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Abstract  

The attentional capacity limitation of tracking multiple moving objects has been 

discussed expansively by various theoreticians. The research reported in this thesis assessed 

the limits of object tracking with a series of systematic psychophysical investigations. 

Chapter 2 reports evidence that the limits of object tracking are directly due to the resources 

allocated to each target rather than caused by spatial interference (Franconeri et al., 2008; 

2010). With widely-spaced target configurations, the maximum speed observers could track 

targets declined as the number of targets increased. Chapter 4 provides evidence supporting 

the claim that tracking resources are flexibly shared among targets, with the fastest-moving 

target receiving more resources than the slower-moving target. These results provide concrete 

evidence to support the assumptions of resource theory: continuously allocated resources, 

limited capacity, and flexible resource allocation.  

The current research also demonstrated some specific findings regarding resource 

theory in object tracking. Chapters 3 and 4 confirmed previous findings obtained using 

different methodologies (Alvarez & Cavanagh, 2005) by showing that tracking resources are 

largely hemisphere-specific, and effectively demonstrated that performance for a fast-moving 

target is very sensitive to the amount of resources allocated. Furthermore, Chapter 5 showed 

that observers lost the tracked target if distractors occupied a location close to the time a 

target occupied it, suggesting that the mechanism of tracking also has a limited temporal 

resolution, and that reducing the resource allocated to each target reduces temporal 

resolution. To conclude, the findings of all the experiments are discussed in the context of 

various resource theories. 
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Chapter 1 : General Introduction 

In our daily lives, we pay attention to specific tasks like browsing a website, speaking 

with a friend on the phone, or following the instructions of a coach. Even still, many of us 

have no profound understanding of what “attention” means or how the process of “paying 

attention to something” works in our brain. Attention is usually considered to be a limited-

capacity resource that processes environmental stimuli. While early sensory stages (like the 

retina) process incoming information regardless of attentional state, later processes are 

directly affected by how much attention is allocated to processing. 

 The attentional capacity limit causes poorer processing when more task-relevant 

incoming information is added. If the quality and processing speed does not deteriorate when 

more information must be processed, no attentional capacity limit is present (Huang & 

Pashler, 2005). When more attentional tasks must be simultaneously executed, more task-

relevant incoming information must be processed at the same time. Previous researchers 

frequently investigated the attentional capacity limit using dual-task experiments (Pashler, 

1994; Pashler & Johnston, 1998). 

In dual-task experiments, people often perform worse on a task when they try to 

execute a second task at the same time (Duncan, 1980; Norman & Bobrow, 1975). 

Performing binary tasks while sharing the same limited-capacity attentional resource imposes 

a cost on performance. Hence, people perform better on one task and worse on the other 

according to limited-capacity attentional resource. 

In place of dual-task experiments, this thesis specifically studies the workings of 

attentional capacity with regard to the processing of incoming information by investigating 

the ability to process multiple objects or stimuli. Due to a limited attentional capacity, it is 

hypothesized that performance during the processing of multiple objects or stimuli will be 

worse than that of processing only one object. We investigate this hypothesis by asking 
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participants to track multiple moving objects. People usually have experience with the 

attentive tracking of objects in a dynamic environment. For example, when driving on a busy 

road we need to keep track of multiple moving objects around us, such as a dog or a child 

running across the street, while also noting other moving cars near us, in order to avoid 

hitting them. This tracking event is theorised to require our attention on those moving objects 

(Drew, McCollough, Horowitz, & Vogel, 2009). Therefore, to understand the mechanism of 

attentional resource allocation among targets, investigating with the task of object tracking is 

an appropriate approach. 

In this chapter, the introduction of the subsection titled “Understanding the 

Attentional Process” and “Resource Theory” are presented first. After that, I review selected 

postulates of multiple object tracking literature, and some possible theories explaining the 

limitation of attentive tracking. Finally, the research questions of this thesis are summarised. 

1.1 Understanding the Attentional Process 

 
In 1890, William James described attention in his book Principles of Psychology:    

“Everyone knows what attention is. It is the taking possession by the mind, in clear and vivid 

form, of one out of what seem several simultaneously possible objects or trains of thought. 

Focalization, concentration, of consciousness are of its essence. It implies withdrawal from 

some things in order to deal effectively with others, and is a condition which has a real 

opposite in the confused, dazed, scatterbrained state” (James’s, 1890).  

 Three principal concepts of attention arise from James’s description. To begin with, 

when we pay attention to something, our consciousness is on this focal object with effort, and 

we feel that this processing costs mental energy (effort). Secondly, attention allows us to 

selectively process the huge amount of information that we encounter each day (selectivity). 

Because of the selectional process, we can attend to and interpret something relevant to us 
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while ignoring irrelevant information. The “cocktail-party problem” further illustrates the 

successfully working selectional process, because while at a cocktail party, one guest can 

listen to a particular conversation and apparently disregard other conversations (Cherry, 

1953). Finally, selective processing is required because central processing has a limited 

capacity, which is why we cannot pay attention to all the details of the stimuli within our 

environments (capacity limitation). 

Limited capacity is a core aspect of the theories of attention. Previous investigations 

about the attentional capacity limitation commonly used dual-task experiments (Pashler, 

1994; Pashler & Johnston, 1998). The capacity limitation results of these experiments 

demonstrated that the performance of a first task is harmed by adding a second task. For the 

sake of interpreting the capacity limitation on dual-task experiments, Pashler (1994) outlined 

the three most influential models: cross-talk theory (Kinsbourne, 1981), central bottleneck 

theory (Broadbent, 1958), and resource theory (Kahneman, 1973). Unlike dual-task 

experiments, this thesis investigates whether a substantial cost on performing just one 

multiple object tracking (MOT) task occurs when additional targets are added, because of 

capacity limitation. To this end, these three influential models might also be able to explain 

the capacity limitation on object tracking via adding targets instead of tasks. The subsequent 

paragraphs will first introduce cross-talk theory, followed by the central bottleneck theory. 

Finally, resource theory will be described in detail. 

According to cross-talk theory, capacity limitation results from the similarity between 

the cortical representations of two tasks, which is also termed the functional cerebral distance 

model (Kinsbourne, 1981). Different parts of the cortex are dedicated to different specific 

functions or behaviours, and each task may be mediated by a specific area of cortex. If two 

tasks are processed in a similar area of cortex, cross-talk will occur, which will subsequently 

lead to significant interference between the two aforementioned tasks. For example, the voice 
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control and motor control of the right hand are both mediated by the left cerebral cortex, 

whereas the motor control of the left hand is mediated by the right cerebral cortex. 

Kinsbourne and Hicks (1978) measured the rates of voice-hand interference in professional 

pianists and demonstrated more interference between voice and right-hand playing than 

between voice and left-hand playing. Another example of cross-talk theory can be found in 

the fact that observers perform worse when we ask them to do a task controlled by unilateral 

limbs (right arm and right leg/ left arm and left leg) than when asked to perform tasks 

controlled by bilateral limbs (the two arms / the two legs). This is because the similarity of 

mental representation is statistically significant when performing with limbs controlled by the 

unilateral hemisphere (Kinsbourne, 1974). 

Central bottleneck theory assumes that our attention can only operate on one task at a 

time. When two tasks are required to process at the same time, one task’s performance will 

be delayed (Broadbent, 1958; Deutsch & Deutsch, 1963). Over the past few decades, 

experiments conducted with the psychological refractory period (PRP) task have elaborated 

upon the notion of the central bottleneck theory (Pashler, 1994; Pashler & Johnston, 1998). 

The response to the second task becomes slower when the interval between the first and 

second task is reduced, because the second task can only be processed after the first task is 

finished. When the difficulty of the first task is increased, this increases the response time for 

both the first and second tasks. Increasing the difficulty of the second task will have no effect 

on the first task. 

According to the central bottleneck theory, the mind contains only a single “device” that 

is capable of carrying out one task at one time. Contrasting cross-talk theory, this processing 

device as stated by central bottleneck theory, may be mediated by the subcortical structures 

instead of the cortexes (Pashler et al., 1994). Pashler et al. (1994) demonstrated that for split 

brain patients as well as normal participants, the processing of one stimulus in one hemifield 
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(Task 1) delayed processing another stimulus in the opposite hemifield (Task 2). These 

results indicated the central bottleneck theory is not mediated by cortex, because for split-

brain patients, each hemisphere independently processes the stimulus of the corresponding 

visual hemifield and does not influence the processing of the opposite hemifield.  

1.2 Resource Theory  

1.2.1 What is Resource Theory? 

 Resource theory proposes that processing capacity can be shared among tasks, with 

more than one task simultaneously conducted. The distinction from the central bottleneck 

theory is that resource theory allows for a parallel division of attention. With central 

bottleneck theory, only one thing can be processed a time- which means that tasks are 

processed serially (Kahneman, 1973). According to resource theory, people can process 

several tasks at the same time, but the performance of each task is impaired because less 

attentional resource is allocated to each task. 

  Imagine limited capacity as a swimming pool in our brain (Figure 1.1). The 

attentional resource resembles the water that is contained within this pool. A variety of 

attentional tasks and processes share this resource pool. To make this abstract theory more 

concrete neuroscientifically, one corresponding neural theory is that the pool is of neurons in 

our brain assigned to tasks depending on the task’s demands. One possibility is that each task 

receives 50% of the total number of neurons when doing two equal-difficulty tasks at the 

same time. When the difficulty of the two tasks differs, one task is allocated more neurons 

than the other, like in the allotment distribution: 60%: 40%. As the number of simultaneous 

tasks increases, the number of neurons assigned to each task decreases, reducing the 

performance for each.  

 An oscillatory neural network model provides an alternative explanation for the 

resource theory (Kazanovich & Borisyuk, 2002, 2006). The oscillatory neural network 
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includes two main components: central oscillators (COs), which are assembly of neurons that 

represent the central executive of the attentional system in frontal-parietal networks, and 

peripheral oscillators (POs), which are an assembly of cortical neurons in visual cortices. The 

location of the tracking foci is formed by synchronous oscillations of these COs and POs, 

consistent with evidence that increased attention increases synchrony in visual cortex (Fries, 

Reynolds, Rorie, & Desimone, 2001; Womelsdorf, Fries, Mitra, & Desimone, 2006). When 

attending to a target, an assembly of cortical neurons related to the target (PO) works 

synchronously with an assembly of neurons that represents the central executive (CO) in a 

particular part of phase space. Attending to an additional target is mediated by oscillation at a 

different phase.  The limited phase space can explain the limited capacity in simultaneously 

attentional processing, according to other theorists as well (Fries et al., 2001; Jensen & 

Lisman, 1998). As the number of targets increases, the angle between their phases decreases, 

increasing interferences so that they are less likely to maintain their coherent oscillation for 

the corresponding target only. In the particular model of Kazanovich and Borisyuk (2006), 

capacity is also limited by the number of POs. The POs consist of a limited number of layers, 

and each layer mediates a specific tracked target. Thus, the limited capacity of attentive 

tracking targets reflects dual constraints, both the maximum number of layers in POs, and the 

limited availability of phase space. 

 

Figure 1.1 Cartoon representation of slot theory and resource theory	  	  
In the left panel (slots theory): the attentional capacity consists of four attention slots (gears), and each slot is 
responsible for one attentional task. In the right panel (resource theory): the attentional capacity is depicted as a 
swimming pool in our brain. Attentional tasks can use differing amounts of this resource (the pool water). 
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1.2.2 The History of Resource Theory 

 Competing theories of attention were fiercely debated when resource theory was 

developed in the 1960s. Early selection theory proposed that attentional selection occurs 

before the semantic analysis of stimuli, and was based on the evidence that sensory selection 

was commonly more accurate and less effortful than semantic selection (the “filter theory” 

proposed by Broadbent, 1958). Cherry (1953) supported the early selection theory. In 

dichotic listening tasks (where two streams of speech were simultaneously fed one to each 

ear and asked participants only to attend to one ear) semantic contents and individual words 

were unnoticed, yet participants could report the gender of the speaker, speaking accents, and 

pitches within the unattended speech stream (Cherry, 1953). 

 Dissimilarly, late selection theory proposed that attentional selection took place after 

the semantic analysis of the stimuli. This theory also proposed that stimuli inputs could be 

identified and categorized by pre-attentive processes in parallel, without attention involved. 

This was supported by the finding that irrelevant stimuli were not excluded by early selection 

processing, and still underwent semantic analysis (Deutsch & Deutsch, 1963; Johnston & 

Dark, 1986; Moray, 1959).  

 Resource theory emerged to resolve the controversy between early selection and late 

selection theory by simply removing attention from the specific stage of information 

processing that goes from stimuli to response. Attention was a “mental energy” source that 

activated multiple processing stages differently via an “allocation policy”.  Attentional 

selection could arise at any stage, early or late (Kahneman, 1973). Allocation policy was 

determined by the subject’s estimate of task demands, and a complex task imposed more 

demands than an easy task (Figure 1.2). Due to the resource being limited, performance 

deteriorates when the supply of the resource does not meet the total demands. 
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Figure 1.2. Schematic description of resource theory  
The limited capacity of the resource pool supports attention selection with the allocation policy. The allocation 
policy determines how many resources are allocated to each processing stage from stimulus to response.  
  

To further explain the resource theory of attention, three main characteristics are 

overviewed in the following sections. Firstly, attentional resource allocation to each task or 

target is continuous and gradual, like pouring juice into cups rather than distributing the 

boxes of juice. Secondly, the capacity of resource is limited so that you cannot get an infinite 

amount of juice. A final possibility in resource theory is that humans are able to flexibly 

distribute differential amounts of resource (juice) to distinct tasks or targets (cups). For 

example, one might devote 70% of the resource to one task or target and 30% to another. 

1.2.3 First Characteristic of Resource Theory: Continuously Allocated Resource 

 Resource theory proposes that resource is allocated in a continuous and graded 

approach, and that performance rises as a function of the amount of resource deployed 

(Kahneman, 1973; Logan, 1997). This allocation approach is different from the slots theory 

(Figure 1.1), where attention is discretely distributed with several fixed-size boxes or cups. 

As a demonstrative analogy for the slots theory, consider each slot as a pre-packaged boxed 

juice of a fixed size. The attentional capacity is composed of many fixed-size juice boxes, yet 

each task can receive only one juice box (slot), even when only a solitary task is processed. In 

this case, performance of the attentional tasks is determined by the number of slots we have. 

Earlier literature suggested that the limited number of slots is four. Performance declines 

when the task demand exceeds the maximum number of slots (Barton, Ester, & Awh, 2009; 
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Luck & Vogel, 1997; Rouder et al., 2008). In the slots theory, it is impossible to differentially 

allocate attentional capacity between multiple tasks or targets. Attention however, is allocated 

within arbitrary portions of the resource according to resource theory.  

The resource-versus-performance function (RPF) described by Norman and Bobrow 

(1975) paper is an important concept of resource theory. This function may contain two 

major regions: a “resource-limited” region and a “data-limited” region (as shown in Figure 

1.3). In the data-limited region, performance is independent of resource allocation (shown on 

the graph as a horizontal line segment between point C and D). Variation in the allocation of 

resources has no effect on performance in this region. When data-limited, the process is 

restricted by the quality of the data structure or data inputs, such as detection of a weak signal 

in a noisy environment. 

 

Figure 1.3. The resource-versus-performance function  
Performance is related to the amount of processing resources allocated. When 0% of resource was allocated, 
observers performed at chance level (point A) whereas the maximum performance was found when allocated all 
resource to the task (point B). The straight line connecting between point A and B is a linear resource-versus-
performance function, which only has a resource-limited region. Another gentler slope function includes both 
data-limited region, which is a line segment between point C and D, and resource-limited region, which is 
connecting between point A and C. The data-limited region shows increasing the allocation of resources has no 
effect on the performance. In contrast, the performance improves with increasing amount of allocated resource 
in the resource-limited region. The dotted curve shows a RPF of less difficulty task than the dashed curve 
without linear relationship.   
 

In the resource-limited region, an increase in the amount of resource allocation can 

improve performance. This is shown by a curve or a line with a positive slope. Figure 1.3 

illustrates many possible relationships between task performance and resource deployment. A 
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linear relationship between performance and resource deployment is shown with a black 

straight line connecting between chance performance (point A), which is 0% resource 

deployment, and maximum performance (point B), which is 100% resource deployment. The 

line segment between point A and C is another linear RPF, which has a more gradual slope 

than the line segment between point A and B. To have an equal improvement in performance, 

the steep slope of RPF needs less resource deployed than the gentle slope of RPF. Due to data 

limitation, performance remains constant between point C and D, even if the amount of 

resource allocation is increased. The two curves showed RPFs of distinct difficult tasks, 

contrary to the linear relationship: the task of the dotted curve is much easier than that of the 

dashed curve. For the dotted curve, allocating minimal resource can improve performance to 

reach the ceiling level. For the dashed curve, even when allocating most of the resource, the 

performance does not improve much. All RPFs interpreted resource allocation is continuous 

and graded. 

1.2.4 The Second Characteristic of Resource Theory: Limited Capacity 

 A second aspect of resource theory is that information processing has a limited 

capacity which can be divided among several concurrent processes. Under this assumption, 

most applications of resource theory are focused on explaining dual-task performance. If 

attentional capacity is unlimited, performance of one task is unaffected by the other task 

(Townsend & Ashby, 1983). In contrast, due to limited attentional capacity, performance 

substantially decreases with additional tasks. Similar to the progression which occurs with 

multiple tasks, processing various stimuli or objects also shares the same limited attentional 

resource. When two visual objects are presented simultaneously and briefly, typically 

reporting the visual properties of both objects is more difficult than only reporting the 

properties of either one alone (Alvarez, Horowitz, Arsenio, Dimase, & Wolfe, 2005; Duncan, 

Ward, & Shapiro, 1994). 
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 Capacity limitations are supported by the finding that the performance of one task is 

adversely affected by the other task. The allocation of resource results in an increase in 

reporting accuracy for one task, with a decrease in accuracy for the other (Norman & 

Bobrow, 1975). The speed and accuracy of each task will be limited by the amount of 

resource the tasks are allocated (Kahneman, 1973). 

 An example of one context where resource theory has been useful is the psychological 

refractory period (PRP) paradigm. The PRP is a period that does not respond to any other 

tasks while one task is being processed. Its effect is usually shown by the fact that the 

response to the second stimulus becomes slower when the interval between the first and 

second stimuli is reduced (Telford, 1931). Although earlier studies showed the most 

prominent explanation of the PRP effect is provided by the central bottleneck theory (that 

only one task can process at a time) (Pashler, 1994; Pashler & Johnston, 1998; Welford, 

1952), some exceptions of the PRP effect were found from later studies that the central 

bottleneck theory cannot explain, but that resource theory can (McLeod, 1977; Navon & 

Miller, 2002; Tombu & Jolicoeur, 2003). For example, the presence of the second stimulus 

lengthens the response time of the first stimulus. The difficulty of the first or second stimulus 

has a considerable effect on performance of the other stimulus. An increase in the difficulty 

of the second stimulus elongating the response time of the first stimulus, is because the 

second stimulus consumes more resource as difficulties increase. Due to limited capacity, 

less resource is allocated to process the first stimulus and therefore it increases the response 

time of the first stimulus. If capacity is unlimited, there should not be any effect on 

performance of the first stimulus (McLeod, 1977; Tombu & Jolicoeur, 2003). 

1.2.5 Third Characteristic of Resource Theory: Flexible Allocation of Resource  

 The flexible allocation of resource is a third issue for resource-intensive tasks. How is 

attentional resource allocated among a number of simultaneous tasks? One possibility is that, 
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among a set of simultaneous tasks, they all receive the same amount of attentional resource. 

Another possibility is that some tasks receive more resource than others (Bourke, Duncan, & 

Nimmo-Smith, 1996).  

 Several previous pieces of literature related to the dual-task experiment have shown 

that attentional resource can be flexibly allocated to each task, and that an increase in the 

performance of one task decreases the accuracy of the other (Morey, Cowan, Morey, & 

Rouder, 2011; Pastukhov, Fischer, & Braun, 2009; Sperling & Melchner, 1978). Morey et al. 

(2011) examined the performance of two concurrent tasks (a tone-sequence comparison task 

and a visual array comparison task) and manipulated the financial rewards to encourage 

participants to allocate different amounts of attentional resources to either task. Better 

performance was found in a tone-sequence task when participants were instructed with higher 

financial rewards for greater accuracy in that task, and vice versa when the rewards were 

greater for the other task. These results indicated that attentional resource could be flexibly 

allocated to different tasks according to intentions.  

 Besides participants voluntarily distributing distinct amount of resource to tasks, the 

resource allocation can be manipulated by the experimenter’s emphasized instructions. When 

the emphasis placed on the two tasks is varied, performance is better on the emphasized task 

and worse on the de-emphasized task (Pastukhov et al., 2009; Sperling & Melchner, 1978). 

Pastukhov et al. (2009) concluded that visual attention is a single, integrated undifferentiated 

resource by measuring performances on four pairs of visual discrimination tasks. One central 

discrimination task was common to every pair while the other peripheral discrimination tasks 

(colour, colour-position, motion direction and motion) were varied. Discrimination priorities 

were manipulated in all pairs of the experiments, and observers were instructed to emphasize 

accuracy on a central task, a peripheral task, or both tasks. A trade-off between central and 

peripheral performance was found on all pairs of visual discrimination tasks. When the 
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central task had its highest performance, the other peripheral task was performed at or near 

chance rate. This implied that the central task required full attentional resource. However, 

while peripheral tasks were performed at or near 100%, the performance of the central task 

was varied with different pairs. In two pairs, the central task was performed at near 50% but 

in one pair the central task was performed better, with 75% correct. This implies that the 

attentional resource requirements varied for different peripheral tasks. 

 Brown, Collier, and Night (2013) also demonstrated that attention can be flexibly 

allocated between two concurrent tasks. Observers were instructed to execute two single 

tasks separately and to share attentional resource between the two tasks with three specified 

proportions: 75% for Task 1 / 25% for Task 2, 50% for Task 1 / 50% for Task 2, and 25% for 

Task 1 /75% for Task 2. The performance of Task 1 showed a significant linear increase as 

resource allocation enlarged on Task 1, and a reversal of this linear effect was found upon 

performance of Task 2. 

The flexible resource allocation above was also influenced by the demands of the 

task. A certain performance level is reached by allocating the required amount of resource to 

the task. Performance declines when the amount of allocated resource does not meet the 

required amount for that task. The effect of task demanding on attentional resource allocation 

is demonstrated in Tombu and Seiffert (2008) attentive tracking paper. Tombu and Seiffert 

(2008) asked observers to track multiple objects moving about the monitor and to 

discriminate whether a concurrently presented sound was of high, medium, or low frequency. 

The demand of the task was manipulated by increasing the speed of motion of the objects and 

the proximity between objects, with higher speeds and smaller proximities yielding a greater 

demand. During the tracking period, the performance of tone discrimination worsened 

considerably during the instant in which objects moved faster and were closer to other 



	   14	  

objects. This result suggests that attentional resource is flexibly allocated to the tasks or 

objects that are more challenging.   

1.2.6 Summary of Resource Theory 

In summation, resource theory considers the capacity limitations of executing 

multiple attentional tasks to be owed to a finite mental resource that can be flexibly and 

gradually be allocated to each task, depending on its demand. 

In the past 25 years, around 2400 articles dealing with visual attention have been 

published. Most of these articles were focused on static attention, which can be described as 

the attentive process that occurs after people attentionally select a location or stationary 

object. These articles found that subjects’ attention was maintained on the focal object or 

location throughout the processing (Carrasco, 2011). During the trial, the attention does not 

shift to other objects or locations (Hede, 1981; Posner, Snyder, & Davidson, 1980). Abundant 

empirical evidence has been provided which demonstrates that the deployment of attention 

over spatial locations or stationary objects is quite flexible and allows for attending to 

separate locations or stationary objects. At that juncture, the perception of stimuli at that 

location or stationary object can be improved (Awh & Pashler, 2000; Duncan, 1984; Egly & 

Homa, 1984; Malinowski, Fuchs, & Muller, 2007; McMains & Somers, 2004). However, 

these improvements on perception only exist at a specific location or stationary object. How 

is the attentional process of the stimulus quantified if the stimulus is moving during the 

process?  

The multiple object tracking (MOT) paradigm introduced by Pylyshyn and Storm 

(1988) opened a new avenue for studying attention with regards to moving objects. In this 

task, people deployed attention to targets that continuously changed their locations 

throughout the trial and subjects were required to track those changes. As we know, attention 

allows us to process information regarding the properties or locations of objects, and to make 
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an appropriate response based on this information processing. For example, in order to avoid 

getting hurt, we stay far away from the firecrackers. Yet, if objects are moving, the ability to 

track them becomes vitally important for humans. A reduction in the ability to track objects 

significantly impairs daily functioning. Following the firecracker example, if the firecrackers 

were to fly around us rather than exploding in a specific area, we would have to track them 

with attention, and dodge them by moving our bodies. Studying the task of tracking multiple 

objects can make us understand more about how humans allocate our attention when the 

target stimuli are not stationary. In the following section, we will review literature related to 

the task of multiple object tracking, which has been a popular approach to research about 

visual attention within a dynamic visual environment. 

 Before entering the following section, here we specifically define the term “central 

attentional resource” and “tracking resource” to clarify what we mean by these two resources. 

In the aforementioned sections, the resource that is shared between tasks in all dual-task 

experiments is the central attentional resource. Each task receives part of central attentional 

resource to make its own specific resource. For example, different modalities of inputs 

(visual and auditory) may have their own resource (Wickens, 1980). In the study conducted 

by Tombu and Seiffert (2008), central attentional resource consists of a tracking resource and 

an auditory resource. When observers are asked to only execute one MOT task (instead of 

dual tasks) the central attentional resource should only consist of one tracking resource. In 

this thesis, we investigate the workings of the tracking resource to extendedly interpret the 

central attentional resource. 

1.3 Multiple Object Tracking 

 Maintaining attention on tracked objects is critical to our daily activities. To avoid 

getting hurt while walking on a busy street, we have to pay attention to multiple objects, such 

as a vehicle or dog approaching us, a ball rolling across our path, or a jogger running near us. 
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Additionally, previous literature demonstrated the ability of object tracking is important to 

understand the development of object knowledge in infants(Carey & Xu, 2001; Moore, 

Borton, & Darby, 1978), and for the improvement of biological motion perception (Legault 

& Faubert, 2012). Over the past two decades, more than one hundred papers were published 

regarding how our attention tracks multiple objects concurrently. Most of the papers related 

to multiple object tracking (MOT) have been focused on investigating the limited capacity 

aspect, which specifies that when the demands of the task are overloaded, observers easily 

lose the targets to be tracked. 

1.3.1 Multiple Object Tracking (MOT) Paradigm 

 In 1988, Pylyshyn and Storm developed the MOT paradigm in order to investigate 

how human beings simultaneously track multiple objects. This paradigm uses multiple 

objects wandering around on the computer monitor, and is by far the most common technique 

for studying multiple object tracking. In a typical experimental paradigm, a number of 

identical objects (squares, circles, or crosses) are presented on the computer monitor and a 

subset of these elements is cued (flash or change colour) for a few seconds as the targets to be 

tracked. The cues then disappear so that the targets are identical to non-targets. All of the 

objects independently and randomly wander about the screen for several seconds. The objects 

in some studies avoid colliding with other objects, but in other analysis the objects do collide, 

occlude, or bounce off each other. At the end of the trial, all of the objects stop moving and 

observers must indicate which objects are the targets. Participants respond to some cases by 

clicking all of the targets using a mouse. In other cases, one of the objects is probed and 

observers judge whether that object is a target or not by pressing a key.   

 With typical speeds, variation in spacing, eccentricities, and other popular settings for 

display parameters, the maximum number of targets that can be successfully tracked is 

around four (Culham, Cavanagh, & Kanwisher, 2001; Pylyshyn & Storm, 1988; Scholl, 
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Pylyshyn, & Feldman, 2001; Yantis, 1992). Different theories explain this limitation in 

different ways.  

1.3.1.1 Spatial interference theory   

Franconeri and his collaborators suggested that spatial interference is the only factor 

that limits the number of targets that can be tracked, writing that “barring object-spacing 

constraints, people could reliably track an unlimited number of objects as fast as they could 

track a single object” (Franconeri, Jonathan, & Scimeca, 2010, p. 924). A decrease in 

tracking performance with additional targets was theorised to be owed to the cortical 

representations of two nearby targets interfering with one another (Franconeri, 2013). 

Specifically, when two targets are close to each other, a suppressive surround of one target 

may overlap with the spotlight of attention focused on the other target and vice versa, 

yielding worse tracking performance for both targets (Franconeri, 2013; Franconeri, Lin, 

Pylyshyn, Fisher, & Enns, 2008). Spatial interference undoubtedly can contribute to the 

capacity limit when traditional MOT displays are used, because in those displays objects pass 

very close to each other, which can cause crowding (Intriligator & Cavanagh, 2001; Pelli & 

Tillman, 2008). This theory is similar to the cross-talk theory in dual-task experiments. 

According to the spatial interference theory, lower tracking performance at higher 

speeds (or a larger number of tracked targets) results from the increased number of times that 

the objects come close to each other. Franconeri et al. (2010) suggest that the critical factor 

limiting tracking performance is the accumulated distance that objects travel. Longer total 

travel distance led to more occasions of close proximity among objects and subsequently 

decreased the tracking performance. 

 Rather than capacity limits being imposed by spatial interference, most published 

theories claim that capacity limits are instead caused by a finite mental resource that the 
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targets consume. The following sections will individually introduce three main theories 

related to mental resource: slots theory, serial switching theory, and flexible resource theory.  

1.3.1.2 FINST (slots theory)  

FINST (FINgers of Instantiation, abbreviated as “FINST”) is a model to explain 

visual capacity limits in terms of a fixed number of slots. Pylyshyn and Storm (1988) propose 

that multiple object tracking is accomplished by FINSTs. The original claim of the FINST 

theory is that several pre-attentive indexes independently “stick” to or point to multiple 

tracked objects while maintaining contact with those objects throughout the motion period. 

The FINST does not encode any properties of the feature and simply makes it possible to 

locate the feature. Therefore, tracking multiple moving objects with FINSTs does not result 

in recognizing their features or encoding the relationship between features and locations 

(Pylyshyn, 1989). For example, while participants successfully tracked the locations of 

targets, they failed to match non-spatial properties (such as colour and shape) to the correct 

locations (Pylyshyn, 2004). As for the capacity limits, the proposal of the FINST theory 

maintained that limited tracking performance arises from a finite number of those “indexes”. 

Many researchers now broadly explain the FINST theory as a fixed-resource theory of 

visual capacity limits (Bae & Flombaum, 2012; Trick, Guindon, & Vallis, 2006). Our 

attention has a small number of discrete buffers, FINST, or slot-like representations, and a 

significant capacity limit occurs when we try to process more objects than available 

representations (Drew & Vogel, 2008). As an analogy for the FINST or slots theory, consider 

each slot as a pre-packaged boxed resource (juice) of a fixed size. The maximum number of 

targets we can track are determined by how many pre-packaged juice boxes (slots) we have. 

Tracking performance will decline when the number of tracked targets exceeds the maximum 

number of juice boxes.   



	   19	  

1.3.1.3 Serial switching theory  

An extreme variant of the slot theory posits that only one slot or spotlight is available, 

and it must be rapidly switched among targets for tracking to succeed (Oksama & Hyona, 

2008; Tripathy & Howard, 2012; Tripathy, Öğmen, & Narasimhan, 2011). Oksama and 

Hyona (2008) termed this model the MOMIT (Model of Multiple Identity Tracking), whereas 

S. P.  Tripathy et al. (2011) termed it the MTT (Multiple Trajectory Tracking) model. Here, 

we call the term the “serial switching theory”, which resembles the central bottleneck theory 

in dual-task experiments. 

According to serial switching theory, each target is attended to in turn and target 

positions are updated one by one. When it is time to re-attend to a given target, whichever 

object is closest to the target’s previously registered position is assumed to be the target. 

When there are more tracked targets, the position of each is updated less frequently (Howe, 

Cohen, Pinto, & Horowitz, 2010; Tripathy et al., 2011), resulting in more occasions where 

we lose the tracked targets because the targets travel farther in each position update. This is 

the reason for the capacity limits.   

1.3.1.4 Flexible resource theory (FLEX theory) 

Alvarez and Franconeri (2007) proposed a flexible-resource theory, which embodies 

the idea that attentional capacity is a continuous resource and the tracking limitation depends 

on the resource demands, rather than a fixed number of slots or FINSTs. One target travelling 

at high speeds or near a distractor may be more difficult to track, and under such 

circumstances, allocating additional tracking resource might compensate for the difficulty. 

 In this theory, the maximum number of targets to be tracked is decided by flexible 

indexes (FLEXs) instead of FINSTs. Unlike FINSTs, it assumed that there is no numerical 

limit to the number of FLEXs that can be deployed. The availability of a finite resource 

determines how many FLEXs can be created for tracking targets, and the spatial or temporal 
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resolution of each FLEX. The spatial or temporal resolution for each target is lower when 

more objects are tracked. Thus, the flexible-resource theory explicitly predicts that the faster 

the objects move or the smaller the distance between objects, the fewer will be tracked. As an 

analogy for the flexible resource theory, consider FLEXs as cups and a finite resource as a 

bottle of juice. The more cups we serve, the less juice each cup has. Tracking performance 

(resolution) for each target (cup) is determined by how much juice it has. This theory 

resembles the resource theory in dual-task experiments. 

1.3.2 Debate among the Four Theories 

 The explanation of the capacity limitation of tracking has been debated with these 

four theories we mentioned above. Serial switching theory proposed that humans only have a 

single attentional spotlight and during the tracking period, this spotlight quickly switches 

among tracked targets (Oksama & Hyona, 2008; Tripathy & Howard, 2012; Tripathy et al., 

2011). However, Pylyshyn and Storm (1988) argued that capacity limitations exist because 

we possess only a limited number of discrete mental pointers (FINSTs), and proposed that 

tracking multiple moving objects should be in parallel. Pylyshyn and Storm (1988) assumed 

that attention takes longer to switch among locations or objects that are further apart, and 

then suggested a spotlight would require switching at an implausibly high rate to explain their 

data. In contrast to these findings, many studies have discovered that attention does not take 

longer to shift across larger distances (Kwak, Dagenbach, & Egeth, 1991; Shih & Sperling, 

2002). Tripathy et al. (2011) further pointed out that the traces of the moving objects are 

likely transiently recorded in the iconic memory buffer, facilitating target recovery in the 

traditional MOT task. Therefore, the help of an iconic memory buffer allows serial switching 

to more plausibly explain tracking data. 

 Alvarez and Franconeri (2007) proposed a flexible resource theory of tracking and 

found evidence that tracking accuracy declined gradually with increasing numbers of targets, 
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rather than dropping catastrophically as predicted by slots theories such as FINST. Based on 

the FINST theory (Pylyshyn & Storm, 1988), performance should be equally exceptional for 

all target numbers fewer than the number of FINSTs. When no more indexes or slots are 

available as the target number increases, performance should drop catastrophically, rather 

than decrease gradually. In their experiments, Alvarez and Franconeri (2007) found that at 

high object speeds, observers could track only one target, but as the object speed was 

decreased, their observers were able to track more targets. At very low speeds, their observers 

could track up to eight targets, far greater than the four to five target maximum predicted by 

the FINST model.  

In recent years, Franconeri and colleagues have argued that tracking multiple objects 

is not mediated by mental resource, and that tracking capacity is affected only by spatial 

interference between targets (Franconeri et al., 2010; Franconeri et al., 2008). The first 

purpose of this thesis is to investigate this hypothesis. In experiments that avoid the confound 

of spatial interference, (located in Chapter 2) we examine whether tracking multiple objects 

is mediated by a tracking resource, leading to a substantially worse performance with 

additional targets.  

 If we find that tracking multiple objects is mediated by a tracking resource in Chapter 

2, then how does our brain act like a resource? The brain is divided into separate right and 

left hemispheres that are connected by the corpus callosum. As we know, visual stimuli are 

processed first by the contralateral visual cortex, with the right visual cortex processing the 

inputs from the left visual hemifield. The left visual cortex processes the input from the right 

visual hemifield. In multiple object tracking, performance might be mediated by two 

independent hemisphere-specific resources rather than a general central resource (Alvarez & 

Cavanagh, 2005). The resource in the left hemisphere tracks the stimuli in the right visual 

hemifield and the resource in the right hemisphere tracks the stimuli in the left visual 



	   22	  

hemifield. In the following section, the hemisphere-specific resource theory of object 

tracking will be reviewed.  

1.4 Hemisphere-specific Resource Theory  

 Previous studies have suggested there are independent attentional resource pools in 

the left and right cerebral hemispheres of split-brain patients, inducing a faster processing of 

a visual search task in bilateral displays than in unilateral displays (Luck, Hillyard, Mangun, 

& Gazzaniga, 1989). Each hemisphere can process information independently with its own 

resource (Friedman & Polson, 1981). For neurologically intact observers, converging 

evidence for two independent hemispheric resources come from several research areas: 

multiple object tracking (Alvarez & Cavanagh, 2005), target identification (Awh & Pashler, 

2000; Nishimura, Yoshizaki, Kato, & Hatta, 2009), visual working memory (Delvenne, 2005; 

Delvenne & Holt, 2012; Umemoto, Drew, Ester, & Awh, 2010), and neuroimaging studies 

(Pollmann, Zaidel, & von Cramon, 2003). Performance of the aforementioned tasks was 

better when stimuli were distributed across the left and right visual hemifields than for when 

they were all displayed within the same hemifield. 

 Within the context of tracking, Alvarez and Cavanagh (2005) provided compelling 

evidence of independent resources for attentive tracking in the bilateral visual hemifields. 

They presented two targets in one visual hemifield and tested the effect of adding another two 

targets in the same hemifield or in the opposite hemifield. Performance was much poorer 

when the additional targets were presented in the same visual hemifield, but not affected 

much when the target was presented in the opposite hemifield. This suggests that the resource 

consumed by additional targets is hemisphere-specific. 

 A concern with the Alvarez and Cavanagh (2005) finding was that it was not clear 

how much of the effect was resource related and how much was owed to crowding. Clearly, 

crowding effects can play a role in object tracking (Chakravarthi & Cavanagh, 2009). Objects 
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that pass close together can be hard to individuate, which can result in a decrease in tracking 

accuracy (Intriligator & Cavanagh, 2001). In the Alvarez and Cavanagh (2005) study, objects 

could pass very close to each other. Since crowding effects are known to be greater when 

objects are presented unilaterally rather than bilaterally (Liu, Jiang, Sun, & He, 2009), the 

observed decrease in tracking performance when the objects were presented unilaterally may 

have been owed to crowding. The purpose of Chapter 3 is to investigate whether the 

hemisphere-specific resource is also consumed by increasing speeds when crowding and 

spatial interaction effects are minimized. 

 According to the flexible resource theory (Alvarez & Franconeri, 2007),when more 

targets are present, each receives a proportionately smaller share of the tracking resource. The 

faster an object moves, the more resource is required to track it. Assuming that humans have 

a finite mental resource, this theory proposes that the faster objects move, the fewer can be 

tracked. Alvarez and Cavanagh (2005) already found that resource consumed by additional 

targets is hemisphere-specific, and here we explored whether increasing target speeds also 

consumes these two independently flexible hemisphere-specific resources.  

 The results described in Chapters 2 and 3 support the theory that tracking objects is 

mediated by a tracking resource by excluding the concern of spatial interference. Flexible 

allocation of resource is also a possibility for resource theories. In order to demonstrate that 

tracking resource is the main contributor affecting tracking performance, it is better to 

explore whether tracking resource can be flexibly allocated between targets or tasks. In the 

following section, the renewed literature will focus on the flexible resource allocation of 

multiple object tracking.  

1.5 Flexible Resource Allocation related to Multiple Object Tracking 

 Dual-task experiments have been a primary theoretical approach in the researching of 

human attentional performance limits, and may provide insight into how attentional resource 



	   24	  

is flexibly allocated between two tasks. Researchers have provided evidence that a limited 

attentional resource is flexibly shared between the MOT task and various secondary 

attentional tasks, specifically a visual search task, sequential finger tapping task, and auditory 

discrimination task (Allen, McGeorge, Pearson, & Milne, 2006; Alvarez et al., 2005; Tombu 

& Seiffert, 2008; Trick et al., 2006). Allen et al. (2006) investigated this by pairing a MOT 

task with either a visual/verbal digit categorization task, an auditory/verbal digit 

categorization task, an articulatory suppression task, or a spatial tapping task. Evidence for 

sharing a central attentional resource was demonstrated by the significantly poorer 

performance on MOT in the dual-task condition than in the single-task condition. 

Specifically, performance for the MOT task was significantly poorer when carried out with 

the visual/verbal digit categorization task than when carried out with the spatial tapping task. 

Trick et al. (2006) also demonstrated that observers perform better with a sequential tapping 

task, in which they repeatedly tapped the little finger, middle finger, and thumb of their non-

dominant hand in order, than an articulation task, in which they repeatedly pronounced three 

different syllables in order, when pairing with a MOT task separately. From such interference 

between tasks, one possible explanation is that observers could flexibly allocate different 

amount of resource to different tasks, with more resource to the one task relative to the other 

task when pairing with a MOT task simultaneously. Some researchers might argue this 

differential interference is simply because some tasks interfere more with the MOT task than 

other tasks.   

 A central piece of evidence that demonstrates the involvement of attentional resource 

in tracking for flexible resource allocation was provided by Tombu and Seiffert (2008). 

Tombu and Seiffert (2008) devised a way to investigate the attentional demands of tracking 

in detail. The secondary task was auditory discrimination. The attentional demands of 

tracking were manipulated by increasing the tracking difficulty, with higher target speeds and 
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proximities expected to require more attentional resource. During the tracking period, a 

transient increase in dot speed of about 60% or a transient decrease in inter-dot distance of 

about 45% was randomly applied to manipulate the attentional demands. The worst 

performance was expected when targets moved at high speeds at the same time that the 

sounds to be discriminated were presented. Results showed that increasing the object speed 

reduced accuracy. This reduction in accuracy occurred by a greater amount when the speed 

increase coincided with the auditory stimuli. The smaller effect of speed in the absence of the 

auditory task may reflect an ability to compensate for the speed increase when attentional 

resources are available. These experiments not only indicate that a central attentional 

resource was shared between the auditory task and the MOT task, but also suggest that 

resource allocation might depend on object speed, with faster targets consuming more 

attentional resource. 

 In the Tombu and Seiffert (2008) experiments, attentional allocation to the moving 

objects was only tested relative to an auditory non-tracking task. They demonstrated tracking 

task and non-tracking task are shared a common central attentional resource, which might 

consist of one tracking resource and one non-tracking resource. It remains unknown whether 

within the visual tracking task, where the central attentional resource is composed of only one 

tracking resource, the resource could distribute differentially to targets moving at faster 

speeds. The purpose of Chapter 4 was to investigate this.  

 From Chapter 2 through Chapter 4, we investigated whether a mental resource 

mediated the processing of tracking multiple moving objects by measuring the change in 

speed limits. Is any other factor that influenced tracking performance also mediated by the 

tracking resource? In the following section, we will briefly review another factor that is 

potentially mediated by tracking resource: temporal resolution of attention. 
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1.6 Temporal Resolution of Attention and Resource Theory 

 The temporal resolution of attention is evident from the experience of viewing a light 

alternating between on and off (He, Cavanagh, & Intriligator, 1997). Scientists measure the 

maximum temporal frequency (alternation rate) that observers can individuate successive 

states of light and quantify the temporal resolution of attention with this maximum temporal 

frequency. When the temporal frequency is over 7-10 Hz, the light is experienced as a 

constant flicker without discrete appearances and disappearances, which is termed Gestalt 

flicker fusion (Van de Grind, Grusser, & Lunkenheimer, 1973). 

 The temporal resolution of attention has been considered a major processing 

limitation during the flow of information from sensation to action (Marois & Lvanoff, 2005). 

A severely impaired processing is found when two targets are presented close together in 

time. Duncan et al. (1994) presented two to-be-attended stimuli in an ordered succession and 

measured how long the first stimulus continued to interfere with the second. They found that 

interference gradually declined when the interval between two stimuli was greater than 

300ms. Duncan et al. (1994) concluded that the temporal resolution of attention for one 

stimulus might be around 300ms. In later studies using similar methods of rapid serial visual 

presentation (RSVP), researchers proposed that observers devote limited attentional resources 

to the first target at the expense of the second (Dux, Asplund, & Marois, 2008; Shapiro, 

Raymond, & Arnell, 1997; Vogel, Luck, & Shapiro, 1998). These studies found that an 

increase in the accuracy needed to identify the first target elongated the temporal lags 

between the first and second target. Under these circumstances the accuracy of the second 

target deteriorated considerably. These RSVP studies, however, support limited attentional 

resource sharing between targets with a biased approach. They cannot manipulate the amount 

of resource devoted to the second target to investigate whether it affects performance of the 

first target. 



	   27	  

 In the aforementioned studies, the performances limited by temporal resolution 

occurred when observers could not accurately identify static letters or pictures because the 

stimulus presentations were successively replaced at a particular location too quickly.  In this 

thesis, the stimulus presentations are continuously updated their locations. Is performance of 

tracking multiple objects also constrained by the temporal resolution? In a situation we track 

a stimulus blob moving in a circular trajectory with one distractor located opposite the target 

blob in the trajectory. If both blobs move at the speed of 1 revolution per second (rps), after 

the target passes a location, the distractor passes by it 0.5 s later. If more distractors are 

added, evenly spaced about the trajectory, then after the target passes a location, a distracter 

will pass sooner than 0.5 s. If that interval is too short, observers may be unable to distinguish 

the target blob from the distractor blob, and therefore be unable to track. In this situation, the 

temporal resolution is defined as the minimum time needed between target and distractor 

blobs. Chapter 5 explains this in more detail. 

 In the context of tracking, only Verstraten, Cavanagh, and Labianca (2000) probed for 

a temporal resolution of attention limitation on tracking performance. In one display, several 

discs were arrayed in a circular trajectory about fixation. All the discs stepped (apparent 

motion) about fixation, and one of them was designated for tracking. In another display, a 

continuous radial circular sine wave grating was presented, centred on fixation. Participants 

were told to track an individual bar of the rotating grating. Verstraten et al. (2000) measured 

the temporal frequency limit (temporal resolution) by varying the object speed and the 

number of distractors within a circular trajectory and found a temporal frequency limit 

constrained tracking of a moving target. These results suggest that temporal resolution of 

attention can limit attentive tracking.  

Verstraten et al. (2000) did not provide any evidence relevant to the relationship 

between flexible resource theory and the temporal resolution constraint of attentive tracking. 
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The purpose of Chapter 5 is to investigate this relationship. Previous literature demonstrated 

that temporal resolution for identifying two targets (e.g., letters) in a rapid stream may be 

influenced by attentional resource allocation (Dux et al., 2008; Shapiro et al., 1997; Vogel et 

al., 1998), with poor performance allocating less resource on that target. These studies can 

only manipulate the amount of resource allocation on the first target, instead of the second 

target. According to the flexible resource theory, more targets to be tracked leads to less 

resource allocated to each target. This might result in poorer temporal resolution. 

1.7 Questions in this Thesis 

 In order to address the issue of whether tracking multiple objects is mediated by 

tracking resource when crowding and spatial interference effects are minimized, Chapter 2 

measured the change of the maximum object speed (speed limit) for tracking for different 

numbers of targets. According to the flexible resource theory, it is predicted that the speed 

limit for tracking one target should be considerably higher than that for tracking more targets. 

To determine whether spatial interference is the reason for this rather than resource, we vary 

the separation between two targets and then measure the difference of the speed limits.  

 The attentional tracking resource might be hemisphere-specific rather than a central 

global resource (Alvarez & Cavanagh, 2005). In Chapter 3, the hemisphere-specific resource 

theory is investigated by measuring the difference of speed limits between when targets were 

presented in bilateral hemifields and when targets were presented only in unilateral hemifield. 

It is hypothesized that the speed limit for tracking targets in one visual hemifield should not 

be significantly affected when one is required to track targets in the other hemifield. In 

contrast (compared to two targets in opposite hemifields), adding two more targets (one in 

each hemifield,) should have a large cost on speed limits.  
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 In Chapter 4, we investigated whether the tracking resource could be distributed 

differentially between two targets in the same hemifield. If the tracking resource can be 

flexibly allocated to targets with different speeds, the fast target should receive more resource 

than the slow target. This predicts a higher speed limit for the fast target when two targets 

move with different speeds than when two targets move at equal speeds. Additionally, 

according to hemisphere-specific resource theory, differential resource allocation should not 

occur for two targets located in opposite hemifields. 

 Temporal resolution might be another constraint of attentive tracking (discussed more 

in Chapter 5). Observers lose the tracked target if distractors occupy a location close to the 

time a target occupies it. This is the situation when the target and distracter motion yield a 

high temporal frequency. In Chapter 5, we will investigate whether tracking performance is 

constrained by temporal frequency, and if the temporal frequency limit changes as the 

number of tracked targets are increased, as might be predicted by the flexible resource theory. 
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Chapter 2 : The Tracking Resource Theory and The Reduction in Speed 

Limit by Additional Targets   

2.1 Introduction of Chapter 2   

Driving a car in crowded traffic and playing team sports may rely on the ability to 

simultaneously attend to multiple moving objects. The Multiple Object Tracking (MOT) task 

(Pylyshyn & Storm, 1988) has been widely used to study this process (Cavanagh & Alvarez, 

2005; Scholl, 2009). With the MOT task, people typically succeed at tracking up to four or 

five targets (Culham et al., 2001; Pylyshyn & Storm, 1988; Scholl et al., 2001; Yantis, 1992). 

 As outlined in Chapter 1, debate over the explanation of this capacity limitation to 

tracking has led to four different accounts. Excluding the spatial interference theory 

(Franconeri et al., 2010; Franconeri et al., 2008), the other theories share a common concept 

that tracking performance is mediated by an attentional resource. These three theories differ 

in explaining how this resource is allocated. For the FINST (slot) theory, a tracking resource 

consists of several discrete slots, and each target receives one slot. For the flexible resource 

theory, a tracking resource is continuously and gradually allocated to each target, like pouring 

water into many cups, and more resource is allocated to the target that is more difficult to 

track. For the serial switching theory, tracking resource is allocated to one target at any given 

time, serially switching between targets. The subject of this chapter is not to address this 

difference, but rather to investigate whether limitation to tracking capacity is caused only by 

spatial interference, as suggested by Franconeri and his colleagues (Franconeri et al., 2010; 

Franconeri et al., 2008). 

  For the purpose of this chapter, we assumed that if tracking performance is not limited 

by spatial interference, it should be mediated by a tracking resource. There is some debate in 

the literature over the effect of speed. Evidence from Tombu and Seiffert (2008) indicates 

that transiently increasing object speed increases the attentional demand for tracking 
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accurately. In their experiments increasing the object speed reduced accuracy. This reduction 

of accuracy occurred by a greater amount when the speed increase coincided with an 

attentionally demanding auditory task. These results indicated that the demand of the auditory 

task and the demand of increasing object speed both share the same attentional resource. 

However, Franconeri and colleagues suggested that the decline in tracking performance with 

increasing speed was caused by greater spatial interference between targets at faster speeds, 

not by the speed itself (Franconeri et al., 2010; Franconeri et al., 2008). In Chapter 2, we will 

explore whether increasing speed consumes more attentional resource when we exclude the 

confound of spatial interference. In other words, the purpose of Chapter 2 is to investigate 

whether spatial interference is the only factor determining the decline in tracking 

performance. 

2.1.1 Object Speed and Tracking Performance 

 Using the MOT paradigm, Alvarez and Franconeri (2007) found that at high object 

speeds, participants can accurately track only a few objects, while at low object speeds, they 

can track several objects accurately. In a study by Bettencourt and Somers (2009), at an 

object speed of 0.5°/s, participants could track 6 objects, while at 13°/s they could track only 

1 object (see also Liu et al., 2005). Effects of speed have usually been explained in terms of a 

flexible-resource theory of tracking. The trade-off between speed and the number of objects 

that can be tracked was interpreted as a common attentional resource shared between these 

two factors. When more targets are present, each receives a proportionately smaller share of 

the resource (Bettencourt & Somers, 2009; Liu et al., 2005). 

2.1.2 The Proximity Confound 

 In the aforementioned MOT studies, object speed is correlated with how frequently 

objects come near one another. Franconeri et al. (2008) developed much of this research 
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field, suggesting that the only reason that higher speeds are associated with lower 

performance is the greater number of times the objects come close to each other.  

 A number of results support the notion that objects very close together are more 

difficult to track (Drew & Vogel, 2008; Franconeri, Alvarez, & Enns, 2007; Shim, Alvarez, 

& Jiang, 2008). Unfortunately, these studies have not quantified the precise object spacing 

below in which tracking performance begins to decline. Some have parametrically varied the 

closest spacing by which objects approach each other (Carlson, Alvarez, & Cavanagh, 2007; 

Shim et al., 2008), but none have measured how the effect of spacing varies with eccentricity 

and angle. However, separate psychophysical literature has quantified a phenomenon called 

“crowding” (Pelli & Tillman, 2008; Strasburger, Harvey, & Rentschler, 1991) using tasks 

that involve identification of a single target. A rule that is usually accurate for two objects 

arrayed in the radial direction is that when they are closer than half their eccentricity (Bouma, 

1970; Levi, 2008), perception of many aspects of each target is impaired. In these 

circumstances it seems that one cannot attentionally select the target without also selecting its 

neighbours (Bahcall & Kowler, 1999; Intriligator & Cavanagh, 2001). Intriligator and 

Cavanagh (2001) provided the first evidence that the critical spacing of attentional selection 

increased with increases in eccentricity.  

 For object tracking, performance may be limited by the same attentional processes as 

target identification (Pelli & Tillman, 2008) and selection (Intriligator & Cavanagh, 2001). If 

the target could not be selected from the nearby distractors owing to crowding, observers 

must have been unable to track targets successfully.  

 Due to the crowding phenomenon, the issue of whether there should be any effect 

caused by proximity is no longer in question. An issue is whether a proximity effect is the 

sole reason for the decline of tracking performance at higher speeds, as S. L. Franconeri et al. 

(2008; 2010) suggested. The first indirect support for this claim comes from a 2008 study 
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(Franconeri et al., 2008). These experiments involved two different-sized MOT displays, with 

the larger display as simply a four-fold magnification of the smaller display. The speeds of 

the objects in the larger display were thus four times higher than that of the small display. 

Despite the speed difference, tracking performance was similar for the small and large 

displays at all target set sizes used. This prompted Franconeri et al. (2008) to conclude that 

speed itself may not directly affect performance. However, speed was certainly not the only 

difference between the two conditions. Object speed and object crowding may have been 

different. Therefore, the conclusion that lower tracking performance occurs with increasing 

display set sizes (only because of greater crowding) is not convincing. 

 In a 2010 study, Franconeri and colleagues focused on the relationship between the 

proximity of objects in MOT and the total distance the objects travel during a trial. They 

pointed out that with greater cumulative travel distances in a typical MOT display, more 

occasions of close proximity among objects would occur. Their results showed that tracking 

accuracy dropped significantly with increasing cumulative travel distances. They suggested 

that the critical factor limiting tracking performance is the number of times that objects come 

close to each other (greater proximity) rather than the objects speed. However in their 

experiment 2, with conditions of equal cumulative travel distances, the one with the highest 

speed was significantly worse than other speed conditions on tracking performance. This is 

evidence for an effect of speed on tracking performance, but Franconeri suggested this speed 

effect resulted from the data limitation not resource limitation. The data limitation is caused 

by a poor quality of data inputs, such as detection of a weak signal of stimulus in a noisy 

environment, which is independent of the attentional resource deployment (Franconeri et al., 

2010).   

 It remains uncertain whether higher object speeds will reduce tracking capacity when 

the confound of proximity is removed. In the following paragraphs, we investigate whether a 
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limited resource model can account for speed effects on tracking performance when the 

proximity effect is minimized. By this account, even if proximity is equated across speeds, 

more resource must be deployed to targets that are moving more quickly. Additionally, both 

an increase in number of targets and an increase in the speed at which these objects travel, 

place demand on the same attentional resource, and so object speed and the number of 

objects that can be tracked must trade off. 

 In the traditional MOT paradigm, objects are continually coming close to each other 

or moving away from each other, and proximity is not tightly controlled. Here, by using a 

paradigm more like that of Verstraten et al. (2000), we were able to control proximity and 

measure speed thresholds for each condition. In this chapter, Experiment 1 investigated 

whether higher speed limits are found for tracking one target than tracking two targets, and 

compared the tracking speed limit between large and small (potentially crowded) object 

spacing. In Experiments 2 and 3 the cumulative distance that objects travel was equated, and 

we tested whether tracking accuracy drops at faster speeds and speed limits decrease as more 

targets are tracked. 

2.2 Experiment 1: Target Number Effect on Speed Limits 

 As noted above, Franconeri and colleagues theorised that there would be no target 

number effect on tracking speed limits if objects did not pass near each other. The goal of our 

first experiment was to test for a target number effect on tracking speed limit in a situation 

where object-to-object spacing could be varied across conditions. Two conditions of object 

spacing were used, one in which the objects were always very far apart, and one where they 

were closer together and might crowd each other.  

 S. L. Franconeri et al. (2008) broadly applied the term “crowding” to describe the 

target proximity in their article. For clarity, we will reserve the word “crowding” to situations 

where psychophysical literature has validated that there will be interference among stimuli, 
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either because the interference on a perceptual task was measured, or because previous 

literature strongly suggested such interference should occur, as when the spacing between 

objects in the radial direction is less than half their eccentricity (Pelli, 2008). In the study of 

S. L. Franconeri et al. (2008) the MOT targets wandered randomly on the screen, with 

spacing not controlled relative to eccentricity. Here we used constant-eccentricity circular 

trajectories to better control spacing.  

 In Experiment 1, we used two concentric circular trajectories (rings) centred on 

fixation. Two objects were placed in each ring. The two objects of each ring were always on 

opposite sides of the circle (180° of the circle apart). The inner ring had a radius measured at 

2 degrees of the visual angle (deg). In the small-separation condition, the outer ring had a 

radius of 4 deg. In the large-separation condition, the outer ring had a radius of 9 deg.  

 In the small-separation condition, the closest that two blobs ever came to each other 

was 2 deg. This occurred when the two blobs were at the same point in their circular 

trajectory. The usual finding with crowding is that an object can crowd a target if it is 

separated from the target by less than half the target's eccentricity (Bouma, 1970; Pelli & 

Tillman, 2008). As the inner blob is separated from the outer blob by exactly half the outer 

blob's eccentricity, the inner blob is on the boundary of crowding the outer blob and therefore 

some crowding may occur. By contrast in the large-separation condition, the closest approach 

of the inner blob and outer blob is 7 deg, quite far from the expected 4.5 deg crowding zone. 

Overall, then, our expectation was that crowding might occur in the small-separation 

condition but not the large-separation condition.   

 In conventional MOT displays, object spacing might vary widely through the trial and 

object speed also sometimes varies. We designed a display in which spacing was relatively 

constant through the trial and speed did not vary at all. Reversals in direction were included 

to prevent participants from predicting the targets’ final positions without tracking. 
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 According to the theory of S. L. Franconeri et al. (2008), there should be no target 

number effect on the tracking speed limits. On the other hand, if tracking an object at higher 

speed requires more attentional resource, then the speed limit should be lower for tracking 

two than for tracking one, in both the large-spacing condition and the small-spacing 

condition. 

2.2.1 Method 

2.2.1.1 Participants  

 Six participants (four male, two female, 29-38 years of age) who reported normal or 

corrected-to- normal vision agreed to participate, following approval of the protocol by the 

University of Sydney’s ethics committee.  

2.2.1.2 Stimuli  

 Stimuli were displayed on a 21 in. SONY Multiscan G520 CRT monitor (1,024 x 768 

resolution) with a refresh rate of 120 Hz controlled by a MacBook running a Python program 

that used PsychoPy software (Peirce, 2007). Viewing distance was 57cm in a dimly lit room, 

with a chin rest and forehead support to avoid subject head movement. 

 Four red Gaussian blobs (visible diameter 1°, luminance: 12 cd/m2) were presented on 

a black background (41°x31°, luminance: 0.02 cd/m2). A white fixation dot (luminance: 167 

cd/m2) with a radius of 0.1 deg was presented at the centre of the display. Two circular 

trajectories were used, and a pair of blobs was placed in each trajectory (Figure 2.1). The 

trajectories were concentric; the inner circular trajectory had a radius of 2 deg in both 

separation conditions. In the large-separation condition the diameter of the outer trajectory 

was 18 deg and in the other condition, it was 8 deg. The blobs were always located in 

precisely opposite positions (180° of the circle apart) in each circular trajectory.  
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Figure 2.1. A schematic of the trial sequence for all experiments in Chapter 2 
After the targets are highlighted in white, all blobs become red and revolve about the fixation point. During this 
interval, the pair of blobs on each trajectory occasionally reverses movement direction, at random times 
independent of the other pair. After 3 to 3.8 s the blobs stop, one ring is indicated by presenting text next to it, 
and the participant clicks on one blob of that ring. 

2.2.1.3 Procedure  

 Observers were told to maintain fixation on the white dot at the display centre. The 

trial started with one or two white target blobs. The remaining blobs were red distractor 

blobs. The blobs of the inner ring revolved in the opposite direction from that of the outer 

ring (set randomly on each trial). Their initial angle about the circular trajectory was set 

randomly on each trial. After a 0.7s target-cuing period, all blobs were again red (Fig 2.1). 

During the tracking period, the blobs occasionally reversed direction to prevent participants 

from predicting the final target positions from their initial positions and speeds. Each ring of 

blobs was independently assigned a series of reversal times, which succeeded each other at 

random intervals between 1.2 and 2 s. For this experiment’s 3 to 3.8 s tracking interval, this 

resulted in 2 or 3 reversals.  

 In one condition, participants tracked two blobs and in the other, they tracked only 

one. In the one-target condition, only one blob was designated as a target: for half of trials, 

the target was in the outer ring and in the other half it was in the inner ring. In the two-target 

condition, one blob of each ring began white to designate them as targets. 
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 At the end of the trial, in the one-target condition participants used the mouse to 

indicate which blob was the target. In the two-target condition, in half of trials participants 

were asked to indicate the target at the inner ring and in the other half of trials were at the 

outer ring. 

 All objects revolved about fixation at the same rate. Five rotation rates (0.7, 1.0, 1.3, 

1.6, and 1.9 revolutions per second, rps) were used on different trials, which were presented 

in pseudorandom order and fully crossed with the one-target versus two-target conditions. 

The eight hundred total experimental trials were divided into six sessions. Each participant 

did no more than two sessions a day and observers had a minimum break between sessions of 

5 minutes.  

2.2.1.4 Data Analysis 

 Plots of speed versus proportion correct were fit by a logistic regression that spanned 

from chance (50% accuracy) to a ceiling level of performance. The ceiling performance is 

determined by the lapse rate, which is the probability of an incorrect response that is 

independent of speed (Prins, 2012), such as hitting the wrong key or difficulty of the 

experimental condition. The larger lapse rate should be found more frequently in the difficult 

condition, than in the simple condition. For example, if spatial interference due to crowding 

were impairing tracking, it should occur more for conditions with higher target numbers and 

inflate the lapse rate. In Experiment 1, the lapse rate was varied to investigate whether spatial 

interference impairing tracking performance occurred at very slow speeds. In the fitting 

procedure of our data analysis, it was allowed to vary the lapse rate from 0 % to 10% to get 

the best estimate for each condition and each participant. This estimated lapse rate for each 

condition is reported in the results section. We refer to the speed at which performance is 

estimated by the regression to fall to 68% correct as the “speed limit”.  
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2.2.1.4.1 The resource-versus-performance function 

If tracking does require an attentional resource, how much resource is needed for 

successful tracking of a single target? The best way to answer this question is by quantifying 

the function that maps the proportion of the resource allocated to a target onto proportion 

correct. As described in Chapter 1, Norman and Bobrow (1975) proposed the resource-

versus-performance function that relates the proportion of attentional resource devoted to a 

processing task to the likelihood of getting it correct. Here, we apply this function to 

investigate the relationship between performance and resource allocated to a single target 

(Figure 2.2).     

 

Figure 2.2. Hypothetical tracking resource-versus-performance functions  
The dashed line shows a linear function relating the proportion of the tracking resource (and the corresponding 
number of targets, top axis) to performance. This is a candidate function based on our results for fast speeds, but 
for slow speeds the function is believed to be more like the solid curve. The relatively flat right portion of the 
solid curve indicates that when attention is divided among a few targets, there is little cost for performance. 
Only when many targets are tracked (leftmost, steep part of the curve) do additional targets impose a significant 
cost for performance. 
 

To ideally measure the resource-versus-performance function, a valid method is to ask 

observers on different trials to allocate different proportions of their attention to each of two 

targets - 90%: 10%, 80%: 20%, 70%: 30%, and so forth. Although this valid method may 

work for simple judgments regarding briefly presented stimuli (Bonnel & Miller, 1994; Lee, 

Koch, & Braun, 1999; Pastukhov et al., 2009), it would be difficult to induce observers to 

allocate a particular proportion of attention to two targets throughout a tracking trial.  
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Participants commonly report that they know when they fail to maintain their 

attention on a particular target for tracking. These reports are validated by the empirical 

success of the method of adjustment in tracking studies (Verstraten et al., 2000; Vul, Frank, 

Tenenbaum, & Alvarez, 2009), which requires that participants recognize when they succeed 

or fail to track the designated targets. Using this knowledge, during a trial, participants may 

shift the resource formerly used for a lost target to one of the other targets. It seems unlikely 

that, even if they are explicitly instructed to allocate (say) 30% of their resources to a target, 

that upon losing the other target the participant would leave 70% of their resources thereafter 

unused. In a further complication, toward the beginning of a trial, participants may recognize 

that the targets’ speeds are too fast for all of them to be tracked, and then shift all of the 

attentional resource toward a subset of the targets. These possibilities of strategic allocation 

and reallocation (depending on the characteristics of targets) may make it difficult to enforce 

a particular allocation proportion. 

To map the resource-versus-performance function for tracking objects, an alternative 

approach should be proposed. By the definition of resource theory, two data points on the 

function are already known, which are shown by two black solid circles in Figure 2.2. When 

tracking only one target, 100% of the resource is devoted to this target and performance is at 

maximum (the upper-right black circle). When no resource is available per target, 

performance should be at or very near chance (the lower-left black circle). The simplest 

possible resource-versus-performance function would then connect these two points with a 

straight line, which we refer to as the linear resource-versus-performance function (the 

dashed line in Figure 2.2). This linear function then predicts that when two targets are tracked 

(50% resource is allocated to each target), performance will be approximately halfway 

between the one-target level and chance performance.  
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In the literature on simple psychophysical judgments of briefly-presented stimuli, data 

supporting an approximately linear resource-versus-performance function was found for 

several concurrent discrimination tasks by Braun and colleagues (Lee et al., 1999; Pastukhov 

et al., 2009). 

2.2.1.4.2 The capacity-one benchmark 

 The amount by which an increase in speed of a target may increase its resource 

demand is unknown. The extreme of possibility is that at high speeds, a target is so resource-

demanding that additional targets cannot be tracked at all. 

 The capacity-one benchmark is proposed to interpret this possibility by calculating the 

performance level expected if participants can track only one target and completely ignore 

the second target. Calculating this will help to put any cost of splitting attention into 

perspective by comparing the cost to what would occur if participants could only track one 

target. In this scenario, where the observer is asked to track two targets, she can only manage 

to track one. Therefore, if asked at the end of the trial about the other target, she will perform 

at chance due to guessing. If asked about the target she tracked, her performance should be 

the same as if she were only asked to track one target. 

For tracking two targets, the capacity-one benchmark yields the same performance 

level as the linear resource-versus-performance function described above section (shown as 

dashed line in Figure 2.2). Therefore, when the empirical performance for tracking two 

targets falls to this level (as we find for high target speeds), we cannot say whether it is 

because the linear function is correct or because participants only tracked a single target. It 

may be that at high speeds the resource requirement for successful tracking is even greater 

than that indicated by the linear function, and participants switch to tracking only one target 

as that yields better performance than attempting to track both. 
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 Under the premise that a participant could track only one target (because it consumes 

all the attentional resource), we can calculate the expected proportion correct for the two-

target condition with the performance of one-target condition. According to this, in half of 

the trials participants will track the target that is later queried, and in the other half of the 

trials they need to guess. The proportion correct for each speed is plugged into the equation 

(Y= 0.5*0.5+0.5*X; Y is the predicted curve and X is the psychometric curve of tracking one 

target.) to calculate the predicted performance in the two-target condition, on the assumption 

that only one target was successfully tracked. The mean and slope of the two-target predicted 

psychometric function were extracted from the psychometric curve of one-target tracking 

condition. Then, the corresponding predicted psychometric function was fit to the data. 

 For example, at slow speeds participants should get those trials correct, minus the 

lapse rate that is varied between 0% and 10% of the trials. The predicted proportion correct 

will be 74.75% (assuming the lapse rate is 1%) reflecting the 99.5% correct on trials in which 

they tracked the queried target and the 50% correct on the remaining half of trials. At very 

high speeds, they will perform at chance regardless of which target they attempt to track, 

yielding 50% correct. Thus, the span of the predicted psychometric curve for tracking two 

targets is from 50% correct performance to 74.75%.  

 The actual performance for most participants is well in excess of 74.75% at slow 

speeds in the two-target condition. This shows that at slow speeds, participants can 

simultaneously track more than one target. The solid curve in Figure 2.2 supports this. At 

slow speeds tracking is very accurate regardless of whether 50% or 100% of the resource is 

used. If increased speed is associated with more consumption of attentional resource, at faster 

speeds capacity may eventually be restricted to a single target and the capacity-one 

benchmark will closely resemble performance. Unfortunately, detailed comparison of 

observed with theoretical psychometric functions requires thousands of trials in each observer 
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and is fraught with difficulties (Zychaluk & Foster, 2009). Nonetheless, in this more limited 

study the speed limits (68% thresholds) predicted under the extreme scenario of only one 

target tracked still provides a useful benchmark against which to compare the size of any 

observed drop in speed limit in the two-target condition. 

2.2.2 Results 

 The data and associated psychometric plots for each of the six participants in both 

conditions of Experiment 1 are shown in Figure 2.3. For every participant, the speed limit 

(68% threshold) for tracking one target is better than for tracking two targets.  

 Recall that the capacity-one benchmark predicted data begins with the assumption 

that participants can track only one target, with performance as a function of speed taken 

from the one-target condition. However, because the assumption is that participants can only 

track one target, even at slow speeds they must guess in the half of trials for which they track 

the non-queried object. At low speeds, the accuracy predicted by the capacity-one benchmark 

is substantially lower than the actual performance of every participant. Indeed at very low 

speeds participant performance is near 100% correct. If participants could only track one 

target, performance should never exceed 75% correct for two targets. This suggests that 

participants can track more than one target when they move slowly (as has been found by 

many studies before). At high speeds, however, actual performance is closer to the 

benchmark and in some cases even drops below the benchmark. Actual performance below 

the benchmark performance can occur if observers try to track both targets but can actually 

only track one target. Splitting their attentional resource between two targets does not yield 

enough resource to successfully track either, so performance is below that expected if one is 

tracked. Nonetheless, the speed limits (68% thresholds) predicted under the extreme scenario 

of only one object tracked still provides a useful benchmark against which to compare the 
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size of any observed drop in speed limit in the two-object condition. Therefore, we will still 

use this benchmark to assess the resource costs in Experiment 1. 

 

Figure 2.3. Individuals’ performance in Experiment 1 
For each participant in Experiment 1, proportion correct is shown for each speed, in the one-target (red curve) 
and two-target (green curve) conditions. Also shown is the prediction for the two-target condition (blue curve) if 
the participant had a capacity limit of one target. Dotted lines show the 68% thresholds. 
 
 The speed limits, averaged across participants, are shown for each condition in Figure 

2.4. The averaged speed limit for tracking one target (1.92 rps) was higher than for tracking 

two targets (1.51 rps) by a large margin—0.41 rps, F (1, 5) =14.403, p=0.013, partial 

η2=0.742. This difference was statistically significant according to planned paired t-tests 

across participants, for both the small separation (t (5) =2.797, p=0.038, Cohen’s d=1.959) 

and large separation (t (5) =4.595, p=0.006, Cohen’s d=2.314) conditions. No statistically 

significant interaction of separation and number of targets was present, according to a 2 

(number of targets: one or two) x 2 (separation: small or large) ANOVA (F (1, 5) =0.237, 

p=0.647, partial η2=0.045).  
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 Numerically, the two-target speed limit (1.51 rps) was slightly lower than that 

predicted by the capacity-one benchmark (1.70 rps), yet this was not statistically significant 

for the small separation (t (5) =-1.681, p=0.154, Cohen’s d=-1.145) or for the large separation 

(t (5) =-1.888, p=0.118, Cohen’s d=-0.963) conditions.   

 

Figure 2.4. Averaged speed limits in Experiment 1 
Bottom panel. The stimulus arrangement in Experiment 1. Top panel. The mean speed limits (68% thresholds), 
n=6. The speed limit for tracking two targets is substantially worse than the speed limit for tracking one, and is 
similar to that predicted by the capacity-one benchmark (dashed bars). Error bars show one standard error across 
6 participants. 
 

The speed limit in the large separation conditions was negligibly and non-

significantly lower than in the small separation conditions, both for one target (0.01 rps 

lower, paired t-test, t (5) =0.031, p=0.977, Cohen’s d=0.015) and two targets (0.05 rps lower, 

paired t-test, t (5) =0.936, p=0.392, Cohen’s d=0.268).  

As described in the Data Analysis part, we are concerned that parts of the difference 

in speed limits between the one-target and two-target conditions might be caused by greater 

spatial interference between targets in the two-target condition. If spatial interference impairs 

the tracking performance in more trials in the two-target condition, the psychometric function 
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would saturate at a lower ceiling than the one-target condition. The ceiling level of 

performance is usually captured by the lapse rate, which is the probability of an incorrect 

response that is independent of speed. To assess the possibility of spatial interference, in the 

psychometric fitting procedure, the lapse rate is allowed to vary from 0% to 10%, so that it is 

estimated for each subject and condition. The lapse rate should be lower in the two-target 

condition than in the one-target condition if spatial interference is the main detrimental effect 

on tracking.   

 No evidence was found for a higher lapse rate in the two-object condition (0.03) than 

in the one-target condition (0.03). In addition, there was no significant difference for the 

lapse rates between in the small separation (0.03) and large separation condition (0.03). 

Statistically, a repeated-measures ANOVA was conducted with separation and target number 

as the independent variables and lapse rates as the dependent variable. There was neither a 

significant target number (F (1, 5) =0.043, p=0.844, partial η2=0.008) or separation effect (F 

(1, 5) =0.019, p=0.895, partial η2=0.004) on lapse rates, nor a significant interaction between 

two factors, F (1, 5) =0.019, p=0.895, partial η2=0.004.  

2.2.3 Discussion 

 Previous literature already documented an effect of speed on number of targets that 

can be tracked (Bettencourt & Somers, 2009; Liu et al., 2005). However, Franconeri et al. 

(2008) suggested that the detrimental effects of speed on number of objects that can be 

tracked might be explained by interference associated with the increase in instances of small 

separation between objects at higher speeds. That is, a greater number of putative interactions 

between object representations at high speeds may have resulted in the decreased tracking 

capacity in previous studies. However, here we found a substantial effect of number of 

targets on speed limit, even for objects presented at spacing so large that any interactions are 

unlikely.  
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 The capacity-one benchmark puts the differences of speed limits in perspective, by 

giving the speed limit that would have occurred had participants simply ignored one of the 

targets in the two-target condition. Remarkably, the speed limit in the two-target condition 

was not better than this prediction (see Figure 2.4). This makes it clear that the effect of target 

number on speed limit is very large indeed. 

 There was some evidence (not statistically significant) that performance fell below the 

capacity-one benchmark. For tracking two targets, the capacity-one benchmark makes the 

same predicted performance as a linear resource-versus-performance function. What would 

occur if participants gave up on one target and focused all resource on the other target is 

equivalent to that 50% of the resource was not enough to track each of two fast-moving 

targets. The statistically non-significant finding of that performance falls below the capacity-

one benchmark suggests that the true resource-versus-performance function falls below the 

linear function. In other words, for fast targets splitting the resource in two may yield 

performance worse than halfway towards chance from the one-target level. For example, 

more than half the resource may be required to have any tracking success with fast targets 

and therefore if the participants try to track both targets, they will fail and have to guess 

regarding both, yielding performance even worse than the capacity-one benchmark. 

 It might seem that the Franconeri theory could be salvaged by positing that the objects 

interacted in the large-separation condition, even though this is somewhat implausible given 

how far they were from each other’s crowding zones. However, on this account the 

Franconeri hypothesis still predicts that the interference should have been substantially 

greater in the small-spacing condition. Even still, we found no significant effect of separation 

on performance.  

Perhaps the 7 deg separation in Experiment 1 may not have been large enough to 

avoid spatial interference and not different enough from the smaller separation to yield a 
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smaller amount of interference. We conducted a simple additional experiment (Experiment 

1b) with an even larger separation, with 2.5 deg for the inner ring and 13 deg for the outer 

ring. In pilot testing, we noticed that the speed limit for the outer ring was substantially 

slower than that of the inner ring, when considered in terms of revolutions per second (this 

may be related to the jump size between successive frames being larger at the higher 

separation, owing to the greater linear speed at high eccentricity for a particular number of 

revolutions per second, together with the limited, 160 Hz refresh rate). To address this in the 

design of Experiment 1b, the blobs in the outer trajectory moved 0.4 rps more slowly than 

those in the inner. Whereas in Experiment 1 each of two circular trajectories contained two 

blobs, in Experiment 1b each contained three blobs (lowering the guessing rate to 33%). 

Except for those changes, the apparatus and stimuli used were identical to those used in 

Experiment 1. Four observers (3 male, aged 29-37) participated in at least 160 trials each at 

speeds of 0.9, 1.2, 1.5, 1.9, and 2.2 rps (according to inner ring). The averaged speed limit for 

tracking one target (1.73 rps) was significantly higher than that for tracking two targets (1.34 

rps) according to a paired t-test (t (3) =3.883, p=0.03, Cohen’s d=2.048). This disconfirms the 

spatial interference theory for why the speed limit was lower for two targets in the original 

experiment. Using the very large separation, it was implausible that there was spatial 

interference between two targets. Yet the cost on speed limits from additional targets 

nevertheless occurred. This is compatible with diminishing the amount of resource available 

per target, rather than because of spatial interference among targets.    

 Although it appears the Franconeri theory cannot explain these results, one element of 

the theory remains unaddressed. According to Franconeri et al. (2010), the primary reason 

that tracking performance decreases with object speed is because the object travels farther in 

the allotted time for the trial, which results in more instances in which the objects come 

relatively close to each other and interfere. This concern might have some effects on the 
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results in Experiments 1 and 1b because the distance that objects travel is longer at high 

speeds than at slow speeds. To test whether this contributed much to the effect of object 

speed, in Experiment 2 we equated cumulative distance travelled across speeds by 

appropriately adjusting the durations of the trials. 

2.3 Experiment 2: Constant Travelled Distance, Bilateral Arrangement 

 From the results of Experiment 1 and Experiment 1b, speed limits decrease 

substantially when the number of tracked targets increases from one to two. This supports the 

flexible-resource theory’s assertion that when observers need to track two moving targets 

simultaneously, each target is allocated only half of the total attentional resource. Franconeri 

et al. (2010) however provided evidence to support the notion that the critical factor limiting 

tracking performance is the number of times that objects pass too closely to each other (inter-

object spatial interference) rather than the object speed. The cumulative distances that objects 

travel as a manipulation factor was used in their study to represent the occurrence probability 

of inter-object spatial interference. The further the cumulative distances, the more frequently 

the putative occurrence of inter-object spatial interference applied. The results showed that 

tracking accuracy significantly dropped with increasing cumulative distance. 

 The concern of Franconeri et al. (2010) might explain the large target number effect 

on speed limits in Experiments 1 and 1b by suggesting that there were more occasions for 

spatial interaction when the stimulus was presented at high speeds. In the high-speed trials, 

the targets went about the circular trajectory many more times and thus came relatively close 

to the other target more times. As spatial interference has been suggested to occur mostly 

among targets (Franconeri et al., 2010; Franconeri et al., 2008), in the two-target condition 

there would be more interference. If distance travelled had been equated across speeds, the 

additional interference in the two-target condition would be equal across speeds. But because 

distance travelled was greater at high speeds, the interference should be particularly large at 
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high speeds, potentially explaining the large speed-limit cost. Note that spatial interference 

could only occur if it extended much larger distances than found in the crowding 

literature(Pelli & Tillman, 2008), so it is unlikely that any interference occurred. However we 

nevertheless decided to assess the possibility. 

 If we equate distance travelled, the putative spatial interference should not be higher 

at faster speeds. According to the spatial interference theory, then, the two-target speed limit 

cost associated with additional targets should be much reduced or disappear. In Experiment 2, 

the relationship between speed limit and the number of tracked objects is investigated with 

equal cumulative travel distances.  

 Franconeri’s spatial interference theory predicts that if the occurrence probability of 

inter-object spatial interference influences the accuracy for tracking multiple objects, when 

we test participants’ performance across speeds with constant travel distance, tracking 

accuracy should be equal at slow or intermediate speeds. At very high speeds, a substantial 

drop on tracking performance, (which they explained results from the data limitation), comes 

from weak visual inputs. We instead found that tracking accuracy decreased with higher 

object speeds. Therefore, we conclude that speed itself does affect tracking performance.  

2.3.1 Method 

2.3.1.1 Participants  

 The six participants (four male, two female, 29-36 years of age) also participated in 

Experiment 1. 

2.3.1.2 Stimuli  

 The apparatus and stimuli used were the same in Experiment 1 except for the few 

changes described here. This experiment modified the arrangement of stimuli in order to 

satisfy two goals: (1). Two used circular trajectories need to maintain the same speed 

throughout one trial. (2). Cumulative travel distances of objects were equal for each trial. In 
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this experiment, two red Gaussian blobs were paired and always 180° apart on each of two 

imaginary rings. The two imaginary rings were horizontally aligned with one in the left visual 

field and one in the right visual field, centred at a distance of 3° from the fixation point 

(Figure 2.5). The blobs orbited along their imaginary centre point on each ring, all with the 

same speed.  

 

Figure 2.5. Display of Experiment 2  
Two red Gaussian blobs constituted one virtual ring and two rings were horizontally aligned with one in the left 
visual field and one in the right visual field, centred at a distance of 3° from the fixation point 

2.3.1.3 Procedure  

 The sequence of events on a given trial was identical to that in Experiment 1 except 

for the few changes described here. In Experiment 1, the tracking duration was randomly set 

to between 3 and 3.8 seconds whereas in Experiment 2, the tracking duration was varied with 

speeds across trials, to achieve a constant distance travelled of 6.6 revolutions. The 

cumulative distance was made constant by using shorter tracking intervals for higher speeds. 

Five rotation rates (1.0, 1.2, 1.6, 1.9, and 2.2 rps) and 5 corresponding tracking periods (6.6, 

5.5, 4.125, 3.47, 3 seconds) were used. Each observer participated in 120 trials at each of the 

five rates, yielding 600 experimental trials in total, divided into five sessions. Each 

participant did no more than two sessions a day and observers had a minimum break between 

sessions of 5 minutes. 
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2.3.2 Results 

 Mean tracking accuracy for tracking one and tracking two targets for the five test 

speeds is shown in Figure 2.6a. Under the condition of equal travel distances, this data 

demonstrated that a large reduction in tracking accuracy occurs with increasing the object 

moving speeds. Tracking performance dropped steeply when the speed was over 1.6 rps. A 2 

x 5 repeated measures ANOVA revealed a significant main effect of speeds, F (4, 20) 

=46.399, p<0.001, partial η2=0.903. There was little to no effect of number of tracked targets, 

F (1, 5) =2.428, p=0.18, partial η2=0.327, and no interaction between two factors, F (4, 20) 

=1.348, p=0.287, partial η2=0.212. According to Figure 2.6a, a significant drop in tracking 

accuracy is found between 1.6 and 1.9 rps with the post-hoc analysis (p=0.044).  

 The speed limit is estimated as the speed corresponding to 68% correct with 

psychometric curve (see details in Experiment 1), and is plotted in Figure 2.6b. The speed 

limit for tracking one target (1.96 rps) was slightly higher than tracking two targets (1.85 

rps), but this was not significant, Paired t-test, t (5) =1.355, p=0.233, Cohen’s d=0.899. 

Additionally, non-significant difference was found in speed limits between tracking two 

targets and that predicted by the capacity-one benchmark (1.75 rps), Paired t-test, t (5) 

=0.728, p=0.5, Cohen’s d=0.455.  

 

Figure 2.6. Results of Experiment 2  
(a). Mean tracking proportion correct with five different speeds when observers tracked one and two targets. (b). 
Speed limits for tracking one and two targets, and the two-target predicted speed limit by the capacity-one 
benchmark. 
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2.3.3 Discussion 

 The findings of this experiment were contrary to Franconeri et al. (2010)’s suggestion 

that the critical factor limiting tracking performance is the cumulative distance that objects 

travel. A main effect of speed on tracking accuracy was found in this experiment even though 

it controlled the cumulative distance of objects that travelled. In the experiment of Franconeri 

et al. (2010), they varied speed and trial duration across trials and found tracking accuracy 

declined as the product of speed and trial duration increased. But in our Experiment 2, we 

equate cumulative distance that objects travel by using shorter trial duration for higher 

speeds. Thus, tracking performance declined with increasing speed in Experiment 2 cannot 

be explained by the notion of Franconeri et al. (2010) that increased number of close 

encounters among targets at higher speeds. The finding in Experiment 2 is instead consistent 

with the flexible resource theory that fast-moving targets require more attentional resource. 

There was no significant target number effect on speed limit, only a non-significant trend for 

the maximum tracking speed of tracking one target to be higher than for tracking two targets. 

 Why was there a large effect of number of objects tracked on speed limits in 

Experiments 1 and 1b, but less or no effect in Experiment 2? The discrepancy may be caused 

by the possible hemifield specificity of the attentive tracking resource. Alvarez and Cavanagh 

(2005) proposed that there are two independent resource pools within left and right 

hemispheres for attentive tracking. This theory could explain the conflict in findings between 

Experiments 1 and 2. In Experiment 2, the two imaginary rings of stimuli were arranged 

independently within right and left visual hemifields. Independent hemisphere-specific 

resources would provide each target with an independent resource. As a result, the speed 

limit for tracking one object would not be affected by whether a target was tracked in the 

opposite hemifield. By contrast, in Experiment 1 the two imaginary rings were presented 

centrally and spanned two hemifields. In order to successfully track targets in Experiment 1, 
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the two hypothesized independent hemisphere-specific resources would have to collaborate. 

In the two-target condition, each target should have been allocated just half of all the resource 

(left + right hemisphere-specific resources). Thus, based on the flexible-resource theory of 

attention, the speed limit of tracking one target should be significantly higher than that of 

tracking two targets. In Experiments 4 of Chapter 3, we will explore whether two 

independent hemisphere-specific resources influence the tracking speed limit by modifying 

the experiment of Alvarez and Cavanagh (2005)’s study.  

2.4 Experiment 3: Equal-Distance Experiment with Eye Tracker Monitoring 

 Franconeri et al. (2010) plotted performance in terms of cumulative travel distance as 

well as speed, and observed that the cumulative travel distance was more strongly correlated 

with performance than was speed. They suggested that it occurred because larger cumulative 

distance resulted in more inter-object interactions, which they propose to be the primary 

determinant of tracking performance. According to this element of their theory, there should 

be little or no effect of speed if cumulative distances are equated across speeds (except for 

data limitation at very high speeds). From Experiment 2, we confirmed the effect of speed on 

tracking accuracy for a condition where the cumulative distance travelled by the objects was 

constant, but the target number effect on speed limits was not found. The hemisphere-specific 

resource theory could explain the non-significant cost with additional targets. In Experiment 

3, the two circular trajectories were concentrically aligned on the fixation point to involve 

both hemisphere-specific resources, similar to in Experiment 1.   

 Although previous work found that eye movements do not affect tracking 

performance much (Fehd & Seiffert, 2008; Scholl & Pylyshyn, 1999; Scholl et al., 2001), 

enforcing central eye fixation may be more critical in our paradigm. Our main result is a 

much poorer speed limit for tracking two targets than for tracking one, and attributing the 

effect to attention assumes that participants did not track one target with their eyes, using 
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attention only for the second target. All participants used in this experiment had extensive 

experience fixating in other experiments, but to eliminate any doubts, here we monitored eye 

movements with an eye tracker. 

2.4.1 Method 

2.4.1.1 Participants 

 Six participants (four male, two female, 29-37 years of age) were used in Experiment 

3 and five of these participants had also previously participated in Experiment 1. 

2.4.1.2 Stimuli 

 The apparatus and stimuli used were identical to those in Experiment 1 except for the 

few changes described here. In Experiment 1, each of the two circular trajectories was 

composed of two Gaussian blobs. In Experiment 3, each of the two circular trajectories 

consisted of three blobs (which lowered the guessing rate to 33%), equally spaced about the 

trajectory (Figure 2.7). The inner circular trajectory had a radius of 2.5 deg and the radius of 

the outer circular trajectory was 5.5 deg. 

 

Figure 2.7. Display of Experiment 3  
The objects travelled in two concentric circular trajectories that were centred on the fixation point and three red 
Gaussian blobs constituted one virtual rings. Each blob of the triplet was presented apart 120° from others. The 
inner ring had a radius of 2.5 deg and the radius of the outer ring was 5.5 deg. 
 

2.4.1.3 Procedure  

 The sequence of events on a given trial was identical to that of Experiment 2 except 

the few changes described here. In Experiment 2, the cumulative distance that objects travel 
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was 6.6 revolutions on every trail. But in Experiment 3, the cumulative travel distance was 

shortened from 6.6 to 3.6 revolutions. Monitoring eye movements elongates the duration of 

testing session. The reason we shorten the cumulative travel distance for each trial is to avoid 

observers losing their patience to do this task owing to longer testing session. Five rotation 

rates (0.6, 0.9, 1.2, 1.5, and 1.8 rps) were used, which to achieve a constant distance travelled 

of 3.6 revolutions, yielded 5 corresponding tracking durations (6, 4, 3, 2.4, 2 seconds). Each 

observer participated in 48 trials for each of the five rates, yielding 240 experimental trials in 

total, divided into two sessions run on different days. 

2.4.1.4 Eye Tracking  

 Eye movements were monitored using an EyeLink 1000 eye tracker (SR Research, 

2010). At the beginning, the eye-tracking system was calibrated and validated using the 

standard five-point calibration. The experimenter monitored the video image of the 

participant’s eye at the beginning of each trial, to ensure that the participant fixated and that 

the eye-tracker continued to report this correctly. The eye tracker was recalibrated if, during 

the interval before the trial, it registered the participant’s eye location as being away from 

fixation, even though the participant reported fixating. If the participant moved his or her eye 

by more than 1.5 deg from the fixation point, the trial was discarded. 

2.4.1.5 Data Analysis  

 The curves were fit as in Experiment 1, adjusted for the lower 33% chance rate of the 

present experiment. The prediction from the capacity-one benchmark was also adjusted 

accordingly, spanning 33% correct performance to 66.25%. The threshold accuracy 

considered the speed limit was set to 57% to achieve the comparable point on the 

psychometric curve as the 68% point in Experiment 1.  
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2.4.2 Results 

 The criterion of eye movement greater than 1.5 deg from fixation led to the exclusion 

of 8.8% of the trials (SD = 3.5% across participants). The eye-tracker was less reliable for the 

three participants who wore glasses, and not including them, only 3.2% of trials were 

excluded. A repeated-measures ANOVA revealed no significant effect of speed (F (1, 5) 

=1.11, p=0.379, partial η2=0.182) or target number (F (1, 5) =2.373, p=0.184, partial 

η2=0.322) on eye movements greater than 1.5 deg. 

 The effect of speed on proportion correct is plotted in Figure 2.8a, for tracking one 

and tracking two targets. For every participant, the speed limit (57% threshold) for tracking 

one target is better than for tracking two targets.  

 

Figure 2.8. Results of Experiment 3 
(a). Proportion correct is shown for each speed in the one-target (red curve) and two-target conditions (green 
curve) of Experiment 3 for each participant. Blue curve is the prediction for the two-target condition if the 
participant had a capacity limit of one target. Dotted lines show the 57% thresholds. (b). Speed limits for 
tracking one and two targets and the two-target predicted speed limit as the equal cumulative travel distances. 
Error bars show one standard error across 6 participants.  
 
 The mean thresholds in each condition are plotted in Figure 2.8b. The average speed 

limit for tracking one target (1.62 rps) was substantially higher than tracking two targets 
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(1.14 rps), paired t-test, t (5) =6.402, p=0.001, Cohen’s d=1.727. In addition, the two-target 

speed limit predicted by the capacity-one benchmark was significantly higher than that for 

the empirical two-target speed limit, paired t-test, t (5) =-4.12, p=0.009, Cohen’s d=-1.001. 

This indicates that at high speeds observers only have enough resource to track one target, 

but continue to divide their resources among the two so that they fail to track both.   

2.4.3 Discussion 

 The finding of this experiment was contrary to the suggestion of Franconeri et al. 

(2010) that the critical factor limiting tracking performance is the cumulative distance that 

objects travel. Varying speeds over a range similar to that was critical in Experiment 1 caused 

performance to drop from very accurate to near chance, even though there were no 

differences in cumulative distance that objects travel. This is similar to what was found in 

Experiment 2. With the targets both travelling among both hemifields rather than being 

confined to a hemifield as in Experiment 2, a large target number effect on speed limits was 

found.  

 Strong evidence of two independent hemisphere-specific resources for attentive 

tracking was reported by Alvarez and Cavanagh (2005). However, they did not vary object 

speed, but rather number of objects to track. Their finding is described well by their paper’s 

abstract: “twice as many targets can be successfully tracked when they are divided between 

the left and right hemifields as when they are all presented within the same hemifield”. To 

explain this finding, they proposed that the tracking resources are hemisphere–specific. 

 If availability of this hemisphere-specific resource also determines the maximum 

speed at which objects can be tracked, this could explain our finding of little or no decrement 

on speed limit when tracking two targets presented to different hemispheres (Experiment 2). 

To test this theory, we performed some experiments in which we directly compared 
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performance for a display with targets presented to opposite hemispheres to a display with 

targets presented to the same hemisphere. These experiments are discussed in Chapter 3. 

2.5 Discussion of Experiments 1-3  

 The large cost of a second target on speed limit provides good evidence for the 

resource theory of tracking. Both speed and target numbers deplete the tracking resource, so 

that at high speeds, fewer targets can be tracked. Indeed, the demand of high speeds is so 

large that performance is similar to that expected if only one target could be tracked. 

 The findings of the current experiments are consistent with the claim across multiple 

studies that the tracking limit depends on the task demands and requirements of tracking each 

target (Alvarez & Franconeri, 2007). Alvarez and Franconeri (2007) measured the maximum 

speed from 1 target to 8 targets by participants self-adjusting the object moving speed with 

arrow keys (left arrow to decrease and right arrow to increase speed) until they can accurately 

track all targets for around 5s. Experiment 1 showed that the speed limit decreased by 22% 

from tracking one object to tracking two objects, and this result is comparable to the 30% 

found in the classical MOT task in the study of the Alvarez and Franconeri (2007). The larger 

decrease in the Alvarez and Franconeri (2007) study may reflect the spatial interference 

present in their display when objects passed very close to each other. The progressive 

decrease in speed limit with increase in the number of tracked targets agrees with the 

flexible-resource theory of attention. In Experiment 1, the speed limit is found to be up to 

1.92 rps when all attentional resources are allocated to one target. When available resources 

are divided between two targets, the speed limit is reduced to 1.51 rps because the amount of 

resource for each target is reduced. In the equal cumulative travel distances condition in 

Experiment 3, the target number effect on speed limit is also found and the average speed 

limit for tracking one (1.62 rps) target is significantly higher than tracking two (1.14 rps) 

targets.  
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2.5.1 Spatial Interference is Not the Main Reason For Decrease of Speed Limits 

 It would be difficult to reconcile these results with the FINST and spatial interference 

theories. According to the FINST theory (Pylyshyn & Storm, 1988), the speed limit for 

tracking should not be affected by changing the tracking load from one to two targets. 

However, most experiments in this chapter were inconsistent with this theory, as shown by 

the repeated finding that the speed limit for tracking one target was significantly higher than 

that for tracking two targets. The only exception was when the targets were in different 

hemifields (left and right) where they may be tracked by different hemisphere-specific 

resources. 

 According to spatial interference theory (Franconeri et al., 2010; Franconeri et al., 

2008), the speed limit for tracking can only be affected by the number of targets if the objects 

are sufficiently close to cause interference among their attentional spotlights. To avoid spatial 

interference, we used wide separation between targets in Experiment 1. In the large-

separation condition the two targets never came closer than 7 deg, much larger than the 

approximately half-eccentricity crowding zones of approximately 4.5 deg for the outer blob 

and 1 deg for the inner blob, predicted by extensive psychophysical work (Bouma, 1970; 

Pelli & Tillman, 2008). The distracter blob for each target was on the opposite side of the 

fovea, very far in cortical distance, and should not have caused any interference (Pelli, 2008). 

 Could spatial interference theory be salvaged with the proposition that the 

interference zones of the attentional spotlights are extraordinarily large? Not likely, because 

the interference still ought to increase with proximity (Shim et al., 2008), yet the speed limit 

cost of an additional target was very similar at a much smaller separation. 

 The present findings challenge the hypothesis that humans can track unlimited 

number of targets at a given speed under conditions of no crowding (Franconeri et al., 2010; 

Franconeri et al., 2008). Franconeri et al. (2008) suggest that the limit on the number of 



	   61	  

tracked objects comes from inter-object spatial interference rather than object speed. Their 

suggestion is that increasing speed will increase the number of close encounters between 

targets and distractors per unit time. However, in Experiment 1, we showed even with large 

separation that the speed limit significantly decreased from 1.92 rps of tracking one target to 

1.51 rps of tracking two targets. We further extended this result with the extraordinarily large 

separation (10.5 deg) in Experiment 1b, and still found the large cost of an additional target 

on the speed limit.   

 Contrary to our finding, negligible target number effect was found by Shim et al. 

(2008) when comparing tracking one target and tracking two targets at large separations. 

However, the speeds they chose were not fast enough to investigate the target number effect 

on speed limits. According to our Experiment 1, the difference in tracking performance 

between one and two targets emerged as the speed increased above 1 rps (12 deg/s). 

Therefore, if Shim et al. (2008) tested their participants at higher speeds than 11 deg/s, a 

significant target number effect might have been found owing to a higher demand on 

attentional resource when tracking two targets.  

 Previous literature documented that tracking accuracy was worse at closer proximity 

when tracking two targets (Shim et al., 2008; Tombu & Seiffert, 2008) but little evidence was 

previously available regarding the relationship between proximity and speed limit. Only 

Carlson et al. (2007) showed that the speed threshold was higher for more widely separated 

targets. In contrast, our Experiment 1 provided evidence that the inter-object separation factor 

was independent of the number of tracked objects, and there was no significant difference on 

speed limits between two distinct separations (large or small spacing conditions). The 

distinction from our Experiment 1 is that for the small spacing condition in the study of 

Carlson et al. (2007), the target was presented within the crowding zone of the other targets 

(Bouma, 1970), where a target is separated from the other target by less than half the target’s 
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eccentricity. In contrast, for our Experiment 1, proximities of two conditions were both 

outside crowding zone of each other. 

 Using the desirable paradigm that independently manipulated the influential factors, 

resource allocation for object tracking can only be influenced by speed change when ruling 

out the possible confounds. Consistent with our finding, Tombu and Seiffert (2011) also 

demonstrated a substantial speed effect on tracking performance independent of proximity. 

They studied independently the speed effect and proximity effect in multiple object tracking 

with what they called planets and moons tracking, which resembles our paradigm in that it 

allowed better control of inter-object proximity and speed than the traditional MOT task. 

Unlike our Experiment 1, the three proximity conditions they used were all located within the 

crowding zone. Our finding of Experiment 1 adds that resource allocation resulted in reduced 

speed limits with stimuli presented outside the crowding zone. 

2.5.2 Resource Costs Are Described by the Capacity-One Benchmark 

The capacity-one benchmark proposed by the present chapter provides a new 

perspective on the effect of additional targets by allowing them to be compared to what 

would have occurred had if participants track only one target and completely ignore the other. 

The capacity-one benchmark assumes that at high speeds, a target is so resource-demanding 

that additional targets cannot be tracked at all. When tracking two targets, participants only 

manage to track one and must guess regarding the other target at the end of trial.  

The performance level for tracking two targets predicted by the capacity-one 

benchmark is shown with the black square in Figure 2.9, which is identical to the 

performance predicted by 50% of resource parallel allocation between two targets with a 

linear resource-versus-performance function (as shown with black line). Most experiments in 

this chapter show that at the fastest speeds, empirical performance (a star in Figure 2.9) drops 

below the benchmark performance (a square in Figure 2.9). It indicates that at high speeds the 
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resource requirement per target for successful tracking two targets is even greater than that 

indicated by the linear function, or participants switch to tracking only one target as that 

yields better performance than attempting to track both. 
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Figure 2.9. Resource-versus-performance functions at high speeds 
The dotted line shows a prediction based on a noisy independent-samples idea, so that performance increases 
with the square root of the resource applied. Because at fast speeds we have found that for tracking two targets, 
performance falls at or below the capacity-one benchmark in most experiments of this chapter, the resource 
required for successful tracking is higher even than is shown by the linear resource-versus-performance 
function. The shape of the function is unknown, but one possibility is shown by the dashed curve. 
 

A different resource function for tracking was proposed by Horowitz and Cohen 

(2010). Horowitz and Cohen (2010) assessed participants’ ability to report, after the display 

had stopped, the final direction that tracked targets had been moving. They found evidence 

that performance matched the resource function predicted from a noisy independent samples 

model of the resource. Specifically, the theory is that resource improves performance by 

improving the precision of tracking in the same way that increasing the number (n) of noisy 

samples taken from a distribution improves the precision (standard deviation) of the estimate 

of the mean. Specifically, the standard deviation improves with the square root of n. Note that 

the dependent variable in the Horowitz and Cohen (2010) experiment was not tracking 

performance but rather the standard deviation of the reports of targets’ final motion direction. 
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The relationship between precision and proportion correct in tracking targets is 

uncertain. If this relationship is linear, the noisy independent-samples theory predicts that 

proportion correct will increase with the square root of n, as schematized in Figure 2.9. The 

corresponding curve (dotted curve) in the graph is simply that for which performance grows 

in proportion to the square root of resource, with the additional constraints that zero resource 

yields chance performance and 100% resource yields the one-target performance. However, 

our findings in this chapter (star in Figure 2.9) are contrary to the noisy independent-samples 

theory (a dotted curve in Figure 2.9).  

2.5.3 Tracking Resource might be Hemisphere-Specific 

 Alvarez and Cavanagh (2005) proposed that there are two independent hemisphere-

specific resource pools in the right and left cerebral hemispheres and each target is tracked by 

one single attentional resource in each hemifield. It is evident that tracking performance 

declines significantly when adding two more targets in the same hemifield but not in the 

opposite hemifield. In Experiment 2, when each of two targets were presented in opposite 

hemifields we found no significant decrement in speed limits as the number of tracked targets 

increased from one to two.  This finding might be explained by the hemisphere-specific 

resource theory. But in Experiment 2 we only provide semi-evidence for the theory and are 

not sure whether there is huge decrement on speed limit for adding another target in the same 

hemifield. For the next chapter (Chapter 3), we will address this uncertainty with some 

experiments and discuss more about the hemisphere-specific resource theory.   

 The capacity-one benchmark might be used to provide another interpretation for the 

hemisphere-specific resource theory. Capacity-one benchmark was calculated to predict the 

two-target speed limit if participants can track only one target and need to guess the other. 

Only Experiment 2 found the empirical speed limit for tracking two targets to be higher than 

that predicted by the capacity-one benchmark, indicating the tracking capacity is more than 



	   65	  

one target. In Experiment 2 targets were presented in opposite hemifields. This finding might 

suggest that there are two independent tracking resources, and each target is supported by one 

hemisphere-specific resource. Thus, observers can simultaneously track more than one target 

at high speeds. 

Conversely, if two targets are tracked by a common resource and if observers can 

track only one target at high speeds, the empirical speed limit for tracking two targets should 

be similar to or lower than that predicted by the capacity-one benchmark. We suggest that the 

reason for a lower speed limit than capacity-one benchmark when tracking two targets is that 

participants split this common resource in attempting to track both targets, and may end up 

unable to track any target at high speeds. In both Experiments 1 and 3, targets move with two 

concentric circular trajectories in the centre of visual field, which are across two separate 

hemifields. The observed speed limit for tracking two targets was lower than that predicted 

by the capacity-one benchmark. The reason of this finding might be caused by the display of 

these two experiments involved both two independent hemisphere-specific resources, and at 

high speeds, collaboration of both hemisphere-specific resources can only supported for 

tracking one target. 

2.6 Conclusion of Chapter 2 

 In summary, we provided evidence for a number of tracked targets effect on object 

tracking speed limits, whilst minimizing spatial interference by utilizing widely separated 

objects or equating cumulative object travelled distance. The speed limit declined when the 

number of tracked targets increased. We suggest that the capacity-one benchmark provides a 

useful method in demonstrating the resource theory of multiple object tracking.  
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Chapter 3 : Tracking Resource is Hemisphere-Specific 

3.1 Introduction of Chapter 3  

The main topic of Chapter 2 was the resource costs of tracking fast-moving objects. 

We showed that splitting the tracking resource among multiple targets reduces the tracking 

speed limits. By utilizing widely separated objects to avoid spatial interference, and equating 

the cumulative distance that objects travel to equate the occurrence of spatial interference in 

the experiments of Chapter 2, we found strong support for the resource theory. The maximum 

target speed at which participants were able to track two targets was significantly slower than 

the speed at which they were able to track one. The speed limit for tracking two targets was 

approximately equal to what was predicted if, at high speeds, only a single target could be 

tracked, which is also consistent with a linear resource-versus-performance function. This 

suggests that performance with a fast-moving target is very sensitive to the amount of 

resource allocated. These results cannot be accommodated by the FINST or interference 

theories. 

3.1.1 Hemisphere Specificity 

 The attentional resource involved may be a general central pool allocated to targets at 

anywhere in the visual field. Alternatively, there may be two independent hemisphere-

specific resource pools in our brain, with the tracking resource in the left hemisphere devoted 

to stimuli in the right visual hemifield and the resource in the right hemisphere devoted to 

stimuli in the left visual hemifield. Previous studies have suggested there are independent 

attentional resource pools in the left and right cerebral hemispheres of split-brain patients, 

inducing a faster processing of a visual search task in bilateral displays than in unilateral 

displays (Luck et al., 1989). Each hemisphere can process information independently with its 

own resource (Friedman & Polson, 1981).  
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The factors that limit tracking, such as target speed and number, appear to operate 

largely independently in the left and right visual fields, suggesting that if a resource does 

mediate tracking, there are two independent pools, one in each cortical hemisphere. Alvarez 

and Cavanagh (2005) presented a target in one visual hemifield and tested the effect of 

adding another target in the same hemifield or in the opposite hemifield. Performance was 

much poorer when the additional target was presented in the same visual hemifield, but not 

significantly affected when the second target was presented in the opposite hemifield. This 

suggests that the tracking resource consumed by additional targets is hemisphere-specific. 

 A concern with the Alvarez and Cavanagh (2005) finding was that some or all of the 

decrease in performance with additional targets may have reflected spatial interference rather 

than resource depletion. It was not clear how much of the effect was resource related and how 

much was owed to crowding. Crowding effects can certainly play a role in object tracking, by 

decreasing the accuracy of tracking results because objects cannot be individuated when they 

pass close together (Intriligator & Cavanagh, 2001). In the Alvarez and Cavanagh (2005) 

study, the objects could pass very close to each other. Since spatial interference (crowding) is 

known to be greater when objects are presented unilaterally rather than split across hemifields 

(Liu et al., 2009), the observed decrease in tracking performance when the targets were 

presented unilaterally might have been caused by spatial interference. 

In Chapter 2, Experiment 2 demonstrated no significantly deleterious effect of a 

second target when the two targets were presented across the vertical meridian, one in each 

hemifield, suggesting that the tracking performance might be explained by the hemisphere-

specific resource theory. The purpose of this chapter investigates whether a hemisphere-

specific resource is consumed when speed is increased under conditions of no or minimal 

crowding and spatial interaction effects.  
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3.1.2 Capacity-one benchmark   

 Our previous experiments in Chapter 2 measured the maximum speed at which a 

target could be tracked as a function of the number of targets in the display. Our finding that 

this speed limit decreased as the number of targets increased indicates that the targets shared 

a common tracking resource. While we were not able to determine the quantitative mapping 

between the speed limit and the amount of resource consumed by each target, we were able to 

predict what would occur if tracking one target consume all the resource, with nothing left 

for a second target. We term this the “capacity-one benchmark”. 

 The capacity-one benchmark calculates the performance level a participant would 

have if he attended to just one of the targets and completely ignored the second target. This 

was described in detail in the Data Analysis section of Experiment 1 (Chapter 2). The 

capacity-one benchmark allows one to put any cost of splitting attention into perspective by 

comparing the cost to what would occur if participants could only track one object. For 

example, all of the experiments in Chapter 2 compared the speed limits for tracking one 

versus two targets. The speed limit for tracking two targets was approximately that predicted 

by the capacity-one benchmark. This suggests that performance with a fast-moving target is 

very sensitive to the amount of resource allocated. As explained in Chapter 2, the capacity-

one benchmark makes the same prediction as the made by the linear resource-versus-

performance function. Most experiments in Chapter 2 found the empirical performance for 

tracking two targets was lower than that predicted by the capacity-one benchmark. It 

indicated that successful tracking (>68% accuracy) at high speeds requires more than 50% of 

the resource. The capacity-one benchmark provides a useful benchmark for putting speed 

limit changes in perspective. Therefore, in this chapter we also apply this capacity-one 

benchmark to evaluate the resource costs on one visual hemifield. 
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 The purpose of this chapter is to confirm whether a hemifield-specific resource 

mediates tracking, with crowding and spatial interaction effects minimized. Our Experiment 

4 addressed this issue by using a display in which the objects were kept widely separated to 

avoid crowding. In Experiment 4, we measured the speed limit by asking observers to track 

one target in one single hemifield, and then tested how this speed limit was affected when 

observers were asked to track an additional target in either the same or opposite hemifield. 

 However, the duration of the trials in Experiment 4 did not differ for different speeds, 

so for trials testing fast target speeds, the targets travelled much further than on slow-speed 

trials. Franconeri et al. (2010) pointed out that with this type of design, high-speed trials may 

be associated with more spatial interference because the targets pass relatively near each 

other on more occasions. In the display configuration of Experiment 4, the objects were 

always far from each other, so spatial interference seems unlikely, but nevertheless we sought 

to exclude this possibility here. Accordingly, in Experiments 5 and 6, we equated the distance 

travelled across speeds.  

 Franconeri (2013) suggested that the reason for hemifield independence of tracking is 

not because of a hemisphere-specific resource, but rather a lack of spatial interference across 

the vertical midline. That is, Franconeri suggests that two targets are generally harder to track 

than one because the cortical representations of nearby objects interfere with each other, and 

that this occurs at a stage where competition does not occur across the hemispheres. Although 

there may be no empirical evidence supporting this suggestion, we sought to test it 

nonetheless. Our Experiment 7 investigates whether there is an effect of spatial interference 

on speed limits by varying the separation between targets within one single hemifield. With 

this display, little to no effect of separation was observed, which favours the hemisphere-

specific resource theory of hemifield independence rather than the spatial interference theory. 
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3.2 Experiment 4: Testing Hemifield Specificity of the Tracking Resource 

  The purpose of Experiment 4 is to investigate whether the hemisphere-specific 

resource is also consumed by increasing speeds when crowding and spatial interaction effects 

are minimized.  

 According to the theory of two hemisphere-specific resource pools, if two targets are 

presented in the same visual hemifield, the speed limit should be lower than when the two 

targets are presented in different hemifields. This hypothesis is based on the prediction that 

for two targets in the same hemifield, only one hemisphere-specific resource is available for 

the two targets, so each target receives half of the hemisphere-specific resource. If instead the 

second target is presented in the opposite hemifield, there should be little effect on speed 

limit of the additional target (as it will receive the hemisphere-specific resource allocated to 

that visual hemifield).  

3.2.1 Method 

3.2.1.1 Participants  

 Eight people (six male, two female, 29-38 years of age) who reported normal or 

corrected-to-normal vision agreed to participate, following approval of the protocol by the 

University of Sydney’s ethics committee. All had extensive experience fixating in laboratory 

experiments. 

3.2.1.2 Stimuli  

 A 120 Hz CRT displayed four red blobs (evoked by the red gun only, with Gaussian 

intensity profiles; visible diameter 1 deg; peak luminance 20 cd/m2) and a white fixation 

point against a black background, at a viewing distance of 57 cm. The spatial arrangement of 

the objects is schematized in Figure 3.1. Two pairs of blobs were presented in all conditions. 

Each pair moved on a circular trajectory that was centred in one of the four quadrants of the 

visual field. The two pairs of blobs were placed in either the same hemifield (unilateral 
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condition) or opposite hemifields (bilateral condition). Each circular trajectory was centred 

on a point 6 deg from the vertical midline and 6 deg from the horizontal midline (one of the 

four quadrants). For the unilateral condition, in half of trials, the two pairs were placed in the 

left visual field and in the other half of trials in the right visual field. For the bilateral 

condition, in half of trials the two pairs were placed in the upper visual field and in the other 

half of trials in the lower visual field. The radius of each trajectory was 2.5 deg, and because 

the two blobs on a trajectory were always diametrically opposed, the separation between 

them was always 5 deg. According to studies of crowding, these distances should be large 

enough to avoid spatial interference (Intriligator & Cavanagh, 2001; Pelli & Tillman, 2008). 

3.2.1.3 Procedure  

 Observers were told to maintain fixation on the white dot at the display centre. To 

indicate which blobs were targets, for the first 0.7s of the motion interval the colour of the 

targets was white instead of red. The tracking period followed this, during which all objects 

were red. To prevent participants from predicting the final target positions from their initial 

positions and speeds, the blobs occasionally reversed direction. Each pair of blobs was 

independently assigned a series of reversal times, which succeeded each other at random 

intervals between 1.2 and 2 s. After the tracking period, which was randomly set to between 3 

and 3.8 seconds (including 2 or 3 reversals of each pair of blobs), all four blobs stopped 

rotating (Figure 3.2).  

In this experiment, observers were asked to track one or two targets. In the one-target 

condition, only one blob was designated as a target. For the unilateral arrangement, for half 

of trials the target was in the upper ring and in the other half it was in the lower ring. For the 

bilateral arrangement, for half of trials the target was in the right ring and in the other half it 

was in the left ring. In the two-target condition, one blob of each ring began white to 

designate them as targets. 
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At the end of the trial, one pair of blobs was indicated with a white line and the 

participants used the mouse to indicate which of the two blobs was the target. In the two-

target condition, in half of trials participants were asked to indicate the target at the upper 

(right) ring and in the other half of trials were at the lower (left) ring for the unilateral 

(bilateral) arrangement. 

 

Figure 3.1. Display of Experiment 4  
In Experiment 4, two pairs of blobs were presented in each condition. Each pair moved along a circular 
trajectory (dotted lines) and was centred in one quadrant. They were presented in one of two conditions: at the 
left or right side of the vertical meridian (unilateral condition), and above or below fixation (bilateral condition). 
A blob from one or both pairs was designated as targets. 
 
 

 

Figure 3.2. A schematic of the trial sequence for all experiments in Chapter 3  
After the targets are highlighted in white for 0.7s, all blobs become red and revolve about their rotation centre. 
During this interval, the pair of blobs on each trajectory occasionally reverses movement direction, at random 
times independent of the other pair. After tracking period the blobs stop, one ring is indicated by a white line, 
and the participant clicks on one blob of that ring. 
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  All objects revolved at the same rate throughout each trial. Five rotation rates were 

used on different trials, which were presented in pseudorandom order and fully crossed with 

the one-target versus two-target conditions. The speeds for each condition and person were 

chosen on the basis of piloting. Each observer participated in 192 trials at each of the five 

rates. Observers were presented with 960 experimental trials in total, divided into six 

sessions. Each participant did no more than two sessions a day and observers had a minimum 

break between sessions of 5 minutes. 

3.2.1.4 Data Analysis 

 Plots of speed versus proportion correct were fit by a logistic regression that spanned 

from chance (50% accuracy) to a ceiling level of performance. The ceiling performance 

corresponds to the lapse rate, which in the fitting procedure was allowed to vary from 0% to 

10% to get the best estimate. This estimated lapse rate for each condition is reported in the 

results section. We refer to the speed at which performance is estimated by the regression to 

fall to 68% correct as the “speed limit”. The regression fit separately for each participant, as 

well as the condition set to estimate the speed limits. 

 In all experiments of Chapter 2, we calculated the expected effect on speed limits of 

increasing the number of targets, under the seemingly worst-case assumption that observers 

could track only one target, and had to guess on the trials where they were queried on the 

untracked target. In fact, this capacity-one benchmark is not the worst-case scenario, because 

the resource-versus-performance function might fall below the linear function. In that case if 

participants attempt to track both targets, performance will fall below the capacity-one 

benchmark. Here we extend this benchmark by assuming that participants can track only one 

target in each hemifield rather than within whole visual field. 

A prediction of the hemisphere-specific resource theory is that adding targets to the 

opposite hemifield will have no effect whereas adding targets to the same hemifield should 
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worsen performance. As far as we know, this is the only prediction tested by other authors 

(e.g. Alvarez & Cavanagh, 2005; Carlson et al., 2007). Hemisphere-specific resource theory 

also makes a stronger claim: that very demanding (high-speed) targets will exhaust the 

resource and therefore participants will be completely unable to track additional targets per 

hemifield. In other words, performance will be well described by the capacity-one 

benchmark. 

 Calculation of the prediction of the hemisphere-specific capacity-one benchmark in 

the present circumstances proceeded as follows. In each visual hemifield, it is assumed that 

the observer tracks only one target. Thus, for the two-target condition, in half the trials the 

observer will by chance have tracked the target in the pair that is queried. For these trials the 

predicted performance for that speed is provided by the one-target logistic curve. In the other 

half of the trials the observer will have been queried about one of the pairs that he did not 

track. Consequently, the observer will be forced to guess which of the blobs is the target and 

therefore performs at chance (50%). The resulting psychometric function yields the predicted 

speed limit (68% threshold) for the two-target condition. This prediction is shown as the 

dotted bars in Figure 3.4.  

For slow target speeds, actual performance for tracking two targets is higher than the 

capacity-one benchmark, in the present data as well as in experiments of Chapter 2. This 

shows that at slow speeds, participants can track more than one target in each visual 

hemifield. At high speeds however, actual performance is similar to the benchmark. 

Previously assessing the speed at which performance fell to the “speed limit” level of 

performance (68% correct), in Chapter 2, we found that the capacity-one benchmark speed 

limit was not significantly different than that of the data. This indicates that participants did 

no better than they would if they tracked only one single target in each visual hemifield. 
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 If anything, the observed speed limits were even worse than those of the capacity-one 

benchmark (this statistically non-significant trend was also seen in the data of experiments in 

Chapter 2). This indicates that devoting half of the resource to a target yields only very poor 

performance in each target (parallel resource theory). If dividing one’s resource between the 

targets frequently results in failure to successfully track any of them, one would be better off 

attempting to track only one. This may be the strategy participants occasionally adopted 

(serial switch theory). 

3.2.2 Results and Discussion 

 The data and fitted curves are shown for each participant in Figure 3.3, with the 

associated speed limits (68% thresholds) shown in Figure 3.4. 

 Results were compatible with the hemisphere-specific resource theory in that tracking 

performance was better when two targets were presented in the separate hemifields than in 

the same hemifield. A 2 x 2 repeated-measures ANOVA indicated that the speed limit was 

greater for the bilateral (1.67 rps) arrangement than for the unilateral (1.56 rps) arrangement, 

F (1, 7) =10.891, p=0.013, partial η2=0.609. Consistent with resource theory, the speed limit 

for tracking one target (1.70 rps) was substantially higher than for tracking two targets (1.53 

rps), F (1, 7) =14.719,  p=0.006, partial η2=0.678.  

The hemisphere-specific resource theory predicts a significant interaction of the two 

factors (arrangement and number of tracked objects). Specifically, the advantage of the 

bilateral arrangement should be greater for the two-target condition than for the one-target 

condition. This was indeed the result according to a repeated-measures ANOVA, F (1, 7) 

=5.924, p=0.045, partial η2=0.458. The speed limit for the one-target condition was very 

similar whether the other pair of blobs is in the same hemifield (1.69 rps) or the other 

hemifield (1.71 rps), and no significant difference was found by a paired-t test, t (7) =0.328, 

p=0.753, Cohen’s d=0.064. This suggested that in the one-target condition, there was no 
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differential distracting or masking interference caused by the irrelevant pair of blobs. 

However, there was a large difference in speed limit between bilateral (1.64 rps) and 

unilateral arrangements (1.42 rps) when observers tracked two targets, paired t-test, t (7) 

=4.243, p=0.004, Cohen’s d=0.772. 

 

Figure 3.3. Individuals’ performance in Experiment 4 
For each participant in Experiment 4, proportion correct is plotted against speed, for the bilateral and unilateral 
conditions, in the one-target (red) and two-target (green) conditions. The blue line shows the two-target 
prediction based on the assumption that the participant could only track one target. Dotted lines show the speed 
limits (68% thresholds). 
 
 There is no specific difference on speed limits among visual fields. For the unilateral 

condition, whether the objects are on the left or the right had no significant effect on speed 

limit for tracking one (Right: M=1.74 rps; Left: M=1.66 rps, t (7) =0.707, p=0.502, Cohen’s 

d=0.226) or two targets (Right: M=1.37 rps; Left: M=1.49 rps, t (7) =-1.113, p=0.302, 

Cohen’s d=-0.313). For the bilateral condition, a paired-t test also indicated no statistically 

significant difference between the speed limit of upper and lower visual hemifields in the one 

(Upper: M=1.69 rps; Lower: M=1.67 rps, t (7) =0.792, p=0.454, Cohen’s d=0.082) or two 
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targets (Upper: M=1.64 rps; Lower: M=1.62 rps, t (7) =0.322, p=0.757, Cohen’s d=0.068) 

tracking conditions.  

So far we have considered only the simple qualitative prediction of hemisphere-

specific resource theory—that adding targets to the opposite hemifield has no effect whereas 

adding targets to the same hemifield worsens performance. Given that targets within the same 

hemifield share the same hemisphere-specific tracking resource, the question arises of how 

much resource is needed to accurately track a target. This cannot be measured directly, but 

we can compare performance to the prediction of the linear resource-versus-performance 

function. The capacity-one benchmark makes the same prediction for the cost of adding a 

second target, that performance will fall halfway to chance.  

At low target speeds, performance is clearly much better than the capacity-one 

benchmark. Indeed at very low speeds participant performance is near 100% correct. The 

estimated lapse rate for tracking two targets is around .03 for both bilateral and unilateral 

arrangements, suggesting that the psychometric function saturates at 97%. If participants 

could only track one target in each hemifield (the capacity-one benchmark) performance 

should never exceed 75% correct for tracking two targets at that hemifield. This indicates that 

participants are capable of tracking both targets when they move slowly no matter stimuli 

were presented in the same or separate hemifields. 

Although observers actually did not ignore any of the targets during the tracking 

event, the performance level provides some information about the resource-versus- 

performance function. Reducing the resource available for a target from 100% (one target per 

hemifield) to 50% (two targets per hemifield) has little effect on performance. The first 

reaction of many expert readers may be that this is a ceiling effect. That’s our point. At slow 

speeds, tracking is very accurate (near ceiling) whether 50% or 100% resource is used (flat 

resource-versus-performance function in this domain). 
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For high target speeds, we suspected that tracking would be increasingly resource- 

demanding, meaning that adding a target to each hemifield would be costly. The hemisphere-

specific resource theory was partially supported by comparing the results to the capacity-one 

benchmark predictions. As shown by the rightmost grey dotted bar in Figure 3.4, in the 

unilateral condition, the measured speed limit for tracking two targets (1.42 rps) was not 

significantly different from that predicted (1.43 rps) by the capacity-one benchmark, as 

revealed by a paired t-test, t (7) =-0.025, p=0.981, Cohen’s d=-0.005. This suggests that 

performance at these high speeds then was as deficient as if participants simply ignored the 

second target in each hemifield. Another suggestion from the linear resource-versus-

performance function is that when the amount of resource allocated to one target decreases 

from 100% to 50%, the speed limit of that target significantly declines from 1.7 rps to 1.42 

rps. In the bilateral condition, the two-target speed limit (1.64 rps) was higher than that 

predicted (1.49 rps) but this was not statistically significant, according to a paired t-test, t (7) 

=1.534, p=0.169, Cohen’s d=0.459. The difference between the empirical and predicted two-

target speed limit was not significantly larger for the bilateral condition than the unilateral 

condition according to a paired t-test, t (7) =1.383, p=0.209, Cohen’s d=0.624. It might 

suggest that the resource is not 100% hemisphere-specific. This suggestion was also 

supported by the fact that the speed limit for tracking one target was slightly higher than 

tracking two targets in the bilateral condition. Even still, these findings were not statistically 

significant as revealed by a paired t-test, t (7) =0.998, p=0.351, Cohen’s d=0.243. 

In Experiment 1 of Chapter 2, we also examine the lapse rates of the fits in all 

conditions to test for a larger sign of spatial interference in the unilateral arrangement than 

found in the bilateral arrangement. A repeated-measures ANOVA was conducted with 

hemifield arrangement and target number as the independent variables and lapse rate the 

dependent variable. The ANOVA indicated that target number (F (1, 7) =4.845, p=0.064, 



	   79	  

partial η2=0.409) and hemifield arrangement (F (1, 7) =4.54, p=0.071, partial η2=0.393) was 

not significant, nor the interaction of target number and hemifield arrangement (F (1, 7) 

=1.253, p=0.3, partial η2=0.152). Contrary to what would be expected from spatial 

interference, the lapse rate was actually higher in one of the one-target conditions than in 

either of the two-target conditions: one-target bilateral (lapse rate=0.06), one-target unilateral 

(lapse rate =0.02), two-target bilateral (lapse rate=0.03), and two-target unilateral (lapse rate= 

0.02).  

 

Figure 3.4. Averaged Speed Limits in Experiment 4  
Here we see the mean speed limits (68% thresholds) for tracking one and tracking two targets in the unilateral 
and bilateral condition. The two-target cost is significantly greater in the unilateral condition than in the bilateral 
condition, indicating that the resource that determines the speed limits is at least partially hemisphere-specific. 
The grey dotted bars show the two-target prediction based on the assumption that the participant could only 
track one target.  

3.3 Experiment 5: High Loads (2 Vs. 4 targets) with Constant Travelled Distance. 

 In Experiment 4, the speed limit decreased substantially when tracking shifted from 

one target to tracking two targets if both targets occupied the same hemifield. If the second 

target was instead placed in the opposite hemifield, little decrement in the speed limit 

occurred (also shown in Experiment 2). This supports the claim of an existent tracking 

resource that is independent in each hemifield, and the hemisphere-specific resource that is 

also consumed by increasing speeds. In addition, the speed limit for tracking two targets in 
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the same hemifield was similar to if participants had ignored one of the targets and simply 

guessed whenever it was probed.  

 As a concern in Experiments 2 and 3, spatial interference might explain the target 

number effect on speed limit by appealing to the possibly greater opportunity for spatial 

interactions when the stimulus was presented at high speeds (Franconeri et al., 2010). This 

opportunity arises because in the high-speed trials, the targets went about the circular 

trajectory many more times and thus came relatively close to the other target more times. The 

hemifield effect on speed limit for tracking two targets in Experiment 4 might be confounded 

with more spatial interference in the unilateral condition owing to longer accumulative 

objects travel distance at higher speeds. In Experiment 5, we equated the total travel distance 

across speeds to exclude this confound. 

 The hemisphere-specific resource theory was also supported by two previous studies 

with higher tracking load (Alvarez & Cavanagh, 2005; Battelli, Alvarez, Carlson, & Pascual-

Leone, 2009). Performance for tracking two targets in one visual hemifield was not 

significantly affected by a requirement to track additional two targets in the opposite 

hemifield. However, both of their results did not rule out the confound of spatial interference. 

To verify that the hemisphere-specific resource theory also accommodates for tracking 

targets at high load, in Experiment 5, we increase the target number load from one versus two 

to two versus four.  

According to the hemisphere-specific resource theory, it is hypothesized that 

compared to two targets in opposite hemifields (bilateral condition), adding two more (one in 

each hemifield), should have a large cost (four-target condition) for the speed limit. The cost 

should be as large as predicted if participants could only track one in each hemifield at high 

speed and had to ignore the other, just as in Experiment 4. Compared to two targets placed in 
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a single hemifield (unilateral condition), adding two more in the other hemifield (four targets 

condition) should have no significant cost. 

3.3.1 Method 

3.3.1.1 Participants 

 Five participants (four male, one female, 24-31 years of age) who reported normal or 

corrected-to- normal vision agreed to participate, and four of them also participated in 

Experiment 4. 

3.3.1.2 Stimuli  

 The apparatus and stimuli used were identical to those of Experiment 4 except for the 

few changes described here. Whereas in Experiment 4 only two pairs of blobs were presented 

on the monitor, in Experiment 5, four pairs of blobs were presented, each located in one of 

four quadrants of the visual field. The spatial arrangement of the blobs is schematized in 

Figure 3.5. In the four-target condition, one blob of each pair was designated as a target to be 

tracked. In the two-target bilateral condition, the two target pairs were both above the fixation 

point in half of the trials and both below in the other half. In the two-target unilateral 

condition, the two target pairs were either both to the left of the fixation point or both to the 

right of the fixation point. 

3.3.1.3 Procedure  

 The sequence of events was identical to that of Experiment 4 but there was a 

difference in how the duration of the trials was set. To avoid the possibility of more 

opportunities for spatial interference at higher speeds, the cumulative distance travelled by 

the blobs was the same for all trials. This was achieved by setting the duration of the trial to a 

different value for each speed condition. All objects revolved at the same rate. Across trials, 

five rotation speeds (0.7, 1.0, 1.4, 1.7, and 2.2 rps) were used, and to achieve a constant 
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distance travelled of 6.6 revolutions, this yielded five corresponding tracking durations (9.4, 

6.6, 4.7, 3.9, 3s). 

 Each observer participated in 160 trials at each of the five rates, yielding 800 

experimental trials in total, divided into five sessions. Conditions were mixed, each observer 

did no more than two sessions a day, and observers had a minimum break between sessions 

of 5 minutes. 

 

Figure 3.5. Schematic of the displays in Experiments 5 and 6  
Four pairs of red blobs were presented in each condition. Each pair moved along a circular trajectory (dotted 
lines) centred in one quadrant, and potentially included a target. The targets were presented in one of three 
conditions: two targets to the left or the right side of the vertical meridian (two-target unilateral), two above or 
below the vertical meridian (two-target bilateral), or four targets with one in each quadrant (four targets). The 
targets were initially white before becoming red like the distractors. 
 

3.3.1.4 Data Analysis 

 The data was analysed as in Experiment 4, with speed limits (68% thresholds) 

extracted from the psychometric curve fit. 

 Similar to Experiment 4, we used a hemifield-independent version of the capacity-one 

benchmark to predict the speed limit in the four-target condition. According to this 

benchmark, in each visual hemifield the observer tracks only one target. Thus, in half the 

trials the observer will by chance have tracked the target in the pair that is queried. For these 

trials the predicted performance for that speed is provided by the bilateral two-target logistic 



	   83	  

curve fit (as this corresponds to the situation where there is only one target in each 

hemifield). In the other half of the trials the observer was queried about one of the pairs that 

he did not track. Consequently, the observer will be forced to guess which of the two blobs is 

the target and therefore performs at chance (50%). The resulting psychometric function yields 

the predicted speed limit (68% threshold) for the four-target condition. This prediction was 

shown as the upper red dotted bar at the bottom of Figure 3.6.  

 An alternative and unlikely hypothesis, but an instructive one for the contrasting 

prediction that it makes, is that observers track objects independently in the upper and lower 

visual hemifields (UVF and LVF, respectively), and can only track one object in each. For 

this UVF/LVF capacity-one benchmark, in the four-target condition, performance on half of 

the trials would be given by the unilateral two-target condition, and by the chance level on 

the other half of trials. This predicted speed limit is shown by the lower blue dotted bar at the 

bottom of Figure 3.6. 

3.3.2 Results and Discussion 

 The data and fitted curves are shown for each participant in the top panel of Figure 

3.6, with the associated speed limits (68% thresholds) shown at the bottom panel. For two 

targets, consistent with the hemisphere-specific resource theory, the speed limit was better in 

the bilateral arrangement (1.92 rps) than in the unilateral arrangement (1.56 rps). This 

difference was statistically significant according to a paired t-test, t (4) =6.096, p=0.004, 

Cohen’s d=2.499.  

Also as predicted by the hemisphere-specific resource theory (as compared to the 

speed limit for tracking two targets in a single hemifield), adding two more targets in the 

opposite hemifield had little to no effect on the speed limit (1.56 rps vs. 1.52 rps, t (4) 

=0.816, p=0.46, Cohen’s d=0.492). 
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When compared to having one target in both the left and right hemifield, tracking a 

second target in each hemifield was expected to increase the load on each hemisphere-

specific resource. Consistent with this, the speed limit cost was large, from 1.92 rps to 1.52 

rps- a significant difference- t (4) =3.959, p=0.017, Cohen’s d=3.018. This cost (0.41 rps) 

was significantly larger than the (non-significant) cost of adding targets in the opposite 

hemifield described in the previous paragraph (0.05 rps), as indicated by a paired t-test on the 

difference of the speed limit differences, t (4) =6.096, p=0.004, Cohen’s d=1.96. 

 

Figure 3.6. Results of Experiment 5 
Top panel. For each participant, proportions correct are shown for each speed in the two-target bilateral (red), 
two-target unilateral (blue) and four-target (green) conditions. Dotted lines show the 68% thresholds (speed 
limit). Bottom panel. Empirical speed limits for tracking two and four targets, and the speed limit predicted for 
four targets by the capacity-one benchmark using the hemisphere-specific resource assumption and the 
(expected to be wrong) upper/lower field resource assumption. Error bars show one standard error across 
participants. Red stars show the statistically significant difference between conditions (p<0.05). 
 
 A non-significant trend was present for a poorer speed limit for the four targets 

condition than for the unilateral two-target condition, indicating that in the latter condition 

both the ipsilateral and contralateral hemispheres might have contributed to tracking the 
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targets. A similar non-significant effect was observed in Experiment 4. These non-significant 

trends suggest that the tracking resource may not be 100% hemisphere-specific. 

Similar to Experiment 4, we also compared the empirical performance for tracking 

two targets within one hemifield with the predicted performance by the capacity-one 

benchmark. As described in the Method section, this calculation was based on the 

performance in the two-target bilateral arrangement. The .04 lapse rate for 4-target condition 

further indicates when targets move very slowly, participants are capable of successful 

tracking not only two targets within one single hemifield (shown in Experiment 4) but also 

four targets within a whole visual field with near perfect performance.  

For high target speeds, we calculated the speed limit of the capacity-one benchmark. 

This benchmark speed limit was shown by the upper red dotted bar at the bottom of Figure 

3.6. The measured speed limit for tracking four targets (1.52 rps) was not significantly 

different from that the benchmark (1.66 rps), as revealed by a paired t-test, t (4) =-1.249, 

p=0.28,Cohen’s d=-0.982. Performance at these high speeds then was as bad as if participants 

simply ignored the second target in each hemifield. 

As a further validation of the hemisphere-specific resource theory and the 

resemblance of the results to the capacity-one benchmark, we document here how discrepant 

the results are from the alternative assumption that observers tracked objects independently in 

the upper and lower hemifields and within each only one target could be tracked. We call this 

the UVF/LVF capacity-one benchmark prediction (lower blue dotted bar in Figure 3.6). As 

we described in the Method section, this amounted to calculating a benchmark four-target 

speed limit using the performance data from the two-target unilateral arrangement and 

combining it with guessing in half of trials. As shown in Figure 3.6, the predicted speed limit 

(1.29 rps) was significantly lower than the measured four-target speed limit (1.52 rps), paired 
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t (4) =2.923, p=0.043, Cohen’s d=1.873, suggesting that the tracking resources are not 

specific to the upper and lower visual hemifields.  

While the large speed limit cost of the additional target in each hemifield is consistent 

with resource theory, it does not particularly support spatial interference theory. Spatial 

interference theory does not make the specific prediction that the effect of additional targets 

should be as large as that predicted by the capacity-one benchmark. Because the objects were 

always widely spaced, it seems that spatial interference theory would predict only a small 

effect on speed limit, if any. 

According to spatial interference theory (Franconeri et al., 2010; Franconeri et al., 

2008), the detrimental effects of additional targets should be equivalent across speeds if the 

total distance travelled by the objects is constant. Therefore, performance should be poorer 

(even at slow speeds) in the four-target condition, than in the two-target bilateral condition. 

This would manifest as an increase in the “lapse rate” parameter in our psychometric function 

fit. This parameter represents the ceiling performance level. If spatial interference impairs 

tracking, it should further reduce accuracy for conditions with higher number of targets, thus 

inflating their lapse rates relative to those conditions with fewer targets.  

A repeated-measures ANOVA was conducted with both the condition and subject as 

the independent variables and lapse rate as the dependent variable. We found no significant 

differences among the three conditions: two-target bilateral (lapse rate=0.04), two-target 

unilateral (lapse rate=0.04), and four-target (lapse rate=0.03), F (2, 8) =0.419, p=0.672, 

partial η2=0.095. These results argue against significantly greater spatial interference when 

more targets are tracked.  

3.4 Experiment 6: Eye Tracking and Constant Number of Reversals 

This experiment was motivated primarily by a concern regarding some of the 

experiments in this thesis, in which the centre of target moving trajectory is not at the central 
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fixation point instead of at each centre of quadrant, such as Experiments 2, 4 and 5.  

Participants may not have maintained accurate fixation on the fixation point. In order to 

locate the targets closer to the fovea, participants instead might move their fixation toward 

the midpoint of the two circular trajectories that contained targets. If participants shift their 

fixation to the midpoint of the two circular trajectories in the right or left hemifield, tracking 

targets involves both hemispheres instead of just one hemisphere, thus the supportive 

evidence of the hemisphere-specific resource theory will no longer hold in Experiment 2, 4, 

and 5. To address this concern, in the present experiment we recorded eye movements with 

an eye tracker. 

In Experiment 5, a second point of interest is that for trials with lower speeds, the 

number of reversals was greater. Therefore, it is uncertain to what extent the detrimental 

effect of increased speed was due to speed per se or to fewer reversals (if reversals might 

somehow have benefited performance). To resolve this issue, in Experiment 6 we equated the 

number of reversals across speeds. 

3.4.1 Method 

3.4.1.1 Participants 

Six participants (four male, two female, 22-37 years of age) who reported normal or 

corrected-to- normal vision agreed to participate, and three of them also participated in 

Experiment 5. 

3.4.1.2 Stimuli and Procedure 

 The apparatus, stimuli, and procedure used were identical to those of Experiment 5 

except for the addition of the eye-tracker and the changes in the reversal times. During the 

6.6 revolutions of cumulative distance travelled by the blobs after the target-cuing interval, 

the blobs changed direction at random successive points of between 2.2 to 3 revolutions, 

resulting in 2 to 3 reversals. The direction changes for each ring were determined randomly 
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and independently of those for other rings. Each observer participated in 48 trials at each of 

the five speeds. This was fewer than in Experiment 5, in order to accommodate the eye-

tracker calibration and recalibration time. The speeds for individual observers were chosen on 

the basis of piloting. The tracking durations were set to achieve a constant distance travelled 

of 6.6 revolutions. Observers were presented with 240 experimental trials in total, divided 

into two sessions in two separate days. 

3.4.1.3 Eye Tracking 

 Eye movements were monitored using an SR Research EyeLink 1000 eye tracker and 

analysed with the Eyelink 1000 software, version 1.5.2. At the beginning of each session, the 

eye-tracking system was calibrated and validated using the standard five-point calibration. 

The experimenter monitored the video image of the participant’s eye at the beginning of each 

trial to ensure that the participant fixated and that the eye-tracker continued to report this 

correctly. The eye-tracker was recalibrated if, during the interval before the trial, it registered 

the participant’s eye location as being away from fixation even though the participant 

reported fixating. If the eye-tracker indicated that the participant moved his or her eye by 

more than 2 deg of visual angle from the fixation point, the trial was discarded. 

3.4.2 Results and Discussion 

 The criterion of eye movement greater than 2 deg from fixation led to the exclusion of 

8.3% of the trials (SD=3.3% across participants). A repeated-measures ANOVA revealed no 

significant difference in the numbers of these eye movements across the five speeds, F (4, 20) 

=2.146, p=0.113, partial η2=0.3 or the three conditions (two-target bilateral, two-target 

unilateral, and four-target), F (2, 10) =1.677, p=0.235, partial η2=0.25. The ANOVA also 

showed no significant interaction between these factors, F (8, 40) =0.539, p=0.82, partial 

η2=0.097. 
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The data and fitted curves are shown for each participant in the top panel of Figure 

3.7, with the associated speed limits (68% thresholds) shown at the bottom panel. As in 

Experiments 4 and 5, the speed limit was considerably higher in the bilateral arrangement 

(1.89 rps) than in the unilateral arrangement (1.63 rps) for tracking two targets. This 

difference was statistically significant according to a paired t-test, t (5) =4.126, p=0.009, 

Cohen’s d=0.869. 

 

Figure 3.7. Results of Experiment 6  
Top panel. For each participant, proportion correct is shown for the two-target bilateral (red), two-target 
unilateral (blue) and four-target (green) conditions. Dotted lines show the 68% thresholds (speed limit). Bottom 
panel. Speed limits for tracking two and four targets and the speed limit predicted for four targets by the 
capacity-one benchmark using the hemisphere-specific resource assumption and the (expected to be wrong) 
upper/lower field resource assumption. Error bars show one standard error across participants. Red stars show 
the statistically significant difference between conditions (p<0.05). 
 

Consistent with the hemisphere-specific resource theory, compared to the speed limit 

for tracking two targets in a single hemifield (two targets unilateral condition), adding two 

more targets in the opposite hemifield (four targets condition) had little to no effect on the 



	   90	  

speed limit (1.63 rps vs. 1.72 rps, paired t-test t (5) =-1.496, p=0.195, Cohen’s d=-0.329). But 

compared to the speed limit in the two-target bilateral condition (1.89 rps), the speed limit for 

the four-target condition was significantly poorer (1.72 rps), paired t-test t (5) =6.653, 

p=0.001, Cohen’s d=0.738. This is consistent with the hemisphere-specific resource theory.   

 The capacity-one benchmark puts these speed limit differences in perspective by 

calculating the result that would occur if participants only tracked one target in each 

hemifield and ignored the other. The ensuing capacity-one benchmark speed limit was shown 

by the upper red dotted bar at the bottom of Figure 3.7. Consistent with Experiment 5, the 

measured speed limit for tracking four targets (1.72 rps) was not significantly different from 

that predicted (1.74 rps), paired t-test t (5) =-0.417, p=0.694, Cohen’s d=-0.09. This is 

consistent with the possibility that the tracking resource in each hemisphere was only 

sufficient to track one fast target in each hemifield. Due to matching the prediction of linear 

resource-versus-performance function with capacity-one benchmark in our display, this result 

is also consistent with each of two targets within one single hemifield receiving 50% of the 

hemisphere-specific tracking resource. 

 As in Experiment 5, for further validation of the hemisphere-specific resource theory, 

we document here how discrepant the results are from the alternative assumption that 

observers tracked objects independently in the upper and lower hemifields and within each 

only one target could be tracked (UVF/LVF resource prediction). Here we see the lone 

difference from Experiment 5- the discrepancy of the observed speed limit (1.72 rps) from 

the prediction (1.51 rps) did not reach significance although the effect was in the expected 

direction, paired t (5) =2.276, p=0.072, Cohen’s d=0.668 (Figure 3.7). This may reflect the 

reduced power of this experiment—mainly because of the additional time demands of eye-

tracking, it included only 30% as many trials per participant as had in Experiment 5.  
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3.5 Experiment 7: Varying Target-Target Separations within A Hemifield 

 Franconeri (2013) suggested that the reason for hemifield independence of tracking is 

not because of a hemisphere-specific resource, but rather done to a lack of spatial interference 

across the vertical midline. Our previous experiments (Experiments 4, 5, and 6) however 

minimized crowding and spatial interaction effects and demonstrated tracking performance is 

mediated by a hemisphere-specific resource. Equating the total travel distance of objects 

(Franconeri et al., 2010) and using wide separation between targets (Franconeri et al., 2008) 

to avoid spatial interference, we found that tracking additional targets worsens performance 

greatly in the same hemifield but does not affect performance when additional targets were 

presented in the opposite hemifield. 

 Shim et al. (2008) demonstrated tracking performance deteriorated greatly when the 

spacing between two targets was less than 1.12 deg. This indicates that spatial interference 

occurred at very close spacing, although Shim et al. (2008) did not control for eccentricity. 

They also documented that the spatial interference does not exist when two targets were 

presented in separate quadrants, even if these targets moved within the same hemifield. 

However, Franconeri (2013) proposed that the spatial interference between targets is the only 

factor impairing tracking performance, even they are very far apart within a hemifield. 

According to his theory, one would expect there to be an effect of magnitude of the 

separation, with greater separations yielding better performance throughout whole visual 

hemifield. 

  The purpose of this experiment was to test for large-range spatial interference 

between two targets within a hemifield proposed by Franconeri (2013). Four distinct 

separations from large (9 deg) to small (3 deg) were used in this experiment. Large-range 

spatial interference theory predicts that the speed limit for two targets should gradually 

decline from large to small separation. Franconeri (2013) hypothesized the spatial 
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interference to be predominantly between targets, which provides a further prediction that in 

the one-target condition, there will be less effect of separation than in the two-target 

condition. 

3.5.1 Method 

3.5.1.1 Participants  

Eight participants (four male, four female, 22-38 years of age) who reported normal or 

corrected-to-normal vision agreed to participate, and six of them also participated in 

Experiment 5. 

3.5.1.2 Stimuli 

 With the following exceptions, the apparatus and stimuli employed were identical to 

those of Experiment 4. Whereas in Experiment 4, each circular trajectory was centred on a 

point 6 deg from the vertical midline and 6 deg from the horizontal midline, in Experiment 7 

the separation between targets is manipulated by varying the centre of each circular 

trajectory. Their eccentricity was kept constant, with the centre of each circular trajectory at 

8.5 deg. Two pairs of blobs were presented in all conditions and were always in the same 

hemifield- in half of trials the two pairs were in the left visual field and in the other half of 

trials they were located in the right visual field. As schematized in Figure 3.8, four separation 

conditions were used in this experiment. By shifting the pairs up and down, the minimal 

vertical distance separating the two pairs of blobs was set to 3, 5, 7, or 9 deg. These are the 

four separation conditions.  

3.5.1.3 Procedure  

 The sequence of events was identical to that found in Experiment 4. Observers were 

cued to track one or two targets. In the one-target condition, only one blob was designated as 

a target. For half of trials, the target was in the upper trajectory and during the other half it 

was in the lower trajectory. In the two-target condition, one blob of each trajectory was 
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designated as a target. At the end of the trial, one trajectory was indicated with a white line 

(see Figure 3.2). The participants used the mouse to indicate which blob was the target in the 

corresponding trajectory. In the two-target condition, in half of trials participants were cued 

to indicate the target in the upper trajectory and in the other half of trials they were cued to 

the lower trajectory. 

All blobs revolved at the same speed throughout each trial. A range of speeds from 

0.6 to 2.4 rps was used on different trials, presented in pseudorandom order, and fully crossed 

with the one-target versus two-target conditions. The speeds for each condition and person 

were chosen on the basis of piloting. Each person participated in at least 640 trials, which 

usually involved two sessions, each shorter than fifty minutes. The data was analysed as in 

previous experiments, with speed limits (68% thresholds) extracted from the psychometric 

curve fit. 

 

Figure 3.8. Display of Experiment 7 
In Experiment 7, two pairs of blobs were presented in each condition. Each blob moved along a circular 
trajectory (dotted lines) and was confined to one quadrant. They were presented in one of four different 
separation conditions: Largest (9 deg), Large (7 deg), Small (5 deg), and Smallest (3 deg) separation. A blob 
from one or both pairs was designated as targets. 



	   94	  

3.5.2 Results and Discussion 

 The data and associated psychometric plots for each of the seven participants in all 

conditions are shown in Figure 3.9. For every participant, the speed limit (68% threshold) for 

tracking one target (red points and curve) is better than for tracking two targets (green points 

and curve), which is similar to Experiment 4. 

 

Figure 3.9. Individuals’ performance in Experiment 7 
For each participant in Experiment 7, proportion correct is shown for each speed, in the one-target (red curve) 
and two-target (green curve) conditions. Also shown is the prediction for the two-target condition (blue curve) if 
the participant had a capacity limit of one target. Dotted lines show the 68% thresholds. 
 
 Figure 3.10 shows the average speed limits for tracking one (black bars) and two 

targets (white bars) across four different separation conditions. The capacity-one benchmark 

(dashed bars) provides some perspective on the speed limit decrement, showing what would 

have occurred in the two-target condition if participants could only track one target.  

The observed speed limits were similar regardless of separation, contrary to the 

predictions of the spatial interference theory of Franconeri (2013). A repeated-measures 
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ANOVA with target number and separation as factors revealed no significant effect of 

separation, F (3, 21) =0.108, p=0.954, partial η2=0.015, and no significant interaction of 

separation and number of targets, thus F (3, 21) =0.078, p=0.971, partial η2=0.011. Spatial 

interference theory predicted that the speed limit for tracking two targets should have 

declined as the distance between targets decreased, especially in the two-target condition.  

To complement the ANOVA analyses reported above, a regression analysis of the 

effect of separation on speed limit was performed. The slopes of the regressions were close to 

zero and not statistically significant. According to a simple linear regression, for 2 targets 

from 3 to 9 degrees, b=0.004, r2=0.001, t (30) = 0.205, p=0.839, 95% confidence interval for 

b=-0.035~0.043. For 1 target, b=0.001, r2=0, t (30) =-0.041, p=0.968, 95% confidence 

interval for b=-0.045~0.043. 

 

Figure 3.10. Averaged Speed Limits in Experiment 7  
The mean speed limits (68% thresholds) for tracking one (black bars) and tracking two (white bars) targets with 
four different separations are noted here. The speed limit for tracking two targets is substantially worse than the 
speed limit for tracking one. The dashed bars show the predicted two-target speed limit by a capacity-one 
benchmark. Error bars show one standard error across 8 participants. 
 
 Speed limits were much poorer for the two-target condition (M=1.72 rps) than the 

one-target condition (M=2.07 rps), F (1, 7) =87.3, p<0.001, partial η2=0.926). This 

decrement, together with the evident absence of significant spatial interference between the 

targets, supports the resource theory. Resource theory proposes that the cost of tracking 
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additional targets within one hemifield is due specifically to dividing a hemisphere-specific 

resource among the targets.  

 The capacity-one benchmark makes predictions for the speed limit for tracking two 

targets based on the performance of the one-target condition, under the assumption that 

participants can track only one target and have to guess on the half of trials in which they 

track the un-queried target. For slow speeds, participants do much better than the benchmark 

performance, indicating that they can track more than one target at slow speeds. At fast 

speeds however performance becomes more similar to the benchmark performance, raising 

the possibility that participants can only track one target at high speeds. Specifically, the 

measured speed limit (1.72 rps) was similar to that predicted by the capacity-one benchmark 

(1.84 rps), F (1, 7) =4.267, p=0.078, partial η2=0.379. The (non-significant) trend is for 

performance to be even worse than the capacity-one benchmark. One possible explanation is 

that at high speeds, participants can only track one target, but by attempting to track two they 

fail on both more often than they would have if they simply ignored the second target.  

Table 3.1 reports the values of the “lapse rate” parameter in our psychometric 

function fit. The “lapse rate” term from psychophysics conveys that this includes complete 

lapses on the part of the participant, such as hitting the wrong key, which should differ little if 

at all across conditions. Other differences in difficulty across the conditions that are unrelated 

to speed would also yield differences in lapse rate, which was our interest here. Reassuringly, 

we found little to no change in lapse rate across the four distinct separations or for two targets 

versus one target (Table 3.1). A repeated-measures ANOVA with target number and 

separation as factors indicated the effects of number of targets (F (1, 7) =0.537, p=0.488, 

partial η2=0.071) and separation (F (3, 21) =0.411, p=0.747, partial η2=0.055) were not 

significant, and neither was their interaction (F (3, 21) =0.73, p=0.546, partial η2=0.094). 
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Table 3.1. Estimated lapse rates for different separations and targets in Experiment 7 
Separation (deg) 1 Target 2 Targets 

3 .02±.03 .03±.04 
5 .02±.03 .02±.03 
7 .02±.02 .01±.04 
9 .03±.04 .01±.02 

Note. Lapse rates ± Standard error across participants 

 Pelli and Tillman (2008) validated Bouma’s law (Bouma, 1970) which states that for 

objects arrayed radially, spatial crowding for target identification occurs when distractors are 

separated from the target by less than half of target’s eccentricity. According to this, for the 

smallest (3 deg) separation condition, the speed limit should be lower than other conditions 

because the separation is less than half of the target’s mean eccentricity (the eccentricity of 

the centres of the trajectories was 8.5 deg). However, the speed limits across the four 

separation conditions were the same. There are a number of possible explanations for this.  

One explanation is that the crowding zone for target tracking might be smaller than 

the zone for target identification. This explanation could be supported by the fact that 

observers can successfully track multiple moving targets without identifying targets 

(Pylyshyn, 2004). To date, the critical spacing related to eccentricity for attentive tracking is 

uncertain (Intriligator & Cavanagh, 2001). Intriligator and Cavanagh (2001) only 

demonstrated the critical spacing related to eccentricity for selecting targets. According to 

Intriligator and Cavanagh (2001), the critical spacing of the crowding effect for the target 

selection is less than 2 deg for our display of 8.5 deg of eccentricity. Thus, the future work 

should investigate the crowding effect on speed limit with the condition that the separation is 

less than 2 deg. 

Another possible explanation is that tracking performance is robust with regard to the 

momentary difficulties of attentional selection. In this display, the blobs move in a circular 

trajectory. When the targets and distractors pass closely by each other, participants might 

confuse the two. But after this close encounter, participants might predict targets’ next 

location according to their trajectory and thus be able to recover the target. This could explain 
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why we were unable to find an effect of separation on tracking accuracy in our experiment. 

Possibly, a different sort of tracking task, for example with more frequent changes in 

direction, would yield an effect of separation. However the important point for the 

interference vs. resource theory debate is that even with the present type of tracking display 

that does not exhibit a separation effect, performance is much worse with two targets, 

validating resource theory.  

3.6 Discussion of Experiments 4-7 

 These results provide support for the theory that a hemisphere-specific resource 

mediates tracking with excluding the confounding factor of spatial interference.  

3.6.1 Hemisphere-Specific Resource Theory 

 Previous work has found evidence that tasks with demands on attentional selection 

show strong benefits on bilateral presentations, relative to unilateral presentations 

(Chakravarthi & Cavanagh, 2009; Reardon, Kelly, & Matthews, 2009). For example, 

Reardon et al. (2009) found that discriminating the orientation of two Gabor targets were 

better when the targets were presented bilaterally, but only if distracters were also presented.  

 For the task of tracking moving targets, Alvarez and Cavanagh (2005) found a very 

large advantage for bilateral presentations. However, they used objects moving at slow 

speeds and thus did not determine whether the benefit extended to the speed limit on 

tracking. The results of our Experiments 4, 5 and 6 provide the first evidence that 

bilateral presentations yield a higher tracking speed limit than unilateral presentations.  

 The bilateral presentation advantage on the tracking speed limit that our findings 

showed might support that there are two hemisphere-specific attentional tracking resources. 

In Experiment 4, speed limits for tracking one target were all around 1.7 rps whether the 

rotating doublets were aligned bilaterally or unilaterally. When increasing the number of 

targets from one to two, the decrement of speed limit was significantly greater as two rotating 
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doublets were presented within the same unilateral hemifield (0.27 rps), comparing to the 

bilateral hemifield arrangement (0.07 rps). It indicates that one hemisphere-specific resource 

can support observers to track one target moving within one hemifield up to 1.7rps. But the 

cost of adding another target is much larger in the same hemifield than in the opposite 

hemifield because two hemisphere-specific resources are independent. 

 Increasing the tracking load from two to four targets, Experiments 5 and 6 showed 

that the speed limit for tracking four targets was substantially lower than for tracking two 

targets bilaterally but was similar to that for tracking two targets unilaterally. Previous studies 

also found that tracking four targets in separated visual hemifields had little or no cost over 

tracking two targets within a single hemifield (Alvarez & Cavanagh, 2005; Battelli et al., 

2009). Our experiments show that these results hold even when the objects are widely 

separated to avoid spatial interference and the total distance travelled by the blobs is held 

constant across trials. Holding travel distance constant was done to avoid a possible increase 

in spatial interactions with speed (Franconeri et al., 2010).  

 The similarity of the observed speed limits to the capacity-one benchmark limits is 

consistent with a linear resource-versus-performance function. It indicates that for tracking 

two targets within one single hemifield, the empirical performance is equivalent to what 

would occur if participants gave up on one target and focused all of the resource on the other 

target, as well as 50% of resource was not enough to track each fast-moving target. The 

capacity-one benchmark limits for the four-target condition were calculated using the two-

target bilateral data in Experiments 5 and 6, which similar to using the one-target data to 

predict the capacity-one benchmark limit for the two-target unilateral condition in 

Experiment 4. Indeed, the actual performance non-significantly fell below the benchmark 

when tracking two targets within one hemifield, suggesting that the true resource-versus-

performance function fells below the linear function. In other words, for fast targets, splitting 
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the resource in two may yield performance that is worse than halfway toward chance from 

one-target level. For example, more than half the resource may be required to have any 

tracking success with fast targets, and therefore if the participants try to track both in each 

hemifield, they will fail and have to guess regarding both, yielding performance even worse 

than the capacity-one benchmark limit.  

The capacity-one benchmark limits provide a useful way for putting any load effects 

in perspective. For previous literature, the lack of such a benchmark makes it unclear whether 

a particular effect size is large enough to be consistent with the theory that the resource was 

all used, because no prediction (not even of a lower bound) was made. For example, a trend 

of a decrement in performance is sometimes observed when adding targets to the opposite 

hemifield (e.g. Experiment 1 and 3 of Alvarez & Cavanagh, 2005). Without a comparison 

like the capacity-one benchmark limit as well as a linear resource-versus-performance 

function, one is left unsure how much resource deployed to targets with the size of such 

decrements. 

3.6.2 Excluding the Confound from Spatial Interference 

 Some researchers might argue that the bilateral presentation advantage on speed limits 

we found was caused by the substantially stronger spatial interference between targets and 

distractors (Chakravarthi & Cavanagh, 2009; Liu et al., 2009) or between targets (Franconeri, 

2013) when stimuli were presented within one single hemifield than across two hemifields.  

 The unique design of our paradigms is able to address the concerns of spatial 

interference between targets and distractors, or between targets. Firstly, the shortest spacing 

between targets and distractors in Experiments 4-6 is larger than the crowding zone that is 

predicted by the results of Intriligator and Cavanagh (2001) and even larger than that 

predicted by the Bouma’s law. Thus, the worse performance with additional targets caused by 

the poor spatial resolution is avoided. 
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Furthermore, spatial interference between targets is also avoided by the configuration 

of the motion of targets and distractors. Each target always moves with another distractor 

within one of four quadrants. Our Experiment 7 measured the tracking speed limit by varying 

separations between two targets in separate quadrants within a hemifield. Speed limits for 

tracking one and two targets were not significantly different across four separation conditions 

from small to large. This provides empirical evidence against the Franconeri (2013)’s theory 

that the across-hemifield advantage on tracking performance results from a lack of spatial 

interference across the vertical midline, with long-range spatial interference constraining 

performance within a hemifield.  

3.6.3 Tracking Resource is not Completely Hemisphere-Specific     

 The tracking resource might be largely (but not entirely) hemisphere-specific. The 

first claim (that the resource is largely hemisphere-specific) is consistent with our primary 

measure of the speed limit cost for adding targets to the same or the opposite hemifield. 

Adding targets to the same hemifield yielded a much larger cost than adding targets to the 

opposite hemifield.  

 Nevertheless, the tracking resource may not be 100% hemisphere-specific. If the 

tracking resource were completely hemisphere-specific, the speed limit for tracking one 

target should be equal with that for tracking two targets in different visual hemifields. But in 

Experiment 4, five out of the eight participants had a statistically significantly higher speed 

limit when tracking one target than with tracking two targets, as revealed in Pair-t test, t (4) 

=5.013, p=0.007. A non-significant trend for a cost of opposite-hemifield targets was also 

found in Experiments 5 and 6 as well as in both relevant experiments of Alvarez and 

Cavanagh (2005). In the case of an experiment conducted by Hudson, Howe, and Little 

(2012), the reduction in accuracy associated with adding targets in the opposite hemifield 

reached statistical significance (in their Experiment 4). 
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 Two possible explanations for the resource not being entirely hemisphere-specific are 

suggested here. Firstly, in addition to two hemisphere-specific resources, there might be a 

global resource that can allocate resource to both hemifields. According to this hemisphere-

specific plus global resource model, in the one-target condition, the speed limit benefits from 

the entire global resource plus the corresponding hemisphere-specific resource. In the 

bilateral two-target condition the speed limit is lower, because each of two targets receives its 

own hemisphere-specific resource plus only half the global resource. For example, for the 

bilateral arrangement in Experiment 4, the speed limit for tracking one target (1.7 rps) may 

have been (non-significantly) higher than tracking two targets (1.64 rps) owing to support 

from a global resource pool. Similar results were found in Experiment 5, tracking two targets 

in the unilateral hemifield (1.56 rps) has non-significantly higher speed limits than tracking 

four targets (1.52 rps), in which each hemifield includes two targets. 

 An alternative possible explanation is that the interhemispheric resource sharing 

(Maertens & Pollmann, 2005) benefits the speed limit for tracking one target. Maertens and 

Pollmann (2005) proposed that when two visual stimuli are presented in the left visual 

hemifield (LVF), first the right hemisphere (RH) processes the stimuli on its own. If the 

stimuli were complex enough to exhaust the RH resource, it is necessary to activate 

interhemispheric communication to share the resource from the LH. When it comes to 

Experiment 4, after increased speed completely depletes one single hemisphere-specific 

resource, if speed is further increased, the interhemispheric communication might be 

activated to share a part of resource from the other hemisphere-specific resource. Therefore, 

the speed limit for tracking one target is slightly higher than tracking two targets across 

hemifields. 
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3.7 Conclusion of Chapter 3 

 In the first three experiments we demonstrated that the large cost on tracking speed 

limit for additional targets is largely hemisphere-specific. This hemisphere-specific effect is 

not caused by spatial interference between targets or between targets and distractors. There is 

a large speed limit cost when adding targets within the same hemifield but little or no speed 

limit cost when adding targets in the opposite hemifield, under the situation of equating the 

total distance that object travelled and utilizing wide separation between targets and 

distractors. The last experiment excluded the concern of a long-range spatial interference 

between targets on this hemisphere-specific effect. 
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Chapter 4 : Differential Tracking Resource Allocation 

4.1 Introduction of Chapter 4 

In previous chapters (2 and 3) we reported that, when spatial interference was avoided 

by using widely-spaced targets or equating the distance that objects travel across speeds, the 

speed limit nonetheless is worse when more targets must be tracked. These results support the 

hypothesis that a limited mental resource is involved in attentive tracking rather than just 

spatial interference. 

 This resource may comprise discrete pointers (sometimes called “slots”) that are 

assigned to the targets (Horowitz & Cohen, 2010; Pylyshyn & Storm, 1988) or a continuous 

pool of mental resource that is divided among the targets (Alvarez & Franconeri, 2007). An 

extreme variant of the slot theory posits that only one slot or spotlight is available, and it 

must be rapidly switched among targets for tracking to succeed (Tripathy & Howard, 2012; 

Tripathy et al., 2011). 

 The purpose of the present chapter is not to decide between these various competing 

resource theories, but rather to address an issue common to all of them. This is the question 

of whether different targets, presented simultaneously, can be allocated different amounts of 

the resource. For example, if the resource comprises four discrete tracking slots and two 

targets are presented, perhaps three slots can be devoted to the more-demanding target, with 

just one slot devoted to the less-demanding target. If the resource is instead a continuously 

divisible pool, then the more-demanding target might be allocated 75% of the resource and 

the less-demanding target only 25%. If the resource is instead a unitary focus of attention that 

is time-shared among the targets, it might visit the more-demanding target more often. In 

summary, a flexible resource may be differentially allocated among targets according to their 

demands, rather than split evenly between them. 
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4.1.1 Variable Resource Allocation  

Although several studies have found evidence for an attentional-resource component 

to tracking, there is little evidence available regarding the possibility of differential resource 

allocation. For example, Tombu and Seiffert (2008) found evidence that tracking depends on 

an attentional resource that is also required when performing auditory tone discrimination. 

They also found evidence that tracking demands more of this resource when the targets are 

moving quickly. However, they did not investigate whether one can allocate more of the 

resource to one target (or one task) than to another. 

 Indirect support for differential resource allocation was found by Liu et al. (2005). In 

one of their experiments, half of the targets moved at 1 deg/s and the other half moved at 6 

deg/s. They found that tracking accuracy was the same for both kinds of targets, even though 

one would expect that if both received equal resources, then accuracy would be poorer for the 

faster targets (Alvarez & Franconeri, 2007; Bettencourt & Somers, 2009). This was a null 

result, however, and one they did not discuss or follow up. 

Experiments by Iordanescu, Grabowecky, and Suzuki (2009) also yielded some data 

that were interpreted as supporting differential resource allocation. Their observers viewed a 

number of moving discs and were asked to track a subset of them. All the discs were 

coloured and each target was a different colour. The objects moved about randomly and at 

the end of the trial, all the discs disappeared. Subsequently, the observers were asked to 

indicate the final location of a particular target (e.g. the red one). Observers were more 

accurate at indicating the final location of a target when the target was located near 

distractors. Iordanescu et al. (2009) suggested that this occurred because more resource is 

devoted to targets when they are near distractors because they are more demanding. 

However, two additional studies have failed to replicate this finding (Howard & Holcombe, 

2008; Howard, Masom, & Holcombe, 2011). The reasons for the failure in replication are 
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unclear, but may have been because they did not directly manipulate proximity but rather 

relied on the random movements, so there may have been other display characteristics that 

differed when targets and distractors were nearby. On the other hand, Howard et al. (2011) 

purposely used a stimulus paradigm very similar to that employed by Iordanescu et al. (2009) 

and still failed to replicate the result of the Iordanescu et al. (2009). 

Howe et al. (2010, Experiment 8) performed a more direct test of whether the tracking 

resource could be differentially reallocated between targets during tracking. In their displays, 

each object repeatedly paused so that it was moving for only half the tracking period. In the 

simultaneous condition, all the objects moved and paused simultaneously (i.e., 

synchronously). In the sequential condition, the objects were divided into two groups, each 

with an equal number of targets, and the two groups moved in alternation. When the objects 

in one group were moving, those in the other group were stationary. The rationale was that 

when an object was not moving, it would require less tracking resource (Alvarez & 

Franconeri, 2007; Bettencourt & Somers, 2009) and more resource could be allocated to the 

moving objects. Since fewer objects were moving at any one time in the sequential condition 

than in the simultaneous condition, it was expected that tracking performance would be 

greater in the sequential condition. Yet in fact, tracking performance was equal for the two 

conditions, suggesting that the tracking resource could not be dynamically reallocated 

between the targets. But to benefit performance in the Howe et al. (2010) study, any unequal 

distribution of resource would have to be reversed at the rate of the movement alternation. 

Perhaps participants can allocate resource unequally but cannot change this resource 

allocation rapidly. Our Experiment 8 will test whether the resource can be allocated with 

unequal amounts. Experiment 9 will test whether the resource can be successively reallocated 

between targets during the tracking period when the demands of the targets change. 
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4.1.2 Tracking Resource Reallocation  

 Consider the possibilities for dynamic allocation over the timeline of a tracking trial. 

The differential resource allocation might occur in the beginning of the tracking period and 

not change after that. Alternatively, this resource allocation between targets might change 

many times during the tracking period, because of removal of a target or changes in the 

difficulty of the targets, such as increases in a target’s speed. For example, one target might 

receive half the resource during the first 0.5 sec and subsequently receive an additional 

quarter of the resource, while another target loses that quarter, after 0.5 sec tracking. Here we 

term this change in amount of resource during the tracking period (following the initial 

allocation)”resource reallocation”.     

 Wolfe, Place, and Horowitz (2007) found observers’ performance was unaffected by a 

requirement to reallocate resources to new targets during a tracking trial. Their experiments 

appear to be the first to demonstrate successful resource reallocation between targets over 

time. Three experimental conditions were used in their experiment: fixed, added and dynamic 

conditions. In the fixed condition, the target set remains the same set of four targets from the 

start of the trial. In the added condition, the trial starts with no targets and gradually the 

number of targets increases from one to four during the 20s tracking period. In the dynamic 

condition, the trial starts with no targets and first adds targets, after which targets are added 

or subtracted throughout the trial. The experiments yielded no significant difference in 

tracking performance among the three conditions, suggesting that the tracking resource can 

dynamically reallocate among new and old objects. However, as Wolfe et al. (2007)  pointed 

out, performance in the three conditions cannot easily be quantitatively compared, because 

the average number of targets in the dynamic condition was fewer than the other two 

conditions, and in the fixed condition there were four targets for longer than in the other 
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conditions. Thus, this result indicates that the resource can be reallocated, but does not 

indicate whether or not it has a cost. 

 Ericson and Christensen (2012) addressed the problem from the study of the Wolfe et 

al. (2007) with a modified paradigm including six experimental conditions. These included 

four control conditions, in which observers were asked to track four or three targets during 

the 10s or 20s tracking period, an “added” condition, and a “subtracted” condition. In the 

added (3+) condition, observers were asked to track three targets at the start of trial, and after 

a 10 second tracking period, a new target was added. In the subtracted (4- ) condition, the 

trial started with tracking four targets and after 10s a target was removed.  

Ericson and Christensen (2012) separately estimated the rate of missing targets for the 

first and second halves of the 20s trial. They predicted performance for the added (3+) 

condition using the performance of the 10s three-target condition and that of the second half 

of the 20s four-target condition. For example, the performance of the 10s three-target 

condition showed that observers lose an average of 0.3 targets during the 10s tracking period 

(i.e., capacity=2.7 targets). The performance of the second half of the 20s four-target 

condition was calculated by taking the capacity difference between the 10s (i.e., capacity=3.8 

targets) and 20s (i.e., capacity=3.6 targets) four-target conditions, indicating the rate of 

missing targets during the last 10 s was 0.2/3.8. Thus, performance of the added (3+) 

condition was predicted by starting with performance of the 10s three-target condition (i.e., 

capacity=2.7 targets), adding one for the added target (i.e., capacity=3.7 targets, assuming the 

one is perfectly tracked for the first 10s), and then estimating the final capacity with the rate 

of missing targets of the second half of the 20s four-target condition (i.e., predicted 

capacity=3.51 targets). They also used the performance of the 10s four-target condition and 

that of the second half of the 20s three-target condition to predict the performance of the 

subtracted (4- ) condition. The logic of prediction for the subtracted condition is similar to, 
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but more complicated than, the added condition because the removed target may or may not 

be tracked at the time of removal (equation was shown in Ericson & Christensen, 2012). 

Results showed that the actual and predicted performance was very similar (with no 

statistically significant difference), indicating that the addition or removal of a single target 

during the tracking period has no or little effect on tracking performance. It suggests that the 

tracking resource could be reallocated to targets throughout the trial depending on the change 

in target set, with no cost. 

 Both studies mentioned above were focused on the resource reallocation with change 

in number of targets. However, it is unknown whether any tracking resource can be 

reallocated between targets when target speeds change during the trial (presuming that more 

of the resource can be given to targets with higher speed than to those with lower speed, 

which is tested in Experiment 8).  

The reallocation of resources in the Wolfe et al. (2007) study was required every 2 s 

on average- this was the average interval between changes in the target set. These results 

indicate that observers can reallocate the tracking resource between targets at a slow rate of 2 

sec per change, while the Ericson and Christensen (2012) study was less demanding, with a 

target added or subtracted only once during the 20s tracking period. However, observers 

might not be as capable of resource reallocation at higher rates, such as when targets change 

speed continuously. Our Experiment 9 is designed to investigate this. 

Having found in Chapter 3 that a hemisphere-specific resource determines the 

tracking speed limits, our Experiment 8 tested the possibility of differential allocation of the 

resource, with more resource allocated to the faster of two targets. In one condition, both 

targets moved at the same speed whereas in the other condition they moved at different 

speeds. The results indicate that observers’ speed limit for one target is higher when the other 

target is moving more slowly. This suggests that when a target moves slowly, less resource is 
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needed to track it; hence, more resource is available to track the other target. This thereby 

allows the target to be tracked at a higher speed. 

 In Experiment 9, we investigated whether this resource allocation could be varied in 

accordance with a change in speed of the two targets during the tracking period. The results 

indicate that the differential resource allocation between targets with different speeds might 

only occur in the target-cueing period, and this resource allocation does not change during the 

tracking period even there is only one change in speed.   

4.2 Experiment 8: Resource Allocation between Targets of Different Speeds 

 Under the umbrella of resource theory, different amounts of resource might be 

allocated to different targets in a demand-based manner. This possibility was tested in 

Experiment 8 by comparing the speed limit at which observers could track a particular blob 

(the “critical target”) under two conditions, both of which required the observer to track two 

targets (a critical and a non-critical target). In the “other-slow” condition the non-critical 

target moved at a slow speed of 0.5 rps whereas in the “same-speed” condition the non-

critical target moved at the same speed as the critical target. 

 We reasoned that because in the other-slow condition the non-critical target was 

slower than the critical target, less resource would be needed to track it (Alvarez & 

Franconeri, 2007; Bettencourt & Somers, 2009). This should leave more resource for the 

critical first target, allowing it to be tracked at a faster speed, provided that resource can be 

allocated unequally. Because the resource pools operate independently for the left and right 

visual hemifields (Alvarez & Cavanagh, 2005), we predicted that an improved speed limit for 

the other-slow condition would only occur for the unilateral arrangement (both targets to the 

left or to the right of fixation), not the bilateral arrangement (the targets in different 

hemifields).  
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4.2.1 Method 

4.2.1.1 Participants  

 Seven participants (six male, one female, 27-32 years of age) who reported normal or 

corrected-to- normal vision agreed to participate in the protocol, which was approved by the 

University of Sydney’s ethics committee. All had extensive experience fixating in laboratory 

experiments. 

4.2.1.2 Stimuli 

 Stimuli were displayed in a dimly lit room on a 21 in. SONY Multiscan G520 CRT 

monitor (1,024 x 768 resolution) with a refresh rate of 120 Hz controlled by a MacBook 

running a Python program that used PsychoPy software (Peirce, 2007). Viewing distance was 

57cm, with a chin rest and forehead support to avoid subject head movement.  

 Eight red blobs (evoked by the red gun only, with Gaussian intensity profiles; visible 

diameter 1 deg; peak luminance 20 cd/m2) and a white fixation dot (radius: 0.1 deg, 

luminance: 167 cd/m2) were presented against a black background (41°x31°, luminance: 0.02 

cd/m2). The spatial arrangement of the objects is schematized in Figure 4.1. Four pairs of 

blobs were presented in all conditions. Each pair moved on a circular trajectory that was 

centred in one of the four quadrants of the visual field. Each circular trajectory was centred 

on a point 6 deg from the vertical midline and 6 deg from the horizontal midline 

(representing one of the four quadrants). The radius of each trajectory was 2.5 deg, and 

because the two blobs on a trajectory were always diametrically opposed, the separation 

between them was always 5 deg. This separation is larger than the critical spacing within the 

crowding zone (4.25 deg), which is calculated as half of eccentricity (8.5 deg) of the centre of 

each circular trajectory. These distances should be large enough to avoid crowding among the 

objects (Intriligator & Cavanagh, 2001; Pelli & Tillman, 2008).    
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In Experiment 8, observers were always asked to track two targets, which were placed 

in either the same hemifield (unilateral arrangement) or opposite hemifields (bilateral 

arrangement). In the bilateral arrangement, in half the trials the targets were both above the 

fixation point and in the other half both targets were below the fixation point. In the unilateral 

arrangement, in half the trials the targets were both to the left of the fixation point, and in the 

other half both were to the right of the fixation point (Figure 4.1).  

 The main manipulation of this experiment was the difference between the targets’ 

speeds. In the same-speed condition, the two targets moved with equal speeds, which varied 

across trials from 0.9 to 2.1 rps. In the other-slow condition, the critical target moved at a 

speed between 0.9 and 2.1 rps and the slow target always moved at 0.5 rps. At the end of the 

trial, one pair of blobs was indicated with a white line and the participants used the mouse to 

indicate which of the two blobs was the target. Both targets were equally likely to be queried. 

 

Figure 4.1. Display of Experiment 8 
In Experiment 8, four pairs of red Gaussian blobs were presented in each condition. Each pair moved along a 
circular trajectory (dotted lines) and was centred in one quadrant. A blob from each of two pairs was designated 
as targets by being cued in white. For the bilateral arrangement, the targets were both above or both below 
fixation whereas for the unilateral arrangement, both targets were to the left or to the right. In the other-slow 
condition, one target always moved slowly (0.5 rps). In the same-speed condition, the two targets moved at the 
same speed (which varied across trials). 
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4.2.1.3 Procedure 

 Observers were told to maintain fixation on the white dot at the display centre. The 

trial started with the two target blobs presented in white and the remaining blobs in red. All 

four pairs of blobs revolved in the same direction (clockwise or counter clockwise) at the 

beginning of the trial and their initial angles about the circular trajectory were set randomly 

on each trial. After the 0.7s target-cuing period, all blobs were red. During the tracking 

period, the blobs occasionally reversed direction to prevent participants from predicting the 

final target positions from their initial positions and speeds. Each pair of blobs was 

independently assigned a series of reversal times, which succeeded each other at random 

intervals between 1.2 and 2 s. For this experiment’s 3 to 3.8 s tracking interval, this resulted 

in 2 or 3 reversals.  

 At the end of a trial, one pair of blobs was indicated with a white line (see Figure 3.2 

in Chapter 3) and participants were used the mouse to indicate which was the target.  

 The slower target always moved at 0.5 rps. Each observer participated in 128 trials at 

each of the five speeds for the faster targets, with the speeds for each condition and person 

chosen on the basis of piloting, ranging from 0.9 to 2.1 rps. Observers were presented with 

640 experimental trials in total, divided into four sessions. Each participant did no more than 

two sessions a day and had a minimum break between sessions of 5 minutes.  

4.2.1.4 Data Analysis 

 Plots of speed versus proportion correct were fit by a logistic regression that spanned 

from chance (50% accuracy) to a ceiling level of performance. The ceiling performance 

corresponds to the lapse rate, which in the fitting procedure was allowed to vary from 0% to 

10% to get the best estimate. This estimated lapse rate for each condition is reported in the 

results section. We define the “speed limit” as the speed at which performance is estimated 
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by the regression to fall to 68% correct. The regression was fit separately for each participant 

and condition to calculate the speed limits. 

4.2.2 Results and Discussion 

 For each participant, the data and associated psychometric curves are shown in Figure 

4.2 for the same-speed vs. other-slow conditions and the unilateral vs. bilateral arrangements. 

When the participants tracked two moving targets with equal and fast speeds (same-speed 

condition), performance for the bilateral arrangement (red curve) was better than for the 

unilateral arrangement (blue curve). A paired t-test for the same-speed condition found that 

across the seven subjects, the speed limit of the bilateral arrangement (1.97 rps) was 

significantly higher than that of the unilateral arrangement (1.63 rps), t (6) =4.743, p = 0.003, 

Cohen’s d = 1.887), bottom right panel of Figure 4.2, further supporting the hemisphere-

specific resource theory. 

In the unilateral arrangement, most of the participants had higher performance for the 

fast target when the second target moved slowly (other-slow condition) compared to when it 

moved at the same speed, paired t-test, t (6) =-2.649, p=0.038, Cohen’s d=-1.005. This is the 

critical finding, supporting the theory that in the unilateral arrangement each target was 

allocated different portions of the hemifield-specific resource, depending on its speed.  

 The results of the bilateral arrangement suggest that tracking resources cannot be 

shared across the vertical hemifield boundary to the extent that they can within a hemifield—

in the bilateral arrangement, there is no significant difference between the speed limit of the 

faster target for the same-speed condition and the other-slow condition, t (6) =0.278, p=0.79, 

Cohen’s d=0.112. This difference between the unilateral and bilateral arrangements was 

confirmed by the significant interaction between hemifield arrangement and speed found in a 

repeated-measures ANOVA, F (1, 6) =6.68, p=0.042, partial η2=0.527.  
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Figure 4.2. Results of Experiment 8 
Top. For each participant, proportion correct is shown for each speed in the two-target bilateral (red) and two-
target unilateral (blue) arrangements. Top row shows performance in the same-speed condition, averaging 
across both targets. Bottom row shows the other-slow condition, for the faster critical target. Dotted lines show 
the speed limits (68% thresholds). Bottom right. Red bars show the speed limits for the bilateral arrangements 
in the same-speed and other-slow (faster target only) conditions. The blue bars show the speed limit for the 
unilateral arrangements in the same-speed and other-slow (faster target only) conditions. Error bars show one 
standard error across participants. Red stars indicate statistically significant differences, p<0.05. Bottom left 
panel. Tracking accuracy for the slow target (mean across subjects) is shown for the other-slow condition, as a 
function of the speed of the fast target.  
 
 In order to understand in more detail how tracking performance was affected by the 

speed difference of the targets, the performance for tracking the slow target (in the other-slow 

condition) is plotted at the bottom left panel of Figure 4.2. It shows percentage correct for the 

slow target as a function of speed of the faster target. 

 For the slow target, a downward trend in tracking accuracy was observed as the speed 

of the fast target was increased. This was analysed by linear regression in the unilateral 

arrangement (b=-0.106, r2=0.161, p=0.017) and in the bilateral arrangement (b=-0.058, 

r2=0.132, p=0.032). The drop was significantly larger for the unilateral arrangement than the 

bilateral arrangement according to a paired t-test comparing the slopes of the two conditions, 

t (6) =2.512, p=0.046, Cohen’s d=1.105. This was not significant however in the alternative 
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analysis of a repeated-measures ANOVA, where it would have manifest as an interaction 

between speed and hemifield arrangement, F (4, 24) =0.898, p=0.481, partial η2=0.13. The 

ANOVA did show a significant speed effect, F (4, 24) =3.361, p=0.026, partial η2=0.359, 

and a marginally significant hemifield arrangement effect, F (1, 6) =5.161, p=0.064, partial 

η2=0.462. A significant decrease in performance regardless of the hemifield of the faster 

target would suggest that the resource is not 100% hemisphere-specific. More data would be 

needed to be confident of this. 

 Returning to the main results of speed limits, the lower speed limits in the unilateral 

arrangement do not reflect a general greater difficulty irrespective of relative blob speed.  

One possible explanation is that a general difficulty factor might cause the psychometric 

function to saturate at a lower ceiling in the unilateral condition. This is not apparent in the 

plots, and we confirmed the lack of any significant effect by examining the lapse rates of the 

fits. The lapse rate sets the ceiling on performance. A repeated-measures ANOVA showed no 

significant differences in lapse rates between the unilateral (0.01) and bilateral (0.02) 

conditions (F (1, 6) =0.625, p=0.459, partial η2=0.094), and between the same-speed (0.02) 

and other-slow (0.02) conditions (F (1, 6) =0.104, p=0.758, partial η2=0.017), and no 

significant interaction between the two hemifield arrangements and speed conditions (F (1, 6) 

=0.057, p=0.819, partial η2=0.009). Any speed-invariant difficulty difference was non-

existent or too small to be detected. 

4.3 Experiment 9: Inefficient Resource Reallocation between Targets. 

 The hemisphere-specific resource can be differentially allocated to targets differing in 

speeds (Experiment 8). The speed limit was substantially higher for a target if the other target 

was slow than if the other target was fast (provided both targets are in the same hemifield). 

 Previous studies showed that the mental resource can be reallocated when targets 

appear or disappear during the tracking period, with little to no effect on tracking 
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performance (Ericson & Christensen, 2012; Wolfe et al., 2007). Besides changes in the target 

set, tracking resource might be reallocated according to changes in target speed during the 

trial. The previous chapter found that more resource is allocated to the fast target than the 

slow one. Thus, if we increase the speed of one target and decrease the speed of the other 

target during the trial, the resource might be reallocated from the speed-decreasing target to 

the speed-increasing target. The purpose of this experiment is to investigate whether change 

in target speed during the trial influences the tracking resource reallocation. 

 Observers might be capable of reallocating resource between targets at a slow rate of 

2 sec per change (Ericson & Christensen, 2012; Wolfe et al., 2007), but unable to reallocate 

resource at high change rate. It is unknown whether tracking performance drops when we 

increase the rate of resource reallocation between targets. With a shorter duration for each 

change (e.g. 1 sec per change), the speed of attention reallocation between targets might be 

not fast enough to deal with an increase in the speed of the target, leading to a failure of 

tracking. Comparing with the previous studies using the change rate of 2 sec per change 

(Ericson & Christensen, 2012; Wolfe et al., 2007), Experiment 9 investigates whether 

tracking performance worsens if we set the change rate is 0.1 sec per change (0.1 rps speed 

change per 0.1 sec). 

 To investigate whether change in target speed during the trial influences the tracking 

resource reallocation, five experiment conditions were used in this experiment and described 

in the following sections (Table 4.1). 

In the two-target speed switch (TSS) condition, observers tracked one initially-slow 

and one initially-fast target at the start of the trial. During the tracking period, the initially-

slow target gradually increased its speed until it was equal to that of the initially-fast target, 

and the initially-fast target gradually decreased speed to be equal to that of the initially-slow 

target. Under this condition, some tracking resource should be reallocated from the initially-
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fast to the initially-slow target, based on the theory of the fast moving target consuming more 

resource than the slow one. 

Table 4.1. The five conditions of Experiment 9 
Condition Description 

Two-Target Speed 
Switch (TSS) 

At the start of the trial, one target moves fast and the other slow. The initially-slow 
target increases speed gradually to be equal to the speed of the initially-fast target 
whereas the initially-fast target gradually slows to be equal to the speed of the 
initially-slow target (switching the speeds between two targets). 

One-Target Speed 
Changed (TSC) 

At the start of the trial, one target moves fast and the other slow. During the trial, 
the initially-slow target increases speed gradually to be equal to the speed of the 
initially-fast target. 

Same-Speed 
Unchanged (SSU) 

Two targets with equal speeds and no speed changes.  

Different-Speed 
Unchanged (DSU) 

One fast-moving target and one slow-moving target with no speed changes 

One Target (ONE) Observers track only one target throughout the trial and its speed does not change 
during the trial. 

 
 Compared to a target that moves at a constant fast speed throughout the trial, any 

observed improvement in performance for the initial-slow target in the TSS condition might 

be a result of its shorter duration moving at the fast speed. To exclude this possibility we 

designed the one-target speed changed (TSC) condition as a control condition. In the TSC 

condition, the trial started like the TSS condition, but only the initially-slow target changed 

speed. Its speed increased gradually to be equal to the speed of the fast target, and the speed 

of the fast target was constant throughout the trial. It is hypothesized that the speed limit for 

the initially-slow target in the TSS condition should be significantly higher than the 

equivalent target’s speed limit in the TSC condition. According to the assumption of resource 

reallocation depending on the change in target speed, resource is reallocated from the 

initially-fast target to the initially-slow target in the TSS condition but not in the TSC 

condition.   

 To confirm the result of Experiment 8 that resource can be differentially allocated to 

two targets of different speeds, we replicated two of the Experiment 8 conditions. Here, we 

called the “other-slow” condition from Experiment 8 as the “different-speed unchanged 

(DSU)” condition, and the “same-speed” condition from Experiment 8 as the “same-speed 
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unchanged (SSU)” condition. A final condition provided a baseline speed limit for tracking 

only one target (one target condition; ONE).  

4.3.1 Method 

4.3.1.1 Participants  

 Nine participants (six male, three female, 22-37 years of age) who reported normal or 

corrected-to- normal vision agreed to participate in the protocol, which was approved by the 

ethics committee of the University of Sydney. All had extensive experience fixating in 

laboratory experiments. 

4.3.1.2 Stimuli 

 With the following exceptions, the apparatus and stimuli employed were identical to 

those of Experiment 8. Observers were instructed to track simultaneously one or two targets 

within one single hemifield. In half the trials the targets were both to the left of the fixation 

point, and in the other half both were to the right of the fixation point. 

 The primary manipulations were 1) whether the speeds of these two targets were 

different or not and 2) whether the speed increased or not during the tracking period. In the 

same-speed unchanged (SSU) condition, the two targets moved with equal speeds throughout 

the trial, which varied across trials from 0.6 to 2.4 rps. In the different-speed unchanged 

(DSU) condition, the slow target always moved at 0.5 rps and the fast target moved at a speed 

between 0.6 and 2.4 rps. In the one-target speed changed (TSC) condition, the speed of the 

two targets started as identical to the DSU condition. After a 0.5 second tracking period, the 

initially-slow target started to increase speed from 0.5 rps to the same speed as the fast target 

(e.g. from 0.5 to 1.8 rps) with a 1 revolution/sec2 acceleration rate, and the fast target always 

moved at a constant speed during the trial. The two-target speed switch (TSS) condition was 

identical to the TSC condition except that the initially-fast target started to decrease speed to 

0.5 rps with 1 revolution /sec2 deceleration rate (e.g. from 1.8 to 0.5 rps) at the same moment 
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as the speed change of the initially-slow target (Figure 4.3). In addition to these two-target 

conditions described above, we also have a condition for tracking only one target, whose 

speed was set to a constant value between 0.6 to 2.4 rps (varying across trials). The quadrant 

that the target appeared in was counterbalanced across trials. 

The total tracking interval was lengthened relative to Experiment 8 to between 4.0 

and 4.8 s, in order to provide enough time for the targets to gradually change speeds. After a 

0.7 s target-cuing period, the target blob became red (like the distractors) and each blob pair 

was independently assigned reversal times that succeeded each other at random intervals 

between 1.2 and 2 s. At the end of a trial, one pair of blobs was indicated with a white line 

and participants were prompted to use the mouse to indicate which was the target. 

The testing speeds for each condition and person were chosen on the basis of piloting. 

Five testing speeds were used on different trials and presented in pseudorandom order and 

fully crossed with all experimental conditions. Each person participated in at least 480 trials 

of an experiment, which usually involved four sessions. Each participant did no more than 

two sessions a day and had a minimum break between sessions of 5 minutes. 

4.3.1.3 Data Analysis  

 The data was analysed as in previous experiments, with speed limits (68% thresholds) 

extracted from the psychometric curve fit. In contrast to previous experiments, in this 

experiment we separately calculated the speed limit for each target within each hemifield 

rather than averaging the speed limits of two targets. Thus, we have different terms to 

represent each target in each condition with the initial speed of the target. In the TSC 

condition, the initially-slow target was termed as the “TSCS” and the fast target was termed 

as the “TSCF”. In the TSS condition, the initially-slow target was termed the “TSSS” and the 

initially-fast target was termed the “TSSF”. In the DSU condition, the fast target was termed 
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the “DSUF”. In the SSU condition, we averaged the speed limits of both targets because there 

are equal speeds throughout the trial. 

 

Figure 4.3. Display of Experiment 9 
In Experiment 9, four pairs of red Gaussian blobs were presented in each condition. Each pair moved along a 
circular trajectory (dotted lines) and was centred in one quadrant. In the one-target (ONE) condition, a blob 
from one of four pairs was designated the target. In other conditions, a blob from each of two pairs was 
designated a target. The targets were only presented as a unilateral arrangement either right or left hemifield. In 
the same-speed unchanged (SSU) condition, the two targets moved at the same speed (which varied across trials 
from 0.6 to 2.4 rps based on a method of constant stimuli design). In the different-speed unchanged (DSU) 
condition, the slow target always moved at 0.5 rps and the fast target moved at a testing speed between 0.6 and 
2.4 rps. In the one-target speed changed (TSC) condition, the speed of two targets started as identical to the 
DSU condition. After a 0.5 second tracking period, the initially-slow target started to increase speed from 0.5 
rps to the same speed as the fast target (e.g. from 0.5 to 1.8 rps) with a 1 revolution/sec2 acceleration rate, and 
the fast target always moved at the constant speed. The two-target speed switch (TSS) condition was identical to 
the TSC condition except that the initially-fast target started to decrease speed to 0.5 rps with a 1 revolution/sec2 
deceleration rate (e.g. from 1.8 to 0.5 rps) at the same moment as the speed change of the initially-slow target. 

4.3.2 Results and Discussion 

 For each participant, the data and associated psychometric curves are shown in Figure 

4.4 for all conditions in Experiment 9. Similar to previous experiments, within one hemifield 

performance for tracking one target (red curve) was better than for tracking two targets 

moving with equal speeds (blue curve), supporting the hemisphere-specific resource theory. 
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Figure 4.4. Individuals’ performance in Experiment 9 
The colour curves showed the tracking performance across speeds for all conditions. The top panel presented 
the performance for tracking one target (red curve; ONE), for tracking two targets with equal speeds (blue 
curve; SSU), and for tracking two targets with different speeds (green curve; DSU). The middle and bottom 
panels presented the performance for tracking two targets with speed changing during the trial, and performance 
of the initially-fast targets was shown in the middle panel and performance of the initially-slow targets was 
shown at the bottom panel. In the middle panel, the purple curve showed the performance of the fast target, 
which did not change speed during the trial (TSCF) whereas the yellow curve showed the performance of the 
initially-fast target, which speed gradually decreased during the trial (TSSF). At the bottom panel, the grey 
curve showed the performance of the initially-slow target in the condition that was paired with a fast target 
without speed changing during the trial (TSCS) whereas the brown curve showed the performance of the 
initially-slow target in the condition that was paired with an initially-fast target with speed switching during the 
trial (TSSS). 
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Figure 4.5. Speed limits in Experiment 9 
The coloured bars show the averaged speed limits across 9 participants for all conditions. Error bars show one 
standard error across participants. The speed limit for tracking one target (lower red bar; ONE) was significantly 
higher than for tracking two targets across all of the two-target conditions. The speed limit for tracking two 
targets moving with equal speeds (lower blue bar; SSU) was substantially lower than other two-target conditions 
that two targets moved with different speeds. Contrary to the resource reallocation prediction, the speed limit for 
the initial-slow target in the two-target speed switch condition (upper pink bar; TSSS) is not significantly 
different from that in the one-target speed changed condition (middle grey bar; TSCS). 
 

The speed limits, averaged across participants, are shown for each target of each 

condition in Figure 4.5. Consistent with resource theory, the speed limit for tracking one 

target (2.14 rps) was significantly higher than for tracking two targets across all the two-

target conditions. Paired t-tests applied to the comparison of each condition with the two-

target condition yielded a p-value of 0.05 or less (SSU: t (8) =12.419, Cohen’s d=5.18; 

DSC1F: t (8) =6.606, Cohen’s d=2.222; TSCS: t (8) =2.934, Cohen’s d=1.058; DSC2F:t (8) 

=5.229, Cohen’s d=1.753; TSSS: t (8) =1.951, Cohen’s d=0.662; DSUF: t (8) =4.034, 

Cohen’s d=1.461). 

Similar to Experiment 8, comparing the other-slow condition (different-speed 

unchanged, DSU) to the same-speed condition (same-speed unchanged, SSU), the speed limit 

for the fast target in DSU condition (1.84 rps) was substantially higher than in the SSU 

condition (1.63 rps), as revealed by a paired t-test (t (8) =-2.646, p=0.029, Cohen’s d=-

1.203). It indicates the one hemisphere-specific resource can differentially allocate to targets 

differing in speeds, with more resource allocated to the fast one than the slow one. 

 For the fast or initially-fast targets in the one-target speed change (TSC) and the two-

target speed switching (TSS) conditions, the speed limit of both targets should be similar to 

the fast target in the DSU condition, because the differential resource allocation can benefit 

the tracking performance of the fast target. Indeed, a repeated-measures ANOVA showed no 

significant difference on speed limit among these three targets (F (1, 8) =1.655, p=0.234, 

partial η2=0.171). In addition, the speed limits for targets in the SSU condition (1.63 rps) was 

substantially lower than these fast targets in the TSS (1.83 rps) condition and in the TSC 
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(1.73 rps) condition as revealed by a paired t-test (TSSF: t (8) =-2.761, p=0.025, Cohen’s d=-

1.002; TSCF: t (8) =-2.327, p=0.048, Cohen’s d=-0.827). These statistical results suggest that 

the differential resource allocation at the start of the trial is maintained throughout the trial. 

Contrary to the prediction of resource reallocation between targets that switch speeds, 

the speed limit for the initially-slow target in the TSC condition (TSCS, 1.93 rps) was not 

significantly lower than the initially-slow target in the TSS condition (TSSS, 1.93 rps), as 

revealed by a paired t-test (t (8) =0.038, p=0.97, Cohen’s d=0.015). This suggests that 

participants might not be capable of reallocating attentional resource between targets 

differing in speeds at the 1 revolution/sec2 acceleration/deceleration rate. 

The reason why observers do not reallocate resource between two targets with 

switching speeds might be that humans have poor sensitivity to detection of speed change 

(McBeath, Shaffer, & Kaiser, 1995). Observers clearly detect the speed change when the 

range of changing speed is above 50% (Traschutz, Zinke, & Wegener, 2012). For our TSS 

condition, the range of changing speed is less than 25% for every change. Thus, observers 

might be delayed in detecting the speed change when the initially-slow target accelerates at 1 

revolution/sec2, especially at high speeds. Attention reallocation must occur after humans 

detect the speed change, so that observers might start to shift their attention very late and lose 

the tracked target with the incorrect amount of resource allocated to it. Therefore, the delayed 

detection of the speed change can explain why observers did not reallocate resources from 

the initially-fast target to the initially-slow target. Future investigation should increase the 

speed change to facilitate its detection. 

 The tracking duration at fast speeds within a trial is also a determinant of the speed 

limit. The speed limit is substantially higher when the tracking duration at fast speeds is 

shorter. Compared to the speed limit for the SSU (1.63 rps), the shorter fast interval within a 

trial for the TSCS (1.93 rps), TSSS (1.93 rps), and TSSF (1.83 rps) yielded significantly 
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higher speed limits (TSCS: t (8) =-5.3, p=0.001, Cohen’s d=-1.77; TSSS: t (8) =-3.628, 

p=0.007, Cohen’s d=-1.43; TSSF: t (8) =-2.761, p=0.025, Cohen’s d=-1.002).  

4.4 Discussion of Experiments 8-9 

 These results provide new support for the theory that a hemisphere-specific resource 

mediates tracking, and that this resource can be differentially allocated to targets with 

different speeds. In the unilateral (same hemifield) arrangement, pairing a target with a 

slower target rather than one of the same speeds yielded better performance for the first 

target, presumably because slower targets are allocated less resource than faster targets. In 

addition, this differential resource allocation effect on speed limit might maintain throughout 

the trial even though the target speed changed during the tracking period. Alternatively, the 

reallocation may have occurred but may have required resources itself, imposing a cost that 

nullified any benefit in the circumstances of these trials. In other words, the resource 

reallocation due to change in target speed was inefficient at least at the 1 revolution/sec2 

acceleration/deceleration rate. 

4.4.1 Differential Allocation of the Hemisphere-Specific Resource   

 Experiment 8 provided evidence that the resource can be differentially allocated to 

targets differing in speed, and that this effect was much bigger within hemifields than across 

hemifields, which further supports the hemisphere-specific theory. We found that a target 

could be tracked at a faster speed when the other target within the same hemifield was 

moving relatively slowly (Experiments 8 and 9). Across hemifields, that effect was not 

significant. For performance tracking the slow target however, there was a significant 

although small effect of the speed of the target in the opposite hemifield, suggesting that the 

resource is largely but not entirely hemisphere-specific. 

 The conclusion from the differential allocation evidence (Experiment 8)- that the 

resource is largely hemisphere-specific- is consistent with our previous measures of the speed 
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limit cost for adding targets to the same or the opposite hemifield in Chapter 3. Adding 

targets to the same hemifield yielded a much larger cost than adding targets to the opposite 

hemifield. In support of the notion that a small amount of resource can be shared across 

hemifields, a non-significant trend for a cost of opposite-hemifield targets was found in the 

experiments of Chapter 3 as well as in both relevant experiments of Alvarez and Cavanagh 

(2005). In an experiment conducted by Hudson et al. (2012), the reduction in accuracy 

associated with adding targets in the opposite hemifield reached statistical significance (their 

Experiment 4).  

Although differential resource allocation was documented in our Experiment 8, the 

tracking resource might not be dynamically reallocated between the targets during the trial. 

The experiment 6 in Howe et al. (2010) showed that if observers were encouraged to serially 

track objects (dynamically reallocating resource in turn) by using very long durations of each 

pausing and movement phase, the performance with serial tracking was better than parallel 

tracking. This result suggests that it takes time to dynamically reallocate resource between 

targets.   

 Experiment 9 further investigated the possibility of resource reallocation by changing 

the speed of the targets during the tracking period. Results showed that after the first 

differential resource allocation to targets in the cueing period, observers tend to maintain this 

allocation to the initial target throughout the trial, or any reallocation is too costly to provide 

a benefit.  

Why can humans efficiently reallocate tracking resource between targets when the 

target number changes (Ericson & Christensen, 2012; Wolfe et al., 2007)but not when the 

target speed changes during the trial? One possible explanation is that reallocating tracking 

resource takes times to complete. Both the studies that varied target number used relatively 

infrequent changes during the tracking period, with changes occurring every 1-2 sec in Wolfe 
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et al. (2007)’s experiments. Drew, Horowitz, Wolfe, and Vogel (2012) also showed observers 

were capable of deleting their current target set and acquiring new targets throughout the trial 

but it took around 0.5 sec to reallocation the attentional resource on each variation of target 

number. This resource reallocation for change in target number resembles pouring juice 

(resource) from one cup to the other in 1-2 sec. But in our Experiment 9, we gradually 

increased the target speed from slow to fast. The resource reallocation for change in target 

speed resembles pouring many times in a given duration (speed change per 0.1 sec), and each 

time pouring only a little juice from one cup to the other. In this case, there are more 

opportunities to spill the juice with every extra pour, and the destination cup will end up with 

less juice than the origin cup had. Similarly, observers are more likely to lose track of the 

target receiving reallocated resources when the resource reallocation is triggered by changes 

in speed than by changes in target number. This is because the greater reallocation costs 

means that the new high resource target does not receive sufficient resources. 

 Another possible explanation is that humans are very bad at detecting speed change 

(McBeath et al., 1995; Traschutz, Zinke, & Wegener, 2012) as described in the results section 

of Experiment 9. During the period of speed changing, observers might be delayed in shifting 

their attentional resource between targets that switch speeds because they are slow to detect 

the speed change or even fail to notice it. This means observers have less or no resource to 

support the increasingly demanding target and then fail in tracking that target. Alternatively 

they might keep the attentional resource at the original target. To facilitate resource 

reallocation among targets according to speed change during the trail, a future study might 

increase the amount of speed change. 

 The third possible explanation for the failure of resource reallocation in our 

Experiment 9 is that a cue may be necessary for observers to effectively reallocate resources 

in response to speed changes. All of the studies that varied the target set provided an 
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additional cue at the moment of changing the target set to make observers easily direct their 

attention to the new target set (Wolfe et al., 2007; Ericson & Christensen, 2012). However, in 

our Experiment 9, participants needed to detect the speed change and reallocate their 

attentional resource between targets without any help from additional cuing. This might 

explain why the resource did not reallocate between targets with switching target speeds in 

Experiment 9. As the previous paragraph described, observers have a poor sensitivity on 

detecting the speed change. For future investigation, adding an explicit cue to the target of 

speed change can facilitate detection of the speed change. 

4.4.2 Serial Models and Unequal Time-Sharing within a Hemifield 

 Unequal allocation of the tracking resource is compatible with both parallel and serial 

models. According to the parallel account, all the targets’ positions are updated 

simultaneously, but with more resource devoted to a target the positions are updated more 

accurately. 

 According to the serial account, target positions are updated one by one. The more 

targets there are, the less frequently their positions are updated (Howe et al., 2010; Oksama & 

Hyona, 2008; Tripathy & Howard, 2012; Tripathy et al., 2011). At higher speeds, the targets 

travel farther between position updates, resulting in a speed limit cost for larger tracking 

loads, as shown in the experiments of Chapter 2 and 3. In Chapter 3, we found a substantial 

cost in speed limit when two targets were presented in the same hemifield but having little or 

no cost when the targets were presented in different hemifields. This might suggest observers 

serially track multiple objects within one single hemifield but track independently (in 

parallel) in the two hemifields.  

 Howe et al. (2010) however provided evidence against serial processing resource 

allocation for tracking multiple objects within one hemifield with a variation of the classical 

simultaneous-sequential paradigm (Eriksen & Spencer, 1969; Shiffrin & Gardner, 1972). The 
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observed tracking performance was better when all the objects moved and paused 

simultaneously (simultaneous condition) than when half of objects moved then paused while 

the other half moved (sequential condition). If observers track targets in serial, the 

performance of sequential condition would be greater than that of simultaneous condition. 

But if two targets were tracked in parallel, tracking performance should be equal in both the 

simultaneous and sequential condition. Thus, results from Howe et al. (2010) were 

compatible with the parallel account and against the serial account when tracking objects 

within a hemifield. This conclusion may however only rule out a certain class of serial models—

those in which the serial process can rapidly (more often than every 500 ms) vary which targets it 

visits without any cost. 

Regarding the allocation issue, serial models have assumed that the positions of all 

targets are registered equally frequently. However, a serial model could allow for one target 

to receive a greater share of the tracking focus’ time. When more resource is devoted to one 

target over another, the focus of attention visits that target longer or more frequently than the 

other. This would accommodate our evidence for flexibility of the resource allocation. 

4.4.3 Parallel Models and Differential Resource Allocation 

 The first theory of MOT proposed (Pylyshyn & Storm, 1988) is a “slots” or discrete 

model. According to this model, targets are tracked in parallel and independently, each by its 

own mental index (FINST) or slot. Because observers are assumed to have four to five 

FINSTs, the Pylyshyn and Storm (1988) slots theory explicitly predicts that tracking 

performance will not vary as the number of targets is increased, providing the total number of 

targets does not exceed the number of FINSTs the observer processes. Similar to experiments 

of previous chapters, Experiment 9 contradicted this prediction with the finding that speed 

limit for tracking one target was substantially higher than tracking two targets. 
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 Alvarez and Franconeri (2007) and Vul et al. (2009) proposed continuous resource 

theories to explain tracking limits. The original notion of continuous resource theory is that 

less resource is allocated to each target when more targets are tracked, resulting in lower 

tracking speed limits. Our Experiment 8 provides evidence of varying resource allocation 

between targets with different speeds. More resource is allocated to the fast target than the 

slow one, which leads to a higher tracking speed limit for the fast one. This finding can 

explain the equal tracking accuracy between targets moving at 1 deg/s and at 6 deg/s in the 

experiment 4 of Liu et al. (2005). If the faster targets had not been allocated more resource, 

the fast targets should have had much worse performance than the slow targets. 

 As an alternative to continuous resource theory, Kazanovich and Borisyuk (2006) 

suggested that objects are tracked by an oscillatory, multi-layer neural network. Because each 

layer is responsible for tracking a single target, the amount of resource devoted to a target is 

not predicted to increase if a target moves faster than the other targets in the display. As such, 

this model does not explain our finding that faster targets can consume more resource than 

slower targets. However, the model could be modified to allow a single target to be tracked 

by more than one layer and thereby accommodate our results. 

Our results of differential resource allocation might be accommodated with a 

modified slot theory where each target can be allocated more than one slot (Zhang & Luck, 

2008). The modified slot theory resembles a limited set of pre-packaged boxed juice of a 

fixed size. Such a modified theory was first proposed in a study of visual short-term memory 

(Zhang & Luck, 2008), in which observers were asked to remember three targets. If for 

example the limited number of slots were four, then one target would be able to receive more 

than one slot so that an increase in the memory precision of report was found for that target 

having more than one slot. Indeed, the average of memory precision of observers’ report was 

shown in the study of the Zhang and Luck (2008), which is different than the slots theory that 
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having no increase in the average of precision. Under such a model, resource might be 

differentially allocated and faster targets could be allocated more slots. 

For object tracking, Horowitz and Cohen (2010) however demonstrated that flexible 

resource (FLEX) theory fits better than the modified slots theory for reports of the motion 

direction of tracked targets. They conducted a similar approach as the Zhang and Luck (2008) 

in an MOT task to measure the precision reporting of direction representation for tracked 

targets. When the objects stopped moving, observers rotated an arrow on the target to match 

the last direction of the target’s trajectory. Precision (size of the angular error) declined with 

increase of target load from one to six tracked targets. This finding was incompatible with the 

prediction from the modified slots theory that after exceeding observers’ capacity the 

precision would remain constant, and also the prediction of FINST theory that a fixed 

resolution was found regardless of the number of targets. This left open however the issue of 

whether other information used in MOT besides motion direction is also fit better by FLEX 

theory. 

Our Experiment 9 also attempts to distinguish the modified slots theory and FLEX 

theory by the differential resource allocation. According to the modified slots theory 

(presuming the maximum number of slots is four), it is predicted that in the same-speed 

condition, each target received two slots (50%) of resource. In the different-speed (other-

slow) condition, the slow target received one slot (25%) and the fast target received three 

slots (75%). The flexible resource theory proposed instead that each target could be allocated 

any percentage of resource depending on the demands of targets.   

Assuming the target in the one-target tracking condition (2.14 rps) consumes 100% of 

the hemisphere-specific tracking resource and each target in the same-speed condition (1.63 

rps) consumes 50% of the resource, based on the speed limit of the faster target in the other-

slow condition (1.84 rps), we can calculate how much of the resource was allocated to that 
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target, if we make an additional assumption. That assumption is that the relationship between 

target speed limit and proportion of resource allocated to it is linear. Interpolating based on 

those empirical speed limits, the estimated percentage of resource consumed for the faster 

target is around 69 % (if 100% = 2.14 rps and 50% = 1.63 rps, 1.84 rps = 69%). While the 

assumption of a linear resource-versus-speed limit function may not necessarily be true, the 

percentage that results provides a convenient measure of the improvement in speed limit. 

However, the 95% confidence interval of this prediction for the faster target (CI: 51.38%~ 

86.71%) in the different-speed unchanged condition covers the expected value for the 

modified slots theory. Thus, it cannot exclude the possibility of resource allocation predicted 

by the modified slots theory. 

 In short, either this continuous resource theory (Alvarez & Franconeri, 2007) or the 

modified slots theory (Zhang & Luck, 2008), could explain our results of differential resource 

allocation because the number of tracked targets are not more than four. Future studies might 

ask observers to track more than four targets to distinguish which theory is correct. 

4.4.4 Attention and the Tracking Resource 

 Which of the processes involved in tracking are also required for other tasks? Possibly 

the hemifield-specific resource documented here is used solely for visual tracking and 

selection, and thus cannot be shared with other tasks. Alternatively, the resource that was 

differentially allocated in the experiments here may be a general (albeit hemisphere-specific) 

attentional resource required for many other tasks. Performing visual search simultaneously 

with having a telephone conversation or discriminating auditory tones can reduce one’s 

tracking ability (Alvarez et al., 2005; Kunar, Carter, Cohen, & Horowitz, 2008; Tombu & 

Seiffert, 2008). However, whether or not the resource shared with other tasks is hemifield-

specific does not appear to have yet been tested. Here we found that the resources that could 

be differentially allocated among targets were largely hemifield-specific. More work must be 
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done, especially testing of hemifield specificity of non-tracking tasks, if the present findings 

are to be connected with other tasks. 

 This study provides the first evidence for differential allocation of the hemisphere-

specific tracking resource between targets. Further work is needed to determine whether 

differential allocation is under strategic control, and whether other tasks share this 

hemisphere-specific resource. 

4.5 Conclusion of Chapter 4 

 In summary, both experiments showed that the speed limit was better for a given 

target if the second target was slow than if the second target was fast, implying that more 

resource was allocated to the faster of the two targets. This was significant only for targets 

presented in the same hemifield, consistent with the theory of independent resources in the 

two hemifields. Although this differential resource allocation occurred during the target-

cuing period, observers might be unable to reallocate the resource according to speed change 

during the trial at the rate of 1 revolution/sec2 acceleration/deceleration rate.   
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Chapter 5 :Tracking Performance is Constrained by Temporal Resolution 

5.1 Introduction of Chapter 5 

The existence of a limited mental resource mediating the attentional processing of 

tracking multiple objects was supported by evidence in our previous chapters. Firstly, 

Chapter 2 reported that splitting the tracking resource among targets reduced the tracking 

speed limits. The concern of spatial interference was excluded by using widely-spaced targets 

or equating the travel distance of objects. Then in Chapter 3 we demonstrated this tracking 

resource is largely hemisphere-specific. The speed limit for tracking two targets presented in 

bilateral visual hemifields was substantially higher than for two targets presented within one 

unilateral visual hemifield. Our evidence for differential resource allocation to targets with 

different speeds further supported the claim of resource theory in Chapter 4. These findings 

make us confident that the processing of tracking multiple objects is mediated by resources 

that are at least partially hemisphere-specific.  

 Does availability of attentional resource affect only the speed limit? When having a 

dinner at a sushi train restaurant, we need to pay attention to track the tray containing our 

favourite kind of sushi, as it goes around the train trajectory. If the sushi tray moves faster, 

more resource is apparently required for tracking it (Chapter 2). As we know, speed is the 

derivative of space with respect to time. 

 However, there is another kind of potential temporal limit besides the speed limit. In 

our experiments within previous chapters, stimulus blobs moved in a circular trajectory, 

resembling a sushi train. If the tracking speed limit is, say, 1 rps, then at the speed limit in 

one second it travels one full circuit of the trajectory. If there is only one distracter sharing 

the trajectory with the target, then during that second, the distracter also passes by each 

location one time. In our arrangement, the distracter was located opposite the target in the 

trajectory, so that at 1 rps, after the target passes a location, the distracter passes by it 0.5 s 
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later. If more distracters are added, evenly spaced about the trajectory, then after the target 

passes a location, a distracter will pass sooner than 0.5 s. If that interval is too short, 

observers may be unable to distinguish the target tray from the distractor tray. Researchers 

usually term the minimum time needed between target and distractor trays as temporal 

resolution. With display of the circular moving stimuli, to represent the temporal resolution 

of tracking ability, researchers measure the temporal frequency limit (Verstraten et al., 2000), 

which is the reciprocal of the temporal resolution. In the current experiments, we also 

measure the temporal frequency limit. 

 The space-time diagram illustrates the temporal resolution factor in tracking the sushi 

tray in conditions of low versus high temporal frequency (Figure 5.1). Verstraten et al. (2000) 

found evidence that the temporal resolution for tracking one target was 125~250 ms. 

Although such a temporal resolution is sufficient to individually track one sushi tray in the 

low temporal frequency condition pictured in Figure 5.1, participants would be unable to 

indicate which tray was the target sushi in the high temporal frequency condition. As Figure 

5.1 shows, in the high temporal frequency condition, more than one sushi tray was within the 

selective attentional window (purple area) and participants cannot distinguish one from the 

others. A previous study suggested that spatial resolution reduced when attention is split into 

multiple foci at disparate locations (Franconeri et al., 2007). However, it is unknown whether 

temporal resolution reduces as attention is split to track multiple targets. The current 

experiments in this chapter focus on applying attentional resource theory to the factor of 

temporal resolution, investigating whether the temporal frequency limit decreases with 

increasing the number of tracked targets.  
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Figure 5.1. The space-time diagram of sushi trays  
At a particular location, a sushi tray appears every 0.33 sec for the 3 Hz condition (Left Panel) whereas a sushi 
tray appears every 0.16 sec for the 6 Hz condition (Right Panel). If the tracking temporal resolution for an 
observer is around 0.32 sec (as shown by the purple rectangle; specific selection window of attention), the 
observer will successfully track a sushi tray over space and time in the 3Hz condition (assuming that any 
separate speed limit is not exceeded). In the 6 Hz condition, both the target sushi tray and a distracter are 
included in the selection window of attention (0.32 sec) and therefore the observer cannot individually track the 
target, owing to their temporal resolution being exceeded. 

5.1.1 Temporal Limits on Tracking 

 Human visual processing is constrained by multiple temporal frequency limits 

(Holcombe, 2009). Most scientists are familiar with the flicker fusion limit- above that 

temporal frequency, nothing is perceived but the sum of the images being presented. But 

even at temporal frequencies below the flicker fusion limit, certain visual judgments cannot 

be made because their temporal frequency limits are much lower than the fusion limit. In the 

temporal domain, viewing a light alternating between on and off can illuminate the temporal 

resolution of attention (He et al., 1997). When the temporal frequency of this flicker is over 

7-10 Hz, observers are unable to individuate successive states of light and the light is 

experienced as a constant flicker without discrete appearances and disappearances. This 

phenomenon is termed Gestalt flicker fusion (Van de Grind et al., 1973). The temporal 

limitation of Gestalt flicker fusion rate was also found in later studies with a number of 

different tasks. In Battelli et al. (2001)’s study, participants had to discriminate apparent 
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motion from unmoving flicker and the maximum rate of perceived motion was 8-10 Hz. 

Aghdaee and Cavanagh (2007) reported temporal threshold levels of 9-11 Hz when subjects 

had to distinguish the relative phase of flickering stimuli. Observers had to judge whether two 

dots flickered either in- or out-of-phase. When two out-of-phase flicker dots were closely 

spaced in time, subjects saw these dots as undifferentiated flicker. 

 Rather than testing temporal limits, the majority of experiments studying attentional 

capacity limits during attentive tracking have focused on the maximum number of targets that 

can be tracked and on spatial properties of moving attention (Intriligator & Cavanagh, 2001). 

Only Verstraten et al. (2000) tested its temporal limits, and did so only for tracking a single 

target. They found evidence for two temporal limits, both of which constrain attentive 

tracking of a moving object- a speed limit and a temporal frequency limit. In one display, 

several discs were arrayed in a circular trajectory about fixation. All the discs stepped 

(apparent motion) about fixation, and one of them was designated for tracking. In another 

display, a continuous radial circular sine wave grating was presented, centred on fixation. 

Participants were told to track an individual bar of the rotating grating. Verstraten et al. 

(2000) found that performance declined to 75% by about 1.3 revolutions per second (rps) for 

the three participants tested. A similar speed limit (1.63 rps, based on a more lenient 57% 

performance criterion) was found in our Experiment 3 of Chapter 2 with 6 participants, using 

a similar technique but with moving blobs (one target and two distractors).  

Temporal frequency of an individual disc at a fixed location may also be an important 

limiting factor on performance of attentive tracking. Such a limit may reflect the minimum 

temporal window tracking can access or the frequency at which each target is sampled by 

tracking processes. Verstraten et al. (2000) manipulated temporal frequency via variation of 

object speed and the number of distractors within a circular trajectory. The tracking speed 

limit decreased with increasing number of displayed discs or bars of the gratings, and the 
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authors argued that maximum tracking speed might be limited by the variable of temporal 

frequency (flicker rate) of the discs. For both displays, the maximum temporal frequency rate 

at which the target could be tracked was 4-8 Hz. In contrast, the direction that the display was 

rotating could be perceived at much higher rates—up to 25 Hz for the sine wave grating. 

Although their evidence was not entirely airtight (e.g., they did not correct for change in 

guessing rates for different number of objects in a ring), the results of our experiments in this 

chapter support their claims. 

 Verstraten et al. (2000) tested the limits on tracking only a single target. Extending 

the flexible resource theory (Alvarez & Franconeri, 2007), it is possible that at higher 

temporal frequencies of flicker at a location, more attention is needed to create or maintain 

the motion percept. In other words, more attention is needed to individuate the flicker states 

when temporal frequency of the target light is higher. According to this theory, increasing the 

number of tracked targets would split attentional resource among them, yielding less resource 

per target (Alvarez & Franconeri, 2007). More targets may thus yield lower temporal 

frequency limits. In the experiments presented here, observers track more than one target at 

the same time in order to investigate whether attentive tracking will fail at less than the 

limiting value of temporal frequency in the one-target condition or not. Based on the flexible 

resource theory and the theory of Gestalt flicker fusion, it is hypothesized that the temporal 

frequency limit might be lower when tracking more targets. 

Two experiments were performed in this chapter to investigate the effect of additional 

targets on the temporal frequency limit as well as the speed limit. In Experiment 10, we 

investigated the speed limits and temporal frequency limits for tracking one and for tracking 

two targets. In Experiment 11, we increased the tracking load, comparing the speed limits and 

temporal frequency limits for tracking two with tracking three targets. Varying the number of 

objects in the moving array and the speed of the array revealed both speed limits and 
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temporal frequency limits. The temporal frequency limit fell from 6.9 Hz with one target to 4 

Hz with two targets and 2.6 Hz with three targets. This could be explained by time-sharing 

among targets of a process that can only operate on one target at a time, or parallel processing 

that becomes less temporally precise when less resource is available per target. This appears 

to be the first evidence that temporal frequency limits on high-level processing are set by the 

availability of a limited resource. 

5.2 Experiment 10: Two-Ring Experiment 

 The purpose of this experiment was to investigate whether the temporal frequency 

limit declined as the number of tracked targets was increased from one to two. Modifying the 

stimulus display of the study of the Verstraten et al. (2000), we used two concentric circular 

trajectories. Varying the number of objects arrayed within a circular trajectory from 3 to 12 

and a range of rotation speeds (0.05-2.1 rps) of each trajectory manipulated the temporal 

frequency. For instance, with 6 objects in the array, a speed of 1.1 rps would be 6.6 Hz.  

 If the temporal frequency constrains tracking performance and if more attentional 

resource is needed to track as temporal frequency increases, it is predicted that the temporal 

frequency limit for tracking one target should be strikingly higher than that for tracking two 

targets.  

5.2.1 Method 

5.2.1.1 Participants  

 Six participants (five male, one female, 29-37 years of age) who reported normal or 

corrected-to- normal vision agreed to participate, following approval of the protocol by the 

University of Sydney’s ethics committee in accordance with the Declaration of Helsinki.  
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5.2.1.2 Stimuli 

 Stimuli were presented on a 22-inch Mitsubishi Diamond Pro 2070SB CRT monitor 

(1,024 x 768 resolution) with a refresh rate of 160 Hz controlled by a Mac running a Python 

program that used PsychoPy software (Peirce, 2007). Viewing distance was 57cm in a dimly 

lit room, with a chin rest and forehead support to avoid head movements. 

 The stimulus of this experiment comprised two concentric rings of objects. For each 

ring, three, six, nine, or twelve objects were evenly spaced about a circular trajectory (Figure 

5.2). A white fixation dot (luminance: 167 cd/m2) with a radius of 0.1 deg was presented at 

the centre of the display. The background was black (< 1 cd/m2, screen size 41 deg x 31 deg). 

In this experiment, the objects were blobs with a Gaussian luminance profile (visible 

diameter 0.8 deg, luminance: 12 cd/m2). In order to keep the two rings well outside each 

other’s crowding zone (Intriligator & Cavanagh, 2001; Pelli & Tillman, 2008), the inner ring 

had radius of 2.5 deg and the outer ring was 5.5 deg. The crowding zone is typically half of 

the target’s eccentricity (Bouma, 1970; Pelli & Tillman, 2008). The separation between inner 

and outer rings (3 deg) is greater than the crowding zone (2.75 deg). Thus, it is expected that 

crowding between targets should not occur in this stimulus display. 

 

Figure 5.2. Schematic of the displays in Experiment 10  
All objects in a ring always moved at the same speed and began in the same direction but the rings occasionally 
reversed direction independently of the other rings. On different trials, each ring contained 3, 6, 9, or 12 objects, 
which together with speed determined the temporal frequency. One or two objects in separate rings were 
designated as targets by appearing in white at the beginning of the trial before becoming red.  
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5.2.1.3 Procedure  

Participants were told to maintain fixation on the white dot at the display centre. For 

every trial, the initial locations of the blobs were random in each circular trajectory. The 

blobs in the outer circular trajectory revolved about fixation in the opposite direction from 

those in the inner circular trajectory. The trial started with the target objects presented in 

white (167 cd/m2) while the remainders (the distracter objects) were red (Figure 5.3). The 

targets gradually became red (identical to the distracters) over the initial 0.7s, via a linear 

ramp through RGB space. The subsequent tracking interval was assigned a random duration 

between 3 and 3.8 s. During the tracking period, the blobs occasionally reversed direction to 

prevent participants from predicting the final target positions from their initial positions and 

speeds. Each ring of blobs was independently assigned a series of reversal times, which 

succeeded each other at random intervals between 1.2 and 2 s. For this experiment’s 3 to 3.8s 

tracking interval, this resulted in 2 or 3 reversals.  

In one condition, participants tracked two blobs and in the other, they tracked only 

one. In the one-target condition, only one blob was designated as a target: For half of trials, 

the target was in the outer ring and in the other half it was in the inner ring. In the two-target 

condition, two targets were designated, one in each ring. 

At the end of the trial, one ring was indicated with a recording of a person saying 

“inner” or “outer”. The participants used the mouse to indicate which blob was the target in 

the corresponding ring. In the two-target condition, in half of trials participants were asked to 

indicate the target in the inner ring and other half of trials that in the outer ring. 

All objects revolved about fixation at the same rate throughout each trial. Speeds from 

0.05 to 2.1 rps were used on different trials. They were presented in pseudorandom order and 

fully crossed with the number of target manipulation: one-target vs. two-target. The speeds 

for each condition and person were chosen on the basis of piloting. Each person participated 



	   142	  

in at least 480 trials of an experiment, which usually involved two sessions, each shorter than 

fifty minutes. 

 

Figure 5.3. The trial procedure for all experiments in Chapter 5  
After the targets are highlighted in white, all blobs become red and revolve about the fixation point. During the 
tracking interval, the blobs on each trajectory occasionally reverse movement direction, at random times 
independent of the other trajectory. After 3 to 3.8s the blobs stop and one ring is indicated by a recorded voice. 
Participants clicked on one blob of that ring. 

5.2.1.4 Data Analysis  

To estimate the “speed limit”, plots of speed versus proportion correct were fit by a 

logistic regression that spanned from a chance rate to a ceiling level of performance. The 

chance rate varied with the number of objects in a ring, so a particular performance level such 

as 75% has a different meaning for distinct object-number conditions. For instance, the 

chance level was 33% correct with three objects in a ring (two distractors and one target). 

The chance rate was 17% correct for the six objects, 11% for the nine objects, and 8% for the 

12 objects in a ring. Despite guessing rates being unequal, Verstraten et al. (2000) only 

reported the 75% threshold for all object-number conditions, so their results were difficult to 

interpret. A level more likely to be comparable across conditions is that halfway between the 

chance level and the ceiling imposed by the lapse rate, which allowed varying from 0 % to 

10% to get the best estimate for each condition and each participant. This threshold adjusted 

for chance rate is named as “midpoint threshold”. 
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We examined both the midpoint threshold and the 75% threshold, as Verstraten et al. 

(2000) did. Because the pattern of results was very similar or identical for both thresholds, we 

reported the “speed limit” in this experiment according to the midpoint threshold at which 

performance fell to the value midway between ceiling and chance. This speed limit was 

estimated separately for each participant and condition. 

The temporal frequency limit was measured by using different numbers of objects 

along one circular trajectory and object rotation rates. For instance, with 6 objects in the 

array, a speed of 1.1 rps would be 6.6 Hz. In this experiment, two approaches were used to 

estimate the “temporal frequency limit”. Firstly, the temporal frequency limit was directly 

converted from the speed limit in all number-object conditions. For example, the speed limit 

1.7 rps was converted to the temporal frequency limit 5.1 Hz for three objects in a ring. An 

alternative approach was to fit psychometric functions to temporal frequencies rather than 

speeds. The temporal frequency limit was also calculated with the midpoint threshold 

estimation. 

 Because the similar or same pattern of results resulted from both approaches for all 

conditions, in the following results and discussion part, we only reported the second 

approach. 

5.2.2 Results and discussion 

The data and associated psychometric plots for each of the six participants in four 

object-number conditions (3, 6, 9 and 12 objects) of Experiment 10 are shown in Figure 5.4 

and 5.5. Performance declines as speed or temporal frequency increases. The speed limit and 

temporal frequency limit was reported according to the midpoint threshold at which 

performance fells to the value midway between ceiling and chance (66% for 3 objects, 58% 

for 6 objects, 55% for 9 objects, and 54% for 12 objects). For every participant, the speed 
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limit and temporal frequency limit for tracking one target was substantially higher than for 

tracking two targets no matter how many number of objects in a ring.  

 

Figure 5.4. Data and psychometric fits with Speed in Experiment 10  
Proportion correct is shown for each speed, in the one-target (red curve) and two-target (blue curve) conditions. 
Dotted lines show the midpoint thresholds. 

 

Figure 5.5. Data and psychometric fits with Temporal Frequency in Experiment 10  
Proportion correct is shown for each temporal frequency, in the one-target (red curve) and two-target (blue 
curve) conditions. Dotted lines show the midpoint thresholds. 
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The mean speed limits and temporal frequency limits across 6 participants for each 

condition are shown in Figure 5.6. For tracking one target, with only three objects in a ring 

(leftmost column of the graph), the average speed limit across participants was 1.7 rps 

(similar to the 1.63 rps in Experiment 3 of Chapter 2 which used similar stimuli but with 

equal travel distance across speeds). As the number of objects in the rings increased from 3 to 

12, the speed limit substantially declined to 0.6 rps (simple linear regression for 3 to 12: b=-

0.126, r2=0.875, t (23) =-12.407, p<0.001; for 6 to 12: b=-0.087, r2=0.757, t (17) =-7.062, 

p<0.001). As we explain below, there is reason to believe the 3-object condition may reflect a 

speed limit while 6 to 12 objects reflects a temporal frequency limit, so we sometimes 

analysed these conditions separately. 

 

Figure 5.6. Results of Experiment 10 for Averaged Performance 
The mean speed limits (top panel) and temporal frequency limits (bottom panel) across participants in 
Experiment 10, for tracking one target (dark grey bar) and two targets (light grey bar) within four different 
number of object conditions.  Error bars are one standard error across participants. 
 

A temporal frequency limit on attentive tracking can explain why the speed limits 

decline with increasing numbers of objects in the circular trajectory. Apparently, the speed 
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limit on tracking objects is not the sole limiting factor on tracking performance. If object 

tracking is only constrained by the maximum speed for targets that we can track, as the 

number of objects in a ring increases, the speed limit should not decline. However, a 

temporal frequency limit predicts the present pattern of a decline in speed limits with number 

of objects. Temporal frequency is the product of speed and number of objects in a circular 

trajectory. If temporal frequency constrained attentive tracking, the corresponding speed limit 

is lower for larger number of objects in a ring. 

Evidence that a temporal frequency limit indeed constrained tracking performance is 

that the temporal frequency limits were constant across different number of object conditions. 

For the 6, 9, and 12 object conditions of one-target condition in Figure 5.6, the average 

temporal frequency limit was fairly constant at 6.7 to 7.2 Hz (simple linear regression 

indicates a nearly flat line: b=0.071, r2=0.046, t (17) =0.873, p=0.395). 

The three-object condition may have instead been constrained by speed limit rather 

than temporal frequency limit. This explains the corresponding temporal frequency limit (5.2 

Hz) was lower - a repeated-measures ANOVA with number of objects and number of targets 

as factors revealed a number of objects effect, F (3, 15) =14.141, p<0.001, partial η2=0.739, 

and a post-hoc test indicated the temporal frequency limit for the 3 object condition was 

significantly lower than that for the 6 (p=0.004), 9 (p=0.003), and 12 (p<0.001) object 

condition. This finding is comparable to that of Verstraten et al. (2000) that tracking 

performance was constrained by a speed limit of under 2.0 rps when only a few objects were 

in the ring. In other words, with only three objects in a ring, the speed limit was hit before the 

temporal frequency limit was exceeded. To clarify this, for the 6 to 12 object conditions, 

participants were unable to track a target over the temporal frequency limit of 6.9 Hz 

although the speeds were below 1.7 rps, meaning that 6.9 Hz is the constraint on 

performance. But for the 3-object condition, the maximum target speed that observers could 
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track was 1.7 rps, which corresponds to 5.1 Hz, below the putative temporal frequency limit 

of 6.9 Hz. Therefore, it appears that the constraints on performance are a 1.7 rps speed limit 

and 6.9 Hz temporal frequency limit. The failure of tracking occurred when either of these 

limits was exceeded.   

5.2.2.1 Effect of Target Number on Tracking Limits 

Consistent with the experiments in Chapters 2 and 3, the target number effect on 

tracking speed limits was observed in all conditions of this experiment. The speed limit was 

lower for tracking two targets than for tracking one target for every number-of-objects 

condition, paired t-tests applied to each condition yielded a p-value of 0.001 or less (3 

objects: t (5) =10.404 , Cohen’s d=4.254; 6 objects: t (5)= 6.588, Cohen’s d=3.287; 9 objects: 

t (5) =7.15, Cohen’s d=3.038; 12 objects: t (5) =9.127, Cohen’s d=3.779).   

A critical finding was that the temporal frequency limit declined with increasing 

target loads. For the 6 to 12 object conditions, the temporal frequency limit was lower for 

tracking two targets (~4.5 Hz) than for tracking one target (~6.9 Hz). A repeated-measures 

ANOVA with number of object and number of targets as factors showed a significant target 

number effect F (1, 5) =80.015, p<0.001, partial η2=0.941. In addition, a striking target 

number effect was also found according to the ANOVA after the 3-object condition (where 

performance might be limited by speed not temporal frequency) was included, F (1, 5) 

=101.634, p<0.001, partial η2=0.953. 

Unlike other number-of-object conditions, with three objects in a ring the decrease in 

tracking performance with increasing target loads might result from the constraint on speed 

rather than temporal frequency. For the two-target condition, the 3.8 Hz of the 3-object 

condition was significantly worse than the mean 4.5Hz of other number-of-object conditions, 

t (20) =-3.062, p=0.006 according to a contrast analysis, manifesting a lower temporal 

frequency limit for 3 objects than for more objects. This suggested that the speed limit 
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decreased to 1.3 rps as increasing target loads caused by the constraint on speed rather than 

temporal frequency. If the temporal frequency limit was hit first, the speed limit for tracking 

two targets could reach to 1.5 rps that corresponded to 4.5 Hz. A speed limit was visible 

because the constraint on speed (1.3 rps) was hit first.  

5.2.2.2 Concern of Spatial Interference 

 Spatial interference might be the main concern that could threaten the theory that 

tracking performance was constrained by temporal frequency limits. As the number of 

objects in a ring was increased, the temporal frequency increased but also the spacing 

between objects decreased.  

 The spatial characteristics of crowding with a single target have been studied 

extensively (Pelli & Tillman, 2008; Toet & Levi, 1992). “Bouma’s Law” (Bouma, 1970) was 

validated by Pelli and Tillman (2008) - that for objects arrayed in the radial direction from 

the fixation outside fovea, perception of many aspects of each object is impaired when they 

are closer than half their eccentricity. For objects arrayed at a common eccentricity 

(isoeccentrically), as are the objects within each of our rings, the zone of spatial interference 

is substantially smaller than the Bouma’s law figure of half the eccentricity (Toet & Levi, 

1992). But to be conservative, we will consider the implications of the half-the-eccentricity 

figure. It implies that crowding should not occur as long as the number of objects (n) is fewer 

than 13. The reason is that when n objects are equally spaced about a circle centred on 

fixation, they will be separated by greater than half their eccentricity (e) as long as n is fewer 

than 13. This follows because the separation between the objects is 2*pi*e/n, which is less 

than 0.5*e as long as n is fewer than 13. As crowding within our isoeccentric rings should not 

occur until the separation is smaller than this, we reasoned that no crowding should occur 

when n=12 or below, and did not use conditions with greater than 12 objects. 
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 In this experiment, the crowding was avoided by using large distances between one 

ring and another, and the distances were chosen to be large enough to be substantially greater 

than half each ring’s eccentricity.   

 In the context of tracking multiple objects, Franconeri and colleagues have proposed 

that limitations on tracking are entirely owing to spatial interference rather than attentional 

resource allocation (Franconeri, 2013; Franconeri et al., 2010; Franconeri et al., 2008). Their 

conclusions were based on displays in which collisions were allowed between objects and 

therefore minimum separations were much smaller than allowed in our displays. Thus, spatial 

interference might explain a lowering of the maximum performance for larger numbers of 

objects in a ring. However, spatial interference should reduce the performance at all speeds, 

which corresponds to lowering the ceiling on proportion correct or increasing the lapse rate 

term in the psychometric fit. Franconeri and colleagues have emphasized that spatial 

interference may become greater with speed because in a typical MOT display with random 

trajectories, at higher speeds targets will travel farther and be involved in more close passes. 

But separation was controlled here and in any case spatial interference should occur at all 

speeds, including slow ones. If it did not, it would not be truly spatial interference. The 

spatial interference account therefore predicts that performance should be worse for more 

targets and/or more distracters, even at very slow speeds.  

 To investigate whether spatial interference occurred at very slow speeds, the “lapse 

rate” parameter was used to compare the performances for tracking one and two targets 

across four different number-of-object conditions. If spatial interference were impairing 

tracking, it should occur more for conditions with higher target numbers and inflate the lapse 

rate. Conversely, little to no change in lapse rate was presented as the number of objects and 

targets increased. The target number effect (F (1, 5) =3.596, p=0.116, partial η2=0.418 ) and 

its interaction (F (3, 15) =0.809, p=0.508, partial η2=0.139) were non-significant but a 
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significant object number effect (F (3, 15)= 3.906, p=0.03, partial η2=0.439) was found 

according to a repeated-measures ANOVA with number of objects and target numbers as 

factors. In fact, the significant object number effect resulted from the highest lapse rate (0.05) 

for 9 objects in the two-target condition (see Table 5.1). This special highest lapse rate did 

not extend to the 12-object condition, so we suggested it is not owing to spatial interference 

and may be owing to random variation. In addition, as shown from Table 5.1, the lapse rate 

of the 12-object condition was similar to the others. Therefore, there is no evidence of 

crowding or spatial interference from the analysis of lapse rate.  

 In addition to analyses of lapse rate, we also examine the effect of number of targets 

and objects on performance at only the slowest speed. According to the spatial interference 

theory, larger number of objects or targets will yield worse performance even at slowest 

speed. However, no significant effects of target number (F (1, 5) =4.16, p=0.097, partial 

η2=0.454) and object number (F (3, 15) =2.88, p=0.071, partial η2=0.366) were found, and 

their interaction (F (3, 15) =3.048, p=0.061, partial η2=0.379) also was non-significant 

according to a repeated-measures ANOVA that included the factors of number of targets and 

number of objects. So, this comparison on performance as tracking targets at the slowest 

speed also contradicts the theory of spatial interference. 

Table 5.1. Estimated lapse rates for different number of objects and targets in Experiment 10 
Objects 1 Target 2 Targets 

3 .01± .01 .01± .01 
6 .01± .01 .0± .0 
9 .02± .03 .05± .05 
12 .01± .02 .01± .02 

Note. Lapse rates ± Standard error across participants 

5.2.2.3 Effect of Eccentricity 

 Aghdaee and Cavanagh (2007) found the temporal resolution of attention was 

independent of visual field location by investigating the limits relative phase judgments of 

two flickering lights. Their findings showed that the temporal frequency limit has a little 
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decrease with eccentricity, which is substantially smaller than the eccentricity effect of spatial 

resolution of attention (Intriligator & Cavanagh, 2001). If the tracking performance limited 

by the temporal resolution reflects the same processing as the experiments of the Aghdaee 

and Cavanagh (2007), the constraints on tracking performance should have little or no change 

with eccentricity.  

 To examine the effect of eccentricity on temporal limits, we report statistics 

separately between the 3-object condition that is likely to be limited by speed and the rest 

conditions that appear to be limited by temporal frequency. For the 3-object condition, a 

repeated-measures ANOVA with eccentricity (2.5 or 5.5 deg) and target number (tracking 1 

or tracking 2 targets) as factors showed the eccentricity effect (F (1, 5) =2.093, p=0.208, 

partial η2=0.295) was not significant and no interaction (F (1, 5) =2.691, p=0.162, partial 

η2=0.35) was found on speed limits. For the remaining conditions (6 to 12 objects), the 

eccentricity effect (F (1, 5) =0.081, p=0.788, partial η2=0.016) and its interactions 

(target*eccentricity: F (1, 5) =0.065, p=0.809, partial η2=0.013; object*eccentricity: F (2, 10) 

=1.319, p=0.31, partial η2=0.209; target*object*eccentricity: F (2, 10) =7.934, p=0.009, 

partial η2=0.613) were also non-significant on temporal frequency limits according to a 

repeated-measures ANOVA that included number of objects as well as eccentricity and target 

number.  

 The average speed limit (temporal frequency limit) across all conditions for a single 

target was 1.1 rps (6.7Hz) at 2.5 deg and 1.0 rps (6.5Hz) at 5.5 deg and for two targets 0.7 rps 

(4.3 Hz) at 2.5 deg and 5.5 deg. This result also suggested the speed limit is imposed not by 

linear speed, which was much greater for larger eccentricity, but rather by rotation speed 

(revolutions per second). It might be explained by a limit on tracking object per unit area of 

retinotopic cortex, as that scales linearly with eccentricity. 
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5.2.2.4 Capacity-one benchmark 

 As with all the experiments in Chapters 2 and 3, here we also calculated the 

predictions of the two-target speed limit using the capacity-one benchmark. On this 

benchmark, for the half of trials where participants track the target that will be asked in the 

end of trial, the predicted performance is similar to the performance of tracking one target. 

On the other half of trials where asked for the untracked target at the end, participants need to 

guess and therefore perform at chance. Taking the 3-object condition as an example, the two-

target predicted performance logistic curve fit spanned from 66% (99.33% for the half trials 

and 33% for the other half of trials) to 33% (chance rate). 

 Because the maximum proportion correct for the predicted logistic curve and the 

chance rate varied with the number of objects in a ring, we determined the speed limit with 

the midpoint thresholds across four different number-of-object conditions (50% for 3 objects, 

38% for 6 objects, 33% for 9 objects, and 31% for 12 objects).    

 Figure 5.7 illustrates the empirical speed limit for tracking one and two targets as well 

as the speed limit predicted by the capacity-one benchmark across four number-of-object 

conditions. For all conditions, the empirical speed limits were even slower than the 

benchmark speed limits. Statistically, a repeated-measures ANOVA shows a significant 

difference between the empirical and benchmark speed limits for tracking two targets, F (1, 

5) =58.22, p=0.001, partial η2=0.921. The reason that participants did more poorly than if 

they had tracked just one is likely that they attempted to track both targets but did not have 

sufficient tracking resources to track two targets, so they got both wrong.  

 We suggest that when the speed is so high that participants can only track one object, 

they nonetheless persist in attempting to track two or three, and by continuing to split their 

resources in this way they end up unable to track any, not even one. This implies that the 

resource-versus-performance function (Norman & Bobrow, 1975) is sufficiently steep that at 
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high speeds, dividing resource in two causes performance to fall farther than halfway towards 

chance. The implication is that the two targets do not trade off linearly (the performance 

operating characteristic, Norman & Bobrow, 1975) but rather taking half the resource from 

one decreases performance by more than the corresponding factor of two. 

 

Figure 5.7. The capacity-one benchmark prediction  
The speed limit for tracking two targets is significantly worse than the speed limit for tracking one, and is also 
substantially lower than that predicted by the capacity-one benchmark (dashed bars). Error bars show one 
standard error across 6 participants. 

5.3 Experiment 11: Three-Ring Experiment 

 The result of Experiment 10 that the temporal frequency limits declined as the target 

number increased can be explained by the resource theory. More attentional resource was 

allocated to the target when there was only one enhanced the temporal resolution of tracking 

it and therefore improved the temporal frequency limits.  

 However, an alternative explanation for this finding is that tracking one target might 

be special. For some cognitive functions, it seems that humans can conduct only one at a time 

(Allen & Madden, 1990). In the two-target condition, only one of the targets would benefit 

from this cognitive processing to improve the tracking performance. We therefore went on to 

examine the effect of load with more targets, so that any benefit of cognition for a single 

target would be more similar for the various target loads. Because we also intended to keep 
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the targets very widely separated, we could not increase using many targets- we compared 

two to three. 

 Experiment 11 was similar to Experiment 10, but compared two targets to three rather 

than two to one. The number of objects in the circular trajectories and the rotational speeds 

were varied to investigate the temporal limits. According to resource theory, the temporal 

frequency limit should be lower for tracking three targets than that for the two-target 

condition.     

5.3.1 Method 

5.3.1.1 Participants 

 Seven participants (6 male, one female, 29-37 years of age) were recruited in 

Experiment 11, and six of them had also previously participated in Experiment 10. 

5.3.1.2 Stimuli 

With the following exceptions, the apparatus and stimuli employed in this experiment 

were identical to those in Experiment 10. In Experiment 10, the stimuli comprised of two 

concentric rings of objects whereas three concentric rings of objects were used in this 

experiment (Figure 5.8). Instead of the Gaussian blobs, the objects were arc segments with 

thickness and length scaled by eccentricity of the three rings (for inner: 0.6 deg x 0.9 deg; 

middle: 1.6 x 1.4 deg; outer: 4.3 x 2.4 deg). To keep the rings well outside each other’s 

crowding zones (Intriligator & Cavanagh, 2001; Pelli & Tillman, 2008), the three rings had 

radii 1.5, 4.5, and 12 deg. Similar to Experiment 10, all separations among three rings were 

greater than the crowding zone. For example, the separation between outer and middle rings 

(7.5 deg) was larger than the 6 deg of the crowding zone of the outer ring. The separation 

between inner and middle rings (3 deg) was also larger than the 2.25 deg of the crowding 

zone of the middle ring.  
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Figure 5.8. Schematic of the displays in Experiment 11 
All objects in a ring always moved at the same speed and the same direction but occasionally reversed direction, 
independently of the other rings. On different trials, each ring contained 3, 6, 9, or 12 objects, which together 
with speed determined the temporal frequency. Two or three objects in separate rings were designated as targets 
by appearing in white at the beginning of the trial before becoming red.  

5.3.1.3 Procedure  

The sequence of events on a given trial was identical to that of Experiment 10. All 

objects began at random points in their trajectories (although all were equally spaced about 

the trajectory), with the inner and outer objects revolving about fixation initially in the 

opposite direction from those in the middle trajectory. Targets were indicated by showing the 

objects as white as the motion began. They gradually became the same colour as the 

distracters (red) over the next 0.7s, via a linear ramp through RGB space. The objects in each 

trajectory occasionally reversed direction—each trajectory was independently assigned 

reversal times that succeeded each other at random intervals between 1.2 and 2 s. The total 

tracking interval varied randomly between 3.0 and 3.8 s. 

In one condition, participants tracked two targets (chosen randomly from three 

trajectories on each trial) and in the other, they tracked three targets, one in each trajectory. 

At the end of the trial, a sound recording indicated in which ring the participants should use 

the mouse to indicate which blob was a target. In one-third of trials participants were 

prompted to indicate the target in the inner trajectory, in 1/3 of trials in the middle trajectory 

and other 1/3 of trials in the outer trajectory. 

All objects revolved about fixation at the same rate throughout each trial. A range of 

speeds from 0.05 to 1.6 rps was used on different trials. Those were presented in 
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pseudorandom order and fully crossed with the two-target versus three-target conditions. The 

speeds for each condition and person were chosen on the basis of piloting. Each person 

participated in at least 480 trials of an experiment, which usually involved two sessions, each 

shorter than fifty minutes. 

5.3.2 Results and discussion  

The effects of speed and temporal frequency on proportion correct are plotted in 

Figure 5.9 and 5.10, for tracking two and tracking three targets within the four different 

number-of-object conditions (3, 6, 9 and 12 objects) of Experiment 11. For every participant, 

the speed limit and temporal frequency limit (midpoint threshold) for tracking two targets are 

higher than for tracking three targets across four conditions. 

The mean speed limits and temporal frequency limits across 7 participants for each 

condition are plotted in Figure 5.11. Consistent with Experiment 10, for tracking two targets, 

a 0.9 rps decrement in speed limit was found as number of objects in a ring increased from 3 

to 12 (simple linear regression for 3 to 12 objects: b=-0.094, r2=0.739, t (27) =-8.576, 

p<0.001; for 6 to 12 objects: b=-0.058, r2=0.698, t (17) =-6.627, p<0.001). For tracking three 

targets, there was also a decrease of speed limits as the number of objects in a ring increased 

from 3 to 12 (simple linear regression for 3 to 12 objects: b=-0.06, r2=0.573, t (27) =-5.907, 

p<0.001; for 6 to 12 objects: b=-0.043, r2=0.565, t (17) =-4.971, p<0.001).  

Extending Experiment 10 to higher target loads, speed limits were much slower for 

three targets than for two targets in each number of objects condition (from 3 to 12, paired t 

(6) =21.206, t (6) =3.754, t (6) =7.204, t (6) =8, all p-values were less than 0.01).  

The hypothesis that a ~4Hz limit for two targets constrained tracking performance 

was corroborated by the similar results in Experiments 10 and 11. The two experiments had a 

similar temporal frequency limit despite the use of different stimuli (mean 4.5 Hz in 

Experiment 10 and mean 3.9 Hz in Experiment 11).   
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Figure 5.9. Data and Psychometric fits in Experiment 11  
Proportion correct is shown for each speed, in the two-target (blue curve) and three-target (green curve) 
conditions. Dotted lines show the midpoint thresholds. 
 

 

Figure 5.10. Data and Psychometric fits in Experiment 11  
Proportion correct is shown for each speed, in the two-target (blue curve) and three-target (green curve) 
conditions. Dotted lines show the midpoint thresholds. 
 

In this experiment, the temporal frequency limits were also substantially poorer for 

the larger load of three targets. A repeated-measures ANOVA with number of objects (3, 6, 9 
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and 12) and number of targets (two vs. three) as factors indicated that the 2.5 Hz limit for 

three targets was significantly lower than the 3.9 Hz limit for two targets, F (1, 6) =102.381, 

p<0.001. A significant target number effect was also found according to the ANOVA after 

the 3-object condition (where performance might be limited by speed rather than temporal 

frequency) was excluded, F (1, 6) =56.873, p<0.001.  

 

 

Figure 5.11. Results of Experiment 11 for Averaged Performance  
The mean speed limits (top panel) and temporal frequency limits (bottom panel) across participants in 
Experiment 11, for tracking two targets (light grey bar) and three targets (white bar) for the different number of 
object conditions.  Error bars are one standard error across participants. 
 

For tracking three targets, it is no longer possible to see whether a speed constraint 

limits performance in the 3-object condition. For the 3-object condition, the empirical speed 

limit (0.8 rps) is similar to the corresponding speed limit (0.87 rps) converted from the 

temporal frequency limit (2.6 Hz), making it unclear whether it is speed or temporal 

frequency that constrains tracking performance. The temporal frequency limit for the 3-object 

condition (2.2 Hz) was not significantly different from the mean of other number-of-object 

conditions (2.7 Hz), according to a contrast analysis, t (24) =-1.312, p=0.202. 
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5.3.2.1 Concern of Spatial Interference 

 To address the possibility of spatial interference, lapse rate and tracking performances 

at the slowest speed were analysed, just as in the previous experiment.  According to the 

spatial interference hypothesis, the lapse rate should be inflated and tracking accuracy at the 

slowest speed should reduce with more targets or larger numbers of objects in a ring. For 

analysis of the lapse rate, a repeated-measures ANOVA with target number and number of 

objects as factors indicated that the effects of number of targets (F (1, 6) =1.326, p=0.293, 

partial η2=0.181) and number of objects (F (3, 18) =0.61, p=0.617, partial η2=0.092) were 

non-significant, and neither was the interaction (F (3, 18) =0.919, p=0.452, partial η2=0.133). 

The fitted lapse rates are shown in Table 5.2. The lapse rates for the conditions with different 

target number or different numbers of objects in a ring were similar to each other, around 0 to 

0.2.   

Table 5.2. Estimated lapse rates for different number of objects and targets in Experiment 11  
  
 

 

 

 

Note. Lapse rates ± Standard error across participants 

 With regard to performance at the slowest speed, it provides little or no evidence of 

spatial interference. A repeated-measures ANOVA with number of objects and number of 

targets as factors yielded no significant effect of target number  (F (1, 6) =5.76, p=0.053, 

partial η2=0.49), a non-significant object number effect (F (3, 18) =0.972, p=0.428, partial 

η2=0.139), and no interaction between target and object number (F (3, 18) =0.385, p=0.765, 

partial η2=0.06). A post-hoc test revealed that the near-significant effect of the additional 

target was caused by a deficit for the 6-object condition. For example, the accuracy for the 

slowest speed for 6 objects (91%) is significantly worse than for the 9 object condition (100% 

Objects 2 Target 3 Targets 
3 0± .01 0± 0 
6 .01± .03 .01± .02 
9 .02± .02 .01± .04 
12 .02± .04 0 ± .01 
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correct), p=0.018. It certainly does not fit with the spatial interference prediction of worst 

performance for the 12-objects condition. 

 Examining the effect of the separation of the targets on performance also did not yield 

evidence consistent with the spatial interference theory. The three rings had radii 1.5, 4.5, and 

12 degrees, and when observers were asked to track two targets, the two rings with the targets 

were either inner/middle, middle/outer, or inner/outer. In the inner/outer condition, the 

separation between the two targets was much greater than in the other conditions. The spatial 

interference hypothesis was examined by testing the effect of condition on the speed limit. A 

repeated-measures ANOVA found no significant effect, F (2, 12) =0.048, p=0.953, partial 

η2=0.008. Examining the conditions more specifically, paired t-test also showed no 

significant difference on speed limits between inner/outer vs. inner/middle (from 3 to 12 

objects condition, t (6) =0.113, t (6) =0.649, t (6) =-0.441, t (6) =-0.629, all p-values are 

higher than .05) and inner/outer vs. middle/outer (from 3 to 12 objects condition, t (6) 

=0.594, t (6) =-0.959, t (6) =0.111, t (6) =0.468, all p-values are higher than .05).   

5.3.2.2 Effect of eccentricity 

 Consistent with Experiment 10, no effect of eccentricity on tracking performance was 

found in this experiment. The statistics below are also reported separately for the 3-object 

condition and others because the 3-object condition may be limited by a separate, speed-

limited mechanism whereas the others appear to be limited by temporal frequency. For the 3-

object condition, a repeated-measures ANOVA with eccentricity and target number as factors 

indicated eccentricity is not significant (F (2, 12) =0.409, p=0.673, partial η2=0.064) and 

neither is the interaction (F (2, 12) =0.927, p=0.422, partial η2=0.134). For the remaining 

conditions (6 to 12 objects), neither the eccentricity effect (F (2, 12) =3.503, p=0.063, partial 

η2=0.369) nor its interactions (target*eccentricity: F (2, 12) =0.221, p=0.805, partial 

η2=0.036; object*eccentricity: F (4, 24) =1.138, p=0.362, partial η2=0.159; target*object* 
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eccentricity: F (4, 24) =0.692, p=0.605, partial η2=0.103) were significant according to a 

repeated-measures ANOVA that included number of objects as well as eccentricity and target 

number.  

 The mean speed limit across four object conditions for two targets was 0.7 rps at 1.5 

deg and 4.5 deg, and 0.6 rps at 12 deg. For tracking three targets, the mean speed limit was 

0.4 rps at 1.5 deg, 0.5 rps at 4.5 deg and 0.6 rps at 12 deg.  

5.4 Discussion of Experiments 10-11. 

 Both speed limits and temporal frequency limits were evident when participants 

tracked a single target. The speed at which one could no longer track was determined by 

which constraint on performance was exceeded first: the speed limit at 1.7 rps or the temporal 

frequency limit at 6.9 Hz. Tracking additional targets lowered both speed limits and temporal 

frequency limits. Temporal frequency limits decreased from 6.9 Hz for one target to about 4 

Hz for two targets and 2.6 Hz for three targets. Additionally, the speed limit declined from 

1.7 rps to 1.3 rps when the number of tracked targets increased from one to two.  

 Published theories of tracking have focused on explaining the effects of speed, 

spacing, and number of targets. Our study is the first evidence to investigate the effect of 

number of targets on temporal frequency limits of tracking. In these experiments, speed and 

object spacing were varied and temporal frequency was found to be the primary constraint on 

tracking performance. 

 Theories positing that spatial interference is the primary constraint on tracking 

performance cannot explain our results (Franconeri et al., 2010; Franconeri et al., 2008). In 

both experiments in this chapter, crowding was avoided by using wide spacing between 

objects and the separations were chosen to be large enough to be outside the crowding zone 

of Bouma’s law (Bouma, 1970; Pelli & Tillman, 2008). Testing for spatial interference by 
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examining the effect of target number or object number at very slow speeds yielded no 

evidence. 

5.4.1 Parallel Theories of Tracking- Flexible Resource Theory 

 The load-dependence of temporal frequency limits may be explained by both parallel 

and serial processing theories. The flexible resource theory (Alvarez & Franconeri, 2007) is a 

parallel processing theory that proposes tracking is mediated by a finite attentional resource 

that is distributed among the targets. Targets are processed in parallel and independently, and 

allocating more resource to a target benefits performance. The generic theory does not 

specify however in what way more resource is beneficial. It might reduce spatial interference 

by narrowing the tracking foci (Shim et al., 2008), but this would not explain the present 

results. It might alternatively improve temporal resolution by reducing the temporal selection 

window, which could explain the present results.  

 Temporal frequency likely constrained performance because the temporal selection 

window of tracking was so large that participants were unable to temporally isolate the target 

from the distractors. Taking the sushi train example described in the beginning of this 

chapter, participants cannot distinguish which tray is the target sushi when the one after the 

target arrives too quickly. Thus, the duration of the temporal selection window is a 

determining factor for tracking. Here, we measured the temporal frequency limit to quantify 

the duration of the selection window. For instance, a 2.5 Hz limit indicates that performance 

will be negatively affected when a distractor occupies a temporal selection window within 

400 ms of a target. To explain the present data with flexible resource theory, less resource 

allocated to each target lengthens the temporal selection window and therefore lowers 

temporal frequency limits. 

 In addition to explaining the change in temporal frequency limits, more resource 

might also somehow increase the speed at which the tracking foci can move, which can 
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accommodate our speed limit finding. To explain the present data, all resource allocated to 

one target can make its tracking foci move as fast as 1.7 rps. But when tracking two targets, 

only half of resource is allocated to each target and 1.3 rps is the speed limit. 

5.4.2 Serial Switching Theories of Tracking 

 In a serial switching theory of tracking (Oksama & Hyona, 2008; Tripathy et al., 

2011), only one target can be tracked at a given time. This theory assumes a single focus of 

tracking rapidly switches among targets to update their location information one at a time. 

Every time a target is attended by the tracking focus, the current location of the target is 

recorded and stored. When returning attention to a target, observers recognize the target by 

judging which object is the closest one to the target’s last-sampled location. The critical 

determining variable of successful tracking should then be half of the inter-sampling interval, 

which is the duration between two subsequent samplings. When a distractor arrives at a 

former target location within half of the inter-sampling interval after previous location 

sampling, tracking will fail by misrecognizing the distractor as a target. The particular 

interval between location updates therefore naturally predicts a corresponding temporal 

frequency limit. For example, a 6.9 Hz temporal frequency limit (corresponding to 145 ms) 

on tracking resulted from that a distractor is closer to the target’s sampled location after 

exactly half of the cycle duration (72.5 ms). 

 The serial switching theory predicts that temporal frequency limits should decline 

dramatically with increasing number of tracked targets. For tracking two targets, each target 

will be visited only half as often, and therefore the critical cycle duration should be double. 

Our results are not far from this prediction. In Experiment 11, the 4 Hz limit (250 ms) 

observed here for tracking two targets indicates that 62.5 ms are required to sample one target 

location and switch to the other. The predicted results for 3 targets are then 2.67 Hz (375 ms), 

similar to the mean 2.6 Hz observed in Experiment 11. The empirical temporal frequency 
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limit (4.4 Hz) for two targets is also not far from the predicted result (3.5 Hz) with one-target 

limit of tracking in Experiment 10.   

 These temporal frequency limits can also explain some aspects of performance in 

typical MOT experiments although the displays are different. The objects moved in a circular 

trajectory that frequently passed the same locations for Experiment 10 and 11 whereas 

objects move in a random trajectory in typical MOT conditions. Most previous researchers of 

MOT rarely use speeds that were higher than the speed limit documented here, but the targets 

in their displays likely do run afoul of the temporal frequency limits. For instance, a 2.6 Hz 

temporal frequency limits for tracking three targets in Experiment 11 suggested that tracking 

performance will be poor in the typical MOT experiments when a distractor occupies a 

region within 385ms of a target occupying it. When tracking more than three targets, tracking 

may be impossible when the interval between a target and a distractor successively occupying 

the same region is even larger than 385 ms. Corresponding patterns of movement should 

frequently occur in the random trajectories used in typical MOT experiments. 

 The serial switching explanation does not account for the speed limit constraint on 

performance that occurs with 3 objects in a circular trajectory before the temporal frequency 

limit is reached. To explain the speed limit cost with the serial switching sampling theory, 

one could assume that if the target moves far enough from its last-sampled location then the 

spotlight does not re-acquire the target, even without any distractor nearby. With a higher 

number of tracked targets, the target will have travelled further since the last location update, 

reducing the speed limit. 

 Pylyshyn and Storm (1988) refuted the serial switching theory by that attention 

spotlight was unable to sufficiently fast switch among locations that are further apart. 

However, results since then have provided evidence that attention does not take longer to 

shift between larger distances (Kwak et al., 1991; Shih & Sperling, 2002). S. P.  Tripathy et 
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al. (2011) further pointed out that the traces of the moving objects are likely transiently 

recorded in the iconic memory buffer, facilitating target recovery in the traditional MOT task. 

Participants can successfully track multiple objects in serial processing by matching the trace 

information in the iconic memory buffer and the current locations. 

 Broadly speaking, tracking multiple objects in a serial approach also involves the 

flexible allocation of tracking resource. Observers successively switch all tracking resource 

among targets during the tracking period. Across time (time-sharing), the tracking resource is 

flexibly shared among tracked targets. For example, if observers were asked to track three 

targets, each target received all resource in one-third of the tracking period. To explain our 

finding that temporal frequency limits decreased when more targets were tracked, it can be 

accommodated by assuming that when observers track fewer targets, each target is allocated 

more amount of total tracking resource, which is the product of resource and tracking 

duration.  

5.4.3 Difference between Temporal and Spatial Limits on Tracking 

Numerous studies have suggested that spatial and temporal properties of visual 

attention are mediated by different cortical networks (Aghdaee & Cavanagh, 2007; Battelli et 

al., 2001; Battelli, Pascual-Leone, & Cavanagh, 2007; Battelli, Walsh, Pascual-Leone, & 

Cavanagh, 2008). The contralateral parietal cortex mediates the visual spatial attention in one 

hemifield (Battelli et al., 2001; Culham et al., 1998). For instance, the parietal network in the 

right hemisphere mediates spatial attention in the left visual hemifield. In contrast, only the 

right inferior parietal lobe underlies temporal attention in both left and right visual hemifields 

(Battelli et al., 2007; Battelli et al., 2008; VanRullen, Pascual-Leone, & Battelli, 2008).  

 A series of studies conducted in patients with parietal cortex damage by Battelli and 

colleagues provide evidence for the difference of cortical networks mediating spatial versus 

temporal resolution (Battelli et al., 2001; Battelli, Cavanagh, Martini, & Barton, 2003; 
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Battelli et al., 2007; Battelli et al., 2008). Battelli et al. (2001) demonstrated that a patient 

with right parietal damage has slow temporal selection rates in both right and left visual 

hemifields to judge whether the display is a static flickering of four dots or is an apparent 

motion of two dots. But patients only have worse spatial attention in the contralateral visual 

hemifield. Battelli et al. (2007) documented that patients with right parietal lesion were 

severely impaired in both hemifields for a task of temporal processing of detecting whether 

there is an odd item among six squares that alternated black and white or all squares are 

identical. However, patients with left parietal lesion did not have lower temporal processing 

rates. 

 Another significant difference between spatial and temporal attention is in terms of 

the attention resolution across the visual field. Firstly, spatial resolution is much finer in the 

lower visual field than in the upper visual field (Intriligator & Cavanagh, 2001), which 

supports the finding in the monkey study that more visual inputs were received in the lower 

part of the partial cortex than in the upper part (Maunsell & Newsome, 1987). However, there 

is no difference between lower and upper visual field for temporal resolution (Aghdaee & 

Cavanagh, 2007), where temporal resolution was measured by asking observers to judge the 

relative phase of two flicking lights. Secondly, the spatial resolution of attention dramatically 

declined from near the fovea to the periphery (Intriligator & Cavanagh, 2001), but the 

temporal resolution of attention only has a small decrease with eccentricity (Aghdaee & 

Cavanagh, 2007). These findings indicate that the temporal resolution of attention is 

independent of visual field location, which differs markedly from spatial resolution of 

attention. 

 Both experiments in this chapter also investigate the relationship between the tracking 

performance and eccentricity. We found the absence of an effect of eccentricity on temporal 

limits in both experiments. This suggests that temporal resolution is one of the constraints on 
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tracking multiple objects, and the temporal limits on tracking performance might reflect the 

same processing that limits relative phase judgments of two flickering lights.  

5.5 Conclusion of Chapter 5 

 Attentive tracking of a moving target was constrained by both a speed limit and a 

temporal frequency limit. The finding was consistent with the study of the Verstraten et al. 

(2000), and specifically presented that the constraint on temporal frequency involved more 

than the constraint on speed as increasing the number of objects in a circular trajectory. In the 

3-object condition, the tracking performance was impaired by the speed limit whereas the 

performance was impaired by the temporal frequency limit when number of objects was 6 to 

12. Flexible resource theory and serial switching theory both might explain the cost of 

additional targets on speed limits and temporal frequency limits. 
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Chapter 6 :General Discussion and Conclusion 

Here, multiple object tracking was used to explore the limitations of attentional 

selection. Two decades ago, most researchers investigated attentional capacity limitation via 

dual-task experiments (Pashler, 1994; Pashler & Johnston, 1998). These demonstrated that 

adding a second different task has a cost for performance of the first task. Unlike dual-task 

experiments, here we investigated whether capacity limitation also has a cost when observers 

perform just one task like multiple object tracking (MOT), but additional targets are added. 

The results demonstrated that the speed limit or temporal frequency limits of each target 

declined when more targets needed to be tracked. This indicates that the mental processing 

for tracking multiple moving objects has limited capacity. 

6.1 Resource Theory Accounts for the Performance of Multiple Object Tracking 

 A variety of theoretical models have been proposed to explain the attentional capacity 

limitation. Pashler (1994) outlined the three most influential models: resource theory 

(Kahneman, 1973), central bottleneck theory (Broadbent, 1958), and cross-talk theory 

(Kinsbourne, 1981). Our results are more consistent with the resource theory than others. The 

following sections will discuss this in detail. 

6.1.1 Excluding Cross-Talk Theory 

Cross-talk theory predicts that the interference between two tasks depends on 

similarity of the mental representations involved in each (Kinsbourne, 1981). Processing each 

task is mediated by a specific area of cortex. If two tasks are processed by the same neural 

population, the cross-talk will occur and lead to large interference between these two tasks. 

 In this thesis, the possibility of cross-talk interference between targets rather than 

between tasks was explored. Tracking of targets may be performed by neurons in the superior 

parietal lobule or intraparietal sulcus (Culham et al., 1998; Howe, Horowitz, Morocz, Wolfe, 

& Livingstone, 2009; Jovicich et al., 2001). When two targets are close to each other, perhaps 
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they share some neurons of the superior parietal lobule, leading to a large interference 

between the mental representations of targets. This idea that targets close to each other on the 

screen are closer in retinotopic cortex and hence interfere with each other amounts to a spatial 

interference theory of tracking limits (Franconeri, 2013; Franconeri et al., 2010; Franconeri et 

al., 2008). But the present experiments demonstrate that the attentive tracking of objects is 

mediated by a finite tracking resource and the effect of speed on tracking performance is 

independent of spatial interference.  

Spatial interference on visual attention includes target-distractor interference and 

target-target interference. The target-distractor interference has been extensively studied with 

the spatial resolution of attention in psychophysical studies of crowding (Intriligator & 

Cavanagh, 2001; Pelli & Tillman, 2008). In these studies, performance declines owing to the 

poor spatial resolution to distinguish targets from distractors when they are close together 

(crowding effect). These studies already found the crowding spacing, that is the critical 

distance between targets and distractors causing the crowding effect, for target identification 

(Pelli & Tillman, 2008) and for target selection (Intriligator & Cavanagh, 2001). To avoid 

this possibility of crowding effect, the separation between targets and distractors in all 

experiments of my thesis is greater than these crowding spacings. 

 To investigate whether target-target spatial interference influences our results, 

comparing narrow separation to wide separation between objects, our Experiment 1 

demonstrated that both separations had similar speed limits for tracking one and tracking two 

targets. Moreover, using a very large separation between objects to better guarantee that no 

spatial interference occurred, our Experiment 1b found a similar result as Experiment 1. 

Furthermore, manipulating four target-target separations (3, 5, 7, and 9 deg) within one single 

hemifield in Experiment 7, speed limits showed little to no change across four separations 

both for tracking one and for tracking two targets.   
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 Our Experiment 11 also provided evidence against the theory of competition for 

cortical representation. In Experiment 11, the three rings had radii 1.5, 4.5, and 12 degrees. 

Each target might be cued in two of three rings for the two-target tracking condition. The 

spatial interference effect on speed limits was measured by comparisons among three 

conditions: inner/middle, middle/outer, and inner/outer. No significant differences were 

found among these three conditions, suggesting again that the effect of number of targets was 

not dependent on spatial separation. These above results speak against the possibility of 

cross-talk interference between targets. 

 Spatial interference of attention between targets has been explored in an alternative 

form of neural network: oscillatory neural networks, which might be more suitable for object-

based attention (Kazanovich & Borisyuk, 2002, 2006). The network operates in phase-

frequency space, which explains the interference in non-retinotopic brain areas that the 

attentional focus is not mediated by a specific area of cortex. The oscillatory neural networks 

include two main components: central oscillators (COs), which are assembly of neurons that 

represent the central executive of the attentional system, and peripheral oscillators (POs), 

which are an assembly of cortical neurons in the primary visual cortex. The focus of attention 

is formed by synchronous oscillations of these COs and POs. For object tracking, Kazanovich 

and Borisyuk (2006)  suggested that the focus of attentional system is divided into several 

subsystems, and each subsystem is mediated by an oscillatory neural network that is 

responsible for tracking a single target. When a target is attended, the assembly of cortical 

neurons that related to the target (PO) works synchronously with the assembly of neurons 

that represents the central executive (CO) with a particular phase-frequency space. When a 

target moves, the new population of cortical neurons must join the synchronized assembly 

(synchrony) and the neurons representing the old location must leave the assembly 

(desynchrony). The synchrony and desynchrony take time to complete, which imposes a 
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speed limit with additional targets to be tracked only if they must be done serially. The spatial 

interference between two targets might be caused by that the two oscillatory neural networks 

of COs and POs synchronously oscillate with the same phase-frequency space. The network 

of the phase-frequency space is different from a retinotopic cortex that is relevant to the 

Franconeri (2008; 2010; 2013). Therefore, this model of oscillatory neural networks might 

explain the spatial interference (cross-talk) occurs regardless of separations. This 

accommodates our results that tracking performance is independent of spatial separation 

between targets.  

 For the issue of temporal frequency limits, although Kazanovich and Borisyuk (2006)  

did not consider, their model may also predict the temporal frequency limit decreases with 

tracking load. Because it takes time to dynamically synchronize and desynchronize the 

population of cortical neurons when targets move, the failure of tracking occurs if a distractor 

arrives at the former target location when those neurons are still partially synchronized. 

However, to reconcile these results in Chapter 4 with this model, it should be modified to 

allow a single target to be tracked by more than one oscillatory neural network. In this case, 

one target having more oscillatory neural networks could be tracked much faster than the 

target having only one oscillatory neural network. 

The present thesis does not completely deny the spatial interference effect on tracking 

performance, but just claims that speed has an effect on attentive tracking independent of the 

spatial interference. When the number of close encounters is held constant (equal travel 

distance) and spatial interference is avoided with wide separation, the maximum speed at 

which observers can successfully track targets nevertheless declines with additional targets 

that be tracked (Chapters 2 and 3). When two targets are too close to each other, tracking 

performance might also be impaired by spatial interference between targets. Further 

investigation might focus on determining for various small separations how much effect there 
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is of spatial interference or cross-talk interference. The possible approach is to investigate 

whether the speed limit decreases much when the separation between targets is less than 3 

deg, which is the minimal distance used in our Experiment 7.    

6.1.2 Rejecting the Central Bottleneck Theory 

According to the central bottleneck theory, certain mental operations are carried out 

one-by-one, in series (Broadbent, 1958). Our attention can only process one task or target at a 

given time and we must switch attention between tasks or targets. When two tasks require a 

critical mental operation at the same time, one task will be delayed or not occur at all, even if 

two tasks are presented in separate hemifields (Pashler et al., 1994; Ptito, Brisson, 

Dell'Acqua, Lassonde, & Jolicoeur, 2009).  

Two prominent experimental paradigms have highlighted the processing limitation of 

central bottleneck theory: the psychological refractory period (PRP) paradigm and the 

attentional blink (AB) paradigm. When observers attempt to perform two tasks at the same 

time, they are severely delayed the second task processing, which are termed the “PRP 

effect”. When observers attempt to identify two targets in a rapid serial visual presentation 

(RSVP) of distractors, they impaired at detecting the second of two targets when it is 

presented within 300-500ms of the first target, which are termed the “AB effect”. Both 

paradigms have a common phenomenon that observers can only process one target or task at 

a given time and serially switch processing between targets or between tasks. With the PRP 

paradigm, Pashler et al. (1994) demonstrated the delayed processing of one stimulus in one 

visual hemifield (Task 2) is caused by another stimulus requiring processing in the opposite 

hemifield (Task 1) for split-brain patients as well as neurologically intact participants. With 

the AB paradigm, Ptito et al. (2009) found, regardless of when two targets were presented 

sequentially within the same hemifield or across separate hemifields, the AB effect exists for 

both neurologically intact participants and split-brain patients, and no significant difference 
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on AB effect was shown within the same hemifield and across separate hemifields. For split-

brain patients, the right and left hemispheres are completely independent because of a 

complete section of the corpus callosum but their subcortical structures are intact.  Results of 

these two studies supported the central bottleneck theory, and suggested that the serial 

processing of central bottleneck theory might be mediated by the subcortical structures 

instead of cortices (Pashler et al., 1994; Ptito et al., 2009), which is different from the 

retinotopic neural networks of cross-talk theory. 

Our results are incompatible with the central bottleneck theory because we found that 

tracking resources are largely hemisphere-specific. If there is only one central bottleneck 

processing one target at a time, it is hard to explain why performance is better when targets 

were presented in separate hemifields than in the same hemifield (Chapter 3). It is also 

difficult to reconcile our results in Experiment 8 with the central bottleneck theory. In 

Experiment 8, the tracking resource could be differentially allocated between targets of 

different speeds only in the same hemifield, not across two hemifields (Chapter 4). 

However, one could modify the central bottleneck model to propose a separate 

bottleneck in each hemisphere. According to this dual-bottleneck theory, for multiple targets 

in a single hemifield, processing must switch between the targets in series, such that only one 

target can be processed at a given time with that hemisphere-specific bottleneck. In the 

following paragraphs, the issue of serial or parallel tracking is discussed to consider whether 

the dual-bottleneck theory is congruent with our results. 

The independence of tracking in the two hemifields shows that tracking is parallel 

inasmuch as there is concurrent independent processing in the two hemispheres, which is 

inconsistent with the central bottleneck theory.  But within a hemifield, the findings of our 

experiments are compatible with both parallel (flexible resource theory) and serial (serial 

switching theory) models. In serial accounts, at higher speeds the targets travel farther 
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between position updates, resulting in a speed limit cost for larger tracking loads. A larger 

temporal frequency limit cost for adding target numbers results from a longer inter-sampling 

interval, which is the duration between two subsequent samplings. When a distractor arrives 

at a former target location within half of the inter-sampling interval after previous location 

sampling, tracking will fail by misrecognizing the distractor as a target (serial sampling). In a 

parallel account, the larger speed limit cost and temporal frequency limit cost for additional 

targets results from less resource is allocated to each target. Less resource received by each 

target might reduce the speed of the tracking focus or increase the duration of temporal 

selection window. 

Both serial and parallel models can also explain that the reduction of speed limit with 

adding one target in the same hemifield is similar to that predicted if observers can only track 

one target and guess the other (capacity-one benchmark) in Chapter 3. At high speeds, 

successful tracking requires observers to quickly switch this one-capacity resource between 

two targets within one hemifield (serial tracking). As the capacity-one benchmark and linear 

resource-versus-performance function accounts both make the same prediction, parallel 

processing with 50% of the resource per target also fits with our results at high speeds 

(parallel tracking). At slow speeds, the empirical tracking performance was substantially 

better than that predicted by capacity-one benchmark, indicating observers can track more 

than one target at lower tracking load (parallel tracking). In some cases of our experiments, 

empirical speed limits for tracking two targets are even worse than the capacity-one 

benchmark. On a serial account, it indicates that splitting the attentional resource between 

two targets over the timeline of a tracking trial does not yield enough tracking focus’ time 

(resource) on each target so performance is worse than the capacity-one benchmark. On a 

parallel account, it indicates that splitting the attentional resource between two targets means 

there is not enough resource to successfully track either.  
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In Chapter 4, unequal allocation of the tracking resource within one single hemifield 

is also compatible these two models. On a parallel account, all the targets’ positions are 

updated simultaneously, but with more resource devoted to a target the positions are updated 

more accurately. On a serial account, more resource is devoted to one target than the other, 

and the focus of attention visits that target longer or more frequently than the other. A better 

performance of the target paired with a slow-speed target than paired with a same-speed 

target might result from more resource is allocated to that target or longer duration the focus 

of attention visits that target. Therefore, the dual-bottleneck theory is unable to be refuted by 

our findings because both parallel and serial models are congruent with our results when 

targets are presented within one hemifield. 

Broadly speaking, serial processing can be considered a particular variant of resource 

theory, where the resource is time-shared among the targets or tasks. All the resource is 

allocated to one target or task and attention rapidly switches between two targets or tasks in 

turn. Unlike parallel tracking theories, such as flexible resource theory, the resource is 

flexibly allocated between targets or tasks in terms of time. For example, 40% of the trial 

duration attention is allocated to task A and 60% of the trial duration attention is allocated to 

task B. As the number of targets increases, each is processed proportionally less often by the 

serial process. This concern might offer insight into why both parallel and serial models are 

consistent with our results. 

To sum up, the central bottleneck theory is disconfirmed by showing that tracking 

resources are largely hemisphere-specific. The findings that performance is better when 

targets are presented in separate hemifields than in the same hemifield, indicating two 

independent tracking resources can process targets in their own hemifields. However, the 

modified bottleneck theory that each hemifield has its bottleneck could explain our results. 

Previous literature related to bottleneck theory was primarily focused on dual-task 



	   176	  

experiments. The present thesis is the first to our knowledge to discuss the bottleneck theory 

on tracking multiple targets. Our results do not exclude the theory that each hemisphere has 

its own bottleneck because serial processing of tracking targets within a hemifield remains 

viable. To distinguish which theory is better for interpreting multiple object tracking, further 

investigation must identify an appropriate method by which serial and parallel processing can 

be distinguish, which has been a long-time concern in psychology. 

Contrary to the theory by which the central bottleneck is mediated by a subcortical 

structure, a series of many functional magnetic resonance imaging (fMRI) studies that have 

shown the neural mechanisms underlying the capacity limitation of the MOT task are the 

posterior parietal cortex (Culham et al., 1998; Howe et al., 2009; Jovicich et al., 2001). Thus, 

this differential mediating networks between the MOT studies and the central bottleneck 

theory might interpret why our results are inconsistent to the central bottleneck theory. In the 

other words, the dual-bottleneck theory mentioned above that reconciles our results might be 

mediated by the similar neural networks as these fMRI studies. 

6.1.3 Supporting Resource Theory 

 Excluding both cross-talk theory and central bottleneck theory discussed above, a 

tracking resource mediating the attentional processing of tracking multiple objects was 

supported by the evidence in this thesis. Three main aspects of the resource theory were 

described in Chapter 1. Firstly, resource is allocated in a graded manner, and performance 

rises with the amount of resource deployed (Kahneman, 1973; Logan, 1997). Secondly, the 

resource is limited and must be divided among several concurrent attentional processes. 

Finally, the resource can be flexibly allocated among several processes so that some 

processes receive more resource than others. Our results support these three aspects. 

 Pylyshyn and Storm (1988) proposed a slot model theory of the fixed-resource theory 

of visual capacity limits, known as the FINST model. According to this model, each target is 
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independently tracked by a mental pointer known as a FINST. Such a slot model is distinct 

from resource theories that posit graded rather than discrete allocation. Because each 

observer has only four to five FINSTs, the model explicitly predicts that tracking 

performance will not vary as the number of targets is increased until the maximum number of 

mental points is exceeded, whereupon it will decline with additional targets. 

 All experiments in this thesis contradicted this prediction. The speed limit decreased 

with increasing the number of tracked targets even below Pylyshyn and Storm (1988)’s limit 

of four targets. In the two-ring and three-ring experiments (Experiments 10 and 11) for 

example, the speed limit for tracking three targets was significantly lower than for tracking 

two targets, and speed limit for one target was substantially higher than for two targets. In the 

four-target experiments (Experiments 5 and 6), the tracking performance for four targets was 

significantly worse than when tracking two targets in separate visual hemifields. For other 

experiments (Experiments 1,1b, 3, 4, 7, and 9) that contrasted one target with two targets, the 

speed limit substantially decreased with the additional target. These results rejected the 

FINST model prediction. 

Results were consistent with the FLEX theory proposed by Alvarez and Franconeri 

(2007), which is a resource theory of object tracking. The FLEX resource theory proposes 

that the resource is continuous rather than comprising discrete slots. Unlike FINSTs, there is 

no set limit on the number of FLEXs that can be deployed. Instead, it is assumed that there is 

a limited mental resource that is shared by all FLEXs. The more objects to be simultaneously 

tracked the less resource each FLEX receives. As the amount of resource allocated to each 

FLEX decreases, the maximum target speed for each FLEX decreases. Many studies 

documented trade-offs between speed and number of objects that can be tracked (Bettencourt 

& Somers, 2009; Liu et al., 2005). They interpreted their results as supporting the theory that 

speed and number of targets both draw on a common resource. However, spatial interference 
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between targets might confound their results. When targets move faster, spatial interferences 

between targets might occur more. All experiments in this thesis further exclude the 

confound of spatial interference and support the FLEX theory that each target receives less 

amount of resource when more targets are tracked. 

However, Chapter 4 pointed out that a modified slots theory (Zhang & Luck, 2008), 

where each target can be allocated more than one slot, might be accommodated with our 

results of differential resource allocation. Under such a model, resource might be 

differentially allocated—faster targets could be allocated more slots than slower targets. But 

this modified slots theory can only account for tracking fewer than four targets. Horowitz and 

Cohen (2010) already demonstrated that the FLEX theory fits better than the modified slots 

theory for reports of the motion direction of tracked targets when the number of tracked 

targets is above four targets. However, this left open the issue of whether other information 

used in MOT besides motion direction is also fit better by FLEX theory. Future studies might 

ask observers to track more than four targets to distinguish whether the modified slots theory 

is worse than the FLEX theory according to our paradigm. 

Besides spatial interference, attention switching, and FINST models, various other 

theories are also inconsistent with our results. For example, Yantis (1992) proposed that 

when tracking multiple objects, observers spontaneously group all tracked targets into a 

single virtual polygon, which each vertex represents a target. The ability to maintain formed 

groups of targets during tracking is the critical successful element. In the Yantis (1992)’s 

grouping theory, no matter how many targets participants were tracked, they were able to 

track multiple objects accurately when the targets appeared in easily grouped configuration, 

such as triangle, regular diamond, and pentagon, or when the targets were presented 

simultaneously not sequentially. According to Yantis (1992)’s theory, tracking three targets 
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might yield better performance than tracking two or one targets, which was totally contrary to 

our findings in all experiments. 

The Model Of Multiple Identity Tracking (Oksama & Hyona, 2008) and the “object 

files” model(Kahneman, Treisman, & Gibbs, 1992) both are not appropriate to explain the 

results of this thesis, whose mainly emphasized on the dynamic bindings between identity 

information and location information. The information of target location and target identity 

were separately derived from the analysis of dynamic visual inputs with “where” and “what” 

system during the tracking period. MOMIT suggested the efficacy of tracking multiple 

objects depends on continuous serial activating and refreshing of the dynamic identity-

location bindings with attention, and communications between the visual-spatial short-term 

memory (VSTM) and attention. In contrast, the “object files” model encoded the identity-

location binding with multifocal attention at the start of the trial and maintained the binding 

throughout the trial. From the previous section of rejecting the central bottleneck theory, the 

hemisphere-independence evidence in our experiments already excluded a single focus 

attention model, so that MOMIT was also inconsistent with our findings. Although the 

“object files” model operated attention in multiple foci and performance substantially 

declined as the number of targets increased during encoding the identity-location binding, it 

was still difficult to reconcile our results with the object files model. After encoding the 

identity-location binding, the “object files” function should not influence tracking 

performance. Thus, the “object files” function must not contribute for the speed limit because 

all experiments in this thesis have 0.7 seconds to encode the identity-location binding 

regardless of fast and slow speeds.  

In short, our results support the theory that object tracking is mediated by a flexible 

tracking resource, with less resource allocated to each target when more targets need to be 

tracked. The flexible resource allocation not only influences how humans dynamically select 



	   180	  

multiple moving objects but also influences how humans to select multiple static objects. For 

example, when two visual objects are presented simultaneously and briefly, typically 

reporting visual properties of both is more difficult than only reporting the properties of 

either one alone (Alvarez et al., 2005; Duncan et al., 1994). The unattended stimulus may be 

missed because less or no attentional resource is allocated to it. For example, while talking 

with someone on a cell phone during driving, the driver is easily missing a traffic light or 

traffic signs (Strayer & Johnston, 2001). 

Another core function of attention is modulation. Different from attentional selection, 

modulation determines how well the target information is processed after the target is 

selected from competing options (Chun, Golomb, & Turk-Browne, 2011). The limited 

resource is divided according to how many target to be selected, and then the amount of 

resource per selected target determines how well humans perform the attentional modulation. 

With regard to our tracking results, attentional modulation decides how fast human beings 

can track targets after the tracking resource is divided among targets by attentional selection. 

If resource allocation is flexible, resource will be allocated to targets not only 

depending on how many targets are tracked, but also can be differentially allocated to targets 

so that some targets receive more resource than others. In Chapters 2 and 3, we demonstrated 

the allocation of tracking resource depends on how many targets we simultaneously tracked, 

with more resource allocated to each target when observers have to track fewer targets. In 

these situations, targets moved with equal speeds.  

To understand whether tracking resource can be differentially allocated to targets, 

Chapter 4 asked observers to track two targets moving with different speeds. Our 

Experiments 8 and 9 showed that tracking resource could be differentially allocated between 

targets, with a faster target receiving more resource than a slower one. In particular when 

targets were both in the same hemifield, pairing a target with a slower target rather than one 
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of the same speed yielded a higher tracking speed limit for the critical target. The significant 

increment in speed limit of the critical target is probably because the slower target consumes 

less resource than each target in the same-speed condition and leads to more resource 

available for the critical target.  

However, the ability to differentially allocate resources between targets with different 

speeds may have some limitations. Our Experiment 9 found evidence that resource allocation 

did not change during the trial despite variation of which target was faster during a trial. 

However, other researchers found that the resource allocation can be changed during the 

tracking period when the number of targets is varied (Drew et al., 2012; Ericson & 

Christensen, 2012; Wolfe et al., 2007). As we discussed in Chapter 4, the resource 

reallocation between targets during the tracking period might result from the explicit cues 

that helps observers to reallocate their attention to the new target set. In the future, cues could 

be added to our design of Experiment 9 to investigate whether resource can be reallocated 

between targets when the target speeds change during the tracking period. Another possible 

explanation is that humans are very bad at detecting speed change (McBeath et al., 1995; 

Traschutz et al., 2012). To facilitate resource reallocation among targets according to speed 

change during the trail, the future study can enlarge the extent of speed change. 

In dual-task paradigms researchers have also investigated whether participants can 

allocate resource in different proportions. The issue is relative performance in two tasks, 

which is analogous to the tracking issue of relative performance for two targets. Several dual-

task experiments also demonstrated an increase in performance of one task decreases the 

accuracy of the other, and this trade-off can be flexibly adjusted by experimenter’s 

emphasized instructions and observers’ intentions (Morey et al., 2011; Pastukhov et al., 2009; 

Sperling & Melchner, 1978; Tombu & Seiffert, 2008). But to our knowledge our experiments 

are the first empirical evidence to support the differential resource allocation between targets, 
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and that this allocation is based on two independent hemisphere-specific resources. We are 

not aware of previous dual-task experiments investigating whether differential resource 

allocation among tasks is hemifield-specific. Establishing whether the differentially allocable 

resource in those tasks is hemifield-specific would be one test of whether it is the same 

resource as that used for tracking.  

The differential resource allocation might also be possible across different modalities. 

Allocating more attentional resource to visual stimuli can enhance visual discrimination and 

activate the relevant retiontopic visual cortex (Tootell et al., 1998). Allocating more resource 

to audition can allow listeners to detect finer sounds and to make finer discriminations 

between pitch differences (Woldorff et al., 1993). This differential resource allocation can 

also influence the flexible modulation of the spatial-based, feature-based, and object-based 

attention. The modulation of the relevant target depends on how much resource is allocated 

on it. When more resource are allocated to a specific location, feature, or object, the 

processing on attentional focus will be enhanced, leading to a better performance than 

another location, feature, or object that allocated less resource (Chun et al., 2011). 

 To conclude, from the above discussions, the resource theory is the best explanation 

for our findings that performance substantially drops as the number of tracked targets 

increases, and the tracking resource is differentially allocated among targets differing in 

moving speeds. The cross-talk model is excluded by eliminating the possible confound of 

spatial interference between targets or targets and distractors. Processing with one central 

bottleneck cannot explain why the tracking performance is better when targets are presented 

in separate hemifields than in the same hemifield. 

  Our results are unable to distinguish the serial account from the parallel account for 

tracking multiple targets within one single hemifield. Less resource allocated to each target 

(parallel account) and shorter time to update the target position (serial account) both are able 
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to interpret the significant cost on speed limits within a hemifield when the number of tracked 

targets increased. In my thesis, the serial theory of tracking targets within one hemifield is 

similar to the modified bottleneck model (dual-bottleneck theory) in the dual-task 

experiments. Thus, the two hemisphere-specific bottleneck model as well as the flexible 

resource theory works for track multiple objects within a hemifield.  

Several recent works supporting resource theory on multiple object tracking 

documented that it was more difficult to track objects when objects moved at faster speeds 

(Alvarez & Franconeri, 2007; Liu et al., 2005) and when more objects needed to be tracked 

(Bettencourt & Somers, 2009). The present thesis provides evidence that excludes the 

confound of the spatial interference and speed effects, and demonstrates that allocation of 

tracking resource between targets depends on speed. Furthermore, we discovered that 

temporal resolution limits tracking to a greater degree with more targets. The temporal 

resolution for tracking each target is determined by how much resource is allocated to that 

target. The following section will discuss this relationship. 

6.2 Tracking Resource per Target Determines Temporal Resolution 

This thesis investigated, for the first time, whether the temporal frequency limit on 

tracking, not only the speed limit, is set by the amount of processing resource available for 

each target. Previously published literature on tracking focused on explaining the effects of 

target number on speed and spacing effects (Alvarez & Franconeri, 2007; Bettencourt & 

Somers, 2009; Franconeri et al., 2010; Franconeri et al., 2008; Vul et al., 2009) rather than 

temporal resolution. Our Experiments 10 and 11 were performed to investigate the effect of 

additional targets on the temporal frequency limit as well as the speed limit. Both 

experiments demonstrated that temporal frequency was also the primary constraint on 

tracking performance, and that the temporal frequency limit decreases dramatically with the 

number of targets. Spatial interference appeared to have little effect, so apparently temporal 
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resolution for each target was determined by the amount of resource received. With regard to 

parallel tracking theories like flexible resource theory (Alvarez & Franconeri, 2007), a 

decline in the temporal frequency limit indicates that the temporal integration interval or 

temporal imprecision of the target representation increased.   

For tracking one target, the constraints on performance were a 1.7 rps speed limit and 

~7 Hz temporal frequency limit. Verstraten et al. (2000) also tested one target and found a 

similar result. Tracking was not possible above either the speed or the temporal frequency 

limit. This temporal frequency limit for tracking one target is similar to results of other high-

level attentive temporal tasks, such as a 8-10 Hz limit of discriminating apparent motion from 

unmoving flicker (Battelli et al., 2001) or a 9-11 Hz limit of judging the relative phase of 

spatially separated flickering stimuli (Aghdaee & Cavanagh, 2007). It suggests that the 

temporal limits of object tracking are caused by central attentive processing. Central 

processing has a slower temporal frequency limit (3-7 Hz) than processing in early stages of 

vision (>30 Hz), such as flicker perception or first-order motion perception (Holcombe, 

2009). The central processing plays a critical role in the selection of targets from surrounding 

distractors in the timeline. 

Another possible explanation for the ~7Hz limit for tracking one target is that 

attention acts like a “blinking spotlight” (VanRullen, Carlson, & Cavanagh, 2007) that 

samples information periodically, even when not switching attention among multiple targets. 

Every 142ms, our visual system samples the current spatial information of objects during the 

motion period and determines the target that is closest to the target’s previously registered 

position. When the distractor comes into that position at the sampling time, observers must 

recognize the distractor as the target and this tracking event fails.  

From this thesis, we further provide evidence of high-level processing in that 

attentional resource demands also limited temporal resolution of object tracking. Our Chapter 
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5 found that the temporal frequency limit dropped to ~4 Hz for tracking two targets and to 

~2.6 Hz for tracking three targets. When central attentive processing need to deal with more 

than one target or attribute, the limited temporal resolution decreases significantly owing to 

less resource allocated to each target or attribute. Our 4 Hz limit for processing two targets is 

compatible with some other attentive temporal tasks, such as the cross-attribute binding task 

(Fujisaki & Nishida, 2010; Holcombe & Cavanagh, 2001). In this task, observers were 

required to judge which two features were presented simultaneously when each sequence was 

a repetitive alternation of two attributes values (Fujisaki & Nishida, 2010). For example, 

monitoring a patch alternating between red and green and an adjacent grating alternating 

between leftward tilted and rightward tilted, and then judge whether the rightward-tilted 

patch is synchronous with the red or with the green. When the alternating rate of these two 

cross-attribute stimuli is above 2-3 Hz, observers are unable to bind which two features were 

presented simultaneously. Fujisaki and Nishida (2010) interpreted the temporal limit for 

binding two features as suggesting that humans separately process “when” and “what” in the 

our brain, and then bind outputs from the “when” processing with those from “what” 

processing by central attentive processing. When less resource is allocated to central attentive 

processing for each target, performance of binding “what” processing with “when” 

processing deteriorates, leading to lower temporal limits. For our tracking results, observers 

separately process issues of “when” and “where”, instead of “when” and “what”. Central 

attentive processing might be responsible for binding the “when” processing with “where” 

processing for each target. Therefore, temporal limits on tracking performance might reflect a 

similar processing mechanism to that limits temporal resolution in the attentional binding 

tasks, with higher temporal limits for each attribute or target as more resource is allocated on 

it. 
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 The different cortical networks mediating spatial versus temporal resolution of 

attention have been documented in a series of studies by Battelli and colleagues (Battelli et 

al., 2001; Battelli et al., 2003; Battelli et al., 2007; Battelli et al., 2008). Their patients with 

right parietal damage had poor temporal resolution in both the right and left visual hemifields 

whereas they only have worse spatial resolution in the contralateral visual hemifield. 

However, patients with left parietal lesion did not have lower temporal processing rates but 

had worse spatial processing in the right visual hemifield. They concluded on the basis of this 

and other evidence that the right hemisphere contains the “when” pathway responsible for 

processing the timing of events presented in either hemifield. 

The spatial resolution might be proportional to the tracking speed limit, with the 

poorer spatial resolution leading to the lower speed limit. Intriligator and Cavanagh (2001) 

demonstrated that poor spatial resolution makes it difficult for observers to select targets from 

distractors, resulting in worse tracking performance. Successful tracking requires an accurate 

updating the current positions of targets, which is influenced by the spatial resolution. The 

tracking speed limit is also determined by how quickly observers can accurately update the 

current positions of targets. Thus, the lower speed limit results from inaccurate updating, 

which is influenced by the poor spatial resolution.  

While Battelli et al. (2001) reporting that patients with right parietal lesion had 

substantially lower performance of MOT task in the left visual hemifield, testing with normal 

observers on object tracking in this thesis, no significant difference was found for tracking 

speed limit between right and left visual hemifield. In our Experiment 4, similar speed limits 

were found between right and left visual hemifields no matter whether observers were asked 

to track one or two targets. When monitoring eye movements to ensure accurate fixation in 

Experiment 6, we also found there was no significant difference in speed limit between two 

separate hemifields for tracking one target (Right: M=1.96 rps; Left: M=1.93 rps, t (5) 
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=0.183, p=0.862, Cohen’s d=0.076) and two targets (Right: M=1.65 rps; Left: M=1.61 rps, t 

(5) =0.176, p=0.867, Cohen’s d=0.076). Other hemisphere-specific experiments in this thesis 

also replicated those findings. Taken together with Battelli et al. (2001), the above findings 

suggest that for normal subjects spatial resolution is equally good in both visual hemifields. 

The different mediating networks for spatial resolution and temporal resolution 

provide us a future research direction to confirm our suggestion that speed is the primary 

constraint for tracking one target with few distractors, whereas performance is mainly 

constrained by temporal resolution for tracking one target with many distractors. Similar to 

our hemisphere-specific paradigm in Chapter 3, two circular trajectories could be presented 

in separate hemifields, and the number of objects arrayed within each circular trajectory 

manipulated. Patients with right parietal lesion and normal observers could be recruited to 

track one target in the right or left hemifield, and measured their speed limits and temporal 

frequency limits. 

According to the right-hemisphere “when” pathway theory, if the temporal frequency 

limit is reached, the temporal frequency limits in both hemifields should be equally lower for 

the patients than for the normal observers because the right parietal lobe underlies temporal 

attention in both left and right visual hemifields. On the contrary, with fewer distractors to 

avoid temporal frequency limit, the speed limit in the right hemifield should be higher than in 

the left hemifield for the patients, but not for normal observers, because the parietal network 

in the right hemisphere mediates spatial attention in the left visual hemifield. In other words, 

if there is significant difference on tracking performance between two hemifields, it must be 

caused by limited speed, not by limited temporal resolution, because spatial attention affects 

only the speed limit. 
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6.3 How does the Tracking Resource Mediate Tracking Performance? 

The core conclusion of the thesis is that the speed limit and temporal frequency limit 

decrease when each target is allocated less tracking resource. This resource theory can be 

thought of in terms of the sushi restaurant metaphor shown in Figure 6.1, which shows a girl 

paying attention to track her favourite sushi. In order to successfully track the sushi, the 

maximum speed of the attentional focus should be equal to or faster than the sushi. The more 

resource allocated to the attentional focus, the faster the girl can track the sushi. When more 

targets need to be tracked at the same time, she has less resource allocated to tracking each 

target, leading to lower speed limit (top of Figure 6.1). 

With regard to the interpretation of temporal frequency limit, tracking resource 

determines the duration of the temporal window (temporal resolution) of the tracking focus. 

From the bottom of Figure 6.1, the space-time diagrams illustrate the relationship between 

temporal resolution and resource allocated per target. The less resource allocated to each 

target, the longer the duration of the temporal window (temporal imprecision) of each target. 

The longer duration of the temporal window, the more sushi trays will be selected at a given 

time. If there are two identical sushi trays selected at the same time, it is hard to distinguish 

which one is the tray the girl intends to track (left panel bottom). Increasing the resource 

allocation to that target shortens the duration of temporal window (as shown with the blue 

arrow at the bottom in Figure 6.1), leading to a higher temporal precision of that target. Here, 

the girl can accurately select her favourite sushi (right panel bottom). Therefore, a higher 

temporal frequency limit is found when each sushi tray is allocated more resource. 

In short, tracking performance is determined by the speed of the tracking focus (speed 

limit) or the temporal resolution of attentional focus (temporal frequency limit). Both factors 

limit tracking performance, and the operating limitation depends on which one is reached 

firstly (see Chapter 5). But by what neural mechanism does lower resource allocation lead to 



	   189	  

poorer speed limit and temporal frequency limit? In the following section, we will propose 

possible neural mechanisms for how resource allocation affects the speed of attentional focus 

and the duration of the temporal window. 

 

Figure 6.1. Cartoon representation of tracking resource mediating speed limits and temporal frequency limits  
The speed of attentional focus is increased when more resource is allocated to it (top panel). Tracking resource 
is also able to shorten the duration of the temporal window (blue arrow, bottom panel). The temporal frequency 
limit is measured when the duration of temporal window is too long to distinguish these two sushi trays. 
 

6.4 The Neural Mechanisms of the Resource Allocation Effect on Speed Limit and 

Temporal Frequency Limit 

Some functional magnetic resonance imaging (fMRI) studies suggest that the brain 

area underlying the capacity limitation of the MOT task is the posterior parietal 

cortex(Culham et al., 1998; Culham et al., 2001; Howe et al., 2009; Jovicich et al., 2001). 

The observed brain activity of the posterior parietal cortex increased with target load. Kojima 

and Suzuki (2010) further demonstrated that the amount of oxyhaemoglobin substantially 

increased in the parieto-occipital regions while paying more attention on the task. Therefore, 

the limited tracking resource might be mediated by the parietal cortex. 

From above descriptions in section 6.1.1, our findings that less resource allocated to 

each target reduces speed limit and temporal frequency limits can be reconciled with the 

oscillatory neural network (Kazanovich & Borisyuk, 2006). Attending a target is mediated by 
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synchronous oscillations of central oscillators in frontal-parietal networks and peripheral 

oscillators in visual cortices. When a target moves, a new population of cortical neurons must 

join the synchronized assembly (synchrony) and the neurons representing the old location 

must leave the assembly (desynchrony). The synchrony and desynchrony take time to 

complete, and thus failure of tracking will occur if a distractor arrives at the former target 

location when those neurons are still partially synchronized (leading to a temporal frequency 

limit), and if a target moves faster than the rate at which new neurons can be synchronized 

(leading to a speed limit). Because the limited phase space, when more targets needed to be 

tracked at the same time, the angle between their phases decreases, increasing interferences 

so that they are less likely to maintain their coherent oscillation for the corresponding target 

only. Thus, this limited phase space leads to impose a speed limit and temporal frequency 

limit. The theory of oscillatory neural network claimed that tracking each target is mediated 

by only a specific phase space, and therefore it is hard to explain our findings of differential 

resource allocation between targets. For the sake of better explanation on differential resource 

allocation, the theory of oscillatory neural network should be modified so that each target 

(Kazanovich & Borisyuk, 2006)is allowed to be mediated by more than one specific phase. 

The present thesis proposes another explanation for that a limited resource in the brain 

might be like a pool of neurons that can be flexibly assigned to the targets. As the number of 

tracked targets increases, the number of neurons assigned to each target decreases and 

reduces the precision of attentional resolution (i.e. temporal frequency limit) or the maximum 

speed of the tracking focus (i.e. speed limit). The following paragraphs will explain these two 

neural mechanisms of less resource leading to lower speed limit and temporal frequency 

limits.   

The neural link between less resource allocated to each target and poorer speed limit 

of the tracking focus is now described. Each neuron of the parietal cortex has a spatially 
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restricted receptive field. Successful tracking a target moving across the visual field requires 

consecutive recruitment of new neurons and dropping of old neurons of the parietal cortex. If 

the target moves faster than the rate at which new neurons can be activated, observers would 

fail to track the target. With fewer neurons involved in this process of recruitment, there was 

no neuron recruited as the new neurons before the old neurons are entirely released, leading 

to tracking failure at fast speeds. According to the resource theory, the number of neurons 

assigned to each target decreased as the number of simultaneously tracked targets increased.  

Thus, less resource allocated to each target results in lower speed limits of tracking focus. 

This also explains our findings of that tracking resource can be differentially allocated to 

targets with distinct speeds. Human can distribute different amount of neurons to targets with 

different speeds, with the fast-moving target receiving more neurons than the slow-moving 

target. Relative to one of two targets with equal speeds, the fast-moving target in the fast-

slow condition has more neurons available to be recruited for successful tracking at faster 

speeds, leading to a higher speed limit.  

The amount of neurons distributed among targets could explain why less resource 

allocation to each target reduced the temporal precision of attentional resolution. Previous 

studies demonstrated that more attention involved could shrink neuronal receptive fields 

around the attended stimulus and improve the selectivity of the neuron (Moran & Desimone, 

1985; Spitzer, Desimone, & Moran, 1988). Following this logic, more resource allocated to 

each target might also reduce the duration of the temporal window (increase the temporal 

resolution). From previous descriptions, tracking a target moving from location A to location 

B, attentional resources were reallocated to activate the neurons corresponding to the 

receptive field of location B and drop the neurons corresponding to the receptive field of 

location A.  It took time to complete this process of the resource reallocation, and here the 

duration was termed as the duration of temporal window. More resource allocated to the 
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tracked target could shorten the duration of resource reallocation (sharpen the duration of 

temporal window). If a distractor behind the tracked target moved fast enough to come into 

the temporal window, observers would mistake the distractor for the target. In other words, 

tracking failures occur when a distractor behind the target came into the receptive field of 

location A faster than the neurons finished the process of the dropping. Thus, less resource 

allocated to each target enlarged the duration of the temporal window and then led to lower 

temporal frequency limits. 

But why do fewer numbers of neurons allocated to each tracked target induce higher 

brain activity (or CDA amplitudes in the next section) of the parietal cortex (Culham et al., 

1998; Culham et al., 2001; Howe et al., 2009; Jovicich et al., 2001)? One assumption should 

be proposed to address this issue. When tracking a target in a very easy condition (ie. very 

slow speeds), the entire pool of neurons is not allocated to the target, so some neurons are left 

idle. When the condition becomes difficult (ie. increasing the speeds or target numbers), 

more neurons are recruited for meeting the demands of difficulty. Therefore, as the number 

of tracked targets increases, the total number of activated neurons increases although the 

percentage of neurons assigned to each target decreases, leading to higher brain activity (or 

higher CDA amplitudes). 

6.5 Resource Theory in Multiple Object Tracking: An Electrophysiological View 

Although neuroimaging studies indicate posterior parietal cortex has load-dependent 

activation (Culham et al., 1998; Culham et al., 2001; Howe et al., 2009; Jovicich et al., 2001), 

the studies did not disambiguate whether the activation results from consuming more tracking 

resource or to attending more objects during the target selection period. They did not clearly 

rule out that the observed brain activity corresponded to the target selection period. In an 

ERP study however, Drew and Vogel (2008) isolated neural measures of target selection and 

sustained attention processes that underlie tracking. In their study, participants performed a 



	   193	  

MOT task with a bilateral array, such as 8 objects in each hemifield, and participants tracked 

a subset of targets in one single hemifield. Drew and Vogel (2008) found a transient 

contralateral negative wave (N2pc wave) about 200-300ms after the cuing stimulus during 

the target selection phase, in which observers select targets among distractors. Three hundred 

milliseconds after motion onset, a large sustained contralateral negative wave during attentive 

tracking (the contralateral delay activity; CDA) was observed over posterior parietal 

electrodes. The amplitude of both waves was substantially higher for tracking three targets 

than for tracking one target (Drew et al., 2012; Drew & Vogel, 2008). Drew et al. (2012) 

further documented that the CDA amplitude is an online sensitive index that dynamically 

reflects the number of tracked targets: changes in the CDA amplitude were associated with 

both the increment and decrement of the target set. 

Although the CDA amplitude is not an appropriate index to reflect the difficulty of 

the tracking task (Drew, Horowitz, & Vogel, 2013), it might support the resource theory of 

object tracking. The behavioural data of Drew et al. (2013) showed increasing either speed or 

target load substantially decreased tracking performance, but for tracking one target, there 

was no significant speed effect on the CDA amplitude. They suggested the CDA amplitude 

only reflected the target load but were not associated with the variation of speed. However, 

the failure to reflect the speed effect on the CDA amplitude might be because the speed they 

manipulated (2.2 deg/s and 3.8 deg/s) was not fast enough to reduce the CDA amplitude. 

According to our experiments, tracking performance usually deteriorated as the speed 

increased above 12 deg/s (1 rps). Thus, a speed effect on the CDA amplitude might be 

apparent if we test with higher tracking speeds in future studies. Furthermore, the reason for 

the non-significant speed effect on the CDA amplitude for tracking one target in Drew et al. 

(2013) might be that the fast speed they used was not fast enough to exhaust 100% of 
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resource, and therefore the intensity of neural activation is similar to the slow-speed 

condition, leading to equal CDA amplitude between two conditions. 

For tracking three targets, the CDA amplitude in the fast-speed condition was 

significantly lower than in the slow-speed condition (Drew et al., 2013). They suggested that 

increasing speed appears to increase the probability of dropping targets, as the CDA 

amplitude is a sensitive index to reflect the size of the target set. This result provides some 

electrophysiological support for our conclusion that the number of tracked targets and the 

tracking speed share the same attentional tracking resource, with higher tracking speed 

leading to fewer targets being able to be tracked. When tracking three targets with fast 

speeds, observers might drop one and reallocate resource between two targets, resulting in the 

amount of resource in each of two targets increasing from 33% to 50%, and therefore the 

CDA amplitude corresponds to the change of resource allocation. To strengthen our 

conclusion that both the number of tracked targets and speed share the same resource, 

measuring the CDA amplitude might be one approach to explore the neural mechanisms 

underlying resource allocation depending on speed change. 

Drew et al. (2013) also demonstrated that spatial interference and number of tracked 

targets did not share the same tracking resource. In their study, the number of distractors was 

manipulated, and they suggested that worse performance with distractor load is caused by 

participants tracking the distractors when they confused targets with distractors. This was 

shown in their CDA amplitude, on which only target load had a significant main effect, 

whereas there was no effect of distractor load. However, their behavioural data showed both 

target load and distractor load have substantial effects on tracking performance. In addition, 

there was no significant interaction between target load and distractor load. It indirectly 

supported that the spatial interference and number of tracked targets independently 

influenced tracking performance but did not share the same resource. 
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 An alternative possible experiment design might be able to investigate whether 

tracking resource can be reallocated among targets, based on the opinion of Drew et al. 

(2013) that CDA amplitude is only sensitive to detecting variation of target load rather than 

variation of speed. Modifying the paradigm from our Chapter 4, observers could be asked to 

track three targets in two conditions: an equally-fast speed (EFS) condition or a differential 

speed (DS) condition, with one moving very fast and two moving very slow. In the EFS 

condition, each target would start tracking with 33% of the resource; after few seconds 

tracking, each of two targets increases in amount of the resource received from 33% to 50%. 

This is because it is too hard to simultaneously track three fast-moving targets, and observers 

drop one target as well as reallocate the resource from that target to another two targets. In 

this case, the CDA amplitude of the EFS condition would decrease owing to the decrement of 

the target set or according to our assumption that CDA amplitude corresponds to the amount 

of resource allocated to each target. In contrast, in the DS condition, during the tracking 

period, no target is dropped because observers can simultaneously track one fast-moving 

target and two slow-moving targets. Thus, no change on the CDA amplitude would be found 

because there is no resource reallocation among targets. 

6.6 Conclusion 

Tracking multiple moving objects is mediated by a mental tracking resource 

composed of two independent hemisphere-specific resources.  The present thesis supports 

this claim by avoiding the confound of spatial interference and providing evidence that the 

tracking resource can be differentially allocated between targets. Both speed limits and 

temporal frequency limits decline with increases in the number of tracked targets, indicating 

each target received less tracking resource. Performance is constrained by the speed at which 

the tracking focus can move, and by its temporal resolution. More resource allocated to the 

target improves temporal resolution, and possibly the speed limit. 
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