
Copyright and use of this thesis

This thesis must be used in accordance with the
provisions of the Copyright Act 1968.

Reproduction of material protected by copyright
may be an infringement of copyright and
copyright owners may be entitled to take
legal action against persons who infringe their
copyright.

Section 51 (2) of the Copyright Act permits
an authorized officer of a university library or
archives to provide a copy (by communication
or otherwise) of an unpublished thesis kept in
the library or archives, to a person who satisfies
the authorized officer that he or she requires
the reproduction for the purposes of research
or study.

The Copyright Act grants the creator of a work
a number of moral rights, specifically the right of
attribution, the right against false attribution and
the right of integrity.

You may infringe the author’s moral rights if you:

- fail to acknowledge the author of this thesis if
you quote sections from the work

- attribute this thesis to another author

- subject this thesis to derogatory treatment
which may prejudice the author’s reputation

For further information contact the University’s
Director of Copyright Services

sydney.edu.au/copyright

RESOURCE PROVISIONING EXPLOITING

COST AND PERFORMANCE DIVERSITY

WITHIN IAAS CLOUD PROVIDERS

A thesis submitted in fulfilment of the requirements for the

degree of Master of Philosophy in the The Faculty of Engineering and IT at

The University of Sydney

Luke M. Leslie

October 2013

© Copyright by Luke M. Leslie 2014

All Rights Reserved

ii

I have examined this thesis and attest that it is in a form suitable for exami-

nation for the degree of Master of Philosophy.

(Albert Y. Zomaya) Primary Supervisor

I have examined this thesis and attest that it is in a form suitable for exami-

nation for the degree of Master of Philosophy.

(Young Choon Lee) Associate Supervisor

I have examined this thesis and attest that it is in a form suitable for exami-

nation for the degree of Master of Philosophy.

(First Reader)

I have examined this thesis and attest that it is in a form suitable for exami-

nation for the degree of Master of Philosophy.

(Second Reader)

iii

iv

Abstract

Infrastructure as a Service (IaaS) Cloud Computing platforms such as Amazon EC2

allow clients access to massive computational power in the form of virtual machines

(VMs) known as instances. Amazon hosts three different instance purchasing options,

each with their own service level agreement covering availability and pricing. In ad-

dition, Amazon offers access to a number of geographical regions, zones, and instance

types from which to select. In this thesis, the problem of utilizing Amazon’s Spot and

On-Demand instances is analyzed in the context of (1) maximizing profit while ful-

filling user requests for instances, and (2) minimizing cost while executing deadline

constrained jobs. To this end, two approaches are presented that are designed to ex-

ploit the cost and performance diversity among different instance types and availability

zones, and among the various Spot markets they represent.

To fulfill user requests for instances RAMP, a Reliability-Aware Profit-Maximizing

Resource Provisioner, is developed. RAMP employs novel strategies designed to cal-

culate the expected profit of using a specific Spot or On-Demand instance through a

comparison of the reliability of that instance. To execute deadline-constrained jobs,

RAMP is extended to develop RAMC-DC, a Reliability-Aware Cost-Minimizing Re-

source Provisioner for Deadline Constrained Jobs. RAMC-DC allocates the most cost

effective instance through strategies designed to promote interchangeability of instances

among short jobs, determine the likelihood of completion of long jobs on specific in-

stances, and compare the estimated costs of possible allocations that satisfy availability

and reliability constraints. In addition, RAMC-DC achieves fault tolerance through

comparisons of the price dynamics across instance types and availability zones, and

through an examination of three basic checkpointing methods incorporating the migra-

tion of VM states to different availability zones.

Evaluations using Amazon Spot price history demonstrate that both RAMP and

RAMC-DC achieve a large step toward low-volatility, high cost-efficiency resource

provisioning. While achieving early-termination rates as low as 2.2%, RAMP can com-

pletely offset the total cost when charging the user just 17.5% of this On-Demand price.

Moreover, the increases in profit resulting from relatively small additional charges to

users are notably high, i.e., 100% profit compared to the resource provisioning cost

with 35% of the equivalent On-Demand price. Furthermore, RAMC-DC can maintain

deadline breaches below 1.8% of all jobs, achieve both early-termination and deadline

breach rates as low as 0.5% of all jobs, and lowers total costs by between 80% and 87%

compared to using only on-demand instances.

ii

Acknowledgements

I would like to thank my supervisor, Prof. Albert Y. Zomaya, and my associate super-

visor, Dr. Young Choon Lee, for their continual support and guidance.

iii

Contents

Acknowledgements iii

Contents iv

List of Tables viii

List of Figures ix

List of Algorithms xii

Implementations xiii

1 Introduction 1
1.1 Cloud Computing . 1

1.2 Motivation . 3

1.3 Contributions . 4

1.3.1 Profit-Maximizing Resource Provisioning for Instance Requests

(RAMP) . 5

1.3.2 Cost-Minimizing Resource Provisioning for Deadline-Constrained

Jobs (RAMC-DC) . 6

1.4 Materials . 7

1.5 Thesis Outline . 8

2 Background and Assumptions 10
2.1 Performance and Cost Diversity in Amazon EC2 10

2.1.1 Purchasing Options . 10

2.1.2 Instance Types and Availability 12

2.1.3 Storage . 13

iv

2.1.4 Characteristics of Spot Instances 14

2.1.4.1 Bidding . 14

2.1.4.2 Termination . 15

2.1.4.3 Market Diversity . 16

2.1.5 Spot vs. On-Demand . 18

2.1.5.1 Cost vs. Volatility 18

2.1.5.2 Acquisition Times 18

2.1.6 Global Expansion and Price Reduction 19

2.2 Literature Review . 20

2.2.1 Statistical Analysis of Spot Prices & Bidding Strategies 21

2.2.2 Fault Tolerance . 23

2.2.3 Scheduling & Resource Allocation 25

2.2.4 Profit Maximization . 29

2.3 Assumptions . 31

3 Cost Estimation 32
3.1 Instance Models . 32

3.2 Analysis of Total Costs . 33

3.3 Cost Estimation Methods . 34

3.4 Evaluation of Estimations . 36

4 RAMP 40
4.1 Overview . 40

4.1.1 Request Models . 40

4.1.2 Problem Formulation . 41

4.2 Reliable Instance Acquisition . 43

4.2.1 Instance Reliability . 43

4.2.2 Bidding Strategy . 45

4.3 Profit Maximization . 46

4.3.1 Profit Estimation . 46

4.3.2 Cost Approximation . 47

4.3.3 Request Fulfillment . 50

4.4 Evaluation Overview . 51

4.5 Experimental Setup . 51

v

4.6 Results . 53

4.6.1 Early-termination rates . 53

4.6.2 Varying the amount charged 54

4.6.3 Varying instance reliability . 55

4.6.4 Varying the penalty . 57

4.7 Discussion . 58

5 RAMC-DC 61

5.1 Overview . 61

5.1.1 Job Models . 61

5.1.2 Problem Formulation . 62

5.2 Modeling Job Execution . 63

5.2.1 Estimating Job Execution Time 64

5.2.2 Incorporating Resource Volatility 65

5.2.3 Estimating the Cost of Job Execution 67

5.3 Dynamic Resource Provisioning . 68

5.3.1 Two-Tier Instance Evaluation 68

5.3.2 Bidding . 70

5.3.3 Resource Provisioning . 71

5.3.4 Identification of New Resources 73

5.3.5 Job Scheduling and Resource Deprovisioning 74

5.4 Evaluation Overview . 75

5.5 Experimental Setup . 75

5.6 Results . 76

5.6.1 Total Costs . 76

5.6.2 Deadline Breach Rates . 79

5.6.3 Early-Termination Rates . 81

5.6.4 Average Deadline Exceeded 82

5.7 Discussion . 83

6 Conclusion 87

A Cost Estimation 90

A.1 Implementations . 90

vi

B RAMP 97
B.1 Total Profits Assuming Linear Demand 97

B.2 Implementations . 99

C RAMC-DC 102
C.1 Preliminary Results Using Amdahl’s Law 102

C.1.1 Evaluation and Bidding . 102

C.2 Results Using Earlier Spot Price Traces 105

C.2.1 Results . 105

C.2.1.1 Moldable Jobs . 105

C.2.1.2 Rigid Jobs . 108

C.2.2 Discussion . 110

C.3 Implementations . 113

Bibliography 115

vii

List of Tables

2.1 EC2 Instance Type Comparison (Linux OS) 15

2.2 An example of Spot Instance availability. 16

2.3 EC2 Price Reduction Comparison (Linux OS) after February 1st, 2013. . 20

4.1 Frequently Used Variables (RAMP) 44

5.1 Frequently Used Variables (RAMC-DC) 66

C.1 Total costs for moldable jobs using an Hourly checkpointing strategy . . 106

C.2 Total costs for rigid jobs using an Hourly checkpointing strategy 106

viii

List of Figures

1.1 The three basic Cloud service models. 2

2.1 Amazon’s instance purchasing options 11

2.2 A description of Amazon’s instance purchasing options 11

2.3 Spot prices for instance type m1.large, running a Linux OS, with all

availability zones in region us-east-1. The equivalent On-Demand price

of this instance type is $0.26/hour. 13

2.4 Spot prices over a 24 hour period for instance type m1.large, running a

Linux OS, with all availability zones in region us-east-1a. (1), (2), and

(3) represent instances, begun at the same time, with different bids and

availability zones. 17

3.1 Percent Relative Error for Various Cost Estimation Methods. Traces

Are From February-June, 2012. 36

3.2 Percent Relative Error for Various Cost Estimation Methods. Traces

Are From June-November, 2012. 37

3.3 Percent Relative Error for More Cost Estimation Methods. Traces Are

From June-November, 2012. 38

4.1 The lifecycle of a request. 43

4.2 Percent relative error of the cost using Market Price cost estimation with

the requests described in Section 4.3.2. 50

4.3 (a) CDF of the request lengths, tr, for all r such that tr ≤ 20 hours. (b)

Percent relative error of the cost using Market Price cost estimation. . . 52

4.4 Early Termination Rates (τ) vs. the reliability function lower bound

(Slb), when e = p = 0.25. 54

ix

4.5 Measure of total profit for different values of p given specific values of

Slb and with e = 0.25 . 55

4.6 Measure of total profit for different values of Slb, given for various val-

ues of e and with p = 0.25 . 56

4.7 Measure of total profit for different values Slb given specific values of

p and with e = 0.25 . 56

4.8 Measure of total profit for different values e given specific values of p,

and with Slb = 0.95 . 57

5.1 Lifecycle of a Job. 64

5.2 The total cost over On-Demand cost using various checkpointing strate-

gies, values of tsplit , and with moldable jobs. 77

5.3 The total cost over On-Demand cost using various checkpointing strate-

gies, values of tsplit , and with rigid jobs. 78

5.4 The total cost over On-Demand cost using various checkpointing strate-

gies, job types, and values of tsplit . 79

5.5 The deadline breach rate using different checkpointing strategies and

values of tsplit with moldable jobs. 80

5.6 The deadline breach rate using different checkpointing strategies and

values of tsplit with rigid jobs. 81

5.7 The early-termination rate using different checkpointing strategies and

values of tsplit with moldable jobs. 82

5.8 The early-termination rate using different checkpointing strategies and

values of tsplit with rigid jobs. 83

5.9 The fraction of the execution time by which the deadline was exceeded

for early-terminated (moldable) jobs. 84

B.1 Measure of total profit for different values of p given specific values of

Slb and with e = 0.25, using a linear demand function. 98

C.1 Deadline Breaches (Moldable Jobs) 103

C.2 Total Costs (Moldable Jobs) . 106

C.3 Deadline Breaches (Moldable Jobs) 107

C.4 Total Costs (Rigid Jobs) . 108

C.5 Deadline Breaches (Rigid Jobs) . 109

x

C.6 A comparison of early terminations and deadline breaches for tsplit = 1

or Slb = 0.95 with moldable jobs . 110

C.7 A comparison of total costs for tsplit = 1 or Slb = 0.95 with rigid and

moldable jobs . 110

xi

List of Algorithms

1 MaxProfitInstance - Finding the instance that maximizes the expected

profit . 48

2 AllocateInstance - Allocating an instance to a request 48

3 Provision - Identifying the minimum cost job-instance assignment and

provisioning resources. 71

4 MinNew - Identifying the minimum cost new potential instance satisfy-

ing S(j,ν , tsplit)≥ Slb. 74

xii

Implementations

A.1 Market Price estimation of the cost: Ĉmkt(t,ν) 90

A.2 Monte Carlo estimation of the cost: Ĉmc(t,ν) 90

A.3 Average Price estimation of the cost: Ĉavg(t,ν) 92

A.4 Market-Monte Carlo estimation of the cost: Ĉmmc α(t,ν) 93

A.5 Market-Average estimation of the cost: Ĉma α(t,ν) 93

A.6 Market-Monte Carlo estimation of the cost using the average inter-price

time: Ĉmmc avg(t,ν) . 94

A.7 Market-Average estimation of the cost using the average inter-price

time: Ĉma avg(t,ν) . 95

B.1 Using a Kaplan Meier Estimator to evaluate Spot instance reliability:

reliability(r,ν) . 99

B.2 Implementation of the cost estimation algorithm used by RAMP to cal-

culate the estimated cost in the event of failure 100

C.1 Determine the evaluation score of a Spot instance based on job length:

S(j,v) . 113

C.2 Determine the availability score of an unleased Spot instance:

availability(〈i,z,b〉) . 113

xiii

xiv

Chapter 1

Introduction

1.1 Cloud Computing

The term Cloud Computing is a broad label describing both the application services

that are available through the internet, and the software and hardware that make up

the Cloud that underpins these services (Armbrust et al. [2010]). Although not a new

concept, Cloud Computing has emerged as a way to provide highly elastic computing

services to consumers on an on-demand, self-service basis that allows fine-grain pricing

of services with very low barriers to entry. In addition, Cloud Computing providers are

able to alleviate many risks generally faced by consumers in the deployment of web

applications including security, maintenance, and scalability, and are able to provide

guarantees regarding the performance and reliability of offered services. Due to the

multitenancy attribute of Cloud Computing, Cloud providers are also generally in a

prime position to leverage economies of scale, and therefore can pass these savings on

to the consumers, further reducing the costs associated with deploying applications in

the Cloud.

A distinction is made between four types of Cloud deployments: Public Clouds,

which provide application, storage, computing, and other services to the public; Private

Clouds, which provide them to a closed environment such as a university or business;

Community Clouds, which provide infrastructure services within a specific commu-

nity; and Hybrid Clouds, which are a combination of multiple Clouds, either Public,

Private, or Community (Mell and Grance [2011]). Public Cloud Computing providers

1

2 CHAPTER 1. INTRODUCTION

have generally offered services through three basic service models: Infrastructure-as-a-

Service (IaaS), Software-as-a-Service (SaaS), and Platform-as-a-Service (PaaS) (Mell

and Grance [2011]). Figure 1.1 provides a broad overview of what these three service

models offer to the consumer.

Figure 1.1: The three basic Cloud service models.

IaaS providers, such as Amazon EC2 and Google Compute Engine, differ from

SaaS and PaaS providers by allowing users direct access to the infrastructure they re-

quire; within IaaS platforms, users generally pay hourly rates to gain access to virtual

machines known as instances, as well as paying for storage services such as Amazon

S3. On the other hand, SaaS providers, such as Salesforce.com, let users lease access

to software and data hosted on the cloud, while PaaS providers, such as Google App

Engine, let users lease application development platforms. Recently, two other vari-

ations: Network-as-a-Service (NaaS), and Communications-as-a-Service (CaaS) were

officially added to the primary three models, and there are many other sub-variations of

the main three models (International Telecommuniation Union [2012], see Figure 1.1).

Many Cloud Computing providers, such as Amazon EC2, provide a means to ac-

quire pay-as-you-go computing power and data storage in a manner similar to publicly

available utilities such as gas and electricity. Due to the similarity between such pay-as-

you-go computing services and commonly available utilities, these services are com-

monly known as Utility Computing. Utility Computing cloud providers can provide

1.2. MOTIVATION 3

highly cost-efficient deployment platforms through three major characteristics (Arm-

brust et al. [2010]):

1. Consumers are given access to virtually limitless computing resources through

the illusion of infinite capacity. Users can meet whatever demand they face by

leasing and releasing resources as needed. 1

2. Startup ventures do not need to accrue any of the fixed costs that have existed in

the past. All hardware and maintenance costs are borne by the cloud provider.

Instead, consumers pay only for the time spent using the resources.

3. Consumers pay only for what they use. Such a model for consumption facili-

tates a conservative approach to resource provisioning that helps reduce the in-

efficiency of server farms and can have significant impacts in the quest for green

computing.

These three characteristics have allowed Cloud Computing to become a very pow-

erful and popular tool among users who require access to computational resources and

data storage without the fixed costs involved in purchasing, installing, and maintaining

a private cloud.

1.2 Motivation

Amazon EC2 offers three instance purchasing options, (1) Spot instances, (2) On-

Demand instances, and (3) Reserved instances, all described in detail in the next chapter.

Each purchasing option is coupled with different pricing and volatility characteristics.

Furthermore Amazon EC2 offers many different instance types in many different geo-

graphical locations (known as regions), and in many availability zones for even finer-

grain placement. Each availability zone and instance type combination defines a Spot

market in which users may bid against a time-varying market price for Spot instances,

inexpensive but volatile virtual machines that are subject to early-termination by Ama-

zon. On the other hand, Reserved and On-Demand instances are statically-priced and

highly reliable virtual machines that are leased and terminated at the discretion of the

1For example, in March, 2012, Amazon EC2 was estimated to be powered by approximately 500,000
servers (Wired [2012]).

4 CHAPTER 1. INTRODUCTION

user only, with Reserved instances requiring an initial fixed cost, the size of which

translates to lower hourly prices.

Faced with the diversity and volatility of resourced within IaaS providers such as

Amazon EC2, differing questions emerge including:

1. How can we lease and allocate Spot instances in order to prevent early termina-

tion, while exploiting potential cost savings from low market prices?

2. How can we provide fault-tolerance to manage early termination once Spot in-

stances have been leased?

3. Due to their fluctuating market price, what is the best way to estimate the costs of

using Spot instances?

4. How best can we exploit the diversity among different availability zones, instance

types, and their respective Spot markets, in order to further reduce incurred costs

and provide more fault prevention?

5. How can we combine different purchasing options to subsume the best qualities

of each?

6. How can we schedule deadline-constrained jobs or user requests for instances on

a cluster comprised of these diverse options?

The two frameworks presented in this thesis aim to provide answers to these questions.

1.3 Contributions

The frameworks presented in this thesis focus on the efficient and elastic acquisition

and allocation of Spot and On-Demand instances in order to satisfy different resource

and system requirements. To accomplish this, two frameworks are introduced with the

goal of accomplishing one of the following two objectives:

1. To reliably provide users, who require some minimum instance type for a de-

sired amount of time, uninterrupted access to an instance that satisfies his/her

requirements. The search for a candidate instance is conducted with the goal of

maximizing the profit of the framework.

1.3. CONTRIBUTIONS 5

2. To cost-effectively schedule and execute deadline-constrained jobs on a dynami-

cally provisioned cluster of Spot and On-Demand instances while meeting relia-

bility and availability constraints on those instances.

However, to effectively develop both of these frameworks, due to the lack of a priori

knowledge associated with using Spot instance, a means to estimate the total cost of

running a Spot instance for some desired period of time is required. Thus, in addition,

five methods designed to estimate this cost are presented and evaluated before the two

frameworks are constructed. Each of the above frameworks will be outlined below.

1.3.1 Profit-Maximizing Resource Provisioning for Instance Requests
(RAMP)

RAMP,2 a Reliability-Aware Profit-Maximizing Resource Provisioner, accepts requests

from users for desired instance types and availability times (specified in full and partial

hours). For each request, the user is charged some portion of the On-Demand price for

their corresponding requested instance type. To fulfill these requests, RAMP seeks to

compare the expected profit of using different types of Spot and On-Demand instances

in different availability zones. Furthermore, to provide compensation for volatility, in

the event of early-termination of a Spot instance, the user is refunded their full payment

plus a penalty. RAMP differs from others, such as the Dynamic and Stochastic Resource

Rental Planners (DRRP and SRRP) (Zhao et al. [2012]), BROKER (Voorsluys and

Buyya [2012]), and that presented by Chen et al. [2011], by introducing and utilizing:

• A reliability-aware instance acquisition strategy consisting of a trace-based re-

liability function and a bidding strategy for leasing specific Spot instances of a

specific type and availability zone.

• A profit-driven resource allocation strategy that seeks to acquire new instances,

or reassign idle instances, in order to fulfill user requests for some minimum

instance type.

To examine the effectiveness of our approach, and in order to capture the market-

price dynamics over an extended time period, simulations were run using Amazon’s

2Our research on RAMP is currently submitted to the IEEE Transactions on Parallel and Distributed
Systems (TPDS) journal.

6 CHAPTER 1. INTRODUCTION

Spot price history over four months from the period between July and November 2012,

and with 20,000 requests taken from traces for the ANL Intrepid supercomputer. Re-

sults show that our approach can:

• Achieve early-termination rates as low as 2.2% of all requests, compared to ap-

proximately 13% when simply bidding the market price for each Spot instance.

• Completely offset its total cost when paying around only 17.5% of the equivalent

On-Demand price for each requested instance.

• Achieve profits equal to 100% of the total baseline cost while charging the user

just 35% of the On-Demand price, regardless of the penalty paid in the event of

early-termination, compared to 60% when using market-price bids.

1.3.2 Cost-Minimizing Resource Provisioning for Deadline-Constrained
Jobs (RAMC-DC)

RAMC-DC 3 is a resource provisioning and job scheduling framework that exploits

performance and cost diversity in the cloud in order to minimize the total cost while

scheduling deadline-constrained jobs on Spot and On-Demand instances. The approach

presented in this thesis is unique, in comparison to, among others, those studies listed

above, in that it compares price dynamics from different types of instance purchasing

options, instance types, and availability zones, as well as different methods to estimate

the cost of execution on a spot instance. Furthermore, RAMC-DC incorporates a two-

tier bidding strategy designed to incorporate:

• The interchangeability of short jobs on an instance. For shorter estimated exe-

cution times, the need to acquire instances specifically for that job becomes less

cost-effective than a strategy that acquires instances with the goal of being inter-

changeable among other short jobs.

• The probability of completion of long jobs on an instance. Due to the volatil-

ity of spot instances, the instance acquisition strategy used by RAMC-DC when

leasing long jobs must ensure that the instance can successfully complete that job

3Our research on RAMC-DC has been published in the 2013 IEEE International Conference on Cloud
Computing (CLOUD) (see Leslie et al. [2013]).

1.4. MATERIALS 7

with some level of probability. To do this, RAMC-DC calculates the reliability

function of the instance, as discussed above.

To fulfill jobs, RAMC-DC utilizes a resource allocation strategy that manages a

dynamically-sized cluster of Spot and On-Demand instances. The resource allocation

strategy used by RAMC-DC evaluates:

• The cost effectiveness of each possible instance allocation. RAMC-DC seeks

to approximate the cost of running a job on a Spot or On-Demand instance, and

locates the instance that minimizes this cost while meeting interchangeability

and/or reliability constraints.

An evaluation of RAMC-DC was performed using the same set of jobs and Spot

prices as above, but with the incorporation of estimated and true execution times for

these jobs. In addition, Downey’s speedup model as used an exemplar means to deter-

mine moldability in jobs. Results from simulations run using Spot price traces from the

same period as the evaluation of RAMP show that RAMC-DC can:

• Save between 80% and 87% of the equivalent total cost when using only On-

Demand instances.

• Maintain early-terminations in as low as 0.18% of all jobs. Adjusting the input

parameters allows RAMC-DC to trade total cost for lower early-termination rates.

• Achieve deadline breaches in as low as 0.47% of all jobs, with the incorporation

of periodic checkpointing maintaining deadline breaches in less than 1.1% of all

jobs for all input evaluation lower bound levels greater than 0.

These results indicate that RAMC-DC, when incorporating Spot and On-Demand

instances, can significantly reduce total costs while maintaining very low volatility.

Additionally, even if no moldability is assumed, costs and volatility are still extremely

low, and the number of deadline breaches is actually minimum when jobs are assumed

to be rigid (i.e., no speedup is encountered on larger instances).

1.4 Materials

The frameworks presented in this thesis were implemented using C++ on Mac OSX.

Amazon’s Spot market price history were obtained and collated using Amazon’s AWS

8 CHAPTER 1. INTRODUCTION

API in Java for three month segments. These price traces are also available online

through the AWS Management Console (Amazon [2013a]), and through websites such

as that provided by the University of Western Sydney (University of Western Sydney

[2013]). Different On-Demand instance types and prices for those instance types were

taken from Amazon EC2’s website (Amazon [2013d]). Workload traces used for re-

quests and jobs were downloaded from the Parallel Workloads Archive (par [2013])

and translated from the SWF (Simple Workload Format). Random number generation

was performed using the C++ Standards Committee Technical Report 1 (std::tr1) ex-

tensions. All experiments were run on a machine with a four-core 2.3 GHz Intel Core

i7 processor and 8 GB of RAM, and on a machine with 4 × 8-core 2 GHz Intel Xeon

E5-2650 processors and 32 GB of RAM.

1.5 Thesis Outline

The remainder of this thesis is organized as follows.

• Chapter 2: An overview of Amazon EC2 is given with a focus on the perfor-

mance and cost diversity that is the focus of our research. Related literature is

then presented and critiqued, gaps in current research are identified, and and ma-

jor differences between previous work and that presented in this thesis are out-

lined. Assumptions that are made in our research are then outlined.

• Chapter 3: Multiple methods to estimate the cost of running a Spot instance for

a desired period of time are outlined and evaluated, and the motivation behind

them is provided in the context of different periods of Spot prices.

• Chapter 4: The reliability-aware profit maximizing resource provisioner, RAMP,

is presented. The problem formulation is given, and RAMP’s instance evaluation,

bidding, and profit maximization strategies are introduced and developed. RAMP

is evaluated using Amazon’s Spot price traces and artificially generated requests

derived from traces from the parallel workloads archive.

• Chapter 5: The reliability and availability aware cost minimizing resource pro-

visioner, RAMC-DC, is presented. The problem formulation is presented, and

the strategies incorporated by RAMP are extended to account for the scheduling

of deadline-constrained jobs on instances, and the necessary interchangeability of

1.5. THESIS OUTLINE 9

instances among short jobs. Furthermore, an exemplar of moldability (the varia-

tion in execution time on different instances) among jobs is introduced in an effort

to broaden the search space. RAMC-DC is evaluated using Amazon’s Spot price

traces and an extension of the set of jobs used in the evaluation of RAMP. The

effects of broadening the the search for suitable instance types by incorporating

moldability is also analyzed.

• Chapter 6: The conclusions of the research presented within this thesis are pre-

sented, and the possible directions of future work are given.

Chapter 2

Background and Assumptions

2.1 Performance and Cost Diversity in Amazon EC2

The focus in the thesis will be on IaaS providers, specifically Amazon Elastic Compute

Cloud (EC2): a web service designed to provide users with a reliable, inexpensive, and

elastic platform from which to lease computational capacity. Amazon EC2 is a part of

Amazon Web Services (AWS), Amazon’s Cloud Computing platform, and has been out

of beta since late 2008.

To rent computational capacity from EC2, a user must select an Amazon Machine

Image (AMI) to be booted onto a virtual machine (VM), that functions as a private

virtual server. This VM is known as an instance, and can be rented using one of three

purchasing options as described in the following subsection. Amazon uses the Xen

virtualization hypervisor for virtualization (Xen [2013]), and AMIs come with Linux,

Solaris, Windows, and other operating systems, and are each priced differently.

2.1.1 Purchasing Options

To rent an EC2 instance, a user must choose between one of the three purchasing options

discussed in Figure 2.1.

1. On-Demand instances have fixed hourly costs depending on the instance type,

and may be started, stopped, and terminated at will by the user.

2. Reserved instances require that the user pays an initial cost for either a 1 or 3

year plan, with either Light, Medium, or Heavy utilization. Longer plans and

10

2.1. PERFORMANCE AND COST DIVERSITY IN AMAZON EC2 11

higher utilization translates to higher initial costs but lower hourly costs. Amazon

recently introduced the Reserved Instance Marketplace, wherein users may sell

off their unused Reserved Instances (Amazon [2013b]). The break-even points

for Reserved vs. On-Demand instances are given in PlanForCloud [2013].

3. Spot instances have fluctuating hourly market prices and require the user to place

a bid indicating a maximum price they are willing to pay for the instance. Spot

instances are subject to early-termination by Amazon when the market price rises

above the bid.

Figure 2.1: Amazon’s instance purchasing options

Figure 2.2: A description of Amazon’s instance purchasing options

Each instance purchasing option is generally suited for specific applications. For

example, in the context of service providers, Reserved instances are generally used to

12 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

handle static load and On-Demand and Spot instances are generally used to handle elas-

tic load. When executing tasks, Spot instances are generally used for applications that

have some sort of built-in fault-tolerance, such as checkpointing via VM state migra-

tion, etc., or redundant execution on multiple instances.

The effective exploitation of service diversity when utilizing these various purchas-

ing options can be of great practical importance for the cost-performance ratio faced

by service providers. In this study, we address the effectiveness of such exploitation

for profit maximization and cost minimization, when faced with the diverse cost and

reliability characteristics of Spot and On-Demand instances. The combination of these

two purchasing options can provide a very cost-effective means to provision instances,

provided an analysis of the market-price dynamics of Spot instances and appropriate

fault-tolerance strategies are incorporated.

When seeking to requisition an instance from Amazon EC2, the choice between

leasing a Spot instance or an On-Demand instance corresponds to a tradeoff between

cost and reliability. For example, as witnessed in the recent Pinterest case, supplement-

ing Spot instances with On-Demand instances can help reduce both the total cost of an

application, as well as the associated early-termination rates (High Scalability [2012]).

Although bidding strategies for Spot instances can help achieve user-defined reliability

constraints up to a certain level, such an approach may not be cost-effective if the market

price for a Spot instance is higher than that of an equivalent On-Demand instance.

Spot instances allow Amazon to rent out unused EC2 capacity to users. Although

Spot instances are generally priced far lower than On-Demand instances, they also have

an associated inherent volatility. With suitable reliability evaluation and/or fault toler-

ance, however, Spot instances have been shown to provide a cost-effective alternative

for many applications, especially when supplemented with On-Demand instances.

2.1.2 Instance Types and Availability

When users decide to lease an instance, they must choose a specific instance type and

geographical location (known as an availability zone), within a certain region. Each

instance type provides different amounts of memory, processing power, storage, etc.,

ranging from the smallest instance with 1 EC2 Compute Unit (the equivalent of a 1-1.2

GHz 2007 Opteron or Xeon Processor) and 1.7GB of memory, to cluster computing

instances with 88 EC2 Compute Units and 60.5GB of memory, and to high storage and

2.1. PERFORMANCE AND COST DIVERSITY IN AMAZON EC2 13

12:00 14:24 16:48 19:12 21:36 00:00 02:24 04:48 07:12 09:36 12:00
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (HH:MM)

S
p

o
t

P
ri

c
e

 (
$

U
S

)

us−east−1a

us−east−1b

us−east−1c

us−east−1d

us−east−1e

On−Demand

Figure 2.3: Spot prices for instance type m1.large, running a Linux OS, with all avail-
ability zones in region us-east-1. The equivalent On-Demand price of this instance type
is $0.26/hour.

high I/O instances (Amazon [2013d]). A complete description of the instance types used

in this thesis is given in Table 2.1. At present, Amazon allows users to lease instance

from 8 different regions encompassing North and South America, Asia Pacific, and

the European Union. Originally, users were only able to lease instances from specific

regions. However, to increase fault tolerance, Amazon divided each region into different

numbers of independent availability zones in which users could lease instances, and thus

be able to spread their infrastructure across multiple data centers to eliminate a single

point of failure. In addition to specifying the instance type and availability zone, if users

wish to lease a Spot instance, they must also provide a bid, and if users wish to lease a

Reserved instance, they must decide how much to pay upfront.

2.1.3 Storage

Many instance types come with the option for either local disk storage, with storage on

a temporary volume linked to the instance, or Elastic Block Storage, which provides

persistent storage that is independent of the instance and can be migrated among differ-

ent instances. In addition to these storage options, AWS also offers a Simple Storage

14 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

Service (S3) that is accessible to EC2 instances and which may be used to persistently

store data. S3 storage is billed on a monthly basis, and data transfer rates between

an EC2 instance and S3 are free within the same region, and $0.01/GB from different

regions.

2.1.4 Characteristics of Spot Instances

Spot instances, introduced by Amazon in late 2009, are stochastically available virtual

machines (VMs) with time-varying market prices determined by the provider (Amazon

[2013c]). These instances typically are idle resources in a datacenter. Providers like

Amazon lease out the VMs to increase the efficiency of servers and, owing to the typ-

ically lower costs of spot instances, capture different segments of the market than the

statically-priced on-demand and reserved instances. Although spot instances generally

are priced far lower than their statically-priced counterparts, they are coupled with the

inherent volatility associated with bidding against a fluctuating market price, which is

generally viewed as being random (Ben-Yehuda et al. [2011]).

Spot instances have proven to be a cost-effective resource for applications that are:

able to cope with increased amounts of volatility; experience spikes in demand that

exceed current capacity; or require low fixed costs. For example, “with the click of a

button,” CycleComputing built a 50,000 core cluster using Amazon’s spot instances for

$650 per hour (Cycles [2012]).

2.1.4.1 Bidding

Each Spot instance type has different availability zones in which it is available, and

each availability zone has an associated time-varying market price for that instance

type. To lease a Spot instance, a user places a request for a specific instance type in a

specific availability zone, and provides a bid for that instance. Not all instance types

are available as Spot instances in all availability zones, however; Table 2.2 lists the

availability zones within the region us-east-1 where each Spot instance type is available.

After placing the request, if the user’s bid is above the current market price for that

instance type in that availability zone, the user gains access to the instance and, at the

start of each hour block, pays the most recent market price. If the bid is below the

market price, the instance becomes available to the user if and when the market price

falls below this bid. Bids equal to the market price have been stated by Amazon to

2.1. PERFORMANCE AND COST DIVERSITY IN AMAZON EC2 15

Table 2.1: EC2 Instance Type Comparison (Linux OS)

Instance Type On-Demand Price EC2 Compute Units Memory Size
m1.small $0.065/hr 1.0 1.70 GB

m1.medium $0.130/hr 2.0 3.75 GB
m1.large $0.260/hr 4.0 7.50 GB

m1.xlarge $0.520/hr 8.0 15.00 GB
m2.xlarge $0.450/hr 6.5 17.10 GB

m2.2xlarge $0.900/hr 13.0 34.20 GB
m2.4xlarge $1.800/hr 26.0 68.40 GB
m3.xlarge $0.580/hr 13.0 15.00 GB

m3.2xlarge $1.160/hr 26.0 30.00 GB
c1.medium $0.165/hr 5.0 1.70 GB
c1.xlarge $0.660/hr 20.0 7.00 GB

cc1.4xlarge $1.300/hr 33.5 23.00 GB
cc2.8xlarge $2.400/hr 88.0 60.50 GB

not necessarily result in acquisition or termination, depending, among other factors, on

the number of requests at that time (Amazon [2013c]). An example of market prices

for a Spot instance of type m1.large in all availability zones in region us-east-1, with

equivalent On-Demand price of $0.26/hr (see Table 2.1), is given in Figure 2.3.1 Market

prices for Spot instances are generally characterized by periods of stable market prices,

interspersed with short price spikes.

2.1.4.2 Termination

A characteristic unique to Spot instances is the possibility of forced termination of the

instance. If the market price for a Spot instance rises above the bid chosen by the user,

the instance is automatically terminated by Amazon and the user is granted a refund

for the last hour, resulting in a free partial hour of use. When Amazon terminates an

instance, it does so by running shutdown scripts such as those in etc/rc0.d for Linux

instances, and any unsaved progress for running tasks is lost. The refund for the last

hour of use when a Spot instance is early-terminated by Amazon makes it beneficial

to only terminate a Spot instance just before the hour block is over. Waiting for the

full hour block increases the possibility of early-termination by Amazon and thus the

possibility of a free partial hour of computation.

1Note that availability zones are specific to each user (e.g., one user’s us-east-1a may be another’s
us-east-1c).

16 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

Table 2.2: An example of Spot Instance availability.

Instance Type Availability Zone
us-east-1a us-east-1b us-east-1c us-east-1d us-east-1e

m1.small 3 3 3 3 3

m1.medium 3 3 3 3

m1.large 3 3 3 3 3

m1.xlarge 3 3 3 3 3

m2.xlarge 3 3 3 3

m2.2xlarge 3 3 3 3

m2.4xlarge 3 3 3 3

m3.xlarge 3 3 3

m3.2xlarge 3 3 3

c1.medium 3 3 3 3 3

c1.xlarge 3 3 3 3 3

cc1.4xlarge 3 3 3

cc2.8xlarge 3 3 3

Although forced termination of Spot instances comes without warning, research

by Liu [2011] has suggested that it is possible to modify the shutdown scripts on a

Spot instance to allow up to two extra minutes before forced termination. However, in

this work we will assume that once the market price rises above the bid, the instance

is terminated. Additionally, although Amazon has stated that bids exactly equal to

the market price may or may not immediately be granted access (or be terminated),

depending on the number of requests at that time, in this work we will assume that bids

equal to the market price operate the same as those above, so that instances are leased if

the bid equals the market price and terminated if the market prices rises above the bid.

As we demonstrate within our frameworks, such an assumption can be easily eliminated

with only a minor alteration of the bidding strategies presented for each framework.

2.1.4.3 Market Diversity

It is possible to exploit Amazon’s various instance types and availability zones to achieve

lower volatility, through the reduction of early-termination rates, and lower total costs.

For example, Figure 2.4 illustrates the lifecycle of several Spot instances of type m1.large

in region us-east-1, which are assigned to run tasks at the same time. Here, (1) and (2)

2.1. PERFORMANCE AND COST DIVERSITY IN AMAZON EC2 17

12:00 14:24 16:48 19:12 21:36 00:00 02:24 04:48 07:12 09:36 12:00
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time (HH:MM)

S
p

o
t

P
ri

c
e
 (

$
U

S
)

us−east−1a

us−east−1b

us−east−1c

us−east−1d

us−east−1e

(2)

(3)

(1)

Figure 2.4: Spot prices over a 24 hour period for instance type m1.large, running a
Linux OS, with all availability zones in region us-east-1a. (1), (2), and (3) represent
instances, begun at the same time, with different bids and availability zones.

represent instances with bid b = $0.20/hr, leased in us-east-1d and us-east-1e, respec-

tively, and (3) represents an instance leased in us-east-1c with bid b = $1.51/hr. In-

stance (1) is terminated before completion when the market price rises above $0.20/hr,

and, although both instance (2) and instance (3) successfully complete the task, instance

(2) will do so while incurring significantly lower cost than (3) due to the lower and more

stable market prices in zone us-east-1e during this time period.

In addition to the market diversity among availability zones presented in Figure 2.4,

it is also possible to increase the size of the search space, and thus the possibility of

locating more reliable, lower cost markets, by searching among other suitable instance

types. For requests that require a minimum instance type to be available for a given time,

searching among instance types greater, in some criteria, than that requested may offer

a more reliable alternative. On the other hand, as examined in RAMC-DC, if the type

of instance influences the execution time of the job, larger and smaller instances may

be examined via the tradeoff of higher (lower) hourly costs vs lower (higher) execution

time provided by each instance type.

18 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

2.1.5 Spot vs. On-Demand

Spot instances differ in many respects from On-Demand instances, especially in regards

to pricing, availability, and volatility. Because of this difference, Spot and On-Demand

instances may be used to in different circumstances and to meet different needs.

2.1.5.1 Cost vs. Volatility

When seeking to requisition an instance from Amazon EC2, the choice between leas-

ing a Spot instance or an On-Demand instance corresponds to a tradeoff between cost

and reliability. Although evaluation, bidding, and checkpointing strategies for Spot in-

stances can help achieve user-defined reliability and availability constraints up to a cer-

tain level, several unavoidable problems remain. For example, the current market price

for the Spot instance may be higher than the equivalent On-Demand instance, or the cor-

responding total cost for a Spot instance with a high bid may potentially be far higher

than simply leasing an On-Demand instance (known as overbidding). In addition, Spot

market price spikes have been shown to be random (Ben-Yehuda et al. [2011]), and thus

can rise far higher than previously witnessed in the market price history.

A partial solution to the problem of imperfect fault-tolerance and fault-reduction

when using Spot instances lies in the incorporation of On-Demand instances as well.

Supplementing Spot instances with On-Demand instances can help reduce both the to-

tal cost of an application, as well as the associated early-termination rates (and thus

the inherent volatility) when using only Spot instances. As discussed previously, an

example of such supplementation in practice can be seen in the content sharing service

Pinterest. Pinterest uses a 50-50 mixture of Spot and On-Demand instances to han-

dle elastic load, with On-Demand instances replacing Spot instances during Spot price

spikes (High Scalability [2012]). While doing this, and automatically shutting down

unneeded instances, Pinterest has been able to reduce costs from $54/hour to $20/hour,

thus achieving savings of 68% of their hourly cost.

2.1.5.2 Acquisition Times

An interesting difference between Spot instances and On-Demand instances lies in in-

stance acquisition time: the time between when the user submits the request and when

the instance is available to the user. Research by Mao et al. has shown that instance

acquisition time for On-Demand instances is generally significantly lower than that of

2.1. PERFORMANCE AND COST DIVERSITY IN AMAZON EC2 19

Spot instances (Mao and Humphrey [2012]). Indeed, according to Mao et al., Spot in-

stances generally take around 400 seconds before there are available to the user after

the initial request is made, while On-Demand instances take around 100 seconds. Mao

et al. also demonstrate that acquisition times vary greatly among providers as well,

with Microsoft Azure far surpassing Amazon EC2 in average instance acquisition time.

In addition, when leasing Spot instances, bidding the market price has been stated (as

described above) to not necessarily guarantee instance acquisition.

Due to the large difference in acquisition times between instance purchasing op-

tions, such times will generally need to be taken into account when instances are fre-

quently leased and released, and may provide another factor in the choice of whether

to use an On-Demand or Spot instance for a particular application. The impact of these

acquisition time differences may be decreased by employing predictive load forecasting

methods; however, such predictive measures may also constrain the dynamicity of the

approach.

2.1.6 Global Expansion and Price Reduction

Over the course of the research presented in this thesis, the number of regions in which

instances have been offered, as well as the number of availability zones within each

region, have been consistently expanded. Furthermore, prices for On-Demand instances

and Spot instances have been regularly reduced as Amazon’s datacenters expand and

broader economies of scale are leveraged. Indeed, at the time of writing, prices for

M1, M2, M3, and C1 On-Demand instances have been further reduced by an average

of 10-20%, making them even better suited for supplementation (see table 2.3). The

number of regions and availability zones in which M3 instance types are offered has also

been expanded to encompass additional locations across the globe (recently including

Sydney), and the data transfer prices between regions has been reduced, while data

transfer prices between availability zones have been eliminated entirely.

New types of instances are also being offered over time. Examples of recent addi-

tions include the High I/O Quadruple Extra Large Instance, designed to provide very

high instance storage I/O performance, and the High Storage instances, designed for

applications that require instances with large amounts of disk and memory storage and

high sequential I/O performance (Amazon [2013d]). In addition, Amazon now offers

the option to launch instances with Elastic-Block-Store (EBS) optimization.

20 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

Instance Type On-Demand
Price Change

m1.small -7.7%
m1.medium -7.7%

m1.large -7.7%
m1.xlarge -7.7%
m2.xlarge -8.9%

m2.2xlarge -8.9%
m2.4xlarge -8.9%
m3.xlarge -13.8%

m3.2xlarge -13.8%
c1.medium -12.1%
c1.xlarge -12.1%

cc1.4xlarge 0%
cc2.8xlarge 0%

Table 2.3: EC2 Price Reduction Comparison (Linux OS) after February 1st, 2013.

2.2 Literature Review

Over the past several years, cloud computing has emerged as a means to acquire vast

On-Demand resources. Many studies have shown the feasibility of using infrastructure-

as-a-service cloud providers, such as Amazon (Amazon [2013d]), for applications in-

cluding High-Performance Computing (HPC) (e.g. Evangelinos and Hill [2008], Walker

[2008], Palankar et al. [2008], Youseff et al. [2008], Jackson et al. [2010]). A new way

to acquire cloud computing resources is by bidding on virtual machines (VMs) known

as Spot instances. As discussed earlier, Spot instances are VMs that are obtained by

bidding on unused capacity in data centers, and are terminated when the user’s bid falls

above a market price determined by the cloud provider. Recent research has shown

that Spot instances, like those available from Amazon (Amazon [2013c]), can increase

further the effectiveness of acquired instances by decreasing the monetary cost of par-

ticular computing applications, especially when utilizing available Spot price history in

conjunction with various fault-tolerant and price-predictive schemes.

Previous research on Spot instances covers several key aspects, including:

1. Statistical analysis of Spot prices & bidding strategies

2. Fault-tolerance strategies when using Spot instances

3. Scheduling & resource allocation when using Spot instances

2.2. LITERATURE REVIEW 21

In addition, profit-maximization when incorporating resources leased from IaaS

providers has also seen much research, although little has been done with the incor-

poration of Spot instances.

Although many of the studies discussed in this chapter span multiple aspects, each

will be grouped in terms of its relation to the research presented in this thesis.

2.2.1 Statistical Analysis of Spot Prices & Bidding Strategies

Although the stochastic nature of Spot instances implies almost all research on them

includes some statistical analysis of their price and time dynamics, this section presents

research work which focuses solely on analyzing the statistical characteristics of Spot

instances.

Javadi et al. [2011] used one year of Spot price traces to model the time dynamics

of the Spot price for all instance types and regions, using a mixture of Gaussian distri-

butions with 3 components. The model was calibrated using the price traces, owing to

a shift in Amazon’s pricing strategy in mid-July 2010, and validated using CloudSim

(Calheiros et al. [2011]) and workload traces from the LCG Grid (Iosup et al. [2008]).

A high bid price (e.g. that of an On-Demand instance) was assumed for all simulations.

Their results showed that the model predicted the mean total price of running tasks

on Spot instances with a small maximum relative error of less than 3%, and with the

instance type m1.small presenting the largest error.

Although the authors managed to predict accurately the time dynamics of Spot

prices, they used a static, high bid price. Recent price traces show that bidding the

On-Demand price often generates high costs, and the model proposed might miss many

characteristics of the time dynamics corresponding to lower bids (Amazon Web Ser-

vices).

Ben-Yehuda et al. [2011] analyzed Amazon’s Spot price traces for all instance types

and regions, using both Linux and Microsoft Windows operating systems, to determine

how prices are set and to create a model that sets prices in the same manner. The

availability of a declared price, D, was defined as

availabilityF
b→e(D) =

T F
b→e(D)
Te−Tb

,

where F is a Spot price trace file, Tb and Te are the beginning and end of a time interval

within F , and T F
b→e(D) is the time between Tb and Te during which the Spot price

22 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

was lower than or equal to D. This availability was analyzed because it represents

the probability of an instance being launched at a random time in the interval [Tb,Te].

For each instance type and region, the authors claim that normalized graphs of price

vs. availability share the same characteristic shape, with linearly increasing prices in

a band between an artificial dynamic reserve price and a market-drive ceiling price.

Further, they were able to match an AR(1) pricing algorithm, ∆i = −a1∆i−1 + ε(σ),

with a1 = 0.7 and σ = 0.39(F−C), where F and C are the floor and ceiling prices, for

all instances except m1.small, which had a1 = 0.5 and σ = 0.5(F−C).

The claim that Spot prices are artificially generated is significant as it contradicts

other research papers that assume Amazon’s Spot prices are entirely market-driven.

Specifically, it implies that several research findings, such as those of Zhang et al. [2011]

and Chen et al. [2011] below, are based on false assumptions. The findings also imply

that sampling from the Spot price history is necessary to discover optimal bid prices

for jobs. In addition, the authors identify three contiguous epochs in Amazon’s price

traces, characterized by different reserve and ceiling prices, inter-price times, etc. These

epochs are important when using Spot price history to train models as the traces may

cross epochs, making identification of transitions between epochs important.

Another example of research which mistakenly relies on the market-driven assump-

tion is that by Shang et al. [2010], who present a knowledge-based continuous double

auction framework for cloud resources. The authors focus on the Spot market as a one-

sided auction market with a futures market in the form of On-Demand instances, and

present a model that aims to determine a mutually agreed upon price between the cloud

provider and the cloud user. The assumptions made in Shang et al. [2010] are made

questionable by the results in Ben-Yehuda et al. [2011] and the experiments conducted

are not fully explained.

Several papers examining Spot instances have specified trace-based bidding strate-

gies when using them. Andrzejak et al. [2010] present bidding strategies using Ama-

zon’s Spot price traces to place bids based on the execution time of an instance for jobs

requiring 1,000 minutes of execution that were designed to satisfy SLA constraints. Ad-

ditionally, Song et al. [2012] and Zafer et al. [2012] developed optimal bidding strate-

gies in Spot markets both from a client’s and a broker’s perspective. From the client’s

perspective, Zafer et al. designed a dynamic bidding policy (DBA) to minimize the total

cost of a parallel or serial job within a deadline. Simulations run using real and syn-

thetically generated Spot prices, and a serial job with 100 hours of computation time,

2.2. LITERATURE REVIEW 23

show that DBA outperforms both random bidding and average-price bidding. From

the broker’s perspective, Song et al. develop a profit aware dynamic bidding algorithm

(PADB) that maximizes the time average profit of the broker.

The bidding and evaluation strategies in this paper differ from those developed in

Zafer et al. [2012], Andrzejak et al. [2010], and others, by allowing a trade-off between

deadline breaches and total cost, adjusting the evaluation strategy depending on the ex-

ecution time of a job, comparing the price dynamics across multiple availability zones,

and incorporating the cost to suspend and resume an instance. Furthermore, when han-

dling jobs with low execution times (e.g. under an hour), it becomes prudent to acquire

instances with bids independent of the initial job executed on the instance so as to allow

other jobs to fill up idle hour blocks.

2.2.2 Fault Tolerance

One of the main drawbacks of Spot instances is their inherent volatility. Because of this

volatility, fault tolerant mechanisms are essential in many applications that utilize Spot

instances. Although much of the research on Spot instances employs fault tolerance

techniques, this section examines research which focuses on proposing and analyzing

such techniques.

Checkpointing has often been proposed as a possible means to achieve fault tol-

erance when using Spot instances, and in failure-prone environments in general. Yi,

Andrzejak, and Kondo (Andrzejak et al. [2010], Yi et al. [2010], Yi et al. [2011]) have

authored several studies of fault-tolerance when using Amazon’s Spot instances In An-

drzejak et al. [2010], Spot price traces were used to create a model that attempts to min-

imize monetary costs while satisfying a Service Level Agreement (SLA). Users submit

jobs and specify optional parameters, such as deadline and budgetary constraints, and

the model then determines optimal bid prices and instance types while implementing

an hourly checkpointing strategy. Simulations were run using exemplary workloads

from the BOINC Catalog (BOINC [2011]) and Grid Workload Archive (Iosup et al.

[2008]). Results from these simulations showed that higher bid prices, slightly lower

confidence values, and higher budgets all helped decrease execution times. Addition-

ally, the hourly checkpointing strategy is efficient for higher bid prices and reasonable

confidence levels, and using larger instances can help reduce costs by up to 60%.

In Yi et al. [2010] and Yi et al. [2011], several adaptive checkpointing schemes are

24 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

implemented to reduce the impact of out-of-bid situations, and migration is used to

help improve task completion times. A fixed bid price is assumed, and four checkpoint-

ing schemes were compared: hourly checkpointing (HOUR); rising edge-driven check-

pointing (EDGE); basic adaptive checkpointing (A); and current-price based adaptive

checkpointing (C). In addition, three migration heuristics; lowest price, lowest failure

rate, and highest failure rate, also are examined.

Experimental results in Yi et al. [2011] were obtained by running 100 simulations,

assuming a total work of 1,000 minutes for each job, a known checkpointing cost,

and variable price history windows. The results from these simulations showed that

current-price based adaptive checkpointing, with a trace window of 112 days and low-

est price migration, performed best in task completion and monetary cost. Additionally,

work migration helped reduce the overall execution time by a factor of 2.5, although it

slightly increased the cost of execution. These works use traces from a period of time in

which Spot prices fluctuated much more frequently; current prices may not require very

frequent checkpointing and simply adjusting the bid can prove to have better results.

Liu [2011] illustrates how the modification of shutdown scripts on VMs, such as

/etc/rc0.d in Linux, can issue a signal to a MapReduce process so that states can be

saved when necessary. Tests on real Spot instances showed that Amazon’s hypervisor

waits up to a maximum of two minutes for the shutdown scripts to finish before ter-

minating the instance. Liu states that this is sufficient time for his implementation to

save necessary states, with the shutdown window providing enough time to flush at least

”tens of megabytes of data” (p. 4).

Bougeret et al. [2011] analyze checkpointing strategies in an environment that suf-

fers from processor failures, proving that periodic checkpointing times are optimal in

order to minimize the makespan of either a parallel or sequential job with Exponen-

tial distributions of failure inter-arrival times. The authors claim that simulations run

using their dynamic-programming algorithm with Exponential distributions, Weibull

distributions, and real-world logs of failure inter-arrival times prove that such check-

pointing strategies outperform all other solutions. Although the failure rates analyzed

by Bougeret et al. are far lower than Spot instances have historically experienced (the

real world logs used saw an average of 1 failure per day), in light of the more stable Spot

prices offered by Amazon, the solutions provided in this paper may prove valuable for

future work.

2.2. LITERATURE REVIEW 25

In the approach presented in this thesis, several rudimentary checkpointing strate-

gies are used, but the proposed framework relies mainly on the prevention of early

terminations achieved by being able to search across instance types and availability

zones, and through specifying confidence levels when calculating bids and evaluating

instances. In many cases, checkpointing allows only slight differences in total cost and

deadline breaches per combination of parameters in the model while the largest differ-

ence lies in varying the parameters themselves.

2.2.3 Scheduling & Resource Allocation

A large portion of the research on Spot instances has focused on the problem of optimal

resource allocation, both from the provider’s side and from the client’s side, with the aim

of maximizing profit and decreasing failure rates and task completion time. To develop

such strategies, statistically analyzing Spot prices and providing some fault tolerance

scheme has been proven necessary to avoid the time and monetary costs incurred from

out-of-bid situations, as evidenced below.

Zhang et al. [2011] address the problem of maximizing total revenue for a cloud

provider (specifically Amazon), by dynamically allocating resources to each Spot mar-

ket, given that demand for instance types fluctuates over time. Contrary to the findings

presented in Ben-Yehuda et al. [2011], they assumed Spot price traces were indicative of

client request volumes and bids. Their solution consists of dynamically scheduling and

consolidating resources, based on demand predicted from Spot price traces using a sim-

ple autoregressive model. Two pricing schemes are analyzed: a fixed pricing scheme,

where the price of a VM type does not vary with supply and demand; and a uniform

pricing scheme, with runtime-adjustable prices. The first pricing scheme is modeled as

a multiple knapsack problem (MKP), and the second is modeled using in the same way

as the first pricing scheme, but with prices determined by an estimated demand curve.

The authors ran experiments were using CloudSim Calheiros et al. [2011], emulat-

ing a 1000-machine data center with 8 of the instance types available in Amazon EC2.

Results showed that the dynamic allocation policy performed better than the static allo-

cation policy, increasing average revenue by around 17%, with more significant gains

resulting from dynamic demand patterns.

Mattess, Vecchiola, and Buyya (Mattess et al. [2010]) create resource provisioning

policies that combined Spot instances and On-Demand instances to extend temporarily

26 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

a local cluster. Among the policies examined are algorithms that only request On-

Demand instances, request Spot instances based on whether the Spot price is above

or below the maximum bid, or only use Spot instances. Using Amazon’s Spot price

traces, as well as traces consisting of Bag-Of-Task applications from the Grid Workload

Archive, the authors found that using only On-Demand instances can reduce the Total

Breach Time (the sum of the time tasks have spent in the queue beyond a Maximum

Queue Time) and the Average Queue Time (the average of the time spent in a queue)

by 2 and 3 orders of magnitude, respectively, with a total cost of only $10,000 over

the course of two years. Furthermore, incorporating Spot prices with a high bid price

can further reduce the cost by half compared to using only On-Demand instances. The

authors also observe, similarly to Ben-Yehuda et al. [2011], that there exists a band

within which Spot prices are usually contained. Increasing bid prices to be above this

band reduced mean costs by at least 20%.

Voorsluys, Garg, and Buyya (Voorsluys et al. [2011]) propose a system architecture

that creates clusters of Spot instances, a resource allocation strategy that runs workloads

on this cluster, and mechanisms to provide runtime estimates. The proposed resource

provisioning and scheduling policy, BROKER, allocates jobs to VMs based on runtime

estimates and the availability of idle instances. Experimental results, obtained from

simulations on the CloudSim framework using embarrassingly parallel tasks in a work-

load from the LHC Grid at CERN, show a cost decrease of up to 60% compared to

On-Demand instances, with slightly over-estimated runtimes providing the best results.

Voorsluys and Buyya [2012] also propose a resource provisioning policy, extending

their work in Voorsluys et al. [2011], that encompasses two novel fault tolerance tech-

niques aimed at decreasing the volatility of a heterogeneous cluster composed of Spot

instances, including migration of VM states across availability zones. Estimates of the

execution time were made in a similar fashion to those in this work. Voorsluys et al.

also introduce an urgency estimation factor that represents the maximum time a job can

wait in order to maximize the likelihood of meeting a deadline. Results suggest that

VM migration, coupled with an aggressive urgency estimation factor and low bidding

strategy, yield the lowest cost, but a moderate urgency estimation factor resulted in the

lowest deadline violations.

Rahman [2011] propose an approach to decrease the cost of Spot instances using

financial option theory. In their research, On-Demand instances are utilized as options,

2.2. LITERATURE REVIEW 27

and several online policies are evaluated using only Spot instances, both Spot and On-

Demand instances, and only On-Demand instances. Experiments were performed with

modified traces from Amazon and the authors note that only a small variation in the

prices existed at that time. However, their experimental results show that utilizing Spot

instances decreases prices.

Rahman [2011] also makes mention of the drawbacks of the included policies;

namely, that their binomial model assumes the original data follows a log-normal dis-

tribution, which may not be correct for Amazon, and they rely on the assumption that

cloud providers follow a binomial option valuation method.

Zhao et al. [2012] develop deterministic and stochastic resource rental planning

models (DRRP and SRRP) to minimize costs when running elastic computations on

Spot instances. They show that the stochastic model is far superior, given the pric-

ing uncertainty of Spot instances. The authors note that price approximation through

prediction is insufficient, as discussed previously, and therefore attempt to reduce uncer-

tainty by empirically estimating the probability distribution of the actual prices, deter-

mining the expected cost for different types of instances, and calculating the likelihood

of an out-of-bid event.

Zhao et al. also consider three instance types and evaluate the performance of both

SRRP and DRRP. Using a metric that determines the overpay amount (the increase

in cost relative the the ideal case), DRRP is shown to perform well when using On-

Demand instances but lags behind SRRP when used on Spot instances. DRRP is shown

to decrease the overpay amount by up to 50% compared to using no planning strategy,

and SRRP reduces that amount by nearly 50% again.

Taifi et al. [2011] describe a toolkit named SpotMPI that is used to run MPI applica-

tions on Spot instances by providing optimal checkpointing intervals and restarting of

applications after out-of-bid situations through calculations of the density of out-of-bid

failures from price history. Experimental results indicate that the communication over-

head between Spot instances becomes highly detrimental as the number of instances is

increased and, although higher bids provide better performance, they are coupled with

a decrease in cost-effectiveness.

Chohan et al. [2010] and Liu [2011] authored research analyzing the efficacy of

using Spot instances for MapReduce workflows. In Chohan et al. [2010], the authors

model Spot instance lifetimes using Markov Chains and Amazon’s Spot price history,

with the edges of the Markov Chain representing the probability of price changes per

28 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

hour. The n-step probability was then calculated as

P(i,b,n) = ∑
j/∈B

Mi jP(j,b,n−1),

with starting market price, i, bid price, b, set of prices over b, B, and probability matrix

of a price point from i to j, Mi j. The authors then calculated the expected lifetime of a

Spot instance as

E(l) =
τ

∑
n=1

nP(i,b,n),

where τ is the max runtime. Simulations run using Spot instances as accelerators in

MapReduce jobs indicated that Spot instances can help speed up applications, but the

cost of losing a Spot instance (via termination by Amazon) can slow the application

down do the point where using only On-Demand instances is more efficient. The au-

thors recommend a fault-tolerant mechanism to deal with such a loss.

Liu [2011], as mentioned above, describes a new MapReduce implementation, Spot

Cloud MapReduce, an extension of Cloud MapReduce (Liu and Orban [2011]), which

is designed to deal with the fault tolerance inherent in Spot instances. One difference

between Cloud MapReduce and Spot Cloud MapReduce is the modification of shut-

down scripts on VMs as described earlier. Liu runs simulations using Amazon’s Spot

price traces and showed that Spot Cloud MapReduce costs are significantly less than

Hadoop, as bids for Hadoop must be higher to prevent termination of the master node;

but that completion times are dependent upon the time spent waiting for prices to drop

below the user’s bid.

Liu presents several significant findings. First, is that Amazon’s hypervisor waits for

up to two minutes for shutdown scripts to execute before terminating the instance. This

can be used to advantage when designing checkpointing schemes, but it is vulnerable

to policy changes by Amazon. The second finding, that Spot instances are more cost

efficient than Hadoop when using a static, low bid also is significant because waiting

times can be significantly reduced using optimal-bidding strategies, implying that the

effectiveness of Spot instances relative to Hadoop can be increased further.

Mazzucco and Dumas [2011] propose a bidding scheme and server allocation poli-

cies to optimize revenue earned by a Software-as-a-Service (SaaS) provider leasing

infrastructure (specifically, Spot instances) from an Infrastructure-as-a-Service (IaaS)

provider, while satisfying performance and availability guarantees. The authors’ rev-

enue maximization scheme relies on a price prediction model and a server allocation

2.2. LITERATURE REVIEW 29

and admission control policy. The server allocation policy determines the number of

servers to rent based on traffic estimates and using a hill climbing heuristic. The ad-

mission control policy rejects or accepts requests based on a threshold value based on

the number of servers. Experimental results determined that revenue is far greater (by

almost 100%) when using Spot instances instead of On-Demand instances.

Autocorrelation is used to confirm that there is almost no correlation between dif-

ferent Spot prices, in line with the results given in Ben-Yehuda et al. [2011]. Therefore,

the authors use a normal approximation to model the distribution of prices, with prices

determined by linear regression if the autocorrelation function is above 0.4, and the

quantile function of the normal distribution otherwise. To circumvent out-of-bid situa-

tions (where the Spot price is higher than the bid), the bid price is increased by 40% at

each interval.

2.2.4 Profit Maximization

There have been many studies aimed at maximizing profit when using IaaS providers,

including several focusing on the exploitation of inherent heterogeneity. Farley et al.

[2012] seek to increase the payoff from leasing instances in Amazon EC2 by exploit-

ing heterogeneity through hardware variations in the same instance type. Tsakalozos

et al. [2011] introduce an approach that attempts to maximize per-user profit for a cloud

provider, and quality-of-service received for a user. To do so, Tsakalozos et al. seek to

specify a time-varying amount of of virtual machines a user should lease from a cloud

provider, given a fixed budget, in order to achieve a desired response time for the user’s

applications.

Popovici and Wilkes [2005] develop scheduling policies designed to independently

maximize the per-job profit of a service provider that rents uncertain resources with

some associated price, in a similar fashion to Cloud providers, while also handling the

problem of the dynamic acquisition of resources. Lee et al. Lee et al. [2010] address

the problem of service request scheduling in cloud computing systems by presenting

two sets of profit-driven service request scheduling algorithms, as well as a new pricing

model that incorporates processor-sharing.

Chen et al. [2011] develop a new utility model to measure customer satisfaction

in the cloud and the benefits gained from providing and utilizing heterogeneous re-

sources, to determine the tradeoffs between profit and satisfaction, and to introduce two

30 CHAPTER 2. BACKGROUND AND ASSUMPTIONS

scheduling algorithms utilizing these tradeoffs to bid for Spot instances. The utility of

a customer is quantified as

U(p, t) =U0−α p−β t

where p is the service price, t is the response time, and U0 is the maximum utility. The

scheduling algorithms rely on maximizing profit while moving along an indifference

curve, representing a level of customer satisfaction.

The two scheduling algorithms introduced by Chen et al. [2011] are: FirstFit-profit,

where the service provider maximize profit while meeting a minimum level of cus-

tomer satisfaction; and FirstFit-satisfaction, where the service provider maximizes the

satisfaction while meeting a minimum profit level. The authors use three types of Spot

instances from Amazon and use the price history as market clearing prices for auctions

of VM instances, an assumption that is placed into question by the work in Ben-Yehuda

et al. [2011]. Results showed that FirstFit-profit has a higher unit profit and lower

instance number than approaches which utilize only a single types of instance. Fur-

thermore, as the marginal rate of substitution between response time and service price,

α/β , decreases, the number of instances with a larger number of cores increases, as

shorter response times are sought, and unit profit decreases. The authors conclude that

service profit and customer satisfaction are negatively correlated. The FirstFit-profit

approach is similar in intent to the framework, RAMP, in that both RAMP and FirstFit-

profit attempt to maximize profit while meeting a targeted level of instance reliability

for customers.

Toosi et al. [2011] present resource provisioning policies that are aimed at increasing

utilization and profit of Spot instances for an IaaS cloud provider. The proposed poli-

cies are: Non-Federated Totally In-house (NFTI), where, if feasible, providers termi-

nate Spot instances with lower bids to accommodate On-Demand requests; Federation-

Aware Outsourcing Oriented (FAOO) where requests are outsourced to other cloud

providers if possible, otherwise Spot instances are terminated to accommodate the On-

Demand request; and Federation-Aware Profit Oriented (FAPO), where the the decision

to outsource On-Demand instances or terminate Spot instances is made based on the ex-

pected profit from each. Experimental results in Toosi et al. [2011], using the CloudSim

framework and a workload generating model, show that FAPO has higher profit and less

utilization (the ratio of the number of hours of VMs used by requests and the maximum

number of hours of VM) than FAOO, with larger differences observable with higher

2.3. ASSUMPTIONS 31

loads, while both FAPO and FAOO have higher utilization than NFTI.

2.3 Assumptions

Using the works presented in this chapter, the following assumptions are made within

this thesis regarding the nature of instances and Spot-market prices within Amazon

EC2.

1. Uniformity Within Instance Types: Although results by Farley et al. [2012]

indicate that some variation is encountered within the same instance type, as de-

scribed in Section 2.2.4 above, in this thesis uniformity is assumed among dif-

ferent instance types and across availability zones. Thus, a job executing on an

instance of type i will perform identically on a different instance of the same type,

i.

2. Randomness of Spot-Market Prices: In concurrence with the research pre-

sented in Ben-Yehuda et al. [2011], Mazzucco and Dumas [2011], and Zafer

et al. [2012], Spot market prices are not assumed to follow any distribution, and

non-parametric methods are used to estimate market-price dynamics such as reli-

ability, availability, and the probability of early-termination.

3. Reliability of On-Demand Instances: To provide a contrast to the volatility

of Spot instances, On-Demand instances are assumed to have 100% availability

over time, and thus an On-Demand instance will only ever be relinquished at the

framework’s request.

4. No Instance Acquisition Time: As mentioned in Chapter 1, due to the in-

frequency with which instances are leased, and the significant variation among

providers, instance types, and purchasing options, we assume instances have no

associated acquisition times (i.e., the time from the instance request to instance

availability). In the case of requests without deadline constraints (as used in

RAMP), such an assumption will have a negligible impact on the results.

Chapter 3

Cost Estimation

Each framework presented within this thesis requires a means to perform a cost-performance

comparison of different instances when allocating resources. Thus, each framework is

faced with the problem of approximating the cost of maintaining instance availability

for some time period. Such an estimation facilitates a comparison of the potential cost-

performance ratio of each instance and plays a crucial role in the evaluation of each

instance-request or instance-job assignment.

3.1 Instance Models

Within this thesis, an instance, leased either as Spot or On-Demand, will be represented

by the variable ν . An instance ν refers to either an unleased instance or an already

leased instance as defined below.

• Unleased Instances are representations of new potential instances that have not

yet been leased from Amazon. Unleased instances are examined when identify-

ing potential resources to add to the existing pool and, when leased, are updated

with a pointer to the newly leased EC2 instance. Cost efficiency, reliability, avail-

ability, etc., for unleased instances are examined when making the decision to

lease a new instance.

• Leased Instances are representations of instances that have already been leased,

and include a pointer to the existing EC2 instance. This pointer gives data critical

to instance evaluation, such as the remaining time left in the hour block of the

instance, the request/job currently executing on the instance, etc.

32

3.2. ANALYSIS OF TOTAL COSTS 33

If ν is unleased, it may be represented by the triple 〈i,z,b〉, where i is the instance

type, z is the availability zone, and b is the bid (if the instance is leased as a Spot

instance). The instance type i is an element of the set of all types, I, as described

in Table 2.1, and z is an element of Z, the set of availability zones. Within this thesis,

Z = {us-east-1a, us-east-1b, us-east-1c, us-east-1d, us-east-1e}, the set of availability

zones in the region us-east-1.

Not all instance types are available as Spot instances in all zones: if ν is a Spot

instance, z ∈ Zi, where Zi is the set of all zones in which a Spot instance of type i is

available. ν is an On-Demand instance if and only if b = /0; otherwise, ν is a Spot

instance and b∈R+. When an instance is leased, a pointer to the EC2 instance is added

to ν to retrieve data such as the status of the instance and the time remaining in the hour.

Note that each Spot market is uniquely identified by the type-zone pair (i,z).

3.2 Analysis of Total Costs

Amazon’s Spot price history has experienced many diverse pricing periods. In the past,

Spot markets were generally characterized by highly fluctuating market prices with

reasonably high price spikes, whereas over time there was a transition to markets with

relatively stable market prices interspersed with short periods of very high prices. This

change has necessarily reflected a shift in mechanisms designed to calculate the total

cost of leasing a Spot instance for some period of time.

Approaches to approximating the cost of maintaing the lease of a Spot instance

can generally be grouped into three categories: trace-based estimations that rely on

random sampling; trace-based estimations that average the entire history; and current-

market-price estimations. Trace-based estimations utilize Amazon’s Spot price history

to compute the total cost, whereas current-market-price estimations utilize only the cur-

rent market price for that instance. As the average number of price-shifts within a given

time period increases, cost estimations that take previous market prices into account

will necessarily perform better than others, although such methods come with the cost

of higher time-complexity and may be subject to recent changes in pricing policies. On

the other hand, during periods in which market prices are relatively stable and the aver-

age number of price-shifts during a given time period drops closer to 0, Occam’s Razor

prevails and cost estimation techniques that incorporate only the current market price

34 CHAPTER 3. COST ESTIMATION

can give much better estimations of the cost and with much lower time-complexity.

The size of the bid at which the Spot instance was leased can also heavily influence

the accuracy of these estimations. Higher bids allow for much more price-fluctuation

without the instance being terminated, and thus both the estimation of the total cost for

a Spot instance placed with such a bid, as well the true cost of this instance, can vary

dramatically. For large bids, estimations that rely on random-sampling may be prone to

missing market price spikes and thus may potentially underestimate the total cost. On

the other hand, time-weighted average-price estimations may place too much weight on

bid spikes during times of stable market prices.

3.3 Cost Estimation Methods

For each instance type and availability zone combination, (i,z), such that i ∈ I and

z ∈ Zi, the algorithm has access to Amazon’s spot price history for some past span of

time: Hi,z = {(p1,d1), . . . ,(pk = pmkt ,dk)}, where pm is the price at time dm, and pk is

the current market price. The following five methods to approximate the total cost of

running a new Spot instance, ν = 〈i,z,b〉, for t ∈ R+ hours are presented below and

evaluated in the next section. Implementations in C++ are given in Section A.1.

1. Market Price: The estimated cost is calculated as the market price multiplied by

the ceiling of the desired computation time:

Ĉmkt(t,ν) = pmkt · dte, (3.1)

where pmkt is the current market price as discussed above.

2. Average Price: The estimated cost is determined using an average per-hour price

calculated as the weighted sum of all previous market prices less than the bid over

some window of the Spot price history, with each weight equal to the fraction of

the time spent at each market price compared to the total time spent under the

bid:

Ĉavg(t,ν) =
∑

pm≤b, m<k
pi · (dm+1−dm)

∑
pm≤b, m<k

(dm+1−dm)
· dte. (3.2)

3.3. COST ESTIMATION METHODS 35

3. Monte Carlo: The estimated cost is calculated using a nonparametric Monte Carlo

estimate:

Ĉmc(t,ν) =
1
|XC| ∑

x∈XC

Cx(t,ν), (3.3)

where XC is a set of dates sampled uniformly over a past window of the Spot price

history and Cx(t,ν) is the true cost of running the job at x if the job completes

successfully, and is otherwise equal to Ĉmkt(t,ν).

4. Market-Average: If the runtime of the job is less than some parameter α , the esti-

mated cost is determined using the Market Price estimate of the cost. Otherwise,

the estimated cost is calculated as:

Ĉma α(t,ν) = Ĉmkt(dαe,ν)+Ĉavg(t−dαe,ν). (3.4)

Therefore, the estimated cost is the sum of the Market Price method for the first

dαe hours and the Average Price method for the remaining time.

5. Market-Monte Carlo: As in 4) but the Monte Carlo estimate is used for the re-

maining time:

Ĉmmc α(t,ν) = Ĉmkt(dαe,ν)+Ĉmc(t−dαe,ν). (3.5)

Estimated costs for on-demand instances are calculated as ĈOD(t,ν) = dte ·ODPricei,

where ODPricei is the on-demand price for instance type i, as given in Table 2.1. Fur-

thermore, in the case of VM state migration across availability zones, Amazon’s rate of

$0.01/GB will be added to the total cost.

Note that these estimations are strictly for new instances. If an instance has been

leased, Ĉ(t,ν) must be calculated as the total cost accounting for the fact that the re-

maining hour block on ν has already been paid for. Thus, Ĉ(t,ν) approximates the cost

using the time t−h, where h is the predicted time that will remain in the instance’s hour

block.

The above estimation methods were chosen to compare the incorporation of the mar-

ket price, to determine the appropriate weight that should be given to this market price

and to evaluate the difference in accuracy between a random sampling and an averaging

approach. Increasing the weight of the market price in an estimation will generally lead

36 CHAPTER 3. COST ESTIMATION

to more accurate results if the inter-price time (the time between market price changes)

is very high. When the inter-price time is high, the probability of a change in market

price during execution is low, and so the market price first encountered is likely to be the

only one encountered. Similarly, estimations incorporating the time-weighted average

price will generally give a better estimation than those that rely on random sampling

when price spikes are not infrequent, and thus an average price estimation will be less

likely to incorporate outlier data. Random sampling, on the other hand, has a higher

potential to avoid such outliers.

3.4 Evaluation of Estimations

To determine which cost estimation method achieves the lowest relative error, simula-

tions are run using 20,000 randomly generated requests with desired availability time,

t, uniformly sampled between 1 and 12 hours (desired availability times above 1 hour

guarantee that the true cost is nonzero), and with desired instance and availability zone

also uniformly sampled. We assume each job is allocated a new Spot instance of the

requested type, and in the requested availability zone.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Evaluation Lower Bound (S
lb

)

R
e

la
ti

v
e

 E
rr

o
r

(
η

)

mkt

mc

avg

mmc_avg

ma_avg

mmc_4

ma_4

mmc_8

ma_8

Figure 3.1: Percent Relative Error for Various Cost Estimation Methods. Traces Are
From February-June, 2012.

Figures 3.1, 3.2, 3.3 illustrate the relative error, η , of each cost estimation method

for successful jobs (that were not terminated early) using the minimum bid, greater than

3.4. EVALUATION OF ESTIMATIONS 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Evaluation Lower Bound (S
lb

)

R
e

la
ti

v
e

 E
rr

o
r

(η
)

mkt

mc

avg

mmc_avg

ma_avg

mmc_2

ma_2

mmc_4

ma_4

Figure 3.2: Percent Relative Error for Various Cost Estimation Methods. Traces Are
From June-November, 2012.

or equal to the market price, such that the market price for that instance has lower than

the bid for at least Slb of the time over the past two months. Here, η is calculated as:

η =
|C(t,ν)−Ĉ(t,ν)|

C(t,ν)
, (3.6)

and the variable avg represents the average inter-price time of market prices under the

bid (see Listings A.6, A.7). In the first figure, Spot price traces from the period between

February and June, 2012, were used. In the second, Spot price traces from taken from

the period between June and November, 2012. The period reflected in the first image

generally had less frequent market price fluctuations than that used in the second.

When prices fluctuate less frequently, as seen in Figures 3.1, for Slb > 0.1, Market

Price estimation achieved the highest accuracy, with the distance between the next-

closest estimate widening to as much as 0.09 as Slb is increased. For Slb ≤ 0.1, Market-

Average estimates yield the highest accuracy, and both Market-Average and Market-

Monte Carlo perform slightly better than Market Price estimation with a relative in-

crease in accuracy of 5.3% for mma8 compared to mkt, from 0.072 to 0.068. As α is

increased, Market-Average and Market-Monte Carlo both become more accurate due to

the convergence to the Market-Price estimate.

38 CHAPTER 3. COST ESTIMATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Evaluation Lower Bound (S
lb

)

R
e

la
ti

v
e

 E
rr

o
r

(η
)

mkt

mc

avg

mmc_avg

ma_avg

mmc_1

ma_1

mmc_2

ma_2

mmc_4

ma_4

mmc_8

ma_8

Figure 3.3: Percent Relative Error for More Cost Estimation Methods. Traces Are From
June-November, 2012.

On the other hand, when prices fluctuate more often, for values of Slb less than

0.7, Average, Market-Average and Market-Monte Carlo estimates of the cost perform

the best, with Market-Average slightly more accurate, achieving relative errors of only

around 0.015-0.025 each. A Market-Average estimation with α = 4 hours achieves the

highest accuracy for these values of Slb, with lower values of α achieving higher relative

errors. For higher values of Slb (greater than 0.7), the simplest estimate, Market Price,

performs the best, with other estimates quickly becoming more and more inaccurate as

Slb increases. As with older traces, Market-Average estimations outperform Market-

Monte Carlo methods, especially at lower values of α .

Figure 3.3 illustrates the relative error for α = 1, 2, 4, 8, avg, and 0 in in the case

of mc and avg estimations. For both ma and mmc estimations, and for Slb ≤ 0.7, α = 4

hours attains the highest accuracy, with lower and higher values of alpha achieving

lower accuracy. In addition, as α increases to 4 hours, the relative error of both methods

drops in response. For Slb > 0.7, however, the relative error drops as α is increased,

and attained a minimum when α = ∞ and thus the mkt method is employed.

The increasing disparity between cost estimates as Slb increases reflects the fact that

other cost estimate methods rely on the instance’s potential bid. As Slb is increased, the

bid will also monotonically increase, allowing for a wider range of past market prices

3.4. EVALUATION OF ESTIMATIONS 39

to be taken into account when calculating the average prices or the average costs. Since

Spot prices exhibit periods of little fluctuation punctuated by large price spikes, using

data from periods of different market prices in the estimation will be less indicative of

the actual cost. When prices fluctuate quite often, for lower values of Slb, the range of

bids which satisfy the lower bound is constricted (when Slb = 0, the bid will always be

equal to the market price) and thus cost estimation methods utilizing past Spot prices

will have a more accurate estimate. Depending on the frequency of price fluctuation,

the value of Slb at which trace-based estimations become more accurate will either

increase or decrease if prices fluctuate more or less often, respectively. As expected,

cost estimates that do not take into account the current market price tend to perform

more poorly than others in each group.

Chapter 4

RAMP

In this chapter, RAMP’s approach to instance acquisition is presented, including the

evaluation of instance reliability and the location of bids designed to satisfy reliabil-

ity constraints. Following this, the strategy for locating the instance which maximizes

the expected profit for a given request is presented, including a simple means to ap-

proximate the total cost of fulfilling a request on a specific Spot instance. Simulations

designed to evaluate RAMP’s performance are then presented and results are discussed.

4.1 Overview

In this section, the model used for user-submitted requests is presented, and the problem

faced by RAMP is formalized.

4.1.1 Request Models

To request an instance, a user submits a request r = (ir, tr). Here, ir is the minimum

instance type required, chosen from the set, I, given in Table 2.1, and tr is the desired

number of full or partial hours, tr ∈ R+ (specified at second granularity), for which the

user requires access to the instance.

When submitting a request, the user is charged some fraction, p ∈ [0,1], of the On-

Demand price for the instance ir. Rather than a per-hour price, for each request the user

will instead pay:

Rr = tr · p ·ODprice(ir), (4.1)

40

4.1. OVERVIEW 41

where ODprice(i) is the hourly price for the equivalent On-Demand instance of type

i. Thus, Rr represents the revenue acquired by RAMP for request r. Such a pricing

strategy allows the user very fine time-period granularity (on the order of per-second

in this paper) when requesting instances. To help compensate for the volatile nature of

Spot instances, in the event of early-termination of an allocated Spot instance the user

is refunded the initial payment for their request plus a penalty fraction, e ∈ [0,1], of

this payment. Therefore, if the user is allocated a Spot instance which is subsequently

early-terminated, the user is refunded Rr +e ·Rr. Other possible penalties are discussed

in Section 4.3.1 but are not evaluated in this work.

4.1.2 Problem Formulation

RAMP seeks to fulfill requests from users specifying desired availability times for mini-

mum instance types by leasing either Spot or On-Demand instances from Amazon EC2.

The value ir is used to construct Ir, the set of instance types greater than or equal to that

requested. In the context of RAMP, instance type i1 is greater than or equal to instance

type i2 if both the memory and the number of EC2 Compute Units of i1 are greater

than or equal to that of i2. These two criteria were chosen for the sake of simplicity;

other factors such as I/O performance, storage space, and Elastic Block Store (EBS)

optimization may be compared instead of, or in addition to, these.

Therefore, given the minimum instance type required by the user, ir, the set:

Ir = {i ∈ I | i≥ ir} (4.2)

represents the set of instance types RAMP will search when allocating an instance to

the user. For example, if the user submits a request with ir = c1.xlarge, the set of in-

stance types RAMP will search is Ir = {c1.xlarge, m3.2xlarge, m2.4xlarge, cc1.4xlarge,

cc2.8xlarge}. Adding or removing constraints for an instance type to be greater than

or equal to another instance type will, respectively, decrease or increase the size of Ir.

Increasing the size of Ir will provide more options for the resource provisioner to search

among, and therefore offers a higher chance of locating instances that offer lower mar-

ket prices while still meeting reliability constraints.

Let C(r,ν) be the true cost of running an allocated instance ν for either the full tr
hours, or until possible early-termination if the instance is a Spot instance. Here, ν

42 CHAPTER 4. RAMP

can refer to either an already-leased instance or an unleased instance. Each instance

ν contains the instance’s type i, bid (if a Spot instance) b, availability zone z, and, if

already leased, both a pointer to the instance and the time remaining in the hour block

h ∈ (0,1). The availability zone z is chosen from the set of all possible availability

zones, Z. At the time of this writing, there are five availability zones in region us-east-

1, illustrated in Figures 2.3 and 2.4. In general, C(r,ν) will not be known a priori when

using Spot instances and must instead be approximated at the time of evaluation.

The problem: The true profit acquired by RAMP for an instance is dependent upon

outcome, o(r,ν), of using instance ν to to fulfill request r. Thus, given the success

(completion) or failure (termination) of the instance during the request, the profit is

defined as:

π(r,ν) =

{
πs(r,ν) if o(r,ν)=success

π f (r,ν) if o(r,ν)=failure
(4.3)

where

πs(r,ν) = Rr−C(r,ν) (4.4)

and

π f (r,ν) =−C(r,ν)− e ·Rr (4.5)

Therefore, RAMP faces the problem of locating, for each request, r, the instance, ν∗,

such that the profit of using ν∗ to satisfy r is maximal:

ν
∗ = arg max

ν∈V
π(r,ν), (4.6)

where V is the set of instances such that the empirical probability of success is greater

than or equal to some lower bound, Slb.

Thus, to be considered as a possible candidate for allocation, an instance must be

able to achieve success with probability greater than Slb. However, given the imperfect a

priori knowledge associated with using Spot instances, including the true probability of

success and f ailure occurring, comparisons of the profitability of each request-instance

assignment will instead be made through a comparison of the expected profit of each

possible allocation. The lifecycle of a request is given in Figure 4.1.

4.2. RELIABLE INSTANCE ACQUISITION 43

Figure 4.1: The lifecycle of a request.

4.2 Reliable Instance Acquisition

Estimating the reliability of a Spot instance, given the instance type, availability zone,

and the bid at which the Spot instance is requested, can offer critical information about

the susceptibility of the instance to early-termination during a specified time period.

Additionally, such reliability estimates are necessary when determining the bid with

which to request a Spot instance, while satisfying an upper bound on the instance’s

probability of termination. In this section, we present a method for calculating instance

reliability, and a bidding strategy for leasing Spot instances that seeks to locate the

minimum bid at which a Spot instance satisfies a lower bound on the reliability function.

4.2.1 Instance Reliability

To effectively utilize Spot instances, a means to estimate the probability of an instance

being available for the duration of the user’s request is required. To do so, RAMP

estimates the probability of success by empirically determining the reliability func-

tion (tail distribution) of the instance availability time for the corresponding instance,

S(r,ν) = S(r,〈i,z,b〉) for ν = 〈i,z,b〉. Therefore, this reliability function will be de-

termined as S(r,ν) = P(T (ν) ≥ tr), where T (ν) is a random variable representing the

availability time of an instance of type i with bid b, leased in zone z, and P(T (ν)≥ tr)

is the empirical probability of success when using this instance.

Let X be a set of dates sampled uniformly from some window of the Spot price

44 CHAPTER 4. RAMP

Table 4.1: Frequently Used Variables (RAMP)

Variable Description
tr The requested availability time.
ir The requested instance type.
p The fraction of the On-Demand price

charged.
e The fraction of the payment given as

penalty in the event of early-termination.
Slb Lower bound for the reliability function.
Rr The revenue from the request.
Cr The cost incurred by RAMP for the

request.
I The set of instance types (cf. Table 2.1).
Z The set of availability zones.
i Some instance type (i ∈ I).
z Some availability zone (z ∈ Z).
b The bid for a Spot instance.
ν An instance, either Spot or On-Demand,

leased or unleased.

history for that instance. S(r,ν) can then be estimated using the nonparametric Kaplan-

Meier Estimator:

S(r,ν) = P(T (ν)≥ tr) = ∏
tx(ν)≤tr

nx(ν)−1
nx(ν)

. (4.7)

Here, tx(ν) is the true time the instance was available (i.e. the step length) at time

x∈ X , and nx(ν) = |
{

y ∈ X \{x} : ty(ν)≥ tx(ν)
}
| is the number of samples with avail-

ability time greater than tx(ν). If ν is an On-Demand instance, we will assume that the

reliability is equal to 1 for all requests.1

Although random sampling has the potential to miss certain events such as mar-

ket price spikes, both random sampling and the Kaplan-Meier Estimator are used to

estimate the reliability function due to previous research such as (Ben-Yehuda et al.

[2011]) and (Mazzucco and Dumas [2011]). As discussed in Chapter 2.3, these stud-

ies suggest that Spot Market prices do not follow any particular distribution, but are

instead randomly generated between a hidden market-determined upper bound, and a

provider-determined lower bound.

1An implementation of S(r,ν) is given in B.1.

4.2. RELIABLE INSTANCE ACQUISITION 45

4.2.2 Bidding Strategy

Given the reliability, S(r,ν), of using an instance, ν , to satisfy a request, r, RAMP

leases a Spot instance by first locating a bid designed to guarantee that the instance is

available to the user for tr hours with empirical probability greater than or equal to some

specified lower bound, Slb. For a particular instance type and availability zone, i and z,

we determine this bid as:

b(r, i,z) = min {b | S
b≥pmkt(i,z)

(r,〈i,z,b〉)≥ Slb}, (4.8)

where pmkt(i,z) is the current Spot market price of instance type i in zone z. Thus,

RAMP chooses the minimum bid that both satisfies the reliability function lower bound,

and is greater than or equal to the current market price. When Slb = 0, the bidding strat-

egy presented here will simply find the lowest bid greater than or equal to the current

market price. Thus, such a strategy will always choose the current market price for

that instance type and availability zone as the bid. Note that, if we wish to avoid the

situation, discussed in Section 2.1.4, where an instance may or may not start if the bid

is exactly equal to the current market price, the inequality in the above equation may be

made strict so that RAMP requires b > pmkt(i,z).

The empirical probability of successful completion is a monotonically increasing

function of the bid price (decreasing the bid should never increase S(r,〈i,z,b〉)). Hence,

finding b(r, i,z) can be implemented as a hill-climbing search between the current mar-

ket price and the maximum market price seen over the Spot price history window.

The bidding strategy discussed in this section is used both to satisfy lower bounds on

the probability of successful completion, and to reduce the possibility of maintaining

job execution through one of the large price spikes frequently seen in the Spot price

history. Although more complex than a bidding strategy that simply bids the greatest

market price seen so far, the strategy presented here prevents such overbidding and can

thus be critical for maintaining low costs. For example, if the market price for the

chosen instance type and availability zone increased to $1,000.00, the bidding strategy

used here would, in general, provide a bid low enough to ensure that execution would

terminate once the price spiked this high. If, on the other hand, a bidding strategy

choosing the maximum bid within the Spot price history is used, it is possible that

execution would continue through this price spike and thus result in high costs. In

46 CHAPTER 4. RAMP

fact, Amazon has previously mentioned that overbidding for Spot instances is actually

a cause of many Spot market price spikes (Amazon [2012]).

4.3 Profit Maximization

To simplify our approach, we assume that RAMP can meet all user demand when using

Amazon EC2, and thus we will disregard the problem of scarcity of resources. There-

fore, for each request, r, the problem in Equation 4.6 can be revised so that RAMP

needs only to find the instance, ν∗, which maximizes the expected profit of that request,

independent of supply constraints:

ν
∗ = arg max

ν∈Idle∪New
E(π(r,ν)), (4.9)

where

Idle = {ν ∈ idle instances | S(r,ν)≥ Slb∧ i ∈ Ir}, (4.10)

and

New = {〈i,z,b(r, i,z)〉,〈i,z, /0〉 | (i,z) ∈ Ir×Z} . (4.11)

The sets Idle and New include both Spot and On-Demand instances (differentiated

by whether b = /0, as mentioned above), and New represents a set of potential instances

which can be leased and allocated to the request. If the profit-maximizing instance, ν∗,

has no pointer to an existing leased instance, RAMP leases the instance matching ν∗’s

specifications before assigning the instance to the request.

4.3.1 Profit Estimation

Let Ĉs(r,ν) be the estimated cost, calculated at the time of evaluation, of successfully

servicing the request with instance ν , and let Ĉ f (r,ν) be the estimated cost in the case

of failure. Furthermore, in the case of success or failure, assume Ĉs(r,ν) and Ĉ f (r,ν)

differ absolutely from the true cost, C(r,ν), by some, generally small, amount εs,ε f ≥ 0.

Then, given the true profit from the two possible outcomes discussed in Section 4.1, as

well as the empirical probability of successful completion, S(r,ν), the expected profit

4.3. PROFIT MAXIMIZATION 47

of an assignment of instance ν to request r can be calculated as:

E(π(r,ν)) = S(r,ν) ·πs(r,ν)+(1−S(r,ν)) ·π f (r,ν)

= S(r,ν) · (Rr−Ĉs(r,ν)+ εs)

− (1−S(r,ν)) · (Ĉ f (r,ν)+ ε f + e ·Rr)

≈ S(r,ν) · (Rr−Ĉs(r,ν))

− (1−S(r,ν)) · (Ĉ f (r,ν)+ e ·Rr)

(4.12)

The method to find the maximum profit instance is presented in Algorithm 1 (as stated

above, we will assume S(r,ν) = 1 for On-Demand instances). Thus, for approximations

that are close to the actual cost (i.e., for small values of ε), the maximization problem

presented in Equation 4.9 can be represented as:

ν
∗ = arg max

ν∈Idle∪New
E(π(r,ν)). (4.13)

Note that profit in the case of termination can take many forms, depending on

the application. An example not used in this paper may, in the case of failure, let

π(r,ν , f ailure) be a linear function of the time, t, for which the instance was actually

available to the user, e.g.:

π f (r,ν , t) =−C(r,ν)− e · (1− t/tr) ·Rr (4.14)

Alternatively, a priority-based payment strategy may be introduced to allow users to

pay more for higher values of both the reliability lower bound, Slb, of their instances,

and the penalties paid to them in the event of early-termination. In the latter case, such

a penalty may help to further balance out the high costs associated with high reliability

levels, and provide lower costs to users with applications that are able to handle higher

volatility.

4.3.2 Cost Approximation

In the case of success, we estimate the true cost simply as the current market price,

pmkt(ν), multiplied by the ceiling of the request length, tr, minus any already-paid-for

48 CHAPTER 4. RAMP

Algorithm 1: MaxProfitInstance - Finding the instance that maximizes the ex-
pected profit

Data: Request r = (tr, ir)
Result: ν∗, the instance that maximizes the expected profit

1 begin
2 Ir←{i ∈ I | i≥ ir}
3 Idle←{ν ∈ idle instances | S(r,ν)≥ Slb∧ i ∈ Ir}
4 New←{〈i,z,b(r, i,z)〉,〈i,z, /0〉 | (i,z) ∈ Ir×Z}
5 v∗← /0, π∗←−∞

6 for ν ∈ Idle∪New do
7 π ← E(π(r,ν))
8 if π > π∗ then
9 ν∗← ν , π∗← π

10 end
11 end
12 return ν∗

13 end

Algorithm 2: AllocateInstance - Allocating an instance to a request
Data: Request r = (tr, ir)
Result: 〈r,ν∗〉, the request-instance allocation pair

1 begin
2 ν∗← MaxProfitInstance(r)
3 if ν∗ is unleased then
4 if ν∗ has no bid then
5 Lease an On-Demand instance with type i in zone z, for i,z ∈ ν∗

6 else
7 Lease a Spot instance with bid b, type i, and in zone z, for i,z,b ∈ ν∗

8 end
9 Add a pointer to the corresponding EC2 instance to ν∗

10 end
11 return 〈r,ν∗〉
12 end

partial hour, h (as defined in Section 4.1.2):

Ĉs(r,ν) = pmkt(ν) · dtr−he. (4.15)

In the case of failure, we construct X , a set of 10,000 random samples over the past

60 days of the Spot price history, and determine the subset X f ⊆ X such that if r was

4.3. PROFIT MAXIMIZATION 49

fulfilled using instance ν at time x ∈ X f , the instance would have been terminated early

by Amazon. Then we calculate the Monte-Carlo estimate of the average runtime in

the event of failure, minus the remaining partial hour, and multiply this by the current

market price. Since Amazon does not charge for the last partial hour before termination,

we take the maximum of the floor of this value and 0 (no negative costs):

Ĉ f (r,ν) = pmkt(ν) ·
∑x∈X f

max{btx(ν)−hc,0}
|X f |

. (4.16)

Here, tx(ν) is the true time the instance ν was available for (in hours), starting from

time x.2

Figure 4.2 illustrates the percent relative error when using these methods to estimate

the cost of running a Spot instance for the desired amount of time, and for different

values of Slb. Here, δ is calculated as:

δ =
|C(r,ν)−Ĉ(r,ν)|

C(r,ν)
, (4.17)

where

Ĉ(r,ν) =

{
Ĉs(r,ν) if o(r,ν)=success

Ĉ f (r,ν) if o(r,ν)=failure
(4.18)

This evaluation was made using a set of 20,000 requests over a two month period, and

encompasses only those requests with non-zero C(r,ν). For each request, the desired

availability time is uniformly distributed between 1 and 12 hours, and the requested

instance type is uniformly sampled from those in Table 2.1.

As evidenced by the figure, the percent error is very small when using these esti-

mations. In fact, these methods attain a maximum error of only 6.3% of the actual cost

when Slb = 1.0, the reliability level where bids are at their highest (allowing for the most

variation in the market price during the request). In addition, our estimation technique

maintains an error of between 2.2% and 2.5% for Slb ∈ (0,0.75]. If the instance is an

On-Demand instance, pmkt(ν) is replaced by ODprice(i) for i ∈ ν , where ODprice(i)

is the On-Demand hourly price for an instance of type i, as discussed in Section 4.1 and

depicted in Table 2.1. In the case of possible inter-region data transfers, the total cost

can be adjusted using Amazon’s rate of $0.01/GB.

2An implementation of Ĉ f (r,ν) is given in B.2.

50 CHAPTER 4. RAMP

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Reliability Function Lower Bound (S
lb

)

P
e

rc
e

n
t

R
e

la
ti

v
e

 E
rr

o
r

(
δ
 ×

 1
0

0
%

)

Figure 4.2: Percent relative error of the cost using Market Price cost estimation with the
requests described in Section 4.3.2.

A drawback of using only the current market price to estimate the true cost lies in

the fact that such an estimation does not incorporate any knowledge of previous market

prices. Although, due to their highly-fluctuating nature, past Spot prices would have

necessitated the use of, for example, a Monte Carlo estimate of past costs from an

equivalent request, recent Spot price traces tend be characterized by more stable market

prices and thus diminish the requirement for such an estimate.

4.3.3 Request Fulfillment

The complete procedure for finding and allocating the maximum profit instance for a

user’s request is presented in Algorithm 2. The maximum profit instance, ν∗, either an

idle or to-be-leased instance, is found using the method described in Algorithm 1 (line

2). If ν∗ contains no pointer to an existing instance, it is not yet leased. Thus, RAMP

either leases a Spot instance of type i in zone z, if the the maximum profit instance has

bid b 6= /0 (line 7), or RAMP leases a new On-Demand instance of type i in zone z, if ν∗

contains no bid (i.e., b = /0) (lines 4-5). The instance is then assigned to the request and

made available to the user until either the instance is terminated, or the user’s requested

availability time has expired.

4.4. EVALUATION OVERVIEW 51

4.4 Evaluation Overview

In this section we first describe the experimental setup and evaluate the efficacy of

RAMP as follows.

• We measure and analyze the achieved early-terminations rates versus the reliabil-

ity function lower bound.

• We compare total profits when: charging the user different fractions of the On-

Demand price; varying the penalty associated with early-termination; and varying

the reliability function lower bound.

• We evaluate the differences in our approach against a version of RAMP that sim-

ply bids the market price for each instance, and determine that the any variation

from such a strategy can significantly increase profit and successful completion

rates.

In our evaluation we assume demand is constant, regardless of the amount charged

to the user. Preliminary results assuming linear demand curves are given in Appendix

B.1.

4.5 Experimental Setup

Access to the Spot market price history for all instance types and zones is available

through Amazon’s API for the past 90 days, and from websites such as (University of

Western Sydney [2013]) for longer periods of time. Simulations were run using a set

of 20,000 requests that are (1) distributed over the period between September 12 and

November 12, 2012, (2) have arrival times and requested runtimes taken from traces

from the ANL Intrepid supercomputer (Feitelson), and (3) have requested instance types

sampled uniformly from those given in Table 2.1, all running a Linux operating system.

Figure 4.3a illustrates the CDF of the request lengths for those requests with tr < 20

hours. Traces from ANL Intrepid were chosen for the following reasons:

• The dispersal of requests over several months facilitates an observation of Spot

price characteristics over an extended period of time. Such a broad window helps

52 CHAPTER 4. RAMP

2.5 5 7.5 10 12.5 15 17.5 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Request Length in Hours (t
r
)

F
(t

r)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.75

1

1.25

1.5

1.75

2

Reliability Function Lower Bound (S
lb

)

P
e
rc

e
n

t
R

e
la

ti
v

e
 E

rr
o

r
(

δ
 ×

 1
0
0

%
)

(b)

Figure 4.3: (a) CDF of the request lengths, tr, for all r such that tr ≤ 20 hours. (b)
Percent relative error of the cost using Market Price cost estimation.

to eliminate any period-specific patterns that may occur during shorter windows

of Spot price traces.

• The proximity of execution time estimates to the true values. Having close es-

timates allows for a more informative analysis of the strategies presented in this

paper, rather than the accuracy of the runtime estimations. These traces provide

realistic user estimates and also allow us to estimate real-world arrival times.

• The range of request lengths (from several minutes to several days) allows for

a comprehensive evaluation of RAMP’s methods to estimate the empirical prob-

ability of success, as well as the expected profit. Moreover, a large range of tr
provides an informative window into how RAMP handles both long and short

requests. Figure 4.3a illustrates the CDF of the request lengths for those requests

with tr < 20 hours.

.

Spot prices were taken from the period from July 15, 2012 to November 15, 2012,

in the region us-east-1, for all instance types listed in Table 2.1 and their correspond-

ing availability zones. We assume that each request initially requires access to data

residing in the zone us-east-1a, of size equal to 1GB, and which must be transferred, in

negligible time, to the chosen zone at Amazon’s rate of $0.01/GB before the instance

is available. Thus, instances not started within us-east-1a incur an extra $0.01. When

calculating the reliability function for a Spot instance, the set of uniformly sampled

4.6. RESULTS 53

dates has size |X | = 10,000 and spans a window of the past 60 days of Spot price his-

tory. Starting in June, 2012, Spot market prices have fallen to as low as 1/10 of the

equivalent On-Demand price, from their historical levels of between 1/3 and 1/2.

Figure 4.3b illustrates the percent relative error when using the market price to es-

timate costs, further showing that such an estimation can achieve very accurate results.

Indeed, the percent relative error from the true cost attains a maximum of only 1.8%

when Slb = 1, and is around 0.5-0.75% for all Slb ≤ 0.8.

When comparing and evaluating profits with different values of Slb, e, and p, the

metric that will be used is:

η(Slb,e, p) =
Π(Slb,e, p)
−Π0

, (4.19)

where Π(Slb,e, p) is the total profit accrued by RAMP for the given values of Slb, e, and

p (i.e., Π = ∑r πr), and Π0 = Π(0,0,0) is the baseline total profit: the total profit when

all three parameters are zero. Here, Π0 is always negative, and−Π0 therefore represents

the baseline total cost (excluding penalties) of RAMP with Slb = 0, an approach which

simply finds the instance with the highest expected profit generated by simply bidding

the market price for that instance. In our experiments, Π0 =−$6,003.

4.6 Results

Experimental results will be evaluated via the resulting changes in early-termination

rates, τ , and the measure of total profit, η , when altering the fraction of the On-Demand

price the user is charged, p, the reliability level lower bound required for instances,

Slb, and the fraction of the original payment awarded to the user in the event of early-

termination, e.

4.6.1 Early-termination rates

The instance reliability evaluation and bidding strategy, discussed in Section 4.2, can

keep successful completion rates above Slb (i.e., 1− τ ≥ Slb) over the entire simulation

period, provided Slb ≤ 0.971. Figure 4.4 depicts the actual early-termination rate for

various values of the reliability function lower bound, when charging the user 25% of

the equivalent per-second On-Demand price, and refunding the user an additional 25%

54 CHAPTER 4. RAMP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Reliability Function Lower Bound (S
lb

)

E
a

rl
y

 T
e

rm
in

a
ti

o
n

 R
a

te
 (τ

)

Termination Rate

(p = 0.25, e = 0.25)

1 − S
lb

S
lb

 = 0.971

Figure 4.4: Early Termination Rates (τ) vs. the reliability function lower bound (Slb),
when e = p = 0.25.

of their payment in the event of early-termination. Early-termination rates range from

a maximum of approximately 13%, when Slb = 0, to 2.2%, when Slb = 1. Due to the

ability to exploit different instance types and availability zones to locate more reliable

instances, this early termination rate is often far lower than 1− Slb. However, once

Slb is increased above 0.971, early-termination rates are higher than the desired level.

This leveling-off, coupled with the non-zero minimum, of early-termination rates is

due to the frequent occurrence of market price spikes, as discussed earlier, which either

may not be observed during the random sampling, or are higher than those previously

encountered.

4.6.2 Varying the amount charged

Regardless of the value of Slb and e, positive profits can be achieved while charging the

user only a small fraction of the On-Demand price for the equivalent instance. Figure

4.5 illustrates RAMP’s total profit for different values of p, given different values of

the reliability function lower bound, and with e = 0.25. Total profit in the figure attains

a maximum when Slb = 1 and a minimum for Slb = 0.75. Furthermore, letting Slb =

1.0 attains the maximum level of profit for all p > 0, with total profit ranging from

η = −1.0, a net loss equal to the total baseline cost, to η = 1.8. For most values

of Slb, RAMP generates positive profits while the user pays greater than or equal to

approximately 17.5-20% of the equivalent On-Demand price of the requested instance.

4.6. RESULTS 55

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

Payment Fraction of On−Demand (p)

T
o

ta
l

P
ro

fi
t

O
v

e
r

B
a

s
e

li
n

e
 T

o
ta

l
C

o
s

t
(η

)

S
lb

 = 0

S
lb

 = 0.25

S
lb

 = 0.5

S
lb

 = 0.75

S
lb

 = 1.0

Figure 4.5: Measure of total profit for different values of p given specific values of Slb
and with e = 0.25

Although the actual value of p needed to break even depends on the values of e and Slb,

to completely offset the total cost, RAMP requires p to fall between 0.15 and 0.25. In

addition, RAMP can achieve 100% of the total baseline cost as profit when charging

the users just 35% of the corresponding On-Demand price, and can achieve 200% of

the total baseline cost as profit when charging the user approximately 53% of the On-

Demand price. For the equivalent strategy using market-price bids, the same level of

profit requires RAMP to charge the user as much as 60% and 80% of the On-Demand

price, respectively, depending on the value of the penalty fraction.

4.6.3 Varying instance reliability

Increasing Slb can either increase or decrease the profit, depending on the values of p

and e. Figure 4.6 shows the total profit for different values of the lower bound on in-

stance reliability, given various values of the penalty payment fraction and while letting

p = 0.25. As seen in this figure, when charging the user 1/4 of the equivalent On-

Demand price, profits generally increase as Slb increases, with the chosen value of e

heavily influencing the total profit for lower values of Slb. For example, when Slb = 0

(a market-price bidding strategy), letting e = 0 results in a total profit over total base-

line cost of η = 0.1, whereas when e = 1.0, η =−0.52 (a net loss for RAMP equal to

approximately half of the total baseline cost). When Slb = 1, however, profit is max-

imized independent of e. For this value of Slb, the error plays a much less important

56 CHAPTER 4. RAMP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Reliability Function Lower Bound (S
lb

)

T
o

ta
l

P
ro

fi
t

O
v

e
r

B
a

s
e

li
n

e
 T

o
ta

l
C

o
s

t
(η

)

e = 0

e = 0.2

e = 0.4

e = 0.6

e = 0.8

e = 1.0

Figure 4.6: Measure of total profit for different values of Slb, given for various values
of e and with p = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Reliability Function Lower Bound (S
lb

)

T
o

ta
l
P

ro
fi

t
O

v
e
r

B
a
s
e
li
n

e
 T

o
ta

l
C

o
s
t

(η
)

p = 0

p = 0.1

p = 0.2

p = 0.3

p = 0.4

p = 0.5

Figure 4.7: Measure of total profit for different values Slb given specific values of p and
with e = 0.25

role due to the decrease in early-terminations accompanying higher reliability values;

letting e = 0 produces η = 0.43, while letting e = 1.0 produces η = 0.36.For Slb < 1.0,

profit is maximized at η = 0.33 when Slb = 0.45.

For lower values of p and Slb < 1, letting Slb = 0 can yield lower losses and higher

profit. As demonstrated in Figure 4.5, for p > 0.125 and Slb < 1, profit is generally

highest when Slb = 0, with total profit surpassing that of Slb = 1.0 when p = 0. For

p < 0.125, however, higher values of Slb maintain the highest profits, with Slb = 1

surpassing all others. Figure 4.8 also illustrates the fact that Slb = 1 achieves the highest

4.6. RESULTS 57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Penalty Fraction of Total Payment (e)

T
o

ta
l
P

ro
fi

t
O

v
e
r

B
a
s
e
li
n

e
 T

o
ta

l
C

o
s
t

(η
)

p = 0

p = 0.1

p = 0.2

p = 0.3

p = 0.4

p = 0.5

Figure 4.8: Measure of total profit for different values e given specific values of p, and
with Slb = 0.95

profit, as well as the fact that decreasing Slb from 0.05 to 0 sees a sharp drop in profit,

regardless of the value of e, with a change in η (∆η) of up to 0.6.

As demonstrated in Figure 4.7, total profit increases at an approximately constant

rate as p increases, and these profits are relatively stable for each value of p. Total

profits for each given value of p increase or decrease depending on whether p is, re-

spectively, greater than, or less than, approximately 0.2, the point at which total profits

are relatively stable and equal to 0. This opposite effect is due to the fact that higher

values of Slb incur larger costs due to the higher bids on Spot instances and the more

frequent use of On-Demand instances. Thus, if p cannot sufficiently cover these costs,

increasing Slb will serve only to decrease the profit accrued. As discussed above, when

Slb = 1, total profit always increases.

4.6.4 Varying the penalty

Figure 4.8 illustrates the total profit for different values of the penalty payment frac-

tion, e, given various values of p, and with Slb = 0.95. For higher values of p, the

penalty payment fraction significantly influences the profit, with an increase in e from

0 to 1 resulting in a change of ∆η ≈ 0.25 when p = 0.5. For lower values of p this

drop becomes far less pronounced, and is almost nonexistent for p ≤ 0. Varying the

penalty may also have a pronounced effect depending on the value of Slb. Figure 4.6

demonstrates that, for moderate-to-low values of Slb, due to the larger number of early

58 CHAPTER 4. RAMP

terminations, increasing e can significantly decrease the total profit. For example, when

Slb = 0, increasing e from 0 to 1 will drop η from a gain of approximately 11% of the

baseline total cost to a loss of approximately 52% of the baseline total cost. Further-

more, Figure 4.6 also demonstrates that, as e increases, local maxima for the profit are

shifted further to the right, and merge with the global maximum at Slb = 1. Moreover,

for higher values of e, profits rise more rapidly when Slb is increased.

4.7 Discussion

The evaluation performed in the preceding section yields four main results regarding

the profitability and volatility of RAMP, when using various combinations of Slb, p,

and e, as discussed below.

The instance-reliability evaluation and bidding strategy discussed in Section 4.2 can

keep successful completion rates above Slb over the entire simulation period, provided

Slb ≤ 0.971. The approach presented in this paper can significantly eliminate much of

the volatility inherent in Spot instances . Using the reliability evaluation and bidding

strategy presented in this paper, RAMP is able to lower the early-termination rate from

an unsustainable level of 13% when using a market-price bidding strategy (i.e., Slb = 0),

to a much more reasonable and manageable level. In addition, RAMP can keep the early

termination rate below that requested (i.e., τ ≤ 1−Slb) for all but very high values of Slb.

However, regardless of the value of Slb, there will still be a minimum early-termination

rate and this minimum may need to be considered when offering SLA guarantees of the

termination rate. Although it is possible to make the early-termination rate approach

0 through the use of very high bids, as discussed in Sections 2.1.4 and 4.2.2, such an

attempt will necessarily be coupled with far higher costs.

To help avoid such blind-bidding strategies, and to prevent overbidding, other meth-

ods to lower these termination rates can include a higher number of samples and/or a

larger window of the price history in which to sample. Additionally, a relaxation of the

constraints necessary for an instance to be greater than or equal to that requested will

help lower early-termination rates, and possibly further decrease costs, by increasing

the size of the search space during instance acquisition and allocation.

Regardless of the values of Slb and e, positive profits can be achieved while charg-

ing the user only a small fraction of the On-Demand price for the equivalent requested

4.7. DISCUSSION 59

instance. For all reliability levels and penalty amounts, requiring that the user pays

around 1/5 of the price of the equivalent On-Demand instance they have requested re-

sults in positive profit, with many values of Slb and e generating positive profit for values

of p as low as 0.15. In the context of a private system operator, these results imply that

total costs can be completely offset when paying just 20% of the equivalent per-second

On-Demand cost per instance, for each request. Moreover, when Slb = 1, this is also

coupled with an early-termination rate of only 2.2% and, when e > 0.15, letting Slb = 1

yields a total profit of 100% of the baseline total cost when charging users just 35%

of the equivalent On-Demand cost, assuming constant demand. In addition, the total

profit generated by RAMP will rise linearly as p increases, and 200% of the baseline

total cost can be generated as profit when charging the user just 53% of the equivalent

On-Demand price.

Increasing the penalty tends to increase the required reliability level at which to-

tal profit is maximized. Although moderate and high values of the penalty fraction

generally obtain near-maximum profit when Slb ≈ 1, decreasing the penalty fraction to

values less than 0.3 tends to create local maxima closer to Slb = 0. In fact, for values

of e close to 0, it may actually be, in some cases, more profitable for RAMP to allow

some instances to be terminated, and pay the penalty, rather than incur the high market

prices that may result otherwise. This trade-off between paying penalties and incurring

high market prices is more pronounced as e, and thus the amount paid in penalty in the

event of early-termination, decreases. RAMP’s response to this trade-off is reflected in

a requirement of lower values of Slb in order for RAMP to achieve the reasonably high

levels of profit. Such a result implies that a per-request reliability level may be a better

choice than a global level.

There is, respectively, a significant decrease in failure rates and a significant in-

crease in profit when Slb is increased to any amount above 0. Such significant changes

occur because, when Slb = 0, RAMP simply finds the instance type and availability zone

which will generate the maximum profit when bidding the market price. Although the

ability to search among availability zones and instances can still provide an instance

with high reliability, any increase in the market price will result in the termination of

the instance and the subsequent refund of the user’s money plus a penalty. However,

when Slb = ε , for small ε > 0, the bidding strategy finds the lowest bid with positive

probability of completion. In many cases, this lowest bid will still correspond to a rea-

sonable high reliability value due to the ability to search among different instance types

60 CHAPTER 4. RAMP

and availability zones. Thus, in all cases, bidding the market price for a Spot instance

is always inferior to placing a bid with the maximum of either the market price or any

greater bid with nonzero probability of completion. In fact, for higher penalties, finding

the instance with the highest expected profit from bids that resulted in 100% reliability

in the past will yield the highest profits.

Profit is generally maximized when Slb = 1. Choosing the maximum reliability for

instances will almost always generate the highest level of profit for RAMP, independent

of the payment or error. The stability of Spot market prices helps to reduce the risk

associated with choosing reasonably high bids, which in the past may have made the

user susceptible to very high market prices (see Section 4.2.2).

Chapter 5

RAMC-DC

This chapter presents an overview of RAMC-DC, a Reliability and Availability Aware

Cost-Minimizing Resource Provisioner for deadline constrained jobs. In this chapter,

RAMC-DC’s approach to modeling job execution on Spot and On-Demand instances

will be discussed. Following this, a two-tier instance evaluation strategy will be pre-

sented, followed by a bidding strategy for leasing new Spot or On-Demand instances,

as well as an outline of the algorithm that searches for the optimal instance on which to

run a job. Afterwards, the approach to job-scheduling on instances will be outlined. Re-

sults from simulations used to evaluate RAMC-DC will then be outlined and discussed.

5.1 Overview

In this section, the model used for user-submitted jobs is presented, and the problem

faced by RAMC-DC is formalized.

5.1.1 Job Models

Users submit a job, j, which is placed in an FIFO queue, J. Each job is independent

and includes a desired instance type, i j, an estimated execution time, t̂ (given in full or

partial hours), on instance type i j, and a deadline, D. In the event of termination, j also

contains a reference to the last zone j was executed in, z j, and i j is updated with j’s last

instance type. The zone z j is initially equal to /0, and is updated upon j’s execution on

some instance.

61

62 CHAPTER 5. RAMC-DC

5.1.2 Problem Formulation

RAMC-DC searches among spot and on-demand purchasing options for the most cost

efficient instance on which to run a deadline-constrained job. Specifically, the frame-

work searches across different instance types and geographical zones and uses job exe-

cution time, estimated cost, and instance reliability as selection criteria when allocating

instances to jobs. In addition, RAMC-DC aims to address issues associated with spot

instances including: determining when to use spot instances; which spot instances to

use; when to use other, less volatile purchasing options; and finding a bid that represents

a desired trade-off between the probability of early termination and the cost of running

the job, while still being able to reuse the instance for other jobs.

Users submit jobs, as described in the preceding subsection, which are placed in a

queue, J. The algorithm incorporates tunable parameters Slb ∈ [0,1] and tsplit ∈ R+,

with the first parameter specifying a minimum confidence level, similar to that used in

RAMP, for instance reliability and availability evaluation, and the second representing

a job execution time splitting parameter, in full or partial hours, used to separate long

jobs from short jobs and thereby determining the bidding strategy used for that job. Slb

is generally used to specify how much resistance to early termination is required for

spot instances; higher values of Slb generally increase the bid and thus incur higher

costs but lower early termination rates.

To evaluate the effects of moldability (the speedup or slowdown encountered on dif-

ferent instance types) in our search, we use Downey’s speedup model as an exemplar for

estimating job execution time on different instances. Downey’s speedup model requires

only the knowledge of the processing power of different instance types to calculate the

speedup, and thus we will evaluate speedup using the number of EC2 Compute Units

in an instance, ni. When leasing and evaluating Spot instances, RAMC-DC employs a

two-tier instance evaluation and bidding strategy. This strategy uses the given execution

time, t̂, to classify the job as long or short. If the job is short, to allow for reusability of

the instance after job completion, RAMC-DC finds a set of possible instances, and their

corresponding bids if Spot instances, that have observed a minimum level of availability

of that instance in the past. On the other hand, for long jobs, RAMC-DC locates the set

of instances and corresponding bids that guarantee a minimum probability of successful

completion of the job on that instance. The choice of which particular instance within

each set is used to execute the job is made using by a calculation of whether the job can

5.2. MODELING JOB EXECUTION 63

be executed before the deadline, as well as the estimated cost of the job on that instance.

As with RAMP, this cost will be approximated at the time of evaluation. In addition,

jobs run on spot instances will incorporate one of three basic checkpointing strategies:

none, hourly, and rising-market-price.

The problem: For each job in the queue, RAMC-DC wishes to locate an instance-

job assignment that minimizes the cost, C(j,ν), of running the job on that instance

while meeting either reliability or availability constraints, depending on whether a job

is classified as short or long (i.e., if t̂ ≤ tsplit). Thus, given a job j, RAMC-DC seeks to

find the instance ν∗ such that:

ν
∗ = arg min

ν∈V
C(j,ν), (5.1)

where the domain V is a search space comprised of a set of leased and unleased instance

representations such that (if possible):

∀ν ∈V, j can be executed on ν before D and

{
Availability(ν)≥ Slb if t̂ ≤ tsplit

Reliability(j,ν)≥ Slb if t̂ > tsplit .

Here, success requires that the job successfully execute on the allocated instance.

In the event of early-termination, RAMC-DC will insert the job at the front of the

queue and try again. If the job was checkpointed before termination, RAMC-DC will

readjust the estimated execution time to incorporate the remaining time and the time to

migrate the saved instance state into the search for a new instance. The lifecycle of a

job is presented in Figure 5.1.

5.2 Modeling Job Execution

In order to efficiently locate instances on which to run the job, we first need to effec-

tively model the execution of a job on some instance. This includes estimating the job’s

execution time and total cost given the instance type, availability zone, and whether the

instance is a Spot instance or an on-demand instance.

64 CHAPTER 5. RAMC-DC

Figure 5.1: Lifecycle of a Job.

5.2.1 Estimating Job Execution Time

To compare cost and performance dynamics across the instance offerings in Amazon

EC2, we will utilize a means to model job execution time that takes into account fac-

tors such as the number of EC2 compute units provided by an instance, and the extent

to which the job can make use of these compute units. Using such a means allows us

to compare price and performance characteristics among different instances. Thus, to

determine the execution time of a job on some instance, we assume each job is inde-

pendent and known to be one of the following.

• Moldable: For a job to be moldable implies that some speedup or slowdown is

observed when running the job on larger or smaller instances (with respect to

computational power), respectively. Speedup will be determined similarly to the

approach presented in Voorsluys and Buyya [2012], using Downey’s speedup

model (Downey [1997]).1 Downey’s model requires two additional parameters,

A, and σ , which measure the average parallelism and the coefficient of variance

in parallelism, respectively, and measures the increase in execution time for a job

running on n processors compared to a job running on 1 processor. Given A and

1Additional results using Amdahl’s law are presented in Appendix C.1.

5.2. MODELING JOB EXECUTION 65

σ , the speedup of a job using n processors is:

SU(n) =

An
A+σ(n−1)/2 (σ≤1)∧(1≤n≤A)

An
σ(A−1/2)+n(1−σ/2) (σ≤1)∧(A≤n≤2A−1)

A (σ ≤ 1)∧ (n≥2A−1)
nA(σ+1)

σ(n+A−1)+A (σ≥1)∧(1≤n≤A+Aσ−σ)

A n≥A+Aσ−σ

(5.2)

Therefore, we calculate the estimated execution time on instance i as:

t̂i = t̂ ·SU(ni)/SU(n), (5.3)

where ni is the number of EC2 compute units in i. Values of A and σ are calcu-

lated using the model of Cirne and Berman (Cirne and Berman [2001]), and are

assumed to be known at submission.2 Rudimentary evaluations using Amdahl’s

law were also performed, and may be seen in the Appendix.

• Rigid: For a job to be rigid implies that no speedup is encountered on larger

instances, and that the job will not execute on smaller instances. Thus, for an

instance with ni EC2 compute units we have:

t̂i =

{
∞ ni < n

t̂ otherwise
(5.4)

Thus, rigidity requires that only instance types with ni ≥ n be used to execute

the job, similar to the approach presented for locating the set of greater instance

types used by RAMP.

5.2.2 Incorporating Resource Volatility

As resource reliability/volatility particularly with Spot instances needs to be explicitly

dealt with we extend the estimation model above incorporating checkpointing times.

For some availability zone, z, the execution time in z is modified to include the estimated

2The model of Cirne and Berman was constructed using questionnaires distributed to supercomputer
users. A is modeled using a joint uniform-log distribution, and σ is modeled using a normal distribution.

66 CHAPTER 5. RAMC-DC

Table 5.1: Frequently Used Variables (RAMC-DC)

Variable Description
tsplit The parameter dividing long jobs into short jobs.
Slb The parameter specifying the confidence level.

j A job submitted by a user.
n The number of requested EC2 Compute Units.
t̂ The estimated execution time of a job.
D The job’s deadline.
i The instance type.
z The availability zone for an instance.
b The bid for an instance.

tsusp
i The suspend time of an instance.

tres
z j→z The resume time of an instance to zone z.
t̂i The speedup adjusted execution time.

Execution time adjusted for checkpointing
t̂i,z and resume time.

checkpointing times of the job, if run on a Spot instance, and the time to resume the job’s

previous instance from a suspended state if the job’s previous instance was checkpointed

during execution:

t̂i,z = t̂i + t̂chkpt
i + tres

z j→z. (5.5)

Here, the total checkpointing time, t̂chkpt
i , as well as the resume time, tres

z j→z, of an in-

stance in zone z from some checkpoint in j’s last zone z j, are determined as in Voorsluys

and Buyya [2012] using research by Sotomayor et al. [2008], where the suspend and

resume rates of a virtual machine state in the same availability zone are s = 63.67MB/s

and r = 81.27MB/s, and the resume rate from a different availability zone is set to r/2.

Thus, the time per checkpoint is determined as the time to save the instance’s memory

to a global file system (e.g., Amazon S3), and is given as tsusp
i = mi/s where mi is the

memory size of instance type i. Similarly, the time to resume a checkpointed instance

state is calculated as:

tres
z j→z =

{
mi/r if z == z j

mi/(r/2) otherwise
(5.6)

where m is the memory size of the job’s last instance. When resuming instance states

on On-Demand instances, we let tres
OD = tres

z j→z j
= mi/r, since we assume z will always

be the same availability zone in which the job was last executed (i.e., z j) when a job is

re-executed as an On-Demand instance as On-Demand instances are available in every

5.2. MODELING JOB EXECUTION 67

zone Spot instances are, and pricing characteristics for On-Demand instances are static

across zones.

The following basic checkpointing methods, and their associated total checkpoint-

ing time, are compared when running jobs on a Spot instance:

1. None: No checkpoints are taken. Therefore, the estimated checkpointing time is

t̂chkpt
i = 0 and, upon forced termination, all completed computation is lost, forcing

the job to be restarted from scratch.

2. Hourly: A checkpoint is taken at the end of each hour block. Estimated check-

pointing time is therefore calculated as t̂chkpt
i = b̂tic · tsusp

i and, upon forced termi-

nation, execution resumes from the end of the last hour before termination. As

the execution time is given in hours, b̂tic specifies the number of full hours the

job is estimated to require on instance type i.

3. Rising Market Price: A checkpoint is taken each time the market price for that

instance rises. Thus, the estimated number of checkpoints is taken as the average

number of price increases for a t̂i period over the past 60 days and the estimated

checkpointing time is calculated as t̂chkpt
i = avg incr · tsusp

i .

When leasing an instance, there generally is an acquisition time of order several

minutes before the instance is available. Recent research by Mao and Humphrey [2012]

suggests that acquisition times for EC2 instances can vary greatly by provider, purchas-

ing option, region, availability zone, instance type, and operating system. As instances

generally will be leased infrequently, jobs lengths are usually many times the acquisi-

tion time, and to focus on the price, reliability, and performance dynamics of Spot and

on-demand instances, acquisition times will not be examined in this paper.

5.2.3 Estimating the Cost of Job Execution

Given the fluctuating prices of Spot instances, an accurate method to estimate the to-

tal cost of running a job on each such instance must be found. For each instance

type and availability zone combination, (i,z), such that i ∈ i and z ∈ Zi, the algo-

rithm has access to Amazon’s Spot price history for some past span of time: Hi,z =

{(p1,d1), . . . ,(pk = pmkt ,dk)}, where pi is the price at time di, and pk is the current

market price. To determine the best way to estimate this total cost, we may potentially

68 CHAPTER 5. RAMC-DC

used any of the cost-estimation methods presented in Chapter 3, but with the calcula-

tion of the cost of the speedup adjusted runtime plus the checkpointing and VM-state

resume overheads (if applicable). For simplicity, we will assume Ĉ(j,ν), the estimated

cost of execution j on instance ν is calculated as Ĉ(̂ti,z,〈i,z,b〉); e.g.,

Ĉmkt(j,ν) = Ĉmkt (̂ti,z,〈i,z,b〉) = pmkt · d̂ti,ze, (5.7)

and

Ĉma α(j,ν) = Ĉma α (̂ti,z,〈i,z,b〉) = Ĉmkt(dαe,〈i,z,b〉)+Ĉavg(̂ti,z−dαe,〈i,z,b〉). (5.8)

Similarly, estimated costs for On-Demand instances will be calculated as:

ĈOD(j,ν) = ĈOD(̂ti,z, i) = d̂ti,ze ·ODPricei, (5.9)

where ODPricei is the On-Demand price for instance i.

In addition, as discussed in Chapter 3, If ν has been leased, Ĉ(j,ν) is calculated

as the total cost accounting for the fact that the remaining hour block has already been

paid for. Thus, Ĉ(j,ν) approximates the cost using the estimated execution time t̂i,z−
RemHour(ν), where RemHour(ν) is the predicted time that will remain in ν’s hour

block when j is expected to start.

5.3 Dynamic Resource Provisioning

The overall resource provisioning process RAMC-DC employs is performed by (1)

evaluating instance suitability based on j’s execution time and tsplit , (2) finding the

most cost-effective instance among already leased and unleased instances that satisfy

the evaluation lower bound, Slb, as well as the deadline, D, (3) leasing a new Spot or On-

Demand instance if required (i.e., the optimal instance is unleased), and (4) assigning j

to the resulting instance.

5.3.1 Two-Tier Instance Evaluation

In addition to estimating the execution time and cost of running a job on an instance,

when leasing an instance we must also determine the specific instance type to acquire,

5.3. DYNAMIC RESOURCE PROVISIONING 69

the availability zone in which to run it, and, if the instance is a Spot instance, the bid

at which the instance will be requested. The determination of these values is facilitated

via a two-tier instance evaluation strategy that involves the calculation of the reliability

or availability of an instance ν , depending on whether job is classified as short or long.

Within this study, this classification is done through a comparison of the estimated

execution time, t̂, and the splitting parameter, tsplit . If t̂ ≤ tsplit , the job is classified

as short. Otherwise, the job is classified as long. Therefore, the instance evaluation

function is given as:

S(j,ν , tsplit) =

{
Availability(ν) if t̂ ≤ tsplit

Reliability(j,ν) if t̂ > tsplit .
(5.10)

The two functions, Reliability and Availability, represent the empirical job-specific

reliability and overall availability of an instance, and are calculated for a job j and

instance ν as follows.3

1) For t̂ ∈ j, if t̂ > tsplit then S(j,ν , tsplit) is calculated as the empirical probability of

success if ν was used to execute j using a similar method to that proposed in Section

4.2.1. That is, Reliability(j,ν) = P(Ti,z,b ≥ t̂i,z) where Ti,z,b is a random variable

representing the true length of time for which the Spot instance is available to the

user when bidding b on instance type i in availability zone z, and t̂i,z is the estimated

execution time on instance type i in zone z. As in Section 4.2.1, this probability can

estimated using the nonparametric Kaplan-Meier Estimator:

Reliability(j,ν) = ∏
ti,z,b(x)≤ t̂i,z

ni,z,b(x)−1
ni,z,b(x)

, (5.11)

where X is a set of dates sampled uniformly over some window of the Spot price

history, ti,z,b(x) is the true step length for an instance leased at time x ∈ X with type i

in zone z, and with bid b. Here, ni,z,b(x) = |
{

y ∈ X \{x} | ti,z,b(y)≥ ti,z,b(x)
}
| is the

number of dates y ∈ X (y 6= x) in which the instance with the previously-mentioned

parameters and started at y was available for longer than ti,z,b(x), the true available

time (time before termination) of an instance started at x. That is, the number of

samples in which an instance 〈i,z,b〉 had its bid above the market price for longer

3An implementation of Availability(ν) for unleased ν is given in Listing C.2, and the two-tier strategy
is given in Listing C.1. Reliability(j,ν) uses the same approach as Listing B.1.

70 CHAPTER 5. RAMC-DC

than ti,z,b(x).

2) If t̂ ≤ tsplit , S(j,ν , tsplit) is calculated as the portion of time within the Spot price

window that an instance with ν’s specifications would have been above the market

price. Hence, S(j,ν , tsplit) will be calculated as:

Availability(ν) =
∑

pm≤b, m<k
(dm+1−dm)

dk−d1
. (5.12)

As described in Chapter 3, (pm,dm) ∈ Hi,z for m = 1, . . . ,k, and pk = pmkt is the

current market price. Hi,z is a window of the Spot price history over some period of

time.

5.3.2 Bidding

The optimal bid for a Spot instance is calculated as the minimum bid that satisfies a

lower bound on the instance evaluation function described above. Thus, if we wish to

execute a job j on a Spot instance of type i in zone z, we may calculate this required bid

in a similar fashion as that in the bidding strategy for RAMP as:

b(r, i,z) = min {b | S
b≥pmkt(i,z)

(r,〈i,z,b〉)≥ Slb}, (5.13)

for pmkt as defined above. Note that the only differences between the bidding strategy

here and the one used in RAMP lies in the definition of S(j,〈i,z,b〉), and the inclusion

of the tsplit parameter.

If the job has estimated execution time greater than the splitting parameter tsplit ,

the bidding strategy located the minimum bid such that the empirical probability of

completion of j on an instance of type i in zone z is greater than or equal to the lower

bound, Slb. Such a strategy helps to provide job-specific bids that can limit the risk

of early-termination for long jobs. On the other hand, if the execution time is less

than tsplit , the bidding strategy instead locates the minimum bid such that the instance

has been available (i.e., the market price has been under the bid) for at least Slb of

the time over the Spot price window. This approach helps guarantee that instances are

interchangeable among short jobs (no instance has a bid specifically tied to some job),

thereby filling partially empty hour blocks.

5.3. DYNAMIC RESOURCE PROVISIONING 71

Algorithm 3: Provision - Identifying the minimum cost job-instance assignment
and provisioning resources.

Data: J,Slb, tsplit
1 begin
2 SPOT ← /0, OD← /0
3 while true do
4 j←Pop(J) // waits for J to be non-empty
5 V ← /0, ν∗← /0, νnew← /0, breach← f alse
6 I j←

{
i ∈ I : t̂i + tres

OD ≤ D
}

7 if I j == /0 then
8 I j←{i ∈ I | ni ≥ n j}, breach← true // deadline breach
9 V ←{ν ∈ SPOT ∪OD | i ∈ I j ∧ETUI(ν)== 0 ∧ S(j,ν , tsplit)≥ Slb}

10 else
11 V ←{ν ∈ SPOT ∪OD | i ∈ I j ∧ETUI(ν)+ t̂i,z ≤ D∧

S(j,ν , tsplit)≥ Slb}
12 end
13 νnew←MinNew(j,Slb, tsplit , I j,breach) // Algorithm 2
14 ν∗← arg min

ν∈V∪{νnew}
Ĉ(j,ν)

15 if ν∗ == νnew then
16 Lease(ν∗) // lease ν∗ from Amazon EC2
17 if ν∗ is a Spot instance then
18 Add(ν∗,SPOT)
19 else
20 Add(ν∗,OD)

21 end
22 end
23 Assign(j,ν∗) // push j to ν∗’s FIFO queue
24 end
25 end

Due to the monotonically increasing nature of the relationship between the bid,

b, and S(j,ν , tsplit), locating the minimum bid can be implemented as a hill-climbing

search within the lowest and highest prices observed in the Spot price history.

5.3.3 Resource Provisioning

The process of resource provisioning and job assignment is described in Algorithm 3.

Here, ETUI(ν) represents the estimated time until ν is idle and equals the sum of the

remaining estimated runtimes of each job assigned to ν .

72 CHAPTER 5. RAMC-DC

From the set of all instance types, I, described above, we determine the set of fea-

sible types, I j ⊂ I, that would satisfy the deadline with the corresponding On-Demand

instances (Algorithm 3, line 6). If no feasible types exist, I j is constructed as the set

of instance types with ni greater than or equal to that of the instance type the job was

previously executed on. After I j is constructed, the set of all feasible instances, V , is

constructed as follows.

i) If there are no feasible types (as defined above), then for each ν ∈ V , ν is idle

(i.e., has no jobs in its queue) and has greater than or equal to the number of EC2

compute units of the last instance j was executed on (lines 8-9). Narrowing the

leased instance search space when jobs have surpassed their deadline to only those

instances that are idle allows the framework to minimize the amount of time by

which the deadline has been surpassed.

ii) Otherwise, for each ν ∈ V , the sum of the estimated time until ν is idle and

the execution time of j on ν must be less than or equal to D (line 11). Here,

EstTimeUntilIdle(ν) equals the sum of the remaining estimated runtimes of each

job assigned to ν .

In both cases, each ν must also satisfy the instance evaluation inequality, S(j,ν , tsplit)≥
Slb.

The instance vnew in line 13, determined using Algorithm 4, represents the lowest

cost instance that may potentially be leased if no lower cost already-leased instances

are found.The optimal instance, ν∗, is determined as the instance that minimizes the

estimated cost of execution (line 14), subject to having either reliability or availability

greater than Slb. If ν∗ is not yet leased (i.e., ν∗== νnew as discussed above), an instance

matching ν∗’s description is leased as follows.

i) If b 6= /0, a Spot instance of type i, in zone z, with bid b is leased (lines 17-18).

ii) Otherwise an On-Demand instance in zone z j is leased, where z j is either us-east-

1a if j has not been previously attempted, or j’s last availability zone otherwise.

After ν∗ is leased, it is added to the corresponding set of leased instances, SPOT or OD,

and a pointer to this instance is added to ν∗. The submitted job, j, is assigned to ν∗’s

FIFO queue to await execution. In this study, SPOT and OD are arrays of instance sets,

with indices corresponding to an ordered enumeration of the

5.3. DYNAMIC RESOURCE PROVISIONING 73

Note that instance ν’s queue need not be FIFO; instead, for example, ν could keep

a priority queue wherein jobs may be sorted by their relative proximity to their deadline

(i.e., t̂i,z/D), or their relative waiting time (i.e., the time since arrival). Such a queue

will necessitate a change in the formulation of EstTimeUntilIdle(ν) to account for j’s

potential position in the priority queue, and all jobs after j’s insertion position must

be reevaluated for other, potentially better, instance alternatives due to the added delay

from j’s execution.

5.3.4 Identification of New Resources

The identification of vnew from line 13 of Algorithm 3 is outlined in Algorithm 4. The

first for loop (line 3) iterates through the set of feasible instance types given by I j,

and the nested for loop (line 4) iterates through the corresponding availability zones in

which a Spot instance of type i is available. For each (i,z) combination, if the estimated

execution time on type i in zone z (̂ti,z) satisfies the deadline, or if the job will surpass the

deadline regardless, the estimated cost is compared to the current minimum. Although

Amazon has since made such transfers free, if the job must be resumed from another

availability zone, a data transfer cost is added at the rate of $0.01/GB (Amazon [2013d])

and is calculated by Cresume(j,z). Due to the static pricing characteristics of On-Demand

instances among availability zones, potential On-Demand instances are evaluated for

each instance type only (lines 14-18).

Due to the static pricing characteristics of On-Demand instances among availabil-

ity zones, potential On-Demand instances are evaluated for each instance type only,

with estimated costs for On-Demand instances calculated via ĈOD(j,νOD) as d t̂i,ze
times the On-Demand price for type i (lines 16-22). As mentioned above, we assume

S(j,νOD, tsplit) = 1 for an On-Demand instance νOD. Therefore, On-Demand instances

will typically be used when other feasible Spot instance types are experiencing market

price spikes, or bids guaranteeing high availability or reliability are estimated to have

high associated costs.

74 CHAPTER 5. RAMC-DC

Algorithm 4: MinNew - Identifying the minimum cost new potential instance
satisfying S(j,ν , tsplit)≥ Slb.

Data: j,Slb, tsplit , I j,breach
Result: νnew (an unleased instance)

1 begin
2 νnew← /0, c∗← ∞, s∗← 0
3 for i ∈ I j do
4 for z ∈ Zi do
5 if t̂i,z ≤ D∨breach then
6 νSPOT ← 〈i,z,b(j, i,z, tsplit)〉
7 s← S(j,νSPOT , tsplit)

8 c← Ĉ(j,νSPOT)+Cresume(j,z)
9 if (c < c∗) ∨ (c == c∗∧ s > s∗) then

10 νnew← νSPOT , s∗← s, c∗← c
11 end
12 end
13 end
14 νOD← 〈i,z j, /0〉 // potential new On-Demand
15 c← Ĉ(j,νOD) // see Section 5.3.3
16 if c≤ c∗ then
17 νnew← νOD, s∗← 1, c∗← c
18 end
19 end
20 end

5.3.5 Job Scheduling and Resource Deprovisioning

If j has been assigned to an instance but has not been started before D− t̂i,z and the

assigned instance is not idle, j is pushed to the front of J. Otherwise, prior to execution,

the algorithm again searches for any lower cost instances on which to run the job and

reassigns the job if a cheaper alternative is found. If no cheaper alternatives are found,

i j and z j are updated and j is executed. In addition to the loss of Spot instances from

early-termination, On-Demand and Spot instances are automatically released at the end

of the current hour block if their assignment queues are empty.

In the event of forced termination of a Spot instance by Amazon, all jobs assigned

to the instance are placed back into the job queue, J, in order of their initial submission

time, with recalculated estimated runtime for the currently executing job, depending on

when the job was last checkpointed, and with recalculated deadlines for all jobs on that

instance. Although the queues evaluated in RAMC-DC are FIFO, it is possible to use

5.4. EVALUATION OVERVIEW 75

priority queues based on the length of a job, or on the portion of time remaining before

the deadline is breached (i.e., jobs may be ordered by the value of D/ t̂i,z on an instance

or D/ t̂ in J). Such ordered queues may help to place an emphasis on assigning jobs

that are close to their deadline over those that are not, and may consequently decrease

the number of deadline breaches.

5.4 Evaluation Overview

In this section we first describe the experimental setup and evaluate the efficacy of

RAMC-DC as follows.

• We compare and analyze the total costs (in comparison to the cost using only

On-Demand instances) and deadline breach rates using different combinations of

tsplit and Slb, and with different checkpointing strategies and job types (moldable

and rigid).

• We measure the achieved early-terminations for different combinations of tsplit

and Slb with no checkpointing strategy.

• We evaluate the average fraction of the deadline exceeded in each case.

• We evaluate the differences in our approach against a version of RAMC-DC that

simply bids the market price for each instance, and determine that the any varia-

tion from such a strategy can significantly decrease total cost, early-termination

rates, and deadline breaches.

5.5 Experimental Setup

Experiments to determine the effectiveness of our approach are divided into those re-

lating to cost estimation, resource allocation and scheduling of moldable jobs, and re-

source allocation and scheduling of rigid jobs. We implement and evaluate our ap-

proach using Amazon’s publicly available price history from the region us-east-1 and

search among all instance types, I, given in Table 2.1, with each running a Linux op-

erating system. Each instance type i ∈ I has an associated set of availability zones,

Zi ⊂ {us-east-1a, ...,us-east-1e}, in which a spot instance of that type is offered. Two

76 CHAPTER 5. RAMC-DC

sets of 20,000 jobs are constructed using arrival times, estimated execution times, and

true execution times, taken from traces from the ANL Intrepid supercomputer, and with

initial instances sampled uniformly from those in Table 2.1, as in the evaluation of

RAMP (Chapter 5.4). Each set differs only in the assumption of rigidity or moldability.

The values of A and σ used in our exemplar moldability analysis are taken from the

model of Cirne and Berman, as discussed in Chapter 5.2. To demonstrate the efficacy

of our approach over different pricing epochs, preliminary results from an earlier period

of Spot prices are also given in Appendix C.2.

Experiments were run using both sets of jobs with various combinations of tsplit and

Slb, and with each of the three checkpointing strategies. The total costs, deadline breach

rates, and early termination rates were analyzed for each input parameter combination.

5.6 Results

The results from the experiments described above will be presented in the context of (1)

Total Costs, (2) Deadline Breach Rates, (3) Early-Termination Rates, and (4) Average

Deadline Exceeded.

5.6.1 Total Costs

Total costs comparing all checkpointing strategies, with tsplit ∈ {0,∞} for both sets of

jobs are shown in Figure 5.4a and 5.4b. Total costs for various checkpointing strategies

with moldable jobs are shown in Figure 5.2 and for rigid jobs in Figure 5.3. The total

costs from using only On-Demand instances in our approach are equal to $15,305 when

using moldable jobs, and $24,433 when using rigid jobs. The decision to include only

the two values of tsplit used in Figures 5.4a and 5.4b was made due to the fact that

these values determine upper and lower bounds on the total cost of each checkpointing

strategy for any value of tsplit , regardless of the value of Slb. Thus, these two figures

specify the range of observable total costs given each checkpointing strategy. Varying

tsplit between these two values therefore effectively allows a tradeoff between cost and

volatility given the value of Slb and the checkpointing strategy used, with higher values

of tsplit decreasing cost but increasing volatility, and vice versa.

As seen in Figure 5.4, for all values of Slb, tsplit , and each checkpointing strategy,

total costs when incorporating Spot instances are far lower than when using On-Demand

5.6. RESULTS 77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Evaluation Lower Bound (S
lb

)

T
o

ta
l

C
o

s
t/

O
n

−
D

e
m

a
n

d
 C

o
s

t

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(a) Moldable Jobs, No Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Evaluation Lower Bound (S
lb

)

T
o

ta
l

C
o

s
t/

O
n

−
D

e
m

a
n

d
 C

o
s

t

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(b) Moldable Jobs, Hourly Checkpointing

0 0.2 0.4 0.6 0.8 1
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Evaluation Lower Bound (S
lb

)

T
o

ta
l

C
o

s
t/

O
n

−
D

e
m

a
n

d
 C

o
s

t

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(c) Moldable Jobs, Rising-Price Checkpointing

Figure 5.2: The total cost over On-Demand cost using various checkpointing strategies,
values of tsplit , and with moldable jobs.

instances, with costs rising from a minimum of approximately 12.75% to a maximum

of 18.5% for moldable jobs, and from 13% to 19.5% for rigid jobs. For both sets of

jobs, an hourly checkpointing strategy generally results in the highest total cost due to

the extra execution time generated by checkpointing. Furthermore, incorporating no

checkpointing strategy generally results in the lowest total cost in most cases, although

a rising-market price strategy when using rigid jobs will achieve the lowest costs for

Slb ≥ 0.8.

Placing bids as a function of the execution time of a job is inferior, in terms of

total cost, when compared to placing bids based on the past overall availability of the

instance using that bid, regardless of the length of the job. When all bids are placed

as availability bids, total costs decrease by as much as 4% of the total On-Demand

78 CHAPTER 5. RAMC-DC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Evaluation Lower Bound (S
lb

)

T
o

ta
l

C
o

s
t/

O
n

−
D

e
m

a
n

d
 C

o
s

t

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(a) Rigid Jobs, No Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Evaluation Lower Bound (S
lb

)

T
o

ta
l

C
o

s
t/

O
n

−
D

e
m

a
n

d
 C

o
s

t

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(b) Rigid Jobs, Hourly Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Evaluation Lower Bound (S
lb

)

T
o

ta
l

C
o

s
t/

O
n

−
D

e
m

a
n

d
 C

o
s

t

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(c) Rigid Jobs, Rising-Price Checkpointing

Figure 5.3: The total cost over On-Demand cost using various checkpointing strategies,
values of tsplit , and with rigid jobs.

cost compared to when using only Slb-reliability bids. This decrease in cost is due

the interchangeability of jobs and instances inherent in such a bidding strategy. This

interchangeability alleviates the necessity of matching an execution time with a bid in

order to help prevent early termination, as opposed to finding an overall availability

bid. Thus, backfilling jobs and running them on idle instances can be better utilized

with such bids due to the fact that instances are matched with jobs regardless of the

job’s execution time or the instance’s bid, therefore decreasing the number of times a

new instance is leased while an idle instance can satisfy the deadline.

5.6. RESULTS 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Evaluation Lower Bound (S
lb

)

T
o

ta
l

C
o

s
t/

O
n

−
D

e
m

a
n

d
 C

o
s

t

t
split

 = 0, "none"

t
split

 = ∞, "none"

t
split

 = 0, "hourly"

t
split

 = ∞, "hourly"

t
split

 = 0, "rising"

t
split

 = ∞, "rising"

(a) Moldable Jobs, All Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Evaluation Lower Bound (S
lb

)

T
o

ta
l

C
o

s
t/

O
n

−
D

e
m

a
n

d
 C

o
s

t

t
split

 = 0, "none"

t
split

 = ∞, "none"

t
split

 = 0, "hourly"

t
split

 = ∞, "hourly"

t
split

 = 0, "rising"

t
split

 = ∞, "rising"

(b) Rigid Jobs, All Checkpointing

Figure 5.4: The total cost over On-Demand cost using various checkpointing strategies,
job types, and values of tsplit .

5.6.2 Deadline Breach Rates

When decreasing Slb, for both moldable and rigid jobs, total costs decrease and early-

terminations (and thus deadline-breaches) increase. Depending on the value of tsplit and

the checkpointing strategy used, however, it is still possible to maintain very low dead-

line breach rates as Slb decreases. As seen in Figure 5.5b, using an hourly checkpoint-

ing strategy and letting tsplit = 0, for example, allows our approach to still maintain low

deadline breaches (as low as 1.1% of all moldable jobs and 0.7% of all rigid jobs) when

Slb = 0.05, while keeping the total cost equal to 13% and 14.5% of the On-Demand cost

for moldable and rigid jobs. Alternatively, in the case of moldable jobs, a rising-market

price strategy allows our approach to maintain steady deadline breach rates at around

1.6% of all jobs while incurring lower costs than an hourly checkpointing strategy (see

Figures ??b and 5.5c).

Deadline breaches generally occur very infrequently, with rates achieving a mini-

mum rate of 0.74% when using an hourly checkpointing strategy with moldable jobs,

and 0.46% when using no checkpointing strategy and rigid jobs (see Figures 5.5a and

5.6a). Furthermore, as evidenced in Figures 5.5 and 5.6, for all values of the input pa-

rameters, deadline breaches achieve a maximum rate of no more than 2.4% for moldable

jobs and no more than 0.845% for rigid jobs. For both sets of jobs, hourly checkpoint-

ing tends to have the lowest number of deadline breaches. Furthermore, for both sets

80 CHAPTER 5. RAMC-DC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

Evaluation Lower Bound (S
lb

)

D
e

a
d

li
n

e
 B

re
a

c
h

 R
a

te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(a) No Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

Evaluation Lower Bound (S
lb

)

D
e
a
d

li
n

e
 B

re
a
c
h

 R
a
te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(b) Hourly Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.012

0.014

0.016

0.018

0.02

0.022

0.024

Evaluation Lower Bound (S
lb

)

D
e

a
d

li
n

e
 B

re
a

c
h

 R
a

te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(c) Rising-Price Checkpointing

Figure 5.5: The deadline breach rate using different checkpointing strategies and values
of tsplit with moldable jobs.

of jobs, increasing Slb and decreasing tsplit tends to decrease the number of early termi-

nations (see Figure 5.7) and, consequently, the number of deadline breaches. However,

when using moldable jobs, letting Slb = 1 results in a sharp spike in deadline breaches

for the none and rising checkpointing strategies. This spike is due to the fact that, in

many cases, no such instance can be found satisfying this value of Slb while maintaining

a reasonable bid and market-price, and thus the job must wait for such an instance to

become available. This additional waiting time increases the risk of a deadline breach

due to the increased impact of an early-termination after the job is finally assigned to

an instance. In addition, each termination has the potential to impact a larger number

of jobs than other values of Slb, due to the sparsity of instance types satisfying this

constraint.

5.6. RESULTS 81

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.005

0.006

0.007

0.008

0.009

Evaluation Lower Bound (S
lb

)

D
e

a
d

li
n

e
 B

re
a

c
h

 R
a

te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(a) No Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.005

0.0055

0.006

0.0065

0.007

0.0075

0.008

Evaluation Lower Bound (S
lb

)

D
e

a
d

li
n

e
 B

re
a

c
h

 R
a

te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(b) Hourly Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.006

0.0065

0.007

0.0075

0.008

0.0085

Evaluation Lower Bound (S
lb

)

D
e
a
d

li
n

e
 B

re
a
c
h

 R
a
te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(c) Rising-Price Checkpointing

Figure 5.6: The deadline breach rate using different checkpointing strategies and values
of tsplit with rigid jobs.

5.6.3 Early-Termination Rates

In addition to maintaining low deadline breaches, Figures 5.7 5.8 show that the approach

presented in this paper can maintain early-termination rates as low as 0.18% of all jobs

when Slb = 1, regardless of moldability, checkpointing strategy, and value of tsplit , while

keeping these early-termination rates below 9.5% and 12.5% of moldable and rigid jobs,

respectively, when Slb = 0. Indeed, while achieving such low early-termination rates,

our approach still incurs total costs under 19.5% of the On-Demand cost, regardless of

job type. The variation in early-termination rates for different values of tsplit is highest

when Slb is not equal to 0 or 1, and decrease as Slb moves to these values. For lower

values of Slb (less than 0.5), all values of tsplit achieve roughly similar early-termination

82 CHAPTER 5. RAMC-DC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10.1

Evaluation Lower Bound (S
lb

)

E
a

rl
y
−

T
e

rm
in

a
ti

o
n

 R
a

te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(a) No Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Evaluation Lower Bound (S
lb

)

E
a
rl

y
−

T
e
rm

in
a
ti

o
n

 R
a
te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(b) Hourly Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10.1

Evaluation Lower Bound (S
lb

)

E
a

rl
y

−
T

e
rm

in
a

ti
o

n
 R

a
te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(c) Rising-Price Checkpointing

Figure 5.7: The early-termination rate using different checkpointing strategies and val-
ues of tsplit with moldable jobs.

rates, with higher values of tsplit incurring slightly lower rates. As expected, as Slb

increases, however, early termination rates are lowest when leasing all instances with

Slb-reliability bids, due to the shift in focus to the successful completion of each job,

rather than the overall reliability of the instance.

5.6.4 Average Deadline Exceeded

Figure 5.9 illustrates, for those jobs that breached their deadline, the average fraction of

this deadline exceeded. That is, this figure illustrates:

ξ (Slb, tsplit ,ρ) =
t j(Slb, tsplit ,ρ)/D j

|{ j | t j(Slb, tsplit ,ρ)> D j}|
, (5.14)

where t j(Slb, tsplit) is the true (empirical) runtime of job j, using the provided values of

Slb, tsplit , and using the checkpointing strategy ρ ∈ {none,hourly,rising}, and D j is j’s

given deadline. Thus, ξ (Slb, tsplit ,ρ) reflects the average amount by which a deadline

breach exceeds the deadline, for different combinations of Slb, tsplit , and ρ .

5.7. DISCUSSION 83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Evaluation Lower Bound (S
lb

)

E
a
rl

y
−

T
e
rm

in
a
ti

o
n

 R
a
te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(a) No Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Evaluation Lower Bound (S
lb

)

E
a

rl
y

−
T

e
rm

in
a

ti
o

n
 R

a
te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(b) Hourly Checkpointing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Evaluation Lower Bound (S
lb

)

E
a
rl

y
−

T
e
rm

in
a
ti

o
n

 R
a
te

t
split

 = 0

t
split

 = 3

t
split

 = 6

t
split

 = 9

t
split

 = 12

t
split

 = ∞

(c) Rising-Price Checkpointing

Figure 5.8: The early-termination rate using different checkpointing strategies and val-
ues of tsplit with rigid jobs.

For moldable jobs, as illustrated in Figure 5.9(a), when no checkpointing strategy

is used, setting tsplit to 0 has a significant impact in the fraction of deadline exceeded,

reducing ξ by as much as 50% in some cases. On the other hand, when checkpointing

strategies are used, tsplit = ∞ experiences the lowest values of ξ .

5.7 Discussion

RAMC-DC can achieve cost savings of between 81% and 87% of that incurred when

using only On-Demand instances. Regardless of the input parameters or checkpoint-

ing strategy used, RAMC-DC can achieve a significant reduction in total costs through

strategies incorporating the acquisition and evaluation of Spot instances. Total cost sav-

ings range between 81.6% and 87.2% of the equivalent cost using only On-Demand

instances, when using moldable jobs, and between 81.2% and 86.9% when using rigid

jobs. Such high costs savings are also coupled with very low volatility when the ap-

propriate bidding strategy (via the selection of tsplit and Slb) and checkpointing strategy

84 CHAPTER 5. RAMC-DC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.61.6

Evaluation Lower Bound (S
lb

)

A
v

e
ra

g
e

 D
e

a
d

li
n

e
 E

x
c

e
e

d
e

d

t
split

 = 0, none

t
split

 = ∞, none

t
split

 = 0, hourly

t
split

 = ∞, hourly

t
split

 = 0, rising

t
split

 = ∞, rising

Figure 5.9: The fraction of the execution time by which the deadline was exceeded for
early-terminated (moldable) jobs.

are used. These cost savings through RAMC-DC make the use of Spot instances a very

cost-efficient alternative to using only On-Demand instances, and for applications that

can handle small amounts of volatility, such high cost savings may easily be worth-

while. Furthermore, the highest cost savings are not necessarily coupled with the high-

est volatility. Letting Slb = 0.7, tsplit = ∞, and using an hourly checkpointing strategy

sees very low costs coupled with very low deadline breach rates.

Altering the value of tsplit allows users to effectively trade volatility for total cost.

Increasing tsplit allows RAMC-DC to decrease the total cost by trading higher early-

termination rates for lower cost, when using moderate to high values of Slb. Early-

termination rates for lower values of Slb are not significantly impacted by the value

of tsplit chosen, due to the fact that the market price is high enough to satisfy most

lower values of Slb, and is thus the bid that will be chosen. Deadline breaches for

both sets of jobs and all checkpointing strategies tend to achieve both a minimum and

maximum when tsplit = 0, and therefore all evaluations are made using the Reliability of

the instance, rather than the Availability. Such evaluations match instances to specific

job execution times, and therefore decrease the overall volatility. In doing so, however,

the reusability of each instance among jobs is also decreased, resulting in idle hour

blocks that are not taken advantage of.

By increasing Slb, RAMC-DC can significantly decrease, or mitigate, the volatility

associated with using Spot instances. Early-termination rates as low as 0.18% can be

achieved by letting Slb = 1. Although coupled with higher costs, letting Slb = 1 results

5.7. DISCUSSION 85

in the lowest early-termination rates and, in the case of rigid jobs, generally the low-

est deadline breach rates as well. However, values of Slb approximately equal to 0.7

result in low costs, low deadline breaches, and low early-termination rates, suggesting

that high termination resistance may be an inferior goal to an appropriate checkpoint-

ing strategy, or to a bid designed to allow early termination when potential costs get

too high. Letting Slb = 1 results in RAMC-DC choosing a bid that has seen either full

availability in the past (if t̂ ≤ tsplit), or such that all random samples were executed suc-

cessfully with that bid (̂t > tsplit). In either case, such a bid will almost certainly be

high enough that most cost fluctuations will not rise above it, and thus RAMC-DC will

achieve higher total costs. However, since very high price spikes are relatively infre-

quent, lowering the value of Slb will increase early-termination rates only slightly, but

may have a very large impact on the total cost. Moreover, incorporating an appropriate

checkpointing strategy may effectively eliminate any the impact of any volatility from

such a decrease.

Periodic checkpointing results in the lowest number of deadline breaches for both

rigid and moldable jobs. Deadline breaches when using an hourly checkpointing strat-

egy are generally much lower than both other strategies, and achieve lower minimums

as well. Although periodic checkpointing strategies come with higher associated total

costs, for moderate values of Slb deadline breach rates are roughly the same for all val-

ues of tsplit . Such a result implies that total costs can be reduced by letting tsplit = 0 and

incorporating an hourly checkpointing strategy. The rising price checkpointing strategy

did not see very favorable results using these Spot price traces. The reason for this is

that prices tend not to fluctuate gradually, but rather experience high spikes that come

suddenly and without any previous increase. The results presented here suggest that pe-

riodic checkpointing sufficiently mitigates volatility, and the specified period between

checkpoints may be tuned depending on the application. Incorporating no checkpoint-

ing strategy, however, may still be a viable option if the goal is to provide full access to

the instances to a user, or if the applications may not be checkpointed; when incorpo-

rating no checkpointing strategy, deadline breaches can still attain a minimum of 1.1%

of all moldable jobs and 0.46% of all rigid jobs.

Increasing Slb to any value above 0 (a market-price bidding strategy) results in

a dramatic decrease in early-termination rates and deadline breaches, as well as an

increase in total cost. Similar to the evaluation of RAMP, any shift from a market-

price bidding strategy can significantly lower the volatility associated encountered by

86 CHAPTER 5. RAMC-DC

RAMC-DC. Although the market-price bidding strategy associated with Slb = 0 achieves

the lowest costs for all input parameters, it is coupled with a significant increase in the

number of jobs surpassing their deadline and the number of early-terminations seen by

RAMC-DC. Increasing Slb to any amount above 0 sees large drops in early-terminations

(up to nearly 5% with moldable and rigid jobs), as well as in deadline breach rates (up

to nearly 0.5% with moldable jobs and 0.1% with rigid jobs). In almost all cases, letting

Slb = 0 results in the lowest total costs, particularly when assuming all jobs are rigid.

When letting tsplit = ∞, however, total costs can actually fall with variation from 0. As-

suming all jobs are moldable sees very stable total costs for Slb ≤ 0.7, but increasing

Slb from 0 to 0.05 sees a drop in this total cost of nearly 0.4%.

Chapter 6

Conclusion

The frameworks presented in this thesis take a step towards reliable cloud resource

provisioning for the purpose of either profit maximization or cost minimization, given

the goal of either request fulfillment or job execution. To fulfill these goals, we develop

and evaluate RAMP and RAMC-DC, two resource provisioning frameworks that seek

to exploit the large cost and performance diversity within Amazon EC2. Such diversity

includes different instance purchasing options, instance types, availability zones, and,

when utilizing Spot instances, bids, taking into account cost, reliability, and availability

characteristics of these instances. Both RAMP and RAMC-DC seek to exploit the trade-

off between service reliability and service cost, taking advantage of the diversity in

public cloud services. In addition, both approaches seek to use Amazon’s publicly

available Spot price history to achieve reliability and/or availability constraints when

using Spot instance, and utilize this history in intelligent instance evaluation and bidding

strategies when leasing such instances.

Before the construction of either framework, the problem of cost approximation

given fluctuating market prices is addressed and five approximation methods are intro-

duced and evaluated using two sets of Spot price traces. Results from this evaluation

show that approximating the cost using the current market price is the most accurate

method when placing high bids. However, when the bids are close to the market price,

trace-based approximations such as incorporating the time-weighted average market

price under the bid will yield better accuracy, depending on the amount of fluctuation

in the Spot market. Moreover, cost approximation by random sampling is inferior to

an average price approximation and incorporating the market price is these trace-based

approximations is superior to ignoring it.

87

88 CHAPTER 6. CONCLUSION

RAMP incorporates two novel components: a reliability-aware resource acquisition

strategy, and a profit-driven resource allocation algorithm. Together, these components

enable RAMP to cost effectively provision resources complying with reliability con-

straints. Based on our experimental results, successful completion rates are shown to

match or exceed almost all values of the desired reliability level, and early-termination

rates as low as 2.2% can be achieved. Results also show that significant total profit

can be achieved while charging the user only a small fraction of the On-Demand price,

increasing the penalty necessitates an increase in reliability to maintain high profits,

and increasing the reliability level generally increases total profit. In general, RAMP

can completely offset its total cost while charging the user as little as between 15% and

20% of the equivalent cost of each user’s requested On-Demand instance. Assuming

constant demand, total profits equal to 100% of the baseline total cost can be acquired

while charging the user just 35% of the corresponding On-Demand instance price, and

total profits equal to 200% of the baseline total cost can be acquired while charging the

user 53% of the equivalent On-Demand price.

RAMC-DC utilizes a novel two-tier instance evaluation function that gauges how

suitable a Spot or On-Demand instance is to run a job. In addition, RAMC-DC also

utilizes a corresponding trace-based instance acquisition strategy that utilizes this eval-

uation function when determining which instances to acquire. Experimental results

show that RAMC-DC provides a cost effective and low-volatility means to execute

both moldable and rigid jobs using instance options from Amazon EC2. Moreover,

the tunable parameters , Slb and tsplit , allow a user to effectively trade total cost for

volatility. Bids calculated independently of each job’s execution time are shown to be

more cost effective but also the more failure prone than bids calculated as a function

of the job’s execution time, and Market Price cost estimation is shown to be gener-

ally the most accurate among all methods presented. Additionally, checkpointing can

decrease both the total cost and the number of deadline breaches per combination of pa-

rameters, with Rising Market Price checkpointing significantly decreasing both when

using rigid jobs. RAMC-DC’s two-tier instance evaluation function, combined with

the ability to search among multiple instance types and availability zones, can achieve

early-termination rates as low as 0.18% in a set of 20,000 moldable jobs, and as low

as 0.55% in the same set of jobs with the assumption of rigidity. In addition, dead-

line breaches achieve a maximum of no more than 2.4% for moldable jobs and 0.845%

for rigid jobs, with breaches in both cases as low as 0.73% and 0.55%, respectively,

89

when using an hourly checkpointing strategy. When achieving such low termination

and deadline breach rates, RAMC-DC is able to achieve savings between 80% and 87%

of the total cost when using only On-Demand instances.

Future work in this area may involve experiments using actual instances from

Amazon EC2. In addition, the effectiveness of a user-specified priority parameter de-

signed to influence the amount the user pays, the corresponding reliability lower bound

associated with the instance allocated to the user, and the size of the penalty awarded

to the user upon early-termination, may be studied. The cost-efficiency of utilizing

Reserved instances alongside Amazon’s newly introduced Reserved Instance Market-

place Amazon [2013b] can be evaluated, and an evaluation of early-termination rates

with different constraints for the construction of the instance type search set, Ir, may

be undertaken. Future work may also examine the incorporation of jobs that run across

multiple instances and zones, and examining penalties for deadline breaches in order to

further influence the choice between Spot and On-demand instances.

Appendix A

Cost Estimation

A.1 Implementations

C++ implementations of all methods to estimate the cost of running a Spot instance for

a desired time are given below.

Implementation A.1: Market Price estimation of the cost: Ĉmkt(t,ν)
1 / * Approximate t h e c o s t o f r u n n i n g t h e Spot i n s t a n c e ” i n s t ” f o r ” t ime ” f u l l o r ←↩

p a r t i a l h o u r s u s i n g on ly t h e c u r r e n t marke t p r i c e . * /

2 double C_mkt (SpotInstance* inst , double time , double cur_date , double alpha) {
3 unsigned int inst_idx = inst−>get_instance () ;

4 unsigned int zone_idx = inst−>get_avail () ;

5 double mkt_price = get_mkt_price (inst_idx , zone_idx , cur_date) ;

6 return mkt_price*ceil (time) ;

7 }

Implementation A.2: Monte Carlo estimation of the cost: Ĉmc(t,ν)
1 / * Approximate t h e c o s t o f r u n n i n g t h e Spot i n s t a n c e ” i n s t ” f o r ” t ime ” f u l l o r ←↩

p a r t i a l h o u r s u s i n g a Monte C a r l o e s t i m a t e . * /

2 double C_monte (SpotInstance* inst , double time , double cur_date) {
3 unsigned int inst_idx = inst−>get_instance () ;

4 unsigned int zone_idx = inst−>get_avail () ;

5 double mkt_price = get_mkt_price (inst_idx , zone_idx , cur_date) ;

6 pair<int , int> end_start = window_search (dates [inst_idx] [zone_idx] , cur_date , ←↩
truncate_value+time) ;

7 int end_idx = end_start . first ;

8 int start_idx = end_start . second ;

90

A.1. IMPLEMENTATIONS 91

9 if (end_idx == −1 | | start_idx == −1 | | dates [inst_idx] [zone_idx] [end_idx] − dates [←↩
inst_idx] [zone_idx] [start_idx] <= 0){

10 return mkt_price*ceil (time) ;

11 }
12 double start = max (dates [inst_idx] [zone_idx] [end_idx] − truncate_value − time , ←↩

dates [inst_idx] [zone_idx] [start_idx]) ;

13 double width = cur_date − start − time ;

14 if (width <=0){
15 return mkt_price*ceil (time) ;

16 }
17 / / c r e a t e NUM DATES random d a t e s

18 vector<double> rand_dates = random_array1 (NUM_DATES , dates [inst_idx] [zone_idx] [←↩
start_idx] , dates [inst_idx] [zone_idx] [end_idx]) ;

19 vector<double> cost (rand_dates . size () , prices [inst_idx] [zone_idx] [end_idx]* ceil (←↩
adj_comp_time)) ;

20 / / g e t t h e t r u e c o s t f o r e v e r y d a t e

21 for (unsigned int k = 0 ; k < rand_dates . size () ; ++k) {
22 int split_idx = binary_search_vector (dates [inst_idx] [zone_idx] , rand_dates [k] , ←↩

start_idx , end_idx) ;

23 if (split_idx == end_idx | | split_idx == −1){
24 continue ;

25 }
26 double mkt_price = prices [inst_idx] [zone_idx] [split_idx] ;

27 if (mkt_price > bid) {
28 continue ;

29 }
30 vector<double> : : iterator above_iter = find_if (prices [inst_idx] [zone_idx] . begin ()←↩

+ split_idx +1 , prices [inst_idx] [zone_idx] . begin () + end_idx+1 , ←↩
greater_than (bid)) ;

31 double true_step ;

32 if (above_iter == prices [inst_idx] [zone_idx] . begin () + end_idx +1){
33 true_step = adj_comp_time ;

34 }else{
35 unsigned int above_idx = distance (prices [inst_idx] [zone_idx] . begin () , ←↩

above_iter) ;

36 true_step = dates [inst_idx] [zone_idx] [above_idx] − rand_dates [k] ;

37 }
38 if (true_step < adj_comp_time) {
39 cost [k] = prices [inst_idx] [zone_idx] [split_idx]* ceil (adj_comp_time) ;

40 continue ;

41 }
42 int interm_end_idx = binary_search_vector (dates [inst_idx] [zone_idx] , rand_dates [←↩

k] + adj_comp_time , split_idx , end_idx) ;

43 if (interm_end_idx == −1){
44 interm_end_idx = end_idx ;

45 }
46 if (interm_end_idx == split_idx) {
47 if (true_step < ceil (adj_comp_time) && true_step >= adj_comp_time) {
48 cost [k] = mkt_price * floor (adj_comp_time) ;

49 } else if (true_step >= ceil (adj_comp_time)) {
50 cost [k] = mkt_price * ceil (adj_comp_time) ;

92 APPENDIX A. COST ESTIMATION

51 }else{
52 cost [k] = mkt_price*floor (true_step) ;

53 }
54 }else{
55 cost [k] = instance_cost (mkt_price , true_step , rand_dates [k] , adj_comp_time , ←↩

inst_idx , zone_idx , split_idx , interm_end_idx) ;

56 }
57 }
58 / / r e t u r n t h e mean of t h e s e samples

59 return mean (cost) ;

60 }

Implementation A.3: Average Price estimation of the cost: Ĉavg(t,ν)
1 / * Approximate t h e c o s t o f r u n n i n g t h e Spot i n s t a n c e ” i n s t ” f o r ” t ime ” f u l l o r ←↩

p a r t i a l h o u r s u s i n g an Average P r i c e e s t i m a t e . * /

2 double C_avg (SpotInstance* inst , double time , double cur_date) {
3 unsigned int inst_idx = inst−>get_instance () ;

4 unsigned int zone_idx = inst−>get_avail () ;

5 double mkt_price = get_mkt_price (inst_idx , zone_idx , cur_date) ;

6 pair<int , int> end_start = window_search (dates [inst_idx] [zone_idx] , cur_date , ←↩
truncate_value) ;

7 int end_idx = end_start . first ;

8 int start_idx = end_start . second ;

9 if (end_idx == −1 | | start_idx == −1 | | end_idx − start_idx <= 0){
10 return mkt_price*ceil (time) ;

11 }
12 double start = max (dates [inst_idx] [zone_idx] [end_idx] − truncate_value , dates [←↩

inst_idx] [zone_idx] [start_idx]) ;

13 double width = cur_date − start ;

14 if (width <=0){
15 return mkt_price*ceil (time) ;

16 }
17 double interm_prices [end_idx − start_idx] ;

18 double total_time_under_bid = 0 . 0 ;

19 / / a s s i g n t h e p r i c e s and c o r r e s p o n d i n g t i m e s

20 for (int i = start_idx ; i < end_idx ; ++i) {
21 interm_prices [i−start_idx] = −1.0;

22 times [i−start_idx] = −1.0;

23 if (prices [inst_idx] [zone_idx] [i] <= inst−>get_bid ()) ;

24 interm_prices [i−start_idx] = prices [inst_idx] [zone_idx] [i] ;

25 times [i−start_idx] = dates [inst_idx] [zone_idx] [i+1] − prices [inst_idx] [←↩
zone_idx] [i] ;

26 total_time_under_bid += times [i−start_idx] ;

27 }
28 }
29 double avg_hour_price = 0 . 0 ;

30 / / t a k e t h e t ime−w e i g h t e d a v e r a g e o f t h e p r i c e s

31 for (int i = 0 ; i < idx_diff ; ++i) {

A.1. IMPLEMENTATIONS 93

32 if (interm_prices [i] != −1.0){
33 avg_hour_price += interm_prices [i] * (times [i] / total_time_under_bid) ;

34 }
35 }
36 return avg_hour_price*ceil (time) ;

37 }

Implementation A.4: Market-Monte Carlo estimation of the cost: Ĉmmc α(t,ν)
1 / * Approximate t h e c o s t o f r u n n i n g t h e Spot i n s t a n c e ” i n s t ” f o r ” t ime ” f u l l o r ←↩

p a r t i a l h o u r s u s i n g t h e marke t p r i c e and a Monte C a r l o e s t i m a t e . * /

2 double C_mmc_alpha (SpotInstance* inst , double time , double cur_date , double alpha) {
3 unsigned int inst_idx = inst−>get_instance () ;

4 unsigned int zone_idx = inst−>get_avail () ;

5 double mkt_price = get_mkt_price (inst_idx , zone_idx , cur_date) ;

6

7 if (time <= alpha) {
8 return ceil (alpha) *mkt_price ;

9 }
10 pair<int , int> end_start = window_search (dates [inst_idx] [zone_idx] , cur_date , ←↩

truncate_value+time) ;

11 int end_idx = end_start . first ;

12 int start_idx = end_start . second ;

13 if (end_idx == −1 | | start_idx == −1 | | end_idx − start_idx <= 0){
14 return mkt_price*ceil (time) ;

15 }
16 return C_monte (inst , ceil (time−ceil (alpha)) , cur_date) + ceil (alpha) *mkt_price ;

17 }

Implementation A.5: Market-Average estimation of the cost: Ĉma α(t,ν)
1 / * Approximate t h e c o s t o f r u n n i n g t h e Spot i n s t a n c e ” i n s t ” f o r ” t ime ” f u l l o r ←↩

p a r t i a l h o u r s u s i n g t h e marke t p r i c e and an Average P r i c e e s t i m a t e . * /

2 double C_ma_alpha (SpotInstance* inst , double time , double cur_date , double alpha) {
3 unsigned int inst_idx = inst−>get_instance () ;

4 unsigned int zone_idx = inst−>get_avail () ;

5 double mkt_price = get_mkt_price (inst_idx , zone_idx , cur_date) ;

6 if (time <= alpha) {
7 return ceil (time) *mkt_price ;

8 }
9 pair<int , int> end_start = window_search (dates [inst_idx] [zone_idx] , cur_date , ←↩

truncate_value) ;

10 int end_idx = end_start . first ;

11 int start_idx = end_start . second ;

12 if (end_idx == −1 | | start_idx == −1 | | dates [inst_idx] [zone_idx] [end_idx] − ←↩
dates [inst_idx] [zone_idx] [start_idx] <= 0){

13 return mkt_price*ceil (time) ;

94 APPENDIX A. COST ESTIMATION

14 }
15 double start = max (dates [inst_idx] [zone_idx] [end_idx] − truncate_value , dates [←↩

inst_idx] [zone_idx] [start_idx]) ;

16 double width = cur_date − start ;

17 if (width <=0){
18 return mkt_price*ceil (time) ;

19 }
20 double interm_prices [end_idx − start_idx] ;

21 double total_time_under_bid = 0 . 0 ;

22 double last_mkt_price = prices [inst_idx] [zone_idx] [start_idx] ;

23 for (int i = start_idx ; i < end_idx ; ++i) {
24 interm_prices [i−start_idx] = −1.0;

25 times [i−start_idx] = −1.0;

26 if (prices [inst_idx] [zone_idx] [i] <= inst−>get_bid ()) {
27 interm_prices [i−start_idx] = prices [inst_idx] [zone_idx] [i] ;

28 times [i−start_idx] = dates [inst_idx] [zone_idx] [i+1] − dates [inst_idx] [zone_idx] [←↩
i] ;

29 total_time_under_bid += times [i−start_idx] ;

30 }
31 }
32 double avg_hour_price = 0 . 0 ;

33 for (int i = 0 ; i < idx_diff ; ++i) {
34 if (interm_prices [i] != −1.0){
35 avg_hour_price += interm_prices [i] * (times [i] / total_time_under_bid) ;

36 }
37 }
38 return avg_hour_price*ceil (time − ceil (alpha)) + ceil (alpha) *mkt_price ;

39 }

Implementation A.6: Market-Monte Carlo estimation of the cost using the average

inter-price time: Ĉmmc avg(t,ν)
1 / * Approximate t h e c o s t o f r u n n i n g t h e Spot i n s t a n c e ” i n s t ” f o r ” t ime ” f u l l o r ←↩

p a r t i a l h o u r s u s i n g t h e marke t p r i c e and a Monte C a r l o e s t i m a t e wi th t h e ” avg ” ←↩
p a r a m e t e r . * /

2 double C_mmc_avg (SpotInstance* inst , double time , double cur_date) {
3 unsigned int inst_idx = inst−>get_instance () ;

4 unsigned int zone_idx = inst−>get_avail () ;

5 double mkt_price = get_mkt_price (inst_idx , zone_idx , cur_date) ;

6 pair<int , int> end_start = window_search (dates [inst_idx] [zone_idx] , cur_date , ←↩
truncate_value+time) ;

7 int end_idx = end_start . first ;

8 int start_idx = end_start . second ;

9 if (end_idx == −1 | | start_idx == −1 | | end_idx − start_idx <= 0){
10 return mkt_price*ceil (time) ;

11 }
12 double start = max (dates [inst_idx] [zone_idx] [end_idx] − truncate_value − time , ←↩

dates [inst_idx] [zone_idx] [start_idx]) ;

13 double width = cur_date − start − time ;

A.1. IMPLEMENTATIONS 95

14 if (width <=0){
15 return mkt_price*ceil (time) ;

16 }
17 / / c a l c u l a t e t h e a v e r a g e i n t e r −p r i c e t ime

18 double avg_inter_price_time = 0 . 0 ;

19 int num_changes = 0 ;

20 double last_mkt_price = prices [inst_idx] [zone_idx] [start_idx] ;

21 for (int i = start_idx ; i < end_idx ; ++i) {
22 if (prices [inst_idx] [zone_idx] [i] == last_mkt_price) {
23 avg_inter_price_time += dates [inst_idx] [zone_idx] [i+1] − dates [inst_idx←↩

] [zone_idx] [i] ;

24 }else{
25 last_mkt_price = prices [inst_idx] [zone_idx] [i] ;

26 num_changes++;

27 }
28 }
29 / / p r e v e n t d i v i s i o n by z e r o

30 if (num_changes == 0){
31 avg_inter_price_time = numeric_limits<double> : :max () ;

32 }else{
33 avg_inter_price_time /= num_changes ;

34 }
35 if (ceil (time) <= ceil (avg_inter_price_time)) {
36 return mkt_price*ceil (time) ;

37 }
38 vector<double> rand_dates = random_array1 (NUM_DATES , dates [inst_idx] [zone_idx] [←↩

start_idx] , dates [inst_idx] [zone_idx] [end_idx]) ;

39 return C_monte (inst−>get_bid () , start_idx , end_idx , rand_dates , time− ceil (←↩
avg_inter_price_time) , inst_idx , zone_idx) + mkt_price*ceil (←↩
avg_inter_price_time) ;

40 }

Implementation A.7: Market-Average estimation of the cost using the average inter-

price time: Ĉma avg(t,ν)
1 / * Approximate t h e c o s t o f r u n n i n g t h e Spot i n s t a n c e ” i n s t ” f o r ” t ime ” f u l l o r ←↩

p a r t i a l h o u r s u s i n g t h e marke t p r i c e and an Average P r i c e e s t i m a t e wi th t h e ” avg←↩
” p a r a m e t e r . * /

2 double C_ma_avg (SpotInstance* inst , double time , double cur_date) {
3 unsigned int inst_idx = inst−>get_instance () ;

4 unsigned int zone_idx = inst−>get_avail () ;

5 double mkt_price = get_mkt_price (inst_idx , zone_idx , cur_date) ;

6 pair<int , int> end_start = window_search (dates [inst_idx] [zone_idx] , cur_date , ←↩
truncate_value) ;

7 int end_idx = end_start . first ;

8 int start_idx = end_start . second ;

9 if (end_idx == −1 | | start_idx == −1 | | dates [inst_idx] [zone_idx] [end_idx] − ←↩
dates [inst_idx] [zone_idx] [start_idx] <= 0){

10 return mkt_price*ceil (time) ;

96 APPENDIX A. COST ESTIMATION

11 }
12 double start = max (dates [inst_idx] [zone_idx] [end_idx] − truncate_value , dates [←↩

inst_idx] [zone_idx] [start_idx]) ;

13 double width = cur_date − start ;

14 if (width <=0){
15 return mkt_price*ceil (time) ;

16 }
17 int idx_diff = end_idx − start_idx ;

18 double interm_prices [idx_diff] ;

19 double times [idx_diff] ;

20 for (int i = 0 ; i < idx_diff ; ++i) {
21 interm_prices [i] = −1.0;

22 times [i] = −1.0;

23 }
24 / / c a l c u l a t e a v e r a g e i n t e r −p r i c e t ime

25 double total_time_under_bid = 0 . 0 ;

26 double avg_inter_price_time = 0 . 0 ;

27 int num_changes = 0 ;

28 double last_mkt_price = prices [inst_idx] [zone_idx] [start_idx] ;

29 for (int i = start_idx ; i < end_idx ; ++i) {
30 if (prices [inst_idx] [zone_idx] [i] == last_mkt_price) {
31 avg_inter_price_time += dates [inst_idx] [zone_idx] [i+1] − dates [inst_idx←↩

] [zone_idx] [i] ;

32 }else{
33 last_mkt_price = prices [inst_idx] [zone_idx] [i] ;

34 num_changes++;

35 }
36 if (prices [inst_idx] [zone_idx] [i] <= inst−>get_bid ()) {
37 interm_prices [i−start_idx] = prices [inst_idx] [zone_idx] [i] ;

38 times [i−start_idx] = dates [inst_idx] [zone_idx] [i+1] − dates [inst_idx] [←↩
zone_idx] [i] ;

39 total_time_under_bid += times [i−start_idx] ;

40 }
41 }
42 if (num_changes == 0){
43 avg_inter_price_time = numeric_limits<double> : :max () ;

44 }else{
45 avg_inter_price_time /= num_changes ;

46 }
47 if (ceil (time) <= ceil (avg_inter_price_time)) {
48 return mkt_price * ceil (time) ;

49 }
50 double avg_hour_price = 0 . 0 ;

51 for (int i = 0 ; i < idx_diff ; ++i) {
52 if (interm_prices [i] != −1.0){
53 avg_hour_price += interm_prices [i] * (times [i] / total_time_under_bid) ;

54 }
55 }
56 return avg_hour_price*ceil (time − ceil (avg_inter_price_time)) + mkt_price*ceil (←↩

avg_inter_price_time) ;

57 }

Appendix B

RAMP

B.1 Total Profits Assuming Linear Demand

In addition to the assumption of constant demand in our evaluation of RAMP in Section

5.4, we may also assume different demand curves that may depend on a number of input

parameters. Two examples of such demand curves are the following:

• Linear Demand: Linear demand curves for a single pricing parameter, p, are

typically of the form nD = a−b · p, for constants a and b. For our experiments, in

order to focus the results on reasonable pricing ranges, we would like to observe

demand within an upper and lower bound, ub and lb, respectively. Therefore, we

will use the demand function:

nD = (ub− p) · n
ub− lb

,

for p ∈ [lb,ub], with lb,ub ∈ [0,1] and lb≤ ub. Thus, demand increases linearly

from nD = 0 when p = ub to nD = n when p = lb.

• Exponential Demand: Exponential demand curves are typically of the form

nD = a · e−b·p. As with Linear Demand, we wish to view results within an upper

and lower bound and so we obtain the demand function: nD = n
p−ub
lb−ub . Therefore,

demand increases exponentially from nD = 1 when p= ub to nD = n when p= lb.

Within this section, we will perform a rudimentary evaluation of the total profit of

RAMP when using the linear demand curve as discussed above. Here, nD represents the

97

98 APPENDIX B. RAMP

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.25

0

0.25

0.5

0.75

1

T
o

ta
l
P

ro
fi

t
O

v
e
r

B
a
s
e
li
n

e
 T

o
ta

l
C

o
s
t

(η
)

Payment Fraction (p)
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

F
ra

c
ti

o
n

 o
f

T
o

ta
l
R

e
q

u
e
s
ts

 (
n D

/n
)

n
D
/n

S
lb

 = 0

S
lb

 = 0.25

S
lb

 = 0.5

S
lb

 = 0.75

S
lb

 = 1

Figure B.1: Measure of total profit for different values of p given specific values of Slb
and with e = 0.25, using a linear demand function.

number of requests RAMP encounters for a given value of f , lb, ub, and n. Therefore,

when assuming a linear demand curve, all 20,000 requests will be seen when p = lb

and no requests will be seen when p = ub. In this paper, we will let lb be equal to

0.15, the approximate value of p at which total profits fall below 0 when using con-

stant demand, and we will let ub = 0.5, an historical average cost savings fraction for

applications making use of Spot instances rather than On-Demand instances (cf. An-

drzejak et al. [2010], Voorsluys and Buyya [2012], Voorsluys et al. [2011], Liu [2011]).

Once nD is calculated, the requests are randomly shuffled and the first nD are used. The

demand curves in these experiments are used as rough estimates to examine the price

vs. quantity comparison for RAMP; actual demand curves will likely depend on other

parameters such as Slb, e, etc.

Figure B.1 illustrates η for p ∈ [0.15,0.5], and with various values of e, when the

number of requests, nD, varies linearly with the payment fraction p. When using this

linear demand function, η attains a maximum of approximately 0.7 when p = 0.35, and

less than half of all 20,000 possible requests are seen. For p < 0.35, profit falls with η

as low as -0.25 when Slb = 0. As with constant demand, profits fall below zero when

p falls below approximately 0.175, and Slb = 0 generally produces the lowest profit

among all values.

B.2. IMPLEMENTATIONS 99

B.2 Implementations

Implementations of several algorithms introduced for RAMP are included below.

Implementation B.1: Using a Kaplan Meier Estimator to evaluate Spot instance relia-

bility: reliability(r,ν)
1 / * Get t h e r e l i a b i l i t y o f an i n s t a n c e d e f i n e d by <bid , i n s t i d x , z o n e i d x> u s i n g a ←↩

Kaplan Meier e s t i m a t o r * /

2 double reliability (double bid , unsigned int start_idx , unsigned int end_idx , vector<←↩
double> & rand_dates , double time , int inst_idx , int zone_idx) {

3 vector<double> temp_step (rand_dates . size ()) ;

4 for (unsigned int k = 0 ; k < rand_dates . size () ; ++k) {
5 int split_idx = binary_search_vector (dates [inst_idx] [zone_idx] , rand_dates [k] , ←↩

start_idx , end_idx) ;

6 if (split_idx == −1){
7 continue ;

8 }
9 if (split_idx == end_idx) {

10 temp_step [k] = time ;

11 continue ;

12 }
13 double mkt_price ;

14 mkt_price = prices [inst_idx] [zone_idx] [split_idx] ;

15 if (mkt_price > bid) {
16 temp_step [k] = 0 ;

17 continue ;

18 }
19 vector<double> : : iterator above_iter = find_if (prices [inst_idx] [zone_idx] . begin ()←↩

+ split_idx +1 , prices [inst_idx] [zone_idx] . begin () + end_idx+1 , ←↩
greater_than (bid)) ;

20 if (above_iter == prices [inst_idx] [zone_idx] . begin () + end_idx + 1){
21 temp_step [k] = time ;

22 }else{
23 unsigned int above_idx = distance (prices [inst_idx] [zone_idx] . begin () , ←↩

above_iter) ;

24 temp_step [k] = dates [inst_idx] [zone_idx] [above_idx] − rand_dates [k] ;

25 }
26 }
27 sort (temp_step . begin () , temp_step . end ()) ;

28 double score = 1 ;

29 for (unsigned int l = 0 ; l < temp_step . size () ; ++l) {
30 if (temp_step [l] >= time) {
31 break ;

32 } else {
33 double nj = temp_step . size () − l ;

34 score = score *(nj−1) / nj ;

35 }
36 }

100 APPENDIX B. RAMP

37 return score ;

38 }

Implementation B.2: Implementation of the cost estimation algorithm used by RAMP

to calculate the estimated cost in the event of failure
1 / * E s t i m a t e d c o s t o f e x e c u t i o n i n t h e e v e n t o f f a i l u r e * /

2 double C_mkt_fail (SpotInstance* inst , job* job_ptr , double run_time , double cur_date←↩
) {

3 unsigned int inst_idx = inst−>get_instance () ;

4 unsigned int zone_idx = inst−>get_avail () ;

5 double mkt_price = get_mkt_price (inst_idx , zone_idx , cur_date) ;

6 pair<int , int> end_start = window_search (dates [inst_idx] [zone_idx] , cur_date , ←↩
truncate_value+run_time) ;

7 int end_idx = end_start . first ;

8 int start_idx = end_start . second ;

9 if (end_idx == −1 | | start_idx == −1 | | dates [inst_idx] [zone_idx] [end_idx] − ←↩
dates [inst_idx] [zone_idx] [start_idx] <= 0){

10 return mkt_price*ceil (run_time) ;

11 }
12 double start = max (dates [inst_idx] [zone_idx] [end_idx] − truncate_value − ←↩

run_time , dates [inst_idx] [zone_idx] [start_idx]) ;

13 double width = cur_date − start − run_time ;

14 if (width <=0){
15 return mkt_price*ceil (run_time) ;

16 }
17 vector<double> rand_dates = random_array1 (NUM_DATES , dates [inst_idx] [zone_idx←↩

] [start_idx] , dates [inst_idx] [zone_idx] [end_idx]) ;

18 double bid = inst−>get_bid () ;

19 double mean_avail_time = 0 . 0 ;

20 unsigned int num_fails = 0 ;

21 for (unsigned int k = 0 ; k < rand_dates . size () ; ++k) {
22 int split_index = binary_search_vector (dates [inst_idx] [zone_idx] , rand_dates [k] ,←↩

start_idx , end_idx) ;

23 if (split_index == end_idx | | split_index == −1){
24 continue ;

25 }
26 double mkt_price = prices [inst_idx] [zone_idx] [split_index] ;

27 if (mkt_price > bid) {
28 continue ;

29 }
30 vector<double> : : iterator above_iter = find_if (prices [inst_idx] [zone_idx←↩

] . begin () + split_index +1 , prices [inst_idx] [zone_idx] . begin () + ←↩
end_idx+1 , greater_than (bid)) ;

31 double true_step ;

32 if (above_iter == prices [inst_idx] [zone_idx] . begin () + end_idx +1){
33 true_step = run_time ;

34 }else{

B.2. IMPLEMENTATIONS 101

35 unsigned int above_index = distance (prices [inst_idx] [zone_idx] . begin←↩
() , above_iter) ;

36 true_step = dates [inst_idx] [zone_idx] [above_index] − rand_dates [k] ;

37 }
38 if (true_step < run_time) {
39 mean_avail_time += true_step ;

40 num_fails++;

41 continue ;

42 }
43 }
44 if (num_fails == 0){
45 num_fails = 1 ; / / p r e v e n t d i v i s i o n by 0

46 }
47 mean_avail_time /= static_cast<double>(rand_dates . size ()) ;

48 return mean_avail_time*mkt_price ;

49 }

Appendix C

RAMC-DC

C.1 Preliminary Results Using Amdahl’s Law

In this section, we present an analysis of the Kaplan-Meier instance evaluation and

bidding strategy when Amdahl’s Law is used instead of Downey Speedup Model.

C.1.1 Evaluation and Bidding

Given a confidence constraint c ∈ [0,1], per-EC2-Compute-Unit bid upper bound, ub,

and set of tasks, Λ, for each task λi ∈ Λ, the user submits a runtime, t, a requested

number of cores, n, a parallelizable fraction, par, and a deadline d. Additionally, the

user is able to submit groups of tasks simultaneously so that subsets of the group may

be run in parallel on a single instance, if possible. For each job, or group of jobs, at

a start time, s, determined by the resource allocation algorithm, a search among Spot

instance types I =
{

i1, . . . , i j
}

and availability zones Z = {z1, . . . ,zk} is conducted to

find the optimal bid price, instance type, and zone triple, 〈i,z,b〉. For each instance

type, an adjusted runtime is calculated as ti, determined by Amdahl’s Law with runtime

t for the number of EC2 Compute Units, n, and parallelizable fraction par. The triple

〈i,z,b〉 is first found by finding the lowest bids for each instance type and availability

zone, such that b is within the upper bound and satisfies the confidence constraint

P(̂ti,z,b ≥ ti)≥ Slb, (C.1)

102

C.1. PRELIMINARY RESULTS USING AMDAHL’S LAW 103

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Serial Computation Time (Hours)

A
v

e
ra

g
e

 C
o

s
t

($
U

S
)

S
lb

 = 0.9

S
lb

 = 0.925

S
lb

 = 0.95

S
lb

 = 0.975

(a) Average cost for four confidence values, us-
ing random starting dates from after July 2011.
Average costs have only a slight difference for
lower computation times.

0 5 10 15 20 25
0.005

0.01

0.015

0.02

0.025

0.03

Serial Computation Time (Hours)

F
a

il
u

re
 R

a
te

S
lb

 = 0.9

S
lb

 = 0.925

S
lb

 = 0.95

S
lb

 = 0.975

(b) Failure rates for four confidence values, us-
ing random starting dates from after July 2011.
All failure rates are below 1− c.

0 5 10 15 20 25
0.93

0.94

0.95

0.96

0.97

0.98

0.99

Serial Computation Time (Hours)

M
a

rk
e

t
P

ri
c

e
 B

e
lo

w
 B

id

S
lb

 = 0.9

S
lb

 = 0.925

S
lb

 = 0.95

S
lb

 = 0.975

(c) The fraction of computations that started (i.e. the optimal bid was below the market price)
for four confidence values, using random starting dates from after July 2011

Figure C.1: Deadline Breaches (Moldable Jobs)

where t̂i,z,b is the true length of time for which the Spot instance is available to the user.

The instance and availability zone with the lowest estimated cost is then determined by

the Monte Carlo Estimate

Ĉ(ti, i,z,b) =
1
|X | ∑x∈X

Cx(ti, i,z,b), (C.2)

provided the bid is above the market price. In the above equations, X is a set of ran-

dom samples from some distribution Ω(s−w,s) (in the result below, a right-truncated

exponential distribution was used), with window w calculated as the minimum of some

104 APPENDIX C. RAMC-DC

global truncation parameter and the total length of the price history before si, using

instance i in zone z.

In Equation 1, P(̂ti,z,b ≥ ti) is found using a modified Kaplan Meier estimator,

Ŝ(ti, i,z,b), over the set of step lengths starting at each x ∈ X , using instance i, zone

z, and bid b. Thus, the confidence constraint requires P(̂ti,z,b ≥ ti)≥ Slb.

The cost approximation, C, function in Equation 2 is calculated by finding the true

cost when instance i is run in zone z, starting at x and with bid b, and is not terminated

before x+ tii . If early termination occurs, or the market price is initially higher than

the optimal bid, C represents the cost of running the task on the equivalent On-Demand

instance, in order to include some representation of the negative effects of out-of-bid

situations.

Since the empirical CDF in Equation 1 is a monotonically decreasing function of

the bid price (higher bid prices never imply shorter step lengths), locating the optimal

bid, or proving that one does not exist below the upper bound, is relatively simple.

Figures C.1a, C.1b, and C.1c show some preliminary results from simulations run

only on Spot instances, using random start dates. In all cases, success rates are above

the confidence constraint, average costs are low, and the number of instances that were

not initiated (the market price was above the bid) and thus need to be run on statically-

priced instance types, or placed in a waiting queue, is small.

C.2. RESULTS USING EARLIER SPOT PRICE TRACES 105

C.2 Results Using Earlier Spot Price Traces

Due to the fluctuating nature of Spot instance market prices, results from simulations

run at different times can be slightly different than those presented in Section 5.6. Thus,

in the section we will present an evaluation of RAMC-DC using simulations run with

Spot market prices from February through June, 2012.

C.2.1 Results

Results from the experiments described in the previous section are given below. These

results are split into three categories comparing: each cost estimation strategy; the re-

sults of different parameters using the scheduling and resource allocation strategy for

moldable jobs; and the results of different parameters using the scheduling and resource

allocation strategy for rigid jobs.

C.2.1.1 Moldable Jobs

Total costs for the set of moldable jobs for each checkpointing strategy, using various

values of the confidence level, Slb, and the short-long split parameter, tsplit , are shown in

Figure C.2. As seen in the figures, total costs tend to decrease as tsplit increases (with the

lowest costs occurring when every instance is started with its availability bid) and as the

confidence level decreases. Not implementing a checkpointing strategy tends to yield

the lowest cost for low values of tsplit . However, when tsplit ≥ 12, Hourly checkpointing

replaces no checkpointing as the lowest cost strategy. The total cost when using only

On-Demand instances was $15,438.40, reflecting savings of between 56% and 68.5%

when using Spot instances. For more concrete results, abbreviated tables providing an

example of the total costs for different combinations of Slb and tsplit are provided in

Table C.1 for moldable jobs and in Table C.2 for rigid jobs. Results in both tables

were observed using Hourly checkpointing, which was chosen due to the similarities

in total cost characteristics among all checkpointing strategies, and to provide a direct

comparison between both sets of jobs.

Although one may intuitively expect checkpointing to be useful in lowering total

cost and decreasing deadline breaches when running jobs in the face of the volatility

inherent in Amazon’s Spot instances, the results observed for moldable jobs suggest

that for lower values of tsplit , the added execution time resulting from checkpointing

106 APPENDIX C. RAMC-DC

Table C.1: Total costs for moldable jobs using an Hourly checkpointing strategy

Slb
tsplit 0 0.1 0.25 0.5 0.75 0.9 0.95

1 5186 5167 5242 5388 5596 6380 6802
3 5168 5207 5205 5275 5533 6398 6684
5 5145 5168 5197 5316 5540 6293 6609
7 5021 5104 5146 5291 5480 6012 6312
9 5000 5060 5111 5240 5505 5857 6039
11 4973 5045 5066 5228 5426 5845 6082

ALL 4867 4991 5034 5130 5179 5360 5473

Table C.2: Total costs for rigid jobs using an Hourly checkpointing strategy

Slb
tsplit 0 0.1 0.25 0.5 0.75 0.9 0.95

1 8045 8330 8366 8674 9152 10525 10984
3 7981 8318 8357 8699 9060 10222 10692
5 7918 8246 8306 8580 9039 10091 10483
7 7835 8202 8268 8504 8929 9601 9973
9 7805 8113 8190 8474 8860 9512 9765
11 7752 8030 8108 8273 8741 9382 9647

ALL 7723 7980 8044 8194 8449 8830 8970

1
3

5
7

9
11

all
0

0.2
0.4

0.6
0.8

1

4000

5000

6000

7000

8000

Evaluation Lower Bound (S
lb

)t
split

T
o

ta
l

C
o

s
t

($
U

S
)

(a) Hourly Checkpointing

1
3

5
7

9
11

all
0

0.2
0.4

0.6
0.8

1

4000

5000

6000

7000

8000

Evaluation Lower Bound (S
lb

)t
split

T
o

ta
l
C

o
s
t

($
U

S
)

(b) Rising Market Price Checkpointing

1
3

5
7

9
11

all
0

0.2
0.4

0.6
0.8

1

4000

5000

6000

7000

8000

Evaluation Lower Bound (S
lb

)t
split

T
o

ta
l

C
o

s
t

($
U

S
)

(c) No Checkpointing

Figure C.2: Total Costs (Moldable Jobs)

C.2. RESULTS USING EARLIER SPOT PRICE TRACES 107

1357911all

0
0.2

0.4
0.6

0.8
1

0.005

0.01

0.015

0.02

t
split

Evaluation Lower Bound (S
lb

)

D
e

a
d

li
n

e
 B

re
a

c
h

e
s

(a) Hourly Checkpointing

1357911all

0
0.2

0.4
0.6

0.8
1

0.005

0.01

0.015

0.02

t
split

Evaluation Lower Bound (S
lb

)

D
e
a
d

li
n

e
 B

re
a
c
h

e
s

(b) Rising Market Price Checkpointing

1357911all

0
0.2

0.4
0.6

0.8
1

0.005

0.01

0.015

0.02

t
split

Evaluation Lower Bound (S
lb

)

D
e

a
d

li
n

e
 B

re
a
c

h
e
s

(c) No Checkpointing

Figure C.3: Deadline Breaches (Moldable Jobs)

can increase the total cost more than that incurred when a job needs to be restarted

from scratch. However, for tsplit ≥ 12 hours, Hourly checkpointing becomes the lowest

cost option available for Slb ≤ 0.9, achieving the minimum cost of $4,867.15. Thus,

Hourly checkpointing on longer jobs, and with availability bids for all jobs, may be

a suitable method to keep both the impact of early terminations, and thus the total

cost, low. Furthermore, as seen in Figure C.7a, when Slb = 0.95 and tsplit = 1, having

no checkpointing strategy results in both the lowest cost and the lowest number of

deadline breaches, with a total cost of $6504.95 with deadline breaches in 0.65% of

all jobs, compared to $6802.12 and 0.735% with Hourly Checkpointing, and $6608.62

and 0.75% with Rising Market Price Checkpointing. This result arises from the fact

that the confidence level and bidding strategy both provide enough prevention of early-

terminations that the extra execution time from checkpointing serves to only increase

the cost.

The fraction of deadline breaches are given in Figure C.3 for each checkpointing

strategy and with different values of Slb and tsplit . Deadline breaches occur in a small

fraction of the jobs, with results showing deadline breaches ranging from 0.65 % to

1.76% of all jobs using our artificial deadline of twice the estimated execution time,

and early terminations ranging from 0.8% to 7.5%. Decreasing tsplit and increasing Slb

108 APPENDIX C. RAMC-DC

1
3

5
7

9
11

all
0

0.2
0.4

0.6
0.8

1

7000

8000

9000

10000

11000

Evaluation Lower Bound (S
lb

)t
split

T
o

ta
l
C

o
s
t

($
U

S
)

(a) Hourly Checkpointing

1
3

5
7

9
11

all
0

0.2
0.4

0.6
0.8

1

7000

8000

9000

10000

11000

Evaluation Lower Bound (S
lb

)t
split

T
o

ta
l
C

o
s
t

($
U

S
)

(b) Rising Market Price Checkpointing

1
3

5
7

9
11

all
0

0.2
0.4

0.6
0.8

1
7000

8000

9000

10000

11000

Evaluation Lower Bound (S
lb

)t
split

T
o

ta
l
C

o
s
t

($
U

S
)

(c) No Checkpointing

Figure C.4: Total Costs (Rigid Jobs)

both tend to decrease the number of deadline breaches and early terminations for fixed

Slb and tsplit , respectively. A closer analysis of early terminations and deadline breaches

with tsplit = 1 is given in Figure C.6a and with Slb = 0.95 in Figure C.6b. In addition, a

comparison of total costs for each checkpointing strategy when tsplit = 1 hour, and when

Slb = 0.95 are shown in Figures C.7a and C.7b, with these values chosen as total costs,

early terminations, and deadline breaches are subject to the greatest variation. When

tsplit = 1, the number of early terminations decreases from around 7% of all jobs to less

than 1% as Slb increases. When Slb = 0.95, increasing tsplit to encompass all execution

times increases the number of terminations by less than one percent to between 1.4%

and 1.65% for all checkpointing strategies.

C.2.1.2 Rigid Jobs

Total costs for the set of rigid jobs and for each checkpointing strategy are shown in

Figure C.4. In comparison to moldable jobs, total costs are significantly higher, reflect-

ing the fact that being able to search among a larger set of instance types allows for a

broader set of possible trade-offs between cost and execution time, as well as increasing

greatly the number of Spot instances with a potentially lower market price.

C.2. RESULTS USING EARLIER SPOT PRICE TRACES 109

1357911all

0
0.2

0.4
0.6

0.8
1

0.005

0.01

0.015

t
split

Evaluation Lower Bound (S
lb

)

D
e

a
d

li
n

e
 B

re
a

c
h

e
s

(a) Hourly Checkpointing

1357911all

0
0.2

0.4
0.6

0.8
1

0.005

0.01

0.015

t
split

Evaluation Lower Bound (S
lb

)

D
e
a
d

li
n

e
 B

re
a
c
h

e
s

(b) Rising Market Price Checkpointing

1357911all

0
0.2

0.4
0.6

0.8
1

0.005

0.01

0.015

t
split

Evaluation Lower Bound (S
lb

)

D
e
a
d

li
n

e
 B

re
a
c
h

e
s

(c) No Checkpointing

Figure C.5: Deadline Breaches (Rigid Jobs)

As with moldable jobs, total costs also tend to decrease as the confidence level is

decreased and as tsplit increases. Total costs when using only On-Demand instances

were $23,582.80, reflecting savings of between 54% and 68.2% when supplementing

with Spot instances. For higher confidence levels, total costs were minimal when us-

ing Rising Market Price checkpointing with tsplit encompassing all execution times and

with Slb = 0. For tsplit ≥ 12 hours, both Hourly and Rising Market Price checkpoint-

ing overtook None as lower cost strategies (see Figure C.7b, for example). However, in

contrast to moldable jobs, rigid jobs saw Rising Market Price checkpointing achieve the

lowest cost in most cases with an overall minimum of $7,508.87 compared to $8,008.79

with no checkpointing strategy, and $7,723.44 with Hourly checkpointing, yielding sav-

ings of 6% and 2.8%, respectively. These results stem from the lowered execution time

compared to Hourly checkpointing and the better fault tolerance compared to having

no checkpointing strategy. The fraction of jobs that surpassed their deadlines tends to

be lower for rigid jobs by up to 0.5% when compared to moldable jobs, as smaller

instances (and thus longer execution times) are never utilized.

The fraction of deadline breaches are given in Figure C.5 for each checkpointing

strategy and with different values of Slb and tsplit . Deadline breaches range from 0.5%

to 1.5% and early terminations from 1.5% when tsplit = 1 and Slb = 0.95 to 15.3%

110 APPENDIX C. RAMC-DC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Evaluation Lower Bound (S
lb

)

F
ra

c
ti

o
n

 o
f

J
o

b
s

Terminations, None

Breaches, None

Terminations, Hourly

Breaches, Hourly

Terminations, Rising

Breaches, Rising

(a) Terminations and Deadline Breaches vs.
Slb (tsplit = 1)

0 2 4 6 8 10 12 all
0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

t
split

F
ra

c
ti

o
n

 o
f

J
o

b
s

Terminations, None

Breaches, None

Terminations, Hourly

Breaches, Hourly

Terminations, Rising

Breaches, Rising

(b) Terminations and Deadline Breaches vs.
tsplit (Slb = 0.95)

Figure C.6: A comparison of early terminations and deadline breaches for tsplit = 1 or
Slb = 0.95 with moldable jobs

when tsplit = all and Slb = 0, with deadline breaches decreasing as Slb increases and

tsplit decreases.

C.2.2 Discussion

Market Price estimation outperformed all others when Slb was greater than 0.1, with

a growing increase in accuracy over other estimates as Slb increases. This increasing

disparity between cost estimates reflects the fact that other cost estimate methods rely

on the instance’s potential bid. As Slb is increased, the bid will also monotonically

increase, allowing for a wider range of past market prices to be taken into account when

calculating the average prices or the average costs. Since Spot prices currently exhibit

periods of little fluctuation punctuated by large price spikes, using data from periods of

different market prices in the estimation will be less indicative of the actual cost. For

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4000

5000

6000

7000

8000

9000

10000

11000

Evaluation Lower Bound (S
lb

)

T
o

ta
l

C
o

s
t

($
U

S
)

None, Moldable

Hourly, Moldable

Rising, Moldable

None, Rigid

Hourly, Rigid

Rising, Rigid

(a) Total Cost vs. Slb (tsplit = 1)

0 2 4 6 8 10 12 all
5000

6000

7000

8000

9000

10000

11000

t
split

T
o

ta
l
C

o
s
t

($
U

S
)

None, Moldable

Hourly, Moldable

Rising, Moldable

None, Rigid

Hourly, Rigid

Rising, Rigid

(b) Total Cost vs. tsplit (Slb = 0.95)

Figure C.7: A comparison of total costs for tsplit = 1 or Slb = 0.95 with rigid and
moldable jobs

C.2. RESULTS USING EARLIER SPOT PRICE TRACES 111

lower values of Slb, the range of bids which satisfy the confidence level is constricted

(when Slb = 0, the bid will always be equal to the market price) and thus cost estimation

methods utilizing past Spot prices will have a more accurate estimate. As expected, cost

estimates that do not take into account the current market price tended to perform more

poorly than others in each group.

Placing bids as a function of the execution time of a job appears to be inferior, in

terms of total cost, when compared to placing bids based on the past overall availability

of the instance using that bid, regardless of the length of the job (for example, see Figure

C.7b). When all bids are placed as availability bids, total costs decrease by up to nearly

20% compared to when tsplit = 1 hour. This decrease in cost is due to both the recent

stability of Spot instance market prices and the interchangeability of jobs and instances

inherent in such a bidding strategy. This interchangeability alleviates the necessity of

matching an execution time with a bid in order to help prevent early termination as

opposed to finding an overall availability bid, which can be used for all jobs rather than

primarily for the one the instance is originally intended for. Thus, backfilling jobs and

running them on idle instances can be better utilized with such bids due to the fact that

instances are matched with jobs regardless of the job’s execution time or the instance’s

bid, therefore decreasing the number of times a new instance is leased while another

can satisfy the deadline.

Regardless of checkpointing strategy or tsplit , total costs are lowest when Slb = 0.

Such a confidence level implies all bids are equal to the market price of the instance,

meaning that total costs are lowest when the bid is simply equal to the market price.

However, coupled with this decreased cost is a higher number of early terminations and

deadline breaches. For example, when tsplit = 1 hour, setting Slb equal to 0 results in an

increase of nearly 6% in the percentage of jobs that are early terminated compared to

setting Slb equal to 0.95 (Figure C.6a). For high confidence levels, e.g. Slb ≥ 0.9, the

total cost rises dramatically, especially with lower values of tsplit . As shown in Figures

C.7a and C.7b, when tsplit = 1 hour and the jobs are rigid, an increase of around 37.5%

from approximately $8,000 to $11,000 is observed compared to when Slb = 0 when

jobs are rigid, and around 30% from approximately $5,000 to $6,500 when jobs are

moldable.

Deadline breaches generally occur infrequently, with the number of jobs exceeding

their deadline never rising above 1.8%, regardless of parameters or checkpointing strat-

egy. For both sets of jobs and all checkpointing strategies, increasing the confidence

112 APPENDIX C. RAMC-DC

level and decreasing tsplit lowers the number of early terminations and, consequently,

the number of deadline breaches. The number of early terminations for rigid jobs are

generally lowest for Rising Market Price checkpointing, and, as illustrated in Figure

C.5, the percentage of deadline breaches using this strategy never rises more than 1%.

This occurs because Rising Market price checkpointing provides sufficient fault toler-

ance in the face of higher early termination rates for rigid jobs, while having a smaller

impact on the job’s execution time compared with Hourly checkpointing. Indeed, for

higher confidence values, Hourly checkpointing tends to increase the number of dead-

line breaches that occur, rather than decrease them. This stems from the fact that higher

values of Slb tend to provide enough prevention of early terminations that Hourly check-

pointing merely adds to the execution time of the job. In contrast, Hourly checkpointing

when using rigid jobs generally has the lowest number of deadline breaches due to the

inability to extend the job’s execution time on a smaller instance. Allowing moldability

in the jobs also provides a means to decrease the number of early terminations, with

around half as many early terminations compared to rigid jobs when tsplit encompasses

all jobs. This is due to the larger number of search options and the ability to lower a

job’s execution time on a larger instance.

C.3. IMPLEMENTATIONS 113

C.3 Implementations

C++ implementations of several algorithms introduced in RAMC-DC are presented

below.

Implementation C.1: Determine the evaluation score of a Spot instance based on job

length: S(j,v)
1 / * Get t h e s c o r e o f a Spot i n s t a n c e based on j o b l e n g t h , e t c . * /

2 double spotScore (SpotInstance* inst , job* current_job , bool availability_bid , double←↩
cur_date) {

3 unsigned int inst_idx = inst−>get_instance () ;

4 unsigned int zone_idx = inst−>get_avail () ;

5 pair<int , int> end_start = window_search (dates [inst_idx] [zone_idx] , cur_date , ←↩
truncate_value+current_job−>est_runtime) ;

6 int end_idx = end_start . first ;

7 int start_idx = end_start . second ;

8 if (end_idx == −1 | | start_idx == −1 | | dates [inst_idx] [zone_idx] [end_idx] − dates [←↩
inst_idx] [zone_idx] [start_idx] <= 0){

9 return −1.0;

10 }
11 double start = max (dates [inst_idx] [zone_idx] [end_idx] − truncate_value − ←↩

current_job−>est_runtime , dates [inst_idx] [zone_idx] [start_idx]) ;

12 double width = cur_date − start − current_job−>est_runtime ;

13 if (width <=0){
14 return −1.0;

15 }
16 if (availability_bid) {
17 return availability (inst−>get_bid () , inst−>get_avail () , inst−>get_instance () ,←↩

start_idx , end_idx) ;

18 }else{
19 vector<double> rand_dates = random_array1 (NUM_DATES , dates [inst_idx] [zone_idx] [←↩

start_idx] , dates [inst_idx] [zone_idx] [end_idx]) ;

20 return reliability (inst−>get_bid () , start_idx , end_idx , rand_dates , current_job←↩
−>est_runtime , inst−>get_instance () , inst−>get_avail ()) ;

21 }
22 }

Implementation C.2: Determine the availability score of an unleased Spot instance:

availability(〈i,z,b〉)
1 / * Re tu rn t h e a v a i l a b i l i t y (i n s t a n c e a v a i l a b l e / t o t a l t ime) o f t h i s b i d f o r a Spot ←↩

i n s t a n c e o f t y p e i n s t i d x i n zone z o n e i d x . * /

2 double availability (double bid , unsigned int zone_idx , unsigned int inst_idx , ←↩
unsigned int start_idx , unsigned int end_idx) {

3 double avail = 0 . 0 ;

114 APPENDIX C. RAMC-DC

4 for (unsigned int i = start_idx ; i < end_idx ; ++i) {
5 double mkt_price ;

6 mkt_price = prices [inst_idx] [zone_idx] [i] ;

7 if (mkt_price > bid) {
8 continue ;

9 }
10 avail += dates [inst_idx] [zone_idx] [i+1]−dates [inst_idx] [zone_idx] [i] ;

11 }
12 return avail / (dates [inst_idx] [zone_idx] [end_idx] − dates [inst_idx] [zone_idx] [←↩

start_idx]) ;

13 }

Bibliography

Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/

workload/, 2013. 1.4

Amazon. AWS Discussion Forums. https://forums.aws.amazon.com/thread.

jspa?threadID=76964, 2012. 4.2.2

Amazon. Aws Management Console. http://aws.amazon.com/console/, 2013a.

1.4

Amazon. Amazon EC2 Reserved Instance Marketplace - Beta. http://aws.amazon.

com/ec2/reserved-instances/marketplace/, 2013b. 2, 6

Amazon. Amazon EC2 Spot Instances. http://aws.amazon.com/ec2/

spot-instances/, 2013c. 2.1.4, 2.1.4.1, 2.2

Amazon. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/

ec2/, 2013d. 1.4, 2.1.2, 2.1.6, 2.2, 5.3.4

Amazon Web Services. Amazon Web Services Blog. URL http://tinyurl.com/

853xekg. 2.2.1

A. Andrzejak, D. Kondo, and S. Yi. Decision model for cloud computing under SLA

constraints. In IEEE International Symposium on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems (MASCOTS), pages 257–266. IEEE,

2010. 2.2.1, 2.2.2, B.1

M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patter-

son, A. Rabkin, I. Stoica, et al. A view of cloud computing. Communications of the

ACM, 53(4):50–58, 2010. 1.1, 1.1

115

http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
https://forums.aws.amazon.com/thread.jspa?threadID=76964
https://forums.aws.amazon.com/thread.jspa?threadID=76964
http://aws.amazon.com/console/
http://aws.amazon.com/ec2/reserved-instances/marketplace/
http://aws.amazon.com/ec2/reserved-instances/marketplace/
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/spot-instances/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://tinyurl.com/853xekg
http://tinyurl.com/853xekg

116 BIBLIOGRAPHY

O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. Deconstructing Amazon

EC2 spot instance pricing. In IEEE Third International Conference on Cloud Com-

puting Technology and Science (CloudCom), pages 304–311. IEEE, 2011. 2.1.4,

2.1.5.1, 2.2.1, 2.2.3, 2.2.4, 2, 4.2.1

BOINC. Catalog of boinc projects. http://boinc-wiki.ath.cx/index.php?

title=Catalog_of_BOINC_Powered_Projects., 2011. 2.2.2

M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien. Checkpointing strate-

gies for parallel jobs. In IEEE International Conference on High Performance Com-

puting, Networking, Storage and Analysis (SC), pages 1–11. IEEE, 2011. 2.2.2

R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models for resource

management and scheduling in grid computing. Concurrency and Computation:

Practice and Experience, 14(13-15):1507–1542, 2003.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya. Cloudsim:

a toolkit for modeling and simulation of cloud computing environments and evalua-

tion of resource provisioning algorithms. Software: Practice and Experience, 41(1):

23–50, 2011. ISSN 1097-024X. doi: 10.1002/spe.995. URL http://dx.doi.org/

10.1002/spe.995. 2.2.1, 2.2.3

J. Chen, C. Wang, B. Zhou, L. Sun, Y. Lee, and A. Zomaya. Tradeoffs between profit

and customer satisfaction for service provisioning in the cloud. In International

Symposium on High Performance Distributed Computing (HPDC), pages 229–238.

ACM, 2011. 1.3.1, 2.2.1, 2.2.4

N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and C. Krintz. See spot

run: using spot instances for MapReduce workflows. In USENIX Conference on Hot

Topics in Cloud Computing (HotCloud), 2010. 2.2.3

W. Cirne and F. Berman. A comprehensive model of the supercomputer workload. In

IEEE International Workshop on Workload Characterization (IISWC), pages 140–

148. IEEE, 2001. 5.2.1

C. Cycles. Cyclecloud Achieves Ludicrous Speed! (Utility Supercom-

puting with 50,000-cores). http://blog.cyclecomputing.com/2012/04/

cyclecloud-50000-core-utility-supercomputing.html, 2012. 2.1.4

http://boinc-wiki.ath.cx/index.php?title=Catalog_of_BOINC_Powered_Projects.
http://boinc-wiki.ath.cx/index.php?title=Catalog_of_BOINC_Powered_Projects.
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1002/spe.995
http://blog.cyclecomputing.com/2012/04/cyclecloud-50000-core-utility-supercomputing.html
http://blog.cyclecomputing.com/2012/04/cyclecloud-50000-core-utility-supercomputing.html

BIBLIOGRAPHY 117

A. Downey. A parallel workload model and its implications for processor alloca-

tion. In IEEE International Symposium on High Performance Distributed Computing

(HPDC), pages 112–123. IEEE, 1997. 5.2.1

C. Evangelinos and C. Hill. Cloud computing for parallel scientific HPC applications:

Feasibility of running coupled atmosphere-ocean climate models on Amazons EC2.

ratio, 2(2.40):2–34, 2008. 2.2

B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. Bowers, and M. Swift. More

for your money: exploiting performance heterogeneity in public clouds. In ACM

Symposium on Cloud Computing (SOCC), pages 20–28. ACM, 2012. 2.2.4, 1

D. Feitelson. Parallel workloads archive. http://www.cs.huji.acil/labs/

parallel/workload. 4.5

D. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. Economic models for allocating

resources in computer systems. Market-Based Control: A Paradigm for Distributed

Resource Allocation, pages 156–183, 1996.

High Scalability. Pinterest cut costs from $54 to $20 per hour by automatically shutting

down systems. http://tinyurl.com/azjjyn9, 2012. 2.1.1, 2.1.5.1

International Telecommuniation Union. Fg cloud technical report (parts 1 to 7). 2012.

1.1

A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. H. J. Epema. The

grid workloads archive. Future Generation Computing Systems, 24(7):672–686, July

2008. ISSN 0167-739X. doi: 10.1016/j.future.2008.02.003. URL http://dx.doi.

org/10.1016/j.future.2008.02.003. 2.2.1, 2.2.2

K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. Wasserman,

and N. Wright. Performance analysis of high performance computing applications

on the Amazon Web Services cloud. In IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), pages 159–168. IEEE, 2010. 2.2

N. Jain, I. Menache, J. Naor, and J. Yaniv. Near-optimal scheduling mechanisms for

deadline-sensitive jobs in large computing clusters. In ACM Symposium on Paral-

lelism in Algorithms and Architectures (SPAA), pages 255–266. ACM, 2012.

http://www.cs.huji.ac il/labs/parallel/workload
http://www.cs.huji.ac il/labs/parallel/workload
http://tinyurl.com/azjjyn9
http://dx.doi.org/10.1016/j.future.2008.02.003
http://dx.doi.org/10.1016/j.future.2008.02.003

118 BIBLIOGRAPHY

B. Javadi, R. Thulasiram, and R. Buyya. Statistical modeling of spot instance prices in

public cloud environments. In IEEE/ACM International Conference on Utility and

Cloud Computing (UCC), pages 219–228. IEEE, 2011. 2.2.1

Y. Lee, C. Wang, A. Zomaya, and B. Zhou. Profit-driven service request scheduling in

clouds. In IEEE/ACM International Conference on Cluster, Cloud and Grid Com-

puting (CCGrid), pages 15–24. IEEE, 2010. 2.2.4

L. Leslie, Y. C. Lee, P. Lu, and A. Zomaya. Exploiting performance and cost diversity

in the cloud. IEEE International Conference on Cloud Computing (CLOUD), 2013.

To appear. 3

H. Liu. Cutting MapReduce cost with spot market. In USENIX Workshop on Hot Topics

in Cloud Computing (HotCloud), pages 1–5, 2011. 2.1.4.2, 2.2.2, 2.2.3, B.1

H. Liu and D. Orban. Cloud MapReduce: a MapReduce implementation on top of a

cloud operating system. In IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing (CCGrid), pages 464–474. IEEE, 2011. 2.2.3

M. Mao and M. Humphrey. A performance study on the VM startup time in the cloud.

In IEEE International Conference on Cloud Computing (CLOUD), pages 423–430.

IEEE, 2012. 2.1.5.2, 5.2.2

M. Mattess, C. Vecchiola, and R. Buyya. Managing peak loads by leasing cloud in-

frastructure services from a spot market. In IEEE International Conference on High

Performance Computing and Communications (HPCC), pages 180–188. IEEE, 2010.

2.2.3

M. Mazzucco and M. Dumas. Achieving performance and availability guarantees with

spot instances. In IEEE International Conference on High Performance Computing

and Communications (HPCC), pages 296–303. IEEE, 2011. 2.2.3, 2, 4.2.1

P. Mell and T. Grance. The nist definition of cloud computing (draft). NIST special

publication, 800:145, 2011. 1.1

M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel. Amazon S3 for science grids:

a viable solution? In International Workshop on Data-Aware Distributed Computing

(DADC), pages 55–64. ACM, 2008. 2.2

BIBLIOGRAPHY 119

PlanForCloud. AWS Reserved Instances vs On-Demand:

Breakeven point. http://blog.planforcloud.com/2013/02/

aws-reserved-instances-vs-on-demand.html/, 2013. 2

F. Popovici and J. Wilkes. Profitable services in an uncertain world. In IEEE/ACM

Conference on Supercomputing (SC), page 36. IEEE, 2005. 2.2.4

M. Rahman. Risk aware resource allocation for clouds. 2011. Technical Report. 2.2.3

S. Shang, J. Jiang, Y. Wu, G. Yang, and W. Zheng. A knowledge-based continuous dou-

ble auction model for cloud market. In IEEE International Conference on Semantics

Knowledge and Grid (SKG), pages 129–134. IEEE, 2010. 2.2.1

Y. Song, M. Zafer, and K. Lee. Optimal bidding in spot instance market. In IEEE

International Conference on Computer Communications (INFOCOM), pages 190–

198. IEEE, 2012. 2.2.1

B. Sotomayor, K. Keahey, and I. Foster. Combining batch execution and leasing us-

ing virtual machines. In International Symposium on High Performance Distributed

Computing (HPDC), pages 87–96. ACM, 2008. 5.2.2

M. Taifi, J. Shi, and A. Khreishah. Spotmpi: a framework for auction-based HPC

computing using amazon spot instances. Algorithms and Architectures for Parallel

Processing (ICA3PP), pages 109–120, 2011. 2.2.3

A. Toosi, R. Calheiros, R. Thulasiram, and R. Buyya. Resource provisioning policies

to increase IaaS provider’s profit in a federated cloud environment. In IEEE Interna-

tional Conference on High Performance Computing and Communications (HPCC),

pages 279–287. IEEE, 2011. 2.2.4

K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos, D. Paparas, and A. Delis. Flex-

ible use of cloud resources through profit maximization and price discrimination. In

IEEE International Conference on Data Engineering (ICDE), pages 75–86. IEEE,

2011. 2.2.4

University of Western Sydney. Spot Price Archive. http://spot.scem.uws.edu.au,

2013. 1.4, 4.5

http://blog.planforcloud.com/2013/02/aws-reserved-instances-vs-on-demand.html/
http://blog.planforcloud.com/2013/02/aws-reserved-instances-vs-on-demand.html/
http://spot.scem.uws.edu.au

120 BIBLIOGRAPHY

W. Voorsluys and R. Buyya. Reliable provisioning of spot instances for compute-

intensive applications. In IEEE International Conference on Advanced Information

Networking and Applications (AINA), pages 542–549. IEEE, 2012. 1.3.1, 2.2.3, 5.2.1,

5.2.2, B.1

W. Voorsluys, S. Garg, and R. Buyya. Provisioning spot market cloud resources to

create cost-effective virtual clusters. International Conference on Algorithms and

Architectures for Parallel Processing (ICA3PP), pages 395–408, 2011. 2.2.3, B.1

E. Walker. Benchmarking Amazon EC2 for high-performance scientific computing.

Usenix ;Login, 33(5):18–23, 2008. 2.2

D. Warneke and O. Kao. Resource pricing game in geo-distributed clouds. IEEE Con-

ference on Computer Communications (INFOCOM), 2013.

Wired. Amazon Cloud Powered by Almost 500,000 Servers, 2012. URL http://www.

wired.com/wiredenterprise/2012/03/amazon-ec2/. 1

Xen. Xen.org, the home of the Xen project. http://www.xen.org/, 2013. 2.1

S. Yi, D. Kondo, and A. Andrzejak. Reducing costs of spot instances via checkpointing

in the Amazon Elastic Compute Cloud. In IEEE International Conference on Cloud

Computing (CLOUD), pages 236–243. IEEE, 2010. 2.2.2

S. Yi, A. Andrzejak, and D. Kondo. Monetary cost-aware checkpointing and migration

on Amazon Cloud spot instances. In IEEE Transactions on Services Computing

(TSC), pages 236–243. IEEE, 2011. 2.2.2

L. Youseff, K. Seymour, H. You, J. Dongarra, and R. Wolski. The impact of par-

avirtualized memory hierarchy on linear algebra computational kernels and soft-

ware. In ACM International Symposium on High Performance Distributed Com-

puting (HPDC), pages 141–152. ACM, 2008. 2.2

M. Zafer, Y. Song, and K. Lee. Optimal bids for spot VMs in a cloud for deadline

constrained jobs. In IEEE International Conference on Cloud Computing (CLOUD),

pages 75–82. IEEE, 2012. 2.2.1, 2

http://www.wired.com/wiredenterprise/2012/03/amazon-ec2/
http://www.wired.com/wiredenterprise/2012/03/amazon-ec2/
http://www.xen.org/

BIBLIOGRAPHY 121

Q. Zhang, E. Gürses, R. Boutaba, and J. Xiao. Dynamic resource allocation for spot

markets in clouds. In USENIX Conference on Hot Topics in Management of Inter-

net, Cloud, and Enterprise Networks and Services (Hot-ICE), pages 1–1. USENIX

Association, 2011. 2.2.1, 2.2.3

H. Zhao, M. Pan, X. Liu, X. Li, and Y. Fang. Optimal resource rental planning for

elastic applications in cloud market. In IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 808–819. IEEE, 2012. 1.3.1, 2.2.3

	Copyright_Statement
	leslie_lm_thesis.pdf
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Implementations
	1 Introduction
	1.1 Cloud Computing
	1.2 Motivation
	1.3 Contributions
	1.3.1 Profit-Maximizing Resource Provisioning for Instance Requests (RAMP)
	1.3.2 Cost-Minimizing Resource Provisioning for Deadline-Constrained Jobs (RAMC-DC)

	1.4 Materials
	1.5 Thesis Outline

	2 Background and Assumptions
	2.1 Performance and Cost Diversity in Amazon EC2
	2.1.1 Purchasing Options
	2.1.2 Instance Types and Availability
	2.1.3 Storage
	2.1.4 Characteristics of Spot Instances
	2.1.4.1 Bidding
	2.1.4.2 Termination
	2.1.4.3 Market Diversity

	2.1.5 Spot vs. On-Demand
	2.1.5.1 Cost vs. Volatility
	2.1.5.2 Acquisition Times

	2.1.6 Global Expansion and Price Reduction

	2.2 Literature Review
	2.2.1 Statistical Analysis of Spot Prices & Bidding Strategies
	2.2.2 Fault Tolerance
	2.2.3 Scheduling & Resource Allocation
	2.2.4 Profit Maximization

	2.3 Assumptions

	3 Cost Estimation
	3.1 Instance Models
	3.2 Analysis of Total Costs
	3.3 Cost Estimation Methods
	3.4 Evaluation of Estimations

	4 RAMP
	4.1 Overview
	4.1.1 Request Models
	4.1.2 Problem Formulation

	4.2 Reliable Instance Acquisition
	4.2.1 Instance Reliability
	4.2.2 Bidding Strategy

	4.3 Profit Maximization
	4.3.1 Profit Estimation
	4.3.2 Cost Approximation
	4.3.3 Request Fulfillment

	4.4 Evaluation Overview
	4.5 Experimental Setup
	4.6 Results
	4.6.1 Early-termination rates
	4.6.2 Varying the amount charged
	4.6.3 Varying instance reliability
	4.6.4 Varying the penalty

	4.7 Discussion

	5 RAMC-DC
	5.1 Overview
	5.1.1 Job Models
	5.1.2 Problem Formulation

	5.2 Modeling Job Execution
	5.2.1 Estimating Job Execution Time
	5.2.2 Incorporating Resource Volatility
	5.2.3 Estimating the Cost of Job Execution

	5.3 Dynamic Resource Provisioning
	5.3.1 Two-Tier Instance Evaluation
	5.3.2 Bidding
	5.3.3 Resource Provisioning
	5.3.4 Identification of New Resources
	5.3.5 Job Scheduling and Resource Deprovisioning

	5.4 Evaluation Overview
	5.5 Experimental Setup
	5.6 Results
	5.6.1 Total Costs
	5.6.2 Deadline Breach Rates
	5.6.3 Early-Termination Rates
	5.6.4 Average Deadline Exceeded

	5.7 Discussion

	6 Conclusion
	A Cost Estimation
	A.1 Implementations

	B RAMP
	B.1 Total Profits Assuming Linear Demand
	B.2 Implementations

	C RAMC-DC
	C.1 Preliminary Results Using Amdahl's Law
	C.1.1 Evaluation and Bidding

	C.2 Results Using Earlier Spot Price Traces
	C.2.1 Results
	C.2.1.1 Moldable Jobs
	C.2.1.2 Rigid Jobs

	C.2.2 Discussion

	C.3 Implementations

	Bibliography

