 0:88 �0:034 0:03

NT i 0:09 0:031 3:1 0:002 0:034 0:15

QLD i 0:02 0:17 1:3 0:19 �0:011 0:05

SAi �0:025 0:02 �1:3 0:19 �0:06 0:013

TAS i �0:1 0:022 �4:7 0:00 �0:15 �0:061

VIC i �0:047 0:016 �2:9 0:004 �0:08 �0:015

WAi 0:025 0:018 1:1 0:16 �0:01 0:06

Malei 0:03 0:005 6:8 0:00 0:023 0:04

Retail i 0:04 0:01 4:6 0:00 0:024 0:06

Wealthi 1:14 0:04 27:7 0:00 1:07 123

Card i �0:11 0:005 �24 0:00 �0:13 �0:11

The estimated parameters of the mixed model, along with the standard er-

rors, p-values and 95% con�dence interval (CI) are presented in Table 4:3:2:2 (a).

In the mixed model, four of the seven state dummy variables are not statistically

di¤erent from zero at the 5% los, with only TAS being statistically insigni�cant.

Additionally, only the signs of NT, QLD and WA meet a-priori expectations
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of positive coe¢ cients. From section 4.3.2, the ACT has the highest internet

connectivity among states and territories and is the reference state for all loca-

tion dummy variables. All location coe¢ cients are expected to be positive as it

is hypothesised the greater the internet connectivity, the greater the access of

payers in using BPAY and the lower the cost of being connected to the internet.

The indicator variables for gender, segment and credit card are all statistically

signi�cant at the 5%, los with parameters for gender and credit card meeting

a-priori expectations in relation to the sign of the coe¢ cient.
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Table 4:3:2:2 (b). Mixed Model Estimated Hazard Ratios.

Variable Hazard Ratio 95% CI

All Ex VL Upper Lower

Transactions it 0:756 0.9 0:75 0:76

Agei 1:006 1.02 1:005 1:01

NSW i 0:998 1.03 0:97 1:03

NT i 1:1 1.17 1:04 1:17

QLD i 1:02 1.05 0:99 1:06

SAi 0:98 1.03 0:94 1:01

TAS i 0:9 0.89 0:86 0:94

VIC i 0:95 0.97 0:92 0:99

WAi 1:025 1.1 0:99 1:06

Malei 1:033 1.01 1:02 1:04

Retail i 1:04 1.14 1:02 1:06

Wealthi 3:15 5.3 2:9 3:41

Card i 0:89 0.85 0:88 0:9

The hazard ratios of the parameters associated with equation (4:3:2) are

provided in Table 4:3:2:2 (b) and correspond to all consumers being in the sample.

The hazard ratio�s corresponding to the sub-sample of individuals not in the very

light (VL) category is also included. All parameters are statistically signi�cant in

the sub-sample. The parameters estimated of the sub-sample lie outside the 95%
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con�dence interval of the overall sample for a few variables, but the conclusions

are identical to that of the overall sample that includes all consumers in the

discussion that follows.

The time-varying variable, that is, the number of transactions in the current

period, has a hazard ratio of 0:756. Thereby, for every additional transaction

placed on the BPAY platform, the individual is 24:4% less likely to leave the

BPAY platform. The con�dence interval of transactions is also small, with a

range of 0:01. This places more con�dence on the parameter associated with

transactions in the mixed model of equation (4:3:2). The hazard ratio of 1:006

for age implies that for a unit increase in age, the individual is 1:006 times more

likely to leave the BPAY platform at any point in time. Thus, an individual that

is aged 35 is 1:03 times more likely to leave the BPAY platform at any point in

time in comparison with an individual aged 30. Alternatively, an individual aged

35 is 3%more likely to leave the BPAY platform in comparison with an individual

aged 30. This compares with a 9% chance of leaving the BPAY platform in the

�xed model.

As was the case in the �xed model, the standard error for the estimated

coe¢ cient for males is larger than that for individuals owning a credit card.

This is illustrated by the wider con�dence intervals for the hazard ratio for

males. Males are 3:3% more likely to leave the BPAY platform at any point in

time in comparison to females. In addition, there is 95% con�dence that males
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are between 2% and 4% more likely to leave the BPAY platform at any point in

time in comparison to female payers. Whereas from 4:3:2:1 (b), the �xed model

estimated a 1:1% increase in probability of males leaving the BPAY platform,

an increase of three fold. However, there is minimal change in the likelihood

of individuals holding a credit card leaving the BPAY platform in the mixed

model in comparison to the �xed model. Individuals that have a credit card are

11% less likely to leave the BPAY platform at any point in time in comparison

with payers that don�t hold a credit card. Further, there is 95% con�dence that

individuals with a credit card are between 10% and 12% less likely to leave the

BPAY platform at any point in time.

The hazard ratio for segment of 1:04 for retail suggests an individual that

is a member of the retail segment is 4% more likely to stop using the BPAY

platform to pay their bills in relation to a payer that is in the premium banking

segment. Meanwhile, an individual that is in the wealth management segment

is 3:15 times more likely to leave the BPAY platform in comparison with an

individual within the premium banking segment.
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4.3.2.3 Leverage and Goodness of �t

Figure 4:3:2:3:Log-Likelihood Displacement

(a) Fixed Model (b) Mixed Model

Figure 4:3:2:3 (a) illustrates the sample of residuals attached to all individuals

in the data set and their accompanying impact on the log-likelihood of the �xed

model given by equation (4:3:1). There appears to be a few outliers in the

sample of 179; 922 individuals. No individuals were omitted from the sample

following their identi�cation as outliers. To determine whether individuals with

high leverage had a material e¤ect on the estimated parameters in the �xed

model proportional hazard regression results (Table 4:3:2:1 (a)), the individuals

that were identi�ed as outliers in the sample were omitted and the �xed model

was estimated once again. The outliers did not have a substantial e¤ect on the

parameter estimates.

The mixed model has only two outliers that are of note. However, the outliers

in comparison to the �xed model are far greater in magnitude as shown by Figure

4:3:2:3 (b). They are expected to impact on the parameters estimated in Table
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4:3:2:2 (a). The mixed model was estimated once more without the outliers and

the parameters changed slightly. As a consequence, the outliers were omitted.

Figure 4:3:2:3. Cox-Snell Residual Plot

(c). Fixed Model (d). Mixed Model

To examine goodness of �t, the Nelson-Aalen estimator of the cumulative

hazard of residuals is estimated for both the �xed and mixed models. The better

the �t of the model, the closer is the Nelson-Aalen cumulative hazard function

to the 45 degree line. Both models appear to �t the data similarly. However,

the �xed model has large variability in the tail of the estimate of the cumulative

hazard function. Based on the Cox-Snell residual plots, the mixed model �ts the

data well with the Nelson-Aalen cumulative hazard function trending closer to

the line of best �t.
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4.4 Conclusion - Survival Analysis of BPAYCon-

sumers

Technology is having an ever increasing role in altering the demand of several

payment platforms throughout the globe. The demise of traditionally based

payment platforms for their electronic counterpart has translated to substantial

cost saving for the economy and improved the e¢ ciency of payment systems.

This thesis has sought to measure the factors that in�uence the rate of adoption

of a recent technology-based product in the market for payments at the consumer

level. This provides further evidence for the Hayashi and Klee (2003) �nding

that consumers are more likely to adopt new technology to pay bills if they have

done so in the past.

By exploiting a unique data set which details the demographics and transac-

tions of an individual over a 30 month observational window, survival analysis

techniques are employed to quantify the risks of individuals leaving the plat-

form. Cox (1972) models are estimated in the �xed and mixed framework with

the transaction covariate varying in both instances to determine the most appro-

priate model. Results suggest support for the Hayashi and Klee (2003) �nding

in the market for bill payments with individuals having a credit card 10% and

12% less likely to leave the BPAY platform at any point in time. Also of note

is males are approximately 3% more likely to leave the BPAY platform at any

point in time, while there is a geographical in�uence on whether an individual
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adopts a innovative bill payments platform.

This thesis is the �rst of its kind to study the adoption of a new payments

platform. Findings have implications for central banks and business as they try

to provide incentives to consumers to change their payment platform preferences

to more e¢ cient platforms that seek to increase the welfare of all participants

in the economy. There are limitations that may drive some bias in the results,

mainly due to the di¢ culty in observing the correct entry and exit points of new

payers. However, the bene�ts of exploring the transactions of individuals over

time in a survival analysis framework outweigh any weakness in constructing the

sample.



Chapter 5

Online Billing Payment Adoption

5.1 Introduction

The wide spread availability and integration of the internet in everyday life

has increased the acceptance of electronic payment instruments in recent years

and the adoption and use of electronic payments has provided many bene�ts to

consumers and the economy as a whole. Cost savings associated with automating

transactions and the tangible bene�ts of rewards, availability of credit and time

saved associated with not being required to withdraw cash, has made electronic

payments a popular alternative to traditional paper-based payment methods.

This chapter seeks to determine the in�uence demographics and credit card

holding on the adoption of the BPAY platform.

Regulators have the incentive to increase the share of transactions made via

electronic means to improve the e¢ ciency of the payments system. Bolt et al.

165
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(2010) estimate approximately 50 Million Euros in cost savings to the overall

payments system in the Netherlands can be achieved by abolishing surcharging

on debit cards for transactions below the 11.6 Euro threshold. The authors argue

the cost of processing a debit transaction has decreased over time as larger value

transactions are placed on its network and such a surcharge does re�ect the

marginal cost of processing a debit transaction relative to cash. BPAY is an

innovate platform that allows consumers to electronically pay their bills through

internet or phone banking. The platform has enjoyed enormous success in the

Australian bill payments market, enjoying a market share of more than 30%.

Literature exploring the adoption of new technology in the payments market

to date has been limited. Hayashi and Klee (2003) suggest technology leads

to other technologies. This study makes use of a proprietary data set which

details the demographics of individuals and the transactions made on the BPAY

platform over time. However, credit cards are a direct competitor to BPAY

in the market for bill payments. Therefore, the exact in�uence of credit card

holding on the adoption of a new technology-based platform is unknown. This

study seeks to clarify this research question by empirically determining the e¤ect

of credit card holding on BPAY usage.
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5.2 Methodology

To measure the in�uence that credit card membership has on usage, payers

are classi�ed into �ve categories that rank all individuals according to their

usage of the BPAY platform. This speci�cation is chosen as this is how BPAY

classi�es their consumers as they seek to measure their market for usage. Moving

consumers up the category usage ranking will improve the volume on the BPAY

platform. Hence an ordinal speci�cation is most appropriate, although some

information may be lost.

The dependent variable is thereby a categorical random variable and multino-

mial models and methods are most appropriate to utilise in this setting. Prior to

considering multinomial models, it is bene�cial to consider its simple alternative,

that is, discrete response models for which the dependent variable is a binary

random variable.

A linear probability model (LPM) can be used to estimate a discrete response

model by assuming the random error term equals (1� x0�) with probability x0�,

and �x0� with probability (1� x0�). The LPM is speci�ed as:

Pr (y = 1jx) = �0 + �1x1 + �2x2 + :::++�kxk (5.2.1)

The parameters of equation (5:2:1) can be interpreted as the change in proba-

bility of a chance event given a one-unit increase in the explanatory variable. In

the event that the explanatory variable is a binary variable, the corresponding

parameter estimate is the change in the probability when x = 1 in comparison
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to x = 0.

The linear probability model su¤ers from a few short comings, one of which

is the issue of heteroscedasticity and this is demonstrated below:

V (yjx) = E
�
y2jx

�
� [E (yjx)]2 (5.2.2)

= x0� � (x0�)2

= x0� (1� x0�)

Equation (5:2:2) implies that the variance of the dependent variable is a function

of the level of the covariates, violating the assumption of homoscedasticity under

the assumption that the values of all covariates are non-zero. Thus, the linear

probability model produces standard errors that are biased and inconsistent

and can�t be used for inference testing. The other main limitation of the linear

probability model is that it assumes constant marginal changes in the dependent

variable regardless of the level of the covariates in the model. However, such

an attribute of a model with a dependent variable is not desirable as constant

marginal changes will drive the predicted probability to be greater than one or

less than zero.

5.2.1 The Probit and Logit Models

Consider a dependent variable, y, whose outcome is 1 if an event occurs and 0

otherwise. Examples of such binary variables include participation in the labour
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force, going on an overseas trip, or purchasing a new car. The value of the

dependent variable, y, can be viewed as an outcome from an underlying latent

variable model. Equation (5:2:3) below describes such a model.

y� = x0� + e; y = 1 [y� > 0] (5.2.3)

where x is matrix of covariates, � a vector of coe¢ cients and e the random error

term that is continuously independent and identically distributed around zero.

The value of y can be regarded as the observed outcome of a random variable,

which takes a value of one when the index variable is greater than zero, and zero

otherwise. Thus, the following can be deduced based on the speci�cations of the

index model above:

E (yjx) = 1� Pr (x0� + e > 0) + 0� (1� Pr (x0� + e > 0)) (5.2.4)

= Pr (x0� + e > 0)

= Pr (e > �x0�)

= Pr (e � x0�)

= G (x0�)

The distribution of the error term in equation (5:2:4) determines whether

a probit or logit model is formulated. A probit or logit model is derived by

assuming the error term, e, follows either a standard normal distribution, or a

standard logistic distribution, respectively. Thus, for a probit and logit model,
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this implies the following:

G (x0�) � � (x0�) �
Z x0�

�1
� (v) dv (5.2.5)

� (x0�) =
1

2
p
2�
exp

 
� (x0�)2

2

!

G (x0�) = � (x0�) � exp (x0�)

1 + exp (x0�)
(5.2.6)

where equations (5:2:5) and (5:2:6) refer to probit and logit models, respectively.

The interpretation of marginal e¤ects in the probit and logit models, in compar-

ison with the LPM, di¤er greatly. The partial derivatives of the LPM and index

models are given by:

@ Pr (y = 1)

@xj
= �j (5.2.7)

@ Pr (y = 1)

@xj
= g (x0�) �j (5.2.8)

where g (z) =
@G

@z
(z)

The marginal change in the probability of the LPM is given by equation (5:2:7) :

The estimated coe¢ cient of the covariate gives the marginal change in the prob-

ability of the event occurring and is constant for all values for xj. Whereas,

equation (5:2:8) shows the partial derivative of xj on Pr (y = 1) varies in the

probit and logit models. The presence of g (x0�) in equation (5:2:8) causes the

marginal change in the Pr (y = 1) to be dependent upon the values of all other
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covariates. The probability density function for both the logit and probit models

are positive for increasing values of x as the cumulative distribution function of

both error term distributions are strictly increasing. Thus, whether the partial

derivative will be positive or negative will depend upon the sign of the estimated

parameter �, much like the LPM model.

5.2.1.1 Maximum Likelihood Estimation

Conditional maximum likelihood estimation is used to estimate the probit and

logit model. The probability of an event occurring or not occurring can be

conveniently written as:

f (yjxi : �) = [G (xi�)]yi [1�G (xi�)]1�yi (5.2.9)

for yi = 1 or yi = 0. The likelihood and log-likelihood functions for the logit

model based on the density of yi in equation (5:2:9) are given by:
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L (�) =

nY
i=1

[G (xi�)]
yi [1�G (xi�)]1�yi (5.2.10)

log [L (�)] =

nX
i=1

yi ln [G (xi�)] + (1� yi) ln [1�G (xi�)]

=

nX
i=1

yi ln

�
exp (x0i�)

1 + exp (x0i�)

�
+ (1� yi) ln

�
1

1 + exp (x0i�)

�
=

nX
i=1

yi ln

�
exp (x0i�)

1 + exp (x0i�)
� 1

1 + exp (x0i�)

�
+ ln

�
1

1 + exp (x0i�)

�
=

nX
i=1

yix
0
i� + ln

�
1

1 + exp (x0i�)

�
=

nX
i=1

yix
0
i� � ln [1 + exp (x0i�)]

Equation (5:2:10) details the derivation of the log-likelihood function of the logit

model. The score function and Hessian conditional on xi is derived from equation

(5:2:10) and are speci�ed as:

si (�) =
@ log [Li (�)]

@�
=

nX
i=1

xiyi �
exp (x0i�)

1 + exp (x0i�)
(5.2.11)

I (�) = E

�
�@

2 log [Li (�)]

@�@�0

�
(5.2.12)

=
nX
i=1

exp (x0i�)

1 + exp (x0i�)
x0ixi

The score function given by equation (5:2:11) is non-linear in �. The the Newton-

Raphson, or the scoring method, are commonly used to �nd estimates of the

vector, �.
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The log-likelihood, score function and Hessian conditional on xi of the probit

model can be derived in a similar way by substituting the standard normal

cumulative distribution function in place of the logit cumulative distribution

function. These are summarised below:

log [L (�)] =
nX
i=1

yi ln [� (x
0
i�)] + (1� yi) ln [1� � (x0i�)] (5.2.13)

s (�) � � (x0�)x0i [yi � � (x0i�)]
� (x0i�) [1� � (x0i�)]

(5.2.14)

I (�) =
[� (x0�)]2 x0ixi

f� (x0i�) [[1� � (x0i�)]]g
(5.2.15)

5.2.2 Ordered Probit and Logit Model

The variable categorising the frequency of usage of BPAY payers can be classi�ed

as an ordered discrete random variable. A positive relationship exists between

the value of the categorical variable and the frequency of BPAY usage. The

model most appropriate in this study corresponds to an ordered response model.

Consider a latent variable, y�, that represents BPAY usage:

y� = x0� + e (5.2.16)

where x, is a matrix of covariates, � the corresponding coe¢ cients of the explana-

tory variables and assume e � NID (0; 1). Note that the matrix of covariates,

x, does not contain a constant term. There is a identi�cation issue relating

to estimating the threshold parameters along with the constant term, hence the
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constant is omitted. In general terms, the thresholds of y� and the accompanying

values of y are written as:

y = 0 if y� � �1 (5.2.17)

y = 1 if �1 < y� � �2

y = 2 if �2 < y� � �3

...

y = J if y� > �J

The conditional probability of y given x, based on expression (5:2:17), is speci�ed

as:

P (y = 0jx) = P (y� � �1jx) = P (x0� + e � �1) = � (�1 � x0�) (5.2.18)

P (y = 1jx) = P (�1 < y
� � �2jx) = � (�2 � x0�)� � (�1 � x0�)

...

P (y = J jx) = P (y� > �J jx) = 1� � (�J � x0�)

) P (Zij) = � (�j � x0i�)� � (�j � x0i�)

where Zij = 1 if yi falls in the jth category and Zij = 0 otherwise

Based on expression (5:2:18), the likelihood and log-likelihood functions of

the ordered probit are given by:

L (�) =

nY
i=1

mY
j=1

[� (�j � x0i�)� � (�j � x0i�)]
Zij (5.2.19)

log [L (�)] =
nX
i=1

kX
j=1

Zij log [� (�j � x0i�)� � (�j � x0i�)]
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The log-likelihood of the ordered logit can be formulated by replacing � with

�; and with means and variances equal to (0; 1) and
�
0; �

2

3

�
, respectively. Prior

to stating the �rst and second partial derivatives of the log-likelihood function

of equation (5:2:19), note the following:

Yi;j = �j � x0i�

�i;j = � (�j � x0i�)

@� (x)

@x
= � (x)

@� (x)

@x
= �x� (x)

Kronecker delta: �j;k = 1 if j = k and 0 otherwise

The �rst and second partial derivatives of the log-likelihood function are stated

below:

@ log [L (�)]

@�
=

nX
i=1

mX
j=1

Zij
�i;j�1 � �i;j
�i;j � �i;j�1

x
0

i (5.2.20)

@ log [L (�)]

@�k
=

nX
i=1

mX
j=1

Zij
�j;k�i;j � �j�1;k�i;j�1

�i;j � �i;j�1
x
0

i
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@2 log [L (�)]

@�@�0
=

nX
i=1

mX
j=1

Zij

(�i;j � �i;j�1)2
(5.2.21)

�

2664 (�i;j � �i;j�1)
�
Yi;j�1�i;j�1 � Yi;j�i;j

�
�
�
�i;j � �i;j�1

�2
3775x0ixi

@2 log [L (�)]

@�@�k
=

nX
i=1

mX
j=1

Zij

(�i;j � �i;j�1)2

�

26666664
(�i;j � �i;j�1)

�
�
Yi;j�i;j�j;k � Yi;j�1�i;j�1�j�1;k

�
�
�
�i;j � �i;j�1

� �
�i;j�j;k � �i;j�1�j�1;k

�

37777775x
0
i

The implied assumption in the ordered logit and probit model is that the

parameters of the covariates are homogenous across all values of yi. The parallel

regression assumption can be demonstrated as follows by stating the probabilities

that y � z:

Pr (y � 1jx) = F (�1 � x0�) (5.2.22)

Pr (y � 2jx) = F (�2 � x0�)

...

Pr (y � zjx) = F (�J � x0�)

Equation (5:2:22) illustrates that an ordered probit or logit model is equiv-

alent to (J � 1) binary regressions with all the coe¢ cients of the explanatory

variables homogenous across the all (J � 1) regressions. Hence for the paral-

lel regression assumption to hold and an ordered probit or logit model to be
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suitable, all k coe¢ cients across (J � 1) binary regressions should be relatively

equal.

Brant (1990) develops a procedure based on the Wald test that evaluates

the parallel regression assumption on each covariate separately. In the event

that the parallel regression assumption is not true, alternative models need to

be considered that allow for parameters to di¤er across alternative values of y.

5.2.3 The Generalised Ordered Logit Model

The generalised ordered logit model, with no assumption made regarding the

parameters being homogenous across the (J � 1) binary regressions is shown

below:

Pr (Yi > j) = g
�
X�j

�
(5.2.23)

=
exp

�
�j +Xi�j

�
1 +

�
exp

�
�j +Xi�j

�	
where j = 1; 2; :::; J�1 and J is the number of categories of the ordinal dependent

variable, y. From equation (5:2:23) it can be deduced that the probabilities that

y will take for di¤erent values of j are equal to:

Pr (Yi = 1) =
exp (�1 � x0�1)

1 + exp (�1 � x0�1)

Pr (Yi = j) =
exp

�
�j � x0�j

�
1 + exp

�
�1 � x0�j

� � exp
�
�j�1 � x0�j�1

�
1 + exp

�
�j�1 � x0�j�1

� ; j = 1; :::; J � 1
Pr (Yi = J) = 1� exp (�j � x0�J)

1 + exp (�1 � x0�J)
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The generalised logit model collapses to the standard logistic binary regression

model when M = 2 and is equivalent to a series of binary logit models with

the values of the dependent variable combined. The following condition must be

true to ensure that 0 � Pr (y = jjx) � 1 :

�
�j � x0�j

�
�
�
�j�1 � x0�j�1

�
� 0 (5.2.24)

5.2.4 Data

The data to be applied corresponds to the original data set in section 4:2:1. The

sample consists of daily transaction data of all individuals with bank accounts

linked to CBA over a two and a half year period. A cross-section of the data set

has been formed by aggregating the total number of transactions made by indi-

viduals and constructing a categorical dummy variable based on table 5:3:1:2. It

is assumed all consumers do not operate commercially and adoption is measured

by frequency of use. Ideally it would be based on the proportion of all bills paid

but this information is not available. The variables to be applied in the model

are also found in section 4:2:1, and are reproduced below for convenience:

� Usagei; i = 1; :::; 6: Usage categorical variable ranging in values from one-

o¤ payers to heavy users of the BPAY platform

� Age

� Gender
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� State

� Banking segment. This includes retail, premium banking and wealth man-

agement

� Dummy variable indicating whether an individual holds a credit card with

the bank

The motivation for including the variables above is summarised by section

4.3.2 as they also in�uence the usage of the BPAY platform by the same rea-

soning. This is veri�ed by the literature as demographics are typically included

to explain usage of payment platforms across individuals. Age is expected to

have a positive parameter, as well as credit card ownership. Younger individuals

have grown up with technology and are more inclined to use the BPAY platform.

Older individuals also recieve more bills due to taking on the payments of their

children and household, hence it is expected that age will have a positive para-

meter estimate. Credit card ownership implies individuals are con�dent in using

an electronic means of transaction and hence, its parameter is expected to be

positive. The estimated parameters for state dummy variables will be expected

to be related to internet connectivity. The greater the internet connectivity, the

more inclined an individual is to use BPAY. Whereas customer segment is a

proxy for wealth, the more wealthy the individual the more bills are expected

an individual to have as consumption increases. Females are expected to have a

higher usage of the BPAY platform, as they typically run the household �nances
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hence a positive parameter estimate, as detailed in section 4.3.2.

5.3 Results

5.3.1 Descriptive Statistics

5.3.1.1 BPAY Volume Market Share of Payer Financial Institutions

Prior to the implementation of the model, it is necessary to ensure the sample

of individual�s tracked over time are representative of all BPAY consumers, to

ensure that inferences are valid for all BPAY consumers.

Table 5:3:1:1. Volume Statistics of BPAY Member Banking Institutions (%)

Statistic ANZ CBA CRU NAB STG WBC

�x 15 19:7 10:2 16 10 14:7

��x 1:1 1:5 0:7 0:3 0:6 0:9

Max (x) 16:17 23:8 11:2 16:9 11:2 16:4

Min (x) 13 18:1 7:9 15:2 8:9 13:5

Table 5:3:1:1 lists the top contributors to monthly BPAY volume from the

�nancial institutions of consumers between July 2002 and February 2009. Fol-

lowing the recent takeover of St George Bank (STG) by Westpac (WBC), the

total volume accounted by the big four is 76%. The CBA accounts for the high-

est proportion of total volume with 19:7% of volume being processed for payers.

It is of note that Cuscal1 (CRU), accounting for 10:2 /% of volume, is the next
1Credit Union Services Corporation Australia Limited
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biggest contributor following the big four banking institutions. There is also

little change over time in the variability of the proportion of total volume that is

transacted by each bank with standard deviations of between 0:3% and 1:53%,

respectively.

Consumers with CBA as their banking institution account for approximately

a �fth of all BPAY transactions. With low volatility between member banks of

BPAY in relation to the total number of transactions received by consumers,

data sourced by the CBA is representative of all BPAY consumers due to its

signi�cant market share of BPAY transactions.

5.3.1.2 Data Summary Statistics

The number of transactions processed by BPAY via CBA totalled approximately

74:1 million. The data set has been reduced by matching each consumer in their

data set with their corresponding demographics. The �rst �lter applied to the

data was to remove any individuals in the data for which their accompanying

demographic related data was missing. In addition, the focus of this paper is

on Australian consumers, as such, all individuals in the data set that are based

overseas have been removed. The remaining number of consumers in the data

set totals 1:53 million.
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Figure 5:3:1:2 (a). Total Monthly Transactions and Consumers

Figure 5:3:1:2 (a) illustrates the upward trend in the number of transactions

processed by BPAY consumers and the total number of consumers of the plat-

form. During the observation window, transactions have grown from 1:9 million

in May 2004 to 3:1 million in October 2006. Due to the seasonal characteris-

tics of the bill payment market, month on month growth �gures may provide

a more accurate representation in the growth of the BPAY platform amongst

CBA consumers. The growth in the transactions processed in October 2006 has

grown 15% in comparison with the same month of the previous year and 30% in

comparison with the total number of transactions processed in October 2004.

Figure 5.3.1.2 (b). Average Transaction Value
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Figure 5.3.1.2 (b) depicts the average transaction value (ATV) between May

2004 and October 2006. The ATV has been steadily increasing over time, in

addition, the ATV appears to be seasonal. Typically, the ATV is at its highest

for the year in August and lowest in the month of June. The growth in the ATV

in October 2006 in relation to the same month of the previous year is 7:2% and

11:2% in comparison with the ATV in October 2004.

Table 5:3:1:2 (a). BPAY Consumer Classi�cations

Total Transactions De�nition

1 One-O¤

1 to 8 Very Light

9 to 48 Light

49 to 120 Average

121 to 240 Medium

> 240 Heavy

By segmenting individual BPAY consumers by their frequency of usage, in-

formation can be revealed in relation to their demographics and transaction

characteristics. Table 5:3:1:2 (a) categorises BPAY consumers according to the

number of transactions placed over the observational window of 30 months. Fig-

ure 5:3:1:2 (c) illustrates the proportion of total transactions that is accounted

for by each type of BPAY consumer that is listed in table 5:3:1:2 (a). Average

BPAY consumers account for the largest proportion of all BPAY transactions
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with 42% of total volume. Medium and light usage BPAY consumers account

for 28% and 20% respectively, with the remaining classi�cations of consumers

accounting for 10%.

Figure 5:3:1:2 (c). Total Transactions and Consumer Activity

Figure 5:3:1:2 (d) details the ATV of di¤erent types of BPAY consumers.

There appears to be a decreasing relationship between the frequency of BPAY

usage and the ATV. The ATV of one-o¤ and very light consumers is $1050 and

$733, with medium and heavy users of the BPAY platform having an ATV of

$384 and $322, respectively. This suggests there is heavy consumer usage for the

smaller ATV�s with usage diminishing as the ATV increases.
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Figure 5:3:1:2 (d). ATV and Consumer Activity

The percentages-per-type of consumer activity is shown by �gure 5:3:1:2 (e).

Light users account for the majority of consumers in the sample representing

39% of all individuals, followed by average and very light transactors with 26%

and 19%; respectively. Heavy transactors and one-o¤ users account for the least

number of consumers with 1% and 7%, respectively.

Figure 5:3:1:2 (e). Consumer Activity



5. Online Billing Payment Adoption 186

Table 5:3:1:2 (b) lists the average number of bills paid over the observational

window per consumer activity classi�cation. The average heavy user paid 324

bills using the BPAY platform, an average of approximately 11 per month. The

average medium user of the BPAY platform averaged 5 � 6 transactions per

month. Average users of the BPAY platform typically pay 2� 3 bills per month

and light users average just under 1 bill per month. The average very light user

only pays bills once every 7� 8 months using the BPAY platform.

Table 5:3:1:2 (b). Average Number of transactions per Consumer Classi�cation.

Consumer Type Average Number of Transactions

One O¤ Not Applicable

Very Light 4

Light 25

Average 77

Medium 159

Heavy 324

Covariates of Consumer Activity The demographics attached to the in-

dividuals in the data can be utilised to reveal di¤erences in consumer behav-

iour. The covariates to be used in the multinomial model will be used to infer

information related to consumer activity. Figure 5:3:1:2 (f) illustrates the rela-

tionship between the state in which an individual is located and consumer type.



5. Online Billing Payment Adoption 187

Overall, New South Wales (NSW) accounts for 33% of all consumers in the sam-

ple, followed by Victoria (VIC) with 30%, Queensland (QLD) with 20%, South

Australia (SA) with 5%, Australia Capital Territory (ACT) with 2%, Tasmania

(TAS) with 2% and the Northern Territory (NT) with 1%. Relative to consumer

activity, NSW has the highest share of one-o¤ consumers with 34%. Whereas,

Victoria has the greatest percentage of heavy users, accounting for 35%. It is

worth noting that Victoria�s share of consumer activity increases from one o¤

users to heavy users, while the opposite is true for NSW.

Figure 5:3:1:2 (f). Location and Consumer Activity

Figure 5:3:1:2 (g) indicates that 51% of the sample is female and 49% male.

The split of male and female in the various consumer categories is split fairly

evenly for the �rst three categories. However, there is a slightly greater pro-

portion of females as consumer usage increases. Heavy users have a noticeably

higher percentage of female users with 54%. Female users account for a slight
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majority in the average and medium categories.

Figure 5:3:1:2 (g). Gender and Consumer Activity

Figure 5:3:1:2 (h) provides a visual representation of the proportion of con-

sumers that have a credit card facility attached to their bank accounts for each

respective transactor category. Overall, 36% of all individuals do not have a

credit card facility, in comparison with 64% of individuals who have access to

a credit card. There is an increasing relationship between consumer usage and

having a credit card facility attached to a bank account. The proportion of

individuals holding a credit card rises along the categories of consumer usage.

Individuals that own credit cards may be more accepting of using BPAY to

handle bill payments as opposed to traditional over-the-counter methods. As re-

�ected by Figure 5:3:1:2 (h), categories of higher usage have greater proportions

of credit card ownership in comparison with lower categories of consumer usage.
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Figure 5:3:1:2 (h). Credit Card Facility and Consumer Activity

The proportion of consumers in the retail banking, premium banking and

wealth management segments per consumer activity classi�cation is shown in

Figure 5.3.1.2 (i). Individuals in the retail banking segment account for the

majority of the sample with 91%, followed by premium banking and wealth

management with 8:8% and 0:2%, respectively. It is interesting to note that the

share of premium banking individuals grows as consumer activity increases from

below 8% for one-o¤, very light and light users to 16% for heavy users.
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Figure 5.3.1.2 (i). Bank Segment and Consumer Activity.

Table 5:3:1:2 (c) provides a breakdown of the data into six age brackets.

Middle age consumers and adults characterise the majority of the data with the

age brackets 21�30, 31�40 and 41�55 representing 83:1% of all individuals. The

21� 30 age group is most represented in the data with 31:3% of all individuals.

Whereas, the elderly and young account for the smallest proportion of all payers

in the sample with 3:9% and 4:2%, respectively.

Additionally, the ATV and share of total transactions by age group are pre-

sented in Table 5:3:1:2 (c). There appears to be a positive relationship between

ATV and age. The ATV increases consistently from $227 in the 0 � 20 age

bracket to $560 in the 56� 65 age bracket before slightly decreasing to $553 for

individuals older than 65. In relation to the share of total transactions processed

by age group, individuals in the 31� 40 and 41� 55 age groups are over repre-

sented with 61% of all transactions processed while only accounting for 51% of
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all individuals in the sample. Whereas, individuals in the 0� 20 and 21� 30 age

groups while combing for 35:2% of all individuals in the sample, only account

for 24% of total volume.

Table 5:3:1:2 (c). Description of Age Distribution.

Age Bracket Individuals (%) ATV ($) Share of Transactions (%)

0� 20 3:9 227 1

21� 30 31:3 260 23

31� 40 23:9 385 26

41� 55 27:9 494 35

56� 65 8:8 560 11

� 65 4:2 553 4

Figure 5:3:1:2 (j) provides a graphical illustration of the breakdown of con-

sumer activity into di¤erent age groups. Consumers that are less than 21 over-

represent as a proportion of total individuals that use BPAY platform the one

time. As a group, individuals less than 21 account for only 3:9% of the sam-

ple, however, 13:1% of all individuals that use the BPAY platform once are less

than 21. Another interesting feature of the data is the age groups that represent

the higher categories of consumer activity. In relation to medium and heavy

BPAY consumers, the age group 41� 55 is over-represented with 41% and 46%,

dramatically higher then their share of 27:9% all individuals. Whereas, individ-

uals in the 21 � 30 age bracket are marginally under-represented with 27% in
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the medium and heavy categories, in comparison with a share of 31:3% of all

individuals.

Figure 5:3:1:2 (j). Consumer Activity and Age.

In the regression results to follow, the base characteristics of an individual

are to be a female aged 15, resident of the ACT, classi�ed by the CBA as being

within the premium banking segment and does not hold a credit card.

A-priori expectations concerning the value for the parameter value for age is

positive. It is anticipated that older individuals will have more bills outstanding

than younger individuals. Thus, older individuals will be expected to transact

more often on the BPAY platform. As discussed in section 4.3.2, the ACT is

followed by NSW, VIC, QLD and WA in regards to internet activity with the

state of TAS having the worst internet connectivity of all. Other things being

equal, it is expected that the better the internet connectivity, the higher the
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usage of the BPAY platform. Hence, it is expected that all parameters of the

state indicator variables will be negative as the ACT is the base case category

in all models estimated.

The expected in�uence of gender on BPAY usage is unclear. In the event

a household lead is a female in regards to managing the �nances of the house-

hold, it is expected that the coe¢ cient of gender will be negative. Assuming

females administer all of the payments of bills, the number of bills paid in to-

tal. Therefore, the number of transactions placed is expected to be more than

males. Banking segment categories may proxy for wealth, with individuals in

the wealth management category being the most wealthy, followed by individuals

that are categorised in premium banking and retail payers. It is expected that

the greater the disposable income, the greater the consumption of an individual

and the higher the amount of bills outstanding, other things being equal. There-

fore, it is expected the parameter of retail will be negative and that for wealth

management will be positive, as premium banking is the base category. Lastly,

the coe¢ cient of credit card holding is expected to be positive as suggested by

Hayashi and Klee (2003) who postulate that prior adoption of a technological

product in�uences the take-up of an innovative new technology-based product.
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5.3.2 Ordered Logit Model

Table 5.3.2. Ordered logit

Usagei �i 95% Con�dence Interval

Agei 0:18 (0:00) 0:018 0:018

NSWi 0:05 (0:00) 0:025 0:065

NTi �0:1 (0:00) �0:14 �0:062

QLDi 0:05 (0:00) 0:03 0:07

SAi 0:17 (0:00) 0:15 0:019

TASi �0:13 (0:00) �0:16 �0:1

V ICi 0:16 (0:00) 0:14 0:18

WAi 0:01 (0:54) �0:01 0:03

Malei �0:08 (0:00) �0:09 �0:076

Retaili �0:22 (0:00) �0:23 �0:21

Wealthi �0:63 (0:00) �0:7 �0:56

Cardi 0:39 (0:00) 0:38 0:4

�1 �1:9 (0:00) �1:94 �1:89

�2 �0:32 (0:00) �0:34 �0:3

�3 1:39 (0:00) 1:36 1:41

�4 3:07 (0:00) 3:05 3:1

�5 5:2 (0:00) 5:2 5:26
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The results of the ordered logit model are presented in Table 5:3:2. The terms

in the brackets refer to the p-values of the respective estimated parameter. The

estimated cut-o¤ values which de�ne the ordered logit models yi varies from 1 to

6 are given by the coe¢ cients of �i. Overall, the model has a relatively low R2

of 1:4% and the p-value corresponding to the null hypothesis that all parameters

in the model are equal to zero is 0:00, hence the model as a whole is statistically

signi�cant at the 5% level of signi�cance (los). All parameters are statistically

signi�cant at the 5% los, with the exception of the binary variable that represents

an individual from Western Australia.

The a-priori expectation of the impact of credit card holding on usage is

satis�ed with the coe¢ cient of holding a card being positive. This indicating

that holding a credit card is positively correlated with higher categories of the

consumer usage dependent variable. Age is also positively correlated with higher

categories of the consumer usage variable, as are individuals residing in NSW,

QLD, SA VIC and WA. Whereas, individuals from NT, TAS and those cate-

gorised as retail and wealth management individuals are negatively related to

consumer usage. Gender also has a strong in�uence on the extent of usage on the

BPAY platform with males not being associated in higher categories of consumer

usage, in comparison to females.

The ordered logit model assumes that the proportional odds assumption holds

for every variable in the model, that is, the impact of all covariates on the
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dependent variable is constant over all values of yi. In practise, this assumption

is typically violated. Consequently, further models need to be considered to

determine the in�uence of the covariates on consumer usage. The Brant test of

proportional hazards is employed to test the assumption of proportional odds

through global and covariate speci�c tests.
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5.3.2.1 Brant Test

Table 5.3.2.1. Brant Test

V ariable �2 df

Agei 1712 (0:00) 4

NSWi 16 (0:00) 4

NTi 16 (0:01) 4

QLDi 6 (0:22) 4

SAi 87 (0:00) 4

TASi 17 (0:00) 4

V ICi 127 (0:01) 4

WAi 14 (0:00) 4

Malei 77 (0:00) 4

Retaili 1120 (0:00) 4

Wealthi 111 (0:00) 4

Cardi 108 (0:00) 4

Overall 4297 (0:00) 48

Table 5:3:2:1 provides the results of the Brant test of whether the parameters

of equation (5:2:18) are relatively equal over sequential logit models that vary

according to the value of the categorical dependent variable. Overall, the global

test for the assumption of proportional odds that is implied by the ordered logit

model is rejected at the 5% los, with the p-value associated with such a test
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being approximately equal to zero. All covariates with the exemption of the

dummy variable indicating an individual resides in QLD, reject the null hypoth-

esis of proportional odds. Hence, the results of the ordered logit model are void

following th rejection of the assumption of proportional odds. Consequently,a

generalised ordered logistic model is estimated that allows for the assumption to

be relaxed for those covariates that do not satisfy the assumption of proportional

odds.
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5.3.3 Generalised Ordered Logit Model

Table 5.3.3 (a). Generalised Logit Model

Usagei = 1 Usagei = 2 Usagei = 3 Usagei = 4 Usagei = 5

�i �i �i �i �i

Agei 0:01 0:01 0:02 0:02 0:02

NSWi 0:17� 0:04 0:05 0:08 0:01�

NTi �0:11 �0:09 �0:12 �0:06� 0:15

QLDi 0:05 0:05 0:05 0:05 0:05

SAi 0:08 0:12 0:2 0:27 0:34

TASi �0:11 �0:08 �0:16 �0:17 �0:17

V ICi 0:07 0:11 0:19 0:3 0:26

WAi �0:03� �0:01� 0:02� 0:04 0:03�

Malei �0:1 �0:09 �0:07 �0:09 �0:18

Retaili �0:09 �0:1 �0:22 �0:41 �0:53

Wealthi �0:25 �0:43 �0:93 �1:3 �1:12

Cardi 0:41 0:41 0:39 0:33 0:36

The results of the generalised logit model are displayed in Table 5.3.3 (a).

The parameters associated with the QLD binary variable is constant across all

values of the consumer usage categorical dependent variable and is consistent

with the assumption of proportional odds not being rejected by the Brant test.
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The results of Table 5.3.3 (a) can be interpreted as estimated parameters from

individual binary logit models with the dependent variable collapsed into two

categories. For example, results related to the dependent variable taking the

value of 1 in Table 5.3.3 (a) refer to a logit model with the dependent variable

being coded as 0 if Usagei = 1 and 1 if Usagei = 2; :::; 6. The second component

of the results corresponding to Usagei = 2 refer to another binary logit model

estimated with the dependent variable being coded as 0 if Usagei = 1; 2 and 1

if Usagei = 3; :::; 6. The positive parameter coe¢ cients in table 5.3.3 (a) imply

that higher values of the covariates are associated with higher values of the

categorical dependent variable. Hence increasing usage of the BPAY platform.

The generalised logit model achieved an R2 of 1:5% and a p-value associated

with a null hypothesis that all parameters are not signi�cantly di¤erent from zero

of approximately 0:00, implying the model is empirically valid. Whites standard

errors that are robust to heteroscedasticity are used and an asterisk (�) denotes a

coe¢ cient that was not signi�cant at the 5% los. The parameters of the majority

of covariates are statistically signi�cant at the 5% level, with the exception of

a few parameters per panel being insigni�cant. The parameters associated with

the state indicator variables for WA, NSW and NT are statistically insigni�cant

at the 5% los for four, two and one panels out of the six estimated, respectively.

The in�uence of age on the usage of BPAY platform is positive with the

coe¢ cient of age being positive for all �ve panels. The impact of age also gets
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larger across cut-o¤points, as the magnitude of the coe¢ cient increases with the

value of the dependent variable, Usage. Hence, older individuals are more likely

to be members of the higher categories of usage.

The reference location in the consumer usage model is the ACT and all bi-

nary variable coe¢ cients signify the impact of location on consumer usage in

comparison to residents from the ACT. Overall, in comparison to individuals

from the ACT, residents in NSW, QLD, SA and VIC are more likely to be mem-

bers of the higher consumer usage categories. Whereas, individuals from NT

and TAS are more likely to be associated with the lower categories of consumer

usage, given their negative coe¢ cient values. The in�uence of SA and VIC gets

larger across the cut-o¤ points of consumer usage, hence there is a higher prob-

ability of individuals from these states being members of the higher categories

of usage. The opposite is true for NSW, while the in�uence of consumer usage

across the categories for QLD is consistent. However, the e¤ect of consumer

usage by residents of NT and TAS is negative with the magnitude of its impact

on progressing to higher levels of usage decreasing across cut-o¤ points. Hence,

individuals from the NT and TAS are less likely to be medium or heavy users of

the BPAY platform than individuals from other states.

Gender and Customer segment are relevant covariates in explaining the like-

lihood of an individual being placed in the 6 categories of BPAY usage. Other

things being equal, males use the BPAY platform less than females as signi�ed
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by the negative estimated coe¢ cients across the 5 panels. The in�uence of gen-

der, while fairly consistent over the �rst four categories, gets stronger at the last

cut-o¤ points of BPAY usage. That is, males are far less likely being classi�ed

as an average to heavy user than a light user of the BPAY platform. Similarly,

with reference to premium banking customers, retail and wealth management

individuals are less likely to be high users of the BPAY platform. The impact

of being members of the retail and wealth managements is negative and it gets

larger across cut-o¤ points. This suggests individuals are far less likely to be

members of the higher BPAY usage categories.

The e¤ect on credit card holding on consumer usage is positive and relatively

uniform across the 5 panels of the generalised ordered logit models estimated.

This satis�es a-priori expectations concerning the in�uence of prior technology

adoption and the consumption of an innovative technological product. The

parameter value does not vary substantially over cut-o¤ points, with the coef-

�cients value ranging from 0:33 to 0:41. To assist in the interpretation of the

results in Table 5.3.3 (a), odd ratios are computed below.
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Table 5.3.3 (b) Generalised Logit Odds Ratios

Usagei = 1 Usagei = 2 Usagei = 3 Usagei = 4 Usagei = 5

�i �i �i �i �i

Agei 1:01 1:01 1:02 1:02 1:02

NSWi 1:02 1:04 1:05 1:08 1:01

NTi 0:9 0:92 0:88 0:94 1:16

QLDi 1:06 1:06 1:06 1:06 1:06

SAi 1:09 1:12 1:22 1:31 1:4

TASi 0:9 0:92 0:85 0:84 0:85

V ICi 1:08 1:11 1:2 1:35 1:29

WAi 0:97 0:99 1:02 1:04 1:03

Malei 0:91 0:91 0:93 0:91 0:83

Retaili 0:92 0:9 0:8 0:66 0:59

Wealthi 0:78 0:65 0:39 0:27 0:33

Cardi 1:51 1:5 1:48 1:39 1:43

Table 5.3.3 (b) portrays the odds ratio of every covariate across the �ve

panels estimated for the generalised ordered logit model. It is essentially the

exponential of the coe¢ cients estimated in Table 5.3.3 (b). Age is the only

continuous explanatory variable in the model and, as such, has a slightly di¤erent

interpretation to that of the other covariates present. In relation to the results of
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the �rst panel, Usagei = 1, for every unit increase in the age of an individual, the

odds of an individual being placed in a higher usage category than Usagei1 = 1

improve by 1%. Alternatively, comparing a 20 year old to that of a 40 year old,

the odds of an individual that is 40 years old being placed in a higher usage

category than Usagei1 = 1 improve by 22%. A similar interpretation can be

applied to the remaining coe¢ cients for age in the other panels. For example,

in comparing the odds of a 20 year old to that of a 40 year old to be placed in

the heavy category of consumer usage, Usagei = 6, the odds of the 40 year old

improve by 50%.

The discrete variables in the model have a simple interpretation in compar-

ison to the continuous explanatory variables. In relation to the state indicator

variables and focusing on the results of the �rst panel, the odds that an individ-

ual born in NSW will be placed in a usage category other than that of a one-o¤

user improve by 2%, in comparison to an individual born in the ACT. However,

the odds decrease by 10% if the individual were born in the NT. The greatest

odds ratio value amongst the location dummy variables is recorded by SA in the

�fth panel. Hence, there is an improvement in the odds of 40% if an individual

is placed in the heavy user category as opposed to a lower usage category when

comparing an individual from SA to an individual from the ACT.

The impact of gender on the odds ratio do not di¤er greatly across the �ve

panels estimated, except for the last panel estimated. The odds of a male to be
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in a higher usage category than one-o¤ decreases by 9% in relation to a female,

other variables being held constant. The impact of gender is most pronounced in

the last panel. Assuming all other variables are held constant, the odds decrease

by 17% for males being in the highest category of BPAY usage. Figure 5.3.3

(a) shows the impact that gender has on the probability of being classi�ed as a

One-o¤payer. For all values of age, a female is less likely to be a one-o¤platform

payer of BPAY.

Figure 5.3.3 (a). Probability of being an One-O¤ payer: Gender

A-priori expectations are largely satis�ed concerning the in�uence of bank

segment on platform usage, assuming it proxies for wealth. The least wealthy

classi�cation is retail and, other things being equal, such an individual should

consume less and have lower amounts of bills outstanding. This observation is
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con�rmed by the model. For example, in regards to the �rst panel, the odds

of an individual in the retail segment is 8% less likely to be in usage categories

greater than a one-o¤ user in comparison to an individual that is a premium

banking customer. The results of the most wealthy individuals of the three

segments, wealth management, are against a-priori expectations concerning the

impact of wealth on platform usage. The results suggest that there is a negative

relationship between consumer usage and being part of the wealth management

segment. For example, in regards to the last panel, the odds of an individual

being a heavy user of the BPAY platform, usagei = 6, decrease by 67% if they

are regarded as individuals in the wealth management sector in comparison with

someone from premium banking.

The improvement of the odds of individuals holding a credit card ranges from

43% to 51% of being in a higher consumer usage category across the �ve panels.

The in�uence is observed most in the �rst panel. For example, the odds of an

individual being in a usage category that is greater than Usagei = 1, light user,

improve by 51% if the consumer has a credit card facility attached to their bank

account. Thus, the in�uence of early technology adoption on the adoption of

alternative new technology is con�rmed by the model.
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Figure 5.3.3 (b). Probability of being an One-O¤ payer: Card Holding

Figure 5.3.3 (b) graphically illustrates the impact that holding a credit card

has on the probability of being classi�ed as a One-o¤ payer. For all values of

age, an individual that holds a credit card is less likely to be a one-o¤ platform

user of BPAY.

5.4 Conclusion - Online Billing Payment Adop-

tion

The motivation of Chapter 5 was to establish whether a link existed between the

usage of the BPAY platform by consumers with the adoption of prior payment

method technologies, given by credit card holding. Unlike Hayashi and Klee

(2003), there is an added layer of complexity as credit cards are another payment
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instrument individuals can use in the Bill Payment market. Hence, the impact

of credit card holding on the adoption of a new technology in the Bill Payment

market is unknown and answered empirically in this paper.

Using a proprietary data set that consisted of transactions of CBA customers

on the BPAY platform between May 2004 and October 2006, along with their

corresponding demographics, generalised linear ordered logit models are applied

to determine the impact of credit card holding on consumer usage. The results

of Chapter 5 is consistent with Hayashi and Klee (2003) hypothesis that the

adoption of a technology based payment instrument is in�uenced by the usage

of prior technologies. Other �ndings include a positive relationship between the

age of a consumer and being in a high category of usage and gender, with females

more likely to be in the higher categories of usage than males.



Chapter 6

Conclusion

The motivation underlying my research was to model the Bills Payment market

in which the BPAY platform operates. In doing so, an understanding of the

dynamics of this market can be gained to assist central banks and businesses in

their provision of incentives to consumers to change their payment preferences

to more e¢ cient platforms that have an ongoing e¤ect of increasing the welfare

of all participants in the economy.

The three research questions addressed in this dissertation are given by the

following:

� An examination of the existence of network e¤ects in the Bill Payments

market

� Determining the role that demographics, transaction related characteristics

and credit card holding has on a new consumer abandoning the BPAY

209
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platform

� Investigating the in�uence of prior technology adoption on the consumer

usage of BPAY.

Chapter 3 of my thesis addresses the �rst research question. A macroeco-

nomic model was developed to model the demand of consumers and merchants

to test for the presence of network e¤ects in a two-sided, four-party bill payments

market. The endogeneity that network e¤ects imply in two-sided markets is mod-

elled within a vector autoregressive framework. Price elasticities a¤ecting BPAY

and cross-price elasticities with competing platforms, along with short-run dy-

namics associated with changes in consumer demand and merchant acceptance,

was also modelled within a vector error-correction framework and by impulse

response functions. The results are summarised below:

� Consumers are more valuable to the BPAY platform as their e¤ect on

merchants is greater than that of merchant acceptance on consumer usage

� There is a clear distinction between short-run and long-run e¤ects from

changes to the variables that de�ne consumer usage and merchant accep-

tance demand models

� Pricing elasticities indicate the Bill Payment market is competitive, with

consumers and merchants reacting strongly to changes in bene�ts o¤ered

to consumers and fees for merchants
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� Approximately 8 quarters are needed following an innovation for equilib-

rium to be re-established in the consumer usage and merchant acceptance

demand model.

A few assumptions were made regarding the model and the data. The as-

sumption of a perfectly competitive issuing and acquiring market simpli�ed the

consumer usage and merchant acceptance demand models. Secondly, data re-

lating to the merchant fees of BPAY and the bene�ts of competing credit card

schemes was not directly available. However, given these limitations, Chapter

3 explores areas of the payments market which previously has been untouched

due to the lack of proprietary data made available by the private sector.

Technology has driven change in the majority of sectors in the economy. In

relation to the payments market, the cost savings eventuating from shifting to

an automated technology-based payments system from a paper-based payments

system are substantial. Chapter 4 identi�es factors that contribute to new con-

sumers of BPAY to leave the platform. A Cox (1972) proportional hazards model

was applied to quantify the risks of an individual leaving the platform. The main

�ndings include:

� Individuals who have a credit card are up to 12% less likely to leave the

BPAY platform at any point in time

� Males are approximately 3% more likely than females to leave the BPAY

platform at any point in time
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� There is a geographical in�uence on whether an individual adopts a inno-

vative bill payments platform such as that o¤ered by BPAY.

The limitations of Chapter 4 stem from the assumptions made regarding

the formation of the data set. Identifying new consumers of BPAY given the

sample was based on a number of assumptions. Assigning a �xed arbitrary

observational window to remove the biases induced by left-censoring decreased

the dataset under observation greatly. Furthermore, assuming an individual has

left the BPAY platform from not observing any other transactions on the account

induces error if an individual has another bank account and uses BPAY, as does

death or another member of the household begins making bill payments for an

extended period of time. However, due to the large sample size of the initial data

set, such biases are not expected to weaken the conclusions reached in Chapter

4.

Chapter 5 of my thesis aggregates the data set used in Chapter 4 over individ-

uals to determine the impact of prior technology adoption, given by credit card

holding, on the consumer usage of the BPAY platform. A generalised ordered

logit model was applied on the data once consumers were grouped into usage

bands to quantify the e¤ect of credit card holding on each level of consumer

group. Results indicate the following:

� Consumer usage is positively in�uenced by age with older individuals more

likely to be in the higher usage categories
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� As in Chapter 4, there is a geographical in�uence on consumer usage

� Support for the hypothesis that consumer usage is positively in�uenced by

credit card holding.

In conjunction with BPAY, data availability has enabled research questions

raised to be addressed. This dissertation has contributed to extending the litera-

ture in the market for payments at both the macroeconomic and microeconomic

level. Although given the limitations discussed, the �ndings provide a base for

further research to study the Bill Payments market with applications to other

two-sided markets which share similar attributes. Another future research av-

enue may be to determine the impact of RBA intervention on merchant fees and

consumer fees more directly. The RBA has introduced several reforms in recent

years and it will be of interest to isolate whether decreases in interchange fees

were due to competitive pressure or regulatory changes.



Appendix

A Panel Unit Root Tests

A.1 Tests with a Common Unit Root Process

A.1.1 Levin, Lin and Chu (2002)

The model LLC consider to test for a panel unit root is given by:

�yit = �yit�1 +

piX
j=1

�ij�yit�j + �i + �it+ "it; (A.1)

where the null and alternative hypothesis are given by Ho and H1a respectively.

To test for a panel unit root, LLC recommend standardising and removing the

deterministic components of �yit and yit�1 to attain an estimate of � in the

following pooled regression:

�~yit = �~yit�1 + �it; (A.2)

The method for implementing the LLC test is summarised in the following

steps:

214
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1. Run an ADF test for each cross-section to determine the maximum number

of lags pi required for each cross-section using an information criterion.

2. To attain the orthogonalised residuals of �yit and yit�1, perform the fol-

lowing auxiliary regressions:

�yit =

piX
j=1

�ij�yit�j + �i + �ti + uit;; (A.3)

yit�1 =

piX
j=1

�ij�yit�j + �i + �ti + �it�1; (A.4)

3. The estimated residuals from equation (A:3) and (A:4) are then standard-

ised to account for di¤erences in variances across cross-sections, as shown

below:

~uit =
ûit
�̂ui
; (A.5)

~�it�1; =
�̂it�1
�̂ui

;

4. An estimate of the ratio of long-run to short-run standard deviations is

computed. Under the null hypothesis, the long-run variance of equation

(A:1) is given by

�̂2yi =
1

T � 1

TX
t=2

�y2it + 2

�KX
L=1

! �KL

"
1

T � 1

TX
t=2+L

�yit�yit�L

#
; (A.6)

where �K is a truncation lag that can be data dependent. For a Bartlett

kernel, ! �KL = 1 �
�

L
�K+1

�
. For each cross-section i, the ratio of the long-

run standard deviation is estimated by ŝi =
�̂yi
�̂"i
. The average standard

deviation is then estimated by SN = 1
N

PN
i=1 ŝi.
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5. The regression denoted by equation (A:2) is then run to obtain an estimate

of �. The regression is based on N ~T data observations, where ~T = T� �p�1

and p = 1
N

PN
i=1 pi.

Compute the adjusted t-statistic:

t�� =
t� �N ~T ŜN �̂�2v �̂ (�̂)��m ~T

��
m ~T

; (A.7)

where t� =
�̂
�̂(�̂)
, �̂ (�̂) is the standard error of �̂, ��

m ~T
and ��

m ~T
are the mean

and standard deviation adjustments that depend on the speci�cation of deter-

ministic terms in the model and are tabulated by LLC. The LLC test statistic

t�� is asymptotically distributed as a standard normal random variable and the

requirements for t�� to achieve its limiting distribution is
p
NT
T

! 0, where NT

emphasises that the cross-section dimension N is an arbitrary monotonically in-

creasing function of T . Alternatively, N ! 1 with N
T
! 0, such that N is

small enough relative to T . In addition to the speci�cation of the determinis-

tic elements of the data generating process and the selection of the number of

lags pi, a kernel choice needs to be speci�ed in the computation of ŜN . LLC

recommend using their test for panels where 10 < N < 250 and 25 < T < 250.

Monte Carlo Simulations performed by LLC show that the normal distribution

provides a good approximation to the empirical distribution of t��.

A.1.2 Baltagi (2000)

Baltagi (2000) investigates the local power of the LLC and IPS test statistics
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against a sequence of local alternatives. Baltagi (2000) results indicate that both

tests su¤er a persistent loss of power if individual speci�c trends are included.

This is a result of correcting for the bias of the test statistic as it is not centered

at zero, as re�ected by the negative term in the test statistic of LLC in equa-

tion (A:7). Baltagi (2000) proposes a test statistic that does not require a bias

adjustment and has more power in comparison with the IPS and LLC tests if a

deterministic trend is included in the test.

To implement Baltagi (2000), the �rst three steps are identical to that of the

LLC test, however no trend term or individual speci�c intercept is included in

the regression of equation (A:3) and (A:4). The following steps are then required

to compute the test statistic:

� Transform the standardised residuals ~uit and ~�it�1 using the forward or-

thogonalisation transformation advocated by Arellano and Bover (1995):

u�it =

r
T � t

T � t+ 1

�
~uit �

~uit+1 + :::+ ~uiT
T � t

�
; (A.8)

��it�1 = ~�it�1 � ~�i1 �
t� 1
T

~�; with trend and intercept

��it�1 = ~�it�1 � ~�; with intercept, no trend

��it�1 = ~�it�1; no trend or intercept

Estimate the pooled regression:

u�it = ��
�
it�1 + vit; (A.9)

The t-statistic for the null hypothesis of a panel unit root illustrated previously
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by Ho in equation (3:4:3) is shown to have a limiting standard normal distribu-

tion.

A.1.3 Hadri (2000)

In contrast to the LLC and Baltagi (2000) tests, Hadri (2000) is a test of sta-

tionarity. Hadri (2000) proposes a residual-based Lagrange Multiplier (LM) test

and is essentially an extension of the univariate KPSS test to the panel data

context.

Hadri (2000) considers the following data generating process:

yit = rit + �it+ "it; (A.10)

rit = rit�1 + uit;

Equation (A:10) decomposes the data series into its deterministic and ran-

dom components. It is assumed that "it s IIN (0; �2"), uit s IIN (0; �2u) and

E("ituit) = 0 for all i; t. The null hypothesis of stationarity corresponds to the

random component of the data series, rit, having a variance of zero. Equation

(A:10) can be expressed using backward substitution of the stochastic component

of the data series into the following:

yit = ri0 + ��t+ eit; where eit =
tX
t=1

uit + "it; (A.11)

The Null and Alternative Hypotheses Hadri (2000) proposes are shown below:
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Ho : � = 0; (A.12)

H1 : � > 0;

where � = �2u
�2"
. The test statistic is a one-sided LM-Statistic and utilises residuals,

êit, from equation (A:11).

LM1 =
1
N

PN
i=1

1
T 2

PT
t=1 S

2
it

�̂2"
; (A.13)

where Sit =
Pt

j=1 êij and �̂
2
" is a consistent estimator of �

2
" under the Null

Hypothesis, such as that given by equation (A:14). It should be noted that in

�nite samples equation (A:14) should be corrected for the degrees of freedom:

�̂2" =
1

NT

NX
i=1

TX
t=1

"̂2it; (A.14)

Hadri (2000) also derives an alternative LM test that can account for hederoscedas-

ticity across individuals:

LM2 =
1

NT 2

 
NX
i=1

TX
t=1

S2it
�̂2"i

!
; (A.15)

The test statistic proposed is provided below:

Z =

p
N (LM � �i)

� i
for i = 1; 2 (A.16)

where �i and � i are constants and whose value depends on whether a trend has

been included in the test. Monte Carlo simulations were conducted to derive �rst
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and second moments of the test statistic and, by applying the Lindeberg-Levy

Central Limit Theorem, the test statistic is distributed as a standard normal

random variable. A disadvantage associated with the test proposed by Hadri

(2000), is that it su¤ers from severe size distortions when the null is close to the

alternative of a unit root, which is a feature of unit root tests that involve a null of

stationarity. Therefore, caution needs to be exercised in using the test proposed

by Hadri (2000). In addition, Hlouskova and Wagner (2005) �nd the Hadri

(2000) test performs very poorly in small samples due to the asymptotic values

for the mean and variance of the KPSS statistic being used in standardising the

test statistic. It should be noted the hederoscedasticity consistent test statistic

will be used in this thesis.

A.2 Tests with Individual Unit Root Processes

A.2.1 Im, Pesaran and Shin (2003)

IPS propose a computationally simple test for a panel unit root through a

likelihood-based framework, with the alternative hypothesis allowing for sta-

tionary and a non-stationary series to exist in a panel. In addition, the IPS test

can account for residual serial correlation. The estimated equation is as follows:

�yit = �iyit�1 +

KiX
k=1

�ik�yit�k + "it; (A.17)

Equation (A:17) is essentially a panel augmented Dickey Fuller test with
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heterogeneity imposed on the coe¢ cients. The IPS test is conducted after the

demeaning and detrending of the data series. IPS test the null hypothesis of a

unit root by computing the average of N individual t-statistics associated with

the DF or ADF test on each cross-section with the assumption that each indi-

vidual t-statistic is independently and identically distributed. The test statistic

is provided below:

tIPS =

p
N
�
�t� 1

N

PN
i=1E [tiT j�i = 0]

�
q

1
N

PN
i=1 V [tiT j�i = 0]

; (A.18)

Monte Carlo simulations are run to estimate the �rst and second moments

of the average t-statistic. By the Lindeberg-Levy Central Limit Theorem, tIPS

follows a standard normal distribution as T !1, followed by N !1, sequen-

tially under the null hypothesis. The rejection of the null hypothesis implies

some cross-sections in the panel do not contain a unit root. However, due to

the heterogeneous nature of the alternative hypothesis, the test does not specify

which cross-sections are stationary. The disadvantages associated with the IPS

test include the condition of a balanced panel if tabulated critical values are to

be used. In addition, the lag length of all individual ADF tests needs to be the

same.

A.2.2 Fisher-ADF

The Fisher tests assume that the p-values of univariate unit root tests associated

with each cross-section are independent. The Fisher result is that the p-values
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from N independent tests are distributed uniformly between zero and one, and

thereby the test statistic () is distributed as a Chi-Square random variable with

2N degrees of freedom under the null hypothesis as Ti !1 for all i 2 N:

 = �2
NX
i=1

log (pi) s �2N ; (A.19)

Equation (A:19) is the test statistic used in the Fisher type tests advocated

by Maddala and Wu (1999) and Choi (2001) to be applied to panel unit root

tests. It has the advantage over IPS that only T needs to approach in�nity

for a �xed N , for the test statistic to approach its limiting distribution rather

than both N and T . Other advantages of the Fisher type test compared to the

IPS test is that it can be based on any unit root test to compute p-values. It

does not require a balanced panel and di¤erent lag lengths can be used in the

individual ADF tests. However, simulation is required to yield the p-values of

the individual unit root tests:
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B Problems With Estimating An ECM With

More Than 2 Variables

Let zt = [y1t; y2t; xt]0 and allow all three variables in zt to be potentially endoge-

nous:

zt = A1zt�1 + :::+ Akzt�k + ut (B.1)

ut � IN (0;�)

The above Vector Autoregression (VAR) can be represented as a Vector Error

Correction Model (VECM) given by (B:2) :

�zt = �1�zt�1 + :::+ �k�1�zt�k+1 +�zt�1 + ut (B.2)

where �i = � (I � �ii=1Ai) with i = 1; 2; ::; k � 1 and � = �
�
I � �ki=1Ai

�
. The

(3� 3) � matrix can be decomposed further into the following:

� = �� (B.3)

where � represents the speed of adjustment to disequilibrium and � denotes the

cointegrating vectors. Setting the lag length to two, the VECM can be expressed

as:

26666664
�y1;t

�y2;t

�xt

37777775 = �1
26666664
�y1;t�1

�y2;t�1

�xt�1

37777775+
26666664
�11 �12

�21 �22

�31 �23

37777775
2664 �11 �12 �13

�21 �22 �23

3775
26666664
y1;t�1

y2;t�1

xt�1

37777775+ ut
(B.4)
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Taking the VECM in equation (B:4) and considering just the ECM of the �rst

endogenous variable, it can be seen in equation (B:5) below that it is not possible

to obtain an estimate of neither cointegrating relationships.

�y1;t = �1�y1;t�1 + �11 (�11y1;t�1 + �21y2;t�1 + �31xt�1) + (B.5)

�12 (�12y1;t�1 + �22y2;t�1 + �32xt�1) + ut

The OLS estimator computes a weighted average of the two cointegrating

relationships as it can�t uniquely distinguish one long-run relationship from the

other. In the event that there is only one cointegrating relationship between

the endogenous variables, more e¢ cient estimates can be obtained using the

multivariate approach as all the information in the system is used. A single

cointegrating vector in equation (B:4) restricts all the elements in the second

column of � to equal zero.

C De�nition And Some Properties of Partial

Likelihood

Let an observation on a random vector Y corresponding to the data have density

function f (y; �; �). The vector of parameters of interest is given by � and the

nuisance parameter is denoted by �. In relation to the Cox (1972) model, h0 (�)

is the nuisance function of equation (4:2:11). Suppose that Y is mapped into a

set of variables A1; B1; :::; Am; Bm in a one-to-one transformation, and let A(j) =
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(A1; ::; Aj) and B(j) = (B1; ::; Bj). In addition, let the joint density of A(m); B(m)

be denoted by:

mY
j=1

f
�
bjjb(j�1); a(j�1); �; �

� mY
j=1

f
�
ajjb(j); a(j�1); �

�
(C.1)

The second term in equation (C:1) is termed the partial likelihood of � based

on fAjg in the sequence
�
Aj; �j

	
. The number of terms m could be �xed or

allowed to vary.

Thus, based on equation (C:1), the partial likelihood is:

L (�) =
mY
j=1

f
�
ajjb(j); a(j�1); �

�
(C.2)

The partial likelihood shown above in equation (C:2) cannot generally be given

any probability interpretation as either the conditional or the marginal proba-

bility of any event. However, in many instances it can be used like an ordinary

likelihood for purposes of large-scale estimation in that the usual asymptotic

property formulas and properties associated with the likelihood function and

likelihood estimation still apply.

C.1 Partial Likelihood for �

The partial likelihood framework can be applied to the Cox (1972) model with

right censoring present in the data. Suppose that the sample comprises of k

uncensored failure times t1 < ::: < tk and assume there are no tied event times.

The remaining n� k individuals are right censored. Let j denote the individual
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leaving the BPAY platform at tj, and let and x` denote the covariate vectors for

the `th individual. From section (C), let Bj specify the censoring information

in [tj�1;tj) plus the information that one individual leaves the BPAY platform

in the interval [tj; tj + dtj). Let Aj specify that individual j fails in [tj; tj + dtj).

The jth term in the partial likelihood (C:2) is:

Lj (�) = f
�
ajjb(j)a(j�1); �

�
Conditioning event b(j), a(j�1) speci�es all the censoring and failure information

in the trial up to time t�j and also provides the information that a failure occurs

in [t(j); t(j) + dt(j)). Assuming independent censoring, it follows that:

Lj (�) =
h (tj;xj) dtjP

`2R(tj) h (tj;x`) dtj
(C.3)

where R (t) is the set of individuals at risk of leaving the BPAY platform at time

t�, just prior to t. Thus R (t) consists of all individuals who are still placing

billing transactions through BPAY and are still under observation at time t�.

De�ne as risk sets, Yi (t) = 1 [i 2 R (t)], where 1 [�] is the indicator function, the

jth term in the partial likelihood is given by:

Lj (�) =
h (tj;xj) dtjPn

`=1 Yl (tj)h (tj;x`) dtj

The Cox (1972) model, as shown by equation (4:2:11), simpli�es equation (C:3)

since the baseline hazard h0 (tj) dt cancels in the numerator and denominator.

The product over j then gives the partial likelihood for �,

kY
j=1

exp
�
x0j�
�P

`2R(tj) exp [x
0
`�]

(C.4)
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It is important to note that in constructing the partial likelihood of � in

(C:4), no information in relation to � can be obtained for where no consumers

leave the BPAY network in the intervals (tj�1; tj), j = 1; :::; k + 1, t0 = 0 and

tk+1 = 1. As h0 (t) is not speci�ed, it suggests a failure-free interval (tj�1; tj)

can yield minimal information about �. Assuming information relating to the

distribution of h0 (t) is known, there would be contributions to the inference

about � from the intervals with no failures. Equation (C:4) is transformed into

its logarithmic form to more easily solve for �:

L (�) =
kX
j=1

8<:x0j� � ln
24 X
`2R(tj)

exp
�
x0j�
�359=; (C.5)

The maximum likelihood estimate, �̂, from equation (C:5), can be obtained

as a solution to the vector equation

@ logL

@�
=

kX
j=1

8>>><>>>:x
0
j �

X
`2R(tj)

x0` exp [x
0
`�]X

`2R(tj)

exp [x0`�]

9>>>=>>>;
=

kX
j=1

8<:x0j �
kX

`2R(tj)

wj` (�)x
0
`

9=;
U (�) = @ logL=@� =

kX
j=1

�
x0j � �xwi

�
= 0 (C.6)

where

�xwi =
X
`2R(tj)

wj` (�)x
0
`

and

wj` (�) =
exp [x0`�]P

m2R(tj) exp [x
0
m�]

(C.7)
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Similarly, the observed information matrix is

l (�) = �@ logL
@�@�0

=

kX
j=1

V (�; tj) (C.8)

where

V (�; tj) =
X
`2R(tj)

[x0` � � (�; tj)]

2
wj` (�)

is the covariance matrix of x` under the distribution (C:7). As a consequence,

I (�) is typically positive de�nite for all �, the log likelihood is strictly concave

and the estimate �̂ is typically unique. The value �̂ that maximises (C:4) can

be obtained by a Newton-Raphson iteration utilising (C:6) and (C:8).

Asymptotic results completely analogous to those for parametric likelihoods

apply under quite general conditions. In the absence of ties, the asymptotic dis-

tribution of �̂ is normal with mean � and estimated covariance matrix I
�
�̂
��1

.

Thereby, inference based on the lth component �l of � can be based on the

asymptotic result:

�̂l � �l � N
�
0; Î ll

�
where Î ll is the (l; l) element of I

�
�̂
��1

. Likelihood ratio tests can be based on

the partial likelihood, and the score statistic U (�0) can be used to test � = �0

with �2 and normal asymptotic results.
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C.2 Estimating the Survival Function

C.2.1 Kaplan-Meier estimator

The Kaplan and Meier (1958) estimator is a nonparametric method to estimate

a survival function. The estimator at any point in time is obtained by multiply-

ing a sequence of conditional survival probability estimators. Each conditional

probability estimator is obtained from the number of individuals in the risk set

and the number of individuals leaving the BPAY platform during the ith period

and is written as:

hi = 1�
di
ni

where n is the number in the risk set and d is the number of failures. Subjects

that leave the BPAY platform contribute to the number at risk until they leave

the platform, from which point they contribute to the value of the numerator.

Individuals that are censored contribute to the number at risk until they are lost

to follow up. The estimated survivor function can be expressed as follows:

St � Pr(T > t)

= Pr(T > tjT > t� 1) Pr(T > t� 1)

= (1� ht)St�1

= �ts=1 (1� hs)

A convenient feature about the Kaplan-Meier estimator is that no adjustments

are required for tied failure times in estimating the survivor function.
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C.2.2 Cox (1972) Baseline Survivor Function

The expression for the survival probability that accompanies the Cox (1972)

model is given by equation (4:2:13) : This implies that once estimates of the

regression coe¢ cients are estimated, an estimate of the baseline survivor func-

tion is needed to compute the survival probability, given a set of covariates. A

likelihood-based approach, which assumes that the hazard is constant between

observed survival times, is applied to estimate the baseline survivor function.

Lawless (2003) provides in-depth details which are summarised below.

The framework of the likelihood approach is to replicate the procedure of

the Kaplan and Meier (1958) estimator of the survival function. The key point

in that development is the use of the quantity �̂i = 1 � di
ni
as an estimator of

the conditional survival probability at observed survival time ti. The Kaplan-

Meier estimator of the survival function is the product of estimators of the in-

dividual conditional survival probabilities. The expression for the conditional

survival probability that leads to this estimator is �i = S (ti) =S (ti�1). Let

�0i = S (t0i) =S0 (ti�1), and it follows that the survival probability is:

S
�
t(i); x; �

�
S
�
t(i�1); x; �

� = �S0 �t(i)��exp(x0�)�
S0
�
t(i)
��exp(x0�) =

(
S0
�
t(i)
�

S0
�
t(i)
�)exp(x0�)

= �
exp(x0�)
0i (C.9)

Maximum likelihood methods are employed, conditional on the partial likelihood

estimator of the regression coe¢ cients, �̂, in the model. To simplify the notation,

we let �̂l = exp (x0�) , and the estimator of the conditional baseline survival
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probability is obtained by solving the equation:

X
i2Di

�̂l

1� ��̂l0i
=
X
i2R

�̂l (C.10)

where Ri refers to the individuals in the risk set at ordered observed survival

time t(i) and Di denotes the individuals in the risk set with survival times equal

to t(i). If there are no tied survivals, Di contains one individual and the solution

to (C:10) is:

�̂0i =

"
1� �̂lP

i2R �̂l

#�̂�1l
(C.11)

In the event of tied survival times, expression (C:10) is solved by iterative meth-

ods. The estimator of the baseline survival function is the product of the indi-

vidual estimators of the conditional baseline survival probabilities:

Ŝ0 (t) =
Y
t(i)�t

�̂0i (C.12)

where �̂0i is the solution to expression (C:10). Alternatively, the baseline hazard

function can be estimated as:

�0
�
t(i)
�
= 1� �̂0i
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