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Abstract

In spite of the popularity of model calibration in �nance, empirical researchers have
put more emphasis on model estimation than on the equally important goodness-of-�t
problem. This is due partly to the ignorance of modelers, and more to the ability of
existing statistical tests to detect speci�cation errors. In practice, models are often
calibrated by minimizing the sum of squared di¤erence between the modelled and ac-
tual observations. It is challenging to disentangle model error from estimation error
in the residual series. To circumvent the di¢ culty, we study an alternative way of
estimating the model by exact calibration. We argue that standard time series tests
based on the exact approach can better reveal model misspeci�cations than the error
minimizing approach. In the context of option pricing, we illustrate the usefulness
of exact calibration in detecting model misspeci�cation. Under heteroskedastic ob-
servation error structure, our simulation results shows that the Black-Scholes model
calibrated by exact approach delivers more accurate hedging performance than that
calibrated by error minimization.

1 Introduction

Calibration is a method to obtain the parameters of a parametric model. Calibration is
essential when it is di¢ cult, if not impossible, to estimate the model�s parameters directly
using historical time series data. For example, in equity option pricing calibration can
be used to estimate the probability of a severe market crash, a rare event. Directly
estimating the probability of a market crash using time series data is problematic due to
structural shifts in the economy and the sparsity of market crashes in time series data.
Other examples include estimating the probability of a �rm�s or country�s debt defaulting
using credit default swaps (CDS) or the probability of a default contagion occurring using
collateralized debt obligations (CDOs). Even when it is not essential, calibration is often
used for convenience. Common examples include estimating a stock return�s volatility
using options or the expected in�ation rate using Treasury in�ation protected securities
(TIPs).

The problem with using calibrated parameters is that the calibration procedure embeds
any model misspeci�cation into the estimated parameter. This generates two di¢ culties:
(1) if the purpose of the calibration is to test the model, then calibration may lead to an
inappropriate acceptance (and usage) of the model, and (2) if the purpose is to use the
calibrated parameters for a secondary reason, the parameter estimates may be signi�cantly
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biased. Both of these di¢ culties were present in the use of calibrated parameters by the
�nancial industry prior to the 2007 credit crisis, and there is signi�cant evidence that this
misuse was a contributing cause of the crisis (see Jarrow (2011)).

There are two methods for estimating calibrated parameters: exact and error minimiz-
ing. Under exact calibration, the model parameters are the exact solution to an equation
that matches the observed value to its theoretical model counterpart. Under error min-
imizing calibration, the model parameters are the error minimizing solution to a set of
equations matching the observed values to their model counterparts. Of course, if the
model is properly speci�ed, then error minimizing calibration is equivalent to exact cali-
bration. The two approaches only di¤er when the model is misspeci�ed (this is the strictest
sense of correct speci�cation).

Although calibration is widely used in both practice and academics1, the econometric
foundations for calibration is lacking and formal statistical tests for the goodness-of-�t of
a calibrated model unavailable. The purpose of this paper is to �ll this gap by providing
a set of statistical procedures for testing a calibrated model�s validity, and consequently
for testing the validity of the calibrated parameters themselves. For the reasons previ-
ously discussed, without loss of generality, we focus on exact calibration. For clarity of
presentation, we also focus on the use of calibration for option pricing models, although
the statistical procedures can be more widely applied.

An outline for this paper is as follows. Section 2 discusses calibration in the con-
text of option pricing. Section 3 decomposes the calibration estimation errors excluding
observation noise. The acceptable error structure (properties) of a �good� model, for
misspeci�cation testing, is contained in section 4. Section 5 adds observation noise and
characterizes the properties of the parameter estimates. The prime example of option pric-
ing calibration using the Black-Scholes Model is contained in section 6. Section 7 discusses
a collection of standard statistical tests useful for testing model misspeci�cation. Section 8
presents simulations to investigate the small sample properties of the suggested statistics,
section 9 applies the methodology to S&P 500 index options to test the Black-Scholes
option pricing model, and section 10 concludes the paper.

2 Calibration

We observe a panel of option prices over a cross section of n options and a sample period
[0; T ]. Let mit (i = 1; : : : ; n, t = 1; : : : ; T ) be the observed price of the ith option at time
t, with strike price Kit and time to maturity � it. Suppose that all the options are written
on a common underlying stock with price St and dividend rate qt. Let rt be the risk-free
interest rate. We collect all of these observables into the vector zit = (Kit; � it; St; qt; rt).
The resultant data set consists of option prices and observables D = f(mit; zit) : i =
1; : : : ; n; t = 1; : : : ; Tg.

Suppose the option prices come from the data generating process (DGP), Mit(#) �
M(#; zit), where # is the true unknown parameter vector invariant over t. When there is
no observation error, we have

Mit(#) � mit (1)

1For example, Bates (2000) and Pan (2000).
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for i = 1; : : : ; n; t = 1; : : : ; T . We will discuss the case with observation error in Section 5.

2.1 SSE Calibration

One popular way of estimating the model is sum of squared error (SSE) minimization cal-
ibration. In SSE calibration the modeler �rst chooses a parametric option pricing model
M(�; z) indexed by a parameter vector � 2 Rd, so that Mit(�) �M(�; zit) is the theoret-
ical price of the ith option at time t for vector �. Let �0 be the �pseudo-true�value of the
parameter to be estimated.

Given �; the pricing error matrix e � e(�) = (eit(�)) captures the di¤erence between
all theoretical and observed option prices, with individual elements

eit(�) = mit �Mit(�) (2)

for all i = 1; : : : ; n and t = 1; : : : ; T .
The modeler chooses a norm L (e (�) ;D), a loss function, that takes the pricing errors

as inputs and provides an aggregate measure of loss caused by the pricing errors deviating
from zero. This calibration is called the sum of squared error approach if the loss function
L2 (e (�) ;D) =

Pn
i=1

PT
t=1wite

2
it, with weights wit = m

�2
it is used.

The modeler minimizes the loss function and obtains the solutionb� = argmax
�
L (e (�) ;D) :

If the model speci�cation is perfect, i.e. the proposed model M coincides the DGP
M, then the estimated pricing residuals will be identically zero, i.e. ê = e(b�) � 0. In
this case, it is easy to determine if the model is accepted. However, because models are
approximations of a complex reality, it is rarely the case that M andM coincide, and an
alternative criteria for accepting a model is required. It is reasonable to accept a model
with non-zero pricing errors as a �good approximation� if the model only di¤ers from
the DGP in a random and unpredictable fashion. Such a �good approximation� can be
characterized by requiring that the residuals ê = e(b�) satisfy a set of properties P which
capture the random and unpredictable behavior. A collection of such properties P is
discussed in section 3 below. Given these properties, speci�cation tests can be performed
and the model accepted or rejected (see Section 7).

2.2 Exact Calibration

An alternative method for estimating an option pricing model is exact calibration. Under
this approach, the modeler matches the observed option price to the theoretical counter-
part Mit(�) � M(�; zit). For all i 2 fi1; : : : ; idg and t = 1; : : : ; T , the following equality
holds:

mit =M(�t; zit):

Using vector notation,
mt =M(�t;Zt);

where mt = (mi1t; : : : ;midt)
0 and Zt =

�
z0i1t; : : : ; z

0
idt

�
. Recall that d is the dimension of

�t.
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A crucial feature of exact calibration is that it requires d equations to match the market
prices to the theoretical prices to solve for the d unknown parameters. A unique solution
�̂t exists if the function is invertible:

�̂t =M
�1(mt;Zt):

In the sequel, we assume that the model has a scalar parameter, i.e. d = 1.2 For
notational convenience, we drop the subscript i.

To ensure a unique solution �̂t =M�1(mt; zt) for each t = 1; : : : ; T , we need to impose
one of the following monotonicity assumptions.

Assumption SM: The option pricing function M(�; zt) is strictly monotone in �.

Assumption LSM: The option pricing function M(�; zt) is strictly monotone in � in
a neighborhood �0 = (�0 � �; �0 + �) of the hypothetical parameter �0 under model M:

An example is the Black-Scholes (1973) model BS(�t; zt) where �t corresponds to
the stock�s volatility, a scalar. The Black-Scholes model satis�es the strict monotonicity
assumption for the volatility parameter. The unknown volatility �t can be found by solving
the equation

mt = BS(�t; zt)

for each t. The solution
�̂t � IVt = BS�1(mt; zt) (3)

is commonly known as the implied volatility.

In SSE calibration, as discussed in the previous section, the procedure for testing a
model is based on examining the properties of the pricing errors. For exact calibration,
however, there are no pricing errors, i.e. we always have M(�̂t; zt) =M(#; zt) = mt for
all t = 1; : : : ; T . Consequently, an alternative procedure for accepting or rejecting a model
needs to be developed.

If the model speci�cation is perfect, i.e., the proposed modelM coincides the DGPM,
then all the solutions from exact calibration are identical to the true parameter: �̂t = #
for all t = 1; :::; T . In this case, it is easy to determine whether the model should be
accepted. The model should be accepted if the estimated parameter is a constant for all
t. Of course, because all models are approximations of a complex reality, no model will be
accepted using this criteria. Hence, we seek an alternative criteria for determining whether
the model is a �good approximation.�

As before, it is reasonable to accept an exact-calibrated model as a �good approxima-
tion�if the model only di¤ers from the DGP in a random and unpredictable fashion. Such
a �good approximation�can be characterized by requiring that the parameter estimation
error,

"t = �̂t � # (4)

2The case of k > 1 is dealt with in a separate paper. Both SSE and exact calibration can handle
multiple parameter calibration.

4



satis�es a set of properties P which capture the random and unpredictable behavior of the
pricing model. A collection of such properties P is discussed in section 3 below. Given
these properties, speci�cation tests can be performed and the model accepted or rejected
(see Section 7).

Because the true parameter # of the DGPM is unknown, we need to test for properties
P using the parameter estimation error instead, i.e.

"̂t = �̂t � ��; (5)

where

�� =
1

T

TX
t=1

�̂t:

We will rely on a battery of statistical tests on the estimated errors "̂t to study whether
the randomness is systematic or not (see Section 7).

3 The Error Decomposition

To develop the properties P used to accept or reject a pricing model, it is necessary to
study a decomposition of the pricing errors. This decomposition is discussed for both SSE
and exact calibration.

3.1 SSE Calibration

Assume that the DGP isMt(#) with the true parameter #. The proposed model is Mt(�)
with the pseudo-true parameter �0. Under the SSE calibration approach, there are three
types of errors:

1. Measurement error: the di¤erence between the estimated model price and the
market price,

êt =Mt(b�)�mt: (6)

2. Model error: the di¤erence between the true (unknown) DGP and model M eval-
uated at the pseudo-true parameter �0,

et =Mt(#)�Mt(�0):

3. Estimation error: the price di¤erence due to the discrepancy between the pseudo-
true parameter �0 and the estimated parameter b�, both associated with model M ,

ut =Mt(b�)�Mt(�0):

In general, b� � �0 is not zero in a �nite sample.
Summing the three errors yieldsMt(#)�mt, which is zero by the de�nition of DGP.

The error decomposition under SSE approach is illustrated in Figure 1.
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Hence, under the SSE approach, the model error plus the estimation error is equal to
the measurement error, i.e.

êt =Mt(b�)�mt

=Mt(�0)�mt +Mt(b�)�Mt(�0)

= et + ut: (7)

To test a SSE calibrated model, one tests the properties P of the measurement errors
êt for t = 1; :::; T . One often ignores the estimation error component ut in these tests by
assuming certain asymptotic conditions hold. All model speci�cation tests that are based
on the measurement errors confound both the model and estimation errors.

We can understand the properties of the estimation error by performing a �rst-order
Taylor expansion on the measurement error:

êi =Mt(b�)�mt

=Mt(�0) +
�b� � �0�M 0

t(�0)�mt + op

�b� � �0�
= et +

�b� � �0�M 0
t(�0) + op

�b� � �0� :
Substituting back into (7), we see that the estimation error is given by

ut =
�b� � �0�M 0

t(�0) + op

�b� � �0� :
Under the null of a true model (and other regularity conditions), the estimator b� of

the SSE approach (e.g. OLS estimator, GMM estimator) follows an asymptotic normal
distribution with convergence rate n�1=2, and so

ut = Op

�
1p
n

�
M 0
t(�0):

Even with a correct model speci�cation, the estimation error ut may exhibit heteroskedas-
ticity (for time series) or heterogeneity (for cross section). Being contaminated by esti-
mation error, the measurement error êt may also exhibit heteroskedasticity/heterogeneity.
The intuition is analogous to that of the linear regression model. The SSE approach is
based on minimizing the sum of squared estimation errors, so that Mt(�) is a conditional
mean model of the observed market price mt. The model M estimated under the SSE
approach does not impose higher-order restrictions on the market prices.

3.2 Exact Calibration

Let us turn to the exact calibration approach. Conceptually, the exact approach only
di¤ers from the SSE approach in the �space�used to test the model.

Assume that the DGP is Mt(#) with the true parameter #. The proposed model is
Mt(�) with a �xed pseudo-true parameter �0. We can also decompose an exact-calibrated
model�s errors in price space.
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Figure 1: Error decomposition under the SSE approach.

1. Measurement error:

Mt(b�t)�Mt(#) =Mt(b�t)�mt � 0; (8)

by (1).

2. Model error:
Mt(#)�Mt(�0): (9)

3. Estimation error:
Mt(�0)�Mt(b�t): (10)

Note that for exact calibration, the model and estimation errors are identical because
there is zero measurement error. The error decomposition under the exact approach is
illustrated in Figure 2.

This approach o¤ers an alternative method for detecting model misspeci�cations that
avoids the confounding in�uence of estimation error. From (10), it is clear that model
misspeci�cations are tested using the properties of b�t; therefore, misspeci�cation tests are
carried out in the parameter space.

4 Properties P

This section discusses the properties P that either a SSE-calibrated or an exact-calibrated
model should satisfy if it is a �good approximation.�For SSE calibration, these properties
apply to the model errors, et =Mt(#) �Mt(�0). For exact calibration, these properties
apply to the parameter estimation errors, "t = �̂t � #. For brevity, we present the prop-
erties P only for exact calibration. The identical properties apply for SSE calibration
substituting et for "t in the various properties.

Let the probability space be (
;P;F), where F = (Ft)t=1;:::;T is the natural �ltration
of fmt; ztg, i.e. Ft is the sigma algebra generated by f(ms; zs) : s = 1; : : : ; tg. To study the
moments of the parameter estimation errors, we need to impose the following assumption.
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Figure 2: Error decomposition under the exact approach.

Assumption E&S: The sequence of zeros �̂t is ergodic and second-order stationary,
so that �0 � E(�̂t) and V ar(�̂t) exist.

Assumption E&S implies that E("t) = 0 and �2 � V ar("t) <1.

With assumption E&S, we introduce the following properties P. The �ve properties
are denotedWN1, WN2, MDS1, MDS2, and IID.

(WN1): "t is a white noise, i.e. for all t = 1; :::; T , and for all s 6= t,

E ("t) = 0;

V ar ("t) = �
2; (11)

Cov ("s; "t) = 0: (12)

(MDS1): "t is a martingale di¤erence sequence, i.e. for all t = 1; :::; T , and for all
0 < s < t, we have, P-a.s.,

E ("tjFs) = 0: (13)

Intuitively, MDS1 implies that the estimation error is unpredictable based on the past
information given in Fs. Note that this property imposes no restriction on the second
moment of "t (which may even not exist).

MDS1 implies that "t is uncorrelated with f("s) for any measurable function f(�) and
0 < s < t:

Cov ("t; f("s)) = 0: (14)

Additional properties are:
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(WN2): "2t � �2 is a white noise, i.e. for all t = 1; :::; T , and for all 0 < s < t,

E
�
"2t
�
= �2;

V ar
�
"2t
�
= {;

Cov
�
"2t ; "

2
s

�
= 0: (15)

(MDS2): "2t � �2 is a martingale di¤erence sequence, i.e. for all t = 1; :::; T , and for
all 0 < s < t,

E
�
"2t � �2jFs

�
= 0:

Similar to MDS1, MDS2 implies the squared estimation error is unpredictable. Moving
�2 to the right side of this expression, we see that property MDS2 is equivalent to saying
that "t is (conditional) homoskedastic: for all 0 < s < t, P-a.s.,

E
�
"2t jFs

�
= �2:

Similar to the previous discussion on MDS1, MDS2 imposes no fourth order moment
condition on "t (as it may even not exist).

Property MDS2 implies that "2t is uncorrelated with any measurable function of the
past error, i.e. for any measurable function f(�) and 0 < s < t:

Cov
�
"2t ; f("s)

�
= 0: (16)

(IID): "t is serially independent and identically distributed, i.e. for all t1 6= t2 6=
� � � ; 6= tb and all integers b > 1,

"t1 ; "t2 ; : : : ; "tb are i.i.d..

IID implies pairwise independence: for all t = 1; :::; T , 0 < s < t, and for any measurable
functions f(�) and g(�),

Cov (f("t); g("s)) = 0; (17)

provided that the covariance exists.

We can prove the following relations among the above �ve properties.

Lemma 1a: If V ar ("t) exists and is constant, then MDS1 =)WN1.
Lemma 1b: If V ar

�
"2t
�
exists and is constant, then MDS2 =)WN2.

Lemma 2a: If E ("tjFs) exists P-a.s., then IID =) MDS1.
Lemma 2b: If E

�
"2t jFs

�
exists P-a.s., then IID =) MDS2.

Lemma 3a: (17) =) (14) =) (12).
Lemma 3b: (17) =) (16) =) (15).
Lemma 4: MDS2 =) (11).

According to Lemmas 1a and 2a, given the existence of �rst conditional moment, and
the constancy of the second unconditional moment, IID is the strongest assumption on "t,
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followed by MDS1 and then WN1. Similarly, according to Lemmas 1b and 2b, given the
existence of the second conditional moment, and the constancy of the fourth unconditional
moment, IID is the strongest null hypothesis on "t, followed by MDS2 and then WN2.

Lemmas 3a and 3b exhibit links among WN, MDS and IID. In terms of the pairwise
dependence measure, IID is the strongest concept, followed by MDS1/2 and then WN1/2.

Lemma 4 says that conditional homoskedasticity implies unconditional homoskedas-
ticity.

These properties form the basis for the time series tests considered in subsequent
sections.

5 Calibration with Observation Noise

In practice, we observe the true market price mt with observation noise �t, i.e. we observe
mt + �t. This section explores the impact that observation noise has on both SSE and
exact calibration.

For analysis, we assume that the observation noise �t satis�es some exogeneity condi-
tions.

Assumption SE (strong exogeneity) For all t = 1; : : : ; T , P-a.s.,

E (�tjZ) = 0:

Assumption WE (weak exogeneity) For all t = 1; : : : ; T , P-a.s.,

E (�tjZt) = 0:

Considering exogeneity, all of the moments and distributional results should be interpreted
as conditional statements.

For inference purposes, we need two additional assumptions on the noise�s covariance
structure.

Assumption CV1 (conditional homoskedasticity and independence) �t are indepen-
dent with V ar(�tjZt) = �2 P-a.s. for all t.

Assumption CV2 (conditional heteroskedasticity and independence) �t are indepen-
dent with V ar(�tjZt) = �2t P-a.s. for all t.

The null and alternative hypotheses to be tested are:

H0 :Mt (�0) = mt for all t 2 f1; : : : ; Tg;
H1 :Mt (�0) 6= mt for some t 2 f1; : : : ; Tg:

In order to test the model, we calibrate the model Mt (�) using the noisy price obser-
vations mt + �t.

For later analyses, the model Mt (�) has to obey some smoothness conditions.
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Assumption D: The model Mt (�) �Mt (�; zt) is continuously di¤erentiable in � and
St, so that

rt (�) =
@Mt (�)

@�

and

rSt (�) =
@2Mt (�)

@�@S

exist. Denote rt = rt (�0) and rSt = rSt (�0).

5.1 SSE Calibration

Under the SSE approach, the estimation error (in the price space) is:

et (�) =Mt (�)� (mt + �t) :

Simplifying the loss function (letting the weights be unity), the SSE parameter estimator
�̂ solves the minimization problem

inf
�

TX
t=1

e2t (�) : (18)

SinceMt (�) is nonlinear, expression (18) is a standard nonlinear least squares problem.
Given the exogenous variables, Mt (�) is the conditional mean of the market price. The
estimation error has a zero conditional mean, i.e. E(et (�)) = E(�t) = 0. Since the only
random component is the observation noise �t, the conditional variance of the estimation
error is V ar(et (�)) = V ar(�t).

Assumption PLSSEa : A uniform weak law of large numbers applies to Ŝrr (�) :=
1
T

PT
t=1rt (�)rt (�)

0 (for a = 1) and Ŝ�2rr (�) :=
1
T

PT
t=1 �

2
trt (�)rt (�)

0 (for a = 2), so
that their probability limits exist in a neighborhood �0 of �0:

Srr := plim
T!1

sup
�2�0

Ŝrr (�) ;

S�2rr := plim
T!1

sup
�2�0

Ŝ�2rr (�) :

Furthermore, Srr is invertible.

Given this assumption, the SSE estimator �̂ has the following characteristics (see e.g.,
Davidson and MacKinnon, 2004):

Theorem 1 Under Assumption SE and H0, �̂ is biased in �nite sample, i.e. E(�̂) 6= �0:

Proof. By Jensen�s inequality and nonlinearity of Mt (�).

Theorem 2 Under AssumptionWE and H0, �̂ is consistent in large sample, i.e. �̂
p�!

�0 as T !1:
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Theorem 3 Under Assumption WE, D, CV1, PLSSE1 and H0,

p
T
�
�̂ � �0

�
d�! N(0; VSSE;1)

as T !1, with asymptotic variance

VSSE;1 = �
2S�1rr:

Theorem 4 Under Assumption WE, D, CV2, PLSSE2 and H0,

p
T
�
�̂ � �0

�
d�! N(0; VSSE;2)

as T !1, with asymptotic variance

VSSE;2 = S
�1
rrS�2rrS

�1
rr:

Using the delta method, we can derive the asymptotic distribution of Mt

�
�̂
�
.

Corollary 1 Under Assumption WE, D, CVa, PLSSEa (a = 1; 2) and H0, we have,
for any �xed t, p

T
h
Mt

�
�̂
�
�Mt (�0)

i
d�! N(0;rtVSSE;ar0t)

as T !1.

Corollary 2 Under Assumption WE, D, CVa, PLSSEa (a = 1; 2) and H0, we have,
for any �xed t,

p
T

24@Mt

�
�̂
�

@S
�rSt

35 d�! N(0;rStVSSE;ar0St)

as T !1.

For the estimators, one uses �̂ for the parameter, and Mt(�̂) for the model price.

5.2 Exact Calibration

Exact calibration �nds �̂t such that

Mt(�̂t) = mt + �t

for each t. This corresponds to et(�̂t) � 0 for all t.
We can still regard Mt(�̂t) as a conditional mean model for the true price mt (so that

�t has a zero conditional mean). The key di¤erence from SSE calibration is that the
parameter estimate �̂t varies across observations.

De�ne the estimation error (in the parameter space) as:

"t = �̂t � �0:
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We can estimate the unknown parameter �0 with the sample mean of calibrated parame-
ters, i.e.

�� =
1

T

TX
t=1

�̂t = �0 +
1

T

TX
t=1

"t: (19)

We now study the �nite and large sample properties of ��.

Theorem 5 Under Assumption SE and H0, �� is biased in �nite sample, i.e. E(��) 6= �0:

Proof. By Jensen�s inequality and nonlinearity of Mt (�).

Theorem 6 Under Assumption WE and H0, �� is consistent in large sample, i.e. ��
p�!

�0 as T !1:

By a �rst order Taylor�s expansion, we can link the errors in the parameter and price
spaces. Under H0,

"t = �̂t � �0
=M�1

t (mt + �t)�M�1
t (mt)

=
@M�1

t ( ~mt)

@m
�t; (20)

where ~mt lies between mt and mt + �t (i.e. j ~mt �mtj < j ~mt � (mt + �t)j). This relation-
ship is useful for comparing the asymptotic distributions of the SSE and exact estimators.

Averaging expression (20) over t = 1; : : : ; n, we have

1p
T

TX
t=1

"t =
1p
T

TX
t=1

@M�1
t ( ~mt)

@m
�t:

But the term on the left side is just
p
T
�
�� � �0

�
, by expression (19). Note that for some

~�t lying between �0 and �̂t, we have
@M�1

t ( ~mt)
@m =

�
@Mt(~�t)
@�

��1
. Using the central limit

theorem, we see that �� is asymptotically normal, as given in the following theorems.

Assumption PLExacta : A uniform weak law of large numbers applies to Ŝ(rr)�1(�) :=
1
T

PT
t=1 [rt(�)rt(�)0]

�1 (for a = 1) and Ŝ�2(rr)�1(�) :=
1
T

PT
t=1 �

2
t [rt(�)rt(�)0]

�1 (for
a = 2), so that their probability limits exist in a neighborhood �0 of �0:

S(rr)�1 := plim
T!1

sup
�2�0

Ŝ(rr)�1(�);

S�2(rr)�1 := plim
T!1

sup
�2�0

Ŝ�2(rr)�1(�):

Theorem 7 Under Assumption WE, D, CV1, PLExact1 and H0,
p
T
�
�� � �0

� d�! N(0; VExact;1)

as T !1, with asymptotic variance VExact;1 = �2S(rr)�1 :

13



Theorem 8 Under Assumption WE, D, CV2, PLExact2 and H0,

p
T
�
�� � �0

� d�! N(0; VExact;2)

as T !1, with asymptotic variance VExact;2 = S�2(rr)�1 :

Finally, using the delta method, we can derive the asymptotic distribution of Mt

�
��
�
.

Corollary 3 Under Assumption WE, D, CVa, PLExacta (a = 1; 2) and H0, we have

p
T
�
Mt

�
��
�
�Mt (�0)

� d�! N(0;rtVExact;ar0t)

as T !1.

Corollary 4 Under Assumption WE, D, CVa, PLExacta (a = 1; 2) and H0, we have,
for any �xed t,

p
T

"
@Mt

�
��
�

@S
�rSt

#
d�! N(0;rStVExact;ar0St)

as T !1.

For the estimators, one uses �� =
Pn
t=1 �̂t
n for the parameter. For the model price, there

are three possible estimators:

\Mt (�) =Mt

�
�̂t

�
;

Mt (�) =Mt

�
��
�
;

\Mt (�) =
1

n

nX
k=1

Mt

�
�̂k

�
:

We discuss all of these estimators below.

5.3 A Comparison

In this section, we want to study two comparisons, using the di¤erent SSE and exact-
calibration estimators for the model�s price.

Theorem 9 Suppose Assumptions WE, D, CVa, PLSSEa , PLExacta (a = 1; 2) and H0

hold.
(i) With conditional homoskedastic noise (a = 1), \Mt (�) is asymptotically more e¢ -

cient than Mt (�).
(ii) With conditional heteroskedastic noise (a = 2), it is possible that Mt (�) is asymp-

totically more e¢ cient than \Mt (�).
Proof. We note that both estimators are biased in �nite samples, but consistent in

large samples.
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Proof. Under Assumption CV1, \Mt (�) is asymptotically more e¢ cient thanMt (�),
because  

1

T

TX
t=1

rtr0t

!�1
� 1

T

TX
t=1

�
rtr0t

��1
;

by Jensen�s inequality, so that VSSE;1 < VExact;1 in general, when rt are not identically
the same for all t.

However, under Assumption CV2, it is possible that Mt (�) is asymptotically more

e¢ cient than \Mt (�). Here is a simple example: T = 2, r1 = �1 = 1; r2 = �2 = 0:2.
Then, we see that VSSE;2 = 1:852 > VExact;2 = 1.

Theorem 10 Under Assumptions WE, D, CVa, PLSSEa , PLExacta (a = 1; 2) and H0,
\Mt (�) is more e¢ cient than \Mt (�). and is as e¢ cient as Mt (�) asymptotically.

Proof. Let us �rst compare \Mt (�) and \Mt (�) under H0.
For t = k, Mt(�̂t) = mt + �t, so

E[Mt(�̂t)] = mt;

which also shows that \Mt (�) is unbiased under H0.
For t 6= k,

Mt(�̂k) =Mt

�
M�1
k (mk + �k)

�
(21)

=Mt

 
�0 +

@M�1
k ( ~mk)

@m
�k

!
:

Using the delta method and the Central Limit Theorem, as T !1,

p
T\Mt (�)

d�! N

 
Mt (�0) ; �

2rt plim
n!1

"
1

T

TX
k=1

�
rkr0k

��1#r0t
!
: (22)

Therefore, for large T , the �nite sample variance can be approximated by

V ar

�
\Mt (�)

�
� �2

T
rt

"
1

T

TX
k=1

�
rtr0t

��1#r0t;
which is smaller than the variance of \Mt (�)

V ar
�
\Mt (�)

�
= V ar

�
Mt

�
�̂t

��
= V ar (mt + �t)

= �2:

Furthermore, a comparison between (22) and the result of Corollary 3 (for a = 1)

shows that \Mt (�) =
1
T

PT
k=1Mt(�̂t) is as e¢ cient as Mt

�
��
�
asymptotically.
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6 An Example: the Black-Scholes Model

This section illustrates the previous results using the Black-Scholes option pricing model.
In this example, we show that when using SSE versus exact calibration, di¤erent properties
P are needed to capture typical model misspeci�cations.

Let us suppose that the true DGP of the underlying stock price time series is Merton�s
jump di¤usion process, and the model to be tested is the Black-Scholes model. Of course,
the Black-Scholes option model is misspeci�ed. We assume that the modeler does not know
the true DGP, and proceeds by using exact calibration with the Black-Scholes model for
at-the-money (near-the-money, in practice) call prices Ct with time to maturity � . Exact
calibration gives an estimate of the implied volatility for each call price, IVt.

First, let us consider how the exact-calibrated implied volatility IVt changes as the
price of the underlying, St changes, i.e.

@IVt
@St

=
@IVt
@Ct

@Ct
@St

=
1
@Ct
@IVt

@Ct
@St

:

The �rst term after the second equal sign is the reciprocal of the option�s vega under the
misspeci�ed Black-Scholes model, while the second term is the delta of the call option
under the DGP, Merton�s jump di¤usion model.

The Black-Scholes vega is given by

@Ct
@IVt

= Ste
�qt� (d1)

p
� ;

while the option�s delta under the jump di¤usion model is given by

@Ct
@St

= e�qt�1;

where both d1 and �1 are functions of the risk-free interest rate, the dividend yield q, the
option moneyness, the time to maturity � , and their respective model parameters, which
are all assumed to be �xed over the in-sample period. As a result,

@IVt
@St

=
�1

St� (d1)
p
�
;

which is inversely proportional to St. Discretizing, we have that for some constant c,

�IVt � c
(�St)

St
: (23)

This implies that for a change in St, the modeler expects a larger change in IVt, the
lower the level of St. Hence, as the level of St changes across time, IVt will exhibit
heteroskedasticy. The phenomenon is more pronounced under the jump di¤usion model
as the level of St changes dramatically at jump times. We illustrate this by a simulation
given in Figure 11.
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The relation (23) is also useful for analyzing the e¤ect of errors in the price space
on the errors in the parameter space. Suppose the underlying prices (or call prices, if
the option delta is a constant over the sample period) contain i.i.d. observation noise.
Then, by expression (23), we see that the i.i.d. error in the price space is translated to
heteroskedastic error with respect to IVt in the parameter space. Suppose instead the call
price errors are proportional to St (or equivalently Ct, with �xed moneyness). Then, such
heteroskedastic error in the price space is translated to i.i.d. error in the parameter space,
again by expression (23). This shows that di¤erent properties P will be needed to identify
model misspeci�cations under the di¤erent calibration methods. Hence, when testing for
model misspeci�cation using either the SSE or exact calibration, it is important to test
for all �ve properties P. Indeed, testing for only a subset (e.g. �rst moment properties)
may not capture all possible model misspeci�cations (e.g. second moment properties).

7 Statistical Tests

This section discusses the various test statistics that can be used to identify model mis-
speci�cation with a calibrated model. Both time series tests and comparison tests are
considered. These tests are illustrated for exact calibration, although similar tests can be
used for SSE calibration.

7.1 Time Series Tests

In this section, we consider a collection of known time series tests suitable for testing the
properties P discussed in the previous sections.

First, let us consider testing of property WN1 based on the parameter estimation error
"̂t, as de�ned in expression (5). The sample counterpart of the �rst condition in WN1:
E ("t) = 0, is automatically satis�ed by the construction of "̂t.

The second and third conditions of property WN1 are much more useful for detect-
ing model misspeci�cations. The second property is unconditional homoskedasticity:
V ar ("t) = �2, which requires that the variance of the parameter estimation error re-
mains constant over time. However, this condition is guaranteed if property MDS2 is in
place, due to Lemma 4.

The third property of zero covariances (12): Cov ("t; "s) = 0, requires that any two
parameter estimation errors are uncorrelated. A comprehensive statistical test for property
WN1 would thus rely on both the sample variances and covariances of "̂t revealing any
potential model misspeci�cation. This point will be discussed further in the next section.

Assuming unconditional homoskedasticity of "t, the Ljung-Box test (LB) is powerful
against a departure from zero covariances (12).

Next, we turn to the problem of testing property MDS1. A consistent test for a zero
conditional mean (13) would require taking into account all linear and nonlinear depen-
dences of the current parameter estimation errors "t on all elements in the information
set Ft�1 simultaneously. There exists nonparametric tests in the literature that consis-
tently check for (13). Some drawbacks include low power compared to parametric tests,
complex and intensive computation involved in obtaining the value of test statistics and
the optimal bandwidth, and the curse of dimensionality. A reasonable solution, provided
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Tests Conditions to Test Equations
LB: Ljung-Box test on "̂t Cov ("t; "t�j) = 0 (12)
HL10: Hong-Lee martingale test on "̂t Cov ("t; f("t�j)) = 0 (14)

ML: McLeod-Li test on "̂2t Cov
�
"2t ; "

2
t�j

�
= 0 (15)

HL20: Hong-Lee martingale test on "̂2t Cov
�
"2t ; f("t�j)

�
= 0 (16)

HL00: Hong-Lee serial indep test on "̂t Cov (f("t); g("t�j)) = 0 (17)

Table 1: A summary of time series tests for di¤erent conditions in properties P.

by Hong (1999), gets around this conundrum by proposing a consistent test of the gener-
alized spectral density that checks for the pairwise implication (14) of MDS1. Hong and
Lee (2005) improve the generalized spectral test given conditional heteroskedasticity of
unknown form. We apply the Hong-Lee martingale test (HL10) to "̂t.

In parallel to the tests of WN1, we rely on the test proposed by McLeod and Li (1983)
(ML) to test for property WN2. It is essentially the Ljung-Box test applied to the squared
estimation errors "̂2t .

Similarly, the implication (16) of property MDS2 can be checked by applying the Hong-
Lee martingale test (HL20) to "̂2t , and the implication (17) of property IID can be checked
by applying the Hong-Lee test for serial independence (HL00) to "̂t.

One may question if we lose any power by focusing on testing the implications ex-
pressions (14), (16), and (17) instead of the original properties MDS1, MDS2 and IID. In
theory, the Hong-Lee tests only capture all pairwise dependences in the time series of "̂t,
and pairwise uncorrelatedness or independence is weaker than joint independence. Never-
theless, pairwise tests are su¢ cient for detecting model misspeci�cation for certain classes
of stochastic processes. For instance, Pierre (1971) shows that pairwise independence is
equivalent to joint independence for in�nitely divisible processes. Since many of the time
series processes in �nancial modeling (e.g. Lévy processes) belong to such classes, we
restrict our attention to testing expressions (14), (16) and (17).

The time series tests discussed above are summarized in Table 1.

7.2 Model Comparison Tests

The time series tests in the previous section provide a way to test a given model against the
absolute criteria as given by properties P. In this section, we consider testing procedures
that allow for a relative comparison between two competing models.

As a starting point, let us focus on testing property WN1. As discussed in the previous
section, any departure from WN1 would be re�ected in either time-varying variances
or non-zero covariances (or both) of the parameter estimation error, "̂t. Therefore, a
natural candidate for a model comparison test is the variance ratio test. It compares two
models by comparing the long-run sample variances of their "̂t, which are essentially linear
combinations of the sample variances and covariances.

Let us consider this test. Assume that the sample lengths of the two models are the
same. From model k (k = 1; 2), we obtain the parameter estimation errors "̂(k)t and we
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compute the heteroskedasticity-autocorrelation consistent (HAC) estimator, de�ned as

V̂
(k)
T =

1

T

TX
t=1

�
"̂
(k)
t

�2
+
1

n

pX
j=1

TX
t=j+1

k

�
j

p

�
"̂
(k)
t "̂

(k)
t�j ; (24)

where k
�
j
p

�
is a kernel function with bandwidth p.

Without loss of generality, we suppose that model 1 is �less misspeci�ed�than model
2 under the null hypothesis, and vice versa under the alternative hypothesis. Denoting
V (k) the population counterpart of V̂ (k)T , we have

H0 : V
(1) � V (2);

H0 : V
(1) > V (2):

It is well known that a variance ratio test is not consistent for testing (WN1), as V̂ (k)T

can be small even if (WN1) is false. This is possible when some of the covariances are
negative, and they cancel other positive covariances and the variance. This problem can
be resolved by modifying V̂ (k)T and squaring each summand.

Furthermore, the estimation errors "̂(k)t from two di¤erent models may be of di¤er-
ent scales. This can be resolved by computing the long-run variances of the normalized
estimation errors,

�̂
(k)
t � "̂(k)t =s

(k)
T ; (25)

where s(k)T is the �rst term in (24). The �rst term of the resulting HAC estimator thus
becomes one and can be ignored.

Consequently, to address the above two problems, we use the following long-run squared
covariance estimator:

V
2(k)
T =

1

T 2

pX
j=1

TX
t=j+1

K2

�
j

p

��
�̂
(k)
t �̂

(k)
t�j

�2
(26)

for some kernel function K (�). This is the generalized version of Ljung-Box and Hong-Lee
tests for serial correlations before normalization. In other words, the Ljung-Box and Hong-
Lee tests in the previous section provide a metric that measures how far the normalized
residual sequence deviates from white noise.

As an alternative to a variance ratio test, more generally, any two test statistics,
S
(1)
T (model 1) and S(2)T (model 2), can be employed for a comparison between a pair

of models, either or both of which may be misspeci�ed. If (1) S(k)T is asymptotically
N(0; 1) distributed for k = 1; 2, and (2) their covariance converges to zero in the limit, i.e.
limT!1Cov(S

(1)
T ; S

(2)
T ) = 0, then, as T !1, we have

zT =
S
(1)
T � S(2)Tp

2

d�! N(0; 1):

We may set S(k)T to be the normalized Ljung-Box, McLeod-Li, or any of the Hong-Lee

test statistics. They are generically denoted S(k)jT , j = 1; 2; : : : ; 5:Using the Hong-Lee test
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statistic S(k)5T of serial independence, the zT test can be regarded as an omnibus model
comparison test that incorporates all aspects of model misspeci�cation.

If we are concerned more about one particular aspects of model departure from the
null, then we can compare the weighted sum of squared statistics between the two models,

zwT =
W
(1)
T �W (2)

Tq
2
P5
j=1w

2
j

;

where W (k)
T =

P5
j=1wj

�
S
(k)
jT

�2
. The weights, which are required to sum to one, re�ect

our a priori view of the relative importance attached to the di¤erent kinds of model
misspeci�cations. As T !1, we have

zwT
d�! N(0; 1):

An alternative to comparing two test statistics, Vuong (1989) proposes a likelihood
ratio test for two arbitrary models, and derives the limiting distribution of the test statistic
when the two models are non-nested, nested and overlapping. The test assumes the
existence of smooth (twice continuously di¤erentiable) likelihood function. A di¢ culty
is that the likelihood function is most likely unknown. In this case, we can impose a
distributional assumption on the estimation errors "t (which can be checked for goodness
of �t). For example, one could assume:

Assumption N: "t is i.i.d. N(0; �2) for all i = 1; : : : T .

Under Assumption N, the log-likelihood function of "(k)t is

L(k)(�(k)) = �T log
�
�(k)

�
� 1

2
�
�(k)

�2 TX
t=1

�
"̂
(k)
t

�2
(27)

=
TX
t=1

264� log ��(k)��
�
"̂
(k)
t

�2
2
�
�(k)

�2
375 � TX

t=1

`
(k)
t : (28)

In this case, maximizing the log-likelihood is equivalent to minimizing the sum of squares
of the feasible estimation error "̂(k)t ,

SSE
(k)
T =

TX
t=1

�
"̂
(k)
t

�2
:

Even if Assumption N does not hold, one can still use quasi-likelihood methods and
obtain a consistent estimation. In practice, one obtains the concentrated log-likelihood
function by substituting the sample variances �̂(k) for the population variances �(k) in (27)

L̂
(k)
T = L

(k)
T (�̂

(k)) = �T log
�
�̂(k)

�
� 1

2
�
�̂(k)

�2 TX
t=1

�
"̂
(k)
t

�2
= �T log

�
�̂(k)

�
� T
2
;
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and then compute the quasi-log-likelihood ratio,

L̂
(1)
T � L̂(2)T = T log

 
�̂(2)

�̂(1)

!
:

Suppose that model k has d(k) parameters, k = 1; 2. Assume that the models 1 and 2
are non-nested. Vuong (1989) proposes the likelihood ratio test as follows:

LRT =
L̂
(1)
T � L̂(2)T � d(1)�d(2)

2 log Tp
T!T

;

where !2T equals the long-run sample variance computed using the squared t
th contribu-

tions of the log-likelihood ratio, ^̀t, obtained by substituting �̂(k) for �(k) in (28). Speci�-
cally,

!2T =
1

T

TX
t=1

�
^̀(k)
t

�2
+
1

T

pX
j=1

TX
t=j+1

k

�
j

p

�
^̀(k)
t
^̀(k)
t�j :

Under the null hypothesis that model 1 is better than model 2, LRT converges in
distribution to a standard normal distribution as T ! 1. Vuong�s result assumes i.i.d.
observations. One can generalize this approach to serially correlated and heteroskedastic

estimation errors by replacing "̂(k)0"̂(k) =
PT
t=1

�
"̂
(k)
t

�2
with "̂(k)0

�
V̂(k)

��1
"̂(k), where

V̂(k) is a covariance matrix estimator of "(k) (see Rivers and Vuong, 2002).

8 Simulation Studies

In this section, using simulations, we study the �nite sample performance of the various
statistical tests discussed in the previous section in detecting model misspeci�cations. The
observations obtained herein prove useful when employing these same statistical tests with
actual market prices.

8.1 Exact vs SSE calibration

In this section, we study the �nite sample performance of the �ve time series tests as
discussed in section 7. They include the Ljung-Box test of serial correlations (LB), the
McLeod-Li test of heteroskedasticity (ML), the Hong-Lee martingale test of residuals
(HL10), the Hong-Lee martingale test for squared residuals (HL20), and the Hong-Lee
test of serial independence (HL00) under di¤erent DGP speci�cations.

The data generating processes are Merton�s jump-di¤usion model (1976), Heston�s
stochastic volatility model (1993), and Heston-Nandi�s GARCH(1,1) model (2000). We
generate 1000 sample paths of the underlying price process (with initial price S0 = 1000)
for each simulation experiment. Each sample path is of length T = 63. From the generated
sample paths of the underlying, the theoretical prices of (near) at-the-money (ATM) calls
are obtained. The strike price granularity mesh is speci�ed so that the strike of the ATM
call option is equal to the underlying price rounded to the nearestmesh unit. The observed
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Exp DGP Parameters mesh

1 Merton � = 0:1; � 2 [0; 10]; �J = 0:1; �J = 0:8 25
2 Merton � = 0:1; � = 2; �J = 0:2; �J 2 [0; 0:6] 25
3 Heston � 2 [1; 1000]; V0 = 0:5; �V = V0

� ; �V = 1:5; � = 0 25
4 Heston � = 100; V0 = 0:5; �V =

V0
� ; �V 2 [0:01; 3]; � = 0 25

5 Heston � 2 50; V0 = 0:5; �V = V0
� ; �V = 0:8; � 2 [0; 0:99] 25

6 GARCH ! = 5� 10�6; �1 2 [0; 0:9]; �1 = 3� 10�7; 1 = 400; � = 0 5
7 GARCH ! = 1� 10�6; �1 = 0:3; �1 2 [0; 0:9]� 10�5; 1 = 0; � = 0 5
8 GARCH ! = 1� 10�6; �1 = 0:5; �1 2 1� 10�6; 1 2 [0; 600]; � = 0 5

Table 2: The data generating processes used in various simulation experiments.

ATM call price is the theoretical price contaminated with i.i.d. N(0; 0:1) noise. We �x
the interest rate and dividend yield to be r = 0:05 and q = 0, respectively.

Next, we calibrate the Black-Scholes model using both exact and SSE calibration and
carry out the tests. Since the Black-Scholes model is misspeci�ed, we expect the �ve
statistical tests to detect the model misspeci�cation. Comparisons of the �ve tests�power
are done among themselves and between the two competing calibration methods. For
all power studies in this section, the smoothing parameter3 is set to 1, and the nominal
rejection rate is 10%. Table 2 summarizes the simulation experiments, including the DGP
and the parameters.

In experiments 1-2, the DGP is the Merton model. We vary the jump rate � (exper-
iment 1) and jump size standard deviation �J (experiment 2), respectively, holding all
other parameters constant.

The power curves for the �ve tests are shown in Figure 3. The left panel shows the
power curves for exact calibration, while the right panel corresponds to SSE calibration.
Here are the key observations.

1. The tests on the squared residuals (ML and HL20), and the test of serial indepen-
dence of the residuals (HL00) are relatively more powerful than LB and HL10 tests
for detecting jumps. The power of the former tests generally increases with the jump
intensity � and decreases with the volatility �.

2. The ML, HL20 and HL00 tests applied to the residuals from exact calibration are
more powerful than the same tests applied to the residuals from SSE calibration.

We note from the �rst observation that the powers of the �ve tests increase di¤erently
as the jump component of the DGP begins to dominate the di¤usion component (Merton,
1976b).

The second observation shows that the residuals in the parameter space are better
than the residuals in the price space for detecting model misspeci�cation. The reason
relates to the strike price granularity (or mesh size, to be discussed in section 8.2). The

3The smoothing parameter for Ljung-Box and McLeod-Li test statistics is the number of residual auto-
correlations, and that for Hong-Lee test statistics is the bandwidth of the nonparametric kernel estimator
for the corresponding generalized spectral density.
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Figure 3: The power of �ve model misspeci�cation tests over jump rate � under exact
(left panel) and SSE (right panel) calibration. DGP = Merton; Misspeci�ed model =
Black-Scholes.

log-moneyness of a near-the-money option, de�ned as log(St=Kt) (where Kt is set to St
rounded to the nearest mesh unit), has di¤erent magnitudes for di¤erent levels of the
underlying�s price St. Since the underlying index level jumps in the Merton model, the
log-moneyness exhibits heteroskedasticity. The exact calibration residuals "̂t = IVt � IV ,
which are a function of log-moneyness, thus exhibit heteroskedasticity in the parameter
space (see Figure 5). This is captured by the second-order tests on the squared residuals
(ML and HL20) as well as the omnibus HL00 test. However, no such heteroskedasticity is
displayed for the SSE calibrated residuals in the price space (see Figure 6).

In experiments 3-5, the Heston model is set as the DGP. We consider three types of
departures from the null by increasing the logarithm of the speed of the volatility mean
reversion, log10(�), the volatility of volatilities, �V , and the correlation � between the
Brownian motions that drive the underlying�s price and stochastic volatility processes.
All other parameters are kept constant. The power curves are displayed in Figures 7-9,
and the power surface over log10(�) and �V for the HL00 test is displayed in Figure 10.
Here are the key observations.

1. The tests on the residuals (LB, HL10), and the test of serial independence of the
residuals (HL00) are relatively more powerful than the tests on the squared residuals
(ML and HL20). The powers of all �ve tests generally increase with �, �V , and �.

2. The model misspeci�cation tests are comparable in terms of power under both exact
and SSE calibration.

In experiments 6-8, the DGP is the Heston-Nandi GARCH(1,1) model. We consider
three kinds of departure from the null of a constant volatility (Black-Scholes model):
increasing the persistence of volatility (GARCH parameter �1), the shock to volatility
(ARCH parameter �1), and the degree of volatility asymmetry (1). The underlying prices
and observed call prices are generated in the same manner as in the �rst two experiments.
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Figure 4: The power of �ve model misspeci�cation tests over volatility � under exact
(left panel) and SSE (right panel) calibration. DGP = Merton; Misspeci�ed model =
Black-Scholes.
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Figure 5: Under the exact approach, the IV residuals (in red and in the parameter space)
exhibits heteroskedasticity as the underlying index (in blue) jumps over time, as in the
Merton model.
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Figure 6: Under the SSE approach, the pricing residuals (in red and in the price space)
do not exhibit heteroskedasticity as the spot price (in blue) jumps over time, as in the
Merton model.
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Figure 7: The power of �ve model misspeci�cation tests over log speed log10 (�) under
exact (left panel) and SSE (right panel) calibration. DGP = Heston; Misspeci�ed model
= Black-Scholes.
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Figure 8: The power of �ve model misspeci�cation tests over volatility of volatilities �v
under exact (left panel) and SSE (right panel) calibration. DGP = Heston; Misspeci�ed
model = Black-Scholes.
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Figure 9: The power of �ve model misspeci�cation tests over correlation � under exact
(left panel) and SSE (right panel) calibration. DGP = Heston; Misspeci�ed model =
Black-Scholes.
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Figure 10: The power surface of Hong-Lee test of serial independence over log10 (�) and
�V under Heston model (Exp 3-4), Nominal rate = 0.01.

The power results are shown in Figures 11-13. The key observations are summarized
below.

1. The test performances between the exact and SSE calibration are similar.

2. In general, the LB, HL10, and HL00 tests are more powerful than the ML and HL20
tests as the DGP departs from the null.

8.2 Strike Price Granularity

In this section, we study the �nite sample performance of the time series tests as we vary
the call options�strike price granularity.

The motivation for incoporating strike price granularity is related to detecting model
misspeci�cation. In practice, options of di¤erent strike prices are available. Strike prices
for options on the same underlying are separated by a �xed distance, denoted the mesh
size, that depends on the underlying�s price, the option�s moneyness, the time-to-maturity,
the liquidity, among many other factors. Because of strike price granularity, we cannot
obtain a perfect at-the-money option almost surely; but we can always obtain a near-the-
money option with a strike price equal to the current underlying�s price rounded to the
nearest mesh unit (e.g. if the mesh = 5 and if the current underlying�s price is 97, then
the strike price is 95). The mesh size measures the step size that the call moves away from
the at-the-money option as the underlying�s price changes over time. A non-zero mesh
size mimics the discrete nature of actual strike prices, but more importantly it controls
how any model misspeci�cation is revealed in the time series properties of "̂t and êt as
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Figure 11: The power of �ve model misspeci�cation tests over the AR parameter �1 under
exact (left panel) and SSE (right panel) calibration. DGP = Heston-Nandi; Misspeci�ed
model = Black-Scholes.
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Figure 12: The power of �ve model misspeci�cation tests over the MA parameter �1 under
exact (left panel) and SSE (right panel) calibration. DGP = Heston-Nandi; Misspeci�ed
model = Black-Scholes.
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Figure 13: The power of �ve model misspeci�cation tests over the volatility asymmetry
parameter 1 under exact (left panel) and SSE (right panel) calibration. DGP = Heston-
Nandi; Misspeci�ed model = Black-Scholes.

the underlying�s price evolves. This is important because if the DGP is �xed over the
sample period, and if we consider perfect at-the-money calls (i.e. the mesh size is zero)
with constant maturity, the corresponding IV sequence (and hence "̂t) is a constant over
time even if the model is misspeci�ed. We expect that the residuals "̂t and êt gradually
lose properties P under the null hypothesis as the mesh size increases.

The simulation set-up under model misspeci�cation is as follows. We assume that
the underlying dynamics follow the Merton model, with parameters � = 0:1, � = 2,
�J = �0:3, and �J = 0:1 (the �xed DGP). The sample length T is set to 63 days. The
number of simulation runs is set to 1000. The misspeci�ed model to be calibrated is the
Black-Scholes model.

With exact calibration, we obtain the time series of implied volatilities (IV) as in (3),
and then apply the statistical tests on the demeaned IVs "̂t, t = 1; : : : ; T . With SSE
calibration, we minimize the sum of squared pricing error percentages with respect to
the Black-Scholes volatility, and then obtain the time series of measurement errors êt,
t = 1; : : : ; T , as in (6), on which we apply the tests.

The empirical rejection probabilities of the �ve statistical tests are plotted against
the mesh size under the exact approach in Figure 14. The power curves under the SSE
approach are very similar and not displayed here.

We also consider as DGPs the Heston SV model (Figures 15, with � = 50, V0 = 0:3,
�V = V0

� , �v = 1, � = 0) and the Heston-Nandi (2000) GARCH(1,1) model (Figures 16,
with ! = 1� 10�6, � = 0:3, � = 0:3� 10�8,  = 0, � = 0:01). In all cases, the powers of
all of the tests generally increase with the mesh size.

8.3 Hedge Ratio Accuracy

In practice, one is not only interested in estimating the option�s model price, but also the
option model�s hedge ratio. This section compares the accuracy of the estimated hedge
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Figure 14: The plot of powers of �ve statistical tests against mesh under the exact ap-
proach. DGP = Merton model.
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Figure 15: The plot of powers of �ve statistical tests against mesh under the exact ap-
proach. DGP = Heston model.
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Figure 16: The plot of powers of �ve statistical tests against mesh under the exact ap-
proach. DGP = Heston-Nandi model.

ratio obtained from both SSE and exact calibration.
First, we assume that the true stock price DGP is a geometric Brownian motion with

volatility � = 0:6 and initial stock price S0 = 100. We simulate 1000 sample paths.
The sample length of each path is �xed at T = 63 days. The interest rate is set to be
r = 0:05 and the dividend yield q = 0. Near-the-money call options are used for pricing,
with mesh = 5 that controls the granularity of the strike prices Kt, and time-to-maturity
� = 63 days.

Second, we assume that the call prices are contaminated with noise. Three types of
noises are considered: (i) i.i.d. N(0; 0:012) white noise; (ii) independent N(0; 0:012S2t )
noise; and (iii) independent N(0; 0:01St) noise. The last two types of noise are het-
eroskedastic.

Next, we calibrate the (correctly speci�ed) Black-Scholes model and obtain the implied
volatility (IV) sequence IVt using both the exact and SSE approaches. Under the exact
approach, we obtain both the time-varying sequence of �̂t = IVt and its sample average
over time �� = IV = 1

T

PT
t=1 IVt. Under the SSE approach, we obtain the constant

parameter �̂ = cIV as the solution as in Section 2.1. Both IV and cIV are constants across
time, providing a fair comparison of hedging performance under both approaches.

Using IVt, IV and cIV , we then compute the Black-Scholes hedge-ratio. For instance,
with cIV , the hedge-ratio is

�t = e
�q�N(d1);

where

d1 =
log(St=Kt) + (r � q + cIV 2=2)�cIVp� :
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RMSE under gBm Exact (with IVt) Exact (with IV ) SSE (with cIV )
N(0; 0:012) noise 0:4405� 10�4 0:564� 10�5 0:544� 10�5
N(0; 0:012S2t ) noise 0:4001� 10�2 0:5165� 10�3 0:5284� 10�3
N(0; 0:012St) noise 0:4140� 10�3 0:5336� 10�4 0:5308� 10�4

Table 3: The RMSE results for geometric Brownian motion model, with �=0.6.

To measure the accuracy of the estimated hedge-ratios in comparison to the true ones
(which are known to us as � = 0:6), we compute the root mean squared error (RMSE) by
averaging the squared hedge-ratio errors over the sample period and over all simulation
runs, and then taking the square root.

The �nite sample results are displayed in Table 3, classi�ed according to the types of
noise that contaminates the call prices. In the cases of i.i.d. white noise and heteroskedastic
noise with standard deviation 0:01

p
St, the SSE hedge-ratios has a smaller RMSE than the

exact hedge-ratios using IV . The latter becomes more accurate if the standard deviation
of the heteroskedastic noise is 0:01St. This is consistent with the asymptotic result that
estimators from exact calibration can be more e¢ cient than those from SSE calibration
under heteroskedastic noise, as suggested in Corollaries 2 and 4, coupled with Theorem 9,
(ii).

It is not surprising that the exact hedge-ratios computed with IVt are the least accurate
because the exact solution is obtained from only a single observation. A comparison of
a pair of realized sample paths of hedge-ratios under both approaches reveals that the
exact hedge-ratios �uctuate more than the SSE counterparts around the true and constant
Black-Scholes hedge-ratio (Figure 17).
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Figure 17: Realized sample paths of hedge-ratios under the exact (in blue) and SSE (in
red) approaches when the true DGP is geometric Brownian motion. The call price noise
is heteroskedastic.
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RMSE under Merton Exact (with IVt) Exact (with IV ) SSE (with cIV )
N(0; 0:012) noise 0:07433 0:07423 0:07425
N(0; 0:012S2t ) noise 0:07447 0:07426 0:07429
N(0; 0:012St) noise 0:07433 0:07424 0:07425

Table 4: The RMSE results for Merton jump-di¤usion model, with � = 0:6, � = 15,
�J = �0:3 and �J = 0:6.

RMSE under Heston Exact (with IVt) Exact (with IV ) SSE (with cIV )
N(0; 0:012) noise 0:1535� 10�3 0:1473� 10�3 0:1473� 10�3
N(0; 0:012S2t ) noise 0:4009� 10�2 0:5239� 10�3 0:5362� 10�3
N(0; 0:012St) noise 0:4327� 10�2 0:1558� 10�3 0:1559� 10�3

Table 5: The RMSE results for Heston SV model, with � = 10, �V = 0:05, V0 = 0:5,
�J = 0:4 and � = 0.

We also compare the hedge-ratios under the two approaches when the model is mis-
speci�ed. The set-up is the same as before, except that the option pricing calibration relies
on the (misspeci�ed) Black-Scholes model, and the hedge-ratios under the true DGP are
now computed according to the correct DGP formula.

The results are displayed in Tables 4 and 5. The exact hedge-ratios computed with IV
have a slightly smaller RMSE than the SSE hedge ratios under i.i.d. and heteroskedastic
noise of both forms.

A pair of realized sample paths for the hedge-ratios under both calibration approaches
under model misspeci�cation (the true DGP is Merton) is illustrated in Figure 18. It
shows essentially the same features as in the case of a correctly speci�ed model.

9 An Empirical Study

In this section, we use exact calibration to test the validity of the Black-Scholes model using
market data. The purpose of this section is two-fold. One, it provides an illustration of
the misspeci�cation tests for calibrated models as discussed in the previous section. Two,
it presents a test of the Black-Scholes model using exact calibration. To our knowledge,
all existing calibration based tests of the Black-Scholes model use the SSE approach. Of
course, the accumulated evidence rejects the Black-Scholes model (see for example, Pan
(2002)), which is what we expect to observe as well.

Our data, extracted from Option Metrics, consist of the S&P 500 index and its asso-
ciated European call options spanning the time period January 1 �December 31, 2011
(T = 253 business days).

We consider calls with rolling maturity dates. Calls with large maturities usually have
thin or even zero volume, while calls with very short maturities exhibit market micro-
structure irregularities. Thus, we only consider calls with a time to maturity >7 days
and <180 days. In this set, we choose the call with the shortest time to maturity. An
inspection of the data set reveals that the common granularity for the strikes of the S&P
500 index calls is mesh = 25.
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Figure 18: Realized sample paths of hedge-ratios under the exact (in blue) and SSE (in red)
approaches when the true DGP is Merton model. The call price noise is heteroskedastic.

There are two additional inputs for the Black-Scholes model: the interest rate and
dividend yield. For the interest rate, we employ the one-month Treasury bill rate released
by the Federal Reserve Board. To construct the dividend yield for the S&P500 index, we
divide the monthly dividend by the 21-day moving average of the S&P500 index.4

We �rst exact-calibrate the Black-Scholes model each day. The calibrated parameter
is the implied volatility IVt, so one call price is su¢ cient (one equation, one unknown)
on a given day. We choose the at-the-money call option with a strike price closest to the
current S&P 500 index.

Exact calibration yields a time series of IVt, t = 1; : : : ; T . We then apply the various
time series tests on the estimation error series "̂t = IVt � IV . Table 6 shows that all the
time series tests we considered strongly reject the Black-Scholes model. The time series of
IVt is plotted in Figure 19. The plot displays the serial correlation and trending behavior
of the implied volatilities.

10 Conclusion

In spite of the popularity of model calibration in �nance, empirical researchers have put
more emphasis on model estimation than on the equally important goodness-of-�t prob-
lem. This is due partly to the ignorance of modelers, and more to the ability of existing
statistical tests to detect speci�cation errors. In practice, models are often calibrated by

4The monthly dividends of S&P500 are obtained from the website of Robert Shiller at
www.econ.yale.edu/~shiller/data.htm.
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gBm IV t
M = 1 M = 5 M = 10

LB 197.2 731.0 1204.5
0.0000 0.0000 0.0000

ML 82.77 183.6 306.8
0.0000 0.0001 0.0001

HL10 50.40 54.66 52.39
0.0000 0.0000 0.0000

HL20 8.99 10.93 9.88
0.0000 0.0000 0.0000

HL00 75.16 70.53 64.90
0.0000 0.0000 0.0000

Table 6: Time series tests are applied on a zero-calibrated geometric Brownian motion.
Test statistic values and p values are displayed. S&P 500 index and the associated Eu-
ropean call data span over 1 Jan - 31 Dec, 2011 (253 days). Time series tests considered
include LB: Ljung-Box; ML: McLeod-Li; HL10: Hong-Lee test of martingale for residuals;
HL20: Hong-Lee test of martingale for squared residuals; and HL00: Hong-Lee test of
serial independence. M=smoothing parameter.
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Figure 19: Time series plots of S&P 500 and IVt under the Black-Scholes model, over 1
Jan - 31 Dec, 2011.
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minimizing the sum of squared di¤erence between the modelled and actual observations.
It is challenging to disentangle model error from estimation error in the residual series. To
circumvent the di¢ culty, we study an alternative way of estimating the model by exact
calibration. We argue that standard time series tests based on the exact approach can
better reveal model misspeci�cations than the error minimizing approach. In the context
of option pricing, we illustrate the usefulness of exact calibration in detecting model mis-
speci�cation. Under heteroskedastic observation error structures, our simulation results
show that the Black-Scholes model calibrated by exact approach delivers more accurate
hedging performance than that obtained by error minimization calibration.

Due to the fundamental and innovative nature of the exact calibration methodology,
this paper points to an array of future research directions, both theoretical and empiri-
cal. On the theoretical side, even though the discussion was centered on exact calibration
of a parametric model with a single parameter, the methodology is not con�ned to the
univariate case. It turns out that exact calibration of a multivariate model creates in-
teresting issues to be resolved, and is the focus of another working paper by the same
authors. On the empirical side, it would be informative to re-estimate existing models
in the option pricing literature by exact calibration, and see if they yield consistent or
contradictory results. Furthermore, as mentioned in the introduction, exact calibration
o¤ers a methodology to estimate the unobservable attributes of many important �nancial
structural models (e.g. risk aversion coe¢ cient, probability of default) that would other-
wise be impossible. Model misspeci�cation testing for these other applications is a fruitful
area for future research.

11 Appendix: Data generating processes

This appendix presents the di¤erent data generating processes of the underlying�s price
St. The interest rate rt and dividend yield qt are assumed to be exogenous.

1. Black-Scholes model
dSt = (rt � qt)Stdt+ �StdWt

where Wt is the Brownian motion.

2. Merton�s jump-di¤usion model

dSt = (rt � qt � ��J)Stdt+ �StdWt + JtStdNt

where Nt is a Poisson process with intensity �. Given a jump occurs, the jump size

Jt is distributed as log(1 + Jt) � N
�
log (1 + �J)�

�2J
2 ; �

2
J

�
.

3. Heston�s stochastic volatility model

dSt = (rt � qt)Stdt+
p
VtStdW

(1)
t

dVt = �(� � Vt)dt+ �V
p
VtdW

(2)
t
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where W (1)
t and W (2)

t are standard Brownian motion with Corr(dW (1)
t ; dW

(2)
t ) = �.

4. GARCH(1,1) model of Heston and Nandi (2000)

logS(t) = logS(t� M) + (rt � qt) + �h(t) +
p
h(t)W (t)

h(t) = ! + �1h(t� M) + �1
�
W (t� M)� 1

p
h(t� M)

�2
where M is a one time step. Note that the model is expressed in discrete time form.
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