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Abstract  
 

This thesis focuses on understanding acidic effects on the mechanisms of Pt or Pd-

catalyzed bio-oil model ketone or aldehyde hydrodeoxygenation (HDO) and 

application of nanocatalysts - supported Pt and Pd with different surface acidity in 

the hydrodeoxygenation of acetophenone and benzaldehyde. 

 

The first part of the thesis addressed the understanding of bio-oil model ketone 

compound - acetophenone hydrodeoxygenation mechanism over alumina and silica-

alumina supported Pt and Pd catalysts by in-situ attenuated total reflection infrared 

spectroscopy (ATR-IR) in combination with modulation excitation spectroscopy 

(MES) and phase sensitive detection (PSD). Experimental results indicated acidic 

supports promoted the hydrodeoxygenation of acetophenone (AP) to produce 

ethylbenzene (EB). Specially, on alumina supported Pt, AP was predominantly 

adsorbed on Pt via its η1 (O) configuration and this species was hydrogenated with 

high chemoselectivity to 1-phenylethanol (PE). On silica-alumina supported Pd, 

hydrodeoxygenation of AP to EB involves transformation of a carbonyl group to PE 

via η1 (O) configuration, followed by a dehydration producing styrene on acidic sites 

of supports, the styrene was further hydrogenated to EB on Pd. 

 

The second part focused on the application of acidic supports supported catalysts 

Pt/Al-MCM-41 and Pt/SiO2-Al2O3 on hydrodeoxygenation of acetophenone and 

benzaldehyde. Results indicated that Pt/Al-MCM-41 catalysts serve as bifunctional 
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catalysts in the hydrogenation of AP. The overall activity over the noble metal 

catalysts on acidic supports MCM-41 increased with the increase of surface acidity 

up to support Si/Al=20, further increase the surface acidity leads to the decrease of 

catalytic activity. The increase of surface acidity up to Si/Al=20 also promotes the 

hydrogenation of aromatic ring to produce CMK and CE. For hydrodeoxygenation of 

benzaldehyde, products toward hydrogenation of both carbonyl and aromatic ring 

can be produced on a reference Pt/Al2O3 catalyst at 80°C whereas when 

temperature was increased to 200°C, only toluene and benzene can be detected. 

SiO2-doped Pt/SiO2-Al2O3 catalysts showed 10%-20% higher catalytic activity than 

reference catalyst of Pt/Al2O3 under similar reaction condition. Acidity did also 

influence catalytic selectivity of benzaldehyde hydrodeoxygenation, toluene prefers 

to form on relative low acidic catalysts whereas methylcyclohexane was more easily 

formed on high acidic catalysts. 
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1 Introduction 

 

1.1 Bio-oil 

 

Due to limited fossil-based resources, increased consumption for fuels as well as 

environmental concerns raised by the use of crude-oil, developing economical and 

energy-efficient processes for the sustainable production of fuels and chemicals has 

become an essential task.[1] Biomass is the only sustainable and renewable source of 

organic carbon for producing bio-fuels and valuable chemicals.[2] Biomass derived 

energy is almost carbon-neutral because the generated carbon dioxide during biomass 

conversion can be consumed by a new cycle of biomass growth.[3]  

  

Generally, biomass can be classified into three groups (i) lignocellulosics (cellulosics) or 

woody biomass, (ii) amorphous sugars and (iii) triglycerides. Lignocellulosic biomass 

consists of three main units: cellulose, hemicellulose, and lignin[4] which is served as the 

cheapest, most abundant biomass. In addition, its regeneration costs relatively less 

time.[5]  

 

Converting solid biomass into liquid product is of great importance. Generally, 

lignocellulosic (cellulosic) biomass can be converted to liquid product through hydrolysis 

(production of aqueous sugarsolutions), fast pyrolysis (bio-oil production) and 

liquefaction (bio-oil production).[6] 
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Bio-oils can be obtained through technologies of fast pyrolysis and direct high pressure 

liquefaction. Fast pyrolysis is a process with high temperature under inert atmosphere 

whereas high pressure liquefaction is a mild temperature process with solvent under high 

pressure.[7] Bio-oils are dark brown and fluid liquids which are a complex mixture of 

acids (acetic, propanoic), esters (methyl formate, butyrolactone, angelica lactone), 

alcohols (methanol, ethylene glycol, ethanol), ketones (acetone), aldehydes (acetaldehyde, 

formaldehyde, ethanedial), miscellaneous oxygenates (glycolaldehyde, acetol), furans 

(furfural alcohol, 5-hydroxymethylfurfural, furfural), phenols (phenol, dihydroxybenzene, 

methyl phenol, dimethyl phenol), guaiacols (isoeugenol, eugenol, 4-methyl guaiacol), and 

syringols (2,6-dimethoxyphenol, syringaldehyde, propyl syringol).[8-10] Sfetsas et al.[11] 

analyzed the composition of three different bio-oil samples. The composition of bio-oils 

can be summarized in the below figure 1.1. 

 

Figure 1.1 Compositions in bio-oil samples[11] 
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1.2 Bio-oil hydrodeoxygenation (HDO) 

 

Bio-oil obtained from biomass fast pyrolysis or liquefaction is served as a promising 

second-generation source of renewable energy. However, high oxygen content in fast 

pyrolysis derived bio-oil results in the unsuitability of its direct application as liquid 

transportation fuel, because a high proportion of oxygen can cause problems such as 

thermal instability, low heating value, immiscibility with fossil fuels, tendency to 

polymerization and storage difficulties. The oxygen content of the primary liquids from 

pyrolysis may approach 50%, whereas that from liquefaction is less than 25%.[12-15] 

Based on above concerns, it is necessary to upgrade bio-oil before it can be used as a 

substitute for diesel and gasoline fuels. Generally, upgrading methods include physical 

and chemical processes, physical upgrading is to blend pyrolysis oil directly with 

petroleum diesel and chemical upgrading include catalytic cracking of pyrolysis vapors 

with zeolites[16, 17] and hydrodeoxygenation[18]. One of the most effective 

hydrotreating methods of removing oxygen is hydrodeoxygenation. Bio-oil 

hydrodeoxygenation is conventionally performed in the temperature range of 300°C to 

600°C with high-pressure H2 in the presence of heterogeneours catalysts. The process can 

be performed in bath or continuous system with catalysts.[19, 20] Regarding catalysts in 

bio-oil hydrodeoxygenation, sulfided CoMo and NiMo are most frequently applied. 

Except the use of sulfided CoMo and NiMo catalysts, supported noble catalysts such as 

Pt/SiO2-Al2O3 and Ru-based have also been applied.[6] Conventional hydrotreating 

method with high temperature results in high levels of char/coke production that plug the 

reactor bed.[21, 22] To solve these problems, a two-step method was then developed that 
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a low temperature step was firstly performed below 573 K to remove oxygen containing 

compounds, followed by hydrodeoxygenation at conventional higher temperatures. The 

low temperature process was employed to avoid chemical instability of unsaturated 

double bonds such as olefins, aldehydes and ketones, thus achieving better storage and 

transport. This treatment could transform bio-oils into oils with a similar composition to 

high pressure oils. Afterwards, a higher temperature treatment between 350°C and 425°C 

was applied for elimination of phenolic and furanic oxygens. For both steps, a sulfided 

CoMo or NiMo-based catalyst is used. In comparison with single-step method, the two-

step method is advantageous because it saves 13% hydrogen consumption for the 

production of equivalent gasoline yield.[23-26]  

 

 

1.3 Hydrodeoxygenation of Bio-oil Model Compounds  

 

Compared to hydrotreatment tests with derived pyrolysis oil, the use of model 

compounds possess several advantages. One of the advantages is that it gives more 

insight in the reaction mechanisms and pathways as well as in the way catalyst works. 

Another advantage is that catalytic model reactions are independent of competitive 

thermal polymerization reactions. Furthermore, it also permits to save much of the time 

and effort that would be required by the difficult analysis of pyrolytic oils.[27] Therefore, 

HDO study of oxygen-containing model compounds is of great importance. In bio-oil 

model hydrodeoxygenation, it is highly desirable to selectively hydrodeoxygenate 
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oxygenates because selective hydrodeoxygenation can reduce excessive energy 

consumption.[6] 

 

1.3.1 Furanic and phenolic compounds 

 

Furanic and phenolic compounds account for a large amount of bio-oil. Thus, most study 

of hydrodeoxygenation of oxygen-containing compounds has focused on furanic and 

phenolic groups. The hydrodeoxygenation of furanic groups has been widely discussed, 

furan and benzofuran have been commonly used as model compounds.[28-32] Among 

these studies, the effect of pretreatment on the HDO activity and distribution of products 

was examined. It is indicated that the sulfided catalyst showed much better catalytic 

performance than the reduced catalyst.[28] Hydrodeoxygenation mechanism of furanic 

groups was also investigated on conventional sulfide CoMo and NiMo catalysts, and 

details of this will be discussed in section 1.10.1.[28-31]  

OO

Furan Benzofuran  

Figure 1.2 Furanic compounds 

The hydrodeoxygenation of phenolic compounds has also been widely studied. Phenol 

and mono- and dimethyl substituted phenols have been used as model compounds. 

Conventional sulfided CoMo and NiMo catalysts were applied for the 

hydrodeoxygenation of these model compounds. Generally, catalytic reactivity of 

sulfided CoMo and NiMo on different models was examined, the promotion effect of Co 
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and Ni was also studied. Some authors investigated catalytic kinetics and proposed 

catalytic hydrodeoxygenation mechanism as well as reaction pathways.[33-39]  

OH

Phenol  

Figure 1.3 Phenolic compound 

 

1.3.2 Carbonyl, carboxylic groups 

 

However, it is reported carboxylic acids, ketones and aldehydes have also been detected 

in significant amounts in bio-oils.[24, 40] The study of the hydrodeoxygenation of these 

groups is very important in the context of the upgrading of bio-oils because they are the 

main cause of instability, and polymerisation because of their high chemical reactivity. 

The deoxygenation of these compounds leads to the stabilisation of the oils. This 

stablisation could be the first step of a full refining process in order to avoid 

polymerisation at the standard hydrotreating temperatures or, another interesting 

possibility, the reaction could be stopped at this stage leading to the production of a 

partially deoxygenated oil useful for the electricity production in turbines or diesel 

engines.[27] However, the literature concerning the hydrodeoxygenation of these groups 

is very scarce. Maier et al.[41] studied the transformation of ketones in a methylene 

group over a metallic nickel catalyst. Weisser et al.[42] reported the hydrogenation of 

ketones over single metal sulphides. Concerning typical bimetallic hydrotreating catalysts, 
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only Durand et al.[43] worked on the hydrogenation of ketones over sulphided 

NiMo/alimiina. Delmon and co-workers studied sulfided CoMo catalyst on the 

hydrodeoxygenation of bio-oil model compounds contained phenolic,  etonic, car oxylic 

or furanic groups. It is suggested that the hydrogenation of the  etonic group is 

performed at a temperature 100   200ºC lower than the temperature needed for the 

elimination of methoxy, phenolic and furanic oxygens. The carboxylic ester group has an 

intermediate reactivity.[12] 

 

Acetophenone as one of the most simple and important aromatic ketones, its 

hydrogenation on supported noble catalysts has been widely investigated. AP 

hydrogenation has been studied on noble metals such as Pt and Pd.[44-46] Pt 

hydrogenates carbonyl and phenyl groups at similar rates producing comparable amounts 

of PE and CMK, PE and CMK products are then hydrogenated to CE.[44, 45] Palladium 

promotes selective hydrogenation of C=O bond of AP in the formation of PE and is also 

active for consecutively transforming PE to EB by hydrogenolysis.[46] AP 

hydrogenation has been also investigated on non-noble metals, especially on Ni-based 

catalysts. These studies show that nickel promotes the selective AP hydrogenation to PE, 

but variables quantities of CMK and CE are also formed. Moreover, Ni is active for 

producing EB by PE hydrogenolysis.[47-50]  

 

Concerning the hydrogenation of unsaturated aldehydes, one important reaction is the 

hydrogenation of benzaldehyde. Southwick and Coven found Pd the most active by 

comparing benzaldehyde hydrogenation over Pd, Pt, Rh and Ru dispersed on carbon at 
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room temperature and atmospheric pressure.[51] Merabti et al.[52] studied benzaldehyde 

hydrogenation over activated carbon supported Cu and Ni catalysts. The obtained yields 

depend on the nature of the metal active phase and reaction temperature. Copper catalyst 

selectively formed benzylalcohol (50–100%) which gave toluene (up to 50%) at high 

temperature. Supported Ni catalyst strongly preferred benzaldehyde hydrogenolysis to 

benzene (about 50% of selectivity). At high temperature it also enhanced aromatic ring 

hydrogenation to methylcyclohexane (up to 50% of selectivity) at the expense of toluene. 

Pinna et al.[53] investigated benzaldehyde hydrogenation over active carbon, silica and 

alumina supported Pd catalysts, high selectivity to benzyl alcohol and toluene was 

obtained over Pd/C, it is also found that a strong decrease of turnover frequency (almost 

an order of magnitude) was observed for very small (around 1.5 nm) Pd particles, 

pointing to structure sensitivity of benzaldehyde hydrogenation over Pd. M. Albert 

Vannice[54] et al. learned benzaldehyde hydrogenation on Pt/TiO2, Pt/η-Al2O3 and 

Pt/SiO2 and Pt/SiO2-Al2O3, it is proven that Pt/TiO2 with high temperature reduction was 

the most active, and Pt/TiO2 (HTR) retained 100% selectivity to benzyl alcohol at 

conversions up to at least 80% which is due to the enhancement of benzaldehyde with H2 

on special sites created at the metal–support interface. Also, both conversion and 

temperature affect the selectivity; benzyl alcohol was the only product at low conversions 

as reaction temperature ranged from 353K to 453K. Generally, the benzene 

hydrogenolysis product was usually observed as conversions increased and temperatures 

rose above 373 K, while toluene was formed at conversions greater than 50% and at 

temperatures near 423K or higher. For Pt/SiO2-Al2O3, no benzyl alcohol was ever 

detected, and benzene was only produced at higher temperatures. 
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1.4 Disadvantages of conventional HDO catalysts for 
hydrodeoxygenation  

 

 

The most commonly used catalysts for HDO reactions are conventional CoMo and NiMo 

catalysts in the oil refineries in hydrotreating processes.[34, 55] However, sulfur stripping 

from the surface of the catalyst occurs, causing deactivation of the catalyst and 

contamination of the products. Therefore, during the operation, sulfiding agents have to 

be added to avoid sulfur leaching from the surface thus maintaining the activity of the 

catalysts.[38, 56, 57] Furthermore, the Al2O3 support applied during hydrotreating 

processes is active for coke formation leading to catalyst deactivation. Due to above 

problems encountered, developing new catalysts which are active at low temperatures 

needed to prevent coke formation is desirable.[58] Finally, the potential of water poison 

is also one of the disadvantages of conventional sulfide CoMo and NiMo catalysts.[34]  

 

1.5 Supports modification and development for 
conventional hydrotreating  

 

 

Traditionally, Al2O3 is used as supports for hydrodeoxygenation reactions such as the 

hydrodeoxygenation of carbonyl, carboxylic and methoxyl groups. However, Al2O3 

strongly adsorbs polycondensation products formed during hydrotreating, leading to coke 

formation. Therefore, experts try to modify Al2O3 or use other supports to improve 

catalytic performance. Centeno et al.[59] studied the influence of Pt-modified 

conventional CoMo/Al2O3 catalyst, it was shown that the addition of Pt accelerates the 



10 
 

hydrodeoxygenation of carbonyl group of 4-methylacetophenone. However, Pt-doping 

did not prevent the catalyst from coke formation.  

 

Later on, neutral supports such as activated carbon was considered as an alternative. Then, 

activated carbon was used to substitute Al2O3 of sulfided CoMo/Al2O3 for 

hydrodeoxygenation reactions of 4-methylacetophenone, ethyl decanoate and 2-

methoxyphenol representative of oxygenated functions of bio-oil under 280°C, almost no 

coking reactions were observed. However, sulfur agents still needs to be added.[60] 

Therefore, highly active and stable HDO catalysts that can perform under mild conditions 

need to be developed for hydrotreating process. 

 

1.6 Supported noble catalysts  

 

In recent years, efforts have been made on the development of noble catalysts to improve 

catalytic hydrodeoxygenation systems. By comparison with conventional metal sulfide 

catalysts, supported noble metal catalysts have a better hydrogenation performance at 

lower temperatures, which are very interesting candidates for bio-oil hydrogenation. 

Furthermore, supported metal catalysts do not require the addition of sulfur to maintain 

stability and are less prone to deactivation in the presence of water. The metals used as 

hydrogenation catalysts are also not prone to coke formation.[61] In addition, flexible 

catalyst design by tailoring active phase or support is also advantageous.[25, 58] 
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Noble catalysts have been used as a new generation catalysts for the hydrodeoxygenation 

of bio-oils. Gutierrez et al.[58] performed hydrodeoxygenation of guaiacol on noble 

catalysts such as supported monometallic Rh, Pd and Pt and bimetallic RhPd, PhPt and 

PdPt catalysts at 100°C and 300°C. It is indicated that ZrO2 supported noble catalysts 

showed high performance without contaminating products or being deactivated due to 

carbon deposition. A study by Lin et al.[62] compared Rh-based catalysts and 

conventional CoMo and NiMo catalysts for hydrodeoxygenation of guaiacol under 

temperature 300°C to 400°C, it is demonstrated that Rh/ZrO2 catalyst was the most 

effective catalyst among all catalysts used. Liu et al.[63] studied the hydrodeoxygenation 

of benzofuran on active carbon supported Pt, Pd and Pt-Pd bimetallic catalysts in 

temperature range from 300°C to 360°C. The Pt-Pd bimetallic catalyst achieved highest 

deoxygenation with maximum 100% conversion and 65% selectivity to deoxygenated 

products under 340°C. Based on experimental results, a reaction pathway involving 

ketone isomerization was proposed. Overall, supported noble catalysts achieved very 

high catalytic performance in hydrodeoxygenation reactions.  

 

1.6.1 Silica-alumina supports 

 

It is generally accepted that the support properties can affect overall HDO activity. 

Addition of acids or acidic supports is often used to enhance the efficiency of catalysts 

for hydrogenation, hydrogenolysis, and hydrocracking processes.[64, 65] Silica-alumina 

supports are one kind of acidic supports in many applications. It is indicated the acidic 

support of silica-alumina increased the conversion of sorbitol.[66] Li et al. also reported 
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silica-alumina supported platinum achieved high performance in the hydrodeoxygenation 

of sorbitol.[20] Silica-alumina supported platinum was also applied for the aqueous-

phase reforming of ethylene glycol, it was found that Pt/SiO2-Al2O3 showed better 

catalytic activity in producing hydrogen that those CeO2, ZnO2 and SiO2 supported Pt 

catalysts.[67] Lin et al. investigated a bio-oil model ketone – acetophenone 

hydrodeoxygenation on silica-alumina supported Pt catalyst and achieved high yield of 

desired product ethylbenzene.[68] Huang et al. reported a high catalytic activity in 

hydrodeoxygenation of bio-oil model ketone compound over a series of silica-alumina 

supported palladium catalysts with tunable surface acidity.[69]  

 

1.6.2 MCM-41 and Al-MCM-41 supports 

 

A new class of mesoporous silica material has been reported in recent years. MCM-41 as 

one of the M41S family members of ordered mesoporous silicates was first synthesized 

by Mobil scientists. MCM-41 containing one-dimensional channels with pore diameters 

in 15-100 A range possess a hexagonal arrangement of uniformly sized mesopores, large 

surface area (usually>1000m
2
/g) and mild acidity.[70, 71] The high internal surface area, 

uniform pore channels and good thermal stabilities of this material attract significant 

attention in the application of adsorption and catalysis. However, purely silica MCM-41 

materials have no BrØnsted acidity. For the use as acid supports, much effort has been 

made on doping of Al into the framework of MCM-41 because the incorporation of 

tetrahedrally coordinated aluminum ions can create BrØnsted acid sites by the thermal 
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decomposition of ammonium ions generating acidic protons at the Al-O(H)-Si 

bridges.[72]  

 

The synthesis and characterization of Al-MCM-41 materials have been reported by 

several groups.[70, 73-75] Regarding Al-MCM-41, aspects such as the aluminium source 

in synthesis, the effect of aluminium incorporation on the structure of framework and the 

coordination state of aluminium in Al-MCM-41 materials have been investigated.[76-79]  

The influence of Al content on catalyst acidity was examined by a variety of tools such as 

temperature programmed desorption (TPD) and NMR.[72, 80] NMR spectroscopy was 

also demonstrated as a powerful tool for quantify catalyst acidity. Therefore, it was used 

to identify the amount of BrØnsted acid sites of Al-MCM-41.[80-83] It is indicated that 

Al content influences the concentration of BrØnsted acid sites. Weglarski et al.[82] 

observed an increase of BrØnsted acidity up to a molar Si/Al ratio of 34. Mokaya et al.[83] 

reported about a constant BrØnsted-to-Lewis site ratio up to a Si/Al ratio of 10. 

 

1.6.3 Al-MCM-41 supported noble catalysts 

 

Al-MCM-41 supported noble catalysts have been applied as bifunctional catalysts. One 

contribution can be considered as metal sites, the other one is acid sites generated by the 

incorporation of Al into MCM-41 framework. Al-MCM-41 supported noble catalysts 

have been used as efficient hydrogenation and hydrodeoxygenation catalysts. Among 

these studies, some researchers focused on the influence of the nature of metal, others 

investigated the effect of support acidity. Jacquin et al.[84] used novel supported Rh, Pt, 
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Ir and Ru mesoporous Al-MCM-41 as catalysts for the hydrogenation of naphthalene, 

ruthenium and iridium show highest selectivity towards hydrogenolysis and/or ring-

opening products. Wang et al.[85] studied hydrogenation of benzene, toluene and o-

xylene over a series of Al-MCM-41 supported platinum catalysts, it is suggested Al-

MCM-41 supported platinum with moderate acidity produced beneficial result for 

hydrotreating benzene, toluene and o-xylene. Chatterjee et al.[86] performed 

hydrogenation of phenol in the presence of Al-MCM-41 supported palladium catalysts, 

this palladium catalyst is shown to be highly active and promotes the selective formation 

of cyclohexanone. Bejblova  ́ et al.[87] found that the hydrodeoxygenation yield of 

benzophenone to desire diphenylmethane on MCM-41 supported Pd is much higher than 

on alumina supported Pd.  

 

1.7 HDO mechanism on conventional sulfide catalysts 
 

 

Catalytic hydrodeoxygenation mechanisms are of great importance, and have been 

extensively studied on conventional sulfide catalysts. 

 

1.7.1 HDO mechanism of furanic and phenolic compounds 

 

Mechanisms of model compounds such as furanic compounds and phenolic compounds 

have been studied on conventional CoMo and NiMo catalysts.[24, 28, 36, 37, 88-92]  
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For mechanism study of hydrodeoxygenation of furanic compounds, furan is commonly 

used as a model compound. Furimsky[28] studied HDO mechanism of furan in the 

presence of a conventional cobalt molybdate catalyst at 8.4 kPa and 400°C, reaction 

pathway was proposed involving a rapid hydrogenation of butadiene as a possible 

primary product as well as a partial hydrogenation of the ring prior to the cleavage of one 

of the C-O bonds. Later on researchers also investigated the hydrodeoxygenation of 

benzofuran on a presulfided CoMo/Al2O3 catalyst at high H2 pressure and in the 

temperature range of 220°C to 260°C. A mechanism for the hydrodeoxygenation of 

benzofuran was proposed, requiring hydrogenation to o-ethylphenol prior to 

hydrodeoxygenation.[93] Overall, the products from HDO reactions of furanic model 

compounds result from dual reaction pathway mechanisms which include an initial 

partial hydrogenation of the oxygen-containing heterocyclic ring, followed by cleavage 

of one of the C-O bonds. The other parallel pathway can be concluded as direct 

elimination of oxygen without prior hydrogenation of the heterocyclic ring.[24, 28, 91-93] 

For mechanism study of hydrodeoxygenation of phenolic compounds, phenol, substituted 

phenols and dimethylphenol have been widely studied on conventional Al2O3 supported 

CoMo and NiMo catalysts at high H2 pressure and in the temperature range of 200°C to 

400°C. Two reaction pathways of hydrodeoxygenation of all phenolic compounds have 

been proposed. One is the hydrogenation of aromatic ring followed immediately by an 

elimination process, leading to the removal of oxygen. The other one is the direct 

elimination of oxygen by a hydrogenolysis reaction which is ruptured by addition of 

hydrogen of the aromatic carbon-heteroatom bond.[34, 36, 37, 94] 
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1.7.2 HDO mechanism of ketones and aldehydes  

 

The study of the hydrodeoxygenation of these groups is very important in the upgrading 

of bio-oils because they are the main cause of instability and polymerisation caused by 

their high chemical reactivity. The deoxygenation of these compounds leads to the 

stabilisation of the oils. It is also reported that bio-oils contain significant amount of 

ketones and aldehydes, carboxylic acids and esters, aliphatic and aromatic alcohols and 

ethers. Therefore, the elimination of these oxygenated groups is a necessary step for the 

full hydrorefining of bio-oils.[27, 89, 90]  

 

However, the literature concerning the hydrodeoxygenation of these groups is very scarce. 

Durand et al. reported an efficient hydrodeoxygenation of ketones to corresponding 

hydrocarbons on sulfide NiMo catalyst at hydrogen pressure of 40 bar and 250°C.[43] 

Laurent and Delmon studied the hydrodeoxygenation of carbonyl group of an aromatic 

ketone 4-methylacetophenone on sulfide alumina supported CoMo and NiMo catalysts at 

temperatures higher than 200°C. 4-methylacetophenone was efficiently converted to 

ethylmethylbenzene without intermediate products detected which may be explained as 

alcohol product from 4-methylacetohphenone hydrogenation quickly dehydrated under 

high temperature and transformed to ethylmethylbenzene on dehydration catalyzed 

alumina support.[89]  

The transformation of ketones to hydrocarbons is considered to undergo two possible 

mechanisms one can be concluded as a conversion of ketones to corresponding alcohols 

is considered as a first step, followed by a dehydration process to unsaturated ketones and 
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finally hydrogenated to saturated hydrocarbons. The other one is the conversion of 

ketones to corresponding alcohols as the first step. After ketones are converted to 

corresponding alcohols, C-OH bond of these alcohols can be directly hydrogenolyzed to 

hydrocarbons.[43, 89, 90]  

 

1.7.3  Model compounds HDO mechanism on noble catalysts  

 

Although supported noble catalysts have attracted increasing attention and showed 

promising catalytic activity for hydrodeoxygenation of bio-oils, experimental proof of 

mechanism investigation of hydrodeoxygenation of bio-oils on these catalysts is still 

limited.  

 

1.7.3.1 Hydrodeoxygenation of furanic and phenolic compounds  

 

For hydrodeoxygenation of furanic compounds on supported noble catalysts, only very 

few reports addressed mechanism. Liu et al.[63] studied hydrodeoxygenation of 

benzofuran over a series of silica-alumina supported monometallic Pt and Pd and alloyed 

Pt−Pd catalysts in a fixed-bed flow reactor at 280°C and 3.0 MPa. Only one major route 

was found for the reaction network of HDO of benzofuran among the catalysts. First, 

benzofuran was transformed to 2,3-dihydrobenzofuran with the hydrogenation at the 

heterocyclic ring, followed by further conversion to octahydrobenzofuran at the benzene 

ring. 
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The mechanisms of phenolic compounds hydrodeoxygenation on noble catalysts have 

also been studied by several groups. The overall reaction pathway for the aqueous-phase 

hydrodeoxygenation of phenol to cyclohexane in the presence of a supported noble Pd/C 

catalyst proceeds by an initial metal-catalyzed hydrogenation of the aromatic ring 

followed by acid-catalyzed dehydration of cyclohexanol and metal-catalyzed 

hydrogenation of the cycloalkene.[88] J. Foster et al.[61] studied the hydrodeoxygenation 

of 3-methylphenol over a series of γ-Al2O3 and SiO2 supported Pt catalysts at 533 K and 

0.5 atm H2, toluene and methylcyclohexane were detected as the main products. It was 

indicated that the reaction proceeds by a combination of Pt-catalyzed hydrogenation and 

acid-catalyzed dehydration reactions. 

 

1.7.3.2 Hydrodeoxygenation of ketones and aldehydes  

 

Concerning hydrodexoygenation of ketones and aldehydes, most of the existing reports 

focus on catalyst screening and optimization to improve catalytic properties in terms of 

their activity and selectivity,[69, 95-101] few studies have addressed the reaction kinetics 

and proposed mechanistic models.[102-106] However, mechanisms of the 

hydrodeoxygenation of ketones and aldehydes on noble catalysts have not been widely 

studied. Only very few reports addressed mechanisms of ketone hydrodeoxygenation at 

relatively high temperatures under working conditions. On the basis of in situ FT-IR 

spectroscopic study of the gas phase bio-oil model aromatic ketone - acetophenone (AP) 

hydrodeoxygenation on Pt/SiO2, Chen et al.[45] concluded that the selectivity of AP 

hydrodeoxygenation strongly depends on the formation of fragments (CO, benzene, 
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toluene, and methane) originating from AP hydrogenolysis/decomposition and the strong 

adsorption of 1-phenylethanol (PE) on the Pt surface. These fragments were supposed to 

inhibit the bonding between the phenyl group and Pt surface, leading to a decrease in the 

rate the side reaction to 1-cyclohexylethanol (CE).[45] Since the hydrodeoxygenation of 

ketones on supported noble catalysts are usually operated at relatively low temperatures, 

it is essential to gain some insight into the mechanism of ketones hydrodeoxygenation at 

lower temperatures. Some researchers proposed the mechanism of hydrodeoxoygenation 

of ketones at relatively low temperature.[107] Procha źkova  ́ et al.[108] studied 

hydrodeoxygenation of aldehydes such as benzaldehyde on a series of supported 

palladium catalysts (Pd/C, Pd/Beta and Pd/ZSM-5) in the temperature range from 30 to 

130°C and at pressure ranging from 1 to 6 MPa, it was proposed that the transformation 

of benzaldehyde to toluene proceeded by the hydrogenation-hydrogenolytic mechanism 

as well as by the direct hydrogenolysis of C=O bond. However, the lack of experimental 

evidence did not allow drawing an unambiguous conclusion. 

 

1.8 Experimental spectroscopy techniques 

 

Much information such as structure and orientation of adsorbates as well as on their 

interaction with the metal surface can be acquired from vibrational spectra from 

adsorbate layer. Therefore, vibrational spectroscopy is a powerful tool in fundamental 

studies of chemical reactions and catalysis at metal surfaces.[109] Techniques such as 

sum-frequency generation (SFG), electron energy loss spectroscopy (EELS) and infrared 

spectroscopy have been applied for the investigation of catalytic metal-gas interface. For 
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instance, the technique of sum-frequency spectroscopy has been successfully applied to 

the adsorption and oxidation of CO, hydrocarbon conversion such as ethylene 

hydrogenation and cyclohexene hydrogenation and dehydrogenation on Pt(111), active 

intermediates and their concentration has been detected.[110] Today, a great variety of 

spectroscopic methods[111] are applied in catalysis research, among which vibrational 

spectroscopies[112-114], particularly infrared spectroscopy, is probably the most 

versatile and most frequently employed.  

 

1.8.1 Infrared spectroscopy 

 

Infrared spectroscopy (IR) is based upon the interaction of electromagnetic radiation with 

species that possess a permanent or induced dipole moment and the excitation of different 

vibrational states. An IR spectrometer usually records the energy of the electromagnetic 

radiation which is transmitted through a sample as a function of the wavenumber or 

frequency.[115] IR has been used as a powerful tool in many research areas. IR 

spectroscopy was applied to catalysis at the end of the seventies. Very soon it appeared 

that a clearer vision of the investigated materials and mechanism of catalytic processes 

required operating conditions as close as possible to real application conditions for the 

catalysts.[116] The first in situ mechanism application was the study of the methanol 

synthesis over a Cu/ZnAl2O4 catalyst, at 523 K and under 1MPa of CO+H2.[117]  

 

IR techniques such as transmission IR spectroscopy (TIRS), diffuse reflectance IR 

Fourier transform spectroscopy (DRIFTS) and IR reflection-absorption spectroscopy 
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(IRRAS) and attenuated total reflection infrared spectroscopy (ATR-IR) are all suitable 

for in situ studies of the catalytic reaction system. 

 

1.8.1.1 Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) 

 

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was appeared and 

applied as a tool for monitoring adsorbed molecules at catalytic solid-gas interfaces.[118] 

Since its application, it was used for the mechanism investigation of gas phase catalytic 

reactions such as oxidation and hydrogenation and NOx storage-reduction.[119-122] 

Specially, Grunwaldt et al. studied CO oxidation on Au/TiO2 and Au/ZrO2. It was found 

that low coordinated gold sites are responsible for the adsorption of oxygen and carbon 

monoxide.[119] Weigel et al. also investigated CO and CO2 hydrogenation over 

copper/zirconia to gain some insight into the mechanism of methanol synthesis. From the 

observed correlations it appears that adsorbed CO is the precursor to methanol. On the 

methanol synthesis catalyst, the adsorbed CO is further reduced to yield surface-bound 

formaldehyde and methylate, from which the desired methanol product is generated by 

hydrogenolysis or protolysis.[122]  

 

1.8.1.2 Attenuated Total Reflection Infrared Spectroscopy (ATR-IR)  

 

Conventional IR spectroscopy plays a key role for in situ solid-gas interfaces 

investigations.[123] However, in situ investigations for solid-liquid interfaces are still 

challenging. Recently, Attenuated total reflection infrared spectroscopy (ATR-IR) raised 

much attention because it possesses several features that are excellently suited for in situ 
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investigation of catalytic solid−liquid interfaces as encountered in heterogeneous 

catalysis.[124] It can provide information on the species adsorbed on the catalyst surface 

during reaction, such as intermediates, even in the presence of strongly absorbing 

solvents. In some cases, information about the catalyst itself can also be acquired.  

However, proper analysis of ATR-IR spectra of a multiphase system under working 

conditions is quite demanding because it simultaneously provides information about 

dissolved and adsorbed reactants and products, adsorbed intermediates, byproducts, and 

the catalyst itself as shown in Figure 1.4.[125]  

 

Figure 1.4 In situ ATR-FT-IR spectroscopy of heterogeneous solid–liquid catalytic 

reactions gives simultaneous information about dissolved species and species 

adsorbed on the catalyst 

 

1.8.2 Attenuated Total Reflection Infrared Spectroscopy (ATR-IR) 
in combination with Modulation Excitation Spectroscopy 
(MES) and Phase Sensitive Detection (PSD)  

 
 
Although ATR-IR shows significant potential for the investigation of solid-liquid 

interface, its limitations are not negligible. Too much information concerning solid-liquid 

interface obtained by ATR-IR raises difficulties in analyzing relevant spectra as shown in 

figure 1.4.[125] In order to solve this problem, much attention has been paid to the 
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combination of ATR-IR with modulation excitation spectroscopy (MES) and phase 

sensitive detection (PSD). Modulation technique can be applied when a system response 

reversibly or quasireversibly to a periodic external excitation such as temperature, 

pressure, concentration of a reactant. Consequently, all species in the system that are 

affected by this parameter will also change periodically at the same frequency as the 

stimulation.[126] Phase sensitive detection (PSD) is achieved by applying a mathematical 

treatment to modulation excitation spectroscopy (MES), this treatment enables significant 

enhancement of signal to noise ratio (S/N) and the extraction of kinetic information.[127-

131] Thus, ATR-IR combined with MES and PSD can assist in obtaining very sensitive 

and selective signals as in figure 1.5 (iii). 

 

Figure 1.5 Three extreme situations of signals obtained by in situ spectroscopy of: (i) 

realistic; (ii) very sensitive; and (iii) very sensitive and selective methods. ‘A’ and ‘S’ 

represent active species and spectators, respectively 

 

Very recently, the technique of ATR-IR in combination with MES and PSD was 

successfully applied for mechanism investigation of liquid phase catalytic reactions such 

as hydrogenation. Maeda et al.[129] applied this technique to investigate asymmetric 

hydrogenation of ketone on chirally modified Pt and found out the origin of involved 
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hydrogen atom of a typical an N‒H–O type hydrogen bonding between the quinuclidine 

N atom of cinchonidine and the α-carbonyl O atom of the substrate which is hydrogen 

dissociated on Pt is involved in the interaction N‒H–O between the chiral modifier, 

cinchonidine, and the ketone. Meemken et al.[132] used the combination of ATR-IR with 

MES and PSD to explore platinum-catalyzed asymmetric ketone hydrogenation. It 

indicates that the study extends the generally accepted model for enantiodifferentiation 

based on the formation of a H-bonding  etween the quinuclidine‒N atom of the cinchona 

alkaloid and the oxygen of the a-car onyl group of the  etone (N‒H‒O type H-bonding) 

and indicates that for some ketones the C9‒O···H···O=C interaction has to be taken into 

account for explaining the enantiodifferentiation. It is again proved that ATR-IR in 

combination with MES and PSD is a powerful tool to explore the complex catalytic 

solid–liquid interface under reaction conditions.  



25 
 

2 Methodology 

 

2.1 Introduction  

 

In this chapter, experimental reagents and equipments will be described. Details of 

experimental procedures including catalysts preparation and characterization and 

catalytic tests will be introduced.  

 

The technique process of attenuated total reflection infrared spectroscopy (ATR-IR) in 

combination with modulation excitation spectroscopy (MES) and phase sensitive 

detection (PSD) for mechanism investigation will be explained. Gas chromatography–

mass spectrometry (GC-MS) was employed as the principal analytical method of 

catalytic tests. 

 

2.2 Experimental and Methods  

 

2.2.1 Chemicals  

Acetophenone (AP) (Sigma-Aldrich, 99 %), 1-phenylethanol (PE) (Sigma-Aldrich, 98 %), 

1-cyclohexylethanol (CE) (Sigma-Aldrich, 99 %), ethylbenzene (EB) (Sigma-Aldrich, 

99 %), n-hexane (Sigma-Aldrich, 97 %), ethanol (Sigma-Aldrich, 99.8 %), benzaldehyde 

(Sigma-Aldrich, 99 %) and γ-Al2O3 (Umicore) were used as received.  
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2.2.2 Preparation of catalysts  

 

2.2.2.1  Pt/Al2O3 

Pt/Al2O3 catalyst was obtained from BASF-Engelhard 4759 with Pt dispersion of 0.27 

and a BET surface area of 168 m
2
/g. 

 

2.2.2.2 Preparation of Pd/SiO2-Al2O3 

The catalysts were obtained by a flame spray pyrolysis (FSP) method according to the 

literature.[69] In brief, flame-made silica–alumina loaded with 5 wt% Pd nanoparticles (5 

wt% Pd/SA) were prepared by dissolving the corresponding amounts of the precursor 

materials in a 1:1 (vol.%) mixture of acetic acid and methanol. The resulting solution was 

filtered over a glass filter, pumped through a capillary with 5 mL/min, and nebulized with 

5 L/min O2. The resulting spray was ignited by an annular supporting methane/oxygen 

flame (1.5/0.9 L/min) resulting in an approximately 6-cm-long flame. Particles were 

collected on a cooled Whatman GF6 filter (257 mm diameter). A Busch SV 1040C 

vacuum pump aided in particle recovery. The 5 wt% Pd/SA catalysts with different Si/Al 

ratio are denoted as Pd/SA-X, where X corresponds to the fraction of Al (Al at% = 

Al×100 %/(Al + Si)) in the silica–alumina.[69]  

 

2.2.2.3 Preparation of Pt/Al-MCM-41 

Al-MCM-41 supports were used as obtained. Pt(acac)2 (20 mg) diluted in toluene (7ml) 

was used as precursor for the impregnation. Each of 500 mg Al-MCM-41 supports with 

Si/Al ratio 10, 15, 20, 30, 40 and 50 was placed into the mixture of Pt(acac)2 in toluene 
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for 24 h under magnetic stirring and room temperature. After impregnation, the derived 

mixtures were dried in ambient atmosphere at 25°C, followed by at 120°C overnight and 

then calcinated at 350°C in dry air stream for 2h.  

 

2.2.2.4 Preparation of Pt/SiO2-Al2O3 

 

The catalysts were obtained according to the literature by a flame spray pyrolysis (FSP) 

method.[133] Specially, aluminum tri-sec-butoxide (Aldrich, >98%), 

hexamethyldisiloxane (HMDSO, Fluka, >98%) dissolved in 2-ethylhexanoic acid 

(Aldrich,>98%, 0.5 M) were used as aluminium and silicon precursors, respectively. The 

appropriate precursor amounts were mixed with diethyleneglycol - monobutylether 

(Fluka, >98%) and acetic anhydride (Aldrich, >98%) 1:1 by volume. The total support 

metal (Al + Si) concentration was kept constant at 0.6 M in these solutions. The nominal 

SiO2 weight fraction in the product powder ranged from 0 to 100 wt%. As Pt precursor 

platinum(II)-bis(acetylacetonate) (Pt-70, Johnson Matthey) was added to the support 

solution to reach a nominal 4.7 wt.% Pt loading in the final powder product. The 

Pt/Al2O3–SiO2 powders were produced in a laboratory scale FSP reactor described 

elsewhere[134]. The production rate ranged from 11 g/h for pure SiO2 to 18.5 g/h for 

pure Al2O3. The powders were collected with the aid of a vacuum pump (Busch SV 1025 

B) on a glass microfiber filter (Whatman GF/D, 257 mm in diameter). 
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2.2.3 Preparation of catalyst layer of Pt/Al2O3 and Pd/SiO2-Al2O3 

 

A thin film of pretreated catalyst was prepared for in situ IR measurements. A slurry of 

90 mg catalyst in 10 ml ethanol was stirred overnight to achieve uniform suspension. 

Then, 1.6 ml of the slurry was brought onto a ZnSe internal reflection element (IRE, 

bevel of 45º, 52 mm × 20 mm × 2 mm, Crystran Ltd.), and after complete evaporation of 

ethanol, the film was placed in a home-build stainless steel flow-through cell. The as-

prepared catalyst layer adhered to the IRE so that no loss of catalyst was observed over 

the course of several hours under flow-through conditions. Prior to experiments, the 

Pt/Al2O3 and Pd/SiO2-Al2O3 film layer was pretreated in situ by flowing hydrogen-

saturated n-hexane for 3h at 323 K. In situ IR experiments were performed in the flow-

through cell, which was mounted onto an ATR-IR attachment (OPTISPEC). The 

temperature of the cell was controlled by a thermostat (Julabo, F25). 

 

Figure 2.1 Experimental setup (left) (right) The picture shows the cell body (A) 

together with a Ge IRE (B) and the cooling system (C, water tubings and D, cooling 

jackets). E points to the location of the thermocouple. F is the in- and outlet 
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2.2.4 In situ ATR IR investigation of AP hydrogenation on Pt/Al2O3 
and Pd/SiO2-Al2O3 

 

 

Infrared spectroscopy is performed by ATR-IR in combination with Modulation-

excitation spectroscopy (MES) as shown in figure 2.1. ATR-IR spectra were recorded on 

a Bruker IFS-66/S spectrometer equipped with a liquid nitrogen cooled MCT detector at 

4 cm
-1

 resolution. For Pt/Al2O3, modulation-excitation spectroscopy (MES) was carried 

out by periodically changing between two different solutions: (i) AP (2 mM) in n-hexane 

and neat n-hexane solution; (ii) AP (2 mM) and PE (2 mM) in n-hexane and neat n-

hexane; (iii) AP (2 mM) and CE (2 mM) in n-hexane and neat n-hexane; (iv) AP (2 mM) 

and EB (2 mM) in n-hexane and neat n-hexane. For Pd/SiO2-Al2O3, modulation-

excitation spectroscopy (MES) was carried out by periodically changing between two 

different solutions: (i) AP (2 mM) in n-hexane and neat n-hexane solution; (ii) PE (2 mM) 

in n-hexane and neat n-hexane; The concentration of AP, PE, CE or EB was low enough 

to avoid IR absorption bands assignable to AP, PE, CE or EB in the liquid phase. 

Corresponding solutions were fed from two separate glass-made bubble tanks where the 

solutions can be saturated with gases such as He, H2 and CO. The bubble tanks were 

connected to the flow-through cell via Teflon tubing. At the outlet a peristaltic pump 

(ISMATEC, Reglo 100) was installed for continuously admitting solutions with a flow 

rate of 0.5ml/min. Two interconnected pneumatically activated Teflon valves (PARKER, 

PV-1-2324) were synchronized with the acquisition of IR spectra by spectrometer 

software (Bruker Optics, OPUS). Specifically, one cycle consisted of admission of 

substrate (2 mM) in n-hexane for 187.5 s or both substrate (2 mM) and product (2 mM) in 

n-hexane for 187.5 s, followed by subsequent admission of n-hexane for 187.5 s (total 
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period of one cycle: 375 s).  AP (saturated with He) concentration modulation was 

performed by admitting AP (2 mM) in n-hexane for 75 s followed by admission of n-

hexane for 75 s (total period of one cycle: 150 s). Typically the experiments were carried 

out according to the following procedure. The initial three cycles were performed to 

obtain a stable response. Afterward, five cycles were repeated and averaged into one 

cycle to enhance the S/N ratio and time resolution. Phase sensitive detection (PSD) was 

used to further remove the noise and to obtain kinetic information of responding surface 

species. The phase-domain spectra were obtained by a mathematical treatment of the 

time-domain spectra according to the following equation: 

  

where T is the length of a cycle, ω is the demodulation frequency, φk is the demodulation 

phase angle, k is the demodulation index (k = 1 in this study), and A(t, ṽ) and Ak(ṽ) are 

the active species responses in time- and phase-domain, respectively. 

 

2.2.5 Pt/Al-MCM-41 characterization  

 

2.2.5.1 X-Ray Diffraction (XRD) 

 

X-ray diffraction (XRD) patterns of the prepared fresh catalysts were obtained on a 

SIEMENS D5000 in the range of 1–7°C with a scanning step of 1°C using Cu Kα 

radiation (0.1542 nm wavelength). The surface area, average pore size, and total pore 

volume of the Pt/MCM-41 catalysts were determined by N2 adsorption and desorption 
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isotherms on Quantachrome Autosorb-1. Before the isotherms analysis, 50 mg of each 

catalyst was degassed under vacuum at 110°C for 12 h. 

 

2.2.5.2 N2 adsorption-desorption measurements 

 

Nitrogen adsorption-desorption measurements were carried out at 77 K using a 4000e 

NOVA system to determine the specific surface areas. Before the measurements, 50 mg 

of the samples were degassed at 200°C under vacuum to remove adsorbants from the 

surface. The primary particle size and specific surface areas were determined by BET 

measurement.  

 

2.2.5.3 Transmission Electron Microscopy (TEM)  

 

Pt/Al-MCM-41 catalysts were characterized by a Transmission electron microscopy 

(TEM) employed using a Philips CM120 BioFilter. For preparing the TEM samples, a 

small amount of the sample material was dispersed in 5 mL of ethanol (AR grade, Strem) 

in an ultrasonic bath and sonicated for 60 minutes. A drop of the colloidal suspension was 

placed on a copper grid coated with carbon film. The samples were dried in ambient air.  

 

2.2.5.4 Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) 

 

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) combined with 

CO adsorption was used to gain some insight into the properties of the supported Pt 
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nanoparticles. The investigations were carried out at 297 K with an EQUINOX 55 

spectrometer (Bruker Optics) equipped with a liquid nitrogen-cooled HgCdTe detector. 

The catalyst was introduced into a plug-flow DRIFTS cell and pretreated at 400°C in a 

flowing (40 mL/min) mixture of 20 vol.% H2 in He before CO adsorption. CO adsorption 

was carried out by flowing a mixture of 10 vol.% CO in He (40 mL/min) over the catalyst 

for 1 h and then switching to He (40 mL/min) till steady state was achieved. In situ IR 

spectra were collected by averaging 200 scans at 4 cm
-1 

resolution. 

 

2.2.5.5 NMR measurements 

 

1
H MAS NMR investigations were carried out on a Bruker Avance III 400 WB 

spectrometer at resonance frequencies of 400.1, 104.3, and 100.6 MHz with the sample 

spinning rate of 8 kHz using 4 mm MAS rotors. Spectra were recorded after single-pulse 

π/2 and π/6 excitation with repetition times of 20 s and 0.5 s for studying 
1
H. Quantitative 

1
H MAS NMR measurements were performed using zeolite H, Na-Y (35 % ion-

exchanged) as an external intensity standard, which contains 58.5 mg zeolite H, Na-Y 

with 1.776 mmol protons/g.
 
 

 

2.2.6 Catalysts tests 

 

2.2.6.1 Catalytic tests of AP hydrodeoxygenation on Pt/Al2O3, Pt/Al-MCM-41 
and Pd/SiO2-Al2O3 
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Prior to use, Pt/Al2O3, Pt/Al-MCM-41 and Pd/SiO2-Al2O3 catalysts were reduced in a 

fixed-bed reactor by firstly heating under helium-flow from room temperature to 673 K 

(473K for Pd/SiO2-Al2O3), followed by reduction in pure hydrogen for 1 hour at 673 K 

(473K for Pd/SiO2-Al2O3), cooling down in hydrogen for another half an hour, and 

finally purging with helium-flow. The reduced catalysts were immediately transferred to 

a 50 ml stainless steel autoclave, which was purged with nitrogen followed by hydrogen 

for 3 times. For AP hydrogenation on Pt/Al2O3, Pt/Al-MCM-41 and Pd/SiO2-Al2O3 

acetophenone (AP) hydrogenation was carried out in a stainless steel autoclave. 20mg of 

freshly reduced catalyst, 0.5 mmol of acetophenone and 6 ml of n-hexane solvent were 

filled into the reactor and stirred magnetically at 500 rpm and 298K (333K for Pd/SiO2-

Al2O3). The reactor was purged three times with hydrogen to remove air, followed by 

pressurizing up to 1 bar. 

 

2.2.6.2 Catalytic tests of benzaldehyde hydrodeoxygenation on Pt/Al2O3 and 
Pt/SiO2-Al2O3  

 

 

The catalytic hydrogenation reactions were conducted over Pt/Al2O3 and Pt/SiO2-Al2O3. 

Prior to the hydrogenation reaction, the catalyst needed to be reduced with hydrogen. The 

reduction was carried out in a quartz reactor with introducing hydrogen (50 ml/min) for 1 

hour at 400°C. Continuous reaction was carried out under atmosphere pressure. The pure 

benzaldehyde in gas phase was introduced into the reactor by nitrogen flow of 20 ml/min 

and being evaporated at 60°C. The hydrogenation was conducted in a U-tube reactor at 

different temperatures with hydrogen (15 ml/min). 50 mg freshly reduced catalyst was 

placed at the bottom of the reactor with the fix of quartz wool. The products were 
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collected by ice trap at the end of 15, 30, 60, 90, 120 and 180 min or 30, 60, 90, 120, 150 

and 180 min, respectively. 

 

2.2.7 Products analysis  

 

The obtained products were analysed by gas chromatography-mass spectrometry 

(GC/MS-QP 2010, Shimadzu). The GC was equipped with an Rtx-5 column and an GC-

FID detector. MS analysis was performed and equipped with an Rtx-5 MS column. 

Bicyclohexyl was used as an internal standard. The selectivity to specific products was 

calculated as S(%) = 100×(i)/[(reactant)0–(reactant)], where (i) is the molar concentration 

of the products and (reactant)0 and (reactant) correspond to the molar concentration of AP 

and benzaldehyde before and after reaction, respectively. 
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3 Mechanistic insight into Pt-catalyzed bio-oil 
model ketone hydrodeoxygenation 

 

  
3.1 Introduction  
 

 

Hydrodeoxygenation (HDO) of bio-oil model compounds is of great importance because 

model compounds study offers many advantageous features such as easy analysis, 

independent of competitive reactions and the insight into reaction mechanism. It is 

suggested expect phenols and furans served as the main oxygenated model compounds, 

esters, carboxylic acids, aliphatic and aromatic alcohols, ethers, ketones and aldehydes 

have also been detected in significant amounts in bio-oils.[24, 40] Therefore, it is also 

important to understand reaction pathway of these compounds and catalytic effects on 

these oxygen-containing compounds. Ketones representative one kind of important model 

compounds in bio-oil, its hydrogenation and hydrodeoxygenation on noble catalysts has 

been studied by several groups. Most of the existing reports focus on catalyst screening 

and optimization to improve catalytic properties in terms of their activity and 

selectivity,[69, 95-101] few studies have addressed the reaction kinetics and proposed 

mechanistic models.[102-106] Mechanism investigation of ketones hydrogenation and 

hydrodeoxygenation on noble catalysts has not been widely discussed.  

 

In this chapter, acetophenone (AP) is used as a model ketone compound for the 

investigation of hydrodeoxygenation mechanism on a reference catalyst of supported 

noble catalyst of Pt/Al2O3. Acetophenone (AP) typical in the oxygenate fractions of bio-

oils is one of the simplest aromatic ketones. Acetophenone (AP) containing both aromatic 
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ring and carbonyl group serves as an ideal simplest model ketone compound because in 

bio-oil upgrading, it is also desirable to only promote hydrogenolysis of carbonyl groups 

to saturated C-C bonds and avoiding hydrogenation of aromatic rings since the latter 

decreases the octane number of the produced fuels and results in undesired hydrogen 

consumption.[69] Competitive and consecutive hydrogenation of the carbonyl group and 

the aromatic ring give rise to a complex reaction network leading to several products and 

byproducts (Scheme 3.1).[95] 

 

Based on in situ FT-IR spectroscopic study of the gas phase AP hydrogenation on Pt/SiO2, 

Chen et al.[135] concluded that the selectivity of AP hydrogenation strongly depends on 

the formation of fragments (CO, benzene, toluene, and methane) originating from AP 

hydrogenolysis/decomposition and the strong adsorption of PE on the Pt surface. These 

fragments were supposed to inhibit the bonding between the phenyl group and Pt surface, 

leading to a decrease in the rate of the side-reaction to 1-cyclohexylethanol (CE). It is 

desirable to perform the aromatic ketone hydrogenation and hydrodeoxygenation at low 

temperatures due to environmental and energy concerns. Furthermore, the hydrogenation 

and hydrodeoxygenation of ketones on supported noble catalysts are usually operated at 

relatively low temperatures, it is essential to gain some insight into the mechanism of 

ketones hydrodeoxygenation at lower temperatures. Therefore, the question arises 

whether this behavior is also true under liquid-phase conditions.  

 

Attenuated total reflection infrared (ATR-IR) spectroscopy possesses several features 

which are excellently suited for in situ investigation of catalytic solid-liquid interfaces as 
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encountered in heterogeneous catalysis.[136] It can provide information on the species 

adsorbed on the catalyst surface during reaction, such as intermediates even in the 

presence of strongly absorbing solvents. In some cases, information about the catalyst 

itself can be also acquired. However, proper analysis of ATR-IR spectra of a multiphase 

system under working conditions is quite demanding because it simultaneously provides 

information about dissolved and adsorbed reactants and products, adsorbed intermediates, 

byproducts, and the catalyst itself.[137] In order to solve the difficulties of conventional 

ATR-IR in assigning absorption bands and analyzing kinetics, ATR-IR spectroscopy in 

combination with modulation excitation spectroscopy (MES) and phase sensitive 

detection (PSD) has gained increasing attention. The most favorable features of this 

technique are the enhanced signal-to-noise ratio (S/N ratio) and the discrimination 

between active and spectator species at catalytic solid-liquid interfaces.[138-140] Here, 

we used this technique to gain some molecular insight into the adsorption and reaction 

steps occurring during the platinum-catalyzed liquid-phase hydrogenation of AP. 
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3.2 Results and discussion 

 

acetophenone (AP)

1-phenylethanol (PE)

1-cyclohexylethanol (CE)

cyclohexylmethylketone (CMK)

ethylbenzene (EB)

ethylcyclohexane (EC)

O

O

OH

OH

 

Scheme 3.1 Reaction pathway of AP hydrogenation 

 

3.2.1 AP hydrogenation on Pt/Al2O3 

Table 3.1 Acetophenone (AP) hydrogenation at PH2 = 1 bar and 298 K on reduced 

Pt/Al2O3 

Reaction time Selectivity (%) Total conversion (%) 

EC EB CMK CE PE 

5mins 0 0 17.5 0 82.5 9.0 
20mins 0 0 20.7 4.8 74.5 29.2 
40mins 0 0 21.6 5.7 72.7 45.9 
1h 0 0 21.9 6.5 71.6 61.0 

 
 
 
 
 
 
 

3.2.2 Pt-catalyzed AP hydrogenation mechanism investigation 
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3.2.2.1 Adsorption of acetophenone 

 

In a first step we used in situ ATR-IR in combination with MES and PSD to investigate 

AP adsorption-desorption in He-saturated n-hexane on Pt/Al2O3 and Al2O3 at 298 K. As 

shown in Fig. 3.1a (phase-domain) and 3.1c (time-domain), splitting bands at 1697 cm
-1

 

and 1672 cm
-1

 were observed for the C=O stretching vibration (1682 cm
-1

 for the neat AP 

as shown in Fig. A1, in the Appendix) after AP adsorption on Pt/Al2O3. The band at 1672 

cm
-1

 was identified as the C=O stretching vibration of AP adsorbed on Al2O3, as shown 

in Fig. 3.1b and 3.1d, while the band at 1697 cm
-1 

can be assigned to the C=O stretching 

vibration of AP adsorbed on Pt (Fig. 3.1a and 3.1c).  

 

Figure 3.1 (a, b) Phase-domain and (c, d) time-domain ATR-IR spectra during 

adsorption and desorption of AP (2 mM) in He-saturated n-hexane on (a, c) 

Pt/Al2O3 and (b, d) Al2O3 at 298 K. 
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Similarly, the band at 1262 cm
-1

 attributed to X-sensitive benzene mode[141] of neat AP 

(Fig. A1 in appendix) was split into two bands at 1273 and 1264 cm
-1

, respectively, in Fig. 

3.1a and 3.1c. Figures 3.1b and 3.1d indicate that the adsorption of AP on Al2O3 caused a 

shift of the X-sensitive benzene mode[141] of AP from 1262 to 1273 cm
-1

. This C-C 

stretching vibration was shifted to 1264 cm
-1

 in Fig. 3.1a and 3.1c, when AP adsorbed on 

Pt. Bands at 1359cm
-1

 in Figs. 3.1a and 3.1c and the band at 1363 cm
-1

 in Figs. 3.1b and 

3.1d are due to the bending mode of CH3.[141, 142] Bands at 1599, 1581, and 1450 cm
-1

 

in Figs. 3.1c and 3.1d were assigned to the C=C stretching vibrations of the phenyl 

group[45, 141], and showed no band shift. 

 

From the above findings, we conclude that AP adsorbed not only on Pt but also on the 

Al2O3 support. AP adsorption on Al2O3 occurred most likely via coordination to Lewis 

acid sites through one of the oxygen lone pairs, which might explain the significant red 

shift of the C=O stretching vibration (from 1682 cm
-1

 in liquid phase to 1672 cm
-1

 on 

Al2O3).[143] On Pt, two adsorption configurations, η
1
 (O) and η

2 
(C, O), were proposed 

for AP adsorption. According to Greenler’s surface selection rule, any vi rational modes 

involving the dipole moment change parallel to the metal surface[144] cannot be 

observed; the dipole moment change of the η
2 

(C, O) configuration should be cancelled 

out, hence the corresponding IR band disappears. Because the C=O band was clearly 

observable at 1697 cm
-1

, AP was li ely adsor ed on Pt surface in the η
1 

configuration. 

 

Interestingly, the band intensity (1672 cm
-1

) of C=O stretching vibration of AP on Al2O3 

(7.0 milliabsorbance) is much higher than that on Pt/Al2O3 (1.6 milliabsorbance). 
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Moreover, the adsorption-desorption of AP was significantly slower on Al2O3 compared 

to that on Pt/Al2O3, as emerges from comparison of their phase-domain spectra presented 

in Figs. 3.1a and 3.1b.  In Fig. 3.1a, the in-phase angle of absorption bands is  φ = 310° 

with a phase-delay of 50° (360°-310°), while in Fig. 3.1b, the in-phase angle of bands is 

φ = 280° with a phase-delay of 80° (360°-280°).  

 

3.2.2.2 Adsorption of 1-phenylethanol (PE) 

 

Figure 3.2 Time-domain ATR-IR spectra during adsorption and desorption of PE (2 

mM) (a, c) He- and (b, d) H2-saturated n-hexane on Pt/Al2O3 at 298 K. 

 

1-phenylethanol (PE) is one of the potential main products of AP hydrogenation. 

Therefore, it is necessary to monitor the role of PE adsorption on Pt/Al2O3. As shown in 

the above Fig. 3.2, a band at 1205cm
-1

 assigned to deformation of phenyl ring whereas a 
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peak at 1081cm
-1

 is due to C-O stretching vi ration (υ(C-O) mode).[145] It can be seen 

PE adsorption on Pt/Al2O3 gradually increased from 7.5s to 187.5s. 

 

3.2.2.3 Hydrogenation  

 

Figure 3.3 Time-domain ATR-IR spectra during hydrogenation of AP (2 mM) in 

H2-saturated n-hexane on Pt/Al2O3 at 298 K. 

 

When the solutions were saturated with H2, the hydrogenation of AP started and the 

reaction pathway was followed by in situ ATR-IR. As shown in Fig. 3.3, new absorption 

bands at 1012, 1027 and 1081 cm
-1

 emerged due to C=C stretching, in-plane C-H 
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bending, and C-O stretching vi ration (υ(C-O) mode)[145] of the product, 1-

phenylethanol (PE), which also gave rise to two other new bands at 1204 and 1494 cm
-1

 

assigned to deformation of phenyl ring[145] and phenyl C=C stretching vibration.[45] 

The slight blue shifts of 6 cm
-1

 for υ(C-O) of PE in the reaction compared with neat 

liquid phase PE (1075 cm
-1

 in Fig. A2) were probably caused by its adsorption on the 

Al2O3 support. 

 

Interestingly, the band at 1672 cm
-1

 of AP υ(C=O) adsor ed on the Al2O3 support quickly 

reached maximum intensity at 45 s and gradually decreased while the characteristic band 

of PE at 1081cm
-1

 increased continuously. At the same time, the band at 1273 cm
-1

 of AP 

υ(C-C) on Al2O3 almost disappeared. However, the band intensity at 1697 and 1264 cm
-1

 

due to υ(C=O) and X-sensitive benzene mode of AP adsorbed on Pt still gradually 

increased with time until 187.5 s. The above observation suggests that PE originating 

from the selective hydrogenation of AP on Pt partially replaced AP pre-adsorbed on the 

Al2O3, indicating its stronger adsorption on the support. The AP desorbed from the 

support could either desorb to the bulk liquid phase or re-adsor  on Pt in η
1
 (O) 

configuration and undergo hydrogenation. This scenario is strikingly different from that 

proposed earlier for the gas-phase hydrogenation[45] where the strong adsorption and 

accumulation of PE on Pt were considered to be responsible for the high selectivity due 

to suppression of the formation of CE.[45]  

 

The above in situ ATR-IR investigation shows that AP was adsorbed on Pt in its η
1
 (O) 

mode and PE was produced due to the favored hydrogenation of the carbonyl group. This 
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behavior is also reflected by the results of experiments performed under the same 

conditions in a batch reactor (Table 3.1). PE was the dominant product with a selectivity 

of 82.5%.  Only a relative small fraction of the AP probably underwent aromatic ring 

hydrogenation via π-bonded complex.[146]  

 

Interestingly, the decomposition/hydrogenolysis of AP observed in the gas-phase 

hydrogenation which leads to various fragmentation products (CO, benzene, toluene, 

methane) is strongly suppressed in the liquid-phase hydrogenation. Only a small negative 

band appeared at 2019cm
-1

 which gradually decreased with increasing AP adsorption on 

Pt. Furthermore, this band was hardly discernible in the IR spectra, when products PE, 

CE, and EB were introduced into AP solution. Tentatively we assign this band to low 

coverage of atop-bounded CO on Pt steps, which is in the range of 2009 cm
-1

 to 2030 cm
-

1
.[147] CO observed during the gas-phase hydrogenation of AP was attributed to the 

decomposition of η
2 

(C, O) adsorbed AP on Pt.[45] In our liquid-phase experiments no 

evidence for AP adsor ed in η
2 

(C, O) configuration could be found. Furthermore, no 

other decomposition products such as benzene and toluene were detected (see Table 3.1).  

The above results indicate that decomposition of AP possibly only occurred on few 

specific active sites at the beginning of the liquid-phase hydrogenation (no band at 2019 

cm
-1

 during AP adsorption in Fig. 3.1). During the whole hydrogenation process, AP η
1 

(O) was dominant on the Pt and is therefore assumed to be at the origin of the selective 

production of PE as shown in Fig. 3.3 and Table 3.1. 
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3.2.2.4 CO adsorption  

 

Figure 3.4 Time-domain ATR-IR spectra during adsorption and desorption of CO 

in CO and He saturated n-hexane and He saturated n-hexane. 

 

It was suggested trace amount of CO was detected from AP decomposition during AP 

hydrogenation. Therefore, we deliberately performed in situ CO adsorption and 

desorption on Pt/Al2O3. As shown in Fig. 3.4, a positive band at 2074 cm
-1

 and a negative 

one at 2055 cm
-1

 due to linearly bounded CO appeared in the IR spectrum.  
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3.2.2.5 CO influence on AP hydrogenation 

 

Figure 3.5 Time-domain ATR-IR spectra during hydrogenation of AP (2 mM) in 

H2- and CO-saturated n-hexane on Pt/Al2O3 at 298 K. 

 

To gain further information about the influence of CO in this reaction network, CO was 

deliberately introduced during in situ IR investigations of AP hydrogenation. As shown 

in Fig. 3.5, a positive band at 2074 cm
-1

 and a negative one at 2055 cm
-1

 appeared in the 

IR spectrum, due to CO linearly bound to Pt. No band at 2019 cm
-1 

is discernible in Fig. 

3.5. This indicates that the band 2019 cm
-1 

in Fig. 3.3 might stem from minor AP 

fragmentation on specific active sites. In addition, no competition between CO and AP 

adsorption on the catalyst surface was observed. Even in the presence of CO, AP could 

still strongly adsorb on the catalyst surface as a comparison of the spectra in Fig. 3.5 and 

Fig. 3.1 reveals.  

 



47 
 

However, AP hydrogenation was significantly inhibited in the presence of CO, as the 

characteristic absorption band of PE at 1081 cm
-1

 almost disappeared in Fig. 3.5. 

Therefore, CO and H2 were competitively adsorbed on the Pt sites, and CO completely 

blocked the adsorption of hydrogen on Pt for the further hydrogenation, while AP 

adsorption was barely affected by the presence of CO. The hydrogenolysis 

(decomposition) of AP on few specific active sites li ely occurred  etween AP η
2 
(C, O) 

and nearby dissociated hydrogen. Without adsorbed H2 in Figs. 3.1 and 3.5, no CO band 

at 2019 cm
-1 

was detected from AP hydrogenolysis/decomposition. It seems that once CO 

covered these specific active sites, hydrogen adsorption was blocked and no further 

decomposition of AP was detected (the negative band at 2019cm
-1

) as shown in Fig. 3.3. 

Therefore, AP hydrogenolysis/decomposition as observed in the gas-phase reaction under 

vacuum conditions only occurred in the beginning of the liquid-phase hydrogenation and 

stopped due to blocking of these active sites by the fragmentation products.  
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3.2.2.6 CO influence on PE adsorption 

 

Figure 3.6 Time-domain ATR-IR spectra during PE adsorption and desorption in 

CO and He saturated n-hexane and He saturated n-hexane 

 

CO can be linearly bounded to Pt as shown in Fig. 3.4. The potential influence of CO on 

the product of PE was still unclear. Based on this concern, it is interesting to perform co-

adsorption of PE and CO to exam the influence of CO on the product of PE during AP 

hydrogenation. Fig. 3.6 clearly shows that CO barely inhibited PE adsorption and 

desorption on Pt/Al2O3 because characteristic bands of PE continually grew from 7.5s to 



49 
 

187.5s and no significant intensity difference can be observed in comparison with PE 

adsorption with CO in the absence. 

 

In particular, the roles of CO, originating from AP decomposition/hydrolysis and the 

strong adsorption of the dominant product 1-phenylethanol (PE) have been elucidated. PE 

was found to be more strongly adsorbed on Al2O3 than on Pt. CO from AP 

decomposition/hydrogenolysis only weakly affected PE adsorption. The strong 

adsorption and accumulation of PE on the support seems to play a beneficial role by 

maintaining Pt accessible to the reactant AP, a necessary prerequisite for high 

performance of the Pt-catalyzed hydrogenation. 

 

3.2.2.7 Reaction Pathway 

Scheme 3.1 shows the general reaction scheme previously proposed for the Pt-catalyzed 

AP hydrogenation. According to this scheme AP hydrogenation can lead to four other 

products beside PE. While CMK is only produced from AP, CE can either be produced 

from PE or CMK. EB is only produced from PE while EC could be produced from EB 

and CE. In order to clarify the significance of the different reactions, co-adsorption 

experiments of substrate and main products were carried out. Fig. 3.7 shows ATR-IR 

spectra obtained by co-adsorption of AP and PE saturated either with helium or hydrogen. 

As emerges from Figs. 3.7a and 3.7c, upon admission of AP and PE in He-saturated n-

hexane, the signals at 1264, 1273, 1358, 1585 and 1601 cm
-1

 belong to AP (Figure 3.1) 

and the bands at 1012, 1078, 1204 and 1494cm
-1

, which appeared on the same time scale, 

correspond to PE. AP preferably adsorbed on the Pt surface via η
1 

(O) (1697 cm
-1

), and 
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PE was largely adsorbed on the Al2O3 support (1078 cm
-1

). Interestingly, the adsorption 

band at 1672cm
-1

 quickly became saturated at 37.5 s and significantly decreased while 

the characteristic band at 1078 cm
-1

 grew. This phenomenon corroborated the observation 

made in Fig. 3.3 that there was competitive adsorption of AP and PE on the Al2O3 

support.  

 

Figure 3.7 Time-domain ATR-IR spectra during adsorption and desorption of AP (2 

mM) + PE (2 mM) in (a, c) He- and (b, d) H2-saturated n-hexane on Pt/Al2O3 at 298 

K. 

 

Upon replacing He- by H2-saturated AP and PE in n-hexane, the adsorbed η
1 

(O) AP was 

hydrogenated to PE. As shown in Figs. 3.7b and 3.7d, the band at 1697 cm
-1 

of AP η
1 
(O) 

on Pt decreased while the band at 1078 cm
-1

 of PE
 
adsorbed

 
on Al2O3 increased. During 

hydrogenation, the band at 1672 cm
-1

 of AP on Al2O3 almost disappeared due to the 



51 
 

competitive adsorption from the newly produced PE. Apparently the different adsorption 

properties of AP and PE significantly affected the processes occurring at the catalyst 

surface. For PE, no further reaction was detected because PE adsorbed on Al2O3 rather 

than on Pt. This is probably the reason that EB was hardly produced even after AP 

hydrogenation in 1 h (Table 3.1).  

 

The results shown in Fig. 3.7 provide further evidence for the strikingly different 

behaviour of the chemoselective hydrogenation of AP in liquid-phase and gas-phase. It 

was proposed that in the gas-phase the selectivity of AP hydrogenation strongly depended 

on the fragmentation products (CO and benzene) from AP decomposition/hydrogenolysis 

and the strong adsorption of PE on Pt. As emerges from Fig. 3.7, in liquid-phase, PE 

adsorbed mainly on Al2O3 and less on Pt, and no significant band at 2019 cm
-1 

indicative 

of CO originating from AP fragmentation was discernible. Thus it appears that 

fragmentation hardly occurs in the liquid phase, while it is significant in the gas-phase. 

 

CE was not detected in the above IR investigation as it was not produced in the first few 

minutes during hydrogenation (see Table 3.1). However, with longer reaction time 

formation of CE was significant, as shown in Table 1. In order to check whether the 

presence of CE affects AP hydrogenation, adsorption/desorption of AP and CE in He- 

and H2-saturated n-hexane was studied (Fig. 3.8). Upon admission of AP and CE in He 

(Figs. 3.8a and 3.8c), bands at 1263, 1358, 1450, 1585, 1601, 1672 and 1697 cm
-1

 due to 

AP and bands in the range 1000
 
– 1200 cm

-1
 assigned to CE appeared. The bands of AP 

υ(C=O) on Al2O3 at 1672 cm
-1

 and  η
1 

(O) AP on Pt at 1697 cm
-1

 quickly reached 
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maximum intensity at 37.5 s. With growing bands in the range 1000 – 1200 cm
-1

 (more 

adsorbed CE), the band at 1672 cm
-1

 (AP υ(C=O) on Al2O3) gradually decreased until 

187.5 s, while the band at 1697 cm
-1

 (AP η
1 

(O) on Pt) remained nearly at its maximum 

intensity from 37.5 s to 187.5 s. This behaviour corroborates that CE and AP 

competitively adsorbed on Al2O3, and the absorption of CE on Al2O3 was not as strong as 

that of PE.  

 

Figure 3.8 Time-domain ATR-IR spectra during adsorption and desorption of AP (2 

mM) + CE (2 mM) in (a, c) He- and (b, d) H2-saturated n-hexane on Pt/Al2O3 at 298 

K. 

 

Upon replacing H2 by He in solvent (Figs. 3.8b and 3.8d), the band of η
1 

(O) AP on Pt at 

1697 cm
-1

 decreased, while new bands appeared. The band at 1075 cm
-1

 due to PE υ(C-O) 

on the Al2O3 support gradually increased and overlapped with characteristic signals of CE 
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in the region of 1000
 
– 1200 cm

-1
. The  and of AP υ(C=O) on Al2O3 at 1672 cm

-1
 

disappeared, indicating that PE formed replaced AP on the support. The hydrogenation of 

AP to PE was hardly affected by the presence of CE, since CE did apparently not replace 

or block the AP η
1 

(O) and hydrogen adsorption/dissociation on Pt.  

 

At the beginning of the hydrogenation, CMK and PE were the only products as shown in 

Table 3.1. CMK could only be produced through hydrogenation of the phenyl group of 

AP. In order to elucidate whether hydrogenation of the aromatic ring competed with the 

carbonyl group during AP hydrogenation, co-adsorption and hydrogenation experiments 

of AP and EB were performed (Fig. 3.9). During co-adsorption of AP and EB in He-

saturated n-hexane, characteristic bands of AP (1264, 1273, 1450, 1585, 1601, 1672 and 

1697 cm
-1
) appeared on the same time scale. Bands of AP υ(C=O) on Al2O3 and AP η

1 
(O) 

on Pt (1672 and 1697 cm
-1

) increased with time until 187.5 s, similar as observed in the 

investigation without EB (Fig. 3.1). AP adsorption on both Pt and Al2O3 via its carbonyl 

group consistently increased and was barely affected by EB.  
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Figure 3.9 Time-domain ATR-IR spectra during adsorption and desorption of AP (2 

mM) + EB (2 mM) in (a, c) He- and (b, d) H2-saturated n-hexane on Pt/Al2O3 at 298 

K. 

 

Upon replacing He-saturated AP and EB by H2-saturated AP and EB, new bands 

appeared at 1012, 1080 and 1204 cm
-1

 due to PE formation. The band at 1672 cm
-1

 

assigna le to υ(C=O) of AP on Al2O3 again significantly decreased due to the 

competitive adsorption of newly produced PE strongly adsorbed on Al2O3. The band at 

1697cm
-1

 corresponding to AP η
1 

(O) on Pt did hardly change compared to the 

experiments without EB (Fig. 3.3). Obviously, the presence of EB had only a minor 

effect on the adsorption behavior of AP.  
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3.3 Conclusions 

 

In situ ATR-IR in combination with MES and PSD was applied to elucidate the surface 

processes occurring during the liquid-phase hydrogenation of AP on Pt/Al2O3. AP was 

predominantly adsorbed on Pt in its η
1 

(O) configuration and this species was 

hydrogenated with high chemoselectivity to PE. The produced PE was more strongly 

adsorbed on the Al2O3 support than on Pt, which may have lead to enhanced desorption 

of PE from Pt. A smaller fraction of adsorbed AP probably also interacted with Pt via -

bonding of the aromatic ring forming cyclohexylmethylketone (CMK). Co-adsorption 

experiments of AP with CO, PE, CE, and EB, revealed that AP adsorbed in η
1 

(O) 

configuration was always the prevalent adsorption mode of AP on Pt. This behavior is 

strikingly different from that that observed previously for AP hydrogenation in the gas-

phase, where the fragmentation of AP by decomposition/hydrogenolysis and the strong 

adsorption of PE on Pt were reported to affect the chemoselectivity to PE.[45] Such 

behavior could not be observed in the liquid-phase, where decomposition of AP played 

only a minor role in the beginning of the hydrogenation, indicated by the formation of 

some CO. Co-adsorption experiments of AP and CO showed that the presence of CO 

hardly affected the adsorption of AP, but significantly inhibited AP hydrogenation since 

CO blocked H2 adsorption and dissociation on the Pt surface. The whole mechanism was 

summarized in the below Scheme 3.2. 
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Scheme 3.2 Catalytic mechanism of AP hydrogenation on Pt/Al2O3 
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4 Mechanism study of acidic effects on 
hydrodeoxygenation of bio-oil model ketone 

 

 

4.1 Introduction 

 

Generally, support composition can affect catalytic activity and selectivity of supported 

metal catalysts commonly applied in hydrogenation and hydrodeoxygenation 

reactions.[148] The addition of acidic supports usually promotes catalytic processes of 

hydrogenation, hydrogenolysis and hydrocracking. Silica-alumina (SA) supports are one 

of excellent supports in hydrogenation reactions, and the acidity can be tuned with doping 

alumina into silica, thereby offering efficient catalysis.[6, 149] The chemoselective 

hydrogenation and hydrodeoxygenation of unsaturated keotnes on Pt, Pd and other noble 

metal catalysts can be controlled by support acid-base properties.[69, 150, 151] It has 

been proposed that the support properties can affect electronic properties of Pt metal 

particles. Specifically, a higher Pt-H bond strength was caused by basic supports while 

acidic supports result in the weakness of Pt-H bond.[152]  

 

Acetophenone (AP) serves as an ideal simplest model ketone compound containing both 

aromatic ring and carbonyl group for hydrodeoxygenation of bio-oil because in bio-oil 

upgrading undesired hydrogen consumption and decrease of octane number will be 

generated if aromatic rings and carbonyl group are reduced at the same time.[6] In other 

words, it is highly desirable to hydrodeoxygenate carbonyl group of AP in producing 

ethylbenzene (EB). 
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Lin et al. investigated vapor-phase AP hydrogenation on SA supported Pt catalyst and 

achieved high yield to ethylbenzene (EB), proposing a bifunctional reaction including PE 

dehydration to styrene on acidic support followed by a hydrogenation step on Pt.[68] 

Recently, we have used flame spray pyrolysis (FSP) to generate palladium nanoparticles 

on silica-alumina (Pd/SA) with tunable surface acidity, these acidic solid catalysts also 

showed high chemoselectivity for AP hydrogenation to EB under solvent free 

conditions.[69] The details of FSP method can be found in the literatures.[153, 154] 

 

It was suggested that the transformation of carbonyl group to methylene might occur 

through three mechanisms as shown in Scheme 4.1. For hydrogenation-dehydration 

mechanism, it includes transformation of a carbonyl compound to alcohol, followed by a 

dehydration producing C=C and further hydrogenation of the C=C double bond. In the 

case of hydrogenation-hydrogenolytic mechanism, hydrogenation of carbonyl compound 

to alcohol occurs, followed by the hydrogenolytic splitting of the bond C–O producing 

hydrocarbon (C–C=O→C–C–OH→C–C). The third mechanism is a direct 

hydrogenolysis of C=O bond (C–C=O→C–C).[108]  

 

O OH

O OH

O

Hydrogenation-dehydration mechanism

Hydrogenation-hydrogenolytic mechanism

Direct hydrogenolysis  
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Scheme 4.1 Mechanism of transformation of carbonyl group to methylene 

 

However, the mechanism regarding the activity and selectivity enhancement of these SA 

supported Pd nanoparticles in AP hydrodeoxygenation[69] still lacks experimental proof 

due to limited techniques under working conditions, especially highlighted for liquid 

phase reaction.  

 

Herein, we used in situ attenuated total reflection infrared (ATR-IR)[126] in combination 

with modulation excitation spectroscopy (MES) and phase sensitive detection (PSD) to 

investigate AP hydrodeoxygentaion on SA supported Pd nanoparticles with tunable 

surface acidity, providing new insight into the increasing surface acidity effect in the 

selectivity enhancement for AP hydrogenation. The technique of combining ATR-IR and 

MES significantly enhances the signal to noise (S/N) ratio and also allows the 

discrimination of acitve surface species and spctators.[127, 128, 155] The details of 

ATR-IR in combination with MES and PSD were discussed in 1.8.3. 

 

4.2 Results and discussion 

4.2.1 AP hydrodeoxygenation on Pd/SiO2-Al2O3  

Table 4.1 AP hydrodeoxygenation with PH2 = 1bar at 333K on reduced Pd/SiO2 

reaction time selectivity (%) total conversion (%) 

EC EB CMK CE PE 

5min 0 0 0 0 100 2.9 
20min 0 4.8 0 0 95.2 35.2 
40min 0 10.8 0 0 89.2 74.1 
1h 0 18.3 0 0 81.7 94.6 
2h 0 41.8 0.9 2.2 55.1 99.2 
3h 0 76.0 0.6 3.3 20.1 100 
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Table 4.2 AP hydrodeoxygenation with PH2 = 1bar at 333K on reduced Pd/SA-15 

 

Table 4.3 AP hydrodeoxygenation with PH2 = 1bar at 333K on reduced Pd/SA-70 

 

 

Tables 4.1, 4.2 and 4.3 described AP hydrodeoxygenation on Pd/SiO2, Pd/SA-15 and 

Pd/SA-70. In table 4.1, total conversion of AP on Pd/SiO2 was only 2.9% after 5min and 

increased to 100% after reaction time of 3h. In table 4.2, total conversion of AP on 

Pd/SA-15 reached 15.8% after 5 min and was 100% after 3h. In table 4.3, total 

conversion of AP on Pd/SA-70 was 11.9% after 5 min and increased to 100% after 3h. 

Clearly, compared to Pd/SiO2, Pd/SA-15 and Pd/SA-70 showed an increase in catalytic 

activity of AP hydrodeoxygenation. Specially, total conversion of AP on Pd/SA-15 after 

20 min was 49.4% and on Pd/SA-70 after 20 min was 50.5% whereas the conversion of 

AP on Pd/SiO2 after 20 min was only 35.2%. Regarding catalytic selectivity, the initial 

main product of AP hydrogenation on Pd/SiO2 was PE with selectivity of 100% after 

5min (2.9% conversion). PE selectivity gradually decreased from 100% after 5min (2.9% 

conversion) to 20.1% after 3h (100% conversion) whereas EB selectivity increased from 

reaction time selectivity (%) total conversion (%) 

EC EB CMK CE PE 

5min 0 9.1 0 0 90.9 15.8 
20min 2.2 23.9 0 0 73.9 49.4 
40min 3.3 33.9 0 2.9 59.9 76.6 
1h 3.1 38.8 0 2.7 55.5 100 
2h 3.1 70.3 0 3.4 23.1 100 
3h 3.6 85.2 0.9 3.7 6.5 100 

reaction time selectivity (%) total conversion (%) 

EC EB CMK CE PE 

5min 0 0 0 0 100 11.9 
20min 0 15 0 0 85 50.5 
40min 0 34.4 0 0 65.6 86.7 
1h 0 55.9 0 1.5 42.6 97.1 
2h 0.2 87.5 1 3 8.3 99.0 
3h 1.5 93.3 1.4 3.8 0 100 
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0% after 5min to 76% after 3h. On Pd/SA-15, the initial PE selectivity after 5min (15.8% 

conversion) was 90.9%, it decreased to 6.5% after 3h (100% conversion). On the contrary, 

the selectivity of EB increased from 9.1% after 5min to 85.2% after 3h. On Pd/SA-70, the 

initial PE selectivity was 100% after 5min (11.9%), it gradually decreased to 0% after 3h 

(100% conversion) while selectivity of EB increased from 0% after 5min to 93.3% after 

3h. Results show EB (the most valuable hydrodeoxygenation product) was formed with 

high selectivity on acidic catalysts. Results show EB (the most valuable 

hydrodeoxygenation product) was produced from PE, which causes the decrease of PE 

and the increase of EB in the final product solution. As shown in Scheme 4.1, 

two reaction pathways involved in EB production from PE.  
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4.2.2 Mechanism investigation 

4.2.2.1 Adsorption of Acetophenone (AP) on Pd/SiO2, Pd/SA-15 and Pd/SA-70     

 

Figure 4.1 Phase-domain ATR-IR spectra during adsorption and desorption of AP 

(2 mM) in He-saturated n-hexane on (a) Pd/SiO2 (b) Pd/SA-15 and (c) Pd/SA-70 at 

333 K. 
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In situ ATR-IR in combination with MES and PSD was applied to monitor the 

adsorption-desorption kinetics of AP at catalysts surface with tunable acidity. Figure 4.1 

shows phase-domain in situ ATR-IR spectra during adsorption and desorption of AP 

(2mM) in He-saturated n-hexane on Figure 4.1a (Pd/SiO2), 4.1b (Pd/SA-15) and 4.1c 

(Pd/SA-70) at 333K. Bands at 1697 cm
-1

 and 1670 cm
-1

 in Figure 4.1a, 4.1b and 4.1c 

were observed and assigned to C=O stretching vibration of AP (1682cm
-1

 for the neat AP) 

The band at 1670 cm
-1

 was identified as the C=O stretching vibration of AP adsorbed on 

the support, whereas the band at 1697 cm
-1 

should be assigned to the C=O stretching 

vibration of AP adsorbed on Pd in the η
1 

(O) configuration as proved in chapter 3. The 

band at 1276 cm
-1

 is attributed to X-sensitive benzene mode of AP on the support. Bands 

at 1365 cm
-1

 in Figure 4.1 is due to bending mode of CH3.[141, 142] Bands at 1600 cm
-1

, 

1583 cm
-1

 and 1450 cm
-1

 in Figure 4.1a and bands at 1598 cm
-1

, 1581 cm
-1

, and 1450 cm
-

1
 in Figure 4.1b and 4.1c were assigned to the C=C stretching vibrations of the phenyl 

group.[45]  

 

In Figure 4.1a, the in-phase angle of absorption bands is φ
PSD

 = 320° with a phase-delay 

of 40° (360°-320°) whereas in Figure 4.1b, in-phase angle of absorption bands is φ
PSD

 = 

330° with a phase-delay of 30° (360°-330°). The adsorption bands in Figure 4.1c show an 

in-phase angle of φ
PSD

 = 340° with a phase delay of 20° (360°-340°). Chemical species 

with positive absorbance at φ
PSD

 = 0° follow the same kinetics as the change in the 

solution and indicate that there is no time delay, i.e., phase delay 0° in the 

adsorption−desorption process. On the other hand, positive absorption bands at φ
PSD

 = 

320° indicate that the rate of adsorption and desorption processes is slower than that of 



64 
 

species at φ
PSD

 = 0° and results in a time delay, i.e., phase delay 40° (360° − 320°).[130] 

Therefore, the rate of AP adsorption on catalysts is concluded as Pd/SA-70>Pd/SA-

15>Pd/SiO2.  

 

4.2.2.2 AP hydrogenation, PE adsorption and hydrodeoxygenation on Pd/SiO2, 
Pd/SA-15 and Pd/SA-70  

 

Figure 4.2 Time-domain spectra during hydrogenation of AP (2 mM) in H2-

saturated n-hexane on Pd/SiO2 at 333 K. 

 

In a first step, Pd/SiO2 without doping alumina (with almost no acidic sites) was chosen 

as a reference catalyst for mechanism investigation of AP hydrogenation. Figure 4.2 

showed time domain IR spectra of AP hydrogenation on Pd/SiO2 at 333K. Notably, when 
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AP hydrogenation was started and tracked by in situ ATR-IR, bands at 1671cm
-1

, 

1600cm
-1

, 1583cm
-1

, 1450cm
-1

, 1425cm
-1

, 1365cm
-1

, 1303cm
-1

 and 1276cm
-1

 assignable 

to AP continually grew until 187.5s. Almost no bands assignable to the products can be 

observed, indicating the initial AP hydrogenation rate on Pd/SiO2 was relatively slow, 

which was in accordance with the reaction result in Table 4.1, the conversion of AP 

hydrogenation on Pd/SiO2 was only 2.9% after 5 min. It is worth noting that, band of 

1697 cm
-1

 assignable to the C=O stretching vibration of AP adsorbed on Pd in the η
1 

(O) 

configuration was hardly observable in Figure 4.2 which might be caused by the 

following reasons: (i) very low concentration of C=O (η
1 

(O)) mode of AP on can be 

detected on Pd (1697cm
-1

). (ii) the adsorbed small amount of AP on Pd was reacted with 

H2. (iii) and the initial main product PE from AP reacted with H2 on Pd (100% selectivity 

after 5min) was hardly adsorbed on SiO2. These reasons lead to difficulties in detecting 

AP η
1 

(O) configuration on Pd. 
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Figure 4.3 (a) Time-domain ATR-IR spectra during adsorption of PE (2 mM) in He-

saturated n-hexane on Pd/SiO2 at 333 K. (b) Time-domain ATR-IR spectra during 

hydrogenation of PE (2 mM) in H2-saturated n-hexane on Pd/SiO2 at 333 K. 

 

As shown in Table 4.1, PE was the main product during AP hydrogenation on Pd/SiO2 

within 2h, it is also necessary to understand the adsorption and hydrogenation of PE. In 

order to monitor the behaviour of main product on the catalyst surface, PE adsorption and 

hydrogenation on Pd/SiO2 were performed. Figure 4.3 showed PE adsorption (3a) and 

hydrogenation (3b) on Pd/SiO2 at 333K. In Figure 4.3a, the band at 1494 cm
-1

 is due to 

C=C stretching vibration, 1205 cm
-1

 is due to deformation mode of phenyl ring of PE[45, 
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145], signals at 1951 cm
-1

, 1882 cm
-1

 and 1810 cm
-1

 are assigned to C-H out of plane 

mode of benzene ring of PE.[156] Interestingly, aromatic ring of PE was also adsorbed 

on the catalyst surface due to above finding. Absorption bands at 1666cm
-1

, 1606cm
-1

 and 

1585cm
-1

 were considered to belong to PE because these peaks can also be observed in 

liquid phase PE (Figure A2 in appendix). When replacing He-saturated n-hexane (Figure 

4.3a) by H2 saturated n-hexane (Figure 4.3b), almost no difference can be observed. 

 

Figure 4.4 Phase-domain ATR-IR spectra during adsorption of PE (2 mM) in He-

saturated n-hexane on Pd/SiO2 at 333 K. 

 

As different species should possess different kinetics and in-phase angles[130], in order 

to prove that no new species were produced during PE adsorption on He-saturated n-

hexane on Pd/SiO2, phase-domain ATR-IR spectra was applied and shown in Figure 4.4. 

All adsorption bands in above figure follow the same in-phase angle φ = 0º, therefore, 

new species was not detected during adsorption of PE on He-saturated n-hexane. 



68 
 

 

Figure 4.5 Time-domain spectra during hydrogenation of AP (2 mM) in H2-

saturated n-hexane on Pd/SA-15 at 333 K. 

 

To clarify the AP hydrogenation mechanism differences caused by surface acidity, we 

investigated AP hydrogenation on surface acidity enhanced catalyst.(doping 15wt% 

alumina into silica support). AP hydrogenation was then carried out on Pd/SA-15, 

absorption bands emerging at 1207 cm
-1

, 1812 cm
-1

, 1886 cm
-1

 and 1959 cm
-1

 belong to 

AP hydrogenation product of PE (Figure 4.5) whereas bands at 1812 cm
-1

, 1886 cm
-1

 and 

1959 cm
-1

 are due to combination bands of C-H bending modes of aromatic ring of 
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PE.[156] It is worth noting that bands at 1812 cm
-1

, 1886 cm
-1

 and 1959 cm
-1

 (C-H 

bending modes of aromatic ring of PE) gradually increases until 187.5s while band at 

1670 cm
-1

 (C=O stretching vibration of AP adsorbed on the support) reached maximum 

intensity at 180s and significantly decreased with increasing bands at 1812 cm
-1

, 1886 

cm
-1

 and 1959 cm
-1

 until 187.5s. Moreover, band at 1697 cm
-1

 (Pd in the η
1 

(O) 

configuration) saturated at 150s and slightly decreased with increasing bands at 1812 cm
-

1
, 1886 cm

-1
 and 1959 cm

-1 
(C-H bending modes of aromatic ring of PE). The observed 

phenomenon suggests an amount of PE product competitively adsorbed on Pd/SA-15 

support with AP.  
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Figure 4.6 (a) Time-domain ATR-IR spectra during adsorption of PE (2 mM) in He-

saturated n-hexane on Pd/SA-15 at 333 K. (b) Time-domain ATR-IR spectra during 

hydrogenation of PE (2 mM) in H2-saturated n-hexane on Pd/SA-15 at 333 K. 

 

In Table 4.2, the selectivity of EB on Pd/SA-15 significantly increased, becoming the 

main product after 2h (Selectivity achieved 70.3%). On the contrary, the selectivity of PE 

decreased to 23.1% after 2h. As PE is the initial dominant product, most of PE was 

transformed into EB due to reaction pathway Scheme 3.1. It is proved that alcohol 

products have the potential to be dehydrated on support acid sites. In order to elucidate 

whether PE dehydrated on acid sites contribute to the formation of EB on Pd/SA-15 

catalyst surface, ATR-IR of PE adsorption on Pd/SA-15 at 333K was applied and the 

spectra was shown in Figure 4.6a. The band at 1494 cm
-1

 is due to C=C stretching 

vibration of phenyl group, band at 1454 cm
-1

 is assigned to CH3 asymmetric stretching 

vibration, band at 1205 cm
-1

 is due to deformation mode of phenyl ring of PE, bands 

below 1200 cm
-1

 were overlapped with strong absorption bands of SiO2 (C-O stretching 

vibration of PE at 1080cm
-1

 was also overlapped with bands of SiO2).[145] Bands at 

1955 cm
-1

, 1886 cm
-1

 and 1809 cm
-1

 are due to combination bands of C-H out of plane 

bending mode of benzene ring.[156] Negative bands at 1656 cm
-1

 and 1575 cm
-1

 

corresponding to styrene[157] grew with the increase of bands at 1955 cm
-1

, 1886 cm
-1

 

and 1809 cm
-1

. This indicates styrene was generated by the consumption of PE on the 

catalyst support. In Figure 4.6b, characteristic peaks of styrene at 1656cm
-1

 and 1575cm
-1

 

disappeared, which proved, styrene was produced by PE dehydration on acidic sites of 

the support and was further hydrogenated on Pd to produce EB. In Table 4.2, EB became 

the main product after reaction time of 2h, the selectivity was 70.3% at 2h which can be 

explained as the initial dominant product PE became abundant on the support and 
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dehydrated to styrene, more and more styrene then re-adsorb on Pd, further hydrogenated 

to EB.  

 

Figure 4.7 Phase-domain ATR-IR spectra during adsorption of PE (2 mM) in He-

saturated n-hexane on Pd/SA-15 at 333 K. 

 

To gain further information of styrene which was formed on Pd/SA-15, phase-domain 

spectra are shown in Figure 4.7. Clearly, the phase delay of band at 1656 cm
-1

 assignable 

to C=C stretching vibration of styrene is 250º (360º-110º) whereas characteristic bands of 

PE at 1494cm
-1

 and 1452cm
-1

 possess a phase delay of 50º (360º-310º). It is indicated that 

chemical species with positive absorbance at φ
PSD

 = 0° follow the same kinetics as the 

change in the solution and indicate that there is no time delay, i.e., phase delay 0° in the 

adsorption−desorption process.[130] Therefore, styrene was produced on Pd/SA-15 after 

the adsorption of PE on Pd/SA-15. This evidence further supports styrene formation was 

originally from PE dehydration on Pd/SA-15. 
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Figure 4.8 Time-domain spectra during hydrogenation of AP (2 mM) in H2-

saturated n-hexane on Pd/SA-70 at 333 K. 

 

AP hydrogenation on Pd/SA-15 (Doping 15wt% Al2O3 into SiO2) achieved significant 

increase in EB selectivity compared to the hydrogenation on Pd/SiO2. (by comparing 

with Table 4.1 and Table 4.2)Taking this finding into account, we further increased 

catalyst surface acidity, doping 70wt% Al2O3 into SiO2, followed by performing ATR-IR 

of AP hydrogenation on Pd/SA-70. Figure 4.8 showed AP adsorption and hydrogenation 

on Pd/SA-70. Bands appeared at 1205 cm
-1

, 1806 cm
-1

, 1891 cm
-1

 and 1953 cm
-1

 belong 
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to the product of PE (PE is the initial product with selectivity of 100% after 5 min as 

shown in Table 4.3). As described above, bands at 1953 cm
-1

, 1891 cm
-1

 and 1806 cm
-1

 

are due to C-H out of plane mode of benzene ring of PE,[156] these bands continuously 

grew until 187.5s whereas the band at 1670 cm
-1

 (C=O stretching of AP on the support) 

reached maximum intensity at 165s and significantly decreased until 187.5s, which 

indicates some newly produced PE replaced few AP on the support, aromatic ring of PE 

again adsorbed on the support of Pd/SA-70.  

 

Figure 4.9 (a) Time-domain ATR-IR spectra during adsorption of PE (2 mM) in He-

saturated n-hexane on Pd/SA-70 at 333 K. (b) Time-domain ATR-IR spectra during 

hydrogenation of PE (2 mM) in H2-saturated n-hexane on Pd/SA-70 at 333 K. 
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As PE is also the initial dominant product of AP hydrogenation on Pd/SA-70, it is 

necessary to understand the formation process of PE on Pd/SA-70.  Therefore, PE 

adsorption and hydrogenation was performed on Pd/SA-70. Figure 4.9 showed PE 

adsorption and hydrogenation on Pd/SA-70, the negative band at 1659 cm
-1

 is due to C=C 

stretching vibration of styrene, which is produced by PE dehydration on SA-70 support. 

Interestingly, the band intensity at 1659 cm
-1

 in Figure 4.9a is much lower than the band 

intensity at 1656 cm
-1

 in Figure 4.6a. Theoretically, PE dehydration should occur more 

intensely on high acidic support, which means more styrene should be formed on Pd/SA-

70 than on Pd/SA-15. However, Figure 4.9a and Figure 4.6a showed reverse results. This 

could possibly be caused by the preferable protonation of styrene on strong acid sites to 

generate hydrocarbon cations. Hydrocarbon cations can hardly be detected by infrared 

spectroscopy.  

 

Figure 4.10 Phase-domain ATR-IR spectra during adsorption of PE (2 mM) in He-

saturated n-hexane on Pd/SA-70 at 333 K. 
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To further elucidate kinetics of styrene formation on Pd/SA-70, phase-domain spectra are 

shown in Figure 4.10. Clearly, the phase delay of band at 1656cm
-1

 assignable to C=C 

stretching vibration of styrene is 230º (360º-130º) whereas characteristic bands of PE at 

1494cm
-1

 and 1452cm
-1

 possess a phase delay of 30º (360º-330º). The observed 

information confirmed that small amount of styrene can also be generated by the 

consumption of PE on Pd/SA-70. In comparison with Pd/SA-15, PE adsorption was faster 

on Pd/SA-70 because the phase-delay of PE on Pd/SA-70 is 30º whereas on Pd/SA-15 is 

50º. Although PE adsorption on Pd/SA-70 is faster than on Pd/SA-15, the formation of 

styrene from PE dehydration occurs more intensely on Pd/SA-15 than on Pd/SA-70. The 

moderate increase of acidic content on supports can promote PE dehydration and form 

dehydration product PE. However, strong acidity potentially hinders PE dehydration to 

produce styrene, but to increase the possibility in the production of hydrocarbon cations. 

 

4.3 Conclusions 

 

For AP hydrodeoxygenation on Pd/SA, this chapter addresses the understanding of 

mechanism differences of AP hydrodeoxygenation on supported palladium nanoparticles 

arose by the tuning of surface acidity. In situ ATR-IR spectroscopy combined with MES 

and PSD was applied to indentify tunable surface acidity effects on AP 

hydrodeoxygenation. The interaction of reactant AP or the reaction pathway component 

PE with supported palladium nanoparticles was studied. AP hydrodeoxygenation on SA 

supported nanoparticles showed an increase in EB selectivity with the increase of surface 
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acidity. In situ ATR-IR combined with MES and PSD proved that the initial AP 

hydrogenation product PE dehydrated on acidic sites of supports to produce styrene. The 

produced styrene can either desorb to liquid phase or further hydrogenated to EB. It is 

therefore concluded that styrene was only served as an intermediate during the formation 

of EB on acidic Pd/SA catalysts. The transformation of AP to EB on acidic catalysts 

undergo hydrogenation-dehydration mechanism, it includes hydrogenation of carbonyl 

bond of AP to produce alcohol product PE, followed by a dehydration in the production 

of styrene and further hydrogenation of the double bond of styrene to produce EB as 

summarized in Scheme 4.2.  

 

O

O H H

O H

H H

H2O

 

Scheme 4.2 AP hydrodeoxygenation mechanism on Pd/SA catalysts 
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5 Acetophenone (AP) hydrodeoxygenation (HDO) 
on Pt/Al-MCM-41 

 

 

5.1 Introduction 

 

Hydrogenation and hydrodeoxygenation of bio-oil model compounds has been studied 

over supported noble catalysts.[20, 88, 158, 159] Efforts have also been made on the 

development and modification of supports of noble catalysts to improve catalytic 

performance.[58, 62, 160] For the modification of supports, it has been proved that acidic 

supports showed much better performance than non-acidic ones in hydrogenation. For 

instance, the increasing of surface acidity of supported palladium catalyst can 

significantly improve catalytic hydrogenation activity and selectivity.[69] One of the 

possible reasons for the improvement would be tuning of support acid-base properties 

leading to the change of electronic properties of noble metal particles.[148, 151] 

However, problem concerning whether strong acid sites played a key role during 

hydrogenation of bio-oil model ketones was not addressed. Another possible reason for 

the catalytic activity difference, some authors suggested the effect of particle size  may 

also be involved in catalytic hydrogenation performance.[133] Therefore, it is essential to 

clarify acid function of supported noble catalysts with uniform particle size in the 

hydrogenation of bio-oil model compounds. 

 

MCM-41 as one of the M41S family members of ordered mesoporous silicates containing 

one-dimensional channels possess many advantageous features such as hexagonal 
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arrangement of uniformly sized mesopores, large surface area (usually>1000m
2
/g) and 

mild acidity.[70, 71] This material has been widely used as catalyst supports for 

hydrogenation and hydrodeoxygenation. Since MCM-41 material possesses uniform 

mesoporous structure, metal nano-particles located in the channels of this support should 

have uniform particle size.  

 

However, purely siliceous MCM-41 has no BrØnsted acidity. Acidity could be generated 

through isomorphous substitution of Si by Al.[80] The amount and acid strength of the 

hydroxyl groups may be tuned with the incorporation of different amounts of Al atoms 

into the MCM-41 framework.[161-163] It is also reported that the mesoporous 

aluminosilicate MCM-41 is a suitable support for preparing noble metal based 

catalysts.[164] Furthermore, MCM-41 supported noble catalysts possess advantageous 

features and have been widely used in hydrogenation reactions. Therefore, it is interesting 

to study how the MCM-41 Si/Al ratio will affect the hydrogenation performance of Pt-

based noble catalysts. Due to above concern, we use MCM-41 supported Pt catalysts with 

controlled particles size to identify the acid function during acetophenone (AP) 

hydrogenation, aiming to rule out the effect of particle size in AP hydrogenation over 

acid MCM-41 supported Pt catalysts. 

  

In this chapter, we describe the synthesis and characterization of a series of Pt/Al-MCM-

41 samples with different Si/Al ratios, followed by catalytic performance tests of bio-oil 

model compound – acetophenone (AP) hydrogenation on these catalysts. The structural 

properties of derived Pt/MCM-41 were determined by X-ray diffraction (XRD). N2 
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adsorption and desorption and transmission electron microscopy (TEM) were used to 

identify physical properties of Pt/MCM-41 catalysts. TEM results confirmed that Pt 

particles were uniformly distributed inside MCM-41 channels. The structural and 

electronic properties were analyzed by CO adsorption on Pt/Al-MCM-41 by diffuse 

reflectance infrared Fourier transform spectroscopy (DRIFTS). Nuclear magnetic 

resonance (NMR) spectroscopy was used to identify the Brønsted acid sites of Pt/Al-

MCM-41 catalysts.  

 

5.2 Results and discussion  

 

5.2.1 Catalyst synthesis and characterization 
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Figure 5.1 Small angles XRD patterns of (a) Pt/MCM-41 (b) Pt/MCM-41-50 (c) 

Pt/MCM-41-40 (d) Pt/MCM-41-30 (e) Pt/MCM-41-20 (f) Pt/MCM-41-15 and (g) 

Pt/MCM-41-10.  

XRD patterns of small angles in the region 2θ = 1.5° - 6.5° of Pt/Al-MCM-41 with 

different Si/Al ratio are shown in Figure 5.1. The typical hexagonal lattice structure is 

observed for Pt/MCM-41 in Figure 5.1 (a) with the appearance of strong peak (100) at 

low angle and weak peaks (110), (200) and (210) at 4.1°, 4.7° and 6.3°. These peaks are 

characteristic peaks of long range order of crystallinity of the materials.[165] With 

increasing aluminum content, weak peaks (110), (200) and (210) became very small and 

broad as shown in Figure 5.1 (b), (c), (d), (e), (f) and (g). Furthermore, XRD patterns 

show a decrease in the intensity and broadening of peak (100), which might be caused by 

the distortion of the long-range ordering of the hexagonal structure as a consequence of 

the aluminum incorporation into the framework of MCM-41.[74, 166] 
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Figure 5.2 Large angles XRD patterns of (a) Pt/MCM-41 (b) Pt/MCM-41-50 (c) 

Pt/MCM-41-40 (d) Pt/MCM-41-30 (e) Pt/MCM-41-20 (f) Pt/MCM-41-15 and (g) 

Pt/MCM-41-10. 

 

Figure 5.2 shows large angles XRD patterns in 2θ = 10° - 80°. Characteristic reflections 

pea s at 2θ = 39.9°, 46.7° and 67.8° in figure 5.2 (a) to the reflection of (111), (200) and 

(220) appeared, which indicates big Pt particles occurred on the external surface (particle 

size=14.9nm at 2θ = 39.9° based on Scherrer equation) may form on Pt/MCM-41. 

However, in Figure 5.2 (b), (c), (d), (e), (f) and (g), no peaks at 2θ = 39.9°, 46.7° and 67.8° 

were clearly observed, suggesting no big crystal particles were formed. Thus, small Pt 

particles (3-6nm) were formed on supports of Pt/Al-MCM-41-50, Pt/Al-MCM-40, Pt/Al-

MCM-41-30, Pt/Al-MCM-41-20, Pt/Al-MCM-41-15 and Pt/Al-MCM-41-10. 
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Table 5.1 N2 physical adsorption and desorption of Pt/Al-MCM-41 with different 

Si/Al ratio 

Pt/Al-MCM-41 Surface area     

(m
2
/g) 

Total pore 

volume (cm
3
/g) 

Average pore size 

(nm) 

0Al 1313.603 1.111 3.38 

Si/Al=10 1006.432 1.058 4.2 

Si/Al=15 942.126 0.915 3.886 

Si/Al=20 1040.827 0.878 3.37 

Si/Al=30 970.922 0.84 3.46 

Si/Al=40 958.935 0.899 3.75 

Si/Al=50 1014.792 1.664 6.564 

 

 

Table 5.1 displays the physical properties of Pt/Al-MCM-41 samples. 0Al, Si/Al=50, 

Si/Al=40, Si/Al=30, Si/Al=20, Si/Al=15 and Si/Al=10 in above figure represent 

Pt/MCM-41, Pt/Al-MCM-41-50, Pt/Al-MCM-41-40, Pt/Al-MCM-41-30, Pt/Al-MCM-

41-15 and Pt/Al-MCM-41-10. It can be seen Pt/Al-MCM-41 with different Si/Al ratio 

possess variable physical properties. Specifically, BET surface areas of all Pt/Al-MCM-

41 samples are above 940m
2
/g, Pt/Al-MCM-41 with 0Al shows maximum BET surface 

area of 1313.603m
2
/g. With Al incorporated into the framework of MCM-41, BET 

surface areas exhibit a decrease trend. Pore volumes of Pt/Al-MCM-41 samples are in the 

range of 0.84 to 1.664cm
3
/g. The average pore sizes distribute from around 3nm to 6nm 

as shown in the above table.  
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Figure 5.3 Transmission electron micrographs (TEM) images of (a) Pt/MCM-41 (b) 

Pt/Al-MCM-41-50 and (c) Pt/Al-MCM-41-20 (STEM) and (d) Pt/Al-MCM-41-10. 

 

Figure 5.3 shows transmission electron micrographs (TEM) images of Pt/MCM-41, 

Pt/Al-MCM-41-50 and Pt/Al-MCM-41-20 and Pt/Al-MCM-41-10. For Pt/MCM-41 in 

Figure 5.3 (a), a typical regular mesoporous hexagonal pore channels structure can be 

clearly observed.[167] Most Pt particles loaded were uniformly distributed inside MCM-

41 one-dimensional channels although XRD results in Figure 5.2 (a) show some Pt may 

form big particles distributed outside MCM-41 channels. When aluminum was 

introduced into the framework of MCM-41, TEM images of Pt/Al-MCM-41-50 of Figure 

5.3(b)and Pt/Al-MCM-41-20 in Figure 5.3(c) and Pt/Al-MCM-41-10 in 5.3(d)exhibit 

irregular though hexagonal porous arrangement. It is thus apparent that incorporation of 

aluminum into the framework of MCM-41 seems to affect the long-range order of the 
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mesopores. However, the incorporation of aluminum did not damage the essentially 

mesoporous structure of the material.[74, 166] For Pt/Al-MCM-41-50, Pt/Al-MCM-41-

20 and Pt/Al-MCM41-10 catalysts, Pt particles are still uniformly distributed inside 

MCM-41 channels as nanoparticles even with the incorporation of aluminium into the 

framework.  

 

 

Figure 5.4 DRIFTS spectra of CO adsorption on (a) Pt/MCM-41 (b) Pt/Al-MCM-41-

50 (c) Pt/Al-MCM-41-40 (d) Pt/Al-MCM-41-30 (e) Pt/Al-MCM-41-20 and (f) Pt/Al-

MCM-41-15 

 

Infrared spectroscopy of CO adsorption on supported metal clusters can assist in 

obtaining both structural and electronic properties of Pt nanoparticles. Specifically, the 

stretching frequencies and relative intensities of CO bands of CO adsorbed on supported 

Pt catalysts by IR spectroscopy are sensitive to oxidation state, particle size and metal-
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support interaction.[168-172] On the basis of metal carbonyl spectra, bands in the region 

of 1950 cm
-1

 to 2100 cm
-1

 are usually assigned to linearly adsorbed CO species while 

bands between 1750 cm
-1

 and 1950 cm
-1

 are due to multibonded, bridged and threefold 

CO species.[173] Figure 5.4 shows DRIFTS spectra of CO adsorbed on a series of Pt/Al-

MCM-41 samples. For Pt/Al-MCM-41, a band at 2050 cm
-1

 and a band at around 2170 

cm
-1

 were observed which can be assigned to linear CO on Pt, almost no bridged 

coordination CO was detected. The band at 2050 cm
-1

 is considered to be assigned to CO 

adsorbed on Pt (100)[174, 175] whereas band at 2170 cm
-1

 can be assigned to CO 

adsorbed on Pt ions (such as oxidated state or interface between support and Pt or 

defects).[176] When Al was introduced into MCM-41, bands of linearly coordinated CO 

shifted from 2050 cm
-1

 (Pt/MCM-41) to around 2078 cm
-1

 (Pt/Al-MCM41-50, Pt/Al-

MCM-41-40, Pt/Al-MCM-41-30, Pt/Al-MCM41-20 and Pt/Al-MCM-41-15). Studies 

have demonstrated that CO adsorbed on Pt particles inside zeolite channels leads to an 

increase in the stretching wavenumber (15 cm
-1

 to 23 cm
-1

) because of the decrease of the 

electron density on the particles raised from interaction with strong BrØnsted sites of 

highly acidic HZSM-5.[177, 178] Therefore, the shift from 2050 cm
-1

 to 2078 cm
-1

 might 

stem from the interaction of Pt particles inside MCM-41 channels with BrØnsted acid 

sites generated by the incorporation of aluminium into MCM-41 framework. Moreover, 

bands intensity of 2078 cm
-1

 of Pt/Al-MCM41-50, Pt/Al-MCM-41-40, Pt/Al-MCM-41-

30, Pt/Al-MCM41-20 and Pt/Al-MCM-41-15 significantly increased in comparison with 

the band at 2050 cm
-1

 of Pt/Al-MCM-41. This indicates more active sites were formed on 

the catalysts, leading to the increase of adsorption strength. 
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Figure 5.5 Time-domain IR spectra during CO adsorption and desorption on (a) 

Pt/MCM-41, (b) Pt/Al-MCM-41-50, (c) Pt/Al-MCM-41-40, (d) Pt/Al-MCM-41-30, (e) 

Pd/Al-MCM-41-20 and (f) Pd/Al-MCM-41-15 in mixture of CO, He and pure He. 

 

Conventional infrared spectroscopy (IR) spectra can provide structural and electronic 

information of catalysts. A significant shortcoming of this technique is, however, the 

difficulty in monitoring catalytic kinetics.  A combination of infrared spectroscopy (IR) 

and modulation excitation spectroscopy (MES) appeared and demonstrated its ability as a 

powerful tool for kinetics investigation.[129, 130] Therefore, we use diffuse reflectance 

infrared Fourier transform spectroscopy (DRIFTS) in combination with MES to monitor 

catalytic kinetics during CO adsorbed on Pt/Al-MCM-41 catalysts. IR spectra during CO 

adsorption and desorption on Pt/Al-MCM-41 are shown in Figure 5.5. Figure 5.5 (a) 

exhibited CO adsorption and desorption on Pt/MCM-41, a peak at around 2050 cm
-1

 

indicates CO was mainly linearly bonded to Pt. Band at around 2170 cm
-1

 in Figure 5.5 (a) 

was probably due to CO adsorbed on Pt ions. After switching to pure He, bands at 2050 
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cm
-1

 and 2170 cm
-1

 immediately disappeared. For Pt/Al-MCM-41-50, Pt/Al-MCM-41-40, 

Pt/Al-MCM-41-30, Pd/Al-MCM-41-20 and Pd/Al-MCM-41-15, linearly bonded CO 

species appeared at around 2078 cm
-1

. It is worth noting that desorption of bands at 2078 

cm
-1

 in Figure 5.5 (b), 5.5 (c), 5.5 (d), 5.5 (e) and 5.5 (f) was delayed in comparison with 

band at around 2050 cm
-1

 in Figure 5.5 (a). The stronger CO adsorption due to delays 

observed in Figure 5.5 (b), (c), (d), (e) and (f) indicates more active sites were formed 

when Al was incorporated into MCM-41 framework. 

 

In order to further understand kinetic information during CO adsorption and desorption 

on Pt/Al-MCM-41 catalysts, phase-domain spectra are shown below in Figure 5.6-5.10. 

Chemical species with positive absorbance at φ
PSD

 = 0° (360°) follow the same kinetics 

as the change in the gas and indicate that there is no time delay while positive absorption 

bands at φ
PSD

<360° indicate that the rate of adsorption and desorption processes is slower 

than that of species at φ
PSD

 = 0°.[130] 

 

Figure 5.6 Phase-domain IR spectra during CO adsorption and desorption on 

Pt/MCM-41 
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Figure 5.6 shows phase domain spectra of CO adsorption and desorption on Pt/MCM-41. 

Absorption band at 2050cm
-1

 assignable to CO adsorption on Pt showed a phase-delay at 

around 10º (360º-350º). 

 

 

Figure 5.7 Phase-domain IR spectra during CO adsorption and desorption on Pt/Al-

MCM-41-50 

 

Figure 5.7 shows phase domain spectra of CO adsorption and desorption on Pt/Al-MCM-

41-50. Absorption band at 2078cm
-1

 assignable to CO adsorption on Pt showed a phase-

delay at around 11.9º (360º-348.1º). 
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Figure 5.8 Phase-domain IR spectra during CO adsorption and desorption on Pt/Al-

MCM-41-40 

 

Figure 5.8 shows phase domain spectra of CO adsorption and desorption on Pt/Al-MCM-

41-40. Absorption band at 2078cm
-1

 assignable to CO adsorption on Pt showed a phase-

delay at around 12.5º (360º-347.5º).  
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Figure 5.9 Phase-domain IR spectra during CO adsorption and desorption on Pt/Al-

MCM-41-30 

 

Figure 5.9 shows phase domain spectra of CO adsorption and desorption on Pt/Al-MCM-

41-30. Absorption band at 2078cm
-1

 assignable to CO adsorption on Pt showed a phase-

delay at around 15.9º (360º-344.1º).  

 

 

Figure 5.10 Phase-domain IR spectra during CO adsorption and desorption on 

Pt/Al-MCM-41-15 

 

Figure 5.10 shows phase domain spectra of CO adsorption and desorption on Pt/Al-

MCM-41-15. Absorption band at 2078cm
-1

 assignable to CO adsorption on Pt showed a 

phase-delay at around 15.5º (360º-344.5º).  

 

From results in Figure 5.6-5.10, the rate of CO adsorption and desorption on Pt/Al-

MCM-41 is Pt/Al-MCM-41-30 (15.9º delay) < Pt/Al-MCM-41-15 (15.5º delay) < Pt/Al-



91 
 

MCM-41-40 (12.5º delay) < Pt/Al-MCM-41-50 (11.9º delay) < Pt/MCM-41 (10º delay). 

It is obvious that with the increase of Al content from pure Si to Si/Al=30, the strength of 

CO adsorption on Pt/Al-MCM-41 was increased. Further increase Al content to Si/Al=15, 

CO adsorption strength on Pt/Al-MCM-41-15 was decreased in comparison with on 

Pt/Al-MCM-41-30. Therefore, the increase of Al content from pure Si to Si/Al=30 results 

in the increase of active sites on catalysts, which is explained by the effect of supports 

acidity on electronic properties of Pt particles.[69] The further increase of Al content on 

support leads to a decrease in the number of active sites because the overloading of Al 

can hinder the accessibility of CO to Pt particles inside MCM-41 pores. 
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Figure 5.11 
1
H MAS NMR spectra of Pt/MCM-41 (a), Pt/Al-MCM-41 of Si/Al = 50 

(b), Si/Al = 40 (c), Si/Al = 30 (d), Si/Al = 20 (e), Si/Al = 15 (f) and Si/Al = 10 (g) 

recorded after dehydrated at 723 K before and after loading with NH3, subsequent 

evacuation at 393 K  
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1
H MAS NMR spectroscopy was employed to investigate the surface hydroxyl protons. 

The 
1
H MAS NMR spectrum of Pt/Al-MCM-41 showed a strong peak at d1H = 1.8 ppm 

which is due to silanol groups. Loading of NH3 on the series of Pt/Al-MCM-41 catalysts, 

however, led to 
1
H NMR signals of ammonium ions at 6.5-7.0 ppm (Figure. 5.11 c-g). 

This finding confirmed that the presence of SiOH groups with enhanced Brønsted acidity, 

caused by the incorporation of aluminum into the MCM-41 support material. The NMR 

intensities of the ammonium signals were utilized to quantify the number of Brønsted 

acid sites. The concentration and molar fraction of these Brønsted acid sites are 

summarized in Table 5.2. The results indicate total acid number decreases with the 

increase of Si/Al ratio. Specially, Pt/MCM-41 and Pt/Al-MCM-41-50 in Figure 5.11 (a) 

and (b) show almost no Brønsted acidity since small amounts of Brønsted acid sites were 

covered by Pt particles. With increasing Al content of Pt/Al-MCM-41, the surface acidity 

continuously increase up to Si/Al=10. 

 

Table 5.2 Concentration of BrØnsted acid sites of Pt/Al-MCM-41 with different 

Si/Al ratio 

Pt/Al-MCM-

41 

Proportional of 

BrØnsted acid 

sites/(mol %) 

Population of 

BrØnsted acid 

sites mmol/g 

Population of 

BrØnsted acid 

sites/nm
2
 

OH/Pt ratio 

0Al - - - - 

Si/Al=10 16 0.118 70.4×10
-3

 23.7 

Si/Al=15 14.22 0.127 81.3×10
-3

 25.5 

Si/Al=20 7.4 0.057 33.0×10
-3

 11.4 

Si/Al=30 7 0.048 29.7×10
-3

 9.6 

Si/Al=40 2.92 0.018 11.3×10
-3

 3.6 

Si/Al=50 - - - - 

Note: BrØnsted acid sites (mol%) = (number of Brønsted acid sites/total number of OH 

sites on supports)×100% 
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5.2.2  Catalytic performances of catalysts  

 

5.2.2.1 Conversion  
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Figure 5.12 Catalytic conversion of AP hydrogenation on Pt/Al-MCM-41 at 1bar H2 

and room temperature, 360 min reaction time 

 

To understand the effect of support acidity on acetophenone (AP) hydrogenation, AP 

hydrogenation was performed on a series of Pt/Al-MCM-41 catalysts with Si/Al= 10, 20, 

30, 40, 50 and pure Si at 1bar H2 pressure and room temperature. Figure 5.12 shows AP 

conversion on the series of Pt/Al-MCM-41. Pt/MCM-41 exhibits the lowest catalytic 

activity. The conversion of AP on Pt/MCM-41 only reaches 70.7% even after 360 min 

reaction time. Pt/Al-MCM-41-50 possesses slightly increasing acidity as summarized in 

Table 5.2, the conversion of AP on Pt/MCM-41-50 is higher than Pt/MCM-41 reaching 

79% after only 180 min. Pt/Al-MCM-41-40 possesses even better catalytic activity than 
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Pt/Al-MCM-41-50 due to enhanced acidity by increasing Al content of support, with 85.7% 

conversion of AP after 120 min. With further increasing Al content, Pt/Al-MCM-41-20 

shows the best catalytic performance with 88.8% conversion of AP only after 40 min. 

However, compared to Pt/Al-MCM-41-20, catalytic activity of Pt/Al-MCM-41-10 

significantly decreased although the acidity of Pt/Al-MCM-41-10 is higher than that of 

Pt/Al-MCM-41-20. Notably, Pt/Al-MCM-41-15 with the highest BrØnsted acid OH 

population as summarized in Table 5.2 shows even worse catalytic performance than 

Pt/Al-MCM-41-10. 
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Figure 5.13 Effect of the Si/Al ratio of the support of Pt/Al-MCM-41 catalysts on the 

hydrogenation conversion of acetophenone at 1bar H2 and room temperature, 120 

mins reaction time 

 

Figure 5.13 summarized the effect of Si/Al ratio of support on the catalytic conversion of 

AP. It can be clearly seen that the conversion of AP increases with Al content increasing 

up to Si/Al=20. Further increasing support Al content to Si/Al=15, the catalytic 

performance was decreased from 100% to 73%. When Si/Al content was increased to 10, 
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catalytic reactivity was increased again to 92%. As observed in Figure 5.3, Pt particles of 

Pt/Al-MCM-41 possess uniform distribution and similar particle size, therefore we 

assume the influence of particle size of Pt/Al-MCM-41 catalysts can almost be ruled out. 

Then, the catalytic behaviour clearly correlates with different properties of the supports 

when Pt particles are averagely distributed in MCM-41 supports. As summarized in 

Table 5.2, support composition difference lead to the change of proportional and 

population of Brønsted acid sites of Pt/Al-MCM-41. Notably, with increasing Al content 

from Si/Al=50 to Si/Al=20, population of Brønsted acid sites gradually increase from 

11.3×10
-3

 OH/nm
2
 to 33.0×10

-3
 OH/nm

2
. This corresponds well with catalytic 

performance result because conversion of AP keep increasing with the increase of Al 

content to Si/Al=20. Further increasing Al content from Si/Al=20 to Si/Al=15, Brønsted 

acid sites significantly increased from 33.0×10
-3

OH/nm
2
 to 81.3×10

-3
 OH/nm

2
. However, 

catalytic conversion significantly decreased from 100% to 73%. When Al content was 

increased from Si/Al=15 to Si/Al=10, Brønsted acid sites decreased from 81.3×10
-3

 

OH/nm
2
 to 70.4×10

-3
 OH/nm

2
, catalytic performance increased again from 73% to 92%.  

 

It has been proposed and proved that acidic and more covalent supports weaken Pt-H 

bond strength during hydrogenation, thereby improve catalytic activity of Pt or Pd-

catalyzed hydrogenation.[69] Moreover, hydrogenation activity can generally be 

enhanced on Pt or Pd catalysts loading on acidic supports compared with that on non-

acidic supports because molecules on acidic catalysts can absorb on both metal surface 

and acid sites in the metal–support interfacial regions and hydrogenate with the hydrogen 

spillover activated by metal sites.[179] Therefore, catalytic activity should increase with 
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the increasing of total acid sites of supports. However, from our observation, the catalytic 

activity of Pt/Al-MCM-41 was not totally parallel to acid sites of the catalysts when the 

particle size and distribution effect can almost be ruled out. We might think this can be 

caused by over loading of Al content into MCM-41 support. Since MCM-41 is nano-

porous material, the relative accessibility of strong acid sites to reactants can be hindered 

with increasing contents of aluminium, thereby decrease the catalytic activity of 

supported Pt catalysts. In other words, a large proportion of the Al in Al-MCM-41-10 

sample is buried deep within the pores where it offers the limited diffusion of reactants to 

accessible acid sites.[81]  

 

5.2.2.2 Selectivity  
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Figure 5.14 Selectivity of AP hydrogenation on Pt/MCM-41 at 1bar H2 and room 

temperature, 120 min reaction time at conversion of 36% 
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Figure 5.14 shows the selectivity of AP hydrogenation on Pt/MCM-41 in 120 min. It can 

be seen from the above figure, the main product of AP hydrogenation on Pt/MCM-41 

was 1-phenylethanol (PE). Small amounts of 1-cyclohexylmethylketone (CMK), 1-

cyclohexylethanol (CE) and ethylbenzene (EB) were also generated. Structures of these 

compounds can be found in Scheme 3.1. The selectivity of PE was 88.6% after 20 min at 

conversion of 3.4% and only slightly decreased to 84.4% after 120 min when the 

conversion reached 36%. The selectivity of CMK kept almost stable at around 11%. In 20 

min at conversion of 3.4%, no CE was produced. The selectivity of CE increased to 3.5% 

after 120 min at conversion of 36%. In 60 min, EB was not produced. After 60 min, EB 

began to appear and the selectivity of EB was 0.8% after 120 min at conversion of 36%. 

The product of ethylcyclohexane (EC) was not produced in 120 min. 
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Figure 5.15 Selectivity of AP hydrogenation on Pt/Al-MCM-41 with Si/Al=50 at 

1bar H2 and room temperature, 120 min reaction time at conversion of 62% 
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To understand the acidity effect on the hydrogenation of AP, AP hydrogenation was 

performed on Pt/Al-MCM-41 with different amount of Al was incorporated into the 

framework. Starting with low Al content, we applied AP hydrogenation on Pt/Al-MCM-

41 with Si/Al=50. As shown in Figure 5.15, PE, CMK, CE, EB and EC were produced. 

PE was the main product of AP hydrogenation on Pt/Al-MCM-41-50. The selectivity of 

PE was 83% after 20 min at conversion of 10% and slightly decreased to 81.5% after 120 

min at conversion of 62%. The second main product was CMK. 11.3% of CMK was 

produced after 20 min at conversion of 10% and the selectivity of CMK slightly 

decreased to 8.1% after 120 min at conversion of 62%. CE, EB and EC only accounted 

for a small amount of products. The selectivity of CE, EB and EC all slightly increased 

over reaction time of 120 min. The selectivity of CE increased from 3% after 20 min at 

conversion of 10% to 3.7% after 120 min at conversion of 62%. The selectivity of EB 

increased from 2.6% after 20 min at conversion of 10% to 5% after 120 min at 

conversion of 62%. EC was not produced in 40min, the selectivity of EC was only 1.6% 

after 120 min at conversion of 62%.  
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Figure 5.16 Selectivity of AP hydrogenation on Pt/Al-MCM-41 with Si/Al=40 at 

1bar H2 and room temperature, 120 min reaction time at conversion of 86% 

 

AP hydrogenation was then performed on Pt/Al-MCM-41 with Si/Al=40. Figure 5.16 

shows the selectivity of AP hydrogenation on Pt/Al-MCM-41-40. Similar to AP 

hydrogenation on Pt/MCM-41 and Pt/Al-MCM-41-50, PE was the main product over a 

reaction time of 120 min. However, the selectivity of PE decreased from 87.5% after 20 

min reaction time at conversion of 10% to 78.8% after 120 min reaction time at 

conversion of 85.7%. The selectivity of PE decreased 8.7% on Pt/Al-MCM-41-40 over 

reaction time of 120 min. Notably, the selectivity of PE only decreased 1.5% on Pt/Al-

MCM-41-50 in the same reaction time and condition. CMK appeared as the second main 

product, the selectivity of CMK kept almost the same at around 10% over the reaction 

time of 120 min. The selectivity of CE was 3.4% after 20 min at conversion of 10% and 

increased to 6.6% after 120 min at conversion of 85.7%. EB was not produced in 20 min, 

the selectivity of EB reached 3.4% after 120 min at conversion of 85.7%. In 40 min, EC 
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was not produced. The selectivity of EC slightly increased to 1.6% after 120 min at 

conversion of 87.5%. 
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Figure 5.17 Selectivity of AP hydrogenation on Pt/Al-MCM-41 with Si/Al=30 at 

1bar H2 and room temperature, 120 min reaction time at conversion of 100% 

 

AP hydrogenation showed significant difference when we further increased the support 

acidity. As shown in Figure 5.17, for the hydrogenation of AP on Pt/Al-MCM-41-30, PE, 

CMK, CE, EB and EC were produced. PE was the main product after 20 min at 

conversion of 46% with selectivity of 84%. However, the selectivity of PE significantly 

decreased to 43.4% after 120 min when conversion reached 100%. This indicates the 

selectivity of PE decreased 40.6% over reaction time of 120 min. In the meanwhile, the 

selectivity of CE significantly increased from 1.9% after 20 min at conversion of 46% to 

28.7% after 120 min at conversion of 100%. The selectivity of CMK, EB and EC only 

slightly changed over the reaction time of 120 min. The selectivity of main product PE of 
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AP hydrogenation on Pt/Al-MCM-41-30 was only 43.4% after 120 min, which was much 

lower than that of AP hydrogenation on Pt/MCM-41, Pt/Al-MCM-41-50 and Pt/Al-

MCM-41-40. It is interesting that the selectivity of CE achieved 28.7% after 120 min at 

conversion of 100% on Pt/Al-MCM-41-30, which was much higher that on Pt/MCM-41, 

Pt/Al-MCM-41-50 and Pt/Al-MCM-41-40. This phenomenon might indicate aromatic 

ring was more easily hydrogenated with increasing support acidity because the selectivity 

of PE significantly decreased whereas selectivity of CE increased to a high percentage. 

Due to the reaction pathway in Scheme 3.1, CE can either be produced from PE or CMK, 

CMK kept almost at constant amount. Thus, PE was most easily converted to CE on 

support acidity enhanced catalyst. 
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Figure 5.18 Selectivity of AP hydrogenation on Pt/Al-MCM-41 with Si/Al=20 at 

1bar H2 and room temperature, 120 min reaction time at conversion of 100% 

 

Figure 5.18 shows AP hydrogenation on Pt/Al-MCM-41-20. It can be seen that products 

of PE, CE, CMK, EB and EC were detected over a reaction time of 120 min. PE was the 
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main product at the beginning with a selectivity of 71.5% after 20 min at conversion of 

50.2%. Similar to AP hydrogenation on Pt/Al-MCM-41-30, the selectivity of PE 

significantly decreased to 34.5% after 120 min at conversion of 100%. Meanwhile, the 

selectivity of CE increased from 4.2% after 20 min at conversion of 50.2% to 26.9% after 

120 min at conversion of 100%. The selectivity of CMK, EB and EC did not significantly 

change. Specially, the selectivity of CMK almost kept at the same over a reaction time of 

120 min. The selectivity of EB increased from 1.6% after 20 min at conversion of 50.2% 

to 14.2% after 120 min at conversion of 100%. 1.5% EC was produced after 20 min (AP 

conversion of 50.2%), increasing to 7.3% after 120 min (AP conversion of 100%). This 

phenomenon confirms our deduction that PE was most easily converted to CE on support 

acidity enhanced catalyst. 
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Figure 5.19 Selectivity of AP hydrogenation on Pt/Al-MCM-41 with Si/Al=15 at 

1bar H2 and room temperature, 120 min reaction time at conversion of 73% 
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With further increasing surface acidity, AP hydrogenation was performed on Pt/Al-

MCM-41-15. As shown in Figure 5.19, PE appeared as dominant product over reaction 

time of 120 min. The selectivity of PE was 82.1% after 20 min (12.8% AP conversion), 

slightly decreased to 79.1% after 120 min (72.9% AP conversion). The selectivity of 

CMK kept almost unchanged at 13%-14% over 120 min. CE selectivity slightly increased 

from 3.6% after 20 min to 5% after 120 min. Almost no EB or EC was produced 

over120min. 
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Figure 5.20 Selectivity of AP hydrogenation on Pt/Al-MCM-41 with Si/Al=10 at 

1bar H2 and room temperature, 120 min reaction time at conversion of 92% 

 

AP hydrogenation was also performed on Pt/Al-MCM-41 with Si/Al=10. The selectivity 

of main product PE was 79% after 20 min (conversion of 16.5%) and decreased to 56% 

after reaction time of 120 min (conversion of 92%). On the other hand, CE selectivity 

increased from 2.5% after 20 min to 16% after 120 min. The selectivity of CMK kept 



105 
 

constant at 18%-19% over reaction time of 120 min. Only 3% EC and 5% EB were 

produced after 120min.  

 

 

S
e

le
c
ti
v
it
y
 t

o
 1

-p
h

e
n

y
le

th
a

n
o

l 
(%

)

Si/Al

70

75

80

85

10 20 30 40 50

 

Figure 5.21 Effect of the Si/Al ratio of the support of Pt/Al-MCM-41 catalysts on the 

hydrogenation selectivity of acetophenone (AP) to the C=O hydrogenation product 

1-phenylethanol PE at 1bar H2 and room temperature at 50% conversion 

 

Figure 5.21 shows the effect of Si/Al ratio of support on the catalytic selectivity to PE at 

conversion of 50%. With increasing support Al content from pure Si to Si/Al=30, AP 

hydrogenation showed high selectivity to produce PE (above 80%). However, when 

surface acidity was increased to Si/Al=20, the selectivity of PE significantly decreased to 

71.5%. Further increasing Al content to Si/Al=10, the selectivity of PE slightly increased 

to 74%. PE selectivity on Pt/Al-MCM-41-15 (Si/Al=15) was higher than on Pt/Al-MCM-

41-10 (Si/Al=10). Notably, Pt/Al-MCM-41-15 (81.3×10
-3

OH/nm
2
 Brønsted acid sites) 
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possesses higher acidity than Pt/Al-MCM-41-10 (71.4×10
-33

OH/nm
2
) as summarized in 

Table 5.2. 
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Figure 5.22 Effect of the Si/Al ratio of the support of Pt/Al-MCM-41 catalysts on the 

hydrogenation selectivity of acetophenone (AP) to the aromatic ring hydrogenation 

products 1-cyclohexylethanol and cyclohexylmethylketone (CE+CMK) at 1bar H2 

and room temperature at 50% conversion 

 

On the contrary of C=O of AP hydrogenation to produce PE, selectivity to aromatic ring 

products of CE+CMK was low on Pt/MCM-41, Pt/Al-MCM-41-50, Pt/Al-MCM-41-40 

and Pt/Al-MCM-41-30 (14% to 16%). It is worth noting that in Figure 5.22 with 

increasing Al content from pure Si to Pt/Al-MCM-41-30, selectivity to CE+CMK 

gradually increased from 14% to 15.7%. Further increasing Al content to Si/Al=20, 

selectivity to CE+CMK significantly increased to 25.2% and then decreased to 22.6% on 

Pt/Al-MCM-41-10. The selectivity to CE+CMK on Pt/Al-MCM-41-15 was decreased 

again in comparison with on Pt/Al-MCM-41-10. Notably, Pt/Al-MCM-41-15 (81.3×10
-
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3
OH/nm

2
 Brønsted acid sites) has higher acidity than Pt/Al-MCM-41-10 (71.4×10

-

33
OH/nm

2
). 

 

Due to results in Figure 5.21 and Figure 5.22, increasing surface acidity from pure SiO2 

to Si/Al=20 promotes the hydrogenation of aromatic ring to produce CE+CMK and 

weakens the hydrogenation toward carbonyl group to generate PE. However, excessive 

surface acidity (Si/Al=10 and Si/Al=15) decreases catalytic selectivity of aromatic ring 

hydrogenation products and increases the generation of carbonyl group hydrogenation 

products.  

 

It has been reported that the tuning of support acidity can influence electronic properties 

of Pt particles, thereby weaken the bond strength of Pt-H and affect chemoselectivity of 

hydrogenation.[69] Moreover, Lin and Vannice[179-181] pointed out that the overall 

activity over the noble metal catalysts on acidic supports included two parts: one was the 

contribution of metal site, and the other was that of acid sites, where the spillover 

hydrogen could react with the adsorbed aromatic compound. In chapter 4, it is also 

proved that aromatic ring of PE can absorb on support acid sites. Therefore, it is 

reasonable the increase of surface acidity up to Si/Al=20 promotes the hydrogenation of 

aromatic ring to produce CE+CMK.  

 

5.3 Conclusions 

 

In this chapter, a series of Pt/Al-MCM-41 catalysts with different Si/Al ratio were 

successfully synthesized and characterized. The acidities of these uniform Pt/Al-MCM-
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41 particles with high surface area were characterized by NMR spectroscopy. NMR 

spectroscopy indicates acid number of Pt/Al-MCM-41 catalysts generally decreases with 

the increase of Si/Al ratio. Acetophenone (AP) hydrogenation was tested on the series of 

Pt/Al-MCM-41 catalysts. Pt/Al-MCM-41 catalysts serve as bifunctional catalysts in the 

hydrogenation of AP. The overall activity over the noble metal catalysts on acidic 

supports can contribute to both metal sites and acid sites. On acid sites, the spillover 

hydrogen could react with the adsorbed compounds. The catalytic behaviour clearly 

correlates with different properties of the supports. Catalytic activity of Pt/Al-MCM-41 

catalysts was not totally parallel to the number of strong acid sites of the catalysts when 

the particle size and distribution effect can almost be ruled out. Generally, overloading of 

Al into MCM-41 support decreases catalytic activity of Pt/Al-MCM-41 because the 

increase of aluminium contents can hinder the accessibility of strong acid sites to 

reactants due to nano-porous properties of MCM-41 material. Concerning catalytic 

selectivity of AP hydrogenation on Pt/Al-MCM-41, supports acidity affect electronic 

properties of Pt particles contributing to the chemoselectivity of AP hydrogenation. 

Moreover, acid sites in metal-support interfacial regions also influence AP hydrogenation 

chemoselectivity. 
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6 Hydrodeoxygenation of bio-oil model of 
benzaldehyde on acidic catalysts 

 

 

6.1 Introduction  

 

Hydrodeoxygenation (HDO) is an important reaction which can remove oxygenates from 

bio-oil (pyrolysis oil), thus improve the quality of bio-oil as a substitute of transportation 

fuel. Model compounds of HDO such as furans and phenols were widely studied.[28-31, 

33, 36, 38] According to the work by Bridgwater, bio-oils produced from many pyrolysis 

included not only ketones (1-5 wt%) but also aldehydes (10-20 wt%).[182] It can be seen 

that aldehydes account for a large amount of bio-oils. Therefore, the hydrodeoxygenation 

of aldehydes is of great importance. However, few literatures addressed the 

hydrodeoxygenation of aldehydes. 

 

Coventional metal sulfide catalysts such as sulfide CoMo/Al2O3 and NiMo/Al2O3 had 

good deoxygenation activity, but the sulfidation process of these catalysts was carried out 

at high temperature. The use of H2S or CS2 as sulfiding agent exhausted poisonous gas 

H2S. Moreover, additional sulfiding agent was required to be added in the feed to 

maintain the sulfidation level of metal sulfide catalyst.[183] 

 

Supported noble catalysts avoided the disadvantages of conventional sulfide catalyst and 

were used as promising catalysts for hydrodeoxygenation of bio-oil models. However, 

studies focused on the hydrodeoxygenation of aldehydes on supported noble catalysts 
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were still rather limited. Pt-catalyzed system is one of the most efficient for the 

hydrogenation reactions, it was also reported support acid-base properties can control the 

chemoselectivity in the hydrogenation and hydrogenolysis of carbonyl group on Pt.[133] 

The influence of support acid–base properties on the geometric and electronic properties 

of Pt has  een extensively studied  y Konings erger’s group.[152, 184] They tuned the 

ionicity of alumina by introducing different dopants (Si, W, F, Cl, K, Rb, and Cs).  

 

Generally, Doping alumina with silica is a known procedure to increase the surface 

acidity of alumina.[133] Characterization techniques and DFT calculations have been 

used to elucidate the interaction between metal–support. They proved that the Pt‒H  ond 

strength is higher on ionic (basic) supports and lower on acidic and more covalent 

supports, which is the origin of the changes in the reactivity of Pt toward hydrogenation 

and hydrogenolysis.[152, 184] Procha źkova  ́ et al.[108] investigated the 

hydrodeoxygenation of aldehydes on supported palladium catalysts, it is indicated that 

hydrodeoxygenation of aldehydes proceeded rapidly and selectively on tested supported 

palladium catalysts, results also showed the importance of acidity in this reaction 

selectivity. 

 

It was proved in chapter 4 that support acidity can promote the transformation of 

carbonyl group of aromatic ketone to methylene one. The problem arises with whether 

this theory can be applied for the hydrodeoxygenation of aldehydes. Therefore, we 

performed hydrodeoxygenation of benzaldehyde hydrodeoxygenation on supported Pt 

catalysts with tunable acid properties in this chapter. Firstly, the hydrodeoxygenation of a 
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model aldehyde of benzaldehyde was performed on a noble reference catalyst of E4759 

Pt/Al2O3 in a continuous flow reactor in the temperature from 80°C to 200°C. Effect of 

temperature on the conversion and selectivity of this reaction was tested. Afterwards, the 

effect of acidity was investigated. We changed the support acidity of Pt/Al2O3 by doping 

SiO2 using a flame spray pyrolysis (FSP) method as described in Chapter 2.2.2.4. The 

hydrodeoxygenation of benzaldehyde on Pt/SiO2-Al2O3 with different Si/Al ratio was 

then performed to identify the reaction of benzaldehyde hydrodeoxygenation differing in 

the support acidity of Pt-based noble catalyst.  
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6.2 Results and discussion 

 

6.2.1 Benzaldehyde hydrodeoxygenation on Pt/Al2O3 

 

6.2.1.1 Conversion of benzaldehyde on Pt/Al2O3 

0 50 100 150 200

 80°C

 100°C

 120°C

 150°C

 200°C

Time (min.)

C
o

n
v
e

rs
io

n
 o

f 
b

e
n

z
a

ld
e

h
y
d

e
 (

%
)

40

50

60

70

80

90

100

110

 

Figure 6.1 Conversion of hydrodeoxygenation of benzaldehyde on Pt/Al2O3 in 

continuous flow reactor at temperatures of 80°C, 100°C, 120°C, 150°C and 200°C. 

 

In order to study the temperature effect on hydrodeoxygenation of benzaldehyde, the 

reaction was carried out on a reference catalyst E4759 Pt/Al2O3 in a continuous flow 

reactor in the temperature range from 80°C to 200°C over a reaction time of 180 min. 

Catalytic activity results are shown in Figure 6.1. At 80°C, the conversion of 

benzaldehyde reached 82.1% after reaction time of 15 min, and decreased to 49.1% after 

180 min. At 100°C, 81.5% of benzaldehyde was converted after 15 min and the 

conversion decreased to 58.2% after 180 min. When the reaction temperature was 
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increased to 120°C, conversion of benzaldehyde was 87.7% after 15 min and 

subsequently decreased to 75.7% after reaction time of 180 min. At 150°C, conversion of 

benzaldehyde achieved 100% at the beginning and still decreased to 83.9% after 180 min. 

when reaction temperature was increased to 200°C, conversion of benzaldehyde kept 

constant at 100% during reaction time of 180min. In Figure 6.1, the catalytic activity of 

Pt/Al2O3 gradually increased with the increasing of reaction temperature. Specially, with 

the increasing temperature from 80°C to 100°C, the conversion of benzaldehyde 

increased from 49.1% to 58.2% after reaction time of 180 min. With further increasing 

temperature from 100°C to 120°C, the conversion increased again from 58.2% to 75.7% 

after 180 min. Then, reaction at 150°C showed higher conversion of 83.9% after 180 min. 

When temperature was increased to 200°C, the conversion of benzaldehyde achieved 

100%. 
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6.2.1.2 Selectivity of benzaldehyde hydrodeoxygenation on Pt/Al2O3 

 

O

OH OH

Benzaldehyde

Benzenemethanol

Toluene

Benzene

Cyclohexanemethanol

Methylcyclohexane

 

Scheme 6.1 Proposed benzaldehyde hydrodeoxygenation reaction pathway 

 

Scheme 6.1 shows a possible reaction pathway for the hydrodeoxygenation of 

benzaldehyde accroding to literature.[185-187] As mentioned above, in bio-oil upgrading, 

it is desirable to only promote hydrogenolysis carbonyl groups to saturated C-C bonds 

and avoiding hydrogenation of aromatic rings because the latter decreases the octane 

number of the produced fuels and results in undesired hydrogen consumption.[69] 

Therefore, benzene and toluene are considered as the most valuable products of 

benzaldehyde hydrodeoxygenation. 
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Figure 6.2 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/Al2O3 at 80°C 

 

Figure 6.2 shows the selectivity of benzaldehyde hydrodeoxygenation on Pt/Al2O3 at 

80°C. Methylcyclohexane, toluene, cyclohexanemethanol, benzene, benzyl 

cyclohexanecarboxylate and benzenemethanol were produced. Methylcyclohexane was 

the main product over a reaction time of 180 min with the selectivity of 64% after 15 min 

at conversion of 82.1% and decreased to 49% after 180 min at conversion of 49.1%. The 

second main product was toluene with selectivity of 14% after 15 min (conversion of 

82.1%) and increased to 28% after 180 min (conversion of 49.1%). The selectivity of 

benzene was 17% after 15 min (conversion of 82.1%) and decreased to 5% after 180 min 

(conversion of 49.1%). Cyclohexanemethanol was also produced, the selectivity of this 

product was 5% after 15 min (conversion of 82.1%) and increased to 12% after 180 min 

(conversion of 49.1%). The selectivity of benzyl cyclohexanecarboxylate and 

benzenemethanol was very low and kept almost constant at 0%. 
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Figure 6.3 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/Al2O3 at 100°C 

 

Figure 6.3 shows the selectivity of benzaldehyde hydrodeoxygenation on Pt/Al2O3 at 

100°C. The selectivity distribution of benzaldehyde hydrodeoxygenation on Pt/Al2O3 at 

100°C was similar to 80°C. Methylcyclohexane was still the main product over a reaction 

time of 180 min with a selectivity of 55% after 15 min (81.5% conversion) and decreased 

to 47% after 180 min (58.2% conversion). Toluene was the second main product with 

selectivity of 11% after 15 min (81.5% conversion) and increased to 27% after 180 min 

(58.2% conversion). The selectivity of benzene was 26% at the beginning (81.5% 

conversion) and decreased to 9% after 180 min (58.2% conversion). The selectivity of 

Cyclohexanemethanol increased from 8% after 15 min (81.5% conversion) to 13% after 

180min (58.2% conversion). Only very small amount (2%) of benzenemethanol was 

produced after 60 min (69.6% conversion) and slightly increased to 4% after 180 min 

(58.2% conversion). 
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Figure 6.4 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/Al2O3 at 120°C 

 

The selectivity of benzaldehyde hydrodeoxygenation on Pt/Al2O3 at 120°C showed some 

difference in comparison with those at 80°C and 100°C. Methylcyclohexane was still the 

main product after 15 min with selectivity of 61% (87.7% conversion), but it decreased to 

35% after 180 min (75.7% conversion). On the contrary, the selectivity of toluene 

significantly increased, toluene became the main product with selectivity of 50% after 

180 min (75.7% conversion). The selectivity of benzene was not significantly changed 

during reaction time of 180 min. After 15 min, 13% benzene (87.7% conversion) was 

produced and decreased to 9% after 180 min (75.7% conversion). The selectivity of 

benzyl cyclohexanecarboxylate, cyclohexanemethanol and benzenemethanol was very 

low and kept near 0%. 

 

It has been proposed earlier that the formation of benzal alcohol from benzaldehyde 

occur via a nucleophillic mechanism where carbonyl function is activated at the metal 
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support interface. Benzene is formed directly from benzaldehyde via the adsorption of 

benzaldehyde on acidic sites and subsequent dissociation of C-C band on metal sites 

while toluene can result from the subsequent conversion of the alcohol and 

hydrogenolysis of benzaldehyde, methylcyclohexane was suggested as a result of the 

further reduction of toluene.[185-187] 

 

In Figure 6.2, 6.3 and 6.4, methylcyclohexane appeared as the primary main product. 

Since methylcyclohexane should be formed from further reduction of toluene. The reason 

of methylcyclohexane as the primary main products can be summarized as newly reduced 

catalysts carried large amount of adsorbed H at the Pt surface, so the benzaldehyde can be 

fully hydrogenated due to the high ratio of H to reactant at the beginning of the reaction. 

When more and more reactant or product adsorpbed on surface, competitive adsorption 

of C=O with aromatic ring will increase the chemoselectivity of C=O hydrogenation to 

toluene. The product of benzene was appeared at the beginning of the reaction. Benzene 

selectivity seems like kept at almost unchanged over reaction time of 180 min.  
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Figure 6.5 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/Al2O3 at 150°C 

 

For the hydrodeoxygenation of benzaldehyde on Pt/Al2O3 at 150°C, benzene was the 

main product at the beginning with selectivity of 62% after a reaction time of 15 min 

(100% conversion) and decreased to 16% after 180min (83.9% conversion). The 

selectivity of methylcyclohexane was 38% after 15 min and decreased to 1% after 180 

min. The selectivity of toluene significantly increased, reaching 80% after 120 min (86.5% 

conversion) and slightly decreased to 78% after 180 min (83.9% conversion).  
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Figure 6.6 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/Al2O3 at 200°C 

 

Figure 6.6 shows hydrodeoxygenation of benzaldehyde on Pt/Al2O3 at 200°C. 

Interestingly, only benzene and toluene were produced. Benzene became the dominant 

product when the temperature was increased to 200°C. The selectivity of benzene kept 

almost constant at around 95% during reaction time of 180 min (100% conversion). The 

selectivity of toluene was also constant at around 5% (100% conversion). It is interesting 

to note that products of methylcyclohexane, cyclohexanemethanol and benzenemethanol 

disappeared when reaction temperature was increased to 200ºC.  
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Figure 6.7 Influence of temperature on the hydrogenation of benzaldehyde: 

selectivity to produces benzene, toluene and (Benzene+Toluene) at 80% conversion 

of benzaldehyde 

 

Figure 6.7 showed selectivity to benzene, toluene and Benzene+Toluene at 80% 

conversion. Increasing the temperature from 80°C up to 200°C enhanced the selectivity 

to products of Benzene+Toluene from 31% to 100%. Toluene selectivity increased from 

14% at 80°C to 78% at 150°C and significantly decreased to 5% at 200°C. The selectivity 

of benzene continuously increased from 17% at 80°C to 95% at 200°C. Previous study 

also showed benzene selectivity from dissociation of C-C bond of benzaldehyde 

increased with temperature increase from 150°C to 350°C because elevated temperature 

promoted the decomposition of C-C bond to produce benzene. [186]  
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Figure 6.8 Influence of temperature on the hydrogenation of benzaldehyde: 

selectivity to phenyl ring hydrogenation to give the production of 

(Methylcyclohexane+Cyclohexanemethanol) at 80% conversion of benzaldehyde 

 

On the contrary, in Figure 6.8 the selectivity to phenyl ring hydrogenation products (the 

sum of methylcyclohexane+cyclohexanemethanol) significantly decreased from 69% at 

80°C to 0% at 200°C. From above observation, it is concluded that the increase of 

reaction temperature promotes hydrogenolysis to produce toluene and to generate 

benzene, avoiding phenyl ring hydrogenation to give products of methylcyclohexane and 

cyclohexanemethanol because the dissociation of C-C bond to give production of 

benzene was enhanced at high temperatures.[186]  
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6.2.2 Benzaldehyde hydrodeoxygenation on Pt/SiO2-Al2O3 

6.2.2.1 Conversion on Pt/SiO2-Al2O3 
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Figure 6.9 Conversion of hydrodeoxygenation of benzaldehyde at 140°C over 

Pt/SiO2-Al2O3 

 

To understand acidity effect on benzaldehyde hydrodeoxygenation, we changed surface 

acidity by doping different amount of SiO2 into Pt/Al2O3. Based on the study of 

benzaldehyde hydrodeoxygenation on Pt/Al2O3, we chose reaction temperature of 140ºC 

to test the catalytic activity and selectivity of Pt/SiO2-Al2O3 because at reaction 

temperature of 150°C, toluene was produced in the highest amount. Details of 

characterization of Pt/SiO2-Al2O3 with different Si/Al ratio can be found in the 

literature.[133] As can be seen in Figure 6.9, except Pt/SA-80 all the other catalysts 

including Pt/SA-5, Pt/SA-10, Pt/SA-15, Pt/SA-22.5, Pt/SA-30, Pt/SA-50 (Pt/SA-5, 

Pt/SA-10, Pt/SA-15, Pt/SA-22.5, Pt/SA-30, Pt/SA-50 and Pt/SA-80 represent Pt/Al-5Si, 



124 
 

Pt/Al-10Si, Pt/Al-15Si, Pt/Al-22.5Si, Pt/Al-30Si, Pt/Al-50Si and Pt/Al-80Si) show much 

higher catalytic activity than the reference catalyst of Pt/Al2O3 because the conversion of 

benzaldehyde on these catalysts kept at around 100% in reaction time of 3h. The 

conversion of benzaldehyde on Pt/SA-5 slightly decreased to 95% after 5h. On Pt/SA-10 

and Pt/SA-15, the conversion kept almost constant at 100% during reaction time of 5h. 

The conversion of benzaldehyde on Pt/SA-22.5, Pt/SA-30 and Pt/SA-50 decreased to 

85%, 62.6% and 53% after 5h. The low catalytic activity of Pt/SA-80 was probably 

caused by a fast growing of Pt particle size from relatively large amount of Al 

incorporated into the crystalline framework.[133] From above observation, the doping of 

SiO2 improved catalytic performance in benzaldehyde hydrodeoxygenation in 

comparison with commercial E4759 Pt/Al2O3. Except for Pt/SA-80, all SiO2-doped 

catalysts showed 10%-20% higher catalytic activity than E4759 Pt/Al2O3 under similar 

reaction condition. 
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Figure 6.10 TPD patterns of NH3 and the corresponding maximum desorption peak 

temperature 

Figure 6.10 shows TPD patterns of NH3 on Pt/SA catalysts, the acidity increased from 0 

wt.% SiO2 up to 22.5-30 wt.% SiO2, above this range the acidity gradually 

decreased.[133]  

 

6.2.2.2 Selectivity on Pt/SiO2-Al2O3 
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Figure 6.11 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/SA-5 at 140°C 

 

Figure 6.11 shows the selectivity of benzaldehyde hydrodeoxygenation on Pt/SA-5 at 

140°C. Methylcyclohexane, toluene, cyclohexanemethanol, benzene and 

benzenemethanol were produced. Methylcyclohexane was the main product after 1h with 

selectivity of 89% (100% conversion), but the selectivity decreased to 5% after 2h (100% 

conversion). On the contrary, toluene was not produced in 1h (100% conversion), but the 

selectivity of toluene reached 90% after 2h (100% conversion). The selectivity of 
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benzene was not significantly changed during reaction time of 5h, 11% after 1h (100% 

conversion) decreased to10% after 5h (95% conversion). 
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Figure 6.12 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/SA-10 at 

140°C 

 

Figure 6.12 shows selectivity of benzaldehyde hydrodeoxygenation on Pt/SA-10 at 

140°C. Methylcyclohexane was the main product at the beginning, with selectivity of 92% 

(100% conversion) after 1h, however, the selectivity of this product significantly 

decreased to 2% (100% conversion) after 3h. On the contrary, toluene was not produced 

after 1h, the selectivity of it significantly increased to 92% after 3h (100% conversion). 

The selectivity of toluene kept almost the same at 7% during reaction time of 5h. The 

selectivity of cyclohexanemethanol and benzenemethanol approached 0%. 
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Figure 6.13 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/SA-15 at 

140°C 

 

As shown in Figure 6.13, the catalytic selectivity distribution of benzaldehyde 

hydrodeoxygenation on Pt/SA-15 was similar to that on Pt/SA-5 and Pt/SA-10. 

Methylcyclohexane was the main product in the first place with selectivity at above 90% 

after 1h, followed by a significant decrease to around 0% after 3h whereas the selectivity 

to toluene significantly increased to around 90% after 3h and kept constant at above 90%. 

The selectivity of benzene almost kept at the same level (at around 6%) during reaction 

time of 5h. The selectivity of cyclohexanemethanol and benzenemethanol again 

approached 0%. 
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Figure 6.14 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/SA-22.5 at 

140°C 
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Figure 6.15 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/SA-30 at 

140°C 

 

With increasing SiO2 content to 22.5 wt.% and 30 wt.%, the selectivity distribution 

showed some difference in comparison with on Pt/SA-5, Pt/SA-10 and Pt/SA-15. 
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Methylcyclohexane was the main product with selectivity at constant around 80% in 3h. 

Then, after reaction time of 3h, the selectivity of methylcyclohexane began to decrease 

whereas the selectivity of toluene increased from 0% after 3h (100% conversion) to 

around 60% after 5h (85% conversion on Pt/SA-22.5, 63% conversion on Pt/SA-30). 

However, the increase in the selectivity of toluene on Pt/SA-22.5 and Pt/SA-30 was not 

as significant as on that of Pt/SA-5, Pt/SA-10 and Pt/SA-15. The selectivity of benzene 

was also not significantly changed. (10% to 20% during 5h) 
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Figure 6.16 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/SA-50 at 

140°C 

 

With increasing SiO2 content to 50 wt.%, benzaldehyde hydrodeoxygenation was 

operated on Pt/SA-50 at 140°C. Products of methylcyclohexane, toluene and benzene 

were detected. Methylcyclohexane was the primary dominant product at the first with 

selectivity above 70% after 2h (100% conversion), and the selectivity gradually 

decreased to 5% after 5h (53% conversion). On the other hand, toluene was not appeared 
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in the first 2h. The selectivity of toluene gradually increased to 65% after 5h (53% 

conversion). The selectivity of benzene again was not significantly changed. (28% after 

1h, 29% after 2h) 
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Figure 6.17 Selectivity of hydrodeoxygenation of benzaldehyde on Pt/SA-80 at 

140°C 

 

As shown in Figure 6.17, benzene became the main product of benzaldehyde 

hydrodeoxygenation on Pt/SA-80 with a selectivity of 43% after 1h (100% conversion), 

59% after 5h (7.6% conversion). Toluene became the second main product. The 

selectivity to toluene after 1h was only 35% and slightly decreased to 34% after 5h. 

Selectivity to methylcyclohexane decreased from 20% after 1h to 6% after 5h. 
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Figure 6.18 Influence of SiO2 content of Pt/SiO2-Al2O3 on the selectivity of 

benzaldehyde hydrodeoxygenation to produce toluene, methylcyclohexane and 

benzene after reaction time of 3h at 140°C 

 

Figure 6.18 shows the influence of SiO2 content on the products selectivity of toluene, 

methylcyclohexane and benzene at 3h and 140°C. Above 90% of toluene was produced 

on 5 wt.%, 10 wt.% and 15 wt.% SiO2-doped Pt/SiO2-Al2O3 whereas selectivity to 

methylcyclohexane and benzene were very low. When SiO2 content was increased to 22.5 

wt.% and 30 wt.%, almost no toluene was detected, but selectivity to methylcyclohexane 

significantly increased to around 80%, this trend suggests aromatic ring of toluene was 

more easily hydrogenated to produce methylcyclohexane on acidity enhanced catalyst. 

Interestingly, with increasing SiO2 content to 80 wt.%, benzene selectivity began to grow 

and benzene became dominant product on Pt/SA-80 with selectivity achieving 65% after 

3h. Previous temperature-programmed desorption (TPD) characterization (Figure 6.10) 

shows the strongest acidity was measured at 22.5-30 wt.% SiO2, above this range the 

acidity decreased again.[133] Therefore, toluene prefers to form on relative low acidic 
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catalysts such as Pt/SA-5, Pt/SA-10 and Pt/SA-15. When acidity was increased, both 

carbonyl group and aromatic ring was reacted to give the product of methylcyclohexane 

on Pt/SA-22.5 and Pt/SA-30. Since toluene could be converted to methylcyclohexane, 

increasing the support acidity promoted the hydrogenation of aromatic ring of toluene to 

produce methylcyclohexane. There are two possible reasons: 1) On acidic catalysts, more 

active Pt surface hydrogenated both aromatic rings and C=O bonds; 2) more spillover 

hydrogen from more active Pt moved to the adsorbed reactants on supports to 

hydrogenate both aromatic rings and C=O bonds. Benzene was probably formed directly 

from benzaldehyde decomposition, the reaction pathways of benzaldehyde 

hydrogenolysis to benzene probably undergo a bifunctional site, the adsorption of 

reactant molecule on an acidic site, followed by dissociation of the aldehydic C-C bond 

on a metal site.[186] 

 

6.3 Conclusions 

 

Catalytic activity of reference E4759 Pt/Al2O3 in the hydrodeoxygenation of 

benzaldehyde gradually increased with the increasing of reaction temperature. The 

increase of reaction temperature also promoted the production of benzene and toluene 

and avoided phenyl ring hydrogenation to generate byproducts of methylcyclohexane and 

cyclohexanemethanol.  

 

SiO2-doped Pt/SiO2-Al2O3 catalysts showed 10%-20% higher catalytic activity than 

E4759 Pt/Al2O3 under similar reaction condition. Acidity did influence catalytic 
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selectivity of benzaldehyde hydrodeoxygenation, toluene prefers to form on relative low 

acidic catalysts. Methylcyclohexane was more easily formed on high acidic catalysts. 

Benzene was probably formed by an independent way from the products of benzaldehyde 

reduction, it probably undergo a bifunctional site, the adsorption of reactant molecule on 

an acidic site, followed by dissociation of the aldehydic C-C bond on a metal site.[186] 
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7 Conclusions  

 

In this thesis, the mechanisms of bio-oil model ketone hydrodeoxygenation on supported 

noble Pt or Pd catalysts were investigated. Then, the synthesis, characterization and 

catalytic performance of various catalysts for hydrodeoxygenation reactions of bio-oil 

model compounds were described.  

 

The thesis addressed the understanding of bio-oil model ketone compound - 

acetophenone hydrodeoxygenation mechanism over alumina and silica-alumina 

supported Pt and Pd catalysts by in-situ attenuated total reflection infrared spectroscopy 

(ATR-IR) in combination with modulation excitation spectroscopy (MES) and phase 

sensitive detection (PSD). This approach allows proper detecting and analyzing active 

species at catalytic solid-liquid interfaces under working conditions. Key results can be 

summarized as below: 

 On alumina supported platinum, AP was predominantly adsorbed on Pt in its η
1 

(O) configuration and this species was hydrogenated with high chemoselectivity 

to PE. The produced PE was more strongly adsorbed on the Al2O3 support than on 

Pt. 

 AP hydrodeoxygenation on silica-alumina Pd supported nanoparticles showed 

increasing EB selectivity with the increase of surface acidity. 

 On silica-alumina supported Pd, hydrodeoxygenation of AP to EB involves the 

hydrogenation of AP to PE on metal surface, followed by dehydration of PE on 
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acid sites of supports to generate styrene. Styrene was then further hydrogenated 

on metal surface to produce EB. 

 Then, according to the understanding of hydrodeoxygenation mechanism, 

catalysts of Pt/MCM-41 and Pt/SiO2-Al2O3 were designed. Hydrodeoxygenation 

of acetophenone over mesoporous supported noble Pt catalysts with different 

surface acidity was applied. Hydrodeoxygenation of benzaldehyde on Pt/Al2O3 

and Pt/SiO2-Al2O3 with different surface acidity was also tested.  

 Pt/MCM-41 catalysts with different Si/Al ratio possess high surface area and 

uniform particle size. 

 The density of acid on Pt/Al-MCM-41 catalysts decreases with the increase of 

Si/Al ratio. 

 Pt/Al-MCM-41 catalysts serve as bifunctional catalysts in the hydrogenation of 

AP. The catalytic behaviour was influenced by different properties of the supports. 

Generally, overloading of Al into MCM-41 support decreases catalytic activity of 

Pt/Al-MCM-41 due to the accessibility of nano-porous MCM-41 hindered by 

excessive Al. 

 SiO2-doped Pt/SiO2-Al2O3 catalysts showed 10%-20% higher catalytic activity 

than E4759 Pt/Al2O3 under similar reaction condition. 

 Acidity did influence catalytic selectivity of benzaldehyde hydrodeoxygenation, 

toluene prefers to form on low acidic catalysts. Methylcyclohexane more easily 

formed on high acidic catalysts. 
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Appendix 

 

 

Figure A1. IR spectrum of pure AP in the liquid-phase. 

The band at 1682 cm
-1

 is due to C=O stretching vibration, bands at 1450, 1581, and 1599 

cm
-1

 are assigned to C=C stretching vibration of phenyl group, signal at 1358 cm
-1

 

corresponds to the bending mode of CH3. While signal at 1262 cm
-1

 is due to X-sensitive 

benzene mode. 
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Figure A2. IR spectrum of pure PE in the liquid-phase. 

The band at 1494 cm
-1

 is due to C=C stretching vibration of phenyl group1, 1204 cm
-1

 

corresponds to deformation mode of phenyl group, band at 1010 cm
-1

 is due to C=C 

stretching vibration, band at 1075 cm
-1

 is assigned to C-O stretching vibration. 
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Figure A3. IR spectrum of pure CE in the liquid-phase. 

Bands at 1448 and 1371 cm
-1

 are possibly assigned to bending mode of CH2 and CH3 

group, respectively. Signal at 1062 cm
-1

 corresponds to C-O stretching vibration of CE. 
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Figure A4. IR spectrum of pure EB in the liquid-phase. 

Bands at 1604, 1496, and 1453 cm
-1

 are assigned to C=C stretching vibration of phenyl 

group, band at 1376 cm
-1

 correspond to bending mode of CH3 group. 
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