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Abstract

Madu Prasad Hemakumara Doctor of Philosophy (Research)
The University of Sydney March 2013

UAV Parameter Estimation with
Gaussian Process Approximations

Unmanned Aerial Vehicles (UAVs) provide an alternative to manned aircraft for risk
associated missions and applications where sizing constraints require miniaturized
flying platforms. UAVs are currently utilised in an array of applications ranging
from civilian research to military battlegrounds. A part of the development process
for UAVs includes constructing a flight model. This model can be used for modern
flight controller design and to develop high fidelity flight simulators. Furthermore, it
also has a role in analysing stability, control and handling qualities of the platform.
Developing such a model involves estimating stability and control parameters from
flight data. These map the platform’s control inputs to its dynamic response. The
modeling process is labor intensive and requires coarse approximations. Similarly,
models constructed through flight tests are only applicable to a narrow flight envelope
and classical system identification approaches require prior knowledge of the model
structure, which, in some instances may only be partially known.

This thesis attempts to find a solution to these problems by introducing a new sys-
tem identification method based on dependent Gaussian processes. The new method
would allow for high fidelity non-linear flight dynamic models to be constructed
through experimental data. The work is divided into two main components. The
first part entails the development of an algorithm that captures cross coupling be-
tween input parameters, and learns the system stability and control derivatives. The
algorithm also captures any dependencies embodied in the outputs. The second part
focuses on reducing the heavy computational cost, which is a deterrent to learning
the model from large test flight data sets. In addition, it explores the capabilities
of the model to capture any non-stationary behavior in the aerodynamic coefficients.
A modeling technique was developed that uses an additive sparse model to combine
global and local Gaussian processes to learn a multi-output system. Having a com-
bined approximation makes the model suitable for all regions of the flight envelope.
In an attempt to capture the global properties, a new sampling method is introduced
to gather information about the output correlations. Local properties were captured
using a non-stationary covariance function with KD-trees for neighbourhood selec-
tion. This makes the model scalable to learn from high dimensional large-scale data
sets.
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The thesis provides both theoretical underpinnings and practical applications of this
approach. The theory was tested in simulation on a highly coupled oblique wing
aircraft and was demonstrated on a delta-wing UAV platform using real flight data.
The results were compared against an alternative parametric model and demonstrated
robustness, improved identification of coupling between flight modes, sound ability
to provide uncertainty estimates, and potential to be applied to a broader flight
envelope.
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Chapter 1

Introduction

The aim of this thesis is to develop a non-parametric Unmanned Aerial Vehicle (UAV)

system identification method to learn a comprehensive model of the aerodynamic

parameters. The thesis also aims to demonstrate and test the algorithms using a real

UAV.

As a robotic platform, UAVs provide an alternative to manned aircraft for risk as-

sociated missions, and for applications where sizing constraints require small scale

flying platforms. They also help to reduce the cost and increase operational capa-

bilities of aerial missions. Fixed wing UAVs are currently in use in a wide range of

areas from civilian research to military applications. Civilian applications include

exploration, surveying, and search and rescue missions. Military applications include

reconnaissance, target tracking, and as a communication relay.

One of the first stages in building an aircraft is to construct a mathematical model to

simulate the flight. These can be constructed from aerodynamic, inertial and struc-

tural characterisations of the aircraft’s individual component elements such as the

fuselage, wing and empennage. This helps to analyse stability, control and handling

qualities of the platform. The models can also be used for modern flight controller

design, which rely on feedback of the state vector. They characterise the applied

forces and moments acting on the platform arising from aerodynamics and propul-

sion. The thrust forces and moments from propulsion can be obtained by performing
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ground tests. Thus, learning involves only knowing the forces and moments result

from aerodynamic characteristics and control variables. The aerodynamic model is

based on first principles such as using the finite wing theory, or by using empirical

data of a similar platform. More complex models may involve wind-tunnel tests and

numerical methods such as computational fluid dynamics. Estimates of the mass and

inertia typically involve coarse approximations. The more complex structural models

are based on NASTRAN [11] calculations. Thus, constructing a mathematical model

for a flight is a modular systematic process and is prone to error. For UAVs there

might also be significant modifications done to the platform that might cause the

vehicle inertia characteristics to change on a frequent basis depending on the mission.

Hence, it is not always practical to perform physical based modeling.

In order to learn a more comprehensive realistic model, flight tests can be conducted to

learn the system dynamics from the imperfect observations or measurements collected.

This is known as aircraft system identification. Here, test maneuvers are designed

to excite the dynamic response modes of the aircraft so a dynamic model can be

extracted from the logged flight data. This involves designing test maneuvers to

excite the dynamic response modes and regressing the collected flight data into a

hypothesized model [35]. To construct a complete model the vehicle parameters are

identified for different speeds as well as different dynamic pressures.

UAVs also have a shorter development cycle compared to manned aircraft. For in-

stance, a UAV could take 6 - 12 months to design and develop, as opposed to 5 - 10

years for a manned aircraft. This shorter time-frame usually precludes physical based

modeling approach. As a result, the flight control system can be entirely dependent

on the system identification flights made at the early stages of flight testing. This has

been demonstrated in both fixed- and rotary-wing UAVs, namely Northrop-Grumman

vertical takeoff UAV (VTUAV) [13], NASA’s Pathfinder and Yamaha R-50 [76].

The aim of this thesis is to provide an understanding of complex aerodynamic mod-

els, and to define where these existing models can be improved. Also, the thesis

aims to develop algorithms to address these issues and provide validation through

demonstrating by learning a model for a real UAV.
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1.1 Motivations

This thesis is motivated in two ways. First, it is to bridge the gap in learning non-

traditional flight models with cross coupling between longitudinal and lateral flight

modes. Second, it is the general problem of utilizing a non-parametric system iden-

tification method to learn aerodynamic models.

Airplane platforms with either delta wing configuration or an oblique wing have high

level of cross coupling between its longitudinal and lateral dynamics. These conditions

are required when designing a platform that has to travel at high speeds and longer

ranges with minimal fuel consumption. The design of the platform with an increase

in wing sweep will decrease the aerodynamic (lift induced) drag. This brings an

operational advantage for the given set of mission requirements. Nevertheless, these

platforms suffer when it comes to control. They lack directional stability and roll-

pitch coupling. Thus, in order to design a control system for such platforms, a

good understanding of the dynamics is required. It must also consider and learn the

aforementioned factors of the coupled flight dynamics.

The existing methods in classical system identification require prior knowledge of the

model structure, which in some instances may only be partially known. The goodness

of this structure is dependent on how much time and effort was invested by the design

engineer. A limited model structure will restrict its applicability to a narrow band

of the flight envelope. This restriction can be alleviated by using a non-parametric

system identification technique.

Hence, the motivation of this work is to address these issues by introducing a new

system identification method based on dependent Gaussian processes.

1.2 Related Fields

This work is primarily drawn from both the robotics and aerospace communities. A

brief overview of the main areas is provided here. A more in-depth review is given in

the following chapters.
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System Identification

System identification refers to the processes of learning a mathematical model for a

system. It uses statistical methods from mathematics to construct models for dynamic

systems from measured data. For UAVs or aircraft this is done by performing flight

tests and using the observations collected to regress into a hypothesized model [35].

The models can describe the behavior of the system in either the time or frequency

domain. There are two classes of problems here; one is when the system process can

be derived from first principles such as using Newton’s equations of motion and the

other is when it is not possible to resort to theoretical derivations. This is due to

practical reasons and the nature of increased complexity to model such a system. A

perfect example for this is an aerodynamic model for an aircraft or a UAV which has

to account for many factors that vary across the flight regime.

The approach when it comes to such problems is to start from external inputs to

the system and measurements of its behavior to determine the relationship between

them. The model can be developed by either using some knowledge of the system or

by using no-prior information about the system [35]. If there is prior knowledge about

the system then a model structure can be assumed and system identification becomes

a parameter estimation problem. When it is not known, a model can be constructed

by using advanced statistical techniques. This class of problems are classified as

black box models. Primarily they consist of algorithms that come from the machine

learning community.

The quality of the data collected has a major impact on the resultant model. This

includes optimal experimental design to gather the most informative data to fit the

models [25]. The experiments are designed by evaluating statistical criteria to maxi-

mize the information content. For aircraft and UAVs, this involves exciting the system

modes such that the sensitivities of the model outputs to the parameters are high and

the correlation among the parameters are low [79].
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Machine Learning

Machine learning is a discipline concerned with developing algorithms that take em-

pirical data as inputs and to use that information to make future predictions [5]. It is

also used to recognise complex patterns and make decisions based on prior input data.

In this work a machine learning approach is combined with the known equations of

flight mechanics to estimate the aircraft state. Hence, the algorithms developed are

only used to model a part of the system. This reduces the complexity of the model

that has to be learned. In general, this class of problem is known as non-parametric

techniques. Most of the existing algorithms developed have used techniques such as

neural networks [42] and apprenticeship learning [12].

1.3 Main Contributions

The thesis has several contributions in both theoretical and practical applications in

robotics. They have been presented in [26], [27] and [28]. The fundamental contribu-

tions of this thesis are as follows:

• The theoretical development of a new system identification method for aircraft.

The system parameters are identified by modeling them as Dependent Gaus-

sian Processes (DGPs). The non-parametric nature of the approach enables it

to capture a wide range of dynamics. Therefore, prior knowledge of the model

structure is not required. The ability to capture dependencies through cross

coupling terms enables the models to be applicable to a broader flight envelope

than existing methods saving significant costs on flight testing. In addition, it

has the inherent capability to handle noise and biased data. The predictions

from the model also come with uncertainty estimates which can be used in ma-

neuver design for system identification and for flight controller design. Finally,

it is not entirely a black-box prediction model as opposed to techniques such as

neural networks.
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• The work demonstrates the dependencies for which the method was explicitly

chosen, its robustness to unmodeled disturbances and quantify improvements

over an alternative least squares estimator. Also, an in-depth analysis to identify

parameters for the highly coupled AD-1 oblique wing aircraft was presented.

The analysis was performed using a high fidelity flight simulator.

• To address the increase in computational cost, a new sampling method was

introduced for DGPs. This is based on a mutual information criterion that can

sample features from data to describe output correlations. Hence, it requires

fewer features to describe the data set.

• The model was also extended to capture any non-stationary properties in aero-

dynamics. To tackle this problem while retaining the desired properties of DGP,

an additive sparse Gaussian process model was proposed. This combines both

short and long length-scale phenomena for a multi-output GP.

• In simulation, a quantitative comparison of the performance was done with a

classical system identification method. The models developed were then demon-

strated with several examples using real flight test data from a UAV. The results

were analysed and any improvements were noted. The experiments also identi-

fied implementation challenges.

1.4 Overview of the Thesis

This thesis is structured as follows:

Chapter 2 introduces the problem of system identification and provides a literature

review on existing methods. It lays down the groundwork of flight dynamic model-

ing and system identification theory. The elements of system identification such as

experiment design, data collection, model structure selection, parameter estimation

and model validation is discussed. The general mathematical model form for a UAV

is reviewed. It shows how the system identification can be reduced down to an aero-

dynamic parameter estimation problem. It reviews the theory related to parameter
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estimation and shows a classical technique for model regression. In addition, an intro-

duction to non-parametric Bayesian regression and the basic theory behind Gaussian

processes is presented.

Chapter 3 presents Gaussian process modeling of the flight dynamics. It gives a

background on how GPs have been used in dynamic modeling. Then the chapter

introduces how to incorporate Dependent Gaussian Processes (DGPs) to learn an

aerodynamic model. It shows the advantage of using DGPs for modeling as opposed

to GPs. It also discusses how this can be incorporated in the overall identification

process. Lastly, the flight testing procedure for parameter identification is elaborated

and model validation is performed in a comprehensive simulation. The simulator uses

a complex aircraft model with a high level of parameter cross coupling to demonstrate

the advantage of using the proposed algorithm. These results are then compared to

a classical system identification method. They emphasise the benefit to be gained by

not having to know an a prior model structure.

Chapter 4 develops an algorithm to make an approximation on the multi-output

GP. It gives an overview of GP approximation techniques and presents the theory for

a combined local and global approximation. In doing so it also introduces a sampling

strategy for multi-output GPs based on a mutual information criterion. Additionally,

simulations were done to demonstrate the performance of mutual information based

sampling verses the well known entropy sampling. It shows the improvement in

reduction in prediction error with less number of sample points using the proposed

algorithm. The results are then compared for global GP, local GP and the combined

approximation to illustrate the benefits of having a combined approximation. It

shows why the two individual components are important. Finally, a discussion of the

performance of the approximation compared to the full DGP model is provided.

Chapter 5 presents experimental results of algorithm testing with data from real

UAV flight tests. The platform, instrumentation and data collection procedure is

presented. The results show the model performance of the two algorithms described

in Chapters 3 and 4. These were shown as two separate experiments. The first ex-

periment is to test the DGP algorithm provided in Chapter 3 to model aerodynamic
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coefficients. It shows the measurands, the procedure for flight testing and model

training, testing of the learned model and the experimental results of the estimated

aerodynamic coefficients. In addition, details of how to estimate the aircraft states

from the aerodynamic coefficients is provided along with results. The second exper-

iment is done to test the model performance of using the approximate multi-output

GP proposed in Chapter 4. Results of estimating several test flights are shown to test

the robustness.

Chapter 6 concludes the thesis. A note on using the proposed models for control

is given. Finally, it summarises the contributions made and provides suggestions for

future research directions.



Chapter 2

Background

This chapter presents the background and theory that forms the technical basis of this

thesis work. An overview of UAV system identification is presented followed by the

technical background. This provides a context of the ideas and techniques presented

in the subsequent chapters. The fundamentals and the basic theory behind UAV sys-

tem identification are presented. Furthermore, the following subsections develop the

underlying principles of Bayesian regression, in particular Gaussian processes which

was explored as a possible solution to non-parametric UAV system identification.

2.1 UAV System Identification

A UAV can be considered as an input-output system (see Figure 2.1). The vehicle

dynamics are excited by the control inputs, a traditional UAV has ailerons δa, elevator

δe, rudder δr and throttle δT as inputs. The ailerons are used for roll control, elevator

is used for pitch control, rudder is used for yaw control and throttle is to control the

speed. The UAVs response to these inputs can be recorded by an onboard computer.

The flight dynamics that are recorded and taken into consideration are: translational

and angular velocities, Euler angles, aerodynamics angles and accelerations. The dy-

namic model then relates the control inputs of the vehicle to its response. In system
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Figure 2.1: System identification overview.

identification, flight tests are conducted to collect observation data in-order to accu-

rately model the flight dynamics. This involves designing test maneuvers to excite

the dynamic response modes and regressing the collected flight data into a hypothe-

sized model. To construct a complete model the vehicle parameters are identified for

different speeds as well as different dynamic pressures. These models constructed can

then be used for modern flight controller design, which rely on feedback of the state

vector. They can also be used to develop high fidelity flight simulators. In addition,

the system outputs can be used to analyse stability, control and handling qualities of

the platform.

The parameters to be identified are also known as stability and control derivatives

[1], which are measures of how particular forces and moments on an aircraft change

as other parameters related to stability (rotational rates, angle of attack, etc) and

control (control inputs) change. The first step in identifying parameters is to pos-

tulate the equations governing the flight dynamics and then design experiments to

obtain measurements of those variables. The aircraft motion can be described by

the Newton’s second law of motion in translational and rotational forms. A detailed

derivation of the dynamics is given in Section 2.3. A summary of the flight dynamics

in vector form are

mV̇b + ωb ×mVb = FG + FT + FA(Vb,ωb,ub,ϑ) (2.1.1)

Iω̇b + ωb × Iωb = MT + MA(Vb,ωb,ub,ϑ) (2.1.2)
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where m is the UAV mass, V and ω are translational and angular velocity vector

components, u is the control vector, subscript b represent they are components from

the UAV body axis. The right side of the equations represent applied forces and

moments. The forces result from gravity (FG), thrust (FT ), and aerodynamics (FA).

Applied moments are a result of thrust (MT ) and aerodynamics (MA). The quantity

ϑ are parameters that specify aerodynamic characteristics of the UAV.

UAV system identification can be defined as the determination of unknown parame-

ters ϑ contained in the model structure from input and output measurements. For

practical application this prior model structure is assumed to be known and the iden-

tification problem then reduces to parameter estimation. There are several steps

to be taken; model postulation, experimental design, data compatibility analysis,

collinearity diagnostics, model structure selection, parameter estimation and model

validation [35]. These are necessary to maintain integrity and the relevance of the

data for the hypothesised model structure. A block diagram of this process is given

in Figure 2.2.

Prior Model Structure. This is the flight model structure based on prior knowl-

edge about the UAVs flight dynamics. These can be obtained by an empirical model

of a similar UAV. The prior knowledge about the model structure will influence the

experiments to be designed to learn those parameters. By knowing the underlying

structure it can be used to design test maneuvers to excite the required model pa-

rameters.

Experiment Design. This includes designing the flight test maneuvers, instrument

selection and choosing the right flight conditions to conduct the experiment. The

maneuvers influence the response of the UAV. They are designed to collect high sig-

nal to noise ratio data sets and to excite the set of parameters to be learned. The

instrumentation is done to choose the correct sensors to make recordings of the input

and output variables of the system. These can be logged into an on-board flight com-

puter, which can be used for post processing. The monitored input variables include

all the control inputs such as the throttle positions and control surface deflections.

The outputs include translational and angular velocities, accelerations, Euler angles,
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Figure 2.2: System identification block diagram.

and magnitude (true airspeed) and direction (angle of attack and angle of sideslip)

of the air-relative velocity. In addition, to record the flight condition, the air density

is also logged.

Data Compatibility. The data collected from an experiment may not always be

correct. In many practical instances they may contain systematic errors or high

level of noise. An analysis can be conducted to check whether the data collected

for training is accurate. This involves reconstructing the aircraft state response with

known rigid-body kinematic equations and comparing the reconstructed response with

the measured responses. This is further discussed in the Section 5.2.1.

Model Structure Selection. With some prior knowledge about the model structure

and the data collected the final form of the model structure can be determined.

This might involve choosing an appropriate set of polynomial expansion terms. The

model shall not be over parametrized but must fit all the data well. A more complex

model can always fit the data better but may generalize poorly. Hence, the structure

should be chosen such that it supports the estimation of all the unknown parameters

associated with the model terms as well as giving the model good prediction capability.

Parameter Estimation. This is one of the most important steps in the identification
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process. Its where the estimation technique learns the parameters from the logged

flight data. The most widely used technique here is to use a parametric technique such

as the equation error or output error method. More about these various techniques

are given in Section 2.2.

Collinearity Diagnostics. Data collinearity occurs when several regressors are said

to be linearly dependent. In this case it is difficult to assign a unique value for each

parameter to represent it’s contribution. Hence, this would make the parameter iden-

tification problem ill-conditioned. In practice they might be almost linearly dependent

but may not be a perfect fit, but identifying the slight changes and differentiating

each is a difficult task. Operationally, when data collinearity exists the parameter

estimation process will produce inaccurate parameter estimates with large variances

or the estimation process itself may fail.

Model Validation. This is the last step in the system identification process. It

tests if the identified model has good prediction capability for different flight data

sets. The measured input data is applied to the model to generate the predicted

responses. These are then compared with the measured values. The consistency in

predictions across various maneuvers confirms the parameters identified were a good

representation of the system.

2.2 Related Work

System identification techniques use time response or frequency response data from

flight tests to produce flight models. These are accurate in the region of the collected

data points. However, the performance degrades outside of the operational neighbor-

hood. In addition, it should be noted that the frequency domain characterization can

only be done by linearizing the dynamics.

There has been work done on developing models using both parametric and non-

parametric approaches. Parametric approaches involve time domain techniques [29]

such as ordinary least squares [35], maximum likelihood [49], equation-error [33] and
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output error [47] methods. There are also parametric approaches based on frequency

domain methods [34, 50, 52, 77]. The advantage of these approaches is that one

can incorporate prior knowledge about the structure of the parameterization into the

estimation formulation. If this prior knowledge is correct, the generalization error

of parametric estimation will outperform any non-parametric method. In addition,

during the model construction process it is possible to observe the responsiveness of

each parameter independently which is not possible using non-parametric techniques.

Nevertheless, in order to regress the observations a model structure is required. It

is often the case that designing a good parametric model structure may require sig-

nificant commitment of time and effort by the design engineer. A limited model

structure will restrict its applicability to a narrow band of the flight envelope. There-

fore, a good physical understanding of the system being modeled is required. It might

also be necessary to start with a good initial guess for the identified parameters. For

new unconventional UAVs this might not work as it is not possible to make initial as-

sumptions without knowing the platform dynamics. But once the model structure is

known the parameters could be identified with ease using parametric techniques. The

problem then reduces to determining the values for the unknown coefficients. Hence,

it can also be thought of as a parameter estimation problem. Such restrictions can

be alleviated by using a non-parametric system identification technique.

In [90] two autoregressive with exogenous input (ARX) models were identified and

were used for control design. The models identified were to estimate pitch and roll

angles and are dependent only on the elevator and aileron respectively. This is only

applicable during steady flight conditions where the flight performed loitering ma-

neuvers. Also, the identified model can only estimate two states of the flight hence

it is not a complete representation of the system. In addition, it will not be appli-

cable if there is cross coupling between input and output parameters. The proposed

technique does not have these limitations.

There have been several instances where non-parametric methods were used to model

aircraft. This is concerned with characterizing only the measured input-output be-

havior of the UAV dynamics and not its equations of motion. They can be modeled
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in time domain or frequency domain as well. In either case no assumptions about the

model structure is required. In [2, 12] apprenticeship learning was applied to learn the

model for a robotic helicopter which was designed to perform aerobatic maneuvers.

The results demonstrated that it is able to learn a flight model along a complex flight

trajectory. Nevertheless, the model is confined to operate only within that trained

trajectory. Neural Networks (NN) [42] have also been applied to the problem of air-

craft system identification. In [4] they were used to model wing bending moment,

torsional loads and control surface hinge moments. In [10] they were used to drive

the state error between a reference flight model and the actual aircraft to zero. How-

ever they have not been used to construct a complete flight model for an aircraft.

Gaussian Processes (GPs) have been applied to the problem of system identification

from training data in [24, 36]. The work in [36] demonstrated GPs and reinforcement

learning could be used for system identification and control of a blimp. Here a GP

model was used in conjunction with a non-linear dynamic model to learn the state

errors. The approach is limited to identifying single independent outputs and hence

can not capture dependencies between the identified parameters. The experiments

were also conducted in a lab environment without wind disturbance.

The US Army and NASA Ames research centre jointly developed a modeling and soft-

ware technique called the Comprehensive Identification from Frequency Responses

(CIFER) [78] for system identification based on the non-parametric frequency re-

sponse. It extracts a complete set of Multi-Input Multi-Output (MIMO) frequency

responses, identifies state space models and calculates handling qualities to fully char-

acterize the system. It has been used for both fixed wing and rotorcraft UAV pro-

grams. This includes the NASA’s solar Pathfinder [76], the MQ-8B Fire Scout [20],

the Shadow 200 fixed wing UAV [79], and SH-2G helicopter [80]. Not having to know

a prior model structure has meant that it has been effective for problems of rotorcraft

system identification.
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2.3 Problem Formulation

An overview of aircraft dynamics and formulation of the problem is presented in this

section. The continuous state and output equations for an aircraft can be expressed

as

ẋ(τ) = κ̂[x(τ), δ(τ), ε(τ), τ ] (2.3.1)

y(τ) = λ̂[x(τ), δ(τ), τ ]. (2.3.2)

Here x denotes the state vector, δ refers to the control input , system output is y

and ε denotes zero mean system noise. The entire process varies from time τ0 to time

τ ≥ τ0 The global representation of the flight model is contained in κ̂(·) and λ̂(·). To
model the aircraft it is assumed the platform is a rigid body such that the general

motion can be described by Newton’s second law.

2.3.1 Reference Frames

To develop a flight model it is necessary to first define the reference frames. The main

reference frames required to describe the flight dynamics and system identification

are shown in Figure 2.3.

• Earth axes: Fixed to the surface of the earth with positive xe axis towards

geographic north, ye axis to the east, and ze to the centre of the Earth. This

reference frame is fixed with respect to the Earth and is assumed to be the

inertial axes for system identification.

• Body axes: Fixed with respect the aircraft with the origin at the Centre of

Gravity (CG) of the platform. The positive xb points forward through the nose

of the aircraft, yb out the right wing and zb is through the underside of the

aircraft.

• Wind axes: This is also referred to as the air-path axes and is not fixed with

respect to the body of the aircraft. It is aligned with the relative wind with
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Figure 2.3: Frames of reference for a UAV, in body axes (xb, yb, zb) and earth axes
(xe, ye, ze).

origin at the aircraft CG. The positive xa axis is forward and aligned with the

air-relative velocity vector V̄ (see Figure 2.3), ya axis is out right of the aircraft

and za is through the underside.

2.3.2 Dynamics of the UAV

The forces and moments which act upon an aircraft determine its general motion.

This can be described by using Newton’s second law of motion in translation and

rotational forms

F =
d

dt
(mVb) (2.3.3)

M =
d

dt
(Iωb) (2.3.4)

where F is the applied force, m is the mass, Vb is the translational velocity, M is

the applied moment about the CG, I is the inertia matrix and ωb is the angular

velocity. The vector components are F = [Fx, Fy, Fz], M = [Mx,My,Mz], Vb =

[u, v, w] and ωb = [p, q, r]. Also mVb is the linear momentum and Iωb is the angular

momentum about the CG. Equations (2.3.3) and (2.3.4) describe the motion in vector
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form that is valid in the inertial frame but the individual quantities are generally

described in terms of body axis components. To interpret the body axis results they

are generally translated back to the inertial reference frame by performing coordinate

transformations. The air-path to inertial transformation matrix is denoted by Ci
a and

is made up of the standard rotational cosine matrices Lx, Ly and Lz

Ci
a = Lz(ψ)Ly(θ)Lx(φ) (2.3.5)

where Ψb = [φ, θ, ψ] are the Euler angles. The inertia matrix I is constant in body

axis. It is represented as

I =


Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

 (2.3.6)

For a UAV with symmetric rigid body relative to the xbzb plane, the inertia matrix

I is always symmetric. Therefore, Ixy = Iyx = Iyz = Izy = 0 and the inertia matrix

reduces to

I =


Ixx 0 −Ixz
0 Iyy 0

−Izx 0 Izz

 (2.3.7)

where Ixx, Iyy, Izz are the diagonal components and Ixz is the tensor component of

the aircraft’s symmetric inertia matrix. Body-axis component form of the equations

(2.3.3) and (2.3.4) are given below. This accounts for the rate of change of the vector

components and axis system rotation is given by

F = mV̇b + ωb ×mVb (2.3.8)

M = Iω̇b + ωb × Iωb (2.3.9)

where the vector components V̇b = [u̇, v̇, ẇ] are the translational accelerations and

ω̇b = [ṗ, q̇, ṙ] are the angular accelerations in the body axes reference frame. With the

assumption of rigid body and constant mass, the equations (2.3.3) and (2.3.4) can be
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represented in component form. The force components in body axis form are give by

Fx = m(u̇+ qw − rv) (2.3.10)

Fy = m(v̇ + ru− pw) (2.3.11)

Fz = m(ẇ + pv − qu) (2.3.12)

Moments are slightly more involved based upon the aircraft’s moments of inertia, the

angular rates and angular accelerations

Mx = Ixxṗ− Ixz(ṙ + pq)− (Iyy − Izz)qr (2.3.13)

My = Iyy q̇ − Ixz(r2 − p2)− (Izz − Ixx)rp (2.3.14)

Mz = Izz ṙ − Ixz(ṗ− qr)− (Ixx − Iyy)pq (2.3.15)

Applied Forces and Moments

The applied forces and moments on the left hand side of equations (2.3.10) - (2.3.15)

arise from the aerodynamics of the platform, gravity and propulsion. The primary

system inputs are from the ailerons, elevator and rudder which control the roll, pitch

and yaw of the aircraft respectively. Since the gravitational component acts through

the CG and is assumed to be uniform, there is no gravity moment on the platform.

Therefore, the above equations can be written as the body axis components of applied

forces and moments

FG + FT + FA = mV̇b + ωb ×mVb (2.3.16)

MT + MA = Iω̇b + ωb × Iωb (2.3.17)

Applied forces in these equations come from gravity (FG), thrust (FT ), and aerody-

namics (FA). Applied moments are a result of thrust (MT ) and aerodynamics (MA).
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The contribution of gravity in vector form is

FG =


−mg sin(θ)

mg sin(φ) cos(θ)

mg cos(φ) cos(θ)

 (2.3.18)

where, g denotes gravity. This takes into account the dependency of gravity com-

ponents to aircraft orientation relative to the earth axis. The applied forces and

moments due to thrust are modeled using the geometry of the installation and engine

tests done on the ground. Engine thrust forces are described as

FT = T


Γrx

Γry

Γrz

 (2.3.19)

where Γr(·) are the thrust-line offset rotation constants and engine thrust is described

by T = f(Ω, V ), which is a function of propeller rotational rate (Ω) and airspeed (V ).

Engine thrust moments are given by

MT =


−FTyΓcgz + FTzΓcgy

FTxΓcgz + FTzΓcgx

−FTxΓcgy + FTyΓcgx

 (2.3.20)

where Γcg(·) are the thrust line offsets relative to aircraft CG.

The system identification problem then reduces to determining the aerodynamic forces

(FA) and moments (MA). These can be expressed in terms of non-dimensional coef-

ficients

FA = q̄S


CX

CY

CZ

 , MA = q̄S


bCl

c̄Cm

bCn

 (2.3.21)

where S is the wing reference area, b is the wing span, c̄ is the mean aerodynamic chord

of the wing and q̄ = (1/2)ρV 2 is the dynamic pressure, ρ is the air density and V is

the airspeed. The non-dimensionalized force (CX , CY , CZ) and moment (Cl, Cm, Cn)
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coefficients depend nonlinearly on the UAV translational and angular velocity compo-

nents, angles of incidence of the air-relative velocity with respect to the aircraft body,

control surface deflections, possibly their time derivatives and other non-dimensional

quantities [35]. This dependence is usually characterized mathematically using para-

metric system identification methods as in [35, 79]. It is also important to point out

that the average moment coefficient is zero.

Summary of the UAV Non-Linear Equations of Motion

The rigid body equations of motion in body-axes reference frame for a symmetric

aircraft can be summarised as follows

m(u̇+ qw − rv) = −mg sin(θ) + FAx + FTx (2.3.22)

m(v̇ + ru− pw) = mg sin(φ) cos(θ) + FAy + FTy (2.3.23)

m(ẇ + pv − qu) = mg cos(φ) cos(θ) + FAz + FTz (2.3.24)

Ixxṗ− Ixz(ṙ + pq)− (Iyy − Izz)qr = MAx +MTx (2.3.25)

Iyy q̇ − Ixz(r2 − p2)− (Izz − Ixx)rp = MAy +MTy (2.3.26)

Izz ṙ − Ixz(ṗ− qr)− (Ixx − Iyy)pq = MAz + FTz (2.3.27)

φ̇ = p+ q sin(φ) tan(θ) + r cos(φ) tan(θ) (2.3.28)

θ̇ = q cos(φ)− r sin(φ) (2.3.29)

ψ̇ = q sin(φ) sec(θ) + r cos(φ) sec(θ) (2.3.30)

There are nine coupled nonlinear first order differential equations which constitutes

of nine variables with six aerodynamic and six propulsive force functions. The force

and moment functions includes the pilot or the flight control system control inputs.

The first three equations (2.3.22)-(2.3.24) define the velocity components, next three

equations (2.3.25)-(2.3.27) define the rotation rate components and the final three

equations (2.3.28)-(2.3.30) are to define the attitude rates Ψ̇b = [φ̇, θ̇, ψ̇] in the body-

axes reference frame.
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2.4 Aerodynamic Model

The non-dimensional aerodynamic coefficients expressed in (2.3.21) can be divided

into longitudinal and lateral modes. Longitudinal modes being forward force (CX),

downward force (CZ) and pitching moment (Cm). Lateral modes being sideways

force (CY ), roll moment (Cl) and yaw moment (Cn). Longitudinal coefficients are

primarily dependent on longitudinal states and elevator inputs. Lateral coefficients

are primarily dependent on lateral states and rudder and aileron control inputs. In

general they are functionals of the state variables u, v, w, p, q, r or V, α, β, p, q, r, and

the control variables. Based on dimensional analysis the functional dependency can

be represented as

Ci = Ci

(
V

V0
, α, β,

pb

2V
,
qc̄

2V
,
rb

2V
,
α̇c̄

2V
,
β̇b

2V
, δ

)
(2.4.1)

for i = X, Y, Z, l,m, n, angle of attack α , side slip angle β, and δ represents all the

control inputs applied. For a conventional tailed aircraft the control inputs include

elevator (δe), aileron (δa), rudder (δr) that changes during a maneuver as well as flap

deflections (δf ) and throttle (δT ) inputs, which generally are constant throughout

a maneuver. Other parameters are non-dimensionalized with respect to true veloc-

ity V ≡ |V| =
√
u2 + v2 + w2, wing mean geometric chord c̄ and wing span b for

dimensional consistency. The nondimensional quantities are

V̂ ≡ V

V0
p̂ ≡ pb

2V
q̂ ≡ qc̄

2V
r̂ ≡ rb

2V
ˆ̇α ≡ α̇c̄

2V
ˆ̇β ≡ β̇b

2V

The functional dependency shown in equation (2.4.1) is for an airplane in quasi-steady

flow at low Mach number. The quasi-steady assumption presumes the flow reaches a

steady state instantaneously, hence the dependence on the history of a variable can

be neglected. For example, the angle of attack α will only affect FA and MA on

the current value of α(t) and not its entire history. Given that there are also other

functions which affect the aerodynamic force and moment, to model for the entire

range of variables the modeling problem becomes more complex.
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The functional dependency could further be extended to nondimensional stability and

control derivatives. Stability derivatives are partial derivatives with respect to states

and control derivatives are partial derivatives with respect to controls. The stability

derivatives can further be divided into static stability, dynamic stability and deriva-

tives associated with unsteady aerodynamics (ẇ, α̇). The static stability derivatives

are associated with air-relative velocity quantities (u, v, w, V, α, β) and dynamic sta-

bility derivatives are associated with angular rates (p, q, r). The assumptions [35]

made here are:

• The airspeed changes do not affect the aerodynamic coefficients for subsonic

flight.

• The functional dependence of longitudinal and lateral coefficients on the state

and control inputs are

Ca = Ca(α, β, q, δ) for a = X,Z, or m (2.4.2)

Ca = Ca(α, β, p, r, δ) for a = Y, l, or n (2.4.3)

• The aerodynamic coefficients constitute of static terms as well as nonlinear angle

of attack and sideslip angle. They also include dynamic and control terms that

are linear in p, q, r and δ. The other terms that could be included in the model

are derivatives of the variables that depend nonlinearly on the angle of attack,

sideslip and Mach number.

Under the aforementioned assumptions, the aerodynamic coefficients of the model

can be written in longitudinal and lateral terms as

Ca = Ca0(α, β)q=δ=0 + C̄aq
qc̄

2V0
+ Caδ(α)δ for a = X,Z, or m (2.4.4)

Ca = Ca0(α, β)p=r=δ=0 + Cap(α)
pb

2V0
+ Car(α)

rb

2V0
+ Caδ(α)δ for a = Y, l, or n

(2.4.5)
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where δ ∈ δ. The first term represents the contribution from the initial condition

when the control deflections are zero and they are known as the static components of

the equations. The rest of the terms represent the dynamic stability derivatives, con-

trol derivatives and their dependence with respect to angle of attack. The equations

(2.4.4) and (2.4.5) represent only a general representation of the aerodynamic forces

and moments. These functional dependencies are obtained based on wind tunnel and

other flight test experience [21].

Modeling these coefficients in equations (2.4.4) and (2.4.5) raises the question of what

mathematical structure to use. If the model structure is too complicated for a limited

amount of data, reduced accuracy for the estimated parameters can be expected.

Hence, it is important to hypothesise a model structure that closely represents the

dynamics of the system. This is normally done using previous experience or knowledge

about the physical system to be modeled. However, the relationship between the

model complexity and information in the measured data is not always intuitive. The

functional dependency can be complicated, therefore a variety of experiments are

performed to determine the characterization.

There exist numerical methods to determine the coefficients. These include panel

methods, Computational Fluid Dynamics (CFD) [86]. In panel methods, the aircraft

is diced into sections and approximations are made on the two-dimensional aerofoil

sections; by summing up each of the components the total lift, drag and moment

can be determined for the whole platform. In CFD, partial differential equations

(typically the Navier-Stokes equations) are solved to model the motion of air about

the platform. There also exist U.S. Air Force Stability and Control DATCOM [21]

to determine dimensionless stability derivatives. The DATCOM is a collection of

rules and opinions in the area of aerodynamic stability and control methods of fixed

wing aircraft. These are based on experience and a complete set of stability and

control derivative variables can be obtained by giving the airplane geometry and

flight condition. However, such methods underperform in low angle of attack and in

low rotational rates [35]. Therefore, experimental methods such as static tests, and

steady and maneuvering flight tests have to be conducted.
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2.4.1 Parameter Estimation

This consists of finding the values of unknown model parameters ϑ for a hypothesized

model structure based on noisy observation measurements z. The estimator is a

function of these observations that produces an estimate ϑ̂ of unknown parameters

ϑ. To make an estimation several conditions need to be satisfied, they are:

• A model structure with unknown parameters ϑ;

• Measurement of noisy observation measurements z;

• Assumptions about the uncertainty in the noise measurements ε and model

parameters ϑ.

For a model that is assumed to be linear the output y is given by

y = Xϑ (2.4.6)

where matrix X is the system inputs which is formed with an initial hypothesis of

(2.4.1). It should be noted that, in order for linear approximations to remain valid the

system must operate over a restricted range of conditions, such as at a fixed altitude

and a constant velocity. An example of whats contained in X is given below

X =
[
Vb ωb α β α̇ β̇ δ

]
(2.4.7)

where the state is composed of the body axis velocities Vb = [u, v, w], rotation rates

ωb = [p, q, r], angle of attack α, side slip angle β, and control inputs δ = [δe, δa, δr].

The observation equation is expressed as

z = Xϑ+ ε (2.4.8)

where z are observations made and ε is the measurement noise. These observations

can be obtained by re-arranging equations (2.3.16) - (2.3.21). They can be represented
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as

zF =
1

q̄S

[(
mV̇b + ωb ×mVb

)
− FG − FT

]
(2.4.9)

zM =
1

q̄Sζ
[(Iω̇b + ωb × Iωb)−MT ] (2.4.10)

for zF = [CX , CY , CZ ] and zM = [Cl, Cm, Cn] where ζ is c̄ for coefficient Cm and b for

coefficients Cl and Cn.

For a model that is nonlinear in the parameters, the observation equation can be

expressed as

z = X(ϑ) + ε (2.4.11)

where the function X(ϑ) is assumed to be known. Now the optimal estimate ϑ̂ can

be obtained by solving (2.4.8) for problems that are linear in the parameters and by

solving (2.4.11) for problems that are nonlinear in the parameters. Given this, the

output estimate ŷ can be reconstructed based on the estimated model

ŷ = Xϑ̂ (2.4.12)

The terms for the coefficient model in (2.4.8) can be found using various methods such

as ordinary least squares [33], maximum likelihood [49], Bayesian estimation [67] and

recursive least squares [35]. Here, two models for parameter estimation will be con-

sidered. One is a Bayesian estimator and the other is a least-squares estimator. Both

these can model the uncertainties in the parameters and they are parametric estima-

tors. The Bayesian model is shown to demonstrate the probabilistic representation of

the problem and it provides the ground work for the models developed in the following

chapters. In the Bayesian model, ϑ is a vector of random variables with a probability

density of p(ϑ) and system noise ε is a random vector with a probability distribution

p(ε). In the least squares model ϑ is a vector of unknown constant parameters and

ε is a random vector of measurement noise [5].
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Bayesian Estimator

The Bayesian model follows from Bayesian estimation theory [5, 67]. It is assumed

the probabilities of the errors are known for all possible values of observations z as

well as the probability density p(ϑ). Hence, it is possible to obtain a conditional

density function (or likelihood function) p(ϑ|z) given the observation z. It is related

to the a priori probability densities by Bayes rules

p(ϑ|z) =
p(z|ϑ)p(ϑ)

p(z)
(2.4.13)

The estimator optimizers for ϑ̂ by maximizing the conditional probability density

p(ϑ|z) and this varies with the distribution specified for the vectors ϑ and z. Given

the distribution the most probable estimate can be obtained by solving the following

equation

ϑ̂ = max
ϑ

p(ϑ|z) (2.4.14)

This is usually solved by minimizing a specified cost function J(ϑ). The probability

density p(z) is not dependent on ϑ and therefore does not influence the cost function

for parameter estimation.

Least-Squares Estimator

In least-squares, the sum of squared error is minimized between the estimated and

the measured. This has no probability statements concerning parameters and mea-

surement noise. However, if noise is assumed Gaussian then the least-squares model

becomes the Fisher model, which is the maximum likelihood estimator [35].

The general form of the equation to be solved for total least squares in vector and

matrix form is

z = Xϑ+ ε (2.4.15)
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where,

z =
[
z(1) z(2) . . . z(M)

]T
= M × 1 vector;

ϑ =
[
ϑ0 ϑ1 . . . ϑD)

]T
= Dp × 1 vector of unknown parameters, Dp = D + 1;

X =
[
1 κ1 . . . κD

]T
= M ×Dp matrix of vectors of ones and regressors;

ε =
[
ε(1) ε(2) . . . ε(M)

]T
= M × 1 vector of measurement errors.

The regressor vector contains the postulated model structure and the functions of

the independent variables. As mentioned before, for the least squares model there

is no associated probability on the model parameters ϑ or the measurement noise ε.

Nevertheless, ε is assumed to be zero mean with a constant variance. This can be

represented as follows

E(ε) = 0 (2.4.16)

E(εεT ) = σ2I (2.4.17)

Now, the estimator for ϑ can be determined by minimizing the sum of square error

between the measurements and the model

J(ϑ) =
1

2
(z−Xϑ)T (z−Xϑ) (2.4.18)

∂J
∂ϑ

= −XTz + XTXϑ̂ = 0 (2.4.19)

The cost function is given by J(ϑ) in (2.4.18) and by minimizing the error in the cost

function by solving the equation (2.4.19) the parameter estimate ϑ̂ can be obtained.

The resultant is the ordinary least-squares estimator

ϑ̂ = (XTX)−1XTz (2.4.20)

Note that (XTX)−1 is a normal matrix with orthogonal eigenvectors. Problems occur

on the matrix (XTX)−1 when the regressors that make up X have a high degree of
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correlation and not linearly independent. In this case it may have some eigenvalues

close to zero.

Once the parameters have been estimated the measurement can be reconstructed as

ẑ = Xϑ̂ (2.4.21)

where ẑ is the measurement estimate. The covariance matrix of the parameter esti-

mate ϑ̂ or estimation error ϑ̂− ϑ is

cov(ϑ̂) = E[(ϑ̂− ϑ)(ϑ̂− ϑ)T ] (2.4.22)

= E
[
(XTX)−1XT (z− ŷ)(z− ŷ)TX(XTX)−1

]
(2.4.23)

From the above matrix the Cramér-Rao bounds [46] can be determined which is the

square root of the diagonal elements. Cramér-Rao bounds are particularly significant

as they are a key indicator of parameter identifiability. It is a measure of the best

possible precision attainable for ϑ from the information available in the measured

data z. This is important since, if there is no activity in the measured response,

there would not be any information in X that can be used to identify ϑ. Hence, the

larger the response or the larger the signal to noise ratio the more information there

is to identify the parameters. This can be determined by knowing the amount of

information collected in the measured data. An alternative approach is to take the

maximum likelihood. First the sensitivity of z(i) to ϑ needs to be determined. The

sensitivity matrix S(i) is defined as

S(i) =
∂z(i)

∂ϑ

∣∣∣∣
ϑ=ϑ̂

(2.4.24)

where i = 1, 2, . . . ,M . The noise covariance matrix R is

R =
1

M

M∑
i=1

(z(i)− ŷ(i))T (z(i)− ŷ(i)) (2.4.25)

Combining equations (2.4.24) and (2.4.25) gives the Fisher information matrix M.
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This is a direct measure of the information contained in the data and is given by

M =
M∑
i=1

S(i)TR−1S(i) (2.4.26)

The inverse of (2.4.26) is the dispersion matrix D, consistent with the covariance

matrix of ϑ, from which the Cramér-Rao lower bounds can be found. The dispersion

matrix is

D = M−1 =

[
M∑
i=1

S(i)TR−1S(i)

]−1
(2.4.27)

This is a measure of the precision of the estimates and the diagonal terms of D:

djj are the Cramér-Rao lower bounds for ϑj where j = 1, . . . , D and D is the total

number of regressors

ϕj =
√
djj (2.4.28)

It is a measure of the best possible precision attainable for ϑj from the available

information in the measurement data z. If ϑj is highly observable then ϕj will be

small and ϑj is poorly observable if ϕj is to be large.

One of the problems of least squares regression is that it lacks an associated measure

of the quality of the prediction. That is, scalar predictions are provided at any test

point without any measure of confidence or a full predictive distribution. Another is

the problem of model structure determination which will be discussed in the following

sub-section.

2.4.2 Model Structure Determination

For parametric models an assumption usually made is that the model structure of X

is known. This model structure refers to the number and form of the model terms in

the regression equation. If the structure is known then parameter estimation has to

determine only the constant model parameter values with their standard error given

the measured data.This can be done using the aforementioned estimation techniques.

However, this is not the case in practice.
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To develop a model it is important to reflect any available a priori knowledge such

as platform performance results from wind-tunnel experiments and results from the-

oretical aerodynamic calculations. Likewise an‘expert’ analyst can specify candidate

regressors that might affect the model. This procedure is called model structure

determination. This ensures that parameter identification is not reduced by over

modeling.

In aircraft system identification, for tradition symmetric fixed wing platform the esti-

mation procedure is fairly straight forward and the parameters could be determined

from small perturbation flight test maneuvers where the aerodynamic coefficients are

linear at the given altitude and Mach number. This behaviour changes if the air-

craft is not symmetric (such as an Oblique wing) or a delta wing configuration. In

addition, it changes for rapid and large amplitude maneuvers as well as near the

aircraft’s flight envelope, which is the boundary of the design in terms of conditions

such as airspeed, angle of attack, load factor or altitude within which the aircraft

is aerodynamically stable. This would require modeling into flight regimes where

there is nonlinear aerodynamic effects present. Thus it introduces a new problem of

determining how complex the model should be.

In either case it might require the testing of different combinations of the model

structure. In doing so it is a balance between two conflicting objectives. On one

hand, it maybe required to have many regressors as possible to model nearly all the

possible variations in the measured data. On the other hand, it is better to model

few regressors as possible because the variance of the prediction ẑ increases with

the number of regressors. Hence, this process might not always yield an optimal

solution. If the model is over parameterized the model may have poor generalized

performance, hence would make poor predictions at the test points. However, if the

model is too simple, again the predictive performance drops. Hence, it is a trade

off to obtain a model that can interpolate observations sufficiently while maintaining

good generalized performance. In this work an alternative model is proposed that

is based on a non-parametric technique which alleviates the problem of knowing the

model structure and counters the problem of overfitting.
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2.5 Non-Parametric Bayesian Regression

An alternative to the cost function based regression approach is to assume a noise

model on the outputs. Such a model can be described by the following generative

equation

yi = f(xi,w) + εi (2.5.1)

where f(xi,w) is the underlying function defined in terms of some inputs xi, param-

eters w, and εi is an independently and identically distributed (i.i.d.) noise. This

noise is generally assumed to be a Gaussian distribution with εi ∼ N (0, σ2). Likeli-

hood functions can then be used to develop a model. These are a class of machine

learning algorithm referred to as Bayesian methods. A likelihood function can be

used to reflect the information about the parameters contained in the data and the

prior distribution which quantifies the information known about the parameters be-

fore observing the data. The likelihood function and the prior distribution can be

combined to obtain a posterior predictive distribution over the test inputs. These

distributions provide a useful method to quantify uncertainty for the predicted esti-

mates. To illustrate this consider a member Bi with a prior probability p(Bi). On

observing some data D, the likelihood of hypothesis Bi is p(D|Bi). Therefore, the

posterior probability of Bi is given by

posterior ∝ prior× likelihood (2.5.2)

p(Bi|D) ∝ p(Bi)p(D|Bi) (2.5.3)

The proportionality can be turned into an equality by dividing the above equation

with p(D) =
∑

i p(D|Bi)p(Bi). This can also be interpreted as an integration where

appropriate. It consists of the likelihood function multiplied by the prior density and

is known as the marginal likelihood.

To obtain a prediction at a test point, rather than using only a set of parameters to

make the prediction, Bayesian regression integrates over the entire posterior distribu-

tion. Therefore all the test points contribute to a prediction. As a consequence the
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model is powerful enough to capture the underlying function without having to tackle

the parametrization issues. Furthermore, it gives the full predictive distribution at a

test point which is useful as a measure of the model’s confidence in its prediction.

In this thesis the focus is to tackle a regression problem hence only the Bayesian

approach to the regression is discussed. In regression problems the goal is learn the

mapping from some input space X ∈ RD of D-dimensional vectors to an output

space Y ∈ R. The target observation are assumed to have arisen from some unknown

function of the inputs, and have also been observed with some unknown noise. In par-

ticular the kernel-based Bayesian regression algorithm known as Gaussian Processes

(GPs) is explored [45, 66, 88].

2.5.1 Multivariate Gaussian Distribution

It is a generalization of the one dimensional normal (or Gaussian) distribution to

higher dimensions. The multivariate Gaussian distribution of a M -dimensional ran-

dom variable x ∈ RM can be written in the following notation

p(x;m,Σ) =
1

(2π)n/2|Σ| exp

(
−1

2
(x−m)TΣ−1(x−m)

)
(2.5.4)

with mean m ∈ RM and covariance matrix Σ ∈ SM++. Also, note that SM++ refers to

the space of symmetric positive definite M ×M matrices. The equation (2.5.4) can

also be written as x ∼ N (m,Σ).

2.5.2 Gaussian Processes

Gaussian processes are a probabilistic framework approach that presents a gener-

alization of probability distribution to infinite-dimensional distributions. It defines

a distribution over functions. In practice one will only ever need to work with fi-

nite dimensional objects. This can be achieved by the marginalization property of

probability distributions. Hence, a Gaussian process can be a collection of random
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variables, any finite number of which have a joint Gaussian distribution [66]. It is a

distribution over functions f , where f is a function mapping some input space X to

an output space Y .
f : X → Y (2.5.5)

Let this distribution be p(f) and f = (f(x1), f(x2), . . . , f(xM)) be an M -dimensional

vector of function values evaluated at M points where x = [x1, . . . , xD] is the input

vector of dimension D. Likewise, note that vector f is a random variable. Given this,

p(f) is a Gaussian process if for any finite subset {x1, . . . ,xM} ⊂ X , the marginal

distribution over that finite subset p(f) has a multivariate Gaussian distribution. Such

a stochastic process is known as a Gaussian process.

In this framework, there is a training set D of M observations, D = {(xi, yi)|i =

1, . . . ,M} where y refers a scalar output. The column vector of all input casesM can

be collected in the D ×M design matrix X = [x1, . . . ,xM ]. The observation values

are collected in the vector Y = [y1, . . . , yM ]. Hence, the training set can be written as

D = (X,Y). The output values of this setting are assumed to be real values. In this

regression problem, GPs are used to learn the relationship between the inputs and

output observations. Since, a Gaussian process is defined as a collection of random

variables it implies a marginalization property [66]. Therefore, inferences can then be

made using the training data set by conditioning the distribution of the observations

given the inputs.

GPs are parametrized by a mean function, m(X) and a covariance function K where

X = [x1, . . . ,xM ] and X∗ = [x∗1, . . . ,x∗M∗ ] are the training and test sets respectively.

In here, x∗ = [x∗1, . . . , x∗D] is the D dimensional test input vector and M∗ is the

number test cases.

p(f(X), f(X∗)) = N (m,K) (2.5.6)

where,

m =

m(X)

m(X∗)

 K =

K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)


and K(·, ·) is the covariance between two arbitrary functions of input pairs. Each
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observation yi of a Gaussian process is dependent on an underlying function f(xi)

and Gaussian i.i.d. noise εi ∼ N (0, σ2)

yi = f(xi) + εi (2.5.7)

In accordance with Gaussian process regression, a zero-mean Gaussian prior distri-

bution is placed over f . This can be represented as

f |X,θ ∼ N (0,K) (2.5.8)

with a 0 mean vector and K is an M ×M covariance matrix. Elements of K are

equal to K(X,X∗) and K(·, ·) is a positive definite covariance matrix parametrised

by hyperparameters θ.

Gaussian Process Predictions

Given the observations and the covariance function, predictions can be made using

the GP model. Consider a case where the observations are noise free, the input set is

given by {(xi, fi)|i = 1, . . . ,M}, test set is given by X∗ with M∗ test points and the

associated latent variables are denoted by f∗. Under the GP framework the marginal

distribution over any set of input points belonging to X have a joint multivariate

Gaussian distribution. Therefore, the joint distribution of f and f∗ is also a zero

mean multivariate Gaussian. It is found by augmenting equation (2.5.8) with the

new latent variables f∗. The resultant is f

f∗

∣∣∣∣∣∣X,θ ∼ N
0,

K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

 (2.5.9)

In practical application, it is realistic to observe the underlying function values them-

selves. It is only the noisy versions of the function values accessible. The observed

output can then be represented as, Y = f(X) + ε where ε is some Gaussian noise

with variance σ2. Given the Gaussian noise assumption on the observed function, the
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joint distribution over the targets Y and the test input predictions f∗ can be written

as Y
f∗

∣∣∣∣∣∣X,θ ∼ N
0,

K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

 (2.5.10)

By conditioning the above joint Gaussian prior distribution on the observations Y

(see A.2 in [66]) gives

f∗|Y,X,θ, σ2 ∼ N (m(X∗)υ(X∗)) (2.5.11)

where the mean m(X∗) and variance υ(X∗) of the predictions are

m(X∗) = K(X∗,X)[K(X,X) + σ2I]−1Y (2.5.12)

υ(X∗) = K(X∗,X∗) + σ2 −K(X∗,X)[K(X,X) + σ2I]−1K(X,X∗) (2.5.13)

These are the key predictive equations for Gaussian process regression. They can be

used to calculate the predictive distribution for any set of test points {X∗}. It can

also be noticed that the mean prediction in equation (2.5.12) is a linear combination

of the observations Y. Therefore, it can be interpreted as a linear predictor.

It is also important to introduce the marginal likelihood p(Y|X). This is the integral

of the likelihood times the prior which can be represented as

p(Y|X) =

∫
p(Y|f ,X)p(f |X)df (2.5.14)

In this equation, the likelihood function is marginalized over the function values f .

The log Gaussian prior f |X ∼ N (0, K(X,X)) is given by

log p(f |X) = −1

2
fTK(X,X)−1f − 1

2
log |K(X,X)| − M

2
log 2π (2.5.15)

and the likelihood is Y|f ∼ N (f , σ2I). The marginal likelihood can then be obtained
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by integrating equation (2.5.14)

log(p(Y|X)) = −1

2
YT (K(X,X) + σ2I)−1Y− 1

2
log |K(X,X) + σ2I| − M

2
log 2π

(2.5.16)

The three terms in the marginal likelihood equation (2.5.16) have their individual

roles. The first term 1
2
YT (K(X,X) + σ2I)−1Y relates to data fit of the observations.

The second term 1
2

log |K(X,X) + σ2I| is the complexity penalty depending only on

the covariance function and the inputs. The final term M
2

log 2π is a normalization

constant.

Similar to Bayesian methods, GP models quantify uncertainty in the predictions.

This uncertainty is low when the predictive distribution is tightly packed around a

single value of the training data. On the other hand, if the predictive distribution is

spread widely across the training data then the model has a high uncertainty or it

is less confident about what to expect given the test input. This can been observed

in the example given in Figure 2.4. Here a GP prediction of an underlying function

is given with the associated uncertainty highlighted in gray. Furthermore, a GP

model is non-parametric, hence it does not have to deal with determining structure

of the model as for the parametric methods. It also provides a natural framework for

introducing kernels into a regression framework. This gives the flexibility to design

kernel functions to model the underlying properties of the data. This is further

explored in the following sub-section.

Covariance Functions

The covariance function specifies the covariance between pairs of random variables. A

covariance function must be a positive semi-definite function. There is a large range

of covariance functions available to model different properties of the underlying data.

These properties include smoothness, periodicity and stationarity of the function

predicted by the GP. From a supervised learning perspective the notion of similarity

between training data and the test input points is essential. Hence, the assumption

is that if the test point is close to X then it is likely to have similar target values Y.
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Figure 2.4: Gaussian process prediction of the underlying function f(X) (solid blue)
given the training inputs (blue crosses). The estimated prediction is given by the
dashed red line and the shaded region represent 1σ uncertainty for the model predic-
tion.

Therefore training points near a test point are more informative to make predictions.

There are two main classes of covariance functions: stationary and non-stationary. A

stationary covariance function is a function of x− x∗ and is invariant to translations

in the input space. Such a class is known as Radial Basis Functions (RBFs) when

the real function value only depends on the distance from the origin [66]. In the case

of a Euclidean space and the distance is isotropic, covariance K(·, ·) is now only a

function of |x − x∗|. This can be shown for two arbitrary functions of input pairs x

and x∗ by

cov(f(x), f(x∗)) = K(x,x∗). (2.5.17)

The covariance for a Gaussian process also includes the observation noise term, hence

the above equation can be modified to include the noise term and can be represented

as

cov(x,x) = K(x,x) + σ2I (2.5.18)

where σ2I is the associated noise added to the covariance. The most common choice
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Figure 2.5: Covariance matrix for squared-exponential covariance function. The warm
colours (red) represent high covariance and cool colours (blue) represent low covari-
ance.

for a stationary isotropic covariance function is the squared-exponential

K(xa,xb|Θ) = σ2 exp

(
− 1

2l2
(xa − xb)

2

)
(2.5.19)

where Θ are the hyperparameters σ and l that conditioned the covariance matrix. σ is

known as the signal variance and l is the length-scale which encodes the smoothness

properties of the underlying function. A short length-scale means the error grows

faster when away from the training data. On the other hand, a longer length-scale

means the function is slowly varying with a higher degree of noise. The optimal values

for the hyperparameters can be found by maximizing the log marginal likelihood in

equation (2.5.16). Note that this covariance can only model a single output dimension.

A visual representation of the squared-exponential covariance function is given in

Figure 2.5. The warmer the colours (red) represent high covariance, hence along the

diagonal the elements are highly correlated and it reduces when the covariates are

further apart.

As opposed to RBFs non-stationary covariance functions can model x−x∗ when it is

variant to translation in the input space. Further details on this type of a covariance

function will be presented in Section 4.4.2. For more details on Gaussian process
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theory and for details about various kernel functions please refer to [66].

2.6 Summary

This chapter presented the background and the underlying theory behind aircraft

system identification. The complex framework for system identification is explained

and the mathematical formulation of the problem is given. It showed how the system

identification can be reduced down to an aerodynamic parameter estimation prob-

lem. The current issues related to parameter identification was described from which

the motivations for this thesis were derived. The fundamentals in non-parametric

Bayesian regression was presented. This provides the theoretical background to view

the problem in a probabilistic sense. Furthermore, it gives a context of the ideas and

techniques presented in the subsequent chapters. Finally, the basic theory behind

Gaussian process regression was presented.



Chapter 3

Parameter Identification using

Gaussian Processes

3.1 Introduction

Unmanned aerial vehicle parameter estimation involves performing flight test maneu-

vers and then extracting the estimate values from the logged flight data. These can

also be obtained by various existing computational methods and wind-tunnel testing

[35]. However, there are several reasons why it is important to determine aerody-

namic parameters from real test flights. Firstly they give a better understanding of

theoretical predictions and wind-tunnel testing, secondly the requirement of a high

integrity model for modern flight control systems, lastly for simulators to give a more

accurate representation of the system throughout the whole flight envelope. After

collecting the flight data there are numerous techniques for parameter estimation.

As mentioned in the previous chapter, there are two main system identification ap-

proaches. One using parametric and the other using non-parametric approaches. To

use non-parametric approaches an observation model is required in order to regress.

The goodness of this structure is dependent on how much time and effort is invested

in the regression process (see Section 2.4.2). A limited model structure will limit

its applicability to a narrow flight envelop. This could be avoided by using a non-
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parametric technique. Nevertheless, the existing methods can only estimate limited

number of states in the system [10] or can only operate within the trained flight

trajectory [12]. A recent machine learning technique Gaussian processes have been

applied to the problem of non-linear system identification in [23, 38], in [24] they were

applied to learn imitative whole body motions in a humanoid robot and in [36] they

were used to learn the residual error between the non-linear model and the ground

truth of an autonomous blimp. However, these models were limited to identifying

a single output system. Therefore they do not capture dependencies between the

identified parameters. This limits its applicability as most highly dynamic systems

can entail coupled dynamics within its system outputs (see Section 2.4).

These limitations could be resolved by learning multiple outputs while capturing

dependencies. In addition, linear approximations such as the one that is presented

in Section 2.4.1 remains valid only if the system operates over a restricted range of

conditions, such as at a fixed altitude and a constant velocity. These restrictions can

be relaxed with the proposed non-linear flight dynamic model. What is explored here

is a supervised learning algorithm. It is a form of inductive learning method that

learns a functional mapping from a set of training data of inputs and outputs. This

summary can then be used for predicting a new sample test point when required. The

chapter examines the use of Gaussian processes for supervised learning of aircraft

flight dynamics. In particular we show how to identify system parameters using

Dependent Gaussian Processes (DGPs) [7, 8] to learn a multi-output flight model.

The non-parametric nature of the approach enables it to capture a wide range of

dynamics. Therefore, a prior knowledge of the model structure is not required. The

ability to capture dependencies through cross coupling terms enable the models to be

applicable to a broader flight envelope than existing methods saving significant costs

on flight testing. In addition, it has the inherent capability to handle noise and biased

data. The predictions from the model also come with uncertainty estimates which can

be used in maneuver design for system identification and for flight controller design.

Finally, it is not entirely a black-box prediction model as opposed to techniques such

as neural networks.
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This chapter demonstrates the dependencies for which the method was explicitly

chosen, robustness to unmodeled disturbances and quantifies improvements over an

alternative least squares estimator. In addition, an in-depth analysis to identify

the parameters for the highly coupled AD-1 oblique wing aircraft in simulation is

presented.

3.2 Related Work

Gaussian processes has previously been addressed in the geostatistical literature under

the name kriging [48]. This has primarily been used for interpolation of geostastical

data. Kriging in its early stages was mainly concerned with low-dimensional problems

and did not consider a probabilistic formulation. Gaussian processes then emerged in

the statistical community to define prior over functions and have been applied in [59]

for one dimensional curve fitting problems.

In the machine learning community, the interest in Gaussian processes arose through

Neural Networks (NN). In practice NN had some inherent problems, these include

the decisions that need to be made as to what activation functions, learning rate and

what architecture to use. There also was not a principle framework to address these

issues [66]. By utilizing a probabilistic framework in a Gaussian process these issues

were tackled while addressing the problem of overfitting. This was shown in the work

by Neal in [55] where under certain conditions Bayesian neural networks converge to

Gaussian processes. The work was then extended to use in the context of machine

learning in [64, 89].

An interesting development of this research was the ability to handle multiple out-

puts. This is particularly useful for modeling dynamic systems where the system has

multiple outputs that occur simultaneously. However, due to the difficulty of main-

taining positive definiteness, the parameterization of the covariance function makes

it difficult to deal with multiple outputs. This problem was also first tackled in the

field of geostatistics under the name co-kriging (see section 3.2.3 of [16] and [22]).
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The method generally involves using an independent model for each output. Never-

theless, by treating each output separately some information is lost and the learning

process is suboptimal. In [75] a semiparametric model for nonlinear regression in-

volving multiple outputs is proposed. Here GPs are used as linear combinations in

a number of latent channels to capture dependencies that may exist in the outputs.

The different latent channels are described by different covariance functions and one

has to estimate the hyperparameters for all the covariance functions. A multi-task

GP was introduced in [6] where a model learns a shared covariance function over a

set of input features.

An alternative approach, Dependent Gaussian Processes (DGPs) was proposed in [7,

8] where Gaussian processes are treated as white noise sources convolved with smooth-

ing kernels. This allows the Gaussian process to handle multiple and coupled outputs.

The sole dependency between different tasks come from sharing parameters of the un-

derlying covariance function. The advantage of this approach over [6] is the ability

to handle a different number of features for each output within a single covariance

function. This helps to construct a GP model even when a particular output is only

partially observable.

3.3 SystemModeling with Dependent Gaussian Pro-

cesses

The objective of dependent Gaussian processes is to infer multiple outputs jointly

while capturing any dependencies. This extends the basic Gaussian process model (see

Section 2.5.2) to account for multiple outputs from a system. It involves defining a

valid positive-semi definite kernel to capture the relationship between system outputs.

The sole dependence between different tasks comes from sharing the parameters of

the underlying covariance function. An overview of the DGP theory is provided in

this section and for more details refer to Chapter 3 in [8].

In dependent Gaussian processes [7, 8], the GP model can capture dependency be-
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tween outputs y ∈ RN of N dimension. Consider a collection of variables Y =

[y1, . . . ,yM ] with y = [y1, . . . , yN ] where y ∈ RN which have a joint distribution

p(Y|C,X). The design matrix X = [x1, . . . ,xM ] consists of x = [x1, . . . , xD] where

x ∈ RD is a D-dimensional input vector and M is the total number of input pro-

cesses. C = C(xi,xj; Θ) is a parameterized covariance function with hyperparameters

Θ. The output of the GP model is a normal distribution, expressed with a mean and

variance. The mean value represents the most likely outcome and variance can be

interpreted as the confidence level of the outcome. The key advantages of this ap-

proach is its ability to provide uncertainty estimates, model flexibility, and to learn

noise and smoothness estimates from test data [66].

3.3.1 Assumptions

In order to satisfy the conditions for a valid kernel function certain assumptions are

made. First, the system inputs are independent and stationary processes. This means

the joint probability distribution does not change within the input space. Thus, the

covariance function C(xi,xj) between inputs xi and xj is only dependent on their

distance. These are valid for the chosen inputs (see equation (3.4.2)) given that the

aircraft is flying under its stall angle of attack in a narrow region of the flight envelop

when the conditions are steady for a wings-level flight with no sideslip [35]. If there is

a need to model outside of this bound then a non-stationary multi-output covariance

function such as the one given by equation (9) in [84] is required. Next, the prior

underlying process has zero mean. If constructing a model for a larger region where

the prior underlying process changes throughout the flight envelop it is possible to

use an explicit basis function (see Section 2.7 in [66]). Finally, the observed data is

noisy and it was assumed this distribution is Gaussian white noise. Hence, Gaussian

white noise was added to each output.
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3.3.2 Modeling with Dependent Gaussian Processes

The objective of dependent Gaussian processes is to infer multiple outputs jointly

while capturing any dependencies. This is useful for systems where its outputs are

derived from a common set of input sources. By learning them in parallel the per-

formance of the GP model can be improved in comparison to learning them in-

dependently. Consider N -output processes y = [y1, . . . , yN ] where y ∈ RN and

Y = [y1, . . . ,yM ] where M is the total number of observations and X = [x1, . . . ,xM ]

consists of x = [x1, . . . , xD] where x ∈ RD is a D-dimensional input vector. The

training set is assumed to be drawn from the noisy process represented by

yn(x) = un(x) + εn(x) (3.3.1)

where εn(x) is stationary Gaussian white noise drawn from N (0, σ2
n) with variance

σ2
n. un(x) is defined by

un(x) =
M∑
m=1

hmn(x) ∗ xm(x) (3.3.2)

=
M∑
m=1

∫
RD
hmn(α)xm(x−α)dDα (3.3.3)

The above equation calculates the sum of convolutions of the hmn kernel connecting

the input m to output n. The marginal likelihood of y given inputs X is of the form

p(y|X) = N (0, K(X,X) + σ2I) (3.3.4)

where K is the kernel matrix, which defines the connection from input m to output n

and the noise variance σ ∈ RN . K can be described as a function covyij(xa,xb) which

defines the auto (i = j) and cross covariance (i 6= j) between yi(xa) and yj(xb).

covyij(xa,xb) = covuij(xa,xb) + σ2
i (3.3.5)
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Given the assumption that the inputs are stationary, the kernels are likewise station-

ary. Thus, a separation vector can be defined as d = xa − xb. Next, covuij(xa,xb) is

maximized for E{ui(xa)uj(xb)}. Solving this integral results in

covyij(d) =
M∑
m=1

∫
RD
hmj(β)hmi(β + d)dDβ (3.3.6)

The aforementioned equation 3.3.6 defines the auto and cross covariance for the out-

puts yn(x). The kernels here were set to be parameterized Gaussians and the integral

was solved. Let the kernel hmn be

hmn(x) = υmn exp

(
−1

2
(x− µmn)TAmn(x− µmn)

)
(3.3.7)

where the hyperparameters are defined by υmn ∈ R, Amn and µmn ∈ RD. Substituting

kernel function (3.3.7) into (3.3.6) and solving the integral results in

covyij(d) =
M∑
m=1

(2π)
D
2 υmiυmj√

|Amj + Ami|
exp

[
−1

2
(d− [µmi − µmj])TΣ(d− [µmi − µmj])

]
(3.3.8)

where,

Σ = Ami(Ami + Amj)
−1Amj.

For a detailed derivation of this covariance function see Appendix A in [7]. The

equation (3.3.8) defines the positive definite covariance matrix K for the combined

output processes N . This can be written as

K =


K11 · · · K1N

... . . . ...

KN1 · · · KNN

 (3.3.9)

A visual representation of this covariance function (3.3.9) is shown in Figure 3.1. In

this example there are two dependent output processes with equal number of sample

points. The warm colours (red) represent high covariance and the towards the cool

colours (blue) represent low covariance. Along the diagonal elements of the matrix are
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Figure 3.1: Covariance matrix for DGP covariance function with two output processes.
The warm colours (red) represent high covariance and cool colours (blue) represent
low covariance.

the terms K11 and K22 which show high correlation within each output. The cross

terms are the matrices K12 and K21, and these represent the relative dependency

between the two outputs.

Now, given a set of test inputs X∗, the predictive output f∗ can be obtained by

p(f∗,Y|X∗,X) = N

0,

K(X∗,X∗) K(X∗,X)

K(X,X∗) K(X,X) + σ2I

 (3.3.10)

Since the training output Y is known, the Gaussian distribution can be conditioned

on Y to obtain the predictive mean and variance for X∗.

p(f∗|X∗,Y,X) = N (m,Σ) (3.3.11)

where,

m = K(X∗,X)[K(X,X) + σ2I]−1Y

Σ = K(X∗,X∗)−K(X∗,X)[K(X,X) + σ2I]−1K(X,X∗).

The formulation above assumes the underlying processes have zero mean. This is
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not a significant limitation, since the mean of the posterior process is not confined

to be zero. The outputs were centered to have zero mean on the training set. The

subtracted values were then added to the predicted outputs f∗.

3.3.3 Hyperparameter Optimization

The appropriate hyperparameters and noise variance are not known a priori. Hence,

these have to be inferred from the data itself. From a Bayesian perspective the

likelihood of hyperparameters Θ and noise variance σ2 can be thought of as the

marginal likelihood. Therefore, the values of Θ and σ2 can be found by maximizing

this likelihood. Once these were found predictions on test points can be made by

substituting the optimal values of Θ and σ2 into equation (3.3.11).

For a GP model the marginal likelihood is equal to the integral over the product of

the likelihood function and the prior density. Both these are in Gaussian forms and

product of the two results is another Gaussian. Therefore, the analytical form is given

by

p(Y|X,Θ,σ2) =

∫
p(Y|f ,X,Θ,σ2)p(f |X,Θ)df (3.3.12)

=

∫
N (f ,σ2I)N (0,K)df (3.3.13)

=
1

(2π)
∑N
i=1

Mi
2 |K(X,X) + σ2I| 12

exp

(
−1

2
YT (K(X,X) + σ2I)−1Y

)
(3.3.14)

This involves learning the appropriate hyperparameters and noise variance given the

observations. Hyperparameters are free parameters of the covariance function. In

this case the parameters of the kernel function are Θ = [υmn,Amn,µmn]. These

parameters are learned by maximizing the log marginal likelihood of the training

outputs given the inputs. For numerical reasons the log marginal likelihood is used

for calculations. This was first shown in Section 2.5.2. The log marginal likelihood

equation was given by (2.5.16). The normalization constant was modified to account
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for multiple outputs. The log marginal likelihood for the multi-output GP is given

by

[Θ,σ2] = arg max
Θ,σ2

{log(p(Y|X,Θ,σ2))} (3.3.15)

where,

log(p(Y|X)) = −1

2
YT (K(X,X)+σ2I)−1Y− 1

2
log |K(X,X)+σ2I|−

∑N
i=1Mi

2
log 2π

(3.3.16)

In GP model training the hyperparameters Θ and noise variance σ2 are optimized.

In the model hyperparameters υmn and Amn express the relative significance of the

associated regressors, µmn expresses the relative dependence between the outputs

and hyperparameter σ2 accounts for the influence of noise. Once these are found,

predictions can be made on the posterior outputs f∗ by substituting Θ into (3.3.8)

and σ2 into (3.3.5).

3.3.4 Two Dependent Outputs

An example application of DGP is given in Figure 3.2 where there are two strongly

dependent outputs f1(X) and f2(X) over a 1D input space. The training data or the

observations are generated by sampling points from the underlying function. From

the first function f1(X) 25 points were sampled and from the second function f2(X)

13 points were sampled. For the output f2(X) no samples were taken between -

0.5 to 2.5. The model was then built by maximizing the log marginal likelihood in

equation (3.3.15) to find the optimal hyperparameters Θ.

The resultant dependent model is shown in Figure 3.2(b) along with the independent

model with no output coupling in Figure 3.2(a). Note that the dependent model with

DGP has learned the coupling between the two output functions and has predicted

output 2 reasonably well compared to the independent model even when there are no

observations present. The prediction uncertainty is also considerably low. Therefore,

having a one dependent model compared to two independent models has proved to

be useful for such problems.
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Figure 3.2: Two dependent output functions f1(X) and f2(X). (a) represent the
independent model of the two outputs and (b) shows the dependent model. The
solid blue line represent the underlying function, dashed green line is the estimated
response from the model and the shaded regions represent 1σ uncertainty for the
model prediction.

3.3.5 Computational Complexity

For N output processes and Q data points the covariance matrix scales to NQ lead-

ing to O((NQ)3) complexity and O((NQ)2) storage. The main computational cost

is inverting the covariance matrix and this scales poorly with the number of data

points. Hence it is computationally expensive compared to the traditional least-

squares method. Since the training is done offline this cost is acceptable. For infer-

ence it has a complexity of O(NQ) for the predictive mean and O((NQ)2) for the

predictive variance.
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Figure 3.3: Ames Dryden 1 (AD-1) aircraft [54].

3.4 Simulation Results

This section details the implementation process, and test a parametric model and

the proposed DGP model to compare the performance. The tests are done on a

simulated aircraft, where an accurate model structure is known. The platform chosen

was Ames-Dryden-1 (AD-1) aircraft (see Figure 3.3). It has an oblique wing structure

which makes it a challenge for system identification. The platform has a high level of

cross coupling between its longitudinal and lateral dynamics. The ability to capture

dependencies between outputs using DGP was demonstrated.

3.4.1 AD-1 Oblique-Wing Aircraft

The AD-1 was designed to investigate the concept of an oblique-wing configuration

[70]. The oblique wing pivots about the fuselage, remaining perpendicular during slow

flight like a conventional wing aircraft to provide maximum lift and handling qualities

during takeoff and landing, and rotating to angles of up to 60° as the aircraft speed

increases to take advantage of the swept-back wing configuration during high speeds.

The airplane has a high-fineness ratio fuselage, twin turbojet engines each producing
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980 N of thrust at sea level, and a high-aspect-ratio wing. It is 11.8 m in length and

has a wingspan of 9.8 m unswept. It has a gross weight of 973 kg, and an empty

weight of 658 kg. The primary flight controls are conventional aileron, elevator, and

rudder.

The required thrust for a given flight condition is reduced by increasing wing sweep

due to decreased aerodynamic (lift induced) drag, permitting increased speed and

longer range with the same fuel consumption. Variable-sweep wings are common on

many high performance aircraft, including the F-14, F-111 and B-1. Analytical and

wind tunnel studies of the concept had shown significant improvements in transonic

aerodynamic performance for Mach numbers up to 1.4 with elimination of sonic booms

in flight for Mach numbers up to 1.2 [19]. The implication for subsonic transport

aircraft would be substantial increase in fuel economy, leading to improved range

or reduced takeoff gross weight. Although there are these aerodynamic performance

benefits, the platform suffers from lack of directional stability and roll-pitch coupling

at high sweep angles leading to poor handling qualities. At 0° wing sweep the aircraft

primarily experiences a pitch rate response as expected, whereas at 45° wing sweep

there is a significant amount of secondary roll and yaw response [70]. Hence although

the concept was first evaluated in 1976 [19] it only remained as a research platform.

3.4.2 Simulator

The simulator for this AD-1 aircraft uses data available in [18, 69] to construct a six

Degrees of Freedom (6DOF) non-linear flight model. The simulations were conducted

at 3800 m altitude where the research vehicle conducted flight testing [70]. The trim

air speed was maintained at 110 kts, less than the thrust limit for level flight at 3800 m.

Two configurations of the aircraft were used for training and testing, one at 0° and the

other at 45° sweep angle. At 0° sweep the aircraft acts similar to most conventional

platforms, with minimal cross coupling in roll and pitch axes. At 45° wing sweep

the aircraft experiences high levels of cross coupling, there is low directional stability,

unusual trim requirements and the pilot rating indicated degrading handling qualities
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[70].

3.4.3 Flight Model Training

The purpose of model training is to design maneuvers to maximize the information

content in logged data. To achieve this, system modes must be excited such that the

sensitivities of the model outputs to the parameters are high. Standard input flight

test maneuvers were used to excite the dynamics while maintaining a trimmed flight

condition [35]. This is such that the identified parameters can be constant throughout

the maneuver.

The primary flight controls for AD-1 aircraft are the conventional aileron, elevator

and rudder. The excitations were done using these control inputs δ = [δe, δa, δr],

starting from the trimmed surface position. The control deflections are elevator δe,

aileron δa and rudder δr. The throttle input was not included as it was maintained

constant throughout the maneuver. The inputs for the other controls were optimized

using a priori knowledge about the dynamic system response. This consisted of a

series of doublet control inputs (see Figure 3.4 and 3.5) near the natural frequencies

of the dynamic modes. The resultant non-dimensional aerodynamic coefficients for

the maneuvers are given in Figure 3.6. The single-surface inputs are used so that

individual control surface motions would have low correlation with other control sur-

face motions. This is particularly useful when constructing parametric models with

Least Squares (LS) as it helps to segregate the effects from other inputs. Each dou-

blet consisted of a 1s deflection in the positive direction followed by a 1s deflection in

the negative direction. These were then separated by a 5s delay of no control input.

The chosen amplitudes were 4° for elevator and 5° deflections for rudder and aileron

inputs. Longitudinal maneuvers consisted of an elevator doublet; lateral maneuvers

consisted of a rudder doublet followed by an aileron doublet. Aileron doublet was

performed last to minimize changes in the flight condition [69]. The training flight

data from the maneuvers were analysed at 20 Hz which is adequate to capture the

highest frequency mode [69].
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The cross coupling between flight modes is apparent at 45° sweep angle with the

elevator doublet. It can be observed in Figure 3.5 between 3 - 10s that there is

high pitch-roll coupling where the primary response of the aircraft is roll. Hence, if

the aircraft is required to maintain a pullup maneuver the pilot would require cross

controlling of pitch and roll.

At 0° wing sweep two different flight models were trained using least squares and

DGP. At 45° wing sweep three different models were trained, the first using least

squares with a new model structure to account for the cross coupling aerodynamic

terms, second using least squares on the same model structure as for 0° wing sweep,

and the last using DGP. An extra flight model was trained here to demonstrate the

performance of having coupled and uncoupled terms in the least squares parametric

model structure. More about this is presented in the following sub-section.

Parametric model

The parametric system identification was performed using the least squares estima-

tor that was presented in Section 2.4.1. The structure for the regressor matrix X

in equation 2.4.15 was found by iterative testing for each individual observation (see

equations 2.4.9 and 2.4.10). It should be noted that the observation error ε in equa-

tion 2.4.15 was assumed to be zero. The measure of accuracy for each derivative

was obtained through Cramér-Rao bound analysis. With respect to (2.4.6), this is a

measure of the best possible precision attainable for ϑ from the information available

in measured data z. For testing, two different flight models were constructed at the

different wing sweep angles to model the corresponding flight dynamics. At 0° wing

sweep the model is decoupled into longitudinal and lateral directional terms. At 45°

wing sweep the effects of the aerodynamic cross-coupling terms were added to the

model. These steps were performed iteratively as the exact structure was previously

not known. It was more difficult to model the 45° case as the cross-coupling terms

are not similar to a conventional aircraft model. The model terms in ϑ are the non-

dimensional stability and control derivatives C(·) which are a function of the aircraft’s
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Figure 3.4: AD-1 model training at 0° wing sweep angle. (a) shows the flight path
of the simulation. The aircraft starts at (0,0) and at an altitude of 3800 m with an
initial speed of 110 kts. (b) shows the doublet control inputs applied on the system
and the resultant body axis components.
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(a) Flight trajectory for AD-1 training flight.
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(b) Applied control inputs and the response plots.

Figure 3.5: AD-1 model training at 45° wing sweep angle. (a) shows the flight path
of the simulation. The aircraft starts at (0,0) and at an altitude of 3800 m with an
initial speed of 110 kts. (b) shows the doublet control inputs applied on the system
and the resultant body axis components.
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(a) AD-1 coefficients at 0 deg wing sweep
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(b) AD-1 coefficients at 45 deg wing sweep

Figure 3.6: The non-dimensional aerodynamic coefficients for AD-1 model training
at (a) 0° and (b) 45° wing sweep.
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state and control inputs. To compare the difference, an additional model was trained

using the same structure as for the 0° wing sweep for the 45° case.

The equations for 0° wing sweep are

CX = CX0 + CXαα + CXα̇
α̇c̄

2V
+ CXq̇

q̇c̄

2V
+ CXδeδe

CY = CY0 + CYββ + CYβ̇
β̇b

2V
+ CYδr δr

CZ = CZ0 + CZαα + CZq
qc̄

2V
+ CZδeδe

Cl = Cl0 + Clββ + Clp
pb

2V
+ Clr

rb

2V
+ Clδaδa + Clδr δr

Cm = Cm0 + Cmαα + Cmα̇
α̇c̄

2V
+ Cmq

qc̄

2V
+ Cmδeδe

Cn = Cn0 + Cnββ + Cnr
rb

2V
+ Cnδr δr

and at 45° wing sweep are

CX = CX0 + CXαα + CXββ + CXα̇
α̇c̄

2V
+ CXq̇

q̇c̄

2V
+ CXδeδe

CY = CY0 + CYββ + CYδaδa + CYδr δr

CZ = CZ0 + CZαα + CZββ + CZq
qc̄

2V
+ CZδeδe

Cl = Cl0 + Clαα + Clββ + Clp
pb

2V
+ Clr

rb

2V
+ Clδaδa + Clδr δr

Cm = Cm0 + Cmαα + Cmββ + Cmp
pc̄

2V
+ Cmq

qc̄

2V
+ Cmδeδe

Cn = Cn0 + Cnαα + Cnββ + Cnr
rb

2V
+ Cnδaδa + Cnδr δr

where the control deflections are elevator δe, aileron δa and rudder δr. The angle of

attack and side slip angle are given by α and β respectively. Angular rates for angle

of attack α̇ and side slip β̇ were non-dimensionalized with respect to airspeed V , wing

mean geometric chord c̄ and wing span b. The model developed for 0° wing sweep is

labeled as LS0 and the model developed for 45° wing sweep is labeled as LS45.
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DGP model

DGP regression requires measurements of the aerodynamic forces and moments that

the aircraft is experiencing, as well as measurements of the regressors. These forces

and moments derived in (2.4.9 - 2.4.10) are modeled as the output states to be learned

Y =
[
CX CY CZ Cl Cm Cn

]
(3.4.1)

These output states are assumed to be zero mean processes. Having determined the

coefficients to perform parameter estimation, the regressors can be measured. These

are

X =
[
ab ωb Ψb α β δ

]
(3.4.2)

The state is composed of the body axis accelerations ab = [ax, ay, az], rotation rates

ωb = [p, q, r], Euler angles Ψb = [φ, θ], angle of attack α, side slip angle β, and control

inputs δ = [δe, δa, δr]. Rotational rates were non-dimensionalized with respect to true

velocity, wing mean geometric chord and wing span. It is assumed that these inputs

are independent and stationary to satisfy the condition for the kernel function. The

models developed using DGP for 0° wing sweep is labelled as DGP0 and 45° wing

sweep is labeled as DGP45.

3.4.4 Flight Model Testing

The simulated test flight was designed to validate the learned flight models. The

testing was done using another common input maneuver called the 3-2-1-1 [39, 60].

This consists of sequential pulse widths in the ratio of 3-2-1-1. See Figure 3.7 and 3.8

for the control inputs and the resultant angular rates for 0° wing sweep and 45° wing

sweep respectively. The ‘1’ in the 3-2-1-1 was chosen to be a 1s pulse width period.

The chosen amplitudes were 1° for elevator and 3° deflections for rudder and aileron

inputs. These were selected such that the aircraft maintains a stable flight closer to

the trimmed condition.
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(a) Flight trajectory for AD-1 test flight.
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(b) Applied control inputs and the response plots.

Figure 3.7: AD-1 model testing at 0° wing sweep angle. (a) shows the flight path
of the simulation. The aircraft starts at (0,0) and at an altitude of 3800 m with an
initial speed of 110 kts. (b) shows the 3-2-1-1 control inputs applied on the system
and the resultant body axis components.
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(a) Flight trajectory for AD-1 test flight.
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(b) Applied control inputs and the response plots.

Figure 3.8: AD-1 model testing at 45° wing sweep angle. (a) shows the flight path
of the simulation. The aircraft starts at (0,0) and at an altitude of 3800 m with an
initial speed of 110 kts. (b) shows the 3-2-1-1 control inputs applied on the system
and the resultant body axis components.
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3.4.5 Model Robustness Testing

Wind gust were introduced in order to test the model’s robustness to unmodeled

disturbances. The resultant outputs were then observed to see if they remain bounded

of the model. The gust components are firstly modelled in frequency domain using the

Dryden Spectra gust model and then transformed into time domain body velocities

and rotational rate disturbances. Since these gust components are instantaneous

changes in airflow, their effect can be approximated by adding the components directly

on to the body velocity and rotational rate vectors of the aircraft. A wind gust of 3

kts was applied to the 0° case. The test maneuver is the same as aforementioned with

1° amplitudes for all the control inputs to maintain the flight closer to the trimmed

condition. The 0° model which was trained without any gust was used for testing.

3.4.6 Estimation Results

This section presents the coefficient estimates obtained for the simulated test flight

segment. The estimates are from the least squares and DGP models. These were

then compared against the coefficients obtained from the non-linear simulator (ground

truth). The estimated coefficients and the prediction uncertainties of the simulated

test flight are shown in Figure 3.9 and 3.10. In Figure 3.10 the estimates from the

uncoupled 0° model is also presented. By observing these results, both the DGP0

and LS0 estimates for 0° , and DGP45 and LS45 estimates for 45° cases are nearly

identical to the simulated response. Even in regions of relatively high uncertainty

DGP is able to infer a solution closer to the non linear response. This is only possible

due to the µmn hyperparameter in equation (3.3.8), which describes the outputs that

are coupled and translated relative to each other.

The relative errors on the estimated parameters were calculated by comparing against

the coefficients obtained from the simulator for the entire simulated test flight seg-

ment. The summary of the results are listed in Table 3.1 and 3.2. The median error

obtained for each coefficient using the least squares approach and DGP are presented.

Additionally, Table 3.2 lists the 0° parametric model (LS0) results. In general, for all
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Figure 3.9: AD-1 ground truth (solid blue), least squares (dashed-dotted red) and
DGP estimated (dashed green) non-dimensional aerodynamic coefficients with pre-
diction uncertainties (gray) at 0° sweep angle.
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Figure 3.10: AD-1 ground truth (solid blue), least squares (dashed-dotted red) and
DGP estimated (dashed green) non-dimensional aerodynamic coefficients with predic-
tion uncertainties (gray) at 45° sweep angle. In here the estimates from the uncoupled
model (dotted black) are also shown.
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Table 3.1: AD-1 coefficient estimation errors for 0° wing sweep.

% Error CX CY CZ Cl Cm Cn

LS0 2.645 0.761 0.445 4.675 5.536 3.084
DGP0 0.205 0.048 0.007 12.907 21.244 19.347

Table 3.2: AD-1 coefficient estimation errors for 45° wing sweep.

% Error CX CY CZ Cl Cm Cn

LS0 0.051 0.041 0.050 57.144 47.878 26.323
LS45 0.004 2.451 0.193 4.640 12.594 23.675

DGP45 0.005 0.036 0.047 25.951 9.520 3.922

the methods force estimates outperform moment estimates by a significant amount.

At 0° wing sweep DGP0 model outperforms LS0 model for force coefficient estimates.

However, it doesn’t perform the same for moment coefficients. It should also be

noted that since the average moment coefficient is zero, the expected % errors would

be higher than that for the Lift/Drag % errors. This result can be further improved

by designing simulated test flight maneuvers to excite the moment coefficients. Also,

it should be noted that tests must be conducted to verify the trained hyperparam-

eters of the DGP models as there is no guarantee that the marginal likelihood will

not suffer from multiple local maxima. In practice, a technique such as simulated

annealing [81] can be used to obtain a good approximation to the global optimum.

In the case for 45° wing sweep the median error on the LS45 response is 7.26%, on

LS0 it is 21.92% and on the DGP45 it is 6.58%. Hence, the DGP45 response is as

good as the LS45 response without having to know the model structure. This is due

to the cross coupling terms in the covariance matrix which learned the dependencies

between system parameters. It is also important to note that for a parametric model

the goodness of regression can be dependent on how much time and effort was invested

in the model selection. Since an accurate model structure is not known a priori and

because it can vary across the flight envelope, it is a challenge to use parametric

techniques to identify aircraft with complex flight dynamics. The proposed method

could overcome this.
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Table 3.3: AD-1 coefficient estimation errors for 0° wing sweep under wind gust.

% Error CX CY CZ Cl Cm Cn

LS0 3.138 1.242 0.772 8.615 7.254 5.915
DGP0 0.264 0.078 0.012 17.785 25.736 23.165

In addition, results are obtained for the 0° case under wind gust for both LS0 and

DGP0. A summary of these are listed in Table 3.3. The performance of both models

have degraded slightly with wind gust. Specially the moment coefficients which are

a resultant of the rotational rate vectors have a much greater effect from the added

gust components. Similar to the case without gust, the DGP0 model outperforms in

force coefficient estimates and not in the moment coefficients. This is because the

predictions were made using the same model that was used in the 0° case without

gust (see Table 3.1).

These uncertainty measures in predictions are used as the verification measure to

validate the model usefulness. The lack of confidence in model prediction is served

as the grounds to reject the model as not useful. Thus, if the uncertainty is too high

to make an accurate prediction, then the particular flight test data could be learned

or manoeuvres could be designed to excite those modes of operation to be added to

the GP model. The prediction variance could also be used in falseness validation,

whether via specific performance measures such as log-predictive density error or

through observation of confidence limits around the predicted output [37].

3.5 Summary and Conclusion

A system identification approach for aicraft based on dependent Gaussian processes

is presented in this chapter. The proposed model is non-parametric and alleviates

the labor intensive mathematical modeling process. It has the inherent capability

to handle system noise and to deal with biases data. It was proved in simulation

that the performance of the model is comparable to the classical least squares system

identification method. In addition, the approach captures cross coupling between
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inputs and identifies dependencies between outputs. Hence, the model need not be

decoupled with respect to lateral and longitudinal modes. Moreover, DGP provides

uncertainty on the predicted estimates, which gives a notion of confidence on the

learned parameters. It quantifies validity of the predictions and when they are outside

the bounds of the trained model.

The focus of the following chapter involves addressing the increase in computational

complexity to handle large data sets and sampling the training data efficiently by

selecting points that maximize the prior information. This will provide the capability

of modeling the entire flight envelope.



Chapter 4

Local and Global Gaussian Process

Approximations

4.1 Introduction

Extending the model to learn the entire flight envelope involves capturing vehicle

parameters at different speeds as well as at different dynamic pressures [35]. However,

the GP model presented scales poorly with the increase in computational complexity

to handle large data sets [27]. In addition, the model does not capture any non-

stationary properties in aerodynamics. This chapter endeavours to provide solutions

to these problems. Included in this chapter is an approximation on the DGP model to

make it scalable and to capture any local properties while maintaining all its positive

attributes.

The main problem with GP based design is the computational cost required to invert

its M ×M covariance matrix where M is the number of training input points. This

matrix inversion has a complexity of O(M3) and the cost per prediction is O(M2).

With DGP this is also scaled by the number of outputs (N), therefore the complexity

of inversion becomes O((MN)3) and prediction becomes O((MN)2). This makes it

unfavourable for scaling and becomes prohibitive for largeM [66]. In order to address

this problem an approximation technique can be used.
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The proposed algorithm uses an additive model that combines global and local Gaus-

sian processes to learn a multi-output system. It combines both short and long

length-scale phenomena for a multi-output GP. Having a combined approximation

makes the model suitable for all regions of the flight envelope. To capture the global

properties a new sampling method is introduced to gather information about the

output correlations, requiring less number of points to describe the data set. Local

properties were captured using a non-stationary covariance function with KD-trees

for neighbourhood selection. This makes the model scalable to learn from high di-

mensional large-scale data sets.

4.2 Related Work

To overcome the computational limitations of GP regression, numerous methods have

been proposed to summaries the original input space. The two main approaches for

this are based on global and local approximations. The most widely used type is the

global approximations. They tend to summarize all the training data via a small set

of support points. These include making a reduced rank covariance matrix [7, 61],

using induced inputs [17, 62, 72] or by selecting a subset from the training data [91].

A unifying view of these approximation techniques is presented in [63].

For learning a reduced rank GP two main conditions have to be satisfied; one condition

is selecting a support set and the other is learning the hyperparameters. In [71] a

method is presented for learning the support set for given hyperparameters of the

covariance function based on approximating the posterior. This fails to guarantee a

good generalized performance. In [61], a greedy algorithm for support set selection is

proposed that is based on maximizing the marginal likelihood. A method of learning

the hyperparameters of the covariance function given a support set is proposed. In [7]

a full GP is approximated with A basis functions reducing the inversion complexity

to O(A2M) for DGP. It was shown that when the basis function set is equal to the

training input set, the resulting reduced rank process is in fact full rank. However, a

framework for choosing these basis functions were not presented.
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To use induced inputs a small set of latent variables (� M) is introduced to corre-

spond to input locations [72]. This is referred to as pseudo-inputs and can be placed

in arbitrary locations. The input locations do not have to be from the original data

input points. These variables can then be optimized as an additional set of hyper-

parameters. All the data points contribute to each prediction made via the induced

inputs. Therefore, it is still a global approximation. This technique scales poorly with

the increase in dimensionality. In [91] an information gain strategy was developed

based on maximizing entropy. This suffers a significant flaw of not considering the

prediction quality of the chosen training points. Hence, some of the sample locations

may have “wasted” information.

The other approach is to use local regression, where only the local points are accounted

to infer a test point in the chosen region [53, 73, 85]. Here, the correlations are

induced using only few data points around their space. This works well in regions

where data changes rapidly and there is the requirement to model short length-scale

properties. It also means that a function can behave differently for different inputs

than a global stationary response. The result is a significantly fast GP. Nevertheless,

the performance of this model largely depends on the number of points used from the

data set. The widely used approach here is to cluster the input space into smaller

subspaces and then make a weighted average over the GP experts [57, 58, 65]. Each

expert is a GP in itself and leans from data points within its region. They may also

learn different characteristics of the function such length scales, noise variance, etc. It

was demonstrated in [58] that local GPs can be used for real-time learning of inverse

dynamics for a robot arm. Here, the computational cost is kept fixed by deleting old

inputs and updating the matrix with new readings. During this step, informativeness

of the data points was not taken into consideration. For expert selection, another

approach is to use KD-trees [68, 83]. These can be queried during the inference process

to obtain a predefined number of local neighbours near the test data. By utilizing

only a small set of points within a set region to make the predictions it reduces

computational cost significantly. One disadvantage of local GPs is that the resultant

predictions can be unsmooth. The independence between the data blocks lead to a
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discontinuous nature in the predictions. The smoothness across these boundaries and

between the local models can be attained with longer length scales.

One of the more interesting concepts that has recently been addressed is how to com-

bine both the global and local properties together to model short and long length-scale

phenomena [73, 82]. Having the best of both worlds can be an added advantage and

will make the model suitable for all regions of the data set. However, the approaches

in [73, 82] are only applicable for a single output GP. In addition, using induced

inputs for the global GP in [73] makes it unscalable for high dimensional problems.

4.3 SystemModeling with Gaussian Process Approx-

imations

To solve the computational problem an approximation is required to be made on

the original solution. In addition, the DGP covariance function is a stationary and

is not scalable with the increase in the number of training input points. Given the

stationary assumption on the input data, values of the covariance function C(xi,xj)

between inputs xi and xj are only dependent on their distance and do not change

within the input space. This might only be valid for a narrow region of the flight

envelope when the UAV is flying under its stall angle of attack and when the conditions

are steady for a wings-level flight with no sideslip [35]. For this model to be valid for

a larger region it is required to learn the non-stationary effects. This would also relax

the stationarity assumption made in Section 3.3.1. Consequently, to address both the

computational and stationary issues, and to still capture the output dependencies,

the input dimensions are to be modeled with more than one length-scale. In this case,

a more reasonable approach is to use an additive model. Consider N -output processes

y = [y1, . . . , yN ] where y ∈ RN and X = [x1, . . . ,xM ] where M is the total number of

training cases where x = [x1, . . . , xD] where x ∈ RD is a D-dimensional input vector.
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The training set is assumed to be drawn from the noisy process represented by

yn(x) = un(x) + wn(x) (4.3.1)

= fn(x) + jn(x) + wn(x) (4.3.2)

Here the latent function un(x) in equation (4.3.1) is replaced by a sum of two func-

tions. One function to capture the output correlations and the other to capture local

non-stationary behaviour. wn(x) is a stationary Gaussian white noise drawn from

N (0, σ2
n) with variance σ2

n. fn(x) is the global function defined by

fn(s) =
M∑
m=1

hmn(x) ∗ xm(x) (4.3.3)

=
M∑
m=1

∫
RD
hmn(α)xm(x−α)dDα (4.3.4)

The above equation calculates the sum of convolutions of the hmn kernel connecting

the input m to output n. An approximation is made on this function to calculate the

global resultant estimate for the new covariance function. The local function jn(x) is a

generalized linear function approximation using linear parametrization with nonlinear

basis functions. It is defined by

jn(x) = κĥ(x) (4.3.5)

where ĥ(x) is a vector of nonlinear basis functions and the parameters κ ∈ RD is a

set of weights to be estimated from the data.

4.3.1 Assumptions

In order to satisfy the conditions for a valid kernel function, certain assumptions are

made. First, the system inputs are independent processes. Next, the prior underlying

process has zero mean. If constructing a model for a larger region where the prior

underlying process changes significantly throughout the flight envelop it is possible to
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use an explicit basis function (see Section 2.7 in [66]). Finally, the observed data is

noisy and it was assumed this distribution is Gaussian white noise. Hence, Gaussian

white noise was added to each output.

By not having the restriction of a stationary covariance, the joint probability distri-

bution can change within the input space. Thus, the covariance function C(xi,xj)

between inputs xi and xj can change within the input space.

4.4 Local and Global Approximations

As discussed in the previous section, making a combined approximation will make

the model more suitable for all regions of the flight envelope. In this section, the

regimes in which these different approaches work well are investigated. For the global

approximate, a mutual information criterion was developed to capture the output

correlations. For the local approximate, the covariance function used to capture the

non-stationary properties is provided. Finally, the combined approximate and details

of the hyperparameter optimisation is presented.

4.4.1 Global Approximation

Here, a subset of the input features is chosen to represent the underlying function.

An optimization criterion is proposed to find a feature set that is most informative

about locations that are yet to sample while maximizing differential entropy across

other output dimensions. It measures the effect of selecting a particular point on

the posterior uncertainty of the GP. This technique was first proposed in [40] for

optimal sensor placements. We extend this to account for dependence in multiple

output dimensions. The proposed algorithm would first sample features that are

most informative about other output dimensions and then will go onto sample features

that reduce uncertainty in its own dimension. The result is a subset of inputs which

captures maximum dependency across outputs, maximum relevance and minimum

redundancy.
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The purpose of feature selection is to find a feature set S with k features, which

jointly has the largest dependency about the outputs. First, define an N dimensional

space with a discrete set of locations Q. This forms a space |V| = NQ which is the

set of all possible points from where it can be sampled from. If considered a subset of

the random variables A ⊆ V , then their joint distribution is also a Gaussian. Starting

with an empty set of locations A = ∅, points yn(x) ∈ V \ A are added until |A| = k

where k is the number of chosen features out of NQ possible locations. The goal is

to place k features that will give a good prediction throughout V .

This can be achieved by maximizing the mutual information betweenA and rest of the

space V \ A. Now, in order to account for dependence between multiple dimensions

a new variable B = [{yN(x)} \ yn(x)] is introduced. This captures reduction in

uncertainty in the rest of the space for those dimensions. It also forces the choice of

the points that are the most correlated within V . Mutual information I(A;V\(A∪B))

is then calculated between the already chosen points A and rest of the space not

including the correlated outputs V \ (A∪B). Searching for the next sample point A∗

is then equal to maximizing this measure

A∗ = max {I(A;V \ (A ∪ B))}

= arg max
A⊆S:|A|=k

{H(V \ (A ∪ B))−H(V \ (A ∪ B)|A)}
(4.4.1)

The sampling can then be performed incrementally choosing the next point which

gives the maximum increase in Mutual Information (MI). This can be derived as

∆I = I(A ∪ Y ; Ā)− I(A; B̄)

= H(A ∪ Y)−H(A ∪ Y|Ā)− [H(A)−H(A|B̄)]

= H(A ∪ Y)−H(V \ B) +H(Ā)− [H(A)−H(V \ B) +H(B̄)]

= H(A ∪ Y)−H(V) +H(Ā)− [H(A)−H(V) +H(Ā ∪ Y)]

(4.4.2)

and the resultant formulation is

∆I = H(Y|A)−H(Y|Ā) (4.4.3)
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Figure 4.1: The features sampled after 14 iterations using entropy (circles) and MI
(crosses) for a multi-output system (solid blue). The DGP approximation on the
underlying function using entropy (dash green) and MI (dash-dot red) with prediction
uncertainties (gray) are also shown.

where, Y = yn(x), Ā = V \ (A ∪ B ∪ Y) and B̄ = V \ (A ∪ B). Note that equation

(4.4.3) forces Y to be chosen centrally with respect to the unselected locations. Also,

the entropy for a Gaussian variable Y conditioned on a set of variables A is given by

H(Y|A) =
1

2
log(2πeσ2

Y|A)

=
1

2
log σ2

Y|A +
1

2
(log(2π) + 1)

(4.4.4)

This essentially is the entropy at the point of interest and is a monotonic function of

the GP variance.

An example of sampling features using this method is shown in Figure 4.1. Here,

two underlying functions f1(X) and f2(X) are approximated. It is then compared to

the existing entropy based sampling technique [91]. The results are shown after 14

iterations. The MI measure can perform efficient learning of both the functions where

entropy based measure is sub-optimal. It is also less prone to sample on the function
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limits where there would be less information to be learned by placing a feature.

Even though this produces a concise set of informative features, it does so with an

initial computational cost of O((N(Q − 1))3) to compute H(Y|Ā) when A = ∅. In

addition, since all the possible positions are evaluated at each iteration, the complexity

for selecting k features will beO(kh4) where h = N(Q−1). Hence, this is not practical

for large n. To solve this problem we adopt a local approximation proved in [40] where

H(Y|J̃ ) ≈ H(Y|J ) given J̃ is a result of removing all elements X from J that is

|K(X ,Y)| ≤ ε for a small value of ε. It is identified that GP correlations decrease

exponentially with the distance between points. Often the variables that are far apart

are independent. This gives a bound on the decreasing entropy H(Y|J \X )−H(Y|J )

σ2
Y|J \X − σ2

Y|J ≤
K(Y ,X )2

σ2
X

≤ ε2

σ2
X

(4.4.5)

by ε2/(σ2σ2
X) assuming that each independent Gaussian measurement has an error

of at least σ2. The result is a more efficient way to calculate H(Y|Ā) at the expense

of a small absolute error. The complexity for the operation then reduces to O(d3)

from O(h3) where d � h. The local approximation was made by selecting d data

points using a KD-tree. These local inputs where then used to train the multi-output

covariance function given by equation (3.3.8) to approximateH(Y|Ā). The estimate is

substituted into (4.4.3) to evaluate the MI. A feature A∗ is then placed in the location

of maximum increase in MI. The result is a compact set of features that maximize

prior information to account for output dependency while minimizing redundancy.

These can now be used for global approximation of the full DGP at a much lower

computational cost.

4.4.2 Local Approximation

Using the global approximations makes it difficult to model very short length-scale

phenomena as it would require a dense set of inputs to capture the fast variations.

Also the DGP approximation proposed is stationary therefore |xa−xb| is invariant to
translation. Hence, we resort to local experts to account for their own part of space.
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This is modeled using a non-stationary local neural network covariance function. The

Bayesian interpretation of neural networks is in [55]. Consider a neural network that

takes x as inputs, has one hidden layer with NH units and then linearly combines the

outputs of the hidden units to result the output jn(x). The function can be written

as

jn(x) = b+

NH∑
m=1

κmĥ(x,ωm) (4.4.6)

where κm ∈ RD are the weights to the hidden unit transfer function ĥ(x,ω) and b

is bias of the output. Input-to-hidden weights are ω. The covariance function for

a neural network can then be obtained by evaluating Eω[ĥ(x;ω)ĥ(x′;ω)] [87]. The

resultant covariance is given by

covyii(xa,xb) = σ2
n sin−1

(
β̄n + 2xa

TΣmnxb√
(1 + β̄n + 2xaTΣmnxa)(1 + β̄ + 2xbTΣmnxb)

)
(4.4.7)

and hyperparameters of the function are Σmn, σn and β̄n. The value for β̄n is a bias

factor. This covariance is much effective in handling discontinuous or rapid changes in

data. However, it is a single output covariance and is only used to learn non-stationary

behaviour within each output.

Figure 4.2 shows a plot of the neural network covariance function. This example

is a single output process with equal number of sample points. It can be observed

that the covariance increases with the increase in |x1 − x2| and reduces when x1 is

approximately equal to x2. Therefore, a function modeled with this covariance can

vary more quickly in some parts of the input space than in the others. Also, notice

that for large covariate values of +x or −x the covariance approaches a constant

value. These observations prove that it is a non-stationary covariance function.

The local approximation uses a similar strategy to [83] where training is performed

with the set of all training data, but is applied locally by making a local approxima-

tion. The data set comprises of two elements htrain training points and heval evaluation

points where heval � htrain. The training points are used to learn the hyperparame-

ters for the GP model and evaluation points together with the training data are used
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Figure 4.2: Covariance matrix for neural network covariance function. The warm
colours (red) represent high covariance and cool colours (blue) represent low covari-
ance.

for inference. The data that consists of htrain + heval is stored in a KD-tree structure.

When required to perform inference a predefined set of local neighbours d together

with the originally learned hyperparameters are used to make the predictions. The

outcome is a more locally adaptive GP that is scalable to large scale test flight data

sets.

4.4.3 Combined Approximation

The properties of both the local and global GP can be combined. Consider un(x) =

fn(x) + jn(x) where the global fn(x) and local jn(x) approximation functions are

independent. A Gaussian prior can then be placed on both functions fn(x) and jn(x)

to give them a different covariance function to reflect the belief. The sum of the

kernels for these two functions is a kernel as well. The newly formed additive kernel

is given by

K(X,X) = Kf (X,X) +Kj(X,X) (4.4.8)

This construction can be used to add together kernels with different length scales. In

addition, note that the sum of two positive definite covariances will always result in
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a positive definite covariance. Now, given that the sum of two Gaussian variables is

a Gaussian the prior for the additive model can be written as

p(y|X) = N (0, Kf (X,X) +Kj(X,X) + σ2I) (4.4.9)

where σ ∈ RN The marginal distribution and posterior predictive distribution are

the same as described in Section 3.3.

The global covariance function Kf (X,X) is composed of the multi-output DGP co-

variance function. On the other hand, the local covariance function Kj(X,X) is

composed of only independent outputs. Therefore, the components from Kj(X,X)

are added to the diagonal terms covyii(d) of the multi-output covariance function

in (4.4.8). During implementation, the model GPg is first learned from the training

data for Kf . Then predictions are made using this model on the ntrain local inputs

to learn an “error model" that captures the difference between target values and

the predictions of GPg. The local approximation model GP l is trained from these.

The resultant is having one smooth underlying component that primarily captures

dependency between outputs and a component that learns a locally concentrated

non-stationary structure.

4.4.4 Hyperparameter Optimization

Hyperparameter optimization involves learning the appropriate hyperparameters and

noise variance given the observations. Hyperparameters are free parameters of the

covariance function. In this case, the parameters of the global kernel function are

Θg = [vmn,Amn,µmn] and local kernel function are Θl = [Σmn,σ, βn]. These param-

eters are learned by maximizing the log marginal likelihood of the training outputs

given the inputs

[Θ,σ2] = arg max
Θ,σ2

{log(p(Y|X,Θ,σ2))} (4.4.10)
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where,

log(p(Y|X)) = −1

2
YT (K(X,X)+σ2I)−1Y− 1

2
log |K(X,X)+σ2I|−

∑N
i=1Mi

2
log 2π.

(4.4.11)

In GP model training the hyperparameters Θ and noise variance σ2 are optimized.

Once these are found, predictions can be made on the posterior outputs un∗ by sub-

stituting Θg into (3.3.8), Θl into (4.4.7) and by adding the contribution of these two

Gaussians.

4.4.5 Computational Complexity

For N output processes and Q data points let h = N(Q−1). Then training the global

GP has an initial complexity of O(hd3) to calculate (4.4.3) where d is the chosen

number of local neighbours. Next, for each consequent iteration k this calculation

requires O(kd4) and to evaluate (4.4.1) it requires h comparisons therefore a cost of

O(kh). On the other hand the local GP only has a complexity of O(h3trainQ). Thus,

the training process is highly computationally involved than before. Nevertheless,

the problem is tractable as it does not scale with a complexity of O(NQ3). Plus this

does not affect the performance as the model training is performed offline.

For inference, the global GP has a complexity of O(z) for the predictive mean and

O(z2) for the predictive variance where z is the final number of points chosen (z �
(NQ)). The local GP has a cost of O(d) and O(d2) for the mean and variance where

d� (htrain+heval). In comparison the full GP required a complexity of O(NQ) for the

predictive mean and O((NQ)2) for the predictive variance. Thus, it is significantly

fast compared to a full GP in making predictions.

4.5 Simulation Testing

In this section the global and local Gaussian process model was implemented and

tested to demonstrate its ability to learn aircraft dynamics. This was tested using
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the AD-1 aircraft simulator (see Section 3.4). Two simulated flights were used here.

One to train the model and the other to verify the trained model. For the global

approximation, the advantage of using the proposed mutual information criterion for

point sampling was demonstrated by comparing against the existing entropy based

sampling approach. The combined approximation shows the advantage of incorpo-

rating a non-stationary covariance function to learn the local properties. The results

were analysed and compared against the simulated response as well as the response

from the full DGP.

4.5.1 Flight Model Training and Testing

The simulator experiments in this section were performed with the AD-1 oblique wing

flight simulator. A description about the AD-1 aircraft was presented in Section 3.4.1

and the flight simulator details were given in Section 3.4.2. The wing sweep angle

was chosen to be 45° for all the experiments because in that setting the flight model

contains high level cross coupling within the aerodynamic terms.

For training and testing this section used the same conditions and maneuvers as given

in Sections 3.4.4 and 3.4.4 respectively. This gave the opportunity to compare the

performance of the approximate GP to the full DGP model that was proposed in

Chapter 3. Two main experiments were done here. The first was to test the sampling

algorithm for global approximation. The reduction in error on the predicted response

was compared with the number of features chosen to model the function. This was

then compared to the entropy based sampling approach. The second experiment

was to test the learned approximate model on its prediction capability by estimating

aerodynamic coefficients for a different simulated flight to the trained one.

The control inputs and the state response for the training maneuver were given in

Figure 3.5. It contains a series of doublet control inputs to excite both the lateral

and longitudinal dynamics (see Figure 3.5). The coefficient responses result from this

maneuver were shown in Figure 3.6 (b). The approximation algorithm uses the whole

30s of this training maneuver and to make the global approximation it sample features
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(points) that maximize learning across all output dimensions. The test maneuver used

3-2-1-1 control inputs with elevator, rudder and aileron (see Figure 3.8).

To train this GP model, it requires measurements of the aerodynamic forces and

moments that the aircraft is experiencing, as well as measurements of the regressors.

The force and moment coefficients identified as output states were given by the equa-

tion (3.4.1). The regressors are defined by equation (3.4.2). The assumption made on

inputs being stationary in Section 3.4.3 was relaxed as the proposed model can learn

any non-stationary properties. The global model only used a sub-set of the inputs to

learn the function and local model was trained using the complete data set.

4.5.2 Results and Discussion

This section presents the results of the two experiments performed in simulation. The

first experiment showed the learning of the global approximate model using a new MI

criterion. The second experiment presented with the coefficient estimates obtained

for the simulated test flight segment.

Sampling with Mutual Information

This experiment consisted of learning an approximate global GP model. The features

for the GP was sampled using MI. It was then compared with the features extracted

from the existing entropy sampling technique. The complete duration of the 30s

training maneuver was used to sample the feature set. It sampled 250 features across

all the dimensions which were determined to sufficient to learn the global approximate

function.

Figure 4.3 shows the summary of normalised Root Mean Square (RMS) error over

all the dimensions for the training flight segment. The RMS error was calculated for

each output and was normalised across all the outputs. The average error across all

the six outputs is whats displayed. It showed the error decrement with the increase

in number of features was faster with the MI approach. Hence, MI exhibited superior

performance in comparison to entropy sampling for increasing set size.
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Figure 4.3: Prediction error on the training data during the learning process of the
global DGP approximate.

Estimated Aerodynamic Coefficients

For the complete duration of the maneuver both lateral and longitudinal parameters

were identified. The estimates were from the global approximate and the combined

approximate models. These were then compared to the coefficients obtained from the

non-linear simulator (ground truth).

The estimated coefficients and the prediction uncertainties from the combined ap-

proximate GP model for the simulated test flight were shown in Figure 4.4. The

figure also shows the estimates by only using the global approximate. The model

trained for the global Gaussian process approximation at 45° wing sweep was labeled

as GA-GP45. The model for the local and global Gaussian process approximation

at 45° wing sweep was labelled as LGA-GP45. It should be noted that the global

approximate model GA-GP45 contains features that primarily captured information

about output correlations. Hence, in some instance it might not capture the under-

lying response. In particular, this can be seen in the moment coefficients Cl, Cm
and Cn. The force response functions Cx and Cz were particularly smooth hence

GA-GP45 model was also able capture them with high accuracy. During instances

when there was more independent motion GA-GP45 model slightly underperformed.
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Figure 4.4: AD-1 ground truth (solid blue), global GA-GP45 estimated (dashed-
dotted red) and Local and global LGA-GP45 estimated (dashed green) non-
dimensional aerodynamic coefficients with prediction uncertainties for LGA-GP45
(gray) at 45° sweep angle.
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Table 4.1: AD-1 coefficient estimation errors with GP approximations for 45° wing
sweep.

% Error CX CY CZ Cl Cm Cn

DGP45 0.005 0.036 0.047 25.951 9.520 3.922
GA-GP45 0.028 0.221 0.035 34.187 17.582 7.164
LGA-GP45 0.005 0.040 0.037 28.360 8.172 3.157

For the LGA-GP45 model, the locations where there are less cross coupling between

outputs, the predictions are primarily made with the local GP. This is possible due

to the local approximate that was used to infer non-linear local properties.

The relative errors on the estimated parameters were calculated by comparing against

the coefficients obtained from the simulator for the entire simulated test flight seg-

ment. The summary of the results is presented in Table 4.1 together with the results

of DGP45, which are the estimated errors using the full DGP that was calculated

in Section 3.4.6. The median error on the DGP45 response is 6.58%, on GA-GP45

it is 9.87% and on the LGA-GP45 it is 6.63%. Hence, the LGA-GP45 response is

equally a positive response as the DGP45 with a much less computational cost. Also

the global approximate model GA-GP45 performed nearly as well as the LGA-GP45

and slightly underperformed when the coefficient response is more independent.

In summary, the model learned by the combined approximation from the training

flight was proved to be valid for the entire test flight. It was also shown that by making

an approximation the estimates could be made with a much less computational cost

without compromising the prediction accuracy.

4.6 Summary and Conclusion

This chapter presented a computationally efficient GP approximation that combines

the best of local and global GPs to model a multi-output system. It introduced a

mutual information based sampling approach to extract primarily the features that

contain information about the output correlations. The global GP captures depen-
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dencies between outputs, identifies any coupling between parameters and the local

GP captures any correlations within those parameters. Finally, predictions are made

with their associated uncertainty which offer a notion of confidence on the learned

parameters. Hence, the proposed method can bring forth a more informative flight

model that can capture a wide range of the dynamics.

The simulation results indicated the mutual information criteria is better than en-

tropy to sample features from a multi-output GP, both qualitatively and in prediction

accuracy. The local GP showed that it can capture fast variations in the data and it

was demonstrated that the combined approximation is comparable to the full DGP.

Hence, the work can be used to increase the efficiency of DGP models for aircraft

system identification.
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Chapter 5

Experiments

5.1 Introduction

The final step of system identification process is to test if the identified models have

good estimation capability. Experiments were conducted with a real UAV to test

the algorithms developed in this thesis. The UAV platform was used for flight data

collection and aerodynamic models were learned from these. The measured input

data from the sensors were used as inputs to the model to generate the predicted

response which was then compared against the measured response. The performance

of the learned models were then tested by comparing against the results from different

test flights to the trained one.

There were two main experiments conducted to test various aspects of the two algo-

rithms developed in Chapters 3 and 4. The objective of the first experiment was to

demonstrate DGP model for learning flight dynamics of a real UAV platform using

logged flight data. Two separate flight tests were performed. The data from the first

flight test was used to train a DGP model and the data from the second was used to

validate the trained model. It also verified the model performance under wind gust

in a real flight scenario. The objective of the second experiment was to demonstrate

that even after making an approximation on the DGP, it is still possible to estimate

the aerodynamic coefficients while maintaining the prediction accuracy. It was also
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demonstrated that to learn the model for the entire flight envelope learning non-

stationary properties is important. Four separate flight tests were performed. The

data from the first flight test was used to train an approximate GP model. Other

three flights were used to verify the trained model. The extensive tests provided

empirical evidence of model robustness.

This chapter provide the details of experimental setup and results. Firstly, the flight

test environment and the data collection setup will be described, which were used

to test both the algorithms. Secondly, the experiment setup for the full DGP model

based estimation will be presented. It includes results from the learned model of

the aerodynamic coefficient. Next, how these could be translated into estimating the

states is shown. Thirdly, the results from the model identified from local and global

Gaussian process approximation algorithm will be presented. Both the training and

the test set results are presented and discussed. The goal was to validate the models

identified by estimating the aerodynamic response to other test flights. The results

were compared to the measured response and checked for the overall performance and

robustness.

5.2 Implementation

This section provides an overview of the implementation procedure to learn aerody-

namic coefficients from flight testing. The framework can be broken down into three

main sections shown in Figure 5.1: flight testing; model training; and predictions

through inference.

Flight testing for system identification usually involves designing maneuvers to maxi-

mize the information content and collecting flight data. In the next phase the system

inputs and outputs are used to learn the hyperparameters for the flight model. Lastly,

the chosen DGP models are passed on to estimate the aerodynamic coefficients given

the system inputs. The focus of this work is on model training and inference. Hence,

it should be noted that the maneuvers implemented may not be optimal in maximiz-
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Figure 5.1: Block diagram of the dependent Gaussian Processes aircraft system iden-
tification procedure from flight testing, training to model inference.

ing the information content in the collected flight data, although this does not affect

the results in using DGP for modeling.

The resultant aerodynamic forces and moments can be calculated using (2.3.21). This

is then used along with the gravity vector and the thrust model to calculate the total

applied forces and moments on the platform. With the new {F(·),M(·)} estimates

and the current state vector of the UAV, state derivatives can be determined. The

output can now be used for flight controller design, simulator development and to

understand the UAV handling qualities.

5.2.1 Flight Testing

In flight testing for system identification manoeuvres are design to maximize informa-

tion content in the data. To achieve this, the system modes must be excited such that
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the sensitivities of the model outputs to the parameters are high and the correlation

among the parameters is low [51]. Limiting factors include:

• The measured time series is limited due to desire to maintain equilibrium con-

ditions as well as repeatability. But, also due to finite resources of the UAV

such as fuel etc.

• Limitations on excitation of the aircraft due to maximum deflections and rates

of controls, pilot response time and aircraft stability.

• Sampling rate of sensors (care must be taken to avoid aliasing or specific reso-

nant frequencies).

There are two approaches for designing inputs for dynamic systems. The first assumes

no a priori knowledge and so the system must be excited over a broad range of

frequencies with nearly constant power for all frequencies. Inputs in this category

include frequency sweeps and impulse inputs. The second approach uses a priori

knowledge to design the inputs to excite a dynamic system response mode. This

category includes optimal input designs, along with square wave inputs at or around

the estimates of the natural frequencies of the dynamic modes [35].

Before the logged flight data was used for model training and testing it was checked

for data compatibility (see Figure 2.2). The data was verified to not have any effects

of time delay or any other potential instrumentation issues. This was done by recon-

structing the aircraft state response with known rigid-body kinematic equations and

comparing the reconstructed response with the measured responses. The summary

of rigid-body kinematic equations given in Section 2.3.2 were used to reconstruct the

state response of the UAV. Only the data that meet those conditions were used in

the experiments conducted in this chapter.
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Figure 5.2: The Brumby MkIII UAV.

5.3 Flight Test Procedure

This section describes all the hardware aspects of the system identification procedure,

which includes the UAV and its components as well as other aspects of the system

which are required to perform a successful mission.

5.3.1 Platform

The platform used for testing is the Brumby MkIII UAV. This UAV is primarily

used as a research testbed to demonstrate real-time algorithms for decentralized data

fusion [56] and cooperative control strategies involving multiple vehicles [14, 15] at the

University of Sydney. It is a delta wing, pusher UAV (see Figure 5.2). Thus, cross-

coupled terms are expected to be in the flight model. The platform has a maximum

take-off weight of approximately 45 kg, a wing span of 2.8 m and a payload capacity

of 13.5 kg. It is capable of flying at 55 − 100 kts and bank angles of 60 degrees. Its

powered by a rear mounted 4-blade propeller engine which has 16 Hp and controlled

through rudders and elevons. Maximum flight duration for the UAV is about 40

minutes.
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Figure 5.3: Sensors onboard the Brumby MkIII UAV for flight data collection.

5.3.2 Avionics and Sensors

Flight sensors for localisation include an IMU and GPS, and the UAV also has tilt

sensors for aligning the navigation system (see Figure 5.3). In addition, it is equipped

with a pitot-static system which is attached to the wing to estimate the airspeed,

temperature sensors and a sensor for engine RPM.

The on-board navigation system uses differentially corrected GPS to aid the onboard

IMU [30, 32]. The data from the IMU is logged at 400 Hz and GPS receivers run at 1

Hz to give an update estimate of the vehicle state (for details see [32]). There are two

GPS antennas. One is located in the nose of the platform and the other is located

in the wing of the platform. In addition, Differential GPS (DGPS) corrections were

transmitted to the UAV from the ground station at 1 Hz to improve the location

estimate. The resultant navigation solution is filtered and is logged at 20 Hz. A

PC104 computer is used to log this flight data onboard.

The aforementioned navigation solution was used by the Brumby MkIII flight con-

troller [31] to perform over 30 autonomous flights [9], including cooperative missions

[15]. Hence, this solution was also used as the ground truth for the tests performed

in this chapter as it provided sufficient experimental evidence.
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Figure 5.4: Marulan flight test facility. The runway can be seen at the bottom right
side of the image.

5.3.3 Test Facility

The flight trials were performed at the University of Sydney flight testing facility in

Marulan, New South Wales. Figure 5.4 shows the aerial image around the test area

with the runway. It is a 7000 hectare area with a 300 m runway and has ground

station facilities for UAV flight tests.

5.3.4 Measurands

The measurands are the measurements of the aerodynamic forces and moments that

the aircraft is experiencing, as well as measurements of the regressors. The forces

and moments are defined by (3.4.1). The force components were recorded in the

body centered frame of reference using the internal IMU. Moments were calculated

using the logged rotational rates ωb, change in rotational rates ω̇b and inertia of the

platform.

The regressors are defined by (3.4.2). These were logged using the sensors onboard.

In addition to the regressors listed in Section 3.4.3, the throttle input δT was used to

complete the state (3.4.2). This was because during the experiments slight variations
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to the throttle were made to maintain a stable flight. The inputs from the elevons

were separated into aileron and elevator commands based on parity. Low-pass filtered

outputs of these regressors were used for training.

The angle of attack (α) and sideslip angle (β) measures were not directly observed

using a sensor. Therefore, an approximation was made with

α = tan−1(
w

V
) (5.3.1)

β = sin−1(
v

V
) (5.3.2)

where the true velocity is denoted by V , downwards velocity component is w and

sideways velocity component is v.

5.4 Experiment 1: Parameter Estimation with DGPs

This experiment was done to test the performance of dependent Gaussian processes

to learn UAV stability and control derivatives. It tested the algorithm that was

developed in Chapter 3. This experiment include two test flights, one to collect

flight data to train the model and second to test the learned model. Details on the

measurands for the DGP and flight test procedure is presented. The experiment

results show the estimated aerodynamic coefficients as well as the lateral states for

the test flight. These were analysed and compared to the measured response. A

summary of the test flights for this experiment are presented in Table 5.1.

Table 5.1: Brumby MkIII test flight summary for Experiment 1.

Flight
Number

AGL
Altitude (m)

Flight
Duration (s)

Average
Mass (kg)

Average
Airspeed (knots)

Purpose

Flight 1 100 250 43.92 78.8 Training
Flight 2 130 1380 44.04 67.2 Testing
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Figure 5.5: Control inputs used on the Brumby MkIII Flight 1.

5.4.1 Flight 1: DGP Model Training

For this initial test, the goal was to learn the lateral dynamics. Also, input design

assumed no a priori knowledge about the dynamic response of the platform. Hence,

control inputs were applied to excite the system over a broad frequency range. This

involved the UAV performing lateral maneuvers with aileron and rudder. Elevator

inputs were applied to suppress off-axis response and to maintain the UAV flight

condition. The variety in shape and frequency of the inputs were to enhance the

information content in the data (see Section 9.3 in [35]). A limited control space was

explored due to high responsiveness of the platform. The inputs used for training are

shown in Figure 5.5 and the resultant aerodynamic coefficients are in Figure 5.6. The

training flight was performed at an altitude of 100 m Above Ground Level (AGL).

The platform had an average mass of 43.92 kg and maintained an average air speed

of 78.8 knots. Training data for the flight was sampled at 10 Hz and the measured

responses were tested if they have the sufficient signal-to-noise ratio to capture the

dynamics of the platform.
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(a) Aerodynamic force coefficients.

1000 1050 1100 1150 1200 1250

−5

0

5
x 10−4

Time (s)

C
l

1000 1050 1100 1150 1200 1250
0

0.05

0.1

Time (s)

C
m

1000 1050 1100 1150 1200 1250

−5

0

5

x 10−4

Time (s)

C
n

(b) Aerodynamic moment coefficients.

Figure 5.6: Flight 1: The measured non-dimensional aerodynamic coefficients for the
Brumby MkIII Flight 1.
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Of these experimental results, the sample points for training is based on how far away

the input points are from the already chosen training samples. Since the posterior

variance estimates are a measure of this it can be used to quantify where the next

training inputs are to be sampled. This has previously been used for GP point

sampling under maximizing differential entropy in [40, 41]. This again is an advantage

above the traditional methods in its ability to quantify and inform when outside the

bounds of the trained model. Of the training maneuver 7515 points were chosen to

learn the hyperparameters and the noise in the output processes by maximizing the

log marginal likelihood in equation (3.3.15).

5.4.2 Flight 2: DGP Model Testing

In Flight 2 maneuvers were designed to test the identified lateral dynamics of the

system. This involved testing over a complex flight path with lateral orbit type

maneuvers as shown in Figure 5.8. The UAV performing the flight test maneuvers

are shown in Figure 5.7. This flight had a total flight time of 23 minutes, an average

mass of 44.037 kg and maintained an average air speed of 67.2 kts. The tests were

performed at an altitude of 130 m AGL. Aerodynamic coefficients were estimated for

the whole flight using the trained DGP model. The estimates and the results from

this test are presented in the following sub-section.

5.4.3 Experiment 1: Results and Discussion

The estimated coefficients from Flight 2 were compared against those measured co-

efficients for the entire test flight (Figure 5.8). These measured parameters were

calculated using equations (2.3.10) to (2.3.15) and the navigation solution which was

used by the Brumby MkIII flight controller. In addition, prior to using the data a

compatibility check was performed with kinematic analysis [29]. This ensured the

data used for training and testing were consistent and error free.
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Figure 5.7: The Brumby MkIII UAV performing flight test maneuvers.
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Figure 5.8: Top view of the flight path over the Marulan flight test facility for Brumby
MkIII Flight 2.

Estimated Aerodynamic Coefficients

The estimated coefficients and the prediction uncertainties for a segment of the test

flight are shown in Figure 5.9. For the complete duration of the flight the lateral
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Figure 5.9: Estimated (dashed green) and measured (solid blue) non-dimensional
aerodynamic coefficients with prediction uncertainties (gray) for the Brumby MkIII
Flight 2.
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Table 5.2: Experiment 1 coefficient estimation errors.

% Error CX CY CZ Cl Cm Cn

DGP 22.758 20.348 13.494 26.573 10.721 25.251

parameters estimated are nearly identical to the measured. Longitudinal estimates

are inferred through learning any coupling between the lateral modes. Hence, the error

on those parameters are higher which can be noticed specially in the pitching moment

coefficient (Cm). This result can be further improved by designing training test flight

maneuvers to excite the longitudinal dynamics. Also, using the learned knowledge

about the system, optimal inputs can be designed so that the data contains more

information.

Figure 5.9 shows that even in the regions of high uncertainty the estimates are fairly

close to the measured. This again is due to the dependency learned between parame-

ters, thus making the model valid for a broader flight envelope. The relative errors on

the estimated parameters were calculated by comparing against the measured. The

results are presented in Table 5.2. The error estimates are relatively high compared to

the simulation results obtained for AD-1 in Section 3.4. It was found that the median

error on the force coefficients is ±18.87% and on the moment coefficients is ±20.85%

of the measured. This is given that the UAV was experiencing wind gusts of up to 11

kts, and there are propagated errors from the sensor noise. Also, the coarsely known

mass and inertia properties of the platform and any unmodeled characteristics are

captured in the response.

In summary, the model parameters identified from the training flight was proved to be

valid for the entire test flight. Next, these coefficient estimates were used to predict

the system states. Only the lateral directional dynamics were analyzed since the

training maneuvers were designed to extract these.
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Estimated Lateral States

The lateral states considered here are dependent on the aerodynamic coefficients.

These include the side velocity (v), roll rate (p) and yaw rate (r), which are dependent

on Cy, Cl and Cn respectively. The estimated lateral aerodynamic parameters along

with the thrust model and the gravity vector were used to find the total applied forces

and moments (see Section 2.3.2). These were then used to calculate the current state

derivatives using the equations from Newton’s second law of motion in translation and

rotational forms (see Section 2.3.2). In order to calculate the states, the derivatives

were integrated using the 4th-order Runge-Kutta method. The results are shown in

Figure 5.10.
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Figure 5.10: Estimated (dashed green) and measured (solid blue) lateral states with
prediction uncertainties (gray) for the Brumby MkIII Flight 2.

The estimated outputs were compared against the measured navigation solution. It

can be seen in Figure 5.10 that the propagated error from the coefficients to the

system states are negligible. The median error for the estimated East velocity was

calculated to be 0.076 m/s, for roll rate it was 0.4 deg/s and 0.45 deg/s for yaw rate -

a very promising result. These estimates could be improved in the future by designing
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maneuvers to encapsulate the dynamics in unobserved regions.

5.5 Experiment 2: Parameter Estimation with GP

Approximations

This experiment was done to test the performance of multi-output local and global

Gaussian process approximations for UAV stability and control derivative estimation.

It tests the algorithm that was developed in Chapter 4. Four separate test flights were

performed. The data from the first flight test was used to train the approximate GP

model and the data from the other flights were used to verify the trained model. A

summary of all the test flights for this experiment are provided in Table 5.3. This

section details the model training and flight test procedure. It also shows exper-

iment results of the estimated aerodynamic coefficients. These were analysed and

compared to the measured response. The advantage of modeling using a combined

approximation is demonstrated.

Table 5.3: Brumby MkIII test flight summary for Experiment 2.

Flight
Number

AGL
Altitude (m)

Flight
Duration (s)

Average
Mass (kg)

Average
Airspeed (knots)

Purpose

Flight 3 100-200 950 43.92 72.50 Training
Flight 4 100-180 1300 44.05 78.01 Testing
Flight 5 120-140 650 44.04 66.07 Testing
Flight 6 100-225 1300 44.04 72.43 Testing

5.5.1 Flight 3: Approximate GP Model Training

The training flight contained maneuvers that excite both lateral and longitudinal

dynamics. To learn the lateral dynamics (CY , Cl, Cn) the UAV performed orbit

type maneuvers primarily with aileron and rudder inputs. To learn the longitudinal

dynamics (CX , CZ , Cm) maneuvers were preformed with primarily the elevator inputs.
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The training flight was performed at two different altitudes of 100 m and 200 m

Above Ground Level (AGL). The flight maintained an average air speed of 72.5 knots.

Training data for the flight was sampled at 10 Hz, which was determined to be

sufficient to capture the dynamics of the platform. The total flight time was 950s of

which only 250s of data was used for training the global and local GP. The rest of

the data was used as evaluation points (neval) in the local GP.

5.5.2 Flights 4 - 6: Approximate GP Model Testing

The Flights 4 - 6 were designed to test both the lateral and longitudinal dynamics of

the system: Flight 4 was flown for 1300s at 100 - 180 m AGL with primarily lateral

maneuvers; Flight 5 was flown for 650s at 120 - 140 m AGL again with primarily

lateral maneuvers; Flight 6 was flown for 1300s at 100 - 225 m AGL with both

lateral and longitudinal maneuvers. The trials were performed on different days,

hence experienced wide range of weather conditions in terms of mean wind and wind

gusts. The mass of the platform was also slightly different in each flight due to the

varied amounts of fuel carried. Aerodynamic coefficients were estimated for all of

these flights.

5.5.3 Experiment 2: Results and Discussion

The goal of this experiment was to learn the lateral and longitudinal dynamics. The

estimated coefficients were then compared against those measured coefficients for the

entire test flight. These measured parameters were calculated using the data obtained

from the navigation solution which was used by the Brumby MkIII flight controller

[32]. In addition, prior to using the data a compatibility check was performed with

kinematic analysis [35]. This ensured the data used for training and testing are

consistent and error free. The following subsection details the results obtained.
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Figure 5.11: Local and global GP estimated (solid blue), global GP estimated (dash-
dot green) and measured (dash red) non-dimensional aerodynamic coefficients with
prediction uncertainties for the combined approximation (gray) for the Brumby MkIII
test Flight 2.
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Table 5.4: Experiment 2 coefficient estimation errors.

% Error CX CY CZ Cl Cm Cn

Flight 4 19.195 23.278 18.365 23.364 22.265 28.173
Flight 5 20.792 24.733 19.925 28.432 19.891 23.714
Flight 6 17.127 19.847 15.174 24.691 17.730 26.245

Estimated Aerodynamic Coefficients

For the complete duration of the flights both lateral and longitudinal parameters were

identified. The estimated coefficients and the prediction uncertainties for a segment

of test Flight 4 are shown in Figure 5.11. It also shows the estimates by only using the

approximated global GP. This is to demonstrate the benefit of utilizing a combined

approximation. What is captured by the additional layer of local GP can be seen.

The approximated global GP is a much slower moving function and does not capture

the fast variations in data. The additional layer of non-stationary covariance function

compensated for this gap.

The relative errors on the estimated parameters were calculated by comparing against

the measured. The results are presented in Table 5.4 for all the flights. It was

found that the median error on the force coefficients is ±19.83% and on the moment

coefficients is ±23.83% of the measured. This is comparable to the estimates from the

full DGP (see Table 5.2). The error is contributed to by wing gust (8 - 15 kts) and

propagated errors from sensor noise. The coarsely known mass and inertia properties

of the platform and any unmodeled characteristics are also captured in the response.

It is also observed that moment coefficients contained the most error. This could be

minimized by designing specific flight test maneuvers to excite those dynamics.

In addition to the predictions made the associated uncertainty can provide a notion

of confidence on the estimates. In some instances even in the regions of high uncer-

tainty the estimates are fairly close to the measured. This is due to the dependency

learned between parameters from the global approximate. Likewise if there is less

cross coupling between outputs inference through global GP would approach zero
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and the predictions would be primarily made using the local model. This flexibility

enabled the model to be valid for a large spectrum of the flight envelope. In summary,

the model parameters identified from the training flight was proved to be valid for

the entire test flight.

5.6 Summary and Conclusion

This chapter demonstrated the use of Gaussian processes to learn aerodynamic co-

efficients to model UAV flight dynamics. It was demonstrated through training and

extensive testing with real flight data from the Brumby MkIII UAV. The results con-

firmed that it is possible to use this technique to construct an accurate model for

a UAV. These models are more informative and this approach can reduce long-term

costs in flight testing. In particular it is useful when identifying parameters for a

UAV with high level of cross coupling such as a platform with a delta wing or an

oblique wing. In addition, it was verified that DGP models can handle wind gusts

experienced in real flight scenarios.

Apart from estimating accurate parameters and model robustness for unmodeled

disturbances, the next most useful outcome of the proposed approach is the estimates

of uncertainty of the predictions. These can be used as a verification measure to

validate the model’s usefulness. Lack of confidence in the model predictions can serve

as the grounds to learn from new information.

Next, it was demonstrated that flight models can be constructed at a much lower com-

putational cost while retaining the properties that were gained using the full DGP.

In the approximation model, the global GP captures dependencies between outputs,

identifies any coupling between parameters and the local GP captures any correla-

tions within those parameters. Finally, the predictions are made with an associated

uncertainty which gives a notion of confidence on the learned parameters. Hence, the

proposed method can bring forth a more informative flight model that can capture a

wide range of the dynamics. The consistency in predictions across various maneuvers

confirmed that the parameters learned were a accurate representation of the system.
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By having the ability to learn with large flight data sets, it can capture wide range

of properties in the data.
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Chapter 6

Conclusions

This thesis set out to investigate new ways of addressing fundamental challenges in

the area of UAV system identification.

System identification for a UAV involves flight testing to collect observation data in

order to accurately model the flight dynamics. These models map the platform’s

control inputs to its dynamic response. They can be used in modern flight con-

troller design, simulator development and to understand the UAV handling qualities.

Previous work has been done on developing models using both parametric and non-

parametric approaches. The existing parametric approaches require a model structure

to regress the observations. This may only be partially known and in some instances

may not be available a priori. One example of this is developing a model for a new

UAV platform without any prior empirical data from an aircraft catalogue such as

the DATCOM [21]. In such cases, the modeling process is labor intensive and re-

quires coarse approximations to be made. A limited model structure will restrict

its applicability to a narrow band of the flight envelope. Such restrictions can be

alleviated by using a non-parametric system identification technique. However, the

existing approaches are either limited to operating only within a trained trajectory

or do not provide a complete representation of the system.

Another primary challenge in parameter identification is when a model is to be learned

that has a high level of cross-coupling between the longitudinal and lateral dynamics.
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Examples of this behavior are present in platforms such as a delta wing, an oblique

wing or a hammerhead configuration. The goal of this work was to address these

challenges in constructing an aerodynamic model from flight testing. Finally, a note

on how to use the proposed flight models for flight control is presented.

6.1 Summary of Contributions

The three main chapters of this thesis contain the primary contributions of this work,

reviewed below:

• Chapter 3 presented a supervised learning algorithm to learn UAV flight dy-

namics. It showed how the aerodynamic stability and control derivatives can be

modeled using dependent Gaussian processes. We performed an in-depth anal-

ysis to identify parameters for the highly coupled AD-1 oblique wing aircraft

in simulation. The proposed method does not require a prior knowledge of the

model structure. We showed how the non-parametric nature of the approach en-

abled it to capture a wide range of dynamics compared to a parametric method.

In addition, we demonstrated the advantage of being able to capture dependen-

cies through cross coupling terms in the covariance function. It enabled the

models to be applicable to a broader flight envelope compared to classical sys-

tem identification methods. By not having to know a prior model structure

and its ability to capture output correlations, this method can also be effective

for the problem of rotorcraft system identification. Furthermore, the model has

the inherent capability to handle noise and biased data. We showed its robust-

ness to unmodeled disturbances. Likewise, the predictions from the model come

with uncertainty estimates, which can be used in maneuver design for system

identification and in flight controller design. Finally, the method allows the in-

tegration of known knowledge about aircraft dynamics. For instance, the model

incorporates existing knowledge about applied forces and moments, such as the

output from an engine thrust model and the known structural properties of the

platform.
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• Chapter 4 extended the dependent Gaussian process model for system identifica-

tion in two ways. First by improving its scalability to learn from large test flight

data sets and second by capturing non-stationary properties in aerodynamics.

The result is a computationally efficient Gaussian process approximation that

combines the best of local and global GPs to model a multi-output system. It

uses an additive Gaussian process model that combines both short and long

length-scale phenomena for a multi-output GP. By utilizing a combined ap-

proximation we were able to learn a broad range of properties in the underlying

data. The global GP captures dependencies between outputs and identifies any

coupling between parameters. On the other hand, the local GP captures any

correlations within those parameters and learns any non-stationary properties.

Most of the desired attributes of the full DGP was retained while reducing the

computational cost. The work also introduced a new sampling method for DGPs

based on a mutual information criterion. It can sample features that primarily

contain information about output correlations. Hence, the model requires less

data points to describe a dependent multi-output data set. Finally, this was

tested with the AD-1 oblique wing flight simulator. Improvement in learning

the model with less number of points was shown in comparison to traditional

entropy based sampling.

• Chapter 5 presented experimental results from the algorithms developed in

Chapters 3 and 4. A Brumby MkIII UAV was used for collecting the flight

data for model training and testing. The hardware requirements which includes

specifications of the UAV, its avionics and sensors that were required to col-

lect the flight data were presented. The measured input data from the sensors

were used as inputs to train the model. The estimation capability of the full

DGP model was first tested by comparing the predicted values to the measured

response. A comparison was also performed here to show any improvements

against the least squares estimator. Next, the results from local and global

GP approximation algorithm were presented. Analysis of the results was per-

formed by comparing the measured response to the response generated by using
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only the global approximation technique. In addition, it was presented how the

learned coefficient estimates can be transformed into system states.

6.2 A Note on GP Models for Control

With the proposed approximate GP model, the complete set of state derivatives can

be recovered as opposed to [4, 10, 90]. It also is not entirely a black-box prediction

model compared to NN. This 6-DOF model can then be linearized at each time step to

construct the state and control matrices. Following this, the matrices can be passed

on to a control system to calculate the required compensation.

However, it is important to note that the parameters obtained through this method

may have less physical meaning as opposed to traditional techniques whereby one

can obtain derivative parameters such as Cmα , which dictates longitudinal stability.

Hence, the control applicability is limited to modern control approaches such as Model

Predictive Control (MPC). Nevertheless, uncertainty estimates obtained can be used

to aid the control decisions [43, 44]. They can be integrated into the flight control

system or a path planner, which is an added advantage over the traditional techniques.

For instance, MPC could change prediction horizon and prediction time step based

on the model uncertainty.

This model could be used in the front end of the control design process. It can be

particularly useful when developing unconventional UAV designs such as the P.1HH

HammerHead UAV [3] or the T-Wing UAV [74] to give an initial estimate of the flight

dynamic performance.

Lastly, for real time application the computational cost to obtain predictive mean

and variance (see Section 4.4.5) must be faster than the update requirement.
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6.3 Future Work

There is a wide scope in future directions to pursue. The models developed with

the proposed techniques can be used to construct high fidelity flight simulators, and

system outputs can be used to analyse stability, control and handling qualities of the

platform. The modern flight control systems rely on feedback of the state vector.

This would require the flight model to estimate the state faster than the dominant

dynamic mode. For many UAVs, the frequencies of the rigid-body dynamic modes

are below 2 Hz (see Section 9.1 [35]). This is faster than the Nyquist frequency and

ensures that there is no aliasing of signal frequencies. Hence, the model can effectively

capture the important dynamics of the fast modes, such as the short period mode

and roll mode. The results can be passed onto a controller to calculate the optimal

control inputs required. However, some improvements are still required before using

the proposed model to provide state estimates for an on-board flight control systems.

Firstly, the cost to obtain predictive mean and variance must be faster than the up-

date requirement. Hence, the number of points to be selected can be limited. Future

work will apply this restriction to the GP approximation algorithm and test its per-

formance. This could be formulated as a cost function and apply when constructing

the local and global model presented in Section 4.4.

Currently, to perform local inference the training points are stored in a KD-tree

structure and perform inference with a predefined set of local neighbours. This might

not necessarily result in a smooth response as local GPs have discontinuities if the

training inputs are not sampled in a uniform manner. Instead of using a predefined

set of spatially closest training data, the space of the training data can be partitioned

using the knowledge of vehicle dynamics. By performing dynamic based partitioning

piecewise stationarity can be guaranteed. This would improve the smoothness of the

response for the combined approximation.

Future research could also look at extending the models capability to be able to

construct a complete flight model for the entire envelope. This involves designing

flight maneuvers at different dynamic pressures (altitudes) as well as at different



116 Conclusions

speeds. To construct a complete model, future work should look into ways of using

uncertainty on the predicted estimates to design maneuvers to improve the prediction

accuracy on the stability and control derivatives.

The inherent capability of the proposed model can capture dependency between out-

puts and covariance between parameters. This means the problem of system identi-

fication does not have to be restricted to solve in the body axis reference frame. It

can also be solved in the Earth axes or the inertial reference frame (see Section 2.3.1)

where all the body body axis aerodynamic terms are heavily coupled. This would

enable the solution to be directly used by a trajectory planner without the need to

go through the co-ordinate transformation step.
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