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Abstract
In this thesis we use Conditional Random Fields (CRFs) as a sequential classi-

fier to predict the location of transmembrane helical regions in membrane pro-

teins. CRFs allow for a seamless and principled integration of biological domain

knowledge into the model and are known to have several advantages over other ap-

proaches. We have used this flexibility in order to incorporate several biologically

inspired features into the model. We compared our approach with twenty eight

other methods and received the highest score in the percentage of residues pre-

dicted correctly. We have also carried out experiments comparing CRFs against

Maximum Entropy Models (MEMMs). Our results confirm that CRFs overcome

the label bias problem, which are known to afflict MEMMs. Furthermore, we

have used CRFs to analyze the architecture of the protein complex, Cytochrome c

oxidase, and have recreated the results obtained from physical experiments.

i



Acknowledgements
Many thanks to my supervisor, Sanjay Chawla, for his tremendous job guiding me

during this thesis, for spending so many hours, giving the right advice at the right

time and for his outstanding contribution to my studies.

Also many thanks to W. Bret Church for his continuous care, good advice and

willingness to help, for sharing his extensive biology knowledge and for making

me welcome in his lab.

Development of our model was based on the JAVA CRFs implementation pack-

age of Conditional Random Fields for sequential labelling, developed by Sunita

Sarawagi of IIT Bombay. We would like to thank Sunita Sarawagi for sharing

her work with the research community, sourceforge.net for hosting and distribut-

ing this useful information, Alex Smola for his helpful suggestions on CRFs, and

Tara McIntosh for her useful comments.

The experiments on Maximum Entropy were based on the JAVA MaxEnt imple-

mentation package, developed by Dan Klein, and we would like to thank him for

sharing his code.

Finally, I would like to thank my family who supported me so much during my

whole period of studies.

ii



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 CRFs and MEMMs Model Implementation . . . . . . . . . . . . 5

1.5 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . 5

2 Proteins and Proteomics 7
2.1 Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Introduction to Proteins . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Homologous Proteins . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Proteomics . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Protein Structure . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Integral Membrane Proteins (IMPs) . . . . . . . . . . . . 17

2.3 Structure Prediction Using Bioinformatics . . . . . . . . . . . . . 18

2.3.1 Identifying Protein Domains . . . . . . . . . . . . . . . . 18

2.3.2 Secondary Structure Prediction . . . . . . . . . . . . . . . 20

2.3.3 Tertiary Structure Prediction . . . . . . . . . . . . . . . . 21

2.3.4 Transmembrane Segments Prediction . . . . . . . . . . . 21

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The Sequential Classification Problem 24
3.1 Directed Graphical Models . . . . . . . . . . . . . . . . . . . . . 25

iii



3.2 Hidden Markov Models (HMMs) . . . . . . . . . . . . . . . . . . 26

3.2.1 Sequential Classification Example with HMMs . . . . . . 29

3.3 Generative and Conditional Models . . . . . . . . . . . . . . . . 32

3.4 Maximum Entropy Markov Models (MEMMs) . . . . . . . . . . 33

3.5 MEMMs Label Bias Problem . . . . . . . . . . . . . . . . . . . . 35

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Conditional Random Fields (CRFs) 40
4.1 Undirected Graphical Models . . . . . . . . . . . . . . . . . . . . 41

4.2 CRF Definition and Model Derivation . . . . . . . . . . . . . . . 42

4.3 Feature Functions and Model Estimation . . . . . . . . . . . . . . 43

4.4 The Maximum Likelihood Approach . . . . . . . . . . . . . . . . 45

4.5 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Iterative Scaling . . . . . . . . . . . . . . . . . . . . . . 48

4.5.2 Generalized Iterative Scaling (GIS) Algorithm . . . . . . 49

4.5.3 Improved Iterative Scaling (IIS) Algorithm . . . . . . . . 51

4.5.4 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 52

4.5.5 Quasi-Newton Methods . . . . . . . . . . . . . . . . . . 55

4.5.6 Limited Memory BFGS Method . . . . . . . . . . . . . . 56

4.6 Conditional Probability in Matrix Form . . . . . . . . . . . . . . 57

4.7 Feature Integration with the Model . . . . . . . . . . . . . . . . . 59

4.7.1 Start, End and Edge Features . . . . . . . . . . . . . . . . 60

4.7.2 Basic Amino Acid Features . . . . . . . . . . . . . . . . 61

4.7.3 Single Side Neighboring Amino Acid Features . . . . . . 61

4.7.4 Single Side Shuffled Neighboring Amino Acid Features . 62

4.7.5 Double Side Neighboring Amino Acid Features . . . . . . 62

4.7.6 Double Side Shuffled Neighboring Amino Acid Features . 63

4.7.7 Amino Acid Property Features . . . . . . . . . . . . . . . 64

4.7.8 Border Features . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 CRFs Prediction Example . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iv



5 Experiments, Evaluation and Analysis 71
5.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Prediction Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Per-Residue Accuracy . . . . . . . . . . . . . . . . . . . 74

5.2.2 Per-Segment Accuracy . . . . . . . . . . . . . . . . . . . 74

5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Transmembrane Helix Prediction . . . . . . . . . . . . . 76

5.3.2 Local Residue Distribution in Transmembrane Regions . . 80

5.3.3 Comparison of CRFs and MEMMs . . . . . . . . . . . . 81

5.3.4 Cytochrome c oxidase Protein Analysis . . . . . . . . . . 87

5.3.4.1 Approach . . . . . . . . . . . . . . . . . . . . 92

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 96

v



List of Figures

1.1 Examples of IMPs sequence pairs . . . . . . . . . . . . . . . . . 3

2.1 Amino acids reaction forming a peptide bond . . . . . . . . . . . 10

2.2 Polypeptide backbone . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Polypeptide backbone with side chains . . . . . . . . . . . . . . . 10

2.4 Full polypeptide chain . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 α-helix structure representation . . . . . . . . . . . . . . . . . . . 15

2.6 Parallel β-sheets structure representation . . . . . . . . . . . . . . 16

2.7 Antiparallel β-sheets structure representation . . . . . . . . . . . 16

2.8 Primary, secondary, tertiary and quaternary structures . . . . . . . 17

2.9 Transport of molecules through IMPs . . . . . . . . . . . . . . . 20

3.1 Labelling protein secondary structure . . . . . . . . . . . . . . . 25

3.2 Hidden Markov models graphical structure . . . . . . . . . . . . . 27

3.3 Maximum entropy Markov models graphical structure . . . . . . 34

3.4 Label bias problem example . . . . . . . . . . . . . . . . . . . . 36

4.1 CRFs graphical structure . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Geometric interpretation of Newton’s method . . . . . . . . . . . 54

5.1 Transmembrane helix prediction experimental flow . . . . . . . . 73

5.2 Per-segment accuracy example . . . . . . . . . . . . . . . . . . . 75

5.3 Prediction score for selected feature combinations . . . . . . . . . 77

5.4 CRFs vs. MEMMs performance test on Experiment 2 . . . . . . . 82

vi



5.5 CRFs vs. MEMMs performance test on Experiment 3 . . . . . . . 82

5.6 CRFs vs. MEMMs performance test on Experiment 4 . . . . . . . 83

5.7 CRFs vs. MEMMs performance test on Experiment 5 . . . . . . . 83

5.8 Conditional Probability on Different Transition States . . . . . . . 85

5.9 CRFs vs. MEMMs prediction output . . . . . . . . . . . . . . . . 86

5.10 Crystal structure of Cytochrome c oxidase . . . . . . . . . . . . . 88

5.11 Predicted vs. observed residue frequencies in the membrane . . . 89

5.12 Properties of the predicted residues in the membrane . . . . . . . 89

5.13 Frequency of leucine in the membrane . . . . . . . . . . . . . . . 90

5.14 Frequency of isoleucine in the membrane . . . . . . . . . . . . . 90

5.15 Frequency of valine in the membrane . . . . . . . . . . . . . . . . 91

5.16 Frequency of arginine in the membrane . . . . . . . . . . . . . . 91

vii



List of Tables

2.1 Amino acids ordered alphabetically. . . . . . . . . . . . . . . . . 8

2.2 Set of websites for identifying protein structure . . . . . . . . . . 19

3.1 Conditional probability of amino acids in transmembrane helix . . 31

3.2 Conditional probability of transition between helical states . . . . 31

3.3 Maximizing HMMs joint distribution using dynamic programming 32

3.4 Solving the maximization problem using dynamic programming . 32

4.1 The list of all features used . . . . . . . . . . . . . . . . . . . . . 66

4.2 Activated features on a training set example . . . . . . . . . . . . 68

4.3 Trained feature parameters . . . . . . . . . . . . . . . . . . . . . 69

4.4 Sequence label calculation . . . . . . . . . . . . . . . . . . . . . 69

5.1 The five metrics used to measure per-residue accuracy . . . . . . . 76

5.2 The three metrics used for measuring per-segment accuracy . . . . 76

5.3 Enabled and disabled feature combination . . . . . . . . . . . . . 77

5.4 Prediction score comparison between 29 methods . . . . . . . . . 79

5.5 Local residue distribution and TMH prediction . . . . . . . . . . 81

5.6 Prediction results using different combinations . . . . . . . . . . . 81

5.7 Prediction score comparison between CRFs and MEMMs . . . . . 84

viii



Chapter 1

Introduction

1.1 Background

An extremely abundant and important class of non-standard proteins are the In-

tegral Membrane Proteins (IMPs) which are found permanently integrated in the

cell membrane. IMPs control a broad range of events essential to the proper func-

tioning of cells, tissues and organisms. These events include (i) the regulation

of ion and metabolite fluxes, (ii) maintaining appropriate contact between cells,

connective tissues, and extracellular matrices, and (iii) transducing extracellular

signals to intracellular signalling pathways [6]. In addition IMPs include families

that are the most common target of prescription drugs [48].

A number of high throughput projects have been positioned to assist in the inter-

pretation of the human genome sequence data, as well as sequence data from other

key organisms. Among such efforts are the International SNP (single-nucleotide

polymorphism) consortium and various US National Structural Genomics efforts

[1]. The first crystal structure for a protein of unknown function was reported in

early 2000 [49] but only one of the many structural genomics programs that are

now underway has mentioned membrane proteins, suggesting a valuable role for

integrated approaches to the problem of solving the structures of IMPs. The al-

1



Chapter 1. Introduction 2

gorithms that assess sequences and structural data have been applied in assessing

data generated from these projects.

Despite both their abundance and importance, the structural information available

for IMPs is in a limited state as very few high-resolution 3D structures are avail-

able. The total number of IMPs analysed is less than 100 (at a resolution of 4Å

or better), while the complete protein collection at the Research Collaboratory for

Structural Bioinformatics data bank is now approximately 30,000 [3].

In order to determine the function of a protein it is necessary to know its struc-

ture. However, for IMPs this task turns out to be difficult. The shortage of data

on the structures of membrane proteins from traditional biophysical methods in

comparison to water-soluble proteins stems from a lack of success of X-ray crys-

tallography and NMR spectroscopy on these proteins. Structural determination

of integral membrane proteins can be problematic due to difficulties in obtaining

sufficient amounts of sample. A further contributing factor is that IMPs are gener-

ally much more likely be become inactive while handling or waiting to crystallize.

Mass spectroscopy has begun to assist topology assignment in rapid product iden-

tification in limited proteolytic cleavage experiments [22]. This is an area where

data driven methods may be suitable to contribute significantly to the study of

structure and function. Therefore good prediction methods for IMPs structures

are highly valued.

1.2 Problem Definition

In this thesis we cast the transmembrane helix prediction task as a binary sequen-

tial classification problem and use Conditional Random fields (CRFs) to solve it

[21].

CRFs are a probabilistic classification framework for labelling sequential data.

Given a set of membrane protein sequences, each single record in the set contains

a pair of sequences: The observation sequence represented by x, and the label
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sequence represented by y. The protein observation sequence consists of amino

acids, represented by 20 different letters. The second sequence in the pair con-

sists of a transmembrane helical/non-helical structure, and is also known as the

label sequence. Each letter in this sequence corresponds to the transmembrane

helical/non-helical state of the protein in that location, and is represented by bi-

nary labels 0/1 (0= non helical structure, 1= helical structure). A label at position

i corresponds to the amino acids’s helical structure at the same position. An ex-

ample set of sequence pairs is shown in Figure 1.1.

Figure 1.1: Examples of IMPs sequence pairs.

Given a set S of observation sequences with unknown labels, the objective of the

classification problem is to build a model using a set of training sequences with

known labels, and then to predict the labels of the observation sequences of S .

CRFs allow for a modular integration of biological domain knowledge expressed

as model constraints. This knowledge is incorporated into the model by selecting a

set of features that capture the relationships between the observation and the label

sequences, in our case the protein sequence and the helical structure respectively.
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1.3 Key Contributions

In this thesis we made several contributions, presented in the following order:

1. Conditional Random Fields for transmembrane helix prediction:

We have tested the performance of CRFs to predict the location of mem-

brane helical regions in protein sequences and compared our results with

other available methods. The CRFs model achieved the highest score of

83% among all the twenty nine methods in the percentage of residues cor-

rectly predicted. On segment prediction, CRFs achieved the fourth highest

score. For 75% of the proteins all the transmembrane helices were correctly

predicted. The total percentage of correctly predicted helices was 94% with

a precision of 91%. We have also shown how CRFs allow for a seamless

and principled integration of biological domain knowledge into the model

and presented several advantages of CRFs over other approaches.

2. CRFs vs MEMMs performance comparison on transmembrane prediction:

We have carried out a detailed comparison between MEMMs and CRFs

and shown that CRFs outperform MEMMs on several important measures.

Furthermore, we have also provided a detailed analysis of the label bias

problem that MEMMs suffer from.

3. Cytochrome c oxidase analysis:

We have used CRFs to analyze the architecture of the protein complex, Cy-

tochrome c oxidase. Cytochrome c oxidase, as a single entity provides many

helices for examination - it is a complex of 13 subunits, 10 of which provide

28 entire transmembrane passes and is one of the most well studied com-

plexes [40]. One of our key contributions is that we were able to demon-

strate and predict the propensities of amino acids to exist in regions of the

membrane using our prediction methods as was reported by Wallin et al.

[46].
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4. Feature selection:

We have carried out an extensive test to select the most appropriate features

to embed in the CRFs model. A detailed evaluation is presented in this

thesis.

5. Novel approach using a known but new technique:

CRFs were first introduced by Lafferty et al. on 2001 in the 18th Interna-

tional Conference on Machine Learning in California. At the time when the

research commenced in early 2004, most of the applications of CRFs were

in the natural language processing domain. The literature was lacking ap-

plications of CRFs in bioinformatics domain, and our work was novel [26].

Today, the use of CRFs in bioinformatics is growing and successful appli-

cations, such as Gene prediction using CRFs, have appeared in the literature

[7].

1.4 CRFs and MEMMs Model Implementation

Development of our model was based on the JAVA CRFs implementation pack-

age of Conditional Random Fields for sequential labelling, developed by Sunita

Sarawagi of IIT Bombay [36]. The experiments on Maximum Entropy were based

on the JAVA MaxEnt implementation package, developed by Dan Klein [19].

1.5 Organization of this Thesis

The rest of this thesis is as follows: Chapter 2 gives a short introduction to pro-

teins and the transmembrane proteins family. In Chapter 3 we describe the abstract

sequential classification problem. Chapter 4 introduces the Conditional Random

Fields approach, discusses it’s main advantages, and gives a detailed explanation

about the features used within the model. Chapter 5 presents experimental setup
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and evaluation of our results on a benchmark data set, an empirical comparison be-

tween CRFs and MEMMs, and a detailed validation on the Cytochrome c oxidase

complex. We conclude with a brief summary and directions for future research.



Chapter 2

Proteins and Proteomics

In this Chapter our objective is to provide a self-contained introduction to the

biological aspects of protein structure and functionality. Proteins play a central

role in all aspects of cell structure and function. Almost all biological reactions

are involved with the functionality of protein molecules. Proteins are responsi-

ble for controlling cellular metabolism, producing other proteins, regulating the

movement of molecular and ionic species across membranes, storing or converting

cellular energy, and numerous other functions. The way each protein is generated,

folded into a unique structure and inherits its designated functionality, resides in

the genetic information of the cell. This information is coded in a sequence of nu-

cleotide bases, known as the DNA (Deoxyribonucleic acid) sequence. The DNA

sequence consists of thousands of segments of encoded information which define

the genes. The information encapsulated in the genes is the key for protein for-

mation. During a gene’s expression the protein is synthesized according to the

instructions encoded in the gene. The proteins are said to be the agents of biolog-

ical function [11].

7
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2.1 Amino Acids

All proteins found in nature are composed of 20 common building blocks known

as amino acids. The protein’s biological function is directly derived from this

composition, as each amino acid has unique properties. All amino acids share

a tetrahedral structure (except proline), having an alpha carbon (Cα), which is

covalently linked to both the amino group (NH3) and the carboxyl group (COO).

This carbon is also bonded to a hydrogen and to a variable side chain group (R).

In neutral solution the carboxyl group exists as -COO− and the amino group as

-NH+3 [11]. The side chain distinguishes one amino acid from another.

All amino acids are represented by a three letter code or one letter code, e.g: Leu

or L respectively, for the amino acid Leucine. Table 2.1 lists the 20 amino acids

with their name, three letter code and one letter code. In this thesis, when we deal

with protein sequences, we adopt the one letter code for the amino acids forming

the sequence.

Table 2.1: Amino acids ordered alphabetically.
Letter Name Abbrevation Letter Name Abbrevation

A Alanine Ala M Methionine Met

C Cysteine Cys N Asparagine Apn

D Aspartic Acid Asp P Proline Pro

E Glutamic Acid Glu Q Glutamine Gln

F Phenylalanine Phe R Arginine Arg

G Glycine Gly S Serine Ser

H Histidine His T Threomine Thr

I Isoleucine Ile V Valine Val

K Lysine Lys W Tryptophan Trp

L Leucine Leu Y Tyrosine Tyr
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There are different ways to classify the amino acids based on their properties. One

common classification is the one defined by Sternberg [39], classifying the amino

acids into nine groups:

1. Aromatic (F,W,Y,H)

2. Hydrophobic (M,I,L,V,A,G,F,W,Y,H,K,C)

3. Positive (H,K,R)

4. Polar (W,Y,C,H,K,R,E,D,S,Q,N,T)

5. Charged (H,K,R,E,D)

6. Negative (E,D)

7. Aliphatic (I,L,V)

8. Small (V,A,G,C,P,S,D,T,N)

9. Tiny (A,G,S)

This classification will be used in Section 5.3.3 to define features for the task of

secondary structure prediction of proteins.

The amino group and the carboxyl group of the amino acids provide them with the

ability to polymerize and form polypeptides and proteins. When two amino acids

appear together, the amino group of the one and the carboxyl group of the other

react together, forming a peptide bond and eliminating a water molecule as shown

in Figure 2.1. Several iterations of this reaction (between different combinations

of amino acids) produce polypeptides and proteins as shown in Figure 2.4.

Peptide describes short polymers of amino acids. A peptide is classified by the

number of amino acids forming the chain. Each unit in the chain is called an

amino acid residue. When the number of amino acids in the chain exceeds several

dozen then the peptide is named a polypeptide. The length of polypeptide chains

of proteins may run into the thousands. The average polypeptide length in the
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Figure 2.1: Amino acids reaction forming a peptide bond [15].

Figure 2.2: Polypeptide backbone [15].

Figure 2.3: Polypeptide backbone together with amino acids side chains

[15].

Figure 2.4: Full polypeptide chain of a protein with the amino acid

sequence: Asp-Lys-Gln-His-Cys-Arg-Phe [15].
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eukaryotic1kingdom is about 270 residues, with a molecular weight of 32000 dal-

tons. There is no known correlation between peptide length and protein function,

as proteins with different length may have similar functionality [11].

2.2 Introduction to Proteins

Proteins molecules are composed of one or more polypeptide chains. Chemically,

proteins are chains of amino acids linked head to tail, starting from the N-terminus

of the amino group to the C-terminus of the carboxyl group, forming covalent pep-

tide bonds. The peptide backbone of a protein consists of the repeated sequence

of −N −Cα −C− as shown in Figure 2.2.

Cα is the amino acid α−carbon which is attached to a side chain R. The second

carbon is attached to oxygen and to the nitrogen N of the following amino acid.

Figure 2.3 illustrates the general polypeptide structure. The carbonyl oxygen and

the amide hydrogen are energetically favorable to appear diagonally in the chem-

ical trans conformation.

The unique characteristic of each protein is directly derived from the sequence

of amino acid residues in its polypeptide chain. By convention, the amino acid

sequence is read from the N-terminal end of the polypeptide chain through to the

C-terminal end. Given that for every position in the sequence there are 20 possible

amino acids, the number of unique amino acid sequences is astronomical, even for

a protein with tens of residues [23].

2.2.1 Homologous Proteins

Proteins having a significant degree of similarity in their amino acid sequence are

called homologous proteins. Homologous proteins are also proteins in different

1A single-celled or multicellular organism whose cells contain a distinct membrane-bound

nucleus.
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organisms which perform the same functionality. Having high similarity among

homologous proteins from different species indicates common ancestry. If we

look, for example, at the sequence of Cytochrome c oxidase protein found in the

mitochondria of all eukaryotic organisms, it contains a few more than 100 amino

acids. This protein has 28 positions in its sequence where the same amino acids

are always to be found among 40 different species. This suggests that these posi-

tions are crucial to the biological functionality of this protein. Species which are

more close to each other share higher sequence similarities. Humans and chim-

panzees for example, share an identical Cytochrome c oxidase protein sequence,

while the sequence among humans and other mammals differ at 10 residues, and

among humans and reptiles at 14 residues [23].

2.2.2 Proteomics

The term Proteome was coined to describe the complete set of proteins that is

expressed by the entire genome in the lifetime of a cell. Functional Proteomics

is the study of the functionality of all proteins. It includes the study of expressed

proteins of a genome using two dimensional (2D) gel electrophoresis, and mass

spectrometry (MS) to separate and identify proteins, and the study of protein-

protein interactions [47].

The principal of mass spectrometry is to separate ionized atoms or molecules from

each other based on their difference in mass to charge (m/z) ratio. The mass to

charge ratio is a highly characteristic property for determination of chemical and

structural information of molecules. To accomplish this task, the mass spectrom-

eter is used to evaporate and ionize molecules in a vacuum to create a gas of ions.

The ions are separated based on their mass to charge ratio and the amount of

ions with specific mass to charge ratio are measured. Mass spectrometry for pro-

teins has to be modified because they decompose by heat rather than evaporation.

Such techniques include Electrospray ionization (ESI-MS), Fast atom bombard-

ment (FAB-MS), Laser ionization (LIMS), and Matrix assisted desorption ion-
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ization (MALDI). Eventually, by using one of these techniques, the spectrometer

generates a unique spectrum of mass to charge ratio of the ionized protein having

a peak at the correct protein mass. Finally, the protein is sequenced by a Tandem

mass spectrometer (Tandem MS or MS/MS). The Tandem MS is actually made

of two mass spectrometers connected in a row. The first spectrometer separates

the protein from its different ionized peptides, which are transferred to the sec-

ond spectrometer. Here it is fragmented by collision with helium or argon gas

molecules to several fragments which are then analyzed. The fragmentation oc-

curs in the peptide bonds linking two amino acids in a peptide chain, and creates

new set of peptides differing in length by one amino acid. The sequences retrieved

from different fragments are aligned based on sequence overlaps which are finally

composed to an overall amino acid sequence of the polypeptide [11].

A different approach to reveal the protein’s sequence information, is from trans-

lating the nucleotide sequences of genes into triplets of nucleotides, known as

codons, and from codons into amino acid sequences. This methods is faster, more

accurate and more efficient than revealing the sequence directly from a protein.

2.2.3 Protein Structure

Proteins are polymers of amino acids containing a constant main chain of repeat-

ing units, the backbone, and variable side chains of the different amino acids.

The amino acid sequence of a protein specifies the primary structure of a protein.

However, the structure has a very large number of conformations of the backbone

and side chains. Each polypeptide of the same protein adopts a spontaneously

unique structure under conditions of temperature and solubility, which is said to

be the native state. The conformation of the native state is determined by the

amino acid sequence according to the internal interactions between the backbone,

the side chains and the solvent. Also, the pH and ionic composition of the sol-

vent play a factor. However, the function of a given protein does not depend only

on the amino acid sequence, but mainly on its overall three dimensional structure
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or conformation. It is the fragile balance between the number of forces which

eventually determine the protein’s conformation and consequently, its function-

ality. Some of the important key players providing the protein with its unique

structure are hydrogen bonds, electrostatic bonds, hydrophobic interactions and

van der Waals forces [23].

A hydrogen bond is normally formed between the amide proton and carbonyl oxy-

gen of adjacent peptide groups. These interactions impart the secondary structure

of proteins. Several hydrogen bonds among the peptide chain may form two basic

types of structures: α-helix and β-sheet.

The α-helix structure is a helical arrangement of the peptide planes consisting of

3.6 amino acids forming a single helix turn. Each amino acid residue along the

helix axis extends 1.5Å, contributing a total length of 5.4Å along the helix per

turn. Each peptide carbonyl is connected by a hydrogen bond to the N − H group

four residues further up the chain. All of the H bonds are parallel to the helix

axis, the carbonyl groups are pointing in one direction, and the N − H groups are

pointing to the opposite direction. Figure 2.5 shows an α-helix structure. The

number of residues forming an α-helix structure varies from helix to helix and

from protein to protein, but on average it is about 10.

In the β-sheet structure, the peptides form a stripe formation side by side, in which

the peptide backbone has a zigzag pattern along the strip. β-sheets can be in either

parallel or antiparallel forms. In the parallel β-sheet, adjacent chains run in the

same direction. The optimum formation of H bond between parallel residues

result in closer distance between residues. Parallel β-sheets are typically large

structures, often composed of more than five strands, where hydrophobic side

chains appear on both sides of the β-sheet. In contrast, antiparallel β-sheets run

in opposite directions, may have only two strands, and their β-sheet strands are

usually arranged with all hydrophobic side chains on one side. Figures 2.6 and

2.7 emphasize the difference between these two β-sheets conformations.
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Figure 2.5: α-helix structure representation [11].

There is also a third basic structure type, which is actually not α-helix and not

β-sheets which is called random coils (or loops).

The three dimensional folding structure of a single polypeptide in a protein is said

to be the protein’s tertiary structure. The primary polypeptide structure already

captures all the required information on how to fold the protein into its native

structure. The protein chains are normally folded in a way in which the secondary

structures are arranged in one of several common patterns, known as motifs. As

a rule, proteins normally fold to form the most stable structure. There are protein

families which share similar tertiary structure despite their differences in amino

acid sequence or functionality.

Many proteins consist of two or more polypeptide chains, referred to as subunits

of the protein. The way these subunits are arranged to form one protein and the

interactions between them is known as the protein’s quaternary structure [11].

Figure 2.8 summarizes the four different protein structure types.

Proteins are assigned to one of three global classes based on shape and solubility:

fibrous, globular and membrane. Fibrous proteins have a linear structure, often

serve structural roles in cells and are insoluble in water. Globular proteins have a

spherical shape and are normally involved in metabolic functions. Their polypep-
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Figure 2.6: Parallel β-sheets structure representation [33].

Figure 2.7: Antiparallel β-sheets structure representation [33].
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Figure 2.8: Primary, Secondary, Tertiary and Quaternary structures [33].

tide chain is folded in a way so that the hydrophobic amino acid side chains are

buried in the interior of the fold and the hydrophilic side chains are on the exte-

rior surface exposed to the solvent. Globular proteins are very soluble in aqueous

solutions. Membrane proteins are found within different membrane systems of

cells. Membrane proteins have hydrophobic amino acid side chains exposed in

their membrane associated regions, and consequently are insoluble in aqueous

solutions.

2.2.4 Integral Membrane Proteins (IMPs)

Membranes have an essential role in cellular functionality. They create the bound-

aries of cells and serve as a surface for many biological reactions. The proteins in

the membrane are involved in regulating metabolites, macromolecules and ions.

Membranes also take part in the interaction with hormones and many other signal-

ing molecules [11]. In addition, membrane proteins are the most common targets

for prescription drugs.

Most membrane proteins are either peripheral or integral proteins. Peripheral pro-

teins are globular proteins which normally interact with the membrane through

integral proteins. Integral proteins can be partly embedded or fully embedded

within the membrane’s monolayers, known as the lipid bilayers. It is estimated
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that 20% of human genes encode for integral membrane proteins (IMPs) and some

estimates are much higher [48].

Most of IMPs belong to one of two groups. The first group of proteins are attached

to the membrane by only small hydrophobic segments, thus are exposed to the

solvent on one or both sides of the membrane. The second group consists of

proteins with a globular shape which embed in the membrane exposing only a

small surface to the solvent outside the membrane. In general, the structure of

IMPs within the non polar domain of the membrane are mainly α-helices or β-

sheets. In this thesis, our attention is restricted to the major class of membrane

proteins, which are bundles of transmembrane α-helices.

Some IMPs have a single transmembrane segment, in which case the segment

often appears with a single α-helix structure. Proteins having this form normally

function as receptors for extracellular molecules, or as recognition sites for the

immune system. In other cases, IMPs may have more than a single transmembrane

segment, and form a more globular shape. Proteins from this type may have a

number of hydrophobic α-helical segments crossing the membrane back and forth

approximately perpendicular to the plane of the lipid bilayer. These proteins often

take a role in transport activities across the membrane [11].

2.3 Structure Prediction Using Bioinformatics

Protein structure prediction is an active area of research within bioinformatics.

Table 2.2 lists several protein identification applications in bioinformatics.

2.3.1 Identifying Protein Domains

The first task when exploring a protein is to recognize its domain structure. Pro-

teins may have a single or several domains. The protein’s domain appears as

stable, partly independent folding regions within a protein. Some protein domains
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Table 2.2: Set of web servers for identifying protein structure in a variety

of applications (August, 2005) [38].
Program URL

Identifying protein domains

Pfam http://pfam.wustl.edu/hmmsearch.shtml

Interpro http://www.ebi.ac.uk/InterProScan/

BLOCKS http://blocks.fhcrc.org/blocks/blocks search.html

SMART http://smart.embl-heidelberg.de/

DomFISH http://www.bmm.icnet.uk/ 3djigsaw/dom fish/

Identifying protein secondary structure

APSSP http://imtech.res.in/raghava/apssp/

HNN http://npsa-pbil.ibcp.fr/cgi-bin/npsa automat.pl?page=npsa nn.html

Jpred http://www.compbio.dundee.ac.uk/ www-jpred/

nnPredict http://www.cmpharm.ucsf.edu/ nomi/nnpredict.html

PredictProtein http://cubic.bioc.columbia.edu/predictprotein/

PSA http://bmerc-www.bu.edu/psa/request.htm

PSI-pred http://insulin.brunel.ac.uk/psiform.html

Phd http://cubic.bioc.columbia.edu/pp

Prof http://www.aber.ac.uk/ phiwww/prof/index.html

Identifying protein tertiary structure

iMoltalk http://i.moltalk.org/

SDSC1 http://cl.sdsc.edu/hm.html

CPHmodels http://www.cbs.dtu.dk/services/CPHmodels/

SWISS-MODEL http://www.expasy.ch/swissmod/SWISS-MODEL.html

Loopp http://cbsuapps.tc.cornell.edu/

Superfamily http://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/

Wurst http://www.zbh.uni-hamburg.de/wurst/index.php

Meta Server http://bioinfo.pl/Meta/

UCLA-DOE FRSVR http://fold.doe-mbi.ucla.edu/

Identifying sequence motifs and patterns

Prosite http://au.expasy.org/tools/scanprosite/

Emotif http://motif.stanford.edu/emotif/

FingerPRINTScan http://www.bioinf.man.ac.uk/fingerPRINTScan/

Identifying transmembrane segments

DAS http://www.sbc.su.se/ miklos/DAS/

HMMTOP http://www.enzim.hu/hmmtop/

SOSUI http://sosui.proteome.bio.tuat.ac.jp/sosuiframe0.html

TMHMM http://www.cbs.dtu.dk/services/TMHMM/

TMpred http://www.ch.embnet.org/software/TMPRED form.html

TopPred http://bioweb.pasteur.fr/seqanal/interfaces/toppred.html

TopPred2 http://www.sbc.su.se/ erikw/toppred2/
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Figure 2.9: Transport of molecules through the cell membrane via

membrane proteins [18].

are formed from the same chain of amino acids, while others are formed from

discontinuous segments. The implication of knowing the domain boundaries is

especially important for exploring the functional and structural characteristics of

a protein. In Nuclear Magnetic Resonance (NMR) for example, analyzing a full

protein may not be practical in some cases. Similar problems occur in crystallog-

raphy with linker regions between domains. The advantage of knowing protein

domains is also incorporated in structural prediction models. In these cases the

prediction performance is increased when predictions are applied on single do-

main sequences. Most of the available methods for protein domain prediction

are based on comparative sequence searches, domain characteristic training and

tertiary structure prediction [23].

2.3.2 Secondary Structure Prediction

The main goal of secondary structure prediction is to assign each amino acid with

one of three labels: α-helix, β-sheets, and random coils (or loops) corresponding

to the structure it appears in. Traditional approaches use preliminary information

of different sequence patterns of amino acids. New methods include techniques
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like neural networks and hidden Markov models. Today’s methods are reaching

75−85% of true secondary structure prediction. Knowing the secondary structure

is essential for successful tertiary structure prediction [38].

2.3.3 Tertiary Structure Prediction

The tertiary structure is extremely important when analyzing and predicting a pro-

tein’s functionality and binding regions from its structure. Structure prediction

models normally evolve from one of the main streams: homology modelling, fold

recognition and de novo methods. While homology modelling and fold recogni-

tion are using existing structures for their prediction, de novo methods are mod-

elling proteins which can not be retrieved from available structure. Homology

modelling methods are likely to be used when the sequence has at least 30% of

identity. When this is not the case, then folding recognition may be considered.

Both homology modelling and folding recognition search for a homologous tem-

plate structure from a database of proteins with known structure, and try to align

the target sequence with the most similar homologous template sequence. Besides

the alignment, tertiary structure predictors are also capable of predicting the tar-

get protein with three dimensional model coordinates and assigning a prediction

score, describing how well the target sequence is aligned with the homologous

templates [38].

2.3.4 Transmembrane Segments Prediction

The task of determining a protein’s structure has turned out to be difficult for

IMPs. The shortage of data on the structures of membrane proteins from tradi-

tional biophysical methods in comparison to water-soluble proteins stems from

a lack of success of X-ray crystallography and NMR spectroscopy on these pro-

teins. Structural determination of IMPs can be problematic due to difficulties

in obtaining sufficient amounts of sample. A further contributing factor is that
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IMPs are generally much more likely to become inactive while handling or wait-

ing for crystallization [22]. The traditional principals of transmembrane segment

prediction methods were based on empirical observations that membrane regions

are often 20 to 30 residues long, with high hydrophobicity around those regions

and are connected with short loops containing positively charged residues. The

methods vary in the scoring metrics assigned to the hydrophobicity property, in

the prediction algorithm, and rather the prediction is supported by homologous

proteins [42]. More recently, a new era of prediction models evolved using more

sophisticated mathematical and probability models such as neural networks and

hidden Markov models. The most accurate methods claim to predict successfully

more than 90% of all membrane regions, with full helix prediction for all proteins

higher than 80% [38, 43].

This is an area where data driven methods may be suitable to contribute signifi-

cantly to the study of structure and function. Therefore, computational methods

for IMPs structure predictions are to be highly valued. Transmembrane protein

prediction is the major focus of this thesis.

2.4 Summary

Proteins have a central role in all aspects of cell structure and function. All pro-

teins found in nature are composed from a combination of 20 amino acids, and de-

rive their biological function directly from the sequence of amino acid residues in

its polypeptide chain. Each polypeptide of the same protein spontaneously adopts

a unique structure, which is called the native state of the protein. The function of

a given protein depends not only on the amino acid sequence, but mainly on its

overall three dimensional structure. Several hydrogen bonds among the peptide

chain impart the protein’s secondary structure. The basic types of structure are

α-helix, β-sheets, and coils. The three dimensional folding structure of a single

polypeptide in a protein is called the protein’s tertiary structure. Many proteins
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consist of two or more polypeptide chains, and the way these chains interact with

each other is known as the protein’s quaternary structure.

Membranes proteins are essential for cellular functionality and are involved in

many biological reactions. They are therefore the most common targets for pre-

scription drugs. Integral membrane proteins (IMPs) can be partly embedded or

fully embedded within the membrane and the majority of them adopt a α-helix

structure.

Different aspects of proteins structural prediction are an active field of study.

Determining the structure of IMPs turns out to be problematic using standard

methods such as X-ray crystallography and NMR spectroscopy due to the special

physical properties of IMPs. Therefore, good transmembrane segment prediction

methods are highly valued. While traditional approaches were mainly based on

hydrophobicity and polarity scales around membrane regions, new methods are

using mathematical and probability models.

This Chapter has introduced the transmembrane segment prediction problem. In

the next Chapter we will introduce the necessary techniques from machine learn-

ing in order to provide a solution to this problem.



Chapter 3

The Sequential Classification

Problem

The sequential classification problem is well known in many different fields such

as computational linguistics, speech recognition, and computational biology. All

these problems share a common concept: given an observation set of sequences,

the goal is to find corresponding label sequences for this observation. The ob-

servation sequence can be taken from any domain, e.g: words in a document,

different values of stocks over time, nucleotides in a DNA sequence, or amino

acids in a protein sequence. The label sequence is the classification of the items in

the observation sequence. For instance, in Chapter 2 we introduced proteins and

mentioned that proteins consist of a sequence of amino acids. We also said that

proteins may have a different secondary structure along their polypeptide, which

can be either α-helix, β-sheets or coils. Say we are interested in knowing for each

amino acid in the protein sequence what structure it adopts. Then we would like to

create a model which assigns a label for each amino acid identifying the protein’s

secondary structure. Figure 3.1 shows an example of this labelling task.

To perform such a labelling task, different methods have been designed to achieve

the same goal: finding the most likely sequence of labels corresponding to the

24
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Figure 3.1: Labelling protein secondary structure.

H = α-Helix, S = β-sheets, C = Coils.

observation based on the given data, known as the training set. The training set

conceals the relations between the observation and the label sequences. By incor-

porating this knowledge into the model, prediction methods are able to come up

with a predicted sequence, trying to satisfy the knowledge acquired by the train-

ing process. In this thesis we will explore more deeply two main approaches to

accomplish this task: the generative and the conditional models. We will also

refer to the difference between directed and an undirected graphical models and

present the main advantages and disadvantages of these approaches.

3.1 Directed Graphical Models

Directed graphical models are a framework for representing graph dependencies

between sequences and labels. Formally, we define G = (V, E) to be a directed

graph where v ∈ V corresponds to each of the random variables representing a

label Yv from Y and e ∈ E corresponds to the transition between a given label to

the next one [32]. The direction of G means that every node v ∈ V has a set of

parent nodes, vΩ, with a topological ordering of the nodes V in G such that nodes

in vΩ appears before v. Therefore, the joint distribution of these random variables

is expressed as the product of the local distribution defined over each node and its

parents:

p(v1, v2, ..., vn) =
n∏

i=1

p(vi|vΩi)
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This form of the joint distribution describing the structure of the directed graphical

model stems from making the conditional independence assumption: v depends

only on the set vΩ. A case in point is the Hidden Markov Models and the Maxi-

mum Entropy Markov Models which we present next.

3.2 Hidden Markov Models (HMMs)

A very common method for solving a sequential classification problem is Hid-

den Markov Models (HMMs). HMMs are an example of generative models for

finding the joint distribution of the paired observation and label sequences. This

method uses a probabilistic finite-state automata to find, for a given sequence, the

most likely corresponding sequence of labels. HMMs define a joint probability

distribution p(X,Y) where X and Y are random variables describing the observa-

tion sequence and the labelling sequence respectively. The model is trained to

maximize the joint likelihood of the observation and label sequence based on the

training sequence. The main drawback in HMMs is that in order to define such a

joint distribution, a generative model must calculate all possible observation se-

quences [45]. Say that we would like to label a secondary structure for a protein

sequence with 1000 amino acids. Since there are 20 possible amino acids for each

letter in the sequence this task becomes intractable. In order to overcome this

problem, HMMs break the input to isolated units, independent of each other. In

other words, the observation at any given position in the sequence depends only

on the state at that position.

HMMs are represented as a directed graphical model as shown in Figure 3.2. The

label distribution of a given state depends on the label distribution of the previous

state. In the sequential classification problem that we are trying to solve, each state

is associated with a single label y ∈ Y, where Y is defined as the label alphabet.

A one-to-one relationship between states and labels is not required, and in some

models several labels are mapped onto a single state. In the following discussion
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Figure 3.2: Hidden Markov models graphical structure. A blue circle

indicates that the variable is generated by the model.

we consider the case of a one-to-one state to label mapping. Say that y1, y2, ..., yn

represent the labels at positions 1, 2, ..., n, then the probability distribution of yi

depends only on the probability distribution of yi−1, and the HMM will estimate

the value of p(yi|yi−1) for each i ∈ n (moving from left to right). Given the current

label, HMMs will generate the current observation from that label p(xi|yi), and

then move to the next label. Similarly, the current observation generated from

the current label depends only on that label. Although the observation is known,

we are interested in the label which is most likely assigned to that observation.

By knowing from the training data the likelihood of assigning possible labels to

possible sequences, HMMs are able to generate the observation given the label

distribution, and choose the most likely one. Note that in Figure 3.2 all circles

are filled, as all graph variables are generated by the model. The joint distribu-

tion of HMMs is expressed in the following formula emphasizing the conditional

independence relation:

p(x, y) = p(y1)p(x1|y1)
n∏

i=2

p(yi|yi−1)p(xi|yi) (3.1)

HMMs begin with a start state, and end by reaching the end point of the observa-

tion sequence. By looking at the product, we identify two components: p(yi|yi−1)
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is the transition from the previous label to the current label, and p(xi|yi) is the gen-

erated observation distribution. This formula relies on the fundamental generative

models’ independence assumption.

HMM is formally defined by the following:

1. A finite set describing the observation alphabet X.

2. A finite set describing the label alphabet Y.

3. An observation probability distribution p(x|y) representing the probability

of generating an observation x given the current state y, where x ∈ X, y ∈ Y.

4. A conditional distribution p(y|ỹ) representing the probability of moving

from state ỹ to state y, where y, ỹ ∈ Y.

5. An initial state distribution p(y), where y ∈ Y.

HMMs solve the sequential classification problem by finding the set of labels

which best fits the observation sequence. In other words, finding the label se-

quence which maximizes the conditional probability of the label given the obser-

vation sequence:

ŷ = argmax
y

p(y|x)

Since HMMs are defined by the joint distribution of the observation and the label

sequences p(x, y), HMMs apply Bayes rule to produce:

ŷ = argmax
y

p(x, y)
p(x)

where only p(x, y) is y dependent, and therefore p(x) can be omitted from the

maximization problem. The solution of ŷ is found using a dynamic programming

implementation of the Viterbi algorithm [35].

The Viterbi algorithm is an efficient way of finding the most likely state sequence

corresponds to a finite-state discrete-time Markov process. The state sequence

estimation problem can also be viewed as the problem of finding the shortest route
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through a certain graph. Say our graph contains nodes which represent distinct

states at a given time, and arrows which represent transitions from one state to

another at the next time unit. The Viterbi algorithm uses recursive steps by which

the algorithm determines the shortest path from the initial to the final state. Say

c0 and cn are the initial and final states respectively, and C = (c1, c2, ..., cn) is the

state sequence. Note that every possible state sequence C corresponds to a unique

path through the graph. The total length of the path corresponding to some state

sequence C is:

L(C) =
n∑

k=1

l(tk)

where l(tk) is the transition length from ck to ck+1. The shortest path to node

ck is called the survivor corresponding to the node ck and is denoted as S (ck).

To get to time (k + 1), we need to extend all time-k survivors by one time unit,

compute the lengths of the extended path segments, and for each node ck+1 find

the corresponding survivor for time (k + 1) and store it as S (ck+1). The algorithm

terminates at time n with the shortest complete path stored as the survivor of S (cn).

This algorithm is a simple version of forward dynamic programming [10].

3.2.1 Sequential Classification Example with HMMs

Now that we have covered the theory behind the HMMs, we would like to apply

it on the main task of our thesis, predicting the transmembrane helix regions of a

protein. The first step in defining the transmembrane sequential problem in terms

of the HMMs model is to specify the following:

1. A finite set describing the observation alphabet X. In our problem, the

alphabet of X is all possible amino acids:

(A,C,D, E, F,G,H, I,K, L,M,N, P,Q,R, S ,T,V,W,Y) ∈ X

2. A finite set describing the state alphabetY. In our case, two states are possi-

ble: (0, 1) ∈ Y, for transmembrane, non-transmembrane helix respectively.
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3. An observation probability distribution p(x|y) representing the probability

of generating an observation x given the current state y, where x ∈ X, y ∈ Y

(Taken from Table 3.1).

4. A conditional distribution p(y|ỹ) representing the probability of moving

from state ỹ to state y, where y, ỹ ∈ Y (Taken from Table 3.2).

5. An initial state distribution p(y), where y ∈ Y (Taken from Table 3.2).

The data we used in this example is taken from a data set consisting of a set

of benchmark sequences with experimentally confirmed transmembrane regions

compiled by Möller et al. [30].1 We only included proteins with a high level

of trust (assigned with transmembrane annotation trust level of A to C, as was

suggested by Möller et al.) and which are significantly different, based on pairwise

similarity clustering. The resulting set consists of 148 transmembrane protein

sequences. After analyzing the data, we calculated the conditional probability

distributions as displayed in Tables 3.1 and 3.2.

We now demonstrate how HMMs solve the labelling prediction task on a small

example. The same solution is applicable in a real sequence labelling task. Say

we would like to predict the labelling sequence of a “micro” protein having the

sequence: MFINR. Maximizing the joint distribution of HMMs expressed in

Equation (3.1), can be calculated using a dynamic programming technique. To

solve this maximization problem, the sequence MFINR is broken up into 5 itera-

tions. Each iteration solves the local maximum problem of assigning a label to the

observation at location i. Tables 3.3 and 3.4 describe the dynamic programming

calculation process.

After solving the local maximization problem of each iteration and moving to

the next one, when we solve the last iteration we actually get the solution on the

whole sequence. In this example, the label that maximizes the joint distribution

of HMMs on the sequence MFINR is: 00000 as shown in Table 3.4.

1The data set can be accessed via ftp://ftp.ebi.ac.uk/databases/testsets/transmembrane
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Table 3.1: Conditional probability distribution of amino acids and

transmembrane helix labels calculated from a data set compiled by

Möller et al.
Amino Acid (X) Label=0 Label=1 Total P(X|Y = 0) P(X|Y = 1) P(Y = 0|X) P(Y = 1|X)

A 3239 1753 4992 0.0813 0.1157 0.6488 0.3512

C 431 213 644 0.0108 0.0141 0.6693 0.3307

D 2045 129 2174 0.0513 0.0085 0.9407 0.0593

E 2509 129 2638 0.0630 0.0085 0.9511 0.0489

F 1514 1260 2774 0.0380 0.0832 0.5458 0.4542

G 2905 1356 4261 0.0729 0.0895 0.6818 0.3182

H 814 141 955 0.0204 0.0093 0.8524 0.1476

I 2054 1678 3732 0.0516 0.1108 0.5504 0.4496

K 2303 114 2417 0.0578 0.0075 0.9528 0.0472

L 3647 2542 6189 0.0916 0.1678 0.5893 0.4107

M 1007 621 1628 0.0253 0.0410 0.6186 0.3814

N 1686 248 1934 0.0423 0.0163 0.8718 0.1282

P 2101 409 2510 0.0528 0.0270 0.8371 0.1629

Q 1818 184 2002 0.0456 0.0121 0.9081 0.0919

R 2301 151 2452 0.0578 0.0100 0.9384 0.0616

S 2740 830 3570 0.0688 0.0548 0.7685 0.2325

T 2318 780 3098 0.0582 0.0515 0.7482 0.2518

V 2575 1694 4269 0.0647 0.1118 0.6032 0.3978

W 597 392 989 0.0150 0.0259 0.6036 0.3964

Y 1224 523 1747 0.0307 0.0345 0.7006 0.2994

Total 39828 15147 54975 1 1

Table 3.2: Conditional probability of transition between helical states

calculated from a data set compiled by Möller et al.
p(yi = 0|yi−1 = 0) = 0.7114 p(yi = 1|yi−1 = 0) = 0.0126

p(yi = 0|yi−1 = 1) = 0.0131 p(yi = 1|yi−1 = 1) = 0.2629

Total p(yi = 0) = 0.7245 p(yi = 1) = 0.2755
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Table 3.3: Maximizing HMMs joint distribution using dynamic

programming.
Iteration Maximization problem

1 max
(
p(y1 = 0)p(x1 = M|y1 = 0), p(y1 = 1)p(x1 = M|y1 = 1

)
2 max

(
p(y2 = 0|y1)p(x2 = F|y2 = 0), p(y2 = 1|y1)p(x2 = F|y2 = 1

)
3 max

(
p(y3 = 0|y2)p(x3 = I|y3 = 0), p(y3 = 1|y2)p(x3 = I|y3 = 1

)
4 max

(
p(y4 = 0|y3)p(x4 = N|y4 = 0), p(y4 = 1|y3)p(x4 = N |y4 = 1

)
5 max

(
p(y5 = 0|y4)p(x5 = R|y5 = 0), p(y5 = 1|y4)p(x5 = R|y5 = 1

)

Table 3.4: Solving the maximization problem using dynamic programming.
Iteration Maximization problem Y Value

1 max
(
p(y1 = 0)p(x1 = M|y1 = 0), p(y1 = 1)p(x1 = M|y1 = 1

)
= max(0.0183, 0.0113) y1 = 0

2 max
(
p(y2 = 0|y1 = 0)p(x2 = F|y2 = 0), p(y2 = 1|y1 = 0)p(x2 = F|y2 = 0

)
= max(0.0270, 0.0005) y2 = 0

3 max
(
p(y3 = 0|y2 = 0)p(x3 = I|y3 = 0), p(y3 = 1|y2 = 0)p(x3 = I|y3 = 0

)
= max(0.0367, 0.0007) y3 = 0

4 max
(
p(y4 = 0|y3 = 0)p(x4 = N |y4 = 0), p(y4 = 1|y3 = 0)p(x4 = N|y4 = 0

)
= max(0.0301, 0.0005) y4 = 0

5 max
(
p(y5 = 0|y4 = 0)p(x5 = R|y5 = 0), p(y5 = 1|y4 = 0)p(x5 = R|y5 = 0

)
= max(0.0411, 0.0007) y5 = 0

From the formal definition of HMMs, it is clear that HMMs rely on the fundamen-

tal generative models independent assumption. The probability of entering a cur-

rent state depends only on the probability of leaving the previous state p(yi|yi−1),

and the generated observation distribution p(xi|yi) depends only on the current

state. This assumption may be inappropriate in some sequential problem cases

where the observation sequence has long-range dependencies between observa-

tions. By breaking the sequence to several isolated units, we might lose important

data which is described by these dependencies, and essential to describe the prob-

lem accurately. Therefore, it is appropriate to use different techniques which have

the ability to relax these strong independence assumptions on the observation data.

3.3 Generative and Conditional Models

The difficulties due to the problem which described in the previous paragraph led

to an alternative approach using conditional models instead. While generative

models define a joint probability distribution of the observation and the labelling
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sequences p(X,Y), the conditional models specify the probability of a label given

an observation sequence p(Y |X). Thus, no effort is spent on modelling all possi-

ble observation sequences, but only on selecting the labels which maximize the

conditional probability p(Y |X), while relaxing strong independence assumptions

on the observation data [21]. Furthermore, while conditional models are trained

to minimize the labelling errors, generative models are trained to maximize the

joint probability of the training data. Finding the joint probability might be useful

if the trained model is also used to generate the data, but might not be so accurate

if the actual data was not generated by the model, as is often the case in practice

[37].

Conditional models can use several, not necessarily independent, overlapping fea-

tures which describe the constraints on the problem [37]. These features describe

different constraints on the model, taken from the real-world. For example, if we

return to the protein’s structure problem, performance is improved dramatically

by adding sets of features which take to account polarity and hydrophobicity at-

tributes of each amino acid. Maximum Entropy Markov Models (MEMMs) are

an example of conditional models.

3.4 Maximum Entropy Markov Models (MEMMs)

MEMMs are a conditional model approach for the sequential classification prob-

lem. While HMMs and other generative models calculate the joint probability

distribution of the observation and label sequences by generating the observa-

tion, MEMMs finds the label distribution conditioned by the observation. In other

words, instead of having two probability distributions: one for moving from a

previous state to current state p(yi|yi−1), and one for generating the observation

conditioned on the current state p(xi|yi), MEMMs have a single probability distri-

bution in the form p(yi|xi, yi−1). It is to say that the label assigned at time t depends

only on the observation at time t and the previous label at time t − 1. This prob-
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Figure 3.3: Maximum entropy Markov models graphical structure. An

orange circle indicates that the variable is not generated by the model.

ability is represented in the MEMMs graph structure over label sequence y given

the observation sequence x and is formulated as:

p(y|x) = p(y1|x1)
n∏

i=2

p(yi|yi−1, xi) (3.2)

Equation (3.2) can be displayed as a graph as shown in Figure 3.3.

The key principal of MEMMs is by selecting a particular distribution, when no

other knowledge to constrain the choice of parameters is available. Entropy of a

probability distribution is the measure of uncertainty. The entropy is maximized

when the distribution is as close to uniform distribution as possible. If we are in-

terested in measuring the probability distribution of a finite training set and imply

it on a test set, then according to the maximum entropy principal: The probability

distribution that mostly reflects the training set with the ability to generalize to un-

seen data, is one which has the maximum entropy subject to the set of constraints

that were pre-defined in the problem . In other words, the main principle behind

the MEMMs approach is to create the most uniform model that satisfies all known

constraints and makes the least assumptions about unseed data [8].

The fact that the observations are now events to be conditioned upon rather than

generated involve the creation of non-dependent overlapping features on the ob-
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servation sequence. The conditional probability of the label given the observation

can be now defined as a log linear transition function:

p(y|x) =
1

Z(x, y)
exp(
∑

j

λ jF j(y, x))

where F j is a feature function, Z(x, y) is a normalization factor, and λ j are the

estimated parameters describing the feature’s weight [29]. Every possible label is

defined as a state and has an exponential distribution. Given the observations, the

model is trained based on pre-defined features to predict the most likely distribu-

tion for the next state. Feature functions will be discussed further in Section 4.3.

The parameter estimation may be implemented using different algorithms such as

Generalized Iterative Scaling and Improved Iterative Scaling [21].

Similar to HMMs, MEMMs solve the sequential classification problem by finding

the set of labels which best fit the observation sequence. In other words, finding

the label sequence which maximize the conditional probability of the label given

the observation sequence:

ŷ = argmax
y

p(y|x)

The solution of ŷ is found using a dynamic programming implementation of the

Viterbi algorithm [35].

3.5 MEMMs Label Bias Problem

The main weakness of MEMMs and other non-generative finite-state models based

on directed graphical models is called the label bias problem [21]. In this prob-

lem, the probability of leaving a given state competes against the probability of

entering any potential next state instead of competing against the most likely se-

quence of all consecutive states together. Say that every transition from one state

to another has a score, defined by the conditional probability of possibly entering

the next state given the current state and the observation sequence. Since the total

transition score of all incoming transitions is equal to the total score of all outgoing
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Figure 3.4: Label bias problem example. A blue circle indicates the

observation sequence x, and an orange circle indicates the label

assigned by the model y.

transitions, an observation may affect what percentage of the total incoming score

might be directed to each one of possible outgoing transitions. Nevertheless, the

total outgoing score must be preserved among all possible outgoing transitions.

Hence, it may cause a bias towards states with fewer outgoing transitions, which

benefit from a relatively high conditional probability of being in those states since

their total outgoing score is shared among fewer next states. The Markovian as-

sumptions in MEMMs and similar state-conditional models separate the decision

making at one step from future dependent decisions of consecutive steps, and

therefore suffer from the label bias problem. The following example will make

things clearer. Say our MEMM is trained with the following two sequences: First

sequence is MFINR with label sequence of 00000. Second sequence is MFILR

with label sequence of 00110. Figure 3.4 describes the graph structure of MEMMs

after the training is completed. Suppose we are interested in determining the most

likely label sequence given a new observation sequence, we use Equation (3.2)
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and maximize the conditional distribution of p(y|x). Now lets look at Figure 3.4

more carefully. The model was trained with two sequences who start with the

observation MF, assigned with the labels 00. Therefore, the joint distribution of

the only possible label sequence 00 given the observation sequence MF is:

p(y1 = 0, y2 = 0|x1 = M, x2 = F) = p(y1 = 0|x1 = M)p(y2 = 0|y1 = 0, x2 = F)

The next observation I matches both sequences and therefore, the mass accumu-

lated so far is distributed among the two possible labels 0 and 1. If we look further

on the path MFIN with next observation N, we can see that according to the graph

structure it is assigned with label 0. In this case, the number of outgoing transi-

tions is exactly 1. Therefore, we conclude that

p(y4 = 0|y3 = 0, x4 = N) = p(y4 = 0|y3 = 0) = 1

In other words, the probability of assigning the label sequence y1y2y3y4 = 0000

given the previous label sequence y1y2y3 = 000 is 1! In this case, the observation

sequence in x4 is ignored completely by the model. Similarly, this happens with

observation L and label 1 on the MFIL path. In both cases, the decision of en-

tering the next state is already made by leaving the current state, regardless of the

observation sequence. The explanation of this phenomenon is due to the fact that

the number of outgoing transitions is one. It is noteworthy that it does not neces-

sarily have to be the case in order to suffer from the label bias problem. Say there

are a number of outgoing transitions, and one of them is more frequent than the

others. The probability of choosing this transition path is always greater than the

other transitions, and this may result in ignoring the observation sequence along

this path. A more general way where the label bias problem may occur is where

the probability of all observations X is p(yi|yi−1, X) ≈ p(yi|yi−1).

Conditional Random Fields (CRFs) are a probabilistic framework for labelling

sequential data which overcome the label bias problem. Similarly to MEMMs,

CRFs are belonging to the same family of conditional models. CRFs are a form

of undirected graphical state models that define a log-linear distribution for each
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state over the label sequence based on the observation sequence [45]. The major

difference between MEMMs and CRFs stems from the directed vs. non-directed

approach. MEMMs find for each state the exponential models for the conditional

probabilities of next states given the current state, while CRFs have a single ex-

ponential model for the joint probability of the entire sequence of labels given the

observation sequence [21].

In Chapter 5 we conduct a set of experiments comparing the prediction results

between MEMMs vs. CRFs approaches showing the outperforming of CRFs. In

the next Chapter, we cover the theory behind the CRFs model.

3.6 Summary

The sequential classification problem is defined as finding corresponding label

sequences given an observation set of sequences. Different prediction models try

to fulfil this task by training the model on a set of known observation and labelling

sequences, known as the training set. In the training process, the prediction model

captures this knowledge from the training set, and comes up with a suggested

prediction sequence, satisfying the constraints acquired in the training. There are

two main approaches to accomplish this task: the generative and the conditional

models.

Hidden Markov Models (HMMs) are an example of generative models based on

finding the joint distribution of the paired observation and label sequences p(X,Y).

The main drawback in HMMs is that in order to define such a joint distribution, a

generative model should calculate all possible observation sequences, which be-

comes impractical in complex problems. To overcome this problem, HMMs break

the input to isolated units, independent from one another. This assumption may be

inappropriate in some sequential problems where long-range dependencies exist

between observations.

Conditional models are an alternative approach which do not calculate the joint
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distibution. Instead of finding the joint probability distribution p(X,Y), condi-

tional models specify the probability of a label given an observation sequence

p(Y |X). Instead of modelling all possible observation sequences, conditional mod-

els select the labels which maximize the conditional probability p(Y |X). Maxi-

mum Entropy Markov Models (MEMMs) are an example of conditional models.

Entropy of a probability distribution is the measure of uncertainty. The key princi-

pal of MEMMs is based on the entropy assumption: creating a model that satisfies

all known constraints but treats the unknown uniformly. MEMMs have a single

probability distribution in the form p(yi|xi, yi−1), meaning that the label assigned

at time t depends only on the observation and the previous label at time t − 1. Ex-

periments have shown that MEMMs suffer from a weakness known as the label

bias problem [21]. The Markovian assumptions in MEMMs separate the deci-

sion making at one step from future dependent decisions of consecutive steps, and

therefore may cause a bias towards states with fewer outgoing transitions.

Conditional Random Fields (CRFs) are an approach which overcomes the dis-

advantages of both HMMs and MEMMs. CRFs are the main topic of the next

Chapter.



Chapter 4

Conditional Random Fields

(CRFs)

Conditional Random Fields (CRFs) are a probabilistic framework from the family

of conditional models for labelling sequential data. CRFs are a form of undirected

graphical state models that define a single log-linear distribution for the entire la-

bel sequence conditioned on the observation sequence [45]. The main advantage

of CRFs over Maximum Entropy Markov Models (MEMMs) and other condi-

tional finite-state directed models, is that they overcome a weakness called the

label bias problem. This problem defines the condition when a model is biased

towards low entropy transition states. Since MEMMs use a per-state exponential

model conditioned on the previous state, MEMMs may suffer from the label bias

problem, as explained in more details in Section 3.5. CRFs also allow for a seam-

less and modular integration of biological domain knowledge expressed as model

constraints.

40
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Figure 4.1: CRFs graphical structure. A blue circle indicates that the

variable is generated by the model.

4.1 Undirected Graphical Models

CRFs are an undirected graphical model, conditioned on the random variable rep-

resenting the observation sequence X. Formally, we define G = (V, E) to be an

undirected graph to represent the labels in the observation sequence. Here v ∈ V

is a set of nodes corresponds to random variables representing the labels and ob-

servations, and e ∈ E is a set of undirected edges between nodes corresponds

to the transition between a given label to the next one. Note that according to

the definition of conditional independence for undirected graphical models, if two

vertices vi and v j do not share edge between them in graph G, then the random

variables vi and v j are conditionally independent given all other random variables

in the graph. Even though in theory the structure of a graph G may be arbitrary, in

our application the graph is a simple chain where each node corresponds to a label

[45]. Figure 4.1 demonstrates the undirected graph structure of CRFs. The edges

between the label nodes Y correspond to the cliques between these random vari-

ables. The observation nodes X do not share edges as the model does not assume

any independence assumptions among the observation.
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4.2 CRF Definition and Model Derivation

Let G = (V, E) be a graph, Y = (Yv) v ∈ V be a family of finite-valued random

variables, and X = (Xv) v ∈ V be a family of functions.

Definition 1 (Y, X) is a conditional random field (CRF) if

1. P(Y |X) > 0 ∀Y

2. For all v ∈ V

P(Yv|YV−v, X) = P(Yv|YN(v), X)

where N(v) are the neighbors of v in G. This is called the Markov property.

Definition 2 Y is a Gibbs field if

P(Y) = 1
Z exp(− 1

T U(Y))

where Z is a normalizing constant, T is a constant called the temperature (which

we assume is equal to one), and U is called the energy.

The energy U can be expressed as:

U(Y) =
∑

c∈C Uc(Y)

where C is the set of all cliques (completely connected subgraphs) in G, and Uc is

the energy for a particular clique.

According to the Hammersley-Clifford Theorem [24], a CRF is equivalent to a

Gibbs field, thus

P(Y |X) ∝ exp{U(Y, X)} = exp{
∑

c∈C Uc(Y, X)}1 (4.1)

For sequential data, the graph G is a chain and therefore the clique set C consists

of vertices (C1) and edges (C2), thus

U(Y, X) =
∑
{v}∈C1

V1(Yv, X) +
∑
{v,w}∈C2

V2(Yv,Yw, X)

1The minus sign has been absorbed in the function.
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Using the notation of Lafferty [21] we can re-write Equation (4.1) as:

pθ(y|x) ∝ exp
(∑

e∈E, j λ j f j(e, y|e, x) +
∑

v∈V, j µ jg j(v, y|v, x)
)

where x is a data sequence, y a label sequence, y|S is the set of components of y

associated with the vertices in subgraph S . The vectors f and g represent the local

features with corresponding weight vectors λ and µ.

The joint distribution can be expressed in a slightly different form:

pθ(y|x) ∝ exp

∑
j

λ j f j(yi−1, yi, x, i) +
∑

k

µkgk(yi, x, i)

 (4.2)

f j(yi−1, yi, x, i) is a transition feature function of the entire observation sequence

and the labels at positions i and i − 1 in the label sequence. gk(yi, x, i) is a state

feature function of the entire observation sequence and the label at position i in

the label sequence. λ j and µk are estimated from the training data. We assume that

the feature functions fk and gk are given and fixed [44].

4.3 Feature Functions and Model Estimation

The joint distribution of the labels Yv ∈ Y may be factorized into a normal-

ized product of real-valued potential functions that are conditionally independent.

Each potential function corresponds to a feature whose support is a clique of the

graph. When the graph is a chain, as in our case, the cliques are the vertices and

the edges of the graph [34].

The feature functions constrain the conditional probability distribution p(y|x). The

satisfaction of a constraint increases the likelihood of the global configuration.

Note that no feature independence assumption is made, and several dependent

overlapping features are allowed. Different weights assigned to the parameters

associated with the features, can be used to distinguish between important and

rather features.
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An example of a feature is:

u(x, i) =

 1 if the amino acid at position i is polar

0 otherwise

If the current state in a state function, or the current and previous state in a transi-

tion function are satisfied then the feature function takes on the value u(x, i) [44].

For example, the feature function f j(yi−1, yi, x, i) is assigned with the return value

of the function u(x, i), in case that the label at position i−1 corresponds to a protein

secondary structure of α-helix, and the label at position i to a secondary structure

of β-strand:

f j(yi−1, yi, x, i) =


u(x, i) if yi−1 = α helix and

yi = β strand

0 otherwise

In what follows, we generalize the transition functions to include state functions

by writing:

g(yi, x, i) = f (yi−1, yi, x, i)

We also define the sum of a feature over the sequence by:

f j(x, y) =
n∑

i=1

f j(yi−1, yi, x, i)

where f j(yi−1, yi, x, i) refers to either transition or state function [44]. Therefore,

the probability of a label sequence y given the observation sequence x is of the

form:

pλ(y|x) =
1

Zλ(x)
exp(
∑

j

λ j f j(x, y)) (4.3)

where

Zλ(x) =
∑

y

exp(
∑

j

λ j f j(x, y)) (4.4)

The most likely label sequence ŷ for a given input sequence x is:

ŷ = argmax
y

p(y|x, λ) = argmax
y

∑
j λ j · f j(x, y)
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The most probable ŷ can be found efficiently using the Viterbi algorithm [37].

The parameters of the CRFs model are calculated using the principal of the max-

imum entropy theory. The entropy of a probability distribution is the measure of

uncertainty. Entropy is maximized when the distribution is close to uniform as

possible. In other words, the main principle is specify a model that satisfies all

known constraints but treats the unknown constraints uniformly [17]. The condi-

tional entropy of p(y|x) is:

H(Y |X) = −
∑
x,y

p̃(x, y)logp(y|x)

where p̃(x, y) is the empirical joint distribution of the observation and the label.

Using the maximum entropy principal one can show that the expectation of the

features in the data is equal to the expectation of the features in the model [21]:∑
x,y

p̃(x)p(y|x)F(x, y) = E p̃(x,y)F(x, y)†

The maximum entropy distribution that satisfies the feature constraints from the

empirical distribution is revealed using an estimation technique. In the next Sec-

tion we will use this equation to find the parameters of the model using maximum

log-likelihood.

4.4 The Maximum Likelihood Approach

The parameter estimation problem is to determine the parameters

θ = (λ1, λ2, ...; µ1, µ2, ...) in Equation 4.2 from the training data T = (x(k), y(k))Nprot

k=1

with empirical distribution p̃(x, y) [21]. In what follows, we rewrite θ as λ as we

are using f j(x, y) to represent both the transition and the state function. Assum-

ing that the training data T is independently and identically distributed, then the

product of the probabilities over as a function of λ, is known as the likelihood.

†Here F(x, y) represents all the features and the parameters specified in the model.
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In maximum likelihood training, the goal is to find parameters which maximize

the likelihood. However, since the logarithm is an increasing function, and the

log of the products is the sum of the logarithms, it is convenient to maximize the

log-likelihood. Several methods are available to find the parameters which maxi-

mize the log-likelihood. Some of the methods such as iterative scaling algorithm

[2] and its variants were designed specifically to solve the particular form of the

maximum entropy likelihood. However, a consensus is emerging that a more gen-

eral form of optimization techniques like the Quasi-Newton Methods are more

efficient [27, 36].

The log-likelihood of a CRF model pλ(y|x) given a joint empirical distribution

p̃(x, y) is defined as:

Lp̃(λ) =
∑
x,y

p̃(x, y)logpλ(y|x) (4.5)

where

1. Lp̃(λ) ≤ 0

Note that pλ(y|x) > 0 ∀y according to the CRFs definition.

2. Lp̃(λ) = 0 is the optimal value of Lp̃(λ) if and only if pλ(y|x) = 1

and p̃(x, y) > 0.

The maximum likelihood problem is defined as:

λ̂ = argmax
λ

Lp̃(λ)

Lp̃(λ) is a concave function of λwhich guarantees the existence of a unique global

maximum [2].

By substituting pλ(y|x) as defined in Equation (4.3) into Equation (4.5) we get the

CRFs general log-likelihood objective function:

Lp̃(λ) =
∑
x,y

p̃(x, y)
∑

j

λ j f j(x, y) −
∑

x

p̃(x)log
∑

y

exp
∑

j

λ j f j(x, y) (4.6)
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Differentiating the log-likelihood by λi gives:

∂L p̃(λ)
∂λ j
=
∑

x,y p̃(x, y) f j(x, y) −
∑

x,y p̃(x)pλ(y|x) f j(x, y)

= E p̃(x,y) f j(x, y) − E p̃(x)pλ(y|x) f j(x, y)

E p̃(x,y) f j(x, y) denotes the expectation with respect to empirical distribution p̃.

E p̃(x)pλ(y|x) f j(x, y) denotes the expectation with respect to the model distribution

p̃(x)pλ(y|x) [3].

Since the maximum-likelihood function is concave over the space of λ, it has a

global maximum when the derivative is zero. Setting this derivative to zero yields

the maximum entropy model constraint: the expectation of feature f j(x, y) with

respect to the model distribution p̃(x)pλ(y|x) is equal to the expected value of fea-

ture f j(x, y) under the empirical distribution obtained from the training data p̃(x, y)

[37].

4.5 Parameter Estimation

To reiterate, the main goal is to determine the parameters λ̂ = (λ1, λ2, ...λn) ∈ Rn

which maximize the function 4.6. In practice, this task is computationally expen-

sive, as the number of features may be very large, for example, in our case nearly

one million. As we have stated before, there are several methods available to de-

termine λ̂, including Generalized Iterative Scaling [8], Improved Iterative Scaling

[2], Newton’s Method, and Quasi-Newton’s Methods such as Limited Memory

BFGS [25]. In the following sections we describe, in some details, about each of

these techniques. The commonality among all these techniques is that they are it-

eratively trying to find a new set of parameters: λ+∆ = (λ1+δ1, λ2+δ2, ...λn+δn)

which increase the log-likelihood function as much as possible. After a new set is

found, the parameters are updated: λ ← λ + ∆ and the algorithm continues to the

next iteration. This process is terminated either when convergence is reached (the
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update value of ∆ is smaller than a threshold), or a maximum pre-defined num-

ber of iterations is exceeded. While all parameter estimation algorithms share

the same principal of trying to improve the target log-likelihood function at each

iteration, they differ in the method of calculating the improvement, noted as ∆

[27].

4.5.1 Iterative Scaling

The main goal is to find λ + ∆ = (λ1 + δ1, λ2 + δ2, ...λn + δn), which increases the

log-likelihood target function as much as possible. We can express this change in

the log-likelihood function by using Equation (4.5) as:

Lp̃(λ + ∆) − L p̃(λ) =
∑
x,y

p̃(x, y)logpλ+∆(y|x) −
∑
x,y

p̃(x, y)logλ(y|x)

By substituting logpλ+∆(y|x) as defined in Equation (4.3) we get:

=
∑
x,y

p̃(x, y)
∑

j

δ j f j(x, y) −
∑

x

p̃(x)log
Zλ+∆(x)
Zλ(x)

We can lower bound Lp̃(λ + ∆) − L p̃(λ) by using the observation

−log α ≥ 1 − α (true for all α > 0) with α equal to logZλ+∆(x)
Zλ(x) and get:

Lp̃(λ + ∆) − L p̃(λ) ≥
∑
x,y

p̃(x, y)
∑

j

δ j f j(x, y) + 1 −
∑

x

p̃(x)
Zλ+∆(x)
Zλ(x)

=
∑
x,y

p̃(x, y)
∑

j

δ j f j(x, y) + 1 −
∑

x

p̃(x)
∑

y exp
∑

j(λ j + δ j) f j(x, y)∑
y exp

∑
j λ j f j(x, y)

=
∑
x,y

p̃(x, y)
∑

j

δ j f j(x, y) + 1 −
∑

x

p̃(x)
∑

y

pλ(y|x)exp(
∑

j

δ j f j(x, y))

= A(∆|λ) (4.7)

Back to our main goal, we have just shown that finding ∆ such that asA(∆|λ) > 0

will improve the log-likelihood target function, as Lp̃(λ + ∆) − L p̃(λ) ≥ A(∆|λ).
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Seemingly, we could maximize the desired ∆ by differentiating A(∆|λ) with re-

spect to each δ j. Then update each parameter by λ j ← λ j + δ j and increase the

log-likelihood on every iteration, as long as the solution to A(∆|λ) > 0 can be

found. However, if we look more carefully at Equation (4.7), we realize that δ j

appears inside an exponential expression exp
∑

j δ j f j(x, y) and by differentiating

Equation (4.7) with respect to δk we get:

∂A(∆)
∂δk

=
∑
x,y

p̃(x, y) fk(x, y) −
∑

x

p̃(x)
∑

y

pλ(y|x) fk(x, y)exp
∑

j

δ j f j(x, y) (4.8)

and the exponential form of the second term, depends on the sum expression of δ j.

This prevents us from factoring out δ j from the above equation. This problem has

prompted the development of two iterative scaling approaches, which overcome

this problem by refining the expression A(∆|λ) in Equation (4.7). These are the

Generalized Iterative Scaling (GIS) [8] and the Improved Iterative Scaling (IIS)

[2] methods.

4.5.2 Generalized Iterative Scaling (GIS) Algorithm

This parameter estimation technique is based on improving the value of δ j’s by a

factor proportional to the ratio of the expectation with respect to empirical distri-

bution E p̃(x,y) f j(x, y) and the expectation with respect to the distribution

E p̃(x)pλ(y|x) f j(x, y). GIS relies on the maximum entropy approach in which the

model reaches its convergence when the empirical expectation is equal to the

model distribution:

E p̃(x,y) f j(x, y) = E p̃(x)pλ(y|x) f j(x, y)

GIS defines a constant C as the maximal number of active features for any possible

sequences x, y (not only in the training data).

C = max
x,y

∑
j

f j(x, y)
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In addition, the GIS algorithm adds a new constraint to the model, such that for

each possible sequence (x, y), the sum of all features sums to C

∀x, y
∑

j

f j(x, y) = C

This constraint, f̌ (x, y), can be defined as:

f̌ (x, y) = C − f j(x, y)

The correction feature is added to the existing set of features, and is activated in

case that the sum of all activated features for that particular sequence x, y is lower

than C [28].

Now we can express Equation (4.7) together with constant C as:

A(∆|λ) =
∑
x,y

p̃(x, y)
∑

j

δ j f j(x, y) + 1 −
∑

x

p̃(x)
∑

y

pλ(y|x)exp(C
∑

j

δ j f j(x, y)
C

)

(4.9)

Note that f j(x,y)
C is a probability distribution function, since the denominator C is

defined as the sum of all features, and the numerator is the feature f j(x, y) which

are both always non-negative. By summing the numerator over j, x, y we get the

sum of all features f j(x, y) divided by C which adds to one. Therefore, we can use

Jensen’s inequality for probability distribution functions (p.d.f):

exp
∑

x

p(x)q(x) ≤
∑

x

p(x)exp(q(x))

and by referring to ( f j(x,y)
C ) as p(x) and (δ jC) as q(x) we can lower bound A(∆|λ)

in Equation (4.9) as:

A(∆|λ) ≥
∑
x,y

p̃(x, y)
∑

j

δ j f j(x, y) + 1 −
∑

x

p̃(x)
∑

y

pλ(y|x)
∑

j

(
f j(x, y)

C
)exp(δ jC)

= B(∆|λ)
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Now differentiating with respect to δk:

∂B(∆)
∂δk

=
∑
x,y

p̃(x, y) fk(x, y) −
∑

x

p̃(x)
∑

y

pλ(y|x) fk(x, y)exp(δkC) (4.10)

Finally, by taking the log on both sides we find the update rule of GIS:

δ j = log(
E p̃(x,y) f j(x, y)

E p̃(x)pλ(y|x) f j(x, y)
)

1
C

It can be easily noticed that the convergence speed and the improvement factor

δ j of each parameter λ j depends on C. The higher C is, the slower the step to

convergence. In many cases, the sum of all enabled features for a given row in

the training data is not equal to a constant C, and a correction feature is required.

Adding such a correction feature slows the convergence. Therefore, an alternative

approach was developed, which calculates the step without a correction feature.

4.5.3 Improved Iterative Scaling (IIS) Algorithm

The Improved Iterative Scaling solution for this problem is by defining F as the

sum of all features for the given sequences x, y:

F(x, y) =
∑

j

f j(x, y)

If we are dealing with binary features only, then F can be specified as as the sum

of all activated features over sequences x, y. By incorporating F in Equation (4.7)

we get:

A(∆|λ) =∑
x,y

p̃(x, y)
∑

j

δ j f j(x, y) + 1 −
∑

x

p̃(x)
∑

y

pλ(y|x)exp(F(x, y)
∑

j

δ j f j(x, y)
F(x, y)

)

(4.11)

Note that f j(x,y)
F(x,y) is a probability distribution function (By summing the numerator

over j we get one). Therefore, we can use Jensen’s inequality for p.d.f:

exp(
∑

x

p(x)q(x)) ≤
∑

x

p(x)exp(q(x))
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and by substituting f j(x,y)
F(x,y) as p(x) and δ jF(x, y) as q(x) we can express Equation

(4.11) as:

A(∆|λ) ≥∑
x,y

p̃(x, y)
∑

j

δ j f j(x, y) + 1 −
∑

x

p̃(x)
∑

y

pλ(y|x)
∑

j

(
f j(x, y)
F(x, y)

)exp(δ jF(x, y))

= B(∆|λ) (4.12)

So by using the lower bound B(∆|λ) we can improve the log-likelihood function

as:

Lp̃(λ + ∆) − L p̃(λ) ≥ B(∆|λ)

B(∆|λ) , however, can be differentiated over δk [3]:

∂B(∆)
∂δk

=
∑
x,y

p̃(x, y) fk(x, y) −
∑

x

p̃(x)
∑

y

pλ(y|x) fk(x, y)exp(δkF(x, y)) (4.13)

This time we can calculate the desired ∆ by differentiating over B(∆|λ) with re-

spect to each δk. In contrast to Equation (4.7), in Equation (4.13) δk appears alone

inside the exponential expression expδkF(x, y) and does not depend on other val-

ues of δ. Therefore, δk can be estimated easily in a small number of iterations

using the Newtown-Raphson method [27].

First, we solve ∂B(∆)
∂δk

for each parameter λk. Then we update λk ← λk + δk and in-

crease the log-likelihood on every iteration, as long as the solution to B(∆|λ) > 0

can be found until convergence is reached.

4.5.4 Newton’s Method

Newton’s method is a classical approach for solving optimization problems. Sup-

pose we want to minimize the function f : Rn → R

min
x∈Rn

f (x)
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which is twice continuously differentiable. In order to do so, we first solve

∇ f (x) = 0 (4.14)

where ∇ f (x) is the gradient of f . Then we verify that the Hessian at the solution

point is positive definite. The Hessian is an n × n matrix defined as:

H =
( ∂2 f
∂xix j

)
i, j=1...n

In many cases, it may not be possible to find an analytical solution of Equation

4.14. This is the case where numerical methods are used. Given the solution

at x̄, Newton’s methods uses Taylor’s expansion to approximate the value of the

function in the neighborhood of x̄:

∇ f (x) = ∇ f (x̄) + ∇2 f (x̄)(x − x̄) + o(‖x − x̄‖) (4.15)

By omitting o(‖x − x̄‖), we define l(x) to be:

l(x) = ∇ f (x̄) + ∇2 f (x̄)(x − x̄) (4.16)

The principal of Newton’s method is to solve the equation l(x) = 0 instead of

Equation (4.14), and using the solution as the next step in the iteration via the

formula:

xi+1 = xi − ∇
2 f (xi)−1∇ f (xi) (4.17)

A geometric explanation for this step is shown in Figure 4.2 for the one dimen-

sional function p(x). Let l(X) be the gradient of this function. From Equation

4.16, the gradient l(X) to p(x) at x1 is:

l(x1) = p(x1) + ∇p(x1)x − ∇p(x1)x1

l(x) meets the x-axis at x2, and therefore:

p(x1) + ∇p(x1)x2 − ∇p(x1)x1 = 0

x2 = x1 −
p(x1)
∇p(x1)
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Figure 4.2: Newton’s method for approximating the solution of equation

p(x) = 0. See text for explanation.

Similarly, since for us p(x) = ∇ f (x) and ∇p(x) = ∇2 f (x), the general form is:

xi+1 = xi − ∇
2 f (xi)−1∇ f (xi)

as defined in Equation (4.17).

The difference di in the x value in every iteration is defined as:

di = −∇
2 f (xi)−1∇ f (xi)

The Newton’s algorithm is as follows:

1. Choose x0 and set i = 0

2. Calculate ∇ f (xi). If ∇ f (xi) = 0 then stop

3. Calculate ∇2 f (xi). If ∇2 f (xi) is not positive definite then Goto 1

4. Calculate di = −∇
2 f (xi)−1∇ f (xi)

5. Update xi+1 = xi + di and i + +
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6. Goto 2

Updating xi+1 in every iteration does not guarantee a function improvement

f (xi+1) < f (xi), but if ∇2 f (xi) is positive definite, then the change in the value of

xi is considered to be in a descent direction, named the Newton’s search direction.

Therefore, the line search method can be integrated into the Newton’s algorithm

to ensure that f (xi+1) < f (xi) in every step:

1. Choose x0 and set i = 0

2. Calculate ∇ f (xi). If ∇ f (xi) = 0 then stop

3. Calculate ∇2 f (xi). If ∇2 f (xi) is not positive definite then stop

4. Calculate di = −∇
2 f (xi)−1∇ f (xi)

5. Find αi which f (xi + αidi) = minα f (xi + αdi)

6. Update xi+1 = xi + αidi and i + +

7. Goto 2

Step 3 requires that the Hessian ∇2 f (xi) is positive definite. A way to overcome

this requirement is by defining a positive constant γi so ∇2 f (xi) + γiI is positive

definite, and I is the identity matrix. Then we can replace step 4 with:

di = −(∇2 f (xi) + γi)−1∇ f (xi)

[31].

4.5.5 Quasi-Newton Methods

A careful examination at Newton’s algorithm reveals that the Hessian of f (xi)

has to be inverted on every iteration, a task which is computationally expensive

if the dimension of the problem is high. Quasi-Newton methods are avoiding
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the computation of the Hessian matrix by estimating the Hessian using numerical

methods.

After the first iteration, both ∇ f (x0), ∇2 f (x0) and x1 are calculated. From substi-

tuting x0, x1 into Equation (4.15) we get:

∇ f (x0) − ∇ f (x1) = ∇2 f (x1)(x0 − x1) + o(‖x0 − x1‖)

Thus,

∇2 f (x1)−1(∇ f (x0) − ∇ f (x1)) = (x0 − x1)

The Quasi-Newton condition avoids the calculation of ∇2 f (x1)−1 by replacing it

with H1. In general form, Quasi-Newton condition is written as:

Hi+1γi = δi (4.18)

where

Hi+1 = ∇
2 f (xi+1)−1

γi = ∇ f (xi+1) − ∇ f (xi)

δi = xi+1 − xi

After finding such a matrix Hi+1, the search direction di+1 is defined as:

di+1 = −Hi+1∇ f (xi+1) (4.19)

There are a number of variations of Quasi-Newton methods, each of which define

a different way of calculating Hi+1 [31]. We next briefly describe the BFGS meth-

ods as this method outperformed other parameter estimation methods on Maxi-

mum Entropy models [27].

4.5.6 Limited Memory BFGS Method

We have used the LBFGS [25] parameter estimation technique in our transmem-

brane prediction model with CRFs. The code relies on sparse matrix operations
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available from the COLT distribution [14] and an implementation of the Quasi-

Newton optimization algorithm (LBFGS) available under the Riso open source

project [9].

According to the Quasi-Newton BFGS method, the update of Hi+1 is in the form:

Hi+1 = Hi +
(
1 +
γT

i Hiγi

δT
i γi

)δiδ
T
i

δT
i γi
−
(δiγ

T
I Hi + Hiγiδ

T
i

δT
i γi

)
(4.20)

After the Hessian is estimated, the direction can be calculated easily using Equa-

tion (4.19) [31].

4.6 Conditional Probability in Matrix Form

When the underlying graph is a chain, as in our case, we can express the con-

ditional probability over a label sequence Y , given the observation sequence X,

in a matrix form. We define two new states, start and stop as: Y0 = start and

Yn+1 = stop. For each position i in the observation sequence x , define the |Y|×|Y|

matrix random variable Mi(x) = Mi(yi−1, yi|x) by

Mi(yi−1, yi|x) = exp
(∑

j

λ j f j(yi−1, yi, x, i) +
∑

k

µkgk(yi, x, i)
)

where yi−1, yi ∈ Y, and Y is the label alphabet. The above can be simplified by

referring to transition functions as a general case of state functions and expressed

as:

Mi(yi−1, yi|x) = exp
(∑

j

λ j f j(yi−1, yi, x, i)
)

Since conditional models do not try to model all possible observation sequences

x ,in contrast to generative models, these matrices can be computed directly for

a given observation sequence x and the parameter vector λ. The normalization

function Z(x) is defined as the [start,stop] entry calculated on the product:
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Z(x) =
[
M1(x)M2(x)...Mn+1(x)

]
start,stop

. Using this notation, the conditional prob-

ability of a label sequence y is written as

p(y|x, λ) =
∏n+1

i=1 Mi(yi−1, yi|x)
Z(x)

where y0 = start and yn+1 = stop [21]. This conditional probability can be max-

imized using a dynamic programming implementation of the Viterbi algorithm

[35].
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4.7 Feature Integration with the Model

The most important aspect of specifying the model is selecting a set of features

that capture the relationships between the observation and the label sequences, in

our case the protein sequence and the helical structure respectively [4]. The num-

ber of different features which can be applied to a model is infinite, and therefore,

it is a hard task to find the right feature combination which describes the problem

as in reality. Assembling such a feature combination which satisfies the problem

is an empirical process which involves many experiments. On each experiment,

a combination of features is selected and then the model is evaluated based on its

prediction. It is possible to evaluate and score the prediction based on the selected

feature combination.

In this Section we present the different features which we have used in our ex-

periments. Some of the features we have already introduced in our previous work

[26], and the others are being introduced for the first time in this thesis. We have

extended the selected set of features to capture biological constraints and divided

them into 8 different types of groups:

1. Start, Edge, End features

2. Basic Amino Acid features

3. Single Side Neighboring features

4. Single Side Shuffled Neighboring features

5. Double Side Neighboring features

6. Double Side Shuffled Neighboring features

7. Amino Acids Property features

8. Border features



Chapter 4. Conditional Random Fields (CRFs) 60

4.7.1 Start, End and Edge Features

By using these features we capture the probability of starting/ending a sequence

with a given label or the transition probability for moving from one state to the

consecutive state. For instance, the start unigram feature has the form:

ustart(x, i) =


1 if the Amino Acid in sequence x

at position i is the first in the sequence

0 otherwise

The relationship between the observation and the two possible structures, helix

membrane/non-helix membrane, is described in the feature:

fstartH (yi, x, i) =

 ustart(x, i) if yi = Helix membrane

0 otherwise

fstartNH (yi, x, i) =

 ustart(x, i) if yi = Non-Helix membrane

0 otherwise

The Edge feature in contrast, is a bigram feature which depends on two consecu-

tive labels:

fedgeH−H (yi−1, yi, x, i) =


uedge(x, i) if yi−1 = Helix membrane

and yi = Helix membrane

0 otherwise

fedgeH−NH (yi−1, yi, x, i) =


uedge(x, i) if yi−1 = Helix membrane

and yi = Non-Helix membrane

0 otherwise

fedgeNH−H (yi−1, yi, x, i) =


uedge(x, i) if yi−1 = Non-Helix membrane

and yi = Helix membrane

0 otherwise
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fedgeNH−NH (yi−1, yi, x, i) =


uedge(x, i) if yi−1 = Non-Helix membrane

and yi = Non-Helix membrane

0 otherwise

4.7.2 Basic Amino Acid Features

Amino acids have different tendencies to appear in a membrane helical structure.

Since our language contains 20 possible amino acids, we have 20 different uni-

gram features from this type. The unigram feature of amino acid n in position i

is:

un(x, i) =


1 if the Amino Acid in sequence x

at position i is from type n

0 otherwise

Using this unigram, a feature for describing the relationship between the observa-

tion and the two possible structures has the form:

fnH (yi, x, i) =

 un(x, i) if yi = Helix membrane

0 otherwise

fnNH (yi, x, i) =

 un(x, i) if yi = Non-Helix membrane

0 otherwise

4.7.3 Single Side Neighboring Amino Acid Features

While the basic amino acid feature captures the different tendencies of a given

amino acid to appear in a membrane helical structure, we are also interested in

capturing the tendency of the same amino acid given its adjacent neighbors. Say

our current amino acid is Ai, we have created a feature to capture the tendency of

Ai to appear in a helix given Ai−1. In the same way we have also created additional

features of Ai given Ai−1 ,Ai−2, up to k-feature of Ai given Ai−1, ..., Ai−k. The same

is applicable for the opposite single side of Ai given Ai+1, ..., Ai+k.
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4.7.4 Single Side Shuffled Neighboring Amino Acid Fea-

tures

Similar to Single Side Neighboring Amino Acid Features, but this time we are

interested in capturing the tendency of the same amino acid given its adjacent

neighbors without being concerned about their order.

Say our current amino acid is Ai, we have created a feature to capture the tendency

of Ai to appear in a helix given Ai−1. In the same way we have also created addi-

tional features of Ai given Ai−1 ∪ Ai−2, up to k-feature of Ai given Ai−1∪, ..., ∪Ai−k.

The same is applicable for the opposite single side of Ai given Ai+1∪, ..., ∪Ai+k.

The motivation of creating the shuffled features is based on the hypothesis that

the location of the transmembrane regions are determined by the difference in the

amino acid distribution in various structural parts of the protein rather than by

specific amino acid composition of these parts. We test this hypothesis in Section

5.3.2 by comparing the use of Single Side Neighboring Amino Acid Features vs.

Single Side Shuffled Neighboring Amino Acid Features on a set of benchmark

membrane helix sequences.

4.7.5 Double Side Neighboring Amino Acid Features

We have also captured the tendency of an amino acid to appear given its adjacent

neighbors from both sides together. Say our current amino acid is Ai, we define

a feature which captures the tendency of Ai to appear in a helix given Ai−1,...,Ai−k

and Ai+1,...,Ai+k.
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The multigram feature of amino acid n in position i is:

mi−1,i,i+1(x, i) =



1 if the Amino Acid in sequence x at

position (i − 1), i, (i + 1) is from

type m(i−1),m(i),m(i+1)

respectively

0 otherwise

Using this multigram, a feature for describing the relationship between the obser-

vation and the two possible structures has the form:

fmH (yi, x, i) =

 mi−1,i,i+1(x, i) if yi = Helix membrane

0 otherwise

fmNH (yi, x, i) =

 mi−1,i,i+1(x, i) if yi = Non-Helix membrane

0 otherwise

4.7.6 Double Side Shuffled Neighboring Amino Acid Fea-

tures

Similar to Double Side Neighboring Amino Acid Features, but this time we are

interested in capturing the tendency of an amino acid to appear given it’s adjacent

neighbors from both sides together without being concerned about their order in

which they appear.

Say our current amino acid is Ai, we define a feature which captures the tendency

of Ai to appear in a helix given Ai−1∪,...,∪Ai−k and Ai+1∪,...,∪Ai+k.

The multigram feature of amino acid n in position i is:

mi−1,i,i+1(x, i) =



1 if the Amino Acid in sequence x at

position (i − 1), i, (i + 1) is from

type m(i−1) ∪ m(i) ∪ m(i+1)

respectively

0 otherwise
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Using this multigram, a feature for describing the relationship between the obser-

vation and the two possible structures has the form:

fmH (yi, x, i) =

 mi−1,i,i+1(x, i) if yi = Helix membrane

0 otherwise

fmNH (yi, x, i) =

 mi−1,i,i+1(x, i) if yi = Non-Helix membrane

0 otherwise

4.7.7 Amino Acid Property Features

Amino acids differ from one another in their chemical structure expressed by their

side chains. The fact that amino acids from the same classification group appear

in similar locations, motivated us to create special property features. We have

adopted the classification from Sternberg [39], classifying the amino acids into

nine groups2, each group described by a unigram feature. Note that some amino

acids may appear in more than one group simultaneously.

In the following Section, we explain in more details how we selected the feature

combination for our model.

The hydrophobicity property for instance, is described in the feature:

uHydrophobic(x, i) =


1 if the Amino Acid in sequence x at

position i ∈ (M,I,L,V,A,G,F,W,Y,H,K,C)

0 otherwise

The relationship between observation and label for hydrophobicity property is

given by:

fhydrophobicH (yi, x, i) =


uHydrophobic(x, i) if yi = Helix

membrane

0 otherwise

2Aromatic (F,W,Y,H), Hydrophobic (M,I,L,V,A,G,F,W,Y,H,K,C), Positive (H,K,R), Polar

(W,Y,C,H,K,R,E,D,S,Q,N,T), Charged (H,K,R,E,D), Negative (E,D), Aliphatic (I,L,V), Small

(V,A,G,C,P,S,D,T,N), Tiny (A,G,S)
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fhydrophobicNH (yi, x, i) =


uHydrophobic(x, i) if yi = Non-Helix

membrane

0 otherwise

4.7.8 Border Features

By using these features we capture the border between a sequence of amino acids

labelled with one structure and a sequence labelled with another. The relationship

between the observation sequence labelled with the two possible structures, helix

membrane/non-helix membrane, is described in the feature:

fborderH−NH (yi, x, i) =


1 if yi− j, ..., yi−1 = Helix membrane

and yi, ..., yi+ j = Non-Helix membrane

0 otherwise

fborderNH−H (yi, x, i) =


1 if yi− j, ..., yi−1 = Non-Helix membrane

and yi, ..., yi+ j = Helix membrane

0 otherwise
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Table 4.1: The list of all features used in the prediction model.
Feature Name Feature Condition† Label Condition‡

Start feature H AA at position i is the first in the sequence yi = H

Start feature NH AA at position i is the first in the sequence yi = NH

Edge feature H:H AA at position i is neither first nor last in the sequence yi−1 = H, yi = H

Edge feature H:NH AA at position i is neither first nor last in the sequence yi−1 = H, yi = NH

Edge feature NH:H AA at position i is neither first nor last in the sequence yi−1 = NH, yi = H

Edge feature NH:NH AA at position i is neither first nor last in the sequence yi−1 = NH, yi = NH

End feature H AA at position i is the last in the sequence yi = H

End feature NH AA at position i is the last in the sequence yi = NH

Basic Amino Acid feature H AA at position i is from type n yi = H

Basic Amino Acid feature NH AA at position i is from type n yi = NH

Single Side Neighboring Left H AA at position i, ..., (i − j) is from type m(i), ...,m(i− j), j = 1...k yi = H

Single Side Neighboring Left NH AA at position i, ..., (i − j) is from type m(i), ...,m(i− j), j = 1...k yi = NH

Single Side Neighboring Right H AA at position i, ..., (i + j) is from type m(i), ...,m(i+ j), j = 1...k yi = H

Single Side Neighboring Right NH AA at position i, ..., (i + j) is from type m(i), ...,m(i+ j), j = 1...k yi = NH

Single Side Shuffled Neighboring Left H AA at position i, ..., (i − j) is from type m(i)∪, ...,∪m(i− j), j = 1...k yi = H

Single Side Shuffled Neighboring Left NH AA at position i, ..., (i − j) is from type m(i)∪, ...,∪m(i− j), j = 1...k yi = NH

Single Side Shuffled Neighboring Right H AA at position i, ..., (i + j) is from type m(i)∪, ...,∪m(i+ j), j = 1...k yi = H

Single Side Shuffled Neighboring Right NH AA at position i, ..., (i + j) is from type m(i)∪, ...,∪m(i+ j), j = 1...k yi = NH

Double Side Neighboring H AA at position (i − j), ..., (i + j) is from type m(i− j), ...,m(i+ j), j = 1...k yi = H

Double Side Neighboring NH AA at position (i − j), ..., (i + j) is from type m(i− j), ...,m(i+ j), j = 1...k yi = NH

Double Side Shuffled Neighboring H AA at position (i − j), ..., (i + j) is from type m(i− j)∪, ...,∪m(i+ j), j = 1...k yi = H

Double Side Shuffled Neighboring NH AA at position (i − j), ..., (i + j) is from type m(i− j)∪, ...,∪m(i+ j), j = 1...k yi = NH

Hydrophobic feature H AA at position i is from type (M,I,L,V,A,G,F,W,Y,H,K,C) yi = H

Hydrophobic feature NH AA at position i is from type (M,I,L,V,A,G,F,W,Y,H,K,C) yi = NH

Aromatic feature H AA at position i is from type (F,W,Y,H) yi = H

Aromatic feature NH AA at position i is from type (F,W,Y,H) yi = NH

Positive feature H AA at position i is from type (H,K,R) yi = H

Positive feature NH AA at position i is from type (H,K,R) yi = NH

Polar feature H AA at position i is from type (W,Y,C,H,K,R,E,D,S,Q,N,T) yi = H

Polar feature NH AA at position i is from type (W,Y,C,H,K,R,E,D,S,Q,N,T) yi = NH

Charged feature H AA at position i is from type (H,K,R,E,D) yi = H

Charged feature NH AA at position i is from type (H,K,R,E,D) yi = NH

Negative feature H AA at position i is from type (E,D) yi = H

Negative feature NH AA at position i is from type (E,D) yi = NH

Aliphatic feature H AA at position i is from type (I,L,V) yi = H

Aliphatic feature NH AA at position i is from type (I,L,V) yi = NH

Small feature H AA at position i is from type (V,A,G,C,P,S,D,T,N) yi = H

Small feature NH AA at position i is from type (V,A,G,C,P,S,D,T,N) yi = NH

Tiny feature H AA at position i is from type (A,G,S) yi = H

Tiny feature NH AA at position i is from type (A,G,S) yi = NH

Border Non Helix-Helix AA at position (i − j), ..., (i + j) is from type m(i− j), ...,m(i+ j), j = 1...k yi− j, ..., yi−1 = NH,

yi, ..., yi+ j = H

Border Helix-Non Helix AA at position (i − j), ..., (i + j) is from type m(i− j), ...,m(i+ j), j = 1...k yi− j, ..., yi−1 = H,

yi, ..., yi+ j = NH

AA = Amino-Acid, H = Helix, NH = Non-Helix.
† Feature is enabled only if feature condition holds

‡ If label condition holds then the feature value is 1, 0 otherwise.
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4.8 CRFs Prediction Example

We now give a simple example of transmembrane helix prediction. For this ex-

ample we will assume, for simplicity, that all proteins are 4 amino acids long,

and the amino acids alphabet is composed of the amino acids (A,C,D, E, F) ∈

X. The labelling alphabet describes if the current amino acid is inside a helix

membrane/non-helix membrane region and denoted by (0, 1) ∈ Y.

We define two property groups:

(A,C, F) ∈ Hydrophobic

(C,D, E) ∈ Polar

Note: the amino acid C is both Hydrophobic and Polar.

We create the following unigram features:

uBasic(x, i) =


1 if the Amino Acid in sequence x

at position i is from type n

0 otherwise

uHydrophobic(x, i) =

 1 if the Amino Acid at position i ∈ (A,C,F)

0 otherwise

uPolar(x, i) =

 1 if the Amino Acid at position i ∈ (C,D,E)

0 otherwise

Using these unigrams, each feature for describing the relationship between the

observation and the two possible structures has the form:

fnH (yi, x, i) =

 un(x, i) if yi = Helix membrane

0 otherwise

fnNH (yi, x, i) =

 un(x, i) if yi = Non-Helix membrane

0 otherwise
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Table 4.2: Activated features on a training set example.
Feature Name Num of occurences Active on sequence

Basic Helix A 3 CAAF, DFAE

Basic Helix C 1 CDED

Basic Non-Helix C 1 CAAF

Basic Non-Helix D 3 CDED, DFAE

Basic Non-Helix E 2 CDED, DFAE

Basic Helix F 2 CAAF, DFAE

Hydrophobic Helix 6 CAAF, CDED, DFAE

Hydrophobic Non-Helix 1 CAAF

Polar Helix 1 CDED

Polar Non-Helix 6 CAAF, CDED, DFAE

We describe the relationship among the observation and the two possible struc-

tures, helix membrane/non-helix membrane as a feature (as described in the pre-

vious Section).

We train the CRFs model using the following training set:

CAAF

0111

CDED

1000

DFAE

0110

Our goal is to predict the labels of the sequence EAFD.

Table 4.2 shows the full list of activated features on the given training set.

In our training set 10 features are activated in total. After the model is trained,

the CRFs will determine the parameters λ = (λ1, λ2...λ10) assigned to each feature

which maximize the log-likelihood of the model. Table 4.3 shows the values of
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Table 4.3: Trained feature parameters.
Feature Name Parameter value

Basic Helix A 1.7859

Basic Helix C 5.5170

Basic Non-Helix C -5.5170

Basic Non-Helix D 1.7859

Basic Non-Helix E 1.5391

Basic Helix F 1.5391

Hydrophobic Helix 3.3251

Hydrophobic Non-Helix -5.5170E-8

Polar Helix 5.5170E-8

Polar Non-Helix 3.3251

these feature parameters after they were calculated.

After calculating the feature parameters, the Viterbi algorithm is applied for la-

belling the test sequences. Now we will label the sequence EAFD. The first letter

in the sequence, E, is a polar residue. From Table 4.3 we can calculate the total

score of E by assigning it with a helical or a non-helical label. For assigning a

helical label, the total score of E is Polar Helix ≈ 0, while for assigning a non-

helical label, the total score is

Polar Non-Helix + Basic Non-Helix E = 4.8642. Similarly, the total score of

each one of the letters assembling the sequence EAFD is calculated for each la-

bel. Table 4.4 summarizes the steps of calculating the sequence labels. Finally the

Table 4.4: Calculating the labels of the sequence EAFD.
Letter Score of label 0 Score of label 1 Final score Assigned Label

E 4.8642 0 4.8642 0

A 4.8642 9.9752 9.9752 1

F 9.9752 14.8394 14.8394 1

D 19.9504 14.8394 19.9504 0

algorithm assigns for each step these labels which yield the highest score. In this

example EAFD is assigned with the predicted label sequence of 0110.
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4.9 Summary

Conditional Random Fields (CRFs) are a probabilistic framework from the fam-

ily of conditional models for labelling sequential data. CRFs have a single ex-

ponential undirected graphical model for the joint probability distribution of the

entire sequence of labels given the observation sequence. The conditional prop-

erty of CRFs in which a sequence is labelled given its observation, and the fact

that CRFs are undirected, make CRFs suitable for a seamless integration of bio-

logical domain knowledge into the model. CRFs models are heavily reliant on the

maximum entropy theory. The main principal is to create a model that satisfies

all known constraints but treat the unknown constraints uniformly. By satisfying

a constraint we actually increase the likelihood of the global configuration. In

CRFs, no feature-independence assumption is made, and several dependent over-

lapping features are allowed. During the training process, the model assigns each

feature with a weight which is calculated using feature parameter estimation.

The parameter estimation problem is to determine each feature’s parameter from

the training data, subject to the constraint that the model distribution is equal the

empirical distribution. This probability distribution as a function of the parameter

is known as the likelihood. In maximum likelihood training, the goal is to max-

imize the logarithm of the likelihood, known as the log-likelihood. This training

can be implemented using different techniques such as iterative scaling algorithm,

Newton’s methods, Quasi-Newton methods, and limited memory BFGS method.

The most important aspect of specifying the model is selecting a set of features

that captures the relationships among the observation and the label sequences. In

this thesis we have created 8 different types of features. Integrating these features

into CRFs and reporting our experiment results are will be discussed in the next

Chapter.



Chapter 5

Experiments, Evaluation and

Analysis

In this Chapter we report on the experiments that we have carried out to test the

efficacy of the CRF model for the transmembrane helix prediction problem. The

CRF model was introduced and derived in Chapter 4 and the transmembrane helix

prediction problem was described in Chapter 3.

We have carried out four sets of experiments with the objective of investigating

the CRF model from different perspectives.

The four set of experiments are:

1. A comparison of the different feature selection strategies and their effect on

the prediction accuracy. The CRFs with the best set of features were then

evaluated against twenty eight other models at the “Static Benchmarking”

website [16].

2. The second experiment was carried out to test the hypothesis that the loca-

tion of the transmembrane region is determined by the distribution of amino

acids in the region rather than their ordering. For example, if FCD is an

observation sub-sequence then the probability that FCD is labelled as trans-

71
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membrane helix is the same as the probability that the permutation of FCD

is labelled as a transmembrane helix.

3. The third experiment compares the CRFs with maximum entropy Markov

models (MEMMs). In particular we are interested in understanding the ef-

fect of the undirected CRFs versus directed MEMMs on the prediction ac-

curacy.

4. The fourth experiment applies CRFs to analyze a large and well known IMP

complex, the Cytochrome x oxidase. The analysis obtained is compared

with the result of a similar analysis, derived using a “wet lab” experiments

and reported by Wallin et al. [46].

Before we describe the experiments, we briefly overview the data sets and the

evaluation metrics used throughout this Chapter.

5.1 Data Set

The CRF model was trained on a data set consisting of a set of benchmark se-

quences with experimentally confirmed transmembrane regions compiled by Möller

et al. [30]. 1 We have only included proteins with a high level of trust (assigned

with transmembrane annotation trust level of A to C, as was suggested by Möller

et al.) and which are significantly different, based on pairwise similarity cluster-

ing. The resulting set consists of 148 transmembrane protein sequences.

The model was tested by using the ”Static benchmarking of membrane helix pre-

dictions” website hosted in Columbia University [16]. This is a two-step process.

First, a data set consisting of 2246 observation sequences was downloaded and

labelled by the CRF model. Second, the labelled sequences were then uploaded to

the website which reported a comparative performance analysis with twenty eight

other models. The experimental work flow is illustrated in Figure 5.1.

1The data set can be accessed via ftp://ftp.ebi.ac.uk/databases/testsets/transmembrane
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Figure 5.1: Transmembrane helix prediction experimental flow.
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5.2 Prediction Metrics

There are two main approaches to rank a prediction model for membrane helices:

per-residue and per-segment accuracy [5, 6].

5.2.1 Per-Residue Accuracy

In per-residue accuracy the predicted and actual labels are compared by residue.

Let Ωi be the sequence of all residues in protein i = 1, . . . ,Nprot.

Furthermore, let ω(i, j) ∈ Ωi be the residue in location j in sequence Ωi. For sim-

plicity, we denote ω(i, j) as ω. Let 2

y(ω) =

 1 if ω is a TMH residue

0 if ω is a NTMH residue

Similarly, let

ỹ(ω) =

 1 if ω is predicted as a TMH residue

0 if ω is predicted as a NTMH residue

Table 5.1 lists the metrics which capture per-residue accuracy. The symbols in the

last column are from Chen et al., and are also used by the ”Static Benchmarking

website” to report results.

5.2.2 Per-Segment Accuracy

The per-residue accuracy measures ignore the sequential contiguity of the trans-

membrane helical (TMH) regions. We also want to determine how accurately a

method correctly predicts the location of a TMH region.

In order to predict the sequential contiguity of the TMH region we have used the

per-segment accuracy metric suggested by Chen et al. [5]. It requires a minimal
2TMH = Transmembrane Helix, NTMH = Non-Transmembrane Helix



Chapter 5. Experiments, Evaluation and Analysis 75

overlap of three residues between the two corresponding segments and does not

allow the same helix to be counted twice. For example consider the following

observed data and two possible prediction sequences: (0 = Non-Transmembrane

Helix, 1 = Transmembrane Helix)

Figure 5.2: Per-segment accuracy example.

By using the per-segment metric, Prediction1 returns an accuracy of 100% (as it

predicts two helices which are assigned with the two observation helices), while

Prediction2 returns an accuracy of 50% (as it predicts one helix which is assigned

only with the first Observation helix). Table 5.2 lists the metrics which capture

per-segment accuracy.
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Table 5.1: The five metrics used to measure per-residue accuracy.
Description Formula Symbol†

TMH Recall P(ỹ(ω) = 1|y(ω) = 1) Q%obs
2T

TMH Precision P(y(ω) = 1|ỹ(ω) = 1) Q%prd
2T

NTMH Recall P(ỹ(ω) = 0|y(ω) = 0) Q%obs
2N

NTMH Precision P(y(ω) = 0|ỹ(ω) = 0) Q%prd
2N

Residues correctly predicted 1
Nprot

∑Nprot
i=1 (P(ỹi = 1, yi = 1) + P(ỹi = 0, yi = 0)) |Ωi| Q2

Nprot = Number of Proteins in the Data Set, TMH = Transmembrane Helix, NTMH =

Non-Transmembrane Helix.
† These symbols are from Chen et al.[5]

Table 5.2: The three metrics used for measuring per-segment accuracy.
Description Symbol†

All observed TMH which are correctly predicted Q%obs
tmh

All predicted TMH which are correctly predicted Q%prd
tmh

Proteins for which all TMH are correctly predicted Qok
† These symbols are from Chen et al.[5]

5.3 Results and Analysis

5.3.1 Transmembrane Helix Prediction

The results of the CRFs model in predicting the TMH regions are shown in Figure

5.3. These results were obtained from the ”Static benchmarking of membrane

helix predictions” website [16]. 6 different feature combinations were used which

are described in Table 5.3. A detailed description of each of the features was given

in Section 5.3.3.
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Figure 5.3: Prediction score for selected feature combinations.

Table 5.3: Enabled and disabled feature combination.
Experiment No. Basic Properties Single Double Single Shuffled Double Shuffled Border No. of Active Features

1 + + - - - - - 68

2 + - +2 +1 - - - 4634

3 - + +5 +1 - - - 591677

4 + + +3 +1 +3 +1 - 171079

5 + + +5 +3 +6 +3 - 931724

6 + + +5 +3 +6 +3 + 938292
Basic = Basic Amino Acid Features, Properties = Amino Acid Property Features, Single = Single Side Neighboring

Amino Acid Features (with 1 to 5 neighbors from left or right), Double = Double Side Neighboring Amino Acid Features

(with 1 to 3 neighbors from both sides), Single Shuffled = Single Side Shuffled Neighboring Amino Acid Features (with 1

to 6 neighbors from left or right), Double Shuffled = Double Side Shuffled Neighboring Amino Acid Features (with 1 to 3

neighbors from both sides). All experiments are using Start, Edge, and End features by default, which are essential for

defining the proteins from the data sets as sequences.
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As expected, the models’s performance is crucially dependent upon feature se-

lection. The two important scores, Q2 (per-residue) and Qok (per-segment), as

defined in Tables 5.1 and 5.2, are influenced most by incorporating single side

and double side neighboring features. Adding Single Side Neighboring Feature

of two neighbors and Double Side Neighboring Feature of one neighbor, increase

Q2 from 70% to 80% and Qok from 38% to 63% (Experiment 1 vs. 2). Increasing

the number of Single side and Double side neighbors has a small effect on Q2

score, but a dramatic effect on Qok. This can be explained by the definition of Qok

which is a per-segment metric, and is more dependent on the neighboring amino

acids than Q2.

Enabling as many features as possible is not a guarantee for a better prediction

score, as can be seen from the results of Experiment 5 and 6.

Experiment 5 (henceforth referred as “the CRFs model”) outperforms the other

experiments in most categories and was selected for comparison with other pre-

diction models.

We submitted the result of the CRFs model on the test data set to the ”Static

benchmarking of membrane helix predictions” website and obtained a compar-

ative ranking against other available methods. This is shown in Table 5.4, and

indicates that our model performed well both on per-residue and per-segment pre-

dictions. The CRFs model achieved the highest score among all the 29 methods

in the overall percentage of residues correctly predicted (Q2) with an accuracy of

83%. On the per-segment test, the CRFs model obtained Qok score of 75%. This

is the fourth highest score and means that all the transmembrane helices were cor-

rectly predicted for every three out of four proteins. Also the total percentage of

correctly predicted helices was 94% with a precision of 91%.
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Table 5.4: Prediction score comparison between 29 methods.
Per-Residue Per-Segment

Methods Q2 Q%obs
2T Q%prd

2T Q%obs
2N Q%prd

2N

CRFs 83 76 87 90 78
TMHMM1 80 68 81 89 72

PHDpsihtm08 80 76 83 86 80

HMMTOP2 80 69 89 88 71

PHDhtm08 78 76 82 84 79

PHDhtm07 78 76 82 84 79

TopPred2 77 64 83 90 69

PRED-TMR 76 58 85 94 66

SOSUI 75 66 74 80 69

DAS 72 48 94 96 62

Ben-Tal 72 53 80 95 63

WW 71 71 72 67 67

GES 71 74 72 66 69

Eisenberg 69 77 68 57 68

KD 67 79 66 52 67

Sweet 63 83 60 43 69

Wolfenden 62 28 56 97 56

Hopp-Woods 62 80 61 43 67

Heijne 61 85 58 34 64

Nakashima 60 84 58 36 63

Av-Cid 60 83 58 39 72

Levitt 59 80 58 38 67

Roseman 58 83 58 34 66

A-Cid 58 80 56 37 66

EM 57 85 55 28 64

Radzicka 56 85 55 26 63

Fauchere 56 84 56 31 65

Lawson 55 85 55 27 66

Bull-Breese 55 85 55 27 66

Qok Q%obs
tmh Q%prd

tmh

75 94 91
71 90 90

84 99 98

83 99 99

64 77 76

69 83 81

75 90 90

61 84 90

71 88 86

79 99 96

60 79 89

54 95 91

64 97 90

58 95 89

65 94 89

43 90 83

28 43 62

56 93 86

45 93 82

39 88 83

52 93 83

48 91 84

52 94 83

47 95 83

31 92 77

40 93 79

36 92 80

33 86 79

45 92 82
Taken from the ”Static benchmarking of membrane helix predictions” application written by

Kernytsky et al. from University of Columbia, after submitting our CRFs prediction results

(sorted by Q2)[16].
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5.3.2 The Effect of Local Residue Distribution on Trans-

membrane Regions

We are interested in testing the hypothesis that the location of the transmembrane

regions is determined by the composition of the amino acids in the transmem-

brane regions rather than the sequencing. In order to test this hypothesis, we have

carried out two experiments with different combinations of features turned on as

shown in Table 5.5. In experiment 1 we have used Single and Double Side Neigh-

boring Amino Acid Features and in experiment 2 we have used Single and Double

Side Shuffled Neighboring Amino Acid Features (see Section 5.3.3 for an expla-

nation of these features). We have set the null hypothesis to be that the mean of

performance scores of the first experiment using Single and Double Side features

is equal to using Single and Double Side Shuffled features. We can formulate the

hypothesis as:

H0 : µd = µS ingle+Double − µS ingle+DoubleS hu f f led = 0 (5.1)

The prediction results of the two experiments are shown in Table 5.6. A t-test on

the results with 99% confidence resulted in a p-value = 0.8035 with t = -0.2585

,a confidence interval of [-5.452159, 4.702159], and mean of the differences =

-0.375. These indicates that there is not enough evidence to reject the null hy-

pothesis that the means are equal. Therefore, there is no evidence that the trans-

membrane regions are determined by a specific sequencing of the amino acids

rather than their composition.
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Table 5.5: The two different feature combinations used to test the effect of

local residue distribution on TMH prediction.
Experiment No. Basic Properties Single Double Single Shuffled Double Shuffled Border No. of Active Features

1 + + +5 +3 - - - 803260

2 + + - - +5 +3 - 88594

Table 5.6: Transmembrane prediction results using two different feature

combinations.
Per-Residue Per-Segment

Methods Q2 Q%obs
2T Q%prd

2T Q%obs
2N Q%prd

2N

1 83 72 84 93 78

2 83 75 86 89 77

Qok Q%obs
tmh Q%prd

tmh

75 87 91

75 92 83
Taken from the ”Static benchmarking of membrane helix predictions” application written by

Kernytsky et al. from University of Columbia, after submitting the prediction results of both

experiments (sorted by Q2)[16].

5.3.3 Comparison of CRFs and MEMMs

We now present evidence which suggests that CRFs outperform MEMMs for

TMH prediction using the set of features which we have introduced on . We

have repeated four out of the six experiments described in Section 5.3.1, using the

MEMMs prediction model. Note that Experiment 6 could not be performed using

MEMMs since it includes a Border feature which is only applicable on undirected

graphical models, and therefore was excluded from our comparison. We have

also excluded Experiment 1, as MEMMs have completely failed to predict any

transmembrane regions using the set of features defined in this experiment!

In order to do the comparison we will test the null hypothesis that the difference

of the performance metrics between CRFs and MEMMs is less than or equal to

zero. This can be stated as:

H0 : µd = µCRFs − µMEMMs ≤ 0 (5.2)
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d1 = QCRFs
2 − QMEMMs

2 , ..., d8 = Q%prdCRFs

tmh − Q%prdMEMMs

tmh

The results of Experiments 2 to 5 are displayed in Figures 5.4 to 5.7 and summa-

rized in the Table 5.7:

Figure 5.4: CRFs vs. MEMMs performance test on Experiment 2.

Figure 5.5: CRFs vs. MEMMs performance test on Experiment 3.
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Figure 5.6: CRFs vs. MEMMs performance test on Experiment 4.

Figure 5.7: CRFs vs. MEMMs performance test on Experiment 5.

A t-test on the experimental results taken from Table 5.7 with 99% confidence

on each pair of experiments clearly shows evidence against the null hypothesis

defined above (5.2). The p-values that we obtained on the t-tests on Experiments

2,3,4 and 5 are 0.001893, 0.01007, 0.00636, and 0.004705 respectively. These re-

sults suggest that we accept the alternative hypothesis that the difference between

the performance metrics of CRFs and MEMMs is greater than zero, which support

the conjecture we made in Section 3.5.
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Table 5.7: Prediction score comparison between CRFs and MEMMs.
Per-Residue Per-Segment

Experiment Q2 Q%obs
2T Q%prd

2T Q%obs
2N Q%prd

2N

2CRFs 80 76 81 81 77

2MEMMs 49 3 15 97 48

3CRFs 81 72 79 90 77

3MEMMs 80 68 81 89 72

4CRFs 82 74 82 89 78

4MEMMs 79 63 72 91 76

5CRFs 83 76 87 90 78

5MEMMs 76 57 59 94 73

Qok Q%obs
tmh Q%prd

tmh

63 88 95

0 3 18

69 86 87

61 80 78

72 89 90

63 69 78

75 94 91

61 62 63
Taken from the ”Static benchmarking of membrane helix predictions” application written by

Kernytsky et al. from University of Columbia, after submitting our CRFs and MEMMS

prediction results (sorted by Q2)[16].

The superior performance of CRFs over MEMMs can be explained as follows:

MEMMs use a per-state conditional model to calculate the probability of entering

the current state given the previous state, generating a directed graphical model.

In contrast, the CRFs use a single global exponential model to calculate the en-

tire sequence of states given the observation sequence, generating an undirected

graphical model [21]. Since CRFs are based on global model, they can overcome

the label bias problem, as defined in Section 3.5. The label bias problem is most

dramatically illustrated in Experiment 1 where MEMMs completely fail to predict

any transmembrane region, while CRFs manage to predict some of these regions.

In Experiment 1 we have defined two types of features: Basic and Property fea-

tures. Both feature types are based on the probability of the current amino acid

(or the property of the current amino acid) to appear with a given label. Table

3.2 shows the conditional probability distribution of the amino acids and the la-

bels. We can easily notice that P(Y = 1|X) ≤ 0.5 where X ranges over all

amino acids. This implies that by itself none of the amino acids are likely to

appear inside a transmembrane region than outside. Furthermore, the probability
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of p(yi = 1|yi−1 = 0, X) ≈ p(yi = 1|yi−1 = 0) for all amino acids X, as shown in

Figure 5.8. This causes the transition from state 0 to state 1 to completely ignore

the observation data in the MEMMs model.

CRFs, however, do take into account the fact that assigning an amino acid to a

transmembrane region may improve the overall score of the entire sequence, as

demonstrated in the CRFs results of Experiment 1.

Figure 5.8: The conditional probability P(yi|yi−1, x) of residues for different

transition states.

When more complex features are used, the effect of the label bias problem is

ameliorated, but the differences between the performance of CRFs and MEMMs

are still significant, as presented earlier. In Figure 5.9 we present several protein

sequences that were predicted by CRFs and MEMMs using the set of features

defined in Experiment 5. Notice the prediction similarities and dissimilarities of

the two models. While the Atpl Ecoli and the Glpa Human proteins were predicted

identically by both models, MEMMs have missed a segment on the Kcsa Strli
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protein and joined two segments on Bacr Halha protein. In contrast, CRFs did

detect all segments for these proteins, with a minor segment shift on Kcsa Strli

and Bacr Halha proteins.

Figure 5.9: CRFs vs. MEMMs prediction output.
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5.3.4 Cytochrome c oxidase Protein Analysis

The Cytochrome c oxidase protein has one of the most complex structures known

to date with a total of 28 transmembrane helices [46]. A detailed “wet lab” analy-

sis of this complex, in terms of residue distribution and amino acid properties has

been reported by Wallin et al. [46] (henceforth referred as the observed results).

We recreate the results using the labels predicted by the CRFs model using the

features defined in Experiment 5 (see Table 5.3).

We begin by predicting the distribution of individual residue type in the central

membrane domain ±10Å. The predicted and the observed results are shown in

Figure 5.11. We can easily notice the high similarity between the observed and

the predicted frequencies. We conducted a paired t-test on the observed and pre-

dicted data, testing the hypothesis that the mean of the observed and the predicted

frequencies are equal. Using 99% confidence interval we got p-value of 0.35%

indicating that there is no evidence that the mean of the observed and predicted

frequencies are different.

Wallin et al. [46] also analyzed the frequency of the residues around the trans-

membrane helices based on the division of the amino acids into three groups:

hydrophobic, polar and charged. We carried out a similar analysis using the CRFs

model and the results are shown in Figure 5.12. The concentration of hydropho-

bic residues around the central helix (±13 residues around 0) is in the frequency

range between 20 to 35% (average of 24%). It is interesting to note that the

frequency distribution of the polar residues is a virtual mirror image of the hy-

drophobic frequency along the central helix (average of 11.5%). The charged

residues tend to appear with an average frequency of 6% outside the helix mem-

brane and 3.5% inside. These results are compatible with physical experiments

which show that highly polar and charged amino acids are energetically unfavor-

able inside the membrane, with the hydrophobic core of the cell membrane filling

between the polar head groups. Recent studies by Hessa et al.[13] using a bio-

logical assay of membrane segments insertion suggest that not only the degree of
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Figure 5.10: The crystal structure of a subunit of mitochondrial

Cytochrome c oxidase [41]. The plane of the membrane is approximately

horizontal showing the 28 transmembrane spanning helices with the

intra-cellular space at the bottom of the figure. Substantive extracellular

domains of the protein are also to be seen outside the membrane region.

Figure prepared with MOLSCRIPT [20].
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Figure 5.11: Predicted vs. observed residue frequencies in Cytochrome c

oxidase central membrane domain ± 10 Å region.

Figure 5.12: Properties of the predicted residues the in central

membrane domain ± 25 Å region.
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Figure 5.13: Frequency of leucine in the central

membrane domain ± 25 Å region.

Figure 5.14: Frequency of isoleucine in the central

membrane domain ± 25 Å region.
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Figure 5.15: Frequency of valine in the central

membrane domain ± 25 Å region.

Figure 5.16: Frequency of arginine in the central

membrane domain ± 25 Å region.
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hydrophobicity is important in structuring transmembrane helices but also the en-

ergetic stability of the helices, defined by the sum of individual contribution from

each amino acid. The authors have demonstrated that the contribution to the total

apparent free energy depends strongly on the position of each residue within the

helix [13]. Generally the more the polar and charged amino acids are close to

the membrane center, the larger the energetic penalty generally is. The accepted

explanation is that electrostatic forces close to the polar head group and beyond

the membrane help to stabilize the polar and charged groups in amino acids.

In support of this conjecture, we predicted the tendency of arginine (both polar and

charged residue) around the transmembrane helix. We found that the tendency of

arginine favorable to be located outside the membrane as demonstrated in Figure

5.16.

In contrast, we predicted the frequency around the membrane helix of isoleucine,

leucine, and valine as an example of hydrophobic amino acids which according to

observed experiments are favorable to appear in the center of the membrane. The

results are demonstrated in Figures 5.13- 5.14.

5.3.4.1 Approach

On the Cytochrome c oxidase experiments, we collected the distribution of indi-

vidual residue type in the central membrane domain assuming that the central is

on average ± 9 residues from the transmembrane border. On Wallin’s work, he

has calculated the distribution on a region of ± 10Å [46], which we calculated

using SwissPdbView [12], and found that on average equals to 9 residues long.

Wallin also referred his distribution figures to three different profiles: buried, in-

termediate and fully exposed residues. We compared our prediction results to the

average values of the three profiles, since the sequence input that we used does

not distinguish between these profiles.

The CRFs model was trained using data set consists of a set of benchmark se-



Chapter 5. Experiments, Evaluation and Analysis 93

quences with experimentally confirmed transmembrane regions, which are signif-

icantly different, based on pairwise similarity clustering [30]. All occurrences

of Cytochrome c oxidase sequences were removed from the training set to assure

that the training set and test set are not overlapping.

Conducting t-test on the hypothesis that the difference in means between the pre-

dicted and the observed residue frequencies are equal to 0, yields results of t =

0.9653, df = 19 and p-value = 0.3465, with 99% confidence interval of [-0.0067,

0.0136]. The sample estimates mean of the differences is 0.00343.
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5.4 Summary

Structural determination of integral membrane proteins can be problematic due to

difficulties in obtaining sufficient amounts of sample. Therefore good prediction

methods of membrane structures are highly valued.

In this thesis we have used Conditional Random Fields (CRFs) to predict the lo-

cation of transmembrane helices in membrane proteins. Our results look very

promising compared to currently available methods, as the CRFs model outper-

forms the other methods on important metrics. The CRFs model achieved the

highest score among all 29 methods in the overall percentage of residues predicted

correctly in both transmembrane and non-transmembrane helices (Q2) with 83%

of true prediction. On the per-segment test, our model achieved the fourth highest

score with 75% of proteins for which all transmembrane helices were predicted

correctly (Qok).

In the second set of experiments, we have shown the hypothesis that the loca-

tion of the transmembrane regions are determined by the difference in the amino

acid distribution in various structural parts of the protein, rather than a specific

sequence of amino acid in these parts.

In the third set of experiments, we have provided some evidence that CRFs out-

perform MEMMs for transmembrane helix prediction and help overcome the label

bias problem.

In the fourth and final set of experiments we have used CRFs to analyze the archi-

tecture of the protein complex, Cytochrome C Oxidase. We were able to recreate

the results of amino acid distribution around the membrane regions similar to

those obtained in a ”wet lab” experiments. These clearly demonstrates the useful-

ness of the CRFs model for the transmembrane helix prediction problem.
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5.5 Conclusions

In this thesis we have used Conditional Random Fields (CRFs) as a sequential

classifier to predict the location of transmembrane helical regions in membrane

proteins. CRFs allow for a seamless and principled integration of biological do-

main knowledge into the model and provide several advantages over other ap-

proaches. We compared our approach with twenty eight other methods available

through the “Statistic benchmarking of membrane helix predictions” [16]. The

CRFs model (with our choice of features) received the highest score in the over-

all percentage of residues correctly predicted. We have also compared CRFs and

MEMMs, and shown that CRFs are able to overcome the label bias problem from

which MEMMs are known to suffer. Finally, we have used CRFs model to ana-

lyze the architecture of the protein complex, Cytochrome c oxidase. We were able

to recreate the wet lab results obtained by [46].

At the time when the research commenced in early 2004, most of the applications

of CRFs were in the natural language processing domain. The literature was lack-

ing applications of CRFs in bioinformatics domain, and our work was novel [26].

Today, the use of CRFs in bioinformatics is growing and successful applications,

such as Gene prediction using CRFs, have appeared in the literature [7]. There

are still many open problems where CRFs can be applied in bioinformatics.

We believe that CRFs have a great potential in bioinformatics and their use will

cut down the number of wet experiments leading to a significant saving in research

time and resources.
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