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cucurbit[7]uril affects the drug’s pharmacokinetics, resulting in higher plasma and organ 43 

concentrations.44 
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Abstract 45 

The cucurbit[n]uril (CB[n]) family of macrocycles has been shown to have potential in drug 46 

delivery where they are able to provide physical and chemical stability to drugs, improve 47 

drug solubility, control drug release and mask the taste of drugs. Cisplatin is a small molecule 48 

platinum-based anticancer drug that has severe dose-limiting side-effects. Cisplatin forms a 49 

host-guest complex with cucurbit[7]uril (cisplatin@CB[7]) with the platinum atom and both 50 

chlorido ligands located inside the macrocycle, with binding stabilised by four hydrogen 51 

bonds (2.15-2.44 Å). Whilst CB[7] has no effect on the in vitro cytotoxicity of cisplatin in the 52 

human ovarian carcinoma cell line A2780 and its cisplatin-resistant sub-lines A2780/cp70 53 

and MCP1, there is a significant effect on in vivo cytotoxicity using human tumour 54 

xenografts. Cisplatin@CB[7] is just as effective on A2780 tumours compared with free 55 

cisplatin, and in the cisplatin-resistant A2780/cp70 tumours cisplatin@CB[7] markedly slows 56 

tumour growth. The ability of cisplatin@CB[7] to overcome resistance in vivo appears to be a 57 

pharmacokinetic effect. Whilst the peak plasma level and tissue distribution are the same for 58 

cisplatin@CB[7] and free cisplatin, the total concentration of circulating cisplatin@CB[7] 59 

over a period of 24 hours is significantly higher than for free cisplatin when administered at 60 

the equivalent dose. The results provide the first example of overcoming drug resistance via a 61 

purely pharmacokinetic effect rather than drug design or better tumour targeting, and 62 

demonstrate that in vitro assays are no longer as important in screening advanced systems of 63 

drug delivery. 64 

 65 

66 
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Introduction 67 

Platinum-based drugs represent the major class of agents in chemotherapy for the treatment 68 

of a range of human cancers including: testicular, head and neck, colorectal, bladder, lung 69 

and ovarian.1, 2 Cisplatin was the first drug approved in this class and after 40 years remains 70 

in use, but clinical activity is limited by systemic toxicity and tumour drug resistance (Figure 71 

1).1 A number of platinum analogues have been developed in an attempt to improve the 72 

therapeutic efficacy of cisplatin.1 The introduction of carboplatin resulted in a significant 73 

reduction in the nephrotoxicity associated with platinum-based chemotherapy.2 Oxaliplatin, a 74 

recently approved platinum based drug is used primarily in the treatment of colorectal cancer; 75 

a tumour type previously resistant to cisplatin treatment.2 New drugs continue to be 76 

developed, such as the multinuclear drug BBR3464,3, 4 orally active drugs like satraplatin and 77 

sterically hindered drugs like picoplatin.1, 2  78 

 79 

Advances in drug delivery, however, can also be exploited to improve the clinical efficacy of 80 

anticancer drugs. The delivery of platinum drugs can be improved through their 81 

encapsulation in macrocycles, polymers or liposomes. Use of these vehicles protects the 82 

drugs from binding to serum proteins whilst in circulation, and allows the drugs to be better 83 

targeted to tumours through the enhanced permeability and retention effect.5  84 

 85 

Cucurbit[n]urils (CB[n], Figure 1) are a family of rigid macrocycles made from the acid 86 

condensation of glycoluril and formaldehyde.6, 7 They have a hydrophobic cavity, accessible 87 

through two hydrophilic oxygen lined portals, and are capable of storing and releasing small 88 

molecules.8, 9 Encapsulation of a drug molecule by cucurbituril can provide a range of 89 

benefits including: chemical10-12 and thermal stability,13-15 improved drug solubility,16, 17 90 

controlled drug release,18, 19 and potential taste masking of some drugs.14 Cucurbiturils of all 91 
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sizes have been shown to be non-cytotoxic and non-toxic,10, 20 and can be formulated into 92 

dosage forms suitable for human drug administration.9, 21 93 

 94 
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 95 

Figure 1. The chemical structures of cucurbit[7]uril (CB[7]) and cisplatin.  96 

 97 

In this paper we report for the first time the use of cucurbiturils to enhance the cytotoxicity, 98 

and overcome drug resistance, of an platinum anticancer agent via a purely pharmacokinetic 99 

effect. The mode of cisplatin encapsulation by CB[7] has been investigated using molecular 100 

modeling and the effect of the macrocycle on the drug’s in vitro and in vivo cytotoxicity 101 

determined using matched human ovarian carcinoma cell lines. The whole body 102 

pharmacokinetic effect of CB[7] has also been examined in vivo and assessed to determine 103 

peak drug serum concentration times and uptake of the drug into different vital organs. 104 

 105 

 106 

Results and Discussion 107 

 108 

Molecular modelling 109 

Cucurbiturils form a range of host-guest complexes with drugs by two possible 110 

complementary modes utilising hydrophobic interactions between the cavity of the 111 
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macrocycle and drug and/or ion-dipole or dipole-dipole (hydrogen bonding) between the 112 

cucurbituril carbonyl groups and drug am(m)ine groups.9 For platinum-based drugs that have 113 

organic ligands, like oxaliplatin or multinuclear drugs, the association constant of the host-114 

guest complex can be relatively high (105 M-1), although the strength of binding and the rate 115 

of drug release can be controlled by varying the size of the cucurbituril used.10 Whilst we 116 

have previously shown that cisplatin can form host-guest complexes with CB[7],22 the nature 117 

of the binding has not been examined. How the drug binds to cucurbiturils is important as 118 

cisplatin has no organic ligand with which it can utilise hydrophobic interactions with the 119 

macrocycle’s cavity. As such, binding may be quite weak and the drug easily dissociated 120 

when dissolved at pharmaceutically relevant concentrations.  121 

 122 

Molecular models of cisplatin with CB[7] were generated, with the cisplatin positioned 123 

pointing into the macrocycle, and alternatively, with cisplatin positioned at the edge of the 124 

cucurbituril pointing out from the macrocycle (Figure 2a); two modes that have been 125 

predicted from 1H and 195Pt NMR spectra.22 In the pointing in position the platinum atom and 126 

the two chlorido ligands of the drug are located within the CB[7] cavity, where steric 127 

hindrance provides protection of the drug from attack from potential biological nucleophiles, 128 

like glutathione, and proteins containing accessible cysteine and methionine residues.12, 23, 24 129 

In this case, binding into the cavity is stabilised by four hydrogen bonds, with lengths of 130 

between 2.15 and 2.44 Å (Figure 2b).  131 
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 132 

Figure 2a. Molecular models of the host-guest complexes of the anticancer drug cisplatin 133 

with cucurbit[7]uril, showing the two potential modes of binding: pointing in, where the 134 

platinum atom and chlorido ligands are located within the macrocycle’s cavity and pointing 135 

out, where binding occurs only at the CB[7] portals and is less energetically favourable. 136 

 137 

Figure 2b. A molecular model of the pointing in mode of binding of cisplatin to CB[7] 138 

showing the four hydrogen bonds from the drug’s ammine hydrogen atoms to the 139 

macrocycle’s carbonyl oxygen atoms (bond lengths: 2.15, 2.22, 2.38 and 2.44 Å) that 140 

stabilise the host-guest complex. 141 

 142 
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In the pointing out mode of cisplatin binding, the distance between the drug ammine 143 

hydrogen atoms and the CB[7] carbonyl oxygen atoms is too great to form hydrogen bonds 144 

properly; 2.60 to 3.40 Å. Binding in this manner is also less energetically favourable 145 

compared with the pointing in mode of binding by 0.961 kJ/mol. Attempts to measure the 146 

association constant of cisplatin to CB[7] using fluorescent displacement assays of 147 

methylene-blue were unsuccessful and indicate that the Kb is less than 104 M-1. The results 148 

therefore clearly indicate a preferred mode of binding by the drug in which it is pointing in to 149 

the cavity of CB[7], which is potentially useful in drug delivery. 150 

 151 

In vitro cytotoxicity 152 

The ovarian cell line A2780 is relatively sensitive to cisplatin. It has a functional wild type 153 

p53 gene and expresses the MLH1 component of the DNA mismatch repair pathway. This 154 

pathway has been shown to be involved in the recognition of cisplatin-DNA adducts and 155 

induction of apoptosis.25-27 Loss of mismatch repair (MMR) enzyme function results in 156 

resistance in vitro to a number of clinically important anticancer drugs, including cisplatin 157 

and doxorubicin,28-30 and has been associated with selection for drug-resistant breast and 158 

ovarian tumours during chemotherapy.29, 31 A2780/cp70 and MCP1 are cisplatin resistant cell 159 

lines derived from A2780 that show a 27- and 3-fold resistance to cisplatin in vitro, 160 

respectively. Re-expression of MLH1sensitises xenografts of A2780/cp70 to cisplatin.32 161 

 162 

The in vitro growth inhibition assay is the gold standard as a first screening tool when 163 

evaluating new drug candidates. A compound which has a high IC50 (the concentration of 164 

drug required to inhibit cell growth by 50%) is not generally further developed. The IC50 of 165 

cisplatin is dependent on the cell line used and the length of exposure of the drug to the cells, 166 

but is usually somewhere between 0.1 and 10 µM. Therefore a new platinum drug candidate 167 
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in the past has needed an IC50 in the sub-micromolar concentration range to warrant further 168 

development.  169 

 170 

Encapsulation of cisplatin in CB[7] (cisplatin@CB[7]) had no effect on the cytotoxicity of 171 

the drug in the A2780 cell line and had no effect on the resistance of A2780/cp70 and MCP1 172 

(Table 1). Similarly, p53 was induced 24 hours after treatment of cells with either free 173 

cisplatin or cisplatin@CB[7] and showed the same dose dependent increase in the two cell 174 

lines with wild type p53 (A2780 and MCP1; Fig 3a). The induction of apoptosis, as measured 175 

by the appearance of an 85 kDa cleavage product of poly ADP ribose polymerase, also 176 

showed the same dose dependence for free cisplatin and cisplatin@CB[7] (Fig 3b).   177 

 178 

Table 1. In vitro cytotoxicity of free cisplatin and cisplatin@CB[7] in the human ovarian 179 

cancer cell line A2780 and its cisplatin-resistant derivatives: A2780/cp70 and MCP1. IC50 is 180 

defined as the concentration of drug required to inhibit cell growth by 50%. 181 

Cell line 

IC50 (µM) 

cisplatin cisplatin@CB[7] 

A2780 0.11 ± 0.01 0.09 ± 0.01 

A2780/cp70 3.01 ± 0.09 2.73 ± 0.21 

MCP1 0.34 ± 0.01 0.35 ± 0.08 

 182 

 183 
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Figure 3. (A) The induction of p53 expression and (B) PARP cleavage by free cisplatin and 184 

cisplatin@CB[7] in A2780 cells demonstrating no difference in the action of either drug. 185 

 186 

In some instances, encapsulation of platinum drugs within different sized CB[n]s has led to 187 

large increase in IC50, or complete loss of in vitro cytotoxicity.10, 24 Previously we and others 188 

have speculated that the decrease in in vitro cytotoxicity of some platinum drugs upon 189 

encapsulation in CB[n]s was due to either decreased cell uptake or because the drugs were 190 

too strongly bound by the CB[n] and could not go on to bind DNA at a sufficiently fast 191 

rate.10, 33, 34 In only a few instances has encapsulation by CB[6] increased the cytotoxicity 192 

some platinum(II)-based DNA intercalator drugs.34, 35  Ordinarily, the lack of change in in 193 

vitro cytotoxicity of cisplatin upon encapsulation within CB[7] would not warrant further 194 

testing, although recent research with other drug delivery vehicles have demonstrated a lack 195 

of correlation between in vitro and in vivo results when testing drug delivery systems.36 On 196 

this basis free cisplatin and cisplatin@CB[7] were also examined using in vivo models. 197 

 198 

In vivo cytotoxicity 199 

Intraperitoneal injection (i.p.) of CB[7] alone is well tolerated in nude mice and a dose of 250 200 

mg/kg had no effect on the tumour growth rates of either A2780 or A2780/cp70 xenografts 201 

nor on the weight of the animals. Tumours of A2780 are sensitive to cisplatin (i.p.) and show 202 

a significant growth delay when treated with cisplatin (P < 0.001, Table 2 and Fig 4a). 203 

Treatment with cisplatin@CB[7] (i.p.) at an equivalent dose resulted in a slightly increased 204 

growth delay (P < 0.005).  205 

 206 

Surprisingly, the xenografts of A2780/cp70, which are resistant to the maximum tolerated 207 

dose (MTD) of cisplatin (6 mg/kg), are sensitive to cisplatin@CB[7] (34 mg/kg; which yields 208 
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6 mg/kg of cisplatin) with a tumour doubling time 1.6-fold that of free cisplatin (P < 0.001, 209 

Table 2 and Fig 4b). Neither of the platinum treatments had any significant affect on the body 210 

weight of the mice (results not shown). 211 

 212 

 213 

 214 

Figure 4. Growth of (A) cisplatin sensitive A2780 and (B) cisplatin resistant A2780/cp70 215 

human ovarian tumour xenografts following intraperitoneal injection on day 0 of saline (●), 216 

CB[7] at 250 mg/kg (○), free cisplatin at 6 mg/kg (▼), and cisplatin@CB[7] at 34 mg/kg (∆, 217 

equivalent cisplatin dose of 6 mg/kg). Results are the mean ± SEM of six mice.  218 

 219 
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Table 2. The amount of time required for the human tumour xenografts in nude mice to 220 

double in volume following treatment on day 0 by intraperitoneal injection with either control 221 

(saline), CB[7], free cisplatin or cisplatin@CB[7]. 222 

Treatment 

Tumour doubling time (days) 

A2780 A2780/cp70 

control 3.1 ± 0.1 3.2 ± 0.3 

CB[7] 2.9 ± 0.2 3.2 ± 0.4 

cisplatin 4.9 ± 0.2 3.8 ± 0.6 

cisplatin@CB[7] 6.3 ± 0.5 5.3 ± 0.2 

 223 

Since CB[7] encapsulation had no effect on the in vitro cytotoxicity of cisplatin the increased 224 

activity in the resistant xenograft model suggests that encapsulation has altered the 225 

bioavailability of the drug. Previously, we hypothesised that the main benefit of CB[n] 226 

encapsulation of platinum drugs would be from steric hindrance that prevents degradation 227 

and deactivation by thiols.12, 23, 33 As increased glutathione levels are not a major mechanism 228 

of resistance in A2780/cp70 cells, and the fact that encapsulation did not result in a higher 229 

MTD of cisplatin (as would have been expected if serum protein binding was reduced) then 230 

the results imply some other pharmacokinetic effect, such as altered drug distribution to the 231 

tumour, is responsible for the enhanced in vivo activity. 232 

 233 

Plasma and tissue pharmacokinetics 234 

Plasma levels of platinum were measured at various times after a single i.p. dose of either 235 

cisplatin (6 mg/kg) or cisplatin@CB[7] (34 mg/kg, Fig 5a). The peak plasma level was 236 

observed 5 minutes after injection and this level was higher following injection of free 237 

cisplatin than for cisplatin@CB[7]. Plasma platinum levels decreased rapidly, but the decline 238 
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was slower for cisplatin@CB[7] such that after 15 minutes, plasma levels of platinum were 239 

higher for cisplatin@CB[7] compared with free cisplatin. This difference was maintained for 240 

up to 24 hours to the extent that the total area under the curve (AUC) was significantly lower 241 

for cisplatin (16.3 h.µg/mL) than for cisplatin@CB[7] (28.8 h.µg/mL). Injection of cisplatin 242 

at 8 mg/kg resulted in a higher peak plasma level compared to a 6 mg/kg dose of free 243 

cisplatin  (Fig 5b). The AUC for the first hour after injection (AUC0-1 h) was 4.2 h.µg/mL for 244 

free cisplatin at a dose of 6 mg/kg which increased to 4.9 h.µg/mL at a dose of 8 mg/kg, 245 

which was similar to that obtained for cisplatin@CB[7] (4.8 h.µg/mL). The AUC over the 246 

first 6 hours after injection was higher for cisplatin@CB[7] (13.2 h.µg/mL) than for cisplatin 247 

at either 6 mg/kg (7.6 h.µg/mL) or 8 mg/kg (10.6 h.µg/mL). 248 

 249 
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Figure 5. (A) Levels of platinum measured in mouse plasma collected at various times up to 250 

24 hours after a single i.p. bolus dose of either free cisplatin (6 mg/kg; ●) or cisplatin@CB[7] 251 

at 34 mg/kg (○). (B) Levels of platinum in mouse plasma as in (A) over the first hour after 252 

drug administration and also including results for cisplatin administered at 8 mg/kg (▼).  253 

 254 

The dose limiting toxicity of cisplatin is associated with the peak plasma drug level. For the 255 

drug sensitive A2780 xenograft a clear dose response to treatment is observed,37 but the MTD 256 

of cisplatin is 6 mg/kg in our mice. A comparison of plasma platinum levels shows that the 257 

peak plasma level is increased (from 16.2 to 19.3 µg/mL) when the dose is increased from 6 258 

to 8 mg/kg (Fig 5B). The peak plasma platinum level observed following treatment with 259 

cisplatin@CB[7] (10.4 h.µg/mL) is lower than that for the free drug (16.2) but the AUC0-24, a 260 

measure of the drug exposure over the first 24 hour after treatment, for cisplatin@CB[7] was 261 

28.8 h.µg/mL, nearly double that for free cisplatin (16.3 h.µg/mL). Thus, plasma 262 

pharmacokinetics show that cisplatin is retained in the circulation for longer when 263 

administered as cisplatin@CB[7] rather than as the free drug, supporting the suggestion that 264 

CB[7] protects the drug from degradation. This increased exposure could explain the 265 

increased cytotoxic activity observed in vivo in the cisplatin resistant tumour xenograft.  266 

 267 

Measurement of tissue and tumour levels of platinum show that the increased exposure 268 

increases the platinum levels in general and that there is no improved tumour selectivity upon 269 

encapsulation within CB[7] (Fig 6). This is not unexpected since the encapsulation does not 270 

incorporate a targeting moiety and CB[7] is probably too small (< 1 nm in diameter) to 271 

exploit the enhanced permeability and retention effect. We were not able to increase the dose 272 

of cisplatin@CB[7] beyond 34 mg/kg. This may be explained by the observation that the 273 

AUC0-1, a measure of the drug exposure during the first hour after administration, is similar 274 
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for cisplatin at 8 mg/kg (4.9 h.µg/mL) and cisplatin@CB[7] (4.8 h.µg/mL), compared to that 275 

of free drug at 6 mg/kg (4.2 h.µg/mL). 276 

 277 

Table 3. Comparative pharmacokinetic parameters of intraperitoneal injection of free 278 

cisplatin or cisplatin@CB[7] over a period of 24 hours. 279 

Pharmacokinetics parameter cisplatin  cisplatin@CB[7] 

Cmax (µg/mL) 16.2 10.4 

Tmax (min) 5 5 

AUC0-24 (hr.µg/mL) 16.3 28.8 

 280 

Table 4. Short and midterm comparative pharmacokinetic parameters of intraperitoneal 281 

injection of free cisplatin, at both high and normal dose, or cisplatin@CB[7]. 282 

Pharmacokinetics 

parameter 

cisplatin (6 mg/kg) cisplatin (8 mg/kg) cisplatin@CB[7]  

(34 mg/kg) 

Cmax (µg/mL) 16.2 19.3 10.4 

Tmax (min) 5 3 5 

AUC0-1 (h.µg/mL) 4.2 4.9 4.8 

AUC0-6 (h.µg/mL) 7.6 10.6 13.2 

 283 

Platinum levels were also measured in tissues taken from tumour bearing mice at one, four 284 

and six hours after injection of either free cisplatin (6 mg/kg) or cisplatin@CB[7] (34mg/kg). 285 

Levels in the liver, kidneys and tumours (A2780 and A2780/cp70) were consistently higher 286 

after injection of cisplatin@CB[7] than for free cisplatin, but this difference did not always 287 

reach statistical significance (Figure 6). Although liver platinum levels were higher after 288 
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injection of cisplatin@CB[7] compared to free cisplatin at one hour, they were similar after 289 

four hours and significantly higher after free cisplatin at six hours (Fig 6A). 290 

 291 

Figure 6. Levels of platinum measured in (A) liver, (B) kidney, (C) A2780 tumours and (D) 292 

A2780/cp70 tumours, collected at one, four and six hours after a single i.p. bolus dose of 293 

either free cisplatin (6 mg/kg; black bars) or cisplatin@CB[7] (34 mg/kg; grey bars). 294 

Significant differences between free cisplatin and cisplatin@CB[7] are shown (* P<0.01, ** 295 

P<0.004). 296 

 297 

Conclusions 298 

Regardless of the mechanism of action, this positive in vivo result has implications for the 299 

further testing and evaluation of not just cucurbituril-based drug delivery vehicles, but for 300 

other macrocycles and polymers as well. Previously our group and others have concluded that 301 

when no change in the in vitro cytotoxicity is observed upon encapsulation of a platinum-302 
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based drug or attachment of a platinum drug to a nanoparticle, then the host-guest complexes 303 

formed are probably not going to have better in vivo activity compared with the free drug.38, 39 304 

Our results here demonstrate otherwise and indicate that in vitro results, whether good, bad 305 

and unchanged from that of the free drug may not be sufficient to determine whether the 306 

vehicle will improve the delivery of the platinum drug in question. Overall, our results 307 

demonstrate that CB[7], and possibly other sized cucurbit[n]urils, may have utility in the 308 

treatment of drug-resistant human cancers and warrant further investigation. One area for 309 

further development is to attempt to reduce the rate of release of the encapsulated drug into 310 

circulation in order to reduce the initial drug exposure and thus allow increased doses of the 311 

drug. 312 

 313 

Methods 314 

Preparation of cisplatin@CB[7]. Cisplatin (Sigma-Aldrich) and CB[7]40 were stirred 315 

together in hot water until dissolved, then stirred for a further 3 h before being either freeze 316 

dried or rotary evaporated to dryness. The water content of the cisplatin@C[7] complex was 317 

then determined by elemental analysis and found to be between 5 and 13 water molecules per 318 

batch. These waters of crystallisation were taken into account when calculating the molecular 319 

mass of cisplatin@CB[7] and the subsequent concentrations of each batch in solution before 320 

administration. 321 

 322 

Molecular modeling. The geometry optimisations were performed by using the spin-323 

polarised DFT implemented in the Dmol3 package. The package is for an accurate and 324 

efficient density functional calculation where a rapidly convergent 3D numerical integration 325 

scheme for molecules is used. The exchange–correlation interaction was treated within the 326 

generalised gradient approximation (GGA) in which the Becke exchange functional and the 327 
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Lee–Yang–Parr correlation functional (BLYP) were used. In the electronic structure 328 

calculations, effective core potential treatment with a double-numerical basis plus polarised 329 

functions (DNPs) was chosen. 330 

 331 

Cell lines. A2780/cp70 is an in vitro derived cisplatin resistant variant of the ovarian cancer 332 

cell line A2780 originally obtained from Dr R.F. Ozols (Fox Chase Cancer Centre, 333 

Philadelphia, PA). A second in vitro derived cisplatin resistant variant, MCP1, was derived in 334 

house.41 Cells were grown in RPMI1640 supplemented with glutamine (2mm) and FCS 335 

(10%). A2780/cp70 and MCP1 are mismatch repair deficient and do not express MLH1 due 336 

to hypermethylation of the hmlh1 gene promoter.41  337 

 338 

Drug sensitivity in vitro. Drug sensitivity was determined by a tetrazolium dye-based 339 

microtitration assay.42 Cells were plated out in 96 well plates at a density of 300 – 1000 340 

cells/well and allowed to attach and grow for 2 days. Cells were exposed to the drug at a 341 

range of concentrations for 24 hours and then the medium was replaced with drug free 342 

medium for a further 3 days. On the final day MTT (50 µL of a 5mg/ml solution) was added 343 

to the 200 µL of medium in each well and plates were incubated at 37oC for 4 h in the dark. 344 

Medium and MTT was then removed and the MTT-formazan crystals dissolved in 200 µL 345 

DMSO. Glycine buffer (25 µL per well, 0.1 M, pH 10.5) was added and the absorbance 346 

measured at 570 nm in a multiwell plate reader. A typical dose-response curve consisted of 8 347 

drug concentrations and 4 wells were used per drug concentration. Results are expressed in 348 

terms of the drug concentration required to kill 50% of the cells (IC50) estimated as the 349 

absorbance value equal to 50% of that of the control untreated wells. 350 
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 351 

Induction of p53 and apoptosis. Cells were plated at a density of 105 cells in a 25 cm2 flask 352 

and allowed to attach and grow for 48 h. Drug was added at a range of concentrations for 24 353 

h. Both adherent cells and those in the medium were harvested and washed twice with ice 354 

cold PBS. They were resuspended in 200 µL of lysis buffer (50 mM Hepes pH 7.0, 250 mM 355 

NaCl, 0.5% NP-40) supplemented with protease inhibitors (‘Complete’ from Roche 356 

Diagnostics Ltd, Lewes, UK) and incubated on ice for 20 min. Samples were centrifuged at 357 

12,000 g for 5 min at 4 oC to remove debris. Proteins were separated on 4-12% Bis-Tris gels 358 

with MOPS SDS running buffer. The “Novex Xcell II” blotting apparatus (Invitrogen) was 359 

used to transfer proteins onto Immobilon PVDF membrane (Millipore). The membrane was 360 

blocked for 1 h in Tris-buffered saline containing 0.02% Tween 20 and 5% powdered milk 361 

and then incubated overnight at 4 oC with the primary antibody (anti-p53, Novocastra clone 362 

D-01) from Leica Biosystems Ltd and anti-PARP, BD Biosciences). The membrane was then 363 

washed and incubated for 1 hour at room temperature with the secondary antibody (sheep 364 

anti-mouse HRP, Amersham). After washing protein bands were visualised by enhanced 365 

chemiluminescence (ECL, Amersham). 366 

 367 

Human tumour xenografts. Animal studies were carried out under an appropriate United 368 

Kingdom Home Office Project License and all work conformed to the UKCCR Guidelines 369 

for the welfare of animals in experimental neoplasia. Monolayer cultures were harvested with 370 

trypsin/EDTA and resuspended in PBS. For the A2780 and A2780/cp70 xenografts about 107 371 

cells were injected subcutaneously into the right flank of athymic nude mice (CD1 nu/nu 372 

mice from Charles River). After 7 to 10 days when the mean tumour diameter was at ≥ 0.5 373 

cm, animals were randomized in groups of 6 for experiments. A standard sterile clinical 374 

formulation of cisplatin was used (Western Infirmary Pharmacy, Glasgow). Mice were 375 
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treated i.p. with CB[7] (250 mg/kg), cisplatin (6 mg/kg) or cisplatin@CB[7] (34 mg/kg 376 

equivalent to 6 mg/kg cisplatin). Mice were weighed daily and tumour volumes were 377 

estimated by calliper measurements assuming spherical geometry (volume = d3 x π/6).  378 

 379 

Pharmacokinetics. Tumour bearing mice were treated with either cisplatin or CB[7]cisplatin 380 

as above. Blood, liver, kidney and tumour were sampled at various times. Blood was 381 

collected by cardiac puncture and samples placed into ice cold EDTA tubes and centrifuged 382 

at 1500 g for 10 min at 4 oC. Plasma was removed and stored at -70 oC until analysis. Tissues 383 

were dissected rapidly and snap frozen in liquid nitrogen and stored at -70 oC until analysis. 384 

They were then thawed, weighed and homogenised in PBS (1 mg tissue/mL PBS). Tissue and 385 

plasma samples were incubated overnight at 65 oC with nitric acid (1 mL homogenate + 9 mL 386 

nitric acid (OPTIMA 68%); 1 volume plasma: 1 volume nitric acid).  The samples were then 387 

diluted with water/0.1% Triton-X100 to a final concentration of 1% acid. The platinum 388 

content of samples was determined by ICP-MS. Pharmacokinetic parameters were 389 

determined by non-compartmental analysis (WinNonLin Version 4.0 software,  Pharsight, 390 

Mountain View, USA). 391 
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