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Abstract 

Volume visualization is now an essential tool for volumetric data analysis. Topology 

based techniques have begun to emerge as a general framework as scientific data con

tinue to increase in size and complexity. They are used to capture significant features 

of the data at an abstract level, enabling and facilitating data understanding in visual

ization. The contour tree is one of data structures used to store topological abstractions 

of data sets. This thesis focuses on investigating effective uses of the contour tree in 

improving efficiency of volumetric data analysis. It achieves the goals by increasing 

the presentation of topology information in order to explore various relationships of 

geometrical structures present in a data set. It also utilizes the topology to automate 

transfer function generations in volume rendering. To make this work practical, this 

thesis also deals with topology simplification. 

Contour tree, one of topological abstractions of the scalar field, is a data structure 

representing nesting relationships of connected components of contours. Real-world 

data sets produce unmanageably large contour trees caused by noise. Contour tree sim

plification removes small-scale topological features while maintaining essential struc

ture of data. The thesis proposes a contour tree simplification approach which uses 

multiple measures of importance. The proposed approach introduces the concepts of at

tribute space, importance triangle and importance space into the simplification pipeline. 

It maximizes the advantages of each measure of importance in the contour tree sim

plification. This approach allows for the simplification of contour trees by considering 

the overall attribute space, instead of limited attribute space used by conventional ap

proaches. It also gives a better evaluation of the importance of branches. 

Relations between structures in a volume are also of interest to viewers besides 

shapes. The thesis presents an approach on depicting structural relationships between 
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objects in volume rendering through a concept of structural relationship preserved map

ping. The contour tree controlled structural relationship depiction allows users to per

ceive structural relationships in a more direct way. The advantage of this approach 

is that it allows analysis of volumetric data to focus on revealing high-level topologi

cal relations instead of low-level rendering parameter modulations, and thus improves 

understanding of volumetric data. 

Despite the proliferation of volume rendering and manipulation techniques, the key 

to comprehensible volume rendering still lies in the design of effective transfer func

tions. This thesis presents a novel approach for automating transfer function generations 

in volume rendering. The new approach utilizes topological attributes derived from the 

contour tree to automate the transfer function generation process. In the new approach, 

a residue flow model based on Darcy's Law is utilized to control distributions of opac

ity between branches in the contour tree. Topological attributes are also used to control 

color selection in a perceptual color space and create harmonic color transfer functions. 

The transfer functions reveal structural relationships (e.g. inclusion relationship) au

tomatically. They are optimized to maximize opacity and color differences between 

structures. 
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Chapter 1 

Introduction 

Over the past decades, great advances have been made across all scientific disciplines, 

including GeoScience, Medical Imaging and Fluid Dynamics. These developments 

have brought large quantities of volume data into the hands of radiologists and scien

tists. As humans continue to amass and link an unprecedented wealth of data in widely 

disparate fields, it is essential to make sense of these complex data through visual in

spection. 

Figure 1.1: Volume rendering of human torso data [7]. 

Visualization is one of the most important communication and analysis tools avail

able. It enables users to gain insights and process large amounts of data rapidly. Fig

ure I .1 and Figure 1.2 show two visualization examples. Of all visualization techniques, 

volume rendering is regarded as a powerful tool to interpret 30 volume data. A volume 

data generally represents the spatial distribution of a scalar or vector property over some 
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Figure 1.2: Flow visualization of the intricate topology of a vortex breakdown bubble 
in a delta wing simulation. High-quality stream surfaces with adaptive resolution are 
shown in red and green, corresponding to the separation surfaces of two saddle points 
that determine the boundary of the bubble. This is demonstrated by an additional closed 
stream surface surrounding the vortex core and integrated from the tip of the wing that 
wraps the whole structure (Image courtesy of the Scientific Computing and Imaging 
Institute, University ofUtah, USA) liJ . 

d-dimensional space. This thesis does not address the question of visualizing vector 

data or of visualizing multiple scalar functions simultaneously, it is instead restricted to 

single scalar-valued volume data. [n the context of this thesis, the term of volume ren

dering, such as direct volume rendering, refers to the visualization of static 3D scalar 

fields such as those in 30 medical images. 

A variety of different approaches have been developed in the past decades for vol

ume rendering. However, the definition of complex parameter space in volume render

ing is a challenging task and has not been well addressed so far. This limits its practical 

applications in volumetric data understanding. This thesis approaches the issue by uti

lizing topology of data sets to automate rendering parameter generations in volume 

rendering. Specifically, the contour tree, one of the data structures of topological ab

straction, is used in this thesis to store topological information of data sets. This thesis 

also utilizes the contour tree to explore various relationships of structu,es in a data set in 

volume rendering. To make this work practical, it is necessary to deal with contour tree 

simplifications. The core of the thesis is the use of the contour tree in volume rendering 

to explore volumetric data efficiently. 
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1.1 Motivation 

A volume data set is a collection of 3D objects in various fields. 3D objects occupy 

different spatial spaces. A space consists of a set of points (see Figure 1.3). It is not 

helpful for users to understand a data set if it lacks structural information. A topology is 

a system of sets that describe the connectivity of the set [ 134]. The addition of topology 

into the data space provides knowledge of the structural infmmation in a volume data 

set (see Figure 1.3). This data space is called topological space. A topological space is 

a set of points which know who their neighbors are [134]. 

• • ~D • • • +Topology~ ~~·.· • •• • • • • @ 

Data space Topological space 

Figure 1.3: Add topology into the data space to provide knowledge of structural infor
mation of a volume data set. 

1.1.1 Topology in Visualization 

In recent years, topology based techniques have begun to emerge as a general frame

work to extract and analyze features of data sets in visualization. In the recent IEEE 

Vis Week 2009 [6], a special tutorial session of "Scalar Topology in Visual Data Analy

sis" was introduced by presenting a systematic overview of current topological methods 

for the benefit of experienced researchers in visualization [14], in order to widely dis

seminate topology based techniques in visualization researches. As the tutorial demon

strated. topological techniques can be used to express a wide variety of features in 

scalar fields based on either gradient- or threshold-based segmentations. Furthermore, 

topology-based feature definitions are inherently hierarchical providing a framework 

for noise removal as well as multi-scale analysis. Recent advances in algorithms have 

produced efficient, easy to implement algorithms to compute and process topological 

features. 
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1.1.2 Generations of Rendering Parameters 

Volume rendering is becoming an essential tool for volumetric data analysis. Despite 

the proliferation of volume rendering and manipulation techniques, the key to compre

hensible volume rendering still lies in the automation of various rendering parameters, 

e.g. transfer functions. These parameters are crucial in the understanding of the overall 

volumetric data and individual features contained within the volume space. The cen

tral question is how to automate rendering parameter generations so that users can 

understand the underlying data easily and correctly. 

4.5 (a) 

• Local minimum • Local maximum .Saddle 

7.5 

3.3 

0.0 

(b) 

• Regular 

Figure 1.4: An example of a 20 mesh and its contour tree. 

The contour tree is a topological abstraction of data sets [22l It is a graph that tracks 

contours of level sets as they appear, join, split and disappear based on critical points in 

data sets. See Chapter 3 for details of definition and setup of the contour tree. Figure I .4 

is an example of a 20 mesh and its corresponding contour tree. As a data structure to 

record topological events, the contour tree has been used to find important isovalues for 

transfer function generations [I 06, I 07] and to apply individual transfer functions for 
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various subregions in volume rendering [122]. Unfortunately, the underlying weakness 

of previous approaches is that rendering parameters such as transfer functions are still 

specified manually through user interactions. More efforts are still necessary for solv

ing how to use the topology to automate rendering parameters. The principal technical 

challenges for these problems include how to automate rendering parameters such as 

transfer functions that are used to get a wide spread of dissimilar output renderings. 

1.1.3 Geometric Relationships in Volume Data 

Traditional computer graphics is a unidirectional projection from a 30 objective scene 

to a 20 image. It provides capabilities of synthesizing virtual environments or regen

erating an existing scene. It is often necessary to know how effectively the generated 

graphical scene supports specific tasks or how well features of the denoted objects can 

be discerned. In the context of medical volume visualization, this involves questions 

of how effectively the visualization depicts anatomical structures and how well features 

of anatomical structures can be discerned in order to make medical decisions. Most 

of the conventional volume rendering methods place emphasis on conveying details of 

the desired features or structures by exposing them clearly to viewers in the results. 

However. spatial relations between structures in a volume are also of interest to view

ers [27]. There exists various kinds of relations between objects in a volume data set. 

Figure 1.5 shows examples of relations defined in [27]. In medical applications, for 

example, radiologists are interested in not only shape of structures, but also their neigh

boring information (e.g., how close they are). Such relation information of structures 

is crucial for visual analysis and understanding of volumetric data in various applica

tions [27]. These geometrical spatial relationships can be expressed and studied using 

topology at the abstract level. Hence, it is important to investigate how topology of 

structural relationships can be computed and utilized in order to improve understanding 

volumetric data. 

Separate Touch Overlap 

@ 
Enclose 

Figure 1.5: Relations in a data set defined in [27]. 
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1.1.4 Complexities of Topology 

Because of noise and artifacts in a real-world data set, an experimentally acquired data 

set often yields irrelevant topological structures. They often distort the true topological 

features in the contour tree. This makes the contour tree impractical in data analysis and 

visualization. To make the topology-driven techniques practical in volume rendering, it 

is also necessary to deal with contour tree simplifications. Despite various approaches 

of the contour tree simplification being proposed [25, 106, 84], they all did not make 

full use of information derived from the contour tree. For example, single measure 

of importance instead of multiple measures of importance is often used to evaluate 

the importance of branches during the contour tree simplification. Improvements are 

necessary to produce a better topology simplification. 

As such, the topology-driven techniques are ideal approaches to improve under

standing of volumetric data sets. These ideal approaches are very ambitious and in the 

short to medium term, some theories and developments are still necessary. This the

sis aims to improve volume rendering and volumetric data analysis by doing further 

research on these ideal approaches. 

1.2 Challenges 

Volume rendering is not about "pretty pictures"; its ultimate purpose is comprehension. 

As scientific data continue to increase in size and complexity, topological tools have 

been developed to capture significant features of the data at an abstract level enabling 

and facilitating data understanding by researchers. This section shows challenges of 

utilizing topology in volume rendering that this thesis focuses on. 

1.2.1 Topology Simplification 

The contour tree is one of the effective approaches used for depicting topological rela

tionships of objects in a volume data set [24, 22, 108, 122]. It represents the nesting 

relationships of connected components of isosurfaces or contours. Mowever, the con

tour tree of a real-world data set often has unmanageably large number of branches 

because of noise and artifacts from a data acquisition process. This makes the con

tour tree impractical in data analysis and visualization. A meaningful simplification 
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is necessary for the contour tree. Topology simplification suppresses insignificant fea

tures by removing, or canceling, pairs of critical points that are viewed unimportant 

according to a specified measure. Different approaches are proposed to simplify the 

contour tree for practical uses in volume data analysis. For example, Carr et at. [25] 

simplified the contour tree with two basic operations: leaf pruning and node reduction 

(see Figure 1.6). The scheme involves computation of several metrics that are used for 

ranking the "importance" of an arc before pruning. The geometric measures used in the 

contour tree simplification include persistence, volume, and hypervolume. Pascucci et 

at. [84] used a data structure named branch decomposition for multi-resolution hierar

chical representation of the contour tree. The measure of importance used in the branch 

decomposition is persistence. 

Lea( 80 i' pruncc.J Vcrtl''- 50 i;, rec.Jucl>c.l 

r I 
Figure I .6: Leaf pruning and vertex reduction during the contour tree simplifica
tion [25]. 

However, a single measure of importance cannot depict the importance of branches 

of the contour tree sufficiently. For example, the measure of persistence is effective to 

remove random noise based on its small scalar value range, but some large objects of 

interest having similar scalar value ranges are also removed at the same time in this case. 

This is also true for measures of volume and hypervolume. A challenge for the contour 

tree simplification is how to effectively evaluate the importance of branches and make 

full use of advantages of different importance measures simultaneously. We strongly 

believe that appropriate integration of each measure's advantages will produce a better 

topology simplification. 

1.2.2 Topological Relationship Depiction 

As mentioned, spatial relations between various structures in a volume are also of in

terest to viewers besides shapes [27]. A volume data set contains a large number of 
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disjointed objects at different target scalar field values. Its field structure is often char

acterized by spatial configurations of a finite number of feature isosurfaces that segment 

a volume data set into several components. There are various kinds of relations existing 

between objects in a volume data set. Such relation information of objects is crucial for 

visual analysis and understanding of volumetric data in various applications [27]. Chan 

et al. [27] presented a relation-aware volume exploration pipeline. Typical solutions 

for inclusion relationship depiction were also explored, such as depth peeling [12, 19], 

focus+context [ 121, 69] or focal region based approach [ 127]. 

All these approaches try to represent different relationships in a data set based on 

pure rendering techniques, but they do not touch the basic theory behind the problem 

-the topology. To meet this end, Takahashi et al. [107, 108] introduced the concept 

of inclusion level into volume rendering based on Volume Skeleton Tree (VST), to 

explore the inclusion relationship of structures. Although Takahashi et al.'s method 

uses a contour tree like data structure to analyze inclusion relationships of structures, 

they still consider scalar values of structures globally while applying inclusion level 

based transfer function globally. Other structural relationships are also necessary to 

be represented in volume rendering by utilizing topology to improve understanding of 

data sets. 

1.2.3 Automation of Transfer Function Generations 

Despite the proliferation of rendering and manipulation techniques, volume rendering 

still requires time-consuming interactions for tweaking visualization parameters to ob

tain comprehensible rendering results. Of all rendering parameters, transfer functions 

play the key role in comprehensible volume rendering. Transfer functions map scalar 

values to specific colors and opacities. They assume that scalar values map directly to 

physical properties such as tissue types. Thus, they are crucial in the understanding of 

the overall volumetric data and individual features contained within the volume space. 

Various approaches have been developed to automate or ease specification of transfer 

functions. 

Conventional approaches often use boundary information to automate transfer func

tion specifications [60, 61]. This process is time-consuming and comes short in repeat

able results. In addition, volumetric data often contain nested inner structures, i.e., the 

inclusion relationship - one of topological relationships as mentioned above. This 
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commonly seen inclusion relationship heavily affects the understanding of volumet

ric data. Conventional transfer functions cannot automatically fully clarify such in

ner structures. Thus, a systematic and automatic scheme to specify transfer functions 

while revealing inclusion relationships is highly desirable to greatly facilitate the vol

ume rendering process. To meet this purpose, a typical solution proposed by Takahashi 

et al. [I 07, 108] introduces the concept of inclusion level into volume rendering based 

on YST as shown in Figure 1.7. The inclusion level is also used in transfer function 

definitions. As mentioned above, they still consider the scalar values of objects glob

ally while applying inclusion level based transfer functions. Because the scalar value 

of an object is locally but not globally meaningful, it is more reasonable to apply scalar 

transfer function for each object locally while considering the topology globally. 

scalar field 
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Figure 1.7: Visualizing simulated implosion in laser fusion: (a) The corresponding 
YST, (b) with topologically-accentuated J D opacity transfer function, (c) with 20 opac
ity transfer function depending also on the inclusion level, and (d) with 20 opacity 
transfer function that visually extracts inner structures. [108, 54]. 

Since each contour in a data set con·esponds to a point one-to-one on an arc in the 

contour tree and an arc corresponds to a region in the data set, it is possible to use the 

contour tree as a region index for a volume data set to identify different regions. This 

is useful to specify various transfer functions for different regions locally in volume 

rendering. However, as there are often many arcs in the contour tree, it is impracti

cal and time-consuming to specify transfer functions for each arc (region) one-by-one 

manually. Weber et aJ. [ 122] used the contour tree to index different regions of a data 

set and specify transfer functions locally for individual regions. However, they neither 
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consider inclusion relationships of regions nor automate the transfer function genera

tions based on the contour tree. The principle technical challenges for these problems 

include how to automate generations of transfer functions that are used to get a wide 

spread of dissimilar output renderings while revealing inclusion relationship between 

structures, and what measures are used to control transfer function differences between 

subregions based on the contour tree. 

1.3 Objectives of This Work 

The ultimate goal of this thesis is to develop new theories on effective contour tree 

simplifications, as well as new theories on utilizing topology to improve and automate 

the understanding of volumetric data. The central hypothesis is that if the approaches to 

be used for volumetric data analysis are based on topology, the automation of rendering 

parameter generations and understanding of data sets will be more effective. More 

specifically, there are three main objectives as follows: 

• Develop new contour tree simplification approaches by utilizing multiple 

measures of importance. Various measures of importance are used to evaluate 

importance of branches during the contour tree simplification. Because each mea

sure of importance emphasizes different features of data sets, multiple measures 

of importance should be utilized simultaneously to more adequately evaluate im

portance of branches and improve the efficiency of contour tree simplification. 

• Develop new methods on depicting structural relationships in volume ren

dering by utilizing topology. Spatial relations between various structures in a 

volume are also of interest to viewers besides shapes. Because the basic theory 

behind the depiction of structural relationships in volumetric data lies in the topol

ogy, the new theories should use topological properties derived from the contour 

tree to represent and depict relations between structures in volume rendering. The 

new theories will bridge the structural relationships and understanding of volu

metric data by utilizing topology. 

• Develop new approaches for automating transfer function generations by 

utilizing topology. In the new approach, the contour tree acts as a visual index 
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to access various regions of a volume, and captures associated global topologi-
• cal attributes involved in volumetric data in the pipeline. The transfer function 

generations will include no or few involvements from users. The opacity trans

fer functions should depict inclusion relationship between structures and maxi

mize differences between them, while the color transfer functions should convey 

meaningful relations among structures instead of arbitrarily defined colors based 

on users' preferences. 

1.4 Approach and Methodology 

The main approach to achieve the aims of this thesis is the utilization of topology of 

data sets. Specifically, this thesis uses the contour tree as the topological abstraction 

data structure to analyze data sets. The research methodology is detailed as follows: 

We begin by evaluating approaches to the contour tree simplification through com

paring various measures of importance. The result from this comparison is then used to 

design new approaches for the contour tree simplification. 

In order to depict structural relationships between structures in a volume, we ana

lyze the roles of relations in volume visualization and propose a new concept of struc

tural relationship preserved mapping. The contour tree is then used to depict structural 

relationships based on the concept of structural relationship preserved mapping. 

Based on the theories of structural relationship depiction, we analyze how fluid 

flows in a porous medium. This analysis helps us to design a model to control the 

distribution of opacity between branches in the contour tree. The color harmonization 

is one of popular designs in computer graphics for getting visual aesthetic appeal of 

rendering images. Topological attributes derived from the contour tree are also used to 

create harmonic colors in color transfer functions. The contour tree is used to control 

and automate the process of transfer function generations. 

A series of experimental evaluation is then conducted to show the effectiveness of 

the proposed approaches in automatic generation of volumetric rendering. The experi

ments show how the proposed approaches are used to automate transfer function gen

erations, while depicting inclusion relationships between structures. With these results, 

our approach can help users to analyze volumetric data efficiently and easily. 



Chapter 2 

Volume Visualization 

The interpretation of volume data is considerably difficult because of their intrinsic 

complexity. In order to evaluate the abilities of volume visualization for volumetric 

data analysis, it is necessary to understand the principles of volume visualization al

gorithms. This chapter draws an overall picture of significant concepts of volume ren

dering, while focusing in particular on the optical model for volume rendering, typical 

rendering algorithms, e.g. ray-casting, as well as transfer functions. 

2.1 Overview 

As a subfield of scientific visualization, Kaufman et al. [58] defined volume visualiza

tion as: 

"[ ...... ] a method of extracting meaningful information from volumetric 

data sets through the use of interactive graphics and imaging. It addresses the 

representation, manipulation and rendering of volumetric data sets, providing 

mechanisms for peering into structures and understanding their complexity and 

dynamics. Typically, the data set is represented as a 30 regular grid of volume 

elements (voxels) and stored in a volume buffer (also called cubic framebuffer), 

which is a large 30 array of voxels. However, data is often defined at scattered 

or irregular locations that require using alternative representations and render

ing algorithms." 

This definition encompasses all the important aspects of modern theories and prac

tice in the field [47]. Volume visualization researchers continuously strive for improving 

15 
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the representation of data structures over the years. Volume visualization has proved it

self as an effective technique for the exploration of large and complex data sets, even if 

its main application domain is still medical visualization. 

Visualization unifies the largely independent but convergent fields of: 

• Computer graphics 

• Image processing 

• Computer vision 

• Computer-aided design 

• Signal processing 

• User interface studies 

Direct Volume Rendering (DVR) (often called volume rendering) is one of the most 

flexible volume visualization approaches. Not only can it show simple shapes of sur

faces, but it also allows more detailed 30 images of the internal structures of the volume 

to be presented. This thesis focuses on volume rendering of 30 scalar volume data. 

2.2 Volume Data 

Traditionally, computer graphics represented a model as a set of vectors which were 

displayed on vector graphic displays. With the introduction of raster displays, polygons 

became the basic rendering primitive, where the polygons of a model were rasterized 

into pixels, which represent the compounds of the frame buffer. Compared to surface 

data which solely determines the outer shell of an object, volumetric data is used to 

describe the internal structures of a solid object. A volume data is usually considered to 

represent a continuous function in a three-dimensional space. Thus, each point in space 

corresponds to a function value, formulated mathematically as: 

(2.1) 

Usually, datasets acquired from measurements do not have continuous values, they 

are limited to the points in space where measurements have been collected. A very 

common case is that the data points constitute a uniform regular grid. Such data is 
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so called discrete volume data. The discrete volume data (also called volume data) 

can be thought of as a simple three-dimensional array of cubic elements (voxels), each 

representing a unit of space (see Figure 2.1 ). The three-dimensional array can be seen 

as a stack of two-dimensional arrays of data values and each of these two-dimensional 

arrays as an image (or slice), where each of the data values represents a pixel (see 

Figure 2.1 ). This alternative view is motivated by the slice oriented traditional way 

that radiologists look at a volumetric data set. A volumtric data is denoted by a matrix 

V - rx x Y x L with X rows, Y columns and Z slices, which represents a discrete grid of 

volume elements (or voxels) v E { 1, ... ,X} x { 1, .... Y} x { 1, ... ,Z}. For each voxel, its 

scalar value is denoted by l(v) : N3 - r. This scalar value, for example, reflects the 

X-ray intensity in CT volumetric data. The voxel value can also be a vector to represent 

the object properties in some specific fields (e.g. computational fluid dynamics). Each 

voxel is characterized by its position in the 30 grid. Medical volume data obtained 

from MRI and CT-scanners are typically anisotropic with an equal sampling density in 

.\ andy direction but a coarser density along the z direction. The size is typically about 

I 00 slices or more with 512 x 512 voxels each. The volume data is the basis for our 

assessment of volume rendering algorithms . 

. 
t •. _,_ , t t 

.. 1 11111 

N ' 20 Arraoes 

Figure 2.1: Yoxels constituting a volumetric object after it has been discretized. 

2.3 Optical Model for Volume Rendering 

The basic goal of volume rendering is to find a good approximation of the low albedo 

optical model that expresses the relationship between the volume intensity and opac

ity function, and the intensity in the image plane. In this section, we describe a typical 
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physical model on which volume rendering algorithms are based. Physical optical mod

els are afforded by the radiative transport theory which attempts to view a volume as 

a cloud populated with particles. The transport of light is studied by considering the 

various phenomena at work. Light from a source can either be scattered or absorbed by 

particles. There might be a net increase when particles emit light themselves. The most 

important optical models for direct volume rendering are described in a survey paper 

by Nelson Max [78]. Models which take into account all the phenomena tend to be 

very complicated. Much simpler local models are used in practice. The optical model 

accounting for emission and absorption results in the volume rendering integral (VRI), 

that computes the light reaching the camera (eye). 

This optical model (absorption plus emission) is the most common one in direct 

volume rendering. Particles emit light. and occlude, i.e., absorb, incoming light. How

ever, there is no scattering or indirect illumination. Figure 2.2 illustrates the idea of the 

absorption and emission of radiant energy along a viewing ray [40]. 

Absorption Emission from 8 

!(·'II) f±:::=======;;;;;;;;;;~b~aniiiidiiiiiiillts~a:b;.::~r;:p;ti;:on;;;;:;;=;;;;;;;;;;;~b+ J> 
So S Viewing ray .'-; 

Eye 

Figure 2.2: An amount of radiant energy emitted at so and sis partially absorbed along 
the ray [40]. 

The light reaching the camera (eye) can be computed with Equation 2.2: 

I(s) = !(so)e r (.\o.s) +1s q(s)e r(S.s)d.f. 
so 

(2.2) 

The light intensity is given by /, with l(s) being the value at the exit point, i.e., the 

image pixel value, and I (so) being the initial intensity at the start point so of the ray, 

i.e., the light entering from the background. The initial intensity is absorbed along the 

viewing ray based on extinction -r. The function q(s) specifies the etllission at a point 

along the ray. In summary. the first term in Equation 2.2 accounts for the absorption of 

light as the ray passes through the volume and the second term captures the emission 

and color contribution from within the volume, which is also affected by absorption. 
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The extinction -r is also called the optical depth and computed with Equation 2.3: 

js, 
-r(s1.s2)= - K(s)ds, 

SJ 

(2.3) 

where K is the absorption coefficient. In practice, the volume rendering integral is 

evaluated numerically through either back-to-front or front-to-back compositing (i.e., 

alpha blending) of samples along the ray, which is most easily illustrated in the method 

of ray-casting [41]. 

2.4 Ray-Casting 

Figure 2.3: An example of rendering result using ray-casting [91 J. 

Ray-casting is one of the typical image-order volume rendering algorithms [71, 72, 

125]. Of all volume rendering algorithms, ray-casting has the largest body of publica

tions over the years. The basic goal of ray-casting is to allow the best use of 30 data set 

and not attempt to impose any geometric structure on it. It solves one of the most impor

tant limitations of surface extraction techniques, namely the way in which they display 
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a projection of a thin shell in the acquisition space. Surface extraction techniques fail 

to take that into account, particularly in medical imaging. data may originate from fluid 

and other materials which may be partially transparent and should be modeled as such. 

Ray-casting does not suffer from this limitation. Figure 2.3 is an example of ray-casting 

based rendering result [91]. 

Ey~ 
Data Set 

Figure 2.4: A ray casts into voxels of a 30 volume data [40]. 

Figure 2.4 illustrates a ray casting into voxels of a 30 volume data [40]. In the 

image-space oriented ray-casting approaches, rays are casted from each pixel in the im

age plane into the volume. Along their way through the volume, data are defined at the 

corners of each voxel and samples are calculated usually at equal sampling distances be

tween two sample points. A sample is computed based on trilinear interpolation within 

a cell of eight voxels. Thereafter, it is classified according to the transfer functions. If 

that sample has a contribution to the ray, the normal gradient is computed based on a 

trilinear interpolation of the normalized central differences at the eight voxels of the 

cell which contains the sample point. Finally, the sample composites with the previous 

samples of the ray along the ray path. 

Figure 2.5: A ray is discretized to compute intensity analytically [40]. 

In the general case. Equation 2.2 can not be computed analytically. Numerical meth

ods are used to compute the volume rendering integral in practice. The ray is divided 
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into equal small segments, for which the optical properties are assumed to be approxi

mately constant (see Figure 2.5 [40]). 

Through approximating both the emissions and absorptions along a ray, the approx

imate evaluation of the volume rendering integral can be denoted as [ 41]: 

lT/<YJ lT/<Yj i-1 

(; = E C;e-t(O,t) = E C; n (I- a;), (2.4) 
i=O i=O j=O 

where(; is the final color, C; is the color at the location i, T is the length of the ray, and 

t!J denotes the distance between successive resampling locations. Equation 2.4 can be 

evaluated iteratively by alpha blending in either back-to-front, or front-to-back order. 

Equation 2.5 is used to iteratively compute alpha blending in back-to-front order: 

' ' C; = C;+ (1- a;)C;_ 1, (2.5) 

' ' where C; is the new color, Ci-l is the color of the previous location, C; and a; are color 

and opacity of the current location respectively. 

Equation 2.6 is used to iteratively compute alpha blending in front-to-backorder: 

' ' ( ' ) C; = ci+l + 1- ai+l C;, 

' ' ( ' ) a;= ai+l + I- ai+l a;, 
(2.6) 

' ' where new values C; and a; are calculated from the color C; and opacity a; at the current 

location i, and the composited color c;+l and opacity a;+ I from the previous location 

i + I. The starting condition is C, = 0 and a~ = 0 (n = l T / !:J.t J ). 
All algorithms obtain colors and opacities in discrete intervals along a linear path 

and composite them with Equation 2.5 or Equation 2.6. However, the algorithms can 

be distinguished by the process in which the colors C; and opacities a; are calculated in 

each interval i, and how wide the interval width !:J.t is chosen [79]. 

2.5 Transfer Functions 

C and a in Equation 2.5 and Equation 2.6 are usually set by means of transfer func

tions, commonly implemented as lookup-tables. The lookup-table maps scalar value 

and other data features to various colors and opacities. This mapping is also called 
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classification, which classifies data into various objects based on different opacities. 

Figure 2.6 shows relations between transfer functions and various data elements. In 

the most simple form, transfer functions use just scalar values for this mapping, but it 

is also possible to use the local derivatives or other information for this purpose. The 

specification and generation, in automatic or semiautomatic fashion, of these functions 

are part of unsolved problems in direct volume rendering. Figure 2.7 shows an exam

ple of user interface of transfer function specifications used in Kinvare Inc.'s Vo/View 

3.2 [2]. Curves/polylines are often utilized in a conventional user interface to define 

the mapping in transfer function !-.pccifications. In manual exploration of an unknown 

data set, these user interface controls are moved and reshaped in order to best match 

the feature to be classified. The more distinct features to visualize, the more tuning of 

visual appearance is needed so that the joint rendering of the entire volume becomes 

informative. Thus, the user's interaction with the transfer function constitutes a central 

part of the exploratory process [74]. 
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Figure 2.6: Relations between transfer functions and data elements. 

Since the scalar field is not available in a continuous representation, but only in 

a discrete form, it is necessary to interpolate the available data at the sampled points 

during composition. In the presence of a transfer function, it is necessary to decide 

whether this interpolation step is done before or after the application of the transfer 

function. The former case is called pre-classification (i.e classification before interpo

lation) and the later post-classification (i.e classification after interpolation). Usually, 

the post-classification is "correct" and creates higher quality of renderings in the sense 

that values in the underlying continuous scalar field are being interpolated and then 

classified 147, 41]. 
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Figure 2.7: A user interface of transfer function specifications [2]. 

2.6 Approaches of Transfer Function Design 

The transfer function specification is arguably one of the most important tasks in vol

ume visualization. Research on transfer functions is focused on making the parameter 

space of transfer functions easier to explore. Many methods have been proposed to 

that end ranging from 10 transfer function, multi-dimensional transfer function, se

matic transfer function, to incorporate other data features in transfer functions. While 

the transfer function 's role is simply to assign optical properties such as opacity and 

color to the data being visualized, the value of the resulting visualization will be largely 

dependent on how well these optical properties capture features of interest. Specifying 

a good transfer function can be a difficult and tedious task for several reasons. First, 

it is difficult to uniquely identify features of interest in the transfer function domain. 

Even though a feature of interest may be easily identifiable in the spatial domain, the 

range of data values characterizing the feature may be difficult to isolate in the transfer 

function domain. This is due to the fact that other uninteresting regions may contain the 

same range of data values. Second, transfer functions can have an enormous number 

of degrees of freedom. Even simple ID transfer functions using linear ramps require 
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two degrees of freedom per control point. Third, typical user interfaces do not guide the 

user in setting these control points based on data set specific information such as shapes. 

Without this type of information, the user must rely on trial and error. The trial and error 

interaction can be especially frustrating since small changes to the transfer function can 

result in surprisingly large and unintuitive changes to the volume rendering [64]. 

Existing schemes of transfer function design range from fully manual to semi

automatic techniques. Manual transfer function design is primarily based on expe

rience, allowing the user to bring in his knowledge of the specific data as well as his 

personal taste. Trial-and-error is one of the widely used manual approaches to find good 

transfer functions for volume data [66]. This usually involves arbitrarily and repeatedly 

manipulating coefficients of some mathematical representation of the transfer function 

to adjust the visualization outcome. A good sample of some of the existing approaches 

for transfer function designing (interactive trial-and-error, metric-based, contour graph 

and design galleries) were squared off in a symposium panel [87]. Recent researches try 

to use other information during the transfer function specification, for example, the con

tour tree and illustrative rendering. Typical opacity transfer function and color transfer 

function approaches are reviewed in this section. 

2.6.1 Early Transfer Function Approaches 

Early volume rendering approaches often use ID transfer functions to explore volume 

data [71]. One-dimensional transfer functions usually refer to transfer functions which 

only use one parameter (e.g. scalar value) to generate optical properties. This can be 

defined through directly mapping scalar values to optical properties, or using different 

interfaces. 

Fang et a!. [42] presented an image-based transfer function model that integrates 

3D image processing tools (e.g. image enhancement and boundary detection) into the 

volume visualization pipeline. The model defines a transfer function as a sequence of 

3D image processing procedures, and allows users to adjust a set of qualitative and 

descriptive parameters to achieve their subjective visualization goals. 

Design galleries [76] approach is another viable alternative to. facilitate transfer 

function selection. It generates all possible transfer functions simultaneously based 

on automatic analysis, each representing a different configuration of the transfer func

tion. The satisfactory transfer function is then selected from these representatives and 
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then implicitly optimized. The principle technical challenges are to generate different 
• transfer functions automatically that are used to get a wide spread of dissimilar output 

renderings and arrange the resulting designs for easy browsing. The color transfer func

tion is parameterized by values that segment the data into different subranges, which are 

arbitrarily assigned different colors. Thus color is being used only to identify subranges 

of the data, and not to convey any quantitative relations among the data. 

Contour spectrum [9] approach consists of metrics that are computed over a scalar 

field. This more data-centric approach visually summarizes the space of isosurfaces in 

terms of metrics like surface area and mean gradient magnitude, thereby guiding the 

choice of isovalue for isosurfacing, and also providing information useful for transfer 

function generation. 

Konig and Groller [ 66] combined elements of the design galleries approach and 

trial-and-error techniques with the use of real-time raycasting hardware. In this ap

proach, the transfer function specification is simplified as a three steps process: first the 

user indicates scalar ranges of interest, then assigns colors to these interesting ranges 

and finally assigns opacities to these ranges. Numerous feedback renderings are per

formed during this process in order to get a good transfer function. The method pre

sumes that the user already knows the scalar range of interest. 

These approaches do not provide any mechanism to automate transfer function gen

eration and still apply transfer functions globally instead of locally to structures. 

2.6.2 Multi-Dimensional Transfer Functions 

2D transfer functions were introduced by Levoy in 1988 [71]. Levoy introduced two 

styles of transfer function, both two-dimensional, and both using gradient magnitude 

for the second dimension besides using the scalar value as the first dimension. Fur

thermore, other data information (e.g. second derivatives) are introduced to form the 

multi-dimensional transfer function. 

Kindlmann and Durkin [60] proposed a semi-automatic method which is a highly

regarded technique for generating transfer functions from volume data. This method 

makes the assumption that features of interest in the data are the boundary regions 

between different materials. It uses a data structure named histogram volume to capture 

the relationship between data values and boundary representations (first and second 

directional derivatives). 
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Kniss et a!. [64, 65] noted that previous approaches assumes that a given isovalue 

has uniform meaning throughout the data set. They observed that this assumption 

causes problems, and designed an interface to construct multi-dimensional transfer 

functions interactively (based on scalar value, gradient magnitude, and a second di

rectional derivative). This interface adds derivatives information as parameters to the 

transfer function, but continued to apply the same transfer function everywhere in the 

data. A color picker widget is provided based on the hue-lightness-saturation (HLS) 

color space. The user specifies a color for an object simply by clicking on that object, 

then moving the mouse horizontally and vertically until the desired hue and lightness 

are visible. There are no theoretical relations between the selected color and the ob

ject. In order to automate the feature selection in multi-dimensional parameter space 

for multi-dimensional transfer functions, Maciejewski et a!. [75] applied a clustering 

method to the 2D feature space and cluster spaces into subregions with similar features. 

However, users are still required to do complex manual interactions. Because it does not 

consider inclusion relationship of structures inside data, automation of transfer function 

generations is still not solved. 

Kindlmann eta!. [61] added the curvature of the function as a parameter into multi

dimensional transfer functions. The curvature of a surface is defined by the relationship 

between small positional changes on the surface, and the resulting changes in the sur

face normal. Curvature information can be used to emphasize ridge and valley surface 

creases. This approach still lacks any spatial locality. 

Huang and Ma [53] presented a technique that can suggest a 2D transfer function 

by using the results of partial region growing from a point selected in volume space. 

Tzeng et a!. [ 116] described an interface for specifying transfer functions that takes 

into account additional data properties such as texture and position besides the scalar 

value and its derivatives. The texture and position information are used as the seed 

information to classify volume data. This method can be regarded as an extension of 

region growing based approach for transfer function specification. 

Lum and Ma [73] used the concept that transfer functions can be used for specifying 

of any of a number of optical properties including surface illumination, and presented 

a multi-dimensionallighting transfer function. The lighting transfer f.unction is used to 

control how lighting is used for illustrating different material boundaries in a volume. 

The input of lighting transfer functions consists of samples read along the gradient 

direction. 
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Correa and Ma [35] introduced occlusion spectrum, which is a 2D distribution of 

intensity values and occlusion, into 2D transfer functions in order to depict occlusion 

patterns in rendering. Users need to interact occlusion parameters in the occlusion 

transfer function editor to visualize volume data, which introduces further parameters 

and decisions into the complex parameter space of multi-dimensional transfer functions. 

In a word, automation of transfer function specifications are still not solved, but 

more parameters to be modulated by users are introduced in multi-dimensional transfer 

functions. 

2.6.3 Halo Transfer Function and Tone Mapping 

In order to enhance depth perception in volume rendering scene, Bruckner and Groller [19] 

presented the halo transfer function to classify structures of interest based on data value, 

direction and position. The halo transfer function defines a basic seed intensity at a 

sample position. This value is then combined with gradient magnitude and dot product 

between view vector and the normalized gradient vector to form the final halo seed in

tensity. Then a field of halo intensity values is generated from the seeds by applying a 

filtering process. Finally, the halo intensities are mapped to the actual color and opacity 

contributions of the halo and combined with the regular volume rendering. 

Visualizing volumetric data with both high spatial and intensity resolutions on a 

limited resolution display device is challenging. Yuan eta!. [126] presented a transfer 

function specification interface with nonlinear magnification of the density range and 

logarithmic scaling of the color/opacity range. A dynamic tone mapping is used to 

preserve high resolution details on regular display devices. 

These transfer functions still need complex interactions. 

2.6.4 Semantic Transfer Function Specifications 

The specification of transfer functions is a complex task and requires visualization ex

pert knowledge about the underlying rendering technique. In the case of multiple vol

umetric attributes (e.g. density, gradient magnitude, etc.) and multiple visual styles 

based on different optical properties, the specification of the multi-dimensional transfer 

function becomes more challenging and non-intuitive. Salama et a!. [92] introduced an 

additional level of abstraction for parametric models of transfer functions- semantic 
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level, in order to enable a non-visualization expert to specify transfer functions easily. 

The proposed sematic model is defined based on a set of reference data, a list of the rel

evant structures contained in the data, and transfer functions template for the reference 

data. Semantics such as "sharpness" and "visibility" can be created and modified by 

using primitive editors. 

Rautek et al. [89] presented a semantic layer mapping from several volumetric at

tributes to multiple illustrative visual styles in volume rendering. Semantic layers allow 

a domain expert to specify the mapping in the natural language of the domain. Volumet

ric attributes and visual styles are represented as fuzzy sets. The mapping is specified 

by rules that are evaluated with fuzzy logic arithmetics. The user specifies the fuzzy 

sets and the rules without special knowledge about the underlying rendering technique. 

Semantic layers allow for a linguistic specification of the mapping from attributes 

to visual styles replacing the traditional transfer function specification. The basic low 

level of semantics is still the traditional different transfer function specification methods 

as reviewed above. 

2.6.5 Topology Controlled Transfer Function Specifications 

Section 3.6.4 reviewed this topic in details. Topology controlled transfer function speci

fication is discussed here in order to show the integrity of the review of transfer function 

approaches. Introducing topological attributes into the transfer function specification 

allows volume rendering to capture global characteristics of the data set while locat

ing regions of particular interest. Fujishiro et al. [46] introduced topological attributes 

in transfer function generations by using Reeb graphs. Takahashi et al. [I 06, I 07] and 

Takeshima et al. [I 08] used topological attributes derived from the contour tree to define 

transfer functions. However, they applied transfer functions to a data set according to 

fixed topological indices (e.g. depth) and did not explore transfer function automation 

deeply. Conventional transfer function approaches cannot distinguish between distinct 

features that share the same scalar value. To overcome this problem, Weber et al. [122] 

used the contour tree to index various subregions of a volume and specify transfer func

tions locally for individual subregions. However, as there are often many branches in a 

contour tree, it is impractical and time-consuming to define transfer functions for each 

subregion corresponding to a branch one-by-one manually. The inclusion relationship 

is also not considered in [122]. 



2.6. APPROACHES OF TRANSFER FUNCTION DESIGN 29 

2.6.6 Color Transfer Functions 

Color transfer functions map scalar densities and other features to colors in order to 

label different objects and create aesthetic appeal in volume rendering. Color trans

fer functions have in most cases been guided by personal preferences or even just by 

random assignments [ 120]. Furthermore, color harmony is one popular design aspect 

in terms of aesthetics. Cohen-Or et a!. [31] introduced a framework of automated im

age color harmonization. Wang eta!. [119, 120] extended this color harmonization to 

be used in volume visualization. They presented how color harmonization is used to 

semi-automate color definitions in volume rendering. In their pipeline, users need to 

specify the hue component of a HSV color and the system automatically optimize other 

color components in order to create a harmonic color. Our work extends the color selec

tion algorithm in [119] by incorporating topological features to automate color transfer 

function generations in volume rendering. 

In addition, recent work on transfer functions introduced other features of volume 

data into the transfer function pipeline. For example, Caban and Rheingans [20] used 

local textural properties of voxels to differentiate structures which have similar intensity 

values. Selver and Giizelis [95] used a volume histogram stack to do semi-automatic 

transfer function initialization. Neural networks are used in this process. Correa and 

Ma [34] mapped size of features to color and opacity. In this chapter, we consider the ef

fects not only of size (volume) of structures, but also ofhypervolume and persistence of 

structures on transfer functions. Persistence, volume and hypervolume are parameters 

derived from the contour tree and are more meaningful in representing the importance 

of structures in transfer functions. 

2.6.7 Summary of Previous Work 

The transfer function specification methods investigated, except topology controlled 

transfer function specification approaches [106, 107, 108, 122], use global properties 

to detect isovalues that are significant for transfer function specifications. Implicitly, 

this determines that the isovalue is significant everywhere in the data. Disadvantages 

of these approaches are obvious: they cannot depict different objects which have sim

ilar scalar value ranges effectively; they also cannot consider global structure of the 

volume into the pipeline. Topology controlled transfer function specification methods 

are good starting points for specifying transfer functions for local individual regions 
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while emphasizing topology of the data. This chapter aims to extend the topology con

trolled transfer function approaches and to create transfer functions for different regions 

indexed by the contour tree automatically. 

Furthermore, although the investigated approaches could find good transfer func

tions for structures of interest in some degree, there is still not much research in the 

field of color transfer function based on perceptive color space. Most of the previous 

work on transfer function generations focus on the opacity transfer function specifi

cations, the color transfer function is usually selected randomly based on the user's 

individual taste or commonly accepted preferences (e.g. vessels are usually red). How

ever, colors could be used to reveal interrelationships within objects inside a data set. 

For example, in the perceptual color space [17, 16], the difference between objects (e.g. 

distance, scalar value) can be depicted based on the perceptual dimensions of colors, 

in order to improve perception between different structures. We believe that specifying 

color transfer functions for structures by utilizing topology based on perceptual color 

space could improve the understanding efficiency of volume data. 

This thesis analyzes problems of existing transfer function design approaches, and 

proposes an automatic transfer function generation method by utilizing topological at

tributes derived from the contour tree. Details of the automation of transfer function 

generation proposed in this thesis will be covered in Chapter 6. 

2.7 Relationship Depiction 

As mentioned in Section 1.2.2, spatial relations between various structures in a vol

ume are also of interest to viewers besides shapes. Relationship and its uses have been 

studied in several research fields. In information visualization, the relationships be

tween different objects are often represented using tables, graphs, etc. [36]. Hao et 

al. [51] developed an algorithm to reflect hierarchy and importance-based relationships 

in time series data. It allows users to quickly perceive relative importance and hierar

chy relations within sets using importance-driven layouts. Collins and Carpendale [32] 

presented a method named Vi sLink to depict relationships between .20 visualizations 

in 30 space. Relationships are revealed using connections between two visualizations. 

The VisLink environment allows the viewer to query a given visualization in terms of 

connections. 



2. 7. RELATIONSHIP DEPICTION 31 

In computer graphics, scene graph [I 0 I] is a commonly used tree data structure for 
• representing the hierarchical relationship of geometric objects. The major purpose of 

scene graph is to efficiently model and organize objects in a scene. 

In 30 visualization, Cook et al. [33] used an A-Buffer data structure to order re

lationships of polyhedra cells of a mesh in order to depict the visibility relationship. 

The A-buffer (anti-aliased, area-averaged, accumulation buffer) is a general hidden sur

face mechanism. It resolves visibility among an arbitrary collection of opaque, trans

parent, and intersecting objects [21]. Kriz et al. [ 68] embedded 30 nano-structures 

into their associated macro-properties of wave-velocity surface topology to depict the 

structure-property relationships. The enhanced interpretation helps users to improve 

the understanding of the data set. Viola et al. [ 118] used a focus+context approach to 

depict importance relationship of objects. Occluded objects are represented through 

importance-driven volume rendering. Occluding objects and occluded objects are ap

plied with different importance factors. Other similar approaches [ 127, 121, 69, 18] 

also use the concept of focus+context to explore inner structures in volume rendering. 

Chan et al. [27] presented a relation-aware volume exploration pipeline. In [27], 

various spatial relations are defined, represented, and used in volume rendering. How

ever, all of these operations highly depend on a segmented data set. If the segmentation 

information is not available, the relation definition lacks object boundary information 

and is difficult to set up. This unavoidably affects the following relation representation 

and effectiveness of uses in volume rendering. If the segmentation creates wrong in

formation, the following relation based exploration does not make sense at all. Image 

segmentation is acknowledged as a very difficult and complex task. It is often desirable 

to be avoided or at least postponed until after a first inspection of 3D data with volume 

rendering. Furthermore, the graph used to represent relations in a data set is a general 

graph and it is difficult for users to understand the connection between relations and the 

data set (see Figure 2.8). This work motivates us to introduce topological relationship 

to volume rendering to analyze volume data sets. Elmqvist and Tsigas [39] defined a 

taxonomy of the design space of occlusion management techniques to formalize a com

mon terminology and theoretical framework for occlusion interactions. They derived a 

set of five orthogonal design patterns for effective reduction of 30 occlusion. 

All these investigated approaches try to represent different relationships in a data 

set based on pure rendering techniques, but they do not touch the basic theory behind 

the problem- the topology. 
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Figure 2.8: Relation representation in a graph [27]. 

Representing structures with different relationships belongs to the problem of re

vealing topological infonnation between them. Kniss et al. [63] proposed a framework 

to encode topology information of a data set in raster-based representation, and used it 

to enforce constraints or fix classification errors in visualization applications. One of 

its typical application examples is to render an MRI head data set with correct position 

relationship of various objects by fixing classification errors. The topological attributes 

in a volume were also considered in a framework to define transfer functions in vol

ume rendering [ 108]. The contour tree has been used to explore the relation between 

iso-surfaces and their evolution [23]. Shinagawa et al. [96] introduced the analysis of 

parent-child and sibling relationships between contours. Takahashi et al. [107] used the 

contour tree to depict inclusion relationships in volume rendeting. The contour tree was 

also used to represent topology of volume data and index subregions in transfer function 

specifications 1122]. 

In contrast, our work in this thesis focuses on relationship preservation in volume 

rendering. Thus, more relations other than hierarchy as used in computer graphics are 

considered. Because object relations in a data set are related to the topology of the data 

set, our work also focuses on using the contour tree to reveal various relationships in 

volumetric data. Instead of depending on segmented data set as used in [271 to define 

spatial relations, our approach creates the contour tree directly from the data set and 

then use it to represent topological relations. More details are covered in Chapter 5. 
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2.8 Summary 

This chapter firstly provided an overview of volume visualization, and then reviewed 

the basics of volume rendering. It gave the definition of volume data and introduced 

one of the widely used optical models for volume rendering. The details of ray-casting 

algorithm was provided to show how volume rendering is used to generate 3D rendering 

results. Because the key to comprehensible volume rendering still lies in the design of 

effective transfer functions, this chapter defined transfer functions and presented prob

lems of transfer function generations for current approaches. Relationship depiction in 

several research fields was also reviewed in this chapter. They are used to show how re

lationship depiction can be used in volume rendering to help users to better understand 

volumetric data. 



Chapter 3 

Contour Trees 

This thesis explores effective uses of contour trees in volume rendering. This chapter 

aims to cover foundations that are required to understand subsequent chapters with

out going into the details of specific papers. The chapter reports the state of the art 

of research on contour trees, particularly drawing upon preliminaries, definitions and 

computations of contour trees. As one of the abstraction techniques to reduce data by 

computing a topological description of the data, contour trees have wide applications in 

visualization. This chapter also covers typical applications of contour trees in visual

ization. 

3.1 Preliminaries 

Since the contour tree depends on contours and isosurfaces, which are inherently geo

metric in nature, the contour tree and most other topological techniques are more closely 

related to geometric techniques than signal processing. Before the details of the con

tour tree is given, this section introduces preliminary concepts used to construct contour 

trees. 

3.1.1 Sampling and Reconstruction 

Volume data are usually known as discrete point samples in 3D space. Geometric and 

topological techniques, however, generally require continuous functions in order to find 

critical points and to determine the relationship between them. As a result, scientific 

visualization techniques that exploit geometry and topology commonly reconstruct the 

35 
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reconstruction function using geometric meshes [22]. 

A mesh is a subdivision of the region of interest into geometric primitives called 

cells. In general, the vertices that define the cells are given by the grid - i.e. the 

mesh is constructed using the point samples as vertices. Common example cells in 

30 space include tetrahedral and hexahedral cells. An interpolant is used on the mesh 

to compute interpolated data values during the contour tree computation (e.g. finding 

critical points). A trilinear interpolant is a typical interpolant in 3D space. 

This thesis considers trilinear interpolation for a hexahedral cell because hexahedral 

meshes are most commonly used for direct volume rendering of data given as samples 

on a regular, rectilinear mesh. 

3.1.2 Manifolds 

Given a continuous scalar field ff defined on a domain .4( (.4{ c JRd), a scalar function 

f : .4( --> 1R is a real-valued function. It is often useful to think off as a manifold: a 

mathematical generalization of a surface. Formally, a topological d-dimensional mani

fold, d-manifold for short, is a topological space that is everywhere locally homeomor

phic to lRd [22]. A homeomorphism is a function f which is a bijection (so it has an 

inverse f- 1) with both f and f- 1 being continuous [70]. 

Ad-manifold is a topological space that locally looks like IRd (the Euclidean space). 

In other words, each point admits a coordinate system, consisting of coordinate func

tions on the points of the neighborhood, determining the topology of the neighbor

hood [ 134]. For three-dimensional scalar data, f can be written as the set of points 

of the form { (x,y,z,f (x,y,z)) : (x,y, z) E IR3 }. This set of points forms a 3-manifold 

embedded in a four-dimensional space. f measures a property such as light intensity or 

absorption of radiation in CT in medical imaging. f may also be treated as an intensity 

map, emphasizing spatial dimensions and the function value. 

3.1.3 Level Sets and Contours 

An isoline is a line of points with a common value of the function f. This common 

value is called the isovalue of the isoline. In general, considering a continuous scalar 

field ff defined on a domain .4( (.4{ c JRd), f : .4( --+ JR. .4( is assumed to be a 
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simplicial complex 1. Any 3D volume can be decomposed into a simplicial complex . 
• The function f within .4{ is completely determined by the values on the n simplex 

vertices of the domain .4{. For a point inside a simplex, its function value is a linear 

interpolation of the values on the vertices. The functional range of the field ff is the 

interval between the minimum and maximum values of the function f , [fminJmaxl· 

For a scalar value h E [fminJmax], the level set of the field ff at the value h is the 

subset of points L(h) c .4{ such that f(x) = h for any x E L(h). This is expressed as 

L(h) = {(x) lf(x) = h }, his the isovalue. Topologically, a level set may consist of 

0, I, or more connected components [24]. In a simplicial complex, these connected 

components will be of dimension :s; ( d - I). 

For two-dimensional data, each level set is a linear feature, called an isoline. The 

most familiar use of isolines is on topographic maps, where the function f represents 

land elevation. For three-dimensional data, each level set is a set of surfaces in three 

dimensions: each isocontour is called an isosuiface. Contour is often used as a general 

term for a connected component of a level set in a space of arbitrary dimension. 

3.2 Topological Abstractions 

Abstraction is one of the principle methods to reduce data information in order to be an

alyzed practically by a human. Usually, abstraction reduces data by computing a topo

logical description of the function. Principle topological abstractions include Marse

Smale Complexes, Reeb graphs and contour trees. 

3.2.1 Morse-Smale Complexes 

A real-valued smooth scalar function f: .$1-> lR defined on a smooth d-manifold .4t 

is a Morse function if none of its critical points are degenerate (i.e., the Hessian matrix 

at all critical points is non-singular), and no two critical points have the same function 

value. Morse theory studies the relationship between critical points of a Morse function 

and the topological structure of its domain space. Complex natural phenomena, both 

1 In general, we arc unable to represent surfaces precisely in a computer system, because it has finite 
storage. Consequently, surfaces are sampled and represented with triangulations. A triangulation is a 
simplicial complex, a combinatorial space that can represent a space. With simplicial complexes, the 
topology of a space is separated from its geometry, much like the separation of syntax and semantics in 
logic [134]. 
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sampled and simulated, are often modeled as Morse functions. MRI scans generate 

Morse functions that are used in medical imaging to reconstruct human tissues. Elec

tron density distributions computed by high-resolution molecular simulations are Morse 

functions whose topology express bonds among the atoms in molecular structures [84]. 

The structure of geometric models used in computer graphics and CAD applications 

can be effectively represented in terms of the topology of a Morse function [52, 15]. 

The Morse Lemma [77] states that in the neighborhood of a critical point p off , the 

function can be rewritten as a quadric (taking 3-manifold as an example) [48]: 

f(x,y,z) = f(p) ±x2 ±l ±z2 (3.1) 

The index of pis equal to the number of negative signs in the above expression. Critical 

points of index 0, I, 2 and 3 are called minimum, ]-saddle, 2-saddle and maximum, 

respectively. 

The Marse-Smale complex (MS complex) is a topological data structure that pro

vides an abstract representation of the gradient flow behavior of a scalar field [98, 15, 

49, 50]. It decomposes the domain .4{ into monotonic regions and represents the topo

logical structure of f. This is done through gradient lines (or integral lines). 

Assuming that the function f is everywhere differentiable, the gradient at each point 

is calculated. An integral line off is a maximal path in .4{ whose tangent vectors agree 

with the gradient off at every point of the path. Each integral line has a natural origin 

and destination at critical points off where the gradient becomes zero. Ascending and 

descending manifolds are obtained as clusters of integral lines having common origin 

and destination respectively. The MS complex partitions A into regions by clustering 

integral lines that share common origin and destination. It is simply the set of these 

regions, usually shown by drawing the boundaries. In MS functions, the integral lines 

connect critical points of different indices. For example, the three-dimensional cells of 

the MS complex cluster integral lines that originate at a given minimum and terminate 

at an associated maximum. The cells of different dimensions are called crystals, quads, 

arcs and nodes. Note that the MS complex is an overlay of ascending and descending 

manifolds, which individually partition .4{ as well. The arcs form a pairing of critical 

points that we call the combinatorial structure of the MS complex [50]. 

Figure 3.1 illustrates a three-dimensional cell of the MS Complex [49]. Every crys

tal has a unique origin and destination node, the minimum and maximum, respectively, 
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Figure 3.1: The boundary of a crystal in the Morse-Smale complex consists of lower
dimensional cells: quads, arcs and nodes [49]. 

which are end points of integral lines lying within. Note that the glyphs used for critical 

points indicate their local neighborhood. 

3.2.2 Reeb Graphs 

The MS complex is a fundamental topological structure that partitions the domain of 

a real-valued function into regions having uniform gradient flow behavior. The Reeb 

graph [90, 96, 97] is also a fundamental data structure that encodes the topology of a 

manifold. However, it expresses the evolution of level sets (contours) in cross-sections 

of a manifold, and describes the connectivity of its level sets [37]. The Reeb graph off 

is obtained by contracting the level sets off to points. An example of this construction 

is shown in Figure 3.2 for the triple torus model. In this figure, the function f is equal 

to the z coordinate of its vertices [85]. 

Points on the Reeb graph that correspond to contours passing through critical points 

off (maxima, minima and saddles) are called nodes. The rest of the Reeb graph consists 

of arcs connecting the nodes . The Morse theory guarantees that the contour topology 

changes only in correspondence to critical points. Moreover, under the assumption 

that the height function is Morse, the structure of the Reeb graph is rather simple and 

represents the topological skeleton of the object. The triple torus in Figure 3.2 can 

be characterized topologically with eight singular points. These singular points are 

represented as nodes and are connected to each other by an edge (arc) representing a set 

of homotopically equivalent connected contours on consecutive cross-sectional planes. 

As clearly seen from the figure, a Rceb graph can provide a topological skeleton of a 
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Figure 3.2: Reeb graph of the height function on the triple torus. The three tunnels of 
the model are mapped to three loops in the graph [85]. 

30 surface [45]. 

3.2.3 Contour Trees 

Both Reeb graphs and contour trees track changes to a contour as a single parameter is 

varied. However. the Reeb graph is more general than the contour tree, and is computed 

for manifolds more complex than a simple -;urface defined by a function over . II (. If C 

IW1). A Reeb graph is defined to be a contour tree when it is free of loops (cycles), 

and effectively captures the transitions of level sets when f is single-valued. Tierny et 

al. [ 112] introduced a procedure named loop surgery to reduce a Reeb graph to be loop 

free, which is similar to a contour tree. 

Figure 3.3 shows an example of a 20 mesh and its corresponding contour tree. 

Three level sets with isovaJue of 5 are drawn upon the mesh. Different level sets and 

their corresponding points in the contour tree are encoded with colors. Since the contour 

tree is at the core of this thesis, section 3.3 will give a more formal definition and 

computation of the contour tree. 

In summary, the differences among MS complexes, Reeb graphs and contour trees 

can be depicted as follows: Given a scalar function f: .II - IR, defined on a manifold 

surface .If. the topology of .I( can be effectively studied by contracting the connected 

components of the level sets off to single points (i.e., the Reeb graph) or joining its 

critical points with flow lines off (i.e., the MS complex). The Reeb graph and the MS 

complex provide an abstract representation of the surface. II. The former is based on 
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Figure 3.3: An example of a 20 mesh and its contour tree. Different level sets are drawn 
upon the mesh. 

the topological changes of the level sets off, the latter mainly uses the connectivity of 

the critical points with respect to the behavior of the gradient field of f. A Reeb graph 

is called a contour tree when it has no loops [86]. 

3.3 Setup of Contour Trees 

Recall that in Section 3.2, we give a short introduction of the contour tree as one of 

topological abstraction techniques to reduce data information. This section gives a 

formal definition of the contour tree and details on setting up contour trees. 

3.3.1 Definition of the Contour Tree 

The contour tree is a graph that tracks contours of the level set as they appear, join, 

split and disappear. Figure 3.4 [241 illustrates level sets of a function f(x ) that, as the 
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parameter x increases, evolve from a solid to a hollow ball, to a single component. to 

two cushions, to two rings and to four sticks. Figure 3.5 illustrates the coiTesponding 

contour tree. Starting from the bottom of the contour tree in Figure 3.5 and increasing 

the parameter, we see one solid at ( 1 ), and then an inner boundary and an outer boundary 

appear. The level sets corresponding to the inner boundary and outer boundary encloses 

and merges at (3 ). Then there is one component of the level set until at ( 4). The level 

set splits at ( 4) into two arcs which corresponds to two cushions and following rings 

until (5) and (6). The level sets at (5) and (6) then split into two leaves respectively. 

which correspond to four sticks in Figure 3.4 [24]. 

Figure 3.4: Sample data set and its Level sets of as the value of function increases [24]. 

From the evolution of the level sets described above, the contour tree can be de

scribed as recording what happens to components of the level set in response to certain 

events that correspond to the critical points, if we continue to think of the parameter 

values as time [24]. A component is created either by appearing, separated from all 

existing components, or by an existing component splitting to become two or more new 

components. Similarly, a component is destroyed either by collapsing down to a single 

point and disappearing, or by joining with another component to make a new, combined 

component. 

Because one certain event occurs only at critical points, Carr et a!. [24] limited 

events of level sets to limited cases when the isovalue h changes and equal to the value 

of a critical point: 
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Figure 3.5: Contour tree for Figure 3.4. 

I) A new component is created at a local minimum; 

2) An existing component is destroyed at a local maximum; 

3) Two or more existing components are joined into a new component at a saddle 

point; 

4) The topological genus of an existing component is changed at a saddle point [82]; 

5) An existing component is split into two or more new components at a saddle 

point; 

6) Any combination of 3)- 5). Both splits and joins can occur at a highly degenerate 

multi-saddle. 

If types of events can be identified, then the contour tree can be constructed by a 

sweep through changing isovalue h. Each component of the level set is created at a 

critical point of type I), 3), or 5), and is destroyed at a critical point of type 2), 3), or 5). 

Such a critical point is called a node. For each component, the node where it is created 

and the one where it is deleted are connected by an edge called an arc. The components 

then have a one-to-one relationship with the arcs. Through sweeping the isovalue h 

from !min to !nun following previous steps, the contour tree is then constructed. 

In summary, the contour tree is a data structure that captures the topological charac

teristics of a scalar field r 117]. Ash increases in the level set of L (h)= { (x) If (x) = h }. 
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contours appear at local minima off, join or split at saddles, and disappear at local max

ima of f. If each contour is represented as a node, the evolution of the level set forms a 

tree called contour tree. The contour tree !Y has following characteristics: 

• Each node v in the contour tree !Y corresponds to a critical point. 

• Each leaf node represents the creation or deletion of a component at a local ex

tremum of the parameter. 

• Each interior node represents the joining and/or splitting of two or more compo

nents at saddle points. 

• Each arc represents a component in the level sets for all values of the parameter 

between the values of the data points at each end of the arc. 

• Every cut on the arc (v;, v1) E !Y by an isovalue v; :<:; h :<:; v1 represents a connect 

component (contour) of the level set L(h). The number of cuts of !Y at the value 

h is equal to the number of connected components for the level set L( h). 

3.3.2 Previous Work 

The contour tree was introduced by Boyell and Ruston [13], as a summary of the evo

lution of contours on a map (i.e. in 2D), and was used by Freeman and Morse [44] to 

find terrain profiles in a contour map. van Kreveld et al. [ 117] used the contour tree 

structure to compute isolines on terrain maps in geographic information systems. With 

terrain maps, a surface model is computed from elevation values at sample points in 

the plane. Isolines, often called contours, are the curves consisting of points at a given 

height that can be seen on any topographic map. Contours can be traced from a sur

face model relatively easily, given a starting point, or seed on each. van Kreveld et al. 

used the contour tree to generate "seed sets" for any query height value. Prior to 1995, 

the contour tree was typically constructed from previously extracted polygonal contour 

lines. 

Takeshima et al. [108] and Takahashi et al. [106, 107] gave the.first algorithm for 

computing the contour tree for a triangulation in two dimensions. This algorithm traces 

ascending and descending paths from saddles in the mesh to form a surface network, 

connecting all saddles and local extrema in the mesh. Local extrema in the mesh are 
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identified, and transferred to the contour tree. This algorithm was extended to three 
• dimensions by Takahashi et al. [ 105, 106), although the contour tree is referred to in 

this case as the volume skeleton tree. The volume skeleton tree is similar to the contour 

tree except that it is augmented with nodes corresponding to genus changes. It was used 

to design transfer functions and depict inclusion relationship in volume rendering [I 06, 

107). 

van Kreveld et al. [117) described an O(mlogm) and O(m2 ) algorithm to construct 

a contour tree from a 2D and 3D scalar field, respectively. The function is defined on 

a simplicial mesh with m elements and n vertices. The contour tree is computed by 

sweeping a polygonal contour through the mesh from high to low, then from low to 

high. They also noted that the contour tree could be used to extract isosurfaces from 

volume data. Multiple saddles and boundary cases required special handling during 

computing. 

Tarasov and Vyalyi [ 109] improved the time complexity of van Kreveld et al.'s work 

to O(mlogm) in the 3D case, by subdividing simplices into as many as 576 cells each. 

Pascucci [81, 82) further extended this algorithm to track topological genus, as well as 

connectivity. 

Carr et al. [24) simplified Tarasov and Vyalyi's algorithm to construct the contour 

tree in all dimensions. The join tree and split tree are constructed and merged to build 

the contour tree in o(m+nlogn). Pascucci and Cole-McLaughlin [82) computed Betti 

numbers of contours to distinguish different topology of contours within an edge of the 

contour tree. The divide-and-conquer approach [82) allows output-sensitive construc

tion of contour trees and easy extension to parallel implementation. They also adapted 

the algorithm to handle cubic cells with a trilinear interpolation function [82, 83]. 

Carr and Snoeyink [23) used the contour tree as an interface to display topological 

structures of isosurfaces and segment individual contours in a scalar field. They com

puted path seeds for each edge, which generate a seed cell necessary for rapid extraction 

of a selected contour in runtime. The contour tree evolves as the function changes over 

time. Edelsbrunner eta!. [38] combined the evolving sequence of contour trees defined 

from continuous space-time data into a single data structure. However, utilization of 

this data structure in visualization applications is not addressed [100]. 

More recently, Takahashi et al. [I 02) introduced manifold learning into the contour 

tree construction. It approximates contour trees from a set of scattered samples embed

ded in the high-dimensional space. The contour tree is extracted as a projection of point 
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clouds into 3D space. The constructed contour tree is then used in volume rendering. 

The contour tree used in this thesis is constructed based on Carr et a!. [24] and 

Pascucci et al. [83, 84]'s methods. 

3.3.3 Extraction of Critical Points 

Critical points are crucial to create the contour tree of data sets. Roughly speaking, 

a critical point is defined to be a point that activates a topological change in contour 

evolution such as creation, merging, splitting and deletion of contours. More formally, 

taken a 3-manifold as an example, a critical point p of a function f(x,y, z) is defined to 

be a point that satisfies: 

(3.2) 

In order to extract critical points, different interpolation methods are used, for ex

ample, linear interpolation through tetrahedralization and trilinear interpolation through 

hexhedralization. The method of linear interpolation of a volume data set through tetra

hedralization can uniquely determine the isosurface evolution as the scalar field value 

decreases. In the tetrahedralization, each voxel has its neighboring voxels that consti

tute a triangulated sphere surrounding the target voxel itself. By comparing scalar field 

values of neighboring voxels on the sphere with that of the target, the algorithm par

titions the surrounding sphere into two types of connected regions: plus regions that 

include points having larger scalar field values than the target, and minus regions hav

ing smaller scalar field values. By identifying the configuration of these plus and minus 

regions on the sphere, we can extract critical points [107]. Hexahedral with trilinear in

terpolation [83] is also used to identify critical points. We use trilinear interpolation for 

a hexahedral cell in our pipeline, because hexahedral meshes are most commonly used 

for direct volume rendering of data given as samples on regular, rectilinear meshes. 

3.3.4 Computing Contour Trees 

As mentioned in Subsection 3.3.2, algorithms for computing contour tree have been 

widely investigated [104, 55, 117, 24, 83] for tetrahedral meshes using linear interpo

lation and hexahedral meshes using trilinear interpolation. Specially, Carr et a!. [24] 
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presented an efficient scheme to compute a contour tree in O(m + niogn) time com-
• plexity in any number of dimensions, where m is the number of simplices, and n is the 

number of vertices. This algorithm sets up the Contour Tree (CTr) through construct

ing two graphs individually, which are the Join Tree (JT) that represents the appearance 

and merging of isosurface components, and Split Tree (ST) that represents the disap

pearance and splitting of isosurface components. Then the JT and ST are merged to 

form the contour tree. Pascucci and Cole-Mclaughlin [82, 83] adapted the algorithm to 

handle cubic cells with a trilinear interpolation function. This algorithm is divided into 

three stages [82, 83]: 

• Sorting of the vertices in the field; 

• Computing the Join Tree JT and Split Tree ST; 

• Merging the JT with the ST to build the CTr. 

Each of the stage is covered in following subsections based on [82, 83]. 

Sorting Vertices 

The vertices of the mesh are ordered by increasing function value in O(nlogn) time 

using any standard sorting technique. It is important to note that the remainder of the 

algorithm relies on the assumption that there are no two vertices with the same function 

value. Typical input fields do not satisfy this assumption, therefore Pascucci and Cole

Mclaughlin [82] imposed a symbolic perturbation of the function values by replacing 
? ? 

the test f(v;) <.t(vJ) with the test i<.j. After sorting, this integer comparison solves 

consistently the ties when f( v;) = f( v 1). In the following the symbol i is also used for 

the node of CTr, JT or ST that corresponds to v;. 

Computing the JT and the ST 

The computation of the JT and ST is performed in two sweeps through the data in 

forward and reverse vertex order [82]. The sweep to compute the JT is conceptually 

simple: a join occurs when a vertex v has two higher-isovalued neighbors that belong 

to different connected components of x: f(x) > f(v). Algorithm I shows the computa

tion of the JT. The JT is built incrementally with a tree data-structure supporting the 

obvious functions NewTree(), AddNode(XT, i) and AddArc(XT, i, j). Implicitly the JT 
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tracks the history of the Union operations of a UnionFind [110] data structure over the 

set of vertices in the mesh with respectively increasing and decreasing function value. 

NewSet(UF,i) creates the new set {i}, with reference node i. If k belongs to the set 

i then Find(UF,k) returns i in constant time. Union(UF,i,j) redirects the pointers 

of all the elements in j to pointer to i, if i has larger cardinality than j (vice versa if 

Iii< lji).The Boolean function IsMin(ff, vi) returns true if vi is a local minimum in 

§ [82]. Each vertex vi is associated with two lists UpAdj, of incident edges (vi, vJ) 

with j > i, and DownAdj of incident edges (vi, VJ) with j < i. In this way, IsMin(ff, vi) 

can test in constant time if i is a minimum (DownAdj is empty) and the loop on line 7 

directly scans the elements of DownAdj. 

Algorithm 1: Computing the Join Tree(). 
input : vertices, edges 
output: JT 

1 JT = NewTree (); 
2 UF = NewUF (); 
3 for i = 0 to n - I do 
4 AddNode (JT, i); 
s iflsMin(ff,vi)then 
• L NewSet (U F, i); 

7 for each edge viv 1 with j < i do 
' s i +-Find (U F, i); 
' 9 j +-Find (U F, j); 

' ' 10 if i # j then 
11 L AddArc (JT, ;', /) ; 

' ' 12 Union (UF, i, j ); 

13 return JT; 

The routine SplitTree has the same structure as JoinTree. The only differences 

are as follows: (a) the main loop (line 3) in Algorithm I would scan the vertices in 

reverse order, (b) the if statement in line 5 would test IsMax instead of IsMin, and (c) 

the inner loop (line 7) would consider the edges (vi, v1) with j > i [82]. 

Merging the JT with the ST 

The third stage of the contour tree algorithm merges the join tree JT and split tree 

ST to obtain the contour tree CTr. Algorithm 2 illustrates the process of merging the 
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JT with ST to form the CTr. During this process, the upper leaves of the JT and the 

lower leaves of the ST are successively removed from both trees and added to the CTr. 

Consequently the data structure representing the JT and the ST supports the additional 

operations DelNode(XT, i) and Leaf(XT, i). DelNode(XT, i) removes the node i from 

XT while maintaining the consistency of XT by removing any arc ij and replacing any 

pair of arcs ij,ik with the arc jk. The Boolean function Leaf(XT,i) tests whether the 

node i is a leaf of XT. More specifically Leaf(JT, i) is true if the JT has no arc ij 

with j < i, and Leaf(ST, i) is true if the ST has no arc ij with j > i. GetAdj (XT, i) 

returns a vertex j if XT contains the arc ij. A queue data structure is used to store pairs 

[NodeName, TreeName] and is managed with the functions NewQ () (to create a queue), 

Get(Q) (to get a pair from the queue Q) and Put(Q, [i,XT]) (to add a pair to Q) [82]. 

Algorithm 2: Computing the ContourTree(). 

input : JT, ST 
output: CTr 

1 Q <-- NewQ (); 
2 CTr <-- NewTree (); 
3 for i = 0 to n - I do 
4 AddNode (CTr, i); 
5 if Leaf ( JT, i) then 
6 L Put (Q, [i,JT]); 

7 

I 
ifLeaf (ST,i)then 

8 L Put (Q, [i,ST]); 

9 while [i,XT] <--Get (Q) do 
10 j <-- GetAdj (XT, i); 
11 DelNode (ST, i); 
12 DelNode (JT, i); 
13 AddArc (CTr, ij); 
14 if Leaf (XT, j) then 
15 L Put(Q,[j,XT]); 

16 return CTr; 

The size of the CTr can be minimized by deleting any node that has exactly degree 

two with DelNode. This reduction to a minimal CTr can be done directly during the 

construction of the JT and ST. This makes the algorithm slightly more complicated but 

has the advantage of reducing the size of the intermediate storage [82). 
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3.3.5 Multi-Resolution Contour Trees 

As mentioned above, the contour tree of a scalar field is a graph obtained by contract

ing all the connected components of the level sets of the field into points. It has proven 

effective as a data structure for topological representation of data sets and as a user 

interface component guiding interactive data exploration sessions. In practice, these 

uses have been very limited due to the problem of presenting a graph that may be over

whelming in size. Topological simplification techniques help in relieving this problem 

by reducing the size of the graph. Topological simplification will be covered in later 

chapters. This subsection introduces a different data structure that is used to present 

contour trees: Pascucci et al. [84] introduced a multi-resolution data structure for rep

resenting contour trees and an algorithm for its construction. The hierarchical layout of 

contour trees allows coarse-to-fine rendering of the tree. 

Hierarchical Tree Representation 

Typically contour trees are represented as a list of nodes and a list of arcs, where each 

arc is defined as a node pair. Pascucci et al. [84] used an alternative - branch de

composition, where a branch is defined as a monotone path in the graph traversing a 

sequence of nodes with non-decreasing (or non-increasing) value of f. The first and 

last nodes in the sequence are called the endpoints of the branch. All other nodes are 

said to be interior to the branch. A set of branches is called a branch decomposition of 

a graph if every arc the graph appears in exactly one branch of the set. The standard 

representation of a graph satisfies this definition, where every branch is a single arc. 

A hierarchical decomposition of a contour tree is constructed with branches: the 

endpoints of each branch (except the root) represent a saddle-extremum pair that form 

an atomic component. Figure 3.6 illustrates an example of hierarchical decomposition 

of a contour tree. In this figure, the root branch Bo connects the two global extrema. 

The branches B2 and B3 pair two maxima with split saddles and can be canceled inde

pendently. B1 pairs a minimum with a join saddle and cannot be canceled before B3 

because of their parent-child relation. This simplification process defines a hierarchy of 

cancelations where a branch B1 is said to be the parent of branch B3 if one endpoint of 

B3 is interior to B I· The root branch has no parent and cannot be simplified. Removal 

of a parent before one of its children disconnects the tree. 
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Bo 

Figure 3.6: Hierarchical decomposition of a contour tree. 

Hierarchical Contour Trees 

Single resolution algorithm for computing a contour tree is described in the previous 

sections [24, 82], which builds the contour tree through computing the join tree and 

split tree. The multi-resolution contour tree is built using a similar approach but building 

directly a hierarchical decomposition of the contour tree, and based on branches. The 

resulting trees of the join tree and split tree are stored as branch decompositions. The 

leaves of the JT and ST are stored in a priority queue, which always provides access 

to the leaf branch with the lowest priority. The priority used in [84] is the length of a 

branch, it could also be volume. hypervolume [25], or their combinations [128]. The 

tree can be simplified by removing a branch that docs not disconnect the tree. Through 

changing the threshold of the priority of branches, the contour tree can be presented in 

multi-resolutions. 

3.4 Existing Contour Tree Simplification Solutions 

Topology simplification suppresses insignificant features by removing, or canceling, 

pairs of critical points that are considered unimportant according to a specified measure. 

Carr et al. [25, 26j simplified the contour tree with two basic operations: leaf pruning 

and node reduction. The scheme involves computation of several metrics that are used 

for ranking the "importance" of an arc before pruning. Leaf pruning removes a leaf and 

the arc incident to the leaf from the contour tree. Removing an arc from the contour tree 
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discards the corresponding contours from further consideration in the rendering process. 

Carr et a!. showed that when visualization methods other than isosurface extraction are 

used, data can be modified to match the topology of the simplified contour tree by 

"flattening" the corresponding region [122]. This property is useful when the contour 

tree is used for transfer function specification in volume rendering. Node reduction 

removes degree-two vertices without changing the essential structure of the contour 

tree. It does not affect the contours or values in the data set. Pruning and reduction are 

performed in an order that minimizes the error based on a local geometric measure with 

node reduction having priority over leaf pruning. The geometric measures used in the 

contour tree simplification include persistence, volume and hypervolume. 

Pascucci eta!. [84] presented a multi-resolution data structure for representing con

tour trees and a method for its construction (also see Section 3.3.5). The multi-resolution 

contour tree is computed directly from join and split trees and this guarantees that 

atomic simplification steps of the tree correspond to atomic reduction of proper pairs 

of critical points. The multi-resolution data structure uses branch decomposition, an 

efficient way for storing a hierarchy of contour tree simplifications. A priority queue 

is used to store the leaf branches of the join tree and split tree during construction of 

the multi-resolution contour tree. The priority for each branch in the scheme is the 

persistence (length) of the branch. The priority of a branch shows importance of the 

branch. A branch is defined by a pair of critical points: a saddle and an extremum that 

are connected by a monotone path. Each saddle-extremum pair corresponds to a topo

logical simplification, or cancellation, of critical points. Pascucci et a!. [85] also used 

persistence based simplification to eliminate insignificant saddle-extremum pairs from 

the Reeb graph. 

Takahashi et a!. [ 106] simplified the contour tree through computing the difference 

in scalar field between two nodes of different patterns, and then selecting one pattern to 

be discarded by finding the pair of nodes having the smallest difference. The number 

of simplification steps is controlled by a threshold that limits the acceptable difference. 

This simplification process is done one by one until no pattern can satisfy the given 

threshold. This process actually replaces three edges at a saddle point with a single 

new edge, based on the height of the edge [25]. Takahashi et al. [1051 simplified the 

contour tree by pruning leaves to determine the "most important" isovalues for transfer 

functions. In choosing which leaves to prune, the authors define a new weight value. 

The new weight value is the product of the volume swept by the isosurface component 
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on the !'>ubtree that is discarded and the difference in the scalar field between critical end 

points of the subtree. It is used as an importance measure to simplify the contour tree. 

Saddles are processed until only a few of them remain. 

In a word, previous work on contour tree simplification is based on importance of 

arcs/branches. Various measures of importance are used. Each measure has its advan

tages in identifying specific topological features. One of the common points of previ

ous work is that they utilize single measure of importance in a topology simplification 

pipeline. We strongly believe that approp1iate integration of various measures of im

portance will produce a better topology simplification and will be covered in Chapter 4. 

3.5 Contour Tree-Defined Volume Segmentation 

Since the concept of flexible isosurface [24, 25] supports independent manipulation of 

single contours, Takahashi et al. [I 03] introduced contour tree-based volume segmen

tation in volume rendering. An individual contour is mapped to a point in the contour 

tree. Similarly, each arc of the contour tree represents the union of all contours which 

are mapped to points on the arc. This union can be thought of as the volume being swept 

out by the contour as its isovalue is varied, starting at the critical value which creates 

the contour, and ending at the value which destroys it. This sweep defines a partition 

of the space into topologically distinct regions, which are referred to as topological 

zones. Weber et al. [122] extended this idea in volume rendering to index individual 

subregions by branches of the contour tree and apply transfer functions to subregions 

independently. 

Figure 3.7 [122] is an example of a segmentation defined by a contour tree, where 

(a) is a terrain data set showing topological zone segmentation, (b) is the contour tree 

of the terrain with color-encoded edges corresponding to topological zones in (a), (c) is 

the terrain data set showing topological zone segmentation for branch decomposition, 

and (d) is branch decomposition of contour tree of the terrain with color-encoded edges 

corresponding to topological zones in (c). 

From this example, we see that the branch decomposition segments and indexes 

each subregion of the data set topologically. Weber et al. [ 122] used this idea in vol

ume rendering and proposed a volume rendering framework which classifies volume 

data based on the contour tree and assigns unique transfer function to each subregion 
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Figure 3.7: Example of a segmentation defined by a contour tree [ 122]. 

corresponding to a branch of the contour tree. 

Compared with the general contour tree, the advantages of the branch decomposi

tion include: 

• Provide a hierarchical representation of the contour tree. A hierarchical multi

resolution representation of the contour tree allows linear time access simplified 

representations of the topology. 

• Avoid an "over-segmentation" of the volume [122]. While having a topological 

zone per contour family with equivalent topology is useful, it does not take into 

account that a segmentation is only necessary if regions overlap in value range. 

The branch decomposition naturally concatenates a sequence of arcs into a sin

gle unit, see Figure 3.7(d), unifying their topological zones into a single zone, 

see Figure 3.7(c). Furthermore, branch decomposition permits user interactions 

on a coarse, simplified tree and propagating transfer functions down to the full 

resolution tree. 

• There are less branches in the branch decomposition than arcs in the general 

contour tree. 

This thesis uses branch decomposition to index subregions of volume data set and 

automatically generate transfer functions for various subregions, which is covered in 

Chapter 6. 
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3.6 Contour Trees in Visualization 

As a data structure to record topological events, the contour tree has been used to fast 

extract isosurfaces [117, 24], to guide mesh simplification [29], to find important iso

values for transfer function generations [106, 107], to compute topological parameters 

of isosurfaces [59], as an abstract representation of scalar fields [9], and to manipulate 

individual contours [24]. This section mainly reviews applications of the contour tree 

in visualization, especially in providing topological information of a scalar field, iso

surface extraction and simplification, depiction of inclusion relationships, and transfer 

function design in volume rendering. 

3.6.1 Topological Representation of Scalar Field 

The purpose of the visualization is to aid the user in understanding the structure of the 

data [115]. Common methods for visualizing scalar fields detect structures and present 

a display to users which communicates these structures. This makes users infer the 

global scalar structure from what is frequently an insufficient display of information. 

Bajaj et al. [9] introduced an interface called the contour spectrum, where properties 

such as isosurface area, enclosed volume and the contour tree were plotted alongside 

isosurfaces in order to provide users with additional cues. This kind of presentation 

enforces the topological information of a scalar field. Bajaj and Pascucci [10] also 

presented isocontours of a scalar field along with the critical points and topology graph. 

Contours are used to display the exact shape of an object in a scalar field, while the 

topology graph attempts to show the relations among all such objects in the field. It does 

not give the details of shapes of particular objects. The topological information serves to 

both provide information which is not available in commonly used scalar visualization 

techniques, and enhance the information provided by common visualization techniques. 

3.6.2 Isosurface Extraction and Simplification 

van Kreveld et al. [ 117] used the contour tree to obtain seed sets for isosurface traver

sal. The size of the seed sets is provably small. This kind of seed sets is efficient for 

the isosurface traversal. Carr and Snoeyink [24] extended the minimal seed sets of van 

Kreveld et al. [ 117] with path seeds. The path seeds generate paths based on the con

tour tree by associating seed cells with individual contours, using the contour tree as a 
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visual index to the contours. This association underpins the flexible isosurface interface 

in which individual contours are treated as distinct entities. Since this concept supports 

independent manipulation of single contours, it imports a notion of spatial locality to 

the task of extracting surfaces from a scalar field. Individual contours can be deleted 

(allowing a user to view otherwise obscured portions of an isosurface), rendered in 

different colors, or evolved to new isovalues without affecting other contours. As a mo

tivating example, the authors showed a CT data set of a head, and used the contour tree 

to display a contour representing the brain without displaying the contour representing 

the skull at the same isovalue [122]. Carr eta!. [25] used local geometric measures 

to simplify flexible isosurfaces based on the contour tree. Local geometric measures 

such as surface area and contained volume are defined for individual contours. These 

local geometric measures are then used to simplify the contour trees, suppressing minor 

topological features of the data. A flexible isosurface interface is then combined with 

these measures to explore individual contours of a data set. 

As mentioned in Section 3.3.5, Pascucci eta!. [84] presented a multi-resolution data 

structure, branch decomposition, to represent contour trees and an algorithm for its con

struction. This data structure provides a hierarchical layout that allows coarse-to-fine 

rendering of the tree in a progressive user interface. The multi-resolution contour tree 

is computed directly from join and split trees and this guarantees that atomic simplifica

tion steps of the tree correspond to atomic reduction of proper pairs of critical points. A 

priority queue is used to store the leaf branches of the join tree and split tree during con

struction of the multi-resolution contour tree. A branch is defined by a pair of critical 

points: a saddle and an extremum that are connected by a monotone path. Each saddle

extremum pair corresponds to a topological simplification, or cancelation, of critical 

points. Pruning a branch from the branch decomposition is equivalent to performing a 

vertex pruning operation in the scheme of Carr eta!. [25, 122]. 

More details of the contour tree simplification is covered in Chapter 4. This the

sis sets up the contour tree simplification pipeline based on the bran~h decomposition. 

However, we extend measures of importance and propose a combined approach to sim

plify the contour tree in order to make full use of the advantages of different measures 

of importance at the same time. 
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3.6.3 Depiction of Inclusion Relationship 

Boyell and Ruston [ 13] created the contour tree to represent the nesting relationship of 

a set of polygonal contours manually converted from a topographic map. An "outside" 

region is designated that encloses everything, and nodes representing contours are added 

to the tree one at a time. Because there is a well-defined outside region, each contour 

has a distinct inside and outside, and the node for each contour is connected to the node 

for the contour immediately outside it. But no details were provided on the mechanics 

of the construction, which may have been manual [22j. 

Takahashi et al. [ 1 07] presented an algorithm to extract view-independent nested 

structures. i.e .. isosurface inclusion relationships, without multidirectional ray inter

section tests. The method distinguishes the specific type of topological transition in 

isosurfaces that yields inclusion relations between their connected components. They 

classified isosurface transitions at saddles into four types as shown in Figure 3.8. In 

these isosurface transition types, only the type (b) in Figure 3.8 introduces isosurface 

inclusion relationships. Here, a new inclusion relationship appears when the saddle is 

C1 (from right to left), and an existing inclusion relationship dissolves when the saddle 

is C2 (from left to right) when decreasing the corresponding scalar field value. 
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Figure 3.8: Classification of isosurface transitions at saddles depending on embedding 
in 30 space (C1 and C2 are saddle types) [107]. 

Takahashi ct at. classified evolving isosurfaccs into two categories: solid isosurfaccs 
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Figure 3.9: A new inclusion relationship appears at a saddle shown in (a). and an exist
ing inclusion relationship dissolves at a saddle shown in (b). 

where their interior samples are larger in the scalar field than those on the corresponding 

isosurfaces, and hollow isosurfaces where the interior is smaller. This implies that solid 

isosurfaces always expand as the scalar field value decreases while hollow isosurfaces 

always shrink. In order to extract the inclusion relationships, each link incident to a 

saddle node in volume skeleton tree in [I 071 is then identified as solid or hollow region. 

[I 07] concludes that a new inclusion relationship only occurs around a saddle node 

which has attribute configurations as shown in Figure 3.9. So the inclusion relationships 

in the data set can be obtained through tracing saddle nodes and identifying types of 

saddle nodes as shown in Figure 3.9 in the volume skeleton tree. 

On the other hand, several excellent algorithms have been proposed to detect view

dependent features such as object occlusions. For example. Schaufler et al. [94] pro

posed a method of calculating conservative volumetric visibility, while Klosowski et 

al. [62] presented an approximate visibility culling technique. Cohen-Or et al. [30] 

made a deep survey of the visibility problems. Other solutions include depth peel

ing [12. 19], focus+context [121, 69], or focal region based approach [127]. 

The inclusion relationship analysis in this thesis uses the results from Takahashi 

et al. [I 07] and overcomes disadvantages of inclusion relationship analysis based on 

the general contour tree. This thesis also analyzes other topological relationships, e.g. 

neighboring relationship, based on the contour tree. 
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3.6.4 Transfer Function Design in Volume Rendering 

A transfer function is used to classify scalar samples in a data set. It is one of the 

important techniques in volume rendering. Original approaches for volume rendering 

consider the scalar value and its derivatives as parameters to classify samples [71, 64], 

while still applying the same transfer function uniformly throughout the domain. 

Takeshima et al. [108] and Takahashi et al. [106, 107) described how to auto

mate transfer function design by using the volume skeleton tree to detect isovalues 

where major changes in isosurface topology occurred, then emphasizing those isoval

ues. Takeshima et al. [108] also derived isosurface-trajectory distance, which describes 

closeness between any two of the isosurface components, from the volume skeleton 

tree. The isosurface-trajectory distance is then used as the second dimension of opacity 

transfer function besides the scalar value as the first dimension. This transfer function is 

used to trail symmetric isosurface trajectories. Takeshima et al. [108] and Takahashi et 

al. [I 06, I 07) employed the inclusion information encoded in the volume skeleton tree 

and add another second dimension of "inclusion level" into the opacity transfer function 

to depict inclusion relationship in volume rendering. 

Since the concept of flexible isosurface [24, 25) supports independent manipulation 

of single contours, the contour tree can be used as a visual index to segment data set into 

different zones/regions. As shown in Figure 3.7, every region in the data corresponding 

to a branch in the contour tree is differentiated using different colors. Weber et al. [ 122] 

extended this idea into volume rendering and proposed a volume rendering framework 

which classifies volume data based on the contour tree and assigns a unique transfer 

function to each subvolume corresponding to a branch of the contour tree. 

The transfer function generation approach proposed in Chapter 6 in this thesis is 

based on the framework presented in [122), and incorporates the information of in

clusion relationships into the pipeline to automatically generate transfer functions for 

various subregions. 

In summary, the contour tree plays the following roles in volume visualization. First, 

it provides topological attributes of a scalar field, which are not directly obtained from 

conventional rendering techniques. Second, the contour tree generates a minimal seed 

set for efficient isosurface extraction and simplification. Third, it encodes inclusion 

relationships in a data set and guides users to depict inclusion relationships in volume 
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rendering. Forth, it provides a user interface to segment and render each individual con

nected component during data analysis. This property is significant in transfer function 

generations in volume rendering. 

3.7 Summary 

This chapter provided fundamentals of the contour tree, giving preliminaries used to 

define the contour tree. Three typical topological abstraction techniques were investi

gated, and particularly focused on the data structure of the contour tree. The state of the 

art of research on contour trees were reported and algorithms for computing contour 

trees were reviewed. Typical applications of contour trees in visualization were also 

presented in order to demonstrate potentials of contour trees in volume rendering. 



Chapter 4 

Multiple Measures of Importance for 

Contour Tree Simplification 

As presented in Chapter 3, contour trees have wide applications in visualization from 

representing topology of scalar fields to defining transfer functions in volume rendering. 

However, real-world data sets produce unmanageably large contour trees because of 

noise or artifacts during the acquisition process. This makes contour trees be unpractical 

and limits their uses in data analysis. Contour Tree Simplification (CTS) is often used 

as a necessary step to remove branches with small importance values in contour trees, 

and maintain essential structure of data. 

This chapter compares previous contour tree simplification approaches, and pro

poses an importance-driven CTS approach. The proposed approach combines multiple 

measures of importance through the introduction of various concepts to maximize the 

advantages of each measure of importance. In the attribute space, various attributes 

(measures) of a branch are organized in a single space. The concept of the importance 

triangle is proposed to evaluate the importance of a branch by size of the importance 

triangle in the attribute space. It considers the whole attribute space and gives a better 

evaluation of the importance of branch, instead of limited space used by conventional 

approaches during the CTS. Finally, importance of branches is compared in the impor

tance space during the CTS. The contributions of this chapter are as follows: 

• A concept of attribute space is proposed to organize various attributes of a branch 

in a single space. As a result, the importance of various branches can be compared 

in an importance space during the CTS. 
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• A concept of importance triangle is proposed to evaluate the importance of branches, 

which can make full use of advantages of multiple measures simultaneously. 

• A single simplification threshold considers multiple measures of importance si

multaneously and allow users to manipulate thresholds more meaningfully and 

efficiently during the CTS process. 

4.1 Introduction 

Topology has been an important tool for analyzing scalar data and flow fields in vi

sualization. As one of the topological abstractions of a scalar field, the contour tree 

represents the nesting relationships of connected components of isosurfaces. It allows 

a user to highlight the direct correlation of object parts (e.g. anatomic parts in medical 

data) with single branches in the contour tree. It has wide applications as reviewed in 

Section 3.6 in visualization and other fields. 

However, the contour tree is vulnerable to noise and artifacts in the input data. Many 

real-world data sets produce unmanageably large contour trees because of noise and ar

tifacts from a data acquisition process. Small details, in particular noise, cause the 

contour tree size to increase. As a result, the contour tree for a large data set can have 

millions of edges. This makes it difficult to recognize edges that correspond to objects 

of interest. The edges of interest may be suppressed. This results in the contour tree 

being impractical as an abstraction of acquired data, either for automatic processing, 

or for direct human-guided visualization. The CTS would remove branches that are 

unimportant, while making the size of tree small enough for user interaction and main

tain the essential structure of the data. The CTS performs two operations [25, 26]: leaf 

pruning and node reduction. Leaf pruning removes topology (removes "structure" re

sulting in changing its topology) from the field (and the tree) by selecting a leaf node of 

low importance and removing it. While node reduction eliminates connectivity between 

regular points from the contour tree, leaving the topology unchanged. 

Existing solutions of the CTS are investigated in Section 3.4. The CTS often uses a 

measure of importance to evaluate various branches in the contour trea and then simplify 

it. There are various measures and types of importance for a given branch in the contour 

tree. The selection and use of appropriate different measures of importance is critical 

for the effective contour tree simplification. Despite multiple measures of importance 
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currently existing [84, 25, 26], conventional CTS approaches still have the following 

problems: 

• They often use single measure of importance to evaluate importance of branches. 

Because various measures of importance emphasize different features of data sets, 

it is obvious that single measure of importance is not enough in evaluating impor

tance of branches; 

• To determine a region that preserved branches located in the attribute space, a 

user has to estimate multiple linear discriminating functions. 

In this chapter, we propose an importance-driven approach for the CTS. The pro

posed approach uses multiple measures of importance through introducing concepts 

of attribute space, importance triangle and importance space into the CTS pipeline. It 

maximizes advantages of each measure of importance. Interfaces are provided to allow 

users to interact with branches more meaningfully and efficiently. The objective of this 

chapter is to deliver an improved approach to the use of importance measures, in order 

to make full use of advantages of multiple measures of importance simultaneously and 

improve the CTS efficiency. The importance-driven CTS has advantages: it considers 

the whole attribute space, instead of the limited attribute space used by conventional 

approaches. This gives a better evaluation of the importance of a branch. The proposed 

approach can be generalized to process branches with more than three measures. 

4.2 A Glance of Topological Simplification 

Topological features of a field are characterized by its critical points. However, a typical 

scalar field has noise or artifacts from acquisition process. Critical point analysis on 

such a function relies on topological simplification, i.e., the ability to identify which 

critical points represent actual features, and selectively removing those that do not. To 

simplify, the topological simplification is applied to a univariate function f as shown 

in Figure 4.1 [48]. Critical points (maxima and minima) off partition the domain 

into monotonic regions. This partition is stored as a graph whose nodes are the critical 

points of f and edges represent the monotonic curves. Pairs of critical points identify 

topological features of the function. The size of each feature is defined as the absolute 

difference in function value between the two critical points and is called the persistence 
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of the critical pair. The smaller-sized features are not significant, probably due to noise 

in the data, and can be removed explicitly to obtain a global view of the function . 

Removal of critical pairs can be implemented in a purely combinatorial fashion by 

updating the graph representation of the partition [48]. 

(a) 

(c) 

~ 
~ 

(b) 

Figure 4.1: Multi-scale analysis of a univariate function. (a) Visualization of the func
tion. (b) Critical points of the function partition the domain into monotonic regions. 
Pairs of critical points identify features, whose sizes are equal to the difference in func
tion value of the critical points. (c) Small-sized monotonic regions are explicitly iden
tified and removed, leaving behind the "significant" features [48]. 

Meaningful and important features of a given function are not always captured by 

the notion of persistence. For example, extrema with function values within a given 

range may correspond to relevant features, and in this case simplification should leave 

these extrema unaffected. Therefore, analysis of the critical point pairs and arcs of the 

topology can lead to better understanding of actual locations of features, and where to 

apply topological simplification [48]. 

4.3 Basics of Contour Tree Simplification 

To help understand the details of the CTS, this section introduces the data structure of 

the contour tree and basic simplification operations on the CTS. 
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4.3.1 Contour Tree Structure 

Typically, the contour tree is represented as a list of nodes and a list of arcs, where each 

arc is defined as a node pair. The nodes of the contour tree correspond to critical points 

of a scalar field and are therefore associated with their critical values. Furthermore, 

nodes that correspond to extrema are leaf nodes, and nodes that correspond to saddle 

points are related to genus changes. Pascucci et al. [84] used an alternative branch 

decomposition where a branch is defined as a monotone path in the graph traversing 

a sequence of nodes with non-decreasing (or nonincreasing) value of the scalar field. 

A set of branches is called a branch decomposition of a graph if every arc the graph 

appears is exactly one branch of the set. Given a scalar field and its contour tree, a 

graph simplification algorithm is applied to the contour tree. Then this simplification 

is carried back to simplify the input data. Alternatively, the simplified contour tree and 

the simplified data can be used to design transfer functions or extract objects. 

In this thesis, we assume that each arc or branch of the contour tree has a simplifi

cation measure (weight) that is used to indicate the arc/branch's importance. Lower im

portance arcs/branches are good candidates to be removed during simplification. Based 

on this idea, we store the following values in the contour tree structure: 

• Scalar value of each critical point. 

• Arc/branch pair information. 

• Arc/branch's basic priority (importance) value, e.g. persistence, volume and hy

pervolume. 

4.3.2 Basic Simplification Operations 

The basic simplification operations used in this thesis are based on topology simplifica

tion methods introduced by Takahashi et al. [105, 106], Pascucci et al. [84], and Carr et 

al. [25]. We do similar basic simplification operations as in [25, 84]: leaf pruning and 

node reduction. Similar to the approach used in [84], we use a priority queue to keep 

track of the arcs/branches of the tree with their associated priority. The priority of each 

arc/branch is equal to its importance value. We also use the data structure of the branch 

decomposition in the contour tree simplification pipeline. The difference between our 

operations and the operations in [25, 84] is that our operations prune leaves based on 
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combinations of various measures of importance. This is covered in the following sec

tions. 

4.4 Concept of Importance 

In the contour tree, each arc/branch corresponds to a region in the data domain. The 

importance of each region can be depicted using different measures. These measures are 

then used to drive the contour tree simplification process. This section covers detailed 

definitions of measures of importance. 

4.4.1 Definition oflmportance 

In the Merriam-Webster dictionary [3], importance is defined as follows: Importance 

means a quality or aspect having great worth or significance. It implies a value judgment 

of the superior worth or influence of something or someone. It describes the quality 

(positive or negative) that renders something desirable or valuable, and worthy of note. 

In this chapter, we define importance as follows: Importance suggests an evaluation 

or judgment of significance of an object in a data set. It describes the quality that 

renders an object desirable or valuable, and worthy of note in visualization. This quality 

is represented by some measures that evaluate the degree of an object which draws 

attention to viewers in visualization. In the CTS, importance is a simplification value 

that indicates the branch's significance. Branches with lower importance are candidates 

to be removed during the CTS. This chapter focuses on effective uses of measures that 

are used to evaluate importance of branches. 

4.4.2 Evaluation of Importance 

Object importance describes priority of each object within the volume data. It is a pos

itive scalar value, which is constant for the whole object. The importance of one object 

is related to different features of the scalar field depending on applications, such as 

scalar value, size, position and their combinations. In the contour tree, each arc/branch 

represents a region or object within the volume data. Arc/branch's importance is related 

to these factors: volume, hypervolume, position, persistence. In our approach, we focus 

on following measures based on the data properties: 
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• Persistence 

• Volume 

• Hypervolume 

The persistence of a pair of critical points that are simplified is equal to the absolute 

difference in their function values. Volume is the voxel count of the region enclosed by 

the isosurface, and hypervolume is the integral of the scalar field f over the enclosed 

region R. Persistence, volume and hypervolume are derived from the dataset itself. Carr 

et al. [25] and Gyulassy et al. [49, 48] consider that these measures are linear to their 

relative importance values. We use p, v and hv to represent persistence, volume and 

hypervolume respectively, and are computed as follows: 

P = lf(Xexrreme)- f(xsaddte)l,x E R, 

v=j dx, 
xER 

hv=j f(x)dx. 
xER 

(4.1) 

(4.2) 

(4.3) 

where f is the scalar field to be analyzed, Xext"me and X saddle are extreme and saddle 

values of the scalar field respectively, R is the region that the current edge represents. 

When we think of the scalar value of each voxel as the mass of that voxel, the im

portance described by hypervolume is based on the mass of the region corresponding to 

a branch, i.e. what the weight of a branch is. While persistence describes importance 

based on the number of steps of the sweep for which a feature retains its topological 

uniqueness, volume describes the importance based on the size of the region corre

sponding to a branch. Obviously, various measures describe the importance of a branch 

from different physical aspects. 

From the importance's point of view, these measures are different descriptors of 

importance for a branch. For example, given two branches b1 and b2 with same p and v, 

!max= 100, [min= 2, VI = vz =50, PI= pz = 100-2 = 98. There are 49 voxels whose 

scalar value is 100 and I voxel whose scalar value is 2 in b1, while there are 49 voxels 

whose scalar value is 2 and I voxel whose scalar value is 100 in bz. In this case, we get 

hv1 = 4902, hv2 = 198. From this example, we see that persistence and volume cannot 
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decide hypervolume uniquely. Hypervolume is an independent measure of importance 

from the importance's point of view. 

Meaningful and important features of a 3D scalar field are not always captured by 

the notion of persistence. This is also true for volume and hypervolume. For example, 

an object with small scalar values may have large spatial extent. In this case, if the 

measures of persistence and hypervolume are used, the branch corresponding to this 

object may be removed during the contour tree simplification. But when the measure 

of volume is used, the branch may be preserved. Table 4.1 compares three measures of 

importance. Through the comparison, we see that each measure of importance cannot 

uniquely and effectively depict a contour or region. So the contour tree simplification 

based on a single importance measure is not enough for an effective simplification. 

Different measures of importance need to be combined together to more accurately 

depict the importance of objects. 

Table 4.1: Comparison of various measures of importance 

Measure type Persistence Volume Hypervolume 
How to absolute difference voxel count integral of the 
compute of scalar values scalar field 

over a region 
Typical structure large difference in objects with large objects with high 
of interest with intensity relative spatial extent intensity and large 
high values to surroundings, spatial extent 

e.g.skull, vessels 
Unwanted noise, objects with large objects with high 
objects with artifacts spatial extent and intensity and small 
high values low intensity spatial extent, e.g. 

values noise, artifacts 

Cases of small objects with objects with small objects with small 
values low intensity spatial extent, e.g. spatial extent or 

values noise, artifacts low intensity values 
Advantages highlight high- highlight objects preserve small 

contrast objects with large persistence features, 
spatial extent eliminate apparent 

noise and artifacts 
Disadvantages easily to suppress easily to suppress high-iqtensity 

large objects with small objects noise or artifacts 
limited ranges of with large may be preserved 
voxel intensity intensity values as objects 
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The contributions of different measures of importance for the final importance value 

are different. The fi'nal importance value I is expressed as: 

I = g (p. v, lzv). (4.4) 

where g is the function used to combine different measures of importance. 

4.5 Importance-Driven Contour Tree Simplification 

As mentioned, there are various measures of importance for a given branch in the con

tour tree. The selection and use of appropriate measures of importance is significant for 

the effective CTS. This section presents an impm1ance-driven approach, which com

bines multiple measures of importance to make full use of their advantages in the CTS 

pipeline. 

Solution 

Stmphlicau~ 
Attribute space, ~olutoon 

I mportancc triangle. 
Importance space 

AimofCT Properties of branches 
simplification to be removed 

Remove branches lntcrprctnuon Small persistence, 
corresponding I :> small volume, and 

to noise small hypervolume 

Figure 4.2: The principle of the contour tree simplification. Beginning from the aim, 
the CTS process first gets properties of branches to be removed by interpretation. Based 
on properties of branches, a solution is proposed. The contour tree is then simplified 
using the presented solution. 

Usually, noise is characterized by its small persistence, small volume and small hy

pervolume in data sets. Therefore, we aim to remove branches with small persistence, 

small volume and small hypervolume in the CTS process. The principle of the CTS is 

shown in Figure 4.2. The concepts of attribute space, importance triangle and impor

tance space are introduced into the pipeline. The concept of attribute space organizes 

all attributes (measures) of branches in one space, the concept of importance triangle 

is used to evaluate the importance value of each branch based on multiple measures of 

importance, and the concept of importance space compares importance of all branches 
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in one space. Figure 4.3 shows the process of importance evaluation in the importance

driven contour tree ~implification. Various measures of importance are firstly repre

sented in the attribute space. Then the importance triangle is used to map multiple 

measures of importance onto one value. The new impot1ance values of branches are 

compared in the importance space to make simplification decisions. The details of each 

part will be covered in the later subsections. 

, , 
~,,' 

hv 

C lv. _ 
,/ 

--------.... ,, 
,' I 

Branch node , , 
·------ -·· ' I 
I 
I 

: 0 ,' \' 
I , 

I ,' 
I I ' 

A'-------------~'' p, 
p 

Attribute space 

hv 

Importance 

~-~~ 

Importance triangle 

For all branches, 

I, = g(p,, v, ,hv, ) 
i= 1.-··,N 

Importance space 

Figure 4.3: The pipeline of importance evaluation in the importance-driven contour tree 
simplification. 

4.5.1 Concept of Attribute Space 

We consider three measures of importance in the CTS: persistence, volume and hy

pervolume. The goal of our approach is to combine three measures of importance to 

evaluate the importance of a branch, trying to keep advantages and minimize disadvan

tages of each measure during the CTS. In other words, we need to find a solution to the 

function g stated in Section 4.4. So this problem can be expressed as follows: suppose 

that we have N branches in the contour tree, each branch has a property field which 

stores a 3-dimensional vector representing three importance measures of persistence, 

volume and hypervolume. These N vectors are represented as M;, i = I , .... N. We need 

to find a mapping which maps a 3-dimensional vector M; of importance measures onto 

a scalar value. The importance measure vector is represented as: 

M ,= (4.5) 
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In order to allow the use of measures of importance with various units together in a 
• single pipeline, this chapter introduces an abstract space - attribute space - into the 

CTS pipeline. In the attribute space, each measure of importance is represented with 

an axis in the 3D Cartesian coordinate system as shown in the left figure of Figure 4.3. 

Importance values on each axis are represented with a single unit - relative impor

tance. The relative importance is used to show the importance of one branch relative 

to the branch with the peak importance value in the contour tree. In this way, despite 

each measure of importance having different unit, the abstract level of relative impor

tance evaluates different measures of importance using a single unit. So the relative 

importance can be used to evaluate the combination of various measures of importance 

in one space. In the attribute space, a node is used to represent a branch with specific 

persistence, volume and hypervolume as shown in Figure 4.3. 

4.5.2 Concept of Importance Triangle and Importance Space 

As mentioned, we need to evaluate a new importance value for each branch based on 

components of M;. In order to solve this problem, we represent M; in the attribute space 

as shown in Figure 4.4, where the coordinates of points A, Band Care (p;, 0, 0), (0, v;, 0) 

and (0, O,hv;) respectively. A triangle MBC is then set up to represent the vector M;. In 

this way, each vector M; is mapped to a unique triangle MBC. This triangle is named 

Importance Triangle (!Tri). 

In the !Tri, because the volume of the tetrahedra OABC (see Figure 4.4) is pro

portional to the product of p;, v; and hv;, the final volume would be zero if any one 

of three measures is zero. If it is used to evaluate the importance of a branch based 

on multiple measures, the final value of importance of a branch would be zero if any 

one of its measures is zero. This property does not meet practical requirements on im

portance evaluation of branches, for example, some branches with two of measures of 

importance being non-zero may be preserved (i.e., the final importance value should be 

non-zero). So the concept of importance area is used to evaluate the importance of a 

branch in the CTS. The importance area is the area of the triangles formed by any two 

measures of importance as shown in Figure 4.4. Because the area of triangles in the 

tetrahedron OABC has the relation as shown in Equation 4.6 [43, 88], we use the area 
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hv 

p 

Figure 4.4: Importance triangle. 

of the importance triangle MBC as the final value of relative importance in the CTS: 

(4.6) 

where Sis the area of various triangles. The size (area) of ITri is computed with Equa

tion 4.7: 

I I I~ ~II I J 2 2 2 5; = 2 AB x AC = 2 (hv;·p; ) +(v; · p; ) + (hv;·v;). (4.7) 

I, =S;, (4.8) 

where S; is the area of !Tri of the ith branch in the contour tree. The final importance 

value of the ith branch I; is defined to be equal to S; as shown in Equation 4.8. Because 

I; is based on the size of ITri, we call this measure of importance !Tri. As mentioned, 

branches with small p;. v, and hv; correspond to noise physically in the data space, 

where S; is also small according to Equation 4.7. Therefore, !Tri provides a method to 

evaluate importance of branches based on multiple measures of impo!1ance. Physically, 

it focuses on applying small importance values to branches with small p;, v; and hv;, 

which correspond to noise in data sets and will be removed during the CTS. 

From Equation 4 .7, we get following conclusions: 
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• If one of the values of Pi, vi and hvi is-> 0 (where"-> 0" means "close to zero"), 
• the final importance value /i depends on values of other two measures. This im-

plies that even if one measure of importance is -> 0, the branch will still be pre

served when the other two measures are large enough during the simplification. 

However, if a single measure is used in the pipeline, the branch will be removed 

when the measure is -> 0. 

• If two values of Pi, vi and hvi are -> 0, the value of Ii is -> 0. There are three 

special cases for this situation: I) Pi = 0, vi = 0 and hvi i= 0; 2)pi = 0, Vi i= 0 

and hvi = 0; 3) Pi i= 0, vi= 0 and hvi = 0. The first and third case are physically 

impossible because a region with zero-volume does not exist. In the second case, 

scalar value of voxels corresponding to the current branch should be zero to meet 

these conditions. This zero-value region is meaningless physically in most cases 

in understanding the data set. So we do not need to consider this situation. 

• In practical applications, users often have such requirement: the persistence, vol

ume and hypervolume of preserved branches need to be greater than a specific 

threshold respectively in order to get a meaningful simplification. Equation 4.7 

consider three measures simultaneously, this means that the proposed approach 

directly meets the user requirements. But if a single measure is used in the sim

plification pipeline, it is not possible to consider multiple measures at the same 

time. 

These properties exhibit advantages compared with conventional CTS approaches 

using a single measure. 

In general, if the ith branch has n measures miJ (j =I, ... ,n) of importance in the 

contour tree, the importance measure vector becomes an n-dimensional vector. In this 

case, the area of !Tri used in the case of 3-dimensional measure vector is extended to 

the concept of the area of the hypotenuse face [88] in the case of an n-dimensional 

vector. The area of the hypotenuse face is used to evaluate contribution of all measure 

variables mij (j = I, ... , n) of the ith branch to the final importance value of this branch 

and computed with Equation 4.9: 

li = _I 
n-1 

n n 

L I1 m7r 
k=l j=lj# 

(4.9) 
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After getting the importance value I; of each branch, importance values of all branches 

based on the concept of importance area are compared in one space - the importance 

space. The concept of importance space organizes all branches in one space, and allows 

to compare the importance of branches based on multiple measures of importance. In 

the importance space, a threshold I, is used to control the simplification level: a branch 

that has larger importance value of I; than the specified threshold I, is removed during 

the CTS as represented with Inequation 4.10: 

(4.10) 

4.5.3 Comparison of /Tri and Conventional Approaches 

ITri shows advantages in the CTS compared with conventional approaches. This sub

section compares ITri with conventional approaches in three aspects: importance value, 

regions of preserved branches, and threshold in the importance space. 

In the tetrahedron formed from various measures of importance as shown in Fig

ure 4.4, if methods such as weighted summation of various measures of importance (as 

shown in Equation 4.11) are used to get the importance value in the CTS, the final im

portance value corresponds to the summation of the length of three lines OD, OE and 

OF in the importance space as shown in Figure 4.4. If a single measure of importance 

is used, the importance value corresponds to the length of the line of OA, OB, or OC in 

the importance space. 

( 4.11) 

where kp, kv and kh are weighting coefficients. It is obvious that these conventional 

methods only consider part of the attribute space in the CTS pipeline. Compared with 

conventional methods, the final importance value of our approach corresponds to area 

of triangles instead of the length of lines. It considers the whole attribute space and 

gives a better evaluation on the importance of branch during the CTS. 

Figure 4.5 is a 2D diagram to show comparison of ITri and persistence as measures 

of importance in the CTS. In this figure, the red curve represents the threshold I, where 

ITri is used as the measure of importance in the CTS, and the vertical blue line rep

resents the threshold p, where persistence p is used as measure of importance in the 

CTS. When ITri is used in the CTS, branch nodes positioned on the top side of the red 
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v 
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Figure 4.5: The comparison of ITri and persistence in the CTS. 
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curve (i.e .. the region C and D) are preserved while ones below the red curve (i.e., the 

region A and B) are removed. By contrast, if persistence is used as a single measure of 

importance in the CTS, branch nodes positioned on the right side of the blue line (i.e., 

the region A and D) are preserved while ones on the left side of the blue line (i.e., the 

region B and C) are removed during the simplification. The difference between ITri 

and persistence is obvious: persistence removes branches in the region C which are 

considered as branches of interest by ITri, while it preserves branches in the region A 

which are considered as noise by !Tri. Despite persistence of branches in the region 

C being smaller than p1, they are possibly branches of interest considering their corre

sponding volume and hypervolume. Similarly, despite persistence of branches in the 

region A being larger than p1, they are possibly noise considering their corresponding 

volume and hypervolume. ITri balances these considerations and simplify the contour 

tree more effectively. The difference between !Tri and volume or hypervolume in the 

CTS is similar with the difference between ITri and persistence. 

Figure 4.6 shows a set of threshold curves with different /1 in the importance space 

in a 2D diagram. 11 is increased from bottom left to top right in this figure. From 

these curves we see that persistence, volume and hypervolume of preserved branches 

are increased accordingly with the increase of 11 (we only show persistence and volume 
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Figure 4.6: A set of threshold curves of I, with different I, in a two-dimensional case. 

in Figure 4.6 in this 20 example). By contrast, if a single measure of persistence is 

used, only persistence of preserved branches is increased with the increase of p,. Even 

if other measures of importance (e.g. volume) are zero, branches are still preserved as 

long as their persistence is larger than p,. This is also true for volume and hypervolume 

when they are used as a single measure of importance in the CTS. CTS approaches using 

single measure of importance obviously have shortcomings in evaluating importance of 

branches: they cannot evaluate importance of branches effectively. As a result, the CTS 

results based on conventional approaches cannot effectively represent topology of data 

sets. 

From Figure 4.5, we see that if branches in the region C and D need to be pre

served based on conventional approaches, users have to determine multiple discrimi

nating functions (i.e. multiple thresholds). As shown in the 20 example in Figure 4.5, 

one threshold of volume needs to be specified besides the threshold of p, to approxi

mately determine the region C and D. The determination of multiple thresholds for a 

given task is often difficult. It is similar to find a point in a multi-dimensional space. 

This determination process lacks guiding information. On the other hand, ITri only 

needs one threshold to determine the region C and D during the CTS process. It bal

ances contributions of multiple measures of importance for the final importance value 
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of a branch. With the help of the priority line window presented in Appendix, users can 

effectively modulate thresholds meaningfully based on the /Tri. 

In a word, CTS approaches using single measure of importance obviously have 

shortcomings in evaluating importance of branches. As a result, the CTS results based 

on conventional approaches cannot effectively represent the topology of data sets. The 

proposed approach in this chapter can evaluate the importance of branches better and 

allow users to preserve/remove branches by considering multiple measures simultane

ously during the CTS process. 

4.6 Experimental Results and Discussions 

:.1 Dill our 1 nm Br..,.. h Puout, 1 - .. • EJ 31:11unh.turln•~r8r.tn~hPraorii,IIM' .. r-JEJ 

II .. JJ1 r U. 
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,, 
(c) Hypcrvolumc. (d) /Tri. 

Figure 4.7: The comparison of priority lines based on different measures of importance 
for the "fuel" data set. 

We conducted experiments on various data sets to demonstrate the effectiveness and 

usefulness of the proposed approach. Our system was run on a Windows XP platform on 

a Dell machine (Intel Core2Duo CPU E4400, 3GiB RAM) equipped with an NVIDIA 

GeForce 8300GS graphics card. 

Figure 4.7 shows the comparison of priority lines based on different measures of 
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importance for the "fuel" data set (see http: I /www. vol vis. org/). From the com

parison we see that priority lines of different measures show obvious patterns. We can 

find some interesting similarities and differences between them: The priority values 

of the left part in Figure 4.7(a) and Figure 4.7(c) are -+ 0. Even if the corresponding 

priority values in Figure 4.7(b) have value peaks, the priority values of the left part in 

Figure 4.7(d) are still-+ 0. On the contrary, the priority values of the right part in Fig

ure 4.7(a) and Figure 4.7(c) have value peaks. Even if the con·esponding priority values 

in Figure 4 .7(b) are-+ 0, the priority values of the right part in Figure 4.7(d) have value 

peaks. These properties exactly match conclusions we discussed in Section 4.5.2. The 

priority line of /Tri shows that it can capture advantages and minimize disadvantages of 

various measures of importance. 

(a) Persistence (p, = 1.0766 x I 0 7 ). (b) Volume (v1 = 1.032 1 x I o-4 ). 

(c) Hypervolume (hv1 = 1.0766 x I 0 7 ). (d) !Tri (11 = 1.0766 x 10- 7 ). 

Figure 4.8: Rendering and topology of "fuel" data set. The object on the lower left side 
in each image is the head part view of the object, and the corresponding contour tree is 
on the right hand side. 

Figure 4.8 shows the rendering and topology of the "fuel" data set. Features of 

the "fuel" data set include: it is a long rod shaped object; there are evenly circularly 
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distributed parts at the head part of the data; the body part is divided into connected 
• subregions. The data set is rendered using volume rendering with the critical points 

drawn on their original positions, which helps users to understand the data topology 

visually (red nodes represent the local maximum points, blue nodes represent the local 

minimum points, and green nodes represent the root points in this chapter). The corre

sponding level of the simplified contour tree graph is drawn on the right hand side of 

the rendered data set. The contour tree graphs in this chapter are drawn based on the 

Orrery-like arrangement [84]. p1, v1, hv1 and I1 are thresholds used in the CTS process. 

In this experiment, we set p1, hv1 and I1 be equal in order to compare effectiveness of 

various measures of importance in the CTS process. From the comparison, we see that 

Figure 4.8(a) and Figure 4.8(c) are similar, but more branches are preserved in Fig

ure 4.8(a). This is because that hypervolume considers the size of features besides the 

scalar value during the evaluation of importance of features. From the hypervolume's 

point of view, a branch will be removed if its hypervolume is small even if its per

sistence is large. In Figure 4.8(b), although volume can preserve some critical points 

successfully, it cannot remove noise (e.g. the blue point outside the structure) effec

tively even if the threshold is increased and larger than that of other measures. Through 

comparison of Figure 4.8(c) and Figure 4.8(d), we see that the simplification results 

of the two methods are same at the body part because topological subregions are rel

atively larger than that at the head of the data, and the measure of hypervolume can 

capture this feature as ITri does because of larger hypervolume. However, it is clear 

that the simplification results are completely different at the head part of the data. Hy

pervolume cannot capture features at the head part of the object, while ITri can capture 

these evenly circularly distributed topological subregions successfully. This is because 

that the topological subregions at the head part are smaller and the hypervolume cannot 

distinguish between them with the same hv1 as used at the body part. However, ITri 

considers three measures of importance at the same time, and captures features at the 

head part successfully. 

For a domain specific case, for example, in a medical data set with tumors inside, 

tumors often have low ranges of scalar values relative to surrounding objects. It is 

difficult to detect them because of this reason. Furtherrnore, there are also different 

size of tumors in the data set. In order to simplify the contour tree of this kind of data 

set, users need to preserve branches with small persistence while considering volume 

and hypervolume of branches at the same time. Figure 4. 9 presents the rendering and 
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(a) Persistence (p1 = 0.1694 ). (b) Volume (v1 = 2.6262 x 10 4). 

(c) Hypervolumc (hv1 = 0.3964). (d) /Tri (11 = 0.0602). 

Figure 4.9: Rendering and topology of "TumorHead" data set. The corresponding con
tour tree of the data set is on the right hand side in each image. 

topology of the "TumorHead" data set (data courtesy of B Terwey. Bremen), where 

there is a brain tumor pointed out by the arrow B in Figure 4.9(c). Pr. Vr. hv1 and /1 are 

thresholds used in the CTS process. Given the number of preserved branches being the 

same for various measures of importance after the simplification, the experiment aims 

to compare differences of preserved branches based on various measures of importance. 

In this experiment, the goal of the CTS is to preserve the branch corresponding to the 

large tumor of B as shown in Figure 4.9(c) while removing other noise branches as 

much as possible. Because the number of preserved branches is the same, we see that 

threshold values are different for various measures of importance. This implies that 

the evaluation of importance of a branch is different when using various measures of 

importance. In Figure 4.9(a), because the persistence of the tumor is small, the node and 

branch corresponding to the tumor are removed when persistence is used as the measure 

of importance during the CTS. From the comparison of Figure 4.9(b), Figure 4.9(c) 

and Figure 4.9(d), we see that all of the images preserve the tumor node (e.g. the 

nodes that the arrow C and D point to in Figure 4.9(c) and Figure 4.9(d) respectively). 
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However, differences are obvious: volume and hypervolume cannot remove some nodes 

effectively (e.g. the 'nodes that the arrow A points to in Figure 4.9(c)) because of lacking 

of consideration of other importance measures. 

From the experiments, we can see that the proposed approach can simplify the con

tour tree meaningfully and effectively. The utility of our approach is two-fold: as a 

comprehensive solution for combining multiple measures of importance in the CTS, 

and as a general effective interface with a priority line window to manipulate thresholds 

in the CTS. Our approach provided a complete pipeline for users to organize, display 

and simplify the contour tree. It showed advantages in the CTS process. As represented 

in Equation 4.7, /Tri takes three measures of importance into consideration. The fea

tures captured by /Tri are more meaningful compared with features captured by a single 

measure. Another advantage of our approach is that it can be easily extended as a gen

eral scheme to simplify the contour tree with more than three measures of importance. 

This property encourages users to develop more measures of importance which finely 

depict features of data sets. This powerful scheme allows users to perform the CTS with 

several mouse clicks, which improves the CTS efficiency greatly. 

In addition to approximations of geometric measures as used in this chapter, statisti

cal properties of the sample values inside region can also be used to measure importance 

of branches [26], for example, the mean value and the standard deviation. Besides, the 

width-to-height ratio of the region can also be used as a measure to evaluate importance 

of branches. For example, given two regions with the same volume, persistence and/or 

hypervolume, the importance of the region with a long thin shape and the region with 

a compact round shape is different and can help the user to evaluate the importance of 

branches. For example, if the user is more interested in round and compact shape, the 

region with round shape is more important than the region with the long thin shape. 

These measures of importance can be used in the approach proposed in this chapter to 

improve the evaluation of the importance of branches. 

4.7 Summary 

This chapter introduced an importance-driven approach for the CTS. The proposed ap

proach combined multiple measures of importance into a CTS pipeline through the 
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concepts of attribute space, importance triangle and importance space. Interaction in

terfaces made the CTS a meaningful and user-directed process. 

The theoretical analysis and experimental results demonstrated that the presented 

approach has advantages in the use of measures of importance compared with conven

tional approaches: It allows for the simplification of contour trees by considering the 

whole attribute space and giving a better evaluation of the importance of a branch, in

stead of limited attribute space used by conventional approaches. We presented three 

measures of importance in this chapter. However, tbe proposed approach can be eas

ily extended as a general scheme to simplify tbe contour tree witb more tban three 

measures of importance. This property allows users to define various measures of im

portance based on specific data sets and applications flexibly in order to improve the 

simplification efficiency. This powerful scheme allows users to perform the CTS with 

several mouse clicks, and improve efficiency. 



Chapter 5 

Structural Relationship Preservation 

and Depiction in Volume Rendering 

From previous chapters, the contour tree is defined as a topological abstraction of a 

scalar field, and a graph that tracks changes to a contour. Topological relations are 

recorded as the evolution of a contour in a scalar field. Volume rendering provides a 

powerful scheme for users to understand relations between structures as more structures 

can now be revealed in a single volume rendered image. Unlike the relations between 

opaque objects in typical 3D computer graphics, spatial relation analysis for volume 

rendered images is more complicated due to the property of semitransparent structures. 

This chapter presents structural relationship preservation as a technique for improv

ing understanding of volume rendering based 3D data analysis. Because basic theory 

behind the depiction of relationship in a volume data set lies in the topology, this chap

ter utilizes topological properties derived from the contour tree to represent and depict 

relations between structures. Structural relationship preservation in volume rendering 

provides more intuitive and physically meaningful renderings that depict physical struc

tures more clearly. It enhances information provided by common rendering techniques. 

The contributions of this chapter are as follows: 

• A concept of structural relationship preserved mapping between data and render

ing space is proposed. The concept allows for every structural relationship of 

interest in the data space to be mapped onto objects in the rendering space by 

utilizing various rendering methods. 

• Two typical relationships of inclusion and neighboring are defined, extracted, 

83 
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represented, and revealed in volume rendering in the pipeline. 

• Contour tree controlled structural relationship representation allows users to per

ceive structural relationship, and control how and what structural relationships 

are revealed in the pipeline. 

5.1 Introduction 

Traditional computer graphics is a unidirectional projection from a 3D objective scene 

to a 2D image. It provides capabilities of synthesizing virtual environments or regen

erating an existing scene. It is usual to think in rational that how effectively the gen

erated scene supports specific tasks or how well features of the denoted objects can be 

discerned. In the context of medical volume visualization, this involves questions of 

how effectively the visualization depicts anatomical structures and how well features of 

anatomical structures can be discerned in order to make decisions. Most of the conven

tional volume rendering methods place emphasis on conveying details of the desired 

features or structures, by exposing them clearly to viewers in the results. However, 

spatial relations between structures in a volume are also of interest to viewers [27]. 

Relationship and its uses have been studied in several research fields as investigated 

in Section 2.7. There are various kinds of relations existing between objects in a vol

ume data set. For example, in surgical planning, radiologists are interested in not only 

shape of structures of interest, but also their neighboring information (e.g., how close 

they are). Such relation information of structures is crucial for the visual analysis and 

understanding of volumetric data in various applications [27]. 

Volume visualization creates 3D renderings which show perceptual attributes such 

as color. As Bertin [II] pointed out, information is about relationships between things, 

and similarly a picture is about relationships between graphical marks. It is intuitively 

obvious that a good visualization exposes structural relationship of the information that 

it represents. We expect a good visualization to be a structural relationship preserved 

mapping between an information domain and a perceptual domain, such that mental 

models and understanding of the data set are improved during data analysis. 

Conventional visualization approaches do not take into account the structure of the 

underlying data. The explicit knowledge of the structural characteristics is not inte

grated into the rendering pipeline. Therefore, the structural relationship analysis part 
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is often taken as a post-processing step in image space [124], and depends on man

ual inspection to r~veal various relations [27]. In volume rendering, the perceivable 

structural relationships are either represented by visual elements such as shaded areas, 

transparent surfaces, or implicitly represented by placing visual elements (e.g. elements 

which help the user to better understand topological relations) in renderings. Structural 

relationships of objects are assumed to be induced on a set of visual elements by means 

of multiple structural features. Explicitly depicting structural relationships can enhance 

visual representation and understanding of structures in the data set. 

This chapter presents an approach on depicting structural relationships between ob

jects in volume rendering through a concept of structural relationship preserved map

ping. The concept is set up through analyzing the roles of perception in volume visual

ization. Two typical relationships of inclusion and neighboring are defined and depicted 

in volume rendering respectively. The contour tree controlled structural relationship de

piction allows users to perceive structural relationship in a more direct way. The objec

tive of this chapter is to deliver a new visualization approach for better understanding, 

presentation, and visualization of volumetric data based on structural relationships. The 

structural relationship preservation approach has advantages: it allows analyses of vol

umetric data to focus on revealing high-level topological relations instead of low-level 

rendering parameter modulation. The approach improves understanding of volumetric 

data. The experimental results show that structural relationship preservation provides 

information which is not available in commonly used volume rendering techniques, as 

well as it enhances information provided by common rendering techniques. 

5.2 From Perception to Structural Relationship Preser

vation 

Volume visualization aims at making the mapping from data to renderings as effective 

as possible. It seeks to maximize the amount of information that a human viewer can 

perceive out of the presentation. Jankun-Kelly et al. [56] presented a general model 

of the visualization exploration process for a volume data set. The effectiveness of a 

visualization can be measured in terms of ease and directness of acquiring its intended 

interpretation [36]. In this thesis, we assume that volume data can be classified using 

transfer functions or other methods. The purpose of volume visualization is to visually 
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present these classified structures in order to extract data information for making de

cisions. In the context of volume visualization, the structural correspondence between 

volume data and perceptual visual elements in the rendering should be set up in order 

to get the effective volume visualization. Therefore, analysis of the roles of percep

tion for volume visualization must consider the interpretation of rendered images. The 

volume visualization process generates rendering images and the interpretation process 

uses the rendered image from the visualization process to get properties of the original 

data. Because the interpretation of a rendered image depends on human visual percep

tion, Dastani [36] pointed out that a visualization is effective if the intended structure of 

the data and the perceptual structure of the visualization coincide. The effectiveness of 

volume visualization refers to effectively present structured data information and effec

tively find structures of interest based on visual presentations. Based on this view, we 

combine perceptual structure into the volume rendering based data analysis pipeline as 

shown in Figure 5.1. The figure shows how a volume data set is rendered and explained 

during a volume rendering based data analysis pipeline. 

Structured 
Data 

--, 
I 
I 
I 
I 
I 

------~fruciural-~te1at1ons-hlp-------· 

Preserved Mapping 
B 

Rendering 

I 

~------------------.-------------------! 
I 

Domain 
Knowledge 

Perceptual 
Structure 

Figure 5.1: Combine perceptual structure into the volume rendering based data analysis 
pipeline. 

In Figure 5.1, the volume rendering process begins with an input volume data set. 

The first step in this process is to determine the structure of the data. This step is a part 

of classification in volume rendering. It transforms the input data to structured data. 

Transfer functions and other classification methods arc used in this step. The second 
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step is to render the structured data. Because it is not possible to display all objects 

classified in the previous step at the same time, it is necessary to determine which 

structures will be displayed and how. This is determined at the point A in Figure 5 .I. 

Then the structured data set is rendered followed by its interpretation indicated at the 

point B in Figure 5 .I. In reverse, through interpretation, the user compares perceptual 

structure and rendered image in order to see whether the perceptual structure from the 

domain knowledge and the rendering display coincide. If this is not true, the user 

needs to return to the point A to modify rendering options. The user may also return 

to the transfer function module to classify the data and get new structured data. During 

this pipeline, the domain knowledge is used in transfer function modulation, rendering 

interpretation, and perceptual structure understanding. 

5.2.1 Structural Relationship Preserved Mapping 

Based on the analysis pipeline as shown in Figure 5.1, volume visualization is then de

fined as a mapping between structured data elements and visual perceptual elements. 

In order to explain this mapping, we introduce a relational system into the volume ren

dering based data analysis pipeline. We assume that certain relations exist between 

structured data elements, e.g. topological relations and size relations. We also assume 

that there are similar relations between visual perceptual elements. An effective vol

ume visualization should define a mapping between data and renderings such that every 

relationship between objects in the data space is mapped onto visual variables in the ren

dering space. The structural relationships between structured data are preserved during 

this mapping. The shaded region in Figure 5.1 shows how structural relationships are 

mapped and preserved during the data analysis pipeline. 

5.2.2 Topological Relationships in Data Set 

Relational features provide information about adjacency, repetitive patterns and geo

metrical relationships among objects. In theory, a relationship is a mathematical object 

that in general can have a very complex type. It is a specific connection between objects, 

entities or concepts. There are different relationships between objects in the data space: 

inclusion, neighboring, etc .. Topological relationship refers to the global topology of 

structures in a volume data set. Topological analysis of scalar data sets helps users to 
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understand global structure of the data during the data exploration process. This chap

ter uses the contour tree to represent the topological structure of a volume data set. We 

also confine our interest on relationships that are used to enhance the understanding and 

perception of structures in the rendering. To provide a formal basis, we give definitions 

of two typical relationships of inclusion and neighboring as follows. 

Inclusion Relationship 

In 3D space, structures of interest are often included by other structures because of their 

spatial positions. The inclusion relationship refers to the situation of objects included 

by others in 3D space, which creates inner objects and outer objects respectively. Taka

hashi et al. [ 107] called this as isosurface embedding. 

This problem is prevalent. For example, in a 3D medical data set, objects are often 

concave, and are at least partly occluded by others. In order to understand the inclusion 

relationship more clearly, we give following definitions: The viewpoint vp is some point 

in the 3D space representing the viewer or camera position. The inclusion relationship 

is defined as: Let v1 and v2 be two distinct voxels of a data set and near( vi) and near( v2) 

be the interpolated regions of v1 and v2 with their neighboring voxels. Relative to tbe 

viewpoint vp, v2 includes/occludes v1 if there is a half-line hl starting at vp and points 

p1 in hlnnear(vi) and p2 in hlnnear(v2) so that p2lies between vp and p 1 on hl, 

where "n" represents the intersect operation between line and region. 

The inclusion relationship is commonly seen in a volume data set and heavily af

fects understanding of it. For example, in a human head data set, a user cannot get 

complete tumor information inside the brain because of inclusions by outside surfaces 

(for example, see Figure 7 .6(b )). In order to interpret objects of interest effectively, the 

inclusion relationship between objects needs to be specifically depicted. Consequently, 

providing clear insight into inner structures involved in a volume data set has been a 

challenging task in the field of volume rendering. 

Neighboring Relationship 

The position of different volume element within the overall volume. is challenging. It 

plays critical roles in information understanding. Usually, a volume data set can be 

divided into various subregions which represent different objects. Neighboring rela

tionship refers to the situation that objects are extremely connected or there is a gap 
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interval which can be transparent or opaque between them. The neighboring informa

tion has the role ot' controlling the perceptual information of structures, for example, 

it is used to modulate optical properties of structures to improve perception of differ

ence between structures. It can also be used in surgical planning to reveal closeness of 

structures in order to make decisions. 

5.3 Relationship Depiction in Volume Rendering 

As shown in Figure 5.1, volume rendering helps to map relationships from structured 

data to perceptual structure. The relationships are preserved during this mapping. So it 

is necessary to develop appropriate volume rendering methods in order to reveal vari

ous relationships. We believe that appropriate depiction of structural relationships will 

produce better understanding of a 3D data set. 

The depiction of topological relationships in 3D rendering space can enhance un

derstanding of structures in the data set. Usually, not all relationships between objects 

can be revealed completely in a 2D image view during data analysis. In this section, we 

present approaches to depict inclusion and neighboring relationships respectively based 

on the contour tree. 

5.3.1 Depiction of Inclusion Relationship 

Despite direct volume rendering being one of the main techniques for visualizing entire 

volumetric structures at once, it still requires time-consuming interactions for tweaking 

visualization parameters in order to obtain comprehensible rendering results. Further

more, scalar value is locally but not globally meaningful in a data set. Traditional 

volume rendering cannot effectively depict inclusion relationships because of the over

lapping of scalar value ranges. Although Takahashi et al.'s approach [ 107] can analyze 

inclusion relationship based on the topology, it still applies transfer functions to a data 

set globally by the concept of "inclusion level". Weber eta!. [122] defined transfer 

functions for different subregions based on the contour tree, but they did not consider 

the inclusion relationship in the pipeline. 

Figure 5.2 shows an example of a 2D mesh and its corresponding contour tree. As 

mentioned, the contour tree acts as a visual index to segment data into various sub

regions. Figure 5.2 presents the segmented 2D mesh with different subregions. Arcs 
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Figure 5.2: An example of a 20 mesh and its contour tree. The 20 mesh is segmented 
into subregions and indexed with the contour tree. 

of the contour tree and their corresponding subregions are encoded with colors. This 

example is used to analyze relationships implied in the contour tree. 

Similar to approaches i.n [ 1 03], this chapter uses graph based approach to analyze 

the inclusion relationship represented in the contour tree. In this chapter, the contour 

tree of a data set is represented as a graph (see Figure 5.3(b)). As shown in Figure 5.3(b), 

given a contour c as the "outside" isosurface - i.e. a point in the tree, and choose 

two points p and q in the tree. c, p and q can be critical points or regular points. In 

order to determine whether p is "inside" q, we find the path P (dashed line in blue in 

Figure 5.3(b)) from c top in the contour tree. There is only one such path, because it is 

a tree. Similarly, we find the path Q (dashed line in red in Figure 5.3.) from c to q. pis 

''inside" q if Q is a prefix of P (i.e. we can only get top by passing through q first). The 

points c, p and q belong to various arcs. The subregions that these arcs correspond to 

are displayed in Figure 5.3(a). From this figure, we see that the inclusion relationship of 
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Figure 5.3: Inclusion relationship analysis in the contour tree. 
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c, p and q represented in the contour tree graph is clearly revealed between subregions 

in the data set. 

Usually, if there is no overlap in scalar value ranges of objects, inclusion relation

ship can be depicted based on general transfer functions by rendering outside objects 

transparently/semi-transparently. If regions overlap in their value ranges, it is not pos

sible to depict inclusion relationships using general transfer functions. In this case, a 

segmentation is necessary. We use the branch decomposition to analyze the inclusion 

relationship in this chapter. The branch decomposition provides a direct way to track 

inclusion relationship based on branches. Because a branch is usually a concatena

tion of a sequence of arcs in the contour tree, the subregion corresponding to a branch 

is a combination of subregions corresponding to arcs. We do not consider inclusion 

relationships of subregions corresponding to individual arcs, but analyze inclusion re

lationships of subregions corresponding to branches. We assume that there exists an 
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outermost surface which includes objects of interest in a data set. So we track the in

clusion relationship in the branch decomposition from the branch corresponding to the 

outside surface. This branch includes all of its children. The further tracking of inclu

sion relationship is performed along every child branch. The parent branch includes its 

child branch, and there is no inclusion relationship between child branches which have 

the same parent. 

In order to depict inclusion relationship in the rendering pipeline, we introduce in

clusion opacity based on the nesting depth of branches. The inclusion opacity is used to 

show the visibility of subregions corresponding to different branches. In order to em

phasize inner structures and deemphasize outside structures, branches with lower depth 

value are applied with lower opacity and branches with higher depth value are applied 

with larger opacity. The inclusion opacity is applied in a similar way as general transfer 

functions through a curve based interface. Furthermore, depth of branches is discrete 

integer values. It causes unexpected artifacts because of sudden changes of opacity in 

the final rendering results. We thus avoid the artifacts by linearly interpolating the depth 

so that the depth value becomes continuous. 

At this step, there are two opacities applied to objects: one is the inclusion opac

ity ad, and another is the opacity a1 specified by the original transfer function. Two 

opacities need to be combined in order to get the final opacity a applied to objects as 

represented in Equation 5.1: 

(5.1) 

where f is the function used to combine two opacities. A typical combination is com

puted in Equation 5.2: 

a=ad·a,. (5.2) 

Given two branches a and b, we assume branch a is included by branch b and 

represented as a E b. The final opacity for a and b is aa and ab respectively. aa and ab 
• 

should meet inequality 5.3 in order to preserve inclusion relationship in the rendering: 

(5.3) 
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Compared with approaches in [107, 103], our method analyze inclusion relation-
• ships based on the branch decomposition. The branch decomposition overcomes the 

disadvantage of "over-segmentation" by the general contour tree, and thus avoids the 

unnecessary inclusion analysis. Furthermore, our method applies transfer functions of 

different subregions corresponding to branches locally but not globally when analyzing 

inclusion relationship based on inclusion opacity. The depiction of inclusion relation

ship based on the contour tree sets up a mapping between inclusion relationship in the 

data space and perceptual inclusion relationship in the display space. The perception of 

inner structures of interest in a data set is improved through the depiction of inclusion 

relationship. 

5.3.2 Depiction of Neighboring Relationship 

In this subsection, the neighboring relationship between subregions in a data set is de

picted in the volume rendering pipeline based on the branch decomposition. The branch 

decomposition encodes the neighboring relationship between subregions of the data set 

directly: two subregions have neighboring relationship if their corresponding branches 

are connected; otherwise, the neighboring relationship does not exist. In order to reveal 

this relationship based on the contour tree, we check branch connection information 

and use this information to emphasize structures in volume rendering pipeline. 

In the contour tree, neighbors of a given branch include its parent, children and sib

ling branches. For example, as shown in Figure 5.4(b ), d's neighbors include its parent 

band sibling e. f is not connected with d, so it is not the neighbor of d. Figure 5.4(a) 

shows these corresponding neighboring relationships in the data domain. From this 

figure, we see that the contour tree can represent neighboring relationship of objects 

faithfully. 

In order to reveal neighboring relationship in volume rendered images, a color range 

based approach is proposed to encode neighboring relationship presented in the contour 

tree. We use different colors to render different regions in order to reveal neighboring re

lationship in this chapter. More specifically, the color transfer function is used to depict 

neighboring relationship in volume rendering and creates aesthetic appeal in the ren

dering. Color transfer functions map scalar densities to colors in order to label different 

objects and create aesthetic appeal in volume rendering, and to improve data analy

sis efficiency. Conventional color transfer functions are parameterized by values that 
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Figure 5.4: Neighboring relationship analysis in the contour tree. 

segment the data into different subranges, which are arbitrarily assigned with different 

colors based on experiences and personal preferences [65, 64]. Thus color is only used 

to identify subranges of the data, and not to convey any quantitative relations among the 

data. Furthetmore, color harmony is one popular design aspect in terms of aesthetics. 

Cohen-Or et al. [3 I] introduced a framework of automated image color harmoniza

tion. Wang et al. [119, 120] extended this color harmonization to be used in volume 

visualization. They presented how color harmonization is used to semi-automate color 

definitions in volume rendering. The scheme uses manually specified parameters such 

as importance factors to control color components (hue, vividness, lightness) selection 

for segmented data rendering. 

Our work extends the color selection algorithm in [ 119] by incoq>orating topologi

cal features, and encodes neighboring relationship in color transfer function generations 

in volume rendering. Figure 5.5 shows typical harmonic color templates. Any harmonic 

template could be used to represent different regions to reveal neighboring relationships. 
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Figure 5.5: Harmonic hue wheel templates. A collection of colors that fall into the gray 
areas is considered to be harmonic. The templates can be rotated by an arbitrary angle. 
See [31] for lhe exact definitions. 

In our approach, the hue wheel in the HSV color space is divided into four ranges to 

represent neighboring regions in the rendering as shown in Figure 5.6: current (one 

point), children, parent (one point) and siblings. Because the current branch has multi

ple children and sibling branches, larger hue ranges need to be allocated to children and 

sibling branches in order to more easily differentiate multiple objects based on colors. 

In this chapter, we use the harmonic color template X-Type [31] as the neighboring 

relationship preservation template. The harmonic color template X-Type has two dis

tinguished properties: 1) it has two large harmonic hue ranges with same sizes (grey 

regions in Figure 5.6); 2) the two harmonic hue ranges are also uniformly distributed 

on the hue wheel. The first property allows users to more easily differentiate multiple 

objects based on colors. The second property helps to more easily differentiate two 

groups of objects in the rendering: children and sibling. In Figure 5.6, the size of gray 

regions for children and sibling branches is 93.6° respectively, and the position of the 

current branch and parent branch is at the center of each white region. Same sizes of 

the hue range are allocated to children and sibling branches. This also helps to balance 

color representations of objects in the rendering. Based on this approach, neighboring 

relationships between branches in the contour tree are preserved in the rendering with 

various colors. Users may perceive neighboring relationships of various subregions 

through viewing the relation color wheel and rendering at the same time. The color 
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wheel acts as a legend in describing the neighboring relationship in volume rendering. 

This approach also greatly improves the visual aesthetic appeal of rendering. 

Figure 5.6: The neighboring relation color wheel: different color ranges are used to 
encode neighboring relationship of branches in the contour tree. 

The depiction of neighboring relationship has wide applications, for example, in 

medical applications, radiologists often need to know which structures are affected by 

tumors or other structures of interest in order to do surgery planning. The depiction 

of neighboring relationship can meet this purpose directly: affected structures have 

neighboring relationship with structure of interest and can be depicted based on the 

neighboring relationship. The perception of neighboring relationship of structures is 

enhanced by the direct depiction of neighboring relationship in the rendering display. 

5.4 Experimental Results 

We conducted experiments on various datasets to demonstrate the effectiveness and 

usefulness of our approach. Our system was run on a Ubuntu platform on a Dell ma

chine (Intel Core2Duo CPU E4400, 3GiB RAM) equipped with an NVIDIA GeForce 

8300GS graphics card. 

Figure 5. 7 shows the rendering of "nucleon" (see http: I /TJT.TTii. vol vis. org/) data 

set to depict inclusion relationship. In this data set, small inner structures are included 

by outside surfaces. Users need to depict this inclusion relationship in order to reveal 

inner structures. The top-left image in Figure 5.7 is rendered using general direct vol

ume rendering. It shows that the general direct volume rendering cannot depict the 

inclusion relationship effectively because of overlap of scalar value ranges of different 
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Figure 5.7: Inclusion relationship analysis based on the contour tree: I) Contour tree, 
2) Scalar transfer function, 3) Inclusion transfer function. 

objects. The top-right image is rendered using the inclusion relationship depiction ap

proach proposed in this chapter. Its corresponding contour tree is shown in the middle 

of this figure. Through the comparison of the two results. we see that the proposed ap

proach can depict inner structures clearly and it provides richer information for the user 

to analyze the data set. This depiction allows the user to easily understand topological 

relationships of structures inside the data set. From this experiment, we see that the pro

posed approach has the following advantages: the inclusion relationship is effectively 

depicted, and it also improves the perception of structures through presenting different 

layers of structures at the same time. 
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Figure 5.8: Depiction of inclusion relationship of "neghip" data set. 

Figure 5.8 shows the rendering of "neghip" (see http: I /www. vol vis. org/) data 

set to depict the inclusion relationship. In this data set, small inner structures are in

cluded by outside surfaces of each small object. The left image in Figure 5.8 is ren

dered using general direct volume rendering, and the right image is rendered using the 

approach proposed in this chapter. The results show that the general direct volume ren

dering cannot depict the inclusion relationship effectively because of overlap of scalar 

value ranges of different objects and lacking of mechanisms for topological relation

ship depiction. The comparison of two results shows that the proposed approach in this 

chapter can depict the inclusion relationship effectively and provides more insight into 

the data set than conventional approaches. 

Figure 5.9 presents the rendering result of depicting neighboring relationship in the 

"fuel" data set. The contour tree and relation color wheel are presented at the same 

time. In the top-left image, the current branch and its neighboring branches are pointed 

out in order to show their neighboring relationships. In the bottom image, the subregion 

corresponding to the user selected current branch and its neighboring structures are 

emphasized and rendered in various colors based on the relation color wheel presented 

at the top-right of the figure. In this way, users can perceive neighboring structures of 

a selected subregion clearly. It helps users to understand which structures are affected 

during interaction with a specific subregion and improves the perception of neighboring 

relationship. 
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Figure 5.9: Depiction of neighboring relationship of "fuel" data set. 
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Figure 5.10 selects different current branch from Figure 5.9 to compare the render

ing results of depicting neighboring relationship in the "fuel'' data set. In this figure, 

Figure 5.1 O(a) is the original rendering without depiction of neighboring relationship. 

Figure 5.1 O(b) presents the rendering with neighboring relation depiction and the local 

enlarged view of the body part of the data. The user selected current branch and its 

neighboring branches are pointed out as shown in the contour tree at the top-left part 

of the figure. From the contour tree, we see that the structure corresponding to the 

user selected current branch has three neighboring structures topologically: one par

ent branch and two sibling branches. In Figure 5.10(b), the structure corresponding 

to the user selected current branch is rendered in red color and its neighboring struc

tures are rendered in different colors in the enlarged view. This structural relationship 

is clearly represented visually in the rendering result. From the comparison, we see that 

the depiction of neighboring relationship in the rendering enhances the perception of 

differences and topology of various regions of the data, and thus improves the overall 
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Figure 5. I 0: Depiction of neighboring relationship of "fuel" data set. 

understanding of the data. 

The experimental results show that structural relationships in a 30 data set are criti

cal features used to help the user to understand data sets. Various structural relationships 

are depicted and preserved in renderings perceptually using different graphics represen

tations. The contour tree controlled structural relationship depiction allows the user to 

perceive structural relationships in a more direct way. The user can also control how 
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and what structural relationships are depicted in the pipeline. 

5.5 Discussions 

From the experiments, we can see that the proposed approach can effectively extract 

and visualize relations between objects in volumetric data. The proposed approach 

provided users with a framework to extract, display and query relations. Different in

teraction facilities are provided to help users evaluate different relations perceived from 

rendered images and the contour tree. The concept of relationship preservation map

ping helps users to improve understanding of volumetric data during data analysis. For 

general volume rendering, our approach can help to detect whether any relations are 

revealed correctly in the final rendering image through interacting with the contour 

tree. For example, from the contour tree, one structure is included by another struc

ture. If this relationship is not correctly revealed in the final rendering image, rendering 

parameters should be changed to reveal the correct relationship. For the exploration 

of unknown data sets, our approach helps users easily understand structures and their 

relations through interacting with the rendering image and the contour tree, and thus 

improve understanding of volumetric data. 

Compared with the work in [27], we analyzed two types of relations: neighboring 

and inclusion. In fact, the neighboring relation proposed in our approach includes both 

separate and touch relations in [27]. Furthermore, our approach is not viewpoint de

pendent as used in [27]. Also our approach does not consider overlap relation as shown 

in [27]. The contour tree is a data structure to depict topological relations more directly 

than the relation graph presented in [27]. These properties allow the proposed approach 

to reveal and analyze relations in volumetric data more effectively. 

5.6 Summary 

This chapter utilized topological properties derived from the contour tree to represent 

and depict various relationships inside a data set. We investigated structural relationship 

preserved mapping as a technique to enhance and improve volume rendering based 3D 

data set analysis. Usually, not all relationships between objects can be depicted com

pletely in a 2D image view during data analysis. We defined and depicted two typical 
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relationships of inclusion and neighboring in volume rendering respectively. The exper

imental results showed that structural relationships in a 3D data set are critical features 

used to help the user to understand data sets. They were depicted and preserved in ren

derings perceptually using various graphics representations. The contour tree controlled 

structural relationship depiction allows the user to perceive structural relationship in a 

more direct way. The user can also control how and what structural relationships are 

depicted in the pipeline. The presented approach enhances the information provided by 

conventional rendering techniques. The presented approach extended applications of 

the contour tree in volume rendering. 



Chapter 6 

Contour Tree Controlled Automatic 

Transfer Function Generations 

As presented in previous chapters, the contour tree can be simplified to an appropriate 

size to represent the topology of a data set. It can also be used to depict topological 

relationships inside a data set in volume rendering, which enhances the information 

provided by common rendering techniques. 

However, in volume rendering, the transfer function generation is still a challeng

ing task for comprehensive renderings. This chapter introduces topological properties 

derived from the contour tree in transfer function design process. It presents a model, 

named as a residue flow model, to automate opacity transfer function generations. The 

generated opacity transfer functions can automatically depict inclusion relationships of 

structures. Furthermore, an automatic color transfer function generation scheme is also 

developed by utilizing topological properties derived from the contour tree to automati

cally select harmonic colors. The generated color transfer functions convey meaningful 

relations among structures instead of arbitrarily defined colors based on users' prefer

ences. The contributions of this chapter are as follows: 

• A residue flow model based on Darcy's Law is proposed to control opacity residue 

flow between branches in the contour tree. 

• Based on the residue flow model, we design a comprehensive framework ded

icated to automate transfer function generations controlled by topological at

tributes derived from the contour tree. 

103 
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• Contour tree controlled hannonic color transfer function is proposed to get visual 

aesthetic appeal of rendering in order to improve data analysis efficiency. 

6.1 Introduction 

The ultimate goal of volume visualization is to provide useful insights into volumetric 

data. Direct volume rendering is one of the effective and flexible visualization methods 

for three-dimensional volumetric data. Despite the proliferation of volume rendering 

and manipulation techniques, the key to comprehensible volume rendering still lies in 

the design of effective transfer functions, which map scalar values to specific colors 

and opacities. Transfer functions assume that scalar values map directly to physical 

properties such as tissue types. Thus, they are crucial in the understanding of the overall 

volumetric data and individual features contained within the volume space. Various 

approaches have been developed to automate or ease specification of transfer functions. 

Details of various approaches of transfer function design are investigated in Section 2.6. 

Conventional approaches often use boundary information to automate transfer func

tion specifications [60, 61]. Despite various data features (e.g. derivatives, curvatures, 

texture, size) being used to define transfer functions, most of the current volume render

ing methods highly depend on manual specifications (at least in some degree). This pro

cess is time-consuming and comes short in repeatable results. In addition, volumetric 

data often contain nested inner structures. This commonly seen inclusion relationship 

heavily affects understanding of volumetric data. Conventional transfer functions can

not automatically fully clarify such inner structures. Thus, a systematic and automatic 

scheme to specify transfer functions while revealing inclusion relationships is highly 

desirable to greatly facilitate the volume rendering process. 

In addition to providing topological features of a volume, the contour tree also acts 

as a visual index to segment a volume [ 122]. Takahashi et al. [I 06, I 07] and Takeshima 

et al. [ 108] used topological attributes derived from the contour tree to define transfer 

functions. However, they still applied transfer functions to a data set globally according 

to fixed topological indices (e.g. depth of topological nesting). Cmwentional transfer 

function approaches cannot distinguish between distinct features that share the same 

scalar value. To overcome this problem, Weber et al. [122] used the contour tree to in

dex various subregions of a volume and specify transfer functions locally for individual 
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subregions. However, as there are often many branches in a contour tree, it is imprac-
• tical and time-consuming to define transfer functions for each subregion corresponding 

to a branch of the contour tree one-by-one manually. The underlying weakness of these 

methods is that transfer functions are still specified manually through user interactions. 

They do not consider how to use the topology to automate transfer function generations. 

The principle technical challenges for these problems include how to generate transfer 

functions that are used to get a wide spread of dissimilar output renderings and to reveal 

inclusion relationship between subregions. Users also need to decide what measures are 

used to control transfer function differences between subregions based on the contour 

tree. 

Moreover, any of different subregions in volumetric data may bear interesting inten

sity variations which need to be visually represented in a faithful manner. Color transfer 

functions allow aesthetically appealing rendering in order to improve data analysis effi

ciency. Conventional color transfer functions are parameterized by values that segment 

the data into different subranges, which are arbitrarily assigned with different colors 

based on experiences and personal preferences [65, 64]. Thus color is used to only 

identify subranges of the data, and not to convey any quantitative relations among the 

data. One popular design aspect of color in graphics and image is color harmony [120]. 

Wang et al. [ 119] presents a harmonic color design scheme for illustrative visualization. 

The scheme uses manually specified parameters such as importance factors to control 

color components (hue, vividness, lightness) selection for segmented data rendering. 

The principal weakness of this scheme is that the manually specified parameters have 

no direct relations with features derived from the data set itself. Vividness and lightness 

are still selected arbitrarily based on users' preferences in some degree. Thus, an au

tomatic scheme to specify color transfer functions by incorporating data features (e.g. 

topological features) is highly desirable, and expected to greatly improve the visual 

aesthetic appeal of rendering. 

This chapter presents an approach for automating transfer function generations by 

utilizing topological attributes derived from the contour tree. The contour tree acts as 

a visual index to access segmented volume, and captures associated global topological 

attributes involved in volumetric data. The objective of this chapter is to deliver a new 

transfer function generation paradigm based on the contour tree. The generated transfer 

functions can depict inclusion relationship between structures and maximize rendering 

differences between them. The proposed approach has advantages. It allows more 
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efficient automation of transfer function generations. Exploration on the data is carried 

out through controlling of residue flow rate, instead of complicated low-level transfer 

function parameter adjustments used in conventional approaches. 

6.2 Framework Overview 

The proposed pipeline in this chapter for automatic transfer function generations con

sists of several processes. An overview of the framework is shown in Figure 6.1. Given 

a volume data set, the contour tree is created and simplified. The contour tree is used as 

a visual index of various subregions/structures of the data set, and different topological 

attributes are derived from the contour tree. These topological attributes are then used 

to control transfer function generations. Based on the contour tree, an opacity residue 

flow model is set up. The opacity residue flow model treats opacity transfer function 

generation as a kind of liquid (e.g. water) flow process between branches of the contour 

tree: opacity is treated as water, and topological attributes are used to control opacity 

flow between branches. Interfaces are provided to allow users to control the opacity 

flow rate and the shape of local transfer function in a branch, and thus decide the final 

transfer function. Meanwhile, topological attributes are also used to generate harmonic 

colors for color transfer functions. The generated opacity and color transfer functions 

are then used to render the data set. 

In this framework, users can change the opacity flow rate and local transfer function 

shape to refine rendering results. The opacity flow rate and local transfer function shape 

are used in the pipeline to keep topological relationships in the rendering, which are 

represented in the contour tree. This chapter focuses on processes of how the contour 

tree controls transfer function generations in the pipeline. The details of each process 

will be covered in the later sections. 

6.3 Residue Flow Model 

In this section, we model the distribution of opacity between branches.in the contour tree 

as a multi-stream water flow process. When the water passes through a branch, some 

of it is re-directed by the branch and residues are delivered to child branches at the next 

depth level. This section presents Darcy's Law as a basic theory to get residues when 
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Figure 6.1: Flow chart showing the pipeline for automatic transfer function generations. 

the water passes through a branch, and gives an overview of residue flowing between 

branches. 

6.3.1 Darcy's Law 
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Figure 6.2: Setup of Darcy's experiment in one dimensional case. 

Darcy's Law [8, 67] is a generalized relationship for fluid flow in porous medium. 

Figure 6.2 shows the setup of Darcy's experiment in one dimensional case. Darcy's Law 

demonstrates that the volumetric flow rate Q of the fluid, through the porous medium, 
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is proportional to both the head loss (hout- h;n) between the ends of the cylinder, the 

cross-sectional area A of the medium, and inversely proportional to the packed length L 

of the cylinder: 

till 
Q=-KA-

L' 
(6.1) 

where the minus sign on the right hand reflects that the hydraulic head always decreases 

in the direction of flow. We use absolute value in this section. The constant K is referred 

to as the hydraulic conductivity, and is a function of both the porous medium's perme

ability and the particular fluid. This can be seen by writing the hydraulic conductivity 

in terms of the permeability k of the medium: 

K-kpg 
- J.l' (6.2) 

where p and J1 are the fluid's density and viscosity, and g is the acceleration due to 

gravity. [57] summarizes average hydraulic conductivity K for general materials. This 

chapter uses sand as the porous medium, and the value of K for water flowing through 

sand is 300 [57]. The choice of materials does not affect rendering results except for 

the use of different flow rates in the rendering pipeline. 

6.3.2 Residue Flow Model 

We model the distribution of opacity between various branches of the contour tree as a 

water flow process in the tree structure. Opacity band on each branch is defined as the 

opacity range size applied to each branch. It is modeled as flowing water. As shown in 

Figure 6.3, we imagine that the contour tree is placed upsidedown with the root upside 

and leaves downside. At the same time, the water is poured at the root. The branch 

is modeled as a pipe structure with porous medium inside. Every branch in the tree 

absorbs some water passing through it and delivers residue to its children. The water 

absorbed by each branch is modeled as the opacity band allocated to each branch. 

The Darcy's Law is adapted to control the opacity distribution between branches in 

the contour tree: the packed length L of the cylinder in the Darcy's Law is modeled as 

the persistence of the branch; the cross-sectional area A of the medium in the Darcy's 

Law is modeled as the number of child branches; the volumetric flow rate Q of the fluid 

is modeled as the opacity flow rate in the branch; and !lh is modeled as the opacity 
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Figure 6.3: Water is poured at the root of the tree and flows throughout the tree. Part of 
water is absorbed by each branch and residue is delivered to the next depth level. 

residue factor in the branch. So given the opacity flow rate Q, the opacity residue factor 

!:Jz of each branch can be obtained from Equation 6.1. The opacity residue factor is 

used to modulate the opacity band and get opacity residue for the next depth level. 

In the residue flow model, the water begins to flow at the root of the contour tree as 

shown in Figure 6.3. Some of the flowing water is absorbed by branches, and there is 

the residue that is not absorbed by branches on each depth level. We assume that the 

water initially absorbed by branches at each depth level is equal. This means that the 

water is initially evenly distributed between depth levels. After this, the Darcy's Law is 

applied to each parent branch sequently from the root branch in order to get residues and 

then deliver them to child branches at the next depth level. The residue flows down to 

the next depth level, and combined together with the initially evenly distributed water. 

This combined water is then partly absorbed by the branch and the residue is delivered 

to the next depth level further. This process is continued until reaching leave branches. 

Based on this model, the opacity band on each branch is allocated using following 

procedure: Initially, the opacity range used to render the overall data set is divided into 

equal-size bands based on the maximum depth value. This allows the opacity band to 

be evenly distributed between each depth level. Then from the root of the contour tree, 
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the initial opacity band on each depth level is further processed in order to distribute it 

among siblings and deliver the opacity residue to the next depth level. The residue of 

opacity band on each depth level sinks down to the next depth level and contributes for 

the opacity band computation of that level. This process is illustrated in Algorithm 3. 

Algorithm 3: Residue flow in the contour tree. 
Input: Contour tree 
Output: Opacity distribution in the contour tree 
(j) Get initial opacity band ad for each depth level; 
for each depth level i do 

@ Get opacity residue factor M;; 
@ Get basic opacity band a; of the current depth level based on residue 
~ai-l from parents; 
for each child j do 

I 
® Distribute a; based on scalar value SiJ as well as importance measures; 
® Get opacity band aiJ of the current branch biJ; 

end 
® Get residue ~a; of the current depth level; 

end 

Algorithm 3 shows that the residue is generated on the parent depth level and flows 

to the next depth level. The residue is also distributed between siblings on each depth 

level. The details of each step in Algorithm 3 are presented in later sections. 

6.4 Opacity Transfer Function Generations 

Objectives of Opacity Transfer Function (OTF) in this chapter include: maximize ren

dering differences between various objects inside volume data, and represent corre

sponding inclusion relationship between objects at the same time. The branch decom

position is used to represent the topology of volume data in this chapter. This section 

first presents how the contour tree is used to represent inclusion relationship of objects 

inside volume data. Then the residue flow model is used to control the flow of opacity 

band in the contour tree in order to specify OTF of volume data. 

6.4.1 Representation of Inclusion Relationship 

Chapter 5 defined and analyzed various relationships (e.g. inclusion relationship) in a 

data set by utilizing topological properties derived from the contour tree. Specifically, 
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it was shown that the inclusion relationship of structures depends on nesting depth of 

branches in the co~tour tree. In this chapter, the inclusion relationship is used to aid the 

automation of transfer function generations in volume rendering. 

We use the branch decomposition to analyze the inclusion relationship in this chap

ter. The branch decomposition provides a direct way to track inclusion relationship 

based on branches. Because a branch is usually a concatenation of a sequence of arcs 

in the contour tree, the subregion corresponding to a branch is a combination of subre

gions corresponding to arcs. We do not consider inclusion relationships of subregions 

corresponding to individual arcs, but analyze inclusion relationships of subregions cor

responding to branches. We assume that there exists an outermost surface which in

cludes objects of interest in a data set. So we track the inclusion relationship in the 

branch decomposition from the branch corresponding to the outer surface. According 

to the basic theory described in the previous paragraph, this branch includes all of its 

children. The further tracking of inclusion relationship is performed along every child 

branch. The parent branch includes its child branch, and there is no inclusion relation

ship between child branches which have the same parent. In order to emphasize inner 

structures and deemphasize outer structures, branches with lower depth value are ap

plied with lower opacity and branches with higher depth value are applied with larger 

opacity. This forms the basis of the opacity residue flow presented in later subsections. 

6.4.2 Residue Flow and Opacity Transfer Function Design 

Typical approaches used to render inner structures and depict inclusion relationships in 

volume rendering include: volume clipping [123] and transparent/semitransparent sur

faces [Ill, 113]. Comparatively, transparent/semitransparent surfaces are more often 

used in volume rendering because they can display inner structures and outside struc

tures simultaneously. Users can perceive spatial information of different layers while 

emphasizing inner structures by using transparent/semitransparent surfaces. This kind 

of presentation thus improves users' understanding on volume data. This chapter uses 

the approach of transparent/semitransparent surfaces to depict inclusion relationships 

between structures by designing opacity transfer functions. In volume rendering, struc

tures with smaller opacities are displayed more transparently than structures with larger 

opacities. In order to display inner structures and outside structures at the same time, 

larger opacities need to be applied to inner structures while smaller opacities are applied 
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to outside structures. Based on these fundamentals, the goals of the opacity transfer 

function design based on the contour tree include: to maximize differences between 

branches depending on topological attributes, to depict inclusion relationships between 

branches as clear as possible, as well as to allocate higher and larger range of opacities 

to inner structures to emphasize inner structure. In order to meet these goals, we physi

cally model the distribution of opacity in the contour tree as a water flow process in an 

upsidedown tree structure in the residue flow model. 

Based on the residue flow model, when the water flows from root to leaves in the 

upsidedown tree, some of water are absorbed by branches, residues continuously flow 

to branches on the next depth level. This results in that the root and branches close 

to the root of the tree get smaller amount of the water and branches far from the root 

of the tree get larger amount of the water. Because the contour tree can be used to 

represent inclusion relationships between structures as presented in Section 5.3 and 

Section 6.4.1, inclusion relationships between structures can be depicted by designing 

the opacity distribution between branches in the contour tree. If the water is regarded 

as the opacity allocated to each branch of the contour tree, the allocation of water in an 

upsidedown tree can ideally meet goals of the opacity transfer function design based on 

the contour tree. The water absorbed by each branch is regarded as the opacity allocated 

to that branch, while residues continuously flow to branches on the next depth level. 

The flowing of residues is used to maximize differences of the water allocation between 

branches, and thus control the difference of opacities between branches. That means 

branches on the higher depth level get more water than those on the lower depth level. 

The result is that inner structures can be rendered more opaquely than outside structures 

and thus are emphasized. According to these principles, the following sections present 

how the residue flow model is used to distribute opacities between branches in the 

contour tree during the opacity transfer function generation process. 

6.4.3 Residue Flow from Parent to Children 

In order to distribute opacity between branches and thus generate OTF of volumetric 

data, we first divide the opacity range applied to volume data into equal segments based 

on the maximum depth of the contour tree. The initial value of each opacity band is 
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computed using Equation 6.3: 

a, 
- --, 

ad- dmax 
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(6.3) 

where ad is the initial opacity band used to render a subregion corresponding to a branch 

on each depth level, a, is the opacity range used to render the overall volume data set, 

dmax is the maximum depth value of the contour tree. 

As mentioned in the residue flow model in the previous section, the opacity band 

applied to each branch is modeled as water and the branch is modeled as a pipe with 

a porous medium inside. According to Darcy's Law, the absolute head loss value !!.hi 

between the ends of the current branch in the contour tree is computed by Equation 6.4: 

!!.hi = ..!._ . Q · Pi 
K n<c 

l 

(6.4) 

where /';,hi E [0.0, !.OJ, Pi is the persistence of the current branch, n'f is the number of 

children of the current branch. 

In this chapter, !!.hi is used as a factor to evaluate opacity band absorbed by the 

branch and residue delivered to the next depth level. The opacity band and residue on 

the ith depth level are computed by Equation 6.5 and Equation 6.6 respectively: 

ai = (ad+ t;,ai-d · (I -!';,hi), (6.5) 

t;,ai = (ad+ /';,ai-d ·!!.hi, (6.6) 

where i 2: I, IXo = ad· (I - /';,ho), and /';,IXQ =ad -ao. ai is the opacity band applied to 

branches on the ith depth level. t;,ai is the residue generated on the ith depth level. 

The opacity residue /';,ai flows from lower depth level to higher depth level in the 

contour tree. As mentioned, branches on the lower depth level correspond to outer 

structures and branches on the higher depth level correspond to inner structures. The 

flow of the opacity residue in the contour tree allows users to apply larger opacity band 

to inner structures than outer structures, and thus emphasize inner structures in volume 

rendering. 
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6.4.4 Residue Flow Among Siblings 

The opacity band and residue flowing to branches on each depth level need to be dis

tributed further between sibling branches on that depth level. One of objectives of the 

further distribution of opacity band and residue is to maximize differences between 

sibling branches. Various sibling branches have different extreme and saddle values. 

The saddle value of each branch decides its exact location on the depth level it resides. 

Importance values of persistence, volume and hypervolume of each branch are also con

tributed to enhance differences between sibling branches. Considering these factors, the 

final opacity band applied to each branch is computed by Equation 6.7: 

(6.7) 

where aii is the opacity band applied to the jth sibling branch on the ith depth level. a; 

is the basic opacity band on the ith depth level and computed by Equation 6.5. p;1, v;1 

and hviJ are persistence, volume and hypervolume respectively of the jth sibling branch 

on the ith depth level. g,b is the function used to control distribution of opacity band 

between siblings based on importance values p;1, vii and hvii. ni is number of siblings 

on the ith depth level. g,d is the function used to control distribution of opacity band 

between siblings based on saddle value SiJ of each branch. 

In order to evaluate influences of various importance values of a branch on the opac

ity band and residue flow, we use a concept of importance triangle [128] to combine 

various importance values together in order to modulate opacity band. The size (area) 

of the importance triangle is used as the solution to the function g,b in Equation 6.7 and 

computed by Equation 6.8: 

(6.8) 

where p;1, v;1 and hviJ are firstly normalized by corresponding local maximum within 

sibling branches respectively on the ith depth level. 

On the ith depth level, sibling branches have different saddle values. Branches with 

lower saddle values are close to the start of the root of the contour tree, and branches 

with larger saddle values are far away from the start of the root of the contour tree. 

Because a branch is a concatenation of a sequence of arcs in the general contour tree, 
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we apply a smaller opacity band to branches with lower saddle values and a larger 

opacity band to branches with larger saddle values, in order to emphasize branches with 

larger saddle values and represent the inclusion relationship. Based on this observation, 

the solution to the function gsd in Equation 6.7 is computed by Equation 6.9: 

S 
.. _ 5 min 

( ) 

I] . 

gsd Sjj == ~ (6.9) 

h A max min max_ ( ) min_'( ) w ereus;=s; -s; ,si -max s;o,sn, ... ,s;,nf ,si -mtn s;o,sil, ... ,Sf,nf. 

Finally, the actual opacity range applied to the jth branch on the ith depth level is: 

i-1 

a/1 = lXrnin + E am, (6.10) 
m=O 

i-1 
h_ ~ 

aiJ- Umin + 1... Urn+ aiJ, (6.11) 
m=O 

where af
1 

is the lower opacity value applied to the current branch. ab is the upper 

opacity value applied to the current branch. Umin is the minimum opacity value applied 

to the overall data set. 

After getting the opacity range of each branch, one of the transfer function shapes 

is selected to generate actual opacity values of each branch. In this chapter, we provide 

five typical transfer function shapes as shown in Figure 6.4. Each transfer function 

shape has its own features: the hat-like shape aims to reveal isosurface-like shapes 

in the data set; the linear shape can show other structures except isosurfaces. Other 

transfer function shapes have similar features with the linear shape and hat-like shape. 

The choice of the transfer function shape depends on the complexity of volumetric data. 

If a data set contains complex structures inside, the hat-like shape is more effective to 

reveal isosurfaces of structures to differentiate them. Otherwise, the linear shape and 

other shapes can also reveal inner structures effectively. 

L_, ~.b..lC__.lLL. 
(a) Linear (b) Triangle (c) Trapezoid (d) Hair-Trapezoid (e) Hat 

Figure 6.4: Various transfer function shapes used in a branch. 



116 CHAPTER 6. AUTOMATIC TRANSFER FUNCTION GENERATIONS 

6.5 Color Transfer Function Generations 

A Color Transfer Function (CTF) is used to help users to differentiate structures with 

colors. Automation of CTF generations is still a challenging task, which requires users 

to generate colors for various structures meaningfully. This section firstly presents vari

ous color spaces, and then introduces topological features derived from the contour tree 

into the pipeline of CTF generations. With the proposed approach, the CTF genera

tion becomes a meaningful process determined by topology instead of arbitrarily user's 

preferences dependent process. 

6.5.1 Color Spaces 

Different color spaces are used to describe colors . The RGB (Red, Green, Blue) color 

space (see Figure 6.5) describes a color completely, but it does not carry direct semantic 

information about the color, a person cannot visualize a color given its RGB value; they 

only tell how red, green, or blue it is. Additionally, in the RGB space, equal geometric 

distances within the space do not, in general, correspond to equal perceptual changes in 

color. Due to this perceptual non-linearity, the RGB space is not useful for direct color 

comparison based on geometric separation within the RGB cube. 

1,1,1 

o-----oWhite 

0, ,I 
Blue 

Figure 6.5: RGB color space [4]. 

The HSV (Hue, Saturation, Value) color space [99] (see Figure 6.6) is based on 

a cone and completely separates the intensity and chromatic com)JIJnents. In doing 

so, it describes colors in a semantically meaningful way. In this space, hue is used 

to distinguish colors, saturation is the percentage of white light added to a pure color 

and value refers to the perceived light intensity. The advantage of the HSV color space 
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is that it is closer to human conceptual understanding of colors and has the ability to 

separate chromatic ·and achromatic components. 

Green 
-a• 

Figure 6.6: HSV color space [4]. 

White 
L• 

Black 

Figure 6.7: CIELAB color space [5]. 

Red 
+a• 

The CIE L*a*b*, also called CIELAB or, for short, Lab color space, (see Fig

ure 6.7), is designed to approximate human vision and defines colors more closely to 

the human color perception than the HSV color space. It is an approximately uniform 

color space, In a uniform color space, the differences between points plotted in the color 

space correspond to visual differences between the colors plotted. 
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Because color is one of the important factors which influence perception of objects 

in volume rendering, the perceptive color spaces of CIELAB and HSV are considered 

in the proposed transfer function specification pipeline. 

6.5.2 Automation of Color Transfer Functions 

In volume rendering, a CTF is used to map data features and scalar values to colors 

in order to label various structures and create aesthetic appeal. It is often defined arbi

trarily by trial and error based on personal preferences. Even if some transfer function 

approaches provide widgets to assign colors to structures, there are no theoretical re

lations between the selected color and the object [ 64]. The CTF in this chapter aims 

to incorporate topological features derived from the contour tree into the CTF specifi

cation, and focus attention to inner structures. It also aims to label different structures 

with various colors, and automate CTF generation to create harmonic renderings. Thus 

the CTF specification becomes a meaningful but not arbitrary process. 

When viewing a color object, human visual system characterizes it by its brightness 

and chromaticity. The latter is defined by hue and saturation. Brightness is a subjective 

measure of luminous intensity. It embodies the achromatic notion of intensity. Hue is 

a color attribute and it represents a dominant color. Saturation is an expression of the 

relative purity or the degree to which a pure color is diluted by white light [28]. The 

perceptual color space CIELAB includes all these three perceptual components: hue, 

saturation and brightness. In our approach, we use the CIELAB to compute colors. The 

HSV color space is used as an interface between color computation and the CTF spec

ification. Thus we select a color triple of hue, lightness and vividness for each branch 

of the contour tree. The hue is selected in the HSV color space, and lightness as well as 

vividness are selected in the CIELAB color space. Specifically, vividness is defined as 

color's relative purity and obtained from Equation 6.12 and Equation 6.13 [119]: 

chrom (h, s, v) = J a2 + b2, (6.12) 

vivid (h,s, v) = chrom (h, s, v) / chrom (h, I, I), (6.13) 

where a and b are color components in the CIELAB color space. 

This chapter extends Wang et al.'s approach [119] in the following ways: varwus 
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hues are selected for each branch, and topological attributes (e.g. importance value) 

derived from the 2ontour tree instead of specified manually as in [ 119) are used in 

lightness and vividness selection. The contour tree is used to automate the overall color 

selection process. The color selection process for the CTF of each branch is presented 

as follows: 

Step 1 Hue selection. There are N branches in the contour tree, which correspond to 

various subregions/structures in the data set. This step creates various hues for 

each branch in order to increase contrast between structures. Different N hues 

may be evenly located on the hue wheel in the HSV space. We may also use a 

harmonic color template as shown in Figure 5.5 to select a hue type and limit hue 

positions inside the harmonic hue range on a harmonic hue wheel. We start to 

specify colors to each branch from the root of the contour tree. The choice of 

the color hue type depends on users' preferences and complexity of volumetric 

data. If a volume data contains large number of objects inside, users may select 

a hue type with large hue range or even the full hue range in order to increase 

differences between objects. 

Step 2 Lightness selection. Good global lightness contrast helps to discriminate dif

ferent features. It also helps in the depth ordering task to discriminate inner 

structures. The lightness of each branch is computed based on its depth and 

subtree size. Depth of the branch helps to highlight contrast of inner structures. 

Branches with lower depth are applied with higher lightness values, and branches 

with higher depth are applied with lower lightness values. The subtree size allows 

to consider affects of number of objects on the overall lightness. Branches with 

larger subtree size are applied with higher lightness in order to get higher contrast 

between structures and highlight inner structures. The lightness is computed by 

Equation 6.14: 

diJ ( nfj ) Lij = Lrnax - d · I - -s- · (Lrnax- Lmin), 
max nmax 

(6.14) 

where LiJ is the lightness applied to the current branch, nfj is the size of subtree 

beginning from the current branch, n:Oax is the whole contour tree size. 

Step 3 Vividness selection. Vividness can be a strong depth cue because decreasing 
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vividness gives the effect of seeing in a fog [93]. It guides the observer to the most 

important features of the data. The vividness of each branch is computed based 

on its depth and importance value. For the former, we apply lower vividness 

values to branches with lower depth in order to focus users' attention to inner 

structures. The importance value of each branch is also considered and more 

important branches are colored with a higher vividness. So this specification can 

be represented with Equation 6.15: 

(6.15) 

where Vij is the vividness applied to the current branch, dij and dmax are the 

depth of the current branch and maximum depth of the current tree, Iij is the 

importance value of the current branch computed by Equation 6.8, Vmin and Vmax 

are the minimum and maximum vividness specified by the user which determine 

the overall vividness of the visualization. 

After the hue, lightness and vividness have been selected, we convert these (h,L, V) 

triples to their (h, s, v) equivalents and finally to RGB for the transfer function. To obtain 

(h,s, v) from a given (h,L, V), we use the binary search in a given hue slice in the HSV 

space [119]. 

6.6 Experimental Results and Discussions 

We conducted experiments on various data sets to demonstrate the effectiveness and 

utility of the proposed approach in volume rendering. Our system was run on a Ubuntu 

platform on a Dell machine (Intel Core2Duo CPU E4400, 3GiB RAM) equipped with 

an NVIDIA GeForce 8300GS graphics card. 

We first used the proposed approach to automate the transfer function generation 

for the "nucleon" data set, a 41 x 41 x 41 voxel data set resulting from a simulation 

of the probability distribution of a nucleon in the atomic nucleus 160, see http:// 

'""'. volvis. org/. Figure 6.8 shows the result of the experiment. ln this figure, the 

harmonic color hue T-Type and linear transfer function shape are used. Figure 6.9 

shows the transfer function set generated in this experiment. By observing the result, 

the nested inner structures and outer layers are clearly revealed. This figure clearly 
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(a) Contour tree (b) Color range and TF shape 

(c) Rendering 

Figure 6.8: Volume rendered nucleon data set using harmonic hue T-Type and linear 
transfer function shape. 

shows various layers from outside to inner side with increased opacity, and increased 

vividness and decreased lightness. Harmonic colors give users aesthetic appeal and 

enhance understanding of structures. 

Figure 6.10 shows the rendering result of the "fuel" data set, a 64 x 64 x 64 voxel 

data set resulting from a simulation of fuel injected into a combustion chamber, see 

http: I /www. vol vis. org/. Using the contour tree controlled residue flow model, it 

is possible to automatically reveal inner structures while rendering surrounding layers 

using a low opacity. Colors of various structures are differentiated, and inner struc

tures are emphasized and applied with colors with high vividness and low lightness. 
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Figure 6.9: Transfer function set generated in Figure 6.8. 

Thus colors of structures controlled by topological attributes enhance understanding of 

structures. 

The effectiveness of the proposed approach can also be observed in movies accom

panying this chapter, which show how rendering results are changed when the opacity 

flow rate Q is increased for the "fuel" and "nucleon" data sets. From the movies, we see 

that outer surfaces become more transparent and then peeled off. while inner structures 

become clearer with the increasing of the opacity flow rate Q. This is because more 

opacity residues flow to inner structures when the opacity flow rate is increased. The 

movies give users a better understanding of the effectiveness of the residue flow model 

in transfer function generations. 

The volume rendering pipeline in this chapter is implemented based on graphics 

processing unit (GPU) fragment programs. The performance of the system allows real

time exploration of the volumetric data. The processing time of automatically generat

ing transfer functions for a data set depends on the number of branches in the contour 

tree and size of the data set. For small data sets, such as the "fuel" data set, the number 

of branches is usually within a manageable size (e.g. less than 90 before simplification 

and around or less than 20 after simplification). The transfer function can be generated 

interactively for such data sets. We created movies for "fuel" and "nu~Jeon" data sets to 

show how transfer functions are generated interactively when changing the opacity flow 

rate in this chapter. The frame rate (the size of the view port is 400 x 374 in this chap

ter) for the "fuel" data set is 36.5fps (20 branches, and original branch number is 86), 
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Figure 6.10: Volume rendered fuel data set using full hue range and linear transfer 
function shape. 

and the frame rate for the "nucleon" data set is 55.8fps (8 branches, and original branch 

number is 40). However, frame rates for larger data sets are still sufficiently high for 

automatically transfer function generations. For example, the processing time of gen

erating transfer functions for the CT knee data set is 1.27s (l 0 branches, and original 

branch number is 954968). After generating transfer functions, users can interactively 

explore the data sets. 

From the experiments, we can see that the proposed approach can effectively gen

erate transfer functions automatically. Compared with conventional transfer function 

methods, our approach has the following advantages: 

• It only requires users to simply control the opacity residue flow rate, instead of 

time-consuming interactions for tweaking complex transfer function parameters 
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to explore volume data. 

• The generated transfer function automatically reveals topological relations (such 

as inclusion relationships), instead of manually controlling parameters to depict 

topological relations. Furthermore, it is even impossible for conventional transfer 

function methods to carry out such a task if scalar ranges of various structures are 

overlapped in a data set. 

• It only requires users to understand the concepts of flow rate and transfer function 

shape, instead of complex visualization expert knowledge as required by conven

tional methods. Although some tried to overcome this problem by introducing 

semantic layers to ease transfer function specifications [92, 89], they still need 

complex decisions and interactions. 

• The automatically generated transfer functions also provide initial estimates even 

if users are to manually fine tune them. 

• Because the proposed approach does not require much involvement from users, it 

is even effective for an unknown volume data set. 

• The advantage of the residue flow model is that it allows the opacity residue 

to sink down to leaves inside an upsidedown contour tree, and results in larger 

opacities of branches on the higher depth level. This means that inner structures 

get larger opacity than outer structures, and thus emphasize inner structures. 

In summary, our new approach greatly improved the transfer function generation 

process, and it would be significantly beneficial to users who are not visualization ex

pert. 

Various opacity transfer function shapes are provided in the framework. Opacity 

transfer functions with a hat-like shape try to capture isosurfaces in the data set. This 

results in the possibility that users may see through outer surfaces to perceive inner 

structures in volume rendering. However, other transfer function shapes are also pow

erful in revealing structures in volumetric data. For example, the linear shape used in 

Figure 6.8 and Figure 6.10 is effective in depicting inner structures m data sets. Com

pared with Wang et al.'s method [ 119] which uses parameters such as importance levels 

specified manually by users to control color generations, our approach controls color 

generations based on topological attributes directly derived from the contour tree. This 



6. 7. SUMMARY 125 

is more meaningful and effective. We used both full hue range color and harmonic color 

in the experiments. 'Full hue range color provides high color contrast of structures, while 

harmonic color creates aesthetic appeal in the rendering. 

6.7 Summary 

This chapter presented a new paradigm for automating transfer function generations in 

volume rendering. Topological attributes derived from the contour tree were used to 

control the automation process. In the proposed approach, a residue flow model based 

on Darcy's Law was set up to differentiate the distribution of opacity between branches 

of the contour tree. Topological attributes were also used to control color selection in 

a perceptual color space and create harmonic color transfer functions. The generated 

transfer functions depicted inclusion relationship between structures and maximized 

differences between them. Users can control rendering results through differentiating 

opacity residue flow rates. Experiments on various data sets showed the effectiveness 

of our approach in the automation of transfer function generations. In summary, the 

proposed approach allows more efficient automation of transfer function generation, 

and data exploration can be performed through the control of opacity residue flow rate 

rather than complicated low-level transfer function parameters. 



Chapter 7 

Qualitative Evaluation in Volumetric 

Medical Image Analysis 

In previous chapters, we presented a novel approach to depict structural relationships 

and automate transfer function generations in volume rendering. It is important to eval

uate the extent to which the proposed approach meets the original objectives, and to 

determine how it compares to existing solutions. It is also important to understand the 

impact the approach will have on those who will make use of it. We performed some 

experiments in Chapter 4, Chapter 5 and Chapter 6 to show the effectiveness of the 

proposed approach in volumetric data analysis. This chapter specifically focuses on 

evaluating the effectiveness of the proposed approach in more complicated volumetric 

medical data analysis. It is dedicated to assessing the approach in a qualitative sense 

by comparing the proposed approach with conventional approaches in volumetric data 

analysis. 

7.1 Methodology 

This chapter performs a qualitative analysis of the proposed approach as compared 

to conventional volume rendering approaches with manual transfer function specifica

tions. More specifically, we used the Kitware Inc.'s VolView 3.2 [2] as a conventional 

volume rendering tool in our experiments in order to compare the effectiveness of our 

127 
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proposed approach. VolView 3.2 is a widely used interactive system for volume visu

alization that allows researchers to explore and analyze complex 3D medical or scien

tific data. It does not provide any automatic schemes for transfer function generations. 

So transfer functions are generated manually by trial-and-error during the experiment. 

Other conventional volume rendering approaches could be used in the experiments. The 

main difference between other approaches and Vol View is that other volume rendering 

tools incorporate more features of data sets and provide various widgets to ease trans

fer function definitions. However, they share the common disadvantages in volumetric 

data analysis: they define transfer functions manually through trial-and-error, and have 

no specific mechanisms to depict structural relationship in transfer function generations 

(see the investigation in Section 2.6). Because VolView is more widely used by re

searchers and visualization users, this chapter utilizes VolView to render various data 

sets in order to show the effectiveness of our proposed approach. 

Our evaluation consists of three main components as follows: 

• The ability to depict structural relationships. As mentioned, structural relation

ships are significant factors which affect understanding of volume data. This 

chapter compares the ability to depict the structural relationships of our approach 

with conventional volume rendering approaches, in order to show the effective

ness of our approach in volumetric data analysis. 

• The ability to automate transfer function generations. Automation of transfer 

function generations is highly demanded in volume rendering based data analy

sis. This ability decides the effectiveness of the approach in volumetric data anal

ysis. In comparing this ability of our approach with conventional approaches, we 

present the transfer function generation process and the requirements for creating 

a comprehensive rendering with different approaches. 

• The degree of involvement from users. In order to generate tran~fer functions and 

create a comprehensive rendering in volume visualization, users often need to do 

interactions on various parameters. The degree of this involvement affects the 

ease and effectiveness of the approach in volumetric data analysis. 
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7.2 Experimental Results 

To demonstrate how the proposed approach performs on volumetric data analysis, we 

used various complex medical data sets, such as CT knee data set, CT foot data set, and 

MR brain tumor data set. In each experiment, the properties of the data set are firstly 

presented. Difficulties to visualize the data set are also discussed. The experimental 

results are then presented to show how the proposed approach renders the data set ef

fectively. Our system was run on a Ubuntu platform on a Dell machine (Intel Core2Duo 

CPU E4400, 30 RAM) equipped with an NVIDIA GeForce 8300GS graphics card. 

7.2.1 CT Knee Data Set 

We first conducted an experiment on a moderately sized 379 x 229 x 305 voxel CT knee 

data set (see http: I lwWTi/9. informatik. uni -erlangen. deiExternallvollibl). The 

CT knee data set is composed of structures ofleft and right knees. These mainly include 

patellas, femurs, tibias and fibulas, as well as the skin. The purpose of this experiment is 

to render the various bones and the skin at the same time, in order to provide a compre

hensive rendering. The primary difficulty to render this data set lies in the similarity of 

various bones and thus being difficult to differentiate them. The proposed approach was 

used in the experiment to render the CT knee data set. The experimental result is shown 

in Figure 7.1. The full hue range and hat-like transfer function shape are used in this fig

ure during the transfer function generation process. Various structures are represented 

with different branches of the contour tree. As a result, structures are differentiated 

with various opacities and colors based on the residue flow model and harmonic colors. 

As shown in Figure 7.1, the various bones and the skin are clearly rendered and dif

ferentiated with attractively aesthetic colors. This experiment shows that our approach 

can effectively generate transfer functions for various structures automatically while 

optimized to depict inclusion relationships at the same time. 

7.2.2 CT Foot Data Set 

The CT foot data set (see http: I lwWVI. volvis. orgl) with moderately sized 256 x 

256 x 256 voxels contains various small bones of toes. It is time consuming for users to 

generate transfer functions to visualize bones and outer surface layers simultaneously 

/ 



130 CHAPTER 7. QUALITATIVE EVALUATION 

0. 

(a) Contour tree (b) Color range and TF shape 

(c) Rendering 

Figure 7.1: Volume rendered knee data set using full hue range and hat-like transfer 
function shape. 

with conventional approaches. The purpose of this experiment is to automatically gen

erate transfer functions for each structure in order to differentiate them visually while 

displaying their outer surface layers at the same time. The proposed approach was used 

in the experiment. The experimental result is shown in Figure 7.2. In this figure, the 

harmonic color hue T-Type and hat-like transfer function shape are. used. The inner 

bone structures and outer surface layers are clearly revealed with different colors. Inner 

structures are rendered using high opacity, high vividness and low lightness, while outer 

surfaces are rendered using low opacity, low vividness and high lightness controlled by 
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(c) Rendering 

Figure 7.2: Volume rended foot data set using harmonic hue T-Type and hat-like transfer 

function shape. 

the contour tree. The transfer function for each structure is automatically and locally 

defined, in order to highlight internal structures while revealing outer layers. 
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a 

(a) Contour tree (b) Color range and TF shape 

(c) Rendering 

Figure 7.3: Volume rendered tumor head data set using full hue range and hat-like 
transfer function shape. 

7 .2.3 MR Brain Thmor Data Set 

The proposed approach was also applied to a more complicated data set, an MR head 

data set with brain tumors inside (data courtesy of B Terwey, Bremen). Because of sim

ilar scalar values between tumors and surrounding structures, conventional volume ren

dering approaches cannot differentiate the brain tumor and other complex brain struc

tures effectively in the MR head data set. As a result, the tumor is often included by 

other outer complicated brain structures. This severely affects understanding of the tu

mor. The purpose of this experiment is to visualize the tumor in the brain and other outer 
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structures at the same time, in order to get a comprehensive understanding of the tumor. 

Figure 7.3 shows ihe rendering result of this experiment. The full hue range and hat

like transfer function shape are used in this experiment. In Figure 7 .3, because opacity 

residues flow from outer structures to internal structures, the brain tumor is highlighted 

using high opacity, high vividness and low lightness. Meanwhile, inner brain shape 

and outer head surfaces are clearly depicted using low opacity to show context. The 

rendering result enhances users' understanding of the tumor in the brain data. 

7.3 Qualitative Comparison 

This section perfom1s qualitative evaluation of the proposed approach as compared to 

conventional approaches (e.g. Vol View 3.2) in following aspects: depiction of structural 

relationships, automation of transfer function generations, and involvement from users 

during the data analysis process. For comparison purposes, we put the rendering results 

created with the proposed approach in the previous section and the results with VolView 

3.2 together in this section (see Figure 7.4, Figure 7.5 and Figure 7.6). 

7.3.1 Depiction of Structural Relationships 

(a) (b) 

Figure 7.4: Comparison of volume rendered CT knee data set with: (a) our approach, 
and (b) VolView 3.2. 
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(a) 

Figure 7.5: Comparison of volume rendered CT foot data set with: (a) our approach, 
and (b) YoiYiew 3.2. 

(a) (b) 

Figure 7.6: Comparison of volume rendered MR tumor head data set with: (a) our 
approach, and (b) YoiView 3.2. 

As mentioned in previous chapters, structural relationships play significant roles 

in understanding volumetric data sets. Depiction of structural relationships provides 

more intuitive and physically meaningful renderings. It enhances information provided 
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by common rendering techniques. This subsection compares the ability of depicting 

structural relationships of the proposed approach with the conventional approach as 

used in Vol View 3.2. 

As shown in Figure 7.4(a), Figure 7.5(a) and Figure 7.6(a), we see that inner struc

tures (e.g. bones and the tumor) are rendered with higher opacities and different colors, 

while outer surface layers are rendered with lower opacities. On the contrary, the ren

dering results as shown in Figure 7.4(b), Figure 7.5(b) and Figure 7.6(b) do not reveal 

inner structures and outer surface layers clearly. Especially in Figure 7.6(b), the inner 

tumor is not revealed at all. 

Conventional approaches usually differentiate structures based on large contrast 

with their surrounding structures, i.e. gradient information. This is effective in some 

degree as shown in Figure 7.4(b) and Figure 7.5(b). However, if structures of interest 

have similar scalar values with their surroundings, users cannot differentiate them, and 

thus cannot depict structural relationships as shown in Figure 7.6(b). 

From the comparisons, we see that the proposed approach can depict structural re

lationships (e.g. inclusion relationship) effectively in complicated volumetric medical 

data sets. The underlying reason is that the proposed approach represents topological 

relationships of structures explicitly and utilizes them during the transfer function gen

eration process. Conventional approaches do not exploit topological attributes between 

structures explicitly during transfer function generations. Although some conventional 

approaches can depict inclusion relationship to some degree as investigated in Sec

tion 2. 7, they need excessive user interactions which reduce efficiency and come short 

in repeatable results. Specifically in this experiment, Vol View 3.2 does not have mecha

nisms to depict structural relationships during transfer function generation process, and 

thus fails to depict structural relationships. 

From the comparison, we conclude that the results using the proposed approach 

support the theory of structural relationship preserved mapping as proposed earlier. 

7.3.2 Automation of Transfer Function Generations 

One of the problems which limits practical applications of volume rendering in volume!

ric data analysis is the definition of complex parameter space, especially the definition 

, of transfer functions. 

With the approach in this thesis, the transfer function generation process requires 
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users to select a color hue wheel and a transfer function shape. The transfer functions 

are then generated automatically. A useful "by-product" of our approach is that users 

can interactively explore structures (especially inner structures) in the data set through 

interacting with the residue flow rate with a simple slidebar. 

Comparatively, when conventional approaches for transfer function generations are 

used (e.g. the approaches used in VolView 3.2), users have to conduct complex low

level transfer function parameter adjustments by trial-and-error manually. Four param

eters of opacity, red, green and blue need to be modulated manually in this process. 

The help information used in this manual process often includes a histogram of the data 

set, experiences and domain knowledge (e.g. the scalar value of bones is usually higher 

than that of soft tissues). Users have to modulate four parameters of opacity, red, green 

and blue manually by trial-and-error respectively. This process is time-consuming and 

comes short in repeatable results. 

From the comparisons as mentioned above, we concluded that our approach can 

automate transfer function generations more effectively than conventional approaches. 

The results support the theory of automatic transfer function generations as presented 

in the previous chapters. 

7.3.3 Involvement From Users 

The involvement from users primarily refers to what interactions are used to create 

comprehensive rendering and how complex the interactions are. This section compares 

the complexity of interactions and efficiency of transfer function generations between 

our approach and conventional approaches. 

Complexity of Interactions 

Our approach only requires few involvements from users to create a comprehensive 

rendering. These involvements primarily include the selection of a color hue wheel, the 

selection of a transfer function shape, and possible interactions of the residue flow rate. 

These involvements are simply performed with several mouse clicks. l,Jsers do not need 

to make complex decisions. They even do not need any visualization expert knowledge 

to create renderings. 

In conventional approaches, users often use various polylines/curves (e.g. the user 
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interface used in Vo!View 3.2 as shown in Figure 2.7) to define opacity transfer func

tions. It is quite difficult to explore an ideal curve in a 20 space. To simplify, con

ventional approaches often use a number of 20 control points to define a polyline to 

approximate the curve of a transfer function. Every 20 point has 2 degrees of freedom 

(OOF). With the help of a histogram displayed as the background of the transfer func

tion widget, it still takes much time for users to define an ideal transfer function for 

the comprehensive rendering by trial-and-error. Even if semantic transfer function ap

proaches as investigated in Section 2.6 are used, users still need complex decisions and 

interactions in transfer function generations. Moreover, the definition of the color trans

fer function is also a time consuming task for conventional approaches. There are no 

specific rules between physical meaning and colors. Users often define colors for vari

ous features of data sets randomly and/or based on their preferences. It is more difficult 

for users to define attractive aesthetic colors for a comprehensive rendering manually. 

This process requires much visualization expert knowledge to do interactions and deci

stons. 

From the comparisons, we observed that the proposed approach in this thesis sim

plified the opacity transfer function generation process, from the complicated trial-and

error process for the curve definition to a simple mouse clicking for the selection of 

a transfer function shape. Also the color transfer function generation process is sim

plified, from the modulation of three unrelated parameters (red, green and blue) to the 

selection of a color hue wheel with a simple mouse clicking without complex decisions. 

Efficiency of Transfer Function Generations 

Because the contour tree is precomputed, the time used to generate transfer functions 

with our approach include: I) selection time for the color hue wheel and the transfer 

function shape, 2) processing time for automatically generating transfer functions. The 

first item usually takes seconds with several mouse clicks. The second item can be 

done in real time for small data sets (e.g. the nucleon and fuel data sets as shown in 

section 6.6). Frame rates for larger data sets are also sufficiently high for automatic 

transfer function generations. For example, the processing time for generating transfer 

functions for the CT knee data set is 1.27s (10 branches, and original branch number is 

954968). Altogether, our approach allows users to generate transfer functions quickly 

and easily. 
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Comparatively, conventional approaches take much more time to generate transfer 

functions for volume data. This is because that users need to perform complex inter

actions and decisions for each parameter by trial-and-error as mentioned above. Even 

for an experienced user, it is also time consuming to get an ideal transfer function for a 

volume data. For example, we spent more than 5 minutes to create the transfer function 

by trial-and-error used in Figure 7 .6(b ). Even if we spent much longer time than the 

time used in our proposed approach, the transfer function in Figure 7 .6(b) is still not 

good enough to depict structures of interest (e.g. the tumor in the brain). The color 

transfer function is also not aesthetically attractive as in our approach. This is same for 

Figure 7.4 and Figure 7.5. 

This comparison demonstrated that the proposed approach can efficiently generate 

transfer functions, and therefore meets the hypothesis and objectives of this thesis as 

presented in Chapter I. 

7.4 Applications 

The direct results of this thesis include important theories for volume rendering and 

volumetric data analysis, therefore guiding rendering design and enabling new vol

ume rendering software. Specifically, the highly demanding theories on automation of 

rendering parameter generations will benefit researchers and practitioners in this area. 

Researchers and practitioners can apply the theories developed in this thesis in visual

ization software. Firstly, the proposed approach is used to automate transfer function 

generations, which are optimized for depicting structural relationships such as the in

clusion relationship. Besides, it can be used to generate initial transfer functions for a 

complex data set. If users are not satisfied with the generated transfer functions, the 

transfer functions generation using the proposed approach can be further optimized to 

get comprehensive rendering. This significantly reduces the time of transfer function 

generations as compared with conventional approaches. More specifically, the results 

of this thesis could potentially benefit health care and other industrial areas, for example, 

non-destructive testing and computational fluid dynamics. 

• The direct application of this research is to visualize and analyze volumetric med

ical images (e.g. CT, MRI) which are heavily used in hospitals. Radiologists 

could potentionally benefit from this work to improve the efficiency of routine 
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medical image analysis. 

• Non-destructive testing (NDT): NDT is a wide group of analysis techniques used 

in science and industry to evaluate the properties of a material, component or sys

tem without causing damage. It is a highly valuable technique that can save both 

money and time in product evaluation, troubleshooting and research. Industrial 

CT is one of widely used NDT techniques. The results of this thesis can be used 

in NDT to improve the efficiency of data analysis. 

• Computational fluid dynamics (CFD): In computational fluid dynamics, engi

neers use numerical calculations to accurately simulate many engineering prob

lems that once required the use of physical experiments involving wind and water 

tunnels. CFD has come to serve as an instrument in the design of many familiar 

engineering processes. Volume rendering is a vital part of analyzing CFD simu

lation results. The novel theories developed in this thesis promote a wider use of 

volume rendering in CFD analysis. 

7.5 Limitations 

The effectiveness of our approach depends on the quality of the contour tree, which 

is decided by signal-to-noise ratio (SNR) and contrast of volumetric data. Data sets 

with higher SNR and higher contrast create higher quality contour trees, which can 

more accurately represent topology of data sets. Fortunately, with the improvement of 

scanning techniques, scientists may get volumetric data with higher quality, and thus 

our method becomes more effective in volumetric data analysis. Currently, we may 

improve the quality of the contour tree through preprocessing of volumetric data (e.g. 

filtering). More algorithms of the contour tree can also be developed to create high 

quality contour trees. 

The proposed approach requires excessive memory to store contour trees in the 

pipeline. The required size of memory depends on the size of contour trees. As men

tioned above, the SNR and contrast of volumetric data affect the contour tree quality, 

and thus also the size of contour trees. However, with the advancement of hardware 

nowadays, memory is becoming cheaper. This problem is not highly critical and a 

desktop computer with more than I OGB memory is not an unusal configuration nowa

days. 



140 CHAPTER 7. QUALITATIVE EVALUATION 

Typical preset transfer function shapes are usually available for users in most widely 

used visualization software, in order to provide quick and easy exploration of data sets. 

These transfer function shapes are often used to set global transfer functions of volu

metric data. In the proposed approach, users need to select the transfer function shape 

manually for a local transfer function for each branch. It is often based on the data 

properties, for example, the hat-like shape is more effective to reveal iso-surfaces in 

complex regions, the linear shape is effective for homogenous regions. The manual 

selection of the transfer function shape affects the overall effectiveness of the proposed 

approach. So automation of selection of transfer function shape would further improve 

the efficiency of automatic transfer function generations. 

7.6 Summary 

In this chapter, we described experiments conducted with various data sets to demon

strate the effectiveness of the proposed approach in this thesis. Qualitative comparisons 

were performed in three aspects to show advantages of the proposed approach. Limita

tions of the proposed approach were also discussed for the future improvement. From 

the comparison, we concluded that with the theories proposed in this thesis, volume 

rendering researchers and practitioners are able to visualize and analyze volumetric 

data simply with the control of a few easily understood parameters. It only requires 

practitioners to learn easily understood concepts such as residue flow rate, instead of 

complex visualization expert knowledge as required by conventional methods. Because 

the proposed approach aims to automate transfer functions and does not require much 

involvement from users, it is even effective for an unknown volumetric data set. The 

novel approach greatly improves the efficiency of transfer function generations, and it is 

significantly beneficial to users who are not visualization expert. So it greatly improves 

practical applications of volume rendering in volumetric data analysis, especially in 

medical image analysis. As a result, the proposed approach significantly improves the 

efficiency of volumetric data analysis. 



Chapter 8 

Conclusions 

Volume rendering is becoming an essential tool for volumetric data analysis. Its ul

timate purpose is comprehension. As scientific data continue to increase in size and 

complexity, topology based techniques have begun to emerge as a general framework 

to capture significant features of the data at an abstract level, enabling and facilitating 

data understanding in visualization. The contour tree is one of the topological abstrac

tions of data sets. It has been used to define transfer functions and other rendering 

parameters in volumetric data analysis. 

In the context of this work, we focused on investigating how the contour tree could 

be used to improve the efficiency of volumetric data analysis. This thesis approached the 

issue by utilizing the topology of data sets to explore various relationships of structures 

in a data set in volume rendering. It also utilized the topology to automate rendering 

parameter generation in volume rendering. To make this work practical, this thesis dealt 

with topology simplifications. 

In this chapter, a summary of contributions of the thesis is presented. Ideas for 

future research directions are also discussed. 

8.1 Summarized Contributions 

This thesis was concerned with analyzing effective uses of the contour tree in volume 

rendering. The thesis contributed to extract data information and understand data sets 

through depicting topological relationships and automating analysis of volumetric data. 

In particular, the contributions of this thesis are outlined as follows: 
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Multiple Measures of Importance for Contour Tree Simplification 

We proposed a multiple measures of importance approach for the contour tree simpli

fication. The proposed approach used multiple measures of importance simultaneously 

in the contour tree simplification process by introducing concepts of attribute space, im

portance triangle and importance space. It maximized advantages of each measure of 

importance in the contour tree simplification process. Interfaces were provided to allow 

users to interact with branches more meaningfully and efficiently. The importance

driven approach allows for the simplification of contour trees by considering the overall 

attribute space and giving better evaluation of importance of a branch, instead of the 

limited attribute space used by conventional approaches. The priority line window al

lows the specification of an importance threshold more efficiently and meaningfully, in

stead of unguided low-level threshold adjustment of single measure of importance [25]. 

The proposed approach can be generalized to process branches with more than three 

measures. 

Structural Relationship Preserved Mapping 

We presented an approach on depicting structural relationships between objects in vol

ume rendering through a concept of structural relationship preserved mapping. The 

concept was set up through analyzing the roles of perception in volume visualization. 

Two typical relationships of inclusion and neighboring were defined and depicted in 

volume rendering respectively. The contour tree controlled structural relationship de

piction allows users to perceive structural relationship in a more direct way. The advan

tage of the structural relationship preservation approach is that it allows analysis of vol

umetric data to focus on revealing high-level topological relations instead of low-level 

rendering parameter modulations, and thus improves understanding oJ; volumetric data. 

The structural relationship preservation provides information which is not available in 

commonly used volume rendering techniques, and enhances information provided by 

common rendering techniques. 
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Automatic Transfer Function Generations 

This thesis presented a novel approach for automating transfer function generations. 

The new approach utilized topological attributes derived from the contour tree to au

tomate transfer function generations. In the new approach, a residue flow model based 

on Darcy's Law was employed to control distributions of opacity between branches in 

the contour tree. Topological attributes were also used to control color selection in a 

perceptual color space and create harmonic color transfer functions. The transfer func

tions reveal structural relationships (e.g. inclusion relationship) automatically. They 

were optimized to maximize opacity and color differences between structures. 

Some of the theories and results presented in this thesis have been published in 

IEEE TVCG [129], other journals [130], proceedings [132] and book chapters [131]. 

As well, some results have been published as a technical report [128] or are ready to be 

submitted [133]. 

8.2 Future Research Directions 

Within this thesis, we have shown the successful roles of topology, especially the con

tour tree, in improving the effectiveness of volume rendering in volumetric data anal

ysis. However, there are potentials for further research and development based on this 

research. This section presents a number of interesting areas for further development. 

Structural Relationship Depiction 

The concept of the structural relationship preserved mapping proposed in this thesis 

opens opportunities for possible research areas. The open issues include: I) Definition 

of new structural relationships based on topology and other various features of volu

metric data. Various features of a 30 data set can be used to define new structural 

relationships. For example, two objects may belong to the same category in a data set 

(e.g. two tumors or toe bones). We may name this as member relationship. Various fea

tures of the data set need to be detected to define new structural relationships. 2)New 

methods of representation of structural relationship. With the new structural relation

ships, we need to develop novel methods to reveal them in volume rendering based on 

topology. 
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Automation of Selection of Local Transfer Function Shapes 

In the proposed approach, users are required to select a local transfer function shape 

manually during the transfer function generation process. The manual selection of the 

transfer function shape may affect the overall effectiveness of the proposed approach. 

So automation of selection of transfer function shapes would further improve the ef

ficiency of automatic transfer function generations. Various topological attributes and 

other data features may be used in this process. 

Different transfer function shapes may be applied to different branches in the con

tour tree in order to further improve the effectiveness of transfer function generations 

for volumetric data. Furthermore, more choices of local transfer functions for each 

branch can be developed. For example, multi-dimensional transfer functions and other 

approaches reviewed in Section 2.6 can be adapted for each branch to automate and im

prove the overall effectiveness of transfer function generations. An extensive evaluation 

study on the proposed approaches would also be one of our future directions. 

Automation of Other Rendering Parameters 

Volume rendering has a complex parameter space that limits its practical applications 

in data analysis. The parameter space refers to a set of parameters used to produce 

a rendering image. The parameters that are available in visualization software can be 

divided into two major categories [114]: I) View specific parameters: view position, 

orientation, zoom, light position (point light), light direction (distant light), shading 

coefficients (ambient, diffuse, specular); 2) Data specific parameters: color transfer 

function (mapping between data value and color), opacity transfer function (mapping 

between data value and transparency level), slicing plane position and orientation. 

As mentioned above, besides transfer functions, lighting and shading are critical pa

rameters which affect the rendering quality especially homogeneous regions in volume 

rendering. These settings are often defined randomly or based on experiences. In ad

dition, after getting a rendering display, users often perform interactions, such as rotate 

and zoom in/zoom out, to modulate camera positions in order to perceive as much in

formation as possible. This process lacks theoretical guidance and is time consuming. 

Topology of data sets is one of the factors that affect these parameter settings. For exam

ple, camera information needs to be different for a simple object and a complex data set 

with multiple objects inside, in order to improve the efficiency of data understanding. 
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One of the future research directions may aim to utilize topology of data sets to 

automate lighting imd camera parameter generations, in order to maximize the display 

of structural information of objects while minimizing user interactions. The challenges 

include: what are the measurements that are used to evaluate the displaying of structural 

information in the rendering display window based on topology, as well as how to set 

up and minimize the cost function that is used to control these measurements. 

Volume Rendering of the Future 

The ultimate ideal of volume rendering would be to allow users to analyze volumetric 

data without or with much fewer involvements and decisions. In addition, because end 

users are usually not visualization experts, the involvements and decisions should notre

quire much visualization expert knowledge from users. Volume rendering ideally would 

provide visualization for tasks that require human judgment, and other tasks would be 

automated where possible. But finding a productive balance between automation and 

visualization is a challenge and is one of the goals of visual analytic methods [80]. The 

automation of rendering parameter generations is a critical part of this ideal. The work 

in this thesis is an important step toward to minimizing the gap to the ideal. 



Appendix A 

Priority Line Window 

Given persistence, volume, hypervolume and /Tri of a set of branches, we need an 

intuitive way to present and manipulate them. This appendix introduces an interface 

named priority line window to facilitate the display, and manipulate their corresponding 

importance meaningfully. 

~?a Contour Tree Brdnch Priority lone I!II~EJ 

Threshold Hne 
...... ly J;~ 

I..J .. J ... J..~~ ....... Iuulllll,llllill 

Figure A. I: The priority line and threshold line. 

The global description of priority values of a given measure of importance allows 

users to perceive and manipulate branches in a different way. Similar to the histogram 

of an image, the priority values of branches of a data set can also be represented as a 

group of lines and used in the CTS. The priority line is set up as follows: the horizontal 

axis represents different branches, and the vertical axis represents impottance values. 

The index number of branches is based on the data structure used in our implementation 
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and kept constant during the simplification. Each branch is represented with a vertical 

line, and its height is the corresponding importance value. We also call importance 

values priority values because they are used as priority values of priority queues in the 

CTS pipeline. 

The priority line window compares the different priority values of branches of a 

given measure, allowing users to find patterns of the priority values (e.g. peaks of 

values). The order of branches represented in priority lines does not affect users' com

parison as long as lines of various measures of importance use the same order. The 

patterns help users to manipulate different measures of importance more meaningfully. 

For example, from the priority line window, we see that there are several obvious peaks 

in the priority lines of volume and hypervolume. These peaks may correspond to re

gions of interest in the data set. During the CTS, a priority threshold is often necessary 

to control the simplification process. Similar to using a histogram to set meaningful 

thresholds in image understanding, the priority line window can help users to set the 

threshold based on patterns of priority lines in order to get an effective CTS. Figure A. I 

is an example of the priority line window. In this example, users can directly move the 

threshold line in the priority line window. The window clearly shows importance values 

of which branches are above the threshold and which branches are below the threshold. 

The interaction and display of the priority line and the threshold line simultaneously al

low users to modulate the threshold more meaningfully and effectively compared with 

conventional simplification methods using slider-bar based approaches [25]. This sim

plification process only requires users to do several mouse clicks and then get simplifi

cation results. It is an efficient process. 

In addition, other interfaces and mechanisms are provided to communicate and col

laborate to improve the CTS efficiency. For example, the click on one branch or node 

in any display window can be synchronized and updated in other windows. 



Abbreviations 

CT Computerized Tomography 

CTF Color Transfer Function 

CTr Contour Tree 

CTS Contour Tree Simplification 

DVR Direct Volume Rendering 

HLS Hue, Lightness, Saturation 

HSV Hue, Saturation, Value 

ITri Importance Triangle 

JT Join Tree 

MRI Magnetic Resonance Imaging 

MS Morse-Smale 

OTF Opacity Transfer Function 

RGB Red, Green, Blue 

ST Split Tree 

VRI Volume Rendering Integral 
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