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VIBRATION CONTROL 

OF WIND-EXCITED TALL/SLENDER STRUCfURES 

Y.L. Xu 

SUMMARY 

The results of a theoretical and experimental investigation of the 

vibration control of wind-excited tall/slender structures are presented in this 

thesis. The investigation was divided into two parts. The first part was 

based on aeroelastic model tests of tall buildings in the wind tunnel. It 

included experiments and analyses of alongwind and crosswind vibration 

control of tall buildings by passive mass dampers (TMDs); torsional vibration 

of tall buildings and its control by TMDs; a semi-analytical method of 

performing parametric study of TMDs; alongwind, crosswind and torsional 

mode shape correction factors; and a prediction procedure for assessment of 

the effectiveness of an active mass damper control system. The second part 

was a theoretical study of vibration control 

structures by using computation techniques. 

application of tuned liquid column dampers in 

of wind-excited slender 

It included the possible 

reducing the response of 

wind-sensitive structures; and soil-structure-mass damper interaction under 

wind loading. 

The aeroelastic test of alongwind and crosswind vibration control was 

carried out on a CAARC model in a suburban boundary layer wind model, 

by using a conventional aeroelastic test rig which simulated two fundamental 

sway modes. The torsional vibration control experiments were performed 

on a rectangular tall building model in an open country boundary layer wind 

model, by using an aeroelastic test rig designed for torsional vibration only. 

The results obtained from the aeroelastic test programs demonstrated the 

effectiveness of the TMD systems in suppressing the wind-induced dynamic 

responses of the tall buildings. The TMD system reduced the vibration 

caused by alongwind turbulence excitation, crosswind wake excitation or 
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torsional excitation by 20%-45% provided that the parameters of the TMDs 

were properly selected. The TMD system was found to be even more 

effective in reducing the vibration caused by lock-in excitation by a factor 

of 2 or more. 

A series of wind tunnel model tests were also conducted to investigate 

the mechanism of torsional excitation and torsional response of tall buildings, 

and the sensitivity of the torsional response to eccentricity between centres 

of twist and building geometry. With the angle of wind incidence normal 

to the wide face of the building, vortex shedding is the dominant mechanism 

of torsional excitation. With the angle of wind incidence normal to the 

narrow face, the incident turbulence and the shear layer re-attachment 

intermittencies are two important excitation mechanisms. At a reduced wind 

velocity of 8, the maximum dynamic torque for the eccentric model 

increased by 30% and the maximum mean torque increased by a factor of 

2.8, compared with the values of the basic model. 

Based on direct measurements in the wind tunnel of wind-induced 

response or excitation spectra of the plain building without TMDs, a 

semi-analytical method of performing parametric study of the TMD was 

proposed. The results obtained by this method were in good agreement 

with the corresponding experimental results. In contrast, the conventional 

parametric study method, which is based on a white noise excitation model, 

usually overestimates the effectiveness of TMDs for most real situations. 

The effectiveness of the TMD was also found to be dependent on the type 

of external wind excitation. 

The semi-analytical method was also used to investigate the feasibility 

of a suboptimal active mass damper vibration control system. Analytical 

results showed that the effectiveness of passive tuned mass dampers can be 

considerably enhanced by the inclusion of the suboptimal active control 

system. The analytical procedure provides a method of selecting the most 

beneficial control parameters which result in a larger reduction of the 

building and damper responses by using a small control force or moment. 

Sources of error in the aeroelastic modelling technique, caused by the 

- ii -



discrepancy between the building model and prototype mode shapes, were 

discussed. Three mode shape correction factors, for alongwind, crosswind 

and torsional responses respectively, were suggested to adjust the 

experimental response results to the corresponding prototype values. The 

results obtained by the proposed expressions were in reasonable agreement 

with the available experimental results. 

In the theoretical study of vibration control of wind-excited slender 

structures, the structure was modelled as a n-degree-of-freedom lumped 

mass system taking into account both bending and shear. The soil 

behaviour, including footing embedment effect, was characterised by a 

known frequency-dependent compliant matrix. A transfer matrix 

formulation for non-periodic structures was developed to analyse the effects 

of liquid dampers and soil compliancy on wind-induced response of slender 

structures. The numerical computer accuracy of direct matrix multiplication 

was investigated and the results indicated that the accuracy of the computed 

results can be guaranteed. Numerical examples showed that tuned liquid 

column damper systems, which have significant practical advantages, can 

achieve the same level of motion reduction as passive mass dampers. The 

numerical examples also showed that soil compliancy can significantly affect 

the structural responses and the effectiveness of the dampers, depending on 

the properties of the soil, the properties of the structure, the nature of the 

excitation and the type of structural response. 
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Chllpter 1 

INTRODUCTION 

1.1 Aims and Limitations of the Research Project 

The use of high strength materials and the development of new building 

techniques have reduced the cost of modern structures to a great extent, but 

at the same time caused modern structures to be more flexible and lightly 

damped than in the past. The multi-function requirements of modern 

structures also make structural shapes and systems more complex. Such 

structures are inherently sensitive to alongwind, crosswind or torsional 

excitation. Consequently, wind-induced oscillations of structures may cause 

human discomfort, cracked partitions, broken glass, damaged sensitive 

equipments and even catastropic failure of some bridges and towers. 

To ensure functional performance of structures it is important to reduce 

undesirable structural vibrations under wind loading. Various possibilities 

exist to achieve this goal, which include structural modification, aerodynamic 

modification and use of control technology. The use of passive or active 

control technology, however, is gaining wide acceptance in the building 

industry as evidenced by recent implementation of control devices on tall 

buildings and other flexible structures. In fact, we are entering a new era, 

leaving behind the days in which buildings and structures only offer ed space 

or a single function, to an era of providing an environment of comfort, 

multi-function sevices, high-level communication network systems and 

highly efficient productivity. 'Super-tall' buildings with up to 500 storeys 

are being considered as possibilities in the near future. Hence, control 

systems, either active or passive, will become an integral part of structural 

systems. It has also been predicted that the realization of control 

technology in civil engineering may cause a revolution in this field. 
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The broad aim of the research project described in this thesis was to 
investigate, by experimental and theoretical studies, the effectiveness of 
tuned mass dampers (TMDs) and liquid column dampers (TLCDs) in 

suppressing wind-induced structural vibrations. More special goals were as 

follows: 

(a) To evaluate, by using aeroelastic model tests in wind tunnel, the 

effectiveness of passive TMDs in suppressing tall building vibrations induced 
by alongwind turbulence excitation, crosswind wake excitation, lock-in 

excitation and torsional excitation. 

(b) To provide, by combining experimental results with theoretical analysis, 

a reliable and economical method of determining optimum design parameters 
of passive TMDs for wind-excited tall buildings. 

(c) To perform parametric studies of a suboptimal active mass damper 

control system and to estimate its effectiveness in reducing wind-induced 
building vibration compared with passive TMDs. 

(d) To address a new approach which facilitates the mitigation of 
wind-induced motions of slender structures by utilising tuned liquid column 

dampers. 

(e) To assess the effect of soil compliancy under the footing of slender 

structures on the effectiveness of TMDs designed for the slender structures. 

Information about the mechanism of wind-induced torsional excitation 
on tall buildings is not plentiful. Therefore, an aeroelastic model for 

torsional vibration was designed and built, and some basic characteristics of 

wind-induced torsional vibration of tall buildings were investigated before 

the suppression experiment of wind-induced torsional vibration of tall 

buildings was performed. Furthermore, some error will arise when the 

mode shapes of building models depart significantly from the prototype 
fundamental mode shapes. The mode shape corrections, for alongwind, 

crosswind and torsional vibration, were discussed. However, it is not 

intended to examine in wind tunnel the effect of TMDs on coupled 
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translational-torsional vibration of wind-excited tall buildings. The 

experimental verification of the proposed semi-analytical method to predict 

the effectiveness of active mass dampers in suppressing wind-induced 

vibrations of tall buildings is also not included in this thesis. 

With limitations in experimental equipment and technique, a theoretical 

study was adopted to investigate the possible application of TLCDs in 

reducing the wind-induced response of slender structures, and the 

soil-structure-damper interaction under wind loading. The theoretical 

expressions for wind excitations, tuned liquid column damper and soil 

behaviours were mostly derived from the relevant experiments by other 

researchers. However, the use of more complicated structural models in the 

theoretical study presented in this thesis made it possible to estimate the 

effect of dampers and soil compliancy on wind-induced vibrations of higher 

modes. 

1.2 Layout of the Presentation 

As a general introduction to the thesis, this chapter indicates the 

background of the research project, outlines the aims of the research project 

and points out the approach undertaken and the limitations of the proposed 

project. 

Chapter 2 describes in detail the background of the research project. It 

begins with an introduction to wind-induced vibrations of tall/slender 

structures, which is followed by an description of the significance and 

method of wind-induced vibration control. The last section is a literature 

review of vibration control, with particular reference to passive and active 

control technology in civil engineering and wind engineering. 

Chapters 3 to 6 give an overall description of the effectiveness of 

passive TMDs in suppressing various wind-induced vibrations of tall 

buildings and the parametric design of the passive TMD. 

After discussing the scaling requirements of the natural wind simulation 
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and aeroelastic modelling of building in wind tunnel, the experimental results 

of wind-induced translational vibration control of tall buildings by passive 

TMDs are presented and analysed in Chapter 3. The wind-induced 

translational vibrations considered here are due to alongwind turbulence, 

crosswind wake excitation and lock-in excitation. 

In Chapter 4, an aeroelastic test rig for pure torsional vibration is first 

described. The wind-excited torsional response of tall building is presented 

and the mechanism of the wind-induced torsional excitation is discussed in 

terms of torsional excitation spectra, probability distributions of peaks and 

aerodynamic damping. This is followed by an examination of the sensitivity 

of the torsional response to eccentricity between centres of twist and 

building geometry. This Chapter ends with a section on the effect of a 

passive TMD on the torsional response of the tall building. 

Chapter 5 presents a reliable and economical method of performing 

parametric studies of TMDs, by using measured response or excitation 

spectra of a tall building in wind tunnel. The semi-analytical results 

obtained by this method are compared with the corresponding experimental 

results and the conventional theoretical results obtained by using ideal white 

noise excitation. The application of this technique to optimum parametric 

design of TMDs is also discussed. 

Chapter 6 deals with the mode shape corrections for wind tunnel tests 

of tall buildings. The results of this study are presented in terms of mode 

shape correction factors. These factors can be used to adjust the wind 

tunnel experimental results to the corresponding prototype valyes. 

Chapter 7 performs parametric studies of a suboptimal active control 

system by using the semi-analytical method. The effectiveness of this 

active control system in reducing building vibrations is also assessed in 

comparison with passive TMDs. It is expected that the results of this study 

can lay the foundation for the corresponding experimental verification in 

wind tunnel of the effectiveness of active control system. 

In Chapter 8, a theoretical investigation is made of the possible 
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application of tuned liquid column dampers and tuned liquid column/mass 

dampers in reducing wind-induced response of slender structures in 

comparison with the tuned mass dampers. The effectiveness of the damping 

device is measured in terms of the reduced motion of the structures. 

In Chapter 9, the effect of soil compliancy on wind-induced structural 

responses and the effectiveness of TMDs is theoretically investigated. The 

discussion of numerical examples is based on the properties of the soil, the 

properties of the structure, the nature of the excitation and the type of the 

structural response. A random vibration analysis of a multi-degree­

of-freedom lumped mass structural system, by utilising transfer matrix 

formulation, is carried out in both Chapter 8 and Chapter 9. 

General conclusions and recommendations for the further research are 

presented in Chapter 10. These are followed by Notation and a list of 

references used in this thesis. The appendices which follow contain relevent 

supporting materials. 
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Chapter 2 

BACKGROUND 

2.1 Wind-Induced Vibration of Tall/Slender Structures 

The wind, in common with all meteorological phenomena, derives its 

energy from the sun. The immediate causes of atmospheric motion are 

pressure differences in the atmosphere set up by variations in air 

temperature due to differential heating of the earth's surface by the sun. 

Closer to the ground, i.e., in the boundary layer of the atmoshphere 

which is the location of most engineering structures, the airflow is slowed 

down by the shear action of surface rounghness and the eddies or 

turbulence arise due to the basic instability of shear flows. Fig. 2.1 shows a 

record of wind speed in the boundary layer of the atmosphere from a tall 

mast in open country near East Sale, Australia (Deacon, 1955). It is clear 

that, from Fig. 2.1, natural winds are neither steady nor uniform. The 

fluctuations in wind speed and the further distorted flow by wind-structure 

interaction cause aerodynamic force and moment acting on structures. 

The resultant aerodynamic force is usually resolved into two 

components, one parallel and the other normal to the direction of the mean 

speed in the undisturbed wind flow. These are referred to as the alongwind 
force and crosswind force, respectively. The aerodynamic moment (torque) with 

respect to elastic centre of a structure is equal to the product of the 

aerodynamic force by its moment arm with respect to that centre. It is the 

aerodynamic force and moment that cause the corresponding alongwind, 

crosswind and torsional vibrations and responses of tall buildings and 

structures. 
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2.1.1 Alongwind vibration 

It can be concluded from the work mainly by Davenport and Vickery in 

the 1960's that the alongwind vibration of most slender structures is due 

primarily to the buffeting of the longitudinal component of turbulence in the 

natural wind. Although alternating alongwind forces due to vortex shedding 

are detectable, in practice, they are very small and seldom encountered. 

The analytical methods for the prediction of the alongwind vibration of 

tall/slender structures have been reported by Davenport (1962, 1967), 

Vickery (1966, 1971), and later by Simiu (1980), Yang and Lin (1981), Solari 

(1982) and others. 

2.1.2 Crosswind vibration 

Satisfying attempts have been made by Melbourne (1975) to identify the 

crosswind excitation mechanisms which can be divided into three categories 

as associated with: 

(a) the incident turbulence, 

(b) the wake, 

(c) the crosswind displacement. 

The significance of incident turbulence in causing crosswind vibration 

depends on the ability of the incident turbulence to generate a crosswind 

force on the structure as a function of longitudinal wind velocity and angle 

of incidence of the mean wind. The wake-induced vibration of structures 

is associated with shed vortices which have a dominant periodicity defined 

by the Strouhal number. If the shedding frequency of the vortices is close 

to the natural frequency of the structure, large amplitude crosswind vibration 

of the structure will occur. The crosswind displacement of the structure 

then causes an increase in wake energy which in turn increases the 

crosswind response of the structure. This aeroelastic instability phenomenon 

is usually called lock-in. Another crosswind displacement dependent 

vibration is galloping, which depends on the sectional aerodynamic force 

characteristics and on the rate of crosswind displacement to produce a force 

in phase with the displacement. 
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In practice, wake excitation, and occasionally lock-in, seems to be 

dominant for a majority of tall/slender structures in crosswind direction. It 

is only when the afterbody of the structure becomes long enough to cause 
significant flow reattachment that the incident turbulence excitation becomes 

dominant. 

significant 

At very high reduced wind velocities, galloping then becomes 

for some structures with particular sectional shapes. The detailed 

description of the crosswind vibration of tall/slender structures in simulated 

natural wind can be found from the work of Vickery and Clark (1972), 
Saunders (1974), Kwok (1977), ESDU (1978), Kareem (1982), Vickery and 

Basu (1983), and others. 

21.3 Torsional vibration 

Wind-induced torsional vibration of modern tall buildings occurs 

because the elastic centre of the building does not coincide with the 
instantaneous point of application of the resultant aerodynamic force. The 

magnitude of eccentricity between the elastic centre and the aerodynamic 

centre depends on instantaneous wind pressure distribution on the building 

surface. In comparison with alongwind or crosswind vibration, information 
on torsional vibration of tall buildings is not plentiful. A literature review 

of torsional and coupled translational-torsional vibrations is given in Chapter 

4 of the thesis. 

2.1.4 Coupled translational-torsional vibration 

When the mass centre of a tall building also does not coincide with the 

elastic centre, translational vibration (including alongwind vibration and 
crosswind vibration) and torsional vibration of the building are coupled 

inertially. This inertial coupling usually increases the building response, 

especially when the torsional and translational fundamental vibration periods 

are close. With increasing reduced wind velocity and building displacement, 

the coupled translational-torsional vibration may become unstable. This 

aeroelastic instability is referred to as flutter. Discussions on the significance 

of flutter of modern buildings can be found in Parkinson (1971), Durgin and 

Tong (1972). 
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No matter what kind of wind-induced vibration is generated, an 

aeroelastic force which depends on the structural motion may be developed. 

This force is usually referred to as the aerodynamic damping force and is 
quantified by aerodynamic damping. Aerodynamic dampings of prismatic 

bodies in the alongwind and crosswind directions have been discussed by 

Davenport (1979) and Kareem (1982), although the relevant data are still not 
plentiful. Torsional aerodynamic damping of a prism was investigated in this 

research project. 

2.2 Significance and Method of Vibration Control 

2.2.1 Significance 

Tall/slender structures, with low natural frequencies and dampings, have 

always been susceptible to a dynamic mode of failure due to wind. The 

most spectacular and catastropic demonstrations of the ability of the wind to 

cause violent oscillations were the vibrations and subsequent collapses of the 
Tacoma Narrow Bridge in Washington, U.S.A. in 1940, and the three 113m 

high cooling towers at Ferrybridge Power Station, U.K. in 1965. Slender 

chimneys and towers are also ideal generators of regular patterns of vortices 

and this type of structure has also a history of vibrational problems and 

collapses. 

Although complete collapse of tall buildings under wind action has no 

recorded case, at least two major buildings, namely the Meyer-Kaiser 

Building in the Miami Hurricane in 1926 and the Great Plains Life Building 

during the Lubbock Tornado in 1970, have suffered permanent structural 

damage and exhibited marked permanent deformations in torsion. There 

have also been many reported cases in which, due to movement of buildings 

induced by wind, interior walls were cracked, windows were dislodged, 

valuable and sensitive equipments housed in buildings were damaged and 

occupants suffered from dizziness, headache or nausea. 

The importance of vibration · control is to ensure structural safety and 

structural performance by using various means to limit the undesirable 
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motion levels. The realisation of advanced control technology in structural 

engineering will make the dream of constructing 'super-tall' buildings up to 
500 storeys high come true, and will elevate structural design concepts from 

a static and passive level to one of dynamicism and adaptability. 

2.2.2 Method 

Various possibilities exist to control wind-induced vibration of 

structures. A well known summary was made by Walshe and Wootton in 

1970 for preventing the instability of circular section structures due to strong 
wind. Control methods for wind-induced structural vibration can be 

devided into three categories: 

(a) structural modification, 

(b) aerodynamic modification, 

(c) passive or active control technology. 

Structural modification can be applied to the three important dynamic 

properties of structures, i.e., stiffness, damping and mass through the change 

of building materials or the rearrangement of the structural systems. 

Aerodynamic modification alters the flow pattern around a structure directly 

to reduce aerodynamic force or moment acting on the structure by an 

appropriate choice of structural shape or the addition of some aerodynamic 

devices, e.g., spoilers, vanes and openings. The installation of passive 

absorbers in structures, e.g., tuned mass dampers, tuned liquid dampers and 

viscoelastic dampers provides an extra energy dissipation device which 

increases the overall effective damping of the main structure and accordingly 
reduces the wind-induced structural vibration. Active control technology is a 

logical extension of passive control technology. Active control relies on the 

supply of external energy and the input of control information to provide 

active control forces which modify the overall structural characteristics 

leading to a reduction of structural vibration. An active control system usually 

consists of (a) sensors installed at suitable locations of the structure to 
measure either the external excitations or the structural response quantities 

or both, (b) devices to process the measured information and to compute 

the necessary control forces based on a given control algorithm, and (c) 
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actuators, usually powered by external energy sources, to produce the 

required force. The basic configuration of an active structural control 

system is shown schematically in Fig. 2.2. 

Vickery, 

damping and 

Isyumov and Davenport (1983) examined how stiffness, 

mass influenced the dynamic behaviour of a structure subject 

to alongwind turbulence, aerodynamic damping force, crosswind wake 

excitation associated with the vortex shedding process and crosswind incident 

turbulence. Their conclusion is that an increase in the damping capacity is 
always beneficial. The role of mass and stiffness is not clear, although, 

with exception of vortex shedding, an increase in stiffness is advantageous. 

Based on the damping measurements obtained from one hundred and sixty 
five buildings, Davenport and Hill-Carroll (1986) found that taller concrete 

buildings tend to have roughly 30% more damping than steel buildings. 

Kareem (1983) also pointed out that composite steel-concrete buildings have 

considerably higher values of damping compared to those of steel buildings. 
The adjustment of structural stiffness can be achieved through a change of 

structural system and materials, e.g., from a rigid frame to a braced frame 

by using prestressed cables or rods connecting across the diagonal of frames. 

One of the earlier accounts of suppressing vibration of slender structures 

due to vortex shedding by aerodynamic modification of the structure belongs 

to Scruton and Walshe (1957). Helical strakes were added to the surface of 

a lightly-damped chimney stack to disrupt the vortex shedding process. A 

detailed review and classification of various aerodynamic and hydrodynamic 

means for suppressing vortex shedding, with particular reference to slender 

structures with a circular cross-section, can be founed in Zdravkovich 

(1981). For prismatic structures, Devenport (1971), Cermak (1972), 

Naudascher et a! (1981), Kwok and Bailey (1987), Kwok (1988), Hayashida 
and Iwasa (1990), and others individually investigated the effect of structural 

shape and some aerodynamic devices on structural vibrations due to 

alongwind turbulence, crosswind incident turbulence, crosswind wake 

excitation associated with vortex shedding process, lock-in and galloping. 

Although wind-induced structural vibrations can be controlled to some 

extent by structural or aerodynamic modification, the construction cost, the 
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structure's special function and the inherent limitations to the amount of 

reduction in vibration levels that can be achieved restrict their practical 

applications. This is particularly the case in building design. Therefore, 
passive and active control technology is now gaining wide attention and 
acceptance in the building industry. A literature survey of this research 

area, which is closely related to this thesis, follows. 

2.3 Literature Survey 

2.3.1 Passive control 

The successful application of passive control technology in machinery, 

automotive, space satellites and marine vessels encourges engineers and 

scientists to apply this technology to civil engineering structures which are 
massive and heavy. At present, passive control devices, as an additional 

energy absorber applicable to civil engineering structures against 

wind loading, are mainly impact dampers, viscoelastic dampers, tuned mass 

dampers and tuned liquid dampers. 

2.3.1.1 Impact dampers 

A typical impact damper shown in Fig. 2.3 consists of a chain, covered 
with a rubber sleeve and suspended with freedom to impact against a 

vertical channel and provide energy dissipation. Reed (1967) evaluated the 

effects of various chain-damper parameters such as clearance gap, chain 

length and weight, amplitude and frequency of vibration, by means of 
mechanical impedance measurements, and successfully fitted. these dampers to 

a 20m high missle which would otherwise be vulnerable in the launch 

position. The dampers weighed about 5 percent of the total weight of the 

missile and increased the damping of the structure by a factor of about 3 

except at small amplitudes. At small amplitudes, the chain fails to touch 
the channel and there is no effective increase in damping. An interesting 

characteristic of the chain damper is that the amount of energy absorbed by 

the chain dampers can remain a maximum over a quite wide frequency 

range, compared with tuned mass dampers. Therefore, this damper can 
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suppress fundamental and higher mode vibrations at the same time if the 

ratio between the frequencies of the considered modes of a structure is 

lower than about 3. However, the impact noise and the required space for 

the installation of long and heavy chains limit their application to some 

special structures such as antennae and stacks. There are a number of other 

impact damper designs available but none have been as well documented as 

the chain type (Masri, 1967; Walshe and Wootton, 1970). 

2.3.1.2 Viscoelastic dampers 

One of the most promising approaches to added damping in tall 

buildings is the use of nonstructural viscoelastic dampers. Such dampers 

transfer part of the vibratory energy of the overall system into heat and 

dissipate this heat into the surroundings. A typical viscoelastic damper as 

shown in Fig. 2.4, which was used in the World Trade Centre, is described 

in Mahmoodi (1969), Feld (1971) and Architectural Record (1971). The force 

versus displacement characteristic of such a damper is in the form of a 

hysteresis loop. The enclosed area of the loop is a measure of the energy 

dissipated and therefore a measure of the physical performance of the 

damper, which is dependent on factors such as stiffness, geometry, operating 

temperature and the heat transfer to the connecting structures. These 

dampers can be located in the structure between any two points of relative 

displacement or between the structure and a support such that the 

viscoelastic material undergoes virtually pure shear deformation. 

The World Trade Centre in New York City was one of the first major 

buildings to utilise viscoelastic damper system of the type shown in Fig. 2.4. 

Approximately 10,000 dampers were installed in the 110 storey tower, with 

about 100 dampers at the ends of floor trusses at each floor from the 8th to 

107 th. Recently large viscoelastic dampers was used in the Columbia 

Center Building which is a 76-storey office tower located in downtown 

Seattle, Washington (Keel and Mahmoodi, Mahmoodi and Keel, 1986). The 

addition of only 260 viscoelastic dampers increased the critical damping ratio 

of the tower from 0.8 to 6.4 percent for frequent storm and 3.2 percent at 

design wind. Full scale measurements are being carried out after the 

completion of the building (Skilling et al., 1986). 
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Viscoelastic dampers or hydraulic dampers can also be incorporated with 

guy wires to form passive tendon devices which are usually used in radio 

masts, antennae, steel chimney stacks and bridges to suppress wind-induced 

vibrations. 

Although viscoelastic dampers have been successfully used to suppress 

wind-induced vibration of tall buildings, there are still many problems 

worthy of further study. One of the major problems is that strong 

non-linear and other complex characteristics of the dampers, as well as the 

many dampers required to fit in one structun make it extremely difficult to 

predict the wind-induced response of structure-damper systems by wind 

tunnel test technique or computer structural analysis. F~ther information on 

viscoelastic dampers can be found in Johnson's thesis (1981), Mahmoodi and 

Keel (1989). 

2.3.1.3 Tuned mass dampers 

The concept of a tuned mass damper (TMD) as an added energy 

absorbing system dates back to 1909. The theory of the TMD was 

developed by Ormondroyd and Den Hartog (1928), and has been successfully 

applied in mechanical engineering systems (Den Hartog, 1955; Crandall and 

Marks, 1963). Attempts of applying large tuned mass dampers to civil 

engineering structures only began from 1970. Basically, a large TMD is a 

device consisting of a mass attached to a structure via a spring-dashpot 

system and energy is dissipated by the dashpot as relative motion develops 

between the mass and the structure. Four well known buildings and 

structures completed in 1970's are, equipped with large TMDs, the Sydney 

Tower, Sydney; the CN Tower, Toronto; the John Hancock Tower, Boston, 

and the Citicorp Center, New York City (Kwok, 1987). 

Sydney Tower, the tallest structure in Australia, is 250m high with 

the base of the structure anchored on the roof of a 15 storey building. The 

Tower is one of the first structures in the world to have a large scale TMD 

installed. The 180 tonne doughnut-shaped water tank, as shown in Fig. 2.5, 

located near the top of the Tower and required by law for fire protection, 

was incorporated into the design of the TMD (Vickery and Davenport, 1970; 
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Engineering News Record, 1971). Energy associated with relative movements 

between the Tower and water tank is dissipated by 8 shock absorbers 

installed tangentially to the tank and anchored to the floor of the Turret. 
A 40 tonne secondary TMD was later installed during mid-December, 1981 
on the Intermediate Anchorage Ring to further increase the damping level, 

particularly in the second mode of vibration (Kwok, 1983; Wargan, 1983). 

The 102m steel antenna mast on top of the 553m CN Tower, the 

world's tallest free-standing structure, has two doughnut-shaped pendulum 

dampers to reduce the second and fourth modes of structural vibration 

(Engineering News Record, 1976). The circular steel rings are 2.45m and 

3.05m in diamater, 0.36m wide and 0.31m deep, and together hold 18 tonnes 

of lead. Each ring is supported via universal joints by three steel beams 
attached to the side of the antenna mast, which allows pivoted motions in 

all directions. Shock absorbers are anchored on the side of the mast and 

attached to the center of each universal joint to dissipate energy. 

The 278m tall Citicorp Centre employed a 373 tonne tuned mass damper 

system, as shown in Fig. 2.6, which is located on the 63rd floor (Isyumow 

et al., 1975; Engineering News Record, 1977; Peterson, 1979; Weisner, 1979). 
The mass rides on 12 low friction hydrostatic bearings and has a travel range 

of ± 1.14m in both the north-south and east-west directions. The damper 

stiffness is provided by nitrogen-charged pneumatic springs and the spring 

rate and hence the tuning frequency can be varied by adjusting the 

pre-charge pressure. The damper damping is provided by two hydraulic 

actuators. the TMD facility was used as an excitor to determine the natural 

frequency and damping of the building. The operational parameters of the 

TMD are: a mass ratio of 2%, damper damping of 14% of critical, and 
tuning ratio of 1. As a result, this gives a total damping of about 4% of 

critical, which should reduce the dynamic response by about 50%, according 

to the existing parametric study method of TMDs. 

The 60 storey Hancock Tower in Boston used a tuned mass damper 

system similar to that in the Citicorp Centre after architects realised that the 

building had insufficient wind bracing to prevent occupant discomfort 

(Engineering News Record, 1975, 1977). Two 273 tonne TMDs were 
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installed 67m apart at either ends of the 58th floor. The dampers were 
designed to move only in the east-west direction and can be induced to 

work together to counteract swaying motions or in opposition to resist 

torsional motions. 

The engineering design procedure of a TMD for suppessing 

wind-induced vibration of tall/slender structures usually is: 

(a) aeroelastic model test of the proposed structure without any TMD model 
in wind tunnel to determine whether added damping may be necessary, how 

much added damping may be needed, and what is the desired location of the TMD, 

(b) parametric studies of the TMD to decide TMD tuning, mass and 

damping for the required motion reduction, 
(c) if necessary, conducting aeroelastic model test in wind tunnel of the 

proposed structure with the TMD model to ensure the realisation of the 

required motion reduction, 
(d) After the completion of the main structure and before the installation of 

the real TMD, consider field measurement to determine the frequencies and 
dampings of the main structure and compare the measured results with the 

evaluated values, 
(e) Adjusting and setting the real TMD and then checking the various 
parameters of the structure-damper system and the performance of the 

TMD by using the TMD facility and full scale measurement. 

Vickery and Davenport (1970) conducted aeroelastic model tests of 

Sydney Tower with and without auxiliary mass dampers and presented a 

method of performing parametric studies of TMDs in civil engineering 

structures based on an equivalent two-degree-of-freedom system, white 

noise excitation and the concept of effective damping. Kwok (1983), Kwok 

and Macdonald (1987) carried out field measurements of Sydney Tower prior 

to and after the installation the second TMD. Aeroelastic model tests of 

Citicorp Centre, which included the TMD test, were performed by Isyumov, 

Holmes, Surry and Davenport (1975). A detailed real TMD system design 

of Citicorp Centre, including passive spring system, mass block support 

bearings, control actuator, hydraulic power supply, electronic control and 

system installation, was described by Petersen (1979). Taking the Citicorp 
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Centre and Hancock Tower as a background, McNamara (1977}, Luft (1979} 

and Wiesner (1979} further discussed the effectiveness and parametric studies 

of TMDs in reducing wind-induecd building vibrations. However, all 

parametric studies of TMDs are based on sinusoidal or white noise 

excitation. Tanaka and Mak (1983} recognised the dependence of the 

optimised design parameters on the characteristics of random excitation and 

adopted a limited-band white noise excitation as wind excitation to perform 

parametric studies of TMDs. Other scholar's research, e.g, Kareem (1983) 

and Mataki et al. (1989), provided further understanding of the TMD 

performance. 

Although great progress has been made of the application of large scale 

TMDs in civil engineering structures, many problems are worthy of further 

study. A system investigation of the TMD's effectiveness in suppressing 

wind-excited vibrations due to different mechanisms, including alongwind 

turbulence and incident turbulence in crosswind direction, crosswind wake 

excitation, lock-in and torsional excitation, has not been conducted, 

especially for tall buildings. In the existing TMD design procedure, the 

theoretical results of TMD parametric studies, without considering different 

wind excitation mechanisms and effects of building size, shape and 

surroundings on the wind loads, can be unreliable and inconsistent with 

experimental results obtained from aeroelastic model tests or prototype 

measurements. When a TMD is tuned to fundamental frequency of a 

structure, effects of vibration in higher modes and soil compliancy under the 

footing of the structure on the performance of a TMD should also be 

investigated. These problems form the main part of this thesis, and further 

critical review and detailed discussion are presented in Chapters 3, 4, 5, 8 

and 9. 

2.3.1.4 Liquid dampers 

Liquid dampers consist of a container partially filled with liquid. When 

the container oscillates due to structural motions, the liquid damper absorbs 

and dissipates structural vibration energy by means of viscous action of the 

fluid, wave breaking, friction at the solid boundary and contamination at the 

liquid free surface. Motivation for applying liquid dampers in civil 
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engineering 

torus-shape 

structures came from 

partially-filled ring-type 

the spacecraft 

nutation dampers 

technology where 

are frequently used 

to control very long period librational motion (Amieux, 1972; Alfriend, 
1974). This type of damper has several potential advantages, including low 

cost, easy installation, and a few maintenance requirements. 

Modi and Welt (1988) carried out extensive parametric studies and 

wind tunnel tests of the nutation damper (doughnut-shape), and showed that 

the damper is effective for suppressing vortex-induced resonance and 

golloping instability of tall/slender structures. They also investigated the 
energy dissipation mechanism of the nutation damper using a nonlinear 

potential flow model in conjunction with boundary layer correction. Fujino 
et al. (1988) performed parametric studies and energy dissipation mechanism 

analysis of circular and rectangular liquid dampers (see Fig. 2.7) and called 

them the tuned liquid damper (TLD), for it is necessary to tune the liquid 

frequency to the natural frequency of the structure to attain large additional 

damping specially at small to moderate vibration amplitude. The tuned 
liquid damper is conceptually the same as the nutation damper. Circular 

tuned liquid dampers have been installed in Nagasaki Airport Tower (height 

42m) and Yokohama Marine Tower (height 101m) in Japan. Fujii et al. 
(1990) measured the characteristics of the wind-induced vibration of both 

towers and confirmed that the tuned liquid dampers can effectively reduce 
wind-induced response of structures. The dynamic response analysis of the 

TLD-structure system is also discussed by Kareem (1990). 

The energy dissipation mechanism of the circular, rectangular or 

doughnut-shape tuned liquid dampers is quite complicated and therefore 

causes considerable numerical difficulty in the solution of the equations of 

liquid motion. Sakai et al. (1989) investigated another type of tuned liquid 

damper which is called the tuned liquid column damper (TLCD) because the 

container shape is tube-like. The free vibration tests and frequency sweep 

tests of model TLCD showed that the TLCD can also effectively provide 

added damping for structures and the liquid motion in a TLCD can be 

simply discribed by one varying-quantity equation. Their investigation only 

considered simplified modelling of the main structure and wind excitation. 

In Chapter 8 of the thesis, a lumped multi-degree-of-freedom system was 
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used to model the main structure and a random vibration analysis utilising 
transfer matrix formulation was carried out to investigate further the possible 

application of such tuned liquid column dampers in reducing the 
wind-induced response of slender structures. 

2.3.2 Active control 

Most passive dampers have a limitation of the motion reduction for a 

given tall/slender structure. If the required motion reduction exceeds the 
limit which the passive dampers can provide, an active or a semi-active 

control system may have to be considered. The idea of active control for 

civil engineering structures started to emerge around 1970. Work of Zuk 

(1968), Yao (1972), Roorda (1975), Yang (1975), Soong (1976) and 

Abdel-Rohman (1978) laid down the foundation for structural control. Since 
then, intensive research is being conducted and has expanded beyond narrow 

academic circles. Soong (1988) in a state-of-the-art review summarised 

recent advances in active and semi-active control technology for civil 
engineering structures and discussed possible future directions. 

With particular reference to the application of avtive or semi-active 
control technology in reducing wind-induced vibration of tall/slender 

structures, control devices, control algorithms, experimental studies and 
existing obstacles are briefly described as follows: 

(a) The forerunners of active or semi-active control devices to be applied 

to full sacle structures against dynamic wind loads may be active tendon 

control systems, active or semi-active mass dampers, pulse generators, 

aerodynamic appendages and chambers, active liquid dampers and 

gyroscopes. 

(b) Depending on the utilisation of the measured information from sensors, 

the control algorithms are classified as closed-loop control, open-loop 

control and closed-open-loop control. Based on control design criteria, 
there are a wide variety of control algorithms including optimal linear 

control, pole assignment, independent modal space control, instantaneous 

optimal control, bounded state control, sub-optimal control and non-optimal 
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control. 

(c) The active or semi-active control experimental studies carried out to 
date have been severely limited in size and scope. The conducted 

experiments mostly concentrate on seismic-type loading supplied by a 
shaking table. Only one experimental study (Soong and Skinner, 1981), 

using aerodynamic appendages, was carried out in a wind tunnel. In this 

experiment, a scaled-down model of a tall structure and a closed-loop 

optimal linear control algorithm were used. A small metal appendage, 

located at the top of the model, was controlled by means of a solenoid 

activated by the sign of structure! velocity as sensed by a linear differential 
transformer. Recently, two active mass dampers have been installed on a 

slender eleven-storey building, which was constructed in the Kyobashi 

District of Tokyo, Japan, to confirm the effectiveness of active mass 

dampers in suppressing the vibrations from earthquake and strong winds 
(Kobori et a!., 1990). One damper was located in the centre of the building 

to suppress the large lateral vibration, and another damper was fixed on the 

end of the building to reduce the torsion vibration. The composition and 

block diagram of the active mass damper system are shown in Fig. 2.8. 
Although the building is not a typical tall building, preliminary 

measurements of the building response under typhoon winds showed that the 

wind-induced vibration can be 

dampers. 

significantly reduced by active mass 

(d) From a practical standpoint, a number of obstacles still remain. 

Amongst the major concerns are: time delay in processing measured 
information, in performing on-line computation and in executing the control 

forces as required; discrete-time formulation of active control algorithms 

since a digital computer is usually used for on-line computation and control 

execution; structural parametric uncertainties which will affect control 

sensitivity; reliability of an active control system which relies on external 

power sources and all the support utility systems; and cost and hardware 

development related to other allied areas such as computers, electronics, 
measurement techniques, instrumentation, materials research, etc. Therefore, 

simple active control systems using minimum number of actuators and 

sensors deserve more attention and further experimental verification must be 
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considered as the single most important task to be undertaken before 

full-scale testing is conducted. 

As an approach to the experimental verification of the effectiveness of active 

control systetns, a suboptimal closed-loop control system suggested by 

Roorda (1975), Yang (1982) and Samali (1985) was semi-analytically 

investigated in the thesis by means of the measured wind excitation spectra 

and tested models in the wind tunnel. Further explanation and review of 

the suboptimal closed-loop control system will be presented in Chapter 7. 

' 
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Clulpter 3 

PASSIVE CONTROL OF WIND-INDUCED TRANSLATIONAL 
VIBRATION OF TALL BUilDINGS BY TUNED MASS DAMPERS 

3.1 Introduction 

Aeroelastic modelling in wind tunnel tests is of principal value in studies 

of tall/slender structures which are sensitive to wind-induced dynamic 

effects. The experimental results of an aeroelastic model can be used to 

determine whether a tuned mass damper may be needed to reduce excessive 

vibration of the corresponding prototype structure. If this is necessary, the 

aeroelastic test of the structure model with model tuned mass dampers may 

be conducted to demonstrate the effectiveness of the TMDs. However, few 

experimental investigations using wind tunnel tests have been made in order to determine the 

effects of different wind excitations acting on a tall building ond. the 

effectiveness of a TMD. 

Based on the theoretical results of TMD parametric studies, it has been 

pointed out that added damping provided by a TMD is greater for harmonic 

force than for white noise excitation (Hirsch, 1979). Tanaka and Mak (1983) 

further considered wind excitation as band-limited white noise excitation, in 

which pure white noise and a simple harmonic excitation can be regarded as 

the two extremes of wide-band and narrow-band excitations respectively, in conducting 

the parametric study of a TMD. Their results showed that, for a given 

mass ratio, the narrower the bandwidth, the higher the added damping 

provided by the TMD. As the bandwidth becomes narrower, the maximum 

effective damping is more sensitive to the change of the mass ratio and the 

damper's optimum damping tends to stay with the lower mass ratio. In 

their study, the peak frequency of band-limited white noise excitation was 

chosen to coincide. with the natural frequency of the primary system. 
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Actual wind excitations are, however, quite complex and most peak 

frequencies in measured wind excitation spectra do not coincide with the 

fundamental frequency of the structure, except for wind-induced lock-in 
excitation. Therefore, these theoretical models of wind excitations only 
approximately represent some extreme situations of actual wind excitations. 
Anexperimental investigation is necessary and seems to be the only way. 

In this Chapter, a 1:400 scale aeroelastic model of the CAARC Standard 
Tall Building and tuned mass dampers of different parameters were designed 

and tested in a wind tunnel with properly simulated atmospheric boundary 

layer flow. The effectiveness of the tuned mass dampers under different 
wind excitation mechanisms, including alongwind turbulence, partial incident 

turbulence in crosswind direction, crosswind wake excitation and excitation 
due to crosswind displacement, are investigated. The displacement response 

signals of the building model with or without a damper were transferred to 

and processed by a mini-computer to obtain wind-induced response spectra 
and upcrossing probability distributions for exploring characteristics of the 

TMD. Although a 1:1000 scaled aeroelastic model of CAARC Standard Tall 

Building was chosen by Tanaka and Male (1983) for the wind tunnel test to 

demonstrate the damper's effectiveness, the published experimental data are 

quite limited and the effects of different wind excitations on the 

effectiveness of TMDs were not discussed in terms of the experimental 

results. 

A review of the scaling requirements for aeroelastic studies of tall 

building is arranged before the discription of the experiment. The 

experimental results in this Chapter are used in Chapter 5 for the parametric 

study of TMDs. 

3.2 Aeroelastic Model Requirements 

Accurate estimates of wind effects on buildings and structures by direct 

measurements on small-scale models tested in a wind tunnel require 

satisfactory modelling of both the natural wind and the structure. The basic 

modelling requirements for aeroelastic tests, which are developed through 
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dimensional analysis and law of similarity, are that non-dimentional groups 

presented in Table 3.1 are maintained constant between model and prototype 

(Whitbread, 1963; Melbourne, 1972). 

In practice it is rarely possible to satisfy all these requirements and 

some amount of compromise is necessary. An understanding of local full 

scale data is required to assess their relative importance so that some may 

be neglected. 

The meaning of variables in Table 3.1 is explained in Table 3.2 and 

these non-dimensional groups can be divided into two sections: one deals 

with the modelling of the natural wind and the other the dynamic modelling 

of structures. 

3.3 Modelling of Natural Wind 

In some situations a more complete simulation of natural wind becomes 

necessary, including the modelling of the lateral and/or the vertical 

components of turbulence as well as the Reynolds stress. However, it is 

generally accepted (Isyumov, 1982; ASCE, 1987a) that the most important 

requirements for aeroelastic simulations of tall buildings with sharp-edges 

are similarity of 

(a) the vertical distribution of the mean wind speed, V(z)/Vo, 

(b) the intensity of the longitudinal turbulence, <ru(z)/V(z), 

(c) the integral scale of the longitudinal turbulence, which is related to the 

corresponding power spectral density, nSuu(n,z)luu(z). 

Furthermore, it appears that primary attention needs to be given to the 

correct simulation of the turbulence intensity, the role of the turbulence 

integral scale being secondary (Isyumov, 1982). 

3.3.1 Wind tunnel 

Wind tunnels designed to simulate an atmospheric boundary layer with 
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TABLE 3.1 NON-DIMENSIONAL GROUPS FOR WIND TUNNEL 
MODElLING 

Non-Dimensional Name Physical 
Group (If In conunon usage) Meaning 

v Velocity profile Velocity ratio which defines --- the velocity profile 
VG 
u Turbulence Intensity Expression related to u --- turbulence v energy 

nS (n) 
Normalised power Expression related to 

uu spectral density turbulent energy 
2 distribution with respect 

u to frequency u 

nBLLBL 
Strouhal number or Time scale 
reduced frequency 

v (or inverse of 
reduced velocity) 

pVLBL Reynold number Inertia Force (Fluid) 
Viscous Force 

p. 
p 

Pressure coefficient Pressure Force ---
iPV

2 (Euler No.) Inertia Force (Fluid) 

LBL Length ratio Ratio of lengths In 
L boundary layer and structure 

s 

nBL Frequency ratio Ratio of frequency or 
--- tIme In boundary layer n and structure 0 

Ps Density Ratio Inertia Force (Struc.) ---p InertIa Force (Fluid) 

-2 
pV Cauchy Number InertIa Force (Fluid) 

-E- InertIa Force (Struc.) 

r Damping ratio Energy Dissipated/Cycle 
s Total Energy of Oscillation 
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TABlE 3.2 EXPLANATION OF VARIABLES INVOLVED IN TABlE 3.1 

NOTATION MEANING 

iiG 
mean freestream longitudinal velocity 
or velocity at gradient height 

v local mean longitudinal velocl ty 

standard deviation of velocity 
(f 

fluctuations u 

LBL 
length associated with the external 
air flow 

frequency associated with the external 
nBL air flow 

S (n) 
power spectral density of the 

uu longitudinal velocity 

p air density 

Jl air viscosity 

p air pressure 

L length associated with the structure s 

n frequency associated with the structure 
0 

Ps densIty of the structure 

E elastic modulus of the structure 

g acceleration due to gravity 

i damping ratio for the structure s 
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neutral thermal stratification are classified as boundary layer wind tunnels 

(BLWT). One type of wind tunnels has very long fetch of roughness 
elements in which a boundary layer is naturally developed. Another type is 

short working section wind tunnels with various types of passive or active 

augmentation devices to generate acceptable mean and turbulent flow 

conditions. 

The No.2 BLWT at the School of Civil and Mining Engineering, the 

University of Sydney, is an open jet wind tunnel with a working section of 

1.5m x 1.2m and approximatelly 4.5m long. The augmented method, 

consisted of vortex generators and floor-mounted roughness elements or 
carpet, was employed to generate a l/400th scale model of the natural wind. 
The general arrangement of No.2 BLWT is shown in Fig. 3.1. 

The experiments described in this Chapter were conducted only under a 

1:400 scale wind model of the natural wind flow over suburban terrain 

(Terrain Category 3 as described in the Australian Wind Loading Code, AS 

1170.2-1989). The fetch length was covered with 0.05m x 0.025m x 0.012m 

roughness elements at a density of 76 m- 2 which were preceded by 4 
linearly-tapered vortex generators spanning the start of the working section. 

Measurements of the longitudinal component of the wind in the wind tunnel 

were taken with a calibrated hot-wire connected to a Disa Constant 

Temperature Anemometer and Lineariser. The hot wire signal was 

processed in real-time by a micro-computer and stored on a floopy-disc 
for power spectral analysis by a mini-computer. 

3.3.2 Mean wind speed profile 

Mean wind speed profiles at three lateral 

presented in Fig. 3.2. The profiles are 
power-law with an exponent a = 0.25, i.e., 

positions (see Fig. 3.1) are 

closely represented by the 

V(z) __ (2.... )"' 
- z . . . . . . . . . . . . . . . . . . . . . . . (3. 1) 
V(z ) r 

r 

where zr is a reference height = 0.5m. 
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The profiles were found to be consistent with the prototype profile 

suggested by AS 1170.2-1989. Variation in the immediate vicinity of the 

turntable centre, where the models were tested, was also small. 

3.3.3 Longitudinal turbulence intensity profile 

Turbulence intensity 10 is defined as the ratio of the standard deviation 

fluctuation <ru to the mean speed V, that is, 

<T (z) 
I ( z) - --=0=-­
u 

V(z) 
0 0 (3 0 2) 

The longitudinal turbulence intensity profiles at the same positions as 

those of the mean wind speed profiles are shown in Fig. 3.3, together with 

the prototype turbulence intensity profile provided by AS 1170.2- 1989 for 

comparison. Turbulence intensity is about 12% at the top of the model and 

the thickness of the boundary layer is found to be approximately 0.9m at 

the test section. 

3.3.4 Integral length scale of longitudinal turbulence 

The longitudinal turbulence spectrum is used to determine the 

distribution of turbulence energy as a function of frequency. The measured 

spectrum of the simulated boundary layer flow at the top of the model is 

given in Fig. 3.4. This spectrum is also compared, at 1/400 scale, with the 

Harris-Von Karman prototype empirical spectrum which may be expressed 

as follows (ESDU 74031, 1974): 

nS (n, h) uu 

u 2 (h) 
u 

nQ (h) 
4( ux ) 

V(h) 
nQ (h) 

[t + ?O.S( ux )2]s/s 
V(h) 

0 0 0 0 0 0 0 0 0 0 0 0 (3 0 3) 

where h is the height of the model and Q0 x(h) is the integral length scale of 

turbulence at h. 

From Eq. 3.3 it is obvious that each spectrum can be described uniquely 
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by Qux· Therefore, the integral length scale of longitudinal turbulence Qux 

is also a typical length scale of the energy containing eddies, and it is found 

to be approximately 120 m at the top of the building model from the 

measured turbulence spectrum. The corresponding scale of the Harris-Von 

Karman spectrum under the same terrain category is 170 m as suggested in 

Engineering Science Data Unit (1974). There is a small mismatch by a 

factor of 1.4. 

3.4 Aeroelastic Modelling of Buildings and Dampers 

3.4.1 General description 

Common types of aeroelastic model simulations for tall buildings are 

based on equivalent discrete representations which are designed to simulate, 

at a reduced scale, the dynamic properties of the more important modes of 

structural vibration. For most tall buildings of compact and torsionally stiff 

cross-section, the wind-induced response is primarily in the two orthogonal 

fundamental sway modes of vibtration and the deflection of the fundamental 

mode can be approximated by a straight line pivoted near the base. 

Therefore, conventional aeroelastic models as shown in Fig. 3.5 are widely 

used in wind tunnel studies of tall buildings. 

In this simulation, a rigid building model is attached to one end of an 

aluminium bar which is pivoted near the building base by a gimbal 

arrangement. The other end of the aluminium bar is restrained by 

appropriately selected springs, and an oil bath is used to simulate viscous 

structural damping. The other components are a ballast weight adjustable to 

achieve correct inertial scaling, and strain gauge bridges, which provide an 

indication of the wind-induced top deflection and base overturning moment 

of the building model. Results of a number of aeroelastic studies of tall 

buildings carried out at the Boundary Layer Wind Tunnel Laboratory at the 

University of Western Ontario indicate that this modelling technique 

adequately defines most significant components of the wind-induced dynamic 

response (Isyumov et al, 1975; lsyumov, 1982). A significant practical 

advantage of this approach is the freedom of readily varying the building 
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mass, stiffness, damping and even the geometric properties. The 

experiments described in this Chapter were conducted by using this type of 

aeroelastic modelling technique. 

In situatiom where the prototype mode shapes depart significantly from a 

straight line variation, a correction may be necessary to allow for differences 

between the model and prototype responses or excitations. This correction 

is discussed in Chapter 6. If torsional effect are judged to be important for 

some complex buildings, a similar aeroelastic test for pure torsion may be 

required, which is explained in the next Chapter. However, when the 

modes of vibration are highly 3-dimensional due to inertial and/or elastic 

coupling between various degrees of freedom, multi-degree-of-freedom 

aeroelastic models have to be used. The discussion of this aspect is beyond 

the aim of this thesis. 

3.4.2 Derivation of scaling ratios 

The geometric length scale XL is defined as 

L L(model) m 
XL - ....,...-=::::7~':!:-::,) - -L­L(prototype 

p 
. . . . . (3 .4) 

To maintain equality of the ratio of overall building dimensions to the 

inherent lengths of the generated model of the natural wind, the length 

scaling parameter XL in this experiment was chosen as 1:400. Because the 

model blockage was less than 3% of the wind tunnel cross section and the 

wind tunnel was an open jet wind tunnel, no correction for the 

experimental results was considered. 

The mass scaling parameter >-M can be determined by the modelling 

criteria which implies equality of the bulk density ratio in model and in full 

scale, that is, 

->-3>- ->-3 
L Ps L 

(for mass scale) ........ (3.5) 

- 43 -



Ls 
m ps m 

-As As A - A -'e Ls L Ps L 
p psp 

(for mass moment scale of Inertia) .. (3.6) 

Here the model air and structural densities are assumed to be equal to 

those of the prototype. 

The time and velocity scales can be derived, in the simpliest form, 

from the Strouhal number or the reduced velocity, that is, 

nL nL 
( V )model - ( V )prototype . . . . . . . . (3. 7) 

Therefore, the relationship between the time scaling parameter AT and 

the velocity scaling parameter t.y is 

np AL 
f.------

T nm "v 
. . . . . . . . . . . . . . . . . . . . . (3. 8) 

The Cauchy number can be expressed in the form 

- ( 
pV2La 

K
8 

)prototype 

Therefore the rotation stiffness scaling paremeter AKB is 

A 2 A 3 
-~- V L 

p 

. . . . (3. 9) 

. (3.10) 

Now the time scaling parameter is also be given by the period of 

oscillation so that 

............ (3.11) 

The velocity scale is then determined by the natural frequency of the 

model, which is in turn determined by the spring stiffness of the test rig or 
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vice versa. A more detailed derivation can be found in Melbourne (1972) 

and Isyumov (1982). 

While structures with circular cross-section or rounded corners are very 

sensitive to Reynolds number, strict Reynolds number similarity is less 

significant for sharp-edged bodies. The flow around prismatic shapes is 

determined by the building geometry as flow separation tends to occur at 

the building corners. As a result, the influence of Reynolds number on the 

overall flow around rectangular and square building shapes, particularly in 

turbulent boundary layer flows, is generally not found to be significant. 

3.4.3 Model building and tuned mass dampers 

The CAARC Standard Tall Building was chosen to represent a typical 

highrise building. A 1:400 scaled aeroelastic model of this building was 

designed and mounted on the test rig as shown in Fig. 3.5. The model was 

of a rigid wooden construction and assumed to have a structural density of 

180 kg/m 3 • The fundamental frequency of the prototype was chosen as 0.2 

Hz and the corresponding structural damping was 1%. These parameters are 

reasonable values which fall within the range of the full scale data of 

modern tall buildings although full scale data are quite scattered. 

The model tuned mass damper consisted of a small aluminium block 

cantilevered downward on a piano wire. The wire was covered with plastic 

tape to provide proper damping to the tuned mass damper. An adjustable 

mounting allowed the length of the cantilever to be varied, facilitating fine 

tuning of the damper frequency. The base of the cantilever was positioned 

at the centre of the top cover of the building model. These arrangements 

are similar to that described by Isyumov et al. (1975). The physical 

dimensions of the building model and three tuned mass damper models are 

listed in Table 3.3. The mass ratios (i.e., damper mass over building first 

mode generalised mass) are, respectively, 2.5%, 3.5% and 4.6%. The 

dampers were approximately tuned to the natural frequency of the building 

model, and the dampings of the dampers corresponded to viscous dampings 

of about 3.2% to 4.2% of critical. These properties were expected to lead 

to a significant reduction of building vibration based on preliminary 
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TABLE 3.3 PHYSICAL PROPERTIES OF THE BUilDING AND TUNED 

MASS DAMPERS MODElS 

Size 0.465x0.1125x0.075(m) 

Bui !ding Generalised Mass 0.2375 (kg) 

Model Natural Frequency 5.92 (Hz) x-x, y-y 

Structural Damping 0.010 of critlcal,x-x,y-y 

Tuned Mass Mass 0.0059 (kg) 

Damper Model 1 Frequency 6.1 (Hz) 

(TMD 1) Damping 0.032 of cri t leal 

Tuned Mass Mass 0.0082 (kg) 

Damper Model 2 Frequency 6.2 (Hz) 

(TMD 2) Damping 0.040 of critical 

Tuned Mass Mass 0.0110 (kg) 

Damper Model 3 Frequency 6.0 (Hz) 

(TMD 3) Mass 0.042 of crlt leal 
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parametric studies of TMDs and experimental conditions. 

3.5 Experimental Arrangements 

The whole testing rig with the building model was mounted on the 

turntable of the wind tunnel so that the wind direction could be varied 

relative to the model. The signal output from the strain guage bridges was 

low-pass filtered at 30Hz to attenuate the high instrumentation noise. It 

was then digitised by means of an anlogue to digital converter, and sampled 

by a micro-computer. The aeroelastic model was calibrated to relate the 

output data from the micro-computer to applied top displacements in both 

alongwind and crosswind directions. The dampings and natural frequencies 

of the building model with or without the TMDs were determined from the 

decay of free vibration (see Fig. 3.6). A small vibration table was used to 

measure the natural frequency of each damper by using resonant method 

and two methods were used to determine the damper damping: one used a 

non-contact laser displacement sensor to obtain the decay of free vibration; 

the other used the free dacay vibration theory of the two-degree-of­

freedom system which is presented in Appendix A. 

The mean (static) and standard deviation (dynamic) alongwind 

displacement responses if and crx, and the standard deviation crosswind 

displacement response cry at the top of the building model without, then 

with, tuned mass dampers were measured at reduced wind velocities V/(n
0
b) 

ranging from 4 to 18 and at a structural damping value of 1% of critical 

damping. This wind velocity range included the critical reduced velocity of 

the building model. It should be noted that the reduced velocities were 

based on the width of the building, b, normal to the wind. v is the mean 

wind velocity at the top of the building and n 0 is the natural frequency of 

the building without any dampers. These measurements were made with the 

on-line digital computer data acquisition system for a period of time 

corresponding to approximately one and half hour in full scale. The 

velocity fluctuations in the near wake of the building model were also 

measured using a vertically-aligned hot-wire. Some of the displacement 

response signals and the hot-wire signals were saved in real-time by the 
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micro-computer, and then the saved data were transferred to and processed 
by a mini-computer to obtain various power spectral densities and 

probability distribution analysis of peaks. 

3.6 Experimental Results and Analysis 

3.6.1 Alongwind responses 

The experimental results showed that the mean alongwind displacement 

responses at the top of the building model were not reduced by any TMDs 
whether the incident wind was normal to the wide face of the building 

model or normal to the narrow face of the model. The reductions in 

standard deviation of alongwind displacement responses were generally in the 

range of 20% to 40% even though the parameters of the three tuned mass 

dampers tested were not optimum (see Fig. 3.7). Here the standard 

deviation responses were normalised as uxlb and were presented as a 
function of reduced wind velocity for the plain model (i.e., without any 

dampers) and the building model with the TMDs. Logarithmic scale is used 

to represent the normalised response in order to accommodate the large 
variation in response amplitude. It is observed that the third tuned mass 

damper was the most effective, which corresponded to the largest damping 

value as measured by the free decay vibration of the model systems and the 
largest mass ratio. 

3.6.2 Crosswind responses 

The normalised standard deviation crosswind displacement responses u..;b 

are presented in Fig. 3.8. With the incident wind normal to the wide face 

of the building model, there was a significant peak in the crosswind 

response of the plain building at reduced wind velocities close to a critical 

value of about 10. This represents the wind condition at which the vortex 

shedding frequency is very close to the natural frequency of the building, 

i.e., the building is operating near the peak of the wake energy spectrum. 

It is fairly obvious that the variation of crosswind response with reduced 
velocity can not be described by a simple relationship. The use of the 
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TMDs was found to be effective in reducing the response within the studied 

range of reduced velocities. There is up to a 30% reduction in 

wake-excited response at the low range of reduced velocities. At reduced 

velocities close to and above the critical value of about 10, there are 

considerable reductions in response by a factor of 2 or more. It is noted 

that the geometrical configurations of the building related to the wind 

excitation and hence the aerodynamics are the same for the plain model and 

for the model with the TMDs in place. Such a significant decrease reflects 

the change in aeroelastic aspect, in particular the lock-in mechanism. At 

the larger response amplitude of the plain model, the displacement­

dependent lock-in excitation was dominant which results in a negative 

aerodynamic damping term and the most excitation energy was concentrated 

on or near the natural frequency of the building. Whereas when the TMD was 

fitted, the response amplitude of the model system was much smaller and 

might drop below the level in which the lock-in effects become significant. 

The significant decrease in response amplitude observed here suggests that 

the TMD was more effective in suppressing the vibration caused by the 

lock-in excitation than that caused by the wake excitation. It is noted that 

the relative displacement of the damper to the building would be much 

larger under lock-in excitation than that under wake excitation. 

With the incident wind normal to the narrow face of the building, 

crosswind responses were caused by both incidence turbulence and wake 

excitation. There was no significant response peak to indicate a dominant 

critical velocity effect. The long afterbody of the building is believed to 

have a disruptive effect on the vortex shedding process. With tuned mass 

dampers, there was up to a 30% reduction in response. 

3.6.3 Wake spectra 

For most modem tall buildings, one of the most common sources of 

crosswind excitation is associated with vortex shedding and this is often 

referred to as wake excitation. It is of considerable interest to investigate 

the wake characteristic around an oscillating boby, in particular when the 

vortex shedding frequency is close to the fundamental frequency of the 

body vibration. Under these operating conditions, large amplitude crosswind 
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response due to Jock-in may occur. 

Velocity fluctuation in the near wake of the tested building was 

measured with a verticalJy-aligned hot-wire which is the most common type 

of instrumentation used in investigation of this nature. The hot wire was 

located at 3/4 of the height of the building model where the flow was not 

expected to be affected by flow entrainment from the top of the building, 

and at just outside the wake region within which the signals are likely to be 

confused by flow reversals, but close enough to detect any periodicity in the 

velocity fluctuations associated with the vortex shedding process (Kwok, 

1977). Although the relationship between velocity in the near wake and 

crosswind excitation is still poorly defined, a wake spectrum is thought to be 

a reasonable representation of the wake energy. Wake spectra for the 

building model without the TMD and with the third TMD are presented in 

Fig. 3.9. When the incident wind, at a reduced velocity of about 10, was 

normal to the wide face of the building model, the wake spectrum, as 

shown in Fig. 3.9, for the plain model showed a peak at the reduced 

velocity of about 10 (reduced frequency was about 0.10). This is thought to 

be associated with the interaction between the model displacement and the 

wake, and the motion-dependent Jock-in excitation may be significant. 

Compared with this, the peak of the wake spectrum for the model with the 

TMD was smalJer than the peak for the plain model. This is consistent 

with the smalJer standard deviation crosswind displacement response of the 

model with the TMD discussed earlier. 

With the incident wind normal to the narrow face of the building model 

and at a reduced velocity of about 13, the wake spectrum for the plain 

model was similar to the wake spectrum for the model with the TMD in 

place, and both spectra did not show a peak at the corresponding reduced 

frequency. This indicates that under motion-independent wind excitation 

the tuned mass damper can reduce the displacement response of the building 

only through the change of structural properties rather than the change of 

wind excitation. 

OveralJ, the measured wake energy spectra correlate welJ with the 

measured response characteristics discussed earlier. 
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3.6.4 Probability distributions of peaks 

Wind-excited tall buildings behave essentially like a lightly damped 

system oscillating at a fundamental frequency. It ~ therefore more 

convenient to express the probability distribution of the response of a tall 
building in terms of the d~tribution of the response peaks, i.e., the 

proportion of peak values exceeding a given response amplitude, rather than 

on a time basis. The probability analysis of response peaks can be 

performed by digital analys~. and the results can be used to determine the 
variations from that of a normally distributed Gaussian process and to 

identify the crosswind excitation mechanism. The theory of probability 
distributions of peaks and description of the digital analysis process can be 

found in Melbourne (1977) and Kwok (1977). 

It was found that for all tested models with or without the TMDs in 

the reduced wind velocity range from 4 to 18, the alongwind responses were 

normally d~tributed. With the narrow face of the building model normal to 

the wind, the crosswind responses were also essentially normally distributed. 

However, with the wide face normal to the wind and at close to the critical 

reduced wind velocity, the probability d~tribution of the crosswind response 
peaks of the plain model showed a significant departure from a normally 

d~tributed process and approached to that for a sine wave. As shown in 

Fig. 3.10, the motion-dependent lock-in excitation mechanism which was 

evident in the plain model has been significantly d~rupted by the 

introduction of the TMDs to the plain model as the responses of the model 

with the TMDs remained essentially normally d~tributed. 

3.6.5 Normamed displacement response spectra 

The top displacement spectra of the building model without a damper 

and with the third tuned mass damper were obtained by Fast Fourier 

Transformation of the recorded displacement response signals. The spectra 

were normal~ed by <Txo for alongwind spectra and by <Tyo for crosswind 

spectra, in which <Txo and uy 0 were the alongwind standard deviation and 

crosswind standard deviation of the plain model. It was found that the 

alongwind displacement response spectra, corresponding to alongwind 
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turbulence buffeting, were different from the crosswind displacement 

response spectra, which were related to crosswind wake excitation, as shown 

in Fig. 3.11. The alongwind displacement spectra indicate that the alongwind 

turbulence energy is mainly distributed within the low frequency range while 

the energy distribution of crosswind wake excitation depends on the 

structural properties. It is consistent with the corresponding alongwind and 

crosswind force spectra provided by Kwok (1988). It is also obvious that the 

reductions in energy amplitudes at the natural frequency of the model by 

use of the TMD are significant. 

3.6.6 Effect of angle of wind incidence 

In the design of tall buildings, strong wind from all possible wind 

directions has to be considered. Fig. 3.12 shows the effect of angle of wind 

incidence on the dynamic response along one of the body axes of the 

building model at reduced wind velocities of 6 and 10. As the angle of 

wind incidence increases, there is an increased tendency for the separated 

shear layer to re-attach onto the windward face of the building. The effect 

of shear layer re-attachment is a reduction in excitation force and hence a 

decrease in response. This trend can be observed over the first 15-30 

degrees. As for the effectiveness of the TMDs in reducing the structural 

dynamic responses, it is obvious that this effectiveness is maintained at all 

concerned angles. 

3.7 Conclusions 

The results of the aeroelastic test of the CAARC Standard Tall Building 

model demonstrated the effectiveness of the TMD system in reducing the 

dynamic response of the building induced by wind excitation with different 

mechanisms. The TMD system reduced the vibration caused by alongwind 

turbulence, partial incidence turbulence in crosswind direction and crosswind 

wake excitation by 20% to 40%. The TMD system was found to be more 

effective in suppressing the vibration caused by the lock-in excitation by a 

factor 2 or more. The effectiveness of the TMD system can be maintained 

under various wind directions. 
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The use of the TMD, as an added energy absorbing system, usually 

increased the overall effective damping of buildings rather than change the 

wind loads acting on the building. However, under motion-dependent 

lock-in excitation, not only can the tuned mass damper absorb most of the 

vibrational energy which concentrates at the natural frequency of the 

building, it can also change both the magnitude and mechanism of the 

external excitation. 

The experimental results described in this Chapter should be compared 

with the theoretical results obtained by using harmonic and white noise 

excitation models to examine the reliability of theoretical predictions. 

Chapter 5 deals with this problem. 
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Chapter 4 

WIND-INDUCED TORSIONAL VIBRATION OF TAll BUILDINGS 

AND ITS PASSIVE CONTROL BY TUNED MASS DAMPERS 

4.1 Introduction 

Full scale building response measurements have shown that wind loads 

acting on modem tall buildings may cause significant torsional moments and 

motions (Hart, DiJulio and Lew, 1975; Jeary, Lee and Sparks, 1979). At 
least two major buildings which have suffered permanent structural damage 

as a result of wind action (Mayer-Kaiser, Miami; Great Plains Life, 
Lubbock, Texas) exhibited marked permanent deformations in torsion 

(Vickery, 1979). Because of human biodynamic sensitivity to angular 

motion, the torsional motion can be often perceived by a visual-vestibular 
mechanism at motion thresholds which are an order of magnitude smaller 

than those for translational motion (Kareem, 1985). Recent trends towards 

more complex building shapes and structural systems further accentuate 
eccentricities between the mass centre, elastic centre and instantaneous point 

of application of aerodynamic loads, and significantly increase torsional 

responses. Wind-induced torsional effects on tall buildings cannot be 

completely ignored. 

Foutch and Safak (1981) attempted to estimate theoretically the torsional 

dynamic response of an idealised single-mass structure subjected to a 

normally-incident wind. Patrickson and Friedmann (1979) as well as Yang, 

Lin and Samali (1981) investigated the importance of the coupled response of 

tall buildings caused by an offset between the centre of mass, stiffness and 

aerodynamic forces. Theoretical estimates of dynamic torque were also 

discussed by Torkamani and Pramono (1985). Their results indicated that 

the torsional response contributed significantly towards the overall dynamic 
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response of structures and buildings. Inclusion of coupling between the 
lateral and torsional degrees-of-freedom further increased the torsional 

response. However, owing to the absence of sufficient information on 
aerodynamic loads, these theoretical methods are not presently usable for 

design purposes. 

Reinhold et a!. (1979) first used a direct pressure measurement technique 
to determine mean and dynamic torsional moments on a rigid square 

building model. Isyumov and Poole (1983) then adopted a similar technique 

to examine the anatomy of the torsional moments on buildings of square and 

rectangular cross-section. Taiiin and EIIingwood (1985), Kareem (1985), and 

Islam, EIIingwood and Corotis (1990) further utilised pressure measurement 

results of wind loads to analyse wind induced coupled lateral-torsional 

motion of tan buildings. On the other hand, Tschanz and Davenport (1983) 
used a base force balance technique to develop a generalised torsional force. 

Both pressure measurement and force balance techniques disregard aeroelastic 

effects such as aerodynamic damping. Based on the results of 

multi-degree-of-freedom (MDOF) aeroelastic model tests, empirical 

relations for estimating mean, standard deviation and peak base torques in 
the respective most unfavorable wind directions were presented by Greig 

(1980) and Isyumov (1982). An improved version of the empirical formulae, 

based on an expanded data consisting of 15 building studies, has also been 

presented by Isyumov in the ASCE State-of-the-art report (1987). Because 

present MDOF aeroelastic model tests are quite complicated, 

time-consuming and expensive, it is difficult to get enough experiment 

results to support the empirical formulae. Therefore, Lythe and Surry 
(1990) used a large data base measured experimentany in wind tunnel rigid 

model tests to develop an improved estimation method for mean torque. 

This involved evaluating various definitions of the torsion coefficient and 

classifying building shapes in order to decrease the variability of the 
associated coefficients. 

In order to find a convenient and efficient way to predict the mean and 

dynamic torsion responses, to explore the mechanisms of the torsional 

excitation, and to demonstrate the effectiveness of active and passive systems 

to control torsional motion of tan buildings to wind, an aeroelastic model 
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for pure torsion vibration has been developed in this research project. The 

principle of the aeroelastic model is similar to that of the conventional 

"stick" aeroelastic model for translational motions of buildings. The model 

design and construction requirements are modest and consequently there are 

both timing and economic advantages. The torsional mass moment of 

inertia, stiffness, damping and even geometric properties of building models 

can be readily changed. Information on the sensitivity of the wind induced 

response to changes in the building configuration and surroundings can be 

provided, some aeroelastic effects can be considered and the effectiveness of 

active and passive systems to control dynamic motion of buildings can be 

demonstrated. The principal disadvantage of this type of simulation is that 

there is a mis-match between the model and prototype torsional mode 

shapes. Like base force balance technique (Tschanz and Davenport, 1983), 

errors caused by the mode shape discrepancy must be estimated. 

In this Chapter, the aeroelastic model for pure torsion vibration is 

described. The experimental results, using this technique, were 

compared, wherever possible, with other wind tunnel test techniques, e.g., 

direct pressure measurement technique and multi-degree-of-freedom 

aeroelastic models. The comparisons included the mechanism of torsional 

excitation, torsional response of tall buildings, sensitivity of the torsional 

response to eccentricity between centres of twist and building geometry. 

The probability distribution of the torsional response peak and the torsional 

aerodynamic damping of a prism were evaluated. The effectiveness of 

tuned mass dampers in suppressing the torsional vibration of the building 

was also investigated. The torsional experiment results, combined with the 

translational experiment results in Chapter 3, provide a data base for 

Chapters 5 and 7 to conduct parametric studies of passive tuned mass 

dampers and preliminary studies of active mass dampers. The discussion of 

the mode shape correction for both pure torsion model and translation 

model is given in Chapter 6. 

4.2 Experimental Techniques 

4.2.1 Modelling of turbulent boundary layer wind 
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Wind tunnel tests of pure torsion vibration of tall buildings were also 
performed in the No. 2 Boundary Layer Wind Tunnel. A 1:400 scale wind 

model of natural wind flow over open country terrain (Terrain Category 2 

as described in the Australian Wind Loading Code, AS 1170.2 -1989) was 

developed by using an augmented growth method which included a set of 
four 1.2m high linearly-tapered vorticity generators spanning the 
working section and low-pile carpet covering a fetch 

approximately 4.5m. 

start of the 

length of 

The mean wind velocity profiles and longitudinal turbulence intensity 

profiles at three lateral positions are presented in Figs. 4.1 and 4.2. The 

mean velocity profiles are closely represented by the power law with an 

exponent a = 0.15. The turbulence intensity was about 10% at the top of 
the model and the thickness of the boundary layer was found to be 

approximately 0.9m at the test section. These profiles were found to be 

consistent with profiles suggested by AS 1170.2-1989. The longitudinal 

velocity spectrum of the simulated boundary layer flow is presented in Fig. 

4.3 and is compared with the Harris-Von Karman prototype empirical 

spectrum (see Eq. 3.3). The integral length scale of turbulence of the 
measured velocity spectrum was found to be approximately 120m at the top 

of the building model while that of the Harris-Von Karman spectrum under 
the same terrain category is 200m, as suggested in Engineering Science Data 

Unit (1974). The distortion of the scale of turbulence by a factor of 1.7 

seems to be acceptable (Laneville and Williams, 1979; Surry, 1982). 

4.2.2 Model building and tuned mass damper 

The building model was a 9.1 x 18.9 x 48.1 em tall rectangular prism 

which has an equivalent full scale height of 192.4 m, width of 75.6 m and 

depth of 36.4 m according to the wind model scale of 1/400. The size of 

the building model was nearly the same as that used by Isyumov and Poole 

(1983) for torsional studies. The model blockage was about 5% of the wind 

tunnel cross section, but, after considering the open jet wind tunnel being 

used, correction was not to be included . The building model was of a rigid 

wooden construction and there was a space near the top of the model so 

that a mass damper could be arranged inside (see Fig. 4.4). The top cover 
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of the building model was made of transparent plastic and, therefore, the 
motion of the mass damper could be seen during the testing. The building 

prototype was assumed to have a structural damping ratio of 1.2% of 

critical damping and a fundamental frequency of 0.4 Hz. Aeroelastic model 
requirements are the same as those described in Chapter 3. For the basic 

model tests, the elastic centre of the building model was coincident with the 

mass or geometric centre of the model. However, for the eccentric model 

tests, both centres did not coincide with each other. 

The model tuned mass damper consisted of two identical small brass 

blocks which were fixed at both ends of a very thin steel strip. The centre 

of the thin steel strip was positioned under the top cover of the building 

model and was usually kept on the vertical elastic axis of the model (see 
Fig. 4.4). The damping of the model tuned mass damper was provided by 

covering the steel strip with plastic tape. The physical dimensions of the 

building and tuned mass damper model are listed in Table 4.1. 

4.2.3 Testing rig and data acquisition 

A photograph of the aeroelastic torsion testing rig is shown in Plate 4.1. 

It is also schematically shown in Fig. 4.4. The building model was fixed on 
an aluminium bar which was mounted on two precision bearings or flexural 

pivots, thus maintaining a constant magnitude mode shape. The model was 

further restrained by a flexible steel strip and four helical springs, which 

provided the required torsional stiffness. Strain gauges attached to the 
flexible steel strip were used to provide an indication of wind induced twist 

angle and base torque. Two oil baths were designed to simulate viscous 

structural damping of torsional motion, while two ballast weights could be 

adjusted to achieve correct inertial scaling. The rig was designed so that it 

could be readily adjusted to model the different parameters of different 

types of buildings. 

The natural frequency of the building model was about 8 Hz. The 

signal output from the strain gauge bridge was low-pass filtered at 30 Hz 

to attenuate instrumentation and environment noise of a greater frequency. 

The resulting signal was then digitised by means of an analogue to digital 
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TABLE 2. PHYSICAL PROPERTIES OF THE MODEL (TORSION) 

Size 0.481x0.189x0.091 (m) 

Generalised Mass 
Basic Building Moment of Inertia 6.34 -3 x 10 kg.m 2 

Model 

Natural Frequency 7.68 (Hz) 

Structural Damping 0.012 of critical 

Size 0.481x0.189x0.091 (m) 

Generalised Mass 
Eccentric Moment of Inertia 7.06 X 10- 3 kg.m 2 

Building Model 
Natural Frequency 7. 32 (Hz) 

Structural Damping 0.012 of critical 

Mass Moment of Inertia 8.40 x 10- 5 kg.m 2 

Tuned Mass Frequency 7. 40 (Hz) 
Damper 

Damping 0.048 of critical 
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PLATE 4.1 AERO ELASTIC TORSION TESTING RIG 
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converter, and sampled by a micro-computer. A pitot-static tube, which 

was located 1.3m away from the model, was used to measure mean velocities 

in the wind tunnel during the testing. Same data aquisition system has been 

used for the translational experiments in Chapter 3 and the system arrangement 

is shown in Plate 4.2. The twist angle and base torque were calibrated 

against the output from the strain gauge bridge. A typical calibration curve 

is shown in Fig. 4.5. The calibration of the damper properties was 

conducted in the same way as described in Chapter 3. 

4.2.4 Experimental program 

The mean (static) and standard deviation (dynamic) twisting angle 

responses 1! and u 8 as well as base torque responses T and uT were 

measured at reduced wind velocities Yr {= V/n 0b or V/n 0L) ranging from 1 to 

4.5 (wide face) and 2 to 10 (narrow face). The reduced velocities were 

based on the width of the building, b, normal to the wind and, in some 

cases, based on the length parameter L {=/irids/Ai) as suggested by Greig 

(1980). v is the mean wind velocity at the top of the building; n 0 is the 

natural frequency of the torsional vibration of the building without any 

dampers; ds is the elemental length of the building perimeter; Ill is the 

torque arm of the element ds and A is the cross-sectional area of the 

building. The torsional response signals were processed in real-time by a 

computer and the data were transferred and analysed further to obtain 

response and excitation spectra, probability distributions of the responses and 

other statistical quantities. The total test consisted of basic model tests and 

eccentric model tests with and without the tuned mass damper. 

4.3 Basic Model Tests 

4.31 Torsional response 

The experimental results showed that instantaneous unbalanced 

fluctuating wind force caused fluctuating responses on a symmetrical building 

and the fluctuating responses of the building increased with increasing 

reduced wind velocities. With the incident wind normal to the wide face of 
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the building, the standard deviation twist angle responses u 8 were 

proportional to v (" • s shown in Fig. 4.6. With the incident wind normal to 

the narrow face of the building, as shown in Fig. 4.7, the responses u 8 were 

not uniformly proportional to v;·•• as suggested by Isyumov (1987). 

Compared with the standard deviation twist angle responses, the mean twist 

angle responses 11 for the two orientations were too small at the low 

reduced wind velocity range to be correctly detected by the existing test 

instrument. The pressure distribution on a rectangular building is expected 

to be nearly symmetrical for a wind direction perpendicular to any face, and 

the mean torque is approximately zero. This is consistent with the surface 

pressure data reported by Miyata and Miyazaki (1979). 

In the design of tall buildings, strong wind from all possible wind 

directions has to be considered. Figs. 4.8 and 4.9 show the effect of angle 

of wind incidence on the mean and standard deviation base torque responses, 

respectively, along one of the body axes of the building model at reduced 

wind velocities of 4 and 8. Here the torque responses were normalised by 

tpV 2b2h, while reduced wind velocities were normalised by n 0b. p and h 

are, respectively, the air density and the building height. It was found that, 

as the angle of wind incidence was changed from 0 o to 90 °, the dynamic 

torque decreased from a maximum at around Qo to a minimum at around 

45 o and then increased slightly for higher values of angle. However, the 

peak values of the mean torque occurred at around 10 ° or 60 ° (in the 

opposite direction), at which the wind directions were not aligned with the 

axes of the model symmetry. These trends of torsional responses with wind 

direction were consistent with those obtained by Isyumov and Poole (1983), 

using the direct pressure measurement technique, on a rigid model of nearly 

the same proportion. Furthermore, it was found that the variation of 

reduced wind velocity only slightly affect the normalised mean base torque 

within the studied range of angles. This is, however, not true for the 

normalised dynamic base torque. 

After a series of wind tunnel tests based on multi-degree-of-freedom 

aeroelastic models, Greig in his master thesis (1980) and Isyumov in the 

ASCE State-of-the-art report (1987) presented the following empirical 

relations for estimating the mean and standard deviation base torques in the 
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respective most unfavorable wind directions: 

T (V) - 0.038pL4hn2V2 
max o r 

( 4. 1) 

uTmax (V)- 0.00167r-ipL4hn~v;·•• ............... (4.2) 

where 

v ij - n L r 
(4.3) 

0 

L-
II r1 ds 

At 
(4.4) 

and r is the critical damping ratio in the fundamental torsional mode of 

vibration. 

It should be noted that effects of terrain categories, immediate 
surroundings and other fluctuating wind force characteristics on the torsional 

responses of buildings are not directly reflected in the above formulae. 

For the rectangular symmetric building studied, the most unfavorable 
wind direction for the mean base torque was tOo. Fig. 4.10 shows that the 

mean torques in this orientation were proportional to v f and in good 

agreement with the predicted values obtained by Eq. 4.1. However, Fig. 4.11 

shows that the standard deviation torques at the most unfavorable wind 

direction, i.e., a = Qo, were not uniformly proportional to V{· •• and were 

approximately 2 times the results obtained by Eq. 4.2 on average. This was 

attributed mainly to the mis-match of mode shape of the present "stick" 

aeroelastic rig and partly to the simplicity of the empirical formulation. It 

will be seen in Chapter 6 that the error shown in Fig. 4.11 can be 
adjusted by the mode shape correction factors to some extent, but the 

variation trend of the dynamic torque with reduced velocity still is not 

uniformly proportional to Vf' 6 8 as suggested by Isyumov. 

4.3.2 Response and excitation spectra 

by 

The twist angle response spectra of 

Fast Fourier Transformation of 
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Normalised response spectra, corresponding to the wide and narrow faces of 

the building model, are presented in Fig. 4.12. The shapes of these spectra 

were different but the largest peaks were both located at the natural 

frequency of the building model. 

The difference between the response spectra was attributed to different 
torsion excitation mechanisms, which can be identified by analysing 

generalised torsional excitation spectra. The procedure to obtain generalised 

torsional spectra was similar to that suggested by Saunders and Melbourne 

(1975) for crosswind force spectra. As shown in Fig. 4.13, with the incident 
wind normal to the wide face of the building, the generalised torsional 

excitation spectrum has a dominant peak at a reduced frequency of about 0.1 

at which there is concentrated excitation energy associated with the vortex 
shedding process. With the incident wind normal to the narrow face of the 

building, the peak in the torsional excitation spectrum was relatively broad 

and, at the reduced wind velocity of 8, two peaks could be readily 

identified at the reduced frequencies of about 0.04 and 0.15. From the 

viewpoint of energy distribution, both spectral shapes look more similar to 

the corresponding crosswind force spectral shapes than the alongwind force 

spectral shapes (Kwok et al., 1988) of a rectangular section building. 

Therefore, the mechanisms of torsional excitation of rectangular section 
buildings might be closely related to those of crosswind excitation. By 

correlation analysis of fluctuating pressure distribution on a square section 

building (Reinhold, 1983) and base dynamic moments obtained by base force 

balance technique (Thoroddsen, Peterka and Cermak, 1988), the same 
conclusion was reached. The effect of angle of wind incidence on the 

excitation spectral shape is highlighted by using Fig. 4.14. It is obvious that 

different wind directions caused different generalised torsional excitation on 

the rectangular building. Further discussion of torsional excitation 

mechanisms can be found in the section on eccentric model tests. 

4.3.3 Probability distributions of peaks 

As discussed in Chapter 3, for most tall buildings under normal strong 

wind conditions, the alongwind and crosswind response processes are usually 

well represented by a normal, that is Gaussian, distribution. However, 
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under conditions where there is a significant interdependence of variables in 

the crosswind excitation and response processes, such as displacement 

dependent lock-in, the response process will depart from being normally 

distributed and in extreme case approaches that of a sine wave. Therefore, 

probabilistic analysis of the response peaks can be used to identify the 

response characteristic as well as the mechanism of the excitation. 

The same method was used to analyse the torsional response 

characteristics. It is expected that the torsional response processes within 

the studied reduced wind velocity range are also normal distribution, since 

the torsional excitation acting on a rectangular building is believed to be 

closely related to the corresponding crosswind wake excitation. The results 

of probabilistic analysis of the torsional response showed that in the reduced 

wind velocity range studied, the torsional responses were essentially normally 

distributed, as shown in Figs. 4.15 and 4.16, whether the incident wind was 

normal to the wide face or narrow face of the model. This is also clearly 

demonstrated in the traces of the torsional motions as shown in Fig. 4.17. 

However, because of the limited wind velocity in the present wind tunnel, 

the critical wind speed which may be associated with dispacement dependent 

lock-in could not be obtained to demonstrate the torsional response 

distribution under this special wind speed. 

4.3.4 Aerodynamic damping 

As a building moves through the fluid in response to the wind loading, 

an aeroelastic force which depends on the building motion may be 

generated. This force is usually referred to as the aerodynamic damping 

force and estimated by an aerodynamic damping. Aerodynamic dampings 

of prismatic bodies in the drag and lift directions have been discussed by 

Davenport (1979), Kareem (1982), and others although the relevant data are 

still not plentiful. However, very little information on torsional aerodynamic 

damping of a prism is available. 

By analysing the decay curve of the torsional response autocorrelation 

function, torsional aerodynamic damping was approximately evaluated. Figs. 

4.18 and 4.19 show log plots of the autocorrelation envelopes of the torsional 
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FIG. 4.17 TRACES OF TORSIONAL RESPONSES (BAsiC MODEL) 

- 88 -



"0 
I 

c: 
0 z 

9 
on 

0.8 ~---------------------------------------------, 

o Red uced Velocity= 2 

o Reduced Velocity= 4 

Structural Damping Ratio= 1.2% 

Open Country Thrrain 
Category 2 

0~~~----------~--------------~--------------~ 
0 5 10 15 

Number of Cycles n 

FIG.4.18 AUTOCORRELATION ENVELOPE OF TORSIONAL RESPONSE 
(WIDE FACE) 

0.8 .------------------------------------------------. 

o Red uced Velocity = 10 

o Reduced Velocity= 8 

.s 0.6 
c. Reduced Velocity= 4 

~ 
"0 
3 
0.. 
E 

..:X: 
"0 0.4 
~ 

~ 
"" c: 
0 
·;;:; 
c: e o.2 
"0 

I 
c: 
0 
z 

Structural Damping Ratio = 1.2% 

Open Country Thrrain 
Ca tegory 2 

0~~------------~--------------~--------------~ 
0 5 10 15 

Number of Cycles n 

FIG.4.19 AUTOCORRELATION ENVELOPE OF TORSIONAL RESPONSE 
(NARROW FACE) 

- 89 -



responses with the wind incidence normal to the narrow or wide face of the 

building. In these figures the total damping of the building, t 1, is the sum 

of the structural damping t 5 and the aerodynamic damping t a· It was found 
that the torsional aerodynamic damping was small in both wind directions 
and for all the studied reduced wind velocities. The maximum positive 
aerodynamic damping ratio was less than 0.4 %, and there was a negative 

aerodynamic damping ratio of approximately -0.2 % at a reduced velocity of 

8 and with the wind incidence normal to the narrow face of the building. 

However, larger negative aerodynamic damping may occur at reduced wind 

velocities higher than the studied range. 

4.4 Eccentric Model Tests 

The torsional responses of tall buildings can be amplified by 
asymmetrical wind pressure loading about the elastic axis, or inertial loading 

resulting from non-coincidence of the centre of mass with the elastic axis. 

In order to estimate this influence and further investigate the torsional 

excitation mechanism, the elastic centre of the basic model was shifted 

away from the mass (geometry) centre of the basic model by about 10% of 
the width of the model, in the longer axis of the model section. As a 

result, the building model generalised mass moment of inertia increased by 

9.8% and the corresponding natural frequency decreased by 4.6%. None of 

the other parameters was changed. 

4.4.1 Effect of eccentricity on torsional excitation 

For incident wind normal to the narrow face of the eccentric model, 
two wind directions, i.e., Qo and 180o, were considered. These two 

orientations indicated a change of the offset between the centre of mass, 

stiffness and aerodynamic forces. Therefore, there would be some 

difference between the corresponding torsional excitation spectra. Compared 

with the basic model excitation spectrum, generalised torsional excitation 

spectra for these two orientations and at the reduced velocity of 8 also have 

two obvious peaks, but the two peak values were different for different 

eccentricity levels, as shown in Fig. 4.20. With the forward shift of the 
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,_ 

elastic centre of the building model, the magnitude of the first peak 

decreased, but the second peak values increased. The situation was reversed 

for the backward shift of the elastic centre. Combined with the 

experimental results obtained by Isyumov and Poole (1983), it is thought that 

the first peak is related to cross-wind excitation due to incident turbulence, 

which is mainly distributed on the windward halves of the two side faces of 

the building. The second peak is thought to be caused by flow 

re-attachment intermittencies on the leeward halves of the two side faces of 

the building. Note that the wind load magnitude and distribution on the 

surface of the building can be considered to be unchanged for both 

orientations. The forward shift and backward shift of the elastic centre of 

the building model caused a change of the relative distance between the 

elastic centre and wind forces respectively acting on the windward halves 

and the leeward halves of the building. As a result, two peak values in the 

generalised torsional excitation spectra increased or decreased 

correspondingly. It is also noted that the frequency around the second peak 

was close to the natural frequency of the building model. Therefore, when 

wind incidence was normal to the narrow face of a rectangular building, the 

energy absorbed by the building mostly came from the flow re-attachment 

intermittence which is related to the second peak. 

4.4.2 Effect of eccentricity on torsional response 

Compared with the test results of the basic model with the wind 

incidence normal to the wide face of the model, a significant mean twist 

angle response occurred and the variation of the mean response with the 

reduced velocity was still proportional to V'j as shown in Fig. 4.21. From 

Fig. 4.22, it is shown that the dynamic twist angle response increased by up 

to 40%. 

The effect of angle of wind incidence on the torsional response of the 

eccentric model is shown in Figs. 4.23 and 4.24. The maximum dynamic 

torque still occurred at around 0 ° or 180 o while the maximum mean torque 

was located at 120°. At the reduced wind velocity of 8, the maximum 

dynamic torque of the eccentric model increased by 30% and the maximum 

mean torque increased by a factor of 2 or more, compared with the values 
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of the basic model. Again the variation of the reduced wind velocity did 

not change the normalised mean torque, but did change the normalised 

dynamic torque. This is consistent with the variations of the mean and 

dynamic torques with reduced velocity, that is, the former was proportional 

to Yt and the latter was not. In addition, the probability analysis of the 

eccentric model response peaks showed that the dynamic torque responses of 

the eccentric model were also normally distributed despite the significant 

increases in the dynamic response. A typical probability distribution of the 

torsional response peak is shown in Fig. 4.25. 

It is noted that the length parameter L in Eq. 4.4 is a measure of the 

effective eccentricity of the aerodynamic force as discussed by Greig (1980) 

and, therefore, it can also be used in the response analysis of the eccentric 

model. Experimental results of the dynamic base torque of the eccentric 

model were compared with the results obtained by Eq. 4.3 as shown in Fig. 

4.26. The difference between the experimental and empirical values for the 

eccentric model was slightly larger than that for the basic model. However, 

after considering Lythe and Surry's work (1991) on various definitions of the 

torsion coefficient, more such experiments in the future are still needed to 

evaluate the definition of the length parameter L. 

4.5 Eccentric Model with Tuned Mass Damper 

As described in Chapters 2 and 3, tuned mass dampers as an energy 

dissipation device can be used to increase the overall effective damping of 

the main building and accordingly to reduce wind-induced building 

vibration. However, most studies of the TMD system are concentrated on 

suppressing alongwind and crosswind vibrations of tall buildings and 

structures. Very little information on suppression of torsional vibration of 

tall buildings is available, although the TMD on the John Hancock Tower 

was designed mainly to suppress the torsional vibration of the tower. 

4.5.1 Comparison of torsional responses 

As a prelitninary study, a synunetric tuned mass damper, with about 
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1.2% of the building model generalised mass moment of inertia or about 

3.6% of the building model generalised mass, was positioned under the top 

cover of the building model. The damper damping was 4.8% of critical and 
the total system then had 2.9% of critical damping as shown in the free 

vibration decay curve in Fig. 4.27. The experimental results showed that a 

TMD can effectively suppress wind-induced torsional vibration within the 

studied range of wind reduced velocities and angles of wind incidence. Figs. 
4.28 and 4.29 show that there is up to a 30% reduction in response for wind 

incidence normal to the wide face of the model and a 45% reduction for 

wind incidence normal to the narrow face of the model, even though the 

parameters of the tuned mass damper tested were not optimum. Fig. 4.30 
shows that the effectiveness of the TMD can be maintained at all concerned 

angles of wind incidence. 

4.5.2 Comparison of response spectra 

The twist angle response spectra of the building model with and without 

a damper were compared for the incident wind normal to the wide and 

narrow faces of the building model, as shown in Figs 4.31 and 4.32. Both 
spectra were normalised by u 8 ~. which was the standard deviation twist 

angle of the plain model without the damper, in order to have an apparent 

comparison of the spectral amplitude. It is obvious that the reduction in 

energy amplitudes around the natural frequency of the building was quite 

significant for both orientations. Further analysis of the effectiveness of the 

TMD to reduce the torsional vibration of the tall building will be performed 

in next Chapter. 

4.6 Conclusions 

The aeroelastic modelling technique for pure torsion vibration as 

described in this Chapter was found to be a convenient and efficient way to 

explore the mechanism of torsional excitation and to predict the torsional 

response of tall buildings to wind. This technique allows some aeroelastic 

effects to be considered and the effectiveness of passive control systems can 
also be readily demonstrated. 
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From the basic model tests, it was shown that the maximum dynamic 

response usually occurred at around Qo, i.e., with wind incidence normal to 

the narrow face of the rectangular building. The maximum mean torque 
occurred at 1Qo and 6Qo. It was shown that the experimental results of the 

maximum mean torque were in good agreement with the empirical values 

suggested by Greig and Isyumov. However, there was some difference in 
the maximum dynamic torque. . Experimental results also showed that the 

torsional responses were essentially normally distributed and the torsional 

aerodynamic damping was small in the reduced wind velocity range 

studied. 

With the wind incidence normal to the wide face of the building, vortex 
shedding is the dominant mechanism of torsional excitation. With the wind 

incidence normal to the narrow face, there are two important excitation 

mechanisms: incident turbulence which exerts its influence mainly distributed 

on the windward halves, and flow re-attachment intermittencies on the 
leeward halves of the two side faces of the building. 

For the eccentric model with a 10% geometric eccentric ratio, the 
maximum dynamic torque still occurred at around 0 o or 180 o while the 

maximum mean torque was located at 120 °. At a reduced wind velocity of 

8, the maximum dynamic torque of the eccentric model increased by 30% 

and the maximum mean torque increased by a factor of 2 or more, 

compared with the values of the basic model. 

For the eccentric model with a TMD, the results showed that a TMD 

can effectively suppress wind-induced torsional vibration. There was up to 

a 30% reduction in response for wind incidence normal to the wide face of 

the building and a 45% reduction for wind incidence normal to the narrow 

face of the building, even though the parameters of the TMD tested were 

not optimum. Because the torsonal excitation spectra were different for 

both wind directions, it can be concluded that the effectiveness of the TMD 

was dependant on the type of torsional excitation. 
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Chapter 5 

A SEMI-ANALYTICAL METHOD OF PERFORMING PARAMETRIC 
STUDY OF TUNED MASS DAMPERS 

5.1 Introduction 

A theoretical treatment of the response of a one degree of freedom 
system with an auxiliary mass damper to sinusoidal excitation has been 

discussed by Den Hartog (1956) in detail. The application of this theory to 

parametric studies for large scale TMDs in reducing wind-induced slender 
structure motion was first presented by Vickery and Davenport (1970). The 

work of Isyumov et a!. (1975), McNamara (1977), Wiesner (1979), Luft 

(1979) and others further improved the procedure of the parametric studies 

for large scale TMDs. 
summarised as follows: 

The main aspects of this procedure can be 

(a) Letting the ith mode of a slender structure fitted with an auxiliary mass 

damper be equivalent to a two degree of freedom system as shown in Fig. 

5.1. The equivalent mass Mei and the equivalent stiffness Kei for the ith 
mode of a slender structure of height h and a mass per unit height of m(z) 

can be calculated by the following formulae: 

h 2 I 
0

m(z)<l>
1 
(z)dz 

. . . . . . • . . . . . . . . . . . . . . (5. 1) 

. . . . . . . . . . . . . . . . . . . . . . (5. 2) 

where <l>j(z) is the modal shape for the ith mode; zd is the height at which 
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the auxiliary mass damper is located; and ni is the frequency of the ith 

mode without the auxiliary mass. 

(b) Assuming that the actual ith mode generalised wind loads F i acting on 

the equivalent mass can be represented by a random white noise excitation, 

the displacement response variance of the equivalent mass Mei and the 
relative displacement response variance of the mass damper, as shown in 

Fig. 5.1, can be expressed as: 

s 
0 "' 2 I IH F (n) I dn 

0 Yi I 
. . . . . . . . . . . . . . . . . . (5 .3) 

. . . . . . . . . . . . . . . . . . (5. 4) 

where S0 is a constant which reflects the intensity of the white noise 

excitation; 1HyiFi(n)1 and IHzFi(n)l are the mechanical admittance functions 
of the equivalent TMD-structure system. These expressions are derived in 
the next section. 

(c) Introducing the concept of the effective damping, i.e., the performance 

of the combined system with a TMD as if the behavior were a single 

degree-of-freedom system with a single damping parameter lei· This can 

be accomplished by equating the response of the combined system to that of 

a single degree-of-freedom system with the same frequency. That is, 

. . . . . . . . . . . . . . . . . . . . (5 .5) 

Obviously, the derivation of Eq. 5.5 was also based on the assumption 

of white noise excitation. 

In terms of the above described approach and computer optimisation 

technique, for a given mode and a given mass ratio of a structure-TMD 
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system, contours of effective damping and relative damper movement for a 

range of frequency ratio and damper damping can be presented. By 

analysing these contours and wind tunnel test results of the structure, 

optimum parameters of the TMD can be decided. 

The response of a tall building to the action of wind is confined 

primarily to the fundamental mode of vibration. As a result, a TMD is 

usually used to suppress the fundamental mode vibration and the above 

described procedure is applicable to the fundamental mode only. 

It should be noted that, even for isolated simple rectangular buildings 

such as those described in Chapters 3 and 4, the mechanisms of the actual 

wind excitations acting on the buildings were quite complicated. Additional 

changes of building size, shape and surroundings as well as wind directions 

will affect wind loads further. The wind tunnel test results of translational 

and torsional vibrations of the tall buildings also showed that the 

effectiveness of a TMD was dependant on the type of alongwind, crosswind 

and torsional excitations. Hence the theoretical results of TMD parametric 

studies based on white noise excitation may not be reliable and consistent 

with experimental results obtained from aeroelastic model tests or propotype 

measurements. The reliability of large scale TMDs is affected by this 

assumption in the existing design procedure. 

In this Chapter, a semi-analytical method, combining experimental and 

analytical techniques, is proposed. The semi-analytical results obtained by 

this method are compared with the experimental results which have been 

obtained and presented in Chapters 3 and 4. Selection diagrams of optimum 

parameters for the tested building-TMD systems are presented as examples 

of a general selection procedure of TMD parameters. The assumption of 

white noise excitation as actual wind excitation is also examined by 

comparing the theoretical results with the experimental results and the 

semi -analytical results. 

5.2 Basic Theory 
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It has been recognised that the donimant aspects of wind action on tall 

buildings can be studied with relatively simple aeroelastic models which 

provide information that can be scaled up to the prototype process 

(Isyumov, 1982). The conventional aeroelastic model used in wind tunnel 

studies of tall buildings for 2 orthogonal fundamental sway modes of 

vibration has been discussed in detail in Chapter 3. The aeroelastic model 

for pure torsional vibration of tall buildings was also explained in Chapter 4. 

The following description of the semi-analytical method is based on the 

above aeroelastic models. The coupled effects between three fundamental 

modes of vibration are not considered in the thesis. 

5.2.1 Translational vibration 

Without a tuned mass damper, the translational vibration of the building 

model shown in Fig. 3.5 is governed by the equation 

~· *' * * my + c y + k y - F (t) 
11 11 11 1 

(5.6) 

where m~. c~, k~, F~. and y1 are the first mode generalised mass, damping, 

stiffness, force and top displacement of the tested building in alongwind 

(crosswind) direction, respectively; a dot represents the first-order derivative 

with respect to time. 

When F~(t) is a stationary random process, the power spectral density of 

the top displacement response, y 1 , of the building model is given by 

SF(n)IH(n)l 2 

S (n) - --"-'-----
Y1 (k*) 2 

. . . . . . . . . . . . . . . . (5. 7) 

1 

where 1 H{n) 1 2 is the mechanical admittance function of the building model 

without a damper, i.e., 

1 
I H(n) I 2 - ----::-------::--

(1- (~)2]' + 4!"2 <--ii--)2 
. . . . . . . . . . . (5. 8) 

0 0 
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in which 

* c 
1 ! -critical damping ratio - ---'----
~ 

2/ m k 
1 1 

n - natural frequency- ---1- J k*/m* 
0 2.- 1 1 

SF 1 (n) = generalised wind force spectrum. 

Since the power spectral density, Sy 1(n), can be obtained by Fast 

Fourier Transformation of the corresponding recorded displacement response 
signals in wind tunnel tests, the generalised wind force spectrum, SF 1(n), can 

be determined by using Eq. 5.7 such that 

(k*) 2 S (n) 
1 y SF ( n) - __ .:....__--''-'-- . . . . . . . . . . . . . . . . . (5. 9) 

1 1H(n)l 2 

For the building model with a tuned mass damper, the equations of 

translational motion of the system are 

*" *' * * m
1
y

1 
+ c

1
y

1 
+ k

1
y

1 
- c

2
z- k

2
z- F

1
(t) 

} ......... (5.10) 
m z + c z + k z - -m y 

2 2 2 2 1 

where z(t) is the relative displacement of the damper with respect to the 

building top cover, i.e., z(t) = y2 (t) - y1(t); y2 is the absolute displacement of 

the damper; m 2 , c 2 and k2 are the mass, damping and stiffness of the 

damper. 

It is noted that Eq. 5.10 is, in fact, the motion equation of the 

equivalent two degree of freedom system as mentioned in the Introduction 

of this Chapter. Through wind tunnel tests it is now possible to use 

simulated wind loads, as described in Eq. 5.9, instead of white noise 

excitation. By means of random vibration theory, the power spectral density 
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functions of the building top displacement response, y 1 , and the relative 

displacement response, z, of the damper can be given by 

SF (n)IHY F (n)l2 
Sc ( n) - --'---"-'--'---

Y1 (k*)2 
................. (5.11) 

1 

SF (n)IHzF (n)l 2 
S c ( n) - ---':...J...----':.:....1-­

z ................. (5.12) 
(k*)2 

1 

where the mechanical admittance functions 

(X2 - A2)2 + 4A2X2i2 
2 

I H (n) 1 2 - ---------=-
y1F1 a2 + b2 

............. (5.13) 

h4 IHzF (n) 12 - __ ..:.:_ __ _ ................. (5.14) 
1 a2 + b2 

and in which 

a - h4 - h2(1 + x2 + ~x2 + 4ii x) + x2 
2 

b- 2A[i x<1 - h2 - ~h2) + i(x2 - A2) 1 
2 

A- _n_ 
n 

0 

n 
2 

X--­
n 

0 

i 
2 

1 
n -- / k /m 

2 2;r 2 2 

c 
2 

2/ m k 
2 2 

..... (5.15) 

Substituting Eq. 5.9 into Eqs. 5.11 and 5.12, one can obtain 

c 
S (n) -

y1 

c 
S (n) -z 

IH F (n)l 2 

Y S (n) 
1H(n)l 2 y 1 

.................. (5.16) 

IH F (n)l 2 

z S (n) 

1H(n)1 2 Y1 

.................. (5.17) 

Note that S~ 1 (n) is the power spectral density of the top displacement of 
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the building model with a damper while Sy 1 (n) is the same term without a 

damper. 

The corresponding standard deviations are 

c ~ c i u - [J S (n)dn] 
y 1 ° y 1 

c ~ c i u - [J S (n)dn] z 0 z l ................. (5.18) 

The normalised standard deviation responses are defined as 

••••••••••• 0 0 • 0 0 (5.19) 

where uy
1 

is the standard deviation of top dispacement of the building 

model without a damper. 

5.2.2 Torsional vibration 

The equation of torsional vibration of the building model without a 

damper, as shown in Fig. 4.4, is 

* .. * . * * m 8 + c 8 + k 8 - T (t) 
t11 t11 t11 1 

.(5o20) 

where m~,. ct,, ki,. T~. and 8 1 are the generalised mass moment of inertia, 

damping, torsional stiffness, torque and twist angle, respectively. 

It is obvious that Eq. 5.20 is the same as Eqo5o6 if the parameters in Eq. 
5.6 are properly interpreted by using the notation in Eq. 5.20. Furthermore, 

Eq. 5.10 can also be applied to the torsional vibration of the building-TMD 

system if the parameters in Eq. 5.10 are interpreted as those notations related 

- 112 -



to torsional vibration. As a results the above derived equations for 

alongwind (crosswind) vibration can be applied to torsional vibration without 
any difficulties. The normalised standard deviation responses of the torsional 

vibration of the building-TMD system are 

[/: S~ (n)dn]i 

[!'"' s. (n)dn]i 
0 • 1 

................ (5.21) 

In the semi-analytical method, Eqs. 5.16, 5.17, 5.19 and 5.21 are basic 

equations for TMD parametric studies of translational and torsional 
vibrations. By using measured wind response spectra of the plain buliding 

(without any damper) tested in a wind tunnel, parametric studies of a TMD 

specially for the tested building can be performed without conducting a series 

of wind tunnel tests of the building with different TMDs. The experimental 

verification of the semi-analytical method is presented in the next section 
before extensive parametric studies of the TMD are conducted. 

5.3 Experimental Verification of the Method 

Through the plain building model (i.e., without a damper) calibration 

and wind tunnel test, one can obtain the power spectral density function, 

Sy 1 (n) or s 9 ,(n), of the top displacement (or twist angular displacement) of 
the plain model as well as the relevant structural parameters of the plain 

model. One can also obtain the damper parameters by the calibration of 

the damper. Therefore, the normalised standard deviation responses of the 

building model with TMDs can be calculated by use of Eq. 5.19 or Eq. 5.21. 

On the other hand, wind tunnel tests of the building model with the TMDs 

in place can provide the experimental results for the normalised standard 

deviation responses of the building model with the TMDs. A comparison 

between the semi- analytical and experimental results can be made. For 
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the two rectangular building models studied in Chapter 3 and Chapter 4, 

respectively, the comparison of results are summarised in the following. 

5.3.1 Alongwind vibration 

Table 5.1 shows the comparison between semi-analytical and 
experimental results in alongwind direction. The semi-analytical results 

were in agreement with the experimental results for different reduced 

velocities and different angles of wind incidence. The maximum relative 
error was 9%. The comparison with the results based on white noise 

excitation is given in section 5.5. 

5.3.2 Crosswind vibration 

The first two 

crosswind direction 

different angles of 

columns of Table 5.2 show that the comparison in 

is also satisfactory for different reduced velocities and 

wind incidence when the reduced wind 

below the critical reduced velocity, which is 10 in the 

velocities are 

corresponding 

experiment. Close to the critical reduced velocity, displacement 
dependent lock-in excitation was found to be significant for the building 

model in a suburban turbulent boundary layer flow, as discussed in Chapter 
3. As a result, there are large differences between the semi-analytical and 

experimental results, which can be seen from the last column of Table 5.2. 

This difference indicates that the linear random wake excitation process 

cannot adequately account for the crosswind responses, and the derived 

linear random vibration equations also cannot be used to conduct the TMD 

parametric studies when displacement dependent lock-in excitation is 

significant. In this case, a nonlinear lock-in force model is needed to 

achieve a satisfactory comparison between the semi-analytical and 

experimental results. However, it is difficult to present such a nonlinear 

model for the building-TMD system at this stage. 

5.3.3 Torsional vibration 

For the torsional vibration, Table 5.3 shows that the semi -analytical 

results are in good agreement with the experimental results for different 
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TABLE 5.1 COMPARISON BETWEEN SEMI-ANALYTICAL, 

THEORETICAL AND EXPERIMENTAL RESULTS 

(ALONGWIND) 

Type Reduced Reduced Reduced 
c 

(f I u Velocity Velocity Velocity 
Xl Xl 9 - 13 - 6 -

~ ~X} ~X} B} 
Experimental 0. 774 0.860 0.796 

TMD 1 Analytical 0.746 0.786 0.862 

White Noise 0.515 0.515 0.515 

Experimental 0.759 0.809 0.854 

TMD 2 Analytical 0.739 0. 772 0.846 

White Noise 0.522 0.522 0.522 

Experimental 0.692 0.703 0.718 

TMD 3 Analytical 0.699 0.717 0.744 

White Noise 0.481 0.481 0.481 
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TABLE 5.2 COMPARISON BETWEEN SEMI-ANALYTICAL, 

THEORETICAL AND EXPERIMENTAL RESULTS 

{CROSSWIND) 

Type Reduced Reduced Reduced 
c Velocity Velocity Velocity u I U 
Y' Y' - 6 - 9 - 10 

~ '-Q} ~} '-Q} 
Experimental 0.774 0.722 0.333 

TMD 1 Analytical 0.771 0.801 0.754 

White Noise 0.515 0.515 0.515 

Experimental 0.726 0.733 0.289 

TMD 2 Analytical 0.758 0.807 0.665 

White Noise 0.522 0.522 0.522 

Experimental 0.704 0.742 0.230 

TMD 3 Analytical 0.696 0.799 0.414 

White Noise 0.481 0.481 0.481 
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TABLE 5.3 COMPARISON BETWEEN SEMI-ANALYTICAL, 
THEORETICAL AND EXPERIMENTAL RESULTS 

(TORSION) 

~ Experimental 
e 

Reduced 

~} Velocity 
- 2 

Reduced 

~} Velocity 
- 4 

Reduced 
Velocity ~} - 4 

Reduced 
Velocity 

~} - 8 

Reduced 
Velocity i{E]} 
- 4 

Reduced 
Velocity i{E]} - 8 

Note: + Geometric Centre 

o Elastic Centre 

0.675 

0.756 

0.737 

0.585 

0.787 

0.693 
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Analytical 

0. 722 

0.725 

0.736 

0.567 

0.769 

0.739 

White 
Noise 

0.565 

0.565 

0.565 

0.565 

0.565 

0.565 



reduced velocities and different wind incidence. The maximum relative 

error was only 7%. The agreement also indicated that the torsional 

excitation due to torsional motion of the building is not significant in the 
reduced wind velocity range considered in this study. However, torsional 

excitation dependent on torsional motion may be significant at higher 

reduced wind velocities than the studied range. 

Generally speaking, for alongwind turbulence excitation, crosswind wake 

excitation and torsional excitation, the proposed approach is quite satisfactory 
if the system is linear and the mechanical admittance function as determined 

from measured values of frequency and damping is not changed 

aerodynamically. 

5.4 TMD Parametric Studies with Semi-Analytical Method 

5.4.1 Estimate of TMD parameters 

The comparison between the semi-analytical and experimental results 

has shown that the proposed approach is quite satisfactory. Therefore, one 

can now conduct parametric studies of a TMD with the measured response 

spectra of the plain buildings and without performing a series of wind 
tunnel tests of the building with different TMDs. 

The first step of parametric studies of a TMD is to decide which 

alongwind, crosswind or torsional response spectra of the corresponding plain 

building are selected as input spectra in Eqs. 5.16 and 5.17. This selection is 

usually determined by the most unfavourable orientations of the plain 

building responses for different design wind velocities. In this study, one 
alongwind response spectrum, for incident wind normal to the narrow face of 

the CARRC model and at a reduced velocity of 9, was selected as input 

spectrum in alongwind direction. The crosswind response spectrum was for 

incident wind normal to the wide face of the model and at a reduced 
velocity of 6. Two twist angle response spectra of the plain building model 

were selected as torsional input spectra: one for incident wind normal to the 

wide face of the model and at a reduced wind velocity of 4; another for 
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incident wind normal to the narrow face and at a reduced velocity of 8. 

The second step in parametric studies of a TMD is to run a computer 

program which is structured according to the basic theory. During running 

of the program, the structural parameters of the plain building are kept 
unchanged, and only the tuning frequency x. mass ratio p. (or mass moment 

ratio of inertia) and damper damping r 2 are changed. 

Fig. 5.2 shows the importance of tuning, and the effect of mass ratio p. 

and damper damping r 2 variations on the alongwind and crosswind response 
ratios, while Fig. 5.3 shows the same evidence for torsional vibration 

control. Figs. 5.4 and 5.5 show, for a tuning ratio of 1.0, how the response 

ratio and the damper displacement ratio in alongwind and crosswind 
directions are affected by damper damping r 2 • The same investigation was 
carried out for the torsional excitation and the results are shown in Figs. 5.6 

and 5.7. From these diagrams, it was found that the tuned mass damper 

resulted in slightly different motion reductions for both alongwind and 

crosswind excitations, but for different torsional excitation spectra the tuned 
mass damper has a different effectiveness. The TMD system was more 

effective in reducing the torsional vibration with the wind incidence normal 
to the narrow face of the building model than that with the wind incidence 

normal to the wide face of the model. It is also evident from these 

diagrams that, for a given mass ratio, there is one tuning ratio and one 

damping value which lead to maximum motion reduction. 

In the semi-analytical method, the contour of the effective damping, as 

discussed in the Introduction of this Chapter, can be replaced by the contour 
of the building response ratio. Figs. 5.8 and 5.9 show the contours of the 

building torsional response ratio and the relative damper motion ratio for a 

range of frequency ratio and damper damping and for a mass moment ratio 

of inertia of 0.04. The input twist angle response spectrum is for wind 

incidence normal to the wide face of the plain building and at a reduced 

wind velocity of 4. From these figures, it is seen that the minimum value 

of the building twist angle response ratio was around 0.63 for the mass 

moment ratio of inertia of 0.04. The corresponding relative damper 

movement was around 2.5 time the dynamic twist angle response of the 

building. It is interesting to note that when the damper damping ratio r 2 

- 119 -



1.0 
b 

>. 

..... 
0.9 

0 >. 
b 

0 
0.8 ..... 

+> 
cd 
~ 

Cl) 

0.7 rll 
~ 
0 
p.. 
rll 
Cl) 0.6 ~ 

tlO 
1=1 

IHHHHl Crosswind { I' - 0.02, r 1 - o.oa~ ...... 
"t1 0.5 CHHHH> Alongwi.nd I' - 0.02, r 1 - o.o8 ....... ...... 

I' - 0.05, r l - 0.12 ::s ...........,.. Crosswind 
IXl 

0.4 
0.6 0 .8 1.0 1.2 

TMD Tuning X - n I n 
2 0 

c 
FIG. 5.2 TMD PARAMETER STUDY: uy, I versus 

<:> 
b 

..... 

0<:> 
b 

0 ...... 
+> 
aj 
~ 

Cl) 
rll 
~ 
0 
p.. 
rll 
Cl) 

~ 

Q) ....... 
tlO 
;:I 
< 
+> 
rll 

~ 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 
0 .6 

~Wide Face ~I' -o.o2, r 1 -o.oa1 
IHHHHl Narrow Face I' - 0.02, r 2 - 0.08 

-.,,...........,.Narrow Face I' - 0.04, r 2 - 0.12 

0.8 1.0 1.2 

TMD Tuning X - n I n 
2 0 

1.4 

X 

1.4 

c 
FIG. 5.3 TMD PARAMETER STUDY: u Ill I u 8 , versus X 

- 120 -



1.0 

b» 

.... 0.9 ...._ Crosswind { I' - 0.02, 
u » ~ Alongwind I' - 0.02, b ......,. Crosswind I' - 0.05, 

0 
'" 0.8 +' 

"' ~ 
Q) 

"' !:: 0.7 0 
p., 

"' Q) 

~ 

~ 0.6 

;a 
:;:j 
;:1 
~ 0.5 

0.00 0.04 0.08 0.12 

TYD Damping Ratio t 
2 

FIG. 5.4 TMD PARAMETER STUDY: 

u » 
b 

.... 
UbN 

0 
'" iii 
~ 

Q) ., 
~ 
0 
p., ., 
Q) 

P:: 
k 
Q) 

i 
0 

8 

7 

6 

5 

4 

3 

2 

1 
0.00 

IHHHHI Crosswind { I' - 0.02, 
......, Alongwind p. - 0.02, 
- Crosswind p. - 0.05, 

0.04 0.08 0.12 

TYD Damping Ratio l' 
2 

FIG. 5.5 TMD PARAMETER STUDY: u~ 1 

- 121 -

1.0~ x-
x- 1.0 
x- 1.0 

0.18 0.20 

versus 

X- l.OJ X- 1.0 
X- 1.0 

r 
2 

0.16 0.20 

c 
0' 

Y• 
versus r 

2 



- 1.0 ... 
b 

ub"' 

0 
:0 
Ill 

P:: 
Ql 

§ 
p. 

"' Ql 
P:: 

0.8 

0.6 

........., Wide face ( P. - 0.02, X - 1.0) 

........, Narrow Face ( P. - 0.02, X - 1.6l 

...... Narrow Face (I' - 0.04, x - 1.0 

0.4 L.._ __ __._ ___ ..J..._ __ __, ___ ...J.... __ __, 

0.00 0.05 0.10 0.15 0.20 0.25 

TMD Damping Ratio t 
2 

c 
FIG. 5.6 TMD PARAMETER STUDY: u 9 , I u 9 , versus 

u ... 
b 

.... 
0 

U N 
b 

0 
·~ .... 
Ill 

P:: 
Ql 

"' d 
0 
p. 

"' Ql 
P:: 
... 
Ql 
p. 

a 
Ill 

t=l 

6 

7 

6 

5 

4 

3 

2 

1 
0.00 

........., Wide face ( P. - 0.02, X - 1.0) 

......., Narrow Face ( P. - 0.02, X - 1.6l 

......... Narrow Face ( p. - 0.04, x - 1.0 

0.05 0.10 0.15 

TMD Damping Ratio t 
2 

0.20 0.25 

r 
2 

FIG. 5.7 TMD PARAMETER STUDY: u~ 1 u~ 1 versus r 

- 122 -

2 



'"""' ~ 
'-' 

N 
JJI 
0 ·--"' p:: 
00 = ·-ff 
"' 0 
0 

~ 

40 

35 

30 

25 

20 

15 

10 

5 

0 
0.8 

Mass Moment Ratio of Inertia 1-l. = 4% 
Reduced Velocity= 4 

v = 41.!..1 0.67 
- + 0 

0.65 

0.63 

0.9 1.0 1.1 
Frequency Ratio X 

1.2 

c 
FIG. 5.8 ESTIMATE OF BUll.DING RESPONSE RATIO u0 I u0 1 1 

- 123 -



5 

0 
0.8 

~4.0~ 

0.9 1.0 1.1 1.2 
Frequency Ratio X 

FIG. 5.9 ESTIMATE OF DAMPER RELATIVE MOTION u~8/ u8 c 
1 

- 124 -



was larger than 10% the minimum building response can be attained over a 
relative wide range of values of frequency ratio. However, this case is not 

true for smaller mass moment ratio of inertia. 

5.4.2 Selection of optimum TMD parameters 

An optimisation parametric study was conducted by numerical 

computation to determine TMD tuning and damping required to produce the 

smallest building dynamic response for each of a number of mass (or mass 
moment of inertia) ratios. Hooke-Jeeves numerical computation optimum 

method (Murray, 1972) was used in the present computer program. 

Figs. 5.10 and 5.11 show that optimum tuning ratio decreases with 

increasing mass ratio. Under torsional excitations the decreasing tendency is 
quite different for the wind incidence normal to the narrow face and the 

wide face of the building model. This difference may cause some problems 

when global optimum parameters are expected. Figs. 5.12 and 5.13 show 
that optimum damper damping increases as mass ratio increases. Figs. 5.14 

and 5.15 show how optimum building response is affected by mass ratio and 

Figs. 5.16 and 5.17 show the variation of mass damper displacement (twist 
angular displacement) ratio with mass ratio. It is clear from Figs. 5.14 to 

5.17 that increase in the mass ratio (or mass moment ratio of inertia) 

produces smaller response reduction when the mass ratio is larger than 4 per 

cent. It is also obvious that there is a limit 

for a given tall building. 
to the motion reduction 

From these diagrams, a designer can determine whether there is a 

passive tuned mass damper which can be practically used to obtain the 

required building motion reduction. If it is possible, the designer can then 

choose the optimum design parameters of the tuned mass damper system 

according to these diagrams. That is first to decide the required mass ratio 

or mass moment ratio of inertia according to the required building motion 

reduction from the diagrams of optimum building response ratio versus mass 

ratio, or according to the restricted damper relative displacement from the 

corresponding diagram. By using the chosen mass ratio, the optimum 

damper damping and frequency tuning of the studied building-TMD system 
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then can be easily found in the selection diagrams of the TMD optimum 

parameters. Sometimes, some compromise has to be made and selection of 
TMD optimum parameters has to be given up because of some practical 
constraints such as a space for the TMD. In this situation, contours of 

building response ratio and relative damper movement, as shown in Figs. 5.8 

and 5.9, can be used. 

5.5 Results Based on White Noise Excitation 

5.5.1 Comparison with experimental results 

The theoretical results of the building responses by using white noise 

excitation were compared with the corresponding experimental results 

obtained in Chapters 3 and 4. By using the same physical dimensions of the 
building model and three tuned mass damper models as listed in Table 3.3, 

it was found that the theoretical results of the building response ratios, 

ui,lux 1 or uy,luy,. were 0.515, 0.522 and 0.481 corresponding to TMD1, 
TMD2 and TMD3, respectively, for white noise excitation. For the 

torsional vibration of the building tested in Chapter 4, the torsional response 

ratio, o'9 1Ju8 , was 0.565 for white niose excitation. Comparing these results 

with the semi-analytical and experimental results, which are shown in 

Tables 5.1 to 5.3, it is evident that the tuned mass damper system is usually 

less efficient for alongwind turbulence, crosswind wake and torsional 

excitations than for white noise excitation. However, the tuned mass 

damper system is more efficient for lock-in excitation than for white noise 
excitation. It is also seen that the experimental result of the building 

torsional vibration with wind incidence normal to the narrow face and at a 

reduced velocity of 8 was nearly the same as the theoretical result by using 
white noise excitation. 

5.5.2 Comparison with semi-analytical results 

Comparison of the semi-analytical results with the results obtained using 

white noise excitation was made for the optimum parametric studies. As 

shown in Figs. 5.10 to 5.17, it can be seen that the changes of the optimum 
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TMD tuning x. TMD damping ratio r 2 , building response ratios and damper 

response ratios with mass ratio p. (mass moment ratio of inertia)are the same 

for both the actual wind excitations and white noise excitation. However, the 

optimum values of these quantities, except for the building torsional 

vibration with wind incidence normal to the narrow face and at a reduced 

velocity of 8, are quite different. Once again the tuned mass damper 

systems are less efficient for alongwind turbulence, crosswind wake 

excitation and sometimes torsional excitation than for white noise excitation. 

It is believed that the relative locations of the peaks in the wind excitation 

spectra to the natural frequencies of the building-TMD system and the 

values of the spectral peak are two important factors which cause the 

difference between the theoretical and experimental results and affect the 

effectiveness of the tuned mass damper. 

5.5.3 Displacement and acceleration responses 

In the present design of tall buildings, TMD effects are usually called 

upon for serviceability purposes only (ASCE State-of-the art report, 1987). 

The serviceability of a building is mainly affected by excessive accelerations. 

experienced at the top floors in wind storms which may cause discomfort to 

the building occupants. Therefore, the parametric studies of building-TMD 

systems should be based on building acceleration (or twist angular 

acceleration) responses rather than building displacement (or twist angular 

displacement) responses. However, results of most parametric studies of 

TMDs are presented directly or indirectly by using building displacement 

response ratios. For white noise excitation, the building acceleration 

spectrum (2,n) 4Sy 1(n) can be replaced by (2,n 0)4Sy 1(n) and as a result the 

acceleration response ratio is nearly the same as the corresponding displacement 

response ratio. In the semi-analytical method, such a viewpoint is 

examined. Figs. 5.18 to 5.21 show the optimum response ratio of the 

building twist angular acceleration and the corresponding optimum frequency 

tuning, optimum damper damping ratio and damper relative twist angular 

acceleration. They were obtained in terms of a torsional twist angular 

displacement response spectrum with wind incidence normal to the wide face 

of the building and at a reduced velocity of 4. The same quantities which 

are related to white noise excitation are also ploted in the same figures. It 
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is found that, for white noise excitation, the acceleration response ratios of 

both the building and the damper are nearly the same as the displacement 

response ratios. However, there were some differences of both the 

optimum frequency tuning and damper damping ratios. For the semi­
analytical method, the errors caused by the displacement response ratio 
instead of the acceleration response ratio were slightly larger than those for 

white noise excitation, but the optimum damper damping ratios were quite 

different. It seems to be reasonable to use acceleration responses in 

parametric studies of TMDs. 

5.6 Discussions 

In the design of tall buildings, parametric studies of TMDs by using the 

proposed semi-analytical method usually follow the wind tunnel tests. Once 

the acceleration levels of the tall building in most unfavorable orientations 

are found to be beyond discomfort threshold and a passive TMD is decided 

to be used to reduce the excessive acceleration levels, the corresponding 

building displacement (twist angular displacement) response signals should be 

recorded and processed to obtain the response specrta. The measured 

response spectra, building generalised mass (or mass moment of inertia) and 
damping ratio t, are then input into a computer program designed for 

TMD parametric studies by using the semi-analytical method to obtain 

selection diagrams or contours of the TMD optimum parameters. From 

these diagrams or contours, and considering other practical limitations, a 

designer or consultant can finally determine the TMD parameters of the tall 
building. 

The proposed semi-analytical method can also be used in force balance 
techniques. In the force balance technique, the measured excitation spectra 

can be used to replace the response spectra and the computer program 

modified slightly. If a TMD is required to reduce higher mode vibrations 

of the tall building, a multi-degree-of-freedom aeroelastic model in wind 

tunnel tests might be needed to obtain building response signals and to 

conduct the TMD parametric studies in the higher mode vibrations. 
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For a very slender tall building which endures motion-dependant 

lock-in excitation, a linear sinusoidal vibration equation cannot provide a 

satisfactory results and a non-linear random vibration equation of the 

building-TMD motion is needed to obtain accurate prediction of the 

building motion reduction. This represents a much more difficult problem 

which requires further study. 

5.1 Conclusions 

A semi-analytical method of performing parametric studies of TMDs, 

which combines experimemtal and analytical techniques, was proposed in this 

thesis. The semi-analytical method overcomes the uncertainties of the 

comparison between theoretical and experimental results of the coupled 

building-TMD system, and provides a reliable estimate of the reduction of 

building motion and optimum design parameters of the TMD without having 

to perform a series of wind tunnel tests of the building with different 

TMDs. This technique is based on modal analysis, random vibration theory, 

and direct measurement in the wind tunnel of wind induced alongwind, 

crosswind or torsional response (or excitation) spectra of the plain building 

without the damper. The effects of wind intensity and direction, 

surrounding environment, building size, shape, mass, stiffness, and natural 

damping on the response reduction of the building can readily be 

investigated. 

The results obtained by this semi-analytical technique were in good 

agreement with the corresponding experimental results. When both sets of 

results were compared with those using white noise excitation as wind 

excitation, it was found that the tuned mass damper system was less efficient 

for alongwind turbulence, crosswind wake and torsional excitations acting on 

tall buildings than for white noise excitation, but it was more efficient for 

lock-in excitation than for white noise excitation. This indicated that the 

effectiveness of TMDs is usually overestimated in practical situations if white 

noise excitation is used as actual wind excitations and the building is well 

out of lock-in excitation range. It is believed that the locations of the 

peaks in the wind excitation spectra relative to the natural frequencies of 
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the building-TMD system and the maginitude of the spectral peaks are the two 

important factors which cause the difference between the theoretical and 

experimental results and affect the effectiveness of the tuned mass damper. 

The practical application procedure of the semi-analytical method has been 

demonstrated by means of a series of selection diagrams or contours of 

optimum TMD parameters. Some possible extension of this technique to 

other types of wind tunnel tests was also mentioned. 
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Chapter 6 

MODE SHAPE CORRECfiONS FOR WIND TUNNEL TESTS 
OF TALL BUilDINGS 

6.1 Introduction 

Aeroelastic model tests are commonly used to provide information on 

the overall wind-induced mean and dynamic loads and responses of a tall 
building. A two-degree-of-freedom model as described in Chapter 3, 

which simulates the building response in its two orthogonal fundamental 

sway modes of vibration, is effective for tall buildings of compact cross­

section where the alongwind and crosswind responses are dominant. 

Another aeroelastic model for pure fundamental torsion vibration, as 

discussed in Chapter 4, is also a convenient and efficient way to explore the 
anatomy of torsional excitation and predict the torsional response of 

wind-induced tall buildings when the coupled effects between translational 

and torsional vibrations of tall buildings can be ignored. 

However, if the prototype fundamental mode shapes of translational 

vibration depart significantly from a straight line variation, some adjustments 
to the results obtained from aeroelastic tests of translational vibration 

become necessary. Similarly significant corrections are needed to adjust the 

fundamental torsional responses because the aeroelastic model of torsional 

vibration type is maintained at a constant magnitude mode shape. The same 

problem exists in the force balance technique although there are some 

differences between the two testing techniques in the principle and method 

of estimating building responses. 

Based on the co-spectrum of the longitudinal turbulence component of 

the wind velocity, which can be expressed analytically (e.g. Davenport, 
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1961}, Vickery (1971, 1972) derived expressions for estimating the errors in 
calculating the response of buildings in the alongwind direction. A similar 

correction cannot be developed for the crosswind or lift direction as there 

are no reliable analytical models for the wind-induced lift forces. Saunders 

and Melbourne (1977}, Kwok (1982}, Kareem (1984}, Holmes (1987} and 
Milford (1987} examined two limiting cases of mode shape correction factors 
in alongwind and crosswind directions for low and high correlations of wind 

forces with height. However, the additional assumptions, that the spectrum 

of the force per unit height was invariant with the height of buildings for 
low correlation of wind forces and the spectrum was a constant for high 

correlation, may cause the results to deviate from the actual limiting values 
of mode shape correction factors, especially for torsional correction 

factors. 

Referring to the force balance technique, Tschanz and Davenport (1983) 

suggested a method by which base-shear measurements may be used to 

obtain approximate torsional mode shape correction. Tallin and Ellingwood 

(1985} used pressure measurement data to find the generalised torsional load 

spectrum and, consequently, they found that the RMS modal torque for a 

linear mode shape should be 57% of the measured base torque and the RMS 
modal torque for a cantilever mode shape should be 51% of the measured 

torque by the force balance technique. Vickery et a!. (1985) estimated 

corrections to both top accelerations and base moments, primarily for sway 

components, from both analytical and experimental aspects. Boggs and 

Peterka (1989) further discussed mode shape corrections in the force balance 
technique. They suggested two adjustment factors: one applicable to 

displacements and accelerations; and a second applicable to equivalent static 

loads. 

In this Chapter, the re-estimation of mode shape corrections is based 

on the aeroelastic testing technique and actual generalised mass (or mass 

moment of inertia), but the analytical procedure can also be applied to the 

force balance technique and the case of nominal generalised mass (or mass 
moment of inertia). Sources of error is identified for the aeroelastic testing 

technique. Two limiting values of error, for low and high correlations of 

wind loads with height, are discussed, based on a reasonable assumption of 
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the co-spectra of alongwind, crosswind and torsional excitations. The 

general expressions for mode shape correction factors are suggested and 

compared with previous results in the literature. 

6.2 Identification of Sources of Error 

In the following discussion, equations are generally developed for sway 

modes using F as a force and m as a mass; the equations will normally 

apply also to torsion if these are interpreted as torque T and mass moment 

of inertia mt, respectively. Some equations which appeared in Chapter 
5 are repeated in this Chapter for completeness and easy reference. The 
coupled effects between three fundamental modes of vibration are not 

considered in this Chapter. 

The fundamental mode of vibration of a prototype tall building is 

governed by the equation 

*"" ~~:· * * m ~ + c ~ + k ~ - F (t) . . . . (6. 1) 

where m*, c*, k*, F* and ~ are the prototype building generalised mass, 

damping, stiffness, load and response, respectively. They are functions of 

the building's mass distribution m, height h, mode shape ell, natural 

frequency n0 , wind-induced load F and critical damping ratio i. These 

parameters take the following form: 

m* - h I m(z)cll 2 (z) dz 
0 

c*- 2! / k*m* 

F*(t) - /hF(z,t)cll(z)dz 
0 

. . . . . . . . . . . . . . . (6 .2) 

The displacement of the building, y(z,t), is related to the generalised 

response ~ by 
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y(z,t) - ~(t)~(z) . . . . . . . . . (6. 3) 

In particular, if ~(z) is normalised using ~(h) = 1, the motion of the top 

displacement, y 1 , of the building should be 

*"" *" * * m y
1 

+ c y
1 

+ k y
1 

- F (t) . . . . . . . . . . . . . . . . . . (6 .4) 

In comparison, the generalised equation of motion of the building model 

shown in Fig. 3.5, which has a linear mode shape, is 

*"" *" * * m y + c y + k y - F (t) 
11 11 11 1 

. . . . . . . . . . . . . . . . . . (6. 5) 

where 

m*-
1 

h.,. 2 I m(z) (z/h) dz 
0 

k* - (2 n ) 2m* 
1 ,. D 1 

c* - 2t ./ k*m* 
1 1 1 

F*(t) - /hf(z,t)(z/h)dz 
1 0 

. . . . . . . . . . . . . . . (6 .6) 

Comparing Eqs. 6.5 and 6.6 with Eqs. 6.4 and 6.2, and providing that 

the generalised mass m ~ , natural frequency n 0 , and critical damping ratio i 

in Eqs. 6.5 and 6.6 are modelled to be actual building parameters in Eqs. 
6.2 and 6.4 according to the modelling requirements, the error caused by the 

aeroelastic modelling technique only occurs in the generalised wind 

excitation. 

The spectrum of the generalised wind excitation, F*(t), in Eqs. 6.2 and 

6.4 can be written as 

n) ~(z )~(z ) dz dz 
1 2 1 2 

. . . . . . . . . (6. 7) 
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while the corresponding spectrum in Eqs. 6.5 and 6.6 is 

h h SF (n) - I I C (z , z , n)(z /h)(z /h)dz dz 
1 0001 2 1 2 12 

0 0 (6 0 8) 

in which C 0(z,. z2 , n) is co-spectrum of fluctuating alongwind, crosswind, or 
torsional excitation. 

Clearly, the general equation to correct the generalised alongwind and 
crosswind excitation spectrum for a linear mode shape to that for an 

arbitrary mode shape is 

'12 (n) -
n)~(z )~(z )dz dz 

1 2 1 2 
0 0 0 0 (6 0 9) 

n)(z /h)(z /h)dz dz 
1 2 1 2 

For the type of aeroelastic model of torsional vibration shown in Fig. 

4.4, the general equation to correct the generalised torsional excitation 

spectrum for a constant mode shape to that for an arbitrary mode shape is 

'12(n) -
t 

h h I I C (z , z , n)~(z )~(z )dz dz 
000 1 2 1 2 1 2 

h h I I C (z , z , n)dz dz 
00012 12 

0 0 0 0 0 (6.10) 

The quantity 17(n) or 171(n) is referred to as the mode shape correction factor 
below. 

6.3 Two Limits to Mode Shape Correction Factor 

6.3.1 Assumption of co-spectrum 

A precise estimate of the correction factor, 17(n) or 'lt(n), is difficult as 
it requires information on the co-spectrum of the time-varying component 

of the wind load per unit height at various heights along the building and 

the fundamental vibration modes of the building. However, two limiting 

cases of the mode shape correction factor for low and high correlation of 
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the wind loads can be examined. If the assumption for the co-spectrum of 

wind loads is not only reasonable but also simple, the two limiting values of 

the correction factor will be independent of frequency variable, n, and will 

be reliable enough to estimate building response errors in the aeroelastic 

modelling technique. 

Consider the following form for the co-spectrum 

C (z , z , n) - W(z )W(z )Sf(n)R(z - z , n) 
012 1 2 12 

0 0 0 0 0 0 (6.11) 

where W(z) is the amplitude of the fluctuating wind force or torque at 

height z; Sr(n) is the unit fluctuating wind velocity spectrum related to the 

fluctuating wind force or torque, and R(z ,-z 2 , n) is a cross-correleration 

function which depends on the separation distance 1 z 1-z 2 1 • This type of 

co-spectrum can be used to describe alongwind excitation quite well. For 

crosswind and torsional excitations, it is only an approximate description. 

Amplitude dependent excitations in the crosswind direction such as lock-in 

and galloping are not considered here. 

The amplitude of the fluctuating wind force or torque, W(z), is 

considered to be 

z W(z) - W(h)(~)QV (6 .12) 

in which Q is the power law exponent of the mean wind velocity profile; v 

is a constant referring to wind excitation types. v = 1 is probably more 

appropriate for alongwind turbulence excitation because of the existence. of 

the mean wind force in this direction. For crosswind wake excitation and 

torsional excitation, the values of v are not available at this stage from both 

field measurement and wind tunnel test. v = 2, which represents a general 

relationship between wind speed and wind force, is adopted in this study. 

At the same time, a power law with exponent, (3, is taken as the 

general form for actual mode shape, i.e.: 
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(6.13) 

Now, consider two limiting cases of the correction factor for low and 

high correlation levels. 

6.3.2 Low correlation level 

For a low correlation level, the correlation of wind loads falls off 

rapidly with the increasing distance 1 z 1-z 2 1, i.e., assuming 

z - z 
R(z

1
- z

2
, n) - { 

0

1 
1 2 

.............. (6.14) 
z .. z 

1 2 

As a result, substituting Eqs. 6.11 to 6.14 into Eq. 6.9 or 6.10, one 
obtains a limiting value of the correction factor as follows: 

for alongwind responses 

for crosswind responses 

lhW 2 (z)<l> 2 (z)dz 
., _ [-....,..:.o,..----:--]~ [ 4a + 3 1 ]~ 
"'c

1 
h - 4N + 2~> + 

I W
2 
(z)(z/h) 

2 
dz ~ " 

0 

for torsional responses 

f) - [ 
t 1 

h 2 2 I W (z)<l> (z)dz 1 
0 ]2 - [ 
lhW 2 (z)dz 

0 

4a + 1 1 ]~ 
4a + 2(3 + 
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6.3.3 High correlation level 

Another limiting value can be achieved for the high correlation level, 

i.e., assuming 

R(z - z n) • 1 
1 2 ' 

........... (6.18) 

The result for alongwind responses 1s 

/hW(z)<l>(z)dz 
0 '1 - -;:-'----

a2 /hW(z)(z/h)dz 
0 

for crosswind responses: 

for torsional responses : 

a+ 2 
a + {3 + 1 

2a + 2 
2a + {3 + 1 

h 
/

0
W(z)<l>(z)dz 2a + 1 

'1 t 
2 

- -.......,,...---- - -2,.-a,.::.::+=-.;;/3-+::--,..1 
/hW(z)dz 

0 

.............. (6.19) 

............. (6.20) 

.............. (6.21) 

6.4 Characteristics of Mode Shape Correction Factor 

6.4.1 Alongwind correction factor 

The alongwind mode shape correction factors 'la, and '1a 2 are plotted in 
Fig. 6.1 for several typical values of a and 0< 13 < 2. It can be seen that 
all curves pass through a value of unity for 13 equal to unity. Despite the 
difference in the assumption about the cross-correlation function, the 
corresponding two curves for the low and high correlation levels are 
relatively close to each other, especially in the range of practical interest 

from 13 = 0.5 to 2.0. It can also be seen that the effect of terrain 
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conditions on mode shape correction factors is not apparent when 13 > 1. 

6.4.2 Crosswind correction factor 

Variations of the crosswind mode shape correction factors, 'lc 1 and 'lc 2 , 

with "' and (3 are shown in Fig. 6.2. The curves have the same 
characteristics as the alongwind mode shape correction factors. However, 

the terrain parameter "' affects the crosswind correction factors more than 

the alongwind correction factors. With the increase of a, the curves become 

flater. 

6.4.3 Torsional correction factor 

The torsional mode shape correction factors 'lt 1 and 'lt 2 are plotted in 
Fig. 6.3. All curves pass through a value of unity for 13 equal to zero and 

then decrease with increasing (3 values. With the increasing "' values, the 
two limiting values of the correction factors increase towards a value of 

unity. Comparing with the translational correction factors, the torsional 

correction factor is sensitive to the non-uniformities of the sectional wind 
torque with height. 

6.5 Comparison and Discussion 

Firstly, it is noted that the expression of the alongwind correction factor 

for the high correlation level, i.e., Eq. 6.19, is the same as that implied in 
the approximate derivation of gust response factor for alongwind loading by 

Vickery (1972). The expressions of the crosswind and torsional correction 

factors for the high correlation level, i.e., Eqs. 6.20 and 6.21, are the same 

as those suggested by Boggs and Peterka (1989) for both sway modes and 

torsional mode, respectively. They used different approximate derivation for 

the force balance technique. It is also noted that, for "' = 0, the 

expressions of the alongwind correction factors are the same as those of the 

crosswind correction factors and those provided by Holmes (1987). 

Therefore, the present mode shape correction factors seem to be more 
general. 
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Vickery et a!. (1985) carried out wind tunnel measurements of the sway 

mode shape correction for a square-section building in two different terrain 

simulations. Their experimental results showed that the correction factors 

were not sensitive to frequency variable n in a range of reduced frequencies 

of practical interest for tall buildings, which supported the present 

assumption for the co-spectra of the wind loads. Some of their results are 

also plotted on Fig. 6.1, and are seen to agree well with the curves of the 

low correlation level, when (j >1, and with the curves of the high 

correlation level, when (j < 1. Tallin and Ellinwood (1985) used pressure 

measurement data for a particular building model to analyse the torsional 

mode shape correction factor. They found that "generalised torque" 

correction factors should be 0.57 for a linear mode shape and 0.51 for a 

cantilever mode shape. These values are also shown in Fig. 6.3 for a equal 

to 0.15. Unfortunately, the velocity profile exponent was not reported in 

their paper. 

From the above comparison, especially with the experimental results, 

mode shape correction factors should in practice be taken conservatively as 

follows: 

"' + 2 

'· -[ ( "' + (j + 1 

2a + 3 ) i 
2a + 2(j + 1 

for alongwind response; 

2a + 2 
2a+(j+1 

4a + 3 i 
4a + 2(j + 1 ) 

for crosswind responses; 

_ [ 4a + 1 
1 

]i 
~t 4a + 2(j + 

(j <: 1 

............... (6.22) 

(j > 1 

(j <: 1 

............... (6.23) 

(j > 1 

.................... (6.24) 

- 149 -



for torsional responses. 

Referring to the comparison between the experimental data and 

empirical values of the dynamic base torque, which are shown in Fig. 4.11 

of Chapter 4, the error can now be partly explained. For category 2, a = 
0.15, '1t ranges from 0.78 (13 = 0.5) to 0.59 (!3 = 1.5) according to Eq. 6.24. 

The corresponding values in Fig. 4.11 is 0.5 on average. Therefore, the 

error shown in Fig. 4.11 can be adjusted by the correction factor '1t to some 

extent. Further comparison of the described aeroelastic model in Chapter 4 

with the MDOF aeroelastic model should be based on several given building 

models because the mode shape parameter (3 and the mass moment 

distribution of the building are not directly reflected in the empirical 

formulae. 

The relationships between the standard deviations of the top (twist 

angular) displacement and acceleration responses and the generalised 

excitation spectrum can be easily obtained, according to random vibration 

theory. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (6.25) 

and 

1 h • 2 li u - k* [ I 
0 

(2,n) 1 H(n) 1 \- (n) dn 
y, 

0 0 0 0 0 0 0 0 0 0 0 0 0 (6.26) 

which are derived from Eqs. 6.2 and 6.4. 

Similar expressions can be obtained from Eqs. 6.5 and 6.6 for building 

models in the wind tunnel. Because the two limiting values of the mode 

shape correction factors are not dependent on the frequency variable n, it is 

obvious from Eqs. 6.9, 6.10, 6.25 and 6.26 that the correction factors provide 

direct limiting corrections for the top (twist angular) displacement and 

acceleration responses in the present modelling technique. In addition, the 

factors also provide direct limiting corrections for dynamic base torque 

responses, only if the actual mass moment distribution and fundamental 
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mode shape are used in further calculation. Clearly, the squares of the 

factor represent limiting corrections for the generalised excitation spectra. 

It is encouraging to note that the normalised results of parametric 

studies of TMDs, which are discussed in Chapter 5, do not need to be 

corrected for difference in mode shape. This is because the standard 

deviation responses of the building with a TMD were normalised by the 
same responses of the building without a TMD, as shown in Eqs. 5.19 and 

5.21. Furthermore, the two limiting correction factors were not dependent 

on the frequency variable. As a result, the mode shape correction factors 

in both numerator and denominator of Eqs. 5.19 and 5.21 were counteracted. 

6.6. Conclusions 

Sources of error caused by the discrepancy between the building model 

and prototype mode shapes were identified for the aeroelastic modelling 

technique. Based on a reasonable assumption of the co-spectra of wind 

loads, two limiting values of error, for low and high correlations of wind 

loads with height, were discussed. Three mode shape correction factors, for 
alongwind, crosswind and torsional responses respectively, were suggested to 

adjust the experimental response results to the prototype values. The results 

obtained by the proposed expressions were in reasonable agreement with the 

available experimental results. 
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Chapter 7 

ANALYSIS OF AN ACTIVE CONTROL SYSTEM BASED ON 
AEROELASTIC TEST TECHNIQUES 

7.1 Introduction 

The parametric studies of passive tuned mass dampers have shown that 

there is a limit to motion reduction offered by passive TMD for a given tall 
building. If the required motion reduction exceeds this limit, an active 

control system may be needed to provide additional motion reduction. As 

mentioned in Chapter 2, an active control basically depends on the supply of 

external energy to counteract the dynamic response of tall buildings. It 

consists of (1) sensors installed at suitable locations of the building to 
measure either the external excitations or the structural response quantities 

or both, (2) devices to process the measured information and to compute 

the necessary control force based on given control algorithms. There are 

different active control systems according to the control devices and control 

algorithms. Only a suboptimal active mass damper control system suggested 

by Roorda (1975, 1980), Yang and Giannopoulos (1978, 1979a, 1979b), Samali 

et al. (1985) was semi-analytically investigated in this thesis by means of the 

wind excitation spectra measured with the tested models described in this 
thesis. 

A suboptimal active mass damper control system mainly consists of 

electrohydraulic servomechanisms which may be attatched to the mass 

damper along the x or y directions (see Fig. 7.1). This active mass damper 

control system is generally installed on the top floor of the building. If the 

mass and elastic centers of the building are identical and the mass damper is 
also arranged on this center, the active mass damper only reduces alongwind 

or crosswind vibration of the building. If the active mass damper is 
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installed at the side of the top floor of the building and as a result there is 

an offset between the center of the mass damper and the elastic (or mass) 
center of the building, torsional vibration of the building can also be 

suppressed. Sensors are used to measure the top displacement (or velocity 
or acceleration) of the building. Electric voltages, which are proportional to 

the measured building motions, are then transmitted to servovalves. The 
servovalves convert the electrical voltages into hydraulic piston motions. 

Active control forces which are proportional to the movements of the 

hydraulic piston are developed by an auxiliary spring between the mass 
damper and the building. A flow chart of the control system is also shown 

in Fig. 7.1. 

Compared with optimal active control systems, the suboptimal active 
mass damper control system has the following characteristics: (1) Once the 

most beneficial control parameters are determined, the suboptimal active 

control devices work like a passive mass damper. On-line computations and 

associated processing equipments are not needed. As a result, the reliability 
and stabilisation of this suboptimal control system are much better than those 

of optimal active control systems. In the optimal active control system, 

on-line computations for the solution of the Riccatti matrix equation may 

cause serious time delay problem and need a series of processing equipments 
and discrete-time formulations of control algorithms. (2) The theoretical 

results presented by Yang (1982) indicate that for given control parameters, 

the structural response quantities and control forces are not sensitive to small 

variations of structural characteristics, which increases the practical 

advantages of this system. (3) Either from a theoretical or a practical point 
of view, the suboptimal active control systems represent an intermediate link 

from passive control to optimal active control of complex civil engineering 

structures. 

Most investigations of the application of suboptimal active control system 

in reducing wind-induced vibration of tall buildings are, up to date, 

theoretically conducted. It is important to verify theoretical research results 

through experiments in laboratory before full-scale control systems are 

installed on real buildings. The following is a semi-analytical method, 

based on aeroelastic wind tunnel tests, of performing parametric studies of 
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the suboptimal active mass damper control system, which can be used to 

form a theoretical basis of future experiments. 

7.2 Basic Theory 

For an aeroelastic building model with an active mass damper model as 

shown in Fig. 7.2, the equations of motion of the system under alongwind 

or crosswind excitation are 

*·· *· * * m y (t) + c y (t) + k y (t) - c z(t) + k z(t) + F (t) 
11 11 11 2 2 1 - P(t) } 

(7. 1) 

m z(t) + c z(t) + k z(t) - -my (t) + P(t) 
2 2 2 2 1 

where P(t) is the active control force, and the remammg notations are the 

same as those in Eqs. 5.6 and 5.10 of Chapter 5. 

A displacement sensor is considered in this study because only a simpler 

calibration procedure of the aeroelastic model test is required. According to 

the research results presented by Roorda (1975) and Yang (1982), the 

relationship in frequency domain between the active force P(t) and the 

building top displacement y~(t) is 

~ ~a 

P(n) - G(n)y (n) 
1 

. . . . . . . . . . . . . . . . . . . . . . . (7. 2) 

where 

G(n) 
Ktrel\ 2 

I 
Ktre 2 l\ - + 

£2 + )\2 2 + )\2 e 

R 2rn K 
l\- _n_ 1 0 

e - 2rn T - R n 
0 0 0 

in which K is a proportional constant between the top displacement of the 

building model and the output voltage from the strain gauges; Kt is a 

proportional constant between the control force and the movement of the 
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hydraulic piston; R 1 is the collective loop-gain of the electrohydraulic 

servomechanism and l!R0 is the feedback gain of the transducer in the 

servomechanism; e and r are the normalised loop gain and the feedback 

gain, respectively; - represents Fourier transform; i = .;=T. 

Taking the Fourier transforms of Eq. 7.1 and using Eq. 7.2, one obtains 

the power spectral density functions of the building top controlled 

displacement response, fl, and the relative displacement response, za, of the 

damper as follows: 

. . . . . . . . . . . . . . . . . . (7. 3) 

. . . . . . . . . . . . (7 .4) 

where the mechanical admittance functions 

<x> _ ~>)> + 4x>x>i> 
I Ha (n) I 2 - ---------

2=­
y1f a2 + b2 

.............. (7.5) 

1 1 

(X>+g)>+g> 
1 2 I H~f(n) I 2 - ___ __:. __ __::. 

a 2 + b 2 
. . . . . . . . . . . . . . . . . (7. 6) 

1 1 

and in which 

a - )\4 - X2(1 + x> + p.x 2 + 4xii + g ) -1 2 1 

2xxr g (1 
2 2 

- p.) + x>o +g 
1 

- p.g ) 
1 

b1 - 2X[ i x(l - X 2 
2 

- p.A> + g 
1 - p.g1) + i <x>- X2)]- (7.7) 

~2g 
2 

+ x>g (1 
2 

- p.) 

Kt re~ 2 Kt re 2X 
g1 -T 

e> + ~2 
&, -T 

e2 + p 1 1 
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Substituting Eq. 5.9 into Eqs. 7.3 and 7.4, one obtains 

sa (n) -y, 

1Ha (n)1 2 

Y F S (n) 
IH(n)l 2 y, 

1HzF (n) 12 

sa(n) - _-=.:..J...._ __ s (n) 
z IH(n)l 2 y, 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (7 0 8) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (7 0 9) 

Note that S~ 1 (n) is the power spectral density of the top displacement of 
the building mode with an active mass damper while Sy 1(n) is the same term 

without any dampers. Since Sy 1(n) can be obtained through the aeroelastic 
tests of the plain model, a semi-analytical method as conducted in passive 
mass damper parametric studies can be used to select the most beneficial 

control paramters of the suboptimal active mass damper control system. 

This method not only provides a guideline for the corresponding active 

control experiments but also indicates a practical procedure for the active 

control system design if the semi-analytical results are in good agreement 
with the experimental results of the active control system. 

In the same manner as the passive control system analysis, the 
normalised standard deviation responses of the active control system are 

given as follow: 

[1: S~ (n)dn ]~ 

[ /"" S (n)dn ]~ 
0 y 1 

u~ [!: S~(n)dn]~ 

u [!"' S (n)dn]~ 
y, 0 y, 

................. (7.10) 

In the above equations, superscript "a" is used to identify the 

corresponding mechanical admittance functions and power spectral densities 

when an active control system is utilised. 

The suboptimal design of an active mass damper system depends not 
only on the allowable level of the structural responses, but also on the 
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required level of the control force. 

the magnitude of the control force. 

force can be derived from Eq. 7.2. 

Therefore, it is necessary to estimate 

The standard deviation of the control 

oo a ! 
up-(/G(n)S (n)dn] ............... (7.11) 

0 y 1 

The standard deviation of the mode-generalised wind force acting on 

the building, F~ (t), is 

..... (7.12) 

in which the generalised wind force spectrum, SF 1 (n}, can be determined by 

using Eq. 5.9. The normalised standard deviation of the active control force 

is defined as the ratio of the control force standard deviation to the 

generalised wind force standard deviation, i.e., up/ uF 1 • 

For aeroelastic building model for pure torsion as described in Chapter 

4, the suboptimal active mass damper can also provide an active control 

moment, TaCt}, if the damper is arranged at the side of the top floor of the 

building model. The equations of motion of the pure torsional system with 

an active mass damper are the same as Eq. 7.1 if the parameters in Eq. 7.1 are 

properly interpreted by using the torsion notation. Therefore, the above 

derived equations for alongwind (crosswind) vibration can be applied to 

torsional vibration without any difficulties. The normalised standard 

deviation responses of the torsional vibration of the building-active mass 

damper system are 
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................... (7.14) 

7.3 Effectiveness of Active Mass Damper 

7.3.1 Comparison of responses 

Comparison of the top displacement responses of the building WI!S 

conducted between passive and active control. The properties of the 
building model and three mass damper models were the same as those listed in 

Table 3.3 of Chapter 3. Only one crosswind top displacement response 

spectrum of the plain building model, for incident wind normal to the wide 
face of the building model and at a reduced velocity of 6, was selected as 

input spectrum. The parameters of the active control system are: the 

normalised loop gain e = 5; the normalised feedback gain T = 15; the 

normalised proportional constant Ktlk~ = 0.05. The selection of the 
parameters was based on the results of parametric study which is described 

in section 7.4. Table 7.1 shows the comparison results. It is obvious 

that, if electrohydraulic servomechanisms were added to the tested passive 

control systems, the suboptimal active control can further reduce 

considerably both the building top displacement and the damper relative 

displacement. Such a significant reduction can not be achieved by the 

passive mass damper with optimal parameters. It is also noted that, 

although the parameters of the three mass dampers were different, the top 
displacement response reduction levels obtained by the active control system 
were almost the same. This indicates that the effectiveness of the active control 

system was not sensitive to the variation of the mass damper parameters. 

Table 7.2 shows the comparison between passive and active control for 

torsional vibration for the following parameters of the active control system: 

e = 5; T = 15 and Kt8tk~ = 0.05. Four different twist angular response 
spectra of the plain building model were selected as torsional input spectra. 
The properties of the building model and the mass damper model can be 

found in Table 4.1. It is seen that the twist angular responses of the 
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TABLE 7.1 COMPARISON BETWEEN PASSIVE AND ACfiVE 

CONTROL (TRANSLATION) 

Reduced Velocity- 6 TMD1 TMD2 TMD3 
1 - 15; e - 5 

~} Passive Active Passive Active Paas ive Active 

t I u 0.771 0.300 0.758 0.302 0.696 0.306 <T 
y, y, 

t 3.553 0.854 u I u z y, 
2.769 0.756 2.499 0.745 

TABLE 7.2 COMPARISON BETWEEN PASSIVE AND ACfiVE 
CONTROL (TORSION) 

Type Reduced 

Velocity - 4 

~} 
e - 5 
1 - 15 Passive Active 

a 0.725 0.380 ue,' ue, 
a 3.951 0.830 uze 1 ue, 

Note: +Geometric Centre 
o Elastic Centre 

Reduced Reduced Reduced 

Velocity- 4 Velocity - 8 Velocity- 8 

~} ~} i{E]} 

Passive Active Passive Active Passive Active 

0.736 0.385 0.567 0.195 0.739 0.358 

3.889 0.812 3.712 0.732 4.061 0.841 
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building were significantly reduced by the suboptimal active control system. 
It is also noted that the effectiveness of the active control systems depended 

on input spectra of torsional excitation. This phenomenon was similar to the 

passive mass damper control system. 

7 .3.2 Comparison of response spectra 

The response spectrum of a building represents a distribution in the 
frequency domain of the energy absorbed by the building from external 

wind load. The angular displacement response spectra of the studied 

building, for wind incidence normal to the narrow face of the building and 

at a reduced velocity of 8, are shown in Figs. 7.3 and 7.4. For the plain 
building without any control, there was a sharp peak in the response 

spectrum which was located around the natural frequency of the building. 

Such spectral peak is obviously disrupted by adding a passive mass damper 

on the building, as shown in Fig. 7.4. There were two peaks in the 

response spectrum of the passive mass damper system because the mass 
damper-building system is a two-degree-of-freedom system. When the 

suboptimal active mass damper was introduced to the building, Fig. 7.3 

shows that the sharp peak which happened in the plain building was 
completely suppressed and the response spectrum becomes a broad-band 

spectrum. It is interesting to note that the spectral distribution within the 

low frequency range (0 < n < 3) was almost the same for the controlled or 

uncontrolled systems. This indicated that the passive or active control 

system could not affect external wind load when the wind load was 

independent of the building motion. In Figs. 7.3 and 7.4, the same 

parameters as those in the response comparison section were used for both 

passive and active mass dampers. 

Comparison of damper relative angular displacement spectra between 

passive and active control is shown in Fig. 7.5. The peaks in the passive 

mass damper response spectrum were significantly reduced by using the 
active mass damper. As a result, the standard deviation of the relative 

angular displacement response of the active mass damper was much smaller 

than that of the passive mass damper. It is seen that the spectral 

distribution in the low frequency range, as shown in Fig. 7.5, was differnt 
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from the response spectra of the building as shown in Figs. 7.3 and 7.4. 

This is because the wind load does not directly act on the dampers. It is 

also seen from Fig. 7.5 that the spectral amplitude of the response of the 

active mass damper in the low frequency range was larger than that of the 

passive mass damper. The exact cause of this is unknown at this stage. 

However, the contribution of this part of spectral amplitude to the total 
displacement response was quite small. 

7.3.3 Comparison of frequency response functions 

The frequency response functions (i.e., mechanical admittance functions) 

of a building reflect a capacity of transferring external energy to building 
itself, which is determined only by the structural internal properties of the 

building. The frequency response functions of the building with and 
without the damper are shown in Figs. 7.6 and 7.7 for torsional vibration. 

The same properties as before were used for both building and mass 

dampers. Without any dampers, there was a sharp peak in the frequency 

response function of the building angular displacement. This peak was 

located at the natural frequency of the building and the most energy 

absorbed by the building from wind load was attributed to this peak. With 

a passive mass damper, this peak was singnificantly reduced because the 

passive mass damper increased the building capacity of dissipating external 
energy. The active mass damper depends on the supply of the external 

energy to counteract the wind load so that the frequency response function 

was totally different from those with and without a passive mass damper. 

The frequency response function of the active mass damper system 

approched a constant of 1 and therefore there was no resonant peak in the 

corresponding response spectrum. 

7.4 Parametric Studies of Active Mass Damper 

Parametric studies of active mass damper conducted here are based on 

the measured wind response spectra in wind tunnel and the tested models. 

The properties of the building model and the mass damper are kept the 

same as those in Chapters 3 and 4. Therefore, only parameters related to 
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the active control, i.e., Kt, e and r, are considered in conjunction with the 

structural response and the active control force. 

7.4.1 Effect of parameters Kt; and e 

The parameter Kt represents a proportional constant between the control 

force and the movement of the hydraulic piston while e is the normalised 
loop gain. Figs. 7.8 to 7.10 show the variation of the standard deviations of 

the building top displacement, the damper relative displacement and the 

control force, respectively, with Kt and e. Here input spectrum is a 
crosswind spectrum, for wind incidence normal to the wide face of the 

building and at a reduced velocity of 6 as described in Chapter 3. The 
mass damper is TMD 3. The standard deviations are normalised by the 
corresponding standard deviation of the building without any dampers. The 

normalised feedback gain r equals 10. It is seen from these figures that 

increase of the parameter Kt reduced both building and damper responses, 
but the required control force increased and the increase rate of the control 

force was higher than the decrease rate of the building response. It is also 

seen that the parameter e, when its value was larger than 5, did not affect 

the building response, the damper response and the control force. This 
phenomenon, at the same time, indicates that if the value of e is selected to 

be larger than 5 the small deviation from this value in practical situation is 
not important. 

7.4.2 Effect of parameters e and T 

The same input spectrum, properties of the building and mass damper 

as those in the last section were used to analyse the effect of parameter e 

and r on the building response, the damper response and the control force. 

The proportional constant Ktlk~ of 0.05 was selected. Three contours are 

presented in Figs. 7.11 to 7.13, as functions of dimensionless feedback and 

loop gains r and e. All the standard deviations of the building response, 

the damper response and the control force are normalised according to Eqs. 

7.10 and 7.11. Figs. 7.11 and 7.12 clearly indicated that a significant reduction 

in both building and damper responses can be achieved by the active mass 

damper control. A general trend observed from Figs. 7.11 to 7.13 was that 
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the responses reduced as the control force increased. It is also noted that, 

in the region 0 < e < 1, all responses were very sensitive to samll variation 

in e. Therefore, this region was undersirable in practice. From the 

gradient of the contours, it is found that the rate of change of all responses 

reduced with the increase of the parameter r. This means that there may 
be a limiting values for 7 from a practical point of view. 

Such contours can be used to determine the design parameters of the 

active mass damper. There are constraints on the magnitude of the control 

force and moment because of the limitation and the availability of the 

control devices. Therefore, a compromise has to be made between the 

reduction level of the building and damper responses and the required level 

of the control force. To show the magnitude of the control force in Fig. 

7.13, an approximate estimate is presented. For a linear vibration mode of 

the building, the generalised wind force is about 1/3 of the total applied 

wind force on the building. By selecting r = 5.5 and e = 5, a normalised 

control force of 30%, which corresponds to the building response reduction 

of 58%, is about 1/10 of the total wind force. 

7.4.3 Effect of wind excitations 

As discussed in Chapters 3 to 5, the effectiveness of 

dampers depends on the external wind excitation to 

passive mass 

some extent. 

Therefore, it is necessary to investigate effects of wind excitation on active 

mass dampers. Two twist angle response spectra of the plain building, as 

studied in Chapter 4, were selected as torsional input spectra: one for 

incident wind normal to the wide face of the building and at a reduced 

wind velocity of 4; another for incident wind normal to the narrow face and 

at a reduced velocity of 8. For both input spectra, the properties of the 

building and mass damper models remain the same as those in Chapter 4. 

The normalised loop gain e is equal to 5 while K18tk~ is equal to 0.05. 

Figs. 7.14 to 7.16 show the variation of the building angular displacement, 

the damper relative angular displacement and the control moment with 

parameter r. It is seen from these figure that, for the same value of r, the 

active mass damper resulted in different motion reductions of the building 

for different torsional excitation spectra. However, the damper relative 

- 172 -



-+> 
0~ 

Q) C/)s 
§Q) 

.... CJ 
+'a:! a:s-
·~ ~ 
Q) .... 

~~ 

'Ofa 
fa'3 

't:ltlll 

~~ 
+' 
tflp. 
't:lo 
Q)E-< 
(/) 

~till 

~~ 
o·s 
Zlll 

+' 
~ 
Q) ..... s 

OQJ 
CJ 

Clla:! 
~-oP. .... (/) 

+' .... 
a:s~ 
·~ 
Q)s.. 
~a:s 

'3 
't:ltlll 

a~ 
't:l 

~~ +' .... 
til~ ..... 
't:IQ) 
Q)~ 
(/) .... '"' ';i3GJ 
Eo. 
0~ 
:z;~ 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 
0 

~Wide Face 
r:HHHKI Narrow Face 

2 4 6 8 10 12 14 16 18 20 
Normalised Feedback Gain r 

FIG. 7.14 NORMAliSED STANDARD DEVIATIONS OF BUILDING 
TOP ANGULAR DISPLACEMENT 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 0 

~Wide Face 
~HHHK~ Narrow Face 

2 4 6 8 10 12 14 16 18 20 
Normalised Feedback Gain r 

FIG. 7.15 NORMA!lSE STANDARD DEVIATIONS OF DAMPER 
RELATIVE ANGULAR DISPLACEMENT 

- 173 -



..... 
0 

Vl 
1-:l 
0 ..... 
~ 
cd 

"!i! 
~ 

~ 

'd .... 
cd 
'd 
1-:l~ 
cdl-:l 
~~ rns 
'dO 
~)I 

~0 
~~ oo zu 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0 .3 

0.2 

0.1 

0.0 0 2 4 6 8 10 12 14 18 18 20 
Normalised Feedback Gain r 

FIG. 7.16 NORMALISED STANDARD DEVIATIONS 
OF CONTROL MOMENT 

- 174 -



angular displacement responses remained the same for both input spectra. 

This indicates that the parametric studies of an active mass damper control 

system should be conducted for a given wind environment. It is also seen 

that the building and damper responses reduced as the control moment 

increased. However, a reasonable value of r should be less than 10 in the 

sense that a larger reduction of the building response can be achieved by a 

smaller control moment. Compared with the parameter c, the parameter r 

did not create any instability to the whole system within the range of values 

considered. 

7.5 Conclusions 

Based on the measured wind excitation or response spectra in wind 

tunnel for the tested aeroelastic building models, a semi-analytical method 

of selecting the design parameters of active mass dampers and estimating the 

motion reduction of both the building and the damper was proposed. This 

method not only provided a guideline for the experiments of the considered 

active control system in the future but also indicated a design procedure for 

the active control system by means of wind tunnel test technique. Although 

the present discussion was based on the simple aeroelastic models, the 

principle of the proposed method can be extended to the coupled 

translational-torsional vibration of tall buildings, in which a multi-degree­

of-freedom aeroelastic model has to be used. 

The results obtained by the semi-analytical method demonstrated that 

the active mass dampers can be used to significantly reduce the wind­

induced response of tall buildings, if the control parameters were selected 

appropriately. The analysis of the frequency response functions also 

indicated that the active control system modified the structural characteristics, 

leading to a significant reduction of structural vibration. Under different 

wind excitations, the effectiveness of the active control system was different 

and therefore the parametric studies of the control system should be 

conducted for a given wind environment. 

For the considered aeroelastic models, the results of parametric studies 
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of the active control system showed that, in general, the responses of the 

building and the damper decreased by increasing the control force and 

moment, that is, by increasing the feedback gain r and the proportional 

constant Kt. However, the building, damper and control force responses 

were very sensitive to small variation of the normalised loop gain e in the 

region 0 < e < 1. Therfore this region is undesirable in practice. From 

the design contours, which were expressed as functions of dimensionless 

feedback and loop gains, the most beneficial and practical control parameters 

can be determined which result in a larger reduction of the building 

response and the damper response by using a small control force or 

moment. 
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Chapter 8 

VIBRATION CONTROL OF SLENDER STRUCfURES 

BY TUNED LIQUID COLUMN DAMPERS 

8.1 Introduction 

In research fields, theory and practice depend on each other very 
closely. A new theory or analytical method needs to be proved through 

experiments or other practical activities while the proved theory can be used 

to explore new problems or lead to new experiments. In Chapter 3 to 

Chapter 7, vibration control of wind-induced tall buildings were discussed in 

terms of simple aeroelastic wind tunnel tests. The obtained results can be 

scaled up to the full scale tall buildings of which the first mode vibration is 

absolutely dominant. However, for slender structures such as TV towers, 

force and acceleration type responses usually involve more vibration modes 

and considering only the first mode for such response quantities may lead to 

non-conservative errors. Therefore, other aeroelastic modelling teclmiques 

or analytical methods have to be adopted to deal with wind-induced effects 
on these slender structures. In this Chapter and the next, several 

analytical formulations, which were derived by other scholars from the 

corresponding experiments for specific physical phenomenon, are combined 

to investigate wind-induced vibration control of complex slender structural 

systems. 

In this Chapter an investigation is made of the possible application of 

tuned liquid column dampers, compared with conventional tuned mass 

dampers, in reducing the wind-induced response of slender structures. A 
tuned liquid column damper (TLCD) system is essentially a subsidiary 

vibration system composed of a liquid mass in a tube-like container. TLCD 

system suppresses the vibration of the main structures by the restoring force 
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due to the gravity acting upon the liquid and the damping effect due to the 

orifice(s) installed inside the container (Fig. 8.1). TLCD system may offer 

the following advantages: (1) simple equipments, arbitrary shapes and easy 

handling, (2) well-defined mechanism and quantitative definition of 

damping, (3) almost free from maintenance, (4) containers may be used as 

water tanks for drinking and emergency. Sakai et a!. (1989) conducted a 

series of free vibration test and frequency sweep test of TLCD system. 

The experimental results were in good agreement with the analytical motion 

equations of TLCD system which were suggested by Saoka et a!. ( Sakai et 

a!. 1989). However, studies pertaining to liquid column dampers in civil 

engineering applications are to date preliminary and based on greatly 

simplified structural and excitation models. 

In present study, a slender structure is modelled as a lumped mass 

multi-degree-of-freedom system taking into account both bending and 

shear. The wind excitations are modelled as stochastic processes which are 

stationary in time and non-homogeneous in space. The analytical 

expressions for the wind excitation models were derived by Davenport 

(1961), Vickery and Clarke (1972) based on random vibration theory and 

experimental data. In order to conveniently include any desired number of 

vibration modes of a slender structure, 

carried out to obtain response statistics. 

structures, for which identical mass and 

a transfer matrix formulation is 

The methodology for periodic 

stiffness properties are used for 

every storey unit of the structure, is well documented in the literature (e.g., 

Lin and McDaniel, 1969; Yang and Lin, 1975) while the methodology and 

the accuracy of numerical computation for non-periodic structures are 

further discussed in this Chapter and Appendix C. 

In addition, tuned liquid column and mass damper (TLCMD) system, 

which is composed of a mass damper filled with a liquid column (Fig. 8.2d), 

is investigated to determine the effects of liquid motion in a container on 

the effectiveness of such damper using water as mass. In the fundamental 

equations of TLCD and TLCMD, the liquid damping term is non-linear. 

An equivalent linearisation technique is employed to deal with this term in 

order to simplify the problem. Based on the derived formulation, a 

computer program was written by author and two numerical examples using 
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a 76 storey, 306 m high office tower and a 370 m high TV tower are 

presented to demonstrate and compare the effectiveness of the 

abovementioned damping systems. 

8.2 Formulation of the Problem 

Consider an N lumped-mass multi-degree-of-freedom system as the 

structural model (Fig. 8.2a). Flexural rigidity between any two neighbouring 

lumped masses is constant. Wind excitation is applied to discrete lumped 

masses in the plane of the structure. Three types of passive damping 

devices are considered: a TMD (Fig. 8.2b), a TLCD (Fig. 8.2c) and a 

TLCMD (Fig. 8.2d). The damper is fixed on, or connected to, the nth 

mass and considered to be inside the structure so that wind excitation does 

not act on the damper directly. No attempt is made to use multi-dampers 

in this thesis. Wind excitation may be alongwind turbulence or crosswind 

wake excitation, which depends on the wind load spectrum used in the 

following formulae. 

8.2.1 Transfer matrix 

Let yj. 'I'J• Mj and Oj be, respectively, the displacement, angular 

displacement, bending moment and shear force at the top end of the jth 

mass, as shown Fig. 8.2e. Yf· 'i'f· Mf and Of are, respectively, the same 
quantities at the bottom end of the jth mass. The equilibrium equations, 

continuity equations and the force-displacement relation of the jth storey unit 

are given by Eq. 8.1, Eq. 8.2, and Eq. 8.3, respectively. 

. . . . . . . . . . . . (8. 1) 

M: - ~ + Q~ hj J J-1 J-1 
.. . 

Qj - Qj - m jYJ - ll j1"j + F j 
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y-f; - y: 
J J 

'Pj - 'Pj 
} ............. (8.2) 

(8.3) 

in which mj, l3j• hi, Ej and Ij are, respectively, the mass, damping 
coefficient, height, elastic modulus and moment of inertia pertaining to 

storey unit j; Fj is the wind force acting at the jth mass; a dot represents 

the first-order derivative with respect to time; a prime indicates the 

first-order derivative with respect to position coordinate. 

Integrating Eq. 8.3 for the jth story unit and using the Fourier 

t'ransformation, one obtains corresponding equations in frequency domain in 

the following matrix form: 

~+ 

yj 
~+ 

yj-1 

~+ 

'~'j 
~+ 

'~'j-1 
- (T ) x j 4X4 

+ 

M+ M+ j J-1 

~+ ~+ 

Qj Qj-1 

where "-" denotes the Fourier 

matrix. The argument w for 

been omitted for simplicity. 

structural parameters i.e., 

1 

0 1 

0 0 

0 

0 

. . . . . . . . . . . . . (8 .4) 

0 

~ 

Fj 

transform; and [Tj] is known as a transfer 

the quantities in the frequency domain has 

The elements of [Tj] are related to the 

h2 h~ j J 
2Ejlj 6Ej I j 

hj h~ 
J 

Ejlj 2Ejlj (8.5) 

1 h. 
J 

hjaJ hja. 
J + 1 

2Ejlj "6"E.T:" 
J J 
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It is clear from Eq. 8.4 that the transfer matrix [Tj] represents the 

transfer mechanism for a storey unit. In the absence of excitation Fj, the 

j -lth state vector would be transferred to the jth state vector through [ T i ]. 

8.2.2 Tuned mass damper (TMD) 

When a tuned mass damper is connected to the nth mass of the main 

structure by a dashpot and spring, its equations of motion are 

} . . . . . . . . . . . . . . . . . (8. 6) 

Where Mct, Kct, Cct and Yd are, respectively, the mass, spring constant, 

damping coefficient and absolute displacement of the damper; z is the 

relative displacement of the damper with respect to the main structure; Yn is 

the absolute displacement of the nth mass of the main structure. 

The Fourier transform of Eq. 8.6 will result in the following 

relationship in frequency domain: 

M w2 

Z - ____ d=------ yn 
-M w2 + K + lwCd d d 

. . . . . . . . . . . . . . . . (8. 7) 

For the main structure, the resultant external force, Fnt applied at the 
' nth mass is 

. . . . . . . . . . . . . . . . . . . ( 8. 8) 

Its Fourier transform is 

Fnt - Fn + Ki + iwCdZ .................... (8.9) 
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When Fnt is used in place of Fn in Eq. 8.4 for j = n, repeated 

application of Eq. 8.4 results in the following: 

~+ 

yj 0 0 0 

~+ 0 ~~'j 
j j-t j 

- < n (Tk] ) + }; ( n (Ts] ) 
k-t k-t s-k+t 

0 0 

+ (8.10) 

w. M+ 
j 0 

0 0 

~+ ~+ 

Qj Qo 
~ 

F. 
J 

Note that the structure is fully fixed at the ground level and in 

obtaining Eq. 8.10 boundary conditions at the ground level are utilised. The 

top floor of the structure has a free boundary. By letting j = N, one can 

obtain a relation between the top state vector and the bottom state vector of 

the main structure; namely, 

~+ 

YN 0 0 

~+ 

lPN 0 0 
N 

- (A ] + kV~+, l (8.11) 
1 

0 M+ 0 
0 

0 
~+ ~ 

Qo Fk 

where 

N 
(A]- ll(T] (r-1, 2,···, N) 

r s-r s 

( A~Ht ] - (I] 
} 0 0 0 0 0 0 0 0 0 0 (8.12) 

ll is a chain product sign (from k=t to k=N); [I] is an identity matrix. 

The third and fourth rows of Eq. 8.11 can be rearranged into 
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~ 

F 
1 

M+ 
0 

........... (8.13) 

where 

g _ (a44a3• _ 8 s•a•• )/d 
1 I 1 l+1 1 l+1 

g21 - (a33a1• - a43a34 )/d 
1 1+1 1 i+l 

(I - 1 , 2 , ••• , N) (8.14) 

in which a/J is the ij element of the matrix ["]. 

Substituting Eq. 8.13 into the first and second rows of Eq. 8.10 and 

letting j=n, one obtains an expression for the displacement of the nth mass 

of the main structure. 

~+ 

~"n 

s 
1 1 

s 
21 

s 
1 2 

s 
22 

where 

s 
1 I 

- b1 3g + b14g . 
1 1 I 1 2 I 

s 
2i 

- b23g 
1 11 

+ b24g 
1 2 I 

s 
1 I 

- b1 3g 
1 1 I 

+ b14g 
1 2 I 

s - b23g + b24g 
21 1 11 1 21 

+ b14 
1+1 

+ b~· 
1+1 

~ 

F 
1 

~ 

Fnt ........... (8.15) 

} (I - 1 , 2 , ••• , n-1 ) (8.16) 

} (I - n, n+1, ... ,N} (8.17) 

in which bii is the ij element of the matrix [Bk ]. while 

(k- 1, 2, ••• ,n) ..... (8.18) 

F0 t in Eq. 8.15 is a function of Yit and F0 through Eq. 8.9 and Eq. 8.7. 
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Substituting Eq. 8.9 and Eq. 8.7, in that order, into Eq. 8.15, one obtains 

from the first row of Eq. 8.15: 

- N -
Y+- "''t F 

n j:;:1 1j j 
...................... (8.19) 

in which 
M w 2_ K - lwC a d d 

't1j - --------~------=-----=---------- s1j 
Mdw2 - Kd - lwCd + s

1
nMdw 2(Kd + lwCd) 

. (8.20) 

Thus the absolute displacement of the nth mass of the main structure, 

Yn, may be expressed in terms of the random wind excitation and known 

structural parameters. Based on Eq. 8.19, other structural response quantities 

which will be used to measure the effectiveness of the damper, can also be 

expressed in similar manner, i.e., 

- N -M - ): n .F. 
0 j-1 1 J J 

- N -
yN - }: 8 .F. 

j-1 1 J J 

- N -z - ): r .FJ 
j-1 1 J 

in which 

n 
1 j - g1 j - A 

- N -Q - ): n .F. 
0 j-1 2 J J 

- N -
<PN - ): 8 .F. 

j-1 2J J 

s 
1 j 

n 
2j - g2j 1 - A 

2 

8 - li - '71 s 8 - li - '12 1 j 1 j 1 j 2j 2j 

r 1 J - -s .M w2/tJ. A - g tJ. !!J. 
1 J d 1 1 1 n 2 1 

A - g tJ. !!J. '11 = o tJ. I tJ. 
2 2n 2 1 1 n 2 1 

'12 - li tJ. /!!. 
2n 2 1 

li1j- a13g + a14g . + a!4 
1 1 j 1 2J J+1 

0 . _ a23g . + a24g . + a~4 
2 J 1 1 J 1 2 J J+ 1 

. ........... (8.21) 

s 
1 j 

s 
1 j 

(j-1,2, ... ,N) 
... (8.22) 

Eq. 8.19 and Eq. 8.21 are input-output relations in the frequency 

domain in which Fj (j = 1, 2, ... ,N) are the inputs and Yj· M 0 , YN• d 0 , ;<iN and 
z are the outputs. 
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Finally, let 

m 
[A (m) ] - ll [ T ] 

r s-r s 
(r-t,2, ... ,m) .(8.23) 

Expressions for the state vector of the mth storey may be obtained, 

through Eq. 8.10 and other relevant equations as follows: 

N ~ 
~ E .F. 

j-1 1 J J 

~ N ~ 
W- ~ E F. 

m j- 1 aj J 

where 

Eaj - Aaj(m) - y3s1j 

in which 

-{ a 13 (m)g . 
1 1 J 

A1/m) 

a 13 (m)g 
1 1 j 

- { 
a 23 (m)g . 

1 1 J 
A2j (m) 

a 23 (m)g . 
1 1 J 

a33(m)g 
1 1 j 

A . (m) - { 
3J 

a 33 (m)g 
1 1 j 

a 43 (m)g . 
1 1 J 

A4 j(m) - a • a (m) g 
1 1 j 

a 43 (m)g 
1 1 j 

y1 - A (m)A /A 
1 n 2 1 

Ya - A (m)A /A 
an 2 1 

""+ N "" 
<p - '\' E .F 

m j:;;: 1 2J j 

~ N ~ 
o+- ~ E .F 
ln j-1 4J j 

+ a 14 (m)g . 
1 2 J 

+ a 14 (m)g . 
1 2 J 

+ a2•(m)g 
1 2 j 

+ a 24 (m)g 
1 2 j 

+ a 34 (m)g 
1 2 j 

+ a 34 (m)g . 
1 2 J 

+ a 44 (m)g . 
1 2J 

+ a 14 (m) 
j+1 

+ a~ 4 (m) 
j+1 

+ a 34 (m) 
j+1 

+ a 44 (m) 
j+1 

+ a 44 (m)g + 
1 2j 

1 

+ a 44 (m)g 
1 2j 

y2 -A m (m)A/A 1 

y• -A 
40 (m)A/A1 
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} . . . . . . . . . . (8. 24) . 

} ..... (8.25) 

j - 1. 2, ••• ,m-1 

j - m, m+t, ... N 

j - 1. 2, ••• ,m-1 

j - m, m+t, ... N 

j - 1. 2, ••• ,m-1 

j - m, m+1, ... N 
(8.26) 

j - 1 • 2, ••• ,m-1 

j - m 

j - m+1 ,m+2, ... ,N 



in which aki(m) is the ij element of the matrix [ ~(m) ]. 

Note that the abovementioned formulae are also valid for the structure 

without a mass damper, whereby the mass of the damper in the formulae, 

Md, is set equal to zero. 

8.2.3 Tuned liquid column damper (TLCD) 

A liquid column damper of an arbitrary shape is shown in Fig. 8.1, in 

which y is the displacement of the tube, x is the elevation change of the 

liquid and p, L, B, A are, respectively, the density, length of the liquid, the 

width, and cross-sectional area of the tube. The equation of motion of a 

liquid column is given by Saoka et al. and has been verified by a series of 

experiments (Sakai et al., 1989) as follows: 

pAL~+ ~pA~Ixlx + 2pAgx = -pABy .. (8.27) 

where ~ is defined as the coefficient of head loss (constant) governed by 

the opening ratio of the orifice( s) and g is the acceleration due to gravity. 

The natural angular frequency w1 or the natural period T1 of the liquid 

column tube is given in the following equation: 

or ..... (8.28) 

It can be seen that the basic equations of a liquid column damper are 

similar to those of a mass damper except that there is a non-linear damping 

term in TLCD system. In a liquid column damper, the damper mass is 

represented by the mass of liquid column and the restoring force is 

attributed to the gravity acting upon the liquid. Therefore, it is expected 

that a TLCD system can be as effective as a TMD system. 

When a tuned liquid column damper, as shown in Fig. 8.3, is fixed on 

the nth mass of the main structure, the interactive vibration equations are 
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y+ - y- (- y ) 
n n n 

....... (8.29) w-w 
n n 

~ - ~ - (pAL + mn)yn - ~nyn - pABx + Fn 

pALx + i pA~IXIX + 2pAgx- -pABy 
n 

For other storey units of the structure, i.e., when j "' n, Eq. 8.1 is still 
valid. 

The experimental data of the liquid column tube also showed that 

non-linear behaviour of the orifice damping was not high and, in terms of 

application to practical structures, the method of equivalent linearisation has 

the greatest potential (Caughey, 1963; Wen, 1980), especially for 

narrow-band response. Thus it is reasonable to adopt the method of 

equivalent linearisation to deal with the non -linear damping . term rather than 
use Monte-Carlo method, which is very time-consuming in this case. 

In this study, wind excitations are modelled as stationary Gaussian 

processes. The equivalent linearisation technique may be independently 

applied to the last equation of Eq. 8.29 (Iwan and Yang, 1972; Spanos and 

Iwan, 1978). 

Let the equivalent linear equation be 

pAL~ + 2pACpx + 2pAgx - -pAByn 

The equation error will be 

............. (8.30) 

.. (8.31) 

Obviously, the equation error, e, is also a random process. 

The mean square value of the error can be minimised if 

aE(e 2 ) O 
acP - ................ (8.32) 

in which E( ) = expected value. 
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From Eq. 8.32, one can obtain: 

C - "-~ -TEF:-( 7:1 x~· lr,*:-2..1..) 
p 4E(x2) 

...... (8.33) 

By using the Gaussian probability density function, 

( ·2.) /"" li<lx2 ( x2) dx· E x lXI - exp - ~ 
-oo .[2'i U • <-U • 

X X 

- !E._ u~ 
./7t X 

.................. (8.34) 

Thus, one obtains 

u. ~ 
C - X 

p ./-y;;-
. (8.35) 

in which u x is the standard deviation of the liquid elevation velocity x. 

Since the equivalent damping coefficient, Cp, depends on the response, ux, 

of the liquid column, an iteration solution procedure is generally required. 

Using Eq. 8.30 to replace the last equation of Eq. 8.29 and then taking 

Fourier transforms of Eq. 8.29 yields 

y+ - ;;- ( - y ) n n n 

~+ - ~-
n n 

+ w2m - iw~ ]y + F 
n n n n 

..... (8.36) 

and 

............... (8.37) 

The term, w2pAL + w4 pAB 21(2g - w2L + 2iCpw), indicates the effect of 
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the liquid column tube on the main structure. Since the tuned liquid 

column damper is not connected to other parts of the structure (i.e., j ;< n), 

Eq. 8.1 is still valid for the TLCD-structure interative system when j ;< n. 

As a result, in similar manner to the TMD-structure system analysis, one 

obtains similar input-output relations in the frequency domain for the 

TLCD-structure system. 

8.2.4 Tuned liquid column/mass damper (TLCMD) 

Some existing TMDs (e.g. Sydney Centrepoint Tower) are composed of 

a rigid container filled with water. If the water inside the container is kept 

relatively still, the device is in fact a TMD. However, if the water has a 

relative movement with respect to the container, it will affect the motion of 

the container; in turn, the container as a damper will exhibit different 

characteristics when suppressing the vibration of the main structure. 

Therefore, it is necessary to study the interactions between the liquid and 

the container in a combined damper system. Here TLCMD system is 

chosen as a preliminary study of this problem. 

A TLCMD is, in fact, a TLCD shown in Fig. 8.3 connected to the nth 

mass of the main structure by a spring and dashpot (see Fig. 8.2 d). When 

wind-induced vibration of the structure equipped with a TLCMD occurs, 

both the container and the liquid in the container oscillate. If a TLCMD is 

fixed on the nth mass of the main structure, it can be shown that the 

interactive motion equations of the system are 

pALx + ~ pA~1x1x + 2pAgx- -pAByd 

pABx + (pAL+ Md)yd + KdZ + CdZ- 0 

yd - Z + Yn 
) ........ (8.38) 

in which Md is the container mass exclusive of liquid column mass; Yd is the 

absolute displacement of the container; other parameters are the same as 

before. 
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FIG. 8.3 TUNED LIQUID COLUMN DAMPER SYSTEM 
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From Eq. 8.38, a relation similar to Eq. 8.7 in frequency domain may 

be derived if the first equation of Eq. 8.38 is replaced by Eq. 8.30: 

pAB 2w4 
___ ..r:..:.:::::...c=---- + w2 (pAL + Md) 

~ -w 2L + 2Cpiw + 2g 
Z - ---------------------- Y0 pAB>w> 

iwCd + Kd - [ + w2 (pAL + Md)] 
-w 2L + 2C iw + 2g 

p 

... (8.39) 

Comparing Eq. 8.39 with Eq. 8.7, one finds that both equations will be 

identical if the density of water, p, equals zero or the equivalent damping 

coefficient, Cp, is infinite. The latter means that the total mass, pAL + Md, 

should be considered when the tuned frequency is calculated in order to 

find the effect of the liquid motion on this combined damper m 

comparison with the corresponding TMD. 

As before, using the same procedure as for the TMD-structure system, 

one obtains the input-output relations of the TLCMD-structure system. 

8.2.5 Spectral relationships and system responses 

Wind loads on a building are often modelled as stochastic processes 

which are stationary in time and nonhomogeneous in space. At the same 

time, the TMD-structure system is linear, and the TLCD system as well as 

the TLCMD system are also linearised. Thus, the input-output relations in 

the frequency domain, e.g., Eq. 8.21 and Eq. 8.24, can be used to construct 

the relationships between the cross-spectral densities of the inputs F j (j = , , 

>, ... ,N) and those of the outputs, using the following definitions 

............ (8.40) 
~ ~* 

E[X!Xj] 
<I> X X (w) - I i m --.,.2;-.-""r"---

1 J T->o> 

in which E[ ] = the ensemble average, and an asterisk denotes the complex 
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conjugate; xi may represent any output quantity, e.g., y0 , M 0 , 0 0 , etc. T is 

the truncation time. 

The spectral densities of the base moment, the base shear force, the top 

floor displacement, the top floor angular displacement, the nth mass 

displacement and the relative displacement of the tuned mass damper can be 

obtained by substituting Eq. 8.21 into Eq. 8.40: 

N 
<I> (w) - l 
~"N~"N 1-1 

N 
<I> (w) - l 

ynyn i-1 

N 
<l>z z (w) - l 

1-1 

N * l n I<I>F F (w)n . 
j-1 1 I j 1J 

N * .l n I<I>F F (w)n . 
J-1 2 i j 2 J 

N * l 9 I<I>F F (w)9 j 
j-1 1 i j 1 

N * .l 9 .<I>F F (w)9 j 
J- 1 2 1 I j 2 

N * l (I .<I>F F (w)(l . 
j-1 11 I j 1 J 

N * .l r I<I>F F (w)r . 
J-1 1 i j 1 J 

........... (8.41) 

The expression for the response at other locations of the 

TMD-structure system can also be obtained by substituting Eq. 8.24 into 

Eq. 8.40. In addition, the power spectral density of the acceleration 

response is equal to the power spectral density of the displacement response 

multiplied by w4 • For instance, the power spectral density of the top 

acceleration response is given by 

................... (8.42) 

For the TLCD-structure system and the TLCMD-structure system, in 

the same manner one can obtain the required power spectral density of the 

system response. For instance, the power spectral density of the liquid 

elevation change in the TLCD system, can be calculated according to the 

following equation: 
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N 
<I> (w) - ~ 

XX i-1 

N * ~ r .<I>F F (w)r J J-• 21 I j 2 
............... (8.43) 

in which 

w2 B r -----,::?i----,.::...r:c--;--->;r;--;-:-:-s 2j -w2L + 2g + 2c lw •J 
p 

(j- 1, 2, ••• ,N) 

In the case of a linear structure the mean wind force in the alongwind 

direction is responsible for the mean alongwind response of the structure 

alone. Since both the mean wind force and the mean structure response are 

static and constant, they can be computed separately. Consequently, the 

standard deviations of various structure response quantities can be evaluated 

through numerical integrations. For example, for the TMD-structure 

system, the standard deviations of the base moment, the base shear force, 

the top floor displacement, the top floor angular displacement, the nth mass 

displacement and the relative displacement of the tuned mass damper with 

respect to the nth mass of the main structure as well as the top floor 

acceleration are obtained from 

- [ "' (w)dw]~; uM £., <I>M M 
0 0 0 

"' ~ uQ - [ £., <I>Q Q (w)dw] 
0 0 0 

u -[ 1"' <I> (w)dw( 
YN 

_., yy ' 
N N 

... (8.44) 

[ !"' ... 
uz - "' -oo ZZ 

For the TLCD-structure system, the standard deviation of the liquid 

elevation velocity, u,;, is necessary to complete an iteration solution 

procedure. It can be obtained from Eq. 8.43 as follows: 

u. - [ 1"' w2<f> (w)dw]~ 
X -co XX 

. (8.45) 

The same may be applied to the TLCMD-structure system. 
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8.3 Wind Load Spectra 

The aerodynamic forces acting on structures arise from the superposition 

of static loads due to mean wind velocity and fluctuating loads associated 

with atmospheric turbulence and wake excitation, as well as self-excited 

loads due to the oscillation of the structures themselves. The mean 

structure response, which is caused by the mean wind pressure, is not 

reduced by a damper in a linear system and, therefore, it is not included in 

this study. Furthermore, no reliable theoretical model up to now is 

developed to describe torsional excitation. Only the alongwind turbulence 

and the crosswind wake excitation are considered at this stage. It must be 

emphasised that the TLCD and the TLCMD considered in this thesis are 

uni-directional and thereby the alongwind turbulence and the crosswind 

wake excitation are applied to the structural system independently. 

However, it is not difficult to extend the abovementioned analysis to two or 

three dimensional analysis utilising bi-directional TLCD and TLCMD damper 

systems. 

8.3.1 Alongwind turbulence spectrum 

The spectrum of longitudinal turbulence proposed by Davenport (1961) 

is used in this thesis. For a multi-degree-of-freedom system, the 

one-sided cross-spectral density representation of alongwind force in 

frequency domain (in radians per second) is 

-2 2 0! 
~F F (w)- 24K W C (HIHJ/100) A.AJR(H1, Hj, w)Sf(w)/(2~) ij o1oa 1 

(8.46) 

where the function, R(H1, Hj, w), reflects the spanwise correlation of the 

fluctuating force and is represented by 

C
1

1w1 1Hi - Hjl 
R(H1, Hj' w) - exp[- ] ......... (8.47) 

2.- v 
1 0 

The unit fluctuating wind velocity spectrum, Sf(w), is given by 
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Sf(w) - t')•/3 
3n(1 + 

2t 2 
. (8.48) 

in which t = 1200ni\i, 0 ; n = wla; v 1 0 = mean wind velocity in metres per 

second at 10m above the ground; w 1 0 = mean wind pressure at 10m = i 

Pa v ~ 0 ; Pa = air density; K 0 = surface drag coefficient; Ca = drag 

coefficient; C 1 = a constant; Hi,Hj = heights of the ith and jth storey mass 

above the ground, respectively; e< = a constant; Aj.Aj = wind areas of the ith 

and jth mass, respectively. 

8.3.2 Crosswind wake spectrum 

Vickery and Clarke (1972) proposed a Gaussian type one-sided 

crosswind force spectrum in the frequency domain (in radians per second) 

of the form shown below: 

<I>F F (w) -
I j 

(pac1v 1vj) 2A1Aj 

8.- 3
/

2B/f f 
s i s j 

cos(e< 1R)exp(-(R/e< 2 ) 2 ) x 

x/ exp[-(1 w/2.-f ) 2/B5
2].exp[-(1- wj2.-f )2/B5

2 ] (8.49) 
s i s j 

where cos(e~ 1 R)exp(-(Rie~ 2)2) is the spanwise correlation function of crosswind 

wake excitation; R = 21Hi - Hj 1/(Di + Dj); e< 1 and e~ 2 are nondimensional 

coefficients related to the correlation length; Dj, Di = diameters of the 

structure at heights Hi and Hj, respectively; vi, vi = mean wind velocities at 

the height Hi, Hj, respectively; Yj = v 1 o(HjllO)CI, vi = v 1 o<HjllO)CI in metres 

per second; c1 = lift coefficient; B8 = a measure of the relative width of the 

spectral peak; fsi• fsj = vortex shedding frequency at heights Hi and Hi, 

respectively, and fsi = SVj/Di, fsj = SVjlDj; s = Strouhal number. 

Eq. 8.49 was first proposed by Vickery for the structures with a circular 

cross section, assuming e< 1 = 2/3 and e< 2 = 3. The analysis of a limited 

number of experimental results conducted by Reinhold has shown that Eq. 

8.49 can also be applied to buildings of square cross section using values 

like e< 1 = i and e< 2 = 5 (Solari, 1985). Solari further suggested e~ 1 = i , e~ 2 
= 5 for the middle part of the building and e~ 1 = o, e~ 2 = 5 for the upper 
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third of the building. 

An improved crosswind wake excitation model which included lock-in 

excitation was suggested by Vickery and Basu (1983). This improved model 
is based on the original model but altered to include an aerodynamic 

damping term which depends non-linearly on response amplitude. However, 

the application of this model to full scale structures in terms of transfer 

matrix method needs further investigation. 

Finally, it may be helpful to point out that the assumption on wind 

excitation co-spectrum in Chapter 6 is basically consistent with Eqs. 8.46 

and 8.49. 

8.4 Numerical Examples 

Two numerical examples of different structural types and properties are 

considered for illustrative purposes: a 76 storey, 306m high and 44m square 

concrete office tower with 7.4m chamfer at the corners; a 370m high TV 

tower with a circular cross-section which tapers from 20m diameter to 10m 
diameter, and with a turret which is located at 200m high. 

Many wind sensitive structures cannot be simplified to periodic 

structures as discussed by Lin and McDaniel (1969), and Yang and Lin 
(1981). Therefore, the matrix multiplication operation is unavoidable when 

computing the product chain of the matrices, e.g., [ Ar(m)]. Studies in 

Appendix B shows that, for the non-periodic cantilever strctures, the 

accuracy of computer results using direct matrix multiplication is guaranteed. 

8.4.1 TV tower 

The tower is modelled as a 9 degree-of-freedom cantilever model. 

The structural data used in the analysis are listed in Table 8.1. The first 

four natural frequencies of the structure are 0.199, 0.334, 0.821, and 1.281 

Hz, respectively. Three types of damping devices, as described before, are 

individually fixed on, or connected to, the 4th mass of the main structure 
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TABLE 8.1. STRUcruRAL DATA FOR TV TOWER 

Node Height Mass Stiffness Damping Wind area 

number hj mj Ejlj xlO• !3j Aj 

(m) (tonnes) (kN-m2) (kN/m/s) (m2) 

(1) (2) (3) (4) (5) (6) 

1 40.0 6134 1162.80 179.92 977.8 

2 56.0 3853 377.80 112.89 920.6 

3 56.0 2578 203.74 75.54 638.6 

4 54.5 3032 59.30 88.82 947.6 

5 38.5 692 33.08 20.28 249.5 

6 25.0 85 8.52 2.49 150.0 

7 35.5 72 2.13 2.11 98.2 

8 35.5 51 0.17 1.48 47.2 

9 28.5 23 0.08 0.68 20.0 
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where turrets are located. 

between the three types of 

In order to facilitate a reasonable comparison 

dampers, the mass of all dampers is kept the 

same and all natural frequencies are tuned to the fundamental frequency of 

the main structure. As for the damper damping, a sound choice is to 

optimise the structural responses in engineering practical limit by using 

different damping ratio of critical t in the tuned mass damper or coefficient 

of head loss ~ in the tuned liquid column damper. The aerodynamic data 

pertaining to alongwind excitation are: 

v 1 0 = reference mean wind velocity at 10m height above ground 

= 26.41 m/s; 

a = exponent for the mean wind velocity profile power law 

= 0.15 
zg = gradient height = 300m; v0 = gradient velocity = 44 m/s; 

Ca = drag coefficient = 0.7; Pa = air density = 1.2 kg/m3; 

C 1 = 7.0 and K 0 = 0.007, constants in the wind spectrum. 

The abovementioned aerodynamic data pertain to an open country 

terrain [ Terrain Category 2 as described in the Australian Standard, SAA 

Loading Code, Part 2: Wind Loads; AS 1170.2-1989 ]. 

The aerodynamic data pertaining to wake excitation are: 

v 1 0 = 15 m/s; 

Ci = 0.15; 

c1 = lift coefficient = 0.2; 

s = Strouhal number = 0.22; 

B8 = constant related to the relative width of the relative spectral peak 

= 0.32. 

v 1 0 = 26.41 m/s was also used to compute the structural response under 

crosswind wake excitation. It is found that, when v 1 0 = 26.41 rnls, vortex 

shedding resonance will develop at the second natural frequency of the 

tower. As a result the top displacement response of tower at the second 

mode of the tower is larger than that at the first mode (see Fig. 8.4). 

After considering that the present dampers are tuned to the first natural 
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frequency of the tower, mean wind velocity v 1 0 = 15 m/s is selected. 

The properties of TMD, TLCD and TLCMD system are as follows: 

For the TMD system: Md = mass of the tuned mass damper = 494 

tonnes; Kd = spring constant = 1061 kN/m; x = ratio of damper frequency to 

structural first natural frequency = 1.0. The corresponding effective mass 

ratio p. of the damper for the first mode of the main structure is around 

6%. The effective mass ratio p. is a ratio of the damper mass to the 

structural equivalent mass, as defined in Eq. 5.1. 

For the TLCD system: p = water density = 1 tonne/m s; L = liquid 

length = 9.13m; Mw = mass of the liquid = 494 tonnes; g = acceleration of 

gravity = 9.81 rn!s2; B = liquid width = 0.9L; x = 1.0. 

For the TLCMD system: mass of the damper = mass of the water = 
247 tonnes; Kd = 1061 kN/m and L = 9.13m. As a result, x = ratio of the 

whole damper frequency (considering the water in the container as 

completely still) to the first frequency of the main structure = 1.0; x 1 = 

ratio of the frequency of liquid column to the whole damper frequency = 
1.0. 

Numerical calculations showed that, for the TMD system, the minimum 

response variance of the base moment was obtained when the damping ratio 

of the damper r was 17% in alongwind direction and 13% in crosswind 

direction (see Fig. 8.5). The base moment responses in Fig. 8.5 are 

normalised by the same response of the TV tower without any dampers. It 

is interesting to find that the trend of the responses with the damping ratio 

of the mass damper is similar to the semi-analytical results obtained in 

Chapter 5. For the TLCD system, the coefficient of head loss E was 

chosen as 30 for both directions after considering practical limits based on 

the experimental results (Sakai et a!., 1989). A plot of the standard 

deviations of the base moment, which is normalised by the same response of 

the structure without any dampers, versus the coefficient of head loss e for 

the TLCD system is shown in Fig. 8.6. It is clear from Fig. 8.6 that 

increase in the coefficient e produces smaller response reduction when the 
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coefficient E is larger than 30. The trend of the responses with the 

coefficient of head loss is also similar to that in TMD system. Both 

damping ratios ( i = 17% in alongwind direction and 13% in crosswind 

direction) and the coefficient of head loss (E = 30 for both directions) are 

used in TLCMD system. 

Table 8.2 and 8.3 present alongwind and crosswind standard deviations 

of eight controlling response quantities by computing their corresponding 

power spectral densities. It is seen that all three type of damper systems 

can significantly reduce the structural response. The TLCD and TMD 

systems are capable of achieving the same level of response reduction while 

the TLCD system has significant practical advantages. The TLCMD system 

is slightly less effective because of undesirable liquid motion in the container 

(referring to column 5 in Tables 8.2 and 8.3). Further numerical 

calculations showed that the effectiveness of the TLCMD system can be 

increased by setting the natural frequency of the liquid column tube higher 

than the frequency of the whole damper, i.e., by increasing value of x 1 • 

Variation of the turret acceleration response with frequency ratio x 1 is 

shown in Fig. 8.7 for both wind directions. It is seen that, the higher the 

frequency ratio x 1 the more the reduction of the structural response. The 
• 

values on the last column in Tables 8.2 and 8.3 are obtained by using a 

frequency ratio x 1 of 1.6. 

Limited numerical calculations also showed that the same conclusions can 

be obtained for smaller mass ratios. Figs 8.8 to 8.9 show that the smaller 

mass ratios result in the less effectiveness of TMD system, particularly when 

the damping ratio is relatively larger. This is also true for TLCD system 

when the coefficient of head loss E is larger than 20 as shown in Figs. 8.10 

and 8.11. However, for smaller coefficient of head loss, a larger mass ratio 

does not improve the effectiveness of the TLCD. 

Power spectral densities of the base bending moment, turret acceleration 

and turret displacement are presented in Figs. 8.12 to 8.17. From these 

figures one can observe that the peaks corresponding to the first vibration 

mode are considerably suppressed while other peaks are nearly unaffected. 

For displacement type responses, the contribution of the first vibration mode 
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TABlE 8.2. STANDARD DEVIATION RFSPONSE OF TV TOWER 
FOR ALONGWIND EXCITATION 

Response WID TMD TLCD TLCMD TLCMD 

variable r- 0.11 E - 30 E = 30 E - 30 
X - 1.0 X - 1.0 X- 1.0 X- 1.0 

x,- 1.0 x,- 1.6 
Md - 494 Mw- 494 Md- Mw Md - Mw 

- 274 - 274 
(tonnes) (tonnes) (tonnes) (tonnes) 

(1) (2) (3) (4) (5) (6) 

MD (kN-m) 152,144 102,546 107,276 111 '698 101,506 

QD (kN) 947 745 780 777 744 

YN (mm) 385 213 235 267 229 

I"N (rad) 0.0063 0.0038 0.0044 0.0046 0.0043 

Yn (mil-g) 11. 1 6.5 7.2 7.7 6.9 

Yn (mm) 49 30 31 34 29 

zd (mm) - 43 - 30 43 

Xw (mm) - - 62 57 21 

Note: V10- 26.41 mjs; WfD: Without any Dampers; 
TMD: 
TLCMD: 

Tuned Mass Damper; TLCD: Tuned Liquid Column Damper; 
Tuned Liquid Column/Mass Damper 
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TABLE 8.3 STANDARD DEVIATION RESPONSE OF TV TOWER 

FOR CROSSWIND WAKE EXCITATION 

Response WTD TMD TLCD TLCMD TLCMD 

variable i - 0.13 ~ - 30 ~ - 30 ~ - 30 
X = 1.0 X - 1.0 X - 1.0 X- 1.0 

x,- 1.0 x,- 1.6 
Md = 494 Mw- 494 Md - Mw Md - Mw 

= 274 = 274 
(tonnes) (tonnes) (tonnes) (tonnes) 

(1) (2) (3) (4) (5) (6) 

Me (kN-m) 106,810 48,839 54,012 68,128 49,563 

Qo (kN) 609 373 403 439 378 

YN (mm) 295 135 154 203 156 

I"N (rad) 0.0047 0.0026 0.0030 0.0034 0.0031 

Yn (mi 1-g) 8.5 4.3 4.8 5.8 4.7 

Yn (mm) 36 14 15 22 14 

zd (mm) - 37 - 23 36 

Xw (mm) - - 50 47 17 

Note: V10- 15.00 m/s; WTD: Without any Dampers; 
TMD: Tuned Mass Damper; TLCD: Tuned Liquid Column Damper; 
TLCMD: Tuned Liquid Column/Mass Damper 
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is dominant while for force and acceleration type responses, the 

contributions of higher modes are rather significant and considering only one 

mode in the analyses may lead to misleading and non-conservative results. 

It is particularly true for damper- structure systems tuned to the first 

natural frequency of the structure. In Figs. 8.12 to 8.17, the parameters of 

the TMD, TLCD and TLCMD are the same as those listed in columns 

3, 4 and 6 in Tables 8.2 and 8.3, respectively. 

8.4.2 Office tower 

The office tower is modelled as a 10-degree-of-freedom cantilever 

model. The structural data used in the analysis are listed in Table 8.4. 

The first three natural frequencies of the structure are 0.175, 0.569 and 1.333 

(Hz), respectively. All dampers are connected to or fixed on the top floor 

of the tower and have an effective mass ratio (equal to generalised mass) of 

3% associated with the first mode of the main structure. The comparison of 

the effectiveness between the three dampers is performed in the same way 

as for TV tower-damper system. 

The aerodynamic data pertaining to alongwind excitation are: v, 0 = 15.9 

m/s; a = 0.25; zg = 400 m; VG = 40 m/s; Ca = 1.2; Pa = 1.2 kg/m 3 ; c, = 7.0 
and K 0 = 0.01. Based on these areodynamic data, a suburban terrain [ 

Terrain category 3 as described in the Australian Standard, SAA Loading 

Code, Part 2: Wind Loads; AS 1170.2-1989) is reflected. 

The aerodynamic data pertaining to wake excitation are: v 1 0 = 15.9 m/s; 

a = 0.25; C1 = 0.40; s = 0.12; B5 = 0.26; a, and a 2 = 0.5 and 5, respectively. 

TMD, TLCD and TLCMD systems are all tuned to the first natural 

frequency of the building. This will lead to the following mass damper and 

liquid column properties: for the TMD system, Mct = 839 tonnes; Kct = 1015.4 

kN/m and x = 1.0. Optimum damping ratio ! of the TMD is found to be 

15% in alongwind direction and 11% in crosswind direction (see Fig. 8.18). 

For the TLCD system: p = 1 tonne/m 3 ; L = 16.2 m; Mw = 839 tonnes; g = 
9.81 m/s 2 ; B = 0.9L; x = 1.0; the coefficient of head loss E = 30. Fig. 8.19 

shows the variation of standard deviations of top acceleration of office tower 
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TABLE 8.4. STRUCTURAL DATA FOR OFFICE TOWER 

Node Height Mass Stiffness Damping Wind area 

number hj ffij Ejlj x10 9 l3j Aj 

(m) (tonnes) (kN-m2) (kN/m/s) (m2) 

(1) (2) (3) (4) (5) (6) 

1 37.25 18774 763.0 413.0 1566.7 

2 34.65 16578 450.0 364.7 1510.0 

3 34.65 15657 295.0 344.5 1426.2 

4 30.80 14438 188.0 317.6 1342.3 

5 30.80 12864 107.0 283.0 1342.3 

6 30.80 10574 55.0 232.6 1174.5 

7 23.10 8010 23.0 176.2 1006.7 

8 23.10 8481 14.0 186.6 1006.7 

9 23.10 7686 7.5 169.1 769.2 

10 24.40 7100 3.0 156.2 265.9 
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with coefficient of head loss ~. It is seen that the coefficient of head loss 

of 30 approaches an optimum value for the crosswind vibration of the office 

tower. For the TLCMD system: Mw = Md = 419.5 tonnes; K,:t and r = the 

same as for the TMD; ~ = 30; x = 1.0; x, = 1.0 and 1.6. For x = 1.0, it can 
be found from Fig. 8.20 that the effectiveness of the TLCD system 

approaches that of the TMD system only when the coefficient of head loss 

becomes very large, i.e., the liquid in the container is kept still. 

The standard deviations of office tower response quantities are given in 

Tables 8.5 and 8.6. Power spectral densities of top floor acceleration and 

base moment are presented in Figs. 8.21 to 8.24. From these tables and 

figures, conclusions similar to the TV tower case may be drawn. 

However, one can observe that only the first mode of vibration is dominant 

for the acceleration and force type responses in the crosswind direction. It 

is also interesting to note that the shape of the crosswind response spectra 

in Fig. 8.22 is quite similar to that in Fig. 3.11, which was obtained from the 

wind tunnel test. The first peak is associated with the vortex shedding in 

crosswind direction while the second peak is located at the first natural 

frequency of the office tower. It is obvious that the vortex shedding 

frequency of the office tower is smaller than the first natural frequency of 

the tower. In this case, it seems to be justified for stiffer tall buildings to assume 
that the experimental results obtained by simple aeroelastic wind tunnel tests 

are accurate enough, even though only the first vibration mode is considered 

in the test. 

8.5 Conclusions 

A transfer matrix formulation for non-periodic structures has been 

developed to analyse the effect of tuned mass dampers and liquid dampers 

on the wind-induced response of tall/slender structures. The numerical 

computer accuracy has also been investigated in Appendix B. The results 

indicated that the accuracy of the computer results using direct matrix 

multiplication can be guaranteed for the studied cantilever structures. The 

computer time, however, was 2-5 times more than that required by the 

analytical procedure for periodic structures. 
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TABLE 8.5. STANDARD DEVIATION RESPONSE OF OFFICE TOWER 

FOR ALONGWIND EXCITATION 

Response WfD TMD TLCD TLCMD TLCMD 

variable r - o. 15 ~ - 30 ~ - 30 ~ - 30 
X - 1.0 X- 1.0 X- 1.0 X= 1.0 

x,- 1.0 x,- 1.6 
Md- 839 Mw- 839 Md - Mw Md- Mw 

- 419.5 - 419.5 
(tonnes) (tonnes) (tonnes) (tonnes) 

(1) (2) (3) (4) (5) (6) 

Mo (kN-m) 398,530 274,764 293,308 321,732 272,859 

Qo (kN) 2,330 1 '778 1,930 1,915 1,761 

YN (mm) 38 23 24 29 23 

<PN (rad) 0.00036 0.00022 0.00024 0.00027 0.00021 

Yn (mil-g) 7.7 5.3 6 01 5.8 5.2 

zd (mm) - 39 - 27 39 

Xw (mm) - - 66 53 17 

Xw (mm/s) - - 72 57 21 

Note: V10- 15.9 m/s; WID: Without any Dampers; 
TMD: Tuned Mass Damper; TLCD: Tuned Liquid Column Damper; 
TLCMD: Tuned Liquid Column/Mass Damper 
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TABLE 8.6 STANDARD DEVIATION RESPONSE OF OFFICE TOWER 

FOR CROSSWIND WAKE EXCITATION 

Response WTD TMD TLCD TLCMD TLCMD 

variable l - 0.11 ~ - 30 ~ - 30 ~ - 30 
X- 1.0 X - 1.0 X- 1.0 X - 1.0 

x,- I.O x,- 1.6 
Md - 839 Mw - 839 Md- Mw Md - Mw 

- 419.5 - 419.5 
(tonnes) (tonnes) (tonnes) (tonnes) 

(1) (2) (3) (4) (5) (6) 

Mo (kN-m) 937,392 579,598 604,392 691,795 583,968 

Qo (kN) 4,224 2,814 2,841 3,218 2, 774 

YN (mm) 102 62 63 72 59 

II'N (rad) 0.00091 0.00054 0.00055 0.00063 0.00051 

Yn (mi 1-g) 11.5 5.3 5.4 7.5 5.2 

zd (mm) - 143 - 94 140 

Xw (mm) - - 146 153 63 

Xw (mm/s) - - 150 151 65 

Note: V10- 15.9 m/s; WTD: Without any Dampers; 
TMD: Tuned Mass Damper; TLCD: Tuned Liquid Column Damper; 
TLCMD: Tuned Liquid Column/Mass Damper 
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The effectiveness of three types of dampers in reducing both the 

alongwind and crosswind structural responses has been illustrated. These 

damper systems can significantly reduce the structural response. The TLCD 

systems, which have significant practical advantages, can achieve the same 

motion reduction level as the TMD. However, when the frequency of the 

liquid column is the same or less than the frequency of the whole damper, 

the liquid motion in a TLCMD system may reduce the effectiveness of the 

damper. Therefore, a higher frequency ratio x, should be selected for 

TLCMD system. . 

For the slender TV tower example, wind velocity may affect the 

effectiveness of the dampers. For instance, vortex shedding frequency of 

the tower approached the second vibration mode of the tower while the 

damper frequency was tuned to the first vibration mode. Therefore, on 

some occasions, a second damper which is tuned to the second natural 

frequency of the structure should be considered. When a damper was tuned 

to the fundamental frequency of the main structure, the contribution of 

higher modes to force and acceleration type responses was significant. 

Therefore, considering only the controlled mode in the analysis may be 

misleading and produce non-conservative results because the responses of 
higher modes may become as large as or larger than the response of the 

controlled mode. For the office tower example, with approximate square 

cross section, it was found that the contribution of higher modes of 

vibration to force and acceleration type responses was significant only for 

alongwind excitation. For crosswind wake excitation, the response was 

dominated by the first mode of vibration only. The theoretical method 

described in this Chapter seems to be a way of justifying whether simple 

aeroelastic wind tunnel tests, in which only the first vibration mode is 

considered, can be used for estimating dynamic responses of some structures. 

It should be emphasised that the TLCD considered here was uni­
directional. For practical purposes, bi-directional tuned liquid column 

damper should be investigated. In addition, the analysis of the TLCMD 

system in this thesis is mainly for investigating the effects on the damper 

effectiveness of liquid motion in some TMDs in which liquid is used as 

mass. 
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Chapter 9 

SOIL-STRUCTURE-MASS DAMPER INTERACTION 

9.1 Introduction 

The procedures developed to-date to investigate the effect of tuned 

mass dampers on the response of wind-sensitive structures have been based 
on the assumption that the structure is perfectly clamped at its base without 

any displacements. It should be observed that this hypothesis, although 

usual in wind engineering, may in some cases be detrimental to a correct 

analysis of the phenomenon and a reliable assessment of the effectiveness of 
a mass damper. 

It is well known that when soil or foundation flexibility is taken into 

account, the natural frequencies of the soil-structure system are modified to 

some extent which depends on the properties of soil and structures (Novak, 
1974; Solari and Stura, 1979; Ogendo, Milsted and Johns, 1983; Lin and Wu, 

1984; Novak and Hifnawy, 1988). This characteristic becomes particularly 
important for structure-mass damper systems, where the effectiveness of a 

tuned mass damper greatly depends on its frequency being tuned to the 
natural frequency of the structure, especially for smaller mass ratios as 

discussed in Chapter 5. The modification of the natural frequencies of 

soil-structure systems causes the resonance response peaks to get closer to 

the dominant frequencies of the alongwind turbulence and changes the 
critical wind velocities related to the crosswind responses of the system. At 

the same time, a soft soil allows for more energy dissipation by radiation 

and hysteretic damping mechanism, leading to a change of the system 
damping. These factors will directly affect the effectiveness of tuned mass 

dampers and therefore it is important to present an analytical procedure for 

soil-structure-mass damper systems under random wind excitation. 

The analysis of the wind-induced response of soil-structure-mass 

damper systems is more complex than that of structure-mass damper systems 
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or soil-structure systems. The dampers are usually confined to a few 

discrete locations but wind loads are distributed over the whole 

superstructure. Futhermore, the stiffness and damping attributed to the soil 

mass under the foundation are frequency-dependent and the combined 

soil-structure system does not possess a set of classical normal modes (Lin 

and Wu, 1984). 

In this Chapter a theoretical framework has been developed for the 

dynamic analysis of soil-structure-mass damper systems excited by wind. 

The alongwind turbulence and the crosswind wake excitation were modelled 

as stochastic processes which are the same as those used in Chapter 8. The soil 

properties, including the footing embedment effect, were characterized by a 

known frequency-dependent compliant matrix (Beredugo and Novak, 1972). 

Only the mass damper is considered here, but the derived conclusions are 

believed to be applicable to the liquid damper case. The transfer matrix 

formulation was employed in which the frequency-dependent soil behaviour 

can be easily dealt with in the frequency domain and any desired number of 

modes may be conveniently included. 

Based on the derived formulation, a computer program which is used in 

Chapter 8 was modified to meet present requirements. Also the two 

numerical examples, a 370m high TV tower and a 306m high office tower, 

used in last Chapter were employed in this Chapter after including the soil 

and footing properties. Some equations used in Chapter 8 are included here 

in order to make it convenient to read. 

9.2 Basic Equations 

As shown in Fig. 9.1, the system model used in the present study 

consists of an N-lumped mass multi-degree-of-freedom superstructure 

founded on a rigid footing which, in turn, is supported by a flexible soil 

mass. Only one mass damper is utilised and such damper is connected to 

the nth mass. The combined soil-structure-mass damper system is assumed 

to be linear. The rest of assumptions is same as those used in Chapter 8. 
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9.2.1 Superstructure 

Let u and 8 be, respectively, the translation and rotation of the footing. 

yj. IPJ• Mj, and Oj are, respectively, the relative displacement to the 
footing, relative angular displacement, bending moment and shear force at 

the top end of the jth mass; Yj. IP]• Mj and Oj are, respectively, the same 

quantities at the bottom end of the jth mass, as shown in Fig. 9.1 (b); yj is 

the absolute displacement of the jth mass. The equilibrium equations, 

continuity equations, displacement equation and the force-displacement 

relation of the jth storey unit are given as follows: 

Mj- MJ 
Q:- q+ 

J j-1 
• 0 0 0 0 0 0 0 0 0 0 0 0 (9 0 1) 

y-1; - y: 
J J 

}· 0 0 0 0 0 0 0 0 0 0 0 0 (9.2) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (9 0 3) 

0 0 0 0 0 (9 .4) 

In which mi, l3j• hi, Hj, Ej and Ij are the jth storey mass, damping, height, 

total height above the footing, elastic modulus and inertia moment, 

respectively; F i is the wind force at the jth mass; a dot represents the 

first-order derivative with respect to time; a prime indicates the first-order 

derivative with respect to position coordinate. 
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The above equations are similar to those in Chapter 8. However, the 

effect of the footing displacement and rotation is now considered. 

Integrating Eq. 9.4 for the jth storey unit and using Fourier transformation, 

one can obtain corresponding equations in the frequency domain in the 

following matrix form: 

~+ 

yj-1 0 0 

~+ 

I" j- 1 0 0 

- (T 1 x +a. + (9.5) 
j 4X4 

M-t: 
J 

0 0 
J-1 

~+ ~ ~ ~ 

Qj-1 u + H/ F. 
J 

where "-" denotes the Fourier transform; and (Tj 1 is known as a transfer 
matrix. The argument w for the quantities in the frequency domain has 

been omitted for simplicity. The elements of (Tj 1 can be found in Eq. 8.5. 

9.2.2 Footing and soil 

Many studies (e.g., Beredugo and Novak, 1972; Novak and Sachs, 1973) 

have shown that the vibrations of shallow foundations (such as mats and 

rafts) can be greatly affected by their partial embedment into the soil. This 

represents a very difficult problem to solve in a rigorous analytical way. In 

general, finite element technique or other discretising techniques appear very 

useful in solving the problem. However, it would be a loss to entirely 

discard the already numerous and sophisticated solutions of the surface 

footings because of the possible effect of embedment. Instead, it may often 

be quite sufficient, with all the other uncertainties, to apply an approximate 

correction for the effect of embedment to the solutions of surface footings. 

Such an approximate analytical approach has been suggested and 

compared with many experimental results by Beredugo and Novak (1972), 

Novak and Beredugo (1972), and Novak and Sachs (1973). They discussed 

vertical, torsional and coupled horizontal and rocking vibration of embedded 
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footings. Because vertical vibration of embedded footings is not significant 

for wind-induced structural responses and to date there is no reliable 

theoretical model to describe wind-induced torsional excitation, only coupled 

horizontal and rocking vibration of embedded footings is considered in this 

thesis. This coupled vibration theory is based on the assumption that the 

dynamic reactions in the footing base are equal to those of an elastic half 

space and that the reactions acting on the footing sides are equal to those of 

an overlying independent elastic layer. Expressions for the coupled motion 

in the frequency domain are as follows, in a somewhat modified form, for u 

= Uo + 8ho 2 : 

[ ~ ] [ 
c 

mm 

] [ ~] . . . . . . . . . . . . . . . . (9. 6) 

where 

C - [(K - rnw 2 ) + lwC ]/d nun uu uu 

Chh- [(K88- fw2- 2Ku8ho2 + Kuuh~2 + ffiw2h~2) + iw (C88- 2Cu8ho2 + 

Cuuh~ 2 ) ]/d 

d - (KuuK88 - Iw 2Kuu - rnw 2K + mfw• - w2C C - 2w2C2 h2 + w2C2 8 8 uu 8 8 uu o 2 u8 

- K~8) + l(wC88Kuu + wCuuK88 - ffiwac88 - ICuuw2 - 2wCu8Ku8) 

in which u 0 = translation of the footing center of gravity; h 0 2 = height from 

the footing surface to the gravity center, as shown in Fig. 9.1; iii = total 

mass of footing; I= mass moment of inertia about a horizontalaxis passing 

through the center of gravity; Kuu• K88 and Ku 8 are the frequency 

dependent spring constants, and Cuu• c88 and Cue are the frequency 
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dependent damping coefficients. Their analytical expressions are as follows: 

G 
K - Gr (C + Gs ~S ) 

UU 0 U1 Ul 

h G 
K G 3 [ C (--o-1 ) 2C + s 'S 

88 - ro 81 + - " r u1 G 81 
0 

h2 

~<+ +-¥ 
r 

0 

G 

h 
- ~-0_1 

r 
0 

Ku8 -- Gr [h C + ~ ~(h 
0 01 U1 G 01 

1 
-- L)S j 2 U1 

Gr G 
c - __ o (C + Gs ~s ) 

UU W U2 U2 

h 
(~)2C 

r u2 
0 

h2 
~(£ + _o_1 

3 2 
r 

0 

Gr G 

h 
~-o~)S ] 

r u2 
0 

C - - --
0 

[h C + Gs ~(h 
u8 W 01 U2 o 1 

1 - -L)S 2 U2 

. . . . . (9. 7) 

. . . . . (9. 8) 

In the above equations, G and G8 = the shear modulus of soil beneath 
the footing base and adjacent to the footing sides, respectively; r 

0 
= radius 

of the cylindrical footing or equivalent radius of a rectangular footing; ~ = 

Ur 0 = relative embedment depth; L = embedment depth; h 0 1 = height of 

gravity center above the footing base. Parameters Cjj and sij (i = u,8; j = 

1,2) are frequency dependent, but do not vary greatly with frequency. For 

practical purposes, they can often be considered approximately constant, at 

least over a certain frequency range of interest. Several values of such 

approximately constant parameters have been given by Novak (1974). 

9 .2.3 Mass damper 

When a tuned mass damper is connected to the nth (1 <n<N) mass of the 
superstructure by a damper dashpot and spring, its equations of motion, 

referring to Fig. 9.1 (c), are 
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y - Z + yt - Z + y + u + 8H 
d n n n 

} . . . . . . . . . . . . . . (9. 9) 

Where Md, Kd, cd and Yd are, respectively, the mass, spring stiffness, 

damping and absolute displacement of the damper; z is the relative 

displacement of the damper to the superstructure. 

The Fourier transform of Eq. 9.9 results in the following relationship in 

the frequency domain: 

-z-
Mdw 2 (yn + ~ + BHn) 

-Mdw' + Kd + iwCd 
..... (9.10) 

For the main structure, the resultant external force, Fn1, applied at the 

nth mass is 

Fnt - Fn + KdZ + cdz ................... (9.11) 

Its Fourier transform is 

................ (9.12) 

Eqs. 9.5, 9.6 and 9.10 are the basic equations of the soil-structure-mass 

damper system in the frequency domain. They are coupled with each other. 

9.3 Frequency Response Function of the System 

Frequency response functions represent a relation between the output 

and input of the system in the frequency domain and at a steady-state. 

Based on the basic equations and boundary conditions of the system, they 

can be derived in the following steps: 

Letting Fn1 replace Fn in Eq. 9.5, when j = n, one can repeatedly use 

Eq. 9.5 to the surface of the footing. The boundary conditions at the Oth 

storey (the footing surface) are y0 = ;? 0 = 0. Thus, 
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~+ 
yj 0 0 0 

~+ 0 0 0 
~~'j 

j j-1 j 

- < n [Tk] ) + ); ~-kUPsl > 
+ 

k-1 k-1 

w. M+ 0 0 
j 0 

~+ ~+ ~ ~ 

Qj Qo Fk F. 
J 

0 

0 

{<jf - j 
+ ak . u [ T ]) +a.[I]} 

k-1 s- +t 8 J 

0 

~ 

u 

0 

0 
j j 

+{(fak.Hk. n (T])+aJ .. HJ .. [I]} 
k-1 s-K+t s 

......... (9.13) 

0 

The top storey of the superstructure has a free boundary. By letting j 

= N, one can obtain a relation between the top state vector and the bottom 

state vector of the superstructure, namely, 

~+ 

YN 0 0 0 0 

~+ 

~~'N 0 0 0 0 

N 
- [A, ] + (B] + (C] + k~,[~+l] 

0 M+ 0 0 0 
0 

~+ ~ ~ ~ 

0 Qo u 8 Fk 
. (9.14) 
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where 

N 
(A]- n(T] (r-1, 2,···, N) 

r s-r s 

(~+,]-(I] 
........... (9.15) N -

(B]- k~1 ak (Ak+•] 

N -
(C]- k~,ak Hk(~+1] 

in which n is a chain product sign and the direction of the matrix 

multiplication is from k = r to k = N; [I] is a unit matrix; [ B ] is an 

influence matrix of the footing translation while [ c ] is an influence matrix 

of the footing rotation. 

Substituting Eq. 9.6 into Eq. 9.14, from the third and fourth rows of 

Eq. 9.14, we obtain 

M+ 
0 g, 1 g12 

where 

g - (d22a34 - d 1 2 a~ 4 )/A 
,j 1+1 1+1 1 

g - (d 11 a~ 4 - d 21 a~ 4 )/A 
2i 1+1 1+1 1 

A _ d2'd'2 _ d''d22 
1 

d''- a33+ b34C + cJ•c 
1 hm mm 

d'2 _ aJ•+ b34C + c34C 
1 hh mh 

d2' - a•J+ b••c + c••c 
1 hm mm 

d22 - a 14+ b44C + c 44C 
1 hh m h 

~ 

F 
1 

Fnt ........... (9.16) 

............. (9.17) 

.............. (9.18) 
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In the above 

the ij element of 

matrix [C]. 

equations, a~ is the ij element of 

matrix [ B ] and cii represents 
matrix [Ate ]; bii is 

the ij element of 

It should be noted that the resultant external force Fnt (transformed) in 

Eq. 9.16 is governed by Eq. 9.12 and Eq. 9.10. Therefore, Eq. 9.16 includes 

five unknown quantities, namely, M:t. ot. Yn, u and 8. If Eq. 9.12, Eq. 9.10 

and Eq. 9.6 are substituted into Eq. 9.16, two unknowns can be reduced 

and, after some algebra, the following equations can be derived: 

M+ k k 
0 1 1 1 2 

~+ 
k k Qo 21 22 ... 

where 

k - (e11g - e21g )/• 
2i 21 11 "'2 

while 

e 11 - 1 - D1g 10(Chm+ H0Cmm) 

e1 2
-- D g (Chh+ CmhH) 

1 tn n 

and 

- D g (C + C H ) 
1 20 hm mm o 

1 - D g (Chh+ CmhH ) 1 2n n 

~ 

F 
1 

k1N k 
10 

~ ~ 

F + .D y . (9.19) 
o 1 o 

k2N k 
20 

~ 

FN 

(I - 1, 2, ... N) ...... (9.20) 

............... (9.21) 

................... (9.22) 
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Up to now, Eq. 9.19 still cannot be solved because there are three 

unknowns involved in the two equations. 

Let j in Eq. 9.13 = n, and let 

n 
(A (n)]- 0 (T ] (r-1, 2, · · · ,n) 

r s-r s 

n 0 0 0 0 0 0 0 0 0 0 (9.23) 

[B (n)]- k~1 ilk [~+1 (n)] 

n 
(C (n)]- ~ilk Hk(A (n)] k-1 -1<+ 1 

Eq. 9.13 can be rewritten as follows: 

-+ 
Yn 0 0 0 

-+ 
~"n 0 0 0 

- [A (n) ] + [B(n)] + [C(n)] 
-+ 
M 1.¥- 0 0 

n 0 

-+ Q!- - -~ u 8 
0 

0 0 

0 0 

n-1 
+ ~[Ak (n)] + 

k-1 + 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (9.24) 

0 0 

- -Fk F 
nt 

The first and second rows of Eq. 9.24 do not include the resultant force 

(transformed) Fnt· After substituting Eq. 9.6 into Eq. 9.24, they can be 

rearranged into 

-+ d 11 (n) d 12 (n) M+ Yn 0 

+ 
-+ 
~"n d 21 (n) d

2
\n) -+ 

Qo 
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~ 

F 
1 

a
14

(n) a 1 4 (n) a
14

(n) 
~ 

F 
2 3 n 2 

+ ........... (9.25) 

a 24 (n) 
2 

a24(n) 
3 

a 24 (n) 
n 

~ 

F 
n-1 

where 

d 
11 

(n) 
1 3 1 4 

c
14

(n)C - a (n) + b (n)Chm + 1 mm 

d 1 2 (n) 1 4 14 1 4 
- a (n) + b (n)Chh+ c (n)Cmh 

1 

d 
21 

(n) 
23 24 

c
24

(n)C - a (n) + b (n)Chm+ 1 mm 

......... (9.26) 

d 22 
(n) 

24 24 24 
- a (n) + b (n)Chh+ c (n)Cmh 1 

in which akii(n}, t>ii(n) and cii(n) are the elements of 

[B(n)] and [C(n)] respectively. 

matrices [ Ak(n) ], 

Combining Eq. 9.19 and Eq. 9.25 results in 

~ 

F 
1 

~+ s s s s Yn 1 1 1 2 1N 1n 
~ ~ 

F + D1yn .(9.27) 
n 

~+ 
s s s s ~"n 2 1 2 2 2N 20 

~ 

FN 

where 

-d
11

(n)k + d
12

(n)k. 
14 

s 
1 I 

+ a, (n) 

} 
11 21 1+1 

- d
21 

(n)k 
22 24 

( 1-1. 2, ... , n-1) 
s 

21 
+ d (n)k

21 
+ a

1 
(n) 

1 I +1 
... (9.28) 

} (1-n, n-1, ... ,N) 

Now, from the first row of Eq. 9.27, the relative displacement of the 
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nth mass of the superstructure can be, in the frequency domain, expressed 

as 

~ N ~ 

y~- j~1+1{J ...................... (9.29) 

in which 

(j- 1, 2, ... N) ............ (9.30) 

Thus the relative displacement of the nth mass of the superstructure, yj\", 
is expressible in terms of the random wind excitation, known structural and 
soil parameters. It is of interest to note that, if the elements of the soil 

compliance matrix in Eq. 9.6 are equal to zero, namely, ii = 8 = o, Eqs. 

9.28, 9.29 and 9.30 are the same as those previously obtained for the case of 

rigid soil in Chapter 8. This agreement provides an additional partial check 
for the present results. 

Now, based on Eqs. 9.6, 9.10 and 9.19, the structural base shear and 

moment responses, the footing translation and rotation responses as well as 

the relative displacement response of the mass damper can also be expressed 
in the same manner. 

~ N ~ 
M+ - }: n .F 

0 j-1 1 J j 
N ~ 

(i+ -
0 

~ 

N ~ 
}: n F 

j-1 2j j 
N ~ 

u - }: X jF. 
j-1 1 J 

e - }: X .Fj 
j-1 2J 

............ (9.31) 

~ N ~ 

z - J~ 1 r 1 {J 
in which 

n1j - k1j - ~1s1j ; 

x1j - chmn1j + chhn2j 

n . - k . - ~ s . 
2J 2J 21J 

x . - c n . + cmhn . 
2J mm 1 J 2J 

r
1 

j - D (w • + X j + H X . ) 2 1J 1 n 2J 

k D 
1 n 1 

~1 - S D - 1 
1 n 1 

w2M 
d 

D - ----=----
2 

k D 
2n 1 

~ 2 - -,os ---;n.....-_--.1-
1 n 1 

(j-1, 2, ... ,N) 
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As for the top relative displacement and angular displacement of the 

superstructure, we can use a similar method, starting from the first and 

second rows of Eq. 9.14, to obtain 

~ N ~ 

y+ - ~ 8
2
jFj N j-1 

~ N ~ 

<f>+ - ~ 8
2

J.FJ. 
N j-1 

in which 

91 J - n + n D (it j 1 j 1 n 1 1 

92j - n + n D (it j 2j 2n 1 1 

n 
1 i 

- r11g 
1 I 

+ r1 2g 
2 I 

n 
21 

_ r21g . + r22g 
1 I 21 

1 1 1 3 
+ b14chm + r - a 1 

1 2 1 4 1 4 
r - a + b chh + 1 

2 1 23 
+ b24chm + r - a 1 

22 24 24 
r - a + b chh + 1 

} 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (9.33) 

+ x1j + H X .) 
n 2J 

+ x1 j + H X .) 
n 2J 

+ a14 (I - 1 ' 2, ... ,N) 
1+1 

+ 8 24 (j- 1 ' 2, ... ,N) 
1+1 

.(9.34) 
c,4c 

mm 
14c 

c mh 

c
24C 

mm 
24c 

c mh 

Eqs. 9.29, 9.31 and 33 are input-output relations in the (transformed) 

frequency domain in which Fj (j = 1,2, ... ,N) are the inputs and y0, M0, 6 0, 

u, ii, i, YN and &"N are the outputs. The outputs corresponding to various 
variables are also called the frequeney response functions. In the foregoing 

frequency domain analysis, the common factor eiwt of all steady-state 

sinusoidally varying quantities has been omitted. In addition some symbols, 

e.g., nd and il 2 j, which have been used in Chapter 8 are still used in this 
Chapter although these variables have slightly different meaning due to 

inclusion of footing and soil. 

General expressions for the state vector of any storey, say the mth 

storey, can also be obtained. They are summarised as follows: 

Let 
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m 
[A (m)]-11 [T] (r- '• 2 0 ooo,m) 

r s-r s 

[ Am+
1 
(m)] - [I ] 

0 0 0 0 0 0 0 0 0 0 o(9o35) 

then 

~ N ~ ~ N ~ 

Y+- ""E F 
m j~l 1 j j 

~ N ~ 
M+ - ): E oF o 

m J-• 3J J 

II'+ - ): E oF o 
m j-• 2J J 

~ N ~ 

~- ): E oF 0 

j-1 4J J 

} 0 0 0 0 0 0 0 0 0 0 0 (9036) 

where 

E o 

1 J 

E 0 

2J 

E o 

3J 

-II o(m) 
1 J 

- 11
2

j (m) 

- 11
3
j(m) 

+ D II (m)[v o +X o + H X j] 
1 m •J •J n 2 

+ D II (m)[v o +X o + H X o] 
1 m •J lJ n 2J (j-1, 2, o o o ,N) 

+ D II (m) [ v o + X
1 

j + H X o ] 

1 3n 1 J n 2 J 

E 0 - II 0 (m) + D II (m) [ v 0 + X 0 + H X o] 
•J •J ••n lJ lJ n2J 

II o(m) -
1 J 

II 0 (m) -
3J 

1 1 1 2 1 4 

{ 

t g 1j + t g 2j + aj+1(m) 

1 1 1 2 
t g, j + t g2j 

21 +t22 24() 

{ 

t g•J g2j + aj+l m 

21 2 2 
t g 0 + t g 0 

1 J 2J 

11
4

j (m) -{ 
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j - 1 , 2, ... , m-1 

j- m,m+t, ... ,N 

j - 1 1 2 1 • • • 1 ffi- 1 

j - m,m+t, ... ,N 

j - 1 1 2 1 o o o I ffi-1 

j - m,m+1, ... ,N 

j - 1 1 2 1 • • • 1 ffi-1 

j - m,m+t, ... ,N 

(9o37) 

(9o38) 



t
11

- a
13

(m) + b
14

(m)Ch + c
14

(m)C 
1 m mm 

t 1 2 1 4 
- a (m) 

1 

1 4 1 4 
+ b (m)Chh+ c (m)Cmh 

t21 23 24 24 
- a (m) + b (m)Ch + c (m)C 

1 m mm 

t22 24 
- a (m) 

1 

24 24 
+ b (m)Chh+ c (m)Cmh 

t" 33 34 34 
- a (m) + b (m)Ch + c (m)C 

1 m mm 

0 0 0 0 0 0 0 0 0 (9.39) 

t34 34 
- a (m) 

1 

34 34 
+ b (m)Chh+ c (m)Cmh 

t43 43 44 c 44 (m)C - a (m) + b (m)Chm+ 
1 mm 

t
44

- a~ 4 (m) + b
44

(m)Chh+ c
44

(m)Cmh 

in which aki(m), bii(m) and cii(m) are the (i,j) element of the matrix [ Ak,(m) ], 

[B(m)] and [C(m) ], respectively. 

Finally, the frequency response functions of the absolute displacement 

or angular displacement of any storey can be obtained by using 

Yt - y + ~ + 8H m m m 

~t - ~ + 6 m m 

0 0 (9.40) 
2, ••• ,N) 

in which yfn and ll'fu represent the absolute displacement and angular 

displacement of the mth mass; Ym and ll'm are the corresponding relative 

displacement and angular displacement. 

9.4 System Response 

Since the system in the present study is linear, the input-output 

relations in the frequency domain, e.g., Eq. 9.29 and Eq. 9.31, can be used 

to construct the relationships between the cross-spectral densities of the 

inputs Fj (j = 1, 2, ••• N) and those of the outputs, using the same definitions 

as described by Eq. 8.40. The alongwind turbulence spectrum expressed by 

Eq. 8.46 and the crosswind wake excitation spectrum by Eq. 8.49 are also 
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used in this Chapter. 

As a result, the spectral densities of the bottom moment, the bottom 

shear force, the nth mass relative displacement and absolute displacement, 

the translation and rotation of the footing and the relative displacement of 

the tuned mass damper can be derived as follows: 

N 
N * <I>M M (w) - .l J~tnli<~>F.F. (w)ntj 

0 0 1-t I J 

N 
N * <I>Q Q (w) - . l .l 0 I<I>F F (w)O • 

0 0 1-t j-t 2 i j 2J 

N 
N * <I> (w) - . l l (t .<I>F F (w)(t • 

ynyn 1-t j-t t I j j t J 

N 
N * 

cj> t t(W) - l .l (t I<I>F F (w)V • 
ynyn i-t j-t 2 i j 2J 

0 0 0 0 0 0 0 0 0 0 0 0 0 (9.41) 

N 
N * <I> (w) - . l l X .<I>F F (w)X . u u 1-t j-t t I j j t J 

N 
N * 

<1>8 8 
(w) - . l l X .<I>F F (w)X • 

1=1 j-t 21 I j 2J 

N 
N * 

<l>z z (w) - l .l r .<I>F F (w)r j 
i-t j-t t I j j 2 

The expression for the response at other locations of the superstructure 

can also be obtained by using Eq. 9.36 in the same manner. In addition, 

the power spectral density of the nth absolute acceleration response is given 

by 

4 
<l>ut ut(W) - W <I> t 
~n ~n Yn 

in which 

(t • - (t • + X j + X jH 
2J t J t 2 n 

which is derived from Eq. 9.40. 

0 0 0 0 0 0 0 (9.42) 

Since the present system is still a linear systems, both the mean wind 
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force and the mean system response can be computed separately. 

Consequently, the standard deviations of various system response quantities 

can be evaluated through numerical integrations. For those quantities in Eq. 

9.41 and Eq. 9.42, the standard deviations, namely the square-root of each 

variance, are given by 

- [ 
00 

(w)dw ]i; - [ 
00 i 

o-M I o <I>M M (TQ 1
0 

<I>Q Q (w)dw] 
0 0 0 0 0 0 

- [ 100 
<I> (w)dw]i. [ 00 i (T (T t - I <I> t t(w)dw] 

Yn 0 y y ' yn 0 YnYn n n 

100 <I> (w)dw]l:; 
00 

(w) dw ]i 
.(9.43) 

(T - [ (T8 - [ 1o <1>88 u 0 uu 

- [ 100<1> (w)dw]i; (Tyt - [ 
00 i (T I o <l>yt yt(w)dw] z 0 zz n n n 

In the above equations, one-sided power spectral density functions are 

used. 

9.5 Numerical Examples 

Two numerical examples and a computer program which have been used 

in Chapter 8 were modified to include soil flexibilty. The office tower is 

described first and then the TV tower because the numerical results show 

that the effect of soil on the wind-induced response of the 

structure-damper system is more important for the office tower than the 

TV tower. 

9.5.1 Office tower 

The superstructure is modelled as a 10-degree-of-freedom system 

taking into account both bending and shear. The structural data used in the 

analysis can be found in Table 8.4. For rigid soil (i.e., clamped case), the 

first three natural frequencies of the structure are 0.175, 0.569 and 1.333 Hz, 

respectively. 
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The square foundation is assumed to have an equivalent radius of 28.2m 

and an embedment ratio Ur 0 = 0.18. The stiffness of the soil is considered 

variable and is characterised by the shear wave velocity. The soil density Ps 

is considered constant and equal to 1800kg/m 3. The lowest shear wave 

velocity is lOOm/sec while the highest velocity is 600rn/sec. Shear wave velocities 
ranging from 150 to 250m/sec correspond to sands and higher than 600rn/sec correspond to 

bedrock. The stiffness and damping parameters in Eqs.9.7 and 9.8 are considered 

invariable. Variable parameters could also be considered if desired; 

however, for the purpose of considering the overall trends, constant 

parameters are adequate (Novak, 1974). 

The mass of the mass damper is considered constant and equal to 839 

tonnes (corresponding to the effective mass ratio of 3% for the first 

vibration mode of the main structure). The critical damping ratio from the 

dashpot is also .considered constant and equal to 5%. For rigid soil, the 

frequency of the damper is tuned to the first natural frequency of the 

structure and, therefore, the damper spring constant = 1015.4 kN/m. For 

compliant soil, two different cases are considered: one is keeping 

the spring constant equal to 1015.4 kN/m within the studied range of shear 

wave velocities; the other is to find the first natural frequnecy of 

soil-structure system and then tune the damper frequency to this system 

frequency. 

For the wind environment, the same data as in Chapter 8 are used. In 

order to make it convenient to read, however, these data are described 

again. The aerodynamic data pertaining to alongwind excitation are: 

v 1 0 = reference mean wind velocity at 10m height above ground = 15.9 m/s; 

a = exponent for the mean wind velocity profile power law = 0.25; 

zg = gradient height = 400m; v0 = gradient velocity = 40 m/s; 

Ca = drag coefficient = 1.2; Pa = air density = 1.2 kg/m 3; 

C 1 = 7.0 and K 0 = 0.01, constants in the wind spectrum. 

The aerodynamic data pertaining to wake excitation are; 

v 1 0 = 15.9 mls; 
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a = 0.25; 

q = lift coefficient = 0.4; 

s = Strouhal number = 0.12; 

B5 = constant related to the relative width of the relative spectral peak = 
0.26; 

a, and a 2 = nondimensional coefficients related to the correlation length = 
0.5 and 5, respectively. 

The first three natural frequencies are plotted vs shear wave velocity of 

the soil, as shown in Fig. 9.2. All the natural frequencies increase with 

increasing stiffness of the soil and approach the corresponding frequencies in 

the clamped structure. The first natural frequency of the soil-structure 

system, when the shear wave velocity is equal to 100 m/s, is only 54% of 

the fundamental frequency in the clamped structure. 

Figs. 9.3, 9.4 and 9.5 present the variation of the standard deviations of 

the alongwind office tower base moments, top total displacements and 

accelerations with various shear wave velocities of the soil. All standard 

deviation responses are normalised by the corresponding structural responses 

for rigid soil and without any mass dampers. In comparison with the 

responses of the structure-tuned mass damper system on rigid soil, soil 

compliancy decreases the base moment and top total acceleration responses, 

but increases the top total displacement responses of the soil-structure­

tuned mass damper system for alongwind turbulence excitation. When 

comparing these results with the responses of the soil-structure system 

without mass dampers, it was found that when the soil is extremely soft, the 

tuned mass damper is not an effective method to reduce soil-structure 

system responses. 

Power spectral densities of alongwind base moments and top total 

accelerations of office tower are shown in Figs. 9.6 and 9.7. Here the shear 

wave velocity of the soil, V5, is 300 m/s. It can be seen that the soil 

compliancy has the obvious effect of shifting the locations of resonance 

peaks to lower frequencies and reduces all the magnitudes of the resonance 

peaks. The mass damper, tuned to the system fundamental frequency, can 

significantly reduce the first resonance peak magnitude but cannot affect the 
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higher frequency resonance peaks , regardless of whether soil compliancy is 

being considered or not. It can also be easily seen that the wind-induced 

responses of the system with a tuned mass damper should involve more 

vibration modes. Considering only one mode for such a combined system 

may lead to non-conservative errors, for the controlled mode responses may 

become the same as or less than the other modes. This phenomenon is 

particularly obvious in top total acceleration response spectra of the office 

tower. 

Comparisons of standard deviations of the alongwind top relative 

acceleration and displacement of office tower with the total acceleration and 

displacement are shown in Figs. 9.8 and 9.9. For accelerations, the 

difference between relative responses and total responses is very small while 

the difference in displacement responses is very large and the difference 

increases with decreasing soil stiffness. 

Figs. 9.10, 9.11 and 9.12 show the variation of the standard deviations of 

the crosswind tower base moments, top total displacements and accelerations 

with various shear wave velocities of the soil. Under crosswind wake 

excitation, soil compliancy increases not only the top total dynamic 

displacement response but also the dynamic base moment and top total 

acceleration (for v5 < 250 m/s) responses, compared with the responses of 

the structure-mass damper system on rigid soil. 

larger when the soil becomes softer. 

This increase will become 

It is believed that the 

modification of the system natural frequencies causes the first natural 

frequency of the system to get closer to the vortex shedding frequency of 

crosswind wake excitation. As a result, the vibration energy absorbed by 

the tower from the vortex shedding significantly increases, and it is more 

than that dissipated through damping due to soil. This explanation is 

strengthened by the corresponding power spectral density functions as shown 

in Figs. 9.13 and 9.14. In both figures for the case with tuned mass 

dampers, the soil compliancy (v5 = 300 m/s) lowers the frequency of the 

first resonance peak but does not reduce the magnitude of the first 

resonance peak. 

From Figs. 9.10, 9.11 and 9.12, it is found that the mass damper should 

- 253 -



., 
" 

5.0 

4.5 

4.0 

~ 3.5 

~ 
0 
;l e 
.!! ., 
" ;;J 

3.0 

2.5 0 

5.0 

i 4.5 

:f 4.0 

~ 
3.5 

3.0 

2.5 0 

......... Relative Acceleration 

........... Total Acceleration 

Without TMD 

100 200 300 400 

........., Relative Acceleration 

.............. Total Acceleration 

500 600 

With TMD 

100 200 300 400 500 600 
Shear Wave Velocity (m/s) 

700 

700 

FIG. 9.8 COMPARISON OF STANDARD DEVIATIONS OF ALONGWIND 
ACCELERATIONS AT THE TOP OF OFFICE TOWER 

- 254 -



.......... s 
0 ......... ,.. 
Q) 

-= 4.5 0 
E-o 

Q) 
0 ..... .... 4 .0 .... 

0 
.... 3.5 0 

p,. 
0 

3.0 E-o 

"'ld 
I'll 2.5 .... 
~ 
Q) 

s 2.0 
Q) 0 0 
liS ...... 
p,. 
I'll ..... 
~ 

't1 

-~ 4.5 
~ 
0 

< 4 .0 
.... 
0 

I'll 3.5 
~ 
0 .... .... 

3.0 liS 
"f)! 
Q) 

~ 2.5 
't1 

~ 
't1 2.0 
~ 0 .... 

(/) 

FIG. 9.9 

With TMD 

100 

<HMHH~ Relative Displacement 
........._ Total Displacement 

Without TMD 

400 500 600 

-- Relative Displacement 
............... Total Displacement 

200 300 400 500 600 
Shear Wave Velocity (m/ s) 

700 

700 

COMPARISON OF STANDARD DEVIATIONS OF ALONGWIND 
DISPLACEMENTS AT THE TOP OF OFFICE TOWER 

- 255 -



1.1 

1.0 

0 .9 

0.8 

0.7 

0.6 

0.5 
0 

tHHHI-0 Compliant Soil 
~ Rigid Soil + TMD 
............... Compliant Soil + Constant TMD 
.........,.. Compliant Soil + Changeable TMD 

100 200 300 400 500 600 
Shear Wave Velocity of Soil (m/s} 

700 

FIG. 9 .10 VARIATIONS OF STANDARD DEVIATIONS OF CROSSWIND 
BASE MOMENT OF OFFICE TOWER WITH V ARIUOS SHEAR 
WAVE VELOCITIES OF SOIL 

2.5 

2.0 

1.5 

1.0 

0.5 
0 

CHHHH) Compliant Soil 
~ ........ Rigid Soil + TMD 
........,_....Compliant Soil + Constant TMD 
cw-1~ Compliant Soil + Changeable TMD 

100 200 300 400 500 600 700 
Shear Wave Velocity of Soil (m/s) 

FIG. 9.11 VARIATIONS OF STANDARD DEVIATIONS OF CROSSWIND 
TOTAL DISPLACEMENTS AT THE TOP OF OFFICE TOWER 
WITH VARIOUS SHEAR WAVE VELOCITIES OF SIOL 

- 256 -



'"d 

·~ 
Ul 
Ul 
0'"' li-<11.) 
t)ll= 
..... o 
oE-< 
(l'lll.l 

~ .~ o ..... .......... a;o 
·~-11.)0 

~p.. 
'"do ae--
'"d..., 
~ell 

....,tn 
rn~ 

0 ..... .... ...., 
Cell 

'"' tnll.l 
o-

. .... II.) 
-+-'0 
lilt> 
~< 

1.0 

0 .8 

0 .6 

0.4 

0 .2 
0 

; i ; --: 
-- Compliant Soil 
~ Rigid soil + TMD 
............... Compliant Soil + Constant TMD 
..........._. Compliant Soil + Changeable TMD 

100 200 300 400 500 600 700 
Shear Wave Velocity of Soil (m/s) 

FIG. 9 . 12 VARIATIONS OF STANDARD DEVIATIONS OF CROSSWIND 
TOTAL ACCELERATIONS AT THE TOP OF OFFICE TOWER 
WITH VARIOUS SHEAR WAVE VELOCITIES OF SOIL 

- 257 -



() 10 11 II) 
Vl 

........... 
'0 
cO 

10 14 

J.< 10 11 -- Rigid Soil ........... 
N - - Compliant Soil 
* 10 u * .......... 
El 

10 11 I 

~ 10 10 -....... 
10. II) 

> 
II) 

....:l 10 1 

'id 
10 7 J.< ...... 

() 
Q) 10. p. 

[IJ 

10 II 

6 

() 10 11 II) 
Vl 

........... 10 14 '0 
cO 
J.< 10 1S ........... 

N 
* 10 u * .......... 

-- Rigid Soil + TMD 
- - Compliant Soil + TMD 

s 
10 11 

I 

~ 10 10 ...._, 
....... 

10. Q) 

> .s 10 • 
....... 
cO 10., J.< ...... 
() 
II) 10 • p. 

[IJ 

10 I 

0 1 2 3 4 5 6 
Frequency (rad/sec) 

FIG. 9 .13 POWER SPECTRAL DENSITIES OF CROSSWIND 
BASE MOMENTS OF OFFICE TOWER 

- 258 -



......--. 10 
t") 

* * () 1 -- Rigid soil ~ 
fl) - - Compliant Soil * '"d 
cd 10 -1 ,.. 

.......... 
.......... 
C\l 

10 -· * * s 
....... 10 -I 
~ 
> 
~ 

....:I 

Cd 
10 -4 

,.. 
~ 10 -D () 
~ 
p.. 

(/) 

10 -· 0 1 2 3 4 5 6 

......--. 
t") 

10 

* * () 
1 ~ 

Cll 

* '"d 
cd 10 - 1 ,.. 

-- Rigid Soil + TMD 
- - Compliant Soil + TMD 

.......... 

.......... 
C\l 10 - a * * s 
...... 10 - I 
~ 
> 
~ 

....:I 

Cd 
10 -4 

,.. 
~ 10 - II () 
~ 
p.. 

(/) 

10 - II 

0 1 2 3 4 5 6 
Frequency (rad/sec) 

FIG. 9 .14 P OWER SPECTRAL DENSITIES OF CROSSWIND TOTAL 
ACCELERATIONS AT THE TOP OF OFFICE TOWER 

- 259 -



be tuned to the natural frequency of the soil-structure system. If the 

tuning frequency of the mass damper is still tuned to the fundamental 

frequency of the structure with a clamped base, the effectiveness of the 

mass damper will decrease and eventually the mass damper will become 

useless or even increase the system response when the soil is very soft. 

The variation of the standard deviations of the footing translational 

movement with various shear wave velocities of the soil are shown in Figs. 

9.15 and 9.16. The footing translation under crosswind wake excitation is 

much larger than the alongwind footing translation. The tuned mass damper 

does not affect the footing translation responses at all for both the 

alongwind and crosswind excitations. 

Tables 9.1 and 9.2 present standard deviations of ten dominant response 

quantities by integrating their corresponding power spectral densities for both 

the alongwind and crosswind excitations for rigid soil as well as for a soil with 

shear wave velocity of 300 m/s. It was found that the crosswind system 

responses were much larger than the alongwind system responses. 

9.5.2 TV tower 

The superstructure of the soil-tower-damper system is modelled as a 

9-degree-of-freedom system. The structural data can be found in Table 

8.4. In the clamped case, the first four natural frequencies of the structure 

without tuned mass dampers are 0.199, 0.334, 0.821, and 1.281 Hz, 
respectively. The foundation is a circular flat slab with a radius of 25.8m 

and an embedment ratio Ur 0 = 0.25. The same soil properties as in section 9.5.1 are used. 

The damper mass is considered constant and equal to 494 tonnes 

(corresponding to an effective mass ratio of around 6% with respect to the 

first vibration mode of the main structure); the critical damping ratio from 

the dashpot is also a constant equal to 5%. The damper spring stiffness is 

treated in the same way as the office tower-damper system. 

The aerodynamic data pertaining to alongwind excitation are: v 1 0 = 

26.41 m/s; zg = 300m; VG = 44m/s; Ca = 0.7; Pa = 1.2 Kg/m 3; c, = 7.0 and 
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TABLE 9.1 STANDARD DEVIATION RESPONSE OF OFFICE TOWER 
FOR ALONGWIND TURBULENCE EXCITATION 

Type 

Response 
variable 

W" (kN-m) 
0 

Q+ 
0 

(kN) 

YN (em) 

YN (mi 1-g) 

t (em) YN 
.. t 

(mil-g) YN 

lPN (rad) 

zd (em) 

u (em) 

8 (rad) 

V - 15.9 m;s 
1 0 

Rigid Sol I 

(without TMD) 

398,530 

2,330 

3.781 

7.666 

3.781 

7.666 

0.00036 

0 

0 

0 

TMD: Tuned Mass Damper 

Compliant Soil Rigid Soil Compliant Soil 

(without TMD) (with TMD) (with TMD) 

V - 300 m/s v - 300 m/s s s 

288,456 288,422 253,838 

1,605 1,895 1,476 

2.694 2.389 2.264 

3.258 5.967 2.829 

3.139 2.389 2.650 

3.368 5.967 2.833 

0.00023 0.00023 0.00019 

0 6.620 6.997 

0.007 0 0.008 

0.00002 0 0.00001 
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TABLE 9.2 STANDARD DEVIATION RESPONSE OF OFFICE TOWER 

FOR CROSSWIND WAKE EXCITATION 

Type 

Response 
Variable 

W (kN-m) 
0 

Q+ 
0 

(kN) 

YN (em) 

YN (mil-g) 

t (em) YN 
.. t 

(mil-g) YN 

~"N (rad) 

zd (em) 

u (em) 

8 (rad) 

ii - 15.9 m/s 
1 0 

Rigid Soil 

(without TMD) 

937,392 

4224.0 

10. 180 

11.498 

10. 180 

11.498 

0.00091 

0 

0 

0 

TMD: Tuned Mass Damper 

Comp I I ant Soil Rigid Soil Compliant Soil 

(wl thout TMD) (wl th TMD) (with TMD) 

V - 300 m/s s V - 300 mjs s 

779.887 634,741 674,769 

3687.9 2953.4 3206.9 

7.972 6.718 6.907 

6.924 5.837 5.003 

9.224 6.718 7.990 

7.970 5.837 5.758 

0.00069 0.00060 0.00061 

0 20.580 24.973 

0.019 0 0.017 

0.00004 0 0.00004 
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K 0 = 0.007. For crosswind wake excitation, the aerodynamic data are: v 1 0 

= 15 m/s; a = 0.15; c1 = 0.2; s = 0.22 and Bs = 0.32. The above mentioned 

aerodynamic data are the same as those in Chapter 8. 

Fig. 9.17 shows the variation of the natural frequencies of the tower 

with various shear wave velocities of the soil. For the TV tower-soil 

system, the modification of the natural frequencies of the system is much 

less than that for the office tower-soil system described previously. This 

may be attributed to the proportion of the foundation stiffness to the 

structure stiffness and the structural inherent properties. The first natural 

frequency of the soil-structure system, when the shear wave velocity is 

equal to 100 m/s, is about 85% of the fundamental frequency of the clamped 

structure. As a result, the shifting of the resonance peak locations to lower 

frequencies is also smaller, as shown in Figs. 9.18 to 9 .21. In these figures, 

one can observe that the soil compliancy mainly reduce the higher resonance 

response peaks while the tuned mass damper can considerably suppress the 

first mode vibration of the system. Therefore, the combination of soil 

compliancy and tuned mass damper gives satisfactory results. It is also seen 

that the contribution of the higher modes is rather significant for both 

alongwind and crosswind directions. 

The variation of the standard deviations of the tower base moments, 

turret total displacements and accelerations with various shear wave velocities 

of the soil are shown in Figs. 9.22 to 9.24 (for alongwind turbulence), and 

in Figs. 9.25 to 9.27 (for crosswind wake excitation). In comparison with 

the responses of the tower-tuned mass damper system on rigid soil, soil 

compliancy decreases the base moment and turret total acceleration responses 

of the soil-TV tower-tuned mass damper system not only for alongwind 

turbulence but also for crosswind wake excitation. The reduction of 

response in the crosswind direction is due to the decrease in the critical 

wind speed and the height at which that wind speed occurs, as well as to 

the increase in damping due to soil. The lowering of the critical wind 

speed range indicates that most severe wind load range along the tower 

height approches the tower base and causes less vibration. Tables 9.3 and 

9.4, in which eleven dominant response quantities are presented, also give an 

insight into other system responses, especially for the tuned mass damper. 
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TABLE 9.3 STANDARD DEVIATION RESPONSE OF TV TOWER 
FOR ALONGWIND TURBULENCE EXCITATION 

Type Rigid Soil Compliant Soil Rigid Sol I Comp II ant Soil 

(without TMD) (wl thout TMD) (with TMD) (with TMD) 
Response 
Variable V - 300 m/s v - 300 m/s s s 

w (kN-m) 152,144 
0 

136,310 111,106 101,179 

Q+ (kN) 947.3 807.6 789.4 664.1 
0 

YN (em) 38.502 34.304 24.773 23.334 

lPN (rad) 0.00628 0.00546 0.00460 0.0041 

Y, (em) 4.863 4.435 3.264 3.116 

Y, (mil-g) 11.104 9.073 7.598 5.987 

t (em) 4.863 4.625 3.264 3.254 Y, 
.. t (mil-g) 11. 104 9.899 7.598 6.141 Y, 

zd (em) 0 0 7.650 7.633 

u (em) 0 0.005 0 0.004 

0 (rad) 0 0.00001 0 0.00001 

V - 26.41 m/s 
1 0 

TMD: Tuned Mass Damper 
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TABLE 9.4 STANDARD DEVIATION RESPONSE OF TV TOWER 
FOR CROSSWIND WAKE EXCITATION 

Type Rigid Soi I Compliant Soil Rigid Soil Compliant Soil 

(without TMD) (without TMD) (with TMD) (with TMD) 
Response 
Variable V - 300 m/s V - 300 m/s s s 

w- (kN-m) 106,810 
0 

91,438 55,781 46,610 

Q+ 
0 

(kN) 609.4 499.7 406.3 306.9 

YN (em) 29.490 25.568 15.940 14.997 

I"N (rad) 0.00470 0.00402 0.0031 0.00281 

Y, (em) 3.546 3.073 1.598 1.433 

Y, (mil-g) 8.481 6.913 4.893 3.892 

t (em) 3.546 3.202 1.598 1.496 Y, 
.. t 

(mil-g) 8.481 7.218 4.893 4.080 Y, 

zd (em) 0 0 5.741 5.649 

u (em) 0 0.003 0 0.002 

8 (rad) 0 0.00001 0 0.00000 

V - 15 m/s 
1 0 

TMD: Tuned Mass Damper 
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9.6. Conclusions 

A theoretical framework has been developed to analyse the effects of 

both tuned mass dampers and soil compliancy on the wind-induced response 

of slender structures. The frequency-dependent properties of soil and the 

contributions of higher modes can be conveniently introduced into the 

analysis of the soil-structure-mass damper system in terms of a transfer 

matrix formulation. Non-periodic superstructures can also be considered in 

this theoretical framewark. 

For soil-structure systems, 

locations of resonance peaks 

soil compliancy has the effect of shifting the 

to lower frequencies. The soil-structure 

interaction effects depended on a number of factors including soil, footing, 

structure and the nature of external excitations. In most cases, the general 

trend of the soil-structure interaction effects was to reduce the structural 

response. However, the example of an office tower showed that, for soft 

soil, soil compliancy increased the total displacement responses in both 

alongwind and crosswind directions. 

For damper-structure systems on rigid soil, the tuned mass dampers 

demonstrated effectiveness in suppressing both the alongwind and crosswind 

induced dynamic response of structures. In order to achieve such high 

effectiveness, an important condition is that the mass damper should be 

tuned to the natural frequency of the structure, especially for the smaller 

effective mass ratios. 

For soil-structure-damper systems, particularly when the soil was very 

soft, the tuned mass damper was not an effective method to reduce 

soil-structure system responses. For moderately stiff soil, the mass damper 

should be tuned to the natural frequency of the soil-structure system rather 

than the natural frequency of the structure with a clamped base. The 

effectiveness of the mass damper decreased with decreasing stiffness of the 

soil. 

In comparison with the responses of the damper-structure system on 

rigid soil, the numerical examples showed that, under alongwind turbulence 
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excitation, soil compliancy decreased the base moment and total acceleration 

responses of both the office tower and the TV tower, but increased total 

displacement responses. For shear wave velocities of soil V s < 250 m/s and 

for the dynamic base moment, total top dynamic displacement and 

acceleration, the responses of the office tower-damper system were 

increased under crosswind wake excitation. It is believed that the 

modification of the natural frequencies of the system caused the first natural 

frequency of the system to get closer to the vortex shedding frequency. 

Consequently, the vibrational energy absorbed by the tower due to the 

vortex shedding process was significantly increased and exceeded that 

dissipated through damping due to the soil. On the other hand, soil 

compliancy decreased the same responses of the TV tower-damper system 

under crosswind wake excitation. The reduction in responses was due to 

the decrease in the critical wind speed and the height at which that wind 

speed occured, as well as to the increase in damping due to the soil. The 

assumption that the structure is clamped at its base with no displacements 

was still satisfactory when both foundation and soil were stiff enough. 

Based on these results, it is important to consider the effect of soil on the 

wind-induced response of the structure-damper system, especially for office 

towers under crosswind wake excitation and when the soil is soft. 
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Clulpter 10 

GENERAL CONCLUSIONS AND RECOMMENDATIONS 

The main aims of the research conducted in this thesis were given in 

Chapter 1 as: 

(a) To evaluate, by using aeroelastic model tests in wind tunnel, the 

effectiveness of passive tuned mass dampers (TMDs) in suppressing tall 
building vibrations induced by alongwind turbulence excitation, crosswind 

wake excitation, lock-in excitation and torsional excitation. 

(b) To provide, by combining experimental results with theoretical analysis, 

a reliable and economical method of determining optimum design parameters 

of passive TMDs for wind-excited tall buildings. 

(c) To perform parametric studies of a suboptimal active mass damper 
control system and to estimate its effectiveness in reducing wind-induced 

building vibration compared with passive TMDs. 

(d) To address a new approach that facilitates the mitigation of 

wind-induced motions of slender structures by utilising tuned liquid column 

dampers. 

(e) To assess the effect of soil compliancy under the footing of slender 

structures on the effectiveness of TMDs arranged on the slender structures. 

The secondary considerations accompanying the main aims were given as: 

to investigate wind-induced torsional vibration of tall buildings by using 

aeroelastic modelling technique in wind tunnel tests; and to examine mode 

shape corrections which are applicable to the simple aeroelastic tests of tall 
buildings in wind tunnel. 
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The major conclusions of the research project and a number of 

recommendations for further research are described in the following sections. 

10.1 Conclusions 

10.1.1 Control of alongwind and crosswind vibrations by TMDs 

The results of the aeroelastic tests demonstrated the effectiveness of 

TMD . system in reducing the dynamic response of the building induced by 
wind excitations of different mechanisms. The TMD system reduced the 

vibration caused by alongwind turbulence excitation, partial incidence 

turbulence in crosswind direction and crosswind wake excitation by 20% to 
40%. The TMD system was found to be more effective in reducing the 

vibration caused by lock-in excitation by a factor 2 or more. 

TMD system usually increases the overall effective damping of building 

rather than change the wind loads acting on the building. However, under 
motion-dependent lock-in excitation, not only can the TMD absorb most of 
the vibrational energy which concentrates at the natural frequency of the 

building, it can also change both the magnitude and mechanism of the 
external wind excitation. 

10.1.2 Torsional vibration and control by TMDs 

The aeroelastic modelling technique for pure torsion vibration was found 
to be a convenient and efficient way to explore the mechanism of wind­

induced torsional excitation and to predict the wind-induced torsional 

response of tall buildings. This technique allows some aeroelastic effects to 

be considered and the effectiveness of passive control systems can also be 
readily demonstrated. 

From the basic rectangular building model tests, it was shown that the 

maximum dynamic response occurred at around 0°, i.e., with wind incidence 
normal to the narrow face of the rectangular building. The maximum mean 

torque occurred at 10 o and 60 °. The experimental results also showed that 
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the torsional responses were essentially normally distributed and the torsional 

aerodynamic damping was small in the reduced wind velocity range studied. 

With the wind incidence normal to the wide face of the building, vortex 

shedding is the dominant mechanism of torsional excitation. With the wind 

incidence normal to the narrow face, there are two important excitation 

mechanisms: incident turbulence which exerts its influence mainly on the 

windward halves, and flow re-attachment intermittencies on the leeward 

halves of the two side faces of the building. 

For the eccentric model with a 10% geometric eccentricity ratio, the 

maximum dynamic torque still occurred at around O• and 180•, while the 

maximum mean torque was recorded at 120•. At a reduced wind velocity 

of 8, the maximum dynamic torque of the eccentric model increased by 30% 

and the maximum mean torque increased by a factor of 2 or more, 

compared with the values of the basic model. 

For the eccentric model with a TMD, the results showed that there was 
up to a 30% reduction in response for wind incidence normal to the wide 

face of the building and a 45% reduction for wind incidence normal to the 

narrow face. The effectiveness of the TMD was also found to be 

dependent on the type of torsional excitation. 

10.1.3 Parametric study of TMDs 

A proposed semi-analytical method, combined with conventional 

aeroelastic test or other wind tunnel test techniques, can provide a reliable 

estimate of the reduction of the building motion and optimum design 

parameters of the TMD, without having to perform a series of wind tunnel 

tests of the building with different TMDs. The effects of wind intensity 

and direction, surrounding environment, building size, shape, mass, stiffness, 

and natural damping on the response reduction of the building can readily 

be investigated. The results obtained by this semi-analytical technique were 

in good agreement with the corresponding experimental results. 

In contrast, the conventional parametric study method, which is based 
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on a white noise excitation model, usually overestimates the effectiveness of 

TMDs for most real situations. It is believed that the inability of the white 

noise excitation model to simulate the locations of the peaks in the wind 

excitation spectra relative to the natural frequency of the building-TMD 

system and the magnitudes of the spectral peaks causes the difference 

between the theoretical and experimental results. 

10.1.4 Mode shape corrections 

Sources of error caused by the discrepancy between the building model 

and prototype mode shapes were identified for the aeroelastic modelling 

technique. Two limiting values of error, for low and high correlations of 

wind loads with height, were discussed. Three mode shape correction 

factors, for alongwind, crosswind and torsional responses respectively, were 

suggested to adjust the experimental response results to the corresponding 

prototype values. The results obtained by the proposed expressions were in 

reasonable agreement with the available experimental results. 

10.1.5 Active mass dampers 

The semi -analytical method was also used to investigate the 

effectiveness of a suboptimal active mass damper control system. The 

results showed that the effectiveness of passive tuned mass dampers can be 

considerably enhanced by the inclusion of a suboptimal active control 

system. The analysis of the frequency response functions indicated that the 

active control system modified the structural characteristics, leading to a 

significant reduction of structural vibration. 

The results of parametric studies of the active control system showed 

that, in general, the responses of the building and the damper can be 

decreased by increasing the control force or moment, that is, by increasing 

the feedback gain T and the proportional constant Kt. However, the 

response of the building and the damper, and the control force were very 

sensitive to small variations of the normalised loop gain e in the region 0 < 
e < 1. Therefore, setting of the loop gain within this region is 

undesirable in practice. The most beneficial control parameters can be 
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readily determined from generalised design contours which are expressed as 

functions of dimensionless feedback and loop gains. 

10.1.6 Tuned liquid column dampers 

A transfer matrix formulation for non-periodic structures has been 

developed to analyse the effect of liquid column dampers (TLCD) and 

liquid column/mass dampers (TLCMD) on the wind-induced response of 

slender structures. The numerical computer accuracy of direct matrix 

multiplication was investigated and the results indicated that the accuracy of 

the computed results can be guaranteed. Two numerical examples of full­

scale slender structures showed that both TLCD and TLCMD can 

significantly reduce the structural response. TLCD systems, which have 

significant practical advantages, can achieve the same motion reduction level 

as passive mass dampers. However, the liquid motion in a TLCMD system 

may reduce the effectiveness of the damper if the frequency of the liquid 

column is the same or less than the frequency of the whole damper. 

Therefore, a higher frequency ratio x, should be selected for TLCMD 

system. 

For the slender TV tower example, when a damper was tuned to the 

fundamental frequency of the main structure, the contribution of the higher 

modes of vibration to force and acceleration type responses was significant. 

Therefore, considering only the controlled mode in the analysis may lead to 

misleading and non-conservative results because the responses of the higher 

modes can become as large as or even larger than the response of the 

controlled mode. For the office tower example, it was found that the 

contribution of the higher modes of vibration to force and acceleration type 

responses was significant only for alongwind excitation. For crosswind wake 

excitation, the response was dominated by the first mode of vibration. 

10.1.7 Soil-structure-mass damper interaction 

The transfer matrix formulation for non-periodic structures was also 

used to analyse the effect of soil compliancy on the wind-induced response 

of slender structures equipped with mass dampers. The frequency-
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dependent properties of soil and the contributions of 

vibration can be conveniently introduced into the 

soil-structure-mass damper system. 

higher modes of 

analysis of the 

The numerical results showed that, when the soil was very soft, the 
mass damper was not an effective method to reduce soil-structure system 

responses. For moderately stiff soil, the mass damper should be tuned to 

the natural frequency of the soil-structure system rather than the natural 

frequency of the structure with a clamped base. 

In comparison with the responses of the damper-structure system on 

rigid soil, the numerical examples showed that, under alongwind turbulence 

excitation, soil compliancy decreased the base moment and total acceleration 

responses of both the office tower and the TV tower, but increased the 

total displacement responses. For shear wave velocities of soil V s < 250 

mls, the dynamic base moment, total top dynamic displacement and 

acceleration responses of the office tower-damper system were increased 

under crosswind wake excitation. It is believed that the modification of the 

natural frequencies of the system caused the first natural frequency of the 

system to get closer to the vortex shedding frequency. Consequently, the 

vibrational energy transferred to the tower due to the vortex shedding 

process was significantly increased and exceeded that dissipated through soil 

damping. On the other hand, soil compliancy decreased the same responses 

of the TV tower-damper system under crosswind wake excitation. The 

reduction in responses was due to a decrease in the critical wind speed and 

the height at which that wind speed occurred, as well as to the increase in 

soil damping. 

10.2 Recommendations for further research 

(a) In this thesis, the aeroelastic test of alongwind and crosswind vibration 

control were carried out on a 1:400 sacle CAARC model in a suburban 

boundary layer wind model while the torsional vibration control experiment 

was conducted on a same scale rectangular tall building model in an open 

country boundary layer wind model. The structural damping ratios of both 
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building models were respectively assumed to be 1.0% and 1.2%. Although 

the experimental results have showed the effectiveness of the TMD systems 

in suppressing the wind-induced alongwind, crosswind and torsional 

vibrations within these test conditions, it is desirable to collect more data on 
the behaviours of passive mass dampers with sufficient variation in 

parameters such as building shape, building size, structural damping ratio, 

turbulence intensity level, mean velocity profile and surrounding wind 

environment. 

(b) The torsional vibration experiments conducted in this thesis were 

preliminary and limited as the main aim of the project was vibration control 

of wind-induced tall/slender structures. It is possible, by using the present 

aeroelastic torsion test rig, to provide information on the torsional instability 

and the sensitivity of torsional response or excitation to changes in the 

structural damping, the turbulenceintensity and the building configuration. 

Torsional interference between tall buildings is also an interesting research 

topic. With the accumulation of generalised torsional excitation spectra of 

different buildings, a generalised design procedure similar to the crosswind 

response prediction procedure proposed by Kwok(1982) can be developed. 

(c) Some theoretical studies on coupled translational- torsional vibration of 

wind-induced tall buildings indicated that the offset between the center of 

mass, stiffness and aerodynamic force may significantly increase the structural 

response because of the inertial and elastic coupling effects. However, the 

information on the corresponding experimental study in wind tunnel is very 

limited. Based on current research experience and results of seperate 

translational and torsional vibrations of wind-induced tall buldings and their 

control, experiments should proceed to investigate the coupled vibrations 
of tall buildings. 

(d) Based on the measured wind excitation or response spectra in wind 

tunnel and the tested aeroelastic building models, a semi-analytical method 

of selecting the design parameters of active mass dampers and estimating the 

motion reduction of both building and damper was proposed in this thesis. 

This method has significant practical advantages. For passive TMD control 

system, the results obtained by this semi-analytical method were found to 
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be in good agreement with the experimental results. With further 

refinement and development to the existing experimental technique, active 

mass damper control system can be studied experimentally to verify the 

results obtained by the semi-analytical method. 

(e) In the present study of liquid column damper systems, the liquid 

column dampers were uni-directional. For practical application, bi­

directional tuned liquid column dampers should be investigated. Such 

investigation may be conducted after the basic motion equations of the 

bi-directional TLCD is obtained through the corresponding experiments. 
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NOTATION 

The following symbols are used in the thesis. The notation for less 

commomly used variables is defined in the text as the quantities are 

introduced. Roman characters are listed first, followed by Greek characters. 

A 

b 

B 

c* 

-Cross-sectional area of the structure; Area of the 

structure normal to the wind 

- Width of the struc·cure normal to the wind 

-Width of the liquid column 

- Constant related to the spectral peak width 

-Generalised damping 

- Drag coefficient 

- Damping coefficient of the mass damper 

- Lift coefficient 

C0 (z 1 ,z 2 ,n) -Co-spectrum of fluctuating wind 

-Equivalent damping coefficient of the liquid 

column damper 

- Frequency dependent damping coefficients 

due to sol I 
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D 

ds 

E 

F 

g 

G 

h 

H 

[ I ] 

k* 

- Diameter of the structure 

-Elemental length of the building perimeter 

Elastic modulus of the structure 

- Vortex shedding frequency 

- Force 

-Acceleration due to gravity 

-Shear modulus of soil beneath the footing base 

-Shear modulus of soil adjacent to the footing sides 

-Height of the building model 

- Height of the jth storey unit 

- Height of the structure above the ground 

-Mechanical admittance function or frequency response 

function between x andy 

-Moment of inertia 

- Identity matrix 

- Longitudinal turbulence Intensity 

-Generalised stiffness 

- Stiffness of the mass damper 

- Surface drag coefficient 
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L 

Ls 

m(z) 

m* 

iii 

M 

n 

p 

Q 

-Rotation stiffness of the structure 

- Frequency dependent spring coefficients 

due to sol I 

-Length; Length parameter; Footing 

embedment depth 

- Length associated with the external air flow 

- Length associated with the structure 

- Mass per unit height of the structure 

-Generalised mass 

-Total mass of the footing 

- Bending moment 

- Mass of the mass damper 

-Liquid mass of the liquid damper 

- Frequency 

- Fundamental frequency of the structure 

- Frequency associated with the external air flow 

-Air pressure; Probability; Active control force 

- Shear force 

- Torque arm of the element ds 

- 287 -



-Radius of the cylindrical footing or equivalent 

radius of a rectangular footing 

R(z 1 -z 2 , n) - Cross-correleration function 

s 

T 

T 

[T] 

u 

V(z) 

-Autocorrelation function of response x 

- Strouhal number 

-Power spectral density function of white noise 

excitation 

-Power spectral density function of the longitudinal 

fluctuating velocity at height z 

-Power spectral density function of the structural 

response x 

- Base torque of the structure; Natural period; 

Truncation time 

- Base mean torque response of the structure 

- Transfer matrix 

-Translation of the footing 

-Translation of the gravity centre of footing 

- Mean longitudinal velocity at height z 

- Mean longitudinal velocity at gradient height zg 

- Reduced velocity 
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W(z) 

x, y, z 

z 

z 

- Mean wind load at the height z 

- System of rectangular Cartesian coordinates 

- Elevation change of the liquid column 

- Mean alongwind response of the structure 

- Height above ground 

- Gradient height 

- Reference height 

-Relative displacement of the damper 

-Mean wind approach angle; Exponent for the mean 

wind speed profile 

- Mode shape parameter; Damping coefficient 

of the structure 

-Relative embedment depth of the footing 

-Normalised loop gain 

-Damping ratio 

- Damper damping ratio 

-Aerodynamic damping ratio 

-Total damping ratio 

-Mode shape correction factor 
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8 

1f 

p 

Pa 

Ps 

-Twist angle of the structure; Rotation 

of the footing 

- Mean twist angle response of the structure 

- Integral length scale of longitudinal turbulence 

at heigh h 

-Mass moment scale of inertia 

-Rotation stiffness scale 

- Geometric scale 

- Mass scale 

- Velocity scale 

- Time scale 

- Structural density scale 

-Air viscosity; Mass ratio 

-Building generalised response; Coefficient of head loss 

- Liquid density 

-Air density 

-Density of the structure; Soil density 

- Standard deviation base torque response of 

the structure 
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T 

~(z) 

~xx(n) 

X 

w 

-Standard deviation of longitudinal fluctuating 

velocity at height z 

- Standard deviation alongwind response of the structure 

- Standard deviation crosswind response of the structure 

- Standard deviation relative displacement of the damper 

-Standard deviation twist angle response of 

the structure 

-Time delay; Normalised feedback gain 

- Angular displacement 

- Modal shape 

-Power specrtal density function of 

random variable x 

- Frequency tuning 

- Angular frequency 
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APPENDIX A 

FREE DECAY VIBRATIONS OF 

A TWO--DEGREE-OF-FREEDOM SYSTEM 

In aeroelastic tests of a tall building with a tuned mass damper, the 

damper model is usually so small that it is not easy to measure directly the 

damper damping without non-contact laser or other displacement meters. 

The analysis of free dacay vibration of a two-degree-of-freedom system 

can provide an alternative way to determine the damper damping indirectly. 

Furthermore, it is possible, when some particular initial conditions of the 

system are satisfied, to show effectiveness of TMDs by free vibration decay 

traces of the building with and without a TMD. 

The free vibration equations of the building-mass damper system with 

viscous damping are 

*·· *· * . . m
1
y

1 
+ c y + k y - c (y - y ) - k (y - y ) - 0 

11 11221 221 

} (A. 1) 

m y + c (y. - y ) + k (y - y ) - 0 
22 22 1 22 1 

The meaning of all parameters in this equation is the same as that in 

Eq. 5.10. 

If the system is a lightly damped system, the solution of Eq. A.l can be 

simplified to 

~ e-t,w,t (A cosw t +A slnw t) 
21 3 2 4 2 

(A.2) 

e-t2w2t (A cosw t +A slnw t) 
3 2 4 2 

where w, and w2 are the first and second undamped natural angular 
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frequencies of the system. They can be calculated by the following formula: 

w2 
1 ' 2 

where 

* * mk +mk +km.j:9 
12 21 22 

* 2m m 
1 2 

9 - j m* 2k2 + m2k* 2+ k 2m2 - 2m*m k*k + 2m*m k 2 + 2m 2k*k 
12 21 22 1212 122 212 

(A.3) 

<1>, , and <1> 2 , are the undamped amplitude ratio of the first and second mode 

of the system. They can be expressed as 

k 
<I> 

1 1 

2 
k* + k w2 m* 

1 2 1 1 
(A.4) 

k 
2 

k* + k - w2m* <I> 
2 1 

1 2 2 1 

t, and t 2 are the first and second mode damping values (fraction of critical 

damping). They are expressed as 

t 
c <f>2 + (<f>2 - 2<1> + 1)c 

1 1 1 1 1 1 1 2 
1 2w (m*<f> 2 + m ) 

1 1 1 1 2 
(A.S) 

c <f>2 + (<f>2 - 2<1> + 1 )c 
1 21 2 1 2 1 2 t 

2w (m*<f> 2 
+ m ) 

2 1 2 1 2 
2 

with the assumption that the off-diagonal term, c 1<1> 21 <1> 11 + (<1> 21 <1> 11 - <1> 11 -

<I> 2 , + 1 )c 2 , is small and can be neglected. 

Finally, the constants A 1 to A 4 can be determined by the initial 

conditions y 1 0 , y 20 , y, 0 and y20 (at time t = o) as follows: 

Y,o - <I> 21 y 2 0 Y,o + t w y - <I> (y + t w y ) 
A A 

1 1 10 21 20 1 1 2 0 - <I> ij) - w 1 (<I> 11 il>2,> 1 2 
1 1 2 1 

(A.6) 

<I> ,,Y 2 o - y 1 0 <I> (" + t w y ) - (y 1 0 + r w y > 
A A 

1 1 y 2 0 2 2 20 2 2 10 - <I> - ij) - w2 (<I> 11121) 3 4 -1 1 2 1 1 1 
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If the initial displacements exactly match the pattern of the first mode 

(y 1 0/y 20 = <1> 11 ), while y1 0 = y20 = 0, then A 3 = A 4 = 0, A 2 "' 0 and A 1 = 

y20 • Therefore, the response becomes 

-r,w,t Y
1 

- y
10

e cosw
1

t 

-r ,w, t 
y 

2 
- y 

2 0 
e cosw 

1 
t l (A.7) 

which consists of pure first-mode response. 

Based on the above formulae, the damper damping can be determined 

as follows: (1) to calculate w 1 and <1>, 1 in Eqs. A.3 and A.4; (2) to measure 

free vibration decay trace of the building model with the TMD according to 

the initial conditions, i.e., :Y, 0= :Y 2 0= o and y, ofy 2 0 = <1>, , ; (3) to calculate r 1 

by using the measured free decay trace and then c 2 through Eq. A.5. If 

one hopes to compare the effectiveness of TMDs by using free vibration 

decay traces of the building with and without the TMD, the free decay 

trace of the building-TMD system theorectically should be obtained by 

using the abovementioned initial conditions. In some cases, if the initial 

conditions of :Y, 0 =y 2 0 =0 and y, 0 =y 2 0=constant are used, a phenomenon known 

as beating may be observed because the natural frequencies of both building 

and damper are very close to each other. Fig. A.l shows an example which 

was obtained through the free vibration test of the torsional model in 

Chapter 4. 
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IN TORSIONAL BUILDING-MASS DAMPER SYSTEM 
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APPENDIX B 

ACCURACY OF NUMERICAL COMPUTATION FOR NON-PERIODIC 

STRUCTURES BY THE TRANSFER MATRIX APPROACH 

Many wind sensitive structures can not be simplified into periodic 

structures as discussed by Lin (1969), Yang and Lin (1975, and 1980). 

Therefore, the matrix multiplication operation is unavoidable when 

computing the product chain of the matrix, e.g., [Ar] in Chapters 8 and 9. 

When the product chain is long, the round-off error associated with the 

matrix multiplication operation should be investigated. For this purpose, an 

analytical procedure was derived (following Lin, 1969) for the computation 

of the elements of the periodic cantilever structure matrix [ Ar ], without 

using the iterative matrix multiplication. The results were then compared 

with those obtained by direct matrix multiplication so that the round-off 

errors could be assessed. 

Assuming the structural properties do not change from floor to floor, or 

from unit to unit, one can calculate the matrix [T ]n (n = 1, 2, ••• ,N) in place 

of the matrix [ Ar] (r = 1, 2, ..• ,N). Because of certain properties of transfer 

matrixes (Lin, 1969), [T ]0 can be considerably simplified. In particular, the 

determinant of the transfer matrix, [ T ], is equal to unity and the 

coefficients in the characteristic equation are symmetrically arranged. For 

the type of structure described in this thesis, the characteristic equation has 

the form 

IT- ~II-~·- 2~ ~a+ 2~ ~ 2 - 2~ ~ + 1- 0 
1 2 1 

. . . . . . . . . (B.l) 

where 2~ 1 = 4 + h 2ab 

2~ 2 = 6 - 4h2ab 

a = mw 2 - if3w (= a) 

b = h/6EI 

The symmetry in the characteristic equation implies that the eigenvalues 
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are reciprocal pairs; i.e., for every eigenvalue, x j• there exists another equal 

to Xj 1 • 

It is convenient to cast the eigenvalues in the form of x = ei8. Then, 

substituting ei8 into Eq. B.l, one obtains a quadratic equation in terms of 

cos8: 

2cos 2 8 - 2~ 1 cos8 + (~ 2 - 1) = 0 . (B.2) 

The roots of cos8 can be obtained analytically as follows: 

cos8 1 - ~ 1 /2 + / ~f/4 - (~ 2 - 1)/2 _ z 1 

cos8 2 - ~ 2/2 - / ~~/4 - (~ 2 - 1)/2 - z 2 
} . . . . . . . . (B .3) 

Note that z1 and z 2 are generally complex. Then to evalute 81 and 8 2 

we may use the formulae: 

8j- -lln(zj + 1 zj- 1) j _, , 2 . (B.4) 

By use of the Cayley-Hamilton theorem, it may be shown that any 

analytical function of a k x k matrix can be expressed as a linear 

combination of any other k-independent analytic functions of the same 

matrix. Therefore, [ T :f may be expressed as 

[ T ]n - f (a [ T ]J + [ T]- j + b [ T jJ - [ T]- j) 
j-1 j 2 j 2 ...... (B.5) 

in which a; and bj are evaluted by substituting different eigenvalues of [T] 

in place of [ T ] as follows: 

cos(n8 1) - f ajcos{j8 1) 
j-1 

sln(n8 1) - f bjcos(j8
1

) 
j-1 

} ................. (B.6) 
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Thus, if coso, ., coso 2 

cosnO cos20 - cosnO cos20 
1 2 2 1 

a 1 - _c_o_s O.,--c:..o_s~2'""'0,..--:'---_-c-o-s ""o ...:c:...o'"'s'"'2'""'0,....:. 
1 2 2 1 

cosO cosnO - cosO cosnO 
1 2 2 1 

a 2 - -c-o s_O.,....:...c_o-s""2'"'o,..:... ___ c_o_s""O :..c_o_s~2'""'0,...:. 
1 2 2 1 

slnnO sin20 - slnnO sln20 
1 2 2 1 

b , - -s"'"i-n""O _s.:....,..l n""2'"'o,..--::... __ s"""i-n"""O -s-l;..n~2'""'0;--...:.. 
1 2 2 1 

sinO slnnO - sinO slnnO 
--,--..,.~·~~~2:..___..,._.,.:..2~..,...,~·~ 

b2 - sinO sin20 - sinO sin20 
1 2 2 1 

. . . . . . . . . . . . (B. 7) 

When coso, = coso 2 = 11-,12, i.e., when o, approaches o 2 , these 
coefficients are obtained as follows: 

a -
1 

a -
2 

2 cosnO sin20 + nslnnO cos20 

slnO(l + 2cos 2 0) 

ncosO slnnO - sinO cosnO 

slnO(l + 2cos 2 0) 

b = ncosnO cosO slnnO cos28 

s ln 3 8 1 
sln 2 0 

b ~n=c=o=s~n~O + cosO sinn8 
2 

2sln2 0 2s I n38 

. . . . . . . . . . . . (B. 8) 

The choice of the combinations, [ T F ± [ T ri. appearing on the right 
hand side of Eq. B.5, results in considerable simplification, letting 

[A]- [T] + [Tr' ; [ii] = [T]- [Tr' 

[C]- [T] 2+ [Tr 2
; [ii]- [T] 2

- [Tr 2 } .......... (B. 9) 

The results may be summarised as follow: 

[A] -

h 2ab + 2 

-3hab 

ah 

0 

0 

2 

0 

ha 

6hb 

0 

2 

3hab 
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0 

6hb 

0 

h 2ab + 2 



-h 2 ab 2h 0 2h 2b 

3hab 0 12b 0 
[ ii] -

-ah 0 0 2h 

2a ha 3hab h2 ab 

h4a'b' + 10h 2 ab + 2 0 

-3h 3a 2b 2 - 12hab 6h 2 ab + 2 
(C] -

h•a 2b + 4ha 0 

0 h"a 2b + 4ha 

6h•ab 2 + 24hb 0 

0 6h•ab 2 + 24hb 

6h 2ab + 2 0 

3h•a2b 2 + 12hab h4a'b' + 10h 2 ab + 2 

-h•a 2b 2 - 8h 2ab 2h 3ab + 4h 

3h•a 2b 2 + 18hab 0 
[fi] -

-h•a 2b - 2ha 2h 2a 

2h 2a 2b + 4a h 3a 2b + 2ha 

0 2h4ab' + 16h'b 

18h 2ab 2 + 24b 0 

0 2h"ab + 4h 

3h•a2b2 + 18hab 

The abovementioned fomulae provide a means for the computation of 

the elements of [ T f from the elements of [ T J when n is large. It is 

specially efficient for periodic structures because very little additional 

computer time and no additional computer storage are needed if n is 
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increased. The typical results indicate that for a 50-storey building, the 

computer time using direct matrix multiplications is 2.5 times greater than 
the required computer time using the analytical procedure mentioned. For a 

100-storey building the required time is 5 times greater. As for 
computational precision, it is found that the results obtained from an 
IBM-PC in double precision are the same, using either method, over a wide 

range of cantilever structure parameters and structural frequencies which 

included buildings between 10 to 100 storeys. The results using single 

precision are within one percent of the results using double precision. It is 

concluded therefore, that for non-periodic structures studied in this thesis 

(in a transfer matrix formulation) the accuracy of the computer results using 
direct matrix multiplication is guaranteed. 

- 315 -



X 
13 MAY ~992 

u~,~~~!~ii~mllll ~~~~~~~~)mJii~J~ 
0000000600778186 



Allbook Bindery 

91 Ayadale Road 

West Ryde 2114 

Phone: 807 8028 


	00020131008102617
	00020131008102650
	00020131008102714
	00020131008103029
	00020131008103041
	00020131008103053
	00020131008103104
	00020131008103116
	00020131008103128
	00020131008103142
	00020131008103154
	00020131008103207
	00020131008103257
	00020131008103310
	00020131008103338
	00020131008103352
	00020131008103441
	00020131008103455
	00020131008103516
	00020131008103529
	00020131008103542
	00020131008103554
	00020131008103607
	00020131008103624
	00020131008103719
	00020131008103740
	00020131008103752
	00020131008103805
	00020131008103834
	00020131008104156
	00020131008104556
	00020131008104609
	00020131008104623
	00020131008104637
	00020131008104649
	00020131008104729
	00020131008104828
	00020131008104841
	00020131008104855
	00020131008104925
	00020131008104942
	00020131008104955
	00020131008105031
	00020131008105050
	00020131008105146
	00020131008105217
	00020131008105231
	00020131008105244
	00020131008105409
	00020131008105424
	00020131008105440
	00020131008105513
	00020131008105527
	00020131008105540
	00020131008105616
	00020131008105629
	00020131008105642
	00020131008105656
	00020131008105708
	00020131008105724
	00020131008105752
	00020131008105806
	00020131008105819
	00020131008105837
	00020131008105851
	00020131008105906
	00020131008105937
	00020131008105958
	00020131008110044
	00020131008110100
	00020131008110200
	00020131008113108
	00020131008113124
	00020131008113143
	00020131008113158
	00020131008113211
	00020131008113231
	00020131008113250
	00020131008113320
	00020131008113333
	00020131008113347
	00020131008113401
	00020131008113412
	00020131008113425
	00020131008113514
	00020131008113530
	00020131008113544
	00020131008113558
	00020131008113643
	00020131008113658
	00020131008113801
	00020131008113815
	00020131008113828
	00020131008113840
	00020131008113854
	00020131008113907
	00020131008113947
	00020131008114001
	00020131008114013
	00020131008114026
	00020131008114039
	00020131008114052
	00020131008114124
	00020131008114138
	00020131008114156
	00020131008114210
	00020131008114223
	00020131008114236
	00020131008114316
	00020131008114329
	00020131008114343
	00020131008114400
	00020131008114416
	00020131008114429
	00020131008114504
	00020131008114524
	00020131008114537
	00020131008114558
	00020131008114612
	00020131008114625
	00020131008114714
	00020131008114728
	00020131008114741
	00020131008114754
	00020131008114806
	00020131008114819
	00020131008114833
	00020131008114845
	00020131008114857
	00020131008114909
	00020131008114921
	00020131008114935
	00020131008114947
	00020131008114959
	00020131008115044
	00020131008115058
	00020131008115130
	00020131008115143
	00020131008115158
	00020131008115211
	00020131008115519
	00020131008115533
	00020131008115545
	00020131008115558
	00020131008115624
	00020131008115637
	00020131008115650
	00020131008115703
	00020131008115716
	00020131008115729
	00020131008115745
	00020131008115758
	00020131008115811
	00020131008115823
	00020131008115836
	00020131008115848
	00020131008115931
	00020131008115946
	00020131008120006
	00020131008120021
	00020131008120034
	00020131008120047
	00020131008120104
	00020131008120119
	00020131008120133
	00020131008120146
	00020131008120200
	00020131008120213
	00020131008120251
	00020131008120304
	00020131008120317
	00020131008120330
	00020131008120341
	00020131008120353
	00020131008120408
	00020131008120419
	00020131008120431
	00020131008120444
	00020131008120456
	00020131008120509
	00020131008120544
	00020131008120559
	00020131008120612
	00020131008120649
	00020131008120702
	00020131008120715
	00020131008120748
	00020131008120801
	00020131008120814
	00020131008120826
	00020131008120839
	00020131008120852
	00020131008120906
	00020131008120919
	00020131008120932
	00020131008120944
	00020131008120956
	00020131008121010
	00020131008121056
	00020131008121112
	00020131008121125
	00020131008121139
	00020131008121155
	00020131008121208
	00020131008121225
	00020131008121237
	00020131008121251
	00020131008121304
	00020131008121317
	00020131008121329
	00020131008121402
	00020131008121416
	00020131008121431
	00020131008121443
	00020131008121455
	00020131008121508
	00020131008121521
	00020131008121535
	00020131008121547
	00020131008121559
	00020131008121611
	00020131008121624
	00020131008121704
	00020131008121718
	00020131008121730
	00020131008121742
	00020131008121754
	00020131008121806
	00020131008121820
	00020131008121833
	00020131008121845
	00020131008121858
	00020131008121910
	00020131008121925
	00020131008122004
	00020131008122016
	00020131008122027
	00020131008122040
	00020131008122051
	00020131008122104
	00020131008122117
	00020131008122133
	00020131008122145
	00020131008122158
	00020131008122211
	00020131008122225
	00020131008122305
	00020131008122319
	00020131008122333
	00020131008122346
	00020131008122357
	00020131008122409
	00020131008122422
	00020131008122434
	00020131008122446
	00020131008122457
	00020131008122509
	00020131008122522
	00020131008122607
	00020131008122620
	00020131008122633
	00020131008122646
	00020131008122659
	00020131008122712
	00020131008122728
	00020131008122741
	00020131008122753
	00020131008122805
	00020131008122822
	00020131008122834
	00020131008122914
	00020131008122926
	00020131008122939
	00020131008122951
	00020131008123002
	00020131008123015
	00020131008123032
	00020131008123048
	00020131008123101
	00020131008123114
	00020131008123126
	00020131008123139
	00020131008123152
	00020131008123358
	00020131008123410
	00020131008123434
	00020131008123603
	00020131008123616
	00020131008123636
	00020131008123650
	00020131008123703
	00020131008123715
	00020131008123726
	00020131008123738
	00020131008123832
	00020131008123847
	00020131008123859
	00020131008123913
	00020131008123927
	00020131008123940
	00020131008123951
	00020131008124001
	00020131008124011
	00020131008124022
	00020131008124034
	00020131008124046
	00020131008124144
	00020131008124155
	00020131008124208
	00020131008124219
	00020131008124232
	00020131008124243
	00020131008124317
	00020131008124329
	00020131008124341
	00020131008124352
	00020131008124408
	00020131008124420
	00020131008124434
	00020131008124446
	00020131008124458
	00020131008124509
	00020131008124521
	00020131008124534
	00020131008124639
	00020131008124903
	00020131008124924
	00020131008124938
	00020131008124954
	00020131008125009
	00020131008125039
	00020131008125214

