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Abstract 

Doctor of Philosophy 

by Anna Elizabeth Campain 

The progress of high-throughput biotechnologies has generated a myriad of large and 

complex data sets in many areas of medical research. The development of such data has 

had a terrific impact in statistics, producing new challenges and encouraging methodo

logical development. In recent years, medical research has been able to generate both 

clinical and genomic level data for the same patients. The integration of such data may 

enable scientists to glean a greater understanding of complex diseases. Before such data 

types can be combined effectively, there are still many statistical problems associated 

with the analysis of these two data types separately. This thesis addresses some of these 

challenges and contributes to the advancement of their solutions. 

The very common challenge of missing observations within clinical data is addressed 

using multiple imputation. However, multiple imputation algorithms are not routinely 

compared. To this end, a novel framework for the comparison of multiple imputation 

methods is developed within this thesis. Three popular multiple imputation methods 

are compared through a simulation study, highlighting strengths and weaknesses within 

them all. Model stability is a statistical problem that is especially prevalent when 

regression classes are unbalanced or observed clinical variables are rare. An original 

solution to model instability in a regression context is provided with stability gained 

through stratified bootstrap sampling. 

Prior to the integration of clinical and gene expression data, further development of 

statistical methods for the integration of multiple expression studies is required. This 

thesis examines approaches used to combine expression data sets. Current expression 

integration approaches are compared with a newly developed method, 'meta Differential 

Expression via Distance Synthesis'. This thesis also highlights the two main ways data 

can be combined. The first is the integration of statistics obtained from individual 

expression data analyses. The second is the integration of the unanalysed expression 

data, allowing for a united data set in downstream analysis. Both paradigms are explored 

and advocated in different contexts. 

Finally, a melanoma case study is used to highlight the importance of careful analysis 

of the individual data types, clinical and expression, prior to data integration. The 

solutions to several of the problems addressed are implemented within this study in 

combination with some rudimentary integration methods for combining the two types 

of data. This case study highlights the potential benefits of careful individual analyses 

of clinical and genomic data as well as the integration of this information when making 

survival time predictions. 
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Chapter 1 

Introduction 

Statistical research in a medical context is an important component to both medical 

research and statistical method development. In the afterglow of the 'Human Gen

ome Project' large amounts of research money and development time is being spent 

on different types of studies and diseases (both complex and simple). This thesis has 

been motivated by data sets containing typical statistical issues pertaining to work in 

bioinformatics and medical statistics. Within such research, numerous teams attempt to 

understand the genetic relationships, as well as potential treatments, for many devastat

ing diseases. To date, this important work has had some success. Alizadeh et al. (2000) 

is a famous example of a study where microarrays were used in a clustering context 

to interrogate Diffuse Large B-Cell Lymphoma (DLBCL) samples. Their study's aim 

was to investigate why patients with the same disease appear to have a heterogeneous 

survival pattern. Alizadeh et al. (2000) proposed that there were several sub-classes of 

DLBCL, each with slightly different generic signatures and survival patterns. In another 

example, US Food and Drug Administration in 2007 authorised the very first microarray 

based diagnostic tool, the MammaPrint, which is used as a prognostic test for particular 

types of breast cancer (Cardoso et al., 2007; Mook et al., 2007), based on the genetic 

signature found in van't Veer et al. (2002). 

The genomic era, with many massive data sets generated from high-throughput techno

logy, has not diminished the importance of clinical data. Biologists, doctors and other 

researchers are becoming increasingly interested in combining clinical and genomic data. 

Some integrative methods to this effect have recently been developed (Boulesteix et al., 

2008; Dettling and Biihlmann, 2004; Gevaert et al., 2006; Le Cao eta!., 2010; Tibshirani 

and Efron, 2002). However these methods are still in their infancy. The development 

of these methods are hindered due to many statistical challenges still to be addressed 

separately in the analysis of clinical and gene expression data. This thesis looks at 
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some of these statistical dilemmas including missing observations in clinical data, model 

instability as well as the integration of microarray data with other microarray studies. 

Only after such important problems have been adequately addressed can we begin to 

examine the questions involving the integration of clinical and microarray data. 

Each of the sections in this introduction outlines parts of the thesis. The chapter con

tinues by discussing clinical data and touching on some of the issues associated with this 

type of analysis (Section 1.1). An introduction to gene expression data and microarray 

analysis is presented in Section 1.2, discussing some of the developments that have taken 

place in recent years which have lead to a desire for cross study data integration. Finally, 

Section 1.3 highlights some approaches to the integration of clinical and gene expression 

data as a precursor to the melanoma case study in Chapter 5. 

1.1 Introduction to clinical data 

Clinical data is a traditional data type encompassing a wide range of observed data vari

ables in a clinical or medical context. Such data can range from discrete and categorical 

to continuous values. These variables can cover a large range of observations from gender, 

blood type and heart rate to pathology results and genetic mutation information. This 

thesis makes use of a clinical data set obtained from the Early Pregnancy Unit at the 

Nepean Hospital Sydney Australia. This study relates to women who presented at the 

clinic with a complication related to their currently viable pregnancy in the first tri

mester (for more detail see Section 2.1). It is through this motivating example that the 

issues associated with clinical data are examined in Chapter 3. 

1.1.1 Missing data 

Missing data is a reality for a large proportion of studies and is apparent in diverse 

analysis situations, including data generated through clinical studies, questionnaires and 

censuses. Most statistical analysis methods assume a rectangular data set and much of 

the history and foundations of statistical development require complete data, that is 

where none of the observations are missing. There is a vast array of literature discussing 

missing data, for example Little and Rubin (1987), Rubin (1987) and Schafer (1999). 

These core texts elaborate on how the missing data can be observed within the data set, 

that is if the data is missing completely at random (MCAR), missing at random (MAR) 

or missing not at random (MNAR). Different statistical problems that arise depend, 

amongst others, on how the missing data is distributed. A highly developed method of 

overcoming the problems of working with incomplete data sets is the use of imputation 
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and multiple imputation. Imputation allows the construction of a complete data set and 

hence downstream data analysis can proceed via well known complete data methods. 

This thesis focuses on multiple imputation. However, there are many other ways to 

handle missing data. Horton and Laird (2000), Ibrahim et a!. (2005) and Little (1992) 

highlight such approaches including case deletion, maximum likelihood, fully Bayesian 

and weighted estimating equations. In the context of drug development, last observation 

carried forward and best observation carried forward are commonly employed methods 

(Barnes et a!., 2008). 

Despite missing data and data imputation being well studied statistical constructs, less 

well considered is how the amount of missing data affects later statistical analysis and 

to what extent does the amount of missing data need to be considered when dealing 

with incomplete data sets. Imputation methodology literature is littered with examples 

of incomplete data sets: in a study observing blood pressure measurements (van Buuren 

et a!., 1999) a missingness of 12.5% is observed, Horton and Kleinman (2007) observe a 

similar amount ranging from 4-16% on several data sets. Larger proportions of missing 

data are reported, for example 43% in Horton and Lipsitz (2001) and nearly 100% in 

Stuart et a!. (2009). There are conflicting views regarding how much missingness in a 

data set is detrimental. Acuna and Rodriguez (2004) suggest that '[ ... ] 1-5% [miss

ingness is] manageable. However 5-15% require sophisticated methods to handle, and 

more than 15% may severely impact any kind of interpretation'. Nishisato and Ahn 

(1995), when considering correspondence analysis expressed grave concerns for analysis 

interpretations when missingness was greater than their suggested 11%. Yet in contrast 

Rubin (1996) states '[T]he fraction of missing information is modest, e.g. < 30%' sug

gesting that missingness up to 30% is still manageable for analysis methods involving 

imputation. 

Most imputation algorithms will produce results regardless of the extent of the propor

tion of missing data and currently there exists a large variety of multiple imputation 

approaches, ranging from ad hoc to highly sophisticated statistical modelling. Chapter 

3 develops a framework for the evaluation of different multiple imputation algorithms. 

This approach is used to evaluate and compare three popular multiple imputation meth

ods, Amelia II (King eta!., 2001), Mi (Rubin, 1987) and MICE (Buuren et a!., 1999), 

and can be extended to consider other available methods and also multiple imputation 

methods developed in the future. 

The three main questions addressed while considering missing data are: 

1. How does the amount of missingness affect results obtained from the imputation 

procedure in a logistic regression or prediction context? 
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2. Can a critical point be identified where missingness is too great and the statistical 

validity of the downstream results and interpretation consequently needs to be 

questioned? 

3. Through establishing an evaluation framework is it possible to consider the ap

propriateness of a particular method and to compare various available imputation 

algorithms? 

The basis of the simulation study in Section 3.2 is to empirically investigate how regres

sion coefficients depend on induced missingness and which imputation method handles 

this missingness most effectively. To this end, the Early Pregnancy Unit data is used, 

of interest is not a particular obtained final model but the effect of the missingness on 

the regression coefficients in weighted logistic regression models. 

1.1.2 Model building and stability 

To understand the relationship between a response variable and the explanatory vari

ables (for example, between the condition of interest and the clinical variables observed), 

regression models can be developed. The generalised linear model (GLM) is a flexible 

family of statistical models which incorporates many aspects of statistical modelling 

including ordinary linear regression modelling and models for continuous, discrete or di

chotomous responses. A GLM is made up of three elements: (i) the random component; 

(ii) the systematic component; and (iii) the link function. 

There are two random components, the response variable y which in a GLM framework 

can be continuous or discrete and the error. The systematic component is a linear 

combination of explanatory variables. The explanatory variables can be the observed 

variables (for example the clinical values) or multiple combinations of (or powers of) 

the observed variables. These variables form the additive model f3o + fJ1x1 + fJ2x2 + 
... + f3QXQ -for Q variables, where the {J's are parameters by which the explanatory 

variables are multiplied, and f3o represents the intercept. The link function is the function 

that connects the expected value of the response variable (the random component) to 

the linear combination of explanatory variables (the systematic component). This is 

dependent on the type of data that makes up the random component. If the link function 

is g(·) and the expectation of y is 11 then the link function is such that g(l-') == f3o+f31x 1 + 
fJ2x2 + ... + f3QxQ. There are a multitude of different link functions depending on the data 

situation for example the identity link (g(!-') =!-')and the inverse Gaussian (g(!-') = 112 ) 

to mention two. For more information on GLM models introductory statistical model 

building texts include Agresti (2007); Lindsey (1997); McCullagh and Neider (1998); 
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McNeil et al. (1996). In general, a GLM model can be written as, 

g(Jl-j) = xJ (3 (1.1) 

where j = 1, ... , n, Xj is a vector of Q independent variables, and (3 is a vector of Q 

parameters. 

For this thesis, responses are binary and a logistic regression model is used. The logistic 

regression model is a GLM with a logit link function, where g(Jl-) = In(~), more detail 

is shown in Chapter 3. 

The eventual aim of the GLM and other models is to describe the data. The variables 

in the model are reduced so that only the 'important' and/or 'informative' variables 

remain. Statistical models can be used for predicting and/or data explanation. The 

exact purpose for a model depends on the investigation and reasons undermining the 

data. Such wrestling stem from a philosophical root and the exact musing will differ 

depending on the statistician. Throughout this thesis an ideal model is parsimonious, 

and hence should both predict and explain as simply as possible the data and the 

relationships between the models. In some case (Section 3.5 and Chapter 5) the former 

has been sacrificed, to a small degree, for the latter. In some models, small perturbation 

in the original data set will have large effects on the final model selected (Breiman, 

1996; Steyerberg et a!., 2000). Such perturbations can be introduced in the form of re

sampling or sub-sampling. There are many reasons for this instability (or uncertainty), 

including the interrelationship and correlation between variables, and multicollinearity 

(Altman and Andersen, 1989). Large changes and erroneous conclusions can be made 

when models are unstable, and inaccuracies such as omitting variables by mistake can 

have large downstream ramifications (Chatfield, 1995). 

Chapter 3 of this thesis outlines an approach to model instability which uses the boot

strap (Efron, 1979; Efron and Tibshirani, 1986) in an attempt to obtain stable models 

in the context of missing data and class imbalance. 

1.2 Introduction to expression data 

Gene expression is the process where the inherent information within Deoxyribonucleic 

Acid (DNA) are used in the synthesis of functional products developed by the gene, 

these outcomes are physical or biological. With the exception of red blood cells, every 

cell in the human body contains the same DNA. DNA is made up of molecules called 

nucleotides. These nucleotides are assembled head to tail to form a chain. There are 

four different bases that can be found as nucleotides, these are adenine (A), thymine 
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mRNA Proteins ..... ~ ..... 
Transcription Translation 

F IC u n E 1.1 : Centra l dogma o f •nolecula r bio logy, o ut I in i ng t he transcri pLio n a nd trans
lation o f DN A which leads to proteins. T his simplified schema represent s the flow o f 
information within a bio logica l yst em from DNA to mR NA and t hen to prott?in, w ith 
arrows representing t he d irections p roposed for info rmation tra nsfer. DN A is self
replicating. a nd m R::\ A i con tructed Yia t ran c ript ion. This process of transcript io n 
is d irected by the D::\A tem plate. In a very simi la r way t he construc tion of t he prote ins 
via tra nslation is directed by the mRN A template. In a lmost a ll cas<'s, th(• direction of 
informatio n flow is uni-dirertioual, and the dogma. developed in 195 by Francis C rick 
(Crick, 1970), has remained re lat ively unchanged. 

(T ) . cytosine (C) and guan ine (G). The nucleotides that make up individuals are 99.9% 

ident ical differing in arguably known locations along the human genome (Watson. 200 ). 

A D A molecule consists of two nucleotide strands in a double helix . hape. These 

chains of nuc:leotides are arranged in an 'anti-parallel' fashion and abide by ChargaH's 

rule (Chargaff. 1951). Cha rgaff 's rule is that a hydrogen bond will be formed between 

complementary base pairs once these nucleotide st rands arc united. That i . adenine 

will bond with thymine (A to T) and cytosine wi ll bond with gua nine (C to G). creating 

a complementary double helix t ructure. 

1.2.1 mRNA production and hybridisation 

A direct result of Chargaff"s rule i t hat if one st rand of the D A is known. the other 

strand can be inferred. The process of aD A slrand obtaining a correct complementary 

strand is known as hybridisation. When a gene is being expressed . information from the 

D A is exposed and the mRNA (messenger ribonucleic acid) is created via a proces. 

known as transcription. Once th is has t aken place the mR A ma,v (or may not) t ravel 

through the cell to create amino acids or a protein via tran latiou. T hese equential 

stages arc knowu as the ·Cent ra l Dogma of Molecular Biology· (Figure 1.1 ) a nd occur 

within a cel l when a particular behaviour or expression is required. A good int roduction 

can be fonnd in Watson (200 ). Molecular B iology of the Gene, which gives more detail 

on t he biology behind hybridi ·ation and gene expression. 

In a highly simplified explanat ion . microarrays make use of t he naturally occuring be

haviour of hybridisat ion and attempt to observe which particular mRNA arc present iu 

the sample. The detected mRNAs are used to infer the expressed genes. T hi s is achieved 

in two parts. The first is by providing known a nd predetermined complementary strands 
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in the form of probes on the microarray slide. The second part is to measure which genes 

are expressing themselves, and to what degree in a sample. A fundamental assumption 

is that the measure of 'fluorescence' represents the level of intensity of hybridised probe 

and is proportional to the number of transcripts in the sample. In the human body, it 

is assumed that disruptions to the gene expression within cell groups can be linked to 

many diseases and such assumptions have led to a vast and growing area of research 

within bioinformatics. 

1.2.2 Different microarray platforms 

Since the initial spotted array (Schena eta!., 1995) microarray technology has developed 

and different types of microarrays have been designed. Microarray companies including 

Agilent, Affymetrix and Illumina amongst others, along side some in-house (laboratory 

made) designs, have each developed their own microarrays with particular strengths and 

weaknesses. The three main approaches to microarray construction are spotted arrays, 

'on-chip' DNA arrays as well as random bead arrays (Sreenivasulu et a!., 2010). 

In this thesis, a microarray platform will refer to both the type of array, for example 

Agilent, Affymetrix or Illumina as well as the version of array together. Obviously an 

Agilent and an Affymetrix array are considered different platforms, but also an Affy

metrix GeneChip Rat Genome 230 array and an Affymetrix GeneChip Rat Genome 

U34 array are considered different platforms. Such a definition of a platform is applied 

because although it is slightly more straightforward to integrate two arrays from the 

same company (Affymetrix to Affymetrix for example) certain integrative steps are still 

required to integrate between versions. 

Spotted arrays and 'on-chip' arrays are considered 'planar' arrays because the exact 

location of complementary nucleotide sequences are predetermined during the design 

phase for each slide type. Bead arrays are random in regards to the location and volume 

of the complementary nucleotide probe sequences, and are re-generated as each chip is 

constructed. 

Spotted arrays Spotted arrays are created through a robotic mechanism that prints 

probes of complementary DNA (eDNA) or long oligonucleotides onto the microarray 

slide. Methods of attaching probes and the number of probes printed varies between 

slides. However, all such mechanisms are subject to between batch variability (as the 

solutions of RNA used to create spots are renewed) (Diehl et a!., 2001), precision bias 

(accuracy of the robotic arm in placing the spots) and a printing/print-tip bias (for 

example, a damaged print-tip will case an error for all probes printed by that tip) and 
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many others. Recent developments attempt to remove some of these problems (Dufva, 

2009; 0 kamoto et a!., 2000) . 

On-chip 'On-chip' development is a technology that allows the probes to be built 

directly onto the surface of the slide. Affymetrix was one of the first companies to man

ufacture such slides. Their method makes use of photolithography to guide nucleotides 

onto the probe site one at a time to eventuate in a oligonucleotide probe (Auer et a!., 

2009). The method is an adaptation to the process of computer chip fabrication. To en

sure the appropriate nucleotide is being added, a series of masks are developed (between 

80-100), increasing the cost of the slides and a delay in the development of new or 

custom slides (Dufva, 2005). Nimblegene/FEBIT Technology/Roche diagnostics uses a 

similar light sensitive method to develop their slides but is able to increase flexibility by 

using mirrors, and hence is known as 'maskless' DNA synthesis (Nuwaysir et a!., 2002; 

Singh-Gasson et a!., 1999). Agilent also produces 'on-chip' developed arrays by using a 

series of phosphoramides, building oligonucleotides in a column in a similar fashion to 

PCR development (Hughes et a!., 2001; Lausted et a!., 2004). 

Bead arrays Illumina's bead array makes use of bead type technology. Here the 

complementary oligonucleotide sequences are attached to microscopic beads (about 2o-

30 beads have the same probe sequence). All the different probe beads are combined and 

then spread over the slide which contains wells which are the size of one bead (Fan et al., 

2006). This makes the location of each probe random on the chip. A code, integrated 

into the probe sequence is then scanned prior to hybridisation, so that the location of 

each oligonucleotide sequence is then known prior to hybridisation, this allows results 

to be processed (Dufva, 2009; Yeakley eta!., 2002). 

Despite the differences in platforms, there are two main overarching types of arrays, 

these are two-colour or one-colour arrays. Two-colour arrays include the spotted arrays, 

in-house a.rrays, some 'on-chip' arrays as well as the two colour Agilent array. Here two 

differently labeled samples (for example treatment and control) are hybridised together 

on a single array (Schena eta!., 1995). Gene expression is measured relative to the other 

condition, as a ratio, eliminating the between array comparisons and biases. For the 

one-colour arrays, only one sample is hybridised to each array yielding gene intensities. 

1.2.3 Individual microarray experiments 

For individual microarray experiments, the techniques involved in the analysis have 

begun to stabilise. Such steps include image analysis, quality control and assessment, 
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determining differentially expressed genes and functional interpretation. Figure 1.2 is a 

flow-diagram highlighting these steps and some of the graphical tools used to aid in the 

process. There are many reviews regarding the methods of data analysis for a single data 

set. Such reviews include detailed outlines (Michiels et al., 2007) and papers detailing 

the process of single microarray analysis (Allison et al., 2006; Fan and Ren, 2006; Kreil 

and Russell, 2005; Roberts, 2008; Speed, 2003; Zhang et al., 2009). Owzar et al. (2008) 

considered some of the statistical challenges that arise and Sims (2009) addressed the 

interdisciplinary problems associated with bioinformatics as a whole. 

Quality control (QC) is an important step in microarray analysis. The aim of such 

assessment is to determine if particular samples or arrays are of sufficient quality to 

be included in further analysis (Hartmann, 2005). QC measures are further detailed in 

Section 2.2.2. Preprocessing of microarray experiments typically involve three stages, 

background correction, probe-level normalisation and probe set summary (Smyth and 

Speed, 2003; Smyth et al., 2003). There are many different ways to perform preprocessing 

and techniques vary depending on the type of array used. After such analysis, the data 

from the individual samples within a study have been collated into a single between

sample normalised matrix. 

Differentially expressed (DE) genes are genes that are biologically different between 

groups being considered in the analysis (for example genes different in their level of 

activities for particular conditions). Often it is the purpose of microarray experiments 

to estimate, or identify, statistically which genes are DE. Identification of DE genes 

can be considered as a two step process, (i) genes are ranked and, (ii) are tested for 

significance using a critical threshold. Typically either a number of highly ranked genes 

or the significant genes are used in downstream analysis. Ranking becomes increasingly 

important when due to lack of power there is a limited number of significant DE genes. 

The ranking of genes can be achieved in numerous ways. The most common and simplest 

measure is fold change (FC) which represents the magnitude of mean expression differ

ences between two classes. Another choice could be the t-statistic which takes variation 

of measurement into account. For this process, data is modelled using a linear model, 

y = X (3 + E, where y represents the gene expression, X the design matrix, (3 is a vector 

of estimates of interest, for example the effect size and E is the error term. 

To determine significance a critical threshold or value is determined. For the ranked 

statistics, values above the threshold are considered significant (or DE). There are many 

different thresholds. In the early days of microarray analysis, genes were considered 

significant if their FC was 2 or more. A different criterion is based on p-values, where 

genes are considered DE if they have a p-value less than 0.05. Multiple testing needs to 

be employed when using such a criterion (Dudoit et al., 2004) (for example Bonferroni 
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correction) because of the vast number of comparisons being made. DE genes can also 

be identified by controlling for 5% false discovery rate (FDR). Different rationales for the 

choice of cut-off are used with different statistics, but the most commonly used methods 

are FC alone, FDR alone or FC and FDR used together (Yang eta!., 2011). 

Gene set testing and functional interpretation are an important component to microarray 

analysis. Gene Set Tests ( GST) consider the complete ranked gene lists and test to 

see if a set of pre-defined genes are clustered toward the top or bottom of the list by 

applying a Wilcoxson rank sum test. Such an approach asks the question 'is a set of 

pre-defined genes DE?'. Functional interpretation facilitates biological interpretation 

regarding the obtained list of DE genes. A hypergeometric test is applied to the DE 

and non-DE genes, where genes are either included or excluded from an ontology (or 

gene function) in question. This approach addresses the question 'which ontologies are 

over {or under) represented within the list of DE genes?'. Such tests are important to 

understand the biological links obtained from the analysis and relate the DE genes and 

significant ontologies back to the initial purpose of the investigation. 

1.2.4 Combining different microarray platforms and results 

Entrez IDs 

Each probe on a chip is of a known nucleotide string, and has a unique label or ID, for 

example an AffyiD in the Affymetrix environment. When comparing results between 

studies or platforms or performing downstream analysis on the selected probes, the probe 

ID itself is of limited use. There is a need to link this probe ID to its related gene or 

biological component of interest (for example chromosomal region). From the probe ID 

it is possible to map to an Entrez ID or GeneiD (Maglott eta!., 2011), which is a unique 

identifier for genes and other loci for a subset of model organisms1 . Mapping to a gene

based identifier is an approach that allows comparisons across platforms. When using 

the Entrez ID as an identifier across platforms there are potential issues, for example, 

often multiple probes from a single array are mapped to a single Entrez ID. These probes 

may be different in chemical make-up but because they are much shorter than the regions 

mapped by an Entrez ID there is a many-to-one mapping. Also probes that mapped to 

the same EntreziD from multiple platform are likely to be different from one another, 

that is they are designed from different regions of the genes and hence the expression 

may or may not be comparable. The mapping of probes to IDs is not static, and care 

must be taken. 
1There are many ways to achieve this mapping, (for example Ensembl or Entrez mappings), in this 

thesis Entrez IDs are used. 
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Microarray experiment 
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Inconsistency of microarray results 

As results from microarray experiments became more and more common a concern was 

raised; there was a general unsettledness regarding the reliability of microarray results 

as there appeared to be low levels of concurrence or repeatability between experiments 

(Kuo et a!., 2002; Lee et a!., 2004; Michiels et a!., 2005; Miklos and Maleszka, 2004; 

Moreau et a!., 2003; Tan et a!., 2003; Yuen et a!., 2002). To address this concern, the 

MicroArray Quality Control (MAQC) project was established, published first in Shi 

et a!. (2006) and was followed by a series of related works (Canales et a!., 2006; Fan 

et a!., 2006; Guo et a!., 2006; Patterson et a!., 2006; Shippy et a!., 2006). The MAQC 

study considered seven microarray platforms along with three alternative technologies 

and found that there was a level of consistency between the data sets studied. 

The MAQC findings resulted in a flourish of response papers disputing their findings 

on a platform specific basis (Ha et a!., 2009; Kerr, 2007), or discounting their findings 

completely (Chen et a!., 2007). The contention regarding the inconsistency of microarray 

results is still open (for example see Boulesteix and Slawski, 2009; Russ and Fntschik, 

2010; Zhang eta!., 2008). 

Rhodes et a!. (2004) suggested that forms of meta-analysis can reduce the impact of 

inconsistency of microarray results, which was echoed in Campain and Yang (2010). 

In Chapter 4, how the integration of microarray data sets can aid in the problem of 

inconsistent results is considered as well as how different integration methods affect the 

downstream interpretation of these difficult genes. 

1.2.5 Integration of microarray data 

Integration of microarray results is a challenging and important concept which offers a 

wide range of benefits (see Chapter 4 for more detail). Large efforts have been made to 

make publiely available data more accessible and usable (through auxiliary information). 

However, huge hurdles still exist regarding microarray integration. Platforms differ in 

probe content, including length and gene region considered, design, technology, relative 

hybridisation as well as labelling and experimental protocols (Yank et al., 2004). Moreau 

et a!. (2003) provided an overview and introduction to microarray analysis and the 

integration of multiple microarray data sets. The process of microarray integration has 

three major steps, as outlined in Figure 1.3: 

1. Individual preprocessing, 

2. Microarray integration and, 
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Step 1: Individual 
preprocessing 

Data set 1 

Obtain data 

Preprocessing 

Normalisation 

Data set 2 Data set 3 

Obtain data Obtain data 

Preprocessing ... Preprocessing 

Normalisation 

----------~ -- ~ --~---I 
1 Step 2: Microarray 
I integration 

I 
I 

I 

Make arrays/results 
comparable 

I 
I 

I 

I 
I 
I 

--------- ------ , -- ------
Step 3: Downstream 
analysis I Interpret results I 

F IGU RE 1.3 : Graphical representation of steps involved in microarray data integration. 

3. Downstream analysis and evaluation. 

Ind ividual preprocessing is the init ia l s tage of any microarray experiment (in tegrative or 

not). Such tasks include acquiring the data from the experimental source or repository. 

performing quality control as well as preliminary normalisation. The only difference in 

an integration setting compared to a completely independent setting is that when two 

data sets have been developed on the same pla tform it is possible to normalise them 

together if desired . Microarray integration is an active area of research. The main aim 

of t his step is to overcome the platform differences mentioned in Section 1.2.2 and to 

ensure that t he largest differences in the analysis are because of biological differences 

of interest (for example case versus control), and not because of platform differences. 

Mak ing an notation compatible is only one of the issues, other difficulties include the 

removal of platform biases and laboratory effects. Moreover. microarray integration 

needs to include an analysis. comparability and an integration phase but the order t hese 

are performed is open to discussion and alters results . Chapter 4 deals directly wit h 

this concept and offers several solutions and possibilities regarding array integration . 

Once microarray integration has been performed and results of t he integration obtained. 

downstream analysis can continue. Such an alysis is open ended and depends directly on 
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the research question including, for example, gene-set tests and ontology evaluations as 

well as polymerase chain reaction (PCR) validations. 

1.3 Integration of clinical and gene expression data 

Phenotype data, that is clinical data, is a cornerstone of medical research and microar

ray data offers a wealth of information at the molecular (expression) level. There is a 

desire to merge these two data types together. The integration is biologically driven as 

it is well observed that patients with the same clinical information may have extremely 

different disease courses and outcomes. It is hoped that by combining clinical and gene 

expression data the reason behind these differences may be exposed in a productive and 

diagnostic setting. Microarray data is homogeneous, being continuous readings from dif

ferent probes or genes. Clinical variables are heterogeneous in nature with a wide range 

of variables observed including measurements, grades and pathology readings, most of 

which are discretised by physicians (Le Cao et al., 2010). There are large advantages of 

integration. First there is potential for complementary information between the clinical 

and genomic data. Second, if the clinical information can reduce the number of genes 

needing to be observed, the cost of the genomic data could be reduced, as only a small 

sample of genes would be examined, reducing the overall cost of the diagnostic tools 

compared to a completely genomic approach. 

Integrating microarray data with other forms of data, for example epidemiological and 

clinical data, although still in its infancy, has been used to help unlock some very complex 

diseases faced in the community. Whistler et al. (2003) discussed how such studies have 

allowed for a more in-depth study of chronic fatigue, highlighting that this could be a 

heterogeneous condition labeled as a single syndrome. Schwarz et al. (2009) used a graph 

theoretical approach to integrate the vast amounts of currently disparate information 

available for schizophrenia patients to attempt to aid therapeutic direction. 

As with the initial problem with publicly available microarray data, Park et al. (2005) 

and Malin et al. (2010) noted that there are difficulties associated with integrating 

clinical data. Not only is security and patient privacy a major issue in medicine (this is 

not overly problematic for omics data) but clinical data also faces comparability, syntax 

and semantics problems which in coming years will need to be addressed. 

1.3.1 Methods of integration 

To integrate clinical and microarray data (and in some cases other types of omics data) 

several methods and frameworks have been postulated in recent years. Such approaches 
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depend on the data at hand as well as the biological question of interest. Tibshirani and 

Efron (2002) developed the popular notion of a pre-validated vector (see Section 5.4), 

summarising the microarray data as a form of cross-validated prediction variable within 

a regression setting. This method was built on by Le Cao et al. (2010) who used a 

two phase approach to the pre-validated vector, making use of partial least squares and 

random forests in the aim to construct an optimal hybrid classification rule. Dettling 

and Biihlmann (2004) proposed a penalised logistic regression approach integrating the 

clinical variables and Gevaert et al. (2006) used a Bayesian networks concept to perform 

feature selection. Boulesteix et al. (2008) used mixture of experts models to combine 

the data in a non-linear way to obtain a combined signature. 

Boulesteix et al. (2008) rightly remarked that there is a difficulty in evaluating the ad

vantage of including (the expensive) microarray data with the clinical data. Heuristically 

the validation of integration becomes complicated because of the interplay between gene 

expression and clinical variables: 

Microarray data and clinical data may be redundant because the gene ex

pression influences clinical variables or vice versa, or because both clinical 

and microarray variables are influenced by common latent unobserved mech

anisms (Boulesteix et al., 2008), 

and points out that additional biological knowledge is needed to address this question. 

Hence when integration takes place care needs to be taken. Tibshirani and Efron (2002) 

developed their method after concerns that other integrative methods were relying too 

heavily on the gene expression data, biasing results through methodology. Simply com

bining clinical and expression data may swamp the clinical data due to the large amount 

of expression results, but analysing them separately and joining them together in a model 

toward the end may be less than optimal when there is high correlation between results. 

Truntzer et al. (2008) evaluated if clinical or expression variables were being under or 

overestimated, and found that in general in integrative studies there is a tendency to 

overestimate the effects of genes due to the selection process and underestimate clinical 

variables due to the omission of relevant genes. 

In this thesis, several difficulties associated with the analysis of clinical and gene ex

pression data are discussed, some of these methods, concepts, analyses and results have 

already been published (or are currently under review) by the author in statistical and 

collaborative research. Chapter 2 discusses the data sets used to motivate the areas 

of concern addressed within this thesis. It includes description of the data sets and 

preliminary analyses including quality control and initial data assessments. Chapter 

3 is concerned with some common problems encountered while analysing clinical data 
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including missing data, class imbalance and instability of models. It covers work from 

Campain eta!. (2011). Chapter 4 develops the timely concept of gene expression integ

ration and some of the difficulties encountered in this type of analysis and involves work 

published in Campain and Yang (2010), Campain eta!. (2010) and Yang eta!. (2011). 

The thesis concludes with a case study (Chapter 5) highlighting work by Mann et a!. 

(2011) and Sarah-Jane Schramm et a!. (2011). It concentrates on the clinical predict

ors of good survival prognosis coupled with a molecular signature. The motivation of 

the clinicians who initiated this study was to utilise the molecular and phenotype in

formation to develop a predictor of Stage III melanoma. The predictive capabilities are 

assessed individually and as an integrated model. For validation purposes the molecular 

signature is also compared to publicly available Stage III melanoma data sets (Section 

2.3.2) through a form of meta-analysis. 
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Data sets 

This chapter outlines the data sets used in this thesis. There are three data themes 

used to explore and motivate the statistical concepts presented. Section 2.1 outlines an 

early pregnancy data set, containing only clinical data. This data set is used throughout 

Chapter 3 and contains a proportion of missing data. Section 2.2 is an outline of four 

hypersensitive gene expression data sets. Results of quality control for each data set as 

well as individual preliminary analysis are also presented. This collection of data sets 

is used in Chapter 4 to examining meta- and mega-analysis. A collection of melanoma 

data sets is outlined in Section 2.3. These data sets include four publicly available gene 

expression data sets and one data set provided by collaborators, which includes both 

clinical and gene expression data. Melanoma data is used in Chapter 4 and explored 

extensively in Chapter 5. 

2.1 EPU data 

This data set has been provided by the Early Pregnancy Unit at the Nepean Hospital, 

NSW, Australia (Riemke et a!., 2011). The data is from an observational study that 

was carried out at the Nepean Hospital between November 2006 and February 2009. 

The study considers first trimester pregnant women presenting at the unit with a viable 

intra-uterine pregnancy (IUP) at their first examination. To present at such a clinic, 

symptoms often include pain, bleeding, history of miscarriage and other reasons. The 

eventual diagnosis for each woman was established at the end of the first trimester as 

either viable or non-viable (miscarried). The purpose of the study was to build a model 

that has the ability to predict the outcome of the first trimester for the IUP at the initial 

consultation. This data set will be refered to as the 'EPU data' within this thesis. 
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Number of variables not observed 0 1 2 3 4 5 6 7 8 9 
Number of subjects 63 143 99 68 25 13 3 1 0 1 

TABLE 2.1: Number of variables not observed per sample for the EPU data. 

A multitude of variables for each woman are observed including 21 historical, clinical 

and ultrasound variables for analysis. Historical variables include: age, ethnic group, 

parity, number of previous natural deliveries and caesarean sections, number of previ

ous miscarriages and terminations, number of previous ectopic pregnancies and molar 

pregnancies, mode of conception, date of last monthly period (LMP), certainty of dates, 

gestational age in days by menstrual dates, and smoking. Clinical variables include: 

maternal height and weight, indication for ultrasound, bleeding, clots, presence of pain, 

gestational age in days by ultrasound, consistency with menstrual dates. The ultrasound 

measurements documented were gestational sac (GS) and yoke sac (YS) in three planes 

with means calculated, crown-to-rump length (CRL), foetal heart rate (FHR), ovarian 

pathology as well as presence and dimensions of a subchorionic haematoma. 

The total number of samples for this data set is 416 of which 33 samples pertain to 

an eventual non-viable pregnancy at the end of the first trimester and 383 are viable 

pregnancies. Only 63 (15%) patients had a complete set of covariates, this included only 

8 miscarriage cases (24% of the 33 miscarriage samples). A complete case analysis is 

not advisable with such a small percentage of the final data set (15%) as these samples 

are not necessarily indicative for the majority of samples. Table 2.1 shows the number 

of missing variables per sample and Table 2.2 shows the percentage of missing data per 

variable. There is an average overall missingness of 8.51 %. Subchorionic bleed contains a 

missingness of over 50% and was included in the analysis after discussions with clinicians 

despite this large percentage. 

Results for the EPU study were originally presented in Riemke et a!. (2011), which 

serves as a reference for a full description and analysis. Riemke et a!. (2011) initially 

considered 21 variables which, after model selection, was reduced to a final weighted 

logistic regression model containing eight clinical variables. Table 2.3 shows the odds 

ratios for the final weighted logistic regression model with odds ratios greater than 1 

indicating a higher risk of miscarriage. A different analysis of this data set is included in 

Section 3.5, resulting in a slightly different model than the one in Riemke eta!. (2011). 
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Variable 
Number of 

Percentage 
missing data 

Age (of mother) 0 0.00 
Number of natural deliveries 4 0.96 
Number of previous caesareans 4 0.96 
Number of previous miscarriages 2 0.48 
Certain of dates (Y /N) 57 13.70 
Gestational age (in days) 50 12.02 
Bleeding (Y /N) 4 0.96 
Clots (Y /N) 9 2.16 
Smoker (Y /N) 21 . 5.05 
VAS D-10 65 15.62 
CRL 1 0.24 
FHR 15 3.61 
Ultrasound gestational age (in days) 25 6.01 
Consistent with menstrual dates (Y /N) 73 17.55 
Both ovaries seen (Y /N) 60 14.42 
Subchorionic bleed (Y /N) 231 55.53 
Reason for attending clinic · Bleeding (Y /N) 8 1.92 
Reason for attending clinic · Abdominal pain (Y /N) 8 1.92 
Pain (Y /N) 9 2.16 
GS mean (in mm) 21 5.05 
YS mean (in mm) 77 18.51 

TABLE 2. 2: Number of missing data per variable for the EPU data. 

Variable Odds Ratio 

Number of previous cesarians 0.44 

Gestational age 1.05 

Bleeding 1.93 

Clots 6.12 

Ultra sound gestational age 0.91 

Consistent with menstrual dates 0.50 

GS mean 0.88 

YS mean 1.54 

TABLE 2.3: Odds ratios from a weighted logistic regression for miscarriages and 
viable pregnancies, Riemke et a!. (2011). Odds ratios larger than 1 indicate a higher 
risk of miscarriage. 
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2.2 Hypertensive versus normotensive rats 

2.2.1 Data sets and samples 

This is a collection of four data sets, all examining hypertensive and normotensive rats. 

All four data sets are publicly available as raw data via the Gene Expression Omnibus1 

(GEO) (Barrett et al., 2005) and ArrayExpress2 (AE) (Parkinson et al., 2005) websites. 

The rats studied come from three different species, the spontaneously hypertensive rat 

(SHR), Lyon hypertensive (LH) and the Wistar Kytot (WKY) rat- a normotensive an

imal. All four studies were developed in independent laboratories, under their respective 

Affymetrix protocols, for independent purposes. 

Cerutti et al. (2006), known henceforth as the 'Cerutti data' contains 15 samples, 5 

SHR, 5 LH (that is 10 hypertensive samples) and 5 WKY samples. Clemitson et al. 

(2007), to be known as the 'Clemitson data' contains 10 samples, 5 SHR and 5 WKY 

samples. Grayson et al. (2007), the 'Grayson data', is the smallest study in the collection, 

containing 6 samples, 3 SHR and 3 WKY samples. All three of these data sets are 

generated on the Affymetrix GeneChip Rat Genome 230. Rysii et al. (2005) to be 

refered to as the 'Rysii data', is the largest and oldest of the studies, hybridised on the 

Affymetrix GeneChip Rat Genome U34 Array set A. It includes 23 samples, 12 SHR 

and 11 WKY. Table 2.4 contains a summary of the four different data sets including 

their rat species, source of the sample and published public database ID. 

2.2.2 Quality control and preprocessing of arrays 

Raw data for the Affymetrix expression microarrays consists of individual CEL files, 

which contains measured intensities and locations of probes on an array. Preprocessing 

includes background correction, probe-level normalisation and probe set summary. For 

all four data sets these steps were performed using the affy package (Gautier et al., 

2004), with the probe-set normalisation performed via robust-multi-array averaging 

(RMA) (Irizarry et al., 2003). The quality control (QC) of each array is assessed by 

considering the probe level model (PLM) of the data. Different QC measures exist that 

can be used to assess the quality of arrays within individual microarray experiments as 

well as in integrative microarray experiments. These include, but are not limited to: 

1. Spatial image plots: This is a pseudo image of the expression array, large area 

imperfections or poor hybridisations can be visualised. Such imperfections can be 

1http://www.ncbi.nlm.nih.gov/geo/ 
2http://www.ebi.ac.uk/arrayexpress/ 
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Number of 
Data set ID Tissue Samples Platform 

unique genes 

Cerutti et a!. (2006) AE: E-MEXP-357 Heart 
10 HT (5 SHR, 5LH) 

5 NT (WKY) 

Clemitson et a!. (2007) AE: E-TABM-45 Kidney 
5 HT (SHR) Affymetrix 

10207 
5 NT (WKY) RAE230 

Grayson et a!. (2007) GEO: GSE 8051 
Saphenous 3 HT (SHR) 

artery 3 NT (WKY) 

Rysa et a!. (2005) AE: E-GEOD-2116 Heart 
12 HT (SHR) Affymetrix 

4941 
11 NT (WKY) rgU34a 

TABLE 2.4: Details of the four hypertension data sets used within this thesis, all data sets are publicly available and were analysed as a 
meta-analysis study in Chapter 4. 
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seen as large blemishes on the images of particular arrays or entire arrays that 

appear different to the cohort. 

2. Relative Log Expression (RLE) boxplots: These are a series of boxplots, one 

per sample, where the log expression values for each sample are plotted. Good QC 

yields RLE plots that are centred around 0 with a small spread, with issues arising 

when boxes (representing spread) are larger than the majority or vary away from 

0 (Gregory et al., 2007). 

3. Normalised Unsealed Standard Error (NUSE) boxplots: A series of box

plots, one per sample, of the standard errors of the normalised samples. The 

NUSE values are centred around 1, low quality arrays might have boxplots that 

vary significantly from the remaining cohort, including having a larger spread to 

the boxplot or an elevated mean (Gregory et al., 2007). 

4. Hierarchical clustering: Hierarchical clustering plots for each of the data sets 

were obtained and plotted including dendrograms. In this thesis, for all included 

clustering plots, the 500 most variable genes are used3 , judged on overall expression 

variability. The Euclidean distance was used as the distance metric with the com

plete agglomeration method. In an agglomerative approach (used in this thesis) 

samples are considered originally as singular and then combined into pair-clusters, 

which are then sequentially combined to other clusters until one large group is 

created. Different metrics are used to combine the clusters with the application 

of a linkage function. Samples are displayed in their clusters, with coloured bars 

below the dendrogram used to represent the different observed factors, biological 

and other, to determine the largest source of the variability. 

All QC plots for the four data sets are shown in Appendix A. These combined QC meas

ures suggest that two samples from the Rysii data set could be removed from downstream 

analysis, but have not because their quality is not overly poor. All other samples, from 

all other data sets, passed QC measures convincingly. The clustering algorithm recog

nises the differences in the classes (the top most coloured strip, subplot (d) Figures A.l 

- A.4) as the main differences within the data. Visually considering the dendrogram 

is important, as it depicts how the samples cluster. The colours bars represent ob

served factors such as class, platform and study. This gives a visual suggestion as to the 

strongest factor relating the samples. In an ideal situation class should be the strongest 

relating factor with limit noise from other sources. The RMA algorithm implemented 

3 500 of the most variable genes were selected as this was considered a manageable amount of genes, 
but not overly excessive. 
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in the affy (Gautier et a!., 2004) package has been used to perform background cor

rection, quantile normalisation and probe specific summarisation via the median polish 

algorithm. 

When mapping between platforms is required for analysis, the individual probes for each 

platform are mapped to their corresponding Entrez IDs (Maglott eta!., 2011) using the 

databases 'rae230a.db' and 'rgu34a.db' (version 2.4.1) from Bioconductor (Gentleman 

et a!., 2004). When more than one probe pertained to the same Entrez ID, the mean 

value was taken as the expression level. Only overlapping genes were retained for further 

analysis after QC. A total of 4,678 unique genes are common to both platfrn:ms. 

Each of the studies have been analysed individually. From the QC plots the boxplots 

indicate that expression levels across most arrays (within a data set) are comparable. 

There are however some arrays of concern, for example the grouping present in the 

Cerutti data (Figure Al b). This grouping however is confounded with animal and date 

effects. Such confounding issues are common and need to be considered carefully when 

interpreting data from a biological perspective. Splotches are present in some of the 

spatial images, for example Figure A.2 (a), these blemishes are at an acceptiable level 

when compared to images from the PLM gallery4 and do not cause the arrays to fail 

QC analysis. 

2.2.3 Individual analysis 

For each of the four data sets, individual analysis was performed. Several graphical 

tools as well as the number of DE genes are considered in each analysis. The genes that 

are considered DE and the number of these genes that are also positive control genes is 

recorded. 

Graphical tools There are several graphical tools often used to aid in the interpret

ation of the analysis. Common plots produced may include: 

1. MA-plots: MA-plots are scatter plots displaying the log2 (FC) on they-axis and 

the average expression value on the x-axis. In these plots, within this thesis, red 

indicates genes that have a positive FC > 1.5 (that is genes that are more highly 

expressed in the hypertensive samples compared to the normotensive samples) and 

the green indicates genes that have a negative FC < 1.5 (genes that are more highly 

expressed in the normotensive samples than the hypertensive samples). MA-plots 

are useful in identifying intensity dependent patterns in the ratios (Dudoit et a!., 

4http:/ /plmimagegallery.bmbolstad.com/ 
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2000), and recognising the high abundant (high average expression value) genes 

with large FC values. Overall, these scatter plots help to visually gauge the signal 

to noise ratios within an experiment. See for example Figure A.l (e). 

2. Volcano plot: Volcano plots are a way to visualise results of the analysis. The 

volcano plot ( -log10(p) on they-axis and log2(FC) on the x-axis) quickly visualises 

the number of genes that are significant in both plotted conditions. Moreover, such 

plots allow the visualisation of the amount of discordance in the genes that are 

significant based on FC compared to those that are significant based on p-values. 

See for example Figure A.l (f). 

For each of the considered data sets, these interpretive tools are in Appendix A, plotted 

with their QC results. These plots suggest that there is only a small set of genes that 

are DE based on FC, and this further reduces when the dual conditions of FC and FDR 

are used as a combined selection criteria. 

DE genes For each of the four data sets DE analysis was performed using least

squares regression (implemented through limma, Smyth, 2004). A set of DE genes can 

be selected in many ways, for example as the genes with an absolute FC greater than 1.5 

or a FDR less than 0.05 or genes satisfying both criteria. Table 2.5 shows the number 

of genes recorded as DE for each data set. Table 2.6 shows the number of DE genes 

which are also in the positive control list (Section 2.2.4). 

Sample size of the initial data sets has a large impact on the number of genes selected 

as DE. This is especially true when considering the Clemitson data (n = 15) and the 

Rysii data (n = 23). These data sets have a very large number of DE genes selected 

via FDR. For these two cases it appears that the FDR condition is no longer acting 

as a selection criteria when the dual conditions (FDR <0.05 and IFCI ~ 1.5) are used, 

because so many genes (at times as many as 25% percent) pass the FDR threshold. 

Interestingly the number of positive control DE genes selected by each of the single DE 

conditions was extremely low for each data set. This highlights the point that replication 

of DE genes across studies, as positive control genes are study verified genes, is very rare 

(Ein-Dor et al., 2005). 

2.2.4 Important gene lists in microarray and integrative analysis 

The hypertensive/normotensive data sets highlight some important gene lists in microar

ray and integrative analysis including positive control genes, house-keeping genes as well 

as consistent results between independent analyses. Each of these types of genes has a 

particular place and impact on the analysis along with the conclusions drawn. 
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IFCI;:: 1.5 (up, down) 
Data set IFCI ;:: 1.5 (up,dowu) FDR < 0.05 and 

FDR < 0.05 
Cerutti data 72 (53, 19) 396 58 ( 45, 13) 
Clemitson data 113 (17, 96) 1178 113 (17, 96) 
Grayson data 84 (53, 31) 35 30 (17, 13) 
Rysii data 108 (41, 67) 972 108 (41, 67) 

TABLE 2.5: Number of DE genes for each data set. 

Data set IFCI ;:: 1.5 (up,down) FDR < 0.05 
Cerutti data 2 (0, 2) 3 
Clemitson data 2 (0, 2) 7 
Grayson data 3 (2, 1) 0 
Rysii data 3 (2, 1) 11 

TABLE 2.6: The number of DE genes for each data set that are also considered 
positive controls for hypertension. 

Positive control genes Positive control genes are genes that have a documented rela

tionship to the condition of interest. Hypertension is currently a relatively under-studied 

condition, affecting humans (Marques eta!., 2011c), mice (Marques eta!., 2011b,a) and 

rats (Campain eta!., 2010) amongst other mammals. However, within current literature 

it is possible to establish a list of genes that have highlighted links to hypertension, on 

the individual study basis (Table 2.7, where genes are shown as gene symbols). It is 

common in microarray literature that genes reported in one study cannot be replicated 

in another (Ein-Dor et a!., 2005; Zhang et a!., 2009; Boulesteix and Slawski, 2009). A 

positive control gene list, containing 28 of these considered DE genes is monitored when 

the hypertensive data sets are analysed within this thesis. This monitoring is performed 

to establish whether or not positive control genes are repeatable in integrative studies. 

House-keeping genes House-keeping genes are genes that are considered to have 

no differential expression across the condition being studied (Butte et a!., 2001; Hsiao 

eta!., 2001; Thellin eta!., 1999; Warrington eta!., 2000). Although this is conceptually 

true, this is not always the case for house-keeping genes (Ke et a!., 2000; Suzuki et a!., 

2000). Moreover, such genes are well studied in humans and less well considered in rats. 

To obtain the list of house-keeping genes used in this thesis, the list of human house

keeping genes was obtained and mapped to the rat homologs, eventuating in a list of 

known rat genes, which are assumed to be house-keeping under the hypertensive versus 

normotensive conditions. With such a mapping 264 genes were retained as house-keeping 

genes and are listed in Table A.l. 
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Positive control 
gene symbols 

Ace 
Agt 

Agtr1a 
Agtr1b 
Agtr2 

Atp2a2 
A poE 
Ccl2 
Cd36 
Dbh 
Fstll 

Gstm1 
Gstp1 
Gsttl 
Myh6 
Myh7 
Nos1 
Nos3 
Nox1 
Nox4 
Nppa 
Nppb 
Pgm1 
Ren 

Siat7 A 
Sod1 
Sod2 
Uts2r 

Reference 

Guo et al. (2005); Massie (1998) 
Guo et al. (2005); Levesque et al. (2004); Rogus et al. (1998) 
Le et al. (2003, 2004) 
Bertram and Hanson (2002); Langley-Evans (1997, 2000) 
Min et al. (2008); Touyz et al. (1999) 
Cerutti et al. (2006); Kiec-Wilk et al. (2007) 
De Leeuw et al. (2004); Wenquan Niu et al. (2009) 
Sanchez et al. (2007) 
Pravenec et al. (2001, 2003) 
Chen et al. (2010); Cubeddu et al. (1981); Greco et al. (1978) 
Cerutti et al. ( 2006) 
McBride et al. (2005) 
Ohta et al. (2003) 
Marinho et al. (2007) 
Campain et al. (2010) 
Garcia-Castro et al. (2003) 
Paliege et al. (2006); Tambascia et al. (2001); Weichert et al. (2001) 
Guo et al. (2005); Kimura et al. (2003); Malhotra et al. (2004) 
Dikalova et al. (2005); Matsuno et al. (2005) 
Lu et al. (2010); Paravicini et al. (2004) 
Cerutti et al. (2006); Guo et al. (2005); Newton-Cheh et al. (2009) 
Newton-Cheh et al. (2009) 
Cerutti et al. (2006) 
Barrett and Mullins (1992); Hartner et al. (2006); Mullins et al. (1990) 
Cerutti et al. (2006) 
Carlstrom et al. (2009) 
Archer et al. (2010); Rodriguez-Iturbe et al. (2007) 
Watanabe et al. (2006, 2009) 

TABLE 2. 7: Positive control genes and their references. 

Consistent DE genes Ideally DE genes should be consistently selected over mul

tiple studies, considering the same conditions, regardless of the laboratory and array 

technology..used (Campain et al., 2010). A gene that is DE across multiple studies is 

called a consistent DE gene. For the hypertensive/normotensive data sets the majority 

of DE genes should be DE across the multiple studies as they are comparing similar 

conditions. The number of consistent DE genes depends on the DE selection criterion, 

and the number of studies in which it is common. There is only a limited number of 

DE genes common to two or more of the considered hypertension studies (Table 2.8). 

There are 78 DE genes common to at least one other study over the complete range of 

DE criteria. Two consistent genes are also positive control genes, ApoE and Cd36, with 

Cd36 being DE in all studies under the FC criteria. This small overlap of DE genes 

confirms the findings of Ein-Dor et al. (2006). 
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Selection criterion 
IFCI :::0:1.5 

Number of common studies IFCI :::0: 1.5 FDR p-value <0.001 and 
FDR p-value <0.05 

2 studies 
DE genes 25 42 18 
Positive controls A poE Cd36 Cd36 

3 studies 
DE genes 6 4 1 
Positive controls 

4 studies 
DE genes 1 0 0 
Positive controls Cd36 

TABLE 2.8: Number of consistent DE genes for the hypertensive/normotensive data -· -

2.2.5 Inconsistent DE genes 

When the DE genes selected across each of the individual studies are compared, incon

sistencies in the DE gene lists become evident. A gene is considered to be inconsistent if 

the gene is selected as DE in two (or more) of the studies, but the FC directions (up or 

down) do not agree. This inconsistency implies that one study found the gene in ques

tion to be more highly expressed in the condition (hypertension in this case) and another 

found it to be less highly expressed in the condition (that is more highly expressed in the 

normotensive animals). Such inconsistencies are a problem and something that needs 

to be carefully considered. An assumption in the integration of results from multiple 

studies is that results contain at least some level of consistency. If the direction of 

the DE genes are conflicting, difficulties may arise when integrating results where only 

non-directional statistics (such asp-values) are considered. In this thesis, to ensure the 

robustness of the inconsistent gene list, only genes that are DE based on both FDR and 

FC are considered. 

When comparing the four hypertensive studies, 11 inconsistent genes (shown as gene 

symbols) are observed (Table 2.9), one of which is a positive control gene (Nppa). These 

inconsistencies could be due to a number of factors including small sample sizes, hetero

geneity in studied samples or lab effects (Lai eta!., 2009; Yang eta!., 2011), all of which 

are shortcomings that mega-analysis attempts to overcome (to be discussed in Section 

4.2). Figure 2.1 is an example of the scatter-plots available for each of the inconsistent 

genes. Plotted is the expression values for each sample within a data set, the classes are 

represented as different colours (red= hypertensive, black= normotensive). These plots 

show at the expression level what happens when inconsistent genes are being observed. 

Figure 4.8(a) is a heatmap of the inconsistent genes, the average FC for each gene is 

displayed for each of the four data sets. This plot provides a graphical representation of 

the inconsistencies for each gene. Green values in this heatmap imply negative average 
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Gene Symbol 
Ak2 
Betl 
Clcn 
Dars 
COs2 
Ivnslabp 
Nppa* 
Ptkp 
RGD1308772 

Postive FC 
Clemitson 
Cerutti 
Cerutti 
Cerutti 
Cerutti 
Cerutti 
Rysii 
Cerutti 
Cerutti 

Negative FC 
Rysii 
Clemitson 
Clemitson and Rysii 
Clemitson 
Rysii 
Clemitson 
Cerutti 
Clemitson and Rysii 
Clemitson 

Rrad Cerutti Rysii 
Slc6a6 Rysii Clemitson 
* indicates an inconsistent gene that is also a 
positive control gene 

TABLE 2.9: 11 inconsistent genes with differing FC directions for two (or more) 
studies selecting them as DE genes. 

FC values across a give data sets (expression levels are lower in hypertensive samples) 

and red values imply a positive FC level. 

2.3 Melanoma data 

2.3.1 Mann data set 

The Mann et a!. (2011) data set, refered to as the 'Mann data', studied in Chapter 4 

and Chapter 5 contains two types of data: clinical (n=83) and gene expression data 

(n=79). This data is paired, but contains an additional four clinical samples. Samples 

are from Stage III melanoma patients, with biopsies taken from their metastasised sites. 

A more complete data and analysis description can be found in Chapter 5 and in the 

clinical paper Mann eta!. (2011). A total of 79 tumour samples were obtained from the 

Melanoma institute Australia (MIA) Biospecimen Bank, as a collection of fresh-frozen 

tumours, obtained with appropriate approval and informed consent. These samples were 

collected since 1996 through MIA, formerly the Sydney Melanoma Unit. 

Clinical data 

A range of clinical variables were obtained both from the sample itself as well as the 

patient. Samples were reviewed by a pathologist and the variables were assessed. The 

variables include: percentage of non-tumour cells, percentage of necrosis, degree of pig

mentation, predominant cell shape and cell size of most cellular portion of tumour were 
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FIGURE 2.1: Nppa ex pression plot, this plot highlights t he inconsistencies in results 
especia lly between expression levels in the Cerutti and Rysii data sets where FC is in 
opposite d irections. 

assessed. Pathologic vari ables were obtained for the samples . T hese include: num

ber of nodes involved, largest nodal metastasis size and presence of extranodal spread. 

Other ctinical variables include: age. gender. stage at diagnosis. body site (classified 

by pattern of sun exposure: continuous, intermi ttent, rarely exposed). presence of an 

associated nervous. degree of solar elastosis in the peri tumoral skin. Breslow thickness 

(mm). Clark level, histologic melanoma subtype. and presence of regression. ulceration , 

vascular or lymphatic invasion. 

Gene expression data 

From the clinical samples. 79 paired expression arrays were also obtained. T hese were 

assayed using fresh frozen samples on Illumina Human Beadarrays.v3 arrays with 48.802 

probes. from the metastasised t umour. T he number of probes considered in the analysis 

was reduced to 26,085 after unexpressed probes were removed. A probe was considered 

unexpressed if the detection p-value was less tha n 0.01 (Du et al. , 2008) . The Mann 

et al. (2011) study took the 79 samples and reduced t his down to the extremes of the 

survival groups: 
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1. Class 1 poor prognosis, survival < 1 year after surgical resection and died due to 

melanoma (n = 25), and; 

2. Class 2 good prognosis, survival > 4 years after surgery, with no sign of relapse 

(n = 23). 

The clinical, pathologic and molecular parameters (including results of somatic mutation 

profiling) were analysed using multiple imputation and logistic regression for determin

ants of outcome. Detail of this complete analysis presented in Chapter 5. 

2.3.2 Public melanoma data 

In this thesis, a collection of four public melanoma gene expression data sets are studied. 

These studies examine the gene expressions of melanoma patients and develop gene sig

natures that distinguish between good prognosis (long term survival) and poor prognosis 

(short term survival). Definitions of classes and platforms used differ between studies 

and are summarised in Table 2.10. The examination of these data sets occurs in this 

thesis in two sections. The first is the analysis of the raw, or minimally preprocessed 

data for inhouse feature selection, classification and evaluation, in the meta-analysis 

melanoma case study (Section 4.4.2). The second makes use of their published gene 

lists, and the evaluation of these lists through classification as a method of validation 

through meta-analysis (Section 5.3.5). 

Bogunovic data 

Bogunovic et a!. (2009), known as the 'Bogunovic data', is an examination of 33 meta

static melanoma lesions, processed on the Affymetrix Human Genome U 133 Plus 2.0 

chip, in the Rockefeller University Gemonics Care laboratory according to the Affymet

rix protocol. For the purpose of classification, two groups were defined based on survival 

time, those with prolonged survival (greater than 1.5 years) and those with 'shorter sur

vival' (less than 1.5 years). Bogunovic eta!. (2009) identified 266 genes/gene elements 

associated with post-recurrence survival. This signature was assessed for its predictive 

capacity against the 2001 Tumour-Node-Metastasis staging system, the presence of TIL, 

T -cell CD3 positive, and mitotic index. 

John data 

In Thomas John et a!. (2008), refered to as the 'John data', researchers used inhouse 

oligonucleotide arrays (30,888 probes) to examine lymph node sections from 29 patients 
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with Stage IIIB and IIIC melanoma. Selecting a cut-off for good prognosis of 24 months 

survival, there were 16 poor-prognosis and 13 good-prognosis patients. The mean time 

to progression for the good-prognosis group was 40 months compared with four months 

in the poor-prognosis group. Multivariate analysis showed no statistically significant dif

ferences in age, gender, staging, the use of adjutant interferon therapy, or the presence of 

tumour-infiltrating lymphocytes between the two patient groups. From the list of 2,140 

significantly DE genes, two outcome-related tests were developed, a 21-gene element 

predictor and a 5-gene qPCR predictor. In an independent sample of 10 tumours, the 

qPCR predictor correctly classified nine of them with respect to good or bad prognosis. 

Jonsson data 

Go ran Jonsson et a!. (2010), known henceforth as the' Jonsson data', examined 57 subcu

taneous and lymph node metastases, on Illumina Human Beadarrays.v2 (HumanWG-6 

v2 Expression Beadchip) and the Illumina system according to the manufacturer's pro

tocol. The raw data is not publicly available, however the data was normalised with 

Beadstudio v3 Illumina software using a cubic spline normalisation method. Data was 

also log-transformed and mean-centred across arrays. This level of processed data is 

in the public repository. For further classification analysis class groups are defined as 

individuals alive or dead, according to the clinical information provided. 

Winnepenninckx data 

Winnepenninckx et a!. (2006), referred to here as the 'Winnepenninckx data', is the ana

lysis of 58 primary cutaneous samples, on Agilent oligonucleotide whole-human-genome 

44K dual colour microarrays. Winnepenninckx et a!. (2006) identified a 254-gene ex

pression signature. The two groups were classified such that the poor prognosis group 

had a distant metastasis within 4-years and the good prognosis group had no distant 

metastasis within 4-years. The original study also compared different prognosis groups. 

Patients were manually collated into a bad prognosis group if the primary melanoma was 

more that 4mm thick, or patients had an ulcerated melanoma that was more than 2 mm 

thick. The gene expression differences between these two groups were also considered 

for classification purposes. 
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Mann et a!. ( 2011) Illumina Human Beadarrays.v3 

Bogunovic et a!. (2009) 
Affymetrix Human Genome 

U 133 Plus 2.0 

Thomas John et al. (2008) 
Inhouse oligonucleotide arrays 

(30,888 probes) 

Giiran Jonsson et a!. (2010) Illumina Human Beadarrays.v2 

Winnepenninckx et a!. (2006) 
Agilent 44K 

dual colour microarrays 

ij[ TABLE 2.10: Summary of melanoma data set considered in this thesis. 
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Purpose of original study Class cut-off 

DE analysis and Good - Survival 4+ years 

classification Bad - Survival less than 1 year 

DE analysis and Good - Survival 1.5+ years 

classification Bad - Survival less than 1.5 years 

Good - Survival 24+ months 
DE analysis "" Bad - Survival less than 24 months "' 

DE analysis and Good- Alive 

class discovery Bad- Dead 

DE analysis and Good- no dist. met. within 4 years 

classification Bad - dist. met. within 4 years 



Chapter 3 

Clinical data 

Statistics in clinical research faces many challenges including the presence of missing 

data and model instability. Clinical data often has a wide variety of variables to be 

considered, including discrete, continuous and ordinal, coming from diverse sources in

cluding measurements, counts, technological readings as well as subjective judgements 

in a clinical or medical context. 

Although the elements considered in this chapter are common to many clinical data sets, 

this chapter in particular was motivated by early pregnancy clinical data provided by 

the Early Pregnancy Unit, part of the Nepean Hospital, Sydney, Australia, the 'EPU 

data'. Full description of this data was provided in Section 2.1. To summarise some 

of the characteristics, the EPU data is highly imbalanced (8% minority class), contains 

approximately 8.5% missing data overall and has only 63 complete out of a total of 416 

cases. The data contains a fully observed binary response, viable or miscarriage preg

nancy, and covariates range from maternal history to ultrasound variables, and are either 

continuous or categorical. This data set is studied at the end of this chapter, providing 

an example of the use of the presented solutions to missing data and unstable models. 

Different and altered versions of the EPU data are also used for the two simulation 

studies that explore elements of missing data and unstable regression models. 

Although binary responses are not the only response within a clinical setting they are 

common, representing for example treated versus non-treated, alive or dead, presence or 

absence of a particular variable/condition. In a binary class setting one may construct 

a predictive model using weighted logistic regression. The binary response vector y has 

length n with classes coded 0 and 1. Let X be an n x Q matrix for a sample of size n and 

Q explanatory variables. The probability of an 'event' occuring is 1r1, (7rj = P(Yj = 1)). 
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Let 1r denote the vector of the n event probabilities. We write 

71" 
In(--)= V,i3, 

1-71" 
(3.1) 

where i3 = (/30, /31, ... , f3Q) and V is an x (Q + 1) data matrix, with the first column 

containing all 1 's and the remaining n x Q matrix corresponding to X. The parameter 

vector i3 can be estimated via classical methods such as 'maximum likelihood methods', 

'least-squares' or 'weighted least-squares' (Venables and Ripley, 2002). Observations 

can be weighted according to a weight vector w such that its components sum to n, the 

sample size. In such a case the regression parameters are estimated based on maximising 

the weighted log-likelihood. 

When applying logistic regression there are a range of problems that are commonly 

encountered. Two major challenges are: 

1. Missing data in the explanatory variables, the response variables, or both. 

2. An unstable final model, where small changes in the data produce large changes 

in the final model. 

Currently there is a large variety of multiple imputation approaches available to address 

the problem of missing data, ranging from ad hoc to highly sophisticated statistical 

modelling. However, very little is known regarding how these various methods compare. 

Very recently, Abrahantes et a!. (2011) compared a range of multiple imputation meth

ods, but how these methods depend on the amount of missing data was not investigated. 

In this chapter an empirical study is used to investigate how regression coefficients de

pend on induced missingness and which imputation method handles missingness most 

effectively. 

At times model building may lead to the construction of an unstable model. Unstable 

models ar~. models with non-reproducible coefficients. For such models small perturba

tions in the data used to construct the model result in large model changes. Moreover 

they often have very poor predictive qualities. This is especially prevalent when the 

data contains a highly imbalanced class distribution. Solutions to class imbalances have 

been proposed, for example to either over or under sample class samples to avoid im

balance (Weiss and Provost, 2001). But when sample sizes are relatively low this is 

difficult. Furthermore, questions have been raised about the statistical validity of such 

approaches. Imbalanced class distributions are a common problem in clinical data, and 

can exacerbate the issue of unstable models. Solutions to handling these unbalanced 

analysis questions are offered, changing the performance measures used and applying 

weights within regression models to compensate for the vastly different class sizes. 
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As model uncertainty and unstable regression models are a real and important concern 

(Chatfield, 1995) a model stabilising approach based on the bootstrap is considered in 

this chapter, originally developed in Campain eta!. (2011). This method, the 'B-MI ap

proach' is examined in a simulation study, and compared to other currently implemented 

methods in the context of missing data with imbalanced class distributions. 

This chapter is presented in two parts. The first part explores missing data and the 

effects of imputation and the second part considers model instability and some of the 

issues associated with this challenge. Part one is made up of Sections 3.1 and 3.2. 

Section 3.1 considers missing data in detail, giving an overview of curroot solutions 

to the problem of missingness found within data sets. Section 3.2 is a comparison of 

multiple imputation methods, offering a unique framework for the comparison of multiple 

imputation algorithms. Part two consists of Sections 3.3 and 3.4. Section 3.3 considers 

some of the elements of unstable models and provides a novel stabilizing method for 

producing consistent regression models through the use of bootstraps. Section 3.4 is 

the development and comparison of the B-MI approach in a missing data context with 

class imbalance. Section 3.5 is a case study of the EPU data set, incorporating all the 

elements considered within the chapter and demonstrating their use and success in a 

clinical environment. 

3.1 Missing data 

Data sets, where some of the observations are missing, are common in statistics. How

ever, most of the methods developed for statistical analysis require complete data sets. 

Imputation is the process of obtaining estimates for missing data within a data set. 

Various methods both ad hoc and statistically sophisticated exist for this procedure. In 

many non-statistical fields it is still common practice to delete all cases with missing 

data, due to the general feeling that exploring methods of imputation in data sets is 

'making data up' (Stuart et a!., 2009). However, over the last 30 years advances in 

imputation have been made and imputation is considered statistically far superior to 

complete case analysis. 

There are three special data missing structures, missing completely at random (MCAR), 

missing at random (MAR) and missing not at random (MNAR). The structure behind 

these different cases and the effects they have on downstream analysis have been well 

studied in Little and Rubin (1987), Rubin (1987) and Schafer (1997). Methods for 

imputation are varied, a list of such resources can be found in Hare! and Zhou (2007), 

Horton and Kleinman (2007) or Bramer eta!. (1997). It is well known that both MCAR 

and MAR are not too much of a concern when analysing missing data. In the context 
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of the EPU data, MCAR would result from missingness being independent from both 

observable and unobserved factors,for example the loosing of data, and MAR would 

result from missingness not attributed to the data itself, for example au accidental 

missing of a question. However, MNAR patterns pertain to non-ignorable missingness. 

Such missingness occurs when the reason for missing data is attributed to an unobserved 

factor. For the EPU data, MNAR could occur when data is intentionally missed, for 

example the deliberate missing of a question. Knowing the correct structure for the 

missing data aids in the accuracy of the imputation procedure. Unfortunately it is 

not always possible to establish the missingness structure in a data set. Despite this, 

analysis can often proceed by using an imputation method that is based on an observed 

data likelihood and incorporating as much covariate information as possible. If this is 

performed, even if the missing structure is MN AR one can often impute using a MAR 

approach (Schafer, 1997). 

3.1.1 Complete case 

Complete case analysis is performed when only data samples with a complete set of 

observations are used in the analysis. Such a stringent criteria is often used in practice, 

but is generally not statistically sound. Only considering complete cases can be prob

lematic in several ways. For example, the size of the data set is often greatly reduced in 

turn reducing statistical power, and exacerbating variable selection and model stability 

issues. Furthermore, there may be an underlying reason for the missing data and by 

removing all non-complete samples such structure could be eradicated from the analysis. 

3.1.2 Single imputation 

Performing the imputation process once, to obtain a completed data set is known as 

single imputation. Single imputation is a well known approach, Rubin (1987, pll.] 

comments:· 

'Single imputation, that is, filling in a value for each missing value, is 

probably the most common method for handling item non-response in current 

survey practice. There are two major attractive features supporting this 

practice. First, standard complete-data methods of analysis can be used on 

the filled-in data set. Second, (the effort of imputation] need be carried out 

only once by the data producer.' 
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Single imputation's main point of contention is that as each estimated data point is 

treated as an observed data point and therefore the variability of estimators, inherent 

due to imputation, is not taken into account. 

3.1.3 Multiple imputation 

Multiple imputation is repeatedly performing single imputation, say m times, only 

achievable for imputation processes with a stochastic component. For each missing 

data point multiple estimates are calculated for its value instead of one. ThJs essentially 

means that m complete data sets are developed for further analysis. Hence, multiple 

imputation retains the advantage of single imputation, namely complete data sets for 

downstream analysis, but is superior to single imputation as the variability of the un

known values are taken into account. To employ multiple imputation each completed 

data set undergoes statistical analysis, independent from the other sets. Once the para

meters of interest are obtained, for example regression coefficients, the results are then 

aggregated and their between and within imputation variabilities are combined. 'Ru

bin's rule' (Graham et a!., 2007; Rubin, 1987) stipulate that an overall estimate can be 

calculated via averaging these estimates, iiq = E;?',;, &c, , where &rq is the point estimate 

for the rth imputation for the qth estimated parameter and iiq is the average parameter 

estimate. 

Let Tq be the combined within imputation variance and between imputation variance 

for the qth parameter in question, such that 

E~~~sE;q [ 1]"E~-J(&rq-i5!q)2 
Tq = m + 1 + m (m- 1) , (3.2) 

the first component is the average of the squared standard errors (SErq) of the partic

ular estimated parameter and the second component is the scaled variance over the m 

imputed data sets. It follows that the standard error for iiq after multiple imputation is 

estimated by SEq= ,j'Tq. 

In a model selection context, aggregating them coefficient estimates for each variable can 

involve an inclusion frequency. An inclusion frequency is the measure of how prevalent 

a variable is in the numerous models constructed. The inclusion threshold stipulates 

how high the inclusion frequency must be for a variable to be considered in the final 

model (Austin and Tu, 2004; Heymans eta!., 2007). For example, if a variable is present 

in seven out of 10 multiple imputations, for this variable to be included in the final 

model the inclusion threshold must be below 70%. The multiple imputation inclusion 

frequency is denoted as 1M I. 
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Wood et al. (2008) considered a range of methods and conditions for combining para

meter estimates from multiple imputation models. Very high as well as very low inclusion 

thresholds lead to inappropriate selection methods. One of the appropriate methods is 

produced when predictors are selected based on a frequency threshold (e.g. 50%). Let 

TMI be the inclusion threshold and pq be the estimated inclusion frequency from the data 

as a percentage for the qth estimated parameter. The average of m multiple imputation 

estimates is 

(3.3) 

In this chapter, the inclusion threshold with respect to the multiple imputation models, 

TMr, will always be set at 50%. The selection of TMr is interesting in its own right, but 

the tuning of such a parameter is not addressed within this thesis. The value of 50% was 

considered to be a compromise between having an inclusion threshold that was too high, 

and hence an overly sparse model, or too low, and hence having an average coefficient 

estimate that incorporates a large number of zero estimates. 

3.2 Multiple imputation algorithms comparison 

Most imputation algorithms are designed to impute data regardless of the proportion 

of missingness evident in the data set. This section is a unique framework designed 

to compare different imputation methods to assess the validity of the methods and 

their appropriateness as the amount of missing data within a data set increases. The 

validity of methods is addressed based on models developed after imputation, regression 

coefficient estimation and downstream classification. Designed as a simulation study, 

for each imputation method two questions are addressed: 

1. How the amount of missingness affects multiple imputation and the downstream 

results and; 

2. If a critical proportion of missingness can be reached, such that beyond this point 

statistical interpretation needs to be questioned. 

Missing data in classification has been studied in recent years. Grzymala-Busse and 

Hu (2001) as well as Farhangfar et al. (2008) have noted that on average imputation 

improves classification, compared to not imputing. Markey et al. (2006) considered how 

missing data in the test set impacts the classifiers performance when a complete data 

set was used to construct a classifier using neural networks. 
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In this study, resubstitution error rates are used to measure how much information 

is lost due to missing data and subsequent imputation as well as which imputation 

method is most appropriate in this context. Data is classified using both weighted 

logistic regression and random forests (Breiman, 2001). 

This section continues by considering a range of different imputation methods in detail 

(Section 3.2.1), then the unique comparison framework is outlined (Section 3.2.2) and 

the evaluation criteria used to assess the different imputation approaches (Section 3.2.3). 

The simulation study and results are shown in Section 3.2.4. 

3.2.1 Imputation algorithms 

As different multiple imputation algorithms are tailored for different situations, the 

amount of missingness present in the data may affect these algorithms to varying degrees. 

Therefore three popular algorithms will be compared in this study, Amelia II (King 

eta!., 2001), MICE (Buuren eta!., 1999) and the Mi (Rubin, 1987) imputation method. 

These methods are used to explore the extent to which different imputation method(s) 

can reproduce adequate amounts of information. These three procedures have been 

considered because of their ease of use, availability and prevalence in literature (especially 

MICE). For example, all three methods are available as pre-written software applications, 

either as stand alone packages or packages in R (R Development Core Team, 2005). 

Imputations are drawn from some form of predictive distribution of the incomplete 

values. To do this one must model the predictive distribution for these imputations 

based on the observed data (Little and Rubin, 1987). However, at times this can be 

difficult, particularly when the total number of parameters, Q, increases (Dempster eta!., 

1977). Another reason for this selection of algorithms is that these different imputation 

methods all make use of alternative approaches and approximations to overcome the 

problems of constructing a predictive model and overcoming the arduous nature of this 

problem as the number of parameters increases. 

Before describing the algorithms in more detail some notation is introduced. Let X be 

an n x Q matrix where the columns represent Q covariates and the rows n samples and 

y be a vector of response variables. Let Z = (X,y) represent the data set in question, 

Xq represents the qth covariate (q = 1, ... , Q), with X~bs being the observed values and 

X;;'is the unobserved or missing values of X q, similarly Xjq represents the jth sample 

(j = 1, ... , n) of the qth covariate, this data point is either observed or unobserved. The 

matrix X nominal is the component of the X matrix that contains nominal variables and 

X mdinal is the component of the X matrix that contains ordinal variables. In this thesis 
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the vector y is assumed to be completely observed and as the focus is on categorical 

variables, each level of category or group is termed a class. 

Amelia II 

Amelia II (King et a!., 2001) imputes data by combining a bootstrap and an expectation 

maximisation (EM) approach under the assumptions that the missingness structure in 

the data is MAR and variables are jointly multivariate normal. Because of the jointly 

multivariate normal assumptions, Amelia II can be used for categorical analysis. Para

meters required for data modelling include a vector of means for the Q covariates, ,.., 

and a covariance matrix, for the Q covariates, :E. The algorithm draws m bootstrapped 

samples, the number of required multiple imputations, of size n', from the data set Z. 

If not otherwise specified n' is chosen to be n. The EM algorithm is used to produce 
• * from the bootstrap estimates, p,; and :Er for IL and a :E, r = 1, ... , m. 

Consider the case where Xjq is missing and needs to be estimated. Let Xj,-q be the jth 

sample with the qth covariate removed. To impute the missing value Amelia II makes 

use of linear regression and the pair of bootstrap estimates p,; and :t; and uses these to 

calculate {J;. To estimate i:jq the rth imputed value for Xjq, regress Z'.J~."q the observed 

data for the jth sample not including the qth covariate, but including the response 

variables on Xjq Jetting, 
-r zobs ;.;• 
Xj,q = j,-qfJr 

at the point of data imputation. Variability is obtained for this estimate through the 

bootstrapping component of the imputation process and the differing !J• estimates. For 

this study, Amelia II is implemented from the contributed R package Amelia (Honaker 

et a!., 2008), and the package's suggested parameters were applied for continuous and 

nominal variables, i.e. 

amelia(x=X, m=5, noms=colnames(Xnominal), ords=colnames(Xordinal)) 

is an example of the R code implemented. 

MICE 

Multiple imputation by chained equations (MICE) (Buuren et al., 1999) makes use of 

the Gibbs sampler, allowing for the generation of random variables from a marginal 

distribution directly without having to calculate the density (Casella and George, 1992). 

The Gibbs sampler is considered a multivariate extension to chained data augmentation 
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(Tanner, 1991) and hence is a series of chained equations. To begin, missing values 

are initialised in some way, for example by random draws from the observed marginal 

distribution. Then the Gibbs sampler is applied, with t as an iteration counter, and 

X;{''' the missing values from the qth covariate: 

For imputations required for x;nis draw Xi+1from P(X 1IX~, X~, ... , XQ), 

for imputations required for X~'' draw x~+l from P(X2IXi+\ X~, ... , X~), 

for imputations required for Xo'' draw X~1 from P(XqiXi+1
, x~+l, ... , X~!1 ), 

so that all covariates have been imputed. Iteration stops when a convergence criterion 

is reached or a maximum number of iterations have passed. Care needs to be taken 

when using MICE, especially when data is binary or ordinal as chained equations have 

a tendency to produce separable data, that is a perfect prediction of an outcome by 

a predictive variable or combination of predictive variables (Tanner, 1991). This is 

particularly prevalent when there is a highly imbalanced class distribution in the outcome 

variable or when missingness is large (Suet al., 2011). Buuren et al. (1999) highlight 

that convergence can not be guaranteed except in special cases such as the multivariate 

normal and suggest to be careful when using MICE if missingness is large. For MICE 

the R package mice (Buuren and Oudshoorn, 2007) using the default parameters is used, 

I.e. 

mice(data=X, m=5). 

For more details on using MICE see Azur et al. (2011). 

Mi 

The Mi procedure makes extensive use of the predictive mean matching method de

veloped by Rubin (1987). A variable of interest is imputed using other variables as 

predictors and the posterior mean is calculated given these predictors and the posterior 

predictive distribution. Imputation is performed by finding an observed value having 

the closest predictive mean. This observed value is used as the imputed value. The 

advantage of such a method is that only realistic values, or pre-observed values, are 

imputed. Mi overcomes the problem of separation, a potential problem in algorithms 

such as MICE, by transforming difficult to model variables. Examples of this are adding 
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dummy variables in the modelling of strictly positive values and the addition of noise 

(multiple types) for collinear values (Suet al., 2011). Mi is implemented through the R 

package mi (Gelman et al., 2009), again using the default parameters, i.e. 

mi(object=Jl, n.imp=5). 

3.2.2 Comparison methodology 

Within this simulation study two separate approaches are used to compare multiple im

putation methods. Imputation methods are considered powerful if they can reconstruct 

the information lost due to missing data, and if this reconstruction can be performed 

even when the proportion of missingness is high. The percentage of missingness relates 

to the proportion of missing covariate values. 

Weighted logistic regression is used extensively in the first method. Through bootstrap

ping, the distributions of the logistic regression coefficients are examined. How these 

estimated distributions change as the percentage of missing data increases is compared 

across the multiple imputation methods. The bootstrapped mean squared error from 

these bootstrapped coefficients is also used to aid comparison of multiple imputation 

methods, where consistently low values indicate a resistance to change because of an 

increase in missingness. 

The second comparison method considers prediction accuracy in a classification frame

work. Data is classified using two classification methods, weighted logistic regression 

and random forests (Breiman, 2001). The consistency of the prediction accuracy across 

multiple imputation methods as the amount of missingness increases is indicative of an 

imputation method's ability to reconstruct discriminant information for partially com

plete data sets. 

To examine how the amount of missingness affects the imputation results, an iterated 

bootstrapped logistic regression procedure is employed. Figure 3.1 contains a graphical 

representation of the process, which consists of the following six step algorithm: 

Algorithm 1: Coefficient distribution from logistic regression 

1. Obtain a data set with no missing data. 

2. Draw stratified bootstrap samples. For example, the bootstrap samples could be 

stratified to preserve the original class distribution, with n' > n, where n' is the 

size of the stratified sample. Under sampling is also possible depending on the 

data set in question. 
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3. Using the complete bootstrapped data set from step 2, create several data sets, for 

example 10. The first such data set is the complete data set and subsequent data 

sets contain an increasing amount of induced missingness (this could be a series 

of 5%, 10%, ... ,45% missingness). Missingness is induced MCAR with the response 

variable left complete. In this study nine data sets have been used. 

4. Impute each of the incomplete data sets m times. 

5. For each level of missingness, apply a weighted logistic regression analysis to the 

data sets, resulting in coefficient estimates for each of the covariates. 

6. Repeat steps 2.-5. B times, to obtain bootstrapped distributions for the coefficient 

estimates for each covariate, as the amount of missingness increases. 

Note: Bootstrap sampling is included in the process firstly to increase the number 

of samples in the datasets and secondly to increase the amount of randomness in the 

process. By bootstrapping hundreds of times the estimates of the distributions of the 

coefficients can be observed. These distributions can then be compared to the distribu

tions when there is no missingness in the data set. Hence, the ability of the imputation 

method to regain information lost due to missingness can be explored. 

3.2.3 Evaluation criteria 

The bootstrapped distributions for the data sets containing missingness can be com

pared against the bootstrapped distribution of the complete data. Hence, the effect of 

the amount of missingness and how well particular imputation methods regenerate the 

original information can be examined. Here, two selection criteria have been considered 

(i) bootstrapped mean squared error; and (ii) prediction accuracy. 

Bootstrapped mean squared error 

To compare the distributions of the coefficient estimates for the data sets with induced 

missingness against the estimated coefficient distributions for the complete data the 

bootstrapped mean squared error (B-MSE) is calculated. Let ~:.o be the coefficient 

estimate for the complete data set for the bth bootstrapped sample, where b = 1, ... , B, 

for the qth variable where q = 1, ... , Q and ~~.k be the coefficient estimate for the bth 

bootstrapped sample with k% missing, where k = 5, 10, 15, ... , 45, then the B-MSE is 

:EB , 
B-MSEq,k = b~l (i3:.o- ~g,kJ2 

B 
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The B-MSE is obtained for all variables in the data set and all available imputation 

algorithms, here Amelia II, MICE and Mi. 

Prediction accuracy 

To examine how the amount of missing data affects data classification, the above data, 

induced with a range of proportions of missingness, is classified using random forests 

(Breiman, 2001) and logistic regression. Classification is considered under two paradigms. 

The first is to consider classification in a traditional sense using an imputed data set 

to construct and test a classification rule. The second is to evaluate how information 

is lost through imputation. To achieve this, consideration is taken to how error rates 

increase when classifying data that has been imputed when the classification rule was 

constructed on the complete data set. 

These two aims are performed in separate stages: 

1. To observe how missingness affects classification when the classifier is constructed 

and tested on imputed data, repetitively impute data sets for a given level of 

missingness and classify using v-fold cross validation. (i) For random forests the 

final class is the majority vote of the m classifiers, (ii) for logistic regression the m 

models are combined prior to evaluation. 

2. To examine how information is lost through the presence of missing data, the 

error rates are considered when a classifier is built on the complete data set and 

tested on an imputed data set (with differing levels of missingness). The complete 

data set is used to construct a classification rule. The resubstitution error rate is 

obtained as the baseline. Using the same classification rule, imputed data sets are 

also classified, obtaining a modified resubstitution error rate. Comparing these 

error rates to the baseline resubstitution error rate, the decrease in accuracy can 

be attributed to the missing data and subsequent imputation. 

The first stage in the classification process is typical classification of multiply imputed 

data sets with v-fold cross validation. Although this stage can be informative as to if 

the induced missingness affects classification, it struggles to highlight how the amount 

of missingness and imputation affects classification. The reason for this is that the same 

level of missingness is being used to build and to test the classifier. If it is assumed 

that in a data set with k% missingness there is a loss of information, after imputation 

this loss of information is still evident throughout the whole data set. Constructing and 

testing a classifier on this data set, even using cross validation to reduce bias, does not 

allow the evaluation of how much information is lost due to the missing data. 
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Step 1: Complete data set 

Step 2: 

Step 3: Leave I Induce k . % Induce k
2
% Induce k % 

m1n ... max 
complete missingness missingness missing ness 

I I 
Step 4: I I Impute m times 

I I 
Apply weighted logistic regression 

Step 5: I I _I 
Obtain ~ estimates 

Step 6: 

FIG URE 3.1: l\!Iethodology for the comparison of coefficient dist ributions as t he amount 
of rnissingness increases. 
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To examine how classification accuracy is affected by the loss of information from the 

amount of missing data and imputation, the second stage of the classification method 

is performed. This stage makes use of resubstitution error rates. Although in most 

classification contexts the resubstitution error rate is known to be biased downward and 

can not be used to gain a true indication of the independent error rate, in this context 

the resubstitution error rate is being used to examine how information is lost due to 

missingness within a classifier. A classification rule is constructed based on the complete 

data set. Subsequently data sets with a range of imputed amounts of missingness are 

classified (creating a form of resubstitution error rate). An increase in this error rate 

when compared to the original resubstitution error rate obtained from the complete 

data set is caused by the missingness, loss of information, and subsequent imputation. 

More specific details regarding the cross validation and resubstitution error rates for this 

particular study is shown in the following subsection. 

3.2.4 Simulation study 

From the EPU data, a simulated data set was generated. Individuals and variables were 

deleted from the original data set progressively based on proportion of missing data, 

sequentially removing items with a high amount of missingness. Eventually obtaining a 

complete data set with 270 cases (coincidently with 8% miscarriages) and 12 variables 

(age, number of natural deliveries, past-miscarriages, gestational age, bleeding, clots, 

abdominal pain, smoker, crown-rump length (CRL), gestational sac (GS) mean, foetal 

heart rate (FHR) and consistent with menstrual dates), five of which are common to 

Riemke's final model (Table 2.3). Table 3.1 shows a summary of the data, which is used 

in this simulation, highlighting the variable data type, mean and standard deviation 

(SD) or class sizes where appropriate. 

Induced missingness 

For the simulated complete data set, missingness was induced by MCAR at proportions 

of 5%, 10%, ... , 45%, with the response variable (miscarriage or viable pregnancy) left 

complete. A total of B = 999 stratified bootstrap samples were drawn, with stratification 

used to preserve the original class distribution. Data sets were multiply imputed five 

times and a 5-fold cross validation was used for classification. Weights used in the logistic 

regression were chosen to ensure an even class distribution (Section 3.3.1). 
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Variable Data Type Mean SD Class Sizes 

Outcome binary 248 v 22 

Age integer 27.69 5.14 

Number of natural deliveries integer 0.71 0.98 

Past-miscarriages integer 0.61 1.03 

Gestational age integer 59.73 13.98 

Bleeding binary 159(yes) v 111(no) 

Clots binary 31(yes) .Y 239(no) 

Abdominal pain binary 157(yes) v 113(no) 

Smoker binary 50(yes) v 220(no) 

CRL continuous 19.56 18.09 

GS mean continuous 31.82 18.43 

FHR integer 146.75 26.19 

Consistent with menstrual dates binary 206(yes) v 64(no) 

TABLE 3.1: Summary of the complete data (n = 270) used in this simulation, 
highlighting the variable data type, mean and SD or class sizes where appropriate. 

Coefficient distribution 

After running 'Algorithm 1' a total of B estimates for f3, the coefficient vector for 

the covariates, were obtained. From these results two types of plots for each level of 

missingness and variable were produced: estimated densities and boxplots. Results were 

obtained for each of the three considered imputation methods, Amelia II, Mi and MICE. 

Examples of these plots can be seen in Figures 3.2 and 3.3. 

The estimated densities for the complete data set as well as the complete range of missing 

proportions (5% - 45%) provide a visual indication of how the proportion of missingness 

affects the distributions. Here, the density of the complete data set is considered as 

the 'gold standard' because data imputed with no loss of information would reproduce 

this distribution. Closeness of the other bootstrapped distributions to the gold standard 

implies that the imputation method was able to re-capture, to some degree, the lost 

information for that particular proportion of missingness. 

Boxplots of the log-ratios of the imputed data set coefficients over the complete data set 

coefficients are included. In these plots, estimates are paired by bootstrap draw. A log

ratio greater than zero implies that the coefficient with induced missingness is greater 

than the gold standard. An increased width in the log-ratio boxplots is indicative of 
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Past-miscarriages Amelia II Mi MICE 

Amount Missing Med Var Med Var Med Var 

Complete 0.06 0.13 0.06 0.13 0.06 0.13 

5% 0.04 0.12 0.04 0.14 0.06 0.15 

10% 0.02 0.11 0.04 0.16 0.06 0.16 

15% 0.02 0.10 0.04 0.18 0.05 0.19 

20% 0.00 0.10 0.03 0.19 0.04 0.19 

25% 0.00 0.10 0.05 0.20 0.04 0.20 

30% 0.01 0.09 0.03 0.30 0.04 0.27 

35% 0.00 0.09 -0.02 0.35 0.10 0.25 

40% 0.00 0.07 0.03 0.31 0.06 0.26 

45% 0.00 0.07 0.00 0.45 0.06 0.31 

TABLE 3.2: Summary of the median and variance for the bootstrap distributions for 
the coefficient 'past-miscarriages' as the amount of induced missingness increases. 
Data has been imputed using Amelia II, Mi and MICE. 

the increase in variability of the ratios, and as the median shifts away from zero, this 

suggests that bias occurs. 

The summary of the bootstrapped coefficients (Table 3.2 and 3.3) and plots are provided 

for only two variables, 'past-miscarriages' and 'clots'. Results for the other ten variables 

are shown in Appendix B Section B.1 and are omitted here because results for variables 

with large coefficients, relative to their standard errors, are similar to 'clots' and results 

with coefficients close to zero are similar to 'past-miscarriages'. 

Figure 3.2 contains the bootstrapped distributions and boxplots for 'past-miscarriages', 

a nominal variable that often results in small regression coefficients for the bootstrapped 

samples. 'l'his variable was not in the final model of Riemke et a!. (2011) and is repres

entative for redundant variables. The results displayed in Figure 3.2 are typical of all 

the small effect variables studied. Amelia II produces a series of reliable results. Here 

reliable is that the medians are close to the original complete data set median, and the 

variance of the distributions are close to that of the original distribution, even as the 

amount of missingness increases to 45%. The medians do exhibit some small shrink

ing toward zero, together with a decreasing variability (Table 3.2). As the amount of 

missingness increases, Mi and MICE increase the distributional variability for the coef

ficient 'past-miscarriages' (Table 3.2). Both these imputation methods exhibit a minor 
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Clots Amelia II Mi MICE 

Amount Missing Med Var Med Var Med Var 

Complete -2.36 1.00 -2.36 1.00 -2.36 1.00 

5% -2.14 0.87 -2.28 1.02 -2.37 1.11 

10% -1.99 0.74 -2.27 1.42 -2.35 1.29 

15% -1.82 0.69 -2.19 1.10 -2.41 1.58 

20% -1.63 0.92 -2.14 1.18 -2.45 1.60 

25% -1.49 0.53 -2.06 1.30 -2.43 1.81 

30% -1.37 0.46 -2.06 2.28 -2.39 2.41 

35% -1.20 0.48 -1.97 2.70 -2.43 2.39 

40% -1.06 0.45 -2.06 2.17 -2.35 2.20 

45% -0.93 0.73 -2.11 4.10 -2.32 2.76 

TABLE 3.3: Summary of the median and variance for the bootstrap distributions for 
the coefficient 'clots' as the amount of induced missingness increases. Data has been 
imputed using Amelia II, Mi and MICE. 

bias trend as the distributions tend to become more symmetrical as the variance in

flates. The Mi imputation appears to inflate the median to a greater extent than MICE. 

These results are made more evident by a visual inspection of the boxplots, showing 

the log-ratio of imputed coefficient estimates to complete coefficient estimates, paired 

by bootstrap draw. 

Figure 3.3 depicts results from the 'clots' variable which frequently produced the largest 

coefficients in the bootstrapped analysis of this data set and is also the variable with 

the largest coefficient in Riemke's final model. 'Clots' is a binary variable and results 

are typical for all large coefficient variables within this data set including those that are 

continuous or categorical. The shrinkage bias exhibited by Amelia II toward zero is very 

pronounced for this variable, as the median for these distributions is large, although 

variability decreases from the original distribution with the introduction of missingness 

(Table 3.3). For the Mi imputation method the variability increases as the amount 

of missingness increases, this variability tends to drastically increase as the amount of 

missingness reaches about 35-45%. The inflation bias of the median is still evident for 

the Mi imputation method however for large coefficients this bias appears to not be 

present when MICE is used. 

For the two variables the 8-MSE has been plotted for each imputation method (Figure 
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3.4). A small B-MSE implies that the two distributions (the complete and the incom

plete) are similar. The B-MSE can be used to examine the relationship between bias 

and variability. Figure 3.4(a) illustrates the B-MSE when coefficients are small. From 

Figure 3.2 it is clear Amelia II induces only a small amount of shrinkage, as a result this 

imputation method produces a competitive B-MSE particularly for large proportions 

of missingness, Both Mi and MICE have an increasing variance regarding the propor

tion of missingness and thus for percentages of missingness greater than 15%; Amelia 

II is better than MICE, which in comparison is always slightly better than Mi. Figure 

3.4(b) encapsulates the B-MSE behaviour when the coefficients are large. Amelia II 

suffers from an increase in bias and this contributes to a large B-MSE, this induced 

bias is greater than the increase in variability produced by Mi and MICE, implying that 

Amelia II performs poorly, comparatively. MICE and Mi are comparable in this case 

with MICE often producing a smaller B-MSE than Mi. Based on this study, taking into 

consideration bias tendencies and B-MSE, overall MICE appears to be the most com

petitive imputation method, albeit Amelia II can be very successful when missingness 

is extreme and variables are redundant. 

Prediction accuracy 

Classification error rates were obtained after applying the two stages of classification 

described in Section 3.2.3. The first stage produced a series of error rates obtained for 

a 5-fold cross validation and the second stage used resubstitution-type errors to observe 

the loss of information due to missing data and imputation. The classification error rates 

for both the random forests and the logistic regression models are plotted in Figures 3.5 

and 3.6 for the two stages of classification, respectively. As the amount of missingness 

increases the classification error rate is expected to increase if the imputation methods 

are losing information critical to classification. Also provided in Figure 3.6 are the split 

error rates relating to the classification accuracy of the two individual classes, viable 

and miscarriage. These split error rates are obtained for the three imputation methods 

and provide insight into how classification deteriorates as missingness increases. 

Stage 1: V -fold classification Figure 3.5 displays the 5-fold cross validation clas

sification error rates for both the random forest classifier and the logistic regression 

models as the amount of missingness increases. Imputed data was used to train and test 

the classifier. The classification error rate was inflated when missingness was present 

compared with the classification error rate of the complete data set. However, once 

missingness is introduced into the data set, the inflated error rates appear near constant 

despite the increase in the amount of missingness. It is possible that the reason for this 
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increases. Boxplots depict the log-ratios for imputed data set coefficients to complete 
dat a set coefficients, paired by bootstrap draw. Imputation methods used include 
Amelia II, Mi and MICE. 
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F IG URE 3.4: B-l\IISE for Amelia II , Mi and MICE relating to the estimated coeffi
cients for t he variable (a) ' past-miscarriages' and (b) ' clots '. A smaller B-MSE implies 
the bootstrapped distri bution for the imputed data was similar to t he bootstra pped 
d istribut ion fo r t he complete data. 

stems from the methodology (Section 3.3.2). Here the imputed data is used to build 

and test the classifier. Some information is lost through the process of data deletion and 

imputa tion. hence t he classifier is not built as accurately and it follows that the classi

fication error rates are inflated . Interestingly no imputation method appears to stand 

out when imputed data is used during the construction of a classifier. These results 

agree wit h the find ings of Grzymala-Busse and Hu (2001) as well as Farhangfar et al. 

(2008). T he high error rates, especially for t he weighted logistic regression . may relate 

to the data set containing a highly imbalanced class djstribution or also due to logistic 

regression not being flexible enough. For t hese reasons it is possible that the classifiers 
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FIGURE 3.5: Classificatiou er ror rates for t he (a) ra ndo111 forest class ifier aud (b) logistic 
regression in dependence of mis ingnes. , using m = !5 imputations and 5-fold CV. 

are struggling to correctly separate the data set (complete or imputed). Hence'. classific

ation is poor rC'gardless of induced missingness. It is important to note t hat these error 

rates show that . for t his data set. any amount of missingness yields nror rates greater 

than that of the complete data et (Figure 3.5). It is evident t hat missingness affect 

the a bility to cia sify data as the distinction between the two cla es i reduced when 

1\ ICAR mis ingncss with subsequent imputat ion is pre ·ent . 

Stage 2: Loss of information through missingness Figure 3.6 (a) and (b) contain 

the second stage of classification where re ubst itution type error arc used to exarnin<' 

information loss fo r both the random forests and logist ic regre sion clas. ifiers. To evalu

ate how t he amount of missingness is afi'ecting t he clac;sification of the data set. a careful 

evaluation of the resubstitut ion error rates was applied. The random forest classifier and 

tlw logisti c regression classifier have markedly d ifi'er<'nt error rates. E rror rate for the 

random fore t after an in itial . pike a soon as missingnes is introduced hover around 

10%. logistic regression produces error rates arou nd 20%. . Regarding random forests. 

consideriug Figure 3.6 (c) . (e) Rnd (g) it becomes clear that as the amount of miss

ingness increa. es there is a ra pid increase in the amotmt of samples classified as via ble 

pregnancies (t he majority class) . Hence. the appa rent low error rates. and the drop iu 
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error rates cannot be attributed to the accuracy of the classifier, but instead to the lack 

of sensitivity in the classifier. Error rates are heading toward 8%, the error rate for the 

na'ive classifier, where all samples are simply classified as the majority class. This loss 

of sensitivity in the classifier is caused by the loss of information due to missingness. 

With the increase in missingness the weighted logistic regression classifier's ability to 

accurately distinguish between classes reduced slightly. Although this classifier has 

a larger overall prediction error rate than random forests it does not suffer from the 

majority class bias (that is classifying all samples to the majority class). The inclusion 

of weights in the logistic regression classification compensates for the mioority class, 

and hence typically avoids the loss of sensitivity which occurred when using the random 

forest classifier (Figure 3.6 (d), (f) and (h)). With the deterioration of both classifier's 

ability to discriminate between classes as the amount of missingness increases, there is 

no strong indication for the more reliable classifier when using imputed data. Schmid 

et al. (2001) compared neural networks, logistic regression and classification trees and 

found them almost equally robust for moderately sized data sets ( n = 500). 

Figure 3.5 and 3.6 highlight that there is a large discrepancy in performance between 

logistic regression and random forest classification. This interesting difference exists re

gardless of testing type (cross validation or resubstitution) and the proportion of missing 

data. Comparisons of classification methods goes beyond the scope of this thesis. 

Other settings and data 

The results of this simulation study are generalisable to data sets with more observations 

than covariates. For real data, if time permits, it is recommend to apply 'Algorithm 1' 

to a simulated data set having a similar structure (amount of missingness, moments, 

correlations, etc) as the real data set. This allows the estimation of the amount of 

shrinkage towards zero and the increase in variability of the parameter estimates, both 

due to the amount of missingness and the imputation procedure used. 

3.2.5 Multiple imputation algorithm comparison conclusion 

This study provides a framework for assessing different imputation methods and ex

amines how the amount of missing data affects these multiple imputation approaches. 

Comparison of methods has been achieved through examining how the multiple imputa

tion methods and the amount of missing data alters logistic regression coefficients as well 

as how these elements impact upon prediction accuracy using logistic regression and ran

dom forests. This novel framework was used to compare Amelia II, Mi and MICE but 
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its application is not limited to these imputation methods, and can easily be extended 

to compare any other current method or multiple imputation method developed in the 

future. 

Inducing missingness ranging from 5% to 45%, in data from the EPU study gives insight 

into how the proportion of missing data affects the statistical interpretation of the ana

lysis performed. It was found that, increasing the amount of missingness (i) alters the 

coefficient distributions from the original coefficients' distributions developed under the 

complete data set such that depending on the imputation method used this may increase 

the variably or shrink the mean toward zero, and (ii) decreases prediction accuracy un

der downstream analysis. The downstream effect is very extreme when missingness is 

large ( 40-45%) but is manageable through multiple imputation. It has been shown that 

conclusions from data sets with excessive amounts of missingness can be misleading, 

particularly when imputation algorithms produce biased estimates, and therefore more 

care is needed in such situations. 

Different imputation methods have different effects on the data. For Amelia II, there is 

evidence of shrinkage of the mean toward zero and this shrinkage increases proportionally 

to the amount of missing data. This is in line with the conclusions in Abrahantes et a!. 

(2011). For the imputation methods Mi and MICE there is a tendency for variability to 

increase, however, the median produced by these imputation methods is consistent with 

that of the complete data set. When coefficients are large and notably most likely to be 

retained in the final model, the increase in variability is less pronounced especially when 

considering the MICE algorithm. Under the B-MSE criterion, MICE maintains a closer 

fit to the original distribution as missingness increases compared to the other imputation 

methods. Within the classification paradigm, all imputation methods applied to the data 

show degraded prediction accuracy in a similar way. 

In summary, it has been shown empirically that different imputation methods affect 

differently the downstream analysis. Based on various criteria the recommendation is to 

use MICE over Amelia II and Mi. However, it should be noted that these investigations 

are based on the EPU study, and hence results are to some extent a function of that 

data. Readers are encouraged to apply the investigation to their own data if time permits 

using a range of available imputation methods. 

3.3 Instability in model selection - logistic regression 

Unstable models are considered to have occured when a small perturbation in the data 

set produces large changes in the final model constructed. This can be caused by a 
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number of reasons: 

1. The feature selection method, especially if a computational method is employed 

without statistical thought (Murtaugh, 1998) and (Austin and Tu, 2004); 

2. Highly correlated variables within the data set (Cessie and Houwelingen, 1992); 

3. When parameter estimates are unstable; 

4. Imbalanced class distributions. 

This section will mainly focus on the last two points. Unstable models are more prob

able in the case of small samples or a heavily imbalanced class distribution. Detection of 

unstable models is important as non-reproducible models struggle to accurately predict 

independent data. To examine how predictive models handle future outcomes, the sta

bility of a model can be examined by random splits in the data, producing training and 

validation sets (Beyene et al., 2009). There are several contributing factors affecting the 

occurrence of unstable models. These include variable correlation and multicollinearity 

within a model as well as high proportions of class imbalance. 

It is important to detect an unstable model throughout the analysis process. To highlight 

an unstable model one may hold out a proportion of data, and construct a model with 

the remaining data. By observing the retained models after a number of trials, one 

can examine if the models being constructed are similar enough to be considered stable. 

Moreover, the held out portion of the data can also be used to evaluate the model, and 

thus obtain an estimation as to the predictive capabilities of the model on independent 

data. This is graphically represented in Figure 3.7, which illustrates a loop that could 

be employed. 

Presently the theoretical justification of the Akaike or Bayesian information criterion 

(AIC and BIC, respectively) is based on the assumption that a complete data set is 

available. Logistic regression model selection becomes more difficult in the presence of 

missing covariates. Only recently first results appeared. Yang et al. (2005a) addressed 

model selection in presence of missing data in a Bayesian framework, Schomaker et al. 

(2007) examined different model selection criteria including selection after imputation 

and down-weighting incomplete cases, and Consentino and Claeskens (2011) studied 

alterations to the original AIC. The model selection method in this section makes use of 

the BIC together with the bootstrap and is performed after imputation. This approach 

is developed to address simultaneously the difficulties involved with missing covariates 

and model instability. 
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Construct and 
retain model 

F IGURE 3.7: G raphica l representation of a method to establish if a model is stable. 
By repeat ing this process multiple t imes and comparing the retained models one can 
make an informed decision if stability measures a re requirecl in downstream analysis. 

3.3.1 C lass imba lance distributions 

An imbalance in class distribution is said to occur when one class is highly represented 

compared to the other class( es) present. High class imbalances occur in many predic

tion settings and frequently a high level of prediction accuracy is required for the rare 

but important events. A famous example of class imbalance is a study involving oil 

spills (Matwin et al.. 1998). but this statist ical issue is especially poignant in medical 

.,tudies. For example, rare disease diagnosis or as here miscarriages exhibit class imbal

ance. Class imbalance not only affects the accuracy of the classifier bu t a lso the model 

construction and performance evaluation methods. Class imbalance becomes increas

ingly challenging when the data contains other categorical covariates. For example, in 

a regression context one must ensure that there are sufficient events in each cell of the 

contingency table so that the data is not considered overly sparse. Sparseness is more 

common when classifi cat ions have several categories or class imbalance is acute (Agrest i. 

2007). Without suffi cient observations statist ical interpretation becomes questionable 

with large sta ndard errors and increased potential to overfit t he data. Therefore. the 

difficulty increases when rnissingness is highly prevalent. Two elements to address the 

problem of class imbalance are presented: (i) change the performance meas ure; and (ii) 

alter the class d istribution for increased prediction accuracy. 

Change p erformance m easures 

The confusion matrix is used to define a performance criterion, for known and predicted 

'events'/'non-events ' (Table 3.4). The results are tabulated such that a is the number 

of true positives (where an event is correctly considered positive) and d is the number of 
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Predicted event 

Predicted non-event 

Event Non-event 

a 

c 

b 

d 

TABLE 3.4: An example confusion matrix for prediction. 

true negative samples (correctly classified non-event samples), b is the number of false 

positives (non-event samples classified as event samples) and cis the number of false 

negatives (event samples classified as non-event samples). 

In standard prediction paradigms, performance is a measure of accuracy such that 

a+d 
accuracy=--, 

n 
(3.4) 

where n =a+ b + c +d. However, when there is a large imbalance in class distribution, 

poor classification performance, that may be completely misclassifying one group, may 

incorrectly suggest a high level of performance accuracy. For example if a rare disease 

is present in 1% of a particular sample, complete misclassification will yield a classifier 

with 99% accuracy. 

The receiver operating characteristic (ROC) curve was developed in the 1960's to sum

marise data from signal detection experiments in psychophysics (Hanley, 2005). It visu

ally represents the relationship in the trade off between true positive and false positive 

classification. At development the area under the ROC curve (AUC) was suggested as 

a measure of performance accuracy. Provost et a!. (1998) continued with the benefits of 

the ROC curve suggesting that it is a good indicator of a classifier's performance in a 

wide range of prediction settings. 

Altering class distribution for increased prediction accuracy 

There are many ways of altering the class distribution of a data set. Examples include 

both under and over sampling. Under sampling involves reducing the samples present in 

the majority class so that a desired distribution between majority and minority classes 

is reached. Over sampling draws minority class samples with replacement to artificially 

inflate the number of samples within this class (Breiman et a!., 1984). Both approaches 

have drawbacks, under sampling potentially discards information and over sampling due 

to repeating identical samples may lead to over-fitting the classifier in question. A more 

comprehensive review and more complex sampling procedures have been developed by 

Chan and Stolfo (1988) and Chawla eta!. (2002). 
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Weiss and Provost (2001) analysed the effect of class distribution on learning in gen

eral. In an empirical study of 24 data sets they varied the class distributions of data 

sets undergoing classification and observed how these error rates were altered as the 

distributions changed. Weiss and Provost suggested that the naturally occuring class 

distribution is not often optimal in producing the best performing classifier and that a 

more appropriate distribution is that of a 50% minority class balance. 

Instead of under or over sampling, apparent class distributions can be obtained by 

weighting the observations and applying a weighted least squares or maximum likelihood 

approach. The weight vector w can be obtained in a range of ways. Fof..example an 

even class distribution yields a weight vector with WJ and w2 pertaining to samples from 

the appropriate classes with 

WJ = n/2 
nl 

and w2 = n/2 
n2 , 

where n = n 1 + n2 and ni is the number of samples in class i. 

3.3.2 Stabilising methodology: The B-MI approach 

(3.5) 

Bootstrap samples and multiple imputation are combined in this method, and it is 

therefore called the B-MI approach (Campain et a!., 2011). This is a novel method 

that produces a stable logistic regression model with good predictive properties. The 

method has been developed under the assumption that there are at most a manageable 

proportion of missing data in X. An overall proportion of missing data less than 30% is 

considered manageable by Rubin (1996) and this was confirmed in the simulation study 

in Section 3.2. A graphical representation of the B-MI approach is shown in Figure 3.8 

and in the following each of the six stages is detailed. 

Stage 1: Multiple imputation The data set undergoes m multiple imputations, 

producing Z 1, ... , zm complete data sets. 

Stage 2: Bootstrapping the Zr 's The jth paired bootstrap sample is drawn, bj 

denotes the sample's index vector which is fixed over r = 1, ... , m. Let zb. denote the 
} 

bootstrapped imputed data for the jth bootstrap sample. Note that the m imputed and 

bootstrapped data sets are paired, that is they share the same observed values but have 

different imputed values. Stratified bootstrap samples are drawn, which were shown to 

be crucial in preserving robustness qualities in the model building process (Miiller and 

Welsh, 2005, 2009). Here, stratification was such that a consistent class distribution was 
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ensured and the proportion between originally complete samples and samples completed 

via imputation was maintained. 

Stage 3: Model fitting and selection A weighted logistic regression is fit to each 

of the m data sets (which have been imputed and bootstrapped) which is reduced by 

an automated variable selection procedure. A BIC like criterion is used with penalty 

multiplier of ~ ln(n) instead of ln(n), but other criteria can be used instead such as 
'T 

the AIC or BIC. This gives, for the m data sets, estimated bootstrap parameters {3b, = 
J 

(S'fw, ... , SQr b') where those components not retained by the variable selection procedure 
, 1 ' J 

have zero estimates. 

Stage 4: Aggregation over MI Each variable q (where q = 0, ... , Q) is retained or 

not in each of the m models. The bootstrap inclusion frequency, Pq,b', is the proportion 
J 

of times variable q is retained for the jth bootstrap sample i.e 

(3.6) 

To aggregate across the m models, only coefficients that satisfy 1 2: Pq,b' 2: Ttv!I 2: 0 are 
J 

non-zero. For the qth covariate the aggregated coefficients are therefore 

(3.7) 

This averaging method yields (3b., a vector of length Q + 1 which are the coefficient 
J 

estimates for the jth bootstrap sample. 

Stage 5: Repeat For j = 1, ... , B repeat stages 2-4 and let {3* be the B x (Q + 1) 

matrix containing all the {3b, 's. 
J 

Stage 6: Stable model construction Stable variables need to be selected and in

cluded in the 'stable variable set'. Let /1 •. 73• = (Po,{3•, ... , Pq,{3•) be an inclusion frequency 

vector such that 

(3.8) 

with 0 ::; Pq,/3• ::; 1. Variables q = 1, ... , Q are considered stable if Pq,{f' 2: 'TB, where TB 

is the 'bootstrap inclusion threshold' (0::; TB ::; 1). Let the set of the s stable variables 

be denoted as a= {q,, ... ,qs}· 

To obtain the final model, weighted logistic regression and model aggregation (using 

'TB) is applied to the m imputed data sets for the stable variables q E a. (Note that 
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traditional multiple imputation theory suggests that imputation should be completed 

prior to any variable selection, Schafer, 1997). In this way stable variables have been 

selected and a measure of the intrinsic variability due to missing data and imputation 

has been retained. 

There are some important aspects of the B-MI approach that need further attention. 

These include: 

1. The choice of the inclusion frequency 1'!3, 

2. The evaluation of the final model, 

3. Assessing stability of variables and, 

4. The evaluation of confidence intervals of the regression parameters for the final 

model. 

Inclusion frequency 7'B The use of inclusion frequencies for model building and vari

able selection is an emerging concept. Here the inclusion frequency thresholds are used 

to select important variables, which are then used (based on the m complete imputed 

data sets , Z 1, ... , zm) to create a final model. Both, Muller and Welsh (2010) in a 

Q < n context, and Meinshausen and Biihlmann (2010) in a Q » n paradigm, used 

a range of inclusion frequencies to tune parameters of model selection procedures. An 

inclusion threshold has been shown to be conducive to bootstrap methods (Austin and 

Tu, 2004). To select an optimal 1'!3, a range of values can be considered. By examin

ing the bootstrap inclusion frequencies one is able to obtain an understanding of the 

instability of variables within models. In unsimulated cases where neither the true mod

els, nor the full extent of the data complexity is known, selecting 7'B can be challenging. 

One could consider the trade-off between the number of variables desired in the model, 

that is whether it is parsimonious, and the required stability of the selected model and 

the expense of including a false positive variable. This could be achieved by consider

ing a range for 7'B (as performed in the simulation study) and selecting an appropriate 

threshold. It is interesting in its own right to investigate the statistics of selected vari

ables in determining 7'B. When such investigations are not possible one could suggest to 

call the variable q stable if Pq,(3• :0: 2;,.. This rule of thumb is based on results reported 

in the following simulation study. The threshold 7'B can vary depending on the required 

stability for a particular model and context. 

Evaluation of the final model It is desirable for a method to produce models that 

have a high prediction accuracy. To evaluate the predictive properties a validation set, 
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if available, can be used, which is independent from the main data used to build the 

model, but representative of the data as a whole. If such an independent validation 

set is not available, cross validation can be used instead, that is v random training and 

validation data splits are made. After the B-MI approach is applied and a model is 

constructed the AUC for the cross-validation set and the resubstitution AUC for the 

training set are retained. The validation AUC of each model is obtained using the held 

out data and is used to assess the predictive capabilities of the model in question. The 

B-MI approach is repeated for the v data splits. The AUC results are used to get a 

realistic understanding of the prediction because of the class imbalance. 

Assessing stability of variables By examining the inclusion frequencies of a variable 

over the v simulated models, one is able to obtain a better understanding of the stability 

of variables within models. Some methods, for example, consistently yield models that 

select the same variables and the inclusion frequencies for these variables would be high 

with non-selected variables consistently low. Other methods, with a greater degree of 

instability, result in models with a range of variables with no particular variable set being 

more frequent, resulting in a large number of mid-range inclusion frequencies (around 

50%). A stable model is one that consistently selects similar variables even when different 

perturbation of the data (here obtained through random splits) are observed. Hence, 

for this particular subset of variables, they will have high inclusion frequencies (around 

70-90%). 

Bootstrapped confidence intervals Bootstrapped confidence intervals can be con

structed for the parameter estimates. There are multiple methods, ranging from the ba

sic percentile intervals to the more complex and potentially more accurate bias-corrected 

and accelerated (EGa) interval or the approximate bootstrap confidence (ABC) interval 

(Efron and Tibshirani, 1993). 

3.4 Examining the B-MI approach 

This simulation study investigates two elements. The first section considers the optimal 

parameters for the B-MI approach, addressing important components such as the 1B 

tuning parameter. Second the B-MI approach with selected 1B is compared with three 

other methods currently used in data analysis with missing values, including complete 

case analysis, where only samples with a complete set of variables are used, single im

putation and multiple imputation. As class imbalance is a contributing factor to the 

unstable nature of the models being produced the simulation is applied both with and 
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without weights to compare how weights can affect the models being produced and AUC 

values are used to indicate prediction performance. 

3.4.1 Simulated data 

In this simulation study, data was constructed in two parts, the first component was 

the regression data, which was obtained from a subset of the EPU data and the second 

component was the response vector, simulated from a constructed model. 

The design matrix contains 18 variables from part of the EPU study, these variables 

were selected to be used in the simulation study so that the simulated data would reflect 

real clinical data with similar properties including range, balance and distribution. Only 

a subset was selected so that the data would be relativity independent of other variables 

in the model. This criteria was chosen because multicollinearity and high levels of 

interdependencies within data sets increases the instability of models and a detailed 

study examining this issue is beyond the scope of this thesis. Table 3.5 contains a 

summary of the variables including their range, mean and data type. 

The responses were generated from a logistic regression model with known parameter 

vector, !3true• so that there was a high class imbalance (similar to the original EPU 

study) with 70 events and 346 non-events. To model the simulated responses, the vector 

pertaining to the probability of success for each sample, 1rsim, was given by 

1 
(3.9) 

7rj,sim = 1 + evJ!3true 

with j = 1, ... , n. The variables are labeled A through U with the !3true values in Column 

2 of Table 3.5. The responses were pseudo-random draws selected from a binomial 

distribution with probability of success 1rsim· The resulting data set has an overall 

missingness of 9%. 

To examine the original stability of the simulated model, data was imputed once using 

MICE, which according to Section 3.2 is the best method as it has the smallest bias, and 

a logistic regression model was applied. The third column of Table 3.5 '90% CI for f3true' 

shows the 90% confidence intervals obtained from this first imputation of the data. The 

intervals in bold do not contain zero. From these results it is clear that model instability 

is present even when considering the complete data set, and not just a subset, as some 

variables that have a zero coefficient are producing confidence intervals not including 

zero, indicative of their inclusion in the model. 
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Variable f3true 90% CI for f3true Range ~eaniFrequency Type 
2 (3.00, 7. 77) Intercept 

A 0 ( -0.048, 0.06) 15-42 27.27 Integer 
B 0 ( -0.41, 0.17) D-6 0.73 Integer 
C* -1.5 ( -2.11, -0.82) 0-3 0.23 Integer 
D 0 (-0.68, -0.09) 0-6 0.63 Integer 
E 0 ( -2.00, -0.65) 0-1 310 1 106 Binary 
F 0 (0.00, 0.06) 2-126 60.22 Continuous 

G* 2 (0. 70, 1. 75) D-1 179 1 237 Binary 
H* 2.6 (1.67, 3.39) 0-1 364 1 52 Binary 
J 0 ( -0.88, 0.37) 0-1 325 1 91 Binary 
K 0 ( -0.05, 0.21) 0-10 1.06 Integer 
L 0 ( -0.03, 0.00) 67-193 147.22 Continuous 

~· -1.5 (-1.96, -0.85) 0-1 141 1 275 Binary 
N 0 ( -0.63, 0.43) 0-1 104 1 312 Binary 
P* -2 (-2.19, -1.08) D-1 284 1 132 Binary 

Q 0 (-0.62, 0.38) 0-1 276 1 14o Binary 
s 0 ( -0.85, 0.31) 0-1 221 1 189 Binary 

T* -0.2 (-0.14, -0.06) 1-79 29.14 Continuous 
u 0 ( -0.55, 0.02) 1-10 4.54 Continuous 

* Indicates a variable in the true model 

TABLE 3.5: Regression coefficients for the simulation. Such f3true values result in a 
highly imbalanced class distribution, for this simulated data set. Bold confidence 
intervals do not include zero. 

3.4.2 Evaluation criteria 

To evaluate the B-~I method, and its respective parameters, as well as to compare the 

abilities of the different methods, two evaluation criteria will be used: (i) stability for 

the variables and (ii) the prediction accuracy of the final model. To achieve these two 

results v = 250 simulation runs were generated. In each run the data was split into 

two sets; a validation set and a training set, in a 113- 213 ratio. The splitting of the 

validation and training set was obtained through stratified pseudo-random draws so that 

the originaJ class distribution within each set was maintained. 

3.4.3 B-MI method- tuning TB and validating the use of weights 

Within the B-~I approach there are many parameters to consider, perhaps the most 

important is -rs, the inclusion threshold. To investigate how the bootstrap inclusion 

threshold alters the model being constructed, Ts varied from 60% to 100%, that is a 

variable was only present in the final model if it was present in 60% to 100% of all 

bootstraped samples. ~issingness within the data set was handled by applying ~ICE 

with m = 25, and B = 500 bootstraps. The aggregation of multiple imputation models 

66 



Chapter 3. Clinical data 

was restricted using TMI = 0.50. To examine the importance of weights, the B-MI 

approach was applied using weighted logistic regression and standard logistic regression. 

When not clarified, the assumption is that the B-MI approach with weighted logistic 

regression was used. 

Results of tuning and evaluating the B-MI method 

The results from the B-MI analysis of the simulated data sets are summarised in Table 

3.6 and Figure 3.9. Table 3.6 reports inclusion frequencies, that is the p_:oportion of 

times a particular variable was in the final model out of the 250 simulation runs, as 

a percentage. The redundant variable 'E' is present in a large number of the logistic 

regression models while 7ll is low, once 7ll reaches 0.75 this false positive variable begins 

to drop out of the models. Table 3.6 highlights the division that exists between the 

variables in the true model and those not in the true model. The highlighted variables 

are those considered stable. A variable is considered stable if its inclusion frequency is 

above the stability threshold, where the stability threshold = 2~, this split in the 

inclusion frequencies indicates that the final models are stable and consistently select 

only the true (3 variables, once 7ll is large enough. Figure 3.9 demonstrates that there is 

a consistency in the predictive capabilities between the resubstitution AUC values and 

the validation set AUC values implied by boxplots with a similar range. The average 

validation set AUC value is 83.15% and resubstitution AUC of 87.16%. 

Figure 3.10 shows the number of variables at each 7ll value that are at or above a par

ticular inclusion frequency. The plot shows that as the inclusion threshold 7ll increases 

the number of variables in the constructed models decreases. 

3.4.4 Comparison of methods 

To evaluate the B-MI approach, the simulated data set is used to compare the B-MI 

method with three methods currently used when data is missing: 

1. Complete case (CC) analysis, always performed on samples with no missing vari

ables (applied with and without weights); 

2. Single imputation (SI) (MICE imputation algorithm with m = 1, with and without 

weights); 

3. Multiple imputation (MI) (MICE imputation algorithm with m = 251 and TMI = 

0.50, with and without weights) and; 
1 'm = 25' was selected as this is a large number of imputations which still allows for practical 

computation times for this data set. 
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B-MI 'TB 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.98 
H* 100.00 100.00 100.00 100.00 99.20 98.00 94.80 R7.60 67.20 
T* 99.60 99.60 99.60 99.60 99.20 98.00 92.40 78.00 51.60 
M* 100.00 99.20 97.20 97.20 94.80 87.60 78.00 59.20 33.20 
C* 98.80 98.00 97.60 94.80 88.40 80.00 71.60 49.60 22.80 
P * 93.60 89.20 80.40 73.20 62.80 48.40 37.20 17.20 4.80 
G* 89.60 84.80 78.80 72.00 63.60 50.40 36.00 14.40 5.20 

E 92.40 87.20 78.40 64.80 56.40 46.00 36.80 21.60 10.80 
D 76.80 69.20 60.80 52.00 39.60 28.80 19.20 9.20 4.80 
u 66.00 60.80 50.00 37.60 27.60 17.20 6.80 2.40 0.80 
B 20.00 14.80 8. 0 6.00 4.40 2.80 1.20 0.00 0.00 
L 22.00 14.80 9.20 4.80 3.60 1.20 0.80 0.00 0.00 
F 17.60 12.00 6.80 3.60 1.60 0.80 0.80 0.40 0.00 
Q 8.00 5.60 4.00 2.40 1.20 0.80 0.00 0.00 0.00 
.J 6.80 4.40 2.80 2.80 1.60 0.40 0.00 0.00 0.00 
s 1.60 1.20 1.20 0.40 0.40 0.40 0.40 0.00 0.00 
N 2.80 1.60 0. 0 0.40 0.40 0.40 0.00 0.00 0.00 
K 5.20 2.40 0.80 0.40 0.40 0.00 0.00 0.00 0.00 
A 1.20 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TABLE 3.6: Simulated data: Inclusion frequencies for varying inclusion threshold 
Tg. Variables arc ranked in order of stability across all considered TJ3 values. For each 
value of rs th£> highlighted variables are considered stable, as their inclusion frequency 
is above l / 2Ts. 

4. B-MI approach (B-MI) (MICE imputation algorithm with m = 25, TM J = 0.50 and 

713 = 0.75, with and without weights). 

Results of comparison study 

Tables 3. 7 and 3.8 along with the boxplots in Figure 3.11 depict the results from the 

other methods used to analysis the simulated data set. Methods arc compared based on 

t heir AUC values as well as their frequency stability. In all cases the complete data set 

was used (that is all 416 samples) except in the CC analysis 64 of the 416 (15%) of the 

cases were complete in which 21 (33%) were events. 

The inclusion frequencies in Table 3. 7 give insight into the stability of the features selec

ted by each method. Both the SI and MI approaches include the true model variables 

in the majority of t he 250 constructed models. The 1II approaches are more stable than 

the SI methods as they yield larger inclusion frequencies ranging from 82% for variable 

'C' in the weighted case. to 100%. where as the inclusion frequencies for the SI analysis 

were as low as 68% for variable 'P' in the unweightcd case. This was not the case for 

the CC analysis, with some variables in the true model being picked up only a limited 
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number of times, for example variable 'H' selected in only 34% and 42% of the models 

with and without weights, respectively. 

Not only is the consistency in selecting the true variables important but so too is the 

exclusion of the redundant variables. The selection of redundant variables is a problem 

for all the compared alternative methods, with inclusion frequencies for redundant vari

ables as large as 96% (variable 'L', Mlw method). When these methods are compared 

against the B-MI approach, the superiority of the B-MI with weights approach becomes 

clear. With TB = 0. 75, all variables included in the true model have an inclusion fre

quency above 72% and the highest inclusion frequency of a true redundan~. variable is 

less than 65% (variable 'E'), highlighting the separation between included and excluded 

variables. Such separation is not the case for SInor MI methods with all four (weighted 

and unweighted) approaches having variables with inclusion frequencies larger for some 

redundant than included variables, in particular consider variables 'E', 'D' and 'L' for 

these cases. 

The variables flagged for concern at the very initial set up of the simulation, (namely 

variables 'D', 'E' and 'Q'), tend to have a larger inclusion frequency (especially 'D' and 

'E') than other redundant variables (Table 3.7). For the SI and MI approaches these 

inclusion frequencies range from 82-92%, highlighting the severe problem of variable 

selection. The impact of these problematic variables is reduced when the B-MI approach 

is used especially as 1B increases. 

The AUC values indicate the predictive capabilities of the different methods summarised 

in Table 3.8. Figure 3.11 contains the boxplots for the resubstitution AUC which is a 

biased estimate, as well as the more informative validation AUC. For the validation set 

AUC, 0.74 was obtained for CC (with and without weights), 0.84 for SI with weights and 

0.835 without and 0.85 for MI with weights and 0.84 for MI without weights. The AUC 

values for the B-MI approach are comparable, albeit slightly lower, to these existing 

methods, with a resubstitution AUC of 0.87 and a validation AUC of 0.83 for the B-MI 

with weight. 

All methods considered are those that are used in current practice, yet some of these 

methods contain important problems that affect downstream interpretation. For ex

ample the use of CC analysis can mean that analysis is being applied on data that does 

not represent the original data or the population, and the use of SI underestimates the 

variably within the analysis. In this data set, CC analysis drastically reduced the data 

set and resulting error rates so that they were not representative of the original sample. 

For the original 416 samples only 15% of all cases are complete. This changes the dis

tributions of some of the variables, for example the relative frequency of variable 'E' 

changes from 7 4.5% in the entire data set, to 90.6% in the complete case only data set 
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(p=0.007. from x2-lest). For CC analysis. the reduced number of samples makes model 

evaluation difficult and over-fitting is evident. 

cc CCw SI Slw MI Mlw 
B-MI B-Miw 

(r = 0.75) (r=0.75) 
H* 4 2.00 34.40 100.00 100.00 100.00 100.00 99.20 100.00 
T* 46.40 41.60 98.80 94.80 100.00 96.00 97.60 99.60 
M* 93.60 95.60 99.60 99.60 99.60 100.00 98.80 97.20 
C* 48.00 47.60 91.20 78.00 92.80 82.00 77.20 94.80 
P* 86.40 81.60 68.40 74.4 0 85.20 86.80 53.60 73.20 
G* 86.40 86.80 92.80 81.20 96.40 84 .80 74.80 72.00 

E 52.40 45.60 83.20 86.40 91.60 92.00 54.40 64.80 
D 39.60 42.00 47.20 86.00 50.00 92.00 10.80 52.00 
u 41.20 38.40 40.40 18.00 29.20 11.60 4.00 37.60 
B 62.40 58.40 34.00 16.80 36.00 16.00 6.40 6.00 
L 40.00 ~1().40 40.40 92.40 46.40 96.40 7.20 4.80 
F 32.40 38.80 10.80 10.80 6.80 6.40 0.00 3.60 
Q 41.60 37.20 5.20 12.00 2.80 7.20 0.00 2.40 
J 53.20 49.20 6.40 8.00 4.00 2.40 0.00 2.80 
s 38.40 44.00 3.20 25.20 0.80 22.40 0.40 0.40 
N 40.40 ~{9.60 2.40 3.20 0.00 0.40 0.00 0.40 
K 32.80 35.20 5.20 30.80 2.80 22.40 0.00 0.40 
A 42.80 37.60 1.60 4.80 0.00 1.60 0.00 0.00 

TABLE 3.7: Simulated data: Inclusion frequencies for the 18 variables in the 
simulated data set. Comparisons for different analysis methods including Complete 
Case (CC), Single Imputation (81), Multiple Imputation (MI) and Bootstrapped 
Multiple Imputation (B-r-.11) forT= 0.75 both using and not using a wl'ighted logistic 
regression model. In bold are the variables in the simulated model and highlighted are 
the variables that have a larger inclusion frequency than these simulat<'d model 
variables. 

3.4.5 Simulation conclusions 

The inclusion frequencies arc used to gauge the stability of the models, with the B

MI (with weights included) approach resulted in the most stable models. For the B

MI approach. as 713 increased the separation between variables in the true model and 

redundant variables increases. and the stable variables became evident. This was not 

the case with the other methods. the MI approaches frequently selected variables not in 

the t rue model for example variable 'E' and 'L', and the CC approach frequently missed 

non-redundant variables. for example variable 'H'. 

Regarding predictive capabilities. all the compared methods had comparable AUC val

ues. In t he CC case, it was clear that the data was being over-fit, however in all other 

cases the resubstitution AUC was around 0.87 and the validation AUC was about 0.84. 
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Method 

Complete Case (CC) 

Complete Case with weights (CCw) 

Single Imputation (SI) 

Single Imputation with Weights (Siw) 

Multiple Imputation (MI) 

Multiple Imputation with Weights (Miw) 

Bootstrap Multiple Imputation (B-MI) 

without weights (TB = 0.75) 

Bootstrap Multiple Imputation (B-Miw) 

with weights (TB = 0.75) 

Mean validation AUC Mean resub AUC 

74.38% 99.81% 

74.24% 99.87% 

84.24% 88.41% 

83.49% 87.74% 

84.84% 87.94% 

84.21% 87.47% 

82.93% 86.28% 

83.15% 87.16% 

TABLE 3.8: Mean validation and mean resubsitution AUC values for different 
analysis methods. 

Such a high validation set AUC is indicative of good predictive capabilities of the final 

models. For the B-MI approach the choice of TJ3 affected the AUC values because when 

TB was very high, (about 0.90) the number of variables in the final model was reduced 

and the AUC values suffered resultantly. This reduction in predictive capabilities was 

illustrated by the downward trend in AUC boxplots as TB increases (Figure 3.9). 

The decision to add weights or not to logistic regression models within the B-MI approach 

is very data set dependent. Analysis for this simulation was performed both with and 

without weights (non-weighted data results can be found in Appendix B, Section B.2). 

Regarding the inclusion of weights in the B-MI approach, Table 3.8 shows that including 

weights increases the AUC prediction values and Table 3.7 highlights the increased 

stability enjoyed by the B-MI approach with weights. 

Comparing weighted and unweighted cases for the other compared methods (Table 3.7) 

the increased frequency of the selection of non-redundant variables, coupled with the res

ults from Weiss and Provost (2001) leads us to suggest that weights should be considered 

when highly unbalanced data sets are used. 

These results indicate that a data dependent, optimal inclusion threshold exists. The 

optimal inclusion threshold allows for variables with non-zero coefficients to consistently 

be included in the model, but variables with extremely small or a null coefficient to 

be left out of the model. In the simulation study an inclusion threshold of 0.75-{).90 

produces favourable results. When TJ3 reaches 0. 75 the variables consistently selected to 

be included in the model reflect the simulated data. In real applications the true model 
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is typically unknown. Therefore, inclusion and other tuning parameters are selected by 

taking into account model complexity, for example counting the number of variables in 

the model, and parsimony, that is striving to provide a small and useful final model.' 

In addition to the simulation study described, a range of simulations over a range of class 

imbalances were carried out. When class imbalances was more extreme, as expected 

stable models were more difficult to obtain, with a higher amount of variability in the 

inclusion frequencies. With the higher class imbalance and the greater variability, AUC 

values also decreased. The difference between the size and accuracy of final predictive 

models in the weighted and unweighted cases was more extreme, with a larger final 

model providing a better AUC estimate. 

3.5 Case study: EPU data 

3.5.1 Data description 

The motivating data set underpinning the methodology was provided by the Early Preg

nancy Unit located at the Nepean Hospital, Sydney, Australia, (EPU data). Results for 

this study were originally presented in Riemke eta!. (2011), which serves as a reference 

for a full description and analysis. A complete data description can be found in Chapter 

2 Section 2.1. 

3.5.2 B-MI Model 

The B-MI approach with weighted logistic regression was performed on the EPU data 

set. Table 3.9 contains the recommended parameters obtained from the simulation, these 

values have been obtained from the previous simulation study. 

B-MI Parameters 

m 

Algorithm 
Multiple Imputation 

Bootstraps B 
Criteria 

Model reduction TM I 

Mice 
25 

500 
BIC 
50% 
75% 

TABLE 3.9: Parameters used in the EPU study, selected from results obtained from 
the simulation study Section 3.4 
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For the bootstrapping, stratification was employed so that (i) the class distribution 

remained the same and (ii) the distribution of missingness within the samples was main

tained, that is the distribution of near complete samples (less than 3 out of 21 variables 

missing) and samples with high levels of missingness (more than 3 out of 21 variables 

missing). 

Variable Mean regress coef Odds ratio Inc. freq 

GS mean -0.15 0.86 0.972 

Clots 2.11 8.23 0.934 . 
Number of previous caesareans -0.90 0.41 0.884 

Subchorionic bleed -0.28 0.75 0.876 

VAS 0-10 -0.04 0.97 0.758 

TABLE 3.10: The final model, found using bootstrapping, multiple imputation and 
weights presented as regression coefficients. 

Table 3.10 shows the final model. The coefficients, and subsequent odds ratios were 

found by constructing a model on the five selected variables and the multiple data 

sets. To evaluate the stability and predictive accuracy of the model, 250 training and 

validation splits were randomly produced from the data. The 'Inc. freq' column in Table 

3.10 indicates the stability of the included variables and Figure 3.12 shows the validation 

and resubstitution AUCs. This resulted in an estimated validation AUC of 75.78%. 

The coefficients obtained from this model (Table 3.10) are considered the final {3 estim

ates for the logistic regression model. The variables retained in the final model are in 

agreement with known factors associated with miscarriage, in particular 'clots' and 'GS 

mean' (Choong et a!., 2003; Tower et a!., 2000). The effect associated with 'number 

of previous caesareans' is also in agreement with results reflecting modern caesarean 

surgeries, namely that such a procedure has no effect on miscarriage rates (Nielsen and 

Hi:ikegaard, 1984; Siddiqi et a!., 1988). 

3.5.3 Note regarding information criterion feature selection 

Modern model selection procedures, applied in this thesis, are based on information 

criteria rather than extracting p-values from repeated hypothesis testing. The major 

concern is to consider feature selection as a group of interacting variables as opposed 

to unique, independent variables. An approach which selects a model having smallest 

AIC value has not necessarily all partial p-values smaller than a nominal level of 5%, i.e. 

confidence intervals can contain zero. Claeskens and Hjort (2008) advocate strongly an 
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information theoretic approach to model selection. As a result of this selection paradigm 

confidence intervals become redundant and at times uninformative, and have hence not 

been induced in this final model, or models appearing in subsequent chapters. It is of 

course possible to construct confidence intervals is desired using the EGa or other such 

intervals. 

3.6 Conclusion 

Missing data, imbalance of class distribution and unstable models are common hurdles 

often needing to be overcome in a clinical data context. The final model should be one 

with stable variables, consistently selected when perturbations in the data set are made. 

This model should also have consistent and good predictive capabilities. 

Missing data is a challenge in many data sets, and although there are many ways to 

overcome this problem, multiple imputation is currently the most statistically robust. 

Section 3.2 provides a framework to compare different imputation methods. Included 

in this chapter is the comparison of Amelia II, Mi and MICE. The comparison frame

work's capacity is not limited to these three algorithms and can easily be extended to 

compare any other current methods, or multiple imputation methods developed in the 

future. Comparisons take into consideration how the amount of missing data changes 

downstream analysis including logistic regression coefficients and prediction accuracy. 

Through a simulation study it was found that as the proportion of missing data in

creases in a data set the distribution of regression coefficients increase in variability or 

suffer a shrinkage of the mean toward zero. Downstream analysis is severely affected 

when missingness is extreme (40-45%). 

Such conclusions were achieved through examining how the multiple imputation methods 

and the amount of missing data alters the logistic regression coefficients as well as how 

these elements impact upon prediction accuracy using logistic regression and random 

forests. Although different imputation methods are affected in different ways, MICE 

maintains the closest fit to the original distributions as the amount of missing data 

increases and is therefore recommended as the method of choice. A proportion of missing 

data around 30% is still manageable through multiple imputation, concuring with Rubin 

(1987). 

If a final model does not have stable variables nor good predictive capabilities it is of 

little use in describing the data or being used to interpret independent data. The B-MI 

method presented in Section 3.4 makes use of multiple imputation to overcome missing 

data and bootstrapping to result in a final stable model coupled with regression weights 
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and appropriate model evaluation methods to handle class imbalance. Throughout the 

study MICE was used as the multiple imputation algorithm. Tuning the bootstrap 

inclusion threshold, 7B, is important for selecting stable models and through a simulation 

study it was extrapolated that as a guide 7B = 0. 75 should be used to produce stable 

models when the multiple imputation inclusion threshold is set such that TMJ = 0.50. 

When compared to other currently available modelling methods that handle missing 

data, the B-MI method with weights produced superior results. For this comparison 

superiority was based on stability and the construction of a model that correctly reflects 

the model used to simulated the data. 

3. 7 Manuscripts under review 

This chapter includes the work under review in Cam pain et al. (2011) and Riemke 

et al. (2011). The EPU analyses were conducted by the author with Associate Professor 

George Condous's groups at the Acute Gynaecology, Early Pregnancy and Advanced 

Endosurgery Unit at the Nepean Centre for Perinatal Case, University of Sydney, Nepean 

Hospital, working in particular with Dr Jennifer Oates (Riemke). 

• A.E. Campain, S. Muller, G. Condous and Y.H. Yang (2011) Stable logistic 

regression models in the presence of missing values and class imbalances. Under 

review, Biostatistics. 

• J. Riemke, A.E. Campain, T. Bignardi, I. Casikar, D. Alhamdan, D. Fanchon, R. 

Benzie, S. Muller, T.H. Yang, M. Mongelli and G. Condous (2011) Development 

of a new model to predict viability at the end of the 1st trimester after a single 

visit to an Early Pregnancy Unit. Preprint. 
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Data set (Z) 

Stage 1: m=25 multiple imputations 

Stage 2: 

Stage 3: 
Apply weighted logistic regression with feature 

Stage 4/5: 

Stage 6: 

selection for "optimal" model 

I 
Combine regression 
estimates using TM1 

and produce ~bi· 

Select variables 
for final model 

depending on T6 

-· 
RepeatB 
times and 
Obtain P* 

F IG lJ I-tE :3. : Graphical representation of t he proposed method for varia ble selection 
within a logi t ic regression model. 
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Boxplots of Validation and Resubstitution Set AUCs 
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Chapter 4 

Integration of gene expression 

data 

Science has embraced microarray technology and due to extensive usage in recent years 

there has been an explosion in publicly available data sets. Examples of repositories 

available for the access of such data include Gene Expression Omnibus1 (GEO) (Bar

rett et a!., 2005), ArrayExpress2 (AE) (Parkinson et a!., 2005) and Stanford Microarray 

Database3 (SMD) (Hubble et a!., 2009), as well as individual researchers' and institu

tions' websites. The usefulness of these data sets has not been superannuated, when 

used wisely they may yield a depth of information. Demand has increased to effectively 

utilise these data sets in current research as additional data for analysis and verification. 

The integration of data sets deals with analysis methods that traditionally incorporate 

the synthesis or at times review of results from data sets that are independent but related 

(Normand, 1999). Integrating data sets has a range of benefits. For example, power can 

be added to an analysis, obtained by the increase in sample size of the study. This 

aids the ability of the analysis to find effects that exist and is termed 'integration-driven 

discovery' (Choi et a!., 2003). Integration can also be important when studies have 

conflicting conclusions as they may estimate an average effect or highlight an important 

subtle variation (Hong and Breitling, 2008; Normand, 1999). 

There are a number of issues associated with integrating gene expression studies. These 

include problems common to traditional data set integration such as overcoming differ

ent aims, design and populations of interest. There are also concerns specific to gene 

1http://www.ncbi.nlm.nih.gov/geo/ 
2http://www.ebi.ac.uk/arrayexpress/ 
3http://genome-www5.stanford.edu/ 
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expression data including challenges with probes and probe sets, differing platforms be

ing compared and laboratory effects (Campain and Yang, 2010). As different microarray 

platforms contain probes pertaining to different genes, platform comparisons are diffi

cult when comparing these differing gene lists. Often the probes in the intersection are 

the only ones retained for further analysis. Moreover, when probes are mapped to their 

'Entrez IDs' (Maglott eta!., 2011) for cross platform comparisons often multiple probes 

pertain to the same gene. Due to reasons ranging from alternative splicing to probe 

location these probes may produce different expression results (Ramasamy eta!., 2008). 

Ideal methods for aggregating these multiple probe results in a meaningful and robust 

way is currently the topic of much discussion, but not part of this thesis. Laboratory 

effects are important because array hybridisation is a sensitive procedure. Influences 

that may affect the array hybridisation include different experimental procedures and 

laboratory protocols (Irizarry et a!., 2005), sample preparation and ozone level (Fare 

et a!., 2003). For more details on the integration of microarrays in general as well as 

difficulties associated with such analysis refer to Cahan et a!. (2007); Fierro et a!. (2008); 

Griitzmann et a!. (2005); Larsson et a!. (2006); Ramasamy et al. (2008); Rhodes et a!. 

(2002). 

In this chapter, data integration will be considered in two levels; 'meta-analysis' and 

'mega-analysis': 

• Meta-analysis is the integration of the statistics from different microarray stud

ies. Such a method looks at how genes correlate to a phenotype within a data 

set after the analysis, and has been termed 'relative' by Larsson et a!. (2006) and 

'indirect' by Fierro et a!. (2008). Statistics or p-values from multiple studies are 

compared or aggregated to obtain features which are commonly considered im

portant. There are multiple meta-analysis methods currently available including 

Fisher's inverse chi-squared (Fisher, 1950), 'GeneMeta' (Choi eta!., 2003; Gentle

man eta!., 2008), 'Probability of expression matrices' (Parmigiani eta!., 2002) and 

'RankProd' (Breitling et a!., 2004). A new meta-analysis approach was produced 

by Campain and Yang (2010), 'Meta differential expression via distance synthesis' 

(mDEDS) which can be used to identify differentially expressed (DE) genes from 

multiple data sets. This new method makes use of multiple statistical measures 

across data sets to obtain a DE list. 

• Mega-analysis refers to integrative methods that combine data sets prior to 

analysis, making one large or 'mega' data set. This method is also known as 

'absolute' (Larsson et a!., 2006) or 'direct' (Fierro et al., 2008) meta analysis. A 

central component to this approach is a normalisation method that can handle 

this type of data integration. Such methods include, preprocessing data together, 
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applying study and platform effects in downstream models, or sophisticated batch 

correction/normalisation approaches including ComBat (Johnson eta!., 2007) and 

RUV-2 (Gagnon-Bartsch and Speed, 2011). Traditional microarray analysis tools 

are then used on this large data set post normalisation. 

To explore meta- and mega-analysis, this chapter contains three main studies concerning 

intergrative analysis. These studies look to compare integrative methods in a novel way, 

highlighting different aspects and strengths of meta- and mega-analysis methods: 

1. Case study 1: Section 4.4.1 is a simulation study used to compare meta-analysis 

methods when the list of differentially expressed genes is constructed and known. 

Performance is measured with receiver operating characteristic (ROC) curves as 

well as the area under these ROC curves (AUC) (see Section 3.3.1 for more details). 

2. Case study 2: Section 4.4.2 is a case study which considers the meta-analysis of 

three different melanoma studies in a classification context. The data sets used in 

this study include the Bogunovic, Jonsson and Mann data sets (Sections 2.3.1 and 

2.3.2). Performance in this regard is based on the ability of classifiers constructed 

after meta-analysis to predict results for an independent data set. 

3. Case study 3: Section 4.4.3 is a case study considering the DE analysis of hyper

tensive versus normotensive rats. This case study compares four independent data 

sets, the Cerutti, Clemitson, Grayson and Rysa data sets (Section 2.2), and high

lights the use and effectiveness of meta- and mega-analysis. Integrative approaches 

are used to examine conflicting conclusions obtained from the DE analysis of the 

four data sets separately and how the use of appropriate methods may suggest a 

compromise to these inconsistencies. 

This chapter continues with a description of meta- and mega-analysis methods (Sections 

4.1 and 4.2), including the description of mDEDS (Campain and Yang, 2010). Section 

4.3 outlines the performance assessment methods that can be used to compare the 

effectiveness of different meta- and mega-analysis methods, and to evaluate their success 

for data sets in question. Section 4.4 contains three case studies where different aspects 

of the integrative methods are observed and compared. As described above, the first 

case study is a simulation comparison and the other two are concerned with real data. 

A discussion of meta- and mega-analysis methods follows in Section 4.5. 

Notation while working in integrative expression data needs to be considered with care. 

Let X represent an expression matrix (I x n), with i = 1, ... ,I genes and j = 1, ... , n 

samples. The rows represent genes and the columns represent samples, with each element 
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of the matrix denoted as xu. Note that such a data matrix is the transpose of most 

standard data matrices within statistics, but this notation is commonly employed in 

the microarray setting. If there are k = 1, ... , K data sets, nk represents the number of 

samples in the kth data set. For simplicity, and without loss of generality, we focus on 

dichotomous response; i.e., two-group comparisons. We designate groups as treatment 

T and control C. For two-channel competitive hybridisation experiments, logarithms 

of the relevant fluorescent intensity measurements are obtained. We assume that the 

comparisons of log-ratios are all indirect; that is we have nr arrays in which samples from 

group T are hybridised against a reference sample R, and we can obtain nr log-ratios, 

Mr; = log2(TJ/ R); j = 1, ... , nr from group T. In an identical manner nc log-ratios are 

also calculated from group C. For single colour arrays such as Affymetrix oligonucleotide 

array experiments, we have nr chips with gene expression measures from group T and 

nc chips with gene expression measures from group C. 

4.1 Meta-analysis 

Within this section several methods will be presented. Such methods include the very 

classical Fisher's inverse chi-squared method as well as methods developed in the mi

croarray context including GeneMeta, Probability of expression matrices, RankProd and 

mDEDS. Meta-analysis is mainly used in a DE context, to obtain a list of DE genes 

using results from multiple analyses. Such methods lend themselves to classification, for 

although feature selection is a slightly different concept, the strengths of an integrated 

DE list have the potential to aid in the development of an informative feature list. 

These five methods are compared with the performance of the 'data set cross-validation' 

method. 'Data set cross-validation' is a naive approach which assumes that results 

obtained from one study are directly applicable to another study. For example if a 

classification rule was constructed on data set A, it could be used to predict results from 

data set B. This method is considered here as a very simple meta-analysis approach, 

as information is being gathered from one study and then being applied to another. 

Although 'Data set cross-validation' is attractive for its simplicity and heuristic sense it is 

not recommended because in practice vast amounts of between study variability renders 

the classifier mute. This last approach is applied as a comparison tool throughout this 

study. Although ideally a classification rule should be directly applicable to independent 

and unique data addressing the same conditions, the poor performance of the 'Data set 

cross-validation' method highlights that this not the case for real expression data. 
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Fisher's inverse chi-squared 

Fisher, in the 1930s developed a meta-analysis method that combines the p-values from 

independent data sets. One of a plethora of methods for combining the p-values (Fisher, 

1950) is the Fisher summary statistic, 

K 

S; = -2 L log(p;k), ( 4.1) 
k=i 

which tests the null hypothesis that for gene i, there is no differences in expression 

means between the two groups. The p-value Pik is the p-value for the ith gene from the 

kth data set. In assessing S;, the theoretical null distribution should be x§K. It is also 

possible to extend Fisher's method by producing weights for different data sets based 

on, for example, quality. 

GeneMeta 

One of the first methods that integrates multiple gene expression data sets was proposed 

by Choi et a!. (2003) who described a t-statistic based approach for combining data sets 

with two groups. An implementation of this method is found in GeneMeta (Gentleman 

et a!., 2008) an R package containing meta-analysis tools for microarray experiments. 

Choi et a!. (2003) described a meta-analysis method to combine estimated effect-sizes 

from the K data sets. In a two group comparisons, a natural effect size is the t-statistic. 

For a typical gene i, the effect size for the kth data set is defined as 

T: -
dk = k- ck 

Spk 
(4.2) 

where tk and ck represent the means of the treatment and the control group respectively 

in the kth study. Spk is the pooled standard deviation for the kth data set. 

For K number of observed effect sizes, Choi et a!. (2003) proposed a random effects 

model 

dk = 11 + Ok + Ek , ck ~ N(O, s~) 

where 11 is the parameter of interest, Sk denotes the within study variances and Ok ~ 

N(O, r 2 ) represents the between study random effects with variance r 2 • Choi et al. 

(2003) further mentioned that when r 2 = 0, Ok denotes the between study effect in a 

fixed effect model, which assumes that the difference of observed effect sizes are from 

sampling error alone. The random effects model is then estimated using a method 
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proposed by DerSimonian and Laird (1986) and a permutation test is used to assess the 

false discovery rate (FDR). 

Probability of expression matrix 

Given a data set, the probability of expression (POE) method (Parmigiani et al., 2002) 

transforms the expression matrix X to E which is an indicator matrix representing latent 

classes. Each matrix element, E;1, is defined as the chance of multiple conditions present 

across n samples within gene i. The transformed matrix, E, consists of three values 

-1, 0,1 that represent the conditions 'under-expressed', 'not differentially expressed' 

and 'over-expressed' respectively. After the transformation into a POE matrix, genes 

of interest are established using 'integrative correlation' (IC) (Parmigiani et al., 2004). 

Notice that this integrative correlation method is not restricted to be used with a POE 

matrix. The method IC begins by calculating all possible pairwise Pearson correlations 

(pri,i')' where i of i') between genes i and i' across all samples within a data set k. Thus, 

a pairwise correlation matrix D is generated with R = (~) rows representing the number 

of pairwise correlations and K columns representing the number of data sets. 

For a selected pair of data sets k and k', let ti and ti' denote the means of the correla

tions per study. Gene-specific reproducibility for gene i is obtained by only considering 

comparisons that contain the ith gene. That is 

I 

I;(kk') = ~:=rrri,i')- pk)(rr:.i')- rk'), (4.3) 
i'=l 

where i of i'. When more than two data sets are being compared, all integrative correl

ations for a particular gene are aggregated. This method provides a combined ranking 

for genes across K data sets. 

This method is implemented in the R package metaArray which contains a number of 

meta-analysis methods. The main function in this package is a two steps procedure 

which transforms the data into a POE matrix and followed by a gene selection method 

based on IC. 

RankProd 

RankProd is a non-parametric meta-analysis method developed by Breitling et al. (2004). 

Fold change (FC) is used as a selection method to compare and rank the genes within 

each data set. These ranks are then aggregated to produce an overall score for the genes 

across data sets, obtaining a ranked gene list. 
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Within a given data set k, pairwise FC (pFC) is computed for each gene i as 

Tl/C1, Tl/C2, ... , Tnn/Cnc 1 (4.4) 

producing nr x nc pFCzmk values per gene with l = 1, ... , nr and m = 1, ... , nc. The 

corresponding pFC ratios are ranked and we may denote this value as pFC(irk), where 

I is the number of genes (i = 1, ... ,I) and R is the number of pairwise comparisons 

(r = 1, ... , R) between samples. Then the rank products for each gene i is defined as 

K R 

RPi = (n llpFC(irk))i<. (4.5) 
k=l r=l 

Expression values are independently permuted B times within each data set relative to 

the genes, the above steps are repeated to produce RP?), where b = 1, ... ,B. A reference 

distribution is obtained from all the RP?) values, and the adjusted p-value for each of 

the I genes is obtained. Genes that are considered significant are used in future analysis. 

Meta differential expression via distance synthesis 

There are many different ways of estimating DE genes and different results are obtained 

from different microarray platforms analysed as evident in the inconsistent results ob

tained from multiple studies (Boulesteix and Slawski, 2009; Russ and Futschik, 2010; 

Zhang eta!., 2008). The assumption behind the novel mDEDS method (Campain and 

Yang, 2010), is the consistency of DE genes, in that genes that are truly DE will be estim

ated as DE regardless of the platform or the statistic used. 'Meta differential expression 

via distance synthesis' (mDEDS) makes use of multiple statistical measures from all the 

considered data sets, to obtain an integrated DE list. It is extended from 'Differential 

expression via distance synthesis', DEDS (Yang eta!., 2005b), which is designed to ob

tain DE gene lists from different DE measures. Example DE measures include standard 

and moderated-t stat (Smyth and Wettenhall, 2003), FC, SAM (Tusher eta!., 2001) and 

the B-statistic, amongst others. 

The DE method DEDS works under the assumption that true DE genes should score 

highly within a set of non-dominated genes, over a range of statistical measures. Through 

permutations these highly scoring genes are calculated and ranked in order of overall 

significance when compared to the null results generated by the sample permutations. 

The mDEDS approach uses these non-dominated genes both within and between data 

sets from different platforms and still using a range of DE measures constructs a ranked 

list. Consistently high ranked genes are then considered DE via mDEDS. This method 
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endeavours to be robust against two elements. The first, when different measures pro

duce significantly different ranked lists, and the second, 'platform specific bias', when 

particular platforms produce results that are more favourable to particular gene sets. 

Campain and Yang (2010) compare DEDS to mDEDS and find the ability for mDEDS 

to be robust against platform bias results in a more successful DE tool in a meta-analysis 

context. 

The mDEDS process uses several key steps: 

1. Let there be k = 1, ... , K data sets and g = 1, ... , G appropriate (DE measuring) 

statistics, hence there will be K x G statistics for each of the i = 1, ... ,I genes. 

Let t;kg be the statistic for the ith gene, from the kth data set for the gth DE 

measure. Assuming large values indicate increased DE genes, let the observed 

coordinate-wise extreme point be 

Eo= (max(t;n), ... , max(tila), ... , max(t;Ka)). (4.6) 
' ' ' 

2. Locate the overall (observed, permutation) extreme pointE: 

(a) Each of the K data sets is permuted B times by randomly assigning nr arrays 

to class 'T' and nc arrays to class 'C', producing b = 1, ... , B sets of K data 

sets. For each permuted data set the G number of DE statistics are recalcu

lated yielding t~kg· Obtain the corresponding coordinate-wise maximum: 

Eb = (max(tb), ... , max(t~w), ... , max(t~Ka)). 
' ' ' 

(4.7) 

which is a vector of length KG 

(b) Obtain the coordinate-wise permutation extreme point Ep by maximizing 

over the B permutations, 

Ep = (max(Ebll), ... , max(Ebw), ... , max(EbKG)). (4.8) 
b b b 

(c) Obtain E as the overall coordinate-wise maximum: E = max(Ep,Eo). 

3. Calculate a distance d from each gene to E. For example, one choice for a scaled 

distance is 

K G ( )2 
d· = "'"' t;k9 - Ekg 

' ~~ MAD(t )2 ' 
k=l g=l tkg 

(4.9) 

where MAD is the median absolute deviation from the median. Order the dis

tances, d(l) :S d(2) :S ... :S d(n). 
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Hence a ranking of genes to be used in downstream analysis is obtained. 

4.2 Mega-analysis 

Mega-analysis is an integrative approach that combines K smaller data sets (X 1 , ... , X K) 

into a larger data set (X) often after some form of scaling and/or expression adjustment. 

The main component of mega-analysis is 'normalisation', hence each mega-analysis 

method can be considered a normalisation method. Four such normalisation meth

ods are presented including Null correction, where no normalisation occurs, Quantile 

normalisation, ComBat and RUV-2. 

Null correction 

The 'Null correction' is a naive method where several data sets are combined into one 

larger data set for downstream analysis, with no normalisation applied to the data. This 

method is rarely performed in practice. To perform Null correction Entrez IDs from the 

expression platforms (if the platforms are different) are matched and the data sets are 

simply placed together forming a larger matrix from the several smaller ones. 

Quantile normalisation 

Quantile normalisation is a method applied to the data obtained from the Null correc

tion approach. However, the additional stage in the analysis forces the quantiles of the 

different data sets to be identical. Ideally this means that no batches can be determined 

by examining the distributions of the expression levels post integration. Quantile nor

malisation is a common method for correcting data found in literature. This method is 

typically not used in isolation, and often when a linear model is applied to evaluate DE 

genes, both a study and platform (if required) effects are included in the model. 

ComBat 

Johnson et a!. (2007) proposed a batch correction method, designed for small sample 

sizes, known as 'ComBat' making use of a parametric (and non-parametric) empirical 

Bayes framework. Although ComBat was initially designed to correct for batch effects, it 

can also be applied in a mega-analysis context where each of the data sets are considered 

independent batches. 
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Initially the samples are standardised gene-wise, leaving genes with a similar overall 

mean and variance. Assuming the model 

(4.10) 

where Yijh is the log expression value for the ith gene, from the jth sample within 

the hth batch and Z is the design matrix for the sample conditions, with the error 

term distributed normally with zero mean and variance af. The parameters l'i, (3i 

and "fih are estimated as &i, fji and "'tih for h = 1, ... , H and i = 1, ... ,I via the gene

wise ordinary least-squares approach constrains 2:,hnh"'tih = 0 for h = 1, ... ,H. With 

n being the total number of samples from all studies, uf is estimated such that uf = 

*Eij(Y;jh- &i- zfji- -'rih) 2
. The standardised data Xiih is calculated by 

Y:h - & - Z(3. · 
X - lJ l l 

ijh- " . 
ai 

( 4.11) 

Assumptions are made regarding the distribution of Xijh, namely Xijh ~ N("!ih,15fh) 

and the prior distributions for the batch effect parameters take the form "!ih ~ N(Yh, r~) 

and 8fh ~ Inverse Gamma(.Xh, lh) with these hyperparameters being estimated via the 

methods of moments empirically from the data. For the batch effect parameters, "t;'h 

and 8[1:, the Empirical Bayes estimates are given by the conditional posterior means and 

the Empirical Bayes adjusted data "t;'jh for all i, j and h, can be calculated using these 

batch effects such that 

* ai (X "* ) - Z(3. 'Yijh = --- ijh- 'Yih + <>i + i· 
&;h 

(4.12) 

RUV-2 

Remove Unwanted Variation (RUV) in two steps (RUV-2) (Gagnon-Bartsch and Speed, 

2011 ), is a normalisation method that makes use of control genes to attempt to remove 

the unwanted variation in the data set. Factor analysis is performed just on the control 

genes, and the resulting factors are modelled within a linear regression model. Factor 

analysis is the process of obtaining several components, although not directly observed, 

to capture the unwanted variation. This is achieved through some method such as 

singular factor decomposition or PCA evaluation, these elements are then modelled 

along with the other known confounders. 

Let the linear model 

X = Y (3 + Z-y + Fa + E ( 4.13) 
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be used to model the expression data with n arrays and I genes. X is the expression 

matrix, let Y be a matrix whose columns are the factors of interest of length Q, for 

example the class of the samples. The matrix Z has columns which are the observed 

covariates (study, lab, batch) and F is a matrix where the columns are all unobserved. 

There are f such unobserved variables, and it is important to select the value off care

fully after factor analysis. The RUV-2 method, and variants, are not the first methods 

to attempt to use factor analysis for decomposing and modelling variability, this can be 

seen in for example Leek and Storey (2007) and Listgarten et a!. (2010). However, the 

unique concept in the Gagnon-Bartsch and Speed (2011) approach is the use of only 

control genes to achieve this purpose. 

Approaching the problem using control genes, ensures that too many factors are not 

included within the modelling process. If too many factors are modelled it is possible to 

remove from the data set the factor of interest, especially if such an effect is strong and 

one of the first few factors obtained by factor analysis. Control genes that can be used 

for this purpose include, for example, housekeeping genes (see Section 2.2.4) or spike-in 

controls placed by the manufacturer on the microarray platform. The concept behind 

the use of such genes is that control genes are not affected by the condition of interest, 

so variation within these genes are sources of unwanted variation due to other effects. 

Equation 4.13 is restricted to only concern the control genes 

Xc = Yf3c + Z-yc + Fo:c + fc· ( 4.14) 

The assumption is that the control genes do not change throughout the analysis, there

fore f3c would be a vector of zeros. Equation 4.14 can be reduced even further with 

the assumption that there are no variables to be modelled within Z (a simplifying as

sumption, see Gagnon-Bartsch and Speed (2011) for more details). Hence the resulting 

equation is 

Xc=Fo:c+<c ( 4.15) 

which leads to an estimate ofF through factor analysis. To estimate F, many methods 

can be used, for example SVD or the EM algorithm. Depending on the data, the number 

of factors modelled, f is selected. In practice f can be selected based on how well the 

data cluster (and hence the unwanted variation is removed) and the p-value distribution, 

how well the model fits the theoretical assumptions. 
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4.3 Performance assessment 

Assessing the performance of different meta- and mega-analysis methods is important 

to understand and compare methods, this is non-trivial, however. Ideally good mega

analysis normalisation methods should remove external artefacts from the combined 

data sets (such artefacts include batch, study and other non-biological effects) as well 

as increase the number of 'discovered' DE genes at particular FOR thresholds (Gagnon

Bartsch and Speed, 2011). 

In this thesis, meta- and mega-analysis adjustment will be assessed in six ways including 

considering the genes selected as DE, ROC curves when data is simulated, error rates in 

a classification paradigm, hierarchical clustering, raw p-value distribution and observing 

the behaviours of the control genes. 

1. DE genes: The aim of meta- and mega-analysis is to increase the distinction 

between the groups being compared. Observing the number of genes selected as 

DE after integration allows an assessment of this increased separation. The genes 

selected as DE are also important. Typically meta- and mega-analysis methods 

can be evaluated using pre-published gene lists and noticing the concordance of 

the obtained DE gene list and published material. Observing if the DE genes are 

expected to be DE (from the positive control list) or expected to be non-DE (from 

the house-keeping gene list) is indicative of the integrative method's success. This 

process, however, is subject to publication bias. As a result other methods should 

be used either as replacement evaluation tools or in tandem to such an approach. 

2. ROC Curves: For simulated data where the 'true' DE gene list is known, an 

integrative method's performance can be measured via ROC curves. ROC curves 

are created by plotting the true positive rates versus the false positive rates for 

the obtained DE genes. Performance is indicated by how close the plots are to the 

upper left hand corner of the ROC space. The AUC is also used as a comparison 

tool, with AUC values close to one indicating an accurate DE list. Some further 

details on ROC curves and AUC were given in Section 3.3.1. 

3. Classification error rates: As classification depends heavily on the feature list 

used to construct the discriminant rule, a classification framework can be used 

to assess the performance of DE lists, although strictly speaking feature selection 

and obtaining a DE list are not identical processes. In a classification rule, if all 

else is held the same (for example the samples and the classifier) the difference in 

classification error rates can be attributed to the feature list. Hence, if meta- and 
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mega-analysis methods are used as the feature selection method for a classifier, 

the discriminatory abilities of the DE lists can be assessed. 

4. Hierarchical clustering: Sample clustering can be achieved by observing the 

clustering similarities between samples. Ideally samples will cluster together based 

on biological factors and not based on non-biological factors. Hierarchical cluster

ing is produced by considering a subset of the genes (often a number of the most 

variable genes) and observing, based on these genes, which samples are the most 

similar to each other measured by cluster dissimilarity. 

5. Raw p-value distribution: P-values should be uniformly distributed across the 

interval 0-1 under the null hypothesis. A common underlying assumption in most 

DE analyses of gene expression studies is that the majority of the genes satisfy the 

null hypothesis: that is no differential expression. Histograms of p-values should 

hence resemble a horizontal line, perhaps with an inflated number of genes with 

very small p-values, representing the biologically DE genes. 

6. Control genes: Control genes, both positive controls and house-keeping genes, 

are genes with an expected response to the comparison (either to be linked with the 

condition of interest or not, Section 2.2.4). Considering if such control genes behave 

as one would expect after integration can help to understand if the adjustment was 

valid. Observing the location of the house-keeping genes on MA-plots is a visual 

indication regarding the behaviour of these genes. Genes can also be ranked in 

order of increasing FDR. A curve representing the increase in FDR can be plotted 

with the control genes noted. By ranking the genes it is possible to see where 

each control gene is located. It is an assumption that positive control genes, being 

linked to the condition of interest would cluster with small FDR values, and house

keeping genes would be located more evenly throughout the complete set of genes, 

perhaps more heavily represented at the non-DE end of the spectrum. 

In the case studies to follow different performance assessment measures are used de

pending on the context. For case study 1, ROC curves and AUC values determine the 

success of the meta-analysis methods. For case study 2, a classification context is es

tablished and error rates are used to assess the different DE gene lists obtained after 

meta-analysis. For case study 3, the number of DE genes, clustering, distribution of the 

p-values and observing the control genes on FDR curves are used as tools for comparing 

the meta- and mega- analysis methods. 
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4.4 Application studies 

In the following three case studies, different elements of meta- and mega-analysis meth

ods are explored. 

4.4.1 Case study 1: Simulation 

This simulation study compares the performance of the different meta-analysis methods. 

These methods include, Fisher's inverse chi-squared method, known as 'Fisher', Gene

Meta, RankProd, mDEDS and two different POE methods. For the POE methods, two 

gene selection methods are used, the IC as well as Bss/Wss, where Bss/Wss is the ratio 

of the between sum of squares to within sum of squares (Dudoit and Fridlyand, 2003). 

Distinction will be made between them using the terms POE1c and POEBss(Wss to in

dicate what type of analysis was performed after the construction of the POE matrix. 

Data was simulated to represent three separate gene expression data sets. The simulation 

approach is adapted from Ritchie eta!. (2006). A non-parametric bootstrap simulation is 

used to generate a matrix of non-differentially expressed genes. Samples are constructed 

with replacement from the original data, such that a balanced binary class distribution 

is established. Within the simulation it is assumed that the expression data is sampled 

from three different data sets, so three such matrices are generated. These matrices are 

used as an underlying 'background' data set with DE genes imposed on top of them. 

This background noise contains the latent characteristics of an actual microarray data 

with no biologically DE genes. 

DE genes are simulated with a 2-fold increase in fold change. Two types of DE genes are 

simulated: (i) 'true' DE genes, and (ii) 'platform specific' DE genes. True DE genes are 

the same genes within each of the three generated data sets, representing biologically 

relevant DE genes. Platform specific DE genes simulate platform bias, apparent within 

DE genes from microarray experiments (Bosotti eta!., 2007). These genes are randomly 

selected from all the genes in the data sets, with the exclusion of the true DE genes, and 

are generated independently for each data set. This simulation taps into the important 

property that a powerful meta-analysis tool has the ability to correctly distinguish a 

true DE gene which is DE across multiple platforms from a DE gene which is simply a 

platform phenomenon. 

Nine data sets were simulated, with the percentage of DE genes changing, varying 

between 2.5%, 4% and 10% (with three data sets at each percentage level). For each 

data set, half of the DE genes were true DE genes (and hence the same for all the data 

sets at the same percentage level) and the other half of the DE genes were platform 
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AUC values at different 
Meta-analysis method percentages of DE genes 

2.5% 4% 10% 
RankProd 0.999 0.998 0.995 
mDEDS 0.998 0.998 0.994 
Fisher 0.996 0.993 0.982 
GeneMeta 0.861 0.866 0.876 
POE,c 0.483 0.492 0.491 

POEBSSLWSS 0.489 0.490 0.487 

TABLE 4.1: AUC values for the different meta-analysis methods in the simulation 
comparison, ranked is order of AUC values for the 10% DE genes simulation. 

specific (hence different for all the data sets at the same percentage level). The three 

data sets at each percentage level had a different number of simulated samples, 150, 

100 and 80 samples respectively, each with 20,000 genes. The data sets at the same DE 

percentage level were analysed together as a simulated meta-analysis. 

Results Figure 4.1 shows the ROC curves for the 10% DE gene level, (5% true and 

5% platform specific DE genes). Only this study is presented here as these results 

are indicative of all considered DE percentages, the remaining results are shown in 

Appendix C. An ideal ROC curve is as close to the top left-hand corner as possible. 

This plot highlights that the two POE methods (POEBss/Wss and POEIC) are struggling 

to calculate the true DE gene list. Table 4.1 contains the AUC values for all three 

different DE gene percentage levels for the different meta-analysis methods. An AUC 

value of 0.5 corresponds to a completely random model. POEBss/Wss and POEIC appear 

to continue to produce low AUC values for all percentages. GeneMeta and RankProd 

perform adequately. Interestingly RankProd decreases in accuracy as the percentage of 

DE genes in the simulated data increases. Fisher and mDEDS perform competitively 

with accuracy for both decreasing slightly as the percentage of DE genes increases from 

2.5% to 10%. 

4.4.2 Case study 2: Melanoma study 

Three melanoma data sets are used for the examination of the meta-analysis methods 

in a classification context. The Bogunovic, Jonsson and Mann data sets were selected, 

as introduced in Sections 2.3.1 and 2.3.2. Two of the selected data sets are generated 

from the Illumina Human Beadarrays platform v2 and v3 (Jonsson data and Mann data 

respectively) and the third is from an Affymetrix platform, HG 133 Plus 2.0 (Bogunovic 

data). All three methods have clear (albeit slightly different) class distinctions between 
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ROC Curves for meta-analysis on simulated data sets 
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FIG RE 4. 1: ROC plots for simulated dat a using differt>nt meta-a nalysi. methods for 
t he 10% DE g<'nf' leYel (5% t rue. 5% platform specific DE g<'n<?s) s imulat ion. 

good and bad prognosis groups. The 1\'lann data and the Jonsson data wer<' integ

rated together using t he meta-analysis met hods: Cros -va lidation. F isher. Genc1\Ieta. 

POEsss/Wss · POEtc . mDEDS. and RankProd. In t he case of t he eros -validation meta

analy. is method genes were ranked based on Bss/W ss (all other meta-analysis methods 

produce a ranked gene list). A discriminant rule was constructed u iug support vector 

machines (SV1\I) (Hastie et al .. 2009) on a ranked subset of t hese genes. The ·ubset 

ranged from the top 10 ranked genes to 500 genes in incr<'ments of 10. Th is discriminant 

rule (built from t he Jonsson and Mann data) was then u ed to classify the independent 

Bogunovic data set. 

R esu lts Figure 4.2 displays t he error rates for the cia sification of t he 13ogunivic data 

set using SV 1. In this analysis t he number of genes u eel to build t he classifica tion rule 

vari<'s from 10 to 500. as see11 on t he horizontal a,xis of t he graph. The meta-analysis 

methods are split into two separate plots fo r readabili ty. T he mean and minimum C'tTOr 

ra tes for each of the meta-aualy is met hods can be found in Table 4.2. The majority of 
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Meta-analysis method Mean error rate Min error rate 
mDEDS 0.2655 0.1212 
RankProd 0.3055 0.1515 
Fisher 0.4806 0.2121 
GeneMeta 0.3709 0.2727 

POEBss/Wss 0.3327 0.2727 

POE1c 0.4842 0.2727 
Cross-validation 0.3467 0.2424 

TABLE 4.2: Mean and minimum error rates for SVM using LOOCV when the 
Bogunivic data set is classified using a gene list obtained via meta-analysis from the 
JOnsson and Mann data sets. 

FIGURE 4.2: LOOCV error rates as the number of genes increases from 10 to 500, 
when the Bogunovic data set is classified using a gene list obtained via meta-analysis 
from the JOnsson and Mann data sets, with discriminant rule constructed via SVM. 

the applied meta-analysis methods successfully capture discriminating DE genes across 

the two data sets (the Jonsson and Mann data), to distinguish between good and bad 

survival prognoses. The Fisher and POE1c meta-analysis methods performed the most 

poorly with mean classification error just below 50% (48.06% and 48.42% respectively). 

4.4.3 Case study 3: Hypertension study - DE analysis of hypertensive 

versus normotensive rat samples 

The data used in this case study comes from four independent rat data sets, each ob

serving hypertensive and normotensive animals. These data sets come from two different 

Affymetrix platforms, the Cerutti data (10 hypertensive, 5 normotensive), the Clemit

son data (5 hypertensive, 5 normotensive) and the Grayson data (3 hypertensive and 

3 normotensive) all come from GeneChip Rat Genome 230, the Rysa data set (12 hy

pertensive, 11 normotensive) on the other hand comes from Affymetrix GeneChip Rat 

Genome U34 Array set A. More detail regarding the individual data sets can be found 

in Section 2.2. Data has been preprocessed and reduced to the 4,678 intersecting genes 

identified via their Entrez IDs. Only using the intersecting genes allows results from 

individual analysis to be compared between the two platforms. 

The purpose of this case study is to consider how meta- and mega-analysis can be used to 

integrate data addressing the same scientific question and how such integration methods 

can be informative over individual analysis especially when inconsistencies are evident 

between individual results. The individual analyses for the four data sets is presented 

in Section 2.2.3. 
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This case study makes use of two important types of genes: (i) positive control genes, 

these genes are known to have a relationship to the condition of interest; and (ii) house

keeping genes, genes selected because of the assumption that they do not vary with 

regard to the condition of interest. More details regarding each of these gene lists are 

shown in Section 2.2.4. 

Mega-analysis results 

Four currently available mega-analysis methods were used to combine the four public 

hypertensive/normotensive rat data sets. Once this normalisation was performed a large 

expression data set was obtained and downstream analysis proceeded as in the case of an 

individual study. In each case, data was modelled using least squares regression applied 

through limma (Smyth, 2004). The four mega-analysis methods included: 

1. Null correction, where data was simply combined together and modelled using a 

class effect. 

2. Quantile normalisation, where data was combined and then quantile corrected and 

modelling with a class and platform effect. 

3. ComBat, with each data set considered as an independent batch, that is h = k. 

4. RUV-2, with the EM approach used for factor analysis. House-keeping genes 

(Section 2.2.4) are the control genes used to perform the factor analysis within this 

case study. Although a range of different genes are possible, this particular set of 

genes were selected because of the different platforms being combined throughout 

the mega-analysis comparison. The number of unknown factors, f, modelled into 

the data was four, with one factor of interest, class. 

Several methods (Section 4.3) were used to evaluate these mega-method normalisation 

approaches, first to evaluate if the adjustments were helpful to the analysis and second 

to compare methods to one another. 

DE genes It is desirable that the number of genes 'discovered' as DE increases as the 

distinction between the two factors of interest (in this case class) increases. The mega

analysis normalisations are designed to increase this distinction, hence the number of 

DE genes should increase. Table 4.3 shows the number of DE genes from the complete 

gene lists and Table 4.4 shows the number of DE genes from the positive control list. 

Three different DE criteria are used. The first being genes that have an absolute FC 

greater than 1.5, the second that the FDR is less than 0.05 and the third being that both 
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IFCI 2: 1.5 (up, down) 
Mega-analysis IFCI 2: 1.5 (up, down) FDR < 0.05 and 

FDR < 0.05 
Null correction 41 (35, 6) 5 3 (0, 3) 
Quantile normalisation 26 (17, 9) 238 21 (13, 8) 
ComBat 20 (12, 8) 841 20 (12,8) 
RUV-2 22 (18, 4) 761 22 (18, 4) 

TABLE 4.3: Number of DE genes after the four data sets were integrated using the 
four mega-analysis methods. 

Positive control genes Inconsistent genes 
Mega-analysis method IFCI 2: 1.5 FDR < 0.05 IFCI 2: 1.5 

FDR < 0.05 
(up, down) (up, down) 

Null correction 2 (2,0) 0 1(1,0) 0 
Quantile normalisation 2 (1, 1) 3 0 1 
ComBat 1(0,1) 8 0 5 
RUV-2 2(1,1) 8 0 3 

TABLE 4.4: The number of positive control genes and inconsistent genes, within the 
DE gene lists for each mega-analysis method. 

these criteria are satisfied. The more sophisticated mega-analysis methods (ComBat and 

RUV-2) result in more DE genes, both overall and in the case of the positive control list. 

Figure 4.3 shows the number of genes selected as DE as the cut-off for the FDR value 

varies from 0 to 1. Highlighted in these plots is what the required FDR cut-off values 

need to be for the positive control genes to be DE. These plots attempt to address if a 

mega-analysis method is successful in consistently placing positive control genes, which 

have been externally validated, toward the more significant end of the FDR spectrum. 

ComBat and RUV-2 adjustments seem to produce small FDR values in the positive 

control genes. Due to the p-value violations made by the Null correction adjustment 

method, see Figure 4.4 (b), an FDR curve has not been plotted as it produces very 

limited information. Figure 4.3 also contains volcano plots for the three mega-analysis 

methods. These plots show a relationship between p-values and FC. Ideally the positive 

control genes (green) should be plotted higher in the graph and the pink house-keeping 

genes should be lower with smaller -log10 (p-value) and FC scores. This is not the case 

for this analysis, suggesting that the positive control genes are not highly informative 

and there are potential DE changes in the house-keeping genes. 

Hierarchical clustering Observing sample clustering allows the observation of the 

driving source of variation within a data set. Hierarchical clustering of each of the four 

methods is plotted in Figure 4.4 (for the Null and Quantile correction methods) and 
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Figure 4.5 (for the ComBat and RUV-2 methods). Cluster plots were drawn using the top 

500 overall most variable genes using Euclidean distance and the complete agglomeration 

method. The coloured bars beneath each of the dendrograms highlight features of each of 

the samples. The first two bars are of special interest as these represent the sample class 

(blue = normotensive, red = hypertensive) and the platform (light blue = Affymetrix 

230A chip, purple= Affymetrix U34A chip) respectively. For the Null correction and the 

Quantile normalisation all samples within the platform cluster together, this indicates 

that the largest source of variation within this analysis is the platform effect. Conversely, 

for ComBat and RUV-2, platform is no-longer the dominating source of variation but 

instead it is class (seen much more clearly using the RUV-2 approach). The purpose of 

the integration is to perform a DE analysis based on class (genes that are DE between 

hypertensive and normotensive rats) and as a result the largest source of desired variation 

after mega-normalisation should be the class factor. 

Raw p-value distribution The distribution of the raw p-values after mega-analysis 

indicates whether assumptions regarding independence and the null hypothesis of limited 

differential expression for the majority of genes has been violated. Figures 4.4 and 4.5 

include histograms of the raw p-values of the combined data sets after each of the mega

analysis normalisation methods have been performed. Ideally the p-value distribution 

should be uniform, with a possible spike in frequency at the low end of the spectrum 

indicating the DE genes. Quantile normalisation and the RUV-2 adjustment are closest 

to the uniform distribution. The Quantile normalisation method yields overall fewer 

genes with extremely low p-values, implying that the uniform frequency across the entire 

distribution is higher than that of the RUV-2 method. P-values produced after Null 

correction do not conform with the assumptions required for a reliable DE analysis. 

Meta-analysis results 

The four public data sets were analysed independently and four of the meta-analysis 

methods were used to integrate these results. The meta-analysis methods used include: 

1. Fisher's Inverse Chi-squared method ('Fisher'), 

2. GeneMeta, 

3. mDEDS and 

4. RankProd. 

The number of genes found to be DE and the results from the positive control genes 

were observed during the analysis. 
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D E genes T he number of DE genes found from the complete gene lists. for the di f

ferent meta-analysis methods ar<.' reported in Table 4.5. Fisher aud RankProd select a 

large number of DE genes when FDR is u. eel as the election cri terion. RankProd i~ the 

only method able to produce FC result .. When con idering on ly the positive cont rol 

or the inconsistent genes (Table 4.6). fo r the Fisher a nd RankProd methods th <.' re arc 

a large proportiou of the e genes selected as DE. That is. for the Fisher method 7/ 2 

(25o/c) of t he positive control arc ident ified as DE (u ing FDR < 0.05) and 8/ 11 (73%) 

of the inconsistent genes were selected as DE. For thc RankProd Juctliod 8/ 2 (29%) 

of the positive controls arc considered DE and 9/ 11 ( 2%) of the inconsistent genes 
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arc considered DE. Both GencM0ta and mDEDS struggle to produce DE genes based 

on p-valt10S. Both these methods arc intended to be gene ranking methods, however 

permutations were produced to generate p-valucs for comparative purposes. Dy con

struction. Gencl\ Ieta and mDEDS produce very sparse low FDR estimates resul ting in 

their inability to produce DE genes based on the FDR DE cri terion. 

Control genes Figure 4.6 contt'tins plots of the number of genes to be considered DE 

afi the FDR cut-off increases from 0 to 1. Figu re 4.6 (a) and (b) highlight when the 

po8itive control genes become DE for t he Fisl1<'r and RankProd methods. Due to the 
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IFCI 2': 1.5 (up, down) 
Meta-analysis IFCI 2': 1.5 (up, down) FDR < 0.05 and 

FDR < 0.05 
Fisher NA 605 NA 
GeneMeta NA 40 NA 
RankProd 21(10, 11) 785 0 
mDEDS NA 54 NA 

TABLE 4.5: Number of DE genes for each data set, using meta-analysis methods. 
Note: Fisher, GeneMeta and mDEDS do not produce FC values. 

Positive control genes Inconsistent genes 
Meta-analysis method IFCI 2': 1.5 FDR < 0.05 IFCI 2': 1.5 FDR < 0.05 

(up, down) (up, down) 
Fisher NA 7 NA 8 
GeneMeta NA 0 NA 0 
RankProd 1(0, 1) 8 0 9 
mDEDS NA 0 NA 1 

TABLE 4.6: The number of DE genes for each data set which is also considered a 
positive controls for hypertension, or an inconsistent gene when analysed using 
meta-analysis methods. Note: Fisher, GeneMeta and mDEDS do not produce FC 
values. 

design of this gene list, ideally the positive control genes should become DE toward the 

lower end of the FDR spectrum. Although for the Fisher and RankProd methods there 

appears to be a small cluster of these genes with a low FDR value, both these methods 

overall rank the positive control genes throughout the entire distribution. Figure 4.6 (c) 

and (d) highlight when the inconsistent genes become DE, for the Fisher and RankProd 

methods, respectively. For both these methods the inconsistent genes appear in the first 

half of the spectrum perhaps reflecting that all these genes are DE in their independent 

studies, just with differing FC directions. It is also possible that the meta-analysis 

methods are inadequately approaching such discrepancies. This would be especially 

true in the case of the Fisher meta-analysis method which implements the aggregation 

of p-values, not the consideration of FC direction. 

4.5 Discussion 

Meta- and mega-analysis methods have been explored in the three case studies considered 

in this chapter. Both levels of integration approaches have distinct advantages and 

disadvantages. 
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Meta-analysis methods analyse data sets separately and integra te t he result ing statistics. 

A meta-analysis approach over a mega-analysis approach allows for several advantages. 

F irs t . t he raw results of a microarray experiment need not be known for some of the 

meta-analysis methods and , second , da ta sets can be vastly d ifferent in the technologies 

used to create microarrays which result in vast ly different ranges and variances (G uerra 

et a l.. 2008) . Moreover. when studies are ext remely different in regards to purpose, care

ful rnet a-analysis techniques may allow a new, independent quest ion to be considered 

(Campain et al. , 2010) . As data sets are t reated separa tely. such analysis is susceptible 

to small data set issues such as minimal power for each data set to detect DE genes . In

dependent data set analysis is a lso suscept ible to outliers. where effects a re rnore extreme 
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when sample sizes are small. When considering mega-analysis, the major advantage of 

mega-analysis over meta-analysis is that a large data set is constructed, and from this 

downstream analysis is applied. In this way the combined large data set avoids small 

sample issues. But to apply mega-analysis one must have access to the raw (if possible) 

or processed expression data, not just resulting statistics. 

Performance validation The simulation study (case study 1) coupled with the melan

oma case study (case study 2) offers insight into the seven meta-analysis methods com

pared in this chapter. It is important to validate meta-analysis methods, although at 

times this is difficult to perform. Some meta-methods are simple variants of common 

classical statistical methods, others offer more sophisticated responseH to specific issues 

faced in the microarray environment. A large proportion of meta-research deals with DE 

genes and the process of obtaining a DE list from multiple data sets. Unfortunately DE 

gene lists are elusive because the true biological DE gene lists are typically not known. 

Often for validation purposes DE lists are compared to other published DE lists with the 

level of congruency indicative of the success of the meta-method. This approach suffers 

from publication bias (Dudoit and Fridlyand, 2003) because continuously pre-published 

information is being published, with little validation to the variations that are occur

ing. An alternative assessment criteria, utilising the classification framework, offers an 

intuitive validation process with interpretable results. Classification performance relies 

heavily on the accuracy of the classifier's feature list, which is traditionally taken from 

the DE list. 

In case study 2 meta-analysis validation was performed using SVM classification. SVM 

was chosen as it is an efficient and accurate classifier for microarray data and in recent 

years is gaining popularity. This study could have been conducted using any number 

of classifiers provided feature selection is not performed implicitly by the classifier. The 

varying DE list obtained from the meta-methods are the only varying component in 

the comparison. Therefore a reduction in classification error can be attributed to the 

meta-analysis method. 

Within case study 3 mega-analysis methods have been compared via several methods. 

Hierarchical clustering was used to see if the mega-normalisations have allowed the 

factors of interest to be the most distinctly variable elements within the data set. The 

distributions of raw p-values have been observed to ensure that methods are not violating 

distributional and independence assumptions. The number of 'discovered' genes for each 

of the mega-analysis methods was also considered, under the assumption that as the true 

factor of interest becomes more clear the number of DE genes will increase. Alongside 
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these comparison methods results for control genes, both positive controls and house

keeping genes have been monitored. Genes with expected behaviours, be it that they 

are linked with the condition or they have no change, should still behave in the expected 

way regardless of the data-manipulation method applied. 

The validation methods here are by no means faultless and as the number of meta

and mega-analysis methods increases it is paramount that validation methods are also 

developed. Heuristically, any form of integrative adjustment needs to increase the num

ber of DE genes truly associated with the condition of interest, and decrease the false 

positives so that research into linked genes can take place. This process is made increas

ingly difficult in that the genes truly associated with the condition of interest are still 

unknown. 

Expression unification Mega-analysis seeks to unify data sets, and for each gene to 

give an indication as to the expression differences between classes over all the combined 

data sets. Figure 4. 7 is a scatter plot of the expression values of the inconsistent and 

positive control gene Nppa. In this plot it can be seen what mega-analysis normalisation 

achieves based on the expression levels of individual samples. Originally, each data 

set was reporting extremely different expression levels for this gene, these results were 

extreme enough to flag this gene as inconsistent. This difference is seen in particular 

between results from the Cerutti and Rysii analyses. As the mega-analysis normalisation 

methods become more sophisticated (for example in the case of ComBat and RUV-2) 

the differences in the data sets are removed yet the signal in the data is not removed 

completely. However, based on FC alone, after integration, this gene is no longer DE. 

Comparison to individual analysis Figure 4.8 contains two heatmaps of average 

FC for the positive control genes and the inconsistent genes for (a) the individual analysis 

and (b) the FC values after mega-analysis normalisation. Genes that have a negative 

FC are plotted in green with genes with a positive FC are plotted in red, a black value 

represents no difference between the two conditions. In the inconsistent gene cases 

a gene is considered a DE gene but the FC direction changes between the different 

studies. Mega-analysis unifies these inconsistencies by giving an overall value. For some 

of the positive control genes the average FC signal is increased (for example the Cd36 

case) after mega-analysis normalisation. This change highlights that after adjustment 

there is an increased distinction between classes. One might assume that mega-analysis 

adjustments are just weighted averages of the expression values for the individual data 

sets for the inconsistent genes. But the differences in expression values between the 

different mega-analysis methods for genes such as GOs2 and Rrad would suggest that 

this is perhaps not the case. 
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Null correction Quantile normalisation 
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F tCURE 4. 7: Expr0ssion plots after mega-analysis adjustment is a pplied. for gene :'Jppa. 
In t he mor0 sophisticated and ucccssful mega-anal.v i normalisation methods. the 
inconsistencies wit hin the da ta sets is no longer a domiuat ing factor. 

Application of me ta- and m ega-analy sis T he integration of dat a sets offers a way 

to enhance t he robustnes of microarray technology. T he 'data et cross-validation· 

meta-analysis approach observed in t his chapter encapsulates a very real probl<'m with 

wicroarrays: gene lis ts selected from one pla tform or study have a limited abi lity to be 

t rausfcred. T his is highlighted by their inabil ity to be used to cia sify samples generated 

by anot her plat form or data set, as demonstrated by the 34.6% error rate obtai ned via 

this method (Ta ble' 4.2) . For the melanoma . t udy. some 111eta-analysis approachc · were 

able to increase t he accuracy of cross platform classificat ion when compared to t his nai·ve 

rn<'thod. at t imes the error reduced by ncar 10% as showu iu Table 4.2. This indicates 

that the added power through nwre sophisticated meta-analysis methods prod uces 1nore 

robust a nd reli able results . eventuating in A. g<'n<' list that is not pla tform dep<'ndcnt but 

truly indicative of t he disease. 
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Chapter 4. Integration of gene expression data 

Cross-platform meta-analysis Cross platform meta-analysis multiplies the level of 

complexity in this particular analysis paradigm, as observed in Campain and Yang 

(2010). The meta-analysis complexity is suggestive of the meta-method one should 

employ. In Cam pain and Yang (2010) two levels of meta-analysis complexity were con

sidered: (i) when meta-analysis is performed across similar platforms, for example Affy

metrix with Affymetrix; (ii) when meta-analysis is performed across disparate platforms, 

for example Affymetrix with oligo arrays. It was shown that the mDEDS method was 

able to behave competitively in both situations. The melanoma meta-method compar

ison has confirmed results, in that mDEDS performed well in a cross-platform classific

ation context between two Illumina beadarray data sets and an Affymetrix data set. 

Both long-oligo and beadarrays are compared. These platforms vary remarkably with 

differences ranging from probe length to construction. In this high complexity envir

onment, POE1c, GeneMeta and Fisher's inverse chi-squared method struggle to obtain 

a gene list robust enough for cross platform classification. Two different reasons could 

contribute to the decrease in accuracy of the meta-analysis methods as the level of com

plexity increases. The meta-analysis methods could be over-fitting the data, methods 

that model the data are particularly susceptible to this, for example GeneMeta. Con

versely, some feature selection methods may not capture the complexity of the data, 

this is potentially occuring in the POE1c case. The Fisher's inverse chi-squared meta 

approach does not take into consideration the actual intensities of each spot on the mi

croarray, albeit at times this method is ideal, for example when individual intensities 

are unknown, or when the characteristics of the study vary greatly (Guerra et al., 2008). 

Within such a complex environment mDEDS is able to perform DE analysis well, as this 

method makes use of the different data sets but does not try to fit a full parametric model 

to the data. The mDEDS method uses multiple statistical measures while developing 

its ordered gene list. Using multiple measures aids robustness as more of the variability 

can be encapsulated within the meta-analysis method. It is possible that the multiple 

platforms and multiple measures draw enough diversity to begin to transcend cross 

platform variability and produce a reliable gene list. The variation in some of the meta

analysis method's abilities within classification suggests that different tools are beneficial 

depending on the meta-analysis project. 

Batch correction Batch effects are considered non-biological differences that make 

samples in different batches of microarray development not directly comparable. Such 

effects are inevitable when additional samples or replicates are added to array data 

sets or when multiple studies are being combined or integrated together, pooling across 

different labs, array types or platforms (Rhodes et a!., 2004). In most cases batch 
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effects are inevitable as non-biological variations are observed simply through multiple, 

apparently identical, amplification and hybridisation. Over time the average size of 

microarray studies has increased as the cost of such experiments decreased and a greater 

appreciation of the variability within the microarray studies was gained. This implies 

that for a number of studies the time taken to produce the data has increased. As 

a result within studies temporal, spatial and other artefacts has increased. These are 

collectively known as batch effects (Yang et a!., 2011). Batch effects can completely 

overshadow the effect of interest and confound the DE genes. As a result, powerful 

batch correction methods are vital for microarray research. Batches obtained separately 

with time delays, for example a year, can be considered as separate batches, which 

resemble individual data sets on similar platforms. 

It is possible to speculate that mDEDS can be used in a batch correction context. By 

using mDEDS one can borrow strength from the multiple batches yet avoid particular 

batch bias. Mega-analysis can also be used as a method for normalising batch effects, 

where each batch is treated as a separate study. 

Open questions There are still many open questions regarding the integration of ex

pression data sets. For example, questions pertaining to mismatched probe sets across 

platforms and the handling of multiple probes for the same genes. More research within 

these areas would greatly aid the integration of microarrays and increase the ability to 

make use of the current plethora of information laying dormant in these public reposit

ories. However, once more of these types of tools for integration have been developed, 

meta-analysis will save time, money and scientific resources. 

There are several issues needing to be resolved each time such an analysis is applied other 

than that of method validation. Quality of the individual data sets is paramount. Each 

of the data sets studied here have undergone individual QC (Section 2.2 and Appendix 

A, Figures A.l-A.4). Ramasamy et a!. (2008) gives an overview of the elements and 

conditions to consider when selecting data sets to integrate. When quality is comprom

ised with this level of the analysis, informative integrated results after mega-analysis 

normalisation can not be expected. Publicly available data sets need to be coupled with 

factors of interest relating to the expression samples. Too often data sets are available 

with only limited information regarding the obvious factor of class, but also less direct 

factors such as batch and development sequence. Such information can aid in the nor

malisation process, as attempts are made to remove such effects through mega-analysis 

normalisation. 
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4.6 Conclusion 

Individual gene expression microarray analysis has been around for almost 15 years. 

Methods of analysing these single experiments is well established. There is an increased 

need for methods of data integration and normalisation to ensure as much information 

is acquired from this data as possible. This need is driven by several factors including; 

(i) the increase in the amount of microarray data now available in public repositories 

and (ii) the increased size of individual experiments, introducing batch and time effects 

into single experiments. 

This chapter examined some of the solutions to data integration in gene expression mi

croarray analysis. Two main approaches were considered, a high level integration where 

data is combined at the statistics level, termed meta-analysis, and a lower level integ

ration where data is combined at the rawest level available into a large data set termed 

mega-analysis. This chapter has begun to untangle some of the methods of integrating, 

both in a mega- or a meta- sense depending on the research context. Establishing the 

'best' meta- or mega-analysis method is cumbersome, first because the methods studied 

in this thesis are not exhaustive and second because circumstances shape the meaning 

and usefulness of an optimal method. Mega-analysis offers the overarching advantage, 

as after mega-analysis normalisation data can be analysed as one would analyse an indi

vidual data set, hence leading to increased power, intuitive methods and conclusions. In 

contrast meta-analysis combines statistics such as p-values or test-statistics, and offers 

a convenient solution when the raw data is not available, or studies are not directly 

comparable. 

New methods of data integration will continue to be developed. In particular cross

study normalisation and batch effect elimination are becoming readily accessible tools 

with different approaches being designed to address particular research questions. Fur

ther growth in this area is expected in coming years. To this end, development into the 

evaluation methods of the different meta- and mega-analysis methods needs to be an 

active area of research so that the most effective method is used appropriately. With 

appropriate and validated meta- and mega-analysis methods, along with adequate qual

ity control of the individual data sets, appropriate statistical research can begin to make 

use of this wealth of information in the public domain. 

4. 7 Publications 

This chapter includes work published or accepted in Cam pain and Yang (2010), Campain 

et a!. (2010), Marques eta!. (2011a), Marques eta!. (2011b) and work under review in 

112 



Chapter 4. Integration of gene expression data 

Yang et a!. (2011) and Marques et a!. (2011c). Some of the meta- and mega-analysis 

work was conducted by the author with Professor Terry Speed, Department of Statistics 

University of California at Berkeley and the Walter and Eliza Hall Institute of Medical 

Research Melbourne, and the hypertension analysis was performed with Professor Brian 

Morris, Basic and Clinical Genomic Laboratory, School of Medical Sciences and Bosch 

Institute, University of Sydney, working in particular with Ms Francine Marques. 
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• A.E. Campain and Y.H. Yang (2010) Comparison study of microarray meta

analysis methods, 11:408 BMC Bioinformatics. 

• A.E. Campain, F.Z. Marques, Y.H. Yang and B.J. Morris (2010) Meta-analysis 

of genome-wide gene expression differences in onset and maintenance phase of 
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Chapter 5 

Melanoma: An integrative case 

study 

The incidence of melanoma, one of the most deadly forms of skin cancer, is on the 

rise (Fecher et al., 2007; Geller et al., 2002; Gray-Schopfer et al., 2007; MacKie et al., 

2002; Thompson et al., 2005). It has become more prevalent in industrialised nations 

over the past 25 years, with Australia having the highest concentration of incidences in 

the world (Balch et al., 2001). Despite this increase, there has been minimal success 

regarding new treatment therapies since the late 1970s (Winnepenninckx et al., 2006). 

Melanomas developing distant metastases, labeled Stage III and IV, occur in about 

15% of patients with primary melanomas (Tsao et al., 2004). For Stage III patients, 

about 30--40% die within one year and another 30-40% will survive beyond four years. 

There are novel, targeted and potentially aggressive systemic therapies being developed 

(Lorigan et al., 2008) for treating such a condition. However, this has been hindered as 

there is no way to identify patients who could potentially benefit from such therapies 

(Goran Jonsson et al., 2010; Mann et al., 2011). 

For Stage III patients, the heterogeneity of survival outcomes (Ravo et al., 2008) matched 

to clinical variables, suggests that there are possibly molecular sub-clusters within Stage 

III melanoma patients (Hoshida et al., 2008; Rangel et al., 2008). Therefore, it would 

be advantageous to classify melanomas that have already undergone metastases into 

categories that may predict patient survival (Balch and Soong, 2008). To classify patients 

currently there are several methods, including Tumour-Node-Metastasis staging as well 

as well-defined clinical and pathologic variables such as Breslow thickness, ulceration 

and mitotic rate used to anticipate these groupings (Balch et al., 2001). 

Mann et al. (2011) endeavoured to establish, for Stage III melanomas, if gene expres

sion profiling can predict survival outcomes for patients. Moreover, we examined if 

115 



Chapter 5. Integrative case study 

these molecular profiles can contribute further when used together with the clinical pro

gnostic models. Such an integration aims to add another dimension to understanding 

the survival outcomes and predicting the survival experience for individual patients. 

This chapter continues with the analysis of the Mann et a!. (2011) data in three parts, 

each part consisting of a component of the analysis as illustrated in Figure 5.1. The first 

is the analysis of the clinical data, including data description, model construction and 

final prediction evaluations (Section 5.2). The second is the analysis of the expression 

data, which includes preprocessing. DE analysis and evaluation of the classification 

model and molecular signature (Section 5.3). The third component of this chapter is 

an outline of integrative methods applied to this study, the method finally selected and 

final model evaluation (Sections 5.4 and 5.5). 

As this chapter contains the analysis of both clinical and gene expression data, there is a 

need to differentiate between different data matrices and types. Let X(C) represent the 

clinical data matrix (n x Q) and let X(E) represent the gene expression matrix (I x n). 

It is important to recall that the rows of X(C) are the columns in X(E). Each sample 

contains both clinical data (Q variables) and gene expression data with expression values 

for I genes. 

5.1 Experiment aim and design 

This experiment was based on the observed extremes in survival times of Stage III 

melanoma patients. Some individuals after treatment live for four or more years (and 

are considered 'treated' of the condition, a good prognosis), other individuals succumb 

to the condition within a year. In total, 83 Stage III melanoma patients were observed, 

there was clinical data for all 83 patients but expression data for only 79 of these indi

viduals. Tumour samples were obtained from the Melanoma Institute Australia (MIA) 

Biospecimen Bank, with each tumour being from a patient from whom informed con

sent had been obtained with approval dating from 1996. Tumours were from patients 

where distant metastases were not known to be present at the time of tumour banking, 

and specimens were macro-dissected at banking and reviewed to meet minimum tumour 

cell content criteria. The motivation behind this analysis was to establish if one could 

predict the survival prognosis (good or bad) for individual patients. Presently there is 

very little known in clinical practice regarding this matter. The clinicians hoped that 

the introduction of expression variables would aid analysis. It is hoped that individu

als with poor prognosis expectations may be willing to try experimental treatments to 

potentially aid their survival. 
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First componentY-. 
Clinical data ------- ----

+ 

+ 

-------
Third component: 

Integration of clinical 
and expression 

-

Model 
Assessment 
Section 5.5.2 

-------------

---

F IGl'RE 5.1: Flow-diagram of the steps involved in the analysis of the ~Iann et a l. 
(2011) data. involving the integration of clinical and expression data. 
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FIGURE 5.2: Histogram of the survival times of the 83 patients, not conditioned on 
reason for death. This plot highlights the extremes in the survival times of individuals 
with Stage III melanoma. 

Figure 5.2 is a histogram of the survival times (not conditioned on reason for dC'ath) of 

the patients in the study. highlighting the two extreme survival groups within our data. 

Preliminary analysis comparing the differences between short and long term survival 

indicated that very li ttle molecular signal was present in the data (both expression 

or clinical). SevC'ral definitions of good and bad prognosis were explored. examining 

the number of DE genes based on the different classes. Further detail of these class 

definitions and the number of DE are in Appendix D. For this analysis we focus on 

two survival extremes, a patient is considered within the good prognosis group if they 

survived more than four years with no sign of relapse (n = 23). and a bad prognosis 

group for those that survived less than one year and died due to melanoma (n = 25). 

This retained a total of 48 patients with matched expression and clinical data. 
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5.2 Clinical data 

Pathologic, clinical and mutation information was obtained from each patient, together 

making up the 'clinical data' component of the analysis. Pathologic information in

cludes percentage of non-tumour cells, percentage of necrosis, degree of pigmentation, 

predominant cell shape as well as cell size. Clinical information obtained includes age, 

gender, stage at diagnosis, location on body, presence of an associated nevus, Breslow 

thickness and Clark level amongst others. The mutation information observed includes 

BRAF, NRAS and PI3KCA mutations. More detail regarding the variables included in 

the clinical data set are shown in Mann eta!. (2011). 

5.2.1 Missing data 

As advised in multiple imputation literature (Schafer, 1997, 1999), imputation was ap

plied to the original data set, not just the selected 48 samples that were to be used 

in downstream analysis. After imputation, the completed data sets are reduced to the 

desired samples. The initial clinical data set consisted of 83 patients with Stage III 

melanomas and 33 variables. Clinical variables ranged from stage at diagnoses and 

survival status to tumour morphology and histology. Missing data was present in this 

data set at an overall average of 10.4%, such a level of missing data is relevant but not 

overly extreme (Campain eta!., 2011; Rubin, 1996). Five variables contained no missing 

information and two variables contained missing data at levels greater than 25% (29% 

and 46%) (Figure 5.3). All variables were included in the analysis after discussions with 

clinicians. Only 36 (44%) patients contained a complete set of covariates (Figure 5.4). 

Case deletion is not considered a statistically appropriate method to overcome missing 

data with this proportion, 44%, of complete cases. Multiple imputation, making use of 

Amelia II 1 (King eta!., 2001) with m =5 2, was employed to overcome missing data. 

5.2.2 Model building and assessment 

The dichotomous survival situation of Stage III melanoma patients was exploited to 

construct a regression model to predict the survival experience of future patients. A 

total of 48 patients were included in this stage of the analysis, 25 patients died within 

a year and 23 lived for more than four years with no sign of relapse. This data 

1 Amelia II was used here instead of MICE as this collaborative research was performed prior to the 
multiple imputation comparison study in Chapter 3. 

2 Between five and 10 multiply imputed data sets is recommended in literature (Rubin, 1987), although 
more can be used. 
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F IGURE 5.3: Graphical repr<:>scntation of the perc<>ntage of missing data, by variablP. 
The average overall percentage of missingness is 10.4%, and there are two variables that 
contain a percentage of missingness over 25%. Although the amount of missingness is 
high for these two variables, they were retained in the analysis after discussions with 
the clinicians. 

was analysed using a logistic regression model. A binary response variable of sur

vival t ime was observed (1 = Survived greater than four years. with no sign of relapse. 

0 =died within a year. due to melanoma). In total. 14 of the clinical variables were re

moved from the regression analysis because there was not adequate categorical sampling 

within the two groups to produce a stable regression model. 

For the logistic regression. let X ((') be t he covariate matrix with dimensions (48 x 20). 48 

samples and 20 variables. the first being a column of ones and the remaining 19 pertaining 

to the clinical variables in the data. y is a zero-one response vector of length 48 with 0 

representing a death and 1 representing survival. T he probability of an event occurring 

is 7rj. (-rrj = P(Yj = 1)) and 1r denotE's the vector of the 48 event probabilities. The 

matrix X (C') contains missing covariates. let X (C)r be the Tth imputation (r = L ... m). 

Let {3 = c(i1o, (31 ..... /11g). be a vector of parameters representing the coefficients of the 

19 variables and the intercept term. For each imputation of the data set write. 

(5.1) 
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F IGURE 5.4: Graphical representa tion of the percentage of missing dat a, by sample. 
Only 44% of samples are complete and a complete ca.':ie analysis is not advisable in such 
a situation. 

where /:Jr arc t be estimated coefficients for the rth imputation. For these regression mod

els. variables arc reduced to form a parsimonious model using the BIC selection criteria. 

When logistic regression is applied to t he multiply imputed data sets. m estimates for 

each covariate arc produced. These regression models were aggregated with a multiple 

imputation inclusion frequency, 'T}. JJ . of 0.5. ~fore details on multiple imputation and 

the aggregation of regression models when it is applied is shown in Chapter 3. 

5.2.3 Final model and prediction 

The final logistic regression model with multiple imputation produces a leave-one-out 

c-ross validation (LOOCV) error rate of 27%. Table 5.1 consists of six clinical variables; 

BRAF mutation . cell size. nodal metastasises (NM). NRAS mutation. pigment and 

primary stage (which has three levels. 1. 2. and 3). T lw analysis showed that while better 

and worse prognosis tumours tended to differ by several features of their antecedent 

primary melanoma. only early stage at presentation (primary stage = 1) and the presence 

of a NM component were predictive of better survival once t he Stage III disease was 

present. The association of a NM component with better prognosis might reflect a 

propensity for a localised rather than spreading growth pattern of the disease. T he 
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Chapter 5. Integrative case study 

Variable Mean Coefficient 

BRAF mutation (Yes/No) -2.74 

Cell Size -1.80 

NM 2.80 

NRAS mutation (Yes/No) -3.19 

Pigment -1.12 

Primary Stage = 2 -3.90 

Primary Stage = 3 -2.13 

TABLE 5.1: Coefficients for the logistic regression model based on the clinical data, 
with m = 5 multiple imputations. 

findings of an association of a NRAS and BRAS mutation with worse survival outcome 

agrees with other published work relating to Stage III melanomas ( Giiran Jonsson et a!., 

2010). 

5.3 Expression data 

This section illustrates some of the typical analysis methods used to understand the 

expression data. These include performing QC analysis, establishing a DE gene list, 

constructing a classification model and verification of the significance of some of the 

results. 

5.3.1 Preprocessing 

The expression data consists of 79 Illumina 'IlluminaHumanv3' arrays. These 79 arrays 

were matched to 79 clinical samples. 

Data from the 79 Illumina beadarrays was preprocessed and analysed using R. Qual

ity control was performed on the chips using the lumi package (Du et a!., 2008) in 

R/Bioconductor (Gentleman et a!., 2004). Based on the quality assessment all arrays 

were deemed suitable for further analysis.. Data normalisation was performed using a 

variance-stabilising transform (VST) (Lin et a!., 2008) and quantile normalisation as 

implemented in the lumi package for R/Bioconductor. To reduce false positives, unex

pressed genes (based on a detection p-value cut-off of0.01, Lin eta!., 2008) were removed 

from the data set. This reduced the number of probes being analysed from 48802 to 

26085, 53% of the total number of probes on the Illumina human array. Throughout 
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the analysis, annotation of the Illumina arrays was performed on illuminaHumanv3. db 

with R version R-2.11.0. More details are shown in Chapter 2, Section 2.3.1. 

5.3.2 DE analysis 

A linear model was applied to identify DE genes between the two groups; died within 

a year due to melanoma and survived more than four years with no sign of relapse. 

The effects of interest were estimated using the log intensity values from the normalised 

arrays for both data sets. For a typical gene, the gene's log intensity value for the sample 

j is denoted as YJ where j = 1, ... , 48. Then, the gene expression for gene i can be linearly 

modelled by 

y=X/3+< (5.2) 

where y is a vector of log intensity values, X is a design matrix, f3 is a vector of 

parameters and E, is a normally distributed error term. The estimable parameters within 

f3 included the intercept (a) and the class effect (~~:) at two levels, with 1 = indicating 

survival greater than four years with no sign of relapse. The values associated with the 

experiment were presented as 

Yl 1 0 

Y2 1 1 

Y3 1 1 

Y4 1 

~I(:)+E. Y5 = 1 (5.3) 

: I 
Y46 J l~ 

0 

Y47 1 

Y4B 1 

The robust linear parameter estimate for {31 was estimated using the functions imple

mented in the limma package (Smyth, 2004). Table D.1 case (f) contains the number 

of DE genes when different cut-off values were used, under this good and bad prognosis 

definition. Genes selected by controlling for 5% FDR were used for downstream analysis, 

including ontology results and further investigations by biologists. 

Conclusions with practical and biological interpretations should examine the data from 

many aspects. To this end, DE analysis has been performed within this analysis to 

deepen our understanding, and gain as much information as possible, regarding the 

behaviour of genes within these two melanoma cases. 
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5.3.3 Classification modelling a nd prediction 

Genes used to construct a classifier. known as the 'molecular signature'. arE:' not neces

sarily the same DE genes selectC'd above. Genes were selected for the molecular signature 

via the 'median robust' method. Genes were ranked based on the difference of the two 

group medians, (igood - Xpoor) · where x represents the median of a group. Diagonal 

linear discriminant analysis (DLDA) (Hastie et al. . 2009) was used as a classifier and 

the number of genes in the molecular signature varied from 10 to 500 in increments of 10 

genes. LOOCV was employed to estimate the prediction accuracy for the optimal num

ber of gene's in the signature. LOOCV was used above other cross-validation methods 

because of the small number of samples in the study. such a cross-validation method 

allows for thC' largest number of samples to be used to construct the <:lassifier. yet still 

retains an unbiased performance measure. Other forms of feature selection and classi

fication methods were employed. but such approaches did not produc<' greater accuracy 

(Appendix D). 

0 4!> 

0 40 
.!l e 

~:: ~I ~ 0 25 

0 20 

01!> 

Error rates for selected molecular signature 

I I I I I ' I I I t I I I I I I I I I I I I I I I I ' I I I ' I I I I I I I I I I I I I I I I II I I 

10 50 90 130 170 210 250 290 330 370 410 450 490 
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FIGU HE 5.5: The varying LOOCV error rates as the number of genes used to construct 
a DLDA classifier changes from 10 to 500. The lowest error ratf's occur when 10 genes 
(22% LOOCV error) and 60 genes (25% LOOCV error) are used . 

Figure 5.5 shows how the LOOCV error rate (y-axis) varies as t he number of genes used 

to construct the classifier range from 10 to 500 (.c-axis). genes were ranked based on the 

median differcnc<' between survival groups. Using LOOCV. a molecular signature of 10 

genes produced an error rate of 22% and a molecular signature of 60 genes produced an 

error rate of 25%. 
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5.3.4 Functional evaluation of the DE genes 

Ontology and KEGG analysis The ontologies and Kyoto Encyclopaedia of Genes 

and Genomes (KEGG) pathways of the selected genes were analysed, using both gene set 

tests (CST) and gene ontology (GO) analysis. CST were performed on ranked ontologies, 

including biological process (BP), cellular component (CC), molecular function (MF) 

and KEGG pathways of the expression data for both consistently low and high ranked 

ontologies using gene set tests implemented in limma, based on the robust logFC statistic. 

For the GO analysis the DE gene list obtained for the 48 samples using robust regression 

as well as the selected molecular signature, were analysed to see if the gene ontologies, 

or KEGG pathways observed were over-represented in the selected genes, for both up 

and down regulated genes using a hypergeometric tests (Beissbarth and Speed, 2004). 

Ontologies with an overall probe count of less than 5 were excluded from the analysis. 

Validation of molecular signature and ontologies Validation of the molecular 

signature was performed using published gene signatures in a classification paradigm, 

discussed in the following section with complete details in Sarah-Jane Schramm et a!. 

(2011). The signature found for Mann et al. (2011) is a highly immunologically driven 

gene list. Such findings agree with other published works including that of Goran Jonsson 

et a!. (2010), who clustered samples with survival times based on immunological status. 

The most highly significant ontology in the BP network was Immune:TCR signalling 

with many other significant ontologies being linked to immune response. The link to 

immune response is well documented in melanoma research, it is also linked to other 

tumour types. For example Berezhnaya (2010); Finn (2008); Goran Jonsson eta!. (2010) 

and Tiwari (2010) considered the link between the tumour and the immune system. More 

detail of this validation is shown in Mann eta!. (2011). 

5.3.5 Integration and validation of multiple molecular signatures 

As discussed in Chapter 4 there are multiple ways of integrating data and performing 

meta- and mega-analysis. To add further rigour to the research being applied on the 

melanoma data, the gene lists obtained for classification were compared to other pub

lished gene lists where research purposes coincided with the current study. In Sarah-Jane 

Schramm eta!. (2011) meta-analysis was used as a validation tool to compare the molecu

lar signatures from multiple expression array experiments to establish if it were possible 

to construct a molecular classification signature similar to that obtained for breast can

cer in van't Veer et a!. (2002). Tima.r et a!. (2010) compared gene signatures from four 

melanoma studies (Bittner et a!., 2000; Thomas John et a!., 2008; Mandruzzato et a!., 
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2006; Winnepenninckx et al., 2006) and found that there was little overlap between the 

published signatures. In recent months, several new studies of metastasised melanomas 

have been published. Sarah-Jane Schramm et al. (2011) reviewed these recent works 

and performed a formal and systematic cross-validation meta-analysis study to compare 

the capacity of each signature to predict survival outcomes on the other examined data 

sets. This cross-validation meta-analysis is described below. 

Meta-analysis method Five published data sets were obtained, which have been 

discussed in Chapter 2 and refered to here as the Bogunovic, John, Jonsson, Mann 

and Winnepenninckx data. The data was preprocessed according to platform type and 

requirements. Each data set consisted of two groups, a good prognosis group and a 

poor prognosis group. More details regarding the individual data sets, group definitions 

and preprocessing are shown in Sections 2.3.1 and 2.3.2. Each published data set was 

coupled with the published signature genes list, these signature gene lists were lists 

of Entrez IDs. The main question to be considered is whether the signature gene list 

had predictive capabilities outside of the original data set it was developed under. The 

predictive power of each of the five published signature gene lists in turn were evaluated 

based on the other four gene expression data sets, such that: 

1. For each study (data set A), a published gene list was obtained from the presented 

signature; this is called the gene list obtained from data set A, resulting in the 

feature vector. 

2. For another study (data set B), a published expression data set was obtained from 

a public repository. 

3. A classification rule using SVM was developed using the expression results from 

data set B, but the feature list from data set A. 

4. This classification rule was tested on data set B applying LOOCV, to estimate the 

misclassification error rate for patient outcome for the gene signature from data 

set A tested on data set B. 

Figure 5.6 is a graphical representation of the comparison and classification process used. 

Results Table 5.2 contains the LOOCV error rates for the different gene signatures 

tested on the other expression data. The greyed boxes represent the LOOCV error rate 

when the signature gene list is used to classify the original data set that it was developed 

on. Notably, several of the signature lists validated well when the other studies were 

classified by them, with misclassification error rates as low as 0.08 (when the Jonsson 
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FIGURE 5.6: Graphical reprE'sentation of steps involved when establishing how well 
a signature gE'ne list classifies a different data set. The aim of this comparison is 
to establish if published gene lists are transferable across multiple data sets applying 
similar experimental questions. 
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signature gene list was used to classify the John data set). Low error rates confirm 

the biological relevance of the signatures in question. Overall the study with the lowest 

average error rate for its published gene signature was John (0.26), which performed 

well except in the case of the Winnepenninckx expression data. This observation may 

be a reflection of the stage differences between these two data sets (the Winnepenninckx 

data involves the study of primary melanoma sites where as all other studies examine 

more advanced tumour stages and metastasised sites). Overall there is a surprising 

degree of agreement between all the studies when classification rules were developed 

using externally obtained gene lists. 

5.4 Methods for data integration 

Considered here are two methods of integration; (i) pre-validation of the microarray 

vector and then the application of logistic regression, and (ii) random forests. If there 

are n samples, let X(C) be the matrix of clinical variables (n x Q) and let x<El be the 

matrix of gene expression values (J x n). If y is a vector of clinical outcomes, in this 

case good/bad survival prognosis, an integrative predictive model would combine these 

two elements. 

In this specific context the clinical variables contain missing values. To this end, all 

integrative methods need to be able to be applied through multiple imputation. Com

bining models, other than in a regression context, is challenging for multiply imputed 

models so. As a results of these challenges modelling methods are limited. Although 

there are many other integrative methods recently developed, it is because of missingness 

that they have not been implemented. 

5.4.1 Pre-validated vector and regression 

'Pre-validation' is a method developed in Tibshirani and Efron (2002), where the gene 

expression molecular signature is used to make a prediction for the samples within 

a study. The method is similar to that of 'staking' detailed in Wolpert (1992) from 

machine learning. The development of pre-validation came about because of the concern 

of biasing the effects of the expression data while integrating clinical and expression data 

together in a regression context, as performed by van't Veer et a!. (2002). 

In the van't Veer et a!. (2002) study a 70 gene molecular signature was designed and 

the samples were classified using this rule, producing A, the vector of estimates with 

one estimate for each sample. The vector was added to a regression model containing 
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clinical variables, and the coefficients for each variables were assessed before and after 

the introduction of the vector A into the model. The significance of these variables and 

the adjusted size of the coefficients was used to argue for the importance of the molecular 

signature in class prediction over and above that of the clinical variables. Holling and 

Tibshirani (2007) and Tibshirani and Efron (2002) argue that such a method favourably 

biases the vector of estimates developed by the molecular signature as the same samples 

were used to construct the signature and be predicted by the signature. 

The aim of pre-validation is to construct a 'Jess biased' microarray predictor (Tibshirani 

and Efron, 2002), to be fit alongside the clinical variables. The process can be considered 

in five steps, which is graphically represented in Figure 5.7: 

1. Divide the cases into k equal parts. 

2. Set aside one part. 

3. Using the other k- 1 parts, obtain a molecular signature and classification rule. 

4. Use this rule to predict the kth part. 

5. Repeat steps 2-5 for all parts, resulting in a pre-validated vector of estimates for 

the microarray vector, Apv. 

To combine Apv with the Q selected clinical variables from X, a regression model can 

be developed, 

(5.4) 

where (3q is the coefficient for the qth variable (q = 1, ... Q) in the regression, and xq,j 

is the jth sample's observation for the qth variable. Variables in the integrated regres

sion model are typically selected independently from prior investigation, so no variable 

selection takes place. Pre-validation is not a substitute when an independent data set 

is available. Tibshirani and Efron (2002) advise that k # n, which would result in a 

highly variable LOOCV pre-validation vector. Multiple imputation can be applied to 

the regression model, with m regression models being constructed for them imputations 

and then aggregated using an inclusion frequency. The pre-validated variable Apv is not 

included in the imputation process but is treated as a complete variable for modelling 

purposes. Hence this allows the production of an integrated regression model making 

use of the pre-validated microarray vector and the clinical variables. 
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5.4.2 Random forests 

'Random forests', developed by Breiman (2001) is an ensemble method of classification 

trees. It is possible to use random forests in an integrative paradigm. This is possible 

because one of the strengths of random forests and classification trees is that variables 

with vastly different ranges or distributions do not dominate the developed model. This 

allows direct modelling of the expression values with the clinical values. The flexibility 

of such an approach allows for several options regarding the clinical and expression 

variables. For example, it is possible to construct random forests on the selected clinical 

variables as well as the selected expression variables. Further, it is possible to make 

use of the pre-validated vector, Apv, with the clinical variables. Out-of-bag error rates 

and importance scores (Breiman, 2001) can be used to evaluate the model's predictive 

capabilities and the importance of the used variables. 

Although Breiman et a!. (1984) propose that imputation is possible with classification 

trees, this is achieved through surrogate splits. Surrogate splitting is a form of single 

imputation and in this thesis it is conjectured that an adaptation of random forests 

with multiple imputation will in general improve its use in the presence of missing data, 

allowing for the required increase in variability (Chapter 3). Such conjecture is similar 

to Ding and Simonoff (2010) and Feelders (1999). To compensate for the shortcomings 

of single imputation the method of multiply imputed random forests was developed. 

This is a novel method not yet fully explored. If in a traditional random forest design B 

trees are constructed, if there are to be m multiple imputations, mE trees are built. To 

incorporate multiple imputation into random forests, an additional layer of randomness 

can be added into the random forest design. Here prior to the construction of the forest, 

one of the m imputed clinical data sets is selected, and a random forest is developed 

on only B trees. This process is repeated m times. The eventual product is m results 

incorporating the aggregation of out-of-bag error rates, importance scores or final voted 

classes. Such a method is illustrated in Figure 5.8. 

5.5 Integration of clinical and expression data 

To integrate the clinical and gene expression data, multiple variations of the pre-validated 

method and multiply imputed random forests were applied. Table 5.3 includes a sum

mary of the seven used methods. These methods were applied because they could be 

implemented with multiple imputation resulting in a final aggregated model. The success 

of the logistic regression methods were very similar, with final 6-fold 3 cross-validation 

3 6-fold pre-validation was used because five to ten-folds were suggested in Tibshirani and Efron 
(2002). Moreover, 48 is divisible by six, allowing for computational ease. 
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Modeling Number Pre-validation of 
Data 

method of genes molecular signature 

Clinical Logistic regression none no 

Clinical and expression Logistic regression 10 yes 

Clinical and expression Logistic regression 60 yes 

Clinical and expression Multiply imputed random forests 10 no 

Clinical and expression Multiply imputed random forests 60 no 

Clinical and expression Multiply imputed random forests 10 yes 

Clinical and expression Multiply imputed random forests 60 yes 

TABLE 5.3: Methods used to integrate clinical and expression data. 

error rates being between 23% and 37%. The out-of-bag error rates obtained from the 

random forest methods with multiple imputation were highly unstable. Due to this in

stability, the method was not pursued to obtain a final model and is now the subject of 

further research. 

5.5.1 Clinical and expression integration 

The final method selected to integrate the clinical and gene expression data was the pre

validation method, with the pre-validated vector obtained using the 60 gene signature 

(the third method presented in Table 5.3). The pre-validation method was applied in a 

three fold manner: 

1. In the first stage a regression model is obtained based only on the clinical data. 

Variables are selected, in this case making use of the BIC criterion, and multiple 

imputation. 

2. The second stage makes use of a k-fold cross validation process (k = 6) based 

on the molecular signature and classification rule to obtain an expression data 

class estimate. This expression data class estimate, known as the 'pre-validation 

estimate' is a class vector (in this case consisting of O's and 1's). 

3. The selected clinical and pre-validated variables were integrated into a logistic 

regression model, under m = 5 multiple imputations using Amelia II, validated 

using a 6-fold cross validation. 
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Variable Mean Coefficient 

BRAF mutation (Yes/No) -2.92 

Cell Size -2.46 

NM 1.91 

NRAS mutation (Yes/No) -2.75 

Pigment -1.12 

Primary Stage = 2 -3.45 

Primary Stage = 3 -1.07 

Pre-validation estimate 2.39 

TABLE 5.4: Coefficients for the logistic regression model based on the clinical data 
and the pre-validated expression data vector, with m = 5 multiple imputations. 

5.5.2 Final model and prediction 

The final 6-fold cross-validation error rate for this model is 23%, and the model coeffi

cients are reported in Table 5.4. Notably, none of the effects associated with the clinical, 

pathologic and mutation variables were weakened significantly by the incorporation of 

the gene expression pre-validated variables (compare Table 5.1 and Table 5.4). This 

indicates that the gene expression profiling signature does not specifically reflect any of 

the selected clinical variables, but has an independent prognostic value. For example it 

cannot simply be a molecular footprint of BRAF or NRAS pathway mutation. 

To summarise, a model was derived that is effective in identifying patients with Stage 

III melanomas who have good long-term survival prognosis, after nodal resection. This 

integrative model takes into account clinical, pathologic, gene mutation and gene ex

pression data. Through ontology investigations it is clear that the gene expression 

signature is indicative of immune response activation, agreeing with other work in the 

field (Berezhnaya, 2010; Finn, 2008; Goran Jonsson et al., 2010; Tiwari, 2010). 

5.6 Publications 

This chapter is the detailed analysis for results under review in Mann et al. (2011) 

and also covers work published in Sarah-Jane Schramm et al. (2011). Both analyses 

were conducted by the author with Professor Graham Mann's groups at the Westmead 

Millennium Institute, Australia and the Melanoma Institute Australia, in particular 

Professor Mann and Ms Sarah-Jane Schramm. 
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Publications 

• S.-J. Schramm, A.E. Campain, R. Scolyer, Y.H. Yang and G.J. Mann (2011) 

Review and cross-validation of gene expression signatures and melanoma prognosis. 

132:27 4-283 Journal of Investigative Dermatology. 

Manuscripts under review 

• G.J. Mann, G.M. Pupo, A.E. Campain, C.A. Carter, S.-J. Schramm, A. Pianova, 

S. Gerega, C. De Silva, K. Lai, J. Wilmott, M. Synott, P. Hersey, R.F. Kelford, J.F. 

Thompson, Y.H. Yang and R.A. Scolyer (2011) BRAF mutation, NRAS mutation 

and absence of an immune-related expressed gene profile predict poor outcome in 

stage III melanoma. Under Review, Journal of Clinical Oncology. 
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Step 1: 

Step 2: 

Step 3: 

Step 4 : 

Expression data 

Divided into k equal parts 
containing for example j samples each 

Test set 

k-1 parts become the training set 

Test rule 
using test set 

Retain prediction for each of 
the j samples in test set. After 
k iterations this will result in a 
complete prediction vector with 
one prediction for each sample 

~ 

t 

t 

Step 5: 

Repeat with 
each of the k 
parts as test 
set in turn 

FIGURE 5. 7 : Graphical representation of the pre-validation method (Tibshirani and 
Efron, 2002). 
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Chapter 6 

Conclusion 

The integration of gene expression and clinical data has great potential to deepen our 

understanding of complex diseases. However, there are still many issues relating expli

citly to clinical or expression data that need to be matured before such goals can be 

reached. This thesis has considered some of these problems and offers solutions that are 

readily applicable. Studied in particular are the problems of; missing data, the import

ance of building a stable model as well as gene expression integration. Throughout this 

thesis, each of these statistical problems was motivated by real data, highlighting the 

relevance of such solutions to current research. 

The concept of imputation and multiple imputation is well established in statistical 

research. Chapter 3 addressed three less well examined questions: how to compare mul

tiple imputation methods, what is the best such method, and does a critical point exist 

beyond which missingness is too great to trust downstream analysis? Missing data was 

induced within a complete data set to simulate missingness at particular proportions. 

Assessments of the multiple imputation methods were made possible by examining the 

changes in distributions, as missingness increased, for each imputation method and con

sidering the information lost through the degradation of classification accuracy. MICE 

was found to be the most appropriate multiple imputation method of those compared. 

It was confirmed that a missingness rate of 30% or less can be adequately handled by 

multiple imputation. 

Construction of a stable model is an important concept in statistics. Unstable models 

are produced when small changes in the data set result in vast changes to the final 

model. The unstable nature of some models can be a result of many elements including; 

high amounts of correlation between variables, that is the occurrence of multicollinear

ity within the final models, and/or high levels of class imbalance within the response 

137 



Chapter 6. Conclusion 

data. The B-MI approach was presented within Chapter 3. This is a variable selec

tion method that results in stable variables through the implementation of bootstraps. 

Stable variables are selected with an appropriate choice of TB, the inclusion frequency 

of variables based on bootstrapped samples. A simulated data set with missingness in 

the explanatory variables was developed from a known model. The B-MI method and 

other commonly used methods in the presence of missing data were compared. The 

B-MI method was shown to be the most effective method in selecting the original design 

model and resulted in stable variables being selected. The data set within this simulation 

was highly unbalanced, and it was shown that the use of weights within the regression 

modelling process enhanced both the predictive capabilities of the models as well as 

increased the frequency of selecting the known model coefficients. The B-MI approach, 

and the comparison of multiple imputation methods is presented also in Campain et a!. 

(2011). 

The analysis of the EPU data, in Chapter 3, showed how both missing data and the 

construction of a stable model can be appropriately handled in practice. The final model 

developed can be used in a clinic and agrees with current clinical understanding. 

Integrating microarray data is becoming an important area of research. This is especially 

true as the amount of publicly available microarray data increases. Public data can be 

used in a number of ways, for example; (i) in a validation context, (ii) to increase 

the power of current projects, or (iii) to address a differing question from the original 

analysis. Chapter 4 explored the integration of microarray data sets at two levels; 

high level and low level integration, known as meta- and mega-analysis respectively. A 

new meta-analysis method, mDEDS (Campain and Yang, 2010; Yang eta!., 2011), was 

explored within this chapter and was compared to other meta-analysis methods through 

a simulation study and a classification study. Meta- and mega-analysis methods were 

compared through a hypertension study, making use of four publicly available data sets 

(Campain et a!., 2010). This comparison highlighted that there are different strengths 

to the different integration methods and the use of such approaches depends on the 

purpose of the study, the research question, as well as the data available to integrate. 

Chapter 5 was a case study where the different issues addressed within this thesis came 

together. The Mann data contains clinical data, with missing values as well as expression 

data. The desire of the clinicians was to develop a predictive model that could incorpor

ate these two elements with the potential for clinical use. Integrating such data, with 

the use of multiple imputation and a pre-validation vector, allowed for the development 

of a model that agreed with current clinical understanding. This model was able to be 

validated by external expression data and offered an increase in predictive capabilities 

in a clinical context (Mann eta!., 2011). 
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This thesis contributed to the solutions of important challenges in the analysis of clinical 

and microarray data and their integration, including missing data, class imbalance, 

unstable model selection, meta- and mega-analysis and the exploration of integrative 

techniques that include multiple imputation. There are still many open questions in this 

field of research. Such questions include: the handling of mismatched probe sets within 

microarray integration and the notion of a many-to-one mappings of probes to genes 

and gene regions; the incorporation of multiple imputation into various classification 

methods as well as the integration of clinical and expression data and; the integration of 

these two data types with new technologies emerging in bioinformatics such as genome 

sequencing and mass-spectrometry data. 
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Further results from Chapter 2 

A.l Hypertensive data sets quality control and analysis 

plots 

For each of the four hypertensive data sets, quality control (QC) and individual analysis 

was performed. Figures A.1~A.4 contain four of the QC images used to determine the 

quality of the data set in question and two graphical tools for interpretation. Each figure 

includes: 

(a) Spatial images for each array in the analysis. 

(b) Relative log expression boxplots for each of the arrays in the analysis (RLE 

plots), the hypertensive samples are in red and the normotensive samples are in 

green. 

(c) NUSE plots for each of the arrays in the analysis, the hypertensive samples 

are in red and the normotensive samples are in green. 

(d) Hierarchical clustering plots for individual hypertensive/normotensive studies. 

Top 500 most variable genes are used, judged on overall variability. The Euclidean 

distance was used as the distance metric with the complete agglomeration method. 

(e) MA plots showing the average expression value (x-axis) against the log2 (FC) 

values (y-axis). Genes with a positive FC greater than 1.5 are highlighted in red 

and genes with a negative FC less that -1.5 are highlighted in green. 

(f) Volcano plot showing the log2 (FC) values versus the -log10(p-value). 
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(a) Spatial image plots 
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F IGURE A.l: QC and analysis plots for the 15 samples in the Cerutti data analysis. 
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(a) Spatial image plots 
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F IGURE A.3: QC and analysis plots for t he 6 samples in t he Grayson data analysis. 
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House-keeping gene symbols 
ABLl ADAM15 ADAMTSL2 ADAR ADRBKl AES 
AFG3L2 AHSAl AIFl ALG3 AP2Ml AP2Sl 
API5 ARAF ARHGDIA ARHGEF7 ARL2 ARPC2 
ARPC3 ARPC4 ATF4 ATP5Al ATP5G3 ATP51 
ATP5J2 ATP50 ATP6AP1 ATP6VOB ATP6V1El ATP6V1F 
B2M BANFl BECNl BLOClSl BMil BSG 
BUD31 ClQLl C21orf33 C2orf24 CANX CAPNSl 
CAPZB CASC3 CCBP2 CCT3 CCT7 CD40 
CDA CENPB CHMP2A CIZl CLOCK CLSTNl 
CLTA CNTNl COL6Al COPE COPS6 COX6Al 
COX7A2L COX8A CSFl CSTB CTBPl CTNNBl 
DADl DAP DAXX DAZAP2 DDOST DDT 
DHCR7 DKK4 DNPEP DRAPl DULLARD E2F4 
EFNA3 EIF3C ElF 3D EIF3F EIF3G EIF31 
EIF3K EIF4A2 ERH ERP29 EXTL3 FBL 
FBX07 FCER2 FOLRl FOXMl FUS GASl 
GM2A GNB2Ll GOT2 GPI GPR56 GRIK5 
GTPBP6 GUKl H2AFY HADHA HADHB HAXl 
HDGF HINTl HSPA5 HYOUl ID3 IDH3B 
IER2 ILK ISLR JAGl JAKl JTB 
JUND KARS KIAA0174 KIAA0494 KIFlC LAMPl 
LASPl LMTK2 LTBP4 MANF MAP4 MAZ 
MC2R MCLl MCM3AP MDHl MFN2 MFSDlO 
MGATl MLEC MLF2 MPG MRC2 MRPL23 
MRPS12 MSN MT3 MTAl MVK MYST2 
NDUFAl NDUFB7 NDUFCl NDUFS5 NDUFVl NEDD8 
NFKBIA NONO ODCl OTUBl PABPNl PAK4 
PAX8 PCGF2 PDAPl PDCD6 PFDN5 PFNl 
PHB2 PHFl PICKl PINl PITPNMl POLR2A 
POLR2F POLR2L PPPlRlO PRKCSH PRKD2 PRPF8 
PRPH PSMBl PSMB2 PSMB4 PSMB7 PSMDll 
PSMD2 PSMD3 PTDSSl PTOVl PTTGliP PUF60 
RASSF7 RBM8A RERE RHOA RNF44 RNHl 
RPL13 RPL18 RPL3 RPL36AL RPNl RPSlO 
RPS16 RPS5 RUVBL2 SAFB SAP18 SARS 
SCAMP3 SDC3 SDHA SEPT2 SEPT7 SFRS17A 
SGSH SLC25Al SLC25All SLC6A7 SLC6A8 SNDl 
SNRPA SNRPD2 SODl SPAG7 SREBFl SSR2 
ST5 SYNCRIP SYNPO TACCl TADA3L TAGLN 
TAL DOl TAPBP TAX1BP3 TBCB TCF25 TEX261 
TIMM44 TMBIM6 TPMT TRAPl TSFM TSHZl 
TSTA3 TTCl TUFM UBE2D2 UBE21 UBE2M 
UQCR UQCRCl UQCRFSl VAMP3 VARS VEGFB 
WDRl XBPl YARS ZFPLl ZNF592 ZNHITl 

TABLE A.l: 264 human house-keeping genes with rat homologs used in the RUV 
mega-method adjustment and as evaluation genes when comparing different 
mega-analysis methods. 
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B.l Further results from imputation comparison study 

In the main text for the simulated imputation results in Section 3.2.4, results from 

two variables, 'past miscarriages' and 'clots' were presented. For completeness, the 

simulation results for the remaining 10 variables are included. 

Variables which are consistently redundant in the final model yield results similar to 

'past-miscarriages', include: 

Presence of abdominal pain, 

Maternal age, 

CRL, 

Consistent with menstrual dates, 

Number of natural deliveries and 

Smoker. 

Variables which are important in the final model produce results similar to 'clots', in

clude: 

Presence of bleeding, 

FHR, 

mean GS and 

Gestational age in days. 
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FIGURE B.l: Bootstrapped distributions and boxplots for estimated coefficients for 
the 'presence of abdominal pain' variable as the amount of missingness increases. 
Boxplots depict the log-ratios for imputed data set coefficients to complete data set 
coefficients, paired by bootstrap draw. Imputation methods used include Amelia II, Mi 
and MICE. 
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FIGURE 8.2: Bootstrapped distributions and boxplots for estimated coefficients for 
the 'maternal age' variable as the amount of missingness increases. Boxplots depict 
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F IGURE B.4: Bootstrapped distributions and boxplots for estimated coefficients for the 
'CRL' variable as the amount of missingness increases. Boxplots depict the log-ratios 
for imputed data set coefficients to complete data set coefficients, paired by bootstrap 
draw. Imputation methods used include Amelia II, Mi and MICE. 
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F IGURE B.5: Bootstrapped distributions and boxplots for estimated coefficients for the 
'consistent w ith menstrual dates' variable as the amount of missingness increases. 
Boxplots depict the log-ratios for imputed data set coefficients to complete data set 
coefficients, paired by bootstrap draw. Imputation methods used include Amelia II, Mi 
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FIGURE B.6: Bootstrapped distributions and boxplots for estimated coefficients for the 
'FHR' variable as the amount of missingness increases. Boxplots depict the log-ratios 
for imputed data set coefficients to complete data set coefficients, paired by bootstrap 
draw. Imputation methods used include Amelia II, Mi and MICE. 
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FIG URE B .8: Bootstrapped distributions and boxplots for estimated coefficients for the 
'gestation a l age in days' variable as the amount of missingness increases. Boxplots 
depict the log-ratios for imputed data set coefficients to complete data set coefficients, 
paired by bootstrap draw. Imputation methods used include Amelia II, Mi and MICE. 
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FIGURE B.9: Bootstrapped distributions and boxplots for estimated coefficients for 
the 'nu mber of natural deliveries' variable as the amount of missingness increases. 
Boxplots depict the log-ratios for imputed data set coefficients to complete data set 
coefficients, paired by bootstrap draw. Imputation methods used include Amelia II, Mi 
and MICE. 
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B.2 Further results from the B-MI approach 

The B-~II approach as presented in Section 3.4 can be applied with and without weights. 

Table B.1 contains the inclusion frequencies for varying 'TJ3 values when weights are not 

used in the logistic regression model. The variables have been ranked in order of stability 

across all considered 'TJ3 values. The ranking of variables based on stability suggests that 

the variable 'E' is a stable variable when 7B ::::; 0.70. but this variable is not from 

the simulated model. Moreover, variable 'E' is consistently more stable, overall. than 

variable ·P'. a variable present in the simulated model. The inclusion of weights in the 

model. presented in the main text, appears to increase the likelihood of selecting the 

model from which the data was simulated. 

B-MI- TB 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 0.98 1.00 
H* 100.00 99.60 99.GO 99.20 99.20 !)9.20 98.00 89.60 70.40 0.00 
i\1* 100.00 100.00 100.00 98.80 98.80 96.40 92.40 76.00 46.40 0.00 
T* 99.GO 99.20 99.20 97.60 94.80 90.40 84.40 66.40 38.40 0.00 
C* 96.00 92.40 85.20 77.20 66.80 52.80 33.20 14.80 3.60 0.00 
G* 88.80 86.80 81.60 74.80 64.00 50.80 38.00 22.40 7.60 0.00 

E 82.00 74.00 67.60 54.40 46.80 35.60 19.GO 9.60 3.20 0.00 
P* 82.80 76.80 65.20 53.60 44.80 32.40 25.20 9.60 2.00 0.00 
D 28.00 20.40 14.80 10.80 8.80 4.40 2.00 0.40 0.00 0.00 
B 18.80 14.40 10.00 6.40 4.00 2.80 1.20 0.80 0.40 0.00 
L 24.00 20.40 12.40 7.20 4.80 1.20 0.80 0.00 0.00 0.00 
u 16.00 9.20 4. 0 4.00 2.00 1.20 0.40 0.00 0.00 0.00 
s 1.60 1.20 0.40 0.40 0.00 0.00 0.00 0.00 0.00 0.00 
F 2.40 1.20 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Q 1.20 0.80 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
J 1.60 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

N 0. 0 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
K 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TABLE B.l: Simulated data: Inclusion frequencies for varying inclusion threshold 
Ta, when weights are not used in the B-MI model. Variables are ranked in order of 
stability across all considered rs valucs. For each value of Ts the variables considered 
stable. as their inclusion frequency is aboYe l / 2TB are highlighted. 
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C.l Additional results for Case study 1 

ROC Curves for meta-analysis on simulated data sets 
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FIGURE C.l: ROC plots for simulated data using different meta-analysis methods for 
the 10% DE gene level (5% true, 5% platform specific DE genes) simulation. For further 
detail see Section 4.4. 
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ROC Curves for meta-analysis on simulated data sets 
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FIGURE C.2: ROC plots for simulated data using different meta-analysis methods for 
the 2.5% DE gene level (1.25% t rue, 1.25% platform specific DE genes) simulation. T he 
lower plot is a zoomed in version of the upper plot . For further detail see Section 4.4. 
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ROC Curves for meta-analysis on simulated data sets 
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F IGURE C.3: ROC plots for simulated data using different meta-analysis methods for 
the 4% DE gene level (2% true, 2% platform specific DE genes) simulation. The lower 
plot is a zoomed in version of the upper plot. For further detail see Section 4.4. 
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Further results from Chapter 5 

D.l Different class definitions for Melanoma case study 

In Chapter 5, the samples were reduced to the two extreme cases. Samples were defined 

as having a 'good' prognosis if patients survived more than four years with no sign of 

relapse (n = 23), and a 'bad' prognosis if they died within a year due to melanoma 

(n = 25). This class distinction left n = 48 samples. 

Different class definitions were explored for this data set during the initial phase of the 

analysis. Table D .1 contains the six different class definitions explored. A stringent 

class definition, case (f), was selected so that a strong molecular signature was obtained, 

resulting in a reasonable number of DE genes for downstream analysis. Six different 

class definitions were used: 

(a) Good prognosis- Survived four years (n = 34); 

Poor prognosis- Died for any reason within two years (less than 24 months) (n = 

37). 

(b) Good prognosis - Survived four years ( n = 34); 

Poor prognosis- Died for any reason within one year (less than 12 months) (n = 

26). 

(c) Good prognosis- Survived four years (n = 34); 

Poor prognosis - Died due to melanoma within two years (less than 24 years) 

(n = 34). 

(d) Good prognosis - Survived four years ( n = 34); 

Poor prognosis - Died due to melanoma within one year (less than 12 months) 

(n = 25). 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(e) Good prognosis - Survived four years with no relapse; ( n = 23) 

Poor prognosis - Died due to melanoma within two years (less than 24 months) 

(n = 34). 

(f) Good prognosis- Survived four years with no relapse; (n = 23) 

Poor prognosis - Died due to melanoma within one year (less than 12 months) 

(n = 25). 

Definition 

Good prognosis Bad prognosis FDR < 0.05 FDR < 0.1 

Survived four years 
Died for any reason 

0 0 
within two years 

Survived four years 
Died for any reason 

62 127 
within one year 

Died due to melanoma 
Survived four years 0 14 

within two years 

Died due to melanoma 
Survived four years 34 115 

within one year 

Survived four years Died due to melanoma 
238 512 

with no relapse within two years 

Survived four years Died due to melanoma 
253 512 

with no relapse within one year 

TABLE D.l: Number of genes selected as DE using different class definitions and 
selection criterion. 

D.2 Different feature selection methods for expression data 

In Chapter 5, feature selection of the classification of the expression data was performed 

using a median robust method, where genes were ranked based on the differences between 

the two group medians, that is (igood -Xpoor), where x represents the median of a group. 

Two other common feature selection methods were used; (i) genes were ranked based 

on their robust linear coefficients, applied through limma (Smyth and Wettenhall, 2003) 

and; (ii) genes were ranked based on the ratio of their between sum of squares value over 

their within sum of squares value (Bss/Wss) (Dudoit and Fridlyand, 2003). Results of 

these feature selection methods are seen in Figure D .1. For each of these three methods 
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FIGURE D .1: Varying feature selection methods for the classification of the expression 
samples from the melanoma case study, where a good prognosis is defined as surviving 
with no sign of relapse for four or more years, and a bad prognosis is defined as dying 
due to melanoma within a year. 

the DLDA classifier was used to construct the discriminant rule based on the top ranked 

genes. The number of genes used varied from 10 to 500 along the horizontal axis, and 

error rates were obtained using LOOCV. along the vertical axis. 
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