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Abstract

Asher Bender Doctor of Philosophy
The University of Sydney March 2013

Autonomous Exploration of
Large-Scale Natural Environments

This thesis addresses issues which arise when using robotic platforms to explore large-

scale, natural environments. Two main problems are identified: the volume of data

collected by autonomous platforms and the complexity of planning surveys in large

environments.

Autonomous platforms are able to rapidly accumulate large data sets. The volume

of data that must be processed is often too large for human experts to analyse ex-

haustively in a practical amount of time or in a cost-effective manner. This burden

can create a bottleneck in the process of converting observations into scientifically

relevant data.

Although autonomous platforms can collect precisely navigated, high-resolution data,

while operating beyond the limits of human endurance and safety, they are typically

limited by finite battery capacities, data storage and computational resources. Ad-

ditionally, the projects which support these vehicles have limited budgets and time

frames to complete their objectives. These constraints make it impractical to sample

the environment exhaustively. To use the limited resources effectively, trajectories

which maximise the amount of information gathered from the environment must be

designed.

This thesis address these problems. Three primary contributions are presented: a

new classifier designed to accept probabilistic training targets rather than discrete

training targets; a semi-autonomous pipeline for creating models of the environment;

and an offline method for autonomously planning surveys.
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iv Abstract

While the thesis specifically focuses on mapping and exploring marine habitats with

an autonomous underwater vehicle (AUV), the research applies equally to other ap-

plications such as aerial and terrestrial environmental monitoring and planetary ex-

ploration. Environmental models are established by learning the correlation between

data extracted from a digital elevation model (DEM) of the seafloor and habitat

categories derived from in-situ images. The DEM of the seafloor is collected using

ship-borne multibeam sonar and the in-situ images are collected using an AUV.

In principle, the AUV imagery could be classified into habitats by a human expert.

However, like other robotic platforms, the volume of data collected by an AUV is often

too large for human experts to analyse exhaustively in a practical amount of time or

in a cost-effective manner. To reduce labour requirements, human classification of the

imagery is replaced by unsupervised clustering with a variational Dirichlet process

(VDP) model. Rather than manually classifying a large volume of individual images,

human experts are required to ensure a relatively small set of clusters, produced by

the VDP model, represent valid habitat ‘proxies’.

To fully utilise all of the information contained in the probabilistic data generated by

the VDP, a novel Gaussian process (GP) classifier capable of accepting probabilistic

training targets is proposed. The combination of the VDP clustering algorithm and

the new classifier form the core of a novel, semi-autonomous habitat mapping pipeline.

The proposed pipeline is demonstrated on real benthic data where a large habitat map

is created with minimal human input.

A solution for planning informative surveys offline is also proposed. The planning

framework is designed to select the optimal location to place a prespecified survey

template. Assessing every possible survey placement exhaustively is a large problem.

Instead, a functional representation of the survey utility is built using a small set

of training placements. This enables the utility of a candidate survey placement to

be queried in a continuous space and in arbitrary locations. The prohibitive cost of

evaluating every survey placement has been replaced with the tractable requirement

of calculating data to support training and inference in the utility model. This novel

approach is shown to scale up to very large, realistic planning problems.
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TRI terrain ruggedness index.

USBL ultrashort baseline.

USyd University of Sydney.

VDP variational Dirichlet process.



Chapter 1

Introduction

1.1 Background and Motivation

Images collected from the benthos are a rich source of information. Ecologists can

use the data to classify habitats, characterise species abundance and for monitoring

change. Commercial applications such as prospecting for resources and pipe-laying

can use this data to reduce their environmental impact and avoid difficult terrain.

Autonomous underwater vehicles (AUVs) equipped with an optical imaging package

are flexible tools for surveying the benthos. By maintaining a constant altitude close

to the seafloor, an AUV can provide consistent illumination and collect high-quality

images. The position and orientation of the data set can be resolved accurately by

reconstructing the survey path of the vehicle using onboard sensors and terrain-based

navigation. In addition to providing high-quality, geo-referenced data, AUVs also

have less operational limitations. They are decoupled from surface motions, their

ability to operate is depth-independent and they can follow rugged terrain.

Although AUVs are a flexible tool in oceanography, they have limitations. Bottom-

following AUVs use instruments with a narrow field of view to collect high-resolution

data directly under the vehicle at the cost of coverage. The extent of these dives is also

limited by the energy consumption and capacity of the vehicle. Multiple dives can be

used to increase coverage but project budgets will restrict the number of deployments.

1
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In the past decade, remote sensing techniques have improved the extent and resolution

of broad-scale digital elevation models (DEMs). For instance ship-borne multibeam

echo-sounder (MBES) systems allow oceanographers to develop broad-scale, high-

resolution DEMs of the seafloor at a relatively low cost. By intelligently combining

this data with in-situ observations of the seafloor it is possible to create a useful

habitat model of the distribution of benthic flora and substrate. Performing inference

in these models allows the distribution of habitats to be inferred over the extent of

the broad-scale DEM. These predictive models fill in the gap created by the narrow

coverage of in-situ sampling techniques.

The first half of this thesis investigates how ship-borne MBES data and optical data

collected from an AUV can be combined to generate habitat maps over large regions.

The primary aim of the research is to process large benthic data sets with minimal

human intervention. The quality of a habitat map ultimately depends on the infor-

mation contained within the observed data. Once the ship-borne, broad-scale data

has been collected it is considered a fixed resource.

Establishing and improving the habitat model is only made possible by collecting

in-situ observations of the seafloor. There are limitations to this process. In the

case of an AUV, limited battery capacity and the cost of the support ship constrains

the extent of the data collected. Once a dive has commenced, it is also difficult to

change the objectives of the dive. Water has a high attenuation coefficient making

electromagnetic communication ineffective. Acoustic modems can propagate signals

but are limited to low data rates. The data rates acoustic modems provide are often

insufficient to relay the sort of information human experts require to evaluate whether

the dive is fulfilling its scientific objectives.

Given the practical constraints of operating an AUV, complete coverage is impractical

and operators must commit to a limited number of pre-programmed dives. To use

the limited resources most effectively, scientists and AUV operators have to optimise

their survey plans to maximise the quality of a habitat map. This is the focus of the

second half of this thesis.
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1.2 Thesis Contributions

This thesis is concerned with producing benthic habitat maps efficiently. Specific

contributions made in this thesis are aimed at reducing the amount of human su-

pervision required to produce a habitat map and plan additional deployments in

large-scale environments. The principal contributions of this thesis are as follows:

• A Gaussian process (GP) based classifier capable of accepting probabilistic

training data rather than discrete class assignments. This model is better

equipped to preserve the probabilistic information generated by supervisory

probabilistic models. As a result the new model is more amenable to being

used in conjunction with other unsupervised methods capable of processing the

training data.

• A semi-autonomous data processing pipeline for creating benthic habitat maps.

The proposed pipeline is designed to reduce the labour requirements of la-

belling the large volumes of in-situ data collected by autonomous platforms.

The pipeline is demonstrated on real marine data where it is able to generate a

habitat map for a large environment with minimal human input.

• An offline method for autonomously planning benthic surveys. The proposed

framework is designed to select the optimal location to place a prespecified

survey template. By building a functional representation of the survey utility,

the utility of a candidate survey placement can be queried in a continuous space

and in arbitrary locations. This novel approach is shown to scale up to very

large, realistic planning problems.

• Utility functions for evaluating the value of a candidate survey are proposed.

The Kullback-Leibler divergence (KLD) is adopted as a novel planning heuris-

tic for scenarios where no prior observations of the environment exist. In cases

where prior observations of the environment are available, the A-optimal criteria

is recommended. Justification for using this utility function in a GP classifica-

tion context is provided.
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1.3 Thesis Overview

Chapter 2 establishes GP theory and nomenclature. This review provides a context

for the research contained in subsequent chapters of the thesis.

Chapter 3 addresses the labour requirements of classifying large data sets. A re-

duction in the amount of human effort required to label a data set is achieved by

clustering the data with an unsupervised variational Dirichlet process (VDP) model

[46]. To make full use of the subtle information conveyed by the cluster probabilities,

a novel GP-based classifier is proposed. Rather than using discrete class assignments

during training, probabilistic class assignments are used. The model is demonstrated

on controlled experiments using simulated data.

Chapter 4 discusses current approaches used to create benthic habitat maps. The

advantages and new problems which arise from using an AUV to collect data for

benthic habitat mapping are discussed. A semi-autonomous method for producing

benthic habitat maps is proposed. A reduction in the human labour required to label

the AUV imagery is achieved by applying the method proposed in [91] to cluster the

AUV imagery. The model proposed in Chapter 3 is used to correlate the AUV image

clusters with features extracted from ship-borne MBES data. This semi-autonomous

data processing pipeline is demonstrated on data collected from the southeastern

Tasman peninsula in Tasmania, Australia. The data set includes almost 100km2

of ship-borne MBES bathymetry and 80,000 images of the seafloor collected by an

ocean-going AUV.

Chapter 5 investigates benthic habitat mapping in an offline context. Whilst real-

time exploration is theoretically possible, AUVs do not often possess the necessary

software architecture or computing resources to analyse data in real-time. This chap-

ter proposes a method for recommending informative survey designs in large environ-

ments. To support exploration when no prior observations exist, the KLD is used as

a novel planning heuristic. The planning method is designed to select the most infor-

mative location to place a prespecified survey template. The method is demonstrated

in a large-scale marine environment using real data.
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Chapter 6 extends the proposed planning framework to scenarios where prior in-situ

observations of the environment exist. By exploiting a pre-existing habitat model,

the information contained in prior observations of the environment can be used to

guide exploration efforts. Closing the loop between decision making, observations and

modelling allows a planning algorithm to directly optimise a statistical property of the

habitat model. This chapter recommends an A-optimal utility function. This utility

function can be derived from information theoretic principles for GPs and has found

practical use in the robotics literature. The planning framework is demonstrated in

a marine environment where it was used to plan deployments.

Chapter 7 presents conclusions and discusses future work for building on this thesis.
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Chapter 2

Gaussian Processes

Scientists are often interested in characterising naturally occuring phenomena in a

region of interest. This information can be used to provide policy makers with the

necessary data to make informed decisions about managing the region. Collecting

accurate and well distributed observations of naturally occuring phenomena is costly

and often labour-intensive. As a result, data sets typically include sparse and un-

evenly sampled observations. To draw principled conclusions about the gathered

data, techniques for predicting values at unobserved locations are often required.

The generation of environmental models for the purpose of making predictions in

unobserved locations is a founding concept in this thesis.

Gaussian processes (GPs) are a flexible, non-parametric model which offer an ele-

gant framework for solving regression and classification problems. Freed from strict

modelling assumptions, GPs create an effective Bayesian black-box model for infer-

ence which allows the data to ‘speak for itself’. This flexibility makes GPs ideal for

modelling correlated environmental data.

The remainder of this chapter is arranged as follows. Section 2.1 describes how con-

tinuous data is modelled in regression problems using a GP. Section 2.2 describes

how discrete data is modelled in classification problems using a GP. Section 2.3 sum-

marises and concludes the chapter.

7
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2.1 Gaussian Process Regression

A GP is a specific example of a stochastic process. A stochastic process defines

a probability distribution over random functions. A GP is a collection of random

variables, any finite number of which have a joint Gaussian distribution [75]. If one

loosely considers a function as an infinitely long vector, then a GP can be thought of

as a multivariate Gaussian distribution embedded in a space of infinite dimensions.

For an underlying process f(x), if it is assumed that the value of the function at the

location x is randomly distributed according to a GP then

f(x) ∼ GP (m(x) , k(x,x′)) (2.1)

where the mean function is given as

m(x) = E[f(x)]

and the covariance function is given by

k(x,x′) = E[(f(x)−m(x)) (f(x′)−m(x′))] .

Although a GP defines a probability distribution over an infinite space of functions

Equation (2.1), it is not necessary to work directly in this infinite space.

Assuming the underlying function can be modelled by a GP then, by definition, any

finite collection of observations of the function can be modelled using a multivariate

Gaussian. Since the process is assumed to be stochastic, it is not possible to sample

the function directly. Instead, it is only possible to observe noisy realisations of the

underlying function according to

y = f(X) + ε

where y are noisy observations (y1, y2, ..., yn)T ∈ R of the underlying function, f =

(f(x1) , f(x2) , ..., f(xn))T , at the input locations, X = (x1,x2, ...,xn)T ∈ RD. The
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observations of the underlying function are assumed to be perturbed by independent

identically distributed Gaussian noise, ε, with a variance of σ2
n.

Assuming a zero-mean, the prior on the latent (hidden) function values at the observed

input locations is given by

p(f | X, θ) = N (f | 0,Cov) . (2.2)

where Cov is the covariance function and θ are parameters of the covariance function.

Since the observations are perturbed by Gaussian white noise, the likelihood is given

by

p(y | f) = N
(
y
∣∣ f , σ2

nI
)
. (2.3)

The zero-mean assumption is common within the GP literature and implies that

the mean value of random functions sampled from the GP prior and evaluated at

a particular location X would be zero. It is important to note that although the

prior process is restricted to a zero mean, this is not true of the posterior process

(see Equation (2.7)). This assumption is not required and can easily be relaxed by

specifying a mean function. The zero-mean assumption is often adopted for simplicity

and convenience.

The covariance function produces a covariance matrix which models the expected

correlations between pairs of points drawn from the GP. Any function which takes

pairs of points from the input space and produces a symmetric and positive definite

covariance matrix is a valid covariance function. Choosing this function is an im-

portant practical consideration when using GPs. An appropriately chosen covariance

function will model the properties of the functions embedded in the GP distribution.

If the signal noise, σ2
n, and hyperparameters θ are known, the prior Equation (2.2) and

likelihood functions Equation (2.4) are correct and it is possible to make predictions.

These values are seldom known in advance and are more commonly inferred from the

data.
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2.1.1 Training

Before it is possible to make predictions or even consider Equation (2.2) to be a

sensible prior and Equation (2.4) to be a sensible likelihood, the free parameters of

the model must be properly specified. The parameters of the covariance function, θ

and the signal noise σ2
n must be selected to reflect the space which the underlying

function resides in. Since these parameters control the distribution over the latent

function, they are known as hyperparameters. Determining the optimal value for

these hyperparameters is known as model selection.

Since GPs are fully probabilistic models, Bayesian model selection can be employed to

determine values for the hyperparameters which represent a trade-off between model

complexity and data-fit. In a fully Bayesian treatment, a prior is placed over the

hyperparameters and Bayes’ rule is used to calculate a posterior. This process requires

integration over the hyperparameters and is usually analytically intractable. Markov

Chain Monte Carlo methods can be used to approximate the required integrals [63,

74] but are computationally expensive methods. An alternative, computationally

convenient method is maximum likelihood approximation.

The marginal likelihood (or model evidence) is a measure of how well the model

explains the observed data. It is possible to perform model selection by maximising

the marginal likelihood with respect to the hyperparameters. The hyperparameters

which maximise the marginal likelihood are the hyperparameters which produce the

model capable of explaining the observed data the best. The marginal likelihood is

given by marginalising over the latent function variables, f , of the likelihood times

the prior

p(y | X, θ) =

∫
p(y | f ,X) p(f | X, θ) df

=

∫
N
(
y
∣∣ f , σ2

nI
)
N (f | 0,Cov) df .

Since the likelihood and prior are both multivariate normal distributions, the marginal
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likelihood can be calculated analytically

p(y | X, θ) = N
(
y
∣∣ 0,Cov + σ2

nI
)
. (2.4)

The marginal likelihood, Equation (2.4), can be maximised by minimising the negative

log marginal likelihood with respect to the hyperparameters:

log p(y | X, θ) = −1

2
yT
(
Cov + σ2

nI
)−1

y − 1

2
log
∣∣Cov + σ2

nI
∣∣− n

2
log 2π (2.5)

where the covariance function Cov is dependent on the parameters θ. The first term

of Equation (2.5) models data fit. The second term is a complexity penalty and the

final term is a normalisation constant. Optimising the marginal likelihood is a useful

objective function that is resilient to over-fitting as there is a trade-off between data fit

and model complexity. Whilst the complexity penalty in Equation (2.5) reduces the

chances of over-fitting, as more flexibility is permitted in the model, maximising the

marginal likelihood becomes increasingly prone to over-fitting. For complex models

with a large number of hyperparameters, fully Bayesian model selection mechanisms

such as MCMC may be more robust [63].

Optimising the negative log marginal likelihood can be done using a multivariate op-

timisation algorithm such as conjugate gradient descent. In practice these algorithms

are effective but minimising the negative log marginal likelihood is a non-convex opti-

misation problem. Care must be taken to ensure the hyperparameters do not represent

a local maximum in the marginal likelihood, particularly when data is scarce. For

instance, two plausible models for a small data set might be low noise and a small cor-

relation length scale or high noise and a large correlation length scale. This problem

can be avoided by performing several optimisations, starting from different locations

in the parameter space, and selecting the hyperparameters which produce the highest

marginal likelihood. Once the hyperparameters have been properly specified, it is

possible to perform inference.
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2.1.2 Inference

It is possible to perform inference at arbitrary query locations, X∗ = (x1,x2, ...,xm)T ∈
RD, by exploiting the properties of the GP. Recall that any number of observations

sampled from a GP will be jointly Gaussian. Since the unobserved query targets

belong to the same GP as the observed training data, they will be jointly Gaussian.

This joint distribution, under the prior, can be written as a partitioned multivariate

Gaussian

p(y, f∗ | X,X∗, θ) = N
(
y, f∗

∣∣ 0,Cov+
)

= N

y

f∗

 ∣∣∣∣∣∣ 0,

K(X,X) + σ2
nI K(y,X∗)

K(X∗,X) K(X∗,X∗)

 (2.6)

where the joint covariance matrix, Cov+, is a block matrix, partitioned such that

K(X,X) is the covariance for the training data, K(X,X∗) is the cross covariance

between the training data and the test data and K(X∗,X∗) is the prior covariance

matrix for the test data.

The predictive distribution is given by the conditional,

p(f∗ | X,y,X∗, θ) = N (E[f∗] ,V[f∗]) .

Closed-form expressions for the predictive mean and variance exist due to convenient

properties of the multivariate Gaussian distribution. If two sets of variables are

jointly Gaussian, and one set is conditioned on another, the resultant distribution is

also a Gaussian. Using this property, the predictive mean and covariance are given

by Equation (2.7) and Equation (2.8) respectively.

E[f∗] = K(X∗,X)
[
K(X,X) + σ2

nI
]−1

y (2.7)

V[f∗] = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2

nI
]−1

K(X,X∗) (2.8)

Note that although a zero-mean prior is assumed, the predictive distribution defined

by Equation (2.7) and Equation (2.8) produces a GP with a specific, non-zero mean
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function. The predictive covariance only depends on the correlations induced by the

covariance function at the training and test input locations. Although the predic-

tive covariance does not depend on observed values (training inputs) explicitly, the

observed values are considered during model selection.

2.1.2.1 Covariance Functions

In this thesis the squared exponential covariance function is used:

Cov (xp,xq) = σ2
f exp

(
−1

2
(xp − xq)

T L−1 (xp − xq)

)
. (2.9)

In this covariance function, distant inputs have a covariance that tends towards zero

and close inputs have a covariance that approaches σ2
f . The degree to which a pair

of function values is correlated depends on free parameters within the covariance

function. For the squared exponential covariance function and additive noise, these

free parameters, known as hyperparameters, are θ = {L, σ2
f , σ

2
n}T . The characteristic

length scale L corresponds to a measure of distance across all dimensions where two

function values are expected to become uncorrelated. The variance of the underlying

function is described by σ2
f . Additive Gaussian noise on the observations is modelled

by the variance term σ2
n.

2.2 Gaussian Process Classification

In binary classification, the target values are assumed to be Bernoulli distributed

independent random variables, given the latent function, such that yi ∈ {−1,+1}. To

allow for this, the latent function must be constrained to lie on the interval [0, 1]. This

allows the probability of class membership p(y = 1 | X) to have a valid probabilistic

interpretation. Where this differs significantly from probabilistic regression is that the

the likelihood, p(y | X), is non-Gaussian. This effect trickles down during inference.
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When invoking Bayes rule

p(f | X,y) =
p(y | f) p(f | X)

p(y | X)
(2.10)

the posterior over the latent values, p(f | X,y), becomes non-Gaussian thanks to the

non-Gaussian likelihood. This departure from conjugacy makes classification using

GPs analytically intractable. Since an analytic solution for the predictive class mem-

bership probability does not exist, approximation methods are required. A number

of methods have been proposed to allow inference.

2.2.1 Approximations

Markov chain Monte Carlo (MCMC) [63] produces a numerical approximation of the

predicted latent function values and the predictive class membership probabilities. In

the limit of a large number of samples, MCMC methods are guaranteed to produce the

true distributions. The MCMC solution is considered the gold standard and is often

used as a ground truth for comparison purposes. The quality of the approximation

comes at a very high computational price.

An alternative approach is to make a Gaussian approximation to the posterior dis-

tribution over the latent function values Equation (2.10). Several approximations

have been proposed in the literature including variational methods [26], the Laplace

approximation [97], expectation propagation [61] and probabilistic least squares clas-

sification [75].

Of these approximation methods, expectation propagation is considered state of the

art and is the method of choice when compared to the reference MCMC solution

[47, 65]. An interesting outcome of comparing the approximation methods is that

the quality of the approximation to the marginal likelihood, which is important for

reliable model selection and creating dependable class probabilities, is not necessarily

critical for producing accurate class predictions. All of the approximations mentioned

are capable of producing similar classification error rates.
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2.2.2 Probabilistic Least Squares Classification

The probabilistic least squares classifier (PLSC) is a simple method of producing a

Gaussian approximation to the posterior. Rather than assuming the latent function is

constrained to lie on the interval [0, 1], the PLSC returns to the regression assumption

that the latent function can reside in R. Approaching classification as a regression

problem is not limited to GPs and has been used in other models where it is known,

rather appropriately, as label regression or least squares classification [65, 77]. The

model has been used effectively in several machine learning and robotics applications

[41, 67, 76, 78].

Treating classification as a regression problem implies the odd assumption that the

observed discrete targets have a Gaussian noise model. Although this assumption is

counter intuitive, in the large limit, the predictive class probabilities will converge on

the true value [75]. For a finite collection of data this is not guaranteed and the latent

function can take on any real value. To enforce a probabilistic interpretation of the

latent function, it must be passed through a function which squashes any real value

onto the interval (0, 1). The squashed output represents a valid predictive probability.

The PLSC can be thought of as another way of producing a Gaussian approximation

to the posterior distribution over the latent function values. The attraction of this

method is that, since the problem is cast as a regression problem, the conjugacy of

GP regression is maintained and the GP principles in Section 2.1 can be applied.

This makes the PLSC less computationally intensive than the other approximation

methods and simpler to implement.

After training the regression model on the class labels, the only additional step re-

quired is to train the squashing function to ensure the predictive output are sensible

and valid probabilities. Any sigmoid function can be used to squash the latent func-

tion. One function for performing the squashing is the parameterised cumulative

Gaussian sigmoid function [72, 75],

p(yi | Xi,yi, θ) = Φ

(
yi (αµi + β)√

1 + α2σ2
i

)
(2.11)
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where Φ is the standard normal cumulative distribution function and is essentially

a linearly transformed error function. In the parameterised cumulative Gaussian

sigmoid function, the posterior variance over the latent function is used to ensure

that the probability tends towards 0.5 as uncertainty in the latent function grows.

The two tunable parameters, α and β, must be determined. They can be optimised

using a leave one out (LOO) cross-validation procedure where the sum of the log LOO

probabilities

LLOO (X,y, θ) =
n∑
i=1

log p(yi | X,y−i, θ) (2.12)

is maximised with respect to α and β. The LOO predictive mean and variance are

given as

µi = yi −
[K−1y]−i
[K−1]−ii

(2.13)

σ2
i =

1

[K−1]−ii
(2.14)

where the subscript −i refers to the element that is removed from the target data and

−ii refers to the row and column that is removed from the covariance matrix. Once

the sigmoid hyperparameters have been determined, inference can be performed.

2.2.3 Multiclass Classification

Standard GP classification models can only solve binary classification problems. The

Laplace approximation [75, 97] and variational approximation [27] have been extended

to multiple classes. Other approaches perform multiclass classification by representing

each class as a task [9] and using dependent GPs to represent the relations between

the different ‘tasks’ [1]. A simple approach to extend a binary classifier to multiple

classes is to use the one-vs-all (OVA) scheme. In OVA classification a binary clas-

sifier is trained to classify one class against all others [77]. This is done for each

class. Predictions are made by performing inference in each model and combining

and normalising the output of each classifier into a single multinomial.
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2.3 Summary

This chapter has introduced basic concepts and terminology required to understand

GP models. GP models provide a general framework for performing non-parametric

regression and classification and are well suited to modelling environmental data. This

chapter began by establishing some basic terminology and concepts for training and

performing inference in GP regression problems. The chapter concluded by discussing

various approximation methods for performing classification. This overview provides

a context for research presented in the following chapters.
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Chapter 3

Classification with Probabilistic

Targets

Robots are often deployed to gather information about the environment. Data col-

lected from multiple platforms or sensors can be combined to produce unique repre-

sentations of the environment which cannot be obtained from a single deployment or

sensor. However, the volume of data collected by modern robotic platforms is often

too large for human experts to analyse exhaustively in a practical amount of time or

in a cost-effective manner. Under these circumstances it is not possible to efficiently

deploy supervised machine learning algorithms which rely on processed training data.

In this chapter an unsupervised probabilistic clustering algorithm is used to au-

tonomously create training data for a Gaussian process (GP) classifier. After hu-

man approval the training data can be used for classification. This semi-autonomous

method allows efficient unsupervised algorithms to categorise large amounts of data

and human domain knowledge to be incorporated into the result. Section 3.2 pro-

poses a novel GP classifier designed to preserve all of the information provided by the

unsupervised algorithm. This is done by performing classification with probabilistic

training targets instead of discrete training targets. The method is demonstrated

using a simple one-dimensional example. Section 3.3 investigates the behaviour of

the proposed model using a simple two-dimensional example. Finally, Section 3.4

provides concluding remarks.

19
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3.1 Motivation

The objective of classification is to assign input vectors to one of several known cat-

egories. Supervised machine learning algorithms achieve this goal by using training

data to model the relationship between observed input and target vectors. The inten-

tion of establishing a classification model is to make it possible to infer the category

at arbitrary locations in the input vector space. Since the input vector is the indepen-

dent explanatory variable, it is often readily available and does not require intensive

analysis to be converted into a usable form.

The category at each input training location must be observed. Given that this

data is the dependent variable and the subject of the model, it is likely to be more

scarce or difficult and expensive to collect than the independent variable. A reason

for modelling the data might be that observing the value of the target variable at

the training input locations is difficult or expensive. Another reason might be that

producing a useful categorisation of the data requires labour-intensive expert analysis.

A labour-intensive example of processing large data sets is environmental monitoring.

It is often possible to observe broad areas of the environment using a cheap, low-

resolution sensing modality such as satellite imaging. Alone, this data is unlikely

to be sufficient to fulfil modelling objectives such as species distribution estimation.

However the data can often be used as a proxy for more expensive, high-resolution

observation methods such as gathering in-situ observations through field experiments.

Converting data observed in the field into scientifically relevant measures will likely

rely on the knowledge of experts such as biologists.

To reduce labour requirements it might be possible to forego human analysis and

summarise the field data using an unsupervised clustering model. Many unsuper-

vised models are driven by the density of the data. For instance, the assumption

underpinning the efficacy of unsupervised clustering is that distinct modes within the

density of the data represent meaningful categorisations. The position advocated in

this thesis is that this assumption is correct, when unsupervised clustering is carefully

applied.
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Labelling the field data autonomously reduces the labour requirement of producing

training data. It does not fulfil the original objective of determining the relation-

ship between the low-resolution independent variables and the autonomously derived

labels. This is the role of supervised classification. If a probabilistic model has cat-

egorised the training data, the probability of class membership is available for each

observation. This gives rise to an unconventional classification problem.

Rather than discarding the class probabilities and relying solely on the class labels,

this chapter proposes a novel GP classifier designed to accept class probabilities as

training inputs. In particular, a novel and intuitive extension to the probabilistic least

squares classifier (PLSC) (see Section 2.2.2) is proposed. The new model is called the

probabilistic targets least squares classifier (PTLSC). The intention is to preserve all

probabilistic information conveyed by the unsupervised model.

3.2 Illustrative Example

To illustrate the PTLSC, the one-dimensional example given in chapter 3 of [75] is

adapted. The data consists of 500 observations randomly drawn from a mixture of

three Gaussians. Each of the Gaussian components have a standard deviation of 2.

From left to right, the Gaussian components are centred around -5, 1 and 5 with

mixture weights of 0.20, 0.30 and 0.50. The left-most and right-most components

represent one class and the middle component represents a second class, as shown in

Figure 3.1. The task is to predict the class probabilities over the domain shown.

3.2.1 Pre-clustering

For illustration purposes, suppose it is unfeasible to rely on human expertise to classify

the one-dimensional example. Following the stated goal of reducing labour require-

ments, the data is clustered autonomously. In this chapter, and the remainder of the

thesis, a VDP model [46] is used to categorise the training data into clusters.
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Figure 3.1 – One-dimensional example. The black line represents the underlying
probability of observing the first class. The value of observations made on the X-
axis are shown as yellow and green dots for the first and second class respectively.

The VDP is a Bayesian, non-parametric model with the attractive property that

it does not require the number of clusters to be specified in advance. Clusters are

detected in the data by modelling the density of the data as a Gaussian mixture

model (GMM). The number of Gaussians in the mixture, the mixing coefficient and

the mean and variance of each Gaussian component are inferred from the data during

training.

Three clusters were discovered and are shown in Figure 3.2a. For a human expert,

analysing the composition of the three clusters is a simpler task than processing all

500 observations. Prior to classification, an expert can review and modify the clusters

to ensure they are sensible. To simulate this sort of ‘sanity’ check, the first and third

cluster are consolidated into one group as shown in Figure 3.2b.

The one-dimensional example is sufficiently represented by the VDP after human

approval. There is no need to learn a mapping between the input-space and the

probabilistic targets supplied by the VDP. In real data sets this relationship is not

trivial. With this in mind, the one-dimensional example is continued for illustration

purposes.
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Figure 3.2 – Clustering the one-dimensional data set. (a) Density estimate of the data
after clustering the data with a variational Dirichlet process (VDP) model. The
clusters are shown in red, blue and green. (b) Predictive probabilities given by the
VDP after a human has merged the first and third clusters into one group. The
merged clusters are shown in yellow and the remaining cluster is shown in green.
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3.2.2 Regression

In PLSC, classification is treated as a regression problem (see Section 2.2.2). Rather

than performing regression on discrete cluster labels, y ∈ {−1,+1}, the continuous

nature of regression can be exploited by performing regression on continuous cluster

probabilities. For the benefit of the ‘squashing’ stage, the probabilistic targets are

scaled from y ∈ [0, 1] to y ∈ [−1, 1].

The predictive probabilities produced by a PLSC trained on noisy observed labels,

a PLSC naively trained on discrete VDP cluster labels (PLSC-VDP) and a PTLSC

trained on continuous VDP cluster probabilities are compared in Figure 3.3 and

Table 3.1.

Model Mean Variance Length Scale Signal Noise

PLSC 0.191 1.789 0.424
PLSC-VDP 0.050 0.258 0.087

PTLSC 0.000 0.558 0.000

Table 3.1 – Comparison of the optimised squared exponential kernel parameters and
mean variance for the classifier latent functions. The mean variance is calculated
on the domain [−10, 10] where there is data to support inference.

The PLSC-VDP latent function, shown in Figure 3.3a, must model a step change

in the discrete training inputs. This is a difficult task for a regression model which

assumes smoothness in the data and is achieved by learning a short length scale and

a medium noise term. By only using the VDP cluster labels the PLSC-VDP has

discarded valuable information.

Uncertainty in the underlying function is represented in the VDP as cluster probabil-

ities. The rescaled cluster probabilities, used to train the PTLSC, preserve all of the

information provided by the VDP. Since the probabilistic training data is continuous,

it is better suited to the continuous nature of regression enabling the PTLSC latent

function to fit the data almost exactly, as shown in Figure 3.3b. The model is able to

learn a longer length scale than the PLSC-VDP, a low mean variance and low signal

noise. These results indicate that the PTLSC is able to produce more general and

confident predictions than the PLSC-VDP.
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Figure 3.3 – Comparison of classifier latent functions using variational Dirichlet pro-
cess (VDP) training data. (a) Latent mean and variance functions of a PLSC
trained on VDP cluster labels (PLSC-VDP). (b) Latent mean and variance func-
tions of a PLSC trained on VDP cluster probabilities (PTLSC). The latent mean
and variance functions of a PLSC trained on the true labels are shown in (a) and
(b) for comparison.
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3.2.3 Sigmoid Function

The objective of the ‘squashing’ stage is to constrain the latent function to lie on

the interval [0, 1]. Whilst the sigmoid function, given by Equation (2.11), fulfils this

objective, it does not preserve the shape of the latent function. To preserve the shape

of the latent function a new sigmoid function is proposed. The proposed sigmoid

function is linear within a specified region of the input domain and a logistic sigmoid

outside of this region. The linear portion preserves the shape of the input and the

logistic sigmoid portion ensures extreme values are restricted to the interval [0, 1].

More precisely, the linear-logistic sigmoid function is defined as a piecewise function

for x ≥ 0 in Equation (3.1).

φ(x,C) =


mx+ 0.5 if x ≤ C

1

1 + exp (−β (x+ Z − C))
if x > C

(3.1)

The region of the input domain which is linearly transformed is specified by the linear

cut-off parameter, C. The scaling parameter, β, and translation parameter, Z, of the

logistic sigmoid must be solved to satisfy the condition,

mC + 0.5 =
1

1 + exp (−βZ)
, (3.2)

where the gradient of the linear segment, m, is given as,

m = β
1

1 + exp (−βZ)

(
1− 1

1 + exp (−βZ)

)
. (3.3)

The conditions given by Equation (3.2) and Equation (3.3) force the linear and logistic

sigmoid segments to form a smooth function where they meet. The scaling parameter,

β, controls the gradient of the linear segment and the logistic sigmoid segment at the

linear cut off C. The translation parameter, Z, is simultaneously optimised to ensure

that the two segments meet at the same location on the Y -axis at the linear cut off.

The parameters β and Z are not chosen by the user, they are optimised in response to
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a particular choice of C. The parts of the linear-logistic sigmoid function are shown

in Figure 3.4a. Symmetry is used to transform input values less than 0.

Finally, the parameterised linear-logistic sigmoid function is given by,

p(yi | X,y, θ) = φ (αµi, αC) , (3.4)

where the ‘squashing’ function, φ, is given by Equation (3.1) and µi is given by Equa-

tion (2.13). The effect of varying the parameters, α and C, is shown in Figure 3.4b.

When the cut-off parameter is zero (red lines) the parameterised linear-logistic sig-

moid function acts like a logistic sigmoid function. Increasing the scaling parameter,

α, decreases the gradient of the linear segment and decreases the rate of signal atten-

uation in the logistic sigmoid segment.

3.2.4 Training the Sigmoid Function

In the PLSC, the parameters of the sigmoid function are optimised by maximising

the sum of the log leave one out (LOO) probabilities given by Equation (2.12). Under

this construction, noise in the labels communicates uncertainty about the location of

the decision boundaries. Noisy target data distributed around the decision boundary

prevents the LOO objective function from creating a step change in the predictive

probabilities.

In a PTLSC, the location of the decision boundaries are represented as degrees of

belief in class membership. These continuous values do not contain any label noise.

As a result, sigmoid function parameters which create a step change in the predicted

probabilities are not penalised. Maximising the sum of the log LOO probabilities

under these conditions rewards sigmoid function parameters where the transition be-

tween classes is as short as possible. This behaviour forces the predictive probabilities

towards their extremes as shown in Figure 3.5a. Whilst the class labels may be cor-

rect, the predictive density does not appropriately preserve the shape of the latent

function or represent the data generating process.
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Figure 3.4 – Linear-logistic sigmoid function. (a) Construction of the linear-logistic
sigmoid function. The blue line shows the linear transformation and the red line
shows the logistic transformation. The black line is the linear cut-off point where
the signal transitions from a linear transformation to a logistic transformation.
(b) Effect of varying the parameterised linear-logistic sigmoid parameters. Lines
of the same colour are linear over the same portion of the input space. Solid lines
attenuate faster than dashed lines.
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Figure 3.5 – Comparison of linear-logistic sigmoid function objective functions. The
coloured circles, in both subplots, represent the probabilistic training targets. The
colour varies from yellow (first class) to green (second class) according to the tar-
get input probabilities. (a) The blue line represents predictive probabilities after
maximising the sum of the log leave one out (LOO) probabilities with respect
to the parameters of the linear-logistic sigmoid function. (b) The red line repre-
sents predictive probabilities after minimising the mean squared error (MSE) of the
squashed probabilities with respect to the parameters of the linear-logistic sigmoid
function.
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An objective function better suited to preserving the shape of a PTLSC latent func-

tion is to minimise the mean squared error (MSE) of the ‘squashed’ probabilities with

respect to the free parameters of Equation (3.4). This objective function rewards sig-

moid function parameters which result in a predictive probability which follows the

probabilistic target inputs as closely as possible.

The MSE is given by,

MSE (X,y, θ) =
1

n

n∑
i=1

(yi − p(yi | X,y, θ))2 ,

and is measured between the ‘squashed’ probabilities and the probabilistic target

inputs. This objective function rewards values for α and C which result in predictive

probabilities which follow the probabilistic target inputs as closely as possible as

shown in Figure 3.5b. The predictive probability is only subtly different from the

original latent function (Figure 3.3b). The majority of the latent function has been

linearly transformed and the shape has been preserved. The extremes of the latent

function have been attenuated by the logistic portion of the linear-logistic sigmoid

function to ensure they remain within the interval [0, 1].

The predictive probabilities produced by a PLSC trained on the true noisy labels,

a PLSC naively trained on discrete VDP cluster labels (PLSC-VDP) and a PTLSC

trained on continuous VDP cluster probabilities are compared in Figure 3.6 and

Table 3.2.

Model Accuracy (%) MSE

PLSC 98.80 0.002
PLSC-VDP 97.15 0.014

PTLSC 97.15 0.006

Table 3.2 – Comparison of classifier predictive probabilities. Accuracy and mean
squared error (MSE) are calculated relative to the true distribution (shown in
Figure 3.6) on the domain [−10, 10], where there is data to support inference.
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(a) Comparison of PLSC and PLSC-VDP predicted probabilities
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Figure 3.6 – Comparison of classifier predicted probabilities using VDP training data.
(a) Predictive probabilities of a PLSC trained on VDP cluster labels (PLSC-
VDP). (b) Predictive probabilities of a PLSC trained on VDP cluster probabilities
(PTLSC). The true distribution and the predictive probabilities of the PLSC are
shown in (a) and (b) for comparison.
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The PLSC has access to the true labels where uncertainty in the underlying function

is communicated via noisy labels at the decision boundaries. The label noise occurs

over a large region and causes the model to learn a long length scale and a large signal

noise (see Table 3.1). This produces a smooth function which is able to achieve the

highest label accuracy and lowest MSE.

The discrete VDP cluster labels used to train the PLSC-VDP, only capture the lo-

cations of the decision boundaries. Once the PLSC-VDP latent function, shown in

Figure 3.3a, has been ‘squashed’ into predictive probabilities all probabilistic informa-

tion originally captured by the VDP has been lost. All that remains in the predictive

probabilities produced by the model is the location of the decision boundaries as

shown in Figure 3.6a. This defeats the purpose of using a probabilistic model and is

reflected by the poorest MSE of all models.

The continuous VDP cluster probabilities used to train the PTLSC encode uncer-

tainty about cluster membership as probabilistic degrees of belief. This fine-grained

approach allows the PTLSC latent function to preserve more information contained

in the VDP data than the PLSC-VDP. When the latent function is ‘squashed’ into

predictive probabilities the shape of the latent function is preserved as shown in Fig-

ure 3.6b. The predictive probabilities result in a lower MSE than the PLSC-VDP.

Despite achieving a similar predictive accuracy, each model produces different pre-

dictive probabilities. In Section 2.2.1 evidence from the literature [47, 65] showed

that the approximation to the marginal likelihood is not necessarily critical for pro-

ducing accurate class predictions. This observation is replicated in the comparison

between the PLSC, PLSC-VDP and PTLSC. If data labelled by an expert is available,

the PLSC is able to produce both accurate class predictions and accurate predictive

probabilities. If there is too much data for an expert to label it may be possible to

categorise the training data using an unsupervised probabilistic model. The results

from the illustrative example provided in this section show that the PTLSC is able to

deliver more dependable predictive probabilities, with a negligible difference in pre-

dictive accuracy, than a PLSC-VDP. For situations where the predictive probability

is considered important, the PTLSC is the preferred model.
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3.3 Model Behaviour

To investigate the behaviour of the PTLSC in response to changes in cluster separation

and cluster variance a controlled experiment was conducted in two dimensions. A

GMM composed of three equally weighted clusters is placed in the environment. The

mean of each cluster is placed a constant distance from the origin of the test domain.

The means are separated from one another by 120 ◦. Observation locations are drawn

randomly from the GMM according to the probability density function (PDF) of the

GMM. At each observation location the observed cluster label is randomly drawn

from the multinomial defined by the posterior probability of observing each GMM

cluster at the observation location.
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Figure 3.7 – Two-dimensional experiment. (a) probability density function (PDF) of
the Gaussian mixture model (GMM). The intensity image represents the PDF of
the GMM. The black dots represent 1000 random observation locations drawn from
the GMM. (b) Posterior probability of belonging to a GMM cluster. The intensity
image represents the posterior probability of belonging to a GMM cluster. The
probability is represented as a mixture of the colours red, green and blue. Each
of the three colours corresponds to a cluster. The coloured dots represent the
observed class at the random observation locations. The observed cluster label is
drawn randomly from the posterior probability at each observation location.



34 CHAPTER 3. CLASSIFICATION WITH PROBABILISTIC TARGETS

The effect of cluster separation on model performance is investigated by holding

cluster variance constant and by modifying the distance of the clusters from the

origin of the test domain. Cluster separation (Figure 3.8) is varied from one unit

to eight units while the covariance matrix of each Gaussian component is fixed to a

diagonal of two units. At cluster separations closer than 2.5 units, VDP clustering

failed to recognise three clusters due to the close clusters being seen as inseparable.

The effect of varying cluster variance is investigated by holding cluster separation

constant and by modifying the variance of the clusters as shown in Figure 3.9a.

Cluster variance is modified by varying the diagonal of the covariance matrix of each

Gaussian component from one to eight units. Cluster separation is held at a constant

six units from the origin of the test domain.

Each configuration is tested across ten random folds of 1000 observations. Accuracy,

MSE of the predicted probabilities and mean variance are calculated across the entire

test domain. Accuracy and the MSE of the predicted probabilities are calculated

relative to the ground truth distribution. The performance of the PLSC, PLSC-VDP

and PTLSC in response to increasing cluster separation are shown in Figure 3.8. The

performance of the models in response to increasing cluster variance are shown in

Figure 3.9. Both experiments are a way of testing the performance of the models in

the presence of increasing cluster overlap.

Model accuracy as a function of cluster separation is shown in Figure 3.8b. Model

accuracy as a function of cluster variance is shown in Figure 3.9b. As cluster sepa-

ration increases, there is a slight upward trend in accuracy of the PTLSC. Accuracy

of the PTLSC was invariant to changes in the cluster variance. Most significantly,

in both experiments, the PTLSC has the lowest variation between random draws.

Additionally, the accuracy is largely unaffected by changes in cluster separation or

variance. This indicates that the PTLSC is more robust to noise and class overlap in

the observed data. By using probabilistic training data in confusing areas, the adverse

affect of inconsistent label assignment is diminished. Instead of relying on label noise

in ambiguous areas, probabilities which correctly identify uncertainty in the data are

used. This prevents the model from learning incorrect decision boundaries.
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Figure 3.8 – Classifier performance as a function of cluster separation. The solid line
represents the mean performance calculated over 10 random folds. The dashed
lines represent the best and worst values achieved during cross-validation. (a) Ex-
periment setup. The effect of varying cluster separation is investigated by holding
cluster variance constant and by modifying the distance of the clusters from the
origin of the test domain. The covariance matrix of each Gaussian component
is fixed to a diagonal of two units. An example separation of 4 units is shown.
(b) Model accuracy. (c) Mean squared error (MSE) of the predicted probabilities.
(d) Mean variance of the predictions. Model accuracy, MSE and mean variance of
the predictions are calculated across the entire domain. Model accuracy and MSE
are calculated relative to the true distribution.
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Figure 3.9 – Classifier performance as a function of cluster overlap. The solid line
represents the mean performance calculated over 10 random folds. The dashed
lines represent the best and worst values achieved during cross-validation. (a) Ex-
periment setup. The effect of varying cluster overlap is investigated by holding
cluster separation constant and by modifying the variance of the clusters. Cluster
separation is held at a constant six units from the origin of the test domain. An
example covariance of four units is shown. (b) Model accuracy. (c) Mean squared
error (MSE) of the predicted probabilities. (d) Mean variance of the predictions.
Model accuracy, MSE and mean variance of the predictions are calculated across
the entire domain. Model accuracy and MSE are calculated relative to the true
distribution.
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The PLSC and the PLSC-VDP display U-shaped accuracy curves in response to in-

creasing separation (Figure 3.8b) and increasing variance (Figure 3.9b). Clusters

with a small amount of separation produce data with a large degree of overlap. Sim-

ilarly, clusters with a large amount of variance produce data with a large degree of

overlap. If the data is separable by the VDP, overlap in the observed data helps

improve the performance of the PLSC. The PLSC relies on label noise to faithfully

model the location and predictive probability at boundary locations. As the cluster

separation increases and cluster variance decreases, the amount of overlapping data

decreases. This adversely affects the performance of the PLSC until the clusters are

completely separated. Once full separation occurs model performance improves as

there is little ambiguity concerning the location and predictive probabilities of the

decision boundaries.

The same behaviour is displayed in the PLSC-VDP. Since label noise is removed

by the discrete VDP labels, the PLSC-VDP has less information to determine the

location of the decision boundaries. It is also more susceptible to poor estimates of

the cluster means and covariances produced by the VDP. These factors result in lower

accuracy than the PLSC or PTLSC.

The MSE of the predictive probabilities as a function of cluster separation is shown

in Figure 3.8c. When the clusters are not distinctly separated, the PLSC benefits

from access to the observed labels. As the separation between the clusters increases,

the performance of the models converge to a similar result. The PLSC and PLSC-

VDP also display U-shaped curves when the MSE of the predictive probabilities is

plotted against cluster separation. Both models suffer in scenarios where there is

enough overlap to introduce noise into the data but not enough data in the overlap

to average out errors introduced by the noise.

The MSE of the predictive probabilities as a function of cluster variance is shown in

Figure 3.9c. As the amount of cluster variance is increased, the MSE of the predictive

probabilities improves for all models. Again the PLSC and PLSC-VDP display U-

shaped curves. A counter intuitive result is that the predictive probabilities of the

models improve as the amount of data overlap increases.
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GPs are data-driven models. The mean function returns to a prior of zero in locations

far from observed data. This is accompanied by an increase in the predicted variance.

In PLSC-based models, these properties create an uninformative predicted probabil-

ity. Clusters with a small variance do not distribute observations widely across the

environment. Data is concentrated at the mean of each cluster. Although this pro-

duces good separation, there are no observations to support inference in other areas

of the environment. As a result the PLSC-based models will produce correct labels

in areas of the environment far from observations but their predictive probabilities

are conservative. This causes a decrease in performance when measured by the MSE

relative to the true distribution.

As the cluster variance increases, more data is spread across the environment. This

allows the MSE of the models to improve. It is also accompanied by a decreasing mean

variance in the PTLSC as shown in Figure 3.9d. To model noise in the overlapping

boundary regions, the PLSC and PLSC-VDP must learn relatively high noise terms.

As a result the mean variance of the PLSC and PLSC-VDP remain largely consistent

across all cluster variances tested. As the cluster separation increases, the mean

variance of the models remains largely the same. The changes shown in Figure 3.8d

are exaggerated by the log scaling on the Y-axis. The PTLSC produces more confident

predictions than the competing models in both experiments.

The mean variance of the PLSC peaks when model performance is poor. Although

poor performance is undesirable, this illuminates the advantage of using a probabilis-

tic model. It is possible to evaluate model confidence by investigating the predicted

variance. Predictions with a high variance indicate the model has inferred the class

with a low confidence. Less faith should be placed in these predictions. High-variance

predictions also suggest that more data or better features should be gathered.

The effect of the size of the training data on model performance is investigated by

holding cluster separation constant at 5 units and cluster variance constant at 6

units. The size of the training data (Figure 3.8) is varied from 500 observations to

2500 observations. At training data sizes less than 500 observations, VDP clustering

failed to recognise three clusters due to a paucity of data.
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Figure 3.10 – Classifier performance as a function of training data size. The solid line
represents the mean performance calculated over 10 random folds. The dashed lines
represent the best and worst values achieved during cross-validation. (a) Experi-
ment setup. The effect of varying training data size is investigated by increasing
the number of random samples used for training and holding cluster separation
and variance constant at five and six units respectively. An example training data
size of 1500 is shown. (b) Model accuracy. (c) Mean squared error (MSE) of the
predicted probabilities. (d) Mean variance of the predictions. Model accuracy,
MSE and mean variance of the predictions are calculated across the entire domain.
Model accuracy and MSE are calculated relative to the true distribution.
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The models show little correlation with the sizes of the training data tested. The

PLSC and PTLSC offer similar accuracy and outperform the PLSC-VDP. The accu-

racy for all models increases as the number of training examples increases. Similarly,

the MSE of the predictive probabilities reduce as the number of training examples in-

creases. In both performance measures the models perform well with a small number

of observations. Gains in performance are small as the number of training examples

increases. This indicates that the problem is simple and does not require a large

amount of data to be modelled effectively. The mean variance of all models effec-

tively remains constant as the number of training instances is varied. The PTLSC is

able to provide the lowest mean variance of all the models. This is due to the use of

continuous training targets. The model does not have to accommodate large jumps

from one label to another.

3.4 Summary

This chapter advocates using an unsupervised clustering algorithm to provide training

data for classification. By using an unsupervised clustering algorithm to categorise

the training data, the amount of human effort required to process raw observations

into a training data is reduced.

To make full use of all the probabilistic data provided by the unsupervised clustering

algorithm a new GP based classification model called the PTLSC is proposed. Rather

than learning a mapping from an input space to discrete labels, it is designed to learn

a mapping from the input space to continuous probabilities. This modification allows

the model to preserve more information contained in the probabilistic training data

than simply using the most likely class.

The PTLSC was demonstrated on a simple one-dimensional example and its perfor-

mance in response to various amounts of data overlap in a two-dimensional example

was presented. These experiments show that the PTLSC outperforms naive PLSC

classification with the most likely cluster label (PLSC-VDP) in all conditions. In

many of the parameters tested the PTLSC was able to outperform the PLSC which
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has access to the observed data. This result indicates that the PTLSC can provide

similar performance to PLSC.

The key observation is that when the training data has been clustered, naively using

the label of the most likely cluster does not produce equivalent performance to a

manually classified data set when the same classification model is used. By using

the cluster probabilities, the PTLSC is able to produce a higher level of performance

whilst not relying on a human to manually create a training data set.

In Chapter 4 the PTLSC is applied to real marine data. The objective is to generate

a habitat model using benthic data collected in Tasmania, Australia. The model

is used to learn the correlation between features extracted from a digital elevation

model (DEM) of the seafloor, and habitat categories derived from in-situ images.

The DEM is collected using ship-borne multibeam echo-sounder (MBES) data and

the in-situ images are collected by an ocean going autonomous underwater vehicle

(AUV). Manually classifying all the imagery collected by the AUV is a daunting task

and is a good candidate for automation.
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Chapter 4

Benthic Habitat Modelling

Benthic habitat maps make “use of spatially continuous environmental data sets to

represent and predict biological patterns on the seafloor (in a continuous or discontinu-

ous manner)” [12]. In the past decade remote sensing and in-situ sampling techniques

have improved the extent and accuracy of broad-scale benthic habitat maps [10]. Cur-

rent survey technologies allow oceanographers to develop broad-scale, digital terrain

models of the seafloor at a relatively low cost. By intelligently combining this data

with in-situ samples of the seafloor makes it possible, in principle, to create a useful

representation of the distribution of biological and substrate patterns on the seafloor.

This chapter provides a review of habitat mapping techniques and presents a semi-

autonomous method for converting a large number of observations into a habitat

map. The chapter is arranged as follows. Section 4.1 describes methods used in

the literature to create bathymetric habitat maps. Various techniques for collecting

bathymetric data are discussed in Section 4.2. Section 4.3 describes common bathy-

metric features which are used to create habitat maps. Section 4.4 describes a data

set collected from Tasmania, Australia including ship-borne, multibeam bathymetry

and optical imagery collected by an autonomous underwater vehicle (AUV). A semi-

autonomous habitat mapping pipeline, based on the probabilistic targets least squares

classifier (PTLSC) from Chapter 3, is proposed and demonstrated using this data.

Section 4.6 summarises and concludes the chapter.

43
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4.1 Models for Bathymetric Habitat Mapping

Creating seafloor habitat maps is a cross-disciplinary problem which draws from the

fields of marine biology, ecology, geology, hydrography, oceanography and geophysics.

Given the wide range of fields which have studied bathymetric habitat mapping,

many different solutions have been proposed in the literature. Brown et al., 2011 [12]

provide a comprehensive review of methods used to produce seafloor habitat maps

and break down seafloor habitat mapping into three broad strategies.

Abiotic surrogate mapping uses unsupervised methods for clustering the bathy-

metric data into similar groups. Abiotic factors are non-living environmen-

tal factors which affect ecosystems such as light, meteorological conditions,

available chemistry and topography. Benthic species show preferences for cer-

tain seafloor geology and morphological characteristics [37, 101]. By clustering

bathymetry based on surface morphology features, it is possible to capture the

abiotic preferences which are a function of the seabed morphology. Since this

method does not rely on ground-truthing, the regions produced during cluster-

ing will not have a precise descriptive semantic meaning.

Assemble first, predict later is a strategy which models the correlation between

segmented environmental data and classified ground truth data. Ground truth

data is established by collecting in-situ measurements and using expert judge-

ment or statistical methods to classify the data. Although this strategy only

models the correlation between ground-truth classes and segments in the envi-

ronmental data, Brown et al. find it to be the most common mapping strategy

presented in the literature. This is also know as the ‘top-down’ approach [86].

Predict first, assemble later is a more fine-grained approach than the ‘assemble

first, predict later’ method. Rather than simply modelling the correlation be-

tween ground-truth classes and segments in the environmental data, the classes

are modelled as a function of the environmental data. These methods rely

on supervised classification techniques to model the functional dependence of
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ground-truth classes on the continuous environmental data. The advantage of

using a supervised method is that knowledge of the domain and human exper-

tise can be included in the modelling process at the expense of higher labour

costs. This is also known as the ‘bottom-up’ approach. [80].

Many models have been used to classify bathymetry. Commercial products are used

within the literature to segment bathymetry [11, 60]. A popular example is Quester

Tangent Corporation of Canada (QTC) multiview software. Generic unsupervised

clustering techniques such as K-means [8, 13] are also used widely. Many solutions

proposed in the literature reduce the number of dimensions in the environmental data

through the use of principal component analysis (PCA) [13, 22, 62] before applying

unsupervised clustering.

A commonly used supervised classification algorithm is decision trees [34, 37, 80].

Other supervised techniques include neural networks [59], support vector machines

(SVMs) [31] and kriging [86]. Several supervised methods are compared in [52] where

random forests are found to be effective. In [36], several models are used to predict

the distribution of sponge assemblages given bathymetry and chemical data. Non-

parametric machine learning models are found to perform better than the traditional

regression models. Supervised classification techniques are amenable to the predict

first, assemble later strategy. This ‘bottom-up’ approach is better able to create

relevant correlations between observed ground truth data and the environmental data

[80, 86]

In this thesis, the ‘predict first, assemble later’ approach is adopted. The model se-

lected for habitat mapping in this thesis is the Gaussian process (GP). Since GPs are

non-parametric models, no strict assumptions need to be made about the relationship

between the environmental data and the observed ground truth data. As a probabilis-

tic model, GPs are also able to produce confidence estimates during prediction. This

extra data functions as an important diagnostic tool which can be used to improve

the model.
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4.2 Data Acquisition

4.2.1 Broad-Scale Bathymetry

There are two methods for acquiring large bathymetric data sets remotely: airborne

light detection and ranging (LIDAR) and ship-borne sound navigation and ranging

(SONAR). Each method has its own advantages and limitations, depending on the

depth, resolution and coverage required.

Receiver Transmitter

Bottom return

Surface return

Water surface

Seafloor

Figure 4.1 – LIDAR operating principle. Figure adapted from [38].

Airborne bathymetric LIDAR is a relatively new technology [38]. The system oper-

ates by transmitting laser pulses towards the earth’s surface. Part of the light energy

is reflected by the water surface, the remainder penetrates the water column and is

reflected by the seafloor as shown in Figure 4.1. The water depth can be calculated

from the time elapsed between the two reflections. The main disadvantage of bathy-

metric LIDAR is that electromagnetic signals are attenuated rapidly via absorption,

scattering and refraction. As a result bathymetric LIDAR is limited to shallow and

clear waters. The sensor is effective up to a depth of approximately 50 metres and 70

metres in ideal conditions [17, 19].
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Receiver Transmitter

Water surface

Seafloor

Figure 4.2 – Multibeam echo-sounder (MBES) operating principle.

To acquire bathymetric data at greater depths or in turbid waters, remote ship-borne

acoustic surveys of the seafloor can be used to collect broad-scale data sets. The two

most commonly used systems are side scan SONAR and multibeam echo-sounder

(MBES) [50]. Rather than using electromagnetic signals, which attenuate rapidly in

water columns, acoustic systems are able to penetrate greater depths by emitting a

pulse of sound called a “ping”. The time elapsed between transmitting a ping and

receiving its reflection is used to calculate the depth to the seafloor. A swath of

pings demonstrating the way in which MBES systems operate is shown in Figure 4.2.

It is possible to achieve resolutions from tens of centimetres to tens of metres [42]

depending on the depth of the seafloor and the design and technology of the acoustic

systems. MBES systems are becoming the preferred method of acquiring acoustic

benthic data due to their ability to collect bathymetry and backscatter information

simultaneously [10]. MBES systems can be designed to resolve objects down to a size

of one metre and penetrate water depths up to a kilometre [42].
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Bathymetric LIDAR has several advantages over ship-based MBES systems in shallow

environments. The resolution of MBES systems is a function of the seafloor depth.

As the depth increases, the resolution of an MBES system decreases. LIDAR systems

provide a signal which is almost independent of depth [19]. LIDAR systems are also

capable of seamlessly integrating coastal bathymetry and land topography. However,

in deep environments, airborne LIDAR systems cannot provide the water penetration

and signal clarity that ship-based MBES systems are able to produce.

Ship-borne MBES data is used in this thesis. The ability to image the seafloor at

depths greater than 70 metres allows habitat maps, generated using bathymetry, to

cover the entire depth of the photic zone up to 200 metres [21]. Although MBES is

used in this research, the methods presented apply equally to other digital elevation

model (DEM) data sets.

4.2.2 In-situ Observations

Many methods for collecting observations of the seafloor are available. These methods

are reviewed and evaluated by van Rein et al., 2009 [96]. The methods are categorised

as operating over fine (< 10m), meso (10m− 1km) and broad (> 1km) scales. Meth-

ods for collecting data over broad-scales was discussed in the previous section. This

section focuses on collecting direct observations of the seafloor at meso and fine scales.

To provide an overview of the methods available at meso and fine scales, the findings

of van Rein et al. are summarised in this section and Table 4.1.

At a fine scale, common methods for providing in-situ observation of soft substratum

are grab samples and sediment cores which can be conducted from a ship. These

methods disturb the environment by physically retrieving samples from the seafloor

which are analysed by experts. These samples will consist of various portions of

sediments such as clay, mud, silt, sand and gravel. Grab samples collect sediment from

the surface of the seafloor (< 20cm) whereas benthic cores are able to collect sediment

deeper from the surface. In scenarios where minimal disruption to the environment is

desired or when the environment contains hard and complex substrates such as coral
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Scale Method Substratum Impact Cost Deployment
Fine Grabs Soft Moderate Moderate Ship

Cores Soft Moderate Moderate Ship
Quadrat Hard Low Low Scuba
Photoquadrat Hard Low Moderate Scuba
Transect Hard Low Low Scuba
Video transect All Low Moderate Scuba

Meso Trawls Soft High Moderate Ship
Dredges Soft High Moderate Ship
Towed camera sled Soft Moderate Moderate Ship
Dropdown camera All Low Moderate Ship
ROV All None High Ship
Manta towed video All None Low Ship
DPV All None Moderate Scuba

All AUV All None High Ship

Table 4.1 – Summary of methods for making direct observations of the seafloor based
on Table 1 of [96]. Impact is defined as the level of disturbance to the monitored
biota and cost refers to the financial cost of the monitoring method.

reefs, scuba divers are deployed. Although human divers are able to provide detailed

data through quadrats and transects, the surveys are limited by safe diving practices

and tidal and weather conditions.

Monitoring methods at meso scales can also be divided by their impact on the envi-

ronment. Methods such as trawling and dredging retrieve physical samples from the

environment which can be inspected by experts. Other less destructive methods of

monitoring can observe hard substrates. Dropdown cameras are optical systems that

are deployed to hover over the seafloor and take point observations. Towed camera

sleds are optical systems that are dragged over the seafloor. Manta towed systems

are optical systems that are towed at a constant altitude above the seafloor. Of these

methods, remotely operated vehicles (ROVs) offer the greatest precision in control

and can operate in difficult terrain but are a costly platform to deploy.
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AUVs were not evaluated in the van Rein et al. study. However van Rein et al.

acknowledge that when instrumented appropriately, AUVs are able to collect high-

resolution data across all spatial scales, including broad-scales. Although AUVs are

a relatively expensive and scarce tool for observing the seafloor, they offer several

advantages over current methods as summarised in Table 4.1.

The primary advantage of AUVs over other methods is their ability to operate in close

proximity to the seafloor and follow rugged terrain. Unlike human divers they are

not constrained by either depth or dive duration. Being decoupled from the surface

also allows AUVs to operate in sea conditions which preclude the use of ROVs and

rugged benthic terrain which is inaccessible to towed video systems. AUVs are also

a flexible platform and offer the ability to support a wide range of sensors, making

AUVs a productive resource in a variety of contexts such as near-bottom SONAR-

based surveys [6, 79] and high-resolution optical imaging [100].

Accurately geo-located, in-situ data is an important aspect of bathymetric habitat

mapping. Poor geo-location introduces a registration error between categorised in-situ

observations and broad-scale bathymetry. Depending on the severity and frequency

of these mismatches, the benthic habitat model may learn incorrect associations and

ultimately produce poor predictions. Ground truth data collected by AUVs intro-

duces less registration error into habitat maps than traditional methods of ground

truthing. The ability to perform dense, targeted surveys using state of the art, terrain

aided navigation [3, 57, 99] makes AUVs a unique high-resolution tool for gathering

in-situ data.

The in-situ data used in this thesis is obtained using an AUV. Precise navigation, con-

sistent illumination and large volumes of high-resolution data make AUVs amenable

to autonomous data processing systems. This raises interesting prospects as well as

challenges which will be discussed in Section 4.4.2.
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4.3 Bathymetric Features

It is widely understood in the marine science community that benthic species show a

preference for specific seafloor characteristics [37, 42, 43]. It is this correlation with

seabed morphology that allows marine scientists to produce benthic habitat maps.

Interpreting the bathymetric data is a subtle task. The ability to separate habitats

will depend on the resolution of the bathymetry and the scale at which the bathymetry

has been analysed [101].

The bathymetric data may serve as a direct measure of biogenic structures such as

reefs [102], kelp forests [60] or mussel beds [62]. In other cases, differences in the

bathymetric feature vectors will not always correspond to a change in benthic habitat

[18]. In these challenging cases, there may not be enough information contained in

the bathymetry to properly disambiguate between habitats.

DEMs only provide depth to the seafloor. While it is clear marine life is correlated

with depth [12, 43], it is possible to process DEMs into a variety of descriptors which

can capture biological preferences. These derivative features provide a richer de-

scription of the environment and help to disambiguate between habitats that might

otherwise appear similar. Wilson et al., 2007 [101] break down terrain analysis meth-

ods into slope, aspect, curvature and terrain complexity. Acoustic properties of the

returned SONAR signals are also increasingly being used to categorise benthic habi-

tats. These bathymetry features are described in the remainder of this section.

Slope describes the incline of a local region [14, 22, 37, 80]. The slope of a region

affects how sediment can accumulation on the terrain. The presence of sediment

provides different ecological niches to rocky formations devoid of sediment. As a

consequence, flat areas tend to exhibit different rock formations and communities to

steeply sloping regions of the seafloor.

Aspect or orientation measures the direction a slope faces [14, 22, 37]. The orien-

tation of a location on the seafloor will determine its exposure to local water currents
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and lighting conditions. These factors can determine the availability of nutrients and

energy to organisms in the area.

Curvature measures the rate of change of slope in a defined direction [14, 22]. More

precisely, curvature measures the second spatial derivative of the seabed terrain. The

two most commonly calculated measures of curvature are profile and plan curvature.

Profile curvature measures the rate of change in slope parallel to the direction of

maximum down slope. Plan curvature measures the rate of change in slope perpen-

dicular to the direction of maximum downward slope. These measures can help define

surface features in the terrain such as ridges and valleys. Like aspect, curvature can

provide information on water flows over areas of the bathymetry. Another commonly

used measure of curvature is the bathymetric position index (BPI) [14, 22, 37]. This

measure calculates whether a particular region forms a crest or trough by inspecting

the elevation of neighbouring pixels.

Terrain complexity measures the amount of structure or roughness of an area.

Complex environments tend to contain features which provide shelter and locations

for organisms to settle. Simple environments often accumulate sediment providing

different ecological opportunities. Terrain complexity can be measured in various

ways. The terrain ruggedness index (TRI) measures variation of pixels surrounding a

central pixel [22, 55]. Another widely used measure is rugosity [14, 22, 55, 80] which

is defined as the ratio between the area of the surface and the area of the surface

projected onto another plane. The horizontal planar area intersecting with the centre

of the surface is usually chosen as the reference plane. Other terrain descriptors assess

terrain complexity using fractals [44].

Backscatter measures the acoustic properties of the reflected multibeam echos. By

analysing the variations in the echo strength, it is possible to develop an indication of

acoustic “hardness” and infer the underlying geological material [13]. This data can

be used in combination with morphological properties to detect relevant patterns in

the seafloor [30, 37, 60].
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4.3.1 Feature Calculation

In this thesis depth, rugosity and slope are used to describe the bathymetry. These

features are easy to derive from bathymetry rasters and are widely used in ben-

thic modelling. Terrain features are calculated by centring a window over each data

point in the DEM. At each placement, the data point at the centre of the window

is described in terms of the neighbouring data points which fall within the window.

These data points form a local surface which can be processed by various functions

to produce terrain descriptors. For raster based DEMs this operation is similar to

the concept of convolution in image processing.

Typically rugosity is calculated by dividing the area of the local surface by the area

of its footprint when projected onto the horizontal plane. Projecting the local surface

onto this plane couples rugosity with slope [25, 80]. To decouple rugosity from slope

Friedman et al., 2012 [25] propose projecting the local surface onto a plane of best fit.

The same approach is adopted in this thesis. To provide an overview of the technique,

the key equations used in [25] are summarised in this section.

For a data point in the bathymetry rugosity is calculated using

r =
A

A′
(4.1)

where A is the area of the local surface surrounding the data point and A′ is the area

of the the local surface projected onto a plane of best fit. The benefit of this approach

is that rugosity is decoupled from slope.

The bathymetry is represented using a triangle mesh where each observation of

bathymetry forms a vertex in the mesh. This allows the surface area A to be repre-

sented by summing the area of all the triangles within a local surface. This is given

by

A =
N∑
i=1

ai (4.2)

where N represents the number of triangles which fall within the local window.
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In three-dimensional Cartesian space a point can be represented by the vector x =

(x, y, z). In this space a triangle is defined by three points xA, xB and xC. The area

of the triangle can be calculated efficiently using a vector product.

a =
1

2

∣∣∣−→AB ×−→AC∣∣∣ (4.3)

where the edges of the triangle are given by the vectors

−→
AB = (xB − xA, yB − yA, zB − zA)

−→
AC = (xC − xA, yC − yA, zC − zA) .

To calculate the projected area A′, the plane of best fit must be determined. A plane

can be fitted to the data by performing orthogonal regression using PCA. For three-

dimensional data, three principal components are returned. The first two principal

components form a basis for the plane which passes through the multidimensional

mean of the data and minimises the sum of the squared distances of each point to

the plane. The third principal component, ĉ, defines the normal vector of the plane.

The direction of the normal is forced to point upwards using

p̂ =

ĉ if ĉ · k̂ ≥ 0

−ĉ if ĉ · k̂ < 0

where k̂ is the upward facing unit vector. Finally the projected area, A′, is given by

A′ =
N∑
i=1

ai (|p̂ · n̂i|) (4.4)

where

n̂i =

−−−→
(AB)i ×

−−−→
(AC)i∣∣∣−−−→(AB)i ×
−−−→
(AC)i

∣∣∣ .
Rugosity can then be calculated by applying Equations (4.3) and (4.4) to Equa-

tion (4.1).
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Once the plane of best fit is known, calculating slope is trivial. Slope is defined as

the angle between the normal vector of the plane of best fit and the horizontal plane.

Slope is given by

θ = cos−1
(
p̂ · k̂

)
. (4.5)

The feature calculation process is demonstrated graphically in Figure 4.3. The local

surface is shown in red and the plane of best fit is shown in blue. The surfaces are

defined by triangle meshes. Each vertex in the mesh is defined by a pixel in the

bathymetry raster.

Slope

Aspect

Figure 4.3 – Demonstration of bathymetry feature calculation. The box in the upper
left corner represents a local window of data extracted from a DEM. The red
surface represents the triangulated surface of the local window. The blue surface
represents the local data projected onto the plane of best fit. Rugosity is given by
the ratio between the surface area of the red surface and the surface area of the
blue surface.
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The method used for calculating rugosity and slope in this thesis differs from the

method used in [25] in the way that triangle meshes are generated. In this thesis

bathymetry is represented as a raster image. Since the data is arranged on a regu-

lar grid, there is no need to fit a mesh to the data using Delaunay triangulation as

in [25]. Instead a predefined triangulation pattern can be repeated at regular inter-

vals. Generating surfaces using this method has a negligible computational overhead

and ensures that meshes of the same size will contain identical triangulations. A

comparison of the two methods is shown in Figure 4.4.

(a) Delaunay triangulation (b) Regular triangulation

Figure 4.4 – Demonstration of creating a mesh from a DEM. (a) Delaunay triangu-
lation on regular 9-by-9 grid of points. Note that although the data is arranged
in a structured grid, Delaunay triangulation produces an irregular pattern. (b)
Regular triangulation. A predefined triangulation is repeated at regular intervals
defined by the grid of data. This method produces a neat, symmetric lattice.

Square windows are used where a specified ‘radius’ of neighbours defines the size of

the window. Bathymetry features calculated at a scale N will have N pixels directly

to the top, bottom, left and right of a central pixel as shown in Figure 4.5. The scale

N can be converted from a pixel radius to a width in metres using:

W = 2Nr + r (4.6)

where W is the square width of the window in metres, N is the pixel radius used

during feature calculation (see Figure 4.5) and r is the size of each pixel in metres.
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Z(−N,−N) Z(0,−N) Z(N,−N)

Figure 4.5 – Illustration of multi-scale analysis from [101]. A local co-ordinate system
is centred around a point of interest. The location of neighbouring points are
defined relative to this origin and are denoted by the subscripts. The point of
interest, Z(0,0), is assigned the result of the local analysis.

To calculate bathymetry features for the entire environment, the centre of the local

window is moved from pixel to pixel. Only windows which contain a full set of data are

processed. Windows which traverse holes or the edge of the bathymetry are ignored.

This ensures that no edge artefacts are introduced into the data.

Knowing which scales are relevant to the habitats of interest is difficult to determine

prior to modelling. Each habitat in the model is likely to be most strongly correlated

with an individual scale. Wilson et al. show that models which use multiple bathy-

metric feature vectors at different scales produce better habitat maps, quantitatively

and qualitatively, than models which rely on a single feature vector or scale.
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4.4 Southeastern Tasmania Data Set

In 2008 a monitoring program was undertaken in southeastern Tasmania as a col-

laboration between the Tasmanian Aquaculture and Fisheries Institute (TAFI), at

the University of Tasmania, Geoscience Australia (GA) and the Australian Centre

for Field Robotics (ACFR) at the University of Sydney (USyd). The purpose of the

program was “to collect high-quality, accurately co-located physical and biological data

to enable the robust testing of a range of physical parameters as surrogates of patterns

of benthic biodiversity” [64]. Broad-scale bathymetry was collected using ship-borne

multibeam SONAR and in-situ observations were collected by towed-video and an

AUV.

4.4.1 Bathymetry

Ship-borne MBES bathymetry was collected in June, 2008 by the research vessel

Challenger operated by the TAFI. The vessel was equipped with a Simrad EM3002(D)

300 kHz multibeam SONAR system and an Applanix position and orientation system,

coupled with a C-Nav GPS system [64]. The survey region is shown in Figure 4.6.

The bathymetry is rasterised to a pixel size of 1.6 metres and is 16.7km tall and

10.8km wide. The bounding box of the survey region spans a rectangular region of

approximately 181.4km2. There are 38,052,323 valid data points in the raster which

cover an area of approximately 97.4km2.

Rugosity and slope for the southeastern Tasmania data set were calculated at scales

of 2 (8m), 4 (14.4m), 8 (27.2m) and 16 (52.8m) and are shown in Figures 4.7 and 4.8.

Log rugosity and log slope are used to increase ‘contrast’ in the data. The multi-

beam data collected in Tasmania was corrected for tides, vessel motion and elevation

errors caused by dynamic draft of the vessel [64]. Although visual inspection of

the bathymetry does not reveal any artefacts (Figure 4.6), small variations in the

bathymetry are magnified when converted into bathymetry features. These varia-

tions are visible as artefacts in the bathymetry features (Figures 4.7 and 4.8) and are

likely caused by surveying the same area in different wave conditions.
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Figure 4.6 – Bathymetry of southeastern Tasmania survey region layered on top of
satellite imagery obtained from Google Maps. The map in the upper right corner
highlights the survey region in red and provides a context for the location and size
of the survey box with reference to the Tasmanian land mass.
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(d) Log rugosity, scale 16 (52.8m)

Figure 4.7 – Log rugosity for southeastern Tasmania calculated at four scales. Lo-
cal coordinates are expressed in zone 55G of the universal transverse Mercator
coordinate system.
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Local Easting  (m)

L
o

c
a

l 
N

o
rt

h
in

g
 (

m
)

 

 

5.78 5.8 5.82 5.84 5.86

x 10
5

5.224

5.226

5.228

5.23

5.232

5.234

5.236

5.238

x 10
6

−12

−10

−8

−6

−4

−2

(d) Log slope, scale 16 (52.8m)

Figure 4.8 – Log slope for southeastern Tasmania calculated at four scales. Local coor-
dinates are expressed in zone 55G of the universal transverse Mercator coordinate
system.
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4.4.2 Surveys

As a part of the southeastern Tasmania monitoring program, high-resolution pho-

tographs of the seafloor were collected using an ocean-going AUV. One of the aims of

the deployment was to “examine the fine-scale relationships between the marine flora

and fauna and the physical nature of these seabeds” [64].

The AUV, called Sirius, is operated by the ACFR at the University of Sydney. The

vehicle is a modified version of the SeaBED AUV [89], built and developed at the

Woods Hole Oceanographic Institution. Sirius is approximately 2.0m long, 1.5m tall,

weighs about 200kg and was designed for high-resolution, geo-referenced imaging.

The payload of sensors Sirius currently uses is shown in Figure 4.9.

GPS Antenna

Flotation Embedded computing

Horizontal thruster Vertical thruster

Aft strobe Fore strobe

DVL Batteries

Depth, conductivity and sensors Stereo cameras

Multibeam sonar

Figure 4.9 – Exposed view of Sirius with the fairings removed. Internal components
of the vehicle are labelled and coloured differently.
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Sirius generates a navigation solution in real time using observations obtained through

its GPS receiver, Doppler velocity log (DVL), depth sensor and its ultrashort base-

line (USBL) acoustic positioning system. Measurements of heading and attitude are

provided by a digital compass with integrated roll and pitch sensors. The navigation

solution is produced by fusing the sensor data using an extended Kalman filter [99].

Observations provided by the DVL, depth sensor and compass are fused into the nav-

igation solution directly. The support vessel collects range and bearing observations

to Sirius using the USBL system. These observations are combined with the position

and orientation of the support vessel and sent back to Sirius, using the USBL mo-

dem, where they are fused into the navigation solution. This navigation suite allows

Sirius to be positioned within one meter of its intended survey location [98]. The

accuracy and self-consistency of the vehicle trajectory is refined offline using visual

simultaneous localisation and mapping (SLAM). The sensors used in navigation are

listed in Table 4.2.

Sensor Description

Attitude and heading TCM2 compass/tilt sensor
Depth Digiquartz pressure sensor

DVL Teledyne RDI 1200Khz Navigator
Altitude RDI navigator

USBL TrackLink 1,500 high accuracy (HA)
GPS receiver U-Blox receiver

Optical camera Two Prosilica 12-b cameras in a stereo configuration

Table 4.2 – Summary of navigation sensors used on Sirius. Table reproduced from
[98].

The navigation system used by Sirius allows observations to be accurately geo-

located. This accuracy allows the AUV imagery to be more precisely coupled with the

ship-borne MBES data than the competing methods listed in Section 4.2.2. Pairing

navigation error on the order of one metre and a bathymetry raster with a resolu-

tion of 1.6 metres (Section 4.4.1) will lead to registration errors no more than several

pixels. On a large-scale, this small error will not introduce significant errors into

subsequent habitat maps.
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(a) Sirius on board the R/V Challenger

(b) Recovering Sirius

Figure 4.10 – Sirius and the R/V Challenger in the southeast Tasman peninsular.
(a) Sirius ready for deployment on board the R/V Challenger. (b) Sirius being
recovered after a successful deployment.
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Deployments were conducted over a 10 day period in October 2008 and are shown in

Figure 4.11. Detailed views of the surveys are shown in Figures 4.12 and 4.13. Sirius

was programmed to perform surveys at an altitude of 2m and at a speed of 0.5m/s.

Summary statistics for each survey conducted in the southeast Tasmanian peninsula

are shown in Tables 4.3 and 4.4.

Survey Name
Duration Distance Images

(h) (km) Captured

waterfall 05 3.32 5.20 11940
waterfall 06 1.98 2.91 7131

ohara 07 3.13 4.78 11278
ohara 20 1.82 2.81 6564

patchreefnorth 08 1.93 2.69 6942
littlehippoN 11 1.87 2.66 6727

littlehippoSE 12 1.89 2.77 6787
ChevronRockN 10 1.78 2.73 6394
ChevronRockS 14 2.15 3.02 7737

hippoN 09 1.71 2.58 6139
hippoS 13 1.91 2.81 6860

Total 23.47 34.96 84499

Table 4.3 – Summary statistics of Sirius surveys in southeastern Tasmania.

Survey Name
Depth (m) Altitude

mean (m)
min mean max

waterfall 05 30.90 48.15 66.50 2.21
waterfall 06 31.76 50.17 64.56 2.50

ohara 07 31.56 54.48 75.80 2.26
ohara 20 30.24 54.77 74.79 2.29

patchreefnorth 08 59.36 74.29 83.86 2.49
littlehippoN 11 42.74 66.50 81.28 2.21

littlehippoSE 12 25.86 58.34 84.05 2.98
ChevronRockN 10 39.29 73.71 86.45 2.48
ChevronRockS 14 25.52 54.31 87.47 2.93

hippoN 09 41.69 71.14 88.82 2.32
hippoS 13 33.03 69.96 94.29 2.89

Table 4.4 – Depth statistics of Sirius surveys in southeastern Tasmania.
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Figure 4.11 – Surveys conducted by Sirius in southeastern Tasmania. Each survey is
labelled with their survey name. The survey names are linked to the corresponding
detailed figures in Figures 4.12 and 4.13. Local coordinates are expressed in zone
55G of the universal transverse Mercator coordinate system.
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(c) ohara 20

Figure 4.12 – Detail of AUV surveys conducted in southeastern Tasmania. Local coor-
dinates are expressed in zone 55G of the universal transverse Mercator coordinate
system.
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Figure 4.13 – Detail of AUV surveys conducted in southeastern Tasmania. Local coor-
dinates are expressed in zone 55G of the universal transverse Mercator coordinate
system.
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4.4.3 Categorising the In-situ Imagery

Although AUVs can collect high-resolution and accurately geo-located in-situ data,

the volumes of data they collect can quickly overwhelm human analysts. As shown in

Table 4.3, nearly 85,000 images were captured. In principle, the AUV imagery could

be classified by a human expert. However, the labour requirements of analysing all

the images is prohibitive.

In this thesis, the labour requirements of processing large volumes of imagery is

replaced with an unsupervised variational Dirichlet process (VDP) model [46]. The

VDP model is Bayesian and non-parametric with the attractive property that it does

not require the number of clusters to be specified in advance. The VDP has been

shown to be effective at producing clusters which provide a useful summary of large

volumes of marine images [91]. The method presented in [91] is used in this thesis to

cluster AUV imagery.

Prior to clustering the AUV imagery, each image must be represented as a single data

point. In [91] each AUV image is represented using both image appearance features

and terrain complexity features. For convenience, the image features used in [91] are

repeated in this section.

The overall visual content of an AUV image is described using measures of texture

and colour. Image texture is measured using Local Binary Patterns (LBPs), which

are invariant against monotonic transformations in illumination. Colour is measured

using summary statistics from performing mean shift image segmentation in the L*a*b

colour space. The summary statistics include the average segment size, the mean of

the segment colours and the standard deviation of the segment colours. The average

segment size is calculated in pixels and normalised by the number of pixels in the

image. The mean and standard deviation of the segment colours are produced by

calculating the L*a*b colour mode for each segment and computing the mean and

standard deviation using the resultant colour modes.
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Since Sirius is precisely navigated and collects stereo imagery, it is possible to create

detailed three-dimensional models of the seafloor in the form of textured polygonal

meshes [39]. Terrain complexity features can be derived from these Delaunay trian-

gulated meshes using the method proposed in [25]. In particular, rugosity and slope

are used to quantify the three-dimensional content of an image.

Combining the image appearance and terrain complexity features produces an AUV

image feature vector containing 23 dimensions. The AUV image feature vector is

summarised in Table 4.5. For more detail on this set of features refer to [91].

The bathymetry feature vector detailed in Section 4.4.1 contains similar features to

the image features used during clustering. Both feature vectors contain log rugosity

and log slope. The pairwise Spearman correlation coefficients for log rugosity and log

slope, derived from both bathymetry and stereo-imagery, are shown in Tables 4.6a

and 4.6b respectively.

The scales of rugosity are all highly correlated when bathymetry or image features

are considered in isolation. Rugosity derived from bathymetry is only weakly cor-

related with rugosity derived from the stereo-imagery. The same is true of slope.

The polygonal meshes which define the three-dimensional reconstruction of stereo-

imagery provide a spatial resolution of less than a meter. The bathymetry raster is

limited to a spatial resolution of 1.6m. While both data sets are observing the same

phenomenon, they do so at very different resolutions and scales. This leads to only a

weak correlation between the two data sets.

To avoid poor illumination in the imagery, images below an altitude of 0.2m and above

an altitude of 3m are removed. For the AUV data shown in Figure 4.11, approximately

70,000 images remain when high and low altitude images are removed. To speed up

the clustering process, the AUV image feature vector is reduced to 5 dimensions using

PCA and standardised by subtracting the mean from each dimension and dividing by

the standard deviation. The VDP detected 25 clusters in the AUV imagery. Example

images randomly sampled from each of the ‘habitat’ clusters are shown in Figure 4.14.

Rather than manually classifying all 70,000 images, a human expert is simply required

to check that a relatively small set of clusters represents valid habitat ‘proxies’.
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Feature Feature scale Number of dimensions

log(rugosity - 1) image 1
log(rugosity - 1) 5× 5m 1

log(slope) 5× 5m 1
log(rugosity - 1) 10× 10m 1

log(slope) 10× 10m 1
mean(L*a*b* segment modes) image 3

st. dev(L*a*b* segment modes) image 3
log(mean(L*a*b* segment size)) image 1
st. dev(Grey-scale image pixels) image 1

LBPs(radius of 1, 8 samples) image 10

Table 4.5 – Summary of image appearance and terrain complexity features used to
describe AUV images. Table reproduced from [91].

Bathymetry (8m) 1.0000 0.9351 0.8758 0.8323 0.2447 0.2261 0.2365
Bathymetry (14.4m) 0.9351 1.0000 0.9596 0.9140 0.2975 0.2706 0.2810
Bathymetry (27.2m) 0.8758 0.9596 1.0000 0.9696 0.3275 0.3005 0.3121
Bathymetry (52.8m) 0.8323 0.9140 0.9696 1.0000 0.3403 0.3167 0.3275

Image (image) 0.2447 0.2975 0.3275 0.3403 1.0000 0.7454 0.6800
Image (5m) 0.2261 0.2706 0.3005 0.3167 0.7454 1.0000 0.8975
Image (10m) 0.2365 0.2810 0.3121 0.3275 0.6800 0.8975 1.0000

(a) Pairwise Spearman correlation coefficients for log rugosity features

Bathymetry (8m) 1.0000 0.9221 0.8399 0.7708 0.2991 0.3076
Bathymetry (14.4m) 0.9221 1.0000 0.9325 0.8432 0.3111 0.3237
Bathymetry (27.2m) 0.8399 0.9325 1.0000 0.9233 0.3161 0.3272
Bathymetry (52.8m) 0.7708 0.8432 0.9233 1.0000 0.3313 0.3455

Image (5m) 0.2991 0.3111 0.3161 0.3313 1.0000 0.8212
Image (10m) 0.3076 0.3237 0.3272 0.3455 0.8212 1.0000

(b) Pairwise Spearman correlation coefficients for log slope features

Table 4.6 – Pairwise Spearman correlation coefficients for bathymetry and image fea-
tures. (a) Pairwise Spearman correlation coefficients for log rugosity features. (b)
Pairwise Spearman correlation coefficients for log slope features. The first four fea-
tures are derived from the bathymetry. The remaining features are derived from
the stereo-imagery. Red entries are pairwise correlations between bathymetry fea-
tures. Blue entries are pairwise correlations between image features. Black entries
are pairwise correlations between bathymetry and image features.
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Figure 4.14 – Example images drawn randomly from the habitat clusters. Prior to
human verification and merging, the VDP clusters are not associated with semantic
labels.
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Figure 4.15 – Example images drawn randomly from the habitat classes. Once the
VDP clusters have been verified and merged by a human, they can be assigned a
semantic label and considered classes.

For the purposes of creating bathymetric habitat maps, the AUV imagery has been

over clustered. Clusters which appear distinct in the image feature space may be

inseparable in the bathymetry feature space. For example, clusters which are dif-

ferentiated by colour or textures which occur on a scale less than the bathymetry

resolution are not likely to produce a distinct signal in the bathymetry. To reduce

the computational demands on subsequent modelling stages and reduce confusion in

the training data, similar clusters are merged.

Six habitat categories remain after the clusters shown in Figure 4.14 have been re-

viewed and consolidated. The consolidated habitat categories can now be given se-

mantic labels and considered habitat classes as shown in Figure 4.15. The spatial

contiguity (Figure 4.16) and visual content (Figures 4.15, 4.17 and 4.18) of the habi-

tat classes suggests that after human approval, the VDP has captured a distinct and

meaningful categorisation of biotic and abiotic groups within the environment.
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Figure 4.16 – Classified AUV surveys conducted in southeastern Tasmania. The
intensity plot and black lines represent the bathymetry and depth contours. Each
AUV pose is shown as a coloured dot where the colours indicates a specific habitat
class. The colours for each habitat class are shown in Figure 4.15. Each survey is
labelled with their survey name. The survey names are linked to the corresponding
detailed figures in Figures 4.17 and 4.18. Local coordinates are expressed in zone
55G of the universal transverse Mercator coordinate system.
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Figure 4.17 – Detail of classified AUV surveys conducted in southeastern Tasmania.
Each AUV pose is shown as a coloured dot where the colours indicate a specific
habitat class. The colours for each habitat class are shown in Figure 4.15. Lo-
cal coordinates are expressed in zone 55G of the universal transverse Mercator
coordinate system.
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Figure 4.18 – Detail of classified AUV surveys conducted in southeastern Tasmania.
Each AUV pose is shown as a coloured dot where the colours indicate a specific
habitat class. The colours for each habitat class are shown in Figure 4.15. Lo-
cal coordinates are expressed in zone 55G of the universal transverse Mercator
coordinate system.
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4.4.4 Categorising the Bathymetry

To create a habitat model of the bathymetry, the in-situ observations need to be

coupled with the multibeam bathymetry. Aligning the AUV observations and the

multibeam bathymetry is trivial as both data products are geo-referenced. Before it

is possible to create a habitat model, each bathymetry pixel visited by the AUV must

be assigned to a habitat class. A graphical example of assigning bathymetry pixels,

observed by an AUV, to habitat classes is shown in Figure 4.19.

After autonomously categorising the images, the AUV observations are assigned a

probability of belonging to each of the habitat categories. The probability of the

AUV observations shown in Figure 4.19 belonging to one of six habitat classes is

shown in Table 4.7.

AUV Sand Screw-Shell Silt Sand-Reef Reef Kelp
pose Rubble Ecotone

(class 1) (class 2) (class 3) (class 4) (class 5) (class 6)

1 0.817 0.000 0.000 0.183 0.000 0.000
2 0.749 0.000 0.000 0.251 0.000 0.000
3 0.000 0.000 0.000 1.000 0.000 0.000
4 0.000 0.000 0.000 0.987 0.013 0.000
5 0.000 0.000 0.000 0.005 0.995 0.000
6 0.000 0.000 0.000 0.005 0.995 0.000
7 0.000 0.000 0.000 0.023 0.977 0.000
8 0.000 0.000 0.000 0.115 0.885 0.000

Table 4.7 – Probability of the AUV observations shown in Figure 4.19 belonging to
one of six habitat classes. The AUV pose numbers correspond to the labels shown
in Figure 4.19.

The habitat label associated with each image is given by the most likely class probabil-

ity for each observation. In the example given in Table 4.7, the first two observations

share the label Sand, the following two observations share the label Sand-Reef Ecotone

and the remaining four observations share the label Reef.
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Figure 4.19 – Demonstration of registration between AUV in-situ observations and
bathymetry. The data shown is from an intersecting region of the waterfall 05
(Figure 4.12a) and waterfall 06 (Figure 4.13a) surveys. The bathymetry raster
is shown in the background. The grid lines represent the boundaries between
bathymetry pixels. The coloured dots represent AUV observations. Each AUV
observation consists of an illuminated image of the seafloor. Observations of the
central pixel are shown on the left and right of the figure. The labels next to each
image identify the AUV poses which fall into the central pixel. The colours of
each AUV pose and image correspond to different habitat classes. The red class
represents sand, the cyan class represent a sand-reef boundary and the dark blue
class represents reef. To generate a habitat map, each bathymetry pixel observed
by the AUV must be assigned to a habitat class from multiple, possibly conflicting,
observations.
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To label the bathymetry pixel observed by the eight AUV observations shown in Ta-

ble 4.7 and Figure 4.19, consensus between the multiple conflicting observations must

be found. If the habitat label for each observation is used to determine consensus,

the mode of the observed labels can be used. The mode of the habitat labels would

yield a label of Reef.

The lower the spatial resolution of the bathymetric data, the more likely it will contain

a mixture of observed classes. The spatial resolution of the Tasmania bathymetry

(1.6m) is large enough to span multiple habitat classes. As Figure 4.19 shows, the

observed habitat class will vary depending on which part of the bathymetry pixel is

observed. Describing a bathymetry pixel with a single label ignores the ambiguity

introduced by conflicting accounts of what was observed. This is particularly true of

bathymetry pixels which observe the transition from one habitat to another.

An alternative to using the mode of the habitat labels to settle conflicting accounts

is to use the class probabilities. Averaging the class probabilities of the observed

data in a bathymetry pixel produces an estimate of the mix of habitat classes. The

average class probabilities for all eight observations shown in Table 4.7 are shown in

Table 4.8.

Sand Screw-Shell Silt Sand-Reef Reef Kelp
Rubble Ecotone

(class 1) (class 2) (class 3) (class 4) (class 5) (class 6)

0.1958 0.0000 0.0000 0.3209 0.4833 0.0000

Table 4.8 – Mean probability of the central bathymetry pixel, shown in Figure 4.19,
belonging to one of six habitat classes.

Table 4.8 shows that the most likely class is Reef. However, the average class proba-

bility for Reef is low and fairly closely followed by Sand-Reef Ecotone. This averaged

probability captures the conflicting accounts presented by the eight observations of

the bathymetric pixel. Rather than belonging to a single habitat class, the bathy-

metric cell contains a mixture of habitat classes.
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4.5 Experimental Results

In this section a probabilistic least squares classifier trained on discrete class labels

(PLSC-VDP) and a probabilistic least squares classifier trained on continuous class

probabilities (PTLSC) are compared. Both models are described in Chapter 3. The

models are applied to the task of generating a bathymetric habitat map using the

data set described in Section 4.4.

The bathymetric feature vector contains depth, log rugosity and log slope extracted

from the DEM using window sizes of 2 (8m), 4 (14.4m), 8 (27.2m) and 16 (52.8m)

(see Figure 4.7, Figure 4.8). The bathymetric feature vector is standardised by sub-

tracting the mean from each dimension and dividing by the standard deviation. The

AUV observations are clustered and consolidated as described in Section 4.4.3. The

bathymetry pixels observed by the AUV are labelled by averaging the class probabil-

ities of all AUV observations within a single pixel as described in Section 4.4.4. After

this procedure, 19,450 labelled bathymetry pixels are available for training a model.

4.5.1 Cross-Validation

The performance of the PLSC-VDP and the PTLSC is measured using accuracy,

mean squared error (MSE) of the predictive density and mean variance of the latent

functions. The accuracy is calculated by recording the portion of correctly classified

instances in the test data, relative to the VDP cluster labels. The MSE of the pre-

dictive density is measured between the ‘true’ human verified VDP class probabilities

and the predicted probabilities. Mean variance is calculated by averaging the variance

measured across all training instances and classes.

To provide an indication of model generalisation and limit the training data to a

tractable size, performance is evaluated using a variant of cross-validation. Repeated

random sub-sampling is used where a subset of data is randomly selected from the

pool of observations for training, and the remaining data are used for validation.
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Stratified sampling is used to randomly sample the training data. Each class is

allocated the same number of training samples. Samples drawn from a class are also

stratified according to the probability of class membership. Observations within a

class are grouped into probability bins of 0.01. The number of observations allocated

to the class are distributed such that an equal number of observations are sampled

randomly from each probability bin. Any remaining observations, due to integer

rounding errors or probability bins with a low numbers of observations, are sampled

randomly from the pool of remaining observations in the class. This is done for each

class. The goal is to provide a training data set with equal numbers of observation

for each class and probability.

After a fold of training data has been selected, testing data is selected from the

remaining observations. This ensures that no training and testing fold pair share

any common observations. Three methods are used to select testing data, uniform

random sampling, the most likely data and the least likely data. Selecting the most

likely and the least likely data are deterministic sampling methods. Since the testing

data is selected randomly, the pool of remaining observations is also random leading

to variation in the deterministic sampling methods. The most likely and least likely

observations are determined by the human verified VDP class probabilities. The

probability of the most likely class is used to order the observations.

The performance of the PLSC-VDP and the PTLSC is quantified using 2000 ob-

servations for training and 10,000 observations for testing. The mean performance

calculated over the ten folds is shown in Table 4.9 for the most likely observations, in

Table 4.10 for uniform randomly sampled testing data and in Table 4.11 for the least

likely observations.

In all testing data scenarios the PTLSC is able to outperform the PLSC-VDP. The

most likely data contains probabilities with almost no ambiguity. They are effectively

discrete labels and the models offer comparable levels of performance. The PTLSC

has a small 1% accuracy advantage and offers more confident predictions with a lower

mean variance.
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Model Accuracy (%) MSE Mean Variance

PLSC-VDP 64.472 0.082 0.353
PTLSC 65.452 0.082 0.216

Table 4.9 – Ten-fold cross-validation performance for the most likely data samples
from the Tasmania data set.

Model Accuracy (%) MSE Mean Variance

PLSC-VDP 57.704 0.075 0.347
PTLSC 61.255 0.072 0.210

Table 4.10 – Ten-fold cross-validation performance for uniform, randomly sampled
testing data

Model Accuracy (%) MSE Mean Variance

PLSC-VDP 50.269 0.073 0.341
PTLSC 57.557 0.064 0.203

Table 4.11 – Ten-fold cross-validation performance for the least likely data sampled
from the Tasmania data set.

In uniform randomly sampled test data the test locations contain a mix of high and

low probability data. Predictions in the PTLSC are produced with a lower MSE and

mean variance than the PLSC-VDP. The PTLSC is also able to offer a 3% increase

in classification accuracy.

For test data sampled from the least likely observations, the PTLSC produces signifi-

cantly better performance than the PLSC-VDP. The least likely observations contain

many ambiguous class probabilities. In these regions the class probabilities contain

subtle information which is not preserved in the discrete class labels. The PTLSC is

able to make use of this information and produce a more accurate predictive distri-

bution. A beneficial side effect of producing a more accurate predictive distribution

is that the PTLSC produces a superior accuracy with a performance gain of 7%.
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The cross-validation results presented in Tables 4.9 to 4.11 provide evidence that the

PTLSC is able to make use of the probabilistic training data in regions where there

are ambiguous class assignments. As a result the PTLSC produces a more accurate

and confident predictive distribution than the PLSC-VDP. This results in a higher

label accuracy. The difference in performance between the two models increases as

the test data is drawn from more ambiguous areas of the environment. In the presence

of uncertain test data, the performance of the PTLSC degrades gracefully and at a

slower rate than the PLSC-VDP.

4.5.2 Habitat Map

Due to the O(N3) complexity of training a GP [75], it is not feasible to train a GP

model on all 19,450 observations. To make training tractable, the stratified sampling

method is used to select 6000 observations for training. The stratified sampling

method is also used to sample 15,000 observations for interpolation. It does not

matter if the training and interpolation data sets share common observations. The

objective is to create an accurate model using as much data as possible.

The PTLSC habitat map for the southeastern Tasmania data set is shown in Fig-

ure 4.20. The intensity plot shows the most likely habitat where the intensity of the

colour is proportional to the probability. As the predictions become less certain, the

colour fades to white. The mean variance of the class latent functions is shown in

Figure 4.21.

The habitat map predictions closely match the observed data shown in Figure 4.16.

However, in locations far from observed data predictions become weaker. This is

particularly obvious at depths below 90m. The deep, eastern region of the bathymetry

raster has been predicted with a low confidence.

Intuition suggests that the deep eastern region is likely to be a sandy substrate. Most

of this region has been predicted as Screw-Shell Rubble with some low probability Reef.

There are no observations in this region available to support inference. As shown in

Section 4.4.1, artefacts are present in the bathymetry. These artefacts contribute to
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an artificial roughness in the bathymetry making the rougher Screw-Shell Rubble a

more plausible hypothesis than Sand. Many of the closest observations of this region

are observations of Screw-Shell Rubble from ohara 07 and ohara 20 which border on

the deep and flat eastern region.

The same phenomenon can be seen in shallow regions. Few observations have been

collected from shallow, flat terrain. The majority of shallow, flat bathymetry observa-

tions are from waterfall 05 which observes Silt. The remaining shallow observations

pass over textured Kelp and Reef. Consequently, most flat terrain shallower than

40m has been classified as Silt. Whilst some of this region is correctly identified as

Silt much of it will likely be Sand.

At this point it is worth noting that the AUV observations represent a biased sample

of the environment. The AUV surveys deliberately “targeted the coastal and offshore

reefs” [64] of the southeastern Tasmanian peninsula. Relatively little attention was

given to other habitats in the environment. The length, width and orientation of each

survey was designed specifically for the reefs targeted by the survey. This targeted

approach is not an efficient sampling strategy for producing broad-scale habitat maps.

This is supported by the resulting habitat map. Large regions of the environment

have not been explored and inference in these regions remains weak. Transects which

traverse a diverse range of bathymetry features are more appropriate for general

inference.

Although large sections of the environment are not supported by observations, the

probabilistic model provides two levels of self-assessment. The first level of self-

assessment is the predicted probability provided by the model. The predicted prob-

ability can be interpreted as the likelihood of observing a class at the input location.

If the predicted probability is in its most entropic state, the input location is equally

likely to generate one of the possible classes. Alternatively it can be interpreted as

an indication that the input location is a mixture of the possible classes. Under this

interpretation an entropic observation has been generated by an even mixing of the

classes.
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Figure 4.20 – Southeastern Tasmania habitat map generated by the probabilistic
targets least squares classifier (PTLSC). The bathymetry contours are shown as
black lines. The intensity plot shows the most likely habitat where the intensity
of the colour is proportional to the probability of the most likely habitat. As the
predictions become less certain, the colour fades to white. Colours correspond to
the habitat classes shown in Figure 4.15. The holes in the habitat map are due
to missing pixels in Figure 4.6 where it was not possible to calculate bathymetry
features. Local coordinates are expressed in zone 55G of the universal transverse
Mercator coordinate system.
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Figure 4.21 – Variance of southeastern Tasmania habitat map generated by the prob-
abilistic targets least squares classifier (PTLSC). The bathymetry contours are
shown as black lines. The intensity plot shows the mean variance of the latent
functions. The holes in the habitat map are due to missing pixels in Figure 4.6
where it was not possible to calculate bathymetry features. Local coordinates are
expressed in zone 55G of the universal transverse Mercator coordinate system.
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An entropic state might be due to multiple conflicting observations of the same

bathymetry cell or due to classes which are inseparable in the bathymetry feature

space. For instance, two reef classes might be distinct in AUV imagery due to colour

but appear identical in bathymetry texture. These classes are inseparable in the

bathymetry feature space and will be predicted with an equal likelihood.

If the predictive probabilities are uncertain and the query locations are well supported

by training data, it is likely the input vector is not descriptive enough to separate

the observed classes. This can be determined by referring to the second level of self-

assessment, the variance of the GP latent function. The latent function variance is

low in locations where there is ample training data to support inference and high in

locations where there is no training data available to support inference.

As an input location moves further away from training data, the predicted variance

grows and the mean of the latent function returns to its prior. This causes the pre-

dicted probabilities to return to a highly entropic and uninformative state. This

simply means that the classes cannot be separated as there is no data to support

reasonable inference. On the other hand, if the predicted variance is low and the pre-

dicted probability is highly entropic, the data is supporting an ambiguous hypothesis.

The model has identified a region in the input space where the training data provides

conflicting information. This likely means the training data is not descriptive enough

to disambiguate between classes.

In short, the predictive probability provides a measure of class separability and the

predicted variance indicates the distance to training data. In Figures 4.20 and 4.21,

high-variance locations of the environment are correlated with low probability pre-

dictions. As discussed, this means there are no observations to support reasonable

inference in these areas.

Predictions are confident in locations of the environment where the bathymetry fea-

tures are close to observed features. The AUV surveys spanned depths from 30m

to 90m. On average the surveys collected data between 50m and 70m depths (see

Table 4.4). Low-variance predictions, shown by the blue region in Figure 4.21, occur

in this range of depths as there is data available to support inference.
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Although weak performance is not desirable, the advantage of using a probabilistic

model is in the self-assessments it provides. End users of the predictions can decide

how much faith to put in the predictions given the model confidence.

The composition of the environment is shown in Figure 4.22. Figure 4.22a shows

the predicted composition of the environment. Given the high predicted variance

in shallow and deep areas of the environment the predicted proportions of Screw-

Shell Rubble and Silt in the environment, as shown in Figure 4.22a, are likely to

be anomalously high. A finer-grained approach can be adopted by breaking up the

environment into depth bands and plotting the composition of habitats found in each

depth band as a proportion of the total environment. This is shown in Figure 4.22b.

Assertions about Figure 4.22b can be made for the 30m to 90m depth bands where

there are confident predictions and AUV data to support inference. Kelp constitutes

a small portion of the predicted environment and is not predicted below depths of

50m in significant numbers. Reef is predicted to exist in large numbers from 30m

down to 70m. Most of the environment beyond 60m is estimated to be substrate.

To provide an optimistic estimate of model performance, a confusion matrix was

generated using all of the data for interpolation and all of the data for testing. The

confusion matrix is shown in Figure 4.23. Most of the classes are estimated well. The

class with the poorest performance is Sand-Reef Ecotone. More than a quarter of the

Sand-Reef Ecotone observations were incorrectly classified as sand. A further 13.8%

were identified as Reef. This confusion is unsurprising as the Sand-Reef Ecotone class

is a mixture of the Sand and Reef classes. Screw-Shell Rubble was mistaken for Sand

almost a fifth of the time. These are also two highly related classes.



4.5. EXPERIMENTAL RESULTS 89

Sand: 32%

Screw−Shell Rubble: 31%

Silt: 10%

Sand−Reef Ecotone: 3%

Reef: 20%

Kelp: 3%

(a) Predicted proportion of the environment occupied by
each habitat

0

10

20

30

40

Depth band (m)

C
lu

s
te

r 
p

ro
p

o
rt

io
n

 (
%

)

0
 −

 1
0

1
0

 −
 2

0

2
0

 −
 3

0

3
0

 −
 4

0

4
0

 −
 5

0

5
0

 −
 6

0

6
0

 −
 7

0

7
0

 −
 8

0

8
0

 −
 9

0

9
0

 −
 1

0
0

1
0

0
 −

 1
1

0

(b) Habitat composition at 10 metre depth intervals

Figure 4.22 – Habitat composition of southeastern Tasmania. (a) Predicted propor-
tion of habitats in southeastern Tasmania. (b) Habitat composition at 10 metre
depth intervals. Each bar in the graph represents a specific depth band. Each
bar is composed of habitats found in the depth band as a proportion of the total
environment.
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Figure 4.23 – Confusion matrix for the PTLSC. The confusion matrix was calculated
by using 6000 observations for training. All of the data was used for interpolation
and for testing. Data re-substitution is used to provide an optimistic indication of
model performance, not necessarily an indication of model generalisation.
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4.6 Summary

This chapter provided a review of benthic habitat mapping. Methods for collecting

multibeam bathymetry and in-situ observations of the environment were discussed.

A data set including ship-borne MBES bathymetry and AUV observations of the

seafloor was introduced. The data set was collected in the southeastern Tasmania

peninsula in Australia. A novel semi-autonomous habitat mapping pipeline using

a ‘predict first, assemble later’ approach was proposed and demonstrated using the

Tasmania data set.

The habitat mapping pipeline uses an unsupervised clustering algorithm to categorise

the in-situ AUV observations into habitat clusters. Foregoing human supervision

to classify AUV imagery reduces labour costs and allows large pools of data to be

summarised quickly. Rather than relying on a human expert to manually classify

large volumes of images, they are required to review a small set of habitat clusters.

These proxies can be merged and discarded to produce a set of habitat classes.

To take full advantage of the probabilistic information provided by the unsupervised

clustering algorithm, the PTLSC described in Chapter 3 is used to classify features

extracted from the ship-borne MBES bathymetry. When compared to an approach

that only uses the discrete class labels for training, the results show that the PTLSC

is the more accurate and confident model. The benefits of using the PTLSC are

strongest when there is ambiguity in the test data.

A habitat map for the Tasmania data was produced using the proposed pipeline.

The habitat map produces an accurate estimate of the environment in locations close

to observed values. In locations far from observed values the habitat predictions

become weaker. The self-diagnostic properties of the GP-based classifier highlight

the benefits of using a Bayesian probabilistic model. Weak predictions are associated

with a high predicted variance. The prevalence of high-variance predictions in the

environment suggests the habitat model would benefit from further observations of

the environment.
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Efficiently gathering additional observations from the environment is not a trivial

problem. Extra surveys must be planned carefully to maximise the amount of infor-

mation extracted from the environment. In large environments this is complicated

by the number of possible survey trajectories which must be considered. A method

for planning surveys in large environments is proposed in Chapter 5.



Chapter 5

Autonomous Survey Planning

The problem of efficiently gathering information from large environments applies to

a wide variety of applications from planetary exploration [94] to remote sensing and

environmental monitoring [90]. Autonomous platforms are well suited to exploring

environments. They can collect precisely navigated, high-resolution data while oper-

ating beyond the limits of human endurance and safety. However, they are typically

limited by finite battery capacities, data storage and computational resources. Ad-

ditionally, the projects which support these vehicles have limited budgets and time

frames to complete their objectives. These constraints make it impractical to sample

the environment exhaustively. To use the limited resources effectively, trajectories

which maximise the amount of information gathered from the environment must be

designed.

This chapter proposes a novel method for exploring large environments. The approach

is proposed in Section 5.1 and is designed to address the curse of dimensionality inher-

ent in survey based exploration problems. Section 5.2 reviews objective functions used

in active learning and experimental design. Section 5.4 demonstrates and validates

the proposed method on real marine data when no prior observations are available.

Finally, Section 5.5 provides concluding remarks.

93
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5.1 Exploration via Learning

Gathering and analysing data is often an expensive and labour-intensive task. In most

applications it is not possible to exhaustively sample the environment and analyse all

the collected data. Instead small samples of data are collected and analysed. These

small data sets can then be generalised into a model which relates the observed data

to the outcomes of the analysis. For example, in classification problems, the task is

to map input vectors to a discrete category from a finite set.

Generalising a small number of in-situ observations into a model as a function of the

broadly observed environmental data allows inference to be performed in arbitrary

locations. Clearly the efficacy of the model is dependent on the training data that

has been analysed. To most effectively utilise the resources at hand, robot operators

must collect data which best suits their modelling objectives.

One framework which has gained considerable attention for its ability to gather in-

formation from the environment is partially observable Markov decision processes

(POMDPs) [40, 95]. Under the POMDP framework, robot actions and observations

are considered uncertain. Since the true state is unobservable, the robot must main-

tain a distribution over the true state and plan in this belief space. Operating in a

belief space provides a theoretically rigorous framework for balancing goal acquisition

and information gathering.

In POMDPs the model will only engage in information gathering behaviour to the

extent that it helps the agent reach its goal state. Information gathering is only

a means to an end. The extent to which exploration and exploitation behaviours

are exhibited depends on how rewards are specified. Supplying a POMDP with a

reward function which seeks information is a possibility. However, the complexity

of generating a control policy in the POMDP belief space is an exponentially hard

problem and considered PSPACE-complete [69]. Although approximate methods

have been proposed to scale POMDPs up to larger problems [70, 73, 82], none have

been applied successfully to exploration problems where the environment is unknown.

These problems are currently considered intractable.
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Unlike many conventional planning problems [49, 71, 92], exploration is an open-

ended task. Well-defined objectives such as a known initial and final configuration

are complex decisions which may be an integral part of the problem. The only strongly

specified objective is to maximise the amount of information gathered from the envi-

ronment. In this context the primary concern is collecting data which optimises some

statistical objective.

The problem of collecting data which optimises some statistical objective is referred

to as experimental design [5, 16] and was originally formalised by the statistics com-

munity. More recently, the problem of collecting data to optimise some criteria has

been studied by the machine learning communities and in the field of control the-

ory. In the machine learning community active learning or query learning [84] is a

framework where the agent is able to request data from the environment.

The main idea behind active learning is that algorithms which seek informative data

will outperform naive learning algorithms and will require less training. However, the

information gained from including a single observation, or batches of observations, is

commonly assessed independently of the resources required to make an observation.

The general assumption is that making observations and submitting the data for

analysis is relatively inexpensive. This assumption is not true in the context of

robotic exploration as it ignores the constraints of the robot.

Data drawn from the environment based solely on some statistical objective, with no

consideration of how that data is distributed in physical space, will lead to inefficient

or impossible survey trajectories. To apply experimental design effectively to robotic

exploration, a constraint must be included to ensure each survey can be completed by

the robot. Robot operators often naturally impose constraints on vehicle deployments.

For instance, in the majority of autonomous underwater vehicle (AUV) deployments,

AUV operators and marine scientists use prespecified survey trajectories which are

composed offline. The dynamic limitations of the AUV and the scientific objectives

of the mission are encoded into these trajectories. The surveys are often lawn mower

patterns or are simple linear designs which follow gradients or depth contours. An

example of a human-designed survey template is shown in Figure 5.1.
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Figure 5.1 – Example of a survey template. The green indicates the starting location
of the survey. The red dot indicates the ending location of the survey. The blue
line represents the vehicle trajectory.

By limiting the vehicle to a prespecified survey template, only batches of observations

which can be observed by placing the survey template somewhere in the environment

need to be considered. The vast unconstrained exploration problem is simplified to

the more tractable task of selecting the optimal location to place the survey. However,

assessing every possible survey placement exhaustively is still a large problem.

To further reduce the size of the problem, the survey utility is evaluated at a small set

of locations and a functional representation is learnt using a Gaussian process (GP).

The functional representation allows the survey utility to be tractably approximated

over the entire domain of interest by querying the GP utility model. This process

is not complicated by obstacles. In natural marine environments it is possible for

vehicles to maintain a survey template in the horizontal plane by traversing over

obstacles.

Before the planning method can be applied, a utility function which captures the

statistical objectives of the survey must be specified. Many utility functions can

be used to assign a value to the quality of a survey. Utility functions found in the

literature are discussed in the following section.
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5.2 Utility Functions

A utility function allows potential survey placements to be compared and ranked in

order of preference. This utility function should reflect the objectives of the survey

and can be used to guide exploration. In this chapter, the goal is to create an accurate

habitat map. Several utility functions found in the literature are summarised in this

section.

5.2.1 Random Sampling

A naive strategy for fulfilling modelling objectives is to randomly select data for

analysis. This strategy is also known as passive learning and is often used as a

benchmark for active learning strategies. Active learning is considered worthwhile if

the active learning strategy provides superior performance to random sampling for

all or most of the active learning cycles.

5.2.2 Uncertainty Sampling

A probabilistic heuristic for determining which data points are informative is choosing

to analyse the data which produces the most uncertain predictions. This framework

for selecting data is known as uncertainty sampling [51]. The intuition behind uncer-

tainty sampling is that a model can learn the most by analysing data where it knows

the least.

Several measures of uncertainty are found in the active learning literature. These

methods are popular and simple to implement in models which produce probabilistic

output. Three measures, surveyed in [84], are summarised in this section.

Least confident sampling is a strategy which uses only the most probable class

labels to calculate a measure of uncertainty:

X∗ = arg max
X∗

[1− p(ŷ | X∗)] (5.1)
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where ŷ are the most probable class labels predicted by the model and are given by:

ŷ = arg max
y

p(y | X∗) .

Data points with confident predictions indicate the model is able to differentiate the

most likely label against all other labels. Conversely data points with predictions

which are not confident, suggest the model is not able to strongly distinguish the

most likely class from all others. Intuitively, gathering data in these regions should

help the model separate the confused classes.

Minimum margin sampling uses both the most and second most probable class

labels as a proxy for uncertainty:

X∗ = arg min
X∗

[p(ŷ1 | X∗)− p(ŷ2 | X∗)] (5.2)

where ŷ1 and ŷ2 are the most and second most probable class labels predicted by the

model respectively. Large margins imply the model can distinguish between the two

most likely classes. Small margins occur when the model has trouble discriminating

between the two most likely classes. By querying small margins, the active learning

agent is introducing data which should help to separate the two most likely classes.

Maximum entropy sampling is an information theoretic approach to measuring

uncertainty and is given by the Shannon entropy of the predictions:

X∗ = arg max
X∗

[
−

C∑
i=1

p(yi = 1 | X∗) log p(yi = 1 | X∗)

]
. (5.3)

Shannon entropy differs from the previous two methods in that it uses the information

contained in all C classes to quantify the uncertainty of a data point. Minimum (zero)

entropy occurs in regions where the model can assign data to one class with full

confidence. As the probability of class membership converges to an uninformed state,

the entropy grows. Maximum entropy occurs when the individual class probabilities
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are equal. In these regions, the input data is equally well explained by all classes.

Collecting data in these regions should help disambiguate between classes.

5.2.3 Bayesian Experimental Design

Bayesian experimental design [16, 53] is particularly suited to information gathering

tasks. Under the Bayesian paradigm, prior knowledge and subsequent observations

can be fused incrementally into a model. This elegant property allows Bayesian

methods to propagate estimates and their uncertainty as data is collected.

The outcome of an experiment can only be observed once the experiment has been

performed. Given this uncertainty, a planning agent must select an experiment or

action based on its expected utility. If the outcomes of the experiment were known in

advance, calculating the utility of the experiment would be trivial. By considering all

possible future outcomes of an experiment, conditioned on the data that has already

observed, D, a planning agent can calculate the expected utility of performing the

experiment. For a particular experiment, E , and a general utility function, U(. . .),

this expectation is given by

E[UE ] =

∫
p(y+ | XE ,D)U(. . .) dy+, (5.4)

where y+ is an unobserved future observation. This expectation captures the balance

between risk and reward. A risky experiment which has high-utility outcomes that

are unlikely to occur may be more rewarding than a conservative experiment where

low-utility outcomes are very likely to occur.

The optimal experiment is simply the experiment which maximises the expected

utility from the set of proposed experiments ξ,

E∗ = arg max
E∈ξ

E[UE ] . (5.5)

In any experimental design application the utility function should reflect the objec-

tives of the experiment. The Kullback-Leibler divergence (KLD) between the pos-
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terior belief after conducting an experiment and the prior belief before conducting

the experiment was proposed as a measure of information gain early in the statistics

literature [53]. The KLD is used to measure the difference between the two distribu-

tions and can be viewed as the amount of extra information required to explain the

updated posterior belief in terms of the prior belief. For the prior belief p(X) over

some random variable X and the updated posterior belief p(X | y+) given a future

observation y+, the KLD is given by (5.6).

U(. . .) = KL ( p(X | y+) ‖ p(X) )

=

∫
p(X | y+) log

p(X | y+)

p(X)
dX (5.6)

Since the outcome of the experiment is unknown, only the expected utility can be

quantified. By simplifying the notation in (5.4) and combining with (5.6) the expected

utility can be described in information theoretic terms.

E[UE ] =

∫
p(y+ | XE ,D)KL ( p(X | y+) ‖ p(X) ) dy+

= Ey+ [KL ( p(X | y+) ‖ p(X) )]

= I [X; y+] (5.7)

The result given by (5.7) shows that by combining the objective function with a

utility function based on information gain, the optimal experiment is the one which

maximises the mutual information between p(X) and p(X | y+). Further insight into

this objective function can be provided by expanding (5.7).

E[UE ] =

∫
p(y+ | XE ,D)KL ( p(X | y+) ‖ p(X) ) dy+

=

∫
p(y+ | XE ,D)

[∫
p(X | y+) log

p(X | y+)

p(X)
dX

]
dy+

=

∫
p(y+ | XE ,D)

[∫
p(X | y+) [log p(X | y+)− log p(X)] dX

]
dy+

=

∫
p(y+ | XE ,D)

[
−
∫
p(X | y+) log p(X) dX− H[X | y+]

]
dy+
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= −
∫ ∫

p(X | y+) p(y+) log p(X) dXdy+ − Ey+ [H[X | y+]]

= −
∫
p(X) log p(X) dX− Ey+ [H[X | y+]]

= H [X]− Ey+ [H[X | y+]] (5.8)

The intuition behind (5.8) is that the mutual information represents the expected

reduction in the uncertainty about X as a consequence of making an observation

y+. The expected reduction in uncertainty is measured using entropy, H [·]. Experi-

ments which result in a large expected change in entropy are likely to introduce more

information than experiments with a small expected change.

Choosing which distribution to use for p(X | y+) and p(X) depends on the objectives

of the experiment. In physical applications, the task is often to learn the parame-

ters of a model [35, 54]. Given the task of inferring model parameters from noisy

and incomplete observations, an appropriate utility function is one which quantifies

the expected gain in information about the model parameters, after performing an

experiment,

U(. . .) = KL ( p(θ | XE ,y+,D) ‖ p(θ | D) ) .

Under certain conditions this utility function can be simplified down to a form of

maximum entropy sampling [54, 83].

In other applications, the quality of predictions can be more important than estimat-

ing the parameters of a model. An appropriate utility function in these applications

is one which quantifies the expected gain in information about the predictive distri-

bution after performing an experiment [16],

U(. . .) = KL ( p(y∗ | XE ,y+,X∗,D) ‖ p(y∗ | X∗,D) ) (5.9)

where y∗ is the predictive distribution at the test locations X∗. This objective function

is used in [45] in a regression problem with a Gaussian process. The task is to choose

a near optimal set of observations locations E , out of a finite subset ξ of possible
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locations such, that the regression model contains the least generalisation error. Using

Equation (5.8), the objective function is given as,

I
[
Xξ\E ,XE

]
= H

[
Xξ\E

]
− H

[
Xξ\E

∣∣ XE
]

where the mutual information measures the difference in entropy between the mea-

sured locations, XE , and the remaining space, Xξ\E .

Habitat mapping is a classification problem, not a regression problem. A similar

utility function to Equation (5.9) is given in [78] and is applied to marine habitat

mapping with a Gaussian process,

E[UE ] = H[y∗ | X∗,D]− Ey+ [H[y∗ | XE ,y+,X∗,D]] . (5.10)

Since the first term in (5.10) does not depend on the experiment XE , it is constant

for all experiments and can be ignored. Maximising the mutual information can then

be performed by minimising the entropy of the predictive distribution

E[UE ] = −Ey+ [H[y∗ | XE ,y+,X∗,D]]

= −
∫
p(y+ | XE ,D) H[y∗ | XE ,y+,X∗,D] dy+ (5.11)

where

H[y∗ | XE ,y+,X∗,D] = −
N∑
i=1

C∑
j=1

p(y∗ij | XE ,y+,X∗i,D)

log p(y∗ij | XE ,y+,X∗i,D) .

(5.12)

The predictive entropy (5.12) is often only calculated at unlabelled locations of the

data set but it can be calculated at any relevant portion of the input space. Variants

of this objective function have been used widely in the active learning community

[28, 29, 66, 85].
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5.2.4 Minimising Predictive Variance

In general, performing Bayesian experimental design requires optimising an objective

function with analytically intractable integrals. For certain combinations of models

and objective functions, closed-form solutions can be derived. In the majority of cases

these combinations do not exist and Bayesian experimental design requires expensive

numerical sampling. A non-Bayesian approach to experimental design has been to

minimise the predictive variance.

Optimal experimental design in linear models has largely been concerned with opti-

mising statistical properties of a model’s Fisher information matrix [2]. The Fisher

information matrix is a function of a model’s explanatory variables and can be used

to minimise the predictive variance of the model. The predictive variance and Fisher

information of the model share an inverse relationship. Maximising the Fisher infor-

mation corresponds to minimising the predictive variance.

Several target functions are commonly used to maximise the Fisher information.

These target functions are known as alphabetic design criteria. Popular design crite-

ria are A-optimality and D-optimality. A-optimal designs minimise the trace of the

inverse Fisher information matrix. This corresponds to minimising the average vari-

ance of the predictions. D-optimal designs minimise the determinant of the inverse

Fisher information matrix. This corresponds to minimising the expected posterior

entropy over the model parameters.

Many of the alphabetic optimality criteria have Bayesian analogues [16]. Bayesian

alphabetic optimality has the same objective - to reduce the predictive variance of a

model. The key difference between Bayesian alphabetic optimality and classic alpha-

betic optimality is that the classical methods assume the current model is correct.

Bayesian methods are robust to biases caused by an incorrect model as they account

for uncertainty about the current model [23]. Closed-form solutions for optimising

these quantities have been derived for various models including linear models [16] and

neural networks [56]. The Bayesian alphabetic optimality criteria can be derived for

Gaussian processes [45].
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5.3 Planning without Observations

All of the utility functions described in Section 5.2 rely on evaluating properties of a

model that already exists. When no observations of the environment exist, it is not

possible to build and exploit a model. Although no in-situ samples of the environment

exist, the structure of bathymetry features in the environment can be exploited to

design surveys which cover as much of the bathymetry feature space as possible.

Recall that habitat maps are created by correlating features extracted from the digital

elevation model (DEM) with classified in-situ observations. Since the independent

variable is the bathymetry feature space, exploration should be optimised in this

space. The bathymetry feature space can be compactly represented by modelling the

density of the features using a Gaussian mixture model (GMM).

A candidate survey which collects a representative set of observations from the envi-

ronment will produce a density of observations similar to that of the entire environ-

ment. The density of features observed by a survey can also be compactly modelled

using a GMM.

Similarity between the density of features in the environment and the density of

features to be visited by a candidate survey can be measured using the KLD. The

KLD is given by (5.13),

KL ( p ‖ q ) =

∫
p(x) log

(
p(x)

q(x)

)
dx, (5.13)

where p(x) is the density of the bathymetry and q(x) is the density of a survey. A

survey with a low KLD will cover a more representative set of bathymetry features

in the environment than a survey with a higher KLD. The goal for the remainder

of this chapter is to provide a framework for selecting a survey placement so as to

minimise the KLD between the density of features in the environment and the density

of features to be visited.
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X f(X) U

X∗ f(X∗) U∗

Figure 5.2 – Graphical model of a Gaussian process modelling the hidden survey utility
function. Observed and unobserved variables are shown as shaded and unshaded
nodes, respectively. The bold edge between the hidden utility function variables,
f(·), indicates that these latent variables reside in a fully connected Gaussian field.
A description of the node variables is provided in the main text.

Evaluating the utility of every possible survey placement is an exhaustive and in-

tractable task in large-scale environments. To avoid relying on an inefficient brute-

force approach, the survey utility can be estimated using a small number of training

surveys. In this chapter a GP [75] is used to model the underlying utility function

for a specific survey template.

A graphical model of the GP utility model is shown in Figure 5.2. All possible survey

placements are represented by the node X∗. The survey training locations, or training

inputs, are represented by the node X and are a small subset of locations drawn from

X∗. The survey utility at the training locations, or training targets, are represented by

the node U and are calculated explicitly. The predicted survey utility for all possible

survey placements is represented by the node U∗.

Designing a representation for the input space, X and X∗, is an important con-

sideration. A complex representation of survey placements could be expressed in

the bathymetry feature space. Although the batch of bathymetry features traversed

by a candidate survey describes the survey exactly, learning a model in this high-

dimensional space is challenging. A low-dimensional summary of the bathymetry

traversed by a survey placement would be required. However, it must be possible to

calculate millions of these ‘survey features’ in a tractable amount of time.



106 CHAPTER 5. AUTONOMOUS SURVEY PLANNING

In this chapter a survey placement is represented by the Cartesian co-ordinates of

its origin which is trivial to calculate for the millions of possible survey placements.

Using this representation, the GP is essentially performing a spatial interpolation of

the training data. It is worth noting that by modelling the utility function with a

GP, it would also be possible to learn how the survey utility varies with parameters

which control the shape of a survey template. Such parameters might include the

orientation, length, width and track spacing of a survey template.

To ensure the predicted KLD metric will be positive, regression is performed in a

log-KLD space. This is facilitated by transforming the training data into a log space

and subtracting the mean to ensure the log-KLD training data has a zero mean.

To transform the predicted log-KLD values back to a linear-KLD space, the reverse

process is used.

The GP utility model can be trained by minimising the negative log marginal likeli-

hood of the GP with respect to the hyperparameters of the covariance function. In

this chapter a squared exponential covariance function, Equation (2.9), is optimised

using conjugate gradient descent.

Once the GP has been trained, the survey utility can be estimated for all possible

survey placements by querying the utility model. The prohibitive cost of perform-

ing experimental design at all possible survey locations has been replaced with the

tractable requirement of calculating data to support training and inference in the

utility model. The optimal survey placement for the first dive is given by selecting

the location with the lowest predicted KLD.

5.3.1 Relation to Previous Work

In [20], separate GPs are used to model the value function and state-action space in

dynamic programming. Modelling the control problem in this way allows dynamic

programming to be performed in a continuous state and action space and provides

a mechanism for learning the system dynamics in reinforcement learning problems.

A similar approach was published in [81]. The exploration method proposed in this
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chapter is inspired by the concept of using a GP to model a utility function. The

approaches differ in what the GP is modelling. Rather than applying the concept to

dynamic programming, this chapter applies the concept to experimental design. In

this context the motivation is not to operate in a continuous space but to replace the

costly process of experimental design with relatively cheap utility model queries. De-

parting from the dynamic programming framework also frees the approach proposed

in this chapter from specified initial and goal configurations.

A similar application, planning informative surveys in marine environments, is de-

tailed in [78]. The planning framework is designed to rank a list of candidate surveys

where the design and location of all surveys in the list is the responsibility of plat-

form operators. The primary advantage of the method proposed in this chapter over

[78] is the ability to calculate the survey utility for a survey template in arbitrary

locations. Although operators must still design a survey template, they are freed

from the responsibility of having to specify a survey location. Whilst the method

proposed in [78] can naturally rank heterogeneous survey templates, it is possible to

attain a similar result with the proposed method by running a planning cycle for each

individual survey template.

5.4 Results

In this section KLD as a planning heuristic is evaluated. The method is evaluated

using the data set from Section 4.4. In this chapter, the bathymetry feature space is

described using depth, log rugosity and log slope with rugosity and slope calculated

at scales of 2 (8m), 4 (14.4m), 8 (27.2m) and 16 (52.8m) (see Figure 4.7, Figure 4.8).

The bathymetric feature vector is standardised by subtracting the mean from each

dimension and dividing by the standard deviation. This data is used to both demon-

strate and validate the proposed exploration method. The task is to explore the

environment efficiently using only this information.
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Firstly, a survey template is designed. In this demonstration the survey template

shown in Figure 5.1 is used. To train the GP utility model, 4933 survey placements are

distributed evenly throughout the environment. This sampling approach is used for its

simplicity. More sophisticated approaches might sample uniformly in the bathymetry

feature space.

The density of the environment and each potential survey placement is modelled by

fitting a GMM to the data. The number of Gaussians in the mixture, the mixing

coefficient and the mean and variance of each Gaussian are estimated using an unsu-

pervised variational Dirichlet process (VDP) [46]. Since no analytic solution for the

KLD between two GMMs exists, Monte Carlo sampling is used [32] to evaluate Equa-

tion (5.13). The KLD for each of the training placements are shown in Figure 5.3.

The predicted KLD for all possible placements of the survey template is shown in

Figure 5.4. Each of the 29,361,249 pixels represents the predicted utility of a sur-

vey placement which allows at least half of the survey template to traverse valid

bathymetry features.

The predicted survey utility closely matches the training data as shown in Figure 5.4.

Regions with a high KLD are coloured yellow and red. At these locations the survey

template is traversing a set of bathymetry features which lacks diversity. For instance,

surveys which occur in the most Easterly region of the DEM traverse flat bathymetry

which is likely to contain only sand. Regions shown in blue are survey placements

which result in a low KLD. These placements typically occur in shallow regions,

near the coast line, where they are likely to traverse relatively more complex and

diverse regions of the bathymetry feature space. The predominance of low-variance

predictions, shown in Figure 5.5, indicates that predictions are confident and that the

training set is sufficient to describe the space of possible survey placements.

The optimal survey placement, as predicted by the survey utility model, is shown in

Figure 5.4 and scores a survey utility of 6.4341 nats. The utility model has selected a

placement where the survey template traverses a broad range of depths. The terrain

traversed by the survey template also varies from rugged and complex to flat and

lacking diversity.
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Figure 5.3 – Training targets for the Gaussian process (GP) utility model. The
Kullback-Leibler divergence (KLD) for the survey template was calculated at the
training locations. Local coordinates are expressed in zone 55G of the universal
transverse Mercator coordinate system.
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Figure 5.4 – Predicted survey utility over the entire search space. The predicted sur-
vey utility approximates the Kullback-Leibler divergence (KLD) given the survey
template. The optimal survey placement as predicted by the model is shown in red.
Local coordinates are expressed in zone 55G of the universal transverse Mercator
coordinate system.
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Figure 5.5 – Variance of the survey utility predictions. Local coordinates are expressed
in zone 55G of the universal transverse Mercator coordinate system.
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The planning process took a total of 7.94 hours. It took 2.91 hours to calculate the

survey utility for all 4933 training placements. The remaining time was spent calcu-

lating data to support the survey utility model, training the model and performing

inference. A brute-force search, calculating the KLD explicitly for all 29,361,249

possible survey placements, would take 1.98 years.

To compare the performance of GP regression to simpler methods, 1000 unique ran-

dom survey locations were drawn from the environment for the survey template shown

in Figure 5.1. The predicted survey utility at these locations was evaluated using GP

interpolation, linear interpolation and nearest neighbour search. The training data

shown in Figure 5.3 was used for interpolation. The mean squared error (MSE), cal-

culated between the true and estimated survey utility, for each method is shown in

Table 5.1.

GP Linear Interpolation Nearest Neighbour

MSE 77.786 63.970 96.636

Table 5.1 – Mean squared error (MSE) of interpolation methods.

The comparison shows that interpolation provides better performance than simply

choosing the closest training point via a nearest neighbour search. Although GP

interpolation is outperformed by linear spatial interpolation, it is preferred for the

purposes of this chapter as it provides a measure of confidence and the ability to

perform interpolation in more complex, nonlinear dimensions.

In 2008 several surveys were performed in the Tasman peninsula. These surveys are

shown in Figure 4.11. To validate the proposed exploration method, the predicted

survey utility at the location where each survey was actually performed is calculated.

The intention is not to calculate where each survey should have been placed but

rather to quantify how well the utility model can approximate the actual utility of

the surveys which were conducted.
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Figure 5.6 – Habitat clusters created by a VDP and verified by a human. The mosaics
for clusters one through four are represented by the rows from top to bottom and
are created by randomly sampling the habitat clusters.

The suitability of KLD as an exploration heuristic is evaluated by examining the

accuracy of the habitat maps produced by each survey. Habitat classes are determined

by categorising the in-situ imagery collected by the AUV into discrete categories. To

reduce the labour requirements of classifying the data, the AUV images are clustered

using visual features and a VDP model as detailed in [91].

The survey data collected by all surveys is clustered in a single batch. This ensures

each survey has access to a globally consistent set of labels and allows the habitat

maps produced by individual surveys to be compared. The same clusters, shown

in Figure 4.14 are used. Compared to Figure 4.15, the Silt and Screw-Shell Rubble

classes have been merged into a single Sand class. This was done as these classes

are location specific and are only observed by the waterfall and ohara dives (see

Figure 4.17). To provide a set of labels common to all dive sites, Silt and Screw-

Shell Rubble are considered to be Sand. The resulting habitat clusters are shown in

Figure 5.6.
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A habitat model trained on all of the available data provides a benchmark for habitat

map accuracy. If the surveys are pooled together a total of 11,997 data points are

available for training. In this chapter, a probabilistic targets least squares classifier

(PTLSC) [4, 75] is used to create benthic habitat models. Due to the cubic complexity

of the GP-based model, only 6000 randomly selected observations are used to train

the model. The re-substitution accuracy for all of the data is calculated using all

observed data points for interpolation and all of the data for testing. The accuracy

given by this method is 88.21% and is provided as an optimistic, best-case reference

since the test data is also used in the GP kernels for interpolation. Accuracy is lost

on the sand-reef ecotone cluster which is misclassified as either sand or reef. This

confusion is unsurprising as sand-reef ecotone is a mixture of both sand and reef.

To estimate how well the data observed by a survey generalises to the entire envi-

ronment, a habitat model is created using 90% of the data selected randomly. The

remaining 10% is set aside for testing. This is done for each survey. The habitat

models are validated on the test data from all surveys pooled together. Scoring the

accuracy in this way ensures no training data appears in the test set. It also allows

the habitat models to be compared fairly by providing an independent data set for

validation which is available to all models. This process is repeated for 10 different

random folds and the results are averaged across the folds.

The predicted and true KLD for each survey is shown in Figure 5.7a. The surveys

waterfall 06, littlehippoN 11, ChevronRockN 10 and hippoN 09 are omitted from this

analysis as they traverse holes in the bathymetry. The mean and variance of the

validation accuracy for each survey is shown in Figure 5.7b. Both figures in Figure 5.7

share the same survey order to facilitate comparison. The surveys are ordered by

validation accuracy. Although the predicted KLD closely models the true KLD, it

is clear that an exact relationship between habitat map accuracy and survey utility

does not exist.

All surveys with a low KLD perform well. These surveys tend to be larger, providing

them with more information to correctly model decision boundaries. However, not all

surveys with a high KLD perform badly. For instance chevronrockS 14 has the fourth-
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Figure 5.7 – Validation of the proposed exploration method. (a) Predicted and true
Kullback-Leibler divergence (KLD) for each survey. The true KLD is shown in red.
The predicted KLD and two standard deviation variance, supplied by the Gaussian
process (GP) utility model, is shown in blue. The asymmetric variance bounds are
caused by converting from the log-KLD space back to the linear-KLD space. (b)
Mean and variance of the habitat map accuracy produced by each survey for 10
validation folds.
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worst true KLD yet it achieves the second-highest accuracy. A survey with a high

KLD can still collect observations which accurately identify the decision boundaries.

This indicates that a habitat model’s performance does not strongly depend on the

density of observations. The conclusion drawn from these results is that minimising

the survey KLD is a reasonable heuristic for recommending surveys which generate

accurate habitat models. The method favours larger surveys placed in diverse areas

of the bathymetry. This conclusion comes with the caveat that it is difficult to make

strong statements about the performance of surveys with a high KLD.

The habitat map produced using all of the available data from the survey with the

lowest KLD, ohara 07, is shown in Figure 5.8. This survey also produces the most

accurate habitat map. Figure 4.20 and Figure 5.11b show that the predicted environ-

ment is predominantly sand with kelp common in 30-50m depths and reef common

in 30-70m depths.

The habitat map created in Section 4.5.2 used data from all of the surveys. The habi-

tat map using all available data predicts less reef and more sand classes (Figure 4.22)

than the habitat map predicted using only ohara 07 data (Figure 5.11). The habitat

map created using only ohara 07 data predicts a large volume of reef in the 80-90m

depth band. This prediction is made with a low confidence and contributes to a bias

in reef predictions. Both habitat maps predict the same amount of Kelp.

The mean variance calculated across the habitat latent functions is shown in Fig-

ure 5.9. The figure shows that the habitat model has learnt a strong correlation with

bathymetry features that occur close to those observed by ohara 07. These features

are typical in the 60-70m depth band. In distant regions of the feature space such as

depths beyond 75m, the maximum depth of the survey, there is no data to support

inference and the predicted variance is high.

The habitat map created in Section 4.5.2 has more data to perform inference. As

a result, the variance of the habitat map in Section 4.5.2 is lower than the habitat

map presented in this section. This can be observed by comparing Figure 4.21 and

Figure 5.9. This illustrates the benefit of having more data available for training.
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Figure 5.8 – Habitat map created from ohara 07. The bathymetry contours are shown
as black lines. The intensity plot shows the most likely habitat where the intensity
of the colour is proportional to the probability of the most likely habitat. As the
predictions become less certain, the colour fades to white. Colours correspond to
the habitat classes shown in Figure 5.6. A detailed section of the map, denoted
by the black box, is shown in Figure 5.10. Local coordinates are expressed in zone
55G of the universal transverse Mercator coordinate system.
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Figure 5.9 – Variance of habitat map created from ohara 07. The bathymetry contours
are shown as black lines. The intensity plot shows the mean variance of the latent
functions. A detailed section of the map, denoted by the black box, is shown in
Figure 5.10. Local coordinates are expressed in zone 55G of the universal transverse
Mercator coordinate system.
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(a) Detail of survey region
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Figure 5.10 – Detail of habitat map created from ohara 07. (a) Survey region showing
the autonomous underwater vehicle (AUV) trajectory. (b) Predicted probability
of habitat clusters. (c) Mean variance of the habitat Gaussian process (GP) latent
functions. Local coordinates are expressed in zone 55G of the universal transverse
Mercator coordinate system.
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(b) Habitat composition at 10 metre depth intervals

Figure 5.11 – Habitat composition of southeastern Tasmania using only data from
ohara 07. (a) Predicted proportion of habitats in southeastern Tasmania. (b)
Habitat composition at 10 metre depth intervals. Each bar in the graph represents
a specific depth band. Each bar is composed of habitats found in the depth band
as a proportion of the total environment.
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5.5 Summary

This chapter presented a method for planning informative surveys in large-scale, un-

explored environments where a low-resolution representation of the environment is

available. The method focuses on where to place a known survey template. Platform

operators are freed from the responsibility of specifying an initial and goal state.

Instead they are required to design a survey trajectory. Given this trajectory, the

proposed exploration method is able to learn the underlying survey utility and rec-

ommend an optimal survey location.

Many utility functions are found in the literature to guide active learning or exper-

imental design. A short review of these measures is provided. All of the methods

described in the review rely on evaluating properties of a model that already exists.

For exploration problems where no model exists a method for using the KLD as a

utility function is proposed. This novel usage of the KLD is applied to the prob-

lem of selecting an informative AUV survey location in a large, unobserved marine

environment. The objective is to gather data which will create an accurate habitat

map.

The results showed that the proposed exploration method is able to produce a func-

tional representation of the survey utility which closely approximates the true survey

utility in regions of interest. The surveys recommended by the proposed exploration

method result in habitat maps which are accurate over a broad region of the environ-

ment.
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Chapter 6

Planning with Prior Observations

In the previous chapter a general planning framework is proposed. The framework is

applied to the problem of nominating a survey location in a large unobserved marine

environment. This is achieved by using the Kullback-Leibler divergence (KLD) as a

novel planning heuristic. Using the KLD rewards the agent for traversing a collection

of bathymetry features which closely match the density of bathymetry features in the

environment. Although this heuristic promotes coverage of the bathymetry feature

space, it does not consider the relationship between the bathymetry and the observed

habitat classes.

As observations are gathered from the environment and converted into a model it

is possible to exploit properties of the model to guide further exploration. Clos-

ing the loop between decision making, observations and modelling allows a planning

algorithm to directly optimise a statistical property of the environmental model.

In this chapter, the planning framework proposed in Section 5.3 is extended to plan-

ning scenarios where a model of the environment already exists. Section Section 6.2

discusses related work. In Section 6.1 a utility function for planning surveys with

prior observations is recommended. Section 6.3 describes a marine data set collected

from Sydney, Australia. The planning framework is tested in Section 6.4 where an

autonomous underwater vehicle (AUV) was deployed to collect validation data. Sec-

tion 6.5 concludes the chapter.

123



124 CHAPTER 6. PLANNING WITH PRIOR OBSERVATIONS

6.1 Utility Function

Several commonly used utility functions found in the fields of experimental design

and active learning are reviewed in Section 5.2. All of the utility functions apply to

classification models and are applicable to bathymetric habitat mapping. Several of

the utility functions reviewed in Section 5.2 are discussed in greater detail in this

section.

Krause et al., 2008 [45] studied the effectiveness of using the mutual information cri-

teria in spatial modelling problems involving Gaussian processes (GPs). The research

is demonstrated on a sensor placement problem where the objective is to place sensors

to optimally model temperature and precipitation. For sensor network applications,

Krause et al. attribute the mutual information criteria to [15]. As discussed in Sec-

tion 5.2.3, an information theoretic approach to experimental design was proposed

early in the statistics literature [53]. By applying these principles to experimental

design, the mutual information criteria can be derived as a measure of information

gain.

Singh et al., 2009 [88] use the mutual information criteria to plan paths for multiple

robots. The objective is to model the chemical properties of a lake for the purpose

of monitoring algal blooms. Both publications address experimental design in GP re-

gression problems. They also assume fixed observation locations where the challenge

is to select the subset of locations which maximises the amount of information gath-

ered from the environment. The difference between the two approaches is that the

planning method proposed in [88] is designed to consider path costs during planning.

Maximising mutual information, I, aims to reduce the predicted variance at all un-

observed locations, ξ. In the sensor placement problem specified by Krause et al., the

goal is to find a subset of observation locations, E , that maximally reduces the entropy,

H [·], over the rest of the space ξ \ E . Mathematically this is given by Equation (6.1).

I
[
Xξ\E ,XE

]
= H

[
Xξ\E

]
− H

[
Xξ\E

∣∣ XE
]

(6.1)
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If a GP is used to model the observation locations, the predictions take the form of

a multivariate Gaussian. The entropy of a multivariate Gaussian is given by

H [X] =
1

2
[ln |Σ|+D (ln (2π) + 1)] , (6.2)

where |Σ| is the determinant of the covariance matrix. Since a GP is being used to

model the observations, the covariance matrix, Σ, is given by the predictive covariance

of a GP. This equation is given in Section 2.2 by Equation (2.8) and is repeated here

for convenience.

V[f∗] = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2

nI
]−1

K(X,X∗)

An important property of GP inference is that the posterior variance is independent

of the observed targets y. It is only a function of the observation locations X and the

query locations X∗. This provides a closed-form solution to Equations (6.1) and (6.2)

for arbitrary unobserved query locations. The effect of selecting the observation

locations XE on the entropy of Xξ\E can be evaluated without actually observing the

target values at XE . By operating with conjugate distributions, the GP framework

avoids the requirement to solve the cumbersome integrals given in Equation (5.8)

with numerical sampling. This makes Bayesian experimental design very efficient in

GP regression.

Benthic habitat mapping is a classification problem, not a regression problem. Sta-

tistical utility functions applied to optimal decision making with GP classifiers have

also been proposed in the literature. Kapoor et al. [41] propose using the posterior

mean and the posterior variance to select unobserved data where classification is un-

certain. Unlike mutual information, the method proposed in [41] does not consider

the impact a new observation will have on the remaining unobserved data. Instead

each unobserved instance of data is ranked independently and the most favourable

instance is selected for analysis.
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Multiclass probabilistic classifiers return their predictions as multinomial distribu-

tions. Each multinomial prediction is a vector where the elements contain the prob-

ability that the test data belongs to a specific class. The entropy of a multinomial

distribution is given by,

H [x∗] = −
K∑
C=1

p(C | x∗) log p(C | x∗) ,

where K is the number of classes and p(C | x∗) is the probability of observing class

C at location x∗. Rigby et al., 2010 [78] use this form of entropy to calculate mutual

information. The calculation is generalised to multiple observations by calculating

the mean entropy over a set of query locations.

To simplify notation, the input locations ξ \ E will be expressed as X∗. Rigby et al.

calculate the mutual information across all locations in the environment which define

the habitat map. The conditional entropy for the habitat map updated with data

from a candidate survey is expressed as

H[X∗ | XE ] = −
N∑
i=1

K∑
C=1

p(Ci∗ | Xi+,yi+, θ) log p(Ci∗ | Xi+,yi+, θ) , (6.3)

where N are the number of query locations, X+ is given by X ∪XE and y+ is given

by y ∪ yE . All of these variables are known except for yE . Rigby et al. note that this

formulation of the posterior entropy does depend on observed target values.

Unlike the approach adopted by Krause et al., Equation (6.3) depends on the pre-

dictive mean of the GP, via Equation (2.11). The predictive mean is given by Equa-

tion (2.7) and is repeated here using the variables from Equation (6.3)

E[f∗] = K(X∗,X+)
[
K(X+,X+) + σ2

nI
]−1

y+

Since y+ depends on the unobserved values contained in yE , to evaluate Equa-

tion (6.3), Rigby et al. use an expensive Monte Carlo sampling algorithm to simulate

values of yE .
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In this chapter, models are evaluated by the confidence of their predictions. High-

quality models are models which produce confident predictions. The utility function

nominated for exploration must appropriately reflect this standard. The mutual in-

formation criteria given in Equation (6.1) satisfies this objective.

Although Rigby et al. are correct in identifying that the mutual information of the

predicted probabilities of a GP classifier depend on future observed values, they over-

look the role of the GP latent function in classification. The mean of the GP latent

function is squashed through a sigmoid function to produce predictive probabilities.

One way of interpreting the latent function predictive variance is that it specifies a

distribution over the predicted probabilities.

In both regression and classification, the predicted variance represents confidence in

the mean prediction. When the model is confident about its hypothesis, the predicted

variance is low and when the model lacks confidence, the predicted variance is high.

The volume of this hypothesis space can be measured by its entropy using Equa-

tion (6.2). The goal is to make the hypothesis space as small as possible. The mutual

information criteria encourages collecting observations which achieve this goal.

An alternative way of interpreting the predicted variance of the latent function is

that it represents the level of correlation within the data. Highly correlated data will

have a low-variance and poorly correlated data will have a high-variance. The degree

to which data points are correlated is determined by the hyperparameters of the

covariance function. In the squared exponential covariance function, Equation (2.9),

the length scale parameter provides a measure of how much separation is needed in

the input space for two points to become uncorrelated. Under this interpretation,

training a GP can be considered a feature-learning exercise where the aim is to model

the degree to which observations are correlated. In bathymetric habitat mapping, the

input space is comprised of bathymetric features. The mutual information criteria

encourages visiting unobserved locations in the bathymetric feature space that are

highly correlated with large portions of the remaining space.
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In large, continuous environments there is an infinite number of observable locations.

Rather than considering ξ to be a finite list of unobserved locations, as in [45], in the

general case it will be considered to be the set of all possible surveys. This infinite

space covers every conceivable placement of every possible survey design. A single

survey selected from ξ is denoted E . The goal is to find the survey location, E , that

maximally reduces the entropy of the latent function over the entire environment,

Xω. The optimal survey, E∗ is then given by Equation (6.4).

E∗ = arg max
E∈ξ

H [Xω]− H[Xω | XE ] (6.4)

The assumptions and planning framework proposed in Chapter 5 makes operating

in ξ tractable. In digital elevation models (DEMs) the environment, Xω is naturally

limited to the number of pixels in the raster. Although finite, the size of a DEM is

likely to make multiple evaluations of H[Xω | XE ] inefficient. To approximate Xω, a

tractable subset of evaluation locations is used. The number of support points used

to approximate uncertainty in the environment, Xω̂, can be selected based on the

available computing resources. Their distribution in the environment can be selected

according to the scientific objectives of a survey.

The amount of uncertainty in the environment, H [Xω], is a constant term which does

not vary as a function of the nominated survey, E . By approximating the uncertainty

of the future habitat map with support points and ignoring the constant entropy

term, the mutual information criteria can be rewritten as Equation (6.5).

E∗ = arg min
E∈ξ

H[Xω̂ | XE ] (6.5)

This objective function minimises the uncertainty of the habitat map for a given

survey location. For GP models, this is equivalent to the Bayesian D-optimal design

criteria, discussed in Section 5.2.4, where uncertainty is measured using the entropy

of a multivariate Gaussian.
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A further simplification to Equation (6.4) can be made by adopting the A-optimal

criteria. Rather than measuring uncertainty using Equation (6.2), uncertainty is mea-

sured using the trace, or sum of variances, of the posterior covariance. For multiple

classes the A-optimal objective function is given by Equation (6.6).

E∗ = arg min
E∈ξ

(
1

KN

K∑
k=1

N∑
n=1

V[f ω̂n | Xω̂nX,XE , θk]

)
(6.6)

In Equation (6.6), the latent function variance is calculated at all N environment

support points in Xω̂ for each of the K classes. Rather than calculating the total

predicted variance, the mean predicted variance is used as it is independent of N .

This objective function estimates the future mean variance of the environment given

locations in the bathymetry feature space that have already been observed, X, and

locations in the bathymetry feature space recommended by a candidate survey, XE .

The goal is to select the survey which produces the smallest future mean variance of

the environment.

While the D-optimal utility function is mathematically more rigorous, its practical

use is limited by its sensitivity to changes in the eigenvalues. In [87] the authors

show that the determinant of a covariance matrix tends towards zero as a single

eigenvalue approaches zero. This is problematic and can lead to situations where the

uncertainty of a covariance matrix, as measured by the D-optimal utility function,

may be dominated by a few small eigenvalues which prevent other dimensions from

properly contributing to the measurement of uncertainty [87].

The A-optimal utility function offers two advantages. Unlike the determinant opera-

tion used in the D-optimal utility function, the trace operation used in the A-optimal

utility function is robust to changes in the eigenvalues of the covariance matrix. Since

the A-optimal utility function calculates the “mean” uncertainty across all states

in the model, every state is weighted equally. The second advantage of using the

A-optimal utility function over the D-optimal utility function is that it avoids the

O(N3) determinant operation in Equation (6.2). For these reasons the A-optimal

utility function is used to measure the uncertainty of a habitat map.
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6.2 Related Work

Section 5.2.3 shows how a utility function can be designed for information gathering

tasks by following information theoretic principles. Section 6.1 applies this theory to

GP models and establishes a utility function, (Equation (6.6)), which favours actions

which are expected to maximally reduce uncertainty in the GP model. The utility

function is based on the work of [45], [88] and [78]. Similar approaches to exploration

can be found in the literature.

Binney et al., 2013 [7] propose a solution to planning informative paths in situations

where the objective function is submodular and the observations are allowed to depend

on the time. The work is demonstrated using an autonomous surface vehicle where

the objective is to measure wireless signal strength on a lake. The work generalises

the recursive greedy algorithm, which is also used in [88], to solve problems with time-

varying objective functions. Like the planning algorithm presented in Section 5.1, the

algorithm presented by Binney et al. is nonadaptive and generates entire paths prior

to deployment.

Binney et al. have also modified the recursive greedy algorithm to include the value

of information gained from observations accumulated when traversing between way-

points. Similarly, the algorithm presented in Section 5.1 offers the ability to include

the value of information collected at an arbitrarily fine resolution along the length

of the entire vehicle trajectory. Unlike the algorithm proposed in [7], the algorithm

presented in Section 5.1, is not restricted to operate on a graph.

Hollinger et al., 2013 [33] propose a method for planning a sequence of AUV view

points to properly model the uncertainty of a three-dimensional ship hull reconstruc-

tion. The most salient difference between the algorithm proposed in Section 5.1 and

the method proposed in [33] is that the later provides adaptive strategies which al-

low the vehicle to change its plan as new information becomes available. The method

proposed in [33] is only able to make observations at the nominated view points. This

restriction is reasonable for inspection tasks but hampers environmental monitoring

where it is natural to gather observations of the seafloor between way-points.
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To plan a vehicle trajectory, the sampling-based roadmap method used in [24] is used

to nominate view points. View points which are expected to minimise the uncertainty

of the three-dimensional model of the ship hull are then greedily selected. Once a

sufficient number of view points have been selected or the expected variance drops

below an acceptable level, the lowest cost tour between all points is generated.

Both [7] and [33] plan informative paths using a GP model and score information using

variance reduction, which is equivalent to the A-optimal utility function. The main

difference between the objective function given by Equation (6.6) and the objective

function used in [7, 33] is that Equation (6.6) produces an approximation to the total

variance by using environmental support points. The applications specified in [7] and

[33] do not operate in large environments. Due to a lower number of query locations,

both methods can afford to calculate the variance at all areas in the environment. The

applications specified in [7] and [33] are also regression problems. Habitat mapping

is a classification. To calculate the variance of a multiclass classifier, Equation (6.6)

averages across all the latent functions in the classifier.

Thompson et al., 2011 [94] propose an information-driven approach to planning infor-

mative paths, on kilometre scales, for planetary exploration. A GP is used to model

the mapping from remotely sensed multispectral data to basalt abundance. The ob-

jective is to reduce the uncertainty of this model subject to path constraints. This

application is very similar to the benthic habitat mapping problem. Both problems

require the agent to learn the correlation between low-resolution, remotely sensed

data and fine-scale, in-situ observations.

Thompson et al. use an objective function similar to Equation (6.5). Unlike Equa-

tion (6.6), uncertainty is calculated for the entire environment. Rather than quantify-

ing uncertainty using the total variance of the predictions, the entropy of the predic-

tions is used instead. This is equivalent to D-optimal design. Observation locations

are selected using a modified version of the recursive greedy algorithm. The modified

algorithm ensures the vehicle reaches a goal location and encourages the vehicle to

allocate its resources evenly. In contrast to the method proposed in Section 5.1 the

value of observations gathered between way-points is not considered.



132 CHAPTER 6. PLANNING WITH PRIOR OBSERVATIONS

6.3 Bate Bay Data Set

6.3.1 Bathymetry

Ship-borne multibeam echo-sounder (MBES) bathymetry was collected from Bate

Bay, about 25km south of Sydney, Australia by the N.S.W Office of Environment and

Heritage (OEH). The survey region is shown in Figures 6.1 and 6.1. The bathymetry

is rasterised to a pixel size of 2.0 metres and is 6.298km tall and 5.150km wide. There

are 8,114,400 valid data points in the raster which cover an area of approximately

32.46km2.

Rugosity and slope for the Bate Bay data set were calculated at scales of 2 (10m), 4

(18m), 8 (34m) and 16 (66m) and are shown in Figures 6.3 and 6.4. Log rugosity and

log slope are used to increase ‘contrast’ in the data. The multibeam data collected

in Bate Bay is a preliminary data product and has not been optimised.

Figure 6.1 – Multibeam bathymetry of Bate Bay survey region layered on top of
satellite imagery obtained from Google Earth.
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Figure 6.2 – Multibeam bathymetry of Port Hacking survey region. Local coordinates
are expressed in zone 56H of the universal transverse Mercator coordinate system.
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Figure 6.3 – Log rugosity for Bate Bay survey area calculated at four scales. Local co-
ordinates are expressed in zone 56H of the universal transverse Mercator coordinate
system.
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Figure 6.4 – Log slope for Bate Bay survey area calculated at four scales. Local coor-
dinates are expressed in zone 56H of the universal transverse Mercator coordinate
system.
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6.3.2 Surveys

An optical survey of the Bate Bay bathymetry was conducted using Sirius (see Sec-

tion 4.4.2) in November 2012 and is shown in Figure 6.5. Sirius was programmed to

perform the survey at an altitude of 2m and at a speed of 0.5m/s. Summary statistics

for the survey conducted in Bate Bay are shown in Tables 6.1 and 6.2.
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Figure 6.5 – Survey conducted by Sirius in Bate Bay. The survey is labelled with
its survey name. Local coordinates are expressed in zone 56H of the universal
transverse Mercator coordinate system.
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Survey Name
Duration Distance Images

(h) (km) Captured

Jibbon point 02 1.88 3.37 6,736

Table 6.1 – Summary statistics of Sirius survey in Bate Bay.

Survey Name
Depth (m) Altitude

mean (m)
min mean max

Jibbon point 02 9.78 22.68 27.34 2.01

Table 6.2 – Depth statistics of Sirius survey in Bate Bay.

6.3.3 Categorising the In-situ Imagery

The AUV image feature vector contains 22 dimensions [91] including image-based

features such as colour, texture and three-dimensional stereo-image features such

as rugosity and slope [25]. Compared to Section 4.4.3, the smallest stereo-imagery

rugosity scale failed to be processed and was omitted from the feature vector.

To avoid poor illumination in the imagery, images below an altitude of 0.2m and above

an altitude of 3m are removed. For the AUV data shown in Figure 6.5, approximately

5,115 images remain when high and low altitude images are removed. The AUV

image feature vector is standardised by subtracting the mean from each dimension

and dividing by the standard deviation.

The variational Dirichlet process (VDP) clustering model detected 11 clusters in

the AUV imagery. Example images randomly sampled from each of the ‘habitat’

clusters are shown in Figure 6.6. Three habitat categories remain after the clusters

shown in Figure 6.6 have been reviewed and consolidated. The consolidated habitat

categories can now be given semantic labels and considered habitat classes as shown

in Figure 6.7. The spatial contiguity of the habitat classes is shown in Figure 6.8.



138 CHAPTER 6. PLANNING WITH PRIOR OBSERVATIONS

Figure 6.6 – Example images drawn randomly from the habitat clusters. Prior to
human verification and merging, the VDP clusters are not associated with semantic
labels.

Sand

Rock

Kelp

Figure 6.7 – Example images drawn randomly from the habitat classes. Once the VDP
clusters have been verified and merged by a human expert, they can be assigned a
semantic label and considered classes.



6.3. BATE BAY DATA SET 139

Local Easting  (m)

L
o
c
a
l 
N

o
rt

h
in

g
 (

m
)

 

 

3.31 3.32 3.33 3.34 3.35 3.36

x 10
5

6.226

6.227

6.228

6.229

6.23

6.231

x 10
6

5

10

15

20

25

30

35

40

Jibbon point 02

Figure 6.8 – Classified AUV surveys conducted in Bate Bay. The intensity plot and
black lines represent the bathymetry and depth contours. Each AUV pose is shown
as a coloured dot where the colours indicate a specific habitat class. The colours
for each habitat class are shown in Figure 6.7. Local coordinates are expressed in
zone 56H of the universal transverse Mercator coordinate system.
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6.3.4 Habitat Map

The data presented in Section 6.3.1 and Section 6.3.3 was converted into a habitat

map using a probabilistic least squares classifier (PLSC). The distribution of predicted

habitats is shown in Figure 6.9 and the predicted variance is shown in Figure 6.10.

The intensity of the colours in the habitat map and the prevalence of low-variance

predictions indicates that the model is producing confident predictions.

Figure 6.11 shows the composition of the habitats in Bate Bay. The environment is

predominantly Sand and has extensive fields of Kelp. Rock and Kelp share a common

spatial distribution. This coexistence suggests that Kelp may prefer inhabiting Rock

over Sand. More than 60% of the environment occurs between 20-30m depths where

all habitats can be found. The large proportion of Rock estimated at depths between

30-40m, in Figure 6.11b is likely to be incorrect. In the southeast portion of the

habitat map, Rock is predicted with a high variance (Figure 4.21). Intuition suggests

that this region is more likely to be Sand. The high-variance in this regions signals

a lack of confidence in the predictions and suggest that this bathymetry is far from

observed values.

The confusion matrix for the habitat model, shown in Figure 6.12, confirms that

the PLSC is modelling its training data accurately. There is some confusion where

12% of the Rock classes were incorrectly classified as Kelp. This level of confusion

is acceptable as Kelp shares as similar distribution to Rock in Bate Bay and shares

similar bathymetry as a result. A small amount of confusion also exists between

Kelp and Rock and also between Rock and Sand. Low confidence predictions at the

interface between Rock and Kelp (Figure 6.9) suggests that this confusion could be

attributed to the transition between classes.

The advantage of learning a habitat map in a bathymetry feature space rather than

a Cartesian space is clear in the Bate Bay habitat map. Only a small portion in the

south of the environment has been observed yet confident predictions can be made up

to 4km away. This is possible because habitats in the environment can be separated

spatially but share a common bathymetry signature.



6.3. BATE BAY DATA SET 141

Local Easting  (m)

L
o
c
a
l 
N

o
rt

h
in

g
 (

m
)

3.31 3.32 3.33 3.34 3.35 3.36

x 10
5

6.226

6.227

6.228

6.229

6.23

6.231

x 10
6

Figure 6.9 – Bate Bay habitat map generated by a probabilistic least squares classifier
(PLSC). The bathymetry contours are shown as black lines. The intensity plot
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the probability of the most likely habitat. As the predictions become less certain,
the colour fades to white. Colours correspond to the habitat classes shown in
Figure 6.7. Local coordinates are expressed in zone 56H of the universal transverse
Mercator coordinate system.
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Figure 6.10 – Variance of Bate Bay habitat map generated by a probabilistic least
squares classifier (PLSC). The bathymetry contours are shown as black lines. The
intensity plot shows the mean variance of the latent functions. Local coordinates
are expressed in zone 56H of the universal transverse Mercator coordinate system.
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Figure 6.11 – Habitat composition of Bate Bay. (a) Predicted proportion of habitats
in Bate Bay. (b) Habitat composition at 10 metre depth intervals. Each bar in the
graph represents a specific depth band. Each bar is composed of habitats found in
the depth band as a proportion of the total environment.
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Figure 6.12 – Confusion matrix for the PLSC. The confusion matrix was calculated by
using all of the data for training and all of the data for testing. Data re-substitution
is used to provide an optimistic indication of model performance, not necessarily
an indication of model generalisation.
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6.4 Planning with Observations

In this section the planning framework proposed in Chapter 5 is used with the utility

function proposed in Section 6.1. The planning framework is demonstrated on the

Bate Bay data set described in Section 6.3.

The planning process is almost identical to the process described in Section 5.3. Like

Section 5.3 the process begins by specifying a survey template. In this demonstration

a 500m West-East transect is used. This simple survey roughly follows the easterly

gradient of the bathymetry. To train the GP utility model, 1,840 survey placements

are distributed evenly throughout the environment.

Selecting environment support points is an important aspect of approximating Equa-

tion (6.4). The support points should be distributed wherever confident predictions

are required. This might be uniformly across the environment or focused on a spe-

cific area. In this demonstration, 4,472 environment support points are distributed

uniformly across the bathymetry as shown in Figure 6.13a.

The predicted future mean variance for all 1,840 training survey placements is shown

in Figure 6.13b. The training data is used to train a utility model which produces the

prediction shown in Figure 6.13c. Each of the 814,213 pixels represents the predicted

utility of a survey placement which allows at least 75% of the survey template to

traverse valid bathymetry features. The predicted survey utility closely matches the

training data, as shown in Figure 6.13.

Survey placements which produce a relatively high future variance are coloured yellow

and red. For instance, surveys placements in the westerly region of the DEM traverse

bathymetry similar to previous observations and are not expected to produce a large

reduction in future variance. At these locations the survey template is traversing

bathymetry features which are already highly correlated with observed values.

Survey placements which traverse confidently estimated bathymetry are not expected

to produce a large reduction in future variance. Figure 6.10 shows that the main

body of the bathymetry has already been predicted with a high degree of confidence.

Sampling this area would not provide the model with any new information.
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(b) Training targets for the Gaussian process
(GP) utility model
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(c) Predicted survey utility
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(d) Variance of the survey utility predictions

Figure 6.13 – Demonstration of planning with observations. (a) Environment support
points used to approximate the mean variance of future habitat maps using Equa-
tion (6.6). (b) Training data used to train a Gaussian process (GP) utility model.
Each dot represents a location where the mean future variance was calculated us-
ing the survey template. (c) Predicted survey utility using the GP utility model.
The red line indicates the optimal survey location. (d) Variance of the survey
utility predictions. Local coordinates are expressed in zone 56H of the universal
transverse Mercator coordinate system.
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Regions shown in blue are survey placements which result in a low future variance.

These placements are occurring in the deepest and most Easterly region of the DEM

where no observations have been made. The optimal survey placement, as predicted

by the survey utility model, occurs in this region and is shown in Figure 6.13c. The

optimal survey scores a mean future variance of 0.2357 and is expected to maximally

reduce the variance of predictions made by the future habitat model.

Figure 6.13d shows that the survey utility has been predicted with a uniformly low-

variance. This indicates that 1,840 training placements are sufficient to confidently

describe the space of possible survey placements. Given the high confidence, it might

be preferable to trade some accuracy in the predicted utility for faster planning times.

This could be achieved by using less training placements.

The mean variance of the habitat model before performing the recommended survey

is shown in Figure 6.14. This figure shows the actual variance of the habitat model

given all of the observed data. The expected mean variance of the habitat model after

performing the recommended survey is shown in Figure 6.15. Note that the proposed

survey has not been performed. The depicted variance is a theoretical value.

Comparing Figure 6.14 and Figure 6.15 shows that performing the proposed survey

is likely to cause a large reduction in variance. Although only a small number of

observations would be gathered from the southeast, they are predicted to cause a

large reduction in variance in the surrounding region.

The A-optimal objective function produces subtle behaviour. It does not simply re-

ward gathering observations where the variance is the highest. Rather, it rewards

gathering high-variance observations from regions of the environment where the data

is highly correlated. A few observations in these locations will lead to a large de-

crease in the predicted variance across large portions of the environment. Conversely,

observations gathered in high-variance areas of the environment where data is poorly

correlated will lead to small local reductions in the predicted variance. This observa-

tion suggests that the region the recommended survey is traversing contains highly

correlated data. Indeed the bathymetry features in this area are relatively uniform

(Figures 6.3 and 6.4).
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Figure 6.14 – Variance of the Bate Bay habitat map before performing the pro-
posed 500m West-East survey survey (Figure 6.13c). This figure is identical to
Figure 6.10. The mean variance is 0.2730. It is reproduced to facilitate comparison
with Figure 6.15. The bathymetry contours are shown as black lines. The inten-
sity plot shows the mean variance of the latent functions. The red line depicts the
proposed West-East survey. Local coordinates are expressed in zone 56H of the
universal transverse Mercator coordinate system.
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Figure 6.15 – Expected variance of the Bate Bay habitat map after performing the
proposed 500m West-East survey (Figure 6.13c). The mean variance is 0.2372. The
bathymetry contours are shown as black lines. The intensity plot shows the mean
variance of the latent functions. The red line depicts the proposed West-East
survey. Local coordinates are expressed in zone 56H of the universal transverse
Mercator coordinate system.



150 CHAPTER 6. PLANNING WITH PRIOR OBSERVATIONS

6.4.1 Directed Exploration

Survey placements recommended by the planning method are expected to maximally

reduce the total variance of the future habitat map. This may create tension between

the requirements of scientists and the behaviour produced by the A-optimal utility

function. For example, the recommended survey placement shown in Figure 6.13, is

likely to only gather observations of Sand which may have little science value.

The domain knowledge of scientists can be incorporated into the planning procedure

by carefully choosing the locations of the environmental support points. This allows

expert knowledge, or the imperatives of the research, to be expressed during planning.

Suppose the objective of the mission was to collect informative observations of Rock

and Kelp. This objective might be expressed by restricting the environmental support

points to depths shallower than 25m in the main body of the bathymetry as shown

in Figure 6.16a. During planning, the A-optimal utility function will not consider the

effect a candidate survey will have on areas of the environment beyond these points.

Planning was performed using this strategy. Like the previous example, 1,840 training

placements of the 500m West-East transect were used to train the survey utility

function. The only difference is the distribution of the environment support points.

This can be observed by comparing Figure 6.13a and Figure 6.16a. The survey

utility function is shown in Figure 6.16c. The variance of the habitat map before

the recommended survey is shown in Figure 6.17 and the expected variance after the

recommended survey is shown in Figure 6.18.

The recommended survey has been placed in the most westerly region of the bathymetry.

Unlike the recommended survey of the southeast (Figure 6.13c), the recommended

survey in the west (Figure 6.16c) is only expected to cause a small decrease in the

total variance of the habitat map. This is due to the composition of the environment.

The terrain covered by the western survey is rugged and complex. Only a small local

region around the survey is correlated with this variable terrain. As a result the west-

ern survey results in a smaller, localised change in variance (compare Figures 6.17

and 6.18) than the southeastern survey (compare Figures 6.14 and 6.15).
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(a) Environment support points
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(b) Training targets for the Gaussian process
(GP) utility model
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(c) Predicted survey utility
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(d) Variance of the survey utility predictions

Figure 6.16 – Demonstration of directed exploration for West-East survey. (a) Envi-
ronment support points used to approximate the mean variance of future habitat
maps using Equation (6.6). The locations are restricted to the main body of the
bathymetry at depths shallower than 25m. (b) Training data used to train a Gaus-
sian process (GP) utility model. Each dot represents a location where the mean
future variance was calculated using the survey template. (c) Predicted survey util-
ity using the GP utility model. The red line indicates the optimal survey location.
(d) Variance of the survey utility predictions. Local coordinates are expressed in
zone 56H of the universal transverse Mercator coordinate system.
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Figure 6.17 – Variance of the Bate Bay habitat map before performing the proposed
500m West-East survey (Figure 6.16c). This figure is identical to Figure 6.10. The
mean variance is 0.2730. It is reproduced to facilitate comparison with Figure 6.18.
The bathymetry contours are shown as black lines. The intensity plot shows the
mean variance of the latent functions. The red line depicts the proposed West-East
survey. Local coordinates are expressed in zone 56H of the universal transverse
Mercator coordinate system.
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Figure 6.18 – Expected variance of the Bate Bay habitat map after performing the
proposed 500m West-East survey (Figure 6.16c). The mean variance is 0.2589. The
bathymetry contours are shown as black lines. The intensity plot shows the mean
variance of the latent functions. The red line depicts the proposed West-East
survey. Local coordinates are expressed in zone 56H of the universal transverse
Mercator coordinate system.
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6.4.2 Experimental Results

Two additional dives of the Bate Bay survey area were performed in March 2013

including the proposed West-East 500m transect shown in Figure 6.16c. The second

survey was a South-North 500m transect planned under similar circumstances to the

West-East survey. The predicted survey utility and the recommended location of the

South-North survey are shown in Figure 6.19. The expected mean variance of the

habitat model after performing the South-North survey is shown in Figure 6.21.

The challenges of navigating in a dynamic ocean environment make it difficult to

execute the planned surveys exactly. The survey trajectories that were actually re-

alised are shown in Figure 6.22. The planning process was reperformed using these

trajectories. The intention is not to plan where these marginally different surveys

should have been placed. Rather, the objective is to quantitatively evaluate how well

the planning method predicts the utility of the newly acquired data, independently

of navigation error.

Quantitative measures of the survey trajectories realised during the 2013 deployments

are compared in Table 6.3. The variance for each survey, predicted using the proposed

planning method, is included in the second column. The variance predicted by the

planning method and adjusted for navigation error is shown in the third column. The

theoretical variance, prior to performing the survey, is included in the fourth column.

This value is calculated by evaluating Equation (6.6) at all locations shallower than

25m. The true variance is shown in the last column. The true variance is calculated

by performing the recommended surveys, updating the habitat map and calculating

the variance at all locations shallower than 25m.

The second column of Table 6.3 shows the habitat map variance, in the shallow region,

that is expected to occur as a consequence of performing the recommended surveys.

The South-North survey is predicted to produce a lower habitat map variance and is

the preferred survey. This result indicates that South-North is traversing data which

generalises to more of the environment than West-East.
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(a) Environment support points
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(b) Training targets for the Gaussian process
(GP) utility model
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(c) Predicted survey utility
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(d) Variance of the survey utility predictions

Figure 6.19 – Demonstration of directed exploration for South-North survey. (a) En-
vironment support points used to approximate the mean variance of future habitat
maps using Equation (6.6). The locations are restricted to the main body of the
bathymetry at depths shallower than 25m. (b) Training data used to train a Gaus-
sian process (GP) utility model. Each dot represents a location where the mean
future variance was calculated using the survey template. (c) Predicted survey util-
ity using the GP utility model. The red line indicates the optimal survey location.
(d) Variance of the survey utility predictions. Local coordinates are expressed in
zone 56H of the universal transverse Mercator coordinate system.
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Figure 6.20 – Variance of the Bate Bay habitat map before performing the proposed
500m South-North survey (Figure 6.19c). This figure is identical to Figure 6.10.
The mean variance is 0.2730. It is reproduced to facilitate comparison with Fig-
ure 6.21. The bathymetry contours are shown as black lines. The intensity plot
shows the mean variance of the latent functions. The red line depicts the proposed
West-East survey. Local coordinates are expressed in zone 56H of the universal
transverse Mercator coordinate system.
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Figure 6.21 – Expected variance of the Bate Bay habitat map after performing the
proposed 500m South-North survey (Figure 6.19c). The mean variance is 0.2589.
The bathymetry contours are shown as black lines. The intensity plot shows the
mean variance of the latent functions. The red line depicts the proposed West-East
survey. Local coordinates are expressed in zone 56H of the universal transverse
Mercator coordinate system.
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(a) West-East survey
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(b) South-North survey

Figure 6.22 – Detail of West-East and South-North surveys. (a) Detail of West-East
survey. (b) Detail of South-North survey. The intensity plots show the expected
variance after performing the proposed surveys. These intensity plots are identical
to Figures 6.18 and 6.21. The red survey trajectories depict the proposed West-
East (Figure 6.16c) and South-North (Figure 6.19c) surveys. The black survey
trajectories depict the survey trajectories which were actually performed. Local
coordinates are expressed in zone 56H of the universal transverse Mercator coordi-
nate system.
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Survey
Planned Predicted Theoretical True
Variance Variance Variance Variance

West-East 0.2541 0.2583 0.2601 0.3672
South-North 0.2452 0.2533 0.2488 0.2738

Table 6.3 – Comparison of variance values for recommended Bate Bay surveys. All
variance values were calculated in the main body of the bathymetry at depths shal-
lower than 25m. The estimated variance is the variance predicted by the planning
framework described in Section 6.4.

The third column of Table 6.3 shows the predicted variance of the survey trajectories

which were actually performed. Replanning using the marginally different survey

templates controls for the effects of navigation error. Sirius was deployed above West-

East and programmed to transit to South-North. Due to good targeting, the predicted

variance of the planned West-East survey closely matches the predicted variance of

the actual West-East survey trajectory. During transit to the South-North survey,

Sirius accumulated navigation error. South-North was executed approximately 30m

east of the planned location. This larger targeting error causes the South-North

survey trajectory which was actually performed to suffer a greater predicted loss of

information than the West-East survey which was actually performed. Despite a loss

in information due to navigation error, the South-North survey still provides a small

advantage over the West-East survey and remains the preferred survey.

The fourth column of Table 6.3 shows the theoretical variance of the survey templates

which have been adjusted for navigation error. The variance values contained in this

column are produced by calculating the exact variance at all locations in the shallow

region. Using this method in a planning context is equivalent to performing a brute

force search of all possible survey placements. The utility is evaluated explicitly with-

out approximation using environment support points or the GP utility function. This

value is included to provide an indication of error in the planning process approxi-

mation. Again the South-North survey is calculated to produce the most informative

survey.
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Comparing column three to column four of Table 6.3 shows that there is approxima-

tion error between the estimated and theoretical values. This error does not prevent

the surveys from being ordered correctly but it does inflate the predicted difference

in utility between the two surveys. The proposed planning method finds a solution to

the planning problem using significantly less data than exhaustive evaluation. While

this makes the problem tractable, it introduces some approximation error into the

solution. The approximation error in this experiment is tolerable as it does not cause

the rankings of the surveys to deviate significantly from their theoretical rankings.

The last column of Table 6.3 contains the true variance of the future habitat maps.

The true variance is calculated by updating the 2012 habitat model with the data

that was collected from each survey and calculating the variance at all locations in the

shallow region. The new imagery is pooled with the old data and clustered using the

same method as Section 6.3.3. The new habitat classes are shown in Figure 6.23. The

spatial distribution of the new classes is shown in Figure 6.8. The updated habitat

maps are shown in Figures 6.25 and 6.26. The variance of the updated habitat

maps are shown in Figures 6.27 and 6.28. Comparing the true variance to the other

predicted quantities, in Table 6.3, shows that the theoretical values have estimated

the rank of the surveys correctly. Again there is approximation error between the

predicted and true values. This error does not prevent the surveys from being ordered

correctly but it does inflate the predicted difference in utility between the two surveys.

Sand

Rock

Kelp

Figure 6.23 – New habitat classes after including imagery collected from the recom-
mended West-East and South-North survey. The merged habitat clusters have
retained the same semantic label.
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Figure 6.24 – Classified AUV surveys conducted in Bate Bay after performing the
recommended West-East and South-North surveys. The intensity plot and black
lines represent the bathymetry and depth contours. Each AUV pose is shown as
a coloured dot where the colour indicates a specific habitat class. The colours for
each habitat class are shown in Figure 6.23. Local coordinates are expressed in
zone 56H of the universal transverse Mercator coordinate system.
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Figure 6.25 – Bate Bay habitat map updated with data observed by the West-East
survey. The bathymetry contours are shown as black lines. The intensity plot
shows the most likely habitat where the intensity of the colour is proportional to
the probability of the most likely habitat. As the predictions become less certain,
the colour fades to white. Colours correspond to the habitat classes shown in
Figure 6.23. Local coordinates are expressed in zone 56H of the universal transverse
Mercator coordinate system.
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Figure 6.26 – Bate Bay habitat map updated with data observed by the South-North
survey. The bathymetry contours are shown as black lines. The intensity plot
shows the most likely habitat where the intensity of the colour is proportional to
the probability of the most likely habitat. As the predictions become less certain,
the colour fades to white. Colours correspond to the habitat classes shown in
Figure 6.23. Local coordinates are expressed in zone 56H of the universal transverse
Mercator coordinate system.
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Figure 6.27 – Variance of Bate Bay habitat map updated with data observed by
the West-East survey. The bathymetry contours are shown as black lines. The
intensity plot shows the mean variance of the latent functions. Local coordinates
are expressed in zone 56H of the universal transverse Mercator coordinate system.
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Figure 6.28 – Variance of Bate Bay habitat map updated with data observed by
the South-North survey. The bathymetry contours are shown as black lines. The
intensity plot shows the mean variance of the latent functions. Local coordinates
are expressed in zone 56H of the universal transverse Mercator coordinate system.



166 CHAPTER 6. PLANNING WITH PRIOR OBSERVATIONS

The variance of the 2012 habitat model (Figure 6.10) in the shallow region is 0.2939.

Interestingly, the variance of the West-East model has increased. This unexpected

degradation of performance reveals a tacit assumption. The variance of the habitat

map latent functions can be calculated at unobserved locations using Equation (2.8).

Equation (2.8) is exact if the hyperparameters used in the GP are known to be true

values. The utility function given in Equation (6.6) relies on Equation (2.8). If the

hyperparameters of the GPs used in the habitat model do not change as a consequence

of collecting new data, the utility equation is also exact. However, if the habitat model

is retrained after data is acquired, the new hyperparameters may change to reflect a

more ambiguous data set. In this scenario the habitat map may actually produce less

certain predictions even though more data is available for training and inference.

After updating the habitat model with the observed data, the model parameters

change to reflect more ambiguous data sets. Both surveys have been designed to target

a confusing area of the environment. West-East observes rapid changes between Rock,

Kelp and Sand causing the GP-based habitat map to learn shorter length scales

and an increase in variance. South-North predominantly observes Kelp including

some Rock, leading to less change in the length scales and a reduction in variance.

Although both models are less certain than the predicted values, their ranking has

been preserved and South-North is correctly identified as the more descriptive survey.

An increase in variance after updating the model parameters with the newly ac-

quired data indicates that the covariance function used in the GP may not be flexible

enough to model the data. In this thesis the squared exponential covariance function,

Equation (2.9), is used. This covariance function assumes smoothness in the envi-

ronment. This assumption is violated at the interface between classes such as Rock

and Sand. The squared exponential function must choose parameters which make a

compromise between modelling contiguous data and the step change between classes.

Non-stationary covariance functions have an advantage as they can adapt to the data

by varying their length scales locally. A covariance function which properly represents

the shape of the space which the underlying phenomena resides in, is less likely to

produce more uncertain habitat maps as new data is integrated into the model.
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If previous models have been created with a sufficient amount of data, the model

parameters are unlikely to change significantly with additional sampling and the

rankings ought to remain accurate. If previous models have been created with a

paucity of data, modelling error may generate unreliable rankings. The majority of

predictions produced by the 2012 habitat model are low-variance. This indicates that

there is sufficient data to model the environment and the rankings can be trusted.

6.5 Summary

This chapter extends the planning framework detailed in Chapter 5 to situations

where prior observations of the environment exist. Surveys are ranked using an A-

optimal utility function which rewards survey locations that reduce the expected

variance of the habitat map over the entire environment. This objective function can

be derived from information theoretic principles and has found practical use in the

robotics literature.

The planning framework was used to plan two deployments. The results show that the

proposed planning method can approximate the true A-optimal utility function well.

In the surveys tested, the A-optimal utility function was able to correctly identify the

survey which would produce the most confident habitat map.

The A-optimal utility function is theoretically correct when the hyperparameters of

the GP are not changed as a result of including new data. This makes the A-optimal

utility function most suitable for situations where the parameters of the habitat model

are static or unlikely to change. For instance, models which have access to large

amounts of prior data are unlikely to learn significantly different hyperparameters if

candidate surveys only make up a small fraction of training data. In other scenarios

the hyperparameters may change, causing the expected variance to deviate from

theoretical values. The ranking of the surveys tested in this chapter were not affected

by changing hyperparameters.
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Chapter 7

Conclusion

This thesis attempts to address issues which arise when using robotic platforms to

monitor natural environments. Two main obstacles are identified.

Developments in both hardware and software have extended the amount of time

robotic platforms are able to operate in the environment. Improved sensor design

and new sensing modalities offer a higher bandwidth of observations. The combina-

tion of increased endurance and higher fidelity sensors produces enormous data sets.

Although these data sets are highly descriptive, the volume of data that must be

processed is often too large for human experts to analyse exhaustively in a practical

amount of time or in a cost-effective manner. This burden creates a bottleneck in the

process of converting observations into scientifically relevant data.

Operational constraints such as finite battery capacities, data storage, computational

resources and project budgets make it impractical to survey the environment ex-

haustively. A limitation on the number of surveys that can be performed creates a

resource allocation problem. To use robotic platforms effectively, survey trajectories

which maximise the amount of information gathered from the environment must be

designed.

Solutions to these two problems are proposed in this thesis. The proposed solutions

and contributions are summarised in Section 7.1. Section 7.2 concludes this thesis by

raising possible avenues for future research.

169
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7.1 Contributions

Three primary contributions are presented in this thesis: a new classifier designed

to accept probabilistic training targets rather than discrete training targets; a semi-

autonomous pipeline for creating benthic habitat maps; and an offline method for

autonomously planning benthic surveys. These contributions are reviewed below.

7.1.1 Classification with Probabilistic Targets

A new Gaussian process (GP) based classifier, called the probabilistic targets least

squares classifier (PTLSC), is proposed in Chapter 3. The PTLSC extends the proba-

bilistic least squares classifier (PLSC) and is designed to accept probabilistic training

data rather than discrete class assignments. This modification makes the new model

more amenable to being used in conjunction with other machine learning algorithms.

Results presented in Chapter 3 show that if a supervisory machine learning algo-

rithm is able to produce probabilistic training data, the PTLSC will produce more

accurate predictions than the PLSC. This makes the PTLSC an ideal candidate for

participating in data processing pipelines.

7.1.2 Semi-Autonomous Habitat Mapping

The main application of this thesis is the creation of benthic habitat maps. Benthic

habitat maps are created by correlating features extracted from a digital elevation

model (DEM) collected using a ship-borne multibeam echo-sounder (MBES) system

and in-situ observations collected by an autonomous underwater vehicle (AUV). How-

ever, the volume of data collected by AUVs is often too large for human experts to

analyse exhaustively in a practical amount of time. Difficulty in classifying the AUV

imagery into habitat classes typically prevents all of the AUV data from being in-

cluded in habitat models. To help alleviate the burden placed on human experts, a

semi-autonomous data processing pipeline for creating benthic habitat maps is pro-

posed.
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The proposed pipeline works by compressing the AUV imagery into a set of habitat

clusters. This is done using an unsupervised variational Dirichlet process (VDP)

model. The probabilistic data created by the VDP can then be verified and modified

by a human operator. Once the VDP clusters are deemed acceptable, the probabilistic

data is used to train a PTLSC. The pipeline is demonstrated on real marine data

where it is able to generate a habitat map with minimal human intervention.

7.1.3 Autonomous Survey Planning

Collecting informative data is a relevant consideration when exploring large natural

environments. Data collected during robotic surveys of the environment will deter-

mine the quality of models which rely on the observed data. Optimising the location

of a robotic survey allows the most informative data to be collected. This thesis con-

tributes an offline method for planning benthic surveys. The proposed framework is

designed to select the optimal location to place a prespecified survey template. The

planning framework can operate in large continuous spaces. This property allows the

proposed method to scale up to very large, realistic planning problems. The method

is demonstrated in a large marine environment.

7.1.4 Planning Utility Functions

The utility function used to guide exploration should properly reflect the objectives

of a survey. For situations where there are no prior observations to exploit, a novel

planning heuristic which relies on the Kullback-Leibler divergence (KLD) is proposed.

This utility function promotes coverage of the bathymetry feature space and is shown

to be an effective heuristic for choosing survey locations. For situations where prior

observations exist, it is possible to exploit a habitat model. Under these circumstances

an A-optimal utility function is recommended. This utility function rewards survey

locations which reduce the expected variance of the habitat map.
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7.2 Future Work

The deployment of robots into large-scale, natural environments is becoming more

widely adopted. Although interest in the field has seen an increase in the body of

literature addressing research problems, challenges still remain. The following section

outlines a number of potential avenues for further research with a particular focus on

bathymetric habitat mapping.

7.2.1 Feature Selection

It is widely acknowledged that multiple terrain descriptors and spatial scales con-

tribute to accurate bathymetric habitat maps [101]. However there is a gap in the

literature detailing how to select appropriate terrain descriptors and spatial scales. A

large number of articles published in the field use principal component analysis (PCA)

to compress multiple features and scales into a manageable number of dimensions.

This approach side-steps the issue of intelligently selecting appropriate features.

Feature learning techniques borrowed from the image processing community may

prove to be a fruitful area of research. These techniques could be applied to terrain

descriptors or to raw bathymetry patches. Although terrain descriptors capture vari-

ation in the environment, the derivation of some terrain features is rather arbitrary.

By applying feature learning techniques directly to bathymetry patches it may be

possible to implicitly learn terrain features from the environment.

7.2.2 Covariance Functions

The importance of properly selecting a suitable covariance function when using a GP

model is often overlooked. The covariance function encodes assumptions that have

been made about the space that the underlying function resides in. A poorly chosen

covariance function will improperly model correlations in the data.
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In this thesis a squared exponential covariance function was used to model the environ-

ment. Although this simple covariance function is able to produce reasonable results,

it is limited by smoothness and stationary assumptions. In a stationary process, the

correlation between data points is assumed to be independent of their location in the

input space. In a non-stationary process, the correlation between data points can be

modelled as a function of the location in the input space. Non-stationary covariance

functions relax the smoothness and stationary assumptions.

In natural environments some process may occur smoothly while other process will

exhibit discontinuities. For example, in benthic habitats the interface between rocks

and other classes, such as sand, is often a discrete change which violates the smooth-

ness assumption. By using locally varying length scales, non-stationary covariance

function are better suited to modelling discrete changes in the data.

Research into covariance functions for benthic habitat mapping will allow correlations

within the environment to be modelled more accurately. This is an important con-

siderations for exploration methods which rely on accurate estimates of uncertainty.

7.2.3 Environmental Models

Environments are modelled in this thesis using a data-driven approach. This approach

simply finds and models patterns within the data. The approach makes no attempt to

understand the processes which create the data. Disciplines within the environmental

science community focus on these science questions and produce complex models of

the environment. Leveraging the domain knowledge imparted by these models and

methods is likely to lead to richer and more accurate models of the environment

than relying on observed data alone. In return the robotics and machine learning

communities can offer methods for collecting and processing data. The objective is

to free scientists from mundane data processing allowing them to focus on interesting

science questions.
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7.2.4 Exploration Objective Functions

Objective functions for exploration are investigated in this thesis. The KLD utility

function proposed in Section 5.3 is a good heuristic for exploration when no envi-

ronmental model exists. The exact relationship between survey KLD and habitat

map accuracy remains an open question. Further research into what the KLD utility

function might reveal about the usefulness of a proposed set of data would provide a

more definitive answer to how the utility function should be interpreted.

The A-optimal utility function proposed in Section 6.1 designs surveys which are

expected to reduce the average uncertainty of a habitat model. This is a general

utility function and does not optimise any specific scientific goal. For example, specific

exploration tasks like reducing the uncertainty of predictions of a particular species

or mapping its distribution cannot be solved using the planning method presented in

Chapter 6. Research into how methods such as Bayesian optimisation [68] or adaptive

methods [93] can be used to target a specific species within the environment or adapt

behaviour online will permit more complex exploration strategies.

Section 6.4 revealed the impact control uncertainty can have on utility. Planning

frameworks such as Markov decision processes (MDPs) [95] can propagate control

uncertainty during planning. The same idea can be integrated into the planning

method proposed in Section 5.1. The survey utility model could be trained using

expected utility. Rather than evaluating the survey utility at a training location as-

suming certainty, the expected utility at a training location could be calculated by

integrating over the distribution of possible survey trajectories which might actually

occur. The challenge is not that this would add computational complexity to the

planning process. The challenge is that designing a useful uncertainty model can be

difficult. This is particularly true of marine environments where AUVs are perturbed

by the dynamics of the water around them. In this thesis data was gathered from rel-

atively shallow coastal locations where water currents are complex and unpredictable

systems. Water current data in these regions is not often available at the precision

and scale that is required for planning. Without this data it is difficult to create a

realistic uncertainty model.
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Another aspect of planning which was overlooked in this thesis is planning under

physical costs. Different survey designs will consume different amounts of resources

whether the cost is measured in time, energy, money or operational risk. This raises

the question of how to efficiently allocate operational costs towards information gath-

ering.

This is a nontrivial task as information gain and resource consumption occur in two

competing modalities. Longer surveys will gather more information from the en-

vironment but cost more to perform. Conversely, shorter surveys will gather less

information but will cost less to perform. Nominating how many units of operational

resources are allocated towards gathering a unit of information is a decision robot op-

erators need to make depending on the objectives of the deployment and availability

of resources. This approach is adopted in methods [58] where the relative impor-

tant of various and possibly conflicting objective functions are simply aggregated as

a weighted sum.

Normalising the information gained from a particular action or experiment by its

operational cost provides a measure of efficiency. For instance, competing marine

surveys could be evaluated in terms of information gained per joule of energy or

metre travelled. The survey with the higher figure would provide the most efficient

use of resources. Although this allows a natural trade-off between information and

operational costs, the objective function becomes much more complex.

In conventional shortest path problems, techniques such as dynamic programming

can be used to solve the problem in polynomial time [48]. These methods solve

problems by breaking them into subproblems which are solved independently and

then combined to produce a global solution. This is only possible if the costs are

additive. Normalising the information gained from a sequence of actions by their

operational cost violates this useful property. Since this objective function depends

on a sequence of actions, the problem cannot be easily broken into subproblems.

Designing efficient algorithms which operate using this type of objective function

becomes a much more difficult task.
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7.2.5 Survey Design

The autonomous survey planning algorithm presented in this thesis determines the

optimal location of a prespecified survey template. Whilst the proposed method

allows the utility of multiple survey templates to be compared, it is unable to design

survey templates. A planning framework which relaxes the assumption of a fixed

survey template would provide a higher degree of autonomy. The ultimate goal is to

relax all restrictions on the shape of a survey. A system with no restrictions would

be free to design its own survey trajectories. This is a nontrivial task as providing

this level of freedom greatly increases the complexity of the planning problem.

A tractable extension to the planning algorithm would allow survey templates with

free variables, which govern the shape of the templates, to be used. The planning

algorithm would have to learn how the placement and survey parameters affected

survey utility. Such parameters might include survey orientation, length, width and

track spacing. Even this small increase in the number of dimensions greatly increases

the complexity of the problem due to the curse of dimensionality.

7.2.6 Sequential Design and Optimal Stopping

Scientific missions often involve a sequence of surveys. Extending research into meth-

ods for planning a sequence of surveys would aid in the management of autonomous

missions. The planning algorithm proposed in this thesis could be adapted to greedily

plan a sequence of dives. A more intelligent system may be able to plan a sequence

of surveys over a small planning horizon. Again this would greatly increase the com-

plexity of the planning problem as decisions made early in the sequence will affect

subsequent decisions.

A related task is to determine when to stop sampling the environment. At some point

the information gained from further surveys would not be sufficient to justify the use

of more resources. A method for optimal stopping might also provide an indication

of how many surveys are needed to efficiently model an environment.
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