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I am impressed also, apart from prefabricated examples of black and white 

balls in an urn, with how baffling the problem has always been of arriving at 

any explicit theory of the empirical confirmation of a synthetic statement. 

(Quine 1980, pp. 41-4!2) 
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Prologue 

Statistical inference is in a mess. As a result of the considerations briefly 

sketched in this prologue and discussed at length in the rest of the thesis, not 

just some but the vast majority of inferences made by applied statisticians 

are seriously questionable. Jokey topics with which deductive logicians 

while away an idle hour, like what science would be like if most of our 

inferences were wrong, are not funny to philosophers of statistics. Science 

probably is like that for us. In the cases in which people's decisions depend 

crucially on statistical inferences - which is primarily in the biomedical 

sciences- it seems very likely that most of our decisions are wrong, a state 

of affairs which leads to major new dietary recommendations annually, new 

"cures for cancer" once a month and so on. 

Statisticians would he fixing this situation if only they could agree 

on its cause. What is hindering them is nothing merely technical. It is 

the absence of rational ways to agree on what counts as a good inference 

procedure. We need to do something about this, much more urgently than 

we need further work on the details of any particular inference method. 

Consequently, this thesis investigates statistical inference primarily by 

investigating how we should evaluate statistical inference procedures. I will 

use considerations about the evaluation of statistical inference procedures 

to show that there is an important constraint which statistical inference 

procedures should he hound by, namely the likelihood principle. This 

principle contradicts ways of understanding statistics which philosophers 
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of science have been taking for granted, as I will show in the final section 

of this prologue. Later in the thesis, I will use the likelihood principle to 

suggest that almost everything that applied statisticians currently do is 

misguided. 

1. EVALUATING INFERENCE PROCEDURES 

Statistical inference is the move from beliefs and/ or statements about ob-

servations to beliefs and/ or statements about what cognitive states and/ or 

actions we ought to adopt in regard to hypotheses.' Since this thesis focuses 

on statistical inference, it does not discuss everything that statisticians do 

(not even everything they do at work). Firstly, the most important thing 

it ignores is what statisticians do before they have observations to work 

with. Most of that activity comes under the title experimental design. It is 

important to bear in mind throughout this thesis that the methods which 

I criticise for being inadequate to the task of inference may be very useful 

for experimental design. Secondly, although the problem of inference .from 

data to hypotheses is the main problem of inference these days, for histor­

ical reasons it is sometimes called the problem of inverse inference, as if it 

were a secondary problem. The opposite problem, which is to infer proba­

bilities of data sets from mathematically precise hypotheses, is called direct 

inference. Eighteenth- and nineteenth-century mathematics made direct 

inference relatively easy, and it has always been relatively straightforward 

philosophically, so I will be taking it for granted. Again, the methods I 

criticise for being inadequate for inverse inference may be adequate for 

1. ''And/ or" is meant to indicate lack of consensus. As we will see, some say that statistical 
inference is only about actions, others that it is only about beliefS, and so on. 



direct inference. The take-home message of this paragraph is that I will 

only be discussing inference from data to hypotheses, and when a method 

fails to be good for that I will be calling it a bad method, even if it is good 

for something else. 

There is one unsolved problem about statistical inference which is 

both more important and more urgent than any other. The problem is how 

to evaluate statistical inference procedures.2 Experts in this area cannot 

agree, even roughly, on what makes one statistical inference procedure 

better than another, as the survey of theories of statistical inference which 

makes up the bulk of Part I of the thesis will show. 

It is instructive to compare statistical inference to deductive inference. 

Everyone agrees that a sine qua non of deductive inference procedures is 

that they should lead from true premises to true conclusions. There are 

many ambiguities in that statement, leading to active disagreements about 

modal logics, relevant logics, higher-order logics, paraconsistent logics, 

intuitionistic logics and so on, but - and this is a big but - deductive 

logic is being successfully developed and applied even in the absence of 

agreement on these questions. This is possible because the basic idea of 

deductive inference as truth-preserving means more or less the same thing 

to everybody. 

In contrast, there is no equivalent agreed sine qua non for statistical 

inference. Statistical inference procedures cannot be evaluated by whether 

they lead from truths to truths, because it is in the very nature of statistical 

inference that they do not ... at least, unlike deductive inference, they 

do not lead from truths about the first-order subject matter of scientific 

2. Exactly what I mean by "inference procedures" is explained in chapter 2. Almost any 
algorithm which makes probabilistic inferences from data to hypotheses will qualify. 
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investigation (objects and events) to other truths about that subject matter. 

They may lead from truths about the subject matter to truths about what 

we ought to believe about relative frequencies or some such; but what we 

ought to believe is not something that can ever be verified in the direct 

way that first-order claims can (sometimes) be verified. 

There is a similar contrast between the problems of simple induction, 

such as Goodman's (1983) paradox, and the problems of statistical infer­

ence.s Simple induction asks questions like, "I, !, !, !, 1: what next?" A 

plausible answer is "!'', and this answer can be tested by subsequent ex­

perience. The statistical problem of induction, in contrast, asks questions 

like, "1.1, 0.9, 1.0, 1.1, 1.1: what next?" There is no first-order answer to 

this; by which I mean that there is no answer such as "1.1". The answer 

has to be something more like "Probably something in the region of 1.1." 

This answer can be explicated in various ways but clearly, however it is 

cashed out, it is not something that can be tested directly by subsequent 

experience. (As Romeyn 2005, p. 1 o, puts the point, "statistical hypotheses 

cannot be tested with finite means".) Any possible test is dependent on 

a theory of statistical inference. Consequently, the ability of a statistical 

inference procedure to pass such tests cannot (by itself) justify the theory 

behind the procedure, on pain of circularity. 

In the next two sections, I will consider two different things which 

we might want to do when we evaluate a statistical inference procedure: 

we might want to count the number of times (in different situations) it 

is right, on the assumption that some hypothesis or other is true; or we 

might want to compare what it says about various hypotheses in the same 

3. See also (Te11er 1969) for a plausible but arguably incomplete attempt to solve Good-
man's paradox using Bayesian statistical inference. 
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situation. Then I will use an example to discuss the conflict between these 

two modes of evaluation. 

ONE OPTION: FREQUENTISM 

One option is to eva] uate statistical inference procedures by seeing how 

ciften an inference procedure leads from truths to truths. This method 

for evaluating statistical inference procedures is prima facie closest to 

the truth-preservation test which we use to evaluate deductive inference 

procedures. 

This might mean that we should work out the number of times we 

should expect a given inference procedure to get the right answer, in 

some hypothetical set of test cases. If we do this in the same way we 

would for a deductive inference procedure, we will start with some known 

true premises and see how often the inference procedure infers true (and 

relevant) conclusions from them. Now, before we can embark on such 

an evaluation, we have to decide what types of conclusions we want the 

statistical inference procedure to infer. Perhaps, if it is going to be a useful 

procedure, we want it to infer some general scientific hypotheses .. We 

might then evaluate it by asking how often it correctly infers the truth 

of those hypotheses, given as premises some other general hypotheses 

and some randomly varying observational data. We can imagine feeding 

into the inference procedure random subsets of all the possible pieces of 

observational data, and we can calculate the proportion of those subsets on 

which it gets the right answer.• 

4. Such a method of evaluation requires the inference procedure to produce a determi­
nately true or f3.lse answer, which might or might not be a desideratum for the procedure 
independently of the need to evaluate the procedure. 
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This method is referred to as the "frequentist" or "error-rate" method. 

Unfortunately, both terms are misnomers. I will explain why in chapter 

4; see also chapter 2 for an alternative meaning of the word "Frequentist" 

and for the reason why I give it a captialletter. 

I hope it seems plausible that the Frequentist method might be the 

best way to evaluate statistical procedures, as almost all applied statisticians 

currently take it to be, because Frequentism will be the foil for most of 

my arguments. In particular, one of the main goals of this thesis, and an 

essential preliminary to arguing for the likelihood principle, is to show 

that despite its popularity the Frequentist method is not a sensible way to 

evaluate statistical procedures. 

ANOTHER OPTION: FACTUALISM 

It might even seem as though the Frequentist method were the only way of 

finding something analogous to the logician's method for testing deductive 

inferences. In order to see whether it is, consider what information is 

available to us when we are getting ready to use a statistical inference 

procedure. Some of our premises at that time will be general statements 

about the way the world is, of the nature of scientific hypotheses. The rest 

of our premises will be statements about specific observed phenomena. 

The distinction between these two - fuzzy though it inevitably is -

is fundamental to stating the nature of statistical inference. The most 

common epistemological goal of science is to make inferences from the 

latter to the former, from observations to hypotheses. (Not that this is the 

only possible goal of science.) And in order for this to be statistical inference, 

none of the hypotheses must be deductively entailed by the premises. In 
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other words, when we need a statistical inference procedure it is because 

we have collected some data and we want to infer something from the data 

about some hypotheses. 

What we want to know in such a situation is how often our candidate 

statistical inference procedure will allow us to infer truths, and we want 

to calculate this by comparing its performance to the performance of other 

possible procedures in the same situation, with the same data as part of 

our premises. The idea that this is what we want to know when we are 

evaluating statistical procedures has no name. I will call it the factual 

theory, because it ignores counterfactual statements about observations 

we haven't made. (More on such statements later.) I will also refer to 

factualism, meaning the doctrine that we should always apply the factual 

theory when doing statistical inference. 5 

The factual method is the one recommended by Bayesians, and it is 

the only one compatible with the likelihood principle (defined at the end 

of this chapter and again, more carefully, in chapter 8). Indeed, when made 

precise in the most natural way it turns out to be logically equivalent to 

the likelihood principle, as I will show. 

If the Frequentist method agreed with the factualist method then we 

would have a large constituency of people who agreed on how to evaluate 

statistical inference procedures. Perhaps they would be right, and if so we 

could pack up and go home. But no: the Frequentist method is deeply 

incompatible with the factualist method. The Frequentist method is to 

5. Factualism is a normative methodological doctrine. It is not a metaphysical doctrine; 
it must not be confused with (for example) actualism. To see clearly the difference between 
factualism and actualism, note that unless the factualist calculates the result of every possible 
alternative procedure, he may not be trading in observations he might make but has not, but 
he is still trading in calculations he might make but hasn't: hence, factualism does not rule 
out the use of counterfactuals. What factualism rules out is any dependence of statistical 
conclusions on counterfactuals whose antecedents are false observatzOn statements. 
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evaluate the performance of an inference procedure only on (functions of 

subsets of) all the possible pieces of observational data, while the factualist 

method is to evaluate its performance only on the data actually observed. 

Total conflict. 

STATISTICAL INFERENCE IS IN TROUBLE 

What we have just discovered is that the very concept of"the performance 

of an inference procedure" is a completely different animal according to 

two competing theories of how to evaluate inference procedures. We are 

not used to this situation- it can arise in non-probabilistic inference, when 

competing ways of measuring success are on offer, but it rarely does -

and so we do not always notice it; but we are hostage to it all the time in 

statistical inference. 

The comparison I have been making with methods of deductive rea­

soning might seem to suggest a nice solution to the problem of how to 

evaluate statistical methods. In deductive reasoning, as I've mentioned, one 

wants to go from true statements to true statements; and, helpfully, the 

meaning of"true", although contentious, is to some extent a separate issue 

from the evaluation of logical procedures; and hence logicians of differ­

ing persuasions can often agree that a particular inference does or doesn't 

preserve truth. In statistical methods, one wants to go not from true 

statements to true (first-order) statements but from probable statements 

to probable (first-order) statements. Statisticians of differing schools often 

fail to agree whether a particular inference preserves probability. But if 

they were at least to agree that it should, then that in itself would seem 

to rule out many methods of statistical inference. In particular, it would 
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seem to rule out methods which restrict attention to a single experiment in 

isolation, because we know that doing that can lead from probable premises 

to improbable conclusions. (This is because the conclusions drawn from an 

experiment in isolation can be rendered improbable by matters extraneous 

to that experiment- by, for example, a second, larger experiment.) 

Sadly, this line of argument does not work. The problem with it is that 

all methods of statistical inference sometimes lead from the probable to the 

improbable. We might amend the principle we're considering, to say that 

a good method of reasoning is likely to generate probable statements from 

probable statements. But then the principle becomes ambiguous between 

(at least!) the Frequentist and factualist interpretations described above, 

which interpret "likely" differently: we are back in the impasse we have 

been trying to escape. 

Ifl can clarify this problem and give a clear justification for a solution, 

even though my solution is only partial and only partially original, I will 

have achieved something. 

2. A SIMPLE EXAMPLE 

Although the questions I am asking are entirely scientific questions, at the 

level of abstraction at which I will be dealing with them very few of the 

details of applied science will matter. Some of the details of applied science 

will matter in various places, especially in the final chapter, but most of 

the minutiae of applied statistics will be irrelevant. It is therefore possible 

to conduct most of the discussion I wish to conduct in terms of a simple 

example table of numbers, which I construct as follows. 
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Suppose we have precise, mutually exclusive probabilistic hypotheses 

which tell us the probabilities of various possible observations. Suppose 

further that we observe one of the possible observations that our hypothe­

ses give probabilities for. No doubt this sounds like an ideal situation. 

Let's make it even more ideal by making there be only finite numbers of 

hypotheses and possible observations. Then we can draw a table: 

hypothesis I 

hypothesis II 

actual 
observation 

Table 0 

possible 
observation 1 

possible 
observation 2 

Now let's get concrete. A vomiting child is brought to a Rwandan refugee 

camp. The various possible diagnoses give rise to various major symptoms 

with known frequencies, as represented in Table 1 below which says, for 

example, that only I% of children with PTSD (Post-Traumatic Stress 

Disorder) have diarrhoea. It ought to be easy to tell from Table I whether 

the child is likely to be suffering primarily from one or the other of the two 

dominant conditions among children in the camp: PTSD (in which case 

they need psychotherapy and possibly relocation) or late-stage dehydration 

(in which case they need to be kept where they are and urgently given oral 
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rehydration therapy). The possibility of the child suffering from both 

PTSD and dehydration is ignored in order to simplify the exposition. The 

possibility of the child suffering from neither PTSD nor dehydration is 

considered but given a low probability. 

hypotheses 

dehydration 

PTSD 

vomiting 

(observed 
in this case) 

0.03 

0.001 

anything else 0. 001 

possible symptoms 
diarrhoea social 

(not observed 
in this case) 

0.2 

0.01 

0. 001 

Table 1 

withdrawal 
(not observed 
in this case) 

0.5 

0.95 

0.001 

other symptoms 
& combinations 
(not observed 
in this case) 

0. 27 

0.029 

0.997 

The table is to be read as follows. Each hypothesis named at the left 

hypothesises or stipulates some probabilities." The hypothesis that the 

child has dehydration stipulates that the probability that a dehydrated 

Rwandan child's main symptom will be vomiting is 3%, the probability 

that its main symptom will be diarrhoea is 20%, and so on. 

6. We might wonder how such sets of hypotheses are selected for consideration. That 
question, of course, precedes the main question of this thesis, which is how to evaluate a 
procedure which chooses between the given hypotheses. I do not agree with Popper that the 
provenance of a hypothesis is irrelevant to philosophy, and yet this thesis does not aim to 
discuss the issue of hypothesis selection in any detail. It will not matter for my purposes 
where these hypotheses come from as long as they include all the hypotheses which some set 
of scientists are interested in at some time. 
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In case there is any doubt about the meaning of the table, it can be 

expanded as follows: 

p(data =vomiting I hypothesis= dehydration)= 0.03 

p(data =diarrhoea I hypothesis= dehydration) = 0.2 

p( data = withdrawal I hypothesis = dehydration) = 0.5 

p(data =other symptoms I hypothesis= dehydration)= 0.27 

p(data =vomiting I hypothesis= PTSD) = 0.001 

p( data = diarrhoea I hypothesis = PTSD) = 0.01 

p(data = withdrawal I hypothesis= PTSD) = 0.95 

p(data =other symptoms I hypothesis = PTSD) = 0.029 

Note that there is a catch-all column, to ensure that all possible symptoms 

are represented somewhere in the table. 

The types of analysis that have been proposed for this sort of table, and 

for infinite extensions of it, do not agree even roughly on how we should 

analyse the table or on what conclusion we should draw. In particular, 

Frequentists and factualists analyse it differently. 

Let's look brief! y at a standard analysis of this table, as would be 

performed by practically any applied statistician from 1950 to the present. 

A statistician would run a statistical significance test in SPSS or one of the 

other standard statistical computer packages, and that would show that 

we should clearly reject the hypothesis that the child is dehydrated (p = 

0. 03, power= 97%). The reasoning behind this conclusion is Frequentist 

reasoning. It goes like this. If the statistician ran that same test on a large 

number of children in the refugee camp it would mislead us in certain 

specific ways only 3% of the time. This has seemed to almost all designers 

of statistical computer programs, who are the real power-brokers in this 

situation, to be an admirable error rate. I will show later that the exact 
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ways in which running the test on a large number of children would mislead 

us 3% of the time are complicated and not as epistemically relevant as one 

might hope: so it is misleading (although true) to say that the analysis in 

SPSS has a 3% error rate. 

I will champion the factualist analysis of Table 1, which is opposed to 

the Frequentist reasoning of the previous paragraph. The factualist says 

that the rate at which the applied statistician's inference procedure would 

make mistakes if he used it to evaluate a large number of dehydrated chil­

dren is totally irrelevant, and so are a number of other tools of the orthodox 

statistician's trade, including confidence intervals and assessment of bias 

(in the technical sense). The reasoning is simple. We should not care about 

the error rate of the statistician's procedure when applied to many children 

who are in a known state (dehydrated), because all we need to know is what 

our observations tell us about this child, who is in an unknown state, and 

that means we should not take into account what would have happened 

if- counterfactually - we had applied this or that inference method to 

other children. 

One might reasonably suspect that this factualist reasoning is flawed, 

because one might suspect that even if the error rate is not something we 

want to know for its own sake it is nevertheless epistemically relevant to 

the individual child in question. One of the main jobs of this thesis will 

be to show that the factualist is right- the error rate is not epistemically 

relevant to the individual child- given what else we know (and with some 

exceptions). 

The counterfactual nature of the error-rate analysis is the primary 

source of the disagreement between Frequentists and factualists. This 
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is what makes resolving the disagreement a task for a philosopher. Not 

only are Frequentist methods irreducibly dependent on the evaluation of 

counterfactuals, but moreover they will often reject a hypothesis which 

is clearly favoured by the data not just despite but actually because the 

hypothesis accurately predicted that events which did not occur would not 

occur: in other words, they will reject a hypothesis on the grounds that it 

got its counterfactuals right (See chapter 4 for more details.) Perhaps even 

more surprisingly, I will show that this defect in orthodox methodology 

cannot be fixed piecemeal. The only way to get rid of it is to show that 

counterfactuals of this sort are irrelevant to statistical inference, and then 

to give them the boot. Or rather, to be more precise and less polemical, the 

only way to fix the problem is to delineate a clear, precise class of cases of 

statistical inference in which such counterfactuals are irrelevant; and that 

is what I will do. This task will take up most of Part III of this thesis. 

The alternative to using these counterfactuals is to restrict our atten­

tion to the single column of the table which represents the observation we 

actually made, as the factualist advises us to do: 
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hypotheses 

actual symptoms 
vomiting 

dehydration o. 03 

PTSD 0.001 

others 0.001 

Table 2: the only part of Table 1 that a factualist cares about 

It would be nice if the two sides in this disagreement were just different 

ways of drawing compatible (non-contradictory) conclusions about the 

child. I will show in detail that they are not that. To show this just for 

Tables 1 and 2 for the moment, a look at the probabilities given by the 

hypotheses shows that the observed symptoms are much more likely on 

the hypothesis of dehydration than they are on all the other hypotheses. 

So according to the factualist way of proceeding we should think that the 

child probably is dehydrated, despite the result of the significance test 

which suggested otherwise (unless we have other evidence to the contrary, 

not represented in the table). We will see in chapter 3 and chapter 5 that 

this reasoning is too simple, because there are various competing factualist 

positions, but all of them would be likely to draw the same conclusion from 

Tables 1 and 2. 
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So we have a disagreement between what practically any applied 

statistician would say about the table and an alternative conclusion we 

might draw from the table if we restrict ourselves to considering only the 

probabilities that the various hypotheses assign to the actual observation. 

I will show that this disagreement generalises to more or less any table 

of hypotheses and observations; it even generalises to most tables (as it 

were) with infinitely many rows and columns. Thus, the simple table 

above illustrates a deep-seated disagreement about probabilistic inference: 

the disagreement between Frequentism and factualism. The table shows 

that sometimes (and, as it happens, almost always) these two views are 

fundamentally incompatible. 

s. WHAT THIS THESIS WILL SHOW 

The main purpose of this thesis is to consider principles of statistical infer­

ence which resolve the debate about counterfactual probabilities presented 

above and hence tell us something about which conclusion we would be 

right to draw from the Table l and other such tables.7 These principles 

will turn out to be extremely powerful normative constraints on how we 

should do statistical inference, and they will have implications for almost 

everything applied statisticians do and hence for most of science. 

I will defend the factualist school of thought in the form of the likeli­

hood principle, which I introduce here very briefly. 

My discussion will suggest that when we have made any observation 

in any scientific context, it is good to consider what each of our current 

7. Of course Table 1 is only an example. My conclusions will hold in much more generality 
than that. But not in complete generality, unfortunately: there wiH be various caveats, which 
will be presented in chapter 2 and chapter 8. 
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competing hypotheses says the probability of that result was or is. We 

should, for example, take into account all the numbers in Table 2. To 

say the same thing in more technical language, it is good to consider the 

probability of that observation conditional on each of our current competing 

theories. (To do so is known as conditioning.) I will claim that these 

conditional probabilities - the numbers in a single column - should 

form the basis of any inference about which hypotheses we should accept, 

retain or follow. This claim is known as the likelihood principle. Of all the 

principles in the literature which have been considered important enough 

to merit their own names, the likelihood principle is the closest thing to a 

precise statement of factualism. 

There is one important caveat to my advocacy of the likelihood princi­

ple which I must cover straight away. It is not that the likelihood principle 

is ever wrong. It is that sometimes it fails to answer the most impor­

tant question. I have been blithely talking about "evaluating" an inference 

procedure as if that meant something univocal. But in fact there are (at 

least) two reasons why one might want to evaluate an inference procedure: 

reasons which seem compatible at first sight but which, in fact, may pull in 

different directions. 

• Firstly, one might want to decide which of two competing inference 

procedures to use. 

• Secondly, one might want to calculate some number which describes 

in some sense how good an inference procedure is. 

I will be claiming, without hesitation, that the likelihood principle always 

gives the right answer to the first question (if it answers it at all; in 

some instances it is silent), while Frequentism is misleading at best and 
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downright false at worst. But I would like to say something different in 

answer to the second question, because the second question is ambiguous 

in a way in which the first is not. When we ask the first question, we are 

(we must be) imagining ourselves in possession of a token observation from 

which we want to make one or more inferences about unknown hypotheses. 

We must, roughly speaking, be in the situation which I will describe in full 

detail in chapter 2. In that situation, Frequentism is a very bad guide, as I 

will spend most of this thesis showing, while the likelihood principle is our 

friend, as I will suggest throughout and show fairly definitively in chapter 

13. In contrast, when we ask the second question, we may want either 

of two things: we may want to know how well our inferences are likely 

to perform, in which case again Frequentism will be misleading and the 

likelihood principle will be helpful; or, we might want to know how well 

this type of inference would perform on repeated application in the presence 

of some known true hypothesis and variable data, without any interest at 

all in how in performs on any particular token data. In that case, it is not 

immediately clear which of the arguments I present against Frequentism in 

this thesis still apply; or which of the arguments in favour of the likelihood 

principle still apply. In fact, some of my arguments against standard 

forms of Frequentism in chapter 4 do still apply, but not all of them; and 

my arguments in favour of the likelihood principle, based as they are on 

the framework from chapter 2, are rendered irrelevant. Consequently; I 

will not attempt to reach any conclusions about how Frequentism fares 

when we are attempting to evaluate the long-run performance of inference 

procedures in the presence of known true hypotheses. To do so would be 

interesting, but it would take another whole thesis. 
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This thesis is one of very few lengthy discussions of the likelihood 

principle. It is the first extended treatment of the likelihood principle 

to take non-experimental observations (observations made without delib­

erate interference in the course of nature) as seriously as experimental 

observations. This huge widening of scope turns out to make practically 

no difference to the validity of the arguments I will consider; and that very 

absence of a difference is a noteworthy finding of my investigation. 

Part I of this thesis deals with preliminary material. In chapter 2 I lay 

out a number of useful, relatively uncontentious idealisations carefully and 

explicitly but with the bare minimum ofargument.8 Then, in chapters 3 to 

5, I survey the methods of statistical inference which have been proposed 

in the literature to date. 

In Part II I motivate the likelihood principle and show that objections 

to it fail. I start, in chapter 7, by discussing criticisms of Frequentist 

analyses ofT able 1. In chapter 8 I introduce the literature on the likelihood 

principle and begin to compare it to Frequentism. In chapters 9 to 12 I 

discuss criticisms of the likelihood principle. 

In Part III I present proofs of the likelihood principle and a brief 

case study of its use. In chapter 13 I offer proofs of a new version of 

the likelihood principle, a version which overcomes the objections which 

have been voiced against previous versions, while in chapter 14 I discuss 

objections raised by the proof itself At the risk of spoiling the denoument, 

here is the version of the principle I will prove. 

8. Elsewhere, I have worked on a much more critical discussion of one part of this 
framework of idealisations: the part involved in supposing that credences are represented by 
single, precise real numbers (Grossman 2005). I do not include this work here, because it 
would distract from the main thrust of my arguments. 

19 



The likelihood principle 

Under certain conditions outlined in chapter 2 and stated 

fully in chapter 8, inferences from observations to hypothe­

ses should not depend on the probabilities of observations 

which have not occurred, except for the trivial constraint that 

these probabilities place on the probability of the actual obser­

vation under the rule that the probabilities of exclusive events 

cannot add up to more than 1. 

The consequences of this principle reaches into many parts of scientific 

inference. I give a brief theoretical discussion of such consequences, and 

one detailed practical example, in chapter !5. 

This thesis may seem to have a Bayesian subtext, because it attacks 

some well-known anti-Bayesian positions. This pro-Bayesian appearance 

is real to a certain extent: the likelihood principle does rule out many anti­

Bayesian statistical procedures without ruling out very many Bayesian 

procedures. But that is a side effect: the likelihood principle is intended to 

cut across the Bayesian/non-Bayesian distinction, and may turn out to be 

more important than that distinction. 

4. WHY PHILOSOPHERS NEED 
TO READ THIS THESIS 

Throughout history, it has become clear from time to time that philosophy 

has to stop taking some aspect of science at face value, and start placing 

it under the philosophical microscope. To pick only the most exciting 

examples, the philosophical community was forced by Hume and Kant to 

turn its attention to the scientific notions of space, time and causality; it 
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was forced by Bolzano, Russell and Godel to problematise proof; and it 

was forced by the founders of quantum theory to look at the determinacy 

of physical properties. Jeffreys, Keynes, Ramsey and de Finetti forced 

a re-evaluation of the philosophy of probability in the 1920s, and since 

then it has become standard to acknowledge that the definition and use 

of probability concepts needs careful thought. But this interest in the 

philosophy of probability has not been extended sufficiently carefully to 

statistical inference. It is common for even the best-educated philosophers 

of science to write critically, and at length, about the many ways in which 

probability can be understood, and yet to take statistical notions entirely 

at face value. I will discuss Bayesian philosophers as a particularly clear 

example. 

Bayesianism currently enjoys a reasonable degree of orthodoxy in 

analytic philosophy as a theory of probability kinematics (a theory of ra­

tional changes in probability). Of course there are detractors, but among 

philosophers of probability and statistics there are not many. I will give 

reasons later for thinking that the more extreme detractors- those who 

decry Bayesianism even in the limited contexts in which I suggest using it 

-are wrong; but even if you are one of them (and a fortiori don't agree 

with all of my arguments) you will agree that to speak to philosophical 

Bayesians, as I will in this section, is to speak to a large audience. 

It is almost universal for Bayesian philosophers to espouse Bayesian­

ism in a form which entails the likelihood principle, and yet many of them 

- perhaps almost all of them - simultaneously espouse error rate Fre­

quentist methodology, which is incompatible with the likelihood principle. 

In symbols: 
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B => likelihood principle is true 

F => likelihood principle is false 

B + F => contradiction 

where B is almost any Bayesian theory of probability kinematics, and F is 

any Frequentist theory of statistical inference. 

A very fine philosopher who has found himself in this position is 

Wesley Salmon. I use Salmon as an example because my point is best 

made by picking on someone who is universally agreed to be clever, and 

well versed in the literature on scientific inference including probabilistic 

scientific inference, and well versed in at least some aspects of science itself. 

Salmon is unimpeachable in all three respects. Many further examples from 

the work of other philosophers could be given, but for reasons of space I 

hope a single example will be enough to illustrate my point. 

When ... scientists try to determine whether a substance is car­

cinogenic, they will administer the drug to one group of subjects 

(the experimental group) and withhold it from another group 

(the control group). If the drug is actually carcinogenic, then 

a higher percentage in the experimental group should develop 

cancer than in the control group. (So far, so good.) If such a 

difference is observed, however, the results must be subjected 

to appropriate statistical tests to determine the probability that 

such a result would occur by chance even if the drug were to­

tally noncarcinogenic. A famous study of saccharine and bladder 

cancer provides a fine example. The experiment involved two 

stages. In the first generation of rats, the experimental group 

showed a higher incidence of the disease than the control group, 

but the difference was judged not statistically significant (at a 

suitable level). In the second generation ofrats, the incidence of 
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bladder cancer in the experimental group was sufficiently higher 

than in the control group to be judged statistically significant. 

(Salmon 200la, p. 70) 

This quotation shows one of the most important champions ofBayesianism 

among philosophers give a startlingly anti-Bayesian account of an exper­

iment, even though the purpose of the paper from which this quotation is 

taken is to exhort us to accept Bayesianism. In the quoted passage, he does 

not quite say that Frequentist significance tests are always the best tool 

for drawing statistical conclusions, but he does identify the judgement of 

statistical significance (a Frequentistjudgement) as an "appropriate statis­

tical test", and commends work which uses statistical significance testing 

as a "fine example" of what is required. In doing this, he endorses the 

use of significance tests to draw conclusions about hypotheses; but that is 

counter to the likelihood principle and hence counter to Bayesianism. 

This, I think, illustrates how philosophers understand Bayesianism 

accurately in simple probabilistic situations but have not internalised its 

consequences for statistical inference. From the point of view of Bayesian 

philosophers, it is the incompatibility of these positions which calls for the 

work presented in this thesis. 

On with the show. 
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-2-

Definitions and Axioms 

1. INTRODUCTION 

In this chapter I present definitions of the fundamental terms I will be 

using in the rest of the thesis and axioms governing their use, along with 

just enough discussion to establish why I have made the choices I have 

made. 

Since this chapter mainly takes care of terminological issues, and since 

terminological issues tend to have relatively few deep links to each other, 

this chapter is more like a collection of short stories than a long narrative. I 

beg the reader's indulgence. The short stories include basic notation, basic 

axioms, an exciting (to me at least) new way of describing exchangeability, 

and a variety of small controversies related to terminology. 

One disclaimer: the reader will notice that I attempt to resolve only 

a very few of the many pressing problems in philosophy of probability. I 

hope to show by example that it is possible to achieve a good deal of insight 

into statistics without first giving the final word on probability. In this 

chapter I define my probabilistic terminology fully but say very little about 

the interpretation of probability and almost nothing about its ontology. 

A few further issues in the philosophy of probability will intrude into 

later chapters - most importantly, a discussion of epistemic probability 

in chapter 4 - but we will see that many issues in the philosophy of 
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probability do not need to be discussed. For example, qua philosopher of 

probability I would like to know whether objective chance is inherent in the 

world or is a Humean projection (or something else); but qua philosopher 

of statistics I can achieve a lot without that question arising. 

2. THE SCOPE OF THIS THESIS 

The exact range of applicability of the conclusions of this thesis is simply 

the cases in which we can uncontentiously draw a table such as Table I 

(finite or infinite). In other words, it is the cases in which we have an agreed 

probabilistic model which says which hypotheses are under consideration 

and what the probability of each possible observation is according to each 

hypothesis. 

This thesis is about inference procedures in science. One of my claims 

will be that the study of the philosophy of statistics (and hence, derivatively, 

the philosophy of most of the special sciences) can be clarified tremen­

dously by analyses of inference procedures, largely (although of course 

not entirely) independently of analyses of more primitive concepts (such 

as "evidence", for example). I will therefore give an explicit definition of 

"inference procedures", at the risk of stating the obvious. 

An inference procedure is a formal, or obviously formalisable, 

method for using specified observations to draw conclusions 

about specified hypotheses.9 

9. Throughout this thesis, important terms are set in bold text where they are defined, 
while italic text is used both for the definitions of relatively unimportant terms and for general 
emphasis; except that within quotations from other authors bold text is my emphasis while 
italic text is the original authors' emphasis. 
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I sometimes refer to inference procedures as methods; sometimes I do this 

just for variety and sometimes I do it because I want to ephasise the 

operational nature of inference procedures. 

I am discussing ways to evaluate inference procedures, not ways to 

evaluate individual inferences. Does this mean that I can't draw any con­

clusions about individual inferences? It almost does. I cannot conclusively 

infer from the deficiencies of an inference procedure that any given infer­

ence is a bad one. This admission may seem rather weak, but it is the best 

anyone can do at such a general level of analysis. Indeed, it is the best 

anyone can do not only in statistical inference but even in better developed 

fields of inference such as deductive logic. Deductive logic confirms an 

individual inference as valid when it instatiates a valid procedure ... re­

gardless of whether it also instantiates an invalid procedure (which in fact 

it always does, since any non-trivial argument instantiates the argument 

form p f- q, p f. q). This does not deter us from working out which deduc­

tive inference procedures are invalid. Finding invalid inference procedures 

has proved to be useful, despite the fact that not all instances of invalid 

inference procedures have token invalidity. We should expect the same to 

be true of inductive inference procedures: it will be useful to know which 

are invalid, even though arguments constructed using invalid inference 

procedures may occasionally be good arguments. 

HYPOTHESES 

I will be concentrating on statistical inference procedures, and so it will be 

useful to restrict the use of the word "hypotheses" in the above definition, 

in two ways. 
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Firstly, my interest in hypotheses will mostly be restricted to hypothe­

ses which specify precise probabilities for all possible outcomes of a given 

experiment or of a given observational situation. (I mean "possible" in the 

sense of forseeable, of course, since my topic is entirely epistemological. 

Metaphysical possibility is irrelevant. A third type of possibility, logical 

possibility, is factored in to my work via the axiomatic probability theory 

which I will state later in this chapter.) This type of hypothesis is known in 

the literature as a "simple hypothesis". I will use the qualification "simple" 

often enough to remind the reader that I am discussing precise hypotheses, 

but for the sake of a bit of grammatical elegance I will only use it when 

the distinction between simple and compound (non-simple) hypotheses 

is directly relevant, not every time I use the word "hypothesis". Many 

parts of the literature use the terminology in the way I am suggesting or, 

compatibly, restrict the word "hypothesis" to simple hypotheses. 10 

10. Thus, "if a distribution depends upon I parameters, and a hypothesis specifies unique 
values for k of these parameters, we call the hypothesis simple if k = l and composite if k < /" 
(Stuart et al. 1999, p. 171 ), although unlike Stuart et al. I will not generally assume that 
hypotheses are characterised by parameters. Similarly, "By hypotheses we mean statements 
which specify probabilities." -Barnard, in (Savage & discussants 1962, p. 69). 

Some authors use the word "theory" interchangeably with "hypothesis", but I will need 
to use the word "theory" to mean theory of statistical inference, so I will never use it to mean 
scientific hypothesis. 

A disadvantage of my stipulation that hypotheses must specify probabilities is that 
it forces me to restrict the meaning of the word "hypothesis" to exclude statements which 
are functions of the observations which we wish to use to make inferences about those 
very statements (hypotheses hi such that hi = f(xa) for some f, in the notation which I 
will introduce below). Let me briefly Uust for the duration of this paragraph) introduce 
the term "hyperthesis" to refer to such a statement, and "metathesis" to refer jointly to 
hypotheses and hypertheses. Now, were I to measure the heights of a random sample of two 
philosophers, and then to wonder whether the taller of the two people in my sample was 
cleverer than the shorter one, assertions about their relative braininess based on knowledge of 
who was in the sample would be hypertheses, not hypotheses. The problematic aspect of such 
hypertheses is that their meanings change when the observation is made: beforehand they 
are general (or, if you like, variable) assertions about the whole population of philosophers, 
but afterwards they are assertions about two particular, known philosophers, say Hilary 
Putnam and Ruth Anna Putnam. Consider whether Hilary is cleverer than Ruth Anna. It 
is, I hope, obvious that the likelihood principle applies to this question if it applies anywhere: 
if only the probability of the observation according to various hypotheses is relevant to 
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The practical advantages of discussing statistical inference in terms of 

inference procedures will become clear as we go. There is also a theoretical 

advantage: discussing inference procedures is (I claim) exactly what we 

need to do in order to abstract away from unimportant details of specific 

contexts of application of inference methods without losing the details that 

matter. A discussion of the concept of evidence, to take my example of a 

more primitive concept that I could have started with instead of inference 

procedures, is extremely important- indeed, I have written on that topic 

(Moore & Grossman 2003, Grossman & Mackenzie 2005)- but it requires 

a discussion of sociological and political issues surrounding the use of the 

inference about those same hypotheses (as the likelihood principle asserts) then surely it is 
also the case that the probabilities of the observation according to various hypotheses plus the 
probabilities of the observation according to various hypertheses is sufficient for inference 
about metatheses. To illustrate with the Putnams, if only the probabilities according to various 
hypotheses of observing the Putnams are relevant to inference from the observation to any 
hypothesis, then surely those same probabilities plus the probabilties according to various 
hypertheses of observing the Putnams are sufficient for inference about all metatheses. Thus, 
if the arguments of this thesis in favour of the likelihood principle for hypotheses narrowly 
construed have any weight, then the likelihood principle will also be true for metatheses 
in general. However, dealing with hypertheses would considerably complicate some of the 
arguments in this thesis, because many of my arguments use the fixed nature of hypotheses 
as a simplifying assumption; so I do not attempt to give detailed arguments in favour of the 
view that the likelihood principle applies to hypertheses as well as to hypotheses. 

The problem which I have just described is known in the literature as "the prediction 
problem" (Dawid 1986, p. 197), even though most problems which we might non-technically 
call prediction problems do not have this form and do fall within the scope of this thesis- for 
example, the question of how clever I ought to expect a third randomly-sampled philosopher 
to be, given information from a sample of two random philosophers, or the question of how 
clever I ought to think the population of philosophers as a whole, again given information 
from a sample of two, are common-or-garden prediction problems in which the hypotheses 
do not depend on the observation for their meanings, and such hypotheses are well within 
the scope of this thesis. (Any such problem could be stated in terms of hypotheses which 
are functions of the observation, by taking "the observation" to include hypothetical future 
observations of the third philosopher or of the whole population of philosophers, but although 
it could be stated in such a form it need not be.) 

It is possible in principle to incorporate the so-called prediction problem into the 
framework presented here. Dawid ( 1986, p. 197) sketches a proof that the stopping rule prin­
ciple, which he rightly calls "the most controversial of all the consequences of the likelihood 
principle", is true even in prediction problems. However, for simplicity of exposition of the 
likelihood principle (which is not so easily proved to apply to prediction problems as the 
stopping rule principle is), I restrict the meaning of"hypothesis" so as to exclude prediction 
problems. The only exception is at the end of chapter 13, where I state a mathematical result 
about the prediction problem, without proof, in order to show that it is at least plausible 
that the likelihood principle is true even in prediction problems (as technically construed; I 
emphasize again that common-or-garden prediction problems are unproblematic). 
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word "evidence" which have very little bearing on the normative task 

undertaken in this thesis. 

Having said that, I will discuss several specific contexts, for illustrative 

purposes and to check my assertion that I am abstracting the important 

aspects of statistical inference. This will be especially clear in chapter !5, 

in which I will discuss an urgent problem in applied statistical inference 

with enough scientific and social context to test the accuracy and relevance 

of my theorising. 

THEORIES OF THEORY CHANGE 

Why do I restrict my conclusions to only part of science, so that they 

cannot give us a complete theory of theory change? Recall that the range 

of applicability of the conclusions of this thesis is the cases in which we 

have an agreed probabilistic model which says which hypotheses are under 

consideration and what the probability of each possible observation is 

according to each hypothesis. This is an extremely common situation in 

science: indeed, it covers the vast majority of scientific experimentation, 

especially in the biomedical sciences. However, the reader can easily think 

of examples that are not covered by this sort of model. That is because 

the atypical cases that are not covered are some of the most interesting 

cases for philosophers and historians of science. Cases in which theories 

are only vaguely described but are nevertheless in active competition with 

each other, as was the case with theories of the shapes of the continents 

in the 1960s, are of extreme interest to all of us, especially to those of a 

Kuhnian disposition. The reason I do not discuss these cases in this thesis 

is probably obvious: they raise the problem of how to make a mathematical 
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model describing the theory. That problem is of course important and 

interesting, but the considerations which it brings into play hardly overlap 

at all with the considerations needed to work out how to analyse a given 

mathematical model. It therefore makes no sense to attempt both in one 

thesis; and I will attempt only the latter. 

Fortunately, most of science is not like 1960s theories of continental 

drift. In the vast bulk of scientific work the hypotheses under active consid­

eration are extremely clearly described, to the point where the probabilities 

involved are stated explicitly by the hypotheses. For example, in all clinical 

trials of treatments for life-threatening diseases, there is a continuum of 

hypotheses stating that the life expectancy (expressed as relative risk of 

death adjusted for measurable predictive factors such as age) of subjects 

who are given the experimental treatment is x, for all x between 0 and 

I. Each of these hypotheses has sub-hypotheses describing the possible 

side-effects of the treatment, but we can ignore those sub-hypotheses for 

simplicity- they are just additional rows in the table and make no differ­

ence to the principles of analysis. What's more, this clarity of hypotheses 

is observed not just during periods of Kuhnian normal science (if indeed 

there are any) but during periods of conflict between rival theories as well. 

It is very common (although not, I admit, universal) for rival theories to 

each have well defined hypotheses which are considered to be workable and 

precise (although false and perhaps unimportant) even by their opponents. 

In other words, most of science is stamp-collecting, and this thesis, I hope, 

describes stamp collecting rather well. 

What forms can these hypotheses take? In assuming that they define 

probabilities of possible outcomes, I am assuming that they are partly 
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mathematical, so it might be expected that I would have to say something 

about their mathematical form. But thankfully that isn't necessary. A 

philosopher can state a statistician's model of nature as simply 

p(X = xlh) = fi,(x) 

where x represents possible data, X is a random variable (statisticians' jargon 

for a function from the structured set of possible events to the set of possible 

observation reports), p denotes probability andfi, is the probabilistic model 

according to hypothesis h. 

In general, x is a vector, often of high dimension - typically several 

dimensions for each observed data point, which means that in a large 

medical study, for example, the dimensionality of x is in the hundreds of 

thousands or millions (although the dimensionality can often be reduced by 

summarising the data using sufficient statistics, which I discuss in chapter 

13 when I come to the sufficiency principle). 

There are various questions we must ask about f and x for philo­

sophical purposes, but the functional form off (log-Normal, Cauchy or 

whatever) is not one of them, or at least is not foremost among them, as 

we will see from the amount of work we can do without it. This should 

come as a great relief to those of us who are not mathematicians. 

Among the questions which we cannot ignore, for reasons which will 

become apparent later, are: 

• whether f is discrete or continuous, 

• whether xis multidimensional 
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• and if so whether the dimensions of x are commensurable (in the 

mathematical sense of being multiples of each other, not in any 

subtle Kuhnian sense). 

I will say more about the problems of multidimensional data in chapter 15. 

Very occasionally I will assume thatf is either continuous or discrete 

(finite); but mostly I will assume nothing about it at all except that it takes 

values between 0 and 1 inclusive and integrates to 1. 

3. BASIC NOTATION 

I use small letters in p(x[y) as shorthand for p(X' = x! Y' = y), where X' 

and Y' are random variables. And similarly p(F(x)! G(x)) is shorthand for 

p(F(X') = F(x)!G(Y') = G(y)). 

Random variable is standard terminology in discussions of statistics, 

but it is slightly misleading. Fortunately, I will be able to do without 

discussing random variables most of the time; but not quite all the time. A 

random variable such as X' is (famously) neither random nor a variable: it 

is a function which associates a real number with each possible observation 

into real numbers (typically, subject to the constraint that (Vx E R) the set 

{y : X' (y) ::; x} is measurable according to a standard measure on R). 

Although X', a random variable, is not a variable, x, a possible value 

of X', is a variable, and may in some cases need to be treated as random 

(although only rarely in this thesis). I write the set of possible values of x 

-in other words, the range of the random variable X'- as X. Elsewhere 

in the literature, plain capitals (X, Y) usually stand for random variables, 

not for sets of possible outcomes, but for my purposes the range of each 

random variable is more important than the random variable itself, and it 
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is well worth reserving the simpler notation (X rather than X') for the 

more important concept. 

The following terms have meanings that are more or less specific to 

this thesis. 

A doxastic agent is the epistemic agent from whose point of view a proba­

bilistic or statistical inference is meant to be a rational one. As we will see, 

some theories of statistical inference require such an agent, while others 

(notably Frequentism) do not. 

X is a space of possible observations. 

Xa is an actual observation ("a" for "actual")- either the result of a single 

experiment or observational situation, or the totality of results from a 

set of experiments and observational situations which we wish to analyse 

together. When X a is the only observation (or set of observations) being 

used to make inferences about a hypothesis space H, I will often refer to Xa 

as the actual observation. Presumably (human fallibility aside) it includes 

all the relevant data available to the agent making the inferences, even 

though it is not necessarily the only observation relevant to H which has 

ever been made by anyone. 

H is the set of hypotheses under active consideration by anyone involved 

in the process of inference. 

8 is a set (typically but not necessarily an ordered set) which indexes the 

set of hypotheses under consideration. I will always treat() as an index on 

the whole set ofhypotheses. 11 Very occasionally, in quotations from other 

11. In other words. ("</h E H) (3() E 8 , Ho = h). 
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authors, it will be just a partial index on H. In this rare case, (}will be one 

of several parameters in a parametric model. 

AN OBJECTION TO USING X 

Although the above set of quantities is the usual starting point for discus­

sions of statistical inference, Lindley ( !990a) complains that the sample 

space, X, is irrelevant to discussions of statistical inference (although not, 

of course, to discussions of experimental design, which are more or less 

identical with discussions of the value of alternative choices of X). I will 

quote Lindley at length, because his views about X will help to motivate 

the main contentions of this thesis: 

The [Bayesian J objects to the ... use of an arbitrary sample space 

[X] ... 
Since the arbitrariness of the sample space is not often ap­

preciated, it might be worth discussing it. The practical reality 

is the data [ Xa l (not X), the parameter space e and the likelihood 

function p([xa]l·) for fixed Xa and variable B. The sample space 

X is, to use Jeffreys' vivid description, the class of observations 

that might have been obtained but weren't. Both in practice and 

in theory, this class can be hard to specify .... 

Let me digress [from Lindley's topic, not from mine J to 

answer a point raised by two referees ... to the effect that 

the sample space X and its associated densities are the primary 

entities from which the likelihood is derived. This need not be so. 

Although it is customary for any paper in probability to begin 

with the triplet (X, [ HJ, p) ... this complete specification is not 

necessary and often extends beyond the bounds of the reality. 

Why, when discussing probabilities, is it necessary to have them 

defined for more sets than those of interest? ... The (X,[H],p)­
introduction is a useful starting point for many problems [such 
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as experimental design] but not [for statistical inference] when 

the data are to hand. 

(Lindley !990b, p. 46) 

I agree with Lindley's claim that X is not essential to statistical inference. 

His use of the phrase "the bounds of reality" is not due to an interest 

in ontology, but to a recognition that the hypothetical repetitions of an 

experiment on which the sample space is based are often, for technical 

reasons, not the same as any repetitions of the experiment which could 

conceivably be expected. 12 In any case, the most important foundations 

of Lindley's complaint are not whether or not X is in any sense real but 

two less difficult issues: whether or not it is arbitrary and whether or not 

it is "of interest". I will discuss in chapter 7 and chapter 15 the extent to 

which X is arbitrary. As for being of interest, it is clearly of only subsidiary 

interest at most, compared to H; if we could do statistical inference without 

it, there would be, at the very least, an argument fi·om parsimony for doing 

so. 

Further details of the reasons for which I agree with Lindley do not 

belong here; they will be discussed abundantly in Part II of this thesis. 

Lindley's point is equivalent to a version of the likelihood principle, 

which I will champion in Part II. But my aim is not only to explain how 

the likelihood principle works but also to show that it is an improvement 

over competing principles of statistical inference; and in order to discuss 

these competing principles I must be able to talk about a complete sample 

space, X, no matter how much I agree with Lindley that such a thing is 

12. Two examples are the fixing of the marginal totals in contingency tables, and the 
fixing of the "independent" variable in bivariate regression analysis: in each of theses cases, 
the sample space which is used in the analysis is given constraints which need not be expected 
to apply to repetitions of the experiment (Lindley 199Gb, p. 47). Lindley is uncontentiously 
right about these examples; but the details are unimportant fOr our purposes. 
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an unnecessary invention. Consequently, I will assume throughout this 

thesis that X has been specified, whether arbitrarily or not and whether 

unnecessarily or not. 

NON-PARAMETRIC STATISTICS 

I will generally assume the existence of an index set on H, and in a loose 

sense this index set will give us a parameter on H; but this does not restrict 

my work to what statisticians call "parametric" models. As the authoritative 

Kendall's Advanced Theory rif Statistics explains the terminology, 

[When J no parameter values are specified in the statement of 

the hypothesis; we might reasonably call such a hypothesis non­

parametric . ... [When the hypothesis J does not even specify the 

underlying form of the distribution [it] may reasonably be termed 

distribution-free. Notwithstanding these distinctions, the statis­

tical literature now commonly applies the label 'non-parametric' 

to test procedures that we have just termed 'distribution-free'[.] 

(Stuart et al. 1999, p. 171) 

In other words, a parametric hypothesis is one which not only is indexed 

by a parameter(s) but also mentions its parameter(s). This point is relevant 

to the long shelves of books in the mathematics library with titles such 

as "non-parametric statistics". These books are (almost exclusively) about 

finite collections of arbitrary hypotheses which do not mention any param­

eters (or which, for a variety of idiosyncratic reasons, are to be analysed as 

if they did not mention any parameters). Since they are finite, they can be 

indexed; and since they can be indexed, the work presented in this thesis 

is directly applicable to them, even when the work presented here appears 

to be parametric. (See also Salsburg 1989 for a very general argument 
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to the effect that all interesting theories apply equally to parametric and 

non-parametric models.) 

Under what general circumstances can we be sure that there is an 

index seton H? First of all, if His finite orcountably infinite then of course 

it can be indexed. (Strictly speaking it should be provably countably infinite 

by a constructive proof, but this is an unimportant detail.) Interestingly, if 

there is a countable number of observables, each with a countable number 

of possible states, H can be the set of all probability distributions and thus 

the arguments to be given here can be completely general (in terms of Hat 

least) and H can still be indexed. Alternatively, if we can fully describe an 

uncountable but continuous distribution (either in natural language or in 

mathematics) then we can still count it as being indexed by parameters, the 

parameters in this case being whatever lexical tokens are used to describe 

the function (possibly an infinite number of them, if the definition contains 

terms like (Vi E Z) ). So H can be indexed in the discrete case and in 

all describable continuous cases. In most systems of pure mathematics 

there are, provably, indescribable functions; but as philosophers of applied 

mathematics we need not worry about them too much. 

I will assume in most of this thesis that all variables in a model 

should be considered as parameters. This is one of the places in which 

the likelihood principle is open to re-formulation, and it is an issue on 

which Bayesians have interestingly diverging opinions, as I will discuss in 

chapters 9 to 12. 
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4. PROBABILITY AXIOMS 

It will be useful to have a mathematical axiomatisation of probability. I will 

give axioms based on a set of axioms by Harold Jeffreys (1961, pp.16-'25) 

(not to be confused with Richard Jeffrey). 

Jeffreys's axioms take conditional probability, P(alb) (which I write 

henceforth with a lower-case p, p(alb)), to be primitive. In such a system, 

probability is relative to background knowledge even though it might 

seem that it shouldn't be -just as time is relative to a reference frame 

even though it might seem that it shouldn't be. In a moment I will argue 

that Jeffreys is right to take this stance, although I will conclude that it 

need not make much difference. From among the various axiomatisations 

which take conditional probability to be primitive, there is no important 

reason to prefer Jeffreys's, but he does perhaps profit by paying particular 

attention to the epistemological context within which his axioms are to 

operate. 13 

CONDITIONAL PROBABILITY AS PRIMITIVE 

One advantage of taking conditional probability to be primitive is that 

this avoids the problems raised by trying to find a definition of conditional 

probability. The definition of conditional probability used by standard 

theories that take non-conditional probability as primitive is the equation: 

13. The many sets of probability axioms (including the most famous sets due to Kolmogorov, 
Renyi and Car nap and the seminal set due to Keynes) are in agreement on most points except 
for ontology and hence more or less interchangeable with each other as far as applied 
mathematics is concerned. Many other sets of axioms would have done almost as well for 
my purposes as Jeffreys's. There might have been some advantage to using axioms which 
allowed non-real-valued probabilities. I explore some such possibilities in (Grossman 2005), 
and I find there that the extra complications, although valuable in their own right, seem likely 
to add very little to our understanding of theories of statistical inference. 
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p(a&b) 
p(ajb) = , provided p(b) 7' 0. 

p(b) 

This definition proves awkward for such theories, because sometimes p( b) 

is 0 (Hajek 2003). This problem of zero divisors could be avoided, at least 

when talking about epistemic probabilities, by stipulating that no rational 

agent should ever, strictly speaking, hold the probability of anything to be 

quite zero. My own preferred way of doing this would be to construct a 

probabilistic equivalent of David Lewis's (1996) theory of knowledge. In 

Lewis's theory, we know everything which we are justified in believing 

when we're ignoring possibilities that may be "properly ignored" - and 

what may be properly ignored is contextual. Similarly; one could argue, 

we call things zero-probability when we're ignoring possibilities that may 

properly be ignored ... and that is contextual too. Nothing is ever 

zero-probability simpliciter. However, this does not save the proposed 

definition of conditional probability from a second problem. Hajek suggests 

substituting the variables in the above equation as follows (2003, slightly 

paraphrased): 

• a = I get heads 

• b = I toss a coin 

Then the supposed definition of conditional probability would give us: 

p(I toss a coin and get heads) 
p(I get heads I I toss a coin) = . . 

p(I toss a com) 

But this is a lousy definition of the left-hand side, argues Hajek, because the 

left-hand side can be well defined (e.g., equal toY. for a fair coin) even if the 

42 



right-hand side is left hopelessly vague. I consider this second argument 

of Hajek's to be a knock-down argument in favour of making conditional 

probability primitive. 14 

Despite these arguments, the conditional nature of probability can be 

ignored in many cases. Even though I will be treating all probabilities as 

conditional in my axioms, I will usually be talking about cases in which 

the question of exactly what a particular probability is conditional on is 

not interesting. And although I deny that we can always reduce a doxastic 

agent's total belief state to a simple description, it seems clear that all we 

need in order to enable us to do so is the caveat that we are interested only in 

belief states which can be shared by members of an epistemic community. 

(I am especially interested in scientific communities, of course, because 

they are the paradigm users of statistical inference.) So I will be using 

categorical (non-conditional) probabilities freely in this thesis after all, as 

do many other authors who take conditional probability to be primitive, 

14. A third argument, just in case one is needed, is an epistemic argument which applies (at 
least) to epistemic probabilities rationally ascribed by epistemic agents. This argument shows 
that an epistemic agent cannot rationally hold a categorical (non-conditional) probability, 
except in a trivial way. Suppose, for the purposes of reductio, that an agent holds that the 
categorical probability ofj is k: in symbols,p(j) = k. Suppose the agent also believes m, where 
m is distinct from j. Then either m is probabilistically irrelevant to p(j) - in other words, 
p(fim) = p(;)- or m is probabilistically relevant top(;). In the latter case, it is irrational 

to say that p(j) is the agent's probability ofj. p(flm) may still not be a rational ascription 
of probability, since there may be further epistemic factors to take into account- ca11 them 
y, z, w, t, . . . - but these factors only cause the rational ascription of probability to be as 
it were more conditional. If x,y, z, w, t, . .. are all relevant to the probability ofj then the 

only probability that the agent can rationally claim to be her probability of a is PU!B), where 
B is her whole belief state. (Note that my argument uses only pairwise comparisons of parts 
of belief states, and therefore applies even if agents' belief states cannot be fully decomposed 
into summable components.) 

This third argument leaves me with the conclusion that the only cases in which con­
ditional probabilities can be avoided, even were we not to buy H:ljek's arguments, would 
be, 

- when we are definitely and only considering non-epistemic probabilities; and 
- in the trivial case in which, for all min the domain of things that can occupy the position 

after the "I" in a conditional probability ascription,p{f!m) = p(f). 
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including Jeffreys and Lindley. This is the purpose of my addition of Axiom 

8 to Jeffreys's axioms in the next section. 

STATEMENT OF PROBABILITY AXIOMS 

The following axioms are from (Jeffreys 1961, pp. 16-25), except for Axiom 

0, which I have added. Axioms 1-7 and Conventions 1-3 are reproduced 

here almost verbatim (my changes are in square brackets), but omitting 

Jeffreys's interspersed comments. 

Axiom 0. The domain of the propositions mentioned m the following 

axioms is a fixed set of sentences, H 15 

Axiom I. Given [the truth of a proposition J p, q is either more, equally, or 

less probable than [p], and no two of these alternatives can be true. 

Axiom 2. Ifp, q, r, s are four propositions, and, given p, q is more probable 

than r and r is more probable than s, then, given p, q is more probable than 

s. 

15. The purpose of my added Axiom o is to resolve an ambiguity in Jeffreys's axioms: he 
leaves it unclear whether their contentful primitives are sentences or propositions. Jeffreys's use 
of quotation marks in some phrases seems to suggest that they are sentences, while his failure 
to use quotation marks in other phrases such as pq seems to suggest that they are propositions 
(especially since one does not make a logical union of sentences by concatenating them, and 
even more especially since he calls them propositions). The main point at issue is that 
sentences, unlike propositions, are only meaningful if they are produced (or at least imagined 
to be produced) by specific epistemic agents. In this way, sentences suit the philosophy 
of statistics better than propositions. (Earman ( 1992, p. 35) seems to agree, although he 
does not emphasize the point.) The sentence-producing doxastic agents in question are the 
members of scientific communities studying the specific problems for which statistical models 
are produced. But this will not quite do: we will need a way to treat synonymous sentences as 
being identical (whereas synonymous propositions simply are identical, by definition). For my 
limited purposes, I can do this with a wave of the hand. No subtle problems about synonymy 
will crop up in this thesis. I will only be discussing cases in which it is perfectly clear to 
a given scientific community which sentences are to all intents and purposes synonymous 
with which other sentences. Any situation in which a dispute about synonymy is sufficiently 
heated to have short-term scientific consequences is a case of prima facie (at least) Kuhnian 
incommensurability, and such cases I have already foresworn. I do not doubt that in more 
subtle ways synonymy is always in dispute, but if the dispute has no short-term scientific 
consequences then it is irrelevant to statistical inference. 
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Axiom 3. All propositions deducible from a proposition p have the same 

probability on data p; and all propositions inconsistent with p have the 

same probability on data p. 

Axiom 4. If, given p, q and q' cannot both be true, and if, given p, r and 

r' cannot both be true, and if, given p, q and r are equally probable and q' 

and r' are equally probable, then, given p, 'q or q'' and 'r orr'' are equally 

probable. 

Convention 1. We assign the larger number on given data to the more 

probable proposition (and therefore equal numbers to equally probable 

propositions). 

Convention Q. If, given p, q and q' are exclusive, then the number assigned 

on data p to 'q or q'' is the sum of those assigned to q and to q'. 

Axiom 5. The set of possible probabilities on given data, ordered in terms of 

the relation 'more probable than', can be put into one-one correspondence 

with a set of real numbers in increasing order. 

Convention 3. If p entails q, then P(qlp) = 1. 

Axiom 6. If pq entails r, then P(qrlp) = P(qlp). 

Axiom 7. For any propositions p, q, r, P(qrlp) = P(qlp) P(rlqp) I P(qlqp). 

5. EXCHANGEABILITY AND MULTISETS 

In what I hope is a useful terminological innovation, I would like to draw 

attention to the similarity between the notions of exchangeable sequence 
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(invented by statisticians) and multiset (invented by computer scientists 

and used by logicians but not- until now- by other philosophers). 

EXCHANGEABILITY 

When we do statistics, we usually think of ourselves as observing sequences 

of events, and so, not surprisingly, mathematical statistics tends to be 

worked out in terms of the mathematics of sequences. But we will see that 

sequences are not quite the best mathematical tools for the job. 

A sequence is a set of items occurring in some order. Sequences 

are usually written in angle brackets. By definition, the order of terms in 

a sequence is an essential property of that particular sequence; so when 

we distinguish sequences from each other, we count (A, B, C, A) as being 

different from (A, A, B, C), as well as being different from (A, B, C). We 

will be discussing sequences of observations; or, speaking more strictly, we 

will be considering sequences of opportunities to make observations. 16 

Statisticians sometimes talk about sets of events instead of sequences 

of events. In a statistical context, this is really talk of sequences after 

all, because statisticians always take each event to be implicitly labelled 

(indexed) by its spatiotemporallocation; hence the set is really an ordered 

set; in other words, a sequence. This equivalence in statistical language 

between sets of events and sequences of events is made explicit whenever 

necessary in the statistical literature. 

16. The distinction between observations on the one hand and observation opportunities 
on the other is that for the latter we don't need to know the outcomes of the observations, 
or even be confident that the observations will be made. Statisticians, parsimoniously but 
confusingly for us philosophers, allow themselves to use the word "event" ambiguously to 
cover both observation opportunities and their outcomes. 
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In 1937, Bruno de Finetti made a breakthrough in mathematical 

statistics by inventing (or, for the Platonists among us, discovering) the 

tremendously useful property of exchangeability. De Finetti' s definition: 

[Events J are said to be exchangeable if they play a symmetrical 

role with respect to every problem of probability[.] 

(de Finetti 1980, p. 195) 

A more careful definition: 

Two or more observation opportunities are exchangeable iff 

we have the same information about them; and two or more 

observation outcomes A and B are exchangeable iff it does us 

no good, either before or after the fact, to distinguish between 

the outcome sequences (A, B) and (B, A). Exchangeability for 

events means one or the other of these according to context. In 

all cases, assignments of exchangeability, when properly made, 

are relative to some specified purpose; in this thesis, the purpose 

will always be the purpose of making inferences about a set of 

hypotheses. 

For example: I ask you to use a pin to pick two words at random from "Two 

Dogmas of Empiricism" (Quine 1980), in order to estimate the number 

of times the word "Carnap" appears in that paper. You pick the words 

"Ptolemy" and 'Lewis" (meaning C. I. Lewis). I should consider your 

two observations to be exchangeable, because it would be irrational of me 

to make any inferences about Quine's prose on the basis of the order in 

which you came across the words ... unless, that is, I have some reason 

to believe that you were using the pin to sample words in a strange and 

time-dependent manner. 
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The judgement that your observations are exchangeable is a synthetic 

judgement(pace Quine!) which rests on an understanding of the mechanics 

of the situation and does not have any logical justification (as far as I know). 

It is not, for example, meant to be justified as an application of the principle 

of indifference. Although often difficult to justify, the judgement is often 

easy to make. In particular, a method of random sampling from a population 

that would disturb exchangeability would have to be so strange that it 

would hardly deserve the name "sampling". One such method is poking 

the pin at the words of Quine's text in alphabetical order if you already know 

that "Carnap" appears more than twice, and in reverse alphabetical order 

otherwise. I have no reason to think you've done anything of the sort, and I 

declare that I am ignoring the possibility when I assign exchangeability to 

the experimental outcomes. The sort of get-out clause that I would invoke 

later if! found out you had sampled like that is always implicit in any claim 

that an agent ought to make an assignment of exchangeability. Broadly 

speaking the get-out clause is a ceteris paribus clause: it says that if things 

I haven't thought of yet turn out not to be equal then I may be forced to 

reconsider my epistemic position. I must acknowledge here that ceteris 

paribus clauses are rarely if ever easy to analyse (Earman et a!. 2002). 

But recall that I am not claiming that it is easy to justifY any assignment 

of exchangeability, which would (it seems) require a rather vague ceteris 

paribus clause; only that it is easy to make such an assignment. Making 

such an assignment does not require a ceteris paribus clause. 

Exchangeability can be given a more mathematical definition (below) 

which makes clear some of its nice mathematical properties. One very 

nice mathematical property, for example, is that every finite exchangeable 
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sequence of events defined on a discrete event space (i.e., a set of possi­

ble outcomes with the topological characteristics that we would normally 

associate with a subset of the whole numbers) can be modelled by the prob­

abilist's favourite experimental setup, drawing balls from urns (Diaconis & 

Freedman 1980, p. 234 ). For this and other reasons, modern statisticians 

usually define exchangeability using the sort of mathematical gloss which 

makes contentious assumptions about probability theory. For example: 

Exchangeability is the property that a sequence of events (AI, 

A2, ... ) has when "the subjective joint distribution over (AI, 

A2, ... ) is unchanged by any (finite) re-labelling of the events." 

(Dawid 1977, p. 218) 

Note that Dawid's definition does not really apply to a sequence of events 

simpliciter but rather applies to a sequence of events with respect to some 

probability distribution. The idea of a subjective distribution is a worryingly 

partisan concept. We can avoid this difficulty in most epistemic contexts by 

saying that when a sequence of events is exchangeable with respect to all the 

probability distributions in play (those defined by the set of hypotheses H) 

it is exchangeable simpliciter. This clarification makes Dawid's definition 

equivalent to my definition above, in which it was required that "it does 

us no good" (implicitly: according to any probability distribution under 

consideration) to distinguish between the memers of a sequence. A similar 

clarification should be applied to Gelman et al. 's definition below. 

The idea of exchangeability is central to almost all statistical analy­

SIS. In non-Bayesian statistics, the word "exchangeability" is rarely used, 

but instead exchangeability takes the form of the assignment of a set of 

identically distributed variables, together with an analysis that uses only 
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test statistics which are blind to the order in which the variables occur 

or are observed - typically, the test statistic is the sum or the product 

of the variables, or a function of their sum or product. In the Bayesian 

statistics literature, exchangeability is used directly. To quote from a fairly 

comprehensive treatment of applied Bayesian statistics, 

The usual starting point of a statistical analysis is the (often tacit) 

assumption that the n values y; may be regarded as exchangeable, 

meaning that the joint probability density p(y1, • •• ,y.) should 

be invariant to permutations of the indexes. . . . The idea of 

exchangeability is fundamental to statistics[.] 

(Gelman eta!. 1995, p. 6) 

De Finetti also invented a weaker notion, known as partial exchangeability: 

A probability assignment P on sequences oflength n is partially 

exchangeable for a statistic T if 

T(x) = T(y) 1- P(x) = P(y) 

where x andy are sequences oflength n. 

(Diaconis & Freedman 1980, p. 238) 

I will explain the relationship between exchangeability and partial ex­

changeability shortly. 
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MULTISETS 

I have been surprised to discover (thanks to Allen Hazen) than an idea 

that turns out to be interchangeable with exchangeability was invented by 

computer scientists, completely independently of the statistical literature, 

in the 1960s. This idea is the multiset: 

A multiset is a collection of items in which multiple appearances 

of the same item are significant but order is not. 

For example, the multiset [A,B, C,AJ is the same multiset as [A,A,B, C], 

but it is not the same as the multiset [A, B, CJ. I write multisets using 

square brackets, following (Meyer & McRobbie 1982). The concept seems 

to have been invented by Knuth, who credits the terminology to N. G. de 

Bruijn (Knuth 1968, p. 551). 

Meyer and McRobbie, who find a use for multisets of premisses in 

relevant logic, explain the intuitive appeal of the concept with the following 

diagram: 

SEQUENCES -------+- MULTISETS 
abstracting from order 

abstracting from repetition abstracting from repetition 

abstracting from order 

ORDINAL SETS SETS 
Figure 1: Multi sets 

(adapted from Meyer & McRobbie 1992) 
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Multisets can equally be seen as things like sequences in which order does 

not matter or as things like sets in which repetition is allowed. As this 

suggests, multisets are easily axiomatised in terms of sets (Knuth 1968) 

or in terms of sequences. This is only useful in order to check that no 

problems crop up in the transfinite case, and I will not take the space to 

reproduce an axiomatisation here. 

Multisets give us a natural way to express many ideas that have been 

with us for some time. For example, every whole number can be expressed 

as the multiset of its prime divisors: 6 is equal to 2 x 3, 12 is equal to 

2 x 2 X 3, and so on; and a large part of contemporary number theory 

relies on this decomposition. But this is not a decomposition into sets of 

factors, because to say that the factors of 12 are the members of the set 

{ 2, 2, 3} would be quite wrong, given that that set is identical to the set 

{2,3}, the members of which do not multiply to give 12. The factors of 

12 are 2, 2 and 3, or they are 2 (twice) and 3; they are not merely 2 and 3. 

And nor is it a decomposition into sequences of factors, because no sequence 

represents the factors of 12 uniquely: the factors can be represented by 

(2,2,3), or (3,2,2), or (2,3,2), but each of these representations implies 

a specificity that is not there, and is therefore misleading, just as it is 

misleading to represent a measurement of 6. I inches as "6. 10000 inches". 

What we should say instead is that the factors of 12 are represented by the 

multiset [ 2, 2, 3]. 

Some programming languages refer to multisets as "bags" (Lewis 

1995,p.71). 

It might be worth remarking that it is uniformly agreed that it is es­

sential to the concept of a set that it is extensional. Indeed, extensionality 
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(the property of depending only on its members, without counting repe­

titions) is the only feature of sets that is agreed on by all set theorists. It 

is similarly essential to the concept of a sequence that it is ordered. So we 

should not try to capture the new notion of a multiset by merely extending 

the meanings of the words "set" or "sequence". 

A small payoff of the terminology ofmultisets is that it allows us to ex­

press the relationship between exchangeability and partial exchangeability 

in a neat way: the two are equivalent when the function Tin the definition 

of partial exchangeability above is the function that takes a sequence to the 

multiset of its members. 

The big payoff, for me, of multiset terminology is that for any epis­

temic purpose any exchangeable sequence of observations is equivalent to a 

multiset of observations; and once the switch from sequence to multiset has 

been made, there is no need for the exchangeability assumption to be given 

explicitly any more. On de Finetti's definition of exchangeability the set 

of multisets is exchangeable with the set of exchangeable sequences ... 

but it is perhaps more perspicuous simply to say that every exchangeable 

sequence is equivalent to a multiset. 17 

The reason this counts as a payoff is that simply by talking about 

multisets instead of sequences we can avoid talking explicitly about ex­

changeability assumptions. The assumption of exchangeability will still 

1 7. To see this, consider any sequence under the assumption of exchangeability. Permu­
tations in the members of the sequence will not be epistemically relevant to probabilistic 
inferences, by definition (using any of the three definitions of exchangeability given above), 
and so the sequence can be replaced by the multiset containing the same members. Conversely, 
consider any multiset of events. It can be replaced by any sequence of events containing the 
same members, each with the same number of repetitions as it had in the multiset. A corn­
plication in this case is that in order to be sure that a sequence containing the same members 
as the multiset exists we have to assume that the members of the multiset can be put into 
some order, which is a non-trivial assumption if the multiset is infinite. Fortunately, events 
(in statistics) are observation opportunities, and multisets of observation opportunities are 
always orderable, e.g. spatiotemporally. 
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be present, but our terminology will be immensely simplified. The ide­

alisations involved in using exchangeable events are not idealisations that 

we constantly need to be reminding ourselves about; consequently, the ter­

minology of multisets will be more perspicuous, as well as more efficient, 

than the terminology of sequences and exchangeability. 

6. MERRIMENT 

Let us use the phrase statistical measurement to mean a report of one 

or more observations made of any physical circumstances (possibly very 

loosely defined, and possibly horribly disjunctive) considered as evidence 

about the hypotheses of a fixed statistical model. A statistical measurement 

is thus a report of the act of observing a particular physical situation, and 

not just a decontextualised measurement report such as "6 em". (This 

distinction is useful in deflating an objection of Lane to the likelihood 

principle- an objection which l discuss in chapter 10.) 

A statistical measurement need not be part of an experiment. l take 

it that an experiment is a premeditated manipulation of the world and 

observation of the consequences. There are many differences between 

experiments and non-experimental observations; the difference which will 

matter particularly for my purposes is that a non-experimental observation 

need not be considered as a sample from any particular sample space, 

whereas an experimental observation, at least according to the Frequentist 

theories which we will meet in chapter 4, is always considered to be a 

sample fi·om the sample space consisting of the possible outcomes of the 

experiment ... or so the purest form of the theories recommend, although 

as we will see this recommendation is not one which is always followed. 
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I will give a unified treatment of non-experimental measurements 

and experimental measurements; or, at least, I will recommend such a 

treatment. As we will see, the likelihood principle guarantees that such 

a treatment is possible. It is only when I discuss rival theories (such as 

Frequentism) and objections to the likelihood principle that I will have to 

depart from even-handedness between experiments and mere observations. 

Bayesians occasionally mention this even-handed character of the like­

lihood principle when criticizing the ways in which Frequentist analyses 

force us to take into account the intentions which experimentalists had 

when collecting data (Berger & Wolpert 1984, passim). As we will see 

in later chapters, Frequentist analyses of experiments take into account 

the intentions of the data-collectors, including those of their intentions 

which were never actualised (Grossman et a!. 1994)- a point which often 

amazes and confuses non-statisticians, including the medical and financial 

decision-makers who run clinical trials. Chapter 7 and chapter 15 discuss 

this issue in more detail. 

In contrast to the treatment I give here, most writers on the foun­

dations of statistics believe that statistical methods are meant to apply to 

experiments, by which they mean that they're meant to apply only to exper­

iments. This is true on both sides of the Bayesian/non-Bayesian divide. For 

example, of all the versions of the likelihood principle which I have culled 

from the literature for chapter 8, only I. J. Good's versions are stated in a 

form which applies both to experiments and to observations (and perhaps 

also Lindley's. Lindley's is ambiguous, since he sometimes uses the word 

"experiment" "in a wide sense to cover cases where no planned experiment 

has been performed but merely some results have been observed" (Lindley 
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1953, p. 31)). But all of the rest of the definitions could have been stated in 

terms of merriments without any loss of plausibility. 

Many of the most important scientific observations do not take place 

as parts of experiments: one need only think of astronomy to realise 

this. One problem with the standard experiment-driven development of 

the foundations of statistics is that it forces on us a strict episterrwlogical 

distinction between an experiment and any other type of observation. 

For this reason alone we should start by talking about observations in 

general, regardless of whether the observations are performed as part of 

an experiment. We can still specify that we are talking about experiments, 

controlled experiments, ideal experiments or whatever when we actually 

need to. Additionally, we should try to avoid needing to. If statistics 

is a branch of epistemology, then the more narrowly we define its raw 

materials the harder it is going to be to put it together with the rest of 

epistemology18 

I will often have to talk about "experiments" rather than merriments, 

but only in order to accurately reproduce other people's ideas. In particular, 

I will have to talk about experiments a good deal in order to discuss 

censoring in chapter 4 and the closely related topic of stopping rules in 

chapters 9 to 12 and chapter 15. 

18. It might seem to a statistician that restricting herself to experimental situations is 
going to give a benefit in terms of efficiency of exposition, because it will minimise the 
epistemological assumptions that need to be stated, since presumably the epistemological 
assumptions that need to be stated when discussing only experimental data are a subset of 
the assumptions that need to be stated when discussing observational data in general. That 
may be the case to some extent ... but the hidden cost is that if she ever wants to embed her 
statistical theory in a general theory of epistemology then she will have to work out exactly 
which assumptions were minimised, and the supposed efficiency benefit of starting with a 
restriction to experimental data will be lost. My preference is therefore for setting off to 
theorise about statistics applied to observations in general, and then restricting ourselves to 
the subset of observations that are called "experimental results" only if we get stuck. And we 
won't get stuck. 
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The fact that the philosophy of statistics does not (I claim) need to dis­

tinguish between experiments and observation opportunities means that 

for maximum clarity I should refer to a statistical measurement as some­

thing more long-winded, such as "measurement from an experiment/non­

experiment". For maximum clarity and minimum length (a sort of minimax 

procedure), I will abbreviate this to "merriment'' (measurement frrom an 

experiment/non-experiment), defined thus: 

A merriment is a reasonably well-specified situation in which a 

doxastic agent makes and reports an observation which will be 

considered as evidence about the hypotheses of a fixed statistical 

model. If a merriment is set up by deliberate control of one or 

more variables which are believed to be directly relevant to the 

hypotheses in question then it is also known as an experiment. 

7. JEFFREY CONDITIONING 

I will assume throughout that we have observed something relevant to our 

hypotheses and that we know what it is. A clever alternative, developed 

by Richard Jeffrey (not to be confused with Harold Jeffreys), is to assign 

a probability p(x;) to the veracity of each possible observation x;. On 

the assumption that we are performing Bayesian inference, Jeffrey then 

proposes that we update our probabilities using the formula 

p(h) = L;P(x;)p(hlx;). 19 

19. This formula, since it is stated in terms of p(h), assumes a Bayesian ontology: non­
Bayesians, by and large, do not admit that hypotheses have probabilities. Jeffrey's idea of 
taking into account the less-than-certain nature of observation has not yet been adapted to 
non-Bayesian methods of statistical inference. But I see no reason why it should not be. 
Non-Bayesians are opposed to giving probabilities to objective parameters in general, but I 
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Jeffrey's theory of probabilistic observations seems to me to be one of the 

cleverest contributions to epistemology since 1950. Having said that, I 

do not intend to adopt it in this thesis. A price I will have to pay is my 

assumption that we know for sure what we have observed. This does not 

mean that we have to know theory-independently what we have observed: 

on the contrary, I will be allowing that our observations are as theory­

dependent as you like. All I will be assuming is that each observation has 

an agreed value according to each theory. 

I do not have space to discuss in detail, with examples and mathemat­

ics, whether Jeffrey conditioning is ever strictly necessary, but I would like 

to suggest that it is not. For suppose that we have a set { x;} of putative 

observations, observed with probabilities {p(x;)}, and a set of hypotheses 

{ hJ}· Then instead of using Jeffrey conditioning we can replace the set { llj} 

with the set { h:J}, where each h';) says that hypothesis hj is true and that 

observation x; was made. It would be very time- and space-consuming to 

show that this gives the same results as Jeffrey conditioning, firstly because 

such a proof would have to be repeated for each different way of making 

inferences from the data (and as we will see, there are many) and secondly 

because Jeffrey conditioning is not even well defined for most of them, so I 

would have to not only apply it but also invent its method of application in 

most cases. But in the one case in which the application of my suggestion 

is well defined, Bayesian inference, it does agree completely with Jeffrey 

conditioning. 

imagine that at least some of them could be convinced to give probabilities to observations. 
If so, it would be possible to adapt the major non-Bayesian schools of mathematics to Jeffrey's 
reasoning: indeed, complicating P-values and confidence intervals (defined in chapter 4) by 
adding a term corresponding to a previously unrecognised type of uncertainty is exactly the 
sort of work that mathematical statisticians love to do. 
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Howson and Urbach, in response to a similar claim by Skyrms ( 1986), 

complain that although this "will do the trick from the purely logical point 

of view, it hardly seems a solution to the problem of finding a statement 

describing the content of the [vague l experience which caused the change 

in belief" (Howson & Urbach 1993, pp. 105-106). It may be true that there 

is something pragmatically unsatisfactory about the description of the 

experience if my suggestion is followed, but my claim is a purely logical 

one: I am suggesting that Jeffrey conditionalisation can in principle be 

brought within my framework, and hence that the conclusions I draw in 

this thesis apply even when Jeffrey conditionalisation is used (at least my 

logical conclusions, if not my pragmatic ones). For this purpose Howson 

and Urbach's objection is not relevant. Be that as it may, I will play safe 

and retain the assumption that we know what we have observed for the rest 

of this thesis, to make sure that my conclusions are definitely applicable to 

at least the restricted domain defined by that assumption. 

8. THE WORDS "BAYESIAN" AND "FREQUENTIST" 

The assumption that there is a rational way to make defeasible inferences 

from observations to theories when part of our knowledge is probabilistic 

(i.e., always) is central to almost the whole of philosophy of science (pace 

Feyerabend 1993), much of epistemology and parts ofmetaphysics. In the 

philosophical analysis of such inferences, the battle lines have traditionally 

been drawn between "Bayesians" and "non-Bayesians": the former believe 

in the ubiquity of Bayes's Theorem in the social and historical processes 

guiding the scientific community's choices between competing scientific 

theories, and the latter don't. 
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A leading philosophical anti-Bayesian, Clark Glymour, wrote in his 

much-anthologised chapter "Why I am not a Bayesian", 

It is not that I think the Bayesian scheme or related probabilistic 

accounts capture nothing. On the contrary, they are clearly per­

tinent where the reasoning involved is explicitly statistical [but 

are less pertinent) so far as understanding scientific reasoning 

goes[.) 

(Glymour 1981, chapter XII) 

The distinction which Glymour draws between Bayesians and non-Bayes­

ians - the distinction in terms of which he is not one - is not the 

same as the distinction between Bayesians and non-Bayesians as drawn 

in terms of statistical theory. Statistical Bayesians believe in the ubiquity 

of Bayes's Theorem only in the correct application of statistical models to 

fully interpreted observations. In other words, statistical Bayesians believe 

in applying Bayes's Theorem within a set of precise alternative theories, 

not within any set of theories whatsoever. This is a crucial distinction. 

Leaving aside the issue that the philosophical Bayesian's position is 

often primarily descriptive while the statistical Bayesian's position is fully 

normative, the main difference between the two is due to the fact that the 

adequacy ofboth statistical models and observation reports can be disputed 

whether or not one disputes the methods used to draw inferences from one 

to the other. Statistical Bayesians deal with models and observations that 

for one reason or another can be assumed to be unproblematic, at least 

tentatively and temporarily; philosophical Bayesians by and large do not. 

So what statistical Bayesians say, no matter how correct, barely even begins 

to satisfy the demands of philosophical Bayesians. 
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The terminological distinction that I am drawing between philosophi­

cal and statistical Bayesians is not commonly noticed; rather, the philosoph­

ical and statistical literatures have simply defined the term independently 

of each other. The theory's namesake, Thomas Bayes, was arguably not a 

Bayesian at all, so neither use of the word has clear etymological pride of 

place. For what it is worth, though, the earliest campaigner for either of 

the modern uses of the word, I. J. Good, used it primarily in the statistical 

sense.20 

It is statistical Bayesianism that I will be discussing in this thesis. 

Within these four walls I will therefore refer to it simply as "Bayesian ism". 

!fit were necessary to pick one to be labelled Plain Vanilla Bayesian ism in 

the world at large then perhaps that should be the statistical version too, 

but I leave that for others to decide. 

The word "frequentist" has its problems too. It is used by most au­

thors to denote statistical methods which evaluate results according to 

the frequency with which certain hypothetical long-run outcomes occur 

according to a "nulY' hypothesis. Other authors reserve the word "fre­

quentist" for the frequency view of probability. The frequentist view of 

probability says that probabilities are defined as limits of sequences oflong­

run outcomes. There are both historical and normative links between the 

frequentist view of probability and the frequentist view of statistics, but 

neither the normative nor the historical links are straightforward. Not all 

supporters offrequentist statistical methods, no matter how clear-thinking, 

hold the frequentist view of probability, while some of the staunchest critics 

'20. See (Fienberg 2006) for the history of the emergence of statistical Bayesian ism. Fien­
berg pays very little attention to the philosophical literature, even though he is in a research 
group with Glymour: this nicely illustrates the indepemlent development of the two types of 
Bayesianism. 
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offrequentist statisics do hold the frequentist view of probability (such as 

A. W. F. Edwards (1972, p. xv)). A very small number of works on the 

foundations of statistics, notably (Seidenfeld 1979), restrict the word "fre­

quentist" to its probability sense so clearly and explicitly that they avoid 

confusion, but this is at the expense of being unable to discuss the statistical 

literature in its own terms. 

A number of alternatives to the term "frequentist" are in use. Some 

authors use "classical'' to mean what I mean by "frequentist". But that is 

no better than "frequentist" from the point of view of contradicting the 

terminology of the philosophy of probability, because many other authors 

use "classical" probability to mean probability assigned according to simple 

symmetry principles as exemplified by pre-Bayesians such as Laplace; so 

"classical" in that context is close to meaning the opposzte of frequentist. 

Some authors use "orthodox" to mean what I mean by frequentist; but 

that is no good either, partly because it implies that there is only one such 

position, while I discern at least two frequentist positions, and also because 

what is orthodox is subject to rapid change. 

Yet other authors use the phrase "error rate procedures" to describe 

what I am calling "frequentist statistical procedures". A common rationale 

for this is that frequentist procedures guarantee that their results will be 

in error at most a certain fixed proportion of the time (see chapters 3-

5 and chapter 4 for details). This rationale is mistaken, though, as the 

more thoughtful proponents of frequentist procedures are quick to admit 

(Casella & Berger 2002). The actual error rate of a procedure depends 

on facts which are typically unknown and which are almost never part of 

the statistical model even if they are known. This dependence of error 
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rates on unknown properties of the world is masked by the fact that the 

primary "error rate" of a frequentist procedure is calculated conditional 

on one privileged hypothesis (the "null hypothesis"): thus, it is not the 

expected rate of errors at all, but only the rate of errors to be expected 

if the null hypothesis is true (and, additionally, if the statistical model is 

totally accurate, including accounting for all possible sources of error in 

measurements). But we do not know whether the null hypothesis is true (if 

we did, we would not need to make any statistical inference), so this "error 

rate" is not an expected rate of errors at all? 1 

A secondary error rate which is often calculated, the "power" of a 

frequentist statistical test, can have either one of two meanings. It may be 

the minimum, or infimum (greatest lower bound) in the continuous case, of 

the proportion of errors that would be expected if any one of the non-null 

hypotheses were true: in other words, the minimum of a set of expected 

error rates, not actually an error rate itself. Alternatively, the power of a 

test may be the proportion of errors on the assumption that one particular 

alternative hypothesis is true, in which case my criticism of assuming the 

null hypothesis applies (except in the vanishingly rare case in which the 

alternative hypothesis chosen is very likely to be exactly true). Applied 

statisticians generally take the latter tack, and so will!. 

2 l. To take a realistic exampJe, many surgica) procedures have been believed to work for 
hundreds of years, but there is a recent fashion foreva]uatingthem statistically just in case their 
apparent effectiveness is illusory (Grossman & Mackenzie 2005). The statistical evaluations 
which are used are themselves evaluated by calculating an error rate conditional on the null 
hypothesis (in other words. assuming the nuH hypothesis to be true), and the null hypothesis 
(for legal and ethical reasons) is always that the surgical procedure is compleU{y without effect. 
As a result, epidemiologists often find themselves evaluating surgical procedures which we 
are practically certain have some effect using statistical procedures chosen on the basis of 
characteristics which they only have on the assumption that the surgical pmcedures have no 
etlect. 
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So "error rate" procedures do not give us expected error rates; nor do 

they give us actual error rates. So the term really is a misnomer. 

For this reason, I believe it is important to continue to use "frequentist" 

rather than "error rate" to describe such procedures, even though taken 

out of context the word is ambiguous. In any case, I am working on the 

foundations of statistics, and the literature on this topic mostly uses the 

word "frequentist" to refer to statistical procedures based on error rates, so 

it is safe for me do the same. I will capitalise it from now on to emphasise 

that I am using it in a way which some may find idiosyncratic. 

While discussing terminology; I have already produced an argument 

against the use of Frequentist procedures, namely that we tend to think 

they have guaranteed error characteristics when in fact they do not. But 

there are much more substantive arguments to come- arguments which 

do not depend on whether we are misled by terminology. I will lay the 

groundwork for these in chapter 4 and give some of them in detail in 

chapter 7. 

9. OTHER PRELIMINARY CONSIDERATIONS 

My loose talk about inferences from observations to hypotheses may have 

ignited a worry about the theory-dependence of observation. Happily; the 

theory-dependence of observation, although real, is not a problem I need 

to take into account explicitly. The nature of the epistemic framework 

within which statistical inference takes place is that we are interested in 

the observation as interpreted by the various hypotheses. That is all we 

can possibly mean when we say that each hypothesis assigns a precise 

probability to the observation. So either we implicitly but fully embrace 
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any theory-dependence of observation that may crop up, or we give up on 

doing statistical inference. 

I assume a classical logic, although I will note a point in chapter 

13 in which to do otherwise would make an interesting difference to my 

conclusions. 

In the statistical literature, statistical inference is claimed to license 

partial beliefs or credences (according to most members of the Bayesian 

school) or beliefs (according to practically all authors before 1920) or 

actions (according to the Neyman-Pearson school). In the rest of this 

thesis, I will present results which are very nearly neutral between these 

options. 

Even when I discuss credences in detail, I will not be dealing with all 

of the tricky questions about belief which are important to the philosophy 

of mind. In particular, I will avoid worrying about what sorts of systems 

can have beliefs. It will be enough if I can say something useful about the 

probabilistic beliefs of adult humans in a numerate Western culture. But 

there is no need to assume that what I have to say is only applicable to 

humans, and so instead of calling my protagonists "humans" or "people" 

I will call them "doxastic agents" (agents with partial, or probabilistic, 

beliefs). I will also sometimes call them "epistemic agents", to fit the 

language in which some of the issues I discuss are traditionally debated; 

in particular, from chapter 4 onwards I will talk a lot about "epistemic 

probabilities", which are never called "doxastic probabilities", and then I 

will use "epistemic agent" to match. In all cases I mean "epistemic agent" 

and "doxastic agent" to be semantically interchangeable. 
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-3-

Survey 1: Bayesianism 

1. INTRODUCTION 

The next three chapters survey the existing normative theories of inference 

from data to probabilistic hypotheses. While the main purpose of these 

chapters is simply to expound what theories there are, a subsidiary purpose 

is to show that not all of the possible theories of statistical inference have yet 

been stated- not even all the possible theories which use the framework 

set out in chapter 2. (This is, unsurprisingly, easy to show; see the section 

Other pure likelihood methods in chapter 5 for an example.) 

Surprisingly, there are only five such theories by a rough classifica­

tion22 and only fifteen even by a more precise classification23 . Classifica­

tions vary, since one man's theory is another man's amendment, but by 

any classification there are very few such theories ... indeed, classifica­

tions in the literature often stop at two, typically Subjective Bayesianism 

and Neyman-Pearson Frequentism. If any other theories have ever been 

invented, they have gone unnoticed, and not just by me. 

22. Bayesianism, Frequentism, pure likelihood methods, pivotal inference and plausibility 
inference. 

23. Subjective Bayesianisrn, Restricted Bayesianism, Empirical Bayesianism, conjugate ing­
norance prior Bayesianisrn, Robust Bayesianism, Objective Subjective Bayesianism, Neyman­
Pearson Frequentism, Fisher Frequentism, Structural Inference, the method of maximum 
likelihood, the method of support, fiducial in terence, pivotal inference, plausibility inference 
and, arguably, Shafer belief functions- all defined in the following three chapters. 
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There are of course many more than fifteen theories of probability, 

and many theories concerning the mathematics of statistical distributions 

and error rates. When I say there are only fifteen theories of statistical 

inference, I mean that there are only fifteen distinct, more or less complete 

answers to the following question: 

Given that a doxastic agent is considering some precise, prob­

abilistic scientific hypotheses and comes into the posession of 

some relevant scientific data, how should she alter the beliefs or 

actions which follow from taking one or another of the hypothe­

ses as true, assuming that she has enough time, patience and 

computing power to be fully rational? 

Each of the fifteen theories is an answer to this guiding question. 

Tell a layperson that the answer to this question is contentious -

that there is more than one theory - and he will be surprised. And yet 

there is no consensus on the answer either in philosophy or in theoretical 

statistics; and the current consensus in applied statistics is a bad one, as we 

will see in chapter 7. 

The meaning of each of the theories which I will survey is well 

operationalised and therefore relatively uncontroversial (by the standards 

of philosophical theories). What's controversial is which theory is right, 

if any. Perhaps none of these theories is right. Although it seems to me 

to be a requirement of the possibility of rationality that there must be 

some optimal theory of statistical inference, the search for such theories 

is only a little over a hundred years old, and (as I will show) all of the 

existing theories have prima facie flaws, so it is plausible that we have not 

yet come up with a good theory. For this reason among others, the overall 
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conclusion of this thesis will be not that we ought to use one particular 

theory, but only that we ought to obey principles which rule out some of 

the competing theories. 

I will assume for the purposes of this survey that a full utility function 

for all members of H is not available (or is available but disputed). I make 

this assumption only to save space. If a full utility function were available 

we would be in the realms of statistical decision theory. The various 

precise statistical decision theories which have been proposed each imply 

a certain precise theory of statistical inference, and as it happens (perhaps 

for historical reasons) all of these imply either one of the Bayesian theories 

detailed in this chapter (for maximum expected utility decision theories) or 

one of the Frequentist theories (for Wald-style minimax decision theories). 

Hence the range of theories of statistical inference would not be altered if 

I took decision theory into account. Afoll account of statistical inference 

would certainly include some discussion of decision theory; but to include 

that discussion here would use considerable space at the expense of clarity. 24 

I included a caveat about time, patience and computing power in my 

guiding question in order to sidestep the recently developed theory of 

bounded rationality, a theory which studies the consequences of the fact 

that real-world epistemic agents have to cut short the computations they 

might have liked to perform in order to (for example) get out of the way 

24. To take a random example of how clarity would suffer: a statistical procedure which 
does not lead to incoherence under maximum expected utility theory is known as "admissible", 
and it can be shown that only Bayesian procedures are admissible; to define the terminology 
required to describe this result precisely would take some time, but would not give us any new 
methods of statistical inference; nor would it help us to see which methods are preferable, 
unless I could also give a convincing defence of the universal applicability of maximum 
expected utility theory, which in turn would require assumptions which would distract from 
the main thrust of my work. In later chapters I will show that the likelihood principle can be 
defended without requiring any assumptions about utility. 
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of sabre-toothed tigers, or get a company report in on time (Simon 1982, 

Gigerenzer et al. 1999, Gigerenzer & Selten 2002 ). 

We do not need to worry that bounded rationality might have sup­

planted the approach I take in this thesis, for at least three reasons. 

Firstly; I am dealing primarily with scientific inference, in which it is 

possible to spend a great deal of time and computational power on statisti­

cal inference. The issues that crop up in the bounded rationality literature 

are primarily (although admittedly not exclusively) about the constraints 

involved in cases in which an epistemic agent has extremely little time avail­

able to make a decision, and the evidence taken to support the importance 

of bounded rationality is evidence of single biological organisms solving 

personal decision problems. 

Secondly, I bite a bullet and admit that the type of rationality investi­

gated in this thesis is an idealisation. 

Thirdly, and most importantly, the bounded rationality literature is 

almost entirely descriptive: it consists almost entirely of descriptions of 

how epistemic agents actually behave, and of psychological and philosophi­

cal consequences of those descriptions; it is therefore no threat to my views 

on how inferences ought to be made. 

In response to my third point, the bounded rationality literature is 

sometimes taken to be normative as well as descriptive. It is hard to 

be absolutely sure whether this reading is right or wrong, but I think 

it is wrong. Consider the following quotations from a representative 

paper in the bounded rationality literature. On the one hand, the bounded 

rationality position is set up in clear opposition to both the statistical view 
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and Kahneman and Tversky's "heuristics and biases" view (which describes 

actual departures from a probabilistic norm). It describes these views thus: 

[A J discrepancy between the dictates of classical rationality and 

actual reasoning is what defines a reasoning error in this pro­

gram. Both views accept the laws of probability and statistics as 

normative, but they disagree about whether humans can stand 

up to these norms. 

( Gigerenzer & Goldstein 1996, p. 650) 

... and criticises such views for 

lead[ing) us to believe that humans are hopelessly lost in the face 

of real-world complexity[.] 

( Gigerenzer & Goldstein 1996, p. 651) 

Passages such as this might be (and often are) read as saying that the 

normativity of the old program is wrong and is to be replaced by a new 

normativity, that of bounded rationality. On the other hand, and on the 

very same page, Gigerenzer and Todd say: 

[bounded rationality J algorithms are designed to be fast and fru­

gal without a significant loss of inferential accuracy[.] 

( Gigerenzer & Goldstein 1996, p. 651) 

This implies that there is some other standard of inferential accuracy, apart 

from bounded rationality, which bounded rationality approximates to. It 

is implicit in the experimental work of the bounded rationality school that 

there is such a standard and that that standard of inferential accuracy 

is Bayesian- see (Gigerenzer & Goldstein 1996) again and, especially, 

(Gigerenzer et al. 1999). 
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Hence, the normativity of the statistical view of inference is both 

denied and taken for granted. It seems most likely to me that the authors 

of this literature are not in the least confused, and that they regard their 

view as not normative, but find it hard to say so because the normative 

character of the view they oppose has lent it stature. Be that as it may, 

as long as bounded rationality measures its correctness on the basis of its 

approximate agreement with inferential statistics it will be impossible for it 

to be any better justified than inferential statistics is, and hence it poses no 

normative threat. 

So, a fully normative version of bounded rationality is no better jus­

tified than inferential statistics is, at present; but maybe it is plausible that 

it will be better justified in the future. 

Does this mean that the conclusions I draw here are hostage to the 

possibility that bounded rationality gives us the correct description of our 

epistemic constraints? Not at all, for two reasons: 

( 1) Of course we are all bound by computational constraints, just as 

bounded rationality supposes. But in a world of large scientific re­

search budgets and fast computers, what happens when we try to 

estimate the size of those constraints? It may well be that zero is 

a better estimate of our constraints than any particular finite num­

ber. In that case, there is nothing particularly inaccurate about my 

theory at all (even though it is not perfectly accurate), because any 

other estimate of what our constraints are would also be inaccurate 

to some degree. In other words, unbounded rationality may be the 

most rational estimate of what type of bounded rationality we employ 

tn sctence. 
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(2) My discussion of unbounded rationality is a limiting case of bounded 

rationality: it is what bounded rationality becomes as the bound tends 

to infinity. Even if normative bounded rationality turns out to be what 

we will all end up studying one day, it will be useful (and, at a guess, 

probably essential) to have a well worked out theory of what happens 

in the limit. 

I see these as decisive reasons to ignore the fact that the gurus of bounded 

rationality ask us to reject "the laws of probability and statistics as norma­

tive" (Gigerenzer eta!. 1999). 

For each theory described in the next three chapters, I will give its 

main originators, a summary of its tenets and a brief comment. I will 

not attempt to give a full justification of any of these theories, because I 

am not sure that any of them is right, and because for the purposes of 

defending the likelihood principle it does not matter if they are all bad 

theories. The only thing I need to show conclusively is that the theories 

which conflict with the likelihood principle are bad. In later chapters I 

will discuss foundational issues which reflect (badly) on the Frequentist 

methods and (well) on methods compatible with the likelihood principle.25 

2. BAYESIANISM IN GENERAL 

The Bayesian position emerged extremely gradually from the work of 

25. Methods compatible with the likelihood principle are given by: the pure likelihood 
theory, the maximum likelihood theory, and all the Bayesian theories with minor exceptions 
such as some ill-named versions of the Empirical Bayesian theory. 
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a number of 18th-century authors including Thomas Bayes (1763).26 

Bayesianism was not formulated clearly until around 1920.27 

Bayes's Theorem says: 

p( alb) = p( bl a) p( a) provided b f. 0. 
p(b) ' 

Bayes's Theorem (unlike Bayesianism) is uncontroversial. Whenever p(a), 

p(b), p(alb) and p(bla) all exist and p(b) is non-zero, Bayes's Theorem can 

be proved from any of the standard axioms of probability. My favourite 

proof is as follows: 

p(a&b) = p(alb) p(b) 

= p(bla) p(a) by symmetry of"&". 

Rearranging, p( alb) = p( bl a) p( a), provided b f. 0. 
p(b) 

For example, what is the probability of drawing the Ace of Hearts, given 

that I've drawn an unknown Ace from a pack of cards? Letting a stand for 

26. Bayes's own work, although pioneering, did not clearly state either its epistemic or its 
mathematical assumptions, and so it is arguable that Bayes did not found Bayesianism, despite 
the popularisation of Bayes's work by his contemporary Price, who immediately saw that 
it would be a cornerstone of future attempts to quantify the scientific practice of induction 
(Bayes 1763, p.371). 

27. Bayesian ism probably developed from unpublished work of Johnson (Jeffreys 1961, p. i), 
after which it was quickly developed into a mature theory. Wrinch and Jeffreys have some 
claim to having invented modern Bayesianism in their (1919), but their work did not at first 
attract the attention it deserved - perhaps because it was ahead of its time, or perhaps 
because its objectivist foundations (described below) failed to distinguish it sufficiently from 
other statistical methods available at the time. 

The modern meaning of the term "Bayesian" is probably due to I. J. Good (Smith 
1995). A thorough overview of the history of Bayesian inference has yet to be written, 
and many questions about the relationships of early Bayesian views to each other are not 
settled, although some aspects of its separate development into two non-equivalent systems 
by Jeffreys and de Finetti are well documented. From the 1950s onwards a large number 
of authors produced systems which extended on one of those two early systems or which 
proposed various compromises between them. 
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the event of drawing a Heart and b stand for the event of drawing an Ace, 

we can use Bayes's Theorem to confirm that the answer is 111 ~ 173 114 = ~· 

Bayesians believe that the quantities mentioned in Bayes's Theorem 

always exist (or, in de Finetti's system, can always be treated as if they 

exist), for any stateable a and b. Hence, the probability of any hypothesis 

conditional on any set of observations can be calculated, by setting a = h 

for any h E Hand b = Xa (in the terminology of chapter 2), so that 

Vh E H, p(hlxa) = p(x:l:l ~(h), provided p(xa) f- 0. 

(Henceforth, I take the proviso that the denominator of the right-hand side 

not be zero as implicit.) 

The term p(h), considered either as a single probability or as a func­

tion over the hypothesis space (H), is known as a prior probability or prior 

probability distribution respectively. The single word "prior" is often used 

ambiguously (or, rather, polymorphically) to refer to either a prior proba­

bility or a prior distribution. The word "prior" need not carry any temporal 

weight: in some versions ofBayesian theory, the prior is meant to be known 

before Xa is known, but in most versions this is not required. Many writers 

have bemoaned the choice of the word "prior". A word with no temporal 

connotations, such as "ulterior", would be better, but unfortunately it seems 

too late to change this. 

The term p( hlxa), considered either as a single probability or as a 

function over H, is known as a posterior probability or posterior probability 

distribution respectively. (Just as the word "prior" need not carry any 

temporal weight, nor need the word "posterior".) 
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The term p( X a I h), considered as a function over a hypothesis space, is 

the likelihood function which I introduced in chapter 1. Likelihood functions 

are discussed in detail in chapter 8 and chapter 13. 

The denominator of the above equation, p(xa), does not need to be 

calculated, provided that H exhausts the hypotheses considered possible 

in the merriment in question. (Recall from chapter Q that a merriment 

is an experiment or a non-experimental observation.) This is because 

p(xa), unlike p(xalh), does not depend on h, so that instead of using Bayes's 

Theorem in full for inferences about hone can use 

Vh E H, p(hlxa) ex p(xalh)p(h) 

instead; and if the constant of proportionality is needed one can calculate 

it simply by dividing by a factor which makes the function p(xalh)p(h) add 

up to 1.28 

Even better, one can get rid of the normalising factor completely when 

comparing two hypotheses, h1 and ~. by writing 

and 

p(~ lxa) = p(xal~) p(~) 
p(xa) 

and then dividing the two equations to get 

28. Of course, this factor is always I:hEH p(.x. lh)p(h) if His finite and .J.EH p(.x. lh)p(h) 
otherwise. 
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p(h,jxa) 

p(h,lxa) 

p(xajh,) p(h,) 

p(xalh,) p(h,) 

with no mention of p(xa) on the right-hand side. (p(xalh;), in contrast to 

p(xa). is always known: that it is known is a corollary of the fact that h; 

is fully specified.) This method of getting rid of p(xa) has been known 

since at least the I 920s by followers of Jeffreys and de Finetti, and was 

independently discovered by Salmon in 1996 in an important paper in 

which he replies to criticisms ofBayesianism by Glymour (Salmon 1996). 

Thus, Bayesianism allows us to compare simple hypotheses in the 

light of data in an appealingly straightforward way. 

Bayesianism is, I think, unavoidable for those who believe that uncer­

tainty is always best described by the use of probabilities. Lindley (I 990, 

p. 2 I 4 ), for example, has described Bayesianism as the natural result of 

"adopting probability as the language of science (unlike a classical statis­

tician who only uses it as part of the language, denying its validity for 

hypotheses or parameters)". Whether or not one accepts Lindley's view, 

it is hard to deny that probabilities are the only way to quantify epistemic 

uncertainty29 in many scientific situations, and this leads to the natural 

use of Bayesianism in at least those cases, provided its drawbacks can be 

swallowed. 

The only philosophical drawback of Bayesian methods - but it's a 

biggie - is that many authors dispute the existence of the term p(h) 

for interesting hypotheses h, while some dispute its existence for any 

hypothesis h. Until recently there were also computational drawbacks 

29. Thanks to Mark Colyvan for pointing out that this point does not apply to the semantic 
uncertainty introduced by vague and ambiguous language. 
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to Bayesianism, but nowadays the necessary calculations can be done by 

brute force on a cheap computer in most cases. 

Recall that p( hJxa) is known as the "posterior probability" of the hy­

pothesis "on" or "given" the observation: "posterior" because it is calculated 

after the observation has been made (except in cases in which the whole 

analysis is hypothetical, in which case Xa will not be an actual observa­

tion, but will instead be a possible observation treated as actual within a 

fictional story). According to the Bayesian view of statistical inference, 

the set of posterior probabilities for all hypotheses of interest gives us 

the probability that each hypothesis is true. (This is the probability rela­

tive to the inference situation; for the Bayesian there is no such thing as 

probability simpliciter, unless it is merely convenient shorthand for one or 

another type of indexical or conditional probability- one example of such 

a scheme of convenient shorthand is given in chapter 2.) The posterior 

probability, according to Bayesians, therefore tells us everything we can 

possibly learn from an inference situation (conditional on the model being 

reasonable). One might want to add as a rider to this that sometimes one 

can draw no conclusions in a given situation: this gives a form of Restricted 

Bayesianism (see below). 

While setting up an appropriate mathematical model of a merriment 

is roughly as difficult for a Bayesian as it is for anyone else, the calculation 

of posterior probabilities given a model is easy. There are no ad hoc or 

debatable steps in this procedure (although there are many ad hockeries 

typically involved in choosing the mathematical model in the first place 

... and fortunately so, or Bayesian mathematicians would have nothing to 

write research papers on). 
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The fact that posterior probabilities can virtually always be calculated 

gives Bayesians a virtually complete theory of inference - much more 

complete, indeed, than any of the competing theories (except, arguably; for 

the Neyman-Pearson theory, the only non-Bayesian theory which is ever 

claimed to apply to absolutely all statistical inferences). 

To summarise, Bayesian statistical inference is based on two premises: 

(i) Bayes's Theorem is applicable to any statement of conditional prob­

ability, provided that the relevant probabilities are defined. (We will 

see below that, according to some but not all versions of Bayesian 

inference, all relevant probabilities are always defined.) 

(ii) The set of posterior probabilities tells us everything we can know 

about uncertain propositions, given the mathematical model and ob­

servations available to a particular doxastic agent at a particular time. 

BAYESIAN CONFIRMATION THEORY 

Two recent schools of thought raise questions about the standard termi­

nology of Bayesianism. 

Firstly, a number of philosophers, relatively recently; have proposed a 

school of inference called "Bayesian confirmation theory" which we need 

to distinguish from Bayesianism simpliciter. According to these recent 

Bayesian confirmation theorists, there is some function of the data which 

tells us to what extent data confirm a hypothesis and, crucially, this "con­

firmation" function need not be (and often is not) a function of the poste­

rior probability distribution. Steel (2003) has recently shown that some 

such functions are incompatible with Bayesianism as defined above. Since 

Bayesian confirmation theorists see a need for a theory of confirmation 
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not based on the posterior distribution, they are generally not Bayesians 

according to the bulk of the literature on Bayesianism, despite their name.30 

Most Bayesians see no need for a single confirmation function separate 

from the posterior probability function. These Bayesians -for example, 

Howson and Urbach (1993, pp. 117-118)- note that if the posterior p(hie) 

is greater than p(h) then e confirms h, but they do not claim to have told us 

to what numerical extent e confirms h. The basis ofBayesianism is that the 

posterior probabilities tell us the probabilities of all the hypotheses in H 

conditional on the observation. If we like we can compare these probabil­

ities to the probabilities of the same hypotheses before we conditioned on 

the observation (in other words, we can compare the posterior distribution 

to the prior distribution). There is more than one way to compare these 

two functions - one can subtract them, divide them, perhaps take more 

complicated functions of them- but the question of how one should com­

pare them has not seemed a very interesting question to most Bayesians 

who, after all, already hold, in the posterior distribution, the answer to 

much more interesting questions. Bayesians say, in effect (and sometimes 

in actuality), "Look: here's exactly, quantifiably, what we thought before 

we saw the data; here's exactly what we thought after we saw the data; 

now are you telling us we haven't shown you the effect of the data on our 

beliefs?"31 

30. To make things even more confusing, they may be Bayesians on anybody's definition, 
if their beliefs about confirmation functions happen not to contradict orthodox Bayesian ism. 
And as if that wasn't confusing enough, some authors use "Bayesian confirmation theory" to 
mean simply Bayesianism, with no mention of confirmation functions at all (Strevins 2004). 

31. See (Hawthorne 2005) for a counter-argument to this position. I do not wish to give 
space to counter- or counter-counter-arguments, since the question at issue is tangential to 
the main work of this thesis. 
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There is a small literature on confirmation functions written by ortho­

dox Bayesians. These works argue that the confirmation function obtained 

by dividing the posterior by the prior (resulting in the likelihood ratio­

essentially the same quantity as is foregrounded by the likelihood principle) 

is the most desirable. I will discuss the rationale for this while discussing 

Barnard's views in chapter 8.32 Orthodox Bayesians, regardless of whether 

they accept this argument or not, rarely give it any importance. Conse­

quently; the school of thought that says that Bayesianism as formulated by 

premises (i) and (ii) above is already complete is proceeding almost inde­

pendently of the school of thought that says that Bayesian ism needs to be 

supplemented by a confirmation function. 

There is no good reason for this schism in the use of the term 

"Bayesian"." One resolution of the problem would be to use the words 

as they are currently used by both schools of thought, on the clear under­

standing that "Bayesian confirmation theory" is not always Bayesian; but I 

believe this resolution is not feasible. We can no more expect people to bear 

in mind that "Bayesian confirmation theory" is not always Bayesian than 

we can expect people to remember that George W Bush's "environmental" 

legislation is not environmental. Instead, it would be best if the "Bayesian 

confirmation theorists" would drop the tag "Bayesian". I would like to 

emphasise that to say that "Bayesian confirmation theory" is misnamed, as 

I do, is not to disparage it; it is only to wish on it a separate existence . 

.'32. Good, who is rather proud of being prolific, counts .'33 publications in which he has 
made this point, and says that "(w)hat I say thirty-three times is true" (Good 1983, p. 159). 

33. Indeed, such a schism, to the extent that it exists, is counterproductive, because it 
confuses our reading of the literature. Worse, it retrospectively confuses our reading of the 
pre-confirmation-theory Bayesian literature. 
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I propose to restrict the use of the word "Bayesian" in this thesis to 

its only unconfusing meaning, which is the one given to it by the founders 

of Bayesian theory and the vast majority of its practitioners: namely, the 

meaning given by the two premises above. 

Secondly, Bayesianism, as defined above, is about the inferences avail­

able to a single doxastic agent. Since some schools of Bayesians (the 

Subjective Bayesians, as defined below) see these inferences as depending 

on subjective judgements, it is not clear that there is any reason for even 

two doxastic agents to agree about inferences, never mind for a whole 

scientific community to agree. This has always been seen as a problem 

(Lindley 1980), and it is beginning to be addressed in detail (Kadane eta!. 

1999). Some, in a pragmatic frame of mind, address it by giving reasons 

to think that agents' subjective views in fact agree closely enough that 

their scientific inferences will be effectively the same - J. 0. Berger has 

a sustained research program showing from a mathematical point of view 

that this will often be the case, and Freedman and Spiegelhalter among 

others have demonstrated it very successfully in practice with oncologists. 

These pragmatists are clearly right about at least some situations, since 

whenever a large amount of data is available (large relative to whatever 

initial disagreements the doxastic agents have) initial disagreements will 

be swamped by the data in the sense that for any fixed hypothesis, any 

fixed initial level of disagreement about that hypothesis and any fixed 

small number c:, there is an amount of data that will cause all the epstemic 
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agents to agree about the probability of the hypothesis to within c:. This 

theorem is an easy consequence of the Bayesian premises.34 

But the pragmatic school of thought which says that all is well is 

seen as wishful thinking by others, who have proved theorems showing 

that in some circumstances it is impossible for a group of doxastic agents 

to reach joint inferential conclusions (Kadane et al. !999), either because 

insufficient data is available or because it is necessary to take into account 

the doxastic agents' utilities as well as their probabilities (or, in old-school 

language, their desires as well as their beliefs). If this second group of 

theorists is right (and I am afraid it is), we need a new theory which tells 

us how to make joint inferences when individual judgements vary in a way 

which makes strict Bayesian methods ineffective. This new theory is likely 

to be based on Bayesian theory, with the traditional Bayesian theory as a 

limiting case in the large-data, low-disagreement case. The new theory 

may or may not be called "Bayesian". (Seidenfeld, for one, is agnostic about 

whether it should be.) I will not be discussing joint decision-making in 

this thesis, and I will be consistently agnostic about Bayesianism, so I do 

not urgently need to decide these questions. 

3. SUBJECTIVE BAYESIANISM 

All forms of Subjective Bayesianism hold that the Bayesian equations given 

above are applicable to all cases in which a doxastic agent is uncertain 

about what inferences to make from an observation. To the best of my 

34. It may be worth noting the order of the main quantifiers here: V required levels of 
agreement, 3 an amount of data which will produce such agreement. It would be nice 
if V amounts of data greater than some value, -,3 a level of disagreement too great to 
withstand the irenic power of the data; but sadly this is not so. 
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knowledge, all Subjective Bayesians agree that may be very little objec­

tive evidence on which to base a prior probability distribution. It follows 

from these two points that all Subjective Bayesians hold that there is a 

non-objective component to any fully specified prior probability distribu­

tion. This non-objective component may be subjective or intersubjective. 

If it is subjective then it depends on an individual's cognitive state in a 

way which cannot be fully justified by that individual to another rational 

doxastic agent; if it is intersubjective then it depends on a position jointly 

reached by a community of doxastic agents which cannot be fully justified 

by that community to an external rational doxastic agent. The notion of 

justification in play may be vague or strict. If strict, then there is a fun­

damental epistemic difference between Subjective Bayesians and Objective 

Bayesians. If vague, then there is no such fundamental difference, but there 

remains a major methodological difference, for very few prior probability 

distributions are actually held to be objective by communities of scientists; 

and hence, in the absence of practical, comprehensive ways of determining 

whether a prior probability distribution ought to be accepted by a commu­

nity, there remains a great divide between those who think that statistical 

analysis need not wait on such agreement (subjectivists) and those who 

think it must wait. In summary, Subjective Bayesians analyse situations in 

which there is incomplete agreement about prior probability distributions 

by using an individual's or community's choice of prior, however estab­

lished, while Objective Bayesians analyse such situations by waiting for 

agreement or (as we shall see below) by proposing general methods of 

producing priors which can force such agreement. 
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There are no differences between the various schools of Subjective 

Bayesianism that matter for the limited purposes of this thesis (although of 

course there are many differences which are interesting in their own right), 

except for disagreements between individual theorists about the definition 

and role of the likelihood principle, which I will discuss in detail in chapter 

8 and chapters 9 to 12. 

THE UNIQUENESS PROPERTY OF SUBJECTIVE BAYESIANISM 

A number of authors have produced sets of axioms under which Subjec­

tive Bayesianism can be proved to be the unique rational way to conduct 

statistical inference. The founder of this school of thought- and, indeed, 

the founder of the modern school of subjective probability- was Keynes 

(1921 ).35 Savage (1954), extending the work of Keynes (1921) and Ramsey 

(1978), laid the foundations for modern statistical decision theory (perhaps 

best exemplified by Raiffa & Schlaifer 2000) by showing that if both precise 

but subjective prior probability distributions and precise utility functions 

are assumed known for a given doxastic agent then natural axioms of ra­

tionality and mathematics require that agent to be a Subjective Bayesian. 

Philosophical objections to this claim have concentrated on the existence 

of prior probability and utility functions. Since my goal is not to defend 

Bayesianism, I will not attempt to show that Savage's axioms are reasonable 

in general. However, there are some sub-domains of statistical inference 

in which both exact prior probability distributions and exact utilities are 

35. It is sometimes said that Keynes believed only in objective or logical probability, but 
this is not the case. As he summarises his own work, "The method of this treatise has been 
to regard subjective probabliity as fundamental and to treat all other relevant conceptions as 
derivative from this" (1921, p.282). He may not have intended "subjective" in the same way 
as modern subjectivists, who mostly follow de Finetti (de Finetti 1972), but he certainly did 
not intend "subjective" to mean either objective or logicaL 
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uncontentiously available (for example, statistical puzzles in which priors 

can be set by a godlike adjudicator and utilities can be set by fiat), and in 

these sub-domains Savage's theory is uncontentious, at least for a single 

doxastic agent. 

4. OBJECTIVE BAYESIANISM 

Objective Bayesianism includes any school of thought which holds that 

Bayes's Theorem can be used ubiquitously or almost ubiquitously but 

which, unlike Subjective Bayesianism, does not call for any subjective prior 

probability distributions. There is an important ambiguity here: an Ob­

jective Bayesian theory may hold that subjective priors are never required 

(equivalently, may silently render them unnecessary), or it may hold that 

subjective priors are sometimes not required. Both of these cases contrast 

with Subjective Bayesianism, which holds that subjective priors are always 

required. Of the theories I discuss in this section, Restricted Bayesian­

ism and Empirical Bayesianism are of the former type (subjective priors 

never required), while Jeffreys's and Jaynes's theories are of the latter type 

(subjective priors sometimes not required). 

Objective Bayesian methods are thus more objective than Subjective 

Bayesian methods, but apart from that I make no positive claims for their 

objectivity. They do not have all the features which some might think are 

necessary to a completely objective system. 5 6 

36. To take a trivial example of such a feature, all the theories in this whole thesis make 
reference to mind-dependent entities in the form of statements of hypotheses. A less trivial 
example, but perhaps also less of a barrier to objectivity, is that none of the theories in this 
section can be stated without epistemic probabilities- as opposed, especially, to Neyman's 
theory in which, as we will see later, the probabilities are remarkably non-epistemic. 

86 



RESTRICTED BAYESIANISM 

Restricted Bayesianism is my own term for the type of Objective Bayes­

ianism which holds that we should use Bayesian methods only when a 

prior probability distribution has been given to us by an objective process 

separate from the merriment we are analysing. Perhaps surprisingly, there 

are many applications for it. For example, almost the whole of clinical 

epidemiology (the study of the determinants of medical success and fail­

ure) can use Restricted Bayesian techniques, because an objective prior 

probability distribution is given by the rates to date (not counting the 

merriment at hand) with which clinicians have achieved certain medical 

outcomes with patients in a certain epistemic equivalence class (patients 

with certain medically relevant characteristics).37 

Restricted Bayesianism is open to the objection that determining the 

relevant equivalence class is often essentially ad hoc. (This is known 

as "the problem of the reference class" in the literature on probabilistic 

inference (Hajek 2003).) This objection is well-founded, although there is 

some disagreement on this point in the literature; moreover, even those 

who agree with the objection are often able to agree that a particular 

37. Consider, for example, a doctor who wants to know the probability that a patient who 
has a positive test result actually has the disease that the test tests for. (This probability is 
usually much less than one, and indeed often less than Y£, so a patient with a positive test 
result is often most likely not to have the disease. The low typical value of this probability 
causes many misunderstandings of test results, but these need not concern us here.) Let 
a be the event of having the disease and b be the event of receiving a positive test result. 
The quantity p(bla) is a property of the test, and is provided by the company which markets 
the test kit; it is usually approximately independent of the characteristics of the individual 
patient, and can therefore be established once and for all. The prior, p( a), is harder to come by 
but nevertheless is usually claimed to be objective: it can be calculated (according to clinical 
epidemiologists) by finding out what proportion of the population of the geographical area 
in which the patient lives has the disease. This information is often readily available. p( b) 
can be calculated as a normalisation factor, as described above. It is then a simple matter to 
use Bayes's Theorem to calculate the required probability that the patient with a positive test 

result has the disease, p(al b). Were all of the uses of Bayes's Theorem of this type, very few 
of the objections to Bayesianism which I mention above would crop up. 
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application of Restricted Bayesianism is no more ad hoc than any of its 

rival theories would be in the same situation. 

Restricted Bayesianism is also open to the objection from subjectivist 

Bayesians that it only allows some epistemically relevant types ofknowledge 

to affect the prior probabilities, not all epistemically relevant types (some 

of which may be subjective). 

Despite these criticisms, Restricted Bayesianism has very few active 

opponents. Surprisingly (in my view), it also has very few proponents: even 

in areas in which its worth is undisputed it is rarely applied. It is because 

it has been so rarely acknowledged that I have had to invent a name for 

it. Its lack of generality reduces its philosophical interest somewhat, but 

it ought to be of very great scientific interest indeed. A recent paper by 

Daniel Goodman (2004) promoting this method presages such an interest, 

I hope. 

The main barrier to the use of Restricted Bayesianism in a wide class 

of problems (apart from social inertia) is that the relevant equivalence class, 

even when it exists and is objective, may not be large enough to provide 

prior believable probabilities. 

EMPIRICAL BAYESIANISM 

Empirical Bayesian methods are radically different from other Objective 

Bayesian methods; indeed, although they are Bayesian in the letter of the 

law (at least according to my definition, although not according to the 

definition of Deely and Lindley (1981)) they are very far from its epistemic 

spirit. They "estimate" (a weasel word in this context) any probabilities 

which are unknown - especially prior probabilities - from the very 
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same observational data that are to be used for inference to hypotheses 

(Breslow 1990, Morris 1983, Lindley 1983). They are importantly different 

from Restricted Bayesianism in that Restricted Bayesianism uses prior 

probability distributions which are antecedently (or at least independently) 

justified. 

I have not been able to find any theoretical justification for Empirical 

Bayesianism in the literature. According to standard Bayesian theory it is 

clearly unjustifiable. All justifications of the useofBayes's Theorem assume 

that the likelihood function which is used to update the prior distribution of 

probabilities contains entirely new information. The numerical degree of 

updating recommended by Bayes's Theorem depends on this assumption. 

Empirical Bayesianism violates the assumption by using the same data to 

construct probabilities and to perform updating of probabilities. This is 

similar in intent, and often similar in effect, to considering the very same 

set of data twice as if it had been collected on two separate occasions. 

Empirical Bayesianism, by using the same set of data to set the prior as 

it uses to set the likelihood function, gives the data a demonstrably, and 

quantifiably, larger role in the analysis than it should have according to 

Bayes's Theorem. It is quantifiably illicit double-dipping (Deely & Lindley 

1981 ). 

Empirical Bayesianism is also disreputable according to the Subjective 

Bayesian school of thought for an additional reason, namely that, unlike 

Subjective Bayesianism (and also unlike Jeffreys's and Jaynes's schools, and 

unlike Pivotal Inference for that matter), it does not enable probabilities 

which are not "estimated" from the data to be taken into account at all, 

even when they are probabilities agreed by a whole community. 
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Despite these immense philosophical drawbacks, the method is popu­

lar among scientists (see, for example, Bernardinelli & Montomoli 1992), 

because it is extremely objective: not only does it not require any subjective 

judgements of probability, it also does not require the use of Jeffreys/Jaynes 

ignorance priors, to which I now turn. 

CONJUGATE IGNORANCE PRIORS I: JEFFREYS 

Another strand of Bayesianism is similar to Restricted Bayesianism in 

using frequency information to construct a prior probability distribution 

when such information is available, but otherwise uses a prior probability 

distribution constructed using principles of symmetry of an abstract sort. 

A theory of this type was historically the first type of Bayesianism, and 

arguably the first statistical theory of any sort, to be given a reasonably 

comprehensive treatment covering its philosophy, its mathematics and 

some of its practicalities (Jeffreys 1931 ). So far, two theories of this type 

have been developed, giving alternative views of the principles of symmetry 

responsible for determining the prior: one is mainly due to Jeffreys and 

one mainly due to Jaynes. 

Both Jeffreys and Jaynes present their principles for constructing 

prior distributions as ways of representing ignorance about H; this way of 

thinking about their theories makes it clear that they are compatible with 

Restricted Bayesianism (compatible in the sense that the methods will 

agree whenever frequency information suitable for constructing a prior 

probability distribution is available and uncontentious). It is also, roughly 

speaking, the traditional approach to statistical inference, discussed by 

Bayes, Laplace and their followers in the 18th Century. Thus, for example, 
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Jeffreys's principle for a .finite set of hypotheses is the same as Laplace's, 

namely to give each member of the set the same probability: 

lfthere is no reason to believe one hypothesis rather than another, 

the [prior] probabilities are equal. 

(Jeffreys 1961, p. 33) 

. and Jeffreys is explicit in saying that this is a way of representing 

Ignorance: 

The rule that we should take them equal is not a statement of 

any belief about the actual composition of the world, nor is it an 

inference from previous experience; it is merely the formal way 

of expressing ignorance. 

(Jeffreys 1961, pp. 33-34) 

However, as we will see below, the literature on Subjective Bayesianism 

contains criticisms of the idea that we can be ignorant about a set of 

hypotheses. Since Bayesianism is not my main topic, I will not attempt to 

resolve this dispute. 

Jeffreys's theory assigns prior probability distributions to sets of 

hypotheses either on the basis of objective (frequency) information relevant 

to H or on the basis of conjugacy. Conjugacy is an algebraic concept which 

guarantees that a Bayesian analysis will be mathematically neat, in the 

following sense. A family of probability distributions P is conjugate to a 

family of likelihood distributions L when it has the property that using 

a member of P as the prior probability distribution guarantees that the 

posterior distribution will have the same mathematical form as the prior. 

(More precisely, P is conjugate to L ifl. when a prior distribution is in 

P and a likelihood function is in L the Bayesian posterior distribution 
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is guaranteed to be in P.) A general principle of Jeffreys's theory is 

that a prior probability function representing ignorance should be chosen 

from a family of distributions conjugate to the likelihood function (more 

precisely; conjugate to a reasonably narrow family containing the likelihood 

function) whenever possible. Since this guarantees that the prior and 

posterior will have a similar mathematical form, it has great practical 

advantages, especially when the posterior distribution becomes the prior 

distribution for a subsequent analysis (as it often does). Note, though, 

that this is purely a mathematical criterion, and one whose only clear 

advantage is simplicity of calculation. No philosophical justification for 

choosing conjugate priors has been suggested, and most writers on this 

principle- even its supporters- see it as ad hoc from the epistemological 

point of view. 

In order to construct conjugate priors for likelihood functions indexed 

by (} E 8, we need to know what type of parameter (} is. "Type" here is 

meant to distinguish primarily between location and scale parameters, as 

follows. 

In the simplest two-dimensional case, a location parameter is one 

which we can vary to move a distribution left or right along the x-axis, 

while a scale parameter is one which we can vary to compress or expand 

a distribution towards or away from its centre. Typically the mean of a 

distribution is a location parameter while its variance and standard devi­

ation are scale parameters. A formal and reasonably general definition of 

parameter types is: 

[L]et X and 8 be scalar random variables. If the conditional 

distribution of X - 8 given 8 = (} is the same for all (}, then 8 
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is called a location parameter for X. If 8 > o, and the conditional 

distribution of X I 8 given 8 = 0 is the same for all 0, then 8 is 

called a scale parameter for X . 

. . . Now, let X be a vector, and let 8 be a scalar. Let 1 

denote the vector of the same length as X with every coordinate 

equal to !. Then 8 is a location parameter for X if the conditional 

distribution of X - 81 given 8 = 0 is the same for all 0. If 

8 > o and the conditional distribution of X I 8 given 8 = 0 is 

the same for all 0, then 8 is a scale parameter for X . 

. . . Next, let X be a vector, and let 8 be a vector of the same 

dimension. Then 8 is a location parameter for X if the conditional 

distribution of X - 8 given 8 = 0 is the same for all 0. If 8 

is a nonsingular matrix parameter [i.e., if e- 1 exists J and the 

conditional distribution of8- 1 X given 8 = 0 is the same for all 

0, then 8 is a scale parameter for X. 

(Schervish 1995, p. 345) 

A more intuitive and equally general (although less precise) definition is 

as follows. 0 is a location parameter iff the likelihood p(xiO) depends on 0 

only via 0-x: an example is the mean of a Normal distribution. 0 is a scale 

parameter iff po(x) depends on 0 only via 0 I x: an example is the variance 

of a Normal distribution. For Bayesian analysis (which we are considering 

here), these conditions need only hold at the value x = x0 • 

Not all parameters are either location or scale parameters; further 

definitions can be made without limit to take account of other possibilities 

for the algebraic role of 0. 

Given a classification of parameters, Jeffreys's rules for priors repre­

senting ignorance are as follows. I state these without discussion because 

I have no intention of either criticising or defending them; my comments 
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about Jeffrey's theory rest on more general considerations than whether 

his rules for priors are plausible when taken individually. 

• If E> is finite, we have the obvious (although not obviously right!) 

Laplacian principle of indifference: each of the II E> II possibilities is 

assigned an equal probability, so p(O) = 11 ~ 11 , where liE> II is the size of 

the set e. 
• If() is a location parameter, or a scale parameter which runs from 

-oo to oo, then p(8) = k, for any constant k. (The choice of k does 

not matter, as it cancels out when the posterior distribution is derived 

using the Bayesian machinery described above.) This is an improper 

prior: it does not integrate to 1. 

• If() is a scale parameter which runs from o to oo then p(8) = ~ (not 

to be confused with ll~ll ). 

and so on. The classification of () into location parameters, scale 

parameters and so on is necessarily incomplete, and hence so is Jeffreys's 

theory. In itself I cannot see this as a criticism: I know of no argument 

to the effect that our theory of statistical inference can be complete, apart 

from specific suggestions that it should be this complete theory or that 

complete theory, none of which is without its drawbacks. 

A more important criticism of Jeffreys's theory is that it is ad hoc. 

This criticism is often made, and rightly so. In many parts of Jeffreys's 

theory his justifications for his choices of priors are subtle, complicated 

and easily missed; so the ad hocness charge is not always easy to make 

stick. But in other places the ad hocness charge is clearly right. This is 

illustrated nicely by the following exchange between Jeffreys and Haldane. 

ForE> = (0, 1 ), Haldane suggests the alternative prior 
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p(B) ex~ 

Jeffreys's response is to dismiss this as giving "too much weight to the 

extremes of 8"; but he has no principled discussion of what "too much 

weight" might be (in contrast to the care he takes over those parts of his 

theory which he himself considers to have philosophical importance). In 

short, Jeflreys as good as admits the charge of ad hocness. This point is 

ad hominem, but that is the way with charges of ad hocness: the burden of 

proof absolutely has to be on the defenders of a putatively ad hoc theory, not 

on its attackers. Since I can neither find in the literature nor see for myself 

a principled defence of the whole of Jeffreys's theory of ignorance priors, I 

conclude that it is ad hoc. (And so is Haldane's suggested replacement.) 

There is another component of objectivity in Jeffreys's work (as com­

pared to the Subjective Bayesian schools), emphasised especially in his 

(1973): this is that we should order hypotheses according to their simplic­

ity, which in turn can be measured by the number of parameters needed to 

state the theory. (Strictly speaking, it is only the number of "adjustable" 

parameters which is taken to be relevant: an adjustable parameter is one 

which analysis may attempt to estimate, as opposed to one which is known 

for sure.) Howson and Urbach rightly object to this, pointing out that 

Newton's theory, for example, has very few adjustable parameters as usu­

ally written "[b Jut as applied, say, in the kinetic theory of gases, it contains 

of the order of 1025 undetermined parameters, and when further degrees of 

freedom are added, the number rises correspondingly" (Howson & Urbach 

1993, p. 418). In any case, merely ordering hypotheses is not enough to 

give us an objective theory of statistical inference: the claim to objectivity 
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of Jeffreys's theory rests on its ignorance priors, which are not just or­

dered but fully specified. (This is very clear from Jeffreys's (1961,1973), 

and is admitted even by his strongest supporters (Jeffreys & Berger 1991).) 

But in the work of Jaynes, to which I now turn, considerations related to 

simplicity provide not only an ordering of hypotheses but also actual prior 

distributions. 

CONJUGATE IGNORANCE PRIORS II: JAYNES 

Jaynes has written about the genesis of his theory in a way which also 

serves nicely to introduce the content of the theory: 

In 1965 it occurred to me that one very reasonable interpreta­

tion of 'complete ignorance' was group invariance. . .. I found 

immediately a much deeper understanding of the Jeffreys prior 

... in the location-scale parameter problem. This rule had been 

rejected [by me] because Jeffreys' argument in favor of it seemed 

ad hoc and arbitrary. But now it was clear that the point was not 

merely that O" was positive, the rationale that Jeffreys had given 

[sic: in fact, Jeffreys gave more rationale than that, albeit perhaps 

still not enough]. The point was that O" was a scale parameter, 

complete ignorance of which meant in variance under the group 

of scale changes. I immediately became an advocate, rather than 

a critic, of the Jeffreys rule ... with the sanction of a clear rational 

justification. 

This work, which was for me a major advance in thinking 

[and which has subsequently become a widely studied theory J 
suffered the standard fate. It was submitted to a well-known 

statistical journal in I 966, and was indignantly rejected. The 

editor (whom I had thought to be a Bayesian) took the trouble to 
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write me a letter requesting that I never again send him anything 

like it. 

(Jaynes 1983, p. 115) 

Unlike Jeffreys's principles for choosing conjugate priors, Jaynes's principle 

of group invariance has an epistemological basis. One starts by "finding 

the group of transformations on the parameter space which convert the 

problem into an equivalent one" (Jaynes 1968, p. 227, reprinted as Jaynes 

1983, p. 116), where by "equivalent" Jaynes means epistemically equivalent. 

Jaynes does not give a complete characterisation of the ways in which 

we might decide that a transformation of a problem leaves it equivalent; 

he argues merely by paradigm examples. Possibly he is only able to 

get away with this because the notions of location parameter and scale 

parameter (defined above) cover the vast majority of the uses of statistical 

inference; and so examples which seem to cover those cases adequately have 

been found convincing, despite the obvious lack of a full justification for 

Jaynes's theory. In the case of location parameters, Jaynes argues that the 

appropriate group of transformations is the infinite group formed by the 

real numbers under addition, (R, + ), which transforms the variable x into 

x+ a for any fixed a, without affecting the results of the analysis. Similarly, 

in the case of scale parameters, the appropriate group of transformations 

is said to be (R, X), which transforms the variable x into bx for any fixed b. 

These groups of transformations serve as a way of tightening up 

Jaynes's older principle of maximum entropy, which says that "the prior 

probability assignment should be the one with the maximum entropy con­

sistent with the prior knowledge" (Jaynes 1968, p. 229), where by "entropy" 
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is meant the following generalisation of Shannon entropy (Jaynes 1968, 

p. 235): 

H = - J p(x) log [p(x) I m(x)] dx 

The function m(x) is generally underdetermined; Jaynes's group-theoretic 

considerations or some such are needed to fix m(x). When m(x) is fixed as 

recommended by Jaynes, Jeffreys's theory is recovered, with some minor 

exceptions which, from the point of view of Jaynes's theory, can be counted 

as mistakes on Jeffreys's part. Unlike Jeffreys's theory, though, Jaynes's 

gives us some idea of how to extend the theory beyond the classifica­

tion of parameters so far produced: the extension will depend on finding 

transformation groups which leave the problem epistemically equivalent. 

Jaynes's theory is remarkably complete, attractively simple and rel­

atively objective, but it has its problems. One is that some of his (and 

Jeffreys's) "prior probability distributions" are not strictly speaking prob­

ability distributions at all: they do not integrate to I, as a probability 

distribution must. This presents no immediate mathematical problem: the 

posterior distribution is guaranteed to be a proper probability distribution 

on Jaynes's theory, so all the inferences about hypotheses drawn from his 

theory are straightforwardly probabilistic. However, Stone and others 

have proved that any theory which uses Bayes's Theorem with improper 

priors (priors not integrating to I) can be fed examples which lead them 

into strict, logical internal inconsistency (Stone 1976). This inconsistency 

is decision-theoretically acceptable because it cannot be used to ensure a 

sure loss in a betting scenario (see Hill's comments in Berger & Wolpert 

1988, pp. 167-171 ); nevertheless, from the philosophical point of view any 
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inconsistency is a high price to pay. Some Jaynesians hope that this in­

consistency can be eliminated by finding some way of approximating the 

improper prior distribution by proper prior distributions (much as the in­

consistencies in Greek calculus were eliminated by Weierstrass's method 

of taking limits). 

A common criticism of Jeffreys's and Jaynes's use of priors represent­

ing ignorance is that there is no such thing as a probabilistic representation 

of ignorance. For example: 

it [is not] a tenable claim that the distribution which maximises 

entropy is "the one which is maximally noncomittal with regard 

to missing information" (Jaynes, 1957, p. 623). Any distribution, 

in our opinion, is as informative as any other insofar as it supplies 

a definite probability to every Borel set. 

(Howson & Urbach 1993, p. 417) 

The Borel sets are just the mathematically well-behaved subsets of X; so 

Howson and Urbach are saying that every prior which has no holes in it 

is equally informative. Indeed, both subjective and ignorance priors seem 

similar in terms of first-order properties such as assigning probabilities 

to the same sets of possible data. But it is second-order (and higher) 

properties which tell us (if anything does) how well a prior represents 

ignorance: in particular, Jaynes's claim is that a particular measure of the 

spread of a distribution (namely its entropy) measures the extent to which 

it represents ignorance. Howson and Urbach ignore such second-order 

properties in their criticism of Jaynes. 

Jaynes concedes that his method does not represent complete ignorance, 

but claims that to reject his method on these grounds "would be just as 
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absurd as to reject Euclidean geometry on the grounds that a physical 

point does not exist" (Jaynes 1968, p. 236). This may be right, but it is 

hardly a full defence. Euclidean geometry has been defended, for most of 

its history, only as an axiomatic system based on agreement about Euclid's 

axioms; whether a physical point exists is irrelevant to such a defence. 

In contrast, the properties of ignorance (ignorance itself, not a formalist's 

primitive concept such as a Euclidean point) are essential to the justification 

of Jaynes's method. On the other hand, modern defences of Euclidean 

geometry often do depend on the properties of physical space, so Jaynes's 

theory is in a similar position to these modern theories of geometry. But 

such theories fail to defend the truth (simpliciter) of Euclid's theory! And 

this is so not only because physical space is not, in fact, Euclidean, but also 

because in order to adequately represent physical space Euclid's theory 

would have to be dramatically recast in a more synthetic mould, giving 

physical justifications for its axioms. Similarly, Jaynes's theory requires 

either a defence of the existence of complete ignorance or a substantial 

argument showing that partial ignorance is necessarily best represented 

in the way he suggests. Such an argument does not yet exist. As with 

Jeffreys's theory, my criticism does not show that it is flawed; only that it 

is (as yet) insufficiently justified. 

ROBUST BAYESIANISM 

Robust Bayesianism is a type ofBayesianism which is based on Subjective 

Bayesianism, both philosophically and mathematically, but which avoids 

drawing subjective conclusions by using the fact that conclusions about 

hypotheses can sometimes be drawn without assuming that any particular 
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subjective prior is correct (Edwards et a!. 1963). Instead, one finds con­

clusions which come out true on any reasonable prior, where "reasonable" 

is operationalised in terms of constraints which are either objective or (at 

least) uncontentious. The conclusions are often phrased as if they were 

approximations, but when that is the case they are precisely delineated ap­

proximations: a Robust Bayesian analyst will typically say, "my posterior 

distribution is such-and-such; and for any prior in the precise class so-and­

so the posterior distribution differs from mine by at most the functionf(O), 

wheref is defined by the equation such-and-such".38 

From an epistemological point of view, Robust Bayesianism is similar 

to supervaluation- the theory that a sentence containing a vague term is 

true iff all reasonable precisifications of the vague term make the sentence 

true. The idea is more plausible as a theory of statistical inference than 

as a general theory of truth. As a general theory of truth, it leads to 

counter-intuitive truth-values. For example, a typical supervaluationist 

has to admit that the sentence "My height is vague" is false (where "my 

height" is a vague term) because, under each possible precisification of my 

height, my height is precise. This problem essentially depends on the 

second-order nature of the sentence: only sentences that both use and 

mention vague terms fall into the trap. This situation can arise in Robust 

38. For example, the Robust Bayesians William 0. Jeffreys (not to be confused with either 
Harold Jeffreys or Richard Jeffrey) and James 0. Berger (not to be confused with the Roger 
Berger of(Casella & Berger 2002)) show that Einstein's theory of General Relativity is more 
probable than a certain Newtonian theory (remember that hypotheses in this thesis must be 
simple hypotheses, so we cannot use a vague term such as "Newtonian theory" simpliciter) 
under the constraint that the prior for the epihelion of Mercury is symmetric with a peak 
at the observed value, and monotonic (constant or decreasing) on either side of that value 
(Jeffreys & Berger 1991). It could be argued that the objectivity of that constraint can be 
established by considerations about the mechanism which was used to measure the perihelion. 
(Such an argument would have to be long and detailed. I do not claim that it is obviously 
right, only that it is not obviously wrong.) Jeffreys and Berger's argument allows for priors 
of any degree of vagueness. 
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Bayesianism, since one could be evaluating a set of hypotheses about one's 

own prior probability distribution; but it is not of the nature of a typical 

scientific problem, so the problem is not widespread (and, to the best of 

my knowledge, has not even been noticed before). There are sophisticated 

versions of supervaluation which are not subject to this problem, and which 

could perhaps be used to create a more complicated version of Robust 

Bayesianism which could handle hypotheses about priors. 

A much more obvious and widespread problem with Robust Bayesian­

ism is that it is not objective unless the constraints are objective and-even 

worse- there is no general theory showing that such constraints always 

exist, even subjectively. However, the progress of Robust Bayesianism is 

exciting to watch, both because large classes of problems can be shown 

to have such constraints (sometimes objective constraints, sometimes just 

very plausible subjective constraints) and because these classes of problems 

might, for all we know to date, be able to be extended without limit. 

Mayo ( 1996, pp. 359-360) uses the term "robust Bayesianism" to de­

scribe methods which use Bayesian mathematics but assess their procedures 

in terms of Frequentist error rates. I have not seen this use of the term 

elsewhere; it is certainly not standard in the Bayesian literature. Mayo 

rightly classifies such procedures as Frequentist.39 

OBJECTIVE SUBJECTIVE BAYESIANISM 

All types of Objective Bayesianism have the same mathematical form as 

Subjective Bayesianism, and this allows any Objective Bayesian method 

to be easily converted into a Subjective Bayesian method when epistemic 

39. In Grossman et al. (1994) my colleagues and I describe a method of this sort, calling 
it a "unified" method because the same mathematics can be given either a Frequentist or (by 
ignoring the error rates) a Bayesian interpretation. 
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circumstances permit. This happens when the prior probability distribu­

tion calculated by an Objective Bayesian method is the same as the prior 

probability distribution assigned by a subjectivist investigator.'0 So to­

ken Subjective Bayesianism need not be in conflict with token Objective 

Bayesian ism. 

For example, Breslow ( 1990) has argued that Empirical Bayesian 

techniques are acceptable only in cases in which subjectivist Bayesian tech­

niques would have given the same answers (to a high degree of approxima­

tion). There are such cases, despite the way in which Empirical Bayesian ism 

uses the same data twice, because it is possible - and in fact fairly likely 

in typical scientific situations- that the prior produced by illicit Empir­

ical Bayesian methods is roughly the same as would have been produced 

by subjectivist methods: in other words, Empirical Bayesianism, using 

purportedly objectivist means, often happens to duplicate the subjective 

degrees of belief of the scientists involved. (This is especially likely when 

the amount of data is large; and in any case the error caused by double­

dipping on the data tends to zero as the amount of data tends to infinity.) 

In that special case, the fact that the same set of data is used to calculate 

the likelihood function is not a problem, at least for the subjectivist, who a 

fortiori believes that the two techniques, Subjective Bayesianism and Em­

pirical Bayesianism, in giving the same answers, must be giving the right 

answers. 

40. Both schools of Bayesian thought are concerned with mathematical simplicity to a 
t~ertain extent when they formulate prior probability distributions, and because of this it 
happens reasonably often that practitioners of the two schools of thought can agree exactly 
on a prior distribution. When this happens. all their conclusions must be identical;. even their 
interpretations of their conclusions are if not the same then at least easily translatable into 
each other. 
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Perhaps this point is not as philosophically interesting as the conflict 

between Subjective Bayesianism and Objective Bayesianism which remains 

in principle no matter how often they agree in practice. The existence of 

this conflict is sometimes denied by those Subjective Bayesians who see the 

objectivity of the priors in Objective Bayesianism as completely illusory: 

No prior probability or probability-density distribution expresses merely 

the available fadual data; it inevitably expresses some sort qf opinion 

about the possibilities consistent with the data. 

(Howson & Urbach 1993; italics in the original) 

So Howson and Urbach consider Jaynes's system to be no more objective 

than Subjective Bayesianism. But this is missing a point (albeit a small 

one). Certainly Jaynes's system "expresses" (so to speak) a limited set of 

possibilities consistent with the data, as do all the systems here and as 

must any system falling within the framework I set out in chapter '2. To 

this extent it is just as badly off as any other system. But Jaynes's claim 

is that it expresses ignorance objectively given the constraints of being 

a system of statistical inference suitable for doxastic agents. As I noted 

above, this claim remains less than fully justified, but it may yet be shown 

to be justifiable. If it is justifiable then there is a substantial difference 

between Objective Bayesianism and Subjective Bayesianism. 
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-4-

Survey II: Frequentism 

In this chapter I survey Frequentist theories of statistical inference. (See 

chapter 3 for an introduction to this survey as a whole.) Here I will expound 

Frequentist theories as they are expounded by their proponents; and I will 

raise some issues which, prima facie, make the interpretation of the results 

of Frequentist analyses difficult. In particular, I will discuss the general 

impossibility of interpreting Frequentist probabilities epistemically (i.e., as 

directly relevant to what a rational doxastic agent ought to conclude). 

I have chosen to separate the uncontentious aspects of Frequentism 

(this chapter) from the contentious aspects (chapter 7). All of the issues 

raised in this chapter are universally acknowledged aspects ofFrequentist 

reasoning. None of them is seen as an objection to Frequentism by pro­

ponents of Frequentism, and I will argue that as far as I take the issues 

in this chapter they are right not to see them as objections: they are, for 

the moment, merely peculiarities. But in chapter 7 I will develop these 

issues further and show that, after all, they entail fundamental problems 

with Frequentism. 

1. DEFINITION OF FREQUENTISM 

The defining characteristic ofFrequentist procedures is that they base all 

their conclusions on functions averaged over the sample space X. The ra-
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tionale for this is the following principle, sometimes known in the literature 

as the Repeated Sampling Principle: 

A procedure for making inferences from data to hypotheses must 

have good average properties on repeated application in similar 

situations with different data. 

The best way to think about what makes Frequentist methods of statistical 

inference special is to think in terms of Table 1: 

hypotheses 

vomiting 

(observed 
in this case) 

dehydration o. 03 

PTSD 0.001 

anything else 0. oo I 

possible symptoms 
diarrhoea social 

(not observed 
in this case) 

0.2 

0.01 

0.001 

Table I 

withdrawal 
(not observed 
in this case) 

0.5 

0.95 

0.001 

other symptoms 
& combinations 
(not observed 
in this case) 

0.27 

0.029 

0.997 

A Frequentist method of inference is one which requires at least one whole 

row of the table. Thus, Frequentist methods are very different from 

Bayesian methods and from all other methods compatible with the likeli­

hood principle, which only use the column in the table corresponding to the 

actual observation. ln other words, Frequentist methods fix a hypothesis 
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and compare various hypothetical data sets under the assumption that that 

hypothesis is true, as opposed to what the likelihood principle tells us to 

do, namely to fix a data set and in some way compare hypotheses. 

In the set of all possible methods of statistical inference complying 

with the framework given in chapter 2, Frequentist methods are almost 

the exact complement of methods compatible with the likelihood principle: 

the likelihood principle forbids a method of inference to use values of X 

other than x., while Frequentist methods must use values of X other than 

x •. 

I say that Frequentist methods are almost the exact complement of 

the methods compatible with the likelihood principle. It is possible for 

a method to be incompatible with the likelihood principle without being 

Frequentist. This is because a method might require values of X other than 

x., thus contravening the likelihood principle, and yet might not require 

a whole row of the table, thus making it not quite Frequentist. But as far 

as I can see, and as far as the literature goes, there are no useful methods 

of inference which fit into this chink: all the methods of inference you will 

come across here or elsewhere are either Frequentist or factualist. 

Although the above distinction is the one to keep in mind to see the 

most important differences between Frequentist methods and others, it 

needs to be fleshed out a bit before we can see how Frequentist methods 

operate. I will first do the fleshing out in an abstract way, in the rest of 

this section, and then in the rest of this chapter I will give definitions and 

brief discussions of the most prominent Frequentist methods. In chapter 

15 I will give concrete examples of how certain specific instances of these 

Frequentist methods differ from alternative, Bayesian methods. 
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A Frequentist method of inference (as I will use the term - see 

chapter 2 for my reasons) first fixes: 

(I) a reference class of real or hypothetical experiments to be presumed 

similar to the experiment to be analysed, 

(II) a set of hypotheses to be assumed false (the "error set"), and 

(III) a mathematical form for the analysis, which varies from one Frequen­

tist method to another. 41 

Given these ingredients, Frequentist statistical inferences are made by 

considering all possible equations of the chosen mathematical form (each 

of which has exactly one vector-valued variable, representing a possible 

observation) and choosing the one which minimises, subject to constraints 

which may vary according to different Frequentist schools of thought, the 

proportion of experiments in the reference class which cause hypotheses 

in the error set to be inferred to be true. This minimisation picks out a 

single equation; this equation is then applied to the actual observation, Xa, 

and the result is reported as the analysis of the actual experiment. 

Frequentist methods are only applicable to experiments, not to mer­

riments in general. In order to apply Frequentist methods to a non­

experimental observational study; the study can be turned into an ex­

periment by adding fictional experimental structure. For example, the 

accidental observation of a surprising supernova can be turned into an 

experiment by imagining that it was obtained from a random sample of 

observations of the whole sky. This extra step required to use a Frequentist 

41. In addition to varying between methods, there is some variation within each method, if 
methods are grouped coarsely (counting, for example, Neyman-Pearson confidence intervals 
as defined below as a single method). This latter variation comes from the fact that all 
Frequentist methods use a "test statistic", T(X), which is a real-valued function of the data 
chosen at the discretion of the analyst. See below and chapter 7 tOr more on how T( X) is 
chosen. 
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method in a non-experimental situation is importantly arbitrary: different 

ways ofturning an actual observation into an imaginary experiment yield 

different results. The supernova might be imagined to have been obtained 

from a sample from different times instead of different places, or from a sam­

ple of galactic clusters instead of the sky as a whole, or ... and each such 

imagining gives different Frequentist analyses. Such methods ofturning 

observations into experiments are extremely controversial, but I will not 

describe all the dimensions of the controversy here; I need only note that 

they can only lead to an enormous decrease in clarity compared to meth­

ods which can analyse observational studies directly, treating any epistemic 

ambiguities as part of the analysis rather than as a swept-under-the-carpet 

prerequisite for the analysis (Good 1976).42 

2. THE NEYMAN-PEARSON SCHOOL 

By far the most influential philosophy ofFrequentism has been Neyman's, 

developed in the late 1930s in competition to Fisher's theories of maximum 

likelihood (see chapter 5) and hypothesis testing (see below). Although 

Neyman's theory is old, its modern forms as used by hundreds of thousands 

of researchers, as discussed by recent authorities such as (Barnett 1999) 

and (Stuart et al. 1999), and as currently championed by philosophers 

such as Mayo ( 1996) are, remarkably, unchanged from Neyman's original 

theory, except in a number of areas which I will discuss below (notably 

the shift in emphasis from actions to inferences, and the amalgamation of 

42. Such methods do exist: Subjective Bayesianism is one. But I will not pursue this line 
of thought further here, because I do not have space to discuss such methods in detail, nor to 
discuss how Frequentist methods might best avoid this problem by making the relationships 
between non-experimental and experimental studies explicit. 
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Neyman's theory of hypothesis testing with Fisher's theory of P-values, 

defined below) and except in one area which is not relevant to my discussion 

(the decreasing popularity of frequentist theories of probability, largely in 

favour of propensity theories of probability within a Frequentist statistical 

frameworkr 3 

3. NEYMAN'S THEORY OF HYPOTHESIS TESTS 

Neyman's theory of hypothesis tests starts with a reference class. Every 

observation from which an inference is to be drawn must be considered 

as part of a reference class. ("Reference class" is modern terminology 

for what Neyman himself called a "fundamental probability set".) This 

reference class may be constructed in one of only two ways: via random 

samples or via "random experiments". 

REFERENCE CLASS 1: RANDOM SAMPLES 

Firstly, the reference class may be a population from which the observation 

is a random sample (originally, one of a number of samples of equal prob­

ability, but the equiprobability requirement is superfluous and was soon 

relaxed in favour of known probabilities, not necessarily equal). 

43. Neyman's theory was expounded in his (1937), reprinted as (Neyman 1967). Neyman 
and E. S. Pearson later jointly proved theorems which made it plausible that Neyman's 
theory could be applied in a wide variety of cases, and which helped to make the choice of 
test statistics (T(x), as described below) within Neyman's theory less ad hoc. Because of 
these additions by Pearson, the theory is often called the Neyrnan-Pearson theory. Pearson's 
work was mathematically very important, but not phi1osophical1y. Therefore, when I am 
discussing the theory in a way which does not rely on Pearson's embellishments I will refer 
to it as Neyman's theory. When I am referring to essentially the same theory as interpreted 
by authors who do not distinguish between the 1937 theory and other versions, I will refer to 
it as the Neyman-Pearson theory. This distinction is only very rarely important: generally, 
what is true in one is also true in the other. 
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In Neyman's theory, the reference class must be one which "cannot 

be studied exhaustively" (Neyman 1967, p. 250). !fit is "possible, though 

it might involve great practical difficulty," to study the population exhaus­

tively, then "any character of this population will be a constant" and hence 

cannot be made the subject of statistical inference, at least not on Neyman's 

own version of the theory (Neyman 1967, p. 256). For example: 

[ C]onsider a specified population, say the population 1r 1935 of 

persons residing permanently in London during the year 1935 

. . . . In the sense of the terms used here, there will be no 

practical meaning in a question concerning the probability that 

the average income, say / 1935 , of the individuals of this population 

is, say, between £100 and £300. As the fundamental probability 

set consists of only one element, namely / 1935 , the value of this 

probability is zero or unity, and to ascertain it we must discover 

for certain whether £100 :<::: / 1935 < £300 or not. . .. Any 

calculation showing that P{ £100 :<::: / 1935 < £300 } has a 

greater value than zero and smaller than unity must be either 

wrong or based on some theory of probability other than the one 

considered here. 

(Neyman 1967, p. 256) 

In other words, Neyman's theory does not allow probability questions 

to be asked of determinate propositions. Neyman used to cite Jeffreys's 

Bayesian theory (described in chapter 3) as an alternative which could be 

used instead of his own in the determinate case. But his advice has not 

been taken seriously; instead, later developers of Neyman's theory have 

made the theory universal. The constraint that the population from which 

random samples are taken be one which cannot be studied exhaustively 

has been abandoned, along with the restriction that one is not allowed to 
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place a probability on the average income being between £100 and £300. 

Perhaps confusingly, it is still accepted that the average income has a fixed 

value, and it is normal to ask whether the interval [£100, £soo] encloses 

this value instead of whether the value is in the interval, thus emphasising 

that the value cannot move. Sadly, I have to say that this is but lip service to 

Neyman's point. Nevertheless, all of the rest of Neyman's constraints on 

sampling theory have been kept, including those which Neyman himself 

took to follow from the constraint which has now been abandoned; so 

whether the abandonment of the constraint itself ought to count as a 

major blow to the theory is rendered irrelevant, at least for my somewhat 

ahistorical purposes. 

REFERENCE CLASS 2: "RANDOM EXPERIMENTS" 

Secondly, the reference class may be a (typically infinite, possibly imagi­

nary) series of experiments each of which gives results with certain known 

probabilities, not necessarily equal. Such an experiment is called a "ran­

dom experiment". The phrase "random experiment" is meaningless when 

applied to an experiment in isolation. It assumes a meaning only when 

applied to a series of experiments together with either a description of 

what all the experiments have in common or, better, "a definition of the 

measure appropriate to the fundamental probability set and its subsets" 

(Neyman 1967, p. 254)- i.e., a description of the known probabilities for 

each hypothesis and each possible outcome (together with an assurance 

that they obey the probability calculus), just like the requirements laid out 

in chapter 2 and illustrated in Table !. 
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The distinction between the two types of reference classes is clearly 

"only superficial" (Neyman 1967, p. 252), since random samples are gener­

ated by random experiments; thus, random experiment reference classes 

are the most general type and subsume population reference classes; so it 

is unnecessary, from the philosophical point of view, to discuss sampling 

specifically, as long as we adequately discuss random experiments. 

PROBABILITIES FIXED ONCE AND FOR ALL 

The series of experiments which makes up Neyman's reference class, and 

this series alone, gives the probabilities used throughout any ensuing Fre­

quentist inference. It does this by giving "a definition of the measure 

appropriate to the fundamental probability set and its subsets" (Neyman 

1967, p. 254), which is a table like Table I or an infinite version thereof 

This is why Neyman's theory requires usually the whole table and at least 

a whole row. 

Crucially, the "known probabilities" are fixed by the model for the 

whole analysis. This means, at least, that the probabilities given by a model 

are fixed for a doxastic agent or community for the duration of an inferential 

or decision-making episode. Neyman makes it very clear indeed that the 

probabilities are fixed even after relevant data comes to hand, despite the 

fact that the reference class is generally not homogeneous (uniform), and 

that it often happens that an event falls into a part of the reference class 

which is known to be special. Thus, if an event f has a frequency of 1 

in 4 in the reference class but it is discovered (for certain) that a single 

experiment uses only a particular part of the reference class in which the 
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event is known to have a frequency of 1 in 2, its probability does not become 

Y.; it remains fixed at Y.. 

It is not clear whether, according to the Neyman way of thinking, 

these probabilities can ever be changed, even between analyses. Very few 

authors address this question. In the writings of Neyman's school, so 

little is said about the option of changing these probabilities that one gets 

the impression that to do so would be beyond the pale of Neymanism: 

it would be not only to change the analysis but to change the method 

of analysis. To change the underlying probabilities is clearly to change 

reference classes; but the choice of reference class is essentially arbitrary 

(as Neyman is happy to admit), so this consideration is inconc!usive.44 In 

any case, regardless of whether probabilities can ever change, it is clear 

from the writings of Neyman and his followers, and from the practice 

of Frequentist applied statistics, that probabilities cannot be changed in 

typical situations in which new information comes to light. 

FREQUENTIST PROBABILITY IS NOT EPISTEMIC 

This fixity of probabilities in Neyman's theory even when relevant infor­

mation comes to light is central to all of its inferential calculations, and 

has not been relaxed in its descendants. It entails that probability is not 

epistemic. An epistemic probability is one which represents the beliefs 

of a rational doxastic agent. I do not have a clear analysis of epistemic 

probability to offer; the idea suggests various ambiguities (e.g., perhaps 

44. The only solution to this problem I am aware of is due to Seidenfeld ( 1979, p. 36}: "the 
probabilities must not become altered because ofknowledge available about some specific trial, 
e.g. the next one, which is not true of all trials in the repeated trial sequence." Presumably 
this is meant to imply that one may change the probabilities when infOrmation comes to hand 
which applies to all trials in the sequence. I do not think that Seidenfeld's solution is widely 
accepted; and, in any case, the condition he mentions is only rarely met, so his solution is not 
sufficiently general to yield a new theory of statistical inference. 
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the beliefs of an idealised agent, in some sense) which I do not have an 

opinion about. But no matter how we resolve such ambiguities, Neyman's 

theory cannot be epistemic, as I will now show. 

In Neyman's theory it is possible for an event to have a low probability 

even if an agent employing the theory rationally expects the event to 

happen. I will show this using an example taken from the game of bridge. 

(Readers who do not care about the details may skip the footnotes to the 

rest of this paragraph.) Consider a bridge player who is asked, prior to a 

deal, the probability that he can defeat a contract.'5 Bridge players will 

quickly recognise that this probability is greater than the probability that 

the player's partner has the King of Spades.'" The player might choose 

the obvious reference class (namely, all four players' hands), according to 

which the probability of his partner being the one of the four players to 

have the King of Spades is Y.. He might calculate error rates, including 

a P-value or a confidence interval as defined below, for the hypothesis 

that his partner has the King of Spades using this reference class, and 

he might promise to apply these error rates in his future decisions about 

the hand of cards, secure in the knowledge that he has a guaranteed low 

rate of error. Now suppose that the player's left-hand opponent does bid 

Seven Spades, after which the dummy's hand is made public.'7 Suppose, 

45. Let us say that the contract is Seven Spades bid by his left-hand opponent, where the 
opponent claims to be able to win all the tricks with Spades as trumps, given that our proponent 
knows that the opposing bidder has the Ace of Spades but with no other information. 

46. I apologise to those to whom examples drawn from bridge are gobbledegook. For those 
to whom the terminology of bridge brings happy memories but whose grasp of the inferential 
structure of bridge needs refreshing: our protagonist's partner having the King of Spades 
would render the opponents unable to win at least one of the tricks. If our player has the 
King himself, it will probably fall under the Ace, but if his partner has it it will probably win 
a trick, thus defeating the contract. 

47. Now the player can see whether either he himself or the dummy has the King of Spades. 
Neither does, so his partner or the other opponent must have it. 
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moreover, that his partner's bidding indicates that he has a strong hand, 

most likely with some strength in Spades48 Now he expects his partner 

to have the King of Spades, and it is rational, in anybody's book, for him 

to act according to a probability of at least Y. that his partner has the 

King of Spades. Anybody, even a Frequentist statistician, would agree that 

the epistemic probability has increased as information has come to hand. 

But on Neyman's definition the probability has not changed, because the 

reference class has not changed. I can be sure that the reference class has 

not changed for two reasons. Firstly, the reference class never changes 

during an analysis, according to Neyman himself, no matter how much 

new information comes to light. Secondly, Frequentist statisticians do 

not change their reference classes as new information comes to light, not 

only because to do so would be to violate their (Neyman's) theory but 

also because they know that if they changed their error rates in this sort 

of case they would no longer be able to quote guaranteed error rates for 

their procedures. Now, a practising Frequentist statistician would ignore 

Neyman's definition for some purposes. He would be unlikely to say with a 

straight face that the probability of his partner having the King of Spades 

remained exactly Y.. But he would certainly (precisely by virtue of being a 

Frequentist) stick to the error rates which he had calculated before the new 

information came to light. In his calculations, even if not in his oH~the-cutf 

statements, he would be willing to give a low probability to an event which 

he expects to happen. 

My claim that practising Frequentists use Neyman's definition of 

probability (or, at worst, something operationally equivalent) can easily 

48. He has bid Spades himself, perhaps. 
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be confirmed by looking at any applied science journal: P-values and 

confidence intervals are calculated on the original reference class, and are 

not updated when it becomes apparent that a variable has a value which is 

unlikely according to the reference class. In other words, the probabilities 

which a practising Frequentist statistician uses in his statistical analyses 

do not change as new information comes to light. 

I have established that a Frequentist can give a low probability to 

something which he expects to happen (e.g. for the bridge partner to play 

the King of Spades). This would entail an internal contradiction if prob­

ability were epistemic, because it cannot be rational to expect something 

and yet to give it a low probability. Hence, Neyman probability is not 

epistemic. 

Neyman clearly acknowledges that his notion of probability is non­

epistemic, and is happy for it to be so. This is perhaps confusing, perhaps 

reasonable, according to one's position on the metaphysics of probability, 

but in either case it is certainly not self-contradictory. However, it is im­

mediately fatal to a certain conception of inference. A hypothesis under 

consideration might state simply that the event c: occurs. Neyman's the­

ory may give that hypothesis a low probability (Y.), even though (in the 

absence of other evidence apart from the fact that c: occurs in Y. of the 

cases in a subclass to which, we may imagine, it happens to be known to 

belong) we should think that the hypothesis is probably true. Hence, on 

Neyman's theory, probability can no longer have any close connection with 

the credence due to a hypothesis. In this respect, Neyman's theory; and 

Fisher's slightly earlier theory reviewed below, were decisive breaks with 

most, although not all, earlier theories of statistical inference. 
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The whole point of statistical inference is to "move from beliefs and/ or 

statements about observations to beliefs and/ or statements about what 

cognitive states and/ or actions we ought to adopt in regard to hypotheses" 

(to quote from chapter I). In Bayesian theory; as in informal reasoning 

about probability prior to the modern schools of thought, we work out what 

to infer by calculating the probabilities of hypotheses. Since probability is 

non-epistemic in Neyman's theory, he cannot use probabilities directly to 

model what we ought to do or think; so his inference procedures cannot 

be as simple as calculating the probabilities of hypotheses.49 Since the 

probabilities of hypotheses can no longer do this job in Neyman's theory, 

Neyman needs something else that can. The problem which this sets for 

him is well known. Birnbaum, for example, in the paper in which he first 

proves the likelihood principle, quotes Savage on this problem: 

Rejecting both necessary and personalistic views of probability 

[by which Savage means to encompass all epistemic views of 

probability ]left statisticians no choice but to ... seek a concept 

of evidence, and of reaction to evidence, different from that of the 

primitive, or natural, concept that is tantamount to application 

of Bayes' theorem. Statistical theory has been dominated by the 

problem thus created. 

(Birnbaum 1962, p. 277, quoting Savage) 

Savage's point does not quite cover the subtleties ofNeyman's own position 

in the 1930s since, as we have seen, he believed then that Bayesian infer­

ence had a role to play; but it does accurately cover the school of thought 

49. In addition to this reason why Neyman cannot rely on the probabilities of hypotheses for 
inference, the discussion of the income of Londoners above shows that hypotheses generally 
do not have probabilities in Neyman's system; but we need not dwell on that issue because, 
even if hypotheses did have probabilities, they would be non-epistemic probabilities and hence 
not able to tell us directly what we should infer. 
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which Neyman founded, intentionally or not. Neyman's seminal (1937) 

addressed itself to the problem of Frequentist inference alone, and thus 

required a principle of evidence different from the probabilities of hypothe­

ses. Neyman's solution to this problem is, of course, to make inferences 

in the Frequentist way, by calculating error rates. The following sections 

describe such methods. 

NEYMAN-PEARSON HYPOTHESIS TESTING 

A Neyman-Pearson hypothesis test is a function from a variety of pa­

rameters to a rqection region. The parameters of the test are: 

• a hypothesis space, H, 

• a single, simple hypothesis, 14:, E H (the null hypothesis), 

• a sample space, X, 

• a test statistic, T(x.), where Xa is an actual observation and T is a 

function which converts the observed value Xa into a simplified form 

(typically a single real number), 

• a probability function defined on 14:, alone, Pho• and 

• a desired probability (relative to p~o,,) of a type I error (defined below). 

If the test falls into the rejection region then the null hypothesis is rejected. 

If the test does not fall into the rejection region then the null hypothesis 

in not rejected. Under no circumstances is the null hypothesis accepted: 

the procedure is essentially falsificationist. At least, the purest form of 

the Neyman-Pearson hypothesis test is essentially falsificationist. Not 

surprisingly, another form has evolved in which the null hypothesis is 

either accepted or rejected, according to the result of the test; and often 
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the two forms are used interchangeably by members of the same research 

group. 

The resulting theory, according to Neyman, requires a mathematical 

model whose relevance to the world is something which needs to be tested 

empirically in specific cases, not something which can be assumed on 

epistemic grounds, and the results of which- acceptance and rejection­

are actions, not epistemic outcomes. This helps him to avoid the problem of 

non-epistemic probabilities noted above: if only actions are considered then 

epistemology is not relevant (at least, not directly), so the counter-intuitive 

consequences of using non-epistemic probabilities are unimportant (or so 

it was argued). However, by the 1950s a variety of versions of the theory 

had evolved which disagreed on these points. These versions were all 

described interchangeably by the same small set of names (most notably: 

"statistics", "Neyman-Pearson statistics", "hypothesis testing"), and there 

remains quite some work to be done to differentiate the versions from each 

other and to delineate the versions which became clearly epistemic from 

those which remained (or at least attempted to remain) non-epistemic. 

Fortunately, the topics treated in this thesis are neutral between these 

alternatives ... not because epistemology is unimportant, but because 

all versions of the theory have epistemic consequences, as I will show 

in chapter 7. So it will not be me who has to do the work of inventing 

new terminology to distinguish between the mutually incompatible stances 

which modern versions of the Neyman-Pearson theory take on questions 

of epistemology versus action. 

Neyman-Pearson hypothesis tests are usually constructed to ensure 

that if ho is true then the probability of rejecting ho is 5%. This probability 
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is known as the size or probability rif a type I error (or sometimes just type I 

error) of the test. The meaning of "probability" at work in this statement 

is Neyman's meaning: the probability of a type I error cannot change, 

even if in the process of making the test information comes to hand which 

tells us that h.:, is more or less than 5% likely to be true. As I mentioned 

above, this is not an inconsistency in the theory: it is merely a particularly 

anti-epistemic way of using the word "probability". Whether this marks a 

flaw in the theory in some sense weaker than inconsistency is something 

which I will discuss in chapter 7. 

The modern Neyman-Pearson theory requires the statistical ana­

lyst to have an alternative hypothesis in mind (possibly a composite one), 

although Neyman himself did not always require this. The alternative 

hypothesis may be simply H with h.:, omitted ( H \ {h.:,}); or it may be a 

hypothesis h1 introduced especially for the purposes of a single Neyman­

Pearson analysis. Here I take the former approach, for consistency with 

the framework I set out in chapter 2 and for easier comparison with other 

methods of inference. 50 

If H consists of only two simple hypotheses then the probability that 

a Neyman-Pearson test will fail to reject h.:, if h;, is false is known as the 

probability rif a type II error of the test. If H has a more complicated structure 

then the probability of a type II error is the maxiumum or supremum 

(least upper bound) of the probability of type II error as h; varies, where 

h; E H(h; 'f h.:,). The power of the test is generally thought of as one minus 

the probability of a type II error; and Neyman-Pearson theory holds that 

50. If necessary, the latter approach can be accommodated within this framework by setting 
H = ho + h1 • In the context of this thesis such a move is unproblematic, although I would 
have to tell a longer story if I were trying to fully describe the pragmatics of constructing 
hypothesis spaces. 
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the size of a test is to traded off against its power. This is a substantive 

requirement; it may not seem so if probability is treated as epistemic, but 

remembering that Neyman's probability is not epistemic makes it far from 

trivial. 

I said that the power of a test is thought of as one minus the probability 

of a type II error; but a little thought shows that the type II error cannot 

be calculated from the ingredients available to the statistician, because the 

type II error rate depends on the actual values of the unknown variables 

or, in other words, the true h. (This problem does not arise for the type 

I error, because the type I error is calculated on the assumption that 1u:, 

is true. That assumption tells us the values of the unknown variables.) 

Frequentists sidestep this problem by defining the type II error - and 

hence the power- in terms of an estimate of the unknown variables. There 

is no principled Frequentist way to make this estimate: it is subjective in 

exactly the same way that Subjective Bayesian priors are subjective. 

4. NEYMAN-PEARSON CONFIDENCE INTERVALS 

In addition to testing hypotheses, Neyman, like most statisticians, wished 

to be able to estimate the value of a parameter. Being able to do one of 

these two things does not necessarily mean being able to do the other, 

because of the merely dichotomous nature of hypothesis testing: for ex­

ample, knowing that a hypothesis passes a dichotomous test does not tell 

us whether it gives us a unique reasonable estimate of a parameter or one 

of many reasonable estimates (or perhaps, on some theories, no reasonable 

estimate at all). As we will see, in Neyman's theory there is a close link be­

tween the calculation of some significance tests and the calculation of some 

122 



confidence intervals, but that link is not a fundamental part of the theory; 

and the link between hypothesis tests and confidence intervals is broken 

in certain important cases, including the case of clinical trials described in 

chapter 15. Consequently, I must describe Neyman's confidence intervals 

from scratch. 

Like all theories of estimation but unlike his theory of hypothesis 

testing, Neyman's theory of confidence intervals depends on H being 

indexed by a parameter B. The definition of a Neyman-Pearson confidence 

interval is: 

If there exist functions of x, T land T t both statistically inde­

pendent51 of B, such that 

(\:/B) p(Tl(x) _:::: B _:::: Tl(x)) = 1- a 

then the interval[Tl (x.), TT(x.)] is a I- a confidence interval 

tor B. 
(adapted from Kendall & Stuart 1967, volume II, p. 99) 

(I - a) is then known as the coverage probability of the interval. 

T land T i may be chosen in a variety of ways. ln general, the choice 

is ad hoc, but a number of additions to Neyman's theory (mostly due jointly 

to Neyman and Pearson) make it less so. 

The primary criterion used to pick a Neyman-Pearson confidence 

interval is to choose the "shortest" interval by choosing T land T i such 

that 

(\:f[TJ. Ti])(W' i- B) ho(B' E [Tl(x), Ti(x)]) <;_ p~~,(B' E [Tl(x), Ti(x)]) 

51. A is statistically independent of B iff p(A&B) = p(A)p(B). 
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where 0 represents the unknown true value of the parameter(s) of H. 

However, this primary criterion is not generally enough to pick out a 

single confidence interval. For a start, there need not be a unique shortest 

interval, so this supposed definition hides a degree of arbitrariness. And 

even when there is a unique shortest interval according to the definition 

above, the choice of interval is not invariant under change of variables -

i.e., the interval which is shortest fore will not be the shortest for f(O) for 

arbitrary f, even whenf is a bijection (a one-to-one correspondence). 

There are various other criteria for choosing confidence intervals; 

unfortunately, none of the others is guaranteed to apply either. There is 

no principled theory which assigns priority to one criterion over another. 

There is some consensus that choosing shortest intervals is most important 

(Stuart et al. 1999); beyond that, the next priority is usually to choose an 

interval using a method which has a "probability of covering the true value 

of the parameter ... greater than the probability of covering any false 

value, no matter what the true value be" (Seidenfeld 1979, p. 54) (where 

"probability" has its non-epistemic sense, as usual in a Frequentist method). 

The third priority is usually to insist on a form of mathematical invariance 

(Seidenfeld 1979, p. 55) which falls short of complete invariance under 

parameter transformations. (Most likelihood-based methods of inference, 

in contrast, have complete invariance under parameter transformations: 

for example, Bayesian inference using proper priors has this property.) 

Now that we have used a probability statement involving a fixed 

parameter for the first time, this is a good moment to revisit Neyman's 

stricture about such things. It may appear that the probability statement 

used in the definition of shortest intervals contradicts Neyman's insistence 
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that fixed values such as (}' cannot have probabilities; but in this case x is a 

random variable (see chapter 2), and it is this which licenses probabilities. 

If x were replaced by X a (an actual observation), the formula would no 

longer have a meaning. 

It is instructive to compare this case with the commonly-seen p( (} E 

[Tl(x.), T l(xa)]) = 95%- "my confidence interval has a 95% chance 

of containing the true value of its parameter" - in which there are no 

random variables, and which Neyman would not permit. Statements of 

that impermissible form are often seen in the scientific literature, even from 

committed Neyman-Pearsonites, because the above distinction is often lost 

even on the faithful. 

An interesting objection to choosing the shortest confidence interval 

has been raised by Howson and Urbach: that the only justification of con­

fidence intervals available within Neyman-Pearson theory- namely, the 

usefulness of intervals with known coverage probabilities- is a justifica­

tion which gives equal validity to both long and short intervals (Howson 

& Urbach 1993, p. 245) (and, indeed, to unions of disjoint intervals). In 

considering this objection, it is important to realise that it is not some­

thing which can be overcome by a small adjustment to Neyman's theory. 

The objection follows from Neyman's insistence on evaluating methods of 

inference only according to their rate of errors on repeated applications of 

a fixed rule. This restriction is fundamental to Neyman's theory (by which 

I mean that if other ways of evaluating inference methods were allowed 

to have any force the theory would be totally diflerent, both philosoph­

ically and practically). In terms of inference methods evaluated in this 

restricted way, all confidence intervals complying with the above equation 
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are equally correct, just as Howson and Urbach claim. Therefore the deci­

sion to choose the shortest is not a decision based on the principles of the 

theory. 

This objection is right; but it is not an objection to the validity of 

the theory. Neyman's theory claims that any confidence interval will do; 

Neyman's and Pearson's extensions to the theory tell us to choose the 

shortest interval; this choice is not justified by the theory, but that does 

not make it wrong. On the other hand, it certainly makes the theory ad 

hoc. I will return to this point in chapter 7. 

Although Howson and Urbach's argument does not invalidate Ney­

man's theory, it does invalidate the almost universally held belief among 

Frequentists that the shorter interval can be adequately justified by the 

fact that it is more "accurate" or "precise" and therefore gives us better 

information about (} than the longer interval does. Howson and Urbach 

quote Mood giving this argument in 1950 ("in comparing two 95 per cent 

confidence intervals, he stated that one of them was 'inferior' because of 

its greater length, for 'it gives less precise information about the location' 

of the parameter." (Howson & Urbach 1993, p. 245), quoting (Mood 1950, 

p. 222)), and they could just as easily have quoted almost any statistics 

textbook from 1940 up to now. The shorter interval is more precise, but 

a longer interval is equally well justified by its Frequentist characteristics, 

so it makes no sense to argue that the precision of the shorter interval 

gives us better information about e. Consider: 

- Fred tells me that a standard London bus is exactly 16 metres long. 

- Jenny tells me, more vaguely, that a standard London bus is some-

where between 10 and 30 metres long. 
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- Fred and Jenny are equally reliable judges oflength. 

If! have to pick one of their two estimates, should I should pick Fred's on 

the grounds that it is more precise? Not necessarily. If I were planning 

to jump a London bus on a motorcycle, I would be much better advised to 

pick Jenny's. There is no rule of rationality that says we should use the 

most precise estimate when less precise estimates are equally well justified. 

Another criterion for choosing a confidence interval from among the 

infinite number of intervals with equal coverage probabilities is to make 

sure that the centre of every confidence interval is a point estimate defined 

using an estimator function with certain supposedly desirable properties 

such as consistency and unbiasedness. The main purpose of this is to 

narrow down the set of acceptable estimates in order to make the theory 

less ad hoc, rather than to make the estimates themselves better justified. 

Making the theory less ad hoc is important, because it reduces the scope 

for an individual who wants to see a particular result to conduct an analysis 

which favours his preferences; but there are many such ways of making the 

theory less ad hoc, and none of them seems to be particularly central to the 

theory. It is therefore not clear to me whether this requirement should be 

seen as a central part of Neyman's theory. Certainly neither Neyman nor 

his successors defend it in the rigorous way in which they defend the parts 

of the theory presented above. In any case, I will discuss these supposedly 

desirable requirements, especially unbiasedness, in chapter 11.52 

52. As a side issue, the choice of confidence intervals can be made less ad hoc if a utility 
function is available (Wald 1947, Lindley 1990b, p.46). Such a decision-theoretic situation 
is outside the scope of this thesis, as explained in chapter 2. But it can be argued that when 
a utility function is available Bayesian decision theory is more attractive than Frequentist 
decision theory, and fOr this and other reasons (foremost of which is probably the unwillingness 
of the vast majority of Frequentists to countenance anything that smacks of subjectivity to 
the extent that a utility function does) utility functions are very rarely used in Frequentist 
inference. 
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5. INFERENCE IN OTHER DIMENSIONS 

The Frequentist theories which I have discussed above concern hypothesis 

testing, which we might characterise as zero-dimensional inference, since 

it results in either rejecting or failing to reject a point null hypothesis, 

and confidence intervals, which we might characterise as two-dimensional 

inference, since the result is a pair of real numbers. A part of the Neyman­

Pearson theory of inference which I have not presented here is the theory 

of estimating a parameter by a single integer or real number, which we 

might characterise as one-dimensional inference. I see no need to deal with 

one-dimensional inference separately, for three reasons: 

• because the single-number inference problem is treated by the litera­

ture as a less important problem than the zero- and two-dimensional 

cases; 53 

• because the single-number inference problem is usually subsumed 

into the theory of confidence intervals (since the best single-number 

estimate of a parameter is usually considered to be the centre of a 

confidence interval for that parameter); and 

• because the single-number inference problem raises no philosophical 

issues other than those which have already been raised by hypothesis 

tests and confidence intervals. 

What, though, about inferences resulting in measures of more than two 

dimensions? Such things simply do not arise in the literature on the 

foundations of Frequentist inference. They do very occasionally arise 

53. The grounds for this, when grounds are given at all, are that a single-number estimate 
ought always to be accompanied by a confidence interval lest we assign it too much weight 
(Armitage & Berry 1994). 
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in the Bayesian literature, in the decision theory literature, and in the 

literature on the mathematics of probability, but none of those need trouble 

us here, because the Bayesian theory on higher-dimensional inferences 

is identical to the Bayesian theory of lower-dimensional inferences (both 

philosophically and, in the most important respects, mathematically as 

well), and hence has already been treated in chapter 3, while decision 

theory and measure theory lie outside the scope of this thesis. 

I know of no theoretical reasons why the literature on the foundations 

ofFrequentist inference should have ignored higher-dimensional inferer­

ences, but there are obvious practical reasons. For example, one might 

wonder about the properties and usefulness of a confidence interval whose 

bounds were pairs of real numbers (perhaps representing complex num­

bers) rather than single real numbers; but there would be little use for such 

a thing in the traditional domains of inferential statistics, which are the 

biological sciences very broadly construed (including agriculture). Conse­

quently, there is no standard theory of such things for me to present in this 

survey chapter. Instead, I turn to alternatives to the Neyman-Pearson the­

ory which remain within the Frequentist canon. In the following sections 

I will present three such theories: Fisher's, Fraser's (structural inference), 

and a mishmash theory which has no name and yet is the most commonly 

used of all. 

6. FISHER'S FREQUENTIST THEORY 

By far the most influential Frequentist theory which does not stem from 

Neyman's theory is Fisher's. Fisher's foundational work mostly predates 

Neyman's and, of course, influenced Neyman. Despite this, I have discussed 
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Neyman's program first because Neyman's is more important, both because 

its philosophy is much more internally coherent than Fisher's and because 

modern Frequentism owes much more to Neyman's philosophy than it does 

to Fisher's; and so it is more important for us to be clear about Neyman 

Frequentism than about Fisher Frequentism. (For a brave attempt to make 

Fisher's Frequentism coherent enough to rival Neyman's, see Seidenfeld 

1979.) 

Fisher's work is notoriously plagued by internal philosophical and 

mathematical contradictions - contradictions which are sometimes at­

tributed to his attempts to overcome fundamental problems in all pre­

ceding theories of statistical inference and sometimes, less charitably, to 

Fisher's personal inability to admit to having been wrong (Savage 1976). 

The details of Fisher's Frequentist program are particularly tangled. His 

proposal for Frequentist confidence intervals, in particular, were intimately 

connected with his program for fiducial inference (described in chapter 5), 

although some strands of his Frequentist program make sense without 

assuming the prerequisites of fiducial inference (Seidenfeld 1979). In this 

section, I will discuss the two completed parts of his Frequentist program: 

his theory of significance tests and (very briefly) his theory of confidence 

intervals. I will discuss the the non-Frequentist parts of his program, 

maximum likelihood estimation and fiducial inference, in chapter 5. (It has 

been argued that fiducial inference is Frequentist (Seidenfeld 1979), but 

whether it is or not will make no difference to my appraisal of it.) 

Fisher importantly disagreed with Neyman about the construction 

and relevance of reference classes. Fisher believed that reference classes 

could not be dependent on ancillary statistics (see the definition in chapter 
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5), and he had a moreepistemic notion of probability than Neyman. Despite 

this, Fisher agreed with Neyman's insistence that a probability based on a 

reference class could not be changed once an event was known to lie within 

a smaller subclass, as described above. All Frequentists seem to be agreed 

on this point. 

Fisher's signficance tests require the same ingredients as Neyman's 

except that they do not use H (except for flo). In other words, Fisher's 

significance tests do not require an alternative hypothesis. They do still 

require a test statistic (which, recall, is a function, usually designated T, 

which simplifies members of the sample space X, usually converting them 

to real numbers). 

The basis of Fisher's significance test is the set of hypothetical out­

comes 

{T(x) :2: T(xa)} 

for a "one-sided" test and 

{ I T(x)l :2: I T(xa)l} 

for a "two-sided" test. Xa enters into the significance test only through 

these sets. 

How to make the choice between one-sided and two-sided tests is 

controversial, and it has been argued that no principled choice is possible 

(Salsburg 1989). I will not discuss this question here, since I will argue 

in chapter 7 that any choice of significance test is ad hoc, regardless of 

whether there is a principled means of choosing between one-sided and 

two-sided tests. 
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The significance level or P-value of the observed outcome, X a, is calcu­

lated as 

P = p,.(T(x) "2 T(xa)) 

or 

P = p~~, (I T(x)l "2 I T(xa)l) 

for one-tailed and two-tailed tests respectively. 

lfP < 5% (or some other fixed number) then the outcome is considered 

statistically significant and 11, is rejected. According to Fisher, 11, should 

also be rejected if Pis close to 1, but this stipulation has not survived in 

descendants of his theory. 

Clearly, for every choice of H, 11,, X and Xa, statistical significance 

occurs in less than 5% of repeated trials in some Neyman reference class. 

This fact corresponds to the fact that every Fisher significance test is math­

ematically equivalent to a Neyman-Pearson hypothesis test (or rather to a 

family of tests with fixed size but varying power depending on the alter­

native hypothesis chosen). Fisher's methods are constructed in a way which 

guarantees this property. However, Fisher insisted that his test should not 

be given a Neyman-style justification. Fisher's preferred justification was 

the following: 

The force with which such a conclusion [rejection of h.:, on the 

basis that Pis very low J is supported is logically that of the simple 

disjunction: Either an exceptionally rare chance has occurred, or 

the theory of random distribution is not true. 

(Fisher 1973, p. 39, quoted in Edwards 1972, p. 177 
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I will discuss this justification further in chapter 7. I count Fisher's sig­

nificance tests as Frequentist, which means (in my terminology, at least) 

that they must have a Frequentist justification. Fisher distanced himself 

from the Neyman Frequentistjustification, but the justification he offered 

instead is still Frequentist: the reference to "an exceptionally rare chance" 

(my emphasis) is an appeal to the frequency with which such a chance 

will occur in a population of experiments yielding different data, which 

is precisely what separates Frequentist from non-Frequentist methods of 

inference. In other words, Fisher's methods are not only constructed by fix­

ing a hypothesis but are also justified by fixing a hypothesis and comparing 

various hypothetical data sets under the assumption that that hypothesis is 

true, as opposed to fixing a data set and in some way comparing hypotheses. 

Fisher also developed a theory of interval estimates, somewhat like 

Neyman's confidence intervals. Fisher's theory agrees with Neyman's nu­

merically in most cases (although not all). From all points of view­

philosophical, mathematical and practical- Fisher's and Neyman's theo­

ries of interval estimates have become merged, so that their descendants 

cannot be cleanly distinguished from each other, while descendant theories 

take their justification from Neyman's epistemology (or lack of episte­

mology, as described above) or, very occasionally, from Fisher's fiducial 

argument (chapter 5). 

7.STRUCTURALINFERENCE 

A relatively recent Frequentist development is the theory of structural 

inference, which combines mathematical methods essentially the same as 
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pivotal inference (described in chapter 5) with an orthodox Neyman phi­

losophy of inference (Fraser 1996, Fraser 1968). It has been criticised for 

not being applicable to all cases (Barnett 1999, p. 318). Since it shares all 

the epistemic features ofNeyman's theory we need not consider it in detail. 

Mutatis mutandis, it is subject to all the objections to Neyman's theory 

which I will give in chapter 7. 

8. THE POPULAR THEORY OF P-VALUES 

Disagreements between Fisher and Neyman about reference classes and 

probability were of no interest to the vast majority of the buying public. 

In the late 1940s and early 1950s a plethora of textbooks was produced 

to satisfy the postwar boom in applied statistical inference, and the most 

popular of these books made mincemeat of the careful distinctions invented 

by Neyman and Fisher (Gigerenzer 1993). The distinctions were not lost 

from the more theoretical parts of the literature, of course, but in the 

practically oriented textbooks a third Frequentist method was born, like 

something from Minoan mythology with the head of Neyman and the body 

of Fisher. 

This popular theory, which has no name as far as I can tell, can be 

found in almost any elementary introduction to statistics from 1960 to the 

present day. It uses Neyman's theory of reference classes, the philosophy 

of Fisher's theory ofP-values combined with the mathematics of Neyman's 

theory of hypothesis tests, and Neyman's theory of confidence intervals. 

Gigerenzer argues that this combination of theories is a misrepresentation 

of both Fisher and Neyman (Gigerenzer 1993). Gillies (1973, pp. 206-215) 

has shown that Neyman himself sometimes used a mishmash of his own 
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and Fisher's theories (although not the same mishmash as the popular one; 

specifically, Neyman calculated P-values without an alternative hypothesis, 

which is in accord with Fisher's theory but contrary to his own). Fisher, 

on the other hand, never settled on a clear account of his own preferred 

methodology. So we need not feel too bad on Neyman's or Fisher's behalf. 

Since the popular theory contains no new ingredients, it needs no 

further description; but it needs to be mentioned because it is by far 

the most used statistical theory of all time and the basis of almost all 

contemporary experimental science. 

In addition to the published popular theory, there is a mostly unpub­

lished popular folklore of statistics which uses epistemic terms to describe 

Neyman's non-epistemic probabilities. For example, "Oakes ( 1986, p. 82) 

found that '96% of academic psychologists erroneously believed that the 

level of significance specifies the probability that the hypothesis under 

question is true or false.'" (Gigerenzer 1993, p. 330). 
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-5-

Survey III: Other Theories 

In this chapter I survey the remaining theories of statistical inference. 

(See chapter 3 for an introduction to this survey as a whole.) This chapter 

is a mishmash. One of the theories covered here, the pure likelihood 

theory, has a sound theoretical justification but is rather incomplete in 

comparison with the major theories- Bayesianism and Frequentism­

presented in the previous two chapters. The other theories presented in 

this chapter, apart from Shafer's, are all speculative in the sense that they 

have been invented without any discernable justification. They have, to 

date, been examined by only a small number of theorists and, except for 

the fiducial method, no serious effort has been made to give any of them 

a philosophical basis. Possibly for this reason, or possibly coincidentally, 

none of the methods which I label speculative has ever been in frequent use. 

Moreover, there is no reason I can find to think that any of them, including 

the fiducial method, has a philosophical basis. I mention them mainly for 

the sake of being exhaustive. Consequently, I will deal with these theories 

relatively briefly. 

1. PURE LIKELIHOOD INFERENCE 

The pure likelihood school of thought, the philosophical development of 

which is due largely to Hacking, holds that one should operate with the 

minimum of ingredients. In particular, this school holds that it is impossible 
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to do statistical inference without considering the likelihood function, (V h E 

H) p(xalh), but that one can do statistical inference while considering pretty 

much only the likelihood function. (Hacking himself does not present this 

parsimony as an important desideratum of his theory. I do so because it 

is what distinguishes it from the other methods presented in this survey.) 

Methods of statistical inference which attempt to rely only on the likelihood 

function I call pure likelihood methods. 

THE METHOD OF MAXIMUM LIKELIHOOD 

By far the oldest pure likelihood method is the method of maximum 

likelihood, also known as maximum likelihood estimation, which says 

that we should accept (in some sense) the hypothesis h which maximises 

p(xlh). The origin of the theory is lost in the mists of time; Neyman (1967, 

p. 260) credits it to Karl Pearson, while Fisher ( 1930, p. 53!) credits it to 

Gauss. 

The method of maximum likelihood was the historical precursor ofthe 

likelihood principle. It is not the same as the likelihood principle (although 

the two are sometimes confused), but it furnished the conceptual tools that 

the likelihood principle uses. 

Fisher ( 1921) gave the first clear statement of the method of maxi­

mum likelihood. The method starts by considering the likelihood function 

p(xalh) with Xa fixed (at whatever was actually observed) and h variable. 

The maximum likelihood method then estimates h by picking the value of h 

which maximises p(xalh). Fisher was to champion this method many times 

over the next four decades, and gave many examples of its use, although he 
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also advertised his other methods as superior to the method of maximum 

likelihood for certain purposes. 

The method of maximum likelihood has two major problems. The 

first has been picked up by Hacking ( 1965) among others. The problem 

is this. Suppose the likelihood function following an experiment has the 

following shape: 

L 

0 5 10 15 20 25 so 35 40 

Figure 3: p(xa[B) 

Then the method of maximum likelihood will pick B = 0 as the best estimate 

of B. In one sense this is the best estimate: it is where the likelihood function 

attains its highest value. But in another, probably more important sense, 

it is more reasonable to expect B to be somewhere between 20 and 30. A 

Bayesian analysis would express this by saying that (given a reasonably 

flat prior probability distribution) the most important single value ofB is o, 

but the range of values of B between 20 and 30 is, in toto, much more likely 
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than (} = o. The same sentiment is harder to express for a non-Bayesian, 

but the fact remains, Bayesian or not, that the best estimate of(} may not 

be 0; and yet that is the estimate that the method of maximum likelihood 

would always recommend. 

More specifically, if some hypothesis A is the most probable in the 

face of the evidence but hypothesis B is more likely to be near the truth 

(as might be the case if other reasonable hypotheses cluster around B but 

not around A, as illustrated by the choice of A = 6 and B = 16 in Figure 

3 above) then A is not necessarily a better hypothesis than B. As Hacking 

puts a similar point, 

Speaking very intuitively for a moment, an estimate is good if it is 

very probable that the true value is near it. But an [sic J hypothesis 

is not best supported [in Fisher's sense] as it is probable or not 

that the truth lies near the hypothesis. To take a crude but 

instructive example, suppose there are six hypotheses about the 

value of A, namely A = 0. 90 or 0. 12 or 0. II or 0. 10 or 0. 09 

or 0. 08. Suppose that the last five are equally probable--in any 

sense you care to give 'probable'-and that the first is slightly 

more probable. Then, if one may infer that the most probable 

hypothesis is best supported, A = 0. 9 [sic J is best supported. 

But it is much more probable that A is near to 0. I, and so 0. I 

may be the best estimate [contrary to the method of maximum 

likelihood. . .. This suffices J to establish a difference between 

'best-supported' and 'best-estimate'. 

(Hacking 1965, p. 29). 

This is not quite the same as my example, because Hacking uses proba­

bilities of hypotheses, p(h), where Figure 3 uses likelihoods, p(xafh). But 

the spirit of the example is the same, and so is the conclusion to be drawn: 
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that the maximum of a probability distribution is not necessarily the best 

estimate64 

Hacking's own conclusion from this argument is that: 

[t]he best-supported hypothesis [the maximum likelihood esti­

mate J is necessarily the most reasonable one, but that doesn't 

mean that one should behave as if it were true. 

(Hacking 1965, p. 28) 

In other words (but still his words), Hacking claims that 0.9 is "the most 

probable value [of A] in the face of the evidence" and yet 0.11 is "more likely 

to be near the truth" (Hacking 1965, p. 29) and hence is a better estimate 

for many purposes. 

This issue is very much clarified if we drop our quest for a single 

number to summarise the likelihood function, and instead use the whole 

likelihood function as our representation of what an observation tells us 

about a set of hypotheses. Hacking does not seriously consider this option, 

but Edwards ( 1972), following otherwise very much in Hacking's footsteps, 

does consider it. I describe this option further under the method cf support, 

below. 

Although graphs of the shape shown above are rare, essentially the 

same problem can occur with many other likelihood functions. For ex­

ample, consider the old chestnut of estimating the maximum value of the 

numbers representing bus routes in a town, given only the information that 

one such route is numbered 75. Numbers lower than 75 have a likelihood 

54. Hacking says only that the maximum likelihood estimate (0.9 in his example, 6 in mine) 
may not be the best estimate. As he correctly adds later (p. 62), "whether or not an estimate 
is good or bad may depend on the purpose to which it will be put". But even this is enough 
to establish that Fisher's method of maximum likelihood is not always the best inference 
procedure to follow. 
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of zero of being the maximum, while on any reasonable model numbers 

higher than 7 5 have progressively lower and lower likelihoods. (Two as­

sumptions which are adequate to demonstrate this are (i) that the likelihood 

is monotonic and (ii) that no bus route is numbered 1,000,000,000 since 

that number would not fit on a bus's display panel.) It follows that the 

maximum likelihood estimate of the maximum bus number is 75; and yet 

that is not a good estimate, because we know for sure that it lies right at 

the bottom of the range of reasonable estimates. 

A second major problem is that unrestricted maximum likelihood 

methods cannot be right, because they fail in the presence of a suitable evil 

demon hypothesis. Let H contain the hypothesis h=. that an evil demon 

has magicked up my observation report from pure malice. Evil demons are 

infallible, so the probability of the observation result, conditional on h=.. is 

I. Hence h=. is the maximum likelihood estimate. (It may not be the unique 

maximum likelihood estimate, but if the rest of His scientifically plausible 

then it will be.) This is a reductio, because the method of maximum 

likelihood estimation is meant to determine which hypothesis we should 

infer the truth of, or act according to, or some such, and yet we do not 

want to take evil demons seriously. The problem is very easily solved, but 

the only obvious solution - namely, to disallow implausible hypotheses 

- is not only ad hoc but also subjective in precisely the sense in which 

Subjective Bayesianism is subjective. Indeed, the most obvious solution to 

the evil demon problem is to weight the members of H according to their 

plausibility- in other words, to adopt Subjective Bayesianism. 

A third problem with the method of maximum likelihood is that it 

ignores information which is available but not presented as part of X, 
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Xa or H. This is also true of every other method in this survey except 

for Bayesianism and pivotal inference, and creates problems in every case, 

but the problems are particularly noticeable in the method of maximum 

likelihood because only this method tells us unambiguously to prefer a 

single hypothesis over all others. The problem is best illustrated by this 

example: 

If maximum likelihood is the only criterion the inference from 

the throw of a head would be that the coin is two-headed. 

(Jeffreys 1961, p. 383, citing Wilson 1952) 

Any method of inference which counsels us to ignore information which 

is not presented as part of X, Xa or H will run into related problems; 

and all methods except for Bayesianism, pivotal inference and Shafer belief 

functions are of this type. I will illustrate this point further using the (more 

complicated) problems ofFrequentist methods in chapter 7. 

The method of maximum likelihood, as I have presented it here, is 

compatible with the likelihood principle. However, it is often used in 

conjunction with Frequentist methods which are not compatible with the 

likelihood principle. For example, Frequentist methods are often used to 

"understand and evaluate the precision of the maximum likelihood esti­

mate" by seeing how it varies in hypothetical repetitions of an experiment 

(Basu 1975, p. 23). Such combinations of methods are occasionally referred 

to as "maximum likelihood estimation" in the literature (but not in this 

thesis). 
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THE METHOD OF SUPPORT 

The method of support was first developed, as part of Bayesian statistics, 

by Jeffreys and Good, and was made into an independent school of statis­

tical inference by Hacking (Hacking 1965), with notable refinements by 

Edwards (1972) and Royall (1997, 2004). It has been linked to fundamental 

issues in physics by Hilgevoord and Uffink (1991). I give Hilgevoord and 

Uffink' s characterisation here as it is accurate and succinct and uses the 

same terminology as my chapter 2. 

The basic principles [of the method of support J are: 

a. All the information provided by the data x about the value 

of 0 is contained in the [likelihood) function 

Lx(O) = Po(x) 

b. [Any strictly monotonic function oft]he ratio Lx(00 )/ Lx(01 ) 

can be interpreted as a degree of relative support, in the 

sense that the data provide stronger support for 00 than for 

01 if, and in so far as, this ratio exceeds unity. 

(Hilgevoord & Uffink 1991) 

Principle b is a version of the law of likelihood. I discuss this principle 

further in chapter 8, where I show how it differs from the likelihood 

principle. 

The method of support is a type of confirmation theory: that is, it is a 

theory about the extent to which the observation x supports the members 

of H, not a theory about which members of H are most likely to be true 

after we have observed x. The latter may depend on what we thought 

about h before we observed x while the former, at least according to the 

method of support, does not. As Hacking explains this dichotomy: 
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There are two quite distinct questions: 

( 1) Which hypothesis about the true value is best supported by 

current data? 

(2) In the light of the data, which is the best estimate of the 

true chance? 

(Hacking 1965, p. 28) 

The method of support answers only the first question. The other methods 

discussed in this thesis answer the second question: they tell us which 

hypothesis we should approve (or, in Neyman's original theory, act on), 

using considerations beyond merely which hypothesis is best supported 

by the data Xa. One possible position is that such considerations are 

not germane; someone who took such a view would say that the method 

of support answers Hacking's question (1) and, a fortiori, his question 

(2). But none of the prominent exponents of the method of support take 

this view; they say that question (2) is beyond the scope of a completely 

general method of inference, either because it is badly posed in one way 

or another or because it requires subjective elements which are best added 

by individual consumers of statistical analyses rather than by statistical 

analysts (Edwards 1972, Berger & Wolpert 1988). If the beliefs of the 

consumers are filled out numerically in the most natural way then this 

latter view becomes equivalent to Subjective Bayesianism with the added 

constraint that the analyst must not report his own priors. 

A tricky problem for the method of support is how to present the re­

sults of an analysis. Unlike the Bayesian, the likelihoodist cannot give the 

probabilities of the various hypotheses. Instead, a pure likelihood statisti­

cian can present the full likelihood function if the number of dimensions is 
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not too great, or she can present a projection of the full likelihood func­

tion onto a smaller number of dimensions if the number of dimensions 

would otherwise be too large. A likelihood function with two dimensions 

(one dimension of probability and one dimension for a parameter in the 

hypothesis space) can be drawn as a two-dimensional graph, like this: 

., 

h 

Figure 4: A two-dimensional likelihood function 

Functions with three dimensions can be drawn in projection using tricks 

of perspective (although not by me!). But higher numbers of dimensions 

than that are tricky to draw. However, there is no theoretical limit to how 

many dimensions can be represented on a piece of paper. In a specific case, 

it is hard to know whether it can be represented in two dimensions or not. 

Much depends on the amount of data, the extent of redundancy in the data, 

the intended audience and the ingenuity of the analyst. 
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In the example below, a particularly ingenious analyst (Charles Joseph 

Minard) crams five dimensions into two without even using colour. The 

dimensions represented are: size of Napoleon's armies in their trip from 

Poland to Moscow and back again (width of main line - hatched to 

represent outgoing armies and solid to represent homecoming armies), 

position of army (two dimensions), time and temperature.S5 

CARTE fiCURATIV£. dH ptrtu lueotllinl *" hottllllt4 tit llmM fra.t¥iNd&n1la. c~ de Rut~ie 1812·1813. 
IJt.e,.., P"' M.llinM.I.I"*J-t.vr Ginb-&1 Ju Pont.. K C'Aau$Hu '" ntrd. 

Figure 5: Napoleon's Moscow campaign (Tufte 2001, p.4o) 

Still, the practical limit is three dimensions in most scientific applications, 

one of which must be reserved for the probability axis: therefore, it is very 

common that the complete likelihood function cannot be shown in a graph. 

In any case, conveying a lot of information to an audience that prefers 

to receive only a little bit is refusing to answer the question of what the 

most relevant conclusions to be drawn from a piece of research are. The 

55. Although the folly of war is beyond the scope of this thesis, it is remarkable that 
Napoleon managed to kill 75% of his own army by cold and starvation (Winterson 1988) 
before they even got to the city they had set out to attack. 

147 



audience reading a report of a piece of statistical inference wants to be 

given a simple answer not just as a summary of a complicated answer, but 

as an additional piece of information: "In addition to all the things you can 

tell me about the hypothesis space," they cry, "what is the major take-home 

lesson that ought to most strongly shape my future decisions?" 

For these two reasons- inability to convey complicated information 

on paper, and the need to highlight the most relevant aspects of research 

results- it is often the case that the full likelihood function will not satisfy 

all audiences. But that does not put paid to the method of support. The 

best simple answer its adherents can give is still much better than a bare 

dichotomy: it is usually a comparison of the likelihoods of a small number 

of particularly salient hypotheses. Each comparison is simply a number: 

one likelihood divided by the other, in accordance with Hilgevoord and 

Uffink's rule b (Hilgevoord & Uffink 1991). Often this tells us everything 

we could reasonably want to know. Alternatively, high-likelihood regions 

(typically intervals) of the hypothesis space can be quoted. Other methods 

of reducing the likelihood function to something understandable are also 

possible (Basu 1975, pp. 23-25). 

FISHER'S FIDUCIAL INFERENCE 

No-one is quite sure what fiducial inference is, even though it is frequently 

mentioned. Its difficulty is due to the fact that its inventor said many 

interesting things about it but not enough of them to amount to a definition 

- not even an operational or pragmatic definition. Instead, he gave 

paradigm examples which seem to determine its use in some cases but 

not in others. This criticism of the "theory" of fiducial inference is widely 
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acknowledged- for example, by Seidenfeld (1979, p. 3) and by Barnett 

( 1999, p. '299). 

The fiducial theory appears to be as follows. (What follows is con­

sistent with Fisher's most direct statements about the theory and, as far 

as I can tell, with his examples. It is contradicted by some of his more 

ambitious claims about the power of the theory.) Consider the maximum 

likelihood estimator of a parameter (). This is a function of the possible 

observations X: f(X,B) = omax(X,B) d~f max8 (p(XIB)). Now we can 

invert this function: () = f~'(Bmax, X), and can use the value of the in­

verted function at the actual observation,()= f~'(Bmaxlxa), as the basis 

for probability statements about () (Fisher 1930). The same method can 

also be applied to a sufficient statistic for B, instead of to omax (Fisher 

1973). (See chapter 13 for a definition of"sufficient statistic".) 

So the fiducial method is equivalent to the pure likelihood methods 

discussed above except for one unimportant difference (using a sufficient 

statistic of() instead of using() directly) and one important but naughty ad­

dition: the fiducial method regards the likelihood function as a probability 

function, which no other method does (see below for why not). 

The relationship between the fiducial method and Bayesianism is in­

structive. A prior probability function is needed to normalise f after 

inversion (to makef to integrate to I by dividing it by a constant) to make 

sure it is still a probability distribution. So it is natural for a Bayesian to 

ask: what is the prior in Fisher's method? The answer is that there is none. 

The function is not normalised after inversion. This makes fiducial infer­

ence in most cases (not all) mathematically and epistemically equivalent 

to Objective Bayesian inference constrained to use a flat prior probability 
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distribution. Using a Bayesian method makes no sense to opponents of 

Bayesianism; and constraining the prior probability distribution to this 

extent makes no sense to Bayesians, for both philosophical and pragmatic 

reasons. Philosophically, the prior distribution is meant to represent some­

thing- uncertainty in most cases (Savage & discussants 1962), epistemic 

inertia (known in the literature on this topic as "conservatism") in others 

(Grossman eta!. 1994, Freedman eta!. 1983)- and a flat prior distribu­

tion has no degrees of freedom with which to represent any variation at 

all in these things from situation to situation. Pragmatically, a prior which 

is flat when measured according to one set of measures turns out not to 

be flat when measured against another set of measures such as the squares 

of the variables of the first part - this is essentially Bertrand's paradox 

(Jaynes 1973). As Rosenkrantz writes in a different context, "if we are 

ignorant of B, the argument runs, then, equally, we are ignorant of T(B). 

But if T is a non-linear function, like T(B) = B*, a uniform distribution 

of T(B) induces [is both mathematically and epistemically equivalent to] 

a non-uniform distribution of B, and we have an obvious contradiction" 

(Jaynes 1983, p. xiv). 

Thus the apparently flat prior probability distribution is only flat on 

a choice of measure, which is often ad hoc. This makes the whole fiducial 

procedure underdetermined by the epistemic and physical aspects of the 

situation it is meant to model. And as if that weren't bad enough, Stone has 

proved that using flat functions as priors leads to strict logical incoherence 

in some cases (Stone 1976). Many modern Bayesians avoid the use of flat 

functions to represent ignorance, for these and other reasons (especially 

since Stone's proof became known), but fiducial inference cannot avoid it. 
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In addition to these philosophical criticisms, there are mathematical 

reasons why we should not regard the likelihood function as a probability 

function: 

• It does not integrate to I. 

• In some cases it cannot be made to integrate to I even by normalisation 

(division by a constant) because in some cases its area is infinite. 

• In some cases it cannot be standardised by Fisher's preferred method, 

which was to subtract a constant from the likelihood function so 

that its maximum value becomes I, because in some cases it has no 

maximum value (and, even worse, it may be unbounded). 

To summarise, most authors disdain fiducial inference on the grounds that 

pure likelihood methods and flat-prior Bayesian methods embody concep­

tual mistakes (according to them); and the rest disdain fiducial inference on 

the grounds that it embodies mathematical mistakes (according to everyone 

except perhaps Fisher). 

Since nobody approves of the fiducial method under its standard inter­

pretation, I have to briefly discuss possible reasons for it having ever been 

taken seriously, or else it would seem as though I were hiding something. 

Good suggests that the reasons are Fisher's overwhelming personality, 

combined with the lack of clarity in the exposition of the theory: 

[I]f we do not examine the fiducial argument carefully, it seems 

almost inconceivable that Fisher should have made the error 

which he did in fact make [treating the likelihood function as 

if it were a probability function]. It is because (i) it seemed so 

unlikely that a man of his stature should persist in the error, and 

(ii) because, as he modestly says ... his 1930 'explanation left 

a good deal to be desired', that so many people assumed for so 

!51 



long that the argument was correct. They lacked the daring to 

question it. 

(Good 1971, quoted in Barnett 1999, p. 306) 

A third possible explanation for interest in the fiducial method is the belief 

that something fascinating and subtle lies buried in the method. All three 

explanations are reminiscent of explanations given for the popularity of 

Wittgenstein's writings, although no hidden fascinating subtlety has yet 

been found in the fiducial argument, whereas in Wittgenstein's writings 

many such have been found (albeit some of them mutually contradictory). 

Insofar as fiducial arguments obey the likelihood principle they are 

either pure likelihood methods or Bayesian methods (if any of the current 

understandings of Fisher's arguments are correct!), so there is no need to 

consider them as a separate category in the rest of this thesis, in which I 

concentrate on the likelihood principle. 

OTHER PURE LIKELIHOOD METHODS 

Other pure likelihood methods, such as estimation using the mean of the 

likelihood function instead of its maximum, are possible but have never 

developed in detail or evaluated. I see no reason to think that any of them 

could fare better than the method of support. 

2. PIVOTAL INFERENCE 

Pivotal inference is mathematically fairly similar to Objective Bayesianism, 

but unlike any of the Bayesian schools of thought discussed above it is not 

guaranteed to obey the likelihood principle, even though it was invented 
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by the inventor of the likelihood principle, G. A. Barnard. So far it has 

proved of interest only to a very small number of theoretical statisticians. 

Pivotal inference assumes that His indexed by a parameter 0, and also 

assumes that we have a function P(x, 0) whose distribution as a function of 

X is independent of 0 (a function with this property is called a pivota0 and 

that we have under consideration a family D of distributions for P. The 

choice of P is generally underdetermined. In particular, in models which 

have only location and scale parameters - which is the vast majority of 

the models currently used in science- "there are lots of pivotal quantities . 

. . . In general, dijftrences are pivotal for location problems, while ratios (or 

products) are pivotal for scale problems" (Casella & Berger 2002, p. 427). 

We then find a function of this pivotal which is an ancillary statistic. 

An ancillary statistic is any function of x which is not a function of 0 or, 

more formally: 

h = h(x) is called an ancillary statistic if[ the probability distribu­

tion ]f admits the factored form 

f(x, 0) = g(hlf(xfh, 0) 

where g = g(h) = Prob(h(X) =h) is independent ofO. 

(Birnbaum 1972, p. 858) 

With appropriate restrictions on D, this ancillary is guaranteed to be 

maximal in the sense that any other ancillary statistic is a function of it. Call 

this maximal ancillary statistic a(x). We then calculate the unique function 

q(x,O) such that a(x)q(x,O) = P(x,O) (Barnett 1990, p.S20; Barnard 1985, 

p. 58). If we have any prior information about 0, we state this in the form of 

a prior probability function b(O). This ability to bring in prior information 
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gives pivotal inference some of the advantages of Subjective Bayesian ism, 

although not the optimality property noted in chapter 3. 

We then base our inferences about(} on the joint distribution of q and 

b conditional on a. When b is a full prior distribution for(}, this procedure 

is a form of Bayesianism, but when b is absent or only partial, pivotal 

inference depends on averages taken over parts of the sample space which 

were not observed, which is contrary to the likelihood principle and hence 

contrary to Bayesianism. 

3. PLAUSIBILITY INFERENCE 

Plausibility inference was invented and developed by Barndorff-Nielsen 

(1976) and (independently, but with less mathematical development) by 

Gillies ( 1973). Gillies recommends that we use plausibility inference to­

gether with Frequentist inference, while Barndorff-Nielsen recommends 

that we use it together with maximum likelihood inference; neither rec­

ommends that we use it on its own, so it is not clear that it deserves a 

section in this survey. It is unclear, also, whether it is intended to be a 

method of inference from data to hypotheses. Barndorff-Nielsen (1976, 

p. 116) says that it "pertains to the predictability of the data on the various 

hypotheses'', and explicitly not "to how well the hypotheses explain the 

data". Nevertheless, I include it in this survey. to be on the safe side. 

Plausibility inference compares the probability of an observation to 

the probability of the same observation under different hypotheses. So far, 

this is the same as maximum likelihood estimation. But, unlike maximum 

likelihood estimation, plausibility inference standardises these probabilities 

as follows: 
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fk(xa) 
Ilh(xa) = sup,Exfk(x) 

Inference is then based on the maximum plausibility estimator, which is: 

h = { h: II( h) = sup,Eeilo(xa)} 

In terms of Table I, the plausibility of each row is the probability which 

the hypothesis for that row assigns to the actual observation divided by 

the largest number in the row; and the maximum plausibility estimator is 

the row with the largest plausibility, or the set of rows which tie for first 

place if there is more than one with equal top plausibility. 

Plausibility inference suffers from essentially all of the criticisms I 

make ofFrequentist inference in chapter 7, as a result of its dependence on 

an unobserved part of the sample space X, except that it does not suffer 

from the ad hoc choice of test statistic which plagues Frequentist inference. 

On the other hand, it fails to have what most supporters of chapter 4 see 

as Frequentism's main advantage: it does not give us fixed "error rates". 

4. SHAFER BELIEF FUNCTIONS 

Glenn Shafer has proposed a non-Bayesian subjectivist theory of belief 

updating (Shafer: 1976, Howson & Urbach 1993, pp. 424-426). This is 

a theory of personal beliefs, and has not been extended to a theory of 

applied statistical inference: unlike any of the other theories described in 

these survey chapters (with the possible exception of fiducial inference) it 

does not offer any recipes for moving from scientific data to scientifically 
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useful inferences about hypotheses. As Aickin writes, "one does not see 

applications ofDempster-Shafer theory directed toward practical problems 

of parametric inference" (Aickin '2000, p. 34 8 ). But many of the refinements 

necessary to make it into an applicable statistical theory could perhaps be 

borrowed, with some adjustments, from Bayesianism, in areas such as 

the construction of prior belief functions, the possibility of robustness 

theorems, and ideas about how to summarise a posterior distribution. 

Natural choices of these adjustments are liable to make Shafer's theory a 

form of Bayesianism (Aickin ~2000), but it need not necessarily be so. So I 

will treat Shafer's theory here as if it were a theory of statistical inference, 

although I will not have anything to say about it elsewhere. 

In Shafer's theory, the doxastic agent starts with a hypothesis space 

H, which (unlike H in any other theory except for some forms of Subjec­

tive Bayesianism) is taken to be exhaustive not only of the doxastic agent's 

partial beliefs but of all possibly true (or perhaps possibly believable) hy­

potheses, and for this reason Shafer refers to it as a "frame of discernment". 

The agent assigns a subjective basic probability to each set of hypotheses in 

H. These "basic probabilities" must sum to I, and the empty set ofhypothe­

ses must receive "basic probability" 0, but otherwise they need not obey 

the probability calculus. Given these basic probabilities, a beliiffunction Bel 

is then constructed on each subset s C H by taking the sum of the basic 

probabilities assigned to s and all proper subsets of s. Bel is not required 

to obey the probability calculus either. The range [Bel(s), 1-Bei(H \ s)] is 

known as the beliif interval for s. 

Given basic probabilities m1 and m2 , Shafer calculates an overall belief 

function using a rule due to Dempster: 
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m oc 2: mi(A)m,(B). 
A,BEH,AnBoj0 

m1 might describe hypotheses simpliciter and m, might somehow describe 

evidence: this provides a way to turn Shafer's theory of belief functions 

into a theory of statistical inference. 

Aickin (2000) notes that Shafer's theory is (inappropriately) sensitive 

to the order in which beliefs are updated, and suggests additional axioms 

for the theory which fix this problem. Kyburg (1987) and Howson & 

Urbach ( !993, p. 424-430) give a number of objections to Shafer's theory; 

notably the following: 

If you have equal degrees of belief in each of the numbers from 0 

to 10 being called, then ... you should not ... have equal degrees 

of belief in the propositions 'o will be called' and 'A non-zero 

number will be called'. But in Shafer's theory you can[.] 

(Howson & Urbach 1993, p. 430) 

So, Shafer's theory arguably does not contain sufficient constraints on 

beliefs to give them plausible identity conditions. 

5. THE TWO-STANDARD-DEVIATION RULE 
(A NON-THEORY) 

A method of statistical inference widely used by sciences in which obser­

vations are cheap (notably, large parts of physics) is to tentatively reject 

hypotheses according to which an observed data point is more than two 

standard deviations from its population mean. No theory of statistical in­

ference can justify such a simple procedure, except as an approximation to 
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more complicated procedures. It survives nevertheless because, precisely 

in those sciences in which observations are cheap, tentatively rejecting 

a hypothesis only means collecting more data: the lack of major conse­

quences of such an inference mean that justification can be treated more 

lightly than it can in the other sciences. 

This procedure can be given an approximate Frequentist justification 

in many circumstances, and an approximate Bayesian justification in other 

(overlapping) circumstances. It therefore belongs in chapter 4 or chapter 

3. I mention it separately here because it is often considered separately 

from its justification, and in that guise it belongs in neither chapter 4 nor 

chapter 3; but in that guise there is nothing philosophical to say about it. 

6. POSSIBLE FUTURE THEORIES 

It is tempting to treat these survey chapters as a menu from which we 

should choose the best form of statistical inference available, and many au­

thors have done just that (although usually picking from a smaller menu, 

concentrating, quite reasonably, on the theories with the most detailed 

philosophical underpinnings, namely Subjective Bayesianism and Frequen­

tism). It is tempting, but it is not what I will be doing; partly because I 

have another agenda, and partly because the criticisms I have mentioned 

of each theory strongly suggest that none of them is right as it stands, and 

it is possible (for all I can show) that none of them is right even in outline. 

In this thesis I wish to show particularly that there are no good 

theories of statistical inference which do not obey the likelihood principle, 

so I will devote a chapter (chapter 7) to making it plausible that there 

are insuperable drawbacks to all the theories which both (a) have to date 
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been given some theoretical justification and (b) contradict the likelihood 

principle; all such theories fall into the Frequentist camp. It may seem a 

little unfair to have a whole chapter on objections to Frequentism while 

dwelling hardly at all on the objections to its main rival, Bayesianism; 

but it is not as unfair as it seems, because I do not see Frequentism 

and Bayesianism as exhaustive alternatives. My main claim (the likelihood 

principle) is in conflict with Frequentism, but that does not mean it supports 

Bayesianism: while compatible with Bayesianism it does not show it to 

be correct. The truth of Frequentism would imply that the likelihood 

principle is false, and so I pursue the criticisms of Frequentism to some 

sort of conclusion; in contrast, the truth or otherwise of Bayesianism does 

not imply the truth or otherwise of the likelihood principle, so I need not 

attack Bayesianism in detail. 

The drawbacks of the other theories I leave as objections which may 

or may not be overcome in future versions of the theories. In some cases 

the objection is simply that no epistemic justification for the theory has 

been given. I cannot say much more about these existing theories of infer­

ence; but I can say something more about all future theories of statistical 

inference: I can classify them, ahead of time, according to whether they are 

compatible with the likelihood principle or not. This gives us the following 

picture: 
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all possible theories of 

LP non-LP 

Figure 6 

It seems to most authors, including me, that there is a useful dichotomy 

between Frequentist statistics on the one hand and Bayesian statistics (both 

subjectivist and objectivist) on the other: 

Figure 7 
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However, it would make more sense to show gaps between Frequentist 

and Bayesian statistics, since the diagram is meant to contain all possible 

theories of statistical inference, and there is no reason to rule out the 

invention of new theories which are neither Frequentist nor Bayesian. In 

other words, although Bayesianism contradicts Frequentism (as we will 

see in more detail later) it is not the logical contrary ofFrequentism. The 

resulting diagram, incorporating these gaps, is as follows: 

all possible theories of 

Figure 8 

This can be put together with my first diagram in the obvious way: 
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all possible theories of 

LP non-LP 

Figure 9 

Note the very important point that the LP /non-LP line does not align with 

the Bayesian/Frequentist line. There are both Bayesian and non-Bayesian 

possible theories that obey the likelihood principle. There are also both 

Frequentist and non-Frequentist possible theories that do not obey the 

likelihood principle. There are, however, no Frequentist theories that obey 

the likelihood principle, and no Bayesian theories that do not (with the 

exception of some forms of Empirical Bayesianism, as discussed in chapter 

3). 

One of the main conclusions of this thesis will be that the best theory 

of statistical inference - a theory we do not yet have - may lie in the 

asterisked portion of the following diagram. It should obey the likelihood 

principle, and yet it need not be Bayesian. 
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all possible theories of 

LP I non-LP 

Figure 10 
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-6-

Prologue to Part II 

In Part II I will motivate, present and defend the likelihood principle, a 

principle which I defined roughly in chapter I and will define in more detail 

in chapter 8. This prologue to Part II outlines roughly how I will do that. 

Recall Table 1 from chapter 1: 

hypotheses 

vomiting 

(observed 
in this case) 

dehydration o. 03 

PTSD 0.001 

anything else 0. 001 

possible symptoms 
diarrhoea social 

(not observed 
in this case) 

0.2 

0.01 

0.001 

Table 1 

withdrawal 
(not observed 
in this case) 

0.5 

0.95 

0.001 

other symptoms 
& combinations 
(not observed 
in this case) 

0. 27 

0.029 

0.997 

It is time to consider the meanings of the rows and columns of Table I in 

more detail. 

The horizontal lines in Table 1 are meant to indicate that the prob­

abilities are conditional on the hypotheses. Thus, the probabilities in the 

167 



first row are all conditional on the hypothesis that the child is dehydrated, 

and the probabilities in the second row are conditional on the hypothe­

sis of PTSD. So each row is normalised (the probabilities add up to one). 

Although the rows need to be normalised, the columns don't, since the 

numbers in the table are conditional on the row headings (hypotheses) but 

not on the column headings (possible observations). 

The symptom observed in a particular child is vomiting. Which 

hypothesis about that particular child does this observation support? 

The Frequentist answer is that if we take dehydration to be the null 

hypothesis (which we should, as I will explain later) then we should reject 

this hypothesis in a falsificationist fashion, and hence either accept the al­

ternative hypothesis that the child has PTSD or accept neither hypothesis. 

As we will see, a Frequentist stastitician would support this inference by 

quoting a type I error of 3% and a power of 97%. 

Now recall the likelihood principle: 

The likelihood principle 

Under certain conditions outlined in chapter 2 and stated 

fully in chapter 8, inferences from observations to hypothe­

ses should not depend on the probabilities of observations 

which have not occurred, except for the trivial constraint that 

these probabilities place on the probability of the actual obser­

vation under the rule that the probabilities of exclusive events 

cannot add up to more than 1. 

The likelihood function of the actual observation is gtven by the first 

column in Table I. So the likelihood principle entails that the falsificationist 

method which rejects the diagnosis of dehydration, which uses numbers 
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which do not appear in that first column, is not a good inference procedure. 

And although the likelihood principle does not directly address the question 

of evidential support, standard ways of applying the likelihood principle 

(insofar as there are such things yet - it is early days in this field) are 

likely to support a diagnosis of dehydration. 

I will assume that we plan to analyse the table either by rows or by 

columns. What I mean by analysing "by rows" is restricting our attention 

to one or more rows. A typical Frequentist method does this by picking 

one particular hypothesis as being of interest (such a hypothesis is a row 

heading, known as the "null hypothesis"), and considering the values given 

by the table for various possible observations, only one of which is the one 

we have actually observed. I discussed this option in chapter 4, and will 

return to it in chapter 7. By analysing "by columns" I mean restricting our 

attention to the column corresponding to our known observation (which 

is represented by a column heading). 

Analysing by rows is considering p(ejh), the probability of evidence 

given a hypothesis, with h (hypothesis) fixed and e (evidence) variable, 

while analysing by columns is considering the same formula, p(ejh), but 

this time with e fixed and h variable. 

Why can we not analyse in some third way, perhaps with e and h both 

variable? There are two types of reason for not considering such methods 

here. Firstly, no well-worked-out version of statistics does so. But that is a 

bad reason- perhaps as philosophers we should consider possibilities that 

scientists have not got around to yet. Secondly, there is a better reason. We 

are forced to consider at least the two possibilities of analysing by rows and 

analysing by columns: forced to consider analysing by rows because that 
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is what the vast majority of statistical analysis does, and forced to consider 

analysing by columns by the proof which I will give later which shows that, 

on rather mild assumptions, it is the only rational analysis. So we have two 

ways oflooking at the data, one of which we must discuss as philosophers of 

science because it is how scientists actually behave and the other of which 

we must discuss because it is how they should behave, at least some of the 

time. Of course I do not think I have demonstrated either of these points 

yet; I am foreshadowing the fact that I will be demonstrating them later 

merely to show that they are the two methods of analysis that we should 

be concentrating on. 

Despite these points, there are other ways of analysing the table, and 

perhaps future work should have a look at the possibilities in the light of the 

fact that the assumptions under which I will prove an analysis by columns 

to be optimal are not always satisfied. In particular, when considering 

vague hypotheses - something, remember, which this thesis does not 

claim to do - looking at rows and columns simultaneously may make 

more sense than the proposal I will develop here. 

I start Part II by motivating the need for statistical inferences about 

simple hypotheses to use probabilities which are conditional on the obser­

vation actually made (which is roughly equivalent to analysing Table I by 

columns). I do this, in chapter 7, by showing the various problems which 

Frequentist statistics encounter as a result of ignoring such conditional 

probabilities. Chapter 7 has a dual function: by showing the importance 

of conditioning, it motivates the likelihood principle; and at the same time, 

it disposes of the main rival to the likelihood principle, by showing that 

all well developed methods incompatible with the likelihood principle (all 

170 



~ 

of which happen to be Frequentist) are subject to major and insuperable 

problems. It is because of the neatness of this dual function that I delay any 

detailed discussion of the meaning of the likelihood principle until chapter 

8. 

Having motivated the likelihood principle by discussing the impor­

tance of conditioning on the actual observation, I present various versions 

of the likelihood principle (all of which entail that we should analyse Table 

I by columns) in chapter 8. I then give arguments against the likelihood 

principle, with counter-arguments (chapters 9 to 1'2). All of this will even­

tually be followed, in Part Ill, by an argument in favour of the likelihood 

principle and a case study on its application. 
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0bjections to Frequentist Procedures 

[Frequentist] theory is arbitrary, be it however "oqjective," and the 

problems it solves, however precisely it may solve them, are not even 

simplified theoretical counterparts rif the real problems to which it is 

applied. 

(Pratt 1961, p. 164) 

In chapter 4, I defined Frequentist inference procedures. In this chapter I 

will say much more about how they work. 

This chapter serves two functions for the thesis as a whole: 

• Its primary purpose is to show that we should not look to Frequentist 

theories to provide the best theory of statistical inference, and thus 

that they do not provide good alternatives to the likelihood principle. 

• Along the way, it will motivate the idea that the problem with Fre­

quentist theories is that they are insufficiently conditional: that is, that 

they fail to fully condition on, or take into account, the fact that out 

of all of X only Xa has occurred. Having motivated this idea here, I 

will formalise it as the likelihood principle in chapter 8. 

My tactics will be: 

- first of all, to show that specific Frequentist methods are plausible 

but, despite their plausibility, both ad hoc and inferentially useless; 

- to give examples of the failures ofFrequentist methods; 
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to question the objectivity of Frequentist methods, although I will 

conclude that their objectivity is not totally illusory; 

and then to diagnose the problem with Frequentism in terms of 

over-reliance on counterfactuals and 

the failure to condition on .r0 • 

1. FREQUENTISM AS REPEATED APPLICATION 
OF A PROCEDURE 

Recall that the defining characteristic of Frequentist procedures is that 

they base all their conclusions on functions averaged over the sample space 

X. The rationale for this is the following principle (with the exact wording 

varying between authors, of course): 

A procedure for making inferences from data to hypotheses must 

have good average properties on repeated application in similar 

situations with different data. 56 

In a moment I will show how a suitable error set can be constructed; this 

will lead to the definition of the P-value, the commonest type ofFrequentist 

statistic. I will then criticise the use of the P-value in statistical inference. 

Then I will state the definition of the confidence interval, the only other 

common type ofFrequentist statistic, and criticise that. 

Many of my criticisms will not rely on specific features of P-values 

and confidence intervals but, rather, will apply to Frequentist procedures 

56. We might elucidate this definition by adding that a good frequentist procedure must 
have a low error rate, where an error rate is the proportion of times the procedure produces a 
conclusion which is incorrect in the sense of falling in some pre-specified error set, conditional 
on the truth of some hypothesis. But this does not really add anything to the definition, since 
there is no general definition of an error set. 
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m general. (I relate them to specific types of Frequentist procedures 

mainly for clarity of exposition, and to show that my criticisms are directly 

applicable to the types of Frequentist procedures in common use.) In the 

remainder of the chapter, I will diagnose two problems which underlie all 

the various criticisms: namely, firstly the inability of Frequentist methods 

to take into account all the information which is available at the time of 

analysis, and secondly an overreliance on hypothetical data which takes the 

place of the neglected actual data. 

In subsequent chapters, I will evaluate a remedy to these problems: the 

likelihood principle. In order to begin to motivate this principle at the 

same time as critiquing Frequentism, I must briefly discuss why we should 

contrast the set ofFrequentist procedures with the set of procedures which 

obey the likelihood principle. That is the task of the next section. 

GENERAL FEATURES OF FREQUENTIST PROCEDURES 

I will argue that the principle on which Frequentism rests (that a procedure 

for making inferences from data to hypotheses must have good average 

properties on repeated application in similar situations with different data) 

is misguided. It will not immediately follow from this that Frequentist 

statistical inference is wrong. It will, however, immediately follow that its 

distinguishing characteristic is no virtue; and from there it will be but a 

short step to seeing that other theories of inference are more rational. 

A Frequentist inference procedure must incorporate functions of av­

erages (possibly weighted averages) over the sample space (the space of 

possible observations, X) ... or provably give the same result as one which 
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does. For example, recall from chapter 4 that the definition of a confidence 

interval is: 

If there exist functions of X, T land T r. both statistically inde­

pendent of 0 [see chapter 13 for a definition of statistical inde­

pendence], such that 

(VB) p(Tl(x)::; 0::; Tl(x)) = 1 -a 

then the interval [Tl (x.), Tl (xa)] is a 1- a confidence interval 

for 0. 
(adapted from Kendall & Stuart 1967, volume II, p. 99) 

Note that the probability statement in this definition uses statistics defined 

in terms of the members of X: that is why the observation is written as x 

(a variable, denoting hypothetical observations) rather than Xa (a constant, 

denoting the actual observation). Once we have found functions T l and 

T I which satisfy the probability statement, we switch our attention from 

averages over possible values of x to the actual value, x •. This switch makes 

it a bit difficult to see what the probabilities are probabilities of: they are 

in fact probabilities of the required relationship holding between T .J, T I 

and 0 in hypothetical repetitions of the merriment. That is why it is a 

Frequentist definition. 

Frequentist inference procedures can be contrasted with likelihood 

procedures, by which I mean those which obey the likelihood principle. 

Plausible likelihood procedures always have some justification other than 

their behaviour on repeated application. 

It may appear from this discussion as if the main difference between 

Frequentist and likelihood procedures is that Frequentist procedures re­

tain their properties in long runs of experiments while non-Frequentist 
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procedures do not. This is a good way to think about the difference for 

most purposes, but it is not entirely accurate. Non-Frequentist procedures 

can be repeated just as easily as Frequentist procedures can. The difference 

is not whether these properties can or can't be evaluated, or whether they 

are or are not important. The difference is more subtle than that. It is that 

if a Frequentist inference procedure is to be acceptable on the basis of its 

Frequentist justification then it must be evaluated according to and only 

according to its properties when repeated with imaginary random data 

(plus, for pragmatic reasons, the mathematical tractability of its equations). 

A Frequentist procedure must be evaluated in this way, while a likelihood 

procedure need not be (depending on the intended audience).57 

I said earlier that Frequentist procedures can be contrasted with like­

lihood procedures. This is because there are no generally applicable types 

of statistical inference procedure which both obey the likelihood principle 

and have good Frequentist properties. There are, however, certain token 

statistical inference procedures which can be considered to have both a 

reasonable Frequentist justification and a reasonable likelihood justifica­

tion (Deely & Lindley 1981). Such procedures only keep this confusing 

property on some values of their parameters. For example, the procedures 

used to calculate P-values are not generally compatible with the likelihood 

principle. This can be shown in many ways; for example, by Lindley's proof 

57. Although any likelihood procedure can be evaluated according to its Frequentist prop­
erties, in order to find out whether it can please a Frequentist audience, likelihood procedures 
are very rarely evaluated in this way in the literature. I suspect that this is for the following 
rather strange reason. According to the most vociferous non-Frequentist school of thought, 
Bayesianism, there is a unique optimum inference procedure for any given (fully-specified) sta­
tistical model. Bayesians never vary from this optimum inference procedure (except for small 
variations made for mathematical convenience). Since their optimality (in Bayesian terms) is 
preordained by their method of construction, it is rarely necessary to evaluate their actual 
properties on repeated use. For example, the Bayesian method of conducting pharmaceutical 
trials had not been evaluated according to Frequentist criteria until (Grossman et al. 1994). 
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that "for any classical significance level for rejecting the null hypothesis 

(no matter how small) and for any likelihood ratio in favour of the null 

hypothesis (no matter how large), there exists a datum significant at that 

level and with that likelihood ratio" (Edwards et al. 1963, p. 219). And yet 

some exceptional P-value calculations are compatible with the likelihood 

principle. 

Such exceptional instances are only both good qua Frequentist proce­

dures and good qua non-Frequentist procedures if they have coincidentally 

suitable values of the hypothesis space h and the sample space X and other 

parameters of the non-Frequentist procedure such as (for a Bayesian anal­

ysis) the prior distribution and the utility function. Even then they not 

only have different justifications considered as Frequentist or likelihood 

procedures, they also have different interpretations, and hence scientific 

consequences, considered in these two ways. 58 

USES OF ERROR RATES: EXPECTANCY VERSUS INFERENCE 

Hacking's (1965) work on statistical inference suggests that we should 

distinguish between two very different uses of the error rates which char­

acterise Frequentist statistical procedures. One use is in calculating what 

our expectations of the average performance of a statistical procedure should 

be. The other use - the one I am concerned with in this thesis - is the 

use of error rates to perform statistical inftrence, by which I mean inference 

from observations to hypotheses. 

Hacking equates these two uses of error rates with uses of error 

rates respectively before and after an experiment has been conducted. This 

58. I will give an example of the different interpretations afforded to extensionally equiva­
lent Frequentist and non-Frequentist inference procedures in chapter 15. 
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makes some sense: before we have data, we are likely to want to calculate the 

average performance of a statistical procedure which we are planning to use, 

whereas once we have data we should ignore such average figures in favour 

of evaluations of the actual performance of the procedure on the actual 

data. However, I see two problems with equating the expectation-versus­

inference dichotomy with the before-versus-after-experiment dichotomy. 

The first problem is that, as usual in epistemology, time is not an 

important factor in its own right; it is a proxy for what order an epistemic 

agent learns things in. Thus, instead of talking about bifore and after 

collecting the data we should be talking about whether the collected data 

is available at the point when the statistical procedure is evaluated. This 

translates into on the one hand taking the data into acount in its own right 

(as Xa) and on the other hand taking the data into account merely as a 

representative of some function of the data space X. The former option 

translates directly into the likelihood principle;59 the latter option is the 

definition ofFrequentism. 

A second problem with the pre- and post-experimental dichotomy is 

that, as I argued in chapter 2, there is no need to assume that all data which 

leads to a statistical inference comes from experiments. 

For these two reasons, I will not be using Hacking's insight in its raw 

form, but rather in the guise of the likelihood principle. 

59. I will return to the likelihood principle at the end of this chapter, where I will offer 
factualism (acceptance of the likelihood principle) as an alternative to Frequentism. 
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2. CONSTRUCTING A FREQUENTIST PROCEDURE 

My main criticism of Frequentist inference, namely that it is counter­

manded by the likelihood principle, is completely general: it does not de­

pend on the specific features of any particular Frequentist method. Despite 

this generality; we will need examples ofFrequentist inference procedures, 

for clarity. There is more than one important subtype ofFrequentist infer­

ence procedure. I will give a philosophical exposition of a class of inference 

procedures which is and has always been by far the dominant form in 

both theoretical and applied Frequentist statistics: the P-value. I will also 

briefly discuss the second-most-influential form of Frequentist inference, 

"confidence" intervals (whose name is misleading, as we will see). Between 

them, these two types ofFrequentist inference procedure make up most of 

the work of contemporary applied statisticians. I will make no attempt to 

discuss any other Frequentist inference procedures in specific terms, but I 

will give my criticisms of the procedures I do explicitly discuss in a form 

which applies to all Frequentist inference procedures as far as possible, and 

the final conclusions of this chapter will be stated in a form which uses only 

those parts of my argument which do apply to all Frequentist inference 

procedures. 

In the next few sections, I will offer for consideration a function 

which will stand as a candidate for use in Frequentist analysis. Rather than 

starting with one of the procedures defined in chapter 4, I will construct 

such a function from scratch. In this way, we will see clearly what issues 

of justification arise. 
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PRIVILEGING A HYPOTHESIS 

By Frequentist lights, a procedure is evaluated according to its perfor­

mance on repeated application with different observations. In order to 

give it fixed properties on such repetitions, we start by fixing our attention 

on a single hypothesis of interest and comparing the probabilities in the 

row of Table I (see chapter I or insert) designated by that hypothesis. 

But now we are in trouble already. Fixing a single hypothesis can, 

in general, be criticised for being ad hoc. This ad hockery is side-stepped 

-or SUTC, for "swept under the carpet", according to Good (1976)­

by noting that in most cases there is one hypothesis which it would be 

particularly disastrous to believe were it false.60 So in these cases it is 

less than totally ad hoc to single out a particular hypothesis. But this is 

not a convincing justification for always doing so. In contrast, analysis 

in line with the likelihood principle does not require (or, indeed, allow) us 

to privilege a particular hypothesis. Instead, it requires us to privilege a 

particular one of the possible vectors of observations ... but that is easy: 

we privilege the actual one, x •. It practically privileges itself. 

60. In the case of clinical trials, for instance, it would be particularly disastrous for a drug 
company or a regulatory authority to believe that a drug worked when in fact it did not, for 
obvious reasons (displacement of better drugs, side-effects, litigation). Believing that a drug 
was inefficacious when in fact it was efficacious, on the other hand, is much less damaging 
from everyone's point of view, especia11y when we bear in mind that similar chemicals are 
likely to be tested later and correctly found to be efficacious. (Drug companies always test 
many related chemicals when they sniff any possibility of being on to a good thing.) Similarly, 
in Table 1 it is more important to make sure not to miss dehydration than to make sure not 
to miss PTSD, since a child with undiagnosed PTSD will probably live to be rediagnosed 
another day whereas a child with undiagnosed dehydration will almost certainly die quickly. 
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CALCULATING A FREQUENTIST ERROR RATE 

Having picked a privileged hypothesis, ~. we need a suitable way of calcu­

lating an error rate: 

Error rate: The proportion of times an experiment gives an 

answer that falls into some predefined error set, if repeated in­

finitely or indefinitely. 

If such a number is small then we have an observation which is unlikely 

according to ~- That in turn seems to speak against ~- This last step 

appears obvious to most writers on statistics. It is vitally important, so I 

will give it a name: 

The unlikely events principle: 

A hypothesis which assigns a low probabilities to an event is 

disconfirmed by the occurrence of that event to the extent that, 

if a hypothesis says that an event is unlikely, and yet that event 

occurs, it is reasonable to conclude, at least tentatively, that the 

hypothesis is probably false. 

This principle is related to Cournot's principle (sometimes attributed to 

Kolmogorov or Popper), which says that "certain events [those with low 

probabilities J are so unlikely as to be 'essentially impossible' " (Sorkin 

1983). (Thanks to Alan Hajek for this point.) According to this prin­

ciple, a hypothesis can be falsified by predicting that an actual event is 

improbable. Cournot's principle is not the only way to justify the unlikely 

events principle, and it may be better to see the unlikely events principle 

as primitive. In any case, the unlikely events principle is essential to the 
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standard justification of Frequentist procedures. Recall that Fisher, when 

defending Frequentist tests, wrote: 

The force with which such a conclusion [rejection of 17.,] is sup­

ported is logically that of the simple disjunction: Either an ex­

ceptionally rare chance has occurred, or the theory of random 

distribution is not true. 

(Fisher 1973, p. 39) 

The disjunction itself is trivially true; but it would not have any connection 

to the first part of Fisher's statement, about drawing conclusions, were it 

not for the unlikely events principle. 

I will return to this principle later. First, let us find a plausible way 

of calculating an error rate. 

First candidate error rate 

The first thought about how to calculate an error rate, both historically 

and, perhaps, in the mind of the reader, is to calculate the probability that 

we would have seen the observation if the null hypothesis were correct -

p(xalho). Using this as an error rate means using {x: p(xlho) < 5%} as 

the error set. (As is well known, the figure 5% is ad hoc and could just 

as well be replaced by some other figure, so there is an ad hoc element 

in this suggestion.) This is my first candidate error rate. It is the most 

straightforward reading of Popper's idea of subjecting a hypothesis to a 

severe test (Mayo 1996). It is also what some prominent philosophers of 

science, including Mayo ( QOOO, p. 181) at least sometimes, think statisticians 

do. 
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as well be replaced by some other figure, so there is an ad hoc element 

in this suggestion.) This is my first candidate error rate. It is the most 

straightforward reading of Popper's idea of subjecting a hypothesis to a 

severe test (Mayo 1996). It is also what some prominent philosophers of 

science, including Mayo (2000, p. 181) at least sometimes, think statisticians 

do. 
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But statisticians never use p(xalho) to calculate an error rate, and for a 

very good reason. Suppose for the moment that only a finite number of ob­

servations is considered possible. The probabilities of all the observations 

put together must be 1, so ifthere are a lot of possible observations- and 

there usually are- then most of them must have low probabilities. If their 

probabilities are not too wildly different from each other then it follows 

that all of them must have low probabilities. In that case, every hypothesis 

will be falsified by any piece of evidence. This is true whenever there is 

a large number of possible observations of roughly equal probability, and 

also in many of the cases typically found in applied statistics, including 

some cases in which the observations are not of roughly equal probability. 

(There is a trade-ofT between the variability of the observations and their 

number.) 

For example, I toss a coin twenty times and record the exact sequence 

of heads and tails, and then consider p(xalho) where ho is the hypothesis that 

the coin is fair. Then no matterwhatxa is,p(xalho) is less than 0.000001. (For 

example, p(HTTTTHTHTTTHTHHTHHTH) = (1!.)20 < 0.000001.) 

This will not do as an error rate with which to evaluate the procedure 

(even though technically speaking it is a perfectly valid error rate), because 

it cannot be large no matter what Xa is. 

Now let us turn to the case in which infinitely many possible observa­

tions are under consideration. This case is also very common: it typically 

occurs when we want to estimate some parameter () which takes values 

from the real numbers (or, more generally, from~). For example, we may 

want to test the hypothesis that a particular foetus is at normal weight 
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for its age from the abdominal measurements of its mother. The hypothe­

ses will have the form p~~,(Biabdominal size) = jl!,(abdominal size), where 

J~~, is some appropriate probability density function such as a log-Normal 

distribution. Now if we calculate the formula p(xalho), we find that it is 

always zero: in order to account for the fact that infinitely many foetus 

sizes are possible for each abdominal size, the formula assigns a value of 

zero to each. (Some would say that it has to assign a value of zero to each; 

others only that it typically does. The dispute there turns on whether 

probability density functions may incorporate delta functions to represent 

"lumps" of probability. Berger & Sellke ( 1987) argue that they may and 

often should; a more orthodox Bayesian viewpoint is that they must not, 

since delta functions are not strictly functions. Either way is fine for my 

argument.) The reason why foetus sizes are assigned probabilities of zero 

is that probabilities of hypotheses correspond to areas on the following 

graph, and the probability of a point hypothesis (the hypothesis that the 

foetus is exactly 0 long) is the area of an infinitely thin slice of the graph. 

(Of course we could avoid this problem by restricting ourselves to discrete 

values of abdominal size instead of all the values in R, as we could with 

any infinite sample space; then we are back in the position discussed in the 

previous paragraph.) 
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Figure II: probability of abdominal size under h., 

This function never has a value of zero, and yet each slice (e.g. at 36) has 

zero area. This is what we mean by calling the function a probability density 

function. 

Hence, our first candidate for calculating an error rate does not work 

when the number of possible observations is large or infinite. 

Second candidate error rate 

Why not use the height of the graph at the relevant place, instead of 

the area of the slice, to construct an error rate? This is our second 

candidate error rate. A mathematician's immediate thought would be 

that this candidate makes no sense, because the height of the graph (in 

the continuous case) does not represent the probability of anything- the 

graph is a representation of a function designed to integrate to a probability, 

not to represent a probability directly. Let us put such squeamishness to 

one side, and take the height seriously for a moment to see what happens. 

We cannot simply take the height as a probability, because the height of the 

graph may be more than I in places, but we can think of various proposals 
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to fix that problem: perhaps, for example, we can reduce all the heights 

by subtracting or multiplying by a constant. This has been suggested by 

Fisher (1973, p. 76) and Edwards (1972). 

If we implement some such strategy to make sure the height of the 

graph never exceeds 1, we get a procedure which, as far as I can see, 

is satisfactory according to the logic of falsificationism. But it is not 

satisfying simpliciter. Firstly, the answers we get in typical situations 

are still counter-intuitive: the coin-tossing example gives a graph with 

a constant height of 0.000001 as well as with a constant probability of 

0.000001. A second problem with this proposal which is more severe, 

although less ubiquitous, is that sometimes the graph has no maximum 

value. (The graph of ln(x) from x = 0 to oo has this property, for example.) 

Then there is no such way of preventing the height of the graph from 

exceeding I (Bayarri et al. 1987). So there is no natural way of turning 

the height of the graph into a probability; and hence there is no natural 

way to use it to calculate an error rate. This is not a conclusive argument 

against using the height of the graph in some way, but it is a reason to look 

elsewhere for our error rate. 

Grouping possible observations 

The obvious next move is to avoid having to consider the case of the 

large hypothesis space which has proved so difficult, and to do this by 

grouping the large number of possible observations into a small number 

of clumps. This makes complete sense from the purely mathematical point 

of view, but it is worryingly dependent on a choice of grouping strategy, 

and different grouping strategies give very different conclusions. If we 

group the possible observations in large clumps then we do not distinguish 
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adequately between importantly different pieces of data. If we group in 

small clumps then there are too many clumps, so again the answers we get 

for typical hypotheses are unacceptably counter-intuitive (again, we find 

that many perfectly reasonable hypotheses are falsified by any observation). 

Moreover, we may get different results for different dumpings. What we 

need is a grouping strategy which is in some sense natural and which does 

not give counter-intuitive results. 

Such a grouping strategy is available, at least in most cases. It is 

this: group the observation which was actually seen together with all 

possible observations that are in some mathematical sense more extreme 

than it. Typically this is a tail area, p(x 2: xalho), as shown below. This 

is the grouping strategy which is, and always has been, used in almost all 

Frequentist analyses. 
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Figure 12: a tail area representing p(x 2: xalho) 

If you teach statistics to bright undergraduates, you find that occasionally 

a student asks, "Yes, but why do we calculate the tail area?" I know of 

only two justifications for this grouping strategy, and only one of them 
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makes it seem more than ad hoc. The first justification is that it works: it 

gives answers which, by and large, are not counter-intuitive. The other 

justification- the less ad hoc one- is that it can be shown mathematically 

that this grouping strategy gives the same results as a Bayesian analysis of 

the data in a variety of moderately common cases (Deely & Lindley 1981 ). 

Accepting the correctness of a Bayesian procedure is the only honest way 

I know to answer the studenfs question. Should the student not want to 

accept Bayesianism then I can see no answer to her question (and should the 

student want to accept Bayesianism, she would presumably see no reason 

for calculating Frequentist error rates at all). 

Despite its ad hocness, this is the path that applied statistics has taken: 

one calculates tail areas. Since no-one (to the best of my knowledge) has 

suggested any other completely general way to instantiate error rates 

statistically (apart from confidence intervals, discussed below), we will 

have to take this as a given for the moment. 

This solution can be applied in the discrete case too: again, one takes 

tail areas -p(x 2': xaiho). 

A better candidate error rate: the P-value 

The previous section has motivated the use of tail areas in calculating error 

rates. It remains to find a formula for doing this. 

Recall the definition of an error rate: 

Error rate: The proportion of times an experiment gives an 

answer that falls into some predefined error set, if repeated in­

finitely or indefinitely. 
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My tentative candidate for an error rate IS as follows. First of all we 

calculate a number called P, thus: 

P(ho, T(xa)) is defined as the proportion of an infinite sequence 

of hypothetical experiments, each duplicating the experiment we 

have actually conducted, on the assumption that the hypothesis 

ho is true, that would result in a value of T(xi) greater than 

or equal to T(xa). where Xi is the observation made in each 

hypothetical experiment, Xa is the observation made in the actual 

experiment, and T is an arbitrary function from the space of 

possible observations to the real numbers. 

Then we reject ho if Pis less than some fixed value Po· 

According to the falsificationist thinking of Neyman, if P is suffi­

ciently small then we should reject the hypothesis lzo. 61 Interestingly, what 

we should do if the number is large (close to 1) is not quite as widely 

agreed. It is standard practice among scientists nowadays to take a large 

number as evidence in favour of ho. but Neyman, who was a very orthodox 

falsificationist (and who was responsible for promoting falsificationism in 

science, and who by the way was much more influential in this project 

than Popper was) believed that the size of P should make absolutely no 

difference, except that we should note whether it was on one side or the 

other of the agreed cut-off. Meanwhile, Fisher took the view that a large 

value of P was evidence against hoi Fortunately, all Frequentist schools of 

thought agree that finding a small value ofP should lead us to reject ho. so 

61. This is a convenient simplification. What he actually says is that we should reject 
ho if and only if p(xa]ho) falls into some small predefined error set. My discussion above 
explains why this error set was and is always taken to be a tail area, even though according 
to Neyman's theory it need not be. Salsburg (1989) gives arguments showing that defining 
the error set in any other way will not help; in chapter 13 I give more general arguments for 
the same conclusion by proving the likelihood principle. 
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I will concentrate on that eventuality for the moment and deal with large 

values of Plater. 

CHOOSING A TEST STATISTIC (T) 

Why do we need the function T in the definition of 'Pi' The important 

point to remember is that x; are vectors, and typically high-dimensional 

vectors at that. A typical x; in medical research is a very large, complexly 

structured vector part of which might look like this: 

<age of subject 1: 801 months, 

initial tumour histology for subject I: t85, 

initial treatment for subject 1: radiotherapy, 

size of subject J's tumour at 6 months: unknown, 

side-effects at 6 months: unknown, 

size of subject J's tumour at 13 months: 11 mm, 

side-effects at 13 months: unknown, 

adjuvant treatment for subject 1: chemotherapy, 

site of subject J's secondary tumours: leukemia, 

age of subject 2: 684 months, 

initial tumour histology for subject 2: q+, 

initial treatment for subject 2: none, 

age of subject 3: 787 months ... > 

We have already seen that we need something like a notion of one 

value of X being more extreme than another. In other words, we need the 
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set X of possible outcomes to be ordered. But there is no natural sense in 

which this whole n-tuple is bigger or smaller than another one (except in 

the vanishingly rare, trivial case in which one has bigger numbers in every 

dimension than the other). 

There is no general, non-arbitrary notion of one vector being bigger 

than another (or more extreme in any other sense). If one thinks of vectors 

in Euclidean three-space, there is an obvious sense in which one vector is 

bigger than another, namely when the natural metric llxll = J x'J: + xj + x; 

assigns one vector a greater length than the other; but that relies on the fact 

that dimensions in Euclidean space are commensurable with each other, in 

the sense of being merely rotations of each other. Statistical sample spaces 

are not at all like this (at least, not usually). x, above is a vector in a very 

general sense: it is an n-tuple of observations, each of which can be of any 

observable type at all. 

To make matters even more complicated, the vectors in the sample 

spaces of clinical trials don't even have the same number of dimensions as 

each other, since the various vectors represent different possible outcomes 

in which different numbers of subjects have been recruited and followed 

up. (Thus, the vectors are not even in the same vector space, unless we 

artificially extend some of them with zeros.) Traditionally the sample space 

in Frequentist inference is restricted to samples of a fixed size (although 

I am aware of no philosophical justification for this - indeed, it seems 

inconsistent with Neyman's basic theory), but this maneuvre is not possible 

in large clinical trials, in which the results are analysed as they are collected 

(for scientific, ethical and legal reasons- more on this in chapter 15) and 

in which conseqently there can be no fixed sample size. 
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So, how can we compare vectors which are not naturally comparable 

to each other? Only by allowing the statistician to introduce an arbitrary 

function T which reduces each vector to some ordered quantity (almost 

always a single real number). T(X) is known as a statistic or test statistic. 

The raw data can fail to be commensurable with each other even if x; is 

scalar (not a vector). Consider the set of possible observational outcomes 

X = {a sheep, a cow, a goat}. For the sake of argument, suppose we 

observe a sheep. How are we going to obey 'P 's requirement that we 

consider the probability of observing the actual observation or something 

more extreme? Is a goat more extreme than a sheep? Perhaps this is a 

bad example, since a goat is more extreme than a sheep, but the moral is 

clear: these comparisons are artificial. In order to analyse the result of this 

experiment using 'P, we need to explicitly introduce a function T which 

maps the set X of possible outcomes to an ordered set. 

Another use for T is to allow adjustments to be made for data which 

have not been measured for one reason or another, such as because a trial 

subject cannot be contacted. These adjustments are known as "censoring", 

and the mathematical problems they cause are of major concern in the 

literature. I discuss censoring in chapters 9 to 12. 

Historically, a more important function of T used to be to simplify 

the data for computational purposes. But since the 1980s computers have 

been fast enough to alleviate the need for this in most cases. Tis still con­

sidered important by statisticians for four reasons: (i) for the philosophical 

reasons given above; (ii) because computers are not fast enough to analyse 

unreduced data in all cases; (iii) because humans like to be able to make 
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pencil-and-paper approximations to the calculations their computers are 

making; and (iv) as a matter of historical inertia. 

For all we have seen so far, T could be completely ad hoc; and in 

many cases it is. But there are principles which constrain the choice of 

T to some extent. In particular, in many cases it is possible to choose a 

"uniformly most powerful" statistic (one with the highest possible power 

for every value of 0). Despite the name, uniformly most powerful statistics 

are not always the best statistics to choose. One reason for this is that "[i]t 

is possible for an outcome to be significant at one level but not at a less 

extreme level by uniformly most powerful tests" (Pratt 1961, p. 166, citing 

Lehmann 1959, p. 116). But I do not need to insist on that point, because 

in some situations a uniformly most powerful statistic cannot be chosen 

because there isn't one. 

That T suffers from an ad hocness problem should not be surprising, 

given the example of the sheep and the goat. The fundamental nature of 

the problem is very simple: use of the procedure P relies on our possible 

observations being ordered; but there is no general reason to think that 

our possible observations should be ordered, in any sense that has any 

epistemic importance, and often they patently are not; so in order to make 

P work at all, we have to artificially order the elements of X. Now, if we 

were doing that merely for some presentational reason- for example, to 

print them out into a readable table- this would be a very minor problem. 

But the ordering of X is buried deep in the analysis. P does not first tell 

us that }I<J is (or isn't) believable and then present the results in terms of an 

ordering of X; it tells us that }I<J is (or isn't) believable simpliciter. But to 

decide whether it is (or isn't), P uses an ordering of X. 
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To translate this into concrete terms, someone who orders goats above 

sheep will come to one conclusion about the farmyard experiment, while 

someone who orders sheep above goats will come to a different conclusion; 

and their ad hoc assumptions about farmyard hierarchies are typically 

hidden from each other. So the ordering of X is important but is not 

available for perturbation analysis. (Perturbation analysis is the testing of 

mathematical variations on assumptions to see what difference that makes 

to conclusions.) If their assumptions were not hidden from each other, the 

source of their disagreement would at least be clear; but there would still 

be no natural way to resolve it. 

Approaches to statistical inference based on the likelihood principle 

(such as Bayesian statistical analysis) have no general need for test statistics. 

This difference between likelihood and Frequentist approaches is often 

misunderstood or misleadingly described in the literature, when it is noted 

at all. For example, Barndorff-Nielsen writes (about his own methods, 

which are not strictly Frequentist, but which do require test statistics; see 

chapter 5 for details): 

In most cases [my methods J should be applied not to the original 

data x and the model for x, but to some suitable statistic T of x, 

and a derived model for T, and the [question J is that of which T 

and derived model are to be considered. Stated briefly the answer 

is that, before estimates and tests are computed, the inference 

problem should be purged for [sic J irrelevant features by such 

means as margining to sufficient and conditioning on ancillary 

statistics. It must be emphasised that likelihood inference is 

subject to a similar qualification. 

(Barndorff-Nielsen 1976, p. 105) 
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This seems to suggest that a scientist, whether using Frequentist or likeli­

hood methods, must purge her model ofirrelevant features before statistical 

inference can be conducted, using difficult procedures such as conditioning 

on ancillary statistics (defined in chapter 5, and again below). But in fact 

that is the case only for Frequentist methods (and closely related methods 

such as Barndorff-Nielsen's own), not for methods obeying the likelihood 

principle. Barndorff-Nielsen continues: 

There is the difference though that in likelihood inference often 

part or even all of the necessary purging is taken care of au­

tomatically because factors, of the original likelihood function, 

depending only on the observations and/ or on possible inciden­

tal parameters do not influence estimation and testing pertaining 

to the parameter of interest. 

(Barndorff-Nielsen 1976, p. 105) 

In other words, in likelihood inference there need be no extra step of 

purging the model of extraneous features: it will be done automatically 

by the main analysis itself. And even this is still a little misleading. In 

fact, extraneous features in Barndorff-Nielsen's sense can be kept in the 

model all the way through the analysis, if required: any analysis which is 

in accord with the likelihood principle will automatically cope with them, 

in the sense of giving the same answer as if they had not been present. 

Apart from the ad hocness introduced by II, and T, P is a very 

straightforward function. It is one way of capturing the idea of analysing 

Table 1 by rows. I will consider another way later; but first I will evaluate 

P. 
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T'S LACK OF INVARIANCE 

It is sometimes the case that two rival test statistics produce different 

results - one leading to the rejection of a hypothesis and the other not 

-even though the two statistics, t1(xa) and ~(x.), say, are merely bijective 

transformations of each other (i.e., the value of each fully determines the 

value of the other) (Howson & Urbach 1993, pp. 191-192). In such a case, 

the two statistics clearly embody exactly the same information about the 

observation, and yet they give contradictory results. Not only may t1 and 

~ give different results, often one will have good Frequentist properties 

while the other has bad Frequentist properties: thus, the property of 

being a good Frequentist procedure is itself not invariant under bijective 

transformations. (Jos Uffink has brought this point to my attention.) 

But such a bijection is merely a Cambridge change: it is merely a 

change in description which leaves the thing described unaltered, without 

even changing the extent of our knowledge about it. Our epistemic infer­

ences ought to be similarly unaltered. So an inference procedure that uses 

a quantity which is not invariant under a bijective change of variables is 

irrational. Dawid calls this requirement the "transformation principle": 

Transformation Principle (TP). Let~ : [xa] E [X], and lett : 

[XJ--t Y be one-to-one [bijective]. Then TP requires: (i) ~ E 3 

[the set of all possible experiments]=? ~T E 3 and (ii) l(~,[x.]) 

[any inference drawn from x.] = I(~T, t([xa])) [the analogous 

inference drawn from t( Xa)]. 

(Dawid 1977, p. 248) 

A further argument in favour of the transformation principle is as follows. 

"[I]fthe inference made in a given experiment [or merriment] depends only 
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on a certain function of the raw data, then the same inference should be 

made if only that function is made available" (Dawid 1977, p. 250). This 

can be stated formally as follows: 

Reduction Principle (RP). Let~ E 3, ~ : [ .Xa) E [X). Consider an 

[inference procedure) I, and let T = t([ .ra]) be a statistic satisfying 

the following definition. 

Definition. Tis reductive for I in~ if!(~, .rJ) = I(~. x2 ) 

whenever t(.r1 ) = t(.r2 ). (Thus I depends on the data 
only through the value ofT). 

Then RP requires: (i) ~T E 3 and (ii) I(~,[.xa]) = I(~T. t([.xa])) 

[with notation as in Dawid's transformation principle above). 

(Dawid 1977, p. 250) 

This reduction principle entails the transformation principle, as the fol­

lowing simple argument shows. Let t be any bijection on X. Then t 

is necessarily reductive in the sense of the above definition, because if 

t(.r1) = t(.r2 ) then .r1 = .r2 and so of course I(~,x1 ) = I(~,.r2 ). Thus the 

transformation principle depends only on the almost undeniable reduction 

principle, even though the latter may seem much weaker at first sight. 

The transformation principle is satisfied by many statistical methods 

obeying the likelihood principle. For example, likelihood ratios (the basis 

of almost all Bayesian inference and much of pure likelihood inference, 

as discussed in chapter 3 and chapter 5 respectively) are invariant under 

any transformation of(} and .r. Maximum likelihood inference, however, 

need not satisfy the transformation principle (Dawid 1977, p. 250, citing 

an example due to Pratt). Nor need Bayesian inference with an improper 

prior (a prior not integrating to 1) (Stone & Dawid 1972): this failure is 

198 



related to Stone's (1976) proof that Bayesian inference with an improper 

prior can be internally inconsistent. (I come back to this issue several 

times in chapters 9 to 12.) 

Dawid ( 1977, p. 248) makes the point that the transformation principle 

is "often violated in practice. A statistician may be tempted to assume 

normality; for example, for the data as actually presented, unless there is 

sufficient evidence to the contrary. If the data were to be transformed 

before presentation, he might well end up with a different inference". Such 

behaviour amounts to changing ph, h E H, and hence H, after seeing Xa. 

Dawid seems to be referring to cases in which the statistician has very 

little guidance on how to setH and therefore uses Xa to help him to take a 

punt. This violates the spirit of the likelihood principle but not the letter, 

because such a statistician is operating outside the framework of chapter 2, 

which took it for granted that H was fixed independently of(and typically 

prior to) the observation of X a. Regardless of what we ought to think of 

this sort of case, it is clearly different in principle from the violation of the 

transformation principle which Frequentist inference entails, which occurs 

whether or not the framework of chapter 2 applies and whether or not the 

statistician has a good grasp of H. One way to express this difference is 

to note that in Dawid's example the statistician may be willingly risking 

incoherence, in desperation (since ex hypothesi he has very little idea of 

how to set H), whereas in the Frequentist case he is forced to be incoherent 

(in the sense of violating the transformation principle) whether he likes it 

or not. 
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PROBLEMS DUE TO MULTIPLICITY 

The best that can be said for P is that it has the property that if the same 

analysis is repeated on a long sequence of experiments which are identical 

except for random variation it will correctly fail to reject h, in 95% of 

cases in which h, is true, assuming that the model is correct (in particular, 

that all measurement error is entirely represented in the model). I have 

already argued that Pis ad hoc; I will argue in later sections that it is not 

as informative about Has it appears to be; and in this section I will argue 

that it effectively fails to have the attractive theoretical property which I 

have just cited. 

The reason why P ifftctively fails to have this property is that prac­

tically no experiment calculates a single P-value. When more than one 

P-value is calculated, each one has a chance of being in error, so the statis­

tical analyst faces a dilemma: 

• give each P-value an error rate of 5%, in which case the analysis as a 

whole will have an error rate greater than 5%; or 

• adjust each P-value so that the overall error rate of the analysis re-

mains 5%. 

Since the whole point of Frequentist theory is to make mistakes at most 

a known proportion of the time, a fully Frequentist theory must take 

the second fork of the dilemma and adjust each P-value (Neyman 1937, 

Kendall & Stuart 1967, Stuart et al. 1999, Mayo 1996). This is usually 

done using a Bonferroni correction, in which the cut-off for attributing 

statistical significance "at the 5% level'' becomes (5% In), where n is the 

number of P-values (or equivalent measures, such as confidence intervals) 

being calculated. Such a correction is called a correction for multiplicity of 
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analyses. Not all Frequentist analyses use such a correction, but practically 

all works on Frequentist theory say that they should, and Frequentist 

analysts who omit to use a correction typically amend their ways when 

taken to task. 

But then each P-value has a probability of error (in the Neyman 

sense of "probability") which depends on how many other P-values are 

being calculated as part of the same analysis. This has the following bad 

consequences: 

• It means that when we read a P-value in a scientific paper we cannot 

tell what its error rate is unless we have been told how many analyses 

the experimenters made. If they do not tell us that or if we see the 

P-value quoted out of context there is no way to tell what its error rate 

IS. 

• When a single experiment is analysed by two or more analysts who 

calculate different numbers ofP-values, they reach different inferential 

conclusions, despite their analyses being based on the same data.62 

I have stated this problem in terms of P-values, but it should be clear that 

it arises for any method of statistical inference based on error rates- i.e., 

62. I do not have space for detailed examples here, but I should mention that this effect 
is responsible for much of the confusion surrounding statistical analyses of rare events such 
as brain tumours in cell phone users or around power lines: looking at the same data, some 
statisticians have calculated many P-values in order to turn up whatever health problems may 
be there; these statisticians have used Bonferroni corrections with large values of n, which 
makes their P-values statistically insignificant. Hence, these statisticians conclude that cell 
phones or power lines or whatever do not cause cancer, and their conclusions are quoted 
by companies with an interest in continuing to sell cell phones and overhead power cables. 
Meanwhile, statisticians with a particular interest in one phenomenon - say, cell phone use 
-calculate a single P-value, which is then much more likely to be statistically significant: 
its cutoff for statistical significance is n times as large as the generalist statisticians'. These 
statisticians are much more likely to conclude that cell phones do cause cancer, and their 
conclusions are quoted by shock journalists and health campaigners. Both sets of statisticians 
are looking at exactly the same data (necessarily so, in this case, since there is only one set of 
cancer data) and OOth are using a 5% significance level. 
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for any Frequentist method. I will give a more detailed example in chapter 

15. 

A related problem is that there is no way to combine P-values from 

separate merriments to produce a valid P-value for the overall data (with­

outre-analysing the individual data points from both merriments, which is 

usually impossible for reasons oflogistics and intellectual property). Im­

portantly, this is in contrast to likelihood methods, which allow us to very 

easily combine likelihoods from separate merriments without needing to 

look at individual data points: we simply multiply the likelihoods. This is 

because if T(x1) and T(x2 ) are independent statistics from the same statis­

tical model (i.e., x, and x2 do not depend on each other) then the product 

of their likelihoods is the same as the likelihood of a combined observation 

consisting of the data from x 1 and x2 put together; but there is no function 

of two Frequentist statistics alone which gives the statistic that would be 

calculated if the data were pooled. For example, there is no function of two 

confidence intervals which gives a confidence interval for the combined 

data. Perhaps this is a less deep criticism of Frequentist methods than my 

other criticisms, since it could, in principle, be overcome by the (drastically 

impractical) method of always publishing all the raw data on which every 

analysis is based. 

ARE P-VALUES INFORMATIVE ABOUT H? 

A first suggestion that, in addition to being ad hoc, P-values do not give 

us useful information about H comes from a point which I made in the pro­

logue: that Frequentist methods often reject a hypothesis which is clearly 
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favoured by the data not just despite but actually because the hypothesis ac­

curately predicted that events which did not occur would not occur. They 

reject a hypothesis because it got its counterfactuals right. This claim was 

first made by Jeffreys, in what has become one of the most quoted passages 

in the philosophy of statistics literature: 

P . .. gives the probability of departures, measured in a particular 

way, equal to or greater than the observed set, and the contribution 

of the actual value is nearly always negligible. What the use rifP 

implies, thenfore, is that a hypothesis that may be true may be r'!jected 

because it has not predicted observable results that have not occurred. 

This seems a remarkable procedure. On the face of it the fact 

that such results have not occurred might more reasonably be 

taken as evidence for the law, not against it. The same applies 

to all the current significance tests based on P integrals (which 

includes the rejection of hypotheses on the basis of confidence 

intervals - see below]. 

(Jeffreys 1961, p. 385) 

Jeffreys's argument, taken more slowly, is as follows. First of all, the 

probability of the actual observation, p(xalho), is almost irrelevant to the 

value of P . .. and, in the common continuous case, it is literally irrelevant 

to P. The probabilities which make up P are the combined probabilities 

of observations greater than Xa. These observations did not occur, and if 

ho assigns a low probability to them then it is correctly failing to predict 

them (or retrodict them). Now suppose that the calculation of Pleads 

to the rejection of ho. Then the aggregate probability of the values of x 

greater than X a must be small. In particular, ho is rejected if this aggregate 

probability is less than some critical value, typically 5%. Since it is the 

correctness of ho's prediction that the observations in question did not 
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occur which leads to the small value of the aggregate probability, and since 

it is the smallness of the aggregate probability which leads to the rejection 

of h,, it is the correctness of one of h,'s predictions which leads to its own 

rejection. 

The above argument is not a mere logical trick. Compare Figures 13 

and 14: 
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In Figure 13, a significance test based on Prejects II,, and the rejection may 

seem appropriate. But if we change Figure 13 to Figure 14, in which II, no 

longer gives such a low probability to observations larger than Xa, we have 

a situation in which II, will not be rejected, although the probability of the 

observed result stays the same as it was in Figure 13 (and, incidentally, the 

probabilities near the centre of the graph also remain almost unchanged). 

Jeffreys's argument can be illustrated without resorting to the squig­

gly distribution shown in Figure 14. It is hard to illustrate the point on 

a continuous distribution without resorting to squiggles, because small, 

smooth changes in continuous distributions are hard to notice on a graph; 

so to show how the point applies to non-squiggly distributions I will 

quote an illustration with a discrete sample space, adapted from (Berger & 

Wolpert 1988, p. 106): 

x=O X= 1 x=Q x=3 x=4 

P(xlh,) .75 .14 0.4 .037 .033 

P(xlh{,) .70 .Q5 0.4 .005 .005 

Table 3 

Suppose that x = 3 is observed. A Frequentist statistical test of II, will 

not reject II, at the 5% level, because the probability of seeing what was 

seen or something more extreme- the sum of the entries in the first row 

to the right of the column x = Q -is greater than 5%.63 But h{, will be 

63. This is a rare case in which the choice of the test statistic T is not a problem, because 
in a simple unidimensional example such as this we can set T(x) = x. 
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rejected, because the sum of the entries to the right of the column x = 2 

in the second row is less than 5%. ~ is rejected because it fails to predict 

the results which have not occurred (x = 3 and x = 4). ho, which predicts 

those results more strongly than ho does, escapes rejection. The contrast 

between ho and~ makes it clear that, just as Jeffreys said, a hypothesis (ho) 

has been rejected because it failed to predict (assigned low probability to) 

results which did not occur. 

Jeffreys's (correct) conclusion from his argument is to endorse the 

likelihood principle, although without naming it: 

Yates ... recommends, in testing whether a small frequency nr is 

consistent with expectation, that X2 [T(x)] should be calculated 

as if this frequency was nr+ ~instead of nn and thereby makes the 

actual value contribute largely to P. This is also recommended 

by Fisher .... It only remains for them to agree that nothing but 

the actual value is relevant. 

(Jeffreys 1961, p. 385 footnote) 

The upshot of this argument is that P does not help us to reach the right 

conclusions about H. 

Can this conclusion be over-ruled by some justification for the use of 

Pin inference? So far I have given such a justification only implicitly. The 

best explicit justification I can make for Pis as follows. We want to avoid 

believing ho unless ho is true. So we should not believe ho unless we have 

good reason; and we might reason that if P is small then it seems to be 

telling us that what we have observed is unlikely, according to ho. Unlikely 

things mostly do not happen; but it is only according to ho that what we 

have observed is unlikely (for all that P tells us); so the unlikeliness of our 

observation under ho is good reason to reject ho. 
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Unfortunately. this reasoning is fallacious. It makes no difl"erence 

whether T(.xa) is unlikely on 11, unless it is more likely on some other 

hypothesis in H. It is true that .for all P tells us observing T(.xa) is unlikely 

according to 11, and therefore, plausibly. more likely according to other 

hypotheses; but remember that P was constructed precisely to exclude 

consideration of other hypotheses. In order to see whether what we have 

observed is really more likely according to other hypotheses, we have to 

examine the table by columns ... which is incompatible with Frequentism, 

and, in any case, is something P manifestly does not do. 

An informal diagnosis of how we have got into this mess is that the 

unlikely events principle, although plausible, is false. Recall: 

The unlikely events principle: 

A hypothesis which assigns a low probabilities to an event is 

disconfirmed by the occurrence of that event to the extent that, 

if a hypothesis says that an event is unlikely, and yet that event 

occurs, it is reasonable to conclude, at least tentatively, that the 

hypothesis is probably false. 

In cases in which the outcome is unlikely not only according to the hypoth­

esis under consideration but also according to all competing hypotheses, 

we should not follow this rule. And, indeed, outside statistical inference we 

do not follow this rule in such cases. Unlikely events happen all the time, 

and very rarely do they or should they cause us to reject any hypotheses. 

To take a coin-tossing example again, consider the hypothesis that a coin 

is fair. Now toss it twenty times. Whatever the outcome is, it is unlikely 

according to that hypothesis, as we have already seen. Even an outcome 
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with an equal number of heads and tails- one that intuitively seems to fit 

the hypothesis best- is extremely unlikely. What should cause us to reject 

the hypothesis is consideration of the probability of the outcome according 

to the hypothesis we have in mind in comparison with other hypotheses. 

But this cannot be calculated by an analysis of probability tables by rows. 

In summary, our candidate procedure for analysing probability tables 

by rows suffers from the following flaws: 

• The choice of flo is generally ad hoc. 

• The choice ofT is generally ad hoc, and invariant under even bijective 

transformations of variables. 

• A hypothesis may be rejected for correctly assigning a low probability 

to T(x). 

• The problem of multiplicity means that the calculation of a P-value 

does not have an inherent error rate: its error rate depends on what 

other analyses were conducted at the same time. 

• The use of a P-value to reject or fail to reject flo makes no sense unless 

it contains an illicit implicit appeal to other hypotheses. 

These are criticisms of the use of a small value ofP to reject flo. I promised 

earlier to return to the subject ofhow we should use a large value ofP. I can 

now clear up that issue very quickly. I hope it is obvious by now that any 

use of a large value ofP either to accept or reject flo is going to suffer from 

exactly the same problems as our candidate use of a small value of P. The 

remaining possibility is that a large value of P should cause us to refrain 

from saying anything about flo. That possibility is far from innocuous. It 
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would have us refrain from saying anything about observing a quiet child 

if we were taking~ to be PTSD (see Table 1). That would not be wise. 

Almost all scientific statistical inferences depend on P-values in one 

way or another. Using P-values in the raw, as it were, is currently out 

of fashion among statisticians, for an excellent reason, namely that P­

values do not give enough information about the data for most scientific 

purposes. This criticism is right, but it is not my main criticism of P­

values. My main criticism is not that they give too little information but 

that they give misleading information. The current fashion for disliking 

P-values does not take any of my points into account. The new orthodoxy 

says that although P-values should not be quoted in the results sections 

of scientific papers they should be used to calculate confidence intervals. 

From the point of view of my criticisms ofFrequentist inference the new 

fashion is no better than the old. In principle we can see this simply 

by noting that the lower end-point of a symmetric confidence interval is 

simply the value of x which would give some fixed P-value (typically 2. 5%). 

That is enough to ensure that the criticisms I have already given apply to 

confidence intervals. But rather than merely relying on that relationship 

between confidence intervals and P-values it will be more illuminating, 

and more fun, to explore confidence intervals in their own right. 

3. CONFIDENCE INTERVALS 

At the beginning of this chapter, I promised to define both of the commonly 

used types of Frequentist inference procedere, P-values and confidence 

intervals. To spare the reader's patience, I will not motivate confidence 

intervals in the detailed way in which I motivated P-values. Instead, I will 
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start with the definition of confidence intervals and move straight on to 

criticisms of their use in statistical inference. 

"Confidence interval" sounds as if it denotes an interval in which an 

unknown parameter is likely to lie; but it does not. Recall its definition 

from chapter 4: 

If there exist functions of x, T land T I, both statistically inde­

pendent of B, such that 

(VB) p(Tl(x) :'::: 8 :'::: Ti (x)) = 1 -a 

then theinterval[Tl(xa), Ti(xa)]isa 1-aconfidenceinterval 

for B. 

(adapted from Kendall & Stuart 1967, volume II, p. 99) 

I - a is known as the coverage probability or the confidence level of the 

confidence intervaL64 

The definition given above (which is the standard definition) hides the 

fact that Tland Tjare functions not only ofxa (the observed data) but also 

of H (which in this context is, effectively, the set of probabilities that the 

various possible values of B assign to the elements of X). The apparently 

innocuous statement that (\18) p(Tl(x) :'::: B :'::: Ti(x)) = I- a is strongly 

dependent on the probabilities that non-actual values of B assign to non­

actual values of X. This is why the use of confidence intervals for inference 

about B is a Frequentist inference procedure. And it is clear from the 

definition of a confidence interval, and from the formulae used to calculate 

confidence intervals, and from applied statisticians' actual practice, that 

64. The coverage probability could just as well be denoted a instead of I - a, but the 
tradition prefers that the letter 0:' should be reserved for an error rate, while 1 - 0:' is 
something more like a success rate. 
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confidence intervals must be calculated using the whole of the sample 

space X. 

To bring out the dependence of a on the whole of X, it would be 

better to write the defining equation as: 

(VO) p(Tl(x, X, H)::; (}::; Tj (x, X, H))= 1 -a. 

ARE CONFIDENCE INTERVALS INFORMATIVE ABOUT H? 

Typically, functions T! and T j are found such that (VO) p(T! (x) ::; (} ::; 

Tj (x)) = 95%. Such functions can be calculated from P-values. (In most 

cases, the endpoints of a 95% confidence interval are simply the values of 

(} which give the observed data a P-value of 2Y.%.) Frequentists claim, 

implicitly or explicitly, that this probability gives us a basis for inference 

about 0. Usually the claim is made explicitly, and often the inferential 

usefulness is made part of the definition. To take an example from an 

influential health policy document: 

Confidence interval: the computed interval with a given prob­

ability e.g. 95%, that the true value of a variable such as a mean, 

proportion or rate is contained within the interval. 
(Liddle et a!. !996, p. 39 )65 

65. Liddle et al. are, of course, implying that probability is relevant to health policy, and 
hence are making an epistemic claim, even though they calculate probability in Neyman's way. 

Neyman himself, with his avowedly non-epistemic notion of probability, did not claim 
that confidence intervals could be used for epistemic inference, and yet both he and his 
followers did so on a daily basis. This apparent contradiction is explained by the fashionability 
of a behaviouristic form of falsification ism at the time when he developed his theory (in the 
1930s). This made it seem reasonable to say that confidence intervals give us a basis for action 
without having any epistemic consequences at alL Such a view is no longer popular. 

The question of who claims that confidence intervals are relevant to epistemic inferences 
and who does not is contested, but the contest is unimportant for my purposes. I will attack 
the claim non ad hominem. This will be an important building block for my attack on 
Frequentist inference procedures. Insofar as my opponents are divided about whether their 
procedures really are inference procedures, so much the better for my position, which is not 
that Frequentist methods have no place but that they have no place in inferences from Xa to 
H. 
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The claim that confidence intervals are relevant to inferences from Xa to 

H is questionable because it assigns a probability on the basis of a single 

multiset of observations without taking into account what else is known 

about e. This is a point continually stressed by Bayesians, the only people to 

date who have a comprehensive methodology for taking such information 

into account ... which is not to say that their methodology is right (this 

thesis does not claim to judge that issue) but only that if ulterior knowledge 

about e is not taken into account in any way then we have no right to make 

such probability statements. It is an obvious and widely acknowledged 

fact that probability statements are nonsensical, epistemically speaking, if 

known information is ignored-"6 

More specifically, the claim that confidence intervals are relevant to 

inferences from Xa to His false because once we know Xa (which we must 

know in order to calculate a confidence interval) we typically know for sure 

that the probability that e is in the interval is not I - a. 

In a moment I will give an example (involving bonobos) in which an 

interval C is a bona fide 7 5% confidence interval calculated in a perfectly 

standard (and optimal) way but in which we know for sure that C contains 

e. In this example, the claim that statement that p(Tl(x, X, H) :S e :S Tj 

(x, X, H)) = 75% is true if interpreted according to its definition, but only 

because it is part cif the definition cif that probability that we ignore some relevant 

evidence (as discussed in chapter 4). If interpreted in accordance with 

the principle of total evidence (contrary to its definition), as a statement 

66. Thus, for example, the probability that I am a rock, given that I am an Earthbound 
physical object but ignoring what else we know about me, is rather high; but to conclude 
from that that I am a rock would be irrationaL 

Or, the probability that the Senator for Pennsylvania is the Democrat Joe Hoeffel, 
ignoring the fact that I know that the Senator is a Democrat, is maybe a half; but it makes no 
sense to state that probability when I know for sure that the Senator is a Democrat. 
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about the probability of(} holding such-and-such a value in the light of the 

available evidence, it is no longer true. 

This argument against the use of confidence intervals for purposes of 

statistical inference is widely admitted, although its importance is widely 

disputed. Thus, for example, Kendall and Stuart, in what is probably the 

most authoritative single work on the technicalities of the major twentieth­

century theories of statistics, agree that we cannot say that there is a 

probability of (1- a) that(} lies in its (1 -a) confidence interval. But 

they go on to dispute the importance which I attach to this fact, on the 

following grounds: 

Note, in the first place, that we cannot assert that the probability 

is 1-a ... [but] If we assert that [(}lies in its confidence interval] in 

each case presented for decision, we shall be right in a proportion 

1 - a of the cases in the long run. . .. This idea is basic to the 

theory of confidence intervals which we proceed to develop, and 

the reader should satisfy himself that he has grasped it. 

(Kendall & Stuart 1967, volume II, p. 99) 

If this is intended to be a rationale for the use of confidence intervals (and I 

believe it is), it must be read as saying that making a probability statement 

that is known to be wrong is OK provided we bear in mind that if we 

used the same inference procedure it would turn out correct in a known 

proportion of other cases! 
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A CLEARLY USELESS CONFIDENCE INTERVAL 

I will now back my abstract arguments up with an example adapted from 

(Berger & Wolpert 1988). 

I am studying bonobo chimpanzees in the wild. Researchers further 

up the river have told me that three new bonobos have moved into my 

study area. Two of them, Adam and Colin, are indistinguishable apart 

from size; the third, Bertie, is unusually pale and exactly intermediate in 

size betwen Adam and Colin. Because my contacts saw them only their 

heads and upper bodies above the ground cover, they cannot tell me the 

actual heights of any of them, but they can tell me that Colin is two metres 

taller than Adam. My task is to estimate x8 , the height of the unusual one, 

Bertie. 

Adorn ..... """' 

Figure 15: Bertie the bonobo 

What makes this a statistical problem is that the bonobos, being new to 

my area, are likely to move off again if! disturb them. I estimate that I can 

only afford to get close to one of them at a time, and only twice during my 

study period; so those two observations will become my merriment. When 

I observe an ape from close up, I can peer over the ground cover to see his 

exact size, so if! could observe Bertie this way there would be no problem. 

However, Bertie is particularly shy, so the chance of observing him from 
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close up is negligible. All I can get is two height observations of the others: 

two of Adam, two of Colin, or one of each. Call these observations x 1 and 

Xz. 

A "shortest" (see chapter 4) 75% confidence interval for x8 is: 

C= (x1 -1,x1 -1) ifx1 = x2 

= (fl.:!:.E;. x,+x,,) if X -1 r_ 67 
2 ' 2 I I"""..!" 

I am comforted to find that with only two observations I can estimate 

Bertie's height with 75% confidence. 

What makes this a paradox is that it makes no sense at all for me to 

plan to give the interval Cas my estimate of Bertie's height, or indeed to 

plan to use it for any other inferential purpose. 

Suppose x 1 = x2 (I have observed the same ape twice). Then should 

I give C as my 7 5% confidence interval? No, because I know that there 

is only a 50% chance, not a 75% chance, that C contains Bertie's height. 

That's bad enough. Now suppose x 1 =I x2 • Should I give Cas my 75% 

confidence interval? Hardly, because this time I'm 100% sure that Bertie's 

height is x, :-"'. So, no matter what I observe, it makes no sense to report 

7 5% confidence in my 7 5% confidence interval. 

The calculation above which seemed so pleasant for a moment has 

turned out to be completely useless ... well, almost completely useless. I 

might have wanted to know in advance what my chances were of finding 

67. To verify that this is a 7 5% confidence interval, imagine that the experiment is repeated 
a large number of times. In half of these repetitions I will observe both Adam and Colin, 
giving me an accurate reading of xn; in the other half, I will observe Adam or Colin, make 
a wild guess of which one I'm observing, and estimate Bertie's height correctly half of those 
times, or one quarter of all times. So in all I will get Bertie's height right 75% of the time. 
The other quarter of the time I will get it wildly wrong. 

If we change my information slightly, so that for example I do not know exactly 
how much taller Colin is than Adam, it should be clear that the coverage probability of 
my confidence interval is still roughly 75%. Although such a change would complicate the 
calculation, the required adjustment would be small. So not too much hangs on the details of 
my rather contrived example. 
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out Bertie's height. For that, the same calculation would have been right, 

but the correct interpretation of it in that case would certainly not be 

as a confidence interval. Hacking (1965) makes much of the occasional 

usefulness of such calculations in quality control in factories; Backe (1999) 

makes a similar point, while Seidenfeld says: 

the N-P [Neyman-Pearson J theory is plausible as a theory of 

inference bl!fore seeing the actual evidence (on the 'forward' look), 

but fails as a theory of inference after seeing the data (on the 

'backward' look). 

(Seidenfeld 1979, p. 15) 

This view is compatible with everything I claim in this thesis. I do not 

argue either for or against it. It certainly does often turn out that the 

mathematics used to construct confidence intervals is useful in designing 

experiments. But note not only that confidence intervals are not useful in 

analysing experiments, if my example and the likelihood principle are to be 

believed, but note also that this fact is clearly known in advance. I know 

right now that my observations of Adam and Colin will not - cannot, 

under any circumstances -lead me to have 7 5% confidence in the interval 

c. 

This problem with confidence intervals is so bad that people who 

are aware of it use alternative terminology to designate non-Frequentist 

estimates which look like confidence intervals but are non-paradoxical: 

they call them either "interval estimates" (a term which is meant to be 

neutral as to how the intervals are calculated) or "credible intervals" (a 

term usually reserved for intervals calculated in a Bayesian way). 
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Inference procedures which obey the likelihood principle are not sub­

ject to problems of this type, because they take into account the observed 

data by making all the probabilities used in calculating the intervals fully 

conditional on Xa· In particular, it can be proved that Bayesian credible 

intervals cannot suffer from nasty examples such as the bonobo example. 

Bayesian credible intervals also have some advantages from the point 

of view of Frequentist criteria (criteria based on long-run averages of 

performance on hypothetical data). For example, Frequentist confidence 

intervals, but not Bayesian credible intervals, are subject to the problem 

of biased relevant subsets, a problem which bothers some Frequentist 

theorists just as much as it bothers me. 

BIASED RELEVANT SUBSETS 

This section owes much to (Leslie 1998). 

A biased relevant subset, B, is a subset of the sample space ... 

such that P(B) is strictly positive (for all 0), and within which, for 

some positive value t:, either: 

i) The [Frequentist]long run success rate fore lying within 

the confidence interval is greater than or equal to (1-a)+t:, 

for all possible e, or 

ii) The [Frequentist] long run success rate fore lying within 

the confidence interval is less than or equal to (I -a)- t:, 

for all possible e. 
Relevant biased subsets of form (i) are called positive relevant 

biased subsets; those of form (ii) are called negative relevant 

biased subsets. 

(Leslie 1998, p. 48)68 

68. Despite Leslie's use of the variable£, which mathematicians sometimes use to denote 
a small quantity, the discrepancy can be very large. In some simple problems it is so% 
(Robinson 1975), and it can be even larger. 
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If the guaranteed coverage probability of a confidence interval is I - a, 

how can the long-run success rate be 1-a±c:? The answer is that it is only 

within B that it is 1 -a±c:. The overall success rate is stilll-a. But this is 

no cause for comfort. Consider first that when it is time to make inferences 

about 1:1 based on Xa we know whether the result (xa) is in the subset B or not. 

This on its own has been enough to cause the Frequentist community to 

accept the necessity of taking biased relevant subsets into account, at least 

in some cases, even though to do so breaks the fundamental principles of 

Frequentist analysis by compromising overall long-run properties. Thus: 

"Today it is widely accepted by adherents of confidence interval theory that 

they should perform their analyses conditional on the value of ancillary 

statistics" (Robinson 1975, p. 155). 

Frequentists can achieve some relieffrom this problem by condition­

ing on ancillary statistics. Recall from chapter 5 that an ancillary statistic 

is a function T such that p( Till) is independent of 1:1. Such an ancillary is a 

function T of Xa such that observing the value ofT tells us nothing about 

1:1. Conditioning only on ancillary statistics gives some but, as we will see, 

not all of the advantages of conditioning on xa.
69 

Moreover, and far worse from the point of view of any statements 

made before Xa has been observed, it is sometimes the case that the whole 

of the set of possible observations is made up of biased relevant subsets. 

Such is the case in the bonobo example above. Sometimes such examples 

cannot be adjusted in the usual Frequentist way (by performing analyses 

conditional on ancillary statistics), as illustrated by Robinson, who has 

69. See (Leslie 1998) for the history of the conversion of the Frequentist orthodoxy from 
refusing to condition on any function of Xa to conditioning on ancillary statistics, and for 
further discussion of the examples in this section. 
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constructed a confidence interval with a bona fide overall coverage proba­

bility of 50% with the property that every possible observation is in one of 

two biased relevant subsets, one with coverage less than or equal to '20% 

and one with coverage greater than or equal to 80%, so that no matter 

what is observed the Frequentist coverage probability of 50% is wildly 

misleading. In Robinson's example, unlike the bonobo example, the biased 

relevant subsets do not go away upon conditioning on any ancillary statis­

tic. They would go away on conditioning on X 0 , as the likelihood principle 

recommends, but Frequentists cannot do that, since then they would be 

failing to report the long-run characteristics of the procedure. 70 

The existence of biased relevant subsets (although not the name) 

has been known since 1939, only a few years after the invention of the 

confidence interval, when Welch came up with the following example. 

Suppose we draw a sample of size n from a uniformly distributed population 

with (unknown) population mean(} and spread 1: 

e- 1h a 

Figure 16 

a+~ 

70. In fact Frequentists worthy of the name cannot condition on ancillary statistics either, 
but they do it anyway and count it as merely a venial sin, whereas conditioning on Ia would 
be to go all the way with the likelihood principle and therefore would be a mortal sin. 

'219 



Then the Neyman-Pearson 95% confidence interval for(} is 

[max(min(x) + d,max(x)- ll.),min(min(x),max(x) + d + 11.)], 

where 2d" - (2d - I)" = 0. 95 if n < I - log
2
(0. 95) and 2d" = o. 95 

otherwise. 

Welch did not analyse this example in detail (see (Leslie 1998} for some 

notable omissions in Welch's analysis), but he did note a disagreement 

between Fisher's non-Frequentist analysis of the case and Neyman and 

Pearson's Frequentist analysis. It turns out that the confidence interval 

has the following properties: 

• When max(x}-min(x) > d (as is bound to happen sometimes, of 

course), the 95% confidence interval is guaranteed to contain 0. 

• When max(x}-min(x) < 2d- I, the 95% confidence interval cannot 

contain 0 (Leslie 1998, p. 38). 

Wallace (1959) has shown that Bayesian credible intervals do not suffer 

from the same problems as Frequentist confidence intervals, and in partic­

ular that Bayesian credible intervals cannot have biased relevant subsets 

(unless they are based on an improper prior distribution- one which is 

not a probability function). This should come as no surprise (and indeed 

came as no surprise in 1959), since Bayesian credible intervals obey the 

likelihood principle and hence condition on x •. 

In chapter 15, I will show other ways in which Bayesian credible 

intervals can (sometimes} be preferable to confidence intervals even from 

some Frequentist points of view. The example in chapter 15 will be less 

impressive than the examples in this chapter but arguably much more 

important, because it is drawn directly from the actual practice of large 
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pharmaceutical trials and has direct implications for how such trials should 

be run in the future. 

The problems discussed above suggest that confidence intervals are 

invalid as bases for statistical inferences. In addition, confidence intervals 

inherit all the ad-hockery ofP-values, and add some of their own. Recall, for 

example, my discussion in chapter 4 ofHowson and Urbach's argument that 

choosing to quote the shortest of the infinite number of valid confidence 

intervals is ad hoc. 

The lesson to be learned from my discussion of confidence intervals 

is: good riddance to them. But the above problems of confidence intervals 

(except for some of the ad hockery) are entirely attributable to the problems 

of error rates in general. Since the end-points of symmetric confidence 

intervals are P-values, for every paradox ofP-values it is trivial (although 

perhaps unenlightening) to generate a dual paradox of confidence inter­

vals, and vice versa. So, instead of further critiquing confidence intervals 

separately from the task of critiquing other error rates, I will move on to 

other issues. 

4. IN WHAT WAY IS FREQUENTISM OBJECTIVE? 

Now that I have shown that Frequentist procedures have many ad hoc 

elements, I need to ask whether the objectivity ofFrequentism makes up for 

its ad hocness. 

First, note that any theory can be made objective (in one sense) by 

revising it so that the theory (rather than any particular application of 

the theory) defines which choices are to be made whenever an arbitrary 

decision is called for. This is a completely general point. For example, the 
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theory of Roschach tests, which is often criticised for being subjective, can 

be made objective by eliminating any subjectivity on the part of the psychi­

atrist analysing the pictures; this can be done very easily, hy classifying the 

possible pictures in any determinate way and providing, within the revised 

theory, determinate rules which the psychiatrist must follow in reaching 

conclusions. As it is with Freudian analysis, so it is with statistical analysis. 

Any theory of statistical inference can be made objective by revising it so 

that what were subjective choices become determinate. A slight modifica­

tion of Jeffreys's theory, for example, can be seen as an objectification of 

Subjective Bayesianism: the decisions about prior probability distributions 

which a Subjective Bayesian makes subjectively a neo-Jeffreys Bayesian can 

make by using one of the priors which Jeffreys specifies (see chapter 3 )71 

Of course there is something wrong with making a subjective theory 

objective by modifying it in an arbitrary way. I imagine everyone agrees 

that there is no virtue in doing so. Or rather, there is no epistemic virtue. 

There is a very great pragmatic virtue in doing so when otherwise the 

choices allowed by the subjective theory will be used in a pernicious way. 

For example, one might argue that a legal system (or an electoral system) 

in which arbitrary choices are enforced by a constitution is better than 

one in which arbitrary choices are made by individuals, on the hoof. This 

point is under-emphasised by those Bayesians who denigrate Frequentist 

theory as being just as subjective as Bayesian theory (Howson & Urbach 

7 L This is not what Jeffreys's theory actually is: his theory is meant to prescribe prior 
probabilities oniy in cases in which the agent doing the analysis is actually ignorant about 
the parameters in question. Also, it would be a misreading of history to think of Jeffreys 
as attempting to make Subjective Bayesianism more objective, at least initially, since early 
versions of his theory predate any statement of Subjective Bayesianism. But we need not 
worry about Jeffreys's actual theory for the moment. All I am doing is borrowing his 
mathematics in order to devise a Bayesian theory which is completely objective in the sense 
I am currently dealing with- the sense of not allowing any subjectivity in its application. 
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1993, p. 12 & passim). In this one important respect Frequentist theories 

are more objective than Subjective Bayesianism.72 

A disclaimer: I am not pronouncing on whether the type of objectivity 

obtained in this way really ought to count as objectivity. I have no theory of 

what ought to count as objectivity. I do not need one for present purposes; 

what I am doing instead is discussing the value of something specific which 

many people count as a type of objectivity. 

Frequentist theories of statistical inference have exactly this type of 

objectivity. Thus, they have an appearance of virtue which is real (as I 

have argued above) but non-epistemic. Consequently, there is no more 

reason to believe that the products of Frequentist statistical analysis are 

right than there would be if the choice of significance level or the choice 

of confidence interval were set by dice throws. There is more reason to 

believe that they're right than if they were set by malicious interested 

parties; that is why I think they have some virtue. But that does not make 

them epistemically defensible. 

72. For example, by making the significance level required to reject a hypothesis always 
5%, the form of Neyman's theory which has become standard in biomedicine has stopped 
experimenters from using the arbitrariness of that cut-off to reject any hypotheses they 
happen not to like. Similarly, although Neyman's theory of confidence intervals does not 
adequately justifY any particular choice of interval from among the infinite number with a 
given coverage probability, the arbitrary rules which he and Pearson and their successors have 
developed for choosing confidence intervals almost always prevent a statistician from making 
a personal decision about which interval to quote. As a result, a drug company statistician 
and a public health advocate will virtually always agree on the correct application of this 
part of the theory; and this has the very beneficial effect ofleaving them time to argue about 
more important matters such as whether the drug company's analysis is being interpreted 
correctly, is being advertised in misleading and illegal ways, is being ignored in the company's 
Third World marketing policy, and so on. 

So much for the political advantages of putting all the arbitrariness into the theory 
rather than in the hands of the practitioners of the theory. There is clearly no epistemic 
advantage to doing so; at least, not for an individual epistemic agent. A practitioner of a 
theory cannot be said to have objective knowledge on the basis of arbitrary decisions made by 
the inventors of the theory, any more than they could be said to have objective knowledge on 
the basis of arbitrary decisions which they made themselves. This is why the idea of turning 
a subjective theory into an objective theory merely by fixing all the arbitrary decisions in 
advance is a straw man: nobody advocates it. 

223 



The arbitrary basis of the objectivity of Frequentist procedures is 

easily missed, especially since the vast majority of scientists learn the 

principles ofFrequentist inference from texts which concentrate on teach­

ing them how to operate computer algorithms embodying Frequentist 

methodology. Sadly, the programs in question make it easy (although 

not absolutely compulsory) to run modules which have all the arbitrary 

components of the theory hard-coded into them, and the texts take full 

advantage of this fact. Consequently, it is very hard for a scientist or an 

applied statistician to find out what is arbitrary in the theory or even that 

the theory has any arbitrary components at all (with the sole exception of 

the 5% cut-off, which is obviously arbitrary). 

Frequentist theories of statistical inference also have other types of 

objectivity: they study only intersubjectively verifiable phenomena, they 

use mathematics rather than numerology, and so on. But these types of 

objectivity are shared by all the theories studied in this thesis. 

I conclude that although Frequentist theories are more objective than 

their main contemporary rivals, the Subjective Bayesian theories, their 

objectivity is of a sort which confers no epistemic virtue. 

5. FUNDAMENTAL PROBLEMS OF FREQUENTISM 

In the remainder of this chapter, I will give two very general, related criti­

cisms ofFrequentist methods which, I claim, represent Frequentism's most 

fundamental problems. The first is that Frequentism methods are over­

reliant on probabilities assigned to non-actual observations; the second is 

that Frequntist methods are under-reliant on the information carried by 

actual observations. 
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COUNTERFACTUALS 

As I foreshadowed earlier, the calculation of a Frequentist error rate is 

strongly dependent on the probabilities that the non-actual values of B as­

sign to non-actual values of x. (This follows immediately from the definition 

of a confidence interval, for example.) 

That this is deeply problematic has been noted many times (mainly in 

the literature which contrasts Frequentism with Bayesianism), and I can 

do no better by way of an example than to quote and analyse the following 

famous passage by Pratt. 

Pratt's example 

An engineer draws a random sample of electron tubes and mea­

sures the plate voltages under certain conditions with a very 

accurate voltmeter, accurate enough so that measurement er­

ror is negligible compared with the variability of the tubes. A 

statistician examines the measurements, which look normally 

distributed and vary from 7 5 to 99 volts with a mean of 87 and a 

standard deviation of 4. He makes the ordinary analysis, giving 

a confidence interval for the true mean. 

Later he visits the engineer's laboratory, and notices that 

the voltmeter used reads only as far as 100, so the population 

appears to be "censored". This necessitates a new analysis, if that 

statistician is orthodox. 

(Pratt 1962, pp. 314-315) 

Censoring is the real or hypothetical lack of potential observations- i.e., 

observations which might have occurred but didn't; in this case those over 

100. 
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The reason that censoring necessitates a new analysis is that the 

statistician is performing a Frequentist statistical procedure and therefore 

needs to be able to report the proportion of an imaginary series of experi­

ments whose results are in some error set- in this case, whose confidence 

intervals fail to contain the true value of the average plate voltage of a 

population of tubes from which the sample is drawn. In the merriment 

actually performed (which the Frequentist statistician must treat as an ex­

periment), none of the tubes had a plate voltage above 99. We can be sure 

of this, because the voltmeter reads accurately up to 100. But in the imag­

inary series of experiments which the Frequentist uses in his calculations 

some of the tubes will have plate voltages over 100.73 

Some of these unobserved (and very likely non-existent) tubes with 

plate voltages over 100 would lead to different results in some of the imag­

inary series of experiments which the Frequentist uses in his calculations 

(or rather which his computer program uses-· I will examine this distinc­

tion shortly), since the voltmeter would - hypothetically - incorrectly 

assign those tubes a value of 100, and this error would have to be corrected 

(as far as possible) in the analysis. Frequentist statistical methods embody 

corrections for such errors: in fact, the mathematics used to calculate Fre­

quentist results takes into account the entire probability distribution on 

possible outcomes of the experiment in a way which guarantees automatic 

correction for censoring errors provided the censoring is fully described in 

73. Note that this is so even if none of the tubes which the engineer actually owns has 
a plate voltage over 100, and even if none of the tubes which have ever existed or will 
ever exist have plate voltages over 100! It is guaranteed by the assumption that the plate 
voltages vary according to a statistical distribution with long tails (in this case the "norma]" 
or Gaussian distributon, but any similar distribution would have the same effect). A non­
Frequentist statistician would no doubt make the same assumption about the distribution of 
plate voltages, but since she does not have to imagine a non-actual series of experiments the 
assumption is innocuous for her. 
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the statistician's mathematical model. This is why the Frequentist statis­

tician does a new analysis when he finds out that the engineer's voltmeter 

only reads up to 100.74 

One problem resulting from the counterfactual nature of these exam­

ples is that evaluating the counterfactuals involved may bring in theories 

which are quite extraneous to the problem at hand. For example, to decide 

whether the voltmeter would or would not read above a certain number 

might require an understanding of how the circuitry near the dial behaves 

at relatively high temperatures, which in turn might require a theory of 

the behaviour of doped semiconductors at high temperatures, which is a 

difficult problem. But that theory seems to be irrelevant to the case at hand, 

since the voltages applied never exceed 99 and hence the circuitry never 

gets hot. In other words, the Frequentist statistician's analysis depends 

on inventing a sufficiently complete context for hypothetical eventualities 

to enable him to evaluate his counterfactuals. Moreover, this context often 

has to include factors- psychological, social and even political -which 

go beyond what one normally thinks of statisticians as taking into account. 

An alternative way of stating this problem with Frequentist counter­

factuals is that whereas all the statistical inference procedures discussed in 

this thesis require the statistician to establish a statistical model linking hy­

potheses to the actual observations, only Frequentist inference procedures 

require the statistician to model the whole experiment within which the ob­

servations are made. Where the non-Frequentist needs only a merriment, 

the Frequentist needs a fully-modelled experiment. 

74. One can imagine weirder illustrations of this problem, such as a superstitious experi­
menter who never reports a result of 13. If this experimenter's observations are, for example, 
3, 9, IS and 20, then his superstitions never come into play, and a non-Frequentist statisti­
cian would have no need to take them into account or even to find out about them. But a 
Frequentist statistician would. 
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Pratt illustrates this problem nicely in the continuation ofhis example, 

in which the statistician is forced to model the experimental situation in 

much more detail than seems warranted: 

However, the engineer says he has another meter, equally accu­

rate and reading up to 1000 volts, which he would have used if 

any voltage had been over 100. This is a relief to the ortho­

dox statistician, because it means the population was effectively 

uncensored after all. 

Phew. 

But the next day the engineer telephones and says, "I just dis­

covered my high-range voltmeter was not working the day I did 

the experiment you analyzed for me." The statistician ascertains 

that the engineer should not have held up the experiment until 

his meter was fixed, and informs him that a new analysis will 

be required. The engineer is astounded. He says, "But the ex­

periment turned out just the same as if the high-range meter 

had been working. I obtained the precise voltages of my sam­

ple anyway, so I learned exactly what I would have learned if 

the high-range meter had been available. Next you'll be asking 

about my oscilloscope." 

(Pratt 1962, p. 315) 

And the engineer is right: if there is a non-negligible chance that the 

oscilloscope is broken, the statistician does have to ask about it. Otherwise, 

the statistician would not be correctly analysing his imaginary series of 

experiments. 

It is important to note that the analysis of this imaginary series of 

experiments is not a choice which the Frequentist statistician can take or 

leave. It is what he does every time, in order to calculate his error rates 
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(or rather, what his computer program does for him, whether he realises it 

or not, based on the model he supplies). This is what Howson and Urbach 

call "the essential weakness of the classical [Frequentist] principle that an 

estimate must be evaluated relative to the method by which it was derived" 

(Howson & Urbach 1993, p. 233). 

Berger and Wolpert extend Pratt's example (although without men­

tioning Pratt) to make it clear that the facts which determine a Frequentist 

calculation may be sociological or political: 

suppose [a scientist conducts an experiment with 200 observa­

tions in which J significance has been [narrowly J obtained. . .. 

the statistician asks what the scientist would have done had the 

results not been significant. Suppose the scientist says, "If my 

grant renewal were to be approved, I would then take another 

100 observations; if the grant renewal were to be rejected, I 

would have no more funds and would have to stop the experi­

ment in any case." The advice of the [Frequentist] statistician 

must then be: "We cannot make a conclusion until we find the 

outcome of your grant renewal; if it is not renewed, you can 

claim significant evidence against H 0 [because there will be no 

need to adjust your existing results], while if it is renewed you 

cannot claim significance [as explained below J and must take an­

other I 00 observations." The up-to-now honest scientist has 

had enough, and he sends in a request to have the grant renewal 

denied[.] 

(Berger & Wolpert 1988, p. 74.2, and Berry 1988, p. 31-32: 

exactly the same words are used in both papers!) 

Again, as in Pratt's example, the statistician is right to argue the way he 

does. Frequentist theory demands an overall error rate of 5% (or whatever) 

for hypothetical repetitions of the experiment, and this error rate can only 
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be calculated by taking into account what the scientist would have done 

had his results been different. The necessity for this calculation (within 

Frequentist theory) is the problem of multiplicity described earlier in this 

chapter. This calculation is made by applying a Bonferroni correction to 

each part of the experiment: in other words, once it is known how many 

observations the scientist is going to make in the future, the Bonferroni 

correction can be applied to his existing observational results, without 

waiting to see what the future results are. If the Bonferroni correction is 

large enough (which it will be if the number offuture observations is large 

enough, relative to the size and statistical significance of the scientist's 

existing results), the observed results which, on their own, would be 

judged significant, will become non-significant.75 

The scientist's grant application might be one he would not even 

submit unless, counterfactually, his first experiment was non-significant. 

When we once start using such counterfactual considerations, we ought 

to take into account all relevant counterfactuals which have non-negligible 

probability. One could argue that if the scientist's first experiment fails 

there is a small but non-negligible probability that he will apply, and be 

funded, to perform any number of experiments without bound- enough 

experiments, that is, to call for a Bonferroni correction large enough to 

turn the actual significant result into a non-significant result. So Berger 

7 5. This example, as Berger and Wolpert state it, depends on the initial results being only 
barely significant, so that the Bonferroni correction (for multiplicity) for the hypothetical 
100 additional observations changes the P-value by enough to make the results become non­
significant; but note that this is the case whatever the criterion for significance is (provided 
only that it is Frequentist; ifit is not Frequentist then no Bonferroni correction is needed). 
And of course the example can be made to apply to cases in which the experiment is as highly 
significant as you like, by increasing the number of additional observations which the scientist 
might be funded to perform. 
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and Wolpert's example is relevant to every case of Frequentist statistical 

inference in which such probabilities are non-negligible. 

It may seem implausible that Frequentist statisticians behave as Pratt, 

Berger and Wolpert claim, so I give a real example of how Frequentist 

statisticians take into account the context needed to evaluate counterfac-

tuals in chapter 15. 

Is it problematic to consider exprimenters' intentions? 

Mayo (1996, p. 349) claims that Frequentists have no problem with exper­

imenters' intentions: "the error (Frequentist] statistician has a perfectly 

nonpsychologistic way of taking account of the impact of. .. experimental 

plans. The impact is on the error probabilities (operating characteristics) 

of a procedure." There is no problem, Mayo implies, because that impact is 

objective. But this is wrong. Certainly the error probabilities are objective, 

given the "procedure". It is the "procedure" which is not objective. In the 

"procedure" Mayo includes not just what the experimenter does but all of 

the things the experimenter might have done had the results turned out 

differently - which leads straight to Pratt's problem, which remains as 

"psychologistic" as ever. 

Mayo also has a tu quoque argument, claiming that every method 

of statistical inference, Frequentist or not, takes into account subjective 

intentions, since 

Any and all aspects of what goes into specifying an experiment 

could be said to reflect intentions-sample size, space of hy­

potheses, prediction to test, and so on[.] 

(Mayo 1996, p. 347) 
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Mayo's example of sample size misses the point dramatically: the sample 

size is decidedly not just in the head of the experimenter, but is objectively 

available to everyone. The sample space and prediction to test are more 

arguably subjective (although in fact the prediction to test does not figure 

anywhere in my positive arguments for the likelihood principle - likeli­

hood advocates rarely test hypotheses, preferring to estimate parameters 

instead), but Mayo's point still fails to go through for at least two reasons. 

Firstly, even if there were a tu quoque argument it would not give us any 

reason to add more subjectivity to the analysis in the form of propositions 

about the hypothetical behaviour of broken voltmeters and oscilloscopes. 

Secondly, and more importantly, no matter how subjective the hypothesis 

space and prediction to test are, they are available to the analyst, to the 

agent who is making conclusions. In extreme contrast, the point of Pratt's 

problem is that the hypothetical behaviour of broken equipment is known 

only by the experimenter, if it is known by anyone at all; and if there is more 

than one subjective view from more than one experimenter, the Frequen­

tist analyst has no way- not even a subjective way - to decide how to 

interpret the results. 

This contrast between experimenter and analyst becomes particularly 

clear if there is more than one experimenter and more than one analyst, all 

of whom have different counterfactual beliefs about the broken equipment. 

It makes some sort of sense for the analysts to disagree - after all, they 

are doxastic agents with different beliefs. But the experimenters enter into 

the picture not as doxastic agents but as instrumental agents: they set up 
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the equipment, but there is no reason why their beliefs ought to aflect the 

analyst.'" 

Nor should the analyst be perturbed if the results came about as non­

experimental observations (as they do in observational astronomy). A 

likelihood analyst can cope with non-experimental observations without 

trouble, while a Frequentist cannot use them at all (in principle; of course 

this issue is fudged by actual Frequentists by using imaginary experiments, 

as described under Neyman's theory in chapter 4 ). 

Mayo notes the epistemic force of mere observations. She sees it as a 

drawback of the Bayesian theory that "it permits [us J to draw conclusions 

from whatever data and whatever features one happens to notice" (Mayo 

1996, p. 350, quoting Le Cam). But it seems to me that being able to 

draw conclusions from whatever one happens to notice is an essential and 

valuable part of the life of an epistemic agent. 

The above discussion of counterfactuals gives us reason to be wary 

of Frequentist methods used in the analysis of merriments. It is also 

useful fodder for the distinction Hacking draws between what I am calling 

inference and expectancy uses of error rates (as discussed at the beginning 

of this chapter). When designing inference procedures, the Frequentist 

needs to evaluate complex social counterfactuals while the non-Frequentist 

does not. But when designing expectancy procedures - procedures for 

describing the likely results of merriments not yet undertaken - both 

the Frequentist and non-Frequentist statistician have to evaluate such 

counterfactuals. Prior to the engineer measuring any tubes, for example, 

both the Frequentist and non-Frequentist statistician would have to take 

76. My point only makes sense if the experimenter and the analyst are different people, of 
course. My argument is best read by imagining the experimenter to be a mere lab technician 
or a machine. 
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into account the brokenness of his low-range voltmeter and the availability 

of his high-range voltmeter, because they would not know whether the 

brokenness would affect his results or not. After the fact, they both 

know that the brokenness has not affected the results, but the Frequentist 

statistician ignores this knowledge while the non-Frequentist statistician 

uses it to his advantage. So Hacking's distinction is useful in distinguishing 

between the cases in which the non-Frequentist statistician has a major 

epistemic advantage over the Frequentist statistician and those in which 

she doesn't. 

CONDITIONING ON NEW INFORMATION 

The following paradox adapted from (Cox 1958) will tell us something 

about the root causes of the problems I have been discussing. 

Suppose that we are doing an experiment to test a hypothesis h, and 

that we decide- unwisely- to go along wtith the Frequentist idea that 

we should imagine repetitions of the experiment and make sure that at 

most 5% of them give the wrong answer, on the assumption that h, is true 

(where "wrong answer" is defined in the rather ad hoc way it was for P). 

An almost realistic thought experiment which sheds light on our options 

involves sending blood to one of two pathology labs according to which of 

the labs sends the next pick-up courier, or according to the toss of a coin. 

One laboratory is known to send back an estimated haemoglobin count 

with a large amount of random error; the other lab always sends back a 

count that's almost exactly correct. To achieve an overall 5% error rate as 

defined above we need to take into account both error rates. So if the blood 
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actually went to the accurate laboratory, we need to increase the error rate 

on the grounds that it could have gone to the inaccurate one! 

This is unsatisfactory, and of course it is not what any practising 

statistician would actually do. What she would actually do is take into ac­

count only the characteristics of the laboratory the blood actually went to. 

(Recall from chapter I that this process of taking into account information 

which was not available at the time the experiment was designed is called 

conditioning.) Cox himself, in his (1958), came to the conclusion that we 

should perform a conditional calculation (i.e., take into account only the 

characteristics of the laboratory the blood actually went to) in this partic­

ular case. He did not have available to him the proof of chapter 13 which 

shows (on very mild assumptions) that this case generalises to practically 

all statistical analyses. Cox - and all non-Bayesian statisticians at the 

time - held that one should condition only under special circumstances 

but was unable to work out exactly what those circumstances were. His 

example was therefore seen as a paradox. 

As discussed above, Frequentist methods do sometimes condition on 

new information. However, there is not - and cannot be - a general Fre­

quentist method for deciding which new information to condition on. One 

way of seeing this is to take seriously Neyman's theory in which probabil­

ities are based on the reference class and are therefore fixed (see chapter 

4 ). Conditioning would necessarily change these probabilities. Thus, there 

is no principled theory of conditioning available to followers of Neyman. 

We can, however, imagine a new, anti-Neyman theory which conditions 
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on available information while retaining other aspects of Neyman's Fre­

quentism.77 But all such efforts are doomed to ti:tilure. I will show this in 

chapter 13, by showing that the necessity of conditioning in Cox's example, 

combined with a very plausible axiom of sufficiency; is enough to prove 

rigorously that one should follow the likelihood principle, which in turn 

entails that one should always condition on all available data. 

I will demonstrate that all Frequentist theories must fail in this way 

by proving the likelihood principle: 

The likelihood principle 

Under certain conditions outlined in chapter 2 and stated 

fully in chapter 8, inferences from observations to hypothe­

ses should not depend on the probabilities of observations 

which have not occurred, except for the trivial constraint that 

these probabilities place on the probability of the actual obser­

vation under the rule that the probabilities of exclusive events 

cannot add up to more than I. 

In the light of the proof of the likelihood principle, Cox's example seems 

more like a reductio of the Frequentist theory of error rates than a true 

paradox. 

77. We have seen, for example, that many Frequentist statisticians recommend conditioning 
on ancillary statistics. This recommendation may sound general, but in fact it is not, because 
ancillary statistics (a) often don't exist, and (worse) (b) when they do exist are often not 
unique, with different choices of ancillary statistic on which to condition leading to different 
conclusions. There are other, arguably more sophisticated conditional Frequentist theories 
(see, for example, Casella & Berger 1987), but none gives any justification for conditioning 
on only part of the available information. 
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6. CONCLUSION 

I have shown that the use ofFrequentist statistical procedures suffers from 

the following problems. (I omit from this list ad-hockeries specific to 

confidence intervals, as discussed above.) 

• The choice of II, is generally ad hoc. 

• The choice of Tis generally ad hoc, and invariant under even bijective 

transformations of variables. 

• A hypothesis may be rejected for correctly assigning a low probability 

to T(x). 

• The problem of multiplicity means that Frequentist statistics do not 

have inherent error rates, even though error rates are their raison 

d'etre. 

• The use of error rates to reject or fail to reject a hypothesis makes no 

sense unless it contains an illicit implicit appeal to other hypotheses. 

It seems to me that every one of these problems affects the vast majority 

of statistical analyses currently popular in the sciences, although to justify 

this claim I would have to survey every science and that is, of course, well 

beyond the scope of a single thesis. 78 

In addition to those problems, which are severe but which for all I 

have shown might have partial solutions, the problems of experimenters' 

intentions revealed by an analysis of the counterfactual nature ofFrequen­

tist procedures, and Cox's example, both show that there are fUndamental 

problems with Frequentist procedures. In chapter 13, I will show more 

78. Some work towards part of such a survey is undertaken in (Grossman & Mackenzie 
2005). 
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formally that coherent inferential procedures must obey the likelihood 

principle and thus cannot be Frequentist. 

I conclude that we should not be looking to Frequentist theories 

to provide the best theory of statistical inference, and thus that they do 

not provide good alternatives to the likelihood principle, no matter how 

popular they currently are with scientists. 

In subsequent chapters, I will introduce and prove a carefully worded 

version of the likelihood principle, using normative axioms which are ex­

tremely weak and plausible. 
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The Likelihood Principle 

1. INTRODUCTION 

This chapter describes the likelihood principle in detail. The main aim of 

the chapter is to construct versions of the principles which will withstand 

all the objections that have been levelled at earlier versions, without losing 

the spirit of those earlier versions. 

Here is a first, approximate definition of the likelihood principle, the 

rough fi:·om which I will attempt to facet a shining gem: 

In certain situations the only permissible contribution of a space 

of observations X to inferences about a set of hypotheses { h;} is 

via the likelihood function of the actual observation, p(xa!h;).19 

Or, in terms of tables: 

79. Recall that the likelilwod of a given observation is defined as the function from hypothe­
ses to numbers specified by the column in Table 1 representing that observation (and in an 
analogous way in the infinite case). Thus, there is a separate likelihood function for each 
possible observation. For example, the likelihood function for the symptom of vomiting in 
Table I is the following function: 

dehydration >------+ 0. 03 

PTSD >------+ o. oo I 

etc. 

The identity conditions of likelihood functions are not the same as those of functions in 
general. Two likelihood functions are considered the same iff they are proportional: i.e., iff 
L,(h) = c X L,(h) for some c > 0. 
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We should analyse Table 1, and any similar table, using only the 

numbers in the single column corresponding to the observation 

result which actually obtained in a given merriment. 

The new, more precise version which I will develop in this chapter will 

be very similar to the first group of definitions given below, especially to 

Good's (1983), Hill's (1987) and Berger and Wolpert's (1988) versions. The 

main difference will be a more comprehensive statement of the conditions 

under which the principle is applicable. 

I motivated the likelihood principle in chapter 7. We saw there that 

Frequentist methods of statistical inference produce unacceptable results 

because of a failure to make their probabilities conditional on known facts, 

which suggested that statistical inference ought always to use probabilities 

which are conditional on the fact that Xa has been observed. This is, 

roughly, the likelihood principle. I will make this idea precise, and discuss 

its relationship to previously published versions of the likelihood principle. 

THE IMPORTANCE OF THE LIKELIHOOD PRINCIPLE 

The likelihood principle tells us something about what it means to be a 

good theory of statistical inference. It does not (unfortunately) tell us what 

the best theory of statistical inference is, but it rules out many theories 

by showing them to contradict axioms which are all but indisputable (the 

WSP and WCP axioms, presented in the next chapter). We need such prin­

ciples, because statistical theorists not only can't agree on which statistical 

procedures are best; they can't agree even in outline on what it means for 

one statistical procedure to be better than another. Now, clashes of epis­

temic values are the sort of problem that philosophers are usually good at 
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identifying: noticing, for example, that evolutionary biologists don't agree 

on what it means for something to be a gene, and noticing the importance 

of understanding this disagreement prior to trying to assess the divergent 

theories of evolutionary genetics (Falk 1986, Griffiths & Neumann-Held 

1998). We can perform the same job for statistical inference. The likelihood 

principle principle will help us to do this. 

I have already discussed the direct applicability of the likelihood prin­

ciple to philosophy of science in chapter I. I showed there that prominent 

philosophers such as Salmon accept principles which entail the likelihood 

principle, while the very same philosophers exhort us to do science in a 

way which contradicts the likelihood principle. 

2. CLASSIFICATION 

It is helpful to classify the versions of the likelihood principle in the litera­

ture into three groups: 

I First, there is a group of fairly precise claims about when two dif­

ferent statistical measurements give the same evidence about a set of 

hypotheses. I place these first in the list of versions of the likelihood 

principle below, and I will have the most to say about them. 

II Then there is a group of claims about the incoherence of averaging 

over the sample space. These claims are saying that we should not 

analyse Table I (or anything like it) by rows. The claims in this group 

give us the best way of understanding the practical consequences of 

the likelihood principle. In chapter 13 I will give an explicit argument 

for considering the versions in group II to be logically equivalent to 
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the vers1ons m group I (modulo the vagueness inherent m some 

versions). 

III The third group contains stronger claims which hope to tell us not 

only when the evidence from two different statistical measurements 

is the same but, further, to exactly what extent a well defined observa­

tion supports any relevant hypothesis more than another observation 

does.80 

There is another way of classi(ying versions of the likelihood principle 

which gives exactly the same groups as above - it is equivalent exten­

sionally to the previous classification, although perhaps it is not quite 

equivalent intensionally as it is somewhat vaguer. 

CLASSIFICATION 2 

I STRONG VERSIONS: Inferences about B may be functions of p(xa I he) 

but should not be functions of p(xlhe) where x ¥ Xa. 

II WEAKER VERSIONS: Inferences about B must not be functions of 

x where x ¥ Xa • 

. . . where B is an index on the set of hypotheses under consideration, 

X is a space of possible observations, and Xa is the actual observation, 

as elaborated in chapter 2. 

III ANOMALOUS VERSIONS: As group III above. 

80. This third group is very much the odd one out, historically. It represents an enormous 
increase in ambition over the other two groups, which are historically prior. Generally the 
authors who work on principles in the third group do not use the term "likelihood principle" 
for their rules; but three or four of them do, so it is worth saying expliticly that I will not be 
discussing this third group in this chapter except to note its existence. 
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In addition to these groups of definitions of the likelihood principle, 

the literature on the foundations of statistics contains a group of princi­

ples recommending that we accept the hypothesis which has the highest 

likelihood on the observed data- in other words, that we use maximum 

likelihood estimation as defined in chapter 5. Versions of these principles 

are sometimes called "the maximum likelihood principle". It is important 

to note that these principles are not corollaries of the likelihood principle, 

although they do represent one way of applying the likelihood principle 

(along with Bayesianism, the method of support, and others). I will not 

dwell on maximum likelihood principles in this chapter, preferring instead 

to discuss directly the more fundamental principles which they instanti­

ate.81 

I now present all of the definitions of the likelihood principle which I 

have been able to find in the literature, with the exception of many almost 

word-for-word copies of Jeffreys's definition (see below). Within each 

of the three groups, I give the definitions chronologically. Some of the 

definitions I comment on extensively; others, not at all. When I do not 

comment, it is because the definition in question is relatively imprecise and 

raises no new issues. At the end ofthe section on group I, and again at the 

end of the section on group II, I give a new definition which encapsulates 

the best of the previous definitions. 

81. I must, however, mention the importance of maximum likelihood principles to the 
theory of inference to the best explanation (IBE). I obviously do not have space to discuss 
this connection in detail, but I should mention that the likelihood principle is compatible 
with inference to the best explanation and indeed offers some support for it, provided that 
IBE is defined, as Lipton (2005) defines it, as advising us to take explanatory loveliness as a 
guide to what we should infer, rather than as the narrower principle that says that we should 
infer only the most explanatory single hypothesis. See also (Salmon 2001a, Salmon 2001b, 
Lipton 2001) for a discussion of the relationship between IBE and the Bayesian version of the 
likelihood principle. 
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3. GROUP I: THE LIKELIHOOD PRINCIPLE 

THE LIKELIHOOD PRINCIPLE: BARNARD'S VERSION (1947) 

This was the first statement of the likelihood principle: 

The connection between a simple statistical hypothesis H and 

observed results R is entirely given by the likelihood, or proba­

bility function L(RJH). If we make a comparison between two 

hypotheses, H and H', on the basis of observed results R, this 

can be done only by comparing the chances of, getting R, if H 
were true, with those of getting R, if H' were true. 

(Barnard 1947, p. 659) 

Barnard immediately gave an argument about the use of the likelihood 

principle. Since this book touches only briefly on the use of the likelihood 

principle this argument will not figure large, but it is worth quoting for 

the simplicity it imposes on the mathematical structure of inferences based 

on the likelihood principle, and for its relevance to confirmation theory 

(discussed briefly in chapter 3): 

Mathematically, if L(RJH) = L, and L(RJH') = L', then our 

decision about H and H', in the light of data R, must depend on 

the value of some functionf(L, L'). Furthermore, this function/ 

must be a function of the ratio, L' I L, only. (Because, intuitively, 

we can imagine that in addition to observing R, we might have 

observed some irrelevant event, such as the fall of a coin, whose 

probability is p, independent of R. Then the likelihoods on Hand 

H' would become pL and pL' [because these are the probabilities, 

under each of the two hypotheses, of observing both the actual 

result of the coin toss and the data x], and since such an irrelevant 
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observation could not affect our decision about H and H', we 

must have f(pL, pL') = f(L, L') [and so the factor p must cancel 

out, which is only possible iff is a function of L' I Lalone].) 

(Barnard 194 7, pp. 659-660) 

The force of this argument is best seen by imagining an inference procedure 

which uses the likelihood function p(xalh) but which is not a function of 

L'l L _ p(xalh1 )1 p(xalho) (where Xa represents the observed data, as usual). 

Such a procedure might use, for example, p(xalh1)- p(xal!zo). Instead of 

considering a separate coin toss, consider that part of the observed data 

which is clearly irrelevant to our inferences about hypotheses. When there 

is no such part of the data, the argument will have to fall back on Barnard's 

coin toss; but there almost always is some such part of the data. Most 

commonly, the order in which the data points were collected is exactly 

such a part of the data: provided the data points are exchangeable (as 

defined in chapter 2), information about order can be used or neglected, 

as we prefer, without making any difference to what we know about the 

hypotheses. In this case, we should be able to use our inference procedure 

two ways, to calculate both p(xalh1)- p(xalho) and p(yalh,)- p(yaiho), 

where X a is a sequence of observations and Ya is a multiset representing the 

same observations but without order information. p(x.lh) will generally 

be very different from p(y.ih)- for example, the probability of getting the 

sequence of die rolls (I, 2, 2) is I I 216 on the hypothesis that the die is fair, 

but the probability of getting the multiset [ 1, 2, 2 Jon the same hypothesis 

is I I 7Q. Similarly, p(x.lh1)- p(xalho) will generally be very different 

from p(y.lh1)- p(y.l/zo). This is a reductio of the use of these formulas in 

inference, given our assumption that the order of data points is irrelevant 
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to inferences about hypotheses. But the formula p(xjh,) I p(xifzo) escapes 

this problem: p(xajh,) I p(xalho) is just the same as PCYalh,) I PCYalfzo), as 

can be rigorously proved, provided that Xa is statistically independent from 

J0 •
82 So, Barnard argues (and I agree), whenever we compare pairs of 

hypotheses our inferences must be based on functions of p(xalh!) I p(xalfzo). 

What function of p(xalh!) I p(xalho) we should use might depend on 

general theoretical considerations outside the scope of this book, or it might 

depend on prior probabilities or utilities. Maximum likelihood estimation, 

Bayesian statistical inference procedures and Bayesian decision theory -

the only well-developed general methods compatible with the likelihood 

principle to date - all obey Barnard's restriction that we make inferences 

from data to hypotheses using some function of p(xalh1) I p(xalho) alone (the 

main differences being that the third takes into account utility functions 

and prior probabilities, the second takes into account prior probabilities 

but not utility functions and the first takes into account neither utility 

functions nor prior probabilities). 

THE LIKELIHOOD PRINCIPLE: JEFFREYS'S VERSION (1961) 

The prior probability of the hypothesis has nothing to do with 

the observations immediately under discussion, though it may 

depend on previous observations. Consequently the whole of the 

information contained in the observation that is relevant to the 

posterior probabilities of different hypotheses is summed up in 

the values that they give to the likelihood 

82. My reductio is dependent on the assumption that X a is statistically independent from Ja; 
Barnard's argument involving a separate coin toss is not, so his conclusion is more general. 
I offer my example even though Barnard's is more general because it is perhaps not obvious 
that a thought experiment in which we consider the addition of new irrelevant information 
can be the basis of a tenable argument, whereas my version in which we consider the same 
analysis with and without information which is already part of the dataset is more obviously 
realistic. 
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(Jeffreys 1961, p. 57) 

This sums up nicely the orthodox Bayesian view of the likelihood principle: 

only the posterior distribution matters for inference (this is not explicit in 

the quotation above, but it is made plentifully clear in context), and the only 

contribution of observations to a posterior is via the likelihood function 

(and via p(x0 ), which in turn is a function of the likelihood function). 

Similar statements are found both implicitly and explicitly in many 

other works on Bayesian inference. 

THE LIKELIHOOD PRINCIPLE: BIRNBAUM'S VERSION (1962) 

The likelihood principle (L): If E and E' are any two experiments 

with the same parameter space [ HJ, represented respectively 

by density functions f(x, 8) and g(y, 8); and if x andy are any 

respective outcomes determining the same likelihood function; 

then Ev(E, x) = Ev(E',y)[where Ev is a placeholder for a measure 

of evidence; Birnbaum gives it no precise definition]. That is, 

the evidential meaning of any outcome x of any experiment 

E is characterised fully by giving the likelihood function if(x, 8) 

(which need be described only up to an arbitrary positive constant 

factor), without other reference to the structure of E. 

(Birnbaum 1962, p. 283) 

This has been the most influential single definition of the likelihood prin­

ciple, coming as it did in a paper which proved the likelihood principle 

from plausible axioms for the first time. (I give a similar proof in chapter 

13.) However, it is an awkwardly vague definition: some commentators 

find the notion of an evidence function opaque. My own definition of the 

likelihood principle will not use the notion of an evidence function. 
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THE LIKELIHOOD PRINCIPLE: SAVAGE'S 1962 VERSION 

According to Bayes's Theorem, Pr(xJ>.) [p(xaJh), in my terminol­

ogy], considered as a function of>., constitutes the entire evidence 

of the experiment, that is, it tells all that the experiment has to 

tell. More fully and precisely, if y is the datum of some other 

experiment, and if it happens that Pr(xJ>.) and Pr(yJ>.) are pro­

portional functions of>. (that is, constant multiples of each other), 

then each of the two data x andy have exactly the same thing to 

say about the values of>.. For example, the probability of seeing 

6 red-eyed flies in a randomly drawn sample of 100 is propor­

tional to >. 6 (1- >.)94
, where>. is the frequency of red-eyed flies 

in the population, whether the experiment consisted in counting 

the number of red-eyed flies in a random sample of 100, or of 

sampling flies at random until 6 with red eyes are observed, or 

countless other sequential [analysed while in progress J variations 

of these experiments. I, and others, call this important principle 

the likelihood principle. 

(Savage & discussants 1962, p. 17) 

Savage's 1962 definition is part of a defence ofBayesianism and is therefore 

presented in terms of Bayes's Theorem, a theorem which non-Bayesians 

believe applies only in unusual circumstances, so it is inappropriate for my 

purposes. But Savage's example (as opposed to his definition) is relevant to 

everyone, Bayesian and non-Bayesian alike. Edwards, Lindman and Savage 

comment on a similar example (where 20 successes have been obtained out 

of 100): 

What is the datum, and what is its probability for a given value 

of the frequency p? We are all perhaps overtrained to reply, 

"The datum is 20 successes out of 100, and its probability, given 

p, is qg0p20
( 1 - p)80

." Yet it seems more correct to say, "The 
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datum is this particular sequence of successes and failures, and 

its probability, given p, is p20(1 - p)80
." The conventional reply 

is often more convenient, because it would be costly to transmit 

the entire sequence of observations; it is permissible, because the 

two functions C~g"p20(1 -p)80 and p20
( 1-p)80 belong to the same 

likelihood; they differ only by the constant factor C~g". 

(Edwards eta!. 1963, p. 238) 

In other words, the likelihood principle explains something which everyone 

agrees on: that we can transmit the results of such an experiment using a 

sufficient statistic (see chapter 13) which describes only the number of suc­

cesses and sample size. It is important to note that this explanation is not 

trivial, especially in the light of the fact that the probability of the sufficient 

statistic is not the same as the probability of the actual data: the former is 

C~g"p20(1- p)80
, while the latter is p20(1- p)80

. So in reporting only the 

sufficient statistic we are reporting an event which is much more proba­

ble than the event which actually occurred ( 500,000,000,000,000,000,000 

times more probable, in fact). This discrepancy between the probability 

of the event and the probability of the reported summary of the event is 

prima facie at odds with the Frequentists' insistence that the probability 

of an event is paramount in deciding what inferences to draw from it. So 

the Frequentists' agreement that it makes sense to quote only the sufficient 

statistic (and they do all agree on this) very definitely requires explanation. 

The likelihood principle does the job of explaining this nicely ... at a cost, 

for a Frequentist, since the likelihood principle contradicts the basic tenets 

ofFrequentism (see chapter 7 and chapter 15); but as we will see in chapter 

13 that is something which they will have to deal with in any case. 
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THE LIKELIHOOD PRINCIPLE: 

EDWARDS, LINDMAN AND SAVAGE'S VERSION (1963) 

Two possible experimental outcomes D and D'-not necessarily 

of the same experiment--can have the same (potential) bearing 

on your opinion about a partition of events H;, that is, P(H;ID) 

can equal P(H;ID') for each i. Just when are D and D' thus 

evidentially equivalent, or of the same import? ... 

P(D'IH;) = kP(DIH;) . 

. . . the likelihood principle: Two (potential) data D and D' are of 

the same import if[ this equation J obtains. 

(Edwards eta!. 1963, p. 237) 

Edwards, Lindman and Savage's paper in Psychological Review was some­

what influential at the time, although its influence seems to have faded a 

little. 

THE LIKELIHOOD PRINCIPLE: LINDLEY'S BAYESIAN VERSION (1965) 

If two sets of data, x and y, have the following properties: (i) 

their distributions depend on the same set of parameters; (ii) the 

likelihoods of these parameters for the two sets are the same; (iii) 

the prior densities of the parameters are the same for the two sets; 

then any statement made about the parameters using x should 

be the same as those made using y. The principle is immediate 

from Bayes's Theorem because the posterior distributions from 

the two sets will be equal. 

(Lindley 1965, p. 59) 
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Lindley's statement of the likelihood principle, like Jeffreys's and Savage's 

statements above, explicitly addresses a Bayesian audience. To a non­

Bayesian, and indeed to a Restricted Bayesian, Lindley's stipulation that 

two prior densities (prior probability functions) should be the same is 

nonsensical except in the situations in which uncontentious, objective prior 

probabilities exist. More importantly, restricting the likelihood principle to 

Bayesian analyses is unnecessary, as the many non-Bayesian versions of the 

principle suggest and as shown conclusively in my proof of a non-Bayesian 

version in chapter 13. 

Nevertheless, Lindley's definition of the likelihood principle is impor­

tant for the clarity with which it presents the conditions of applicability of 

the principle: in particular, his condition (i), that likelihoods should only be 

compared if they refer to the same set of parameters, is often overlooked. 

This condition is notably lacking from Edwards, Lindman and Savage's 

definition, for example. I include Lindley's condition in my own definition 

of the likelihood principle, when I state (below) that two likelihood func­

tions can only be considered the same if all their variables have the same 

meanings within the theories represented by each hypothesis. 

THE LIKELIHOOD PRINCIPLE: SAVAGE'S 1976 VERSION 

The likelihood principle ... says that the likelihood function for 

the datum that happens to occur is alone an adequate description 

of an experiment without any statement of the probability that 

this or another likelihood function would arise under various 

values of the parameter. 

(Savage 1976, p. 474) 
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When I am in the mood for a concise but sloppy definition of the likelihood 

principle, this one is my favourite. But it is much too vague about the 

conditions under which the likelihood applies to meet the objections of its 

opponents, so we may as well move straight on to other versions. 

THE LIKELIHOOD PRINCIPLE: EDWARDS'S VERSION (1972) 

Within the framework of a statistical model, all the information 

which the data provide concerning the relative merits of two 

hypotheses is contained in the likelihood ratio of those hypotheses 

on [given J the data. 

(Edwards 1972, p. 30) 

• 
Again, this is too vague to meet objections about the exact range of appli­

cability of the likelihood principle. Edwards (unlike Savage) may believe 

that the likelihood principle always applies; but I do not, for reasons which 

will become clear in chapters 9 to 12. 

THE LIKELIHOOD PRINCIPLE: BASU'S VERSION (1975) 

By the term 'statistical data' we mean ... a pair (CO, x) where Y5 is 

a well-defined statistical experiment and x the sample generated 

by a performance of the experiment. . .. To begin with, let us 

agree to the use of the notation 

Inf( co; x) 

only as a pseudo-mathematical short hand for the ungainly ex­

pression: 'the whole of the relevant information about [the world] 

contained in the data (CO, x)'. 
(Basu 197 5, pp. 1-2) ... 
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(The weak likelihood principle) : Inf( '(5, x') = Inf( '(5, x") if the two 

sample points x' and x" generate equivalent likelihood functions 

(Basu 197 5, p. 10) ... 

(The likelihood principle): If the data ('Oj,x1 ) and ('ie\,,x2 ) gen­

erate equivalent likelihood functions on n, then Inf\ 'Oi' XI) = 

Inf('<5>o .r.,). 
(Basu 1975, p. 11) 

I see no need for the distinction between weak and strong versions of the 

likelihood principle. (Basu does not justify the distinction; nor do Barnett 

or Stuart, Ord and Arnold, who give the same distinction below.) In my 

framework, the set of hypotheses under consideration is, if necessary, the 

union of two sets ofhypotheses considered as part of two merriments. (Such 

a move is explicitly countenanced in some although not all discussions of 

the likelihood principle in the literature, such as (Berger 1985, p. 35).) So 

my framework encompasses both Barnett's weak and strong versions of 

the principle. My framework is sufficient to prove the likelihood principle 

• and sufficient to discuss its consequences- indeed, it is better at that than 

Basu's, since my merriments encompass non-experimental observations 

as well as experiments. Basu may have in mind Hill's point that two­

experiment applications of the likelihood principle can produce certain 

counter-intuitive results if the principle is not stated carefully, while one­

experiment applications cannot. But the necessary care in stating the 

principle is implicit in the way I set up the mathematics of statistical 

inference in chapter 2, and in any case is explicit in my own version of the 

principle below. So there does not seem to be any need for me to explore 

Basu' s more restricted framework. 
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I will avoid using Basu's terminology of"information", for three rea­

sons: because it has seemed to some authors to be unclear in the same way 

as Birnbaum's possibly problematic terminology of an "evidence function", 

because it is ambiguous (other, incompatible notions of information having 

been defined by Fisher, Shannon and others), and because I do not need it. 

Basu also gives a paraphrase of the principle without the contentious 

word "information": 

We are debating about the basic statistital question of how a 

given data d =(CO. [x.]), where "5= (X, fl.,p) is the model and x 

is the sample, ought to be analysed .... the likelihood principle ... 

asserts that if our intention is not to question the validity of the 

model "Dbut to make relative (to the model) judgements about 

some parameters in the model, then we should not pay atten­

tion to any characteristics of the data other than the likelihood 

function generated by it. 

(Basu 1975, p. 62) 

This definition brings out nicely the negative character of the likelihood 

principle: it tells us what not to do in statistical inference. 

THE LIKELIHOOD PRINCIPLE: GOOD'S VERSIONS (1976 AND 1983) 

(I) (T]o me the likelihood principle means that the likelihood 

function exhausts all the information about the parameters that 

can be obtained from an experiment or observation, provided of 

course that there is an undisputed set of exhaustive simple statis­

tical hypotheses such as is provided, for example, by a parametric 

model. 

(Good 1976, reprinted in Good 1983, pp. 35-36) 
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This is a much more precise version of the likelihood principle than its pre­

decessors, making explicit as it does the restriction of the likelihood princi­

ple to simple hypotheses. (Recall from chapter 2 that a simple hypothesis is 

one which specifies precise probabilities for all possible outcomes of a given 

experiment or of a given observational situation.) This restriction was not 

made explicit by earlier Bayesian commentators, probably because most 

early Bayesians were subjectivists in the school of de Finetti, according 

to whom all hypotheses are simple (i.e., all hypotheses state probabilities 

for every possible observation). This follows from de Finetti's insistence 

that prior probabilities can be found for any statement; this tells us that 

the probability of data x on of any compound hypothesis h = h1 U ~ can 

be calculated as Ld(xJh;)p(h;). This calculation will not be convincing 

to non-Bayesian~ since they deny the guaranteed existence of the prior 

p(h;). Among the earlier commentators who were not Bayesians, Barnard 

probably considered Good's restriction to simple hypotheses to be implicit, 

while Birnbaum, Hacking (who quotes Birnbaum's version of the principle 

in his (1965)) and Edwards certainly considered it implied by their claim 

that the likelihood ratio between two hypotheses exists, forgetting only to 

make that claim an explicit part of the principle. 

Good's definition of the likelihood principle requires that the set of 

hypotheses be exhaustive. This seems to me to be ambiguous. It could 

mean that all hypotheses to be considered must be included in the likelihood 

function- a good idea, which I adopt in my own definition of the likelihood 

principle. Alternatively, it could mean that all possible hypotheses must 

be included in the likelihood function. This option is unnecessary ... and 

fortunately so, because it is prima facie impossible. Subjective Bayesians 
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include in their analyses all hypotheses with non-negligible probability, 

but even they do not include all possible hypotheses. 

Good's second go is even better, not because it is more mathematical 

but because it is more comprehensive: 

(II) Let E and E' be two distinct experimental results or obser­

vations. Suppose that they do not affect the utilities (if true) of 

hypotheses H 1 , H 2 , .•• Hn under consideration. Suppose further 

that E and E' provide the same likelihoods to all the hypothe­

ses, that is, that P(EIH;) = P(E'IH;)(i = 1, 2, ... n). Then E 

and E' should affect your beliefs, recommendations, and actions 

concerning H 1, H 2 , ... Hn in the same way. 

(Good 1981, reprinted in Good 1983, p. 132) 

The fired-utilities clause 

Good's second version of the likelihood principle is noteworthy because it 

takes into account the possible complicating factor of utilities (which, in 

this context, means judgements of how bad it would be to make various 

inferential errors). Taking utilities into account means that the likelihood 

principle can tell us something about rational actions as well as beliefs 

and statements. This is a major bonus, because it allows the likelihood 

principle to go head-to-head with those opposing theories of statistical 

inference, notably Neyman and Pearson's, which are phrased in terms of 

actions rather than beliefs or statements.83 

83. The modern use of Neyman and Pearson's methods consists of a theory about which 
scientific statements we should accept; but Neyman and Pearson famously denied that they 
were giving the foundations for an epistemic theory of any kind; and so, in opposing Neyman 
and Pearson, I must oppose their original, behaviourist theory as well as the modern pastiche 
of it. (Some of the most salient history of the mis-quoting of Neyman and Pearson's theory 
is given in (Gigerenzer 1993).) 
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I will call Good's restriction of the likelihood principle to cases in 

which the data does not affect utilities the fixed-utilities clause.84 

THE LIKELIHOOD PRINCIPLE: BERGER'S VERSION (1980) 

In making inferences or decisions about 0 after (x.] is observed, 

all relevant sample information is contained in the likelihood 

function. 

(Berger 1980, p. 25) 

At the risk of quoting Berger too often (a problem exacerbated by the fact 

that this book quotes the work of two Bergers, James 0. and Roger, who 

hold opposing views on the role of the likelihood principle), I include this 

relatively imprecise definition for the emphasis it places on inferences made 

after Xa becomes known. The likelihood principle is solely about inferences 

from known data to hypotheses, unlike Frequentist methods (described in 

chapter 4 ), some of the important properties of which, such as type I and 

type II error, can be determined from features of the sample space X before 

Xa is known. This is an appealing characteristic of Frequentist methods 

which methods based on the likelihood principle cannot match. But in 

chapter 7 we saw that the names "type I error" and "type II error" are 

misleading, and that some of their appeal is illusory. 

84. Note that even under the fixed-utilities clause the data we observe will affect the utilities 
of believing in or acting on the various hypothe~es; what the data may not do is affect the 
utilities of the various hyotheses "if true": in other words, the data will only affect our utilities 
via changes in our beliefs about the truth of the hypotheses, not in any other way. 
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THE LIKELIHOOD PRINCIPLE: 

BERGER AND WOLPERT'S VERSIONS ( 1984 AND 1988) 

[E]ssentially ... all the evidence, which is obtained from an 

experiment, about an unknown quantity e, is contained in the 

likelihood function of e for the given data[.] 

(Berger & Wolpert 1988, p. 1) 

To translate into table-talk: all the evidence which is obtained from an 

experiment about a set of hypotheses is contained in the column of the 

table which corresponds to the data actually observed. 

Berger and Wolpert also provide a more careful version of the likeli­

hood principle which incorporates important caveats: 

Two likelihood functions for e (from the same or different ex­

periments) contain the same information about e if they are 

proportional to one another [i.e., the same as each other J ... 

[where J e represents only the unknown aspect of the probability 

distribution of X . ... A second qualification for the LP is that it 

only appliesforafullyspecifiedmodel {fo}. If there is uncertainty 

in the model, and if one desires to gain information about which 

model is correct, that uncertainty must be incorporated into the 

definition of e . ... A third qualification is that, in applying the 

LP to two different experiments, it is imperative that e be the 

same unknown quantity in each. 

(Berger & Wolpert 1988, pp. 19-21.2) 

Berger and Wolpert say that the likelihood principle does not apply when 

there is "uncertainty in the model". What they mean by this is perhaps not 

immediately clear: within their mathematical framework, "model"" does not 

carry any of the important heuristic connotations that it does in some other 
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parts of the literature. Berger and Wolpert's meaning is well illustrated by 

the following example, which Forster and Sober (2004) attribute to Popper 

(1959). Suppose we have information about two variables, x andy, and we 

want to know whether y is a parabolic function of x or a linear function. The 

likelihood principle may tell us a lot about the various competing values of 

the parameters describing the slope of the x-y graph once we have decided 

whether we are looking at a straight line or a parabola; but it does not tell 

us anything about whether the graph is a straight line or a parabola. Why 

not? Because those two hypotheses are composite hypotheses: the straight 

line hypothesis, for example, is the union of various sub-hypotheses- the 

various straight lines, plus some noise function describing probabilistically 

how the data depart from the perfect line - each of which gives an exact 

probability to any given data set; but the composite hypothesis which 

states merely that the relationship is some straight line gives no precise 

probability to any data set. The likelihood principle does not apply to 

these hypotheses, because it only applies to what Berger and Wolpert call 

a 'Tully specified model'', which is what in chapter 2 I called a hypothesis 

space (H) containing only simple hypotheses. 

Later in their ( 1988), Berger and Wolpert recommend that uncertainty 

about composite hypotheses ("uncertainty in the model'') should be encoded 

in (} "if one desires to gain information about which model is correct". (I 

find this phrasing unfortunately euphemistic. We practically always desire 

to gain information about which model is correct!) To apply Berger and 

Wolpert's solution to Forster and Sober's example, we would add to the 

mathematical model a separate binary parameter indicating whether the 

data were best fitted by a straight line or a parabola. We would then find 
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some way of attributing probabilities to the data conditional on the value 

of this binary parameter. To apply Berger and Wolperfs recommendation 

in terms of tables, we would first draw two rows corresponding to the 

two composite hypotheses and then we would fill in the corresponding 

cells in the table, at least in the column corresponding to the data actually 

observed. (For proponents of the likelihood principle, the other columns 

are not needed for inference from the data to hypotheses ... not even for 

inference about composite hypotheses.) We would then analyse the table 

using our preferred likelihood-principle-compatible analysis. 

This is, in outline, a complete solution to the problem of composite 

hypotheses, but it elides a very large problem: there is no general method 

for filling in the table when the rows represent composite hypotheses. The 

whole of my discussion in this book so far has been (and in most of the 

rest will be) predicated on the premise that we are considering hypotheses 

which are sufficiently specific to assign probabilities to the various possible 

vectors of data. The problem is that no matter how specific are the simple 

hypotheses we start with, there is no guarantee that composite hypotheses 

formed from them will be specific enough to give probabilities to possible 

data. Even if we combine just two simple hypotheses, the combination may 

not assign any probabilities.85 

85. Consider, for example, the hypothesis that you will eat oysters tomorrow. This gives a 
nice specific probability to the possibility that you will feel woozy and sick (at least, it does if 
you live in an area where the matter has been studied carefully, as it has where I live). Suppose 
it is 0. 0000 I. And the hypothesis that you wiH smoke too much cannabis tomorrow similarly 
gives a specific probability to the possibility that you will feel woozy and sick- say, o. 5. The 
combined hypothesis- the union of the two hypotheses- is that tomorrow you will either 
eat oysters or smoke too much cannabis. This combined hypothesis is perfectly clear, but it 
does not give a probability to feeling sick and woozy. Why not? Because the probability of 
that possibility depends not only on the t3.cts that the individual probabilities depend on, but 
also on the relative probability that you will smoke too much cannabis compared with the 
probability that you will eat oysters. If you are much more likely to smoke cannabis than 
to eat oysters (and a fortiori not very likely to do both) then the probability of the outcome 

260 



When there are competing models which do not give precise proba­

bilities to the possible observations, either because they are composite or 

because they are vague (Schaffner 1993, chapter 5), the likelihood principle 

does not apply to the choice between those hypotheses, although it does 

apply to all the simple sub-hypotheses of the composite/vague hypotheses. 

This point is not made clear by Berger and Wolpert. It is incorporated 

into my more careful statement of the likelihood principle below. 

Berger and Wolpert's final qualification of the likelihood principle 

(that e be the same unknown quantity in each observation) will have a role 

in my proof of the likelihood principle in chapter 13; but as far as I can see 

it is not needed in the statement of the likelihood principle itself- it is 

used during my proof, but not in its premises nor in the conclusion. 

Elsewhere, Berger and Wolpert give a third definition of the likeli­

hood principle which omits to mention that the principle only applies to 

conclusions about h (or, equivalently if his indexed, about e): 

lfE = (X, e, {fo} is an experiment, then Ev(E, [x.]) [i.e., evidential 

conclusions drawn from E and x.] should depend on E and Xa 

only through lx(O). 

(Berger & Wolpert 1988, p. 27) 

They note later (p. 41.5) that this version of the principle is false, giving 

counterexamples in which inferences about certain sub-variables which 

comprise e (so-called nuisance parameters) cannot be made without taking 

into account the whole of e. 

conditional on the composite hypothesis is close to the probability conditional on the cannabis 
hypothesis- 0. 5. But if you are very unlikely to smoke too much cannabis, relative to your 
probability of eating oysters, then your probability of feeling sick and woozy relative to the 
composite hypothesis is about 0. 00001. Relevant information about your habits might be 
available, but there is nothing in the statement of either simple hypothesis to suggest that it 
is. If it is not then we simply cannot fill in the table as Berger and Wolpert suggest. 
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THE LIKELIHOOD PRINCIPLE: HILL'S VERSION (1987) 

Consider two experiments E, = (X,q,{j;q}) and E2 = (X2 ,q, 

{fig}), where q is the same quantity in each experiment. Suppose 

that for the particular realizations x 1 and x 2 from experiments E, 

and E2 , respectively, Lx, ( q) = c. L.r.,( q) [where Lx, is the likelihood 

function p(x;fq)], for some positive constant c, and also that the 

choice of experiment is uninformative with regard to q. Let P be 

any proposition concerning the value of q and nothing else, i.e., 

that q lies in some specified set. Then P should be regarded as 

equally valid whether x 1 is observed in E, or x2 is observed in 

E2 ; and in any decision problem where the loss function depends 

only upon q and the act taken, the same post-data preference for 

acts should obtain whether x 1 is observed in E,, or x2 in E2 • 

There are two differences between [this J and the likelihood 

principle of Birnbaum and of Berger and Wolpert. The first is 

that their conclusion ... has been replaced by a weaker conclu­

sion, that rules out joint statements [see below] ... The second 

difference is that the qualification that the choice of experiment 

not be informative as to the parameter has been added. 

(Hill 1987)86 

Hill makes essentially four changes to Berger and Wolpert's version of the 

likelihood principle. The first three changes introduce caveats which are 

so important that I will give them names, while the fourth change fixes a 

mistake in Berger and Wolpert's statement of the principle which results 

from a difference between their notation and mine, and which therefore 

holds no danger for me. 

86. Hill wrote his version before the edition of Berger and Wolpert's monograph which I 
quoted a moment ago, (Berger & Wolpert 1988), but after the first edition (Berger & Wolpert 
1984 ), upon which Hill comments. 
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The no-inftrence-without-conditioning rule 

Let us call Hill's first caveat the no-inference-without-conditioning re­

striction on the likelihood principle. The restriction is straightforward: in 

applying the likelihood principle, one can only use it for inferences from the 

data to the hypotheses which have been used to calculate the conditional 

probabilities one is using. In terms of our table: one can only apply the 

likelihood principle when one is making inferences from observed data to 

the hypotheses laid out in the table. In the context of a fixed table, this is 

obvious: it just says that when the likelihood principle authorises us to use 

the column of the table containing the observed data, it does not authorise 

us to make inferences about any hypotheses not contained in the table. 

The reason for my choice of name is that the restriction says that we may 

only use the likelihood principle to make inferences about the hypotheses 

on which we have conditioned to get the probabilities in the table. "Con­

ditioning" here merely means that the probabilities are the probabilities 

given by the hypotheses in question. 

The no-inference-without-conditioning qualification is also obvious 

in most real-life applications of the likelihood principle. We will see the 

importance of stating it explicitly when we come to discuss objections to 

the likelihood principle in chapters 9 to 12. 

The uninformative-choice-rif-merriment rule 

Hill's second caveat is one we might call the uninformative-choice-of­

merriment rule. It concerns cases in which we apply the likelihood prin­

ciple to a pair of experiments (which, according to Berger and Wolpert's 

statement of the likelihood principle, which Hill implicitly accepts, must 
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give information about the same set of hypotheses). It says that our choice 

of experiments (and, in my extension, merriments) must not in itself give 

us any information about which hypothesis is likely to be right ... or, 

if it does, that must be taken into account, in which case the likelihood 

principle does not apply simpliciter. The logical importance of this caveat 

is easy to see: for example, an experimenter might know that one particu­

lar hypothesis is particularly plausible, and base her choice of merriments 

on that knowledge. Hill gives the example of a statistician choosing an 

experiment which is efficient only if a parameter is small, thus giving us 

evidence that the statistician believes the parameter to be small. We would 

be irrational not to take such knowledge into account. The rhetorical im­

portance of this caveat will become clear in later chapters, when we will see 

that the uninformative-choice-of-merriment rule is a generalisation of the 

distinction between informative and uninformative stopping rules, a dis­

tinction which is prominent in the literature on the merits of the likelihood 

principle. 

A third caveat which Hill introduces is that "the loss function" must 

depend only on the hypothesis and "the act taken". These are decision­

theoretic words. They are important for people who believe that the 

conclusions we may draw about hypotheses depend on our utilities. Hill's 

caveat about loss functions is logically equivalent to Good's fixed-utilities 

clause. A loss function is, by definition, a utility function multiplied by -I. 

Hill's example 

Hill's fourth change to Berger and Wolpert's version of the likelihood prin­

ciple is to require that the inferences which are drawn using the principle 
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are inferences about "the value of q and nothing else", where q is a param­

eter which distinguishes between the competing hypotheses. This fourth 

caveat serves to rule out a case which would otherwise be a counterexam-

pie to Hill's statement of the likelihood principle. I will describe this case; 

and we will see that it does not threaten any statement of the likelihood 

principle based on the framework which I set out in chapter 2, whether it 

includes Hill's fourth caveat or not. 

Hill constructs a case in which Berger and Wolpert's formulation of 

the likelihood principle is mistaken. He does this by arranging matters 

so that the parameter q encodes inferentially important information about 

hE H which cancels out in the likelihood ratio of q, ;gi;:~~:~. His example is 

as follows (verbatim, except for some abbreviation, and except that I write 

r where Hill writes (},in order for the example to match the terminology 

of both Hill's version of the likelihood principle and my chapter 2). The 

reader may skip the details of the example if he is willing to trust that the 

likelihood ratio of q can be made independent of h E H, for a specific choice 

of E; and x;, even if E; and x; remain inferentially relevant to h. 

We consider two experiments, E 1 and E,z, which are to be as in the 

definition of the likelihood principle [above]. If E; is performed 

then we will observe the value of the random variable X; ... 

Let p;(x; q), i = I, 2, be two different probability mass [density] 

functions for the data, that depend only upon the parameter 

q. If experiment E, is performed then let the probability mass 

function for the random variable X, that will be observed be 

p1 (x; q), given that H 1 is true, and let it be p2 (x; q), given that H 2 

is true. If E 2 is performed then let the probability mass function 

for the random variable X2 that will be observed be p.(x; q), given 

that H, is true, and let it be p, (x; q), given that H2 is true. [Note 
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that this specific choice of probability functions, in which p;(x; q) 
depends on H;, means that the value of q carries information 

about H;.] ... 

We shall assume ... thatPr{H1 IE;, q} = p, a known constant 

... Hence p is simply the unconditional probability of HI> and 

similarly, 1-p is the unconditional probability of H 2 •••• We also 

assume that the choice of experiment is itself uninformative, i.e., 

that Pr{ E; I q} does not depend upon q ... 
Suppose now that the observation x 1 in the experiment E 1 

is taken as the data. Then the likelihood function for q ... is 

L(q;E~>xi) = Pr{X1 = x~>Edq} 

= Pr{X1 = x1lq,EI} X Pr{Edq} 

ex Pr{X1 = x~>H1 Iq,E 1 } + Pr{X1 = xi,H2Iq,EI} 

Similarly, if x2 is observed in E2 , then the likelihood function for 

q IS 

L(q;E2,x2) ex Pr{X2 = x2lq,E2} 

= P2(Xz; q) x p + p1(x2 ; q) x (I- p) . 

. . . We now make the further (and last) assumption that there 

exists a valuex1 of the random variable XI> for which p1 (x1; q) = 0 

for all q, while p,(x1; q) > 0 for all q; and that there exists a value 

x2 of the random variable X2 , for which p1(x2 ; q) = 0 for all q, 
while p.(x2 ; q) > 0 for all q. 

(adapted from Hill 1988, p. 121) 

This construction ensures that the likelihood function for q is the same 

whether x 1 is observed in E 1 or x2 is observed in E 2 ; and yet one should 
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draw different inferences about h E H in those two cases, for in the first 

case H 1 has probability zero and in the second case H 2 has probability 

zero. This may appear to violate the likelihood principle. In fact it does 

not, unless the likelihood principle is stated particularly sloppily, because 

the apparent counterexample trades on calculating the likelihood function 

of q but then making inferences about a different variable, h. 

It is essential to the workings of this example that q encodes important 

information about h which cancels out in the likelihood ratio $ii:~/~l· If 

the likelihood function of q is used for inferences about q alone no problem 

arises, but if it is used for joint inferences about q and h then the information 

about h is relevant to the relationships between possible values of q, even 

though it cancels out in the likelihood ratio; and yet, because it cancels 

out in the likelihood ratio, (E 1, x 1) and (E2 , x2 ) apparently entail the same 

inference about q. (This cancelling out is a feature of this particular 

example; it is not something that is bound to happen whenever q encodes 

information about h.) 

If, instead of calculating the likelihood function of q, we calculate the 

joint likelihood function of q and h, we can safely make joint inferences 

about q and h after all. It is impossible for any inferentially relevant 

information which the joint likelihood function holds about h to cancel out. 

This safe procedure - calculating the joint likelihood function of q and 

h - is just the same thing as calculating the likelihood function of the 

whole of H, or of calculating the likelihood function of() E 8, where 8 

is any index on the whole of H, since in my terminology (see chapter 2), 

the hypothesis space H consists of the possible values of H" H 2 and q, 

not of H; or q alone. (An index on H is a bijective function of h E H, 
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also known as a one-to-one correspondence with H. The simplest index, 

if H is finite, is of course a function which simply counts through the 

members of H.) Hill's parameter q is not an index on H. What makes 

Hill's example particularly clever is that q is an index of H in experiment 

E 1 separately or in experiment E 2 separately, but it is a different index on 

H in the two experiments; so, taking Hill's example as a whole, q is not a 

bijective function of H and hence not an index on H. 

In summary, provided we either restrict our inferences to inferences 

about the parameter whose likelihood function we calculate, or use an index 

on the whole of H (or H itself) as the parameter whose likelihood function 

we calculate, we need not worry about Hill's counterexample. The former 

option tells us more than the latter, so it is preferable epistemically. Hill 

himself comments, 

Of course one might very well a1so be interested in the H;, in 

which case one might want to include the hypothesis as part of 

the overall parameter [i.e., use an index (} instead of an arbitrary 

q], but my point is that there is nothing in the conventional 

statements of the likelihood principle or in the conventional view 

of statistical inference that would .force us to do so. 

(Hilli988, p. 124) 

In my own version of the likelihood principle below, inferences are always 

and only about hypotheses: in Hill's terminology, the hypothesis is always 

part of the overall parameter. When the hypothesis is represented by a 

numeric variable(}, (}must be simply an index on the hypothesis space, and 

cannot serve a dual purpose by encoding any relationships between the 

hypotheses as q does in Hill's example. (This is all in accord with chapter 
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2.) Thus, Hill's clever counterexample will not apply to my version of the 

likelihood principle. 

THE LIKELIHOOD PRINCIPLE: BERRY'S VERSION (1987) 

Likelihood Principle. The likelihood function Lx(e) contains all of 

the information in an experiment relevant for inferences about 

e, where X stands for the observed data. 

(Berry 1987, p. 118) 

This is not quite the same as any other version, but it adds nothing of philo­

sophical interest to previous versions. I include it because I like it (because 

it is concise without being extremely misleading) and for completeness. 

THE LIKELIHOOD PRINCIPLE: 

STUART, ORD AND ARNOLD'S VERSION (1999) 

the likelihood principle ... comes in weak and strong forms. The 

weak principle ... states that all the information about e obtained 

from statistical experiment, E, is contained in the [likelihood 

function], L(xle). If two replications, yielding observations x1 

and ro. lead to proportional likelihoods: 

L(xde) = c(x" x2 )L(x2 le), 

where the function c is independent of e. x, and x2 provide the 

same information about e. or 

Ev(E,x,) = Ev(E,ro). 

The strong form ... extends the principle to include two different 

experiments, E, and E 2 , so that 

269 



(Stuart eta!. 1999, p. 438) 

Note that c may depend on x 1 and .x,. (It is obvious that c must not depend 

on 9.) 

THE LIKELIHOOD PRINCIPLE: 

CASELLA AND BERGER'S VERSION (2002) 

LIKELIHOOD PRINCIPLE: If x andy are two sample points 

such that L(9lx) is proportional to L(9[y), that is, there exists a 

constant C(x,y) such that 

L(9lx) = C(x,y)L(9Iy) for all 9, 

then the conclusions drawn from x andy should be identical. 

(Casella & Berger 2002, p. 291 )87 

THE LIKELIHOOD PRINCIPLE: ROYALL'S VERSION (2004) 

Two instances of statistical evidence are equivalent if and only if 

they generate the same likelihood function. This proposition is 

called the likelihood principle[.] 

(Royall 2004, p. 126) 

87. Note that this Berger, who is also the Berger of(Casella & Berger 1987) is a different 
person from the Berger of (Berger 1980, Berger & Wolpert 1984, Berger 1985, Berger & 
Sellke 1987, Berger & Wolpert 1988, Berger & Berry 1988. Berger 1993). 
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THE LIKELIHOOD PRINCIPLE: BARNETT'S VERSION (1999) 

The Likelihood Principle. We wish to draw inferences about a 

parameter () in a parameter space 8. If two sets of data x, and 

x2 have likelihood functions that are proportional to each other, 

then they should support identical inferential conclusions about 

() 0 0 •• 

There are really two versions of the principle--the weak 

version where x1 and x, arise under a common probability model 

... and the strong version where the models differ but relate to a 

common parameter and parameter space. 

(Barnett 1999, p. 188) 

4. GROUP II: COROLLARIES OF GROUP I 

The following four statements which are claimed by their authors to be 

versions of the likelihood principle might be better seen as rather immediate 

corollaries of the versions given above. They are logically weaker than 

Group I versions of the likelihood principle, because they do not say that 

one must use the likelihood function; only that one must not do what 

Frequentists do, namely to base our inferences on averages over unobserved 

possible values of observed variables (see chapter 4)88 

88. It is worth noting that the most vocal opponents of the likelihood principle, such as 
Mayo, base their position precisely on their view that it is advisable to base all statistical 
conclusions on averages over unobserved possible values of observed variables: in other 
words, their alternative to the likelihood principle (although not, of course, the only possible 
alternative) is to adopt precisely its converse. 
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THE LIKELIHOOD PRINCIPLE: BIRNBAUM'S COROLLARY (1962) 

[The likelihood principle J may be described informally as assert­

ing the "irrelevance of outcomes not actually observed." 

(Birnbaum 1962, p. 271) 

THE LIKELIHOOD PRINCIPLE: BERLINER'S COROLLARY (1987) 

One should not base final conclusions or confidences on criteria 

involving averages over unobserved possible values of observed 

variables. 

(Berliner 1987) 

This is the group II version closest to my heart. There are two important 

subtleties in Berliner's position. He does not say that we should not take 

averages of unobserved possible values of variables. He says only that we 

should not base our inftrences on averages of unobserved possible values 

of variables '![observed variables. First of all, we can and should consider 

averages over unobserved values of variables when we are doing things 

other than making inferences about our set of hypotheses. In particular, it 

seems to me and, probably, to Berliner, that we should take such averages 

when we need to work out the expected (average) properties of a merriment 

that we have not conducted yet. And secondly, it is only after we have 

observed values of the variables available to us that we should stop taking 

into account the unobserved values. In terms of my table, we should only 

restrict ourselves to a single column once we have observed something 

actual on which to base our choice of which column to look at. 
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THE LIKELIHOOD PRINCIPLE: BERGER'S COROLLARY (1993) 

The LP states that an estimator should be dependent only on the 

observed data, rather than the data not seen 
(Berger 1993) 

5. GROUP II IS LOGICALLY EQUIVALENT TO GROUP I 

The principles in Group II entail that we can and should ignore counter­

factuals of the following form: 

Had we observed members of the sample space X which we did 

not in fact observe, they would have made some contribution to 

the error rate of our inference procedure. 

As I showed in chapter 7, all Frequentist procedures necessarily rely on 

counterfactuals of this form. The error rates defined by Frequentist proce­

dures are, by definition, affected by such counterfactuals; and I suggested 

towards the end of chapter 7 that it is precisely this property ofFrequentist 

error rates which makes them unsuitable for inference about hypotheses. 

It is clear that the likelihood principle as defined by Group I entails the 

principle as defined by Group II (modulo the vagueness of some of the above 

definitions), because the Group I principles say that only the likelihood 

function may be used to draw inferences from data to hypotheses while the 

Group II principles say that only functions of the actual observation may be 

so used89 The entailment of Group II from Group I follows directly from 

89. I am using infOrmal statements of the two groups of principles here, as befits an 
argument about two vague categories of more or less vague principles. Consequently, the 
present argument about the equivalence of the two groups needs to be taken with a pinch 
of salt. I do not think it is important to make. these groups more precise. It is, of course, 
important to make the likelihood principle more precise, and I do that in a later section of this 
chapter. 
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the fact that the likelihood function is such a function. The entailment in the 

other direction, from Group II to Group I, is less obvious. It can be shown as 

follows. Consider an inference procedure which satisfies the requirements 

of Group II. Let us label the use of the actual observation made by the 

procedure f(x.), without loss of generality. Whatever f(xa) is, it can be 

algebraically decomposed into three components: a component which does 

not depend on the probability of Xa, which we can label j;; a conditional 

probability component..fs(p(x.[/;(H))), where.f2 is an arbitrary function 

of the hypothesis space H; and an unconditional probability component 

j. (p(xa)) . Taking these component functions in turn: 

j;, trivially; is irrelevant to whether the inference procedure sat­

isfies the principles in Group I. 

No matter what.f2 is,..fs is a function of p(x.lh) where his 

a free variable; in other words, fs is a function of the likelihood 

function of x •. 

j. may appear not to be a function of the likelihood function 

of x., but Bayes's Theorem (the theorem itself, not the more 

controversial claims ofBayesianism) ensures that it is, as follows. 

Since pis a probability function, the integral of p(hlxa) over h E H 

must be I (provided that no relevant hypotheses are omitted, a 

condition which I make explicit in my definition of the likelihood 

principle below). By Bayes's Theorem, 

p(hlxa) = p(x.ih).p(h). 
p(xa) 

Integrating both sides over H, and noting that the left-hand side 

must integrate to I as just mentioned, we get 

1 
= lp(x.lh).p(h) 

h p(xa) 
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so I - I { 
- p(xa) J/(xaJh).p(h) 

SO p(xa) = 1 p(xaJh). p(h) 

which shows that p(xa) is a function of the likelihood functon of 

Xa- (In fact, it is best seen as just a normalisation constant.) This 

proof is valid even if(as Frequentists sometimes suggest) there 

is no epistemological or statistical meaning to be attached to 

probabilties ofhypotheses. The proof uses only the mathematical 

properties of such probabilities, not any interpretation of them. 

So each ofthe componentsj.. .. 4 is a function of the likelihood function. By 

construction, then,j(xa) itself is also a functon of the likelihood function. 

So the inference procedure in question satisfies the Group I principles 

merely by virtue of satisfying the Group II principles. This completes the 

(informal) proof that the two groups are equivalent (modulo the vagueness 

inherent in the definitions). 

6. GROUP III: THE LAW OF LIKELIHOOD 

I am aware of only four authors who define the likelihood principle in a 

way which does not fit into Groups I or II; and at least three of these four 

authors (all except Miller) do so only sometimes, and in other work define 

it in a way which fits into Group I. 

275 



THE LIKELIHOOD PRINCIPLE: BARNETT'S RESTATEMENT (1999) 

As we saw above, Barnett (1999, p. 188) defines the likelihood principle in 

an orthodox way. But later in the same book, while discussing the views 

of Barnard (who has an orthodox definition of the likelihood principle), 

Barnett writes: 

for present purposes [the likelihood principle J may be restated as 

follows in two parts. 

(i) If the ratio of the likelihoods for two sets of data is constant 

for all values of a relevant parameter 0, then inferences about 

(} should be the same whether they are based on the first, 

or the second, set of data. This implies that the likelihood 

function conveys all the information provided by a set of 

data concerning the relative plausibility of different values 

of(}. 

(Barnett 1999, p. 309) 

So far this is orthodox and more or less agrees with Barnett's other defi­

nition. But then he adds a statement of the law oflikelihood, calling it part 

(ii) of the likelihood principle: 

(ii) The ratio of the likelihoods, for a given set of data, at two 

different(} values is interpretable as a numerical measure of 

the strength of evidence in favour of the one value relative 

to the other. 

(Barnett 1999, p. 309) 
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THE LIKELIHOOD PRINCIPLE: MILLER'S VERSION (1987) 

This might be called the "likelihood principle": the strength with 

which a body of data supports a hypothesis as against rivals is 

the greater as the data are more likely should the hypothesis be 

true and less likely should the rivals be true. 

(Miller 1987, p. 270) 

This is the same idea as Barnett's second definition (presented in a more 

confusing way) except that, unlike Barnett, Miller does not say that the 

likelihood is a strength of evidence but only that it increases as the strength 

of evidence increases (i.e., it is a monotonic function of a strength of 

evidence). 

THE LIKELIHOOD PRINCIPLE: 

FORSTER AND SOBER'S VERSION (2004) 

Forster and Sober (2004), claiming to quote Hacking (1965) and Royall 

(1997), give a two-part version of the likelihood principle: 

There is first of all the idea ... which we will call the qualitative 

Likelihood Principle: 

(QUAL) Ofavors H 1 over Hz if and only ifPr(OjH,) > Pr(OJHz). 

[And then there is the idea J that the likelihood ratio measures the 

degree to which the observations favor one hypothesis over the 

other: 

(DEGREE) 0 favors H 1 over Hz to degree x if and only if 0 

favors H, over Hz and Pr(OjH,) I Pr(OJHz) = x. 

(Forster & Sober 2004a, p. 3) 
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Elsewhere in the literature (including in Royall's book, contrary to what 

Forster and Sober say Royall says) this principle is called the law oflike­

lihood and is clearly distinguished from the likelihood principle (Royall 

1997, p. 3; Hacking 1965, p. 65). Forster's later work steps back from the 

above definition, and instead defines the likelihood principle along the lines 

of Group I above (Forster, personal communication). 

In this book, I will not be concerned with DEGREE. I will discuss the 

differences between QUAL and the likelihood principle proper in chapter 

9. 

As I have already emphasised, the statements in group III are really 

statements of the law of likelihood, a principle which is logically much 

stronger and therefore potentially more contentious than the likelihood 

principle. I believe it is extremely important for clarity in the discussion 

of statistical inference that criticisms of the law oflikelihood do not rub 

off on the likelihood principle. Similarly, there are dangers in confusing 

arguments for one principle with arguments for the other. An argument 

which supports the likelihood principle need not be, and generally is not, 

an argument for the law of likelihood. This is easy to see if we recall that 

the former is a only principle about when, not how, we should use the whole 

likelihood function, while the latter is a principle about numerical measures 

of relative strength of evidence90 

90. Does the law of likelihood imply anything at all about the truth of the likelihood 
principle? I am not sure, because of ambiguities in the statement of the law of likelihood 
(ambiguities which I do not need to resolve for the main work of this book). It is not clear 
to me whether the law oflikelihood, as stated above, implies that any other adequate measure 
of relative strength of evidence must be equivalent to the measure suggested by DEGREE. 
If so then the law of likelihood implies the likelihood principle. This has been the view of 
the some prominent writers on the law of likelihood. (Royall is one such. He does not make 
this point explicitly, but it is fairly clear from the discussion at (Royalll997, pp. 22-24).) But 
alternatively one could read the principle as saying, more agnostically, that the suggested 
measure is only one among many non-equivalent measures, in which case the law of likelihood 
implies nothing about the likelihood principle. 
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Incidentally, in 1965 Hacking took the view that the law oflikelihood 

does not imply the likelihood principle because the law oflikelihood allows 

the likelihood function to be changed when the statistical model is reap­

praised, while the likelihood principle, he takes it, does not (Hacking 1965, 

pp. 219--220). In my version, and many others, it does, but in 1965 that 

was not as clear as it is now. 

Unlike Groups I and II, Group III is not sufficiently important to my 

investigation to merit a careful rewording. 

7. A NEW VERSION OF THE LIKELIHOOD PRINCIPLE 

The following version of the likelihood principle states the main body 

of the principle precisely and incorporates all of the assumptions which 

other authors have stated piecemeal. It is the only version of the princi­

ple to date to incorporate all the necessary assumptions: namely, all the 

assumptions required by previous versions of the principle, except for the 

specifically Bayesian assumptions suggested by Lindley and others and 

except for the assumptions required by Basu's distinction between weak 

(intra-experiment) and strong (inter-experiment) versions (which I have 

shown to be unnecessary). 

My version of the principle incorporates all the assumptions which 

are necessary to the proof which I will give in chapter 13, but it does not 

incorporate all the assumptions thought to be necessary by all authors. For 

example, Barnard, Jenkins and Winsten ( 1962) suggest that the likelihood 

prinicple fails to apply when the sample space or the hypothesis space "are 

provided with related ordering structures, or group structures, or perhaps 

other features". Barnard et al. do not argue explicitly in favour of this 
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restriction of the likelihood principle, while Basu explicitly argues against 

it, essentially by arguing that the burden of proof is on Barnard et a!. to 

justify this "blank cheque against all violations of[ the likelihood principle]" 

(Basu 1975, p. 20). My own position is simply that neither the informal 

arguments for the likelihood principle which I have given so far nor my 

proof of chapter 13 require or even suggest a restriction of the sort Barnard 

eta!. recommend. ("Hypothesi non lingo.") 

Terminology 

By "inferences" I mean any beliefs and partial (probabilistic) beliefs 

which are held or followed and any actions which are taken, as delib­

erate results of an observation. 

11 Xa denotes a vector representing all observations considered relevant 

to any of the hypotheses in some set H. Xa can be purely observa­

tional: it need not result from one or more deliberately constructed 

experiments. [Discussion: the likelihood principle is only usiful if 

the set H contains all the hypotheses of interest; but this need not 

be made an explicit condition of its applicability, provided inferences 

about hypotheses not in H are avoided, as formalised in the following 

point.] 

111 By "inferences about hypotheses" I mean any inferences about the hy­

potheses in H: such inferences must not mention any hypotheses not 

contained in H except that they may (trivially) mention any hypothe­

ses whose truth is not in doubt and any hypotheses on which Xa has no 

bearing. [Discussion: in the absence of this condition, the likelihood 

principle could require that we treat two observations as evidentially 

equivalent even though one supports an important but unmentioned 
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hypothesis more strongly than the other one does. Detailed exam­

ples illustrating the need for this condition are given in (Berger & 

Wolpert 1988, pp. 36-38) and elsewhere in the statistical literature, 

but really the need is completely general and detailed examples are 

not necessary to show its importance.] 

IV Two likelihood functions are considered equal if all their variables 

have the same meanings within the theories represented by each 

hypothesis, and ifthe two functions are proportional (iff(::lc > 0) (Vh) 

(L1(h) = c.L,(h)). [Discussion: the caveat that the variables must 

have the same meanings is what I called "Lindley's condition" above. 

It meets an objection by Pratt which I consider in chapter 13.] 

Conditions rif applicability 

I. We cannot infer anything about the relative importance of the various 

possible inferential errors from the observation (i.e., the loss function, 

or equivalently the utility function, is either independent of the obser­

vation or unimportant). [This caveat replaces Good's fixed-utilities 

clause.] 

2. The choice of observation is not informative about the hypotheses, only 

its outcome. [This replaces Hill's uninformative-choice-of-merriment 

clause.] 

3. The Well Defined Likelihood Function condition: For each hypoth­

esis h under consideration in a statistical analysis, Ph(xa) = p(xalh) 

must be a well defined function (i.e., have a single value). [This in­

corporates the no-inference-without-conditioning clause, discussed 

above, which says that one can only use it for inferences from the data 
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to the hypotheses which have been used to calculate the conditional 

probabilities one is using.] 

The likelihood principle 

Inferences from observations to hypotheses should not de­

pend on the probabilities of observations which have not 
occurred, except for the trivial constraint that these probabili­

ties place on the probability of the actual observation under the 

rule that the probabilities of exclusive events cannot add up to 

more than I. 

The likelihood principle, as I define it, does not entirely deny that inferences 

can be based on unobserved or counterfactual outcomes, and nor does it 

deny the importance of modal considerations in general. It is not in 

any sense a disguised form of actualism (the metaphysical notion that 

only the actual exists). It is only certain specific non-actual probabilities 

which the lilkelihood principle holds to be irrelevant ... and, even then, 

it only holds them to be irrelevant to inferences about simple hypotheses 

after observations have been made, and not to (for example) the design of 

experiments. 

Note in particular that the likelihood principle allows inferences about 

hypotheses to depend on beliefs about merely possible outcomes as long as 

those beliefs are not probabilistic. (Thanks to Alan Hajek for this point.) 

In this and other ways, the likelihood principle does not rule out the use of 

modal claims in general in statistical inference. It only rules out the use 

of a very specific type of modality. It would be interesting to investigate 

whether it could be extended to cover any other types of modality without 
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becoming equivalent to metaphysical actualism. I do not attempt such an 

investigation in this thesis. 

8. OTHER USES OF THE LIKELIHOOD FUNCTION 

In this section, I will discuss an important body of work on the episte­

mology of the likelihood function. This body of work was established by 

books by Hacking and Edwards appearing in 1965 and 1972 respectively, 

and was extended by a book by Royall in 1997. All three books promote 

the method of support, which I have already described briefly in chapter 

5. I was not able to discuss the method of support then in as much detail 

as I would have liked, because at that point we did not yet have a detailed 

understanding of the likelihood principle. 

The work I will discuss in this section is concerned with the question 

of whether (and if so how) the likelihood principle can be applied to scientific 

inference without adding anything, such as prior probabilities, to the usual 

scientific description of the situation. The question is whether we can 

perform substantive inferences about hypotheses given only the ingredients 

shown in Table 1 -a set of possible observations X and a set of hypotheses 

H (remembering that pis incorporated into Has described in chapter 2).91 

The logical relationship between this work and the likelihood principle 

is not completely straightforward. Pure likelihood methods are useful for 

9 I. Prior to Hacking's and Edwards's books, the literature uniformly took it that there 
was no way to do this. In particular, almost the only supporters of likelihood methods 
prior to Hacking were Fisher, who, as we have seen, supported them only intermittently, 
and Bayesians, who (without exception) only make inferences about hypotheses once they 
have determined a prior probability distribution for the parameters of interest- and a prior 
probability distribution, although it may be objective in some cases, is certainly not part of 
either X or H. It is for this reason that I call Hacking's and Edwards's methods "pure" 
likelihood methods: they use purely the likelihood function and nothing else. 
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inference only if the likelihood principle is true, so in supporting pure 

likelihood methods the authors I discuss in this section are supporting 

the likelihood principle at least implicitly and, in fact, explicitly. But the 

converse is not true: the likelihood principle does not imply that any pure 

likelihood method exists that will give epistemologically valid inferences 

(except for trivial ones, of course). The likelihood principle entails that 

inference procedures in a given situation must supervene on the likelihood 

function (no difference in inference from Xa to H without a difference in the 

likelihood function), but it does not entail that the likelihood function alone 

can tell us anything non-trivial."2 Consequently, the supporters of pure 

likelihood methods are claiming much more than the likelihood principle 

claims. 

The law qf likelihood j. the likelihood principle 

It is vital to distinguish between two principles with confusingly similar 

names. One is the likelihood principle, for which we have already had 

definitions ad nauseam. The other is the law of likelihood, also very 

occasionally called the likelihood principle (see group III above), which says 

something superficially similar but actually very much more ambitious. 

The least ambitious version of the law oflikelihood in the literature is this: 

If hand i are simple joint propositions [something slightly more 

specific than what I have been calling hypotheses] and e is a joint 

92. This is easy to see if we recall that Bayesianism is compatible with the likelihood 
principle. Bayesians agree that our conclusions supervene on the likelihood function in 
a particular epistemic situation, but only because in a particular epistemic situation the prior 
probability function is held fixed. The idea that supervenience on the likelihood function may 
not guarantee the existence of any non-trivial pure likelihood methods is not restricted to 
Bayesians, although they are the most prominent writers on this point (Berger & Wolpert 
1988, chapter 5, for example). In principle, one might believe that all sorts of information 
about a particular observational situation or about the variables in question is necessary before 
one can use the likelihood principle to make inferences. (D. A. S. Fraser is one non-Bayesian 
who has made this point repeatedly.) 
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proposition [an observation], and e includes [is compatible with J 
both h and i, then e supports h better than i if the likelihood of h 

exceeds that of i." 

(Hacking 1965, p. 59) 

Or, in less idiosyncratic terminology, 

Law ciflikelihood: lfhypothesis A implies that the probability that 

a random variable X takes the value xis PA(x), while hypothesis B 

implies that the probability is PB(x), then the observation X= x 

is evidence supporting A over B if and only if pA(x) > PB(x), and 

the likelihood ratio, pA(x) I PB(x), measures the strength of that 

evidence (Hacking, 1965). 

(Royall1997, p. 3) 

If the defence of the law oflikelihood in (Hacking 1965), (Edwards 1972) 

and (Royall 1997) is successful then its success is inherited by the likeli­

hood principle, because the law oflikelihood entails the likelihood principle 

(provided the two principles are stated with the same conditions of appli­

cation). But if the law oflikelihood falls, that does not necessarily reflect 

badly on the likelihood principle, because the likelihood principle is much 

weaker. The important difference between the two principles is that the 

law oflikelihood talks about an observation supporting one hypothesis to a 

greater extent than another, while the likelihood principle makes no mention 

at all of the extent to which an observation supports a hypothesis. This may 

seem an unproblematic difference, or even no difference at all, since the 

likelihood principle talks about the conditions under which an observation 

supports two hypotheses equally. The appearance that the two principles 

are logically equivalent may arise from the fact that both tell us that the 

285 



following statement describes a function Ev which in some sense tells us the 

evidential support that x0 provides for h1 and h,: 

For proponents of the law oflikelihood, this statement is straightforwardly 

true. For proponents of the likelihood principle it is true but misleading, 

because they need not hold that Ev is a number (as the statement seems to 

suggest it is). 

The bulk of the proponents of the likelihood principle, being Bayesians, 

hold that Ev should be equated with the posterior distribution which is 

the result of a Bayesian analysis, perhaps together with a utility function. 

The posterior distribution is typically a continuous function, and often 

highly multidimensional. It most certainly is not a number. So much for 

Bayesians. Other proponents of the likelihood principle do not have to say 

that Ev is any sort of mathematical entity at all. They assert that our 

conclusions about h1 and flo should be the same in some circumstances, but 

they need not say that those conclusions must have any formal structure. 

Now, whatever Ev is, perhaps it can be reduced to a number for some 

purposes. The law oflikelihood asserts that it always can (or, of course, 

that Ev actually is a number). The likelihood principle does not. That is 

why the likelihood principle is much weaker than the law oflikelihood. 

Recently, a number of authors writing on confirmation theory (the 

theory which treats Ev as a number) have begun to investigate the con­

straints which this approach places on the nature of Ev (Fitelson 200 I, 

Steel 2003). It is to be hoped that their investigations are fruitful; but 

those who do not treat Ev as a number do not have to abide by those 
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constraints - at least, not as far as anyone has shown to date. Of course 

it is possible that mathematical results in any field of enquiry may impact 

on any other field, and so results from confirmation theory could impact 

on the likelihood principle; but so far they have not done so."3 

9. THE LIKELIHOOD PRINCIPLE IN APPLIED STATISTICS 

Historically, one source of opposition to methods that comply with the 

likelihood principle has been intellectual, but there has been another source 

of opposition as well: namely, that statistical methods which comply with 

the likelihood principle were not feasible in many areas of science until the 

advent of computers. 

Although the likelihood principle itself is very simple, and the proce­

dures developed to date which comply with it (almost all of them Bayesian) 

are also, conceptually, very simple, as we will see when we meet examples 

of them in chapter 15, their very simplicity causes a calculational problem. 

Non-likelihood methods require ad hoc manipulations of the data, some 

of which are summarised in the test statistic T(x) which I discussed in 

chapter 7. If the question we are asking is whether we should believe the 

results of an inference procedure, the ad hocness of T(x) counts strongly 

against it. On the other hand, if the question we are asking is whether an 

inference procedure lends itself to easy calculation then we need to look 

at T(x) more favourably, because it can be chosen so as to simplify the 

93. Steel has suggested in print (Steel 2003) that his results have considerable force for 
Bayesians, but acknowledges in personal communication that as long as Bayesians are com­
mitted only to the likelihood principle and not to the law oflikelihood his results do not affect 
them. 
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calculations enormously. Now, Bayesian procedures never need to intro­

duce any components that are ad hoc.94 But this leads to a need to evaluate 

integrals of(typically) very high dimensions and arbitrary shapes; and that 

has hindered the use of such procedures in real-world problems. 

This problem rather rapidly became less important in the 1980s and 

1990s, when cheap computers became available which could evaluate such 

large integrals - at least in most cases. Sadly, the methods used by 

applied statisticians, and sanctioned by regulatory agencies and funding 

bodies, became ossified just a couple of decades before computers were 

powerful enough to provide a good menu of alternatives to Frequentist 

procedures. 

It is hard to be sure whether the slowness of computers can be read 

into the history as a really important factor in the decisions that have been 

made by the statistical community; but one suggestive piece of supporting 

evidence is that recently some important regulatory agencies have begun 

to liberalise the inference procedures which they sanction among the scien­

tists whose work they are asked to endorse. For example, in mid 2004 the 

US Food and Drug Administration, possibly the most influential arbiter 

of statistical methods in the world, advertised posts for fifteen statisticians 

with PhDs in Bayesian methods (all of whom will a fortiori be experts 

on methods of inference compatible with the likelihood principle). This 

liberalisation coincides with the widespread availability of computers fast 

enough to implement Bayesian methods of the type necessary for phar­

maceutical research. Possibly this timing is not coincidental. If not, that 

94. Bayesian procedures may have some components which are subjective, which is perhaps 
problematic, but even the subjective components are not ad hoc: they are chosen to accurately 
reflect some agent's belief state. By and large, Bayesians have chosen to hold on to this pristine 
nature of their inference procedures by not introducing any unnecessary ad hoc simplicifation 
of the model. 
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suggests (perhaps tentatively) that the lack of availability of computation­

ally feasible procedures has always been a barrier to the acceptance of the 

likelihood principle. Such speculations have no bearing on the truth of the 

main arguments ofthis book; but they do have a bearing on their practical 

importance. 
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-9-

Misreadings of the Likelihood Principle 

This chapter, and the following three, consider objections to the likelihood 

principle. I will show that none of them is convincing. I will defer 

objections to my proof of the likelihood principle to chapter 14. There I 

will show that none of those objections is convincing either. 

In this first objections chapter, I will get out of the way a number 

of objections which are based on accidental misreadings of the likelihood 

principle. All of the objections I consider in this chapter have been made 

by authors who quote from the same pool of versions of the likelihood 

principle as I give in chapter 8; so they are not intending to refer to some 

different principle. They are objecting to what they see as essentially the 

same principle as the one which this thesis supports; however, they have 

misread the principle, and are actually, in their various ways, attacking 

something which I do not defend. 

In the three chapters which follow this one, I will consider objections 

which apply to the likelihood principle as I have stated it. 

1. OBJECTION 9.1 

THE LIKELIHOOD PRINCIPLE IMPLIES THAT 
WE SHOULD TAKE NO CARE OVER 

EXPERIMENTAL DESIGN 

One of the claims [of the Bayesian approach J is that the experi-
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ment matters little, what matters is the likelihood function after 

experimentation .... It tends to undo what classical statisticians 

have been preaching for years: think about your experiment, 

design it as best you can to answer specific questions, take all 

sorts of precautions against selection bias and your subconscious 

prejudices. 

Le Cam, quoted in (Mayo 1996, p. 337) 

It may be that Le Cam did not mean to attack the likelihood principle, 

only some orthogonal part of Bayesianism; but regardless of what Le 

Cam meant, Mayo gives this quotation as an objection to the likelihood 

principle. 95 

This thesis is entirely about the problem of statistical inference, not 

about experimental design, as I said at the outset; but if I reached conclu­

sions which had blatantly false implications for how we should think about 

experimental design, that would be no good; so I must respond toLe Cam's 

objection. Since I am not defending Bayesianism, but only the likelihood 

principle, it will suffice to show that the likelihood principle does not im­

ply that we should ignore experimental design. This is a trivial task: my 

version of the likelihood principle, and also all other versions when read 

in context, say that given that observations have been made in a certain 

inferential context certain consequences follow. So the likelihood principle 

simply does not say anything about experimental design, except what we 

can infer from it by very indirect means, after considering possible frame­

works of experimental design with which it could be used. Such possible 

frameworks are infinitely varied, and neither I nor (as far as I can see in 

95. Mayo's implication that Le Cam intended to attack the likelihood principle, although 
unimportant here, is probably correct given his other views. 
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this or in their other work) Le Cam nor Mayo believe that the likelihood 

principle must be used only with experiments designed by Bayesians. 

That on its own is enough to show that the likelihood principle does 

not imply that we should ignore experimental design; I do not additionally 

need to show that Bayesians do not ignore experimental design. But it is 

easy to show this too, at least in a sketchy way, so I will do so. Experimental 

design, including all of the aspects which Le Cam cites as important, is 

discussed in the following Bayesian works among many, many others: 

(Gelman et al. 1995), (O'Hagan 1994), (Berger 1980), (Jaynes 1983), (Raiffa 

& Schlaifer !2000), (Savage 1954), (Lindley 1965), (Jeffreys 1973), (Good 

1965), (Good 1965), (Bernardo & Smith 1994), (Spiegelhalter et al. 1986), 

(Freedman & Spiegelhalter 1989), (Freedman et al. 1983). 

There may be versions of Bayesianism which incite us not to care 

about Le Cam's concerns, but if so I have 'never heard of them; and (Gelman 

et al. 1995) and (O'Hagan 1994), which seem to currently be the dominant 

references for Bayesian scientists, are clearly in agreement with Le Cam 

about the importance of experimental design. 

2. OBJECTION 9.2 

IN A WIDE RANGE OF CASES, THE LIKELIHOOD 

PRINCIPLE FORCES US TO PREFER A COMPLEX 

MODEL TO A SIMPLE ONE 

In order to fully state this objection to the likelihood principle, I need to 

reiterate Forster and Sober's definition of the principle (already discussed 

briefly in chapter 8). 
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FORSTER AND SOBER'S DEFINITION 

In a recent paper on the likelihood principle, Forster and Sober (2004) 

redefine the principle as follows. 

There is first of all the idea ... which we will call the qualitative 

Likelihood Principle: 

(QUAL) Ofavors H 1 over Hz if and only ifPr(OIH1 ) > Pr(OIHz). 

[And then there is the idea J that the likelihood ratio measures the 

degree to which the observations favor one hypothesis over the 

other: 

(DEGREE) 0 favors H 1 over H2 to degree x if and only if 0 

favors H 1 over Hz and Pr(OIH1 ) I Pr(OIHz) = x. 

(Forster & Sober 2004a, p. 3) 

As I have shown (with numerous citations to back my definition), the like­

lihood principle does not include QUAL or DEGREE. Forster and Sober 

have confused the likelihood principle with a totally different (although ad­

mittedly confusingly named) principle called "the law of likelihood" (Boik 

2004 ). None of the definitions I can find in the literature agree with Forster 

and Sober's or significantly disagree with mine, with the sole exceptions 

of Miller's and one (but not the other) of Barnett's. 

Since, as I have argued, the likelihood principle is important, it is 

vital to be clear about its meaning and clear about which arguments count 

against lt as opposed to counting merely against the law of likelihood. I 

will therefore pursue this terminological issue a litttle further. Forster and 

Sober cite Royall's (1997) for their definition of the likelihood principle96 

96. They are explicit about this. They write: "Royall follows Hacking in construing the 
likelihood principle as a two-part doctrine. There is first of all the idea, noted above, which 
we wil1 call the qualitative Likelihood Principle", fol1owed by the definitions QUAL and 
DEGREE given above. 
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But this attribution to Royall is simply a mistake. Royall's definition is 

essentially the same as mine. And while it is true that Royall's definitions 

come from Hacking, Hacking is even more explicitly opposed to a definition 

like Forster and Sober's than Royall is. 

Since attribution is at issue, I quote at length instead of paraphrasing. 

First of all, Royall: 

The likelihood principle 
Suppose two simple hypotheses for the distribution of a random 

variable X assign respective probabilitiesj;(x) and.f2(x) to the 

outcome X = x, while two different hypotheses for the distribu­

tion of another random variable Y assign respective probabilities 

g, (y) and g2 (y) to the outcome Y = y. Ifj;(x)l .f2(x) = g1 (y)l g2 (y) 

then the evidence in the observation X = x regarding}; vis-a-vis 

.f2 is equivalent to that in Y = y regarding g, vis-a-vis g2 • If a 

third distribution,};, is considered for X, and a third, g5 , for Y, 

then the two outcomes, X = x and Y = y, are equivalent evidence 

concerning the respective collections of distributions, {/; ,.f2,j;} 

and {g1,g2 ,g5 }, if all of the corresponding likelihood ratios are 

equal: j; (x) I .f2(x) = g, (y) I g2 (y),j; (x) I j;(x) = g 1 (y) I g5 (y), etc. 

This fact is called the likelihood principle 
... The likelihood principle asserts that two observations 

that generate identical likelihood functions are equivalent as ev­

idence; in Birnbaum's (1962) words, 'the "evidential meaning" 

of experimental results is characterized fully by the likelihood 

function'. " 

(Royall 1997, p. 24, quoting Birnbaum 1962) 

Royall does give a principle identical to QUAL, but (quite rightly, in view 

of the previous literature) he calls it the law oflikelihood: 
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Law riflikelihood: If hypothesis A implies that the probability that 

a random variable X takes the value xis PA(x), while hypothesis B 

implies that the probability is Pn(x), then the observation X = x 

is evidence supporting A over B if and only if PA(x) > p8 (x), and 

the likelihood ratio, pA(x) I p8 (x), measures the strength of that 

evidence 

(Royall 1997, p. 3) 

Moreover, Hacking, after giving essentially the same definitions as Royall 

(and citing Barnard 1947, Savage 1961 and Birnbaum 1962 in support), 

says: 

The likelihood principle does not entail the law oflikelihood[.J 

(Hacking 1965, p. 65) 

So attacking the law oflikelihood does not attack the likelihood principle. 

Given that Forster and Sober have made an error in citation, it remains 

to see what we should mean by "the likelihood principle". Perhaps there is 

some reason to prefer Forster and Sober's definition to mine. But I think 

not. The considerations which we normally use to decide on the meanings 

of technical terms include etymological precedence and some notion of 

pragmatism or suitability for purpose. Both of these considerations come 

out against Forster and Sober's definition. 

Firstly, the etymological point can be won either historically or 

through sheer weight of numbers. The weight of numbers are clear from 

my earlier citations of many versions of the principle. Historically, Forster 

and Sober's definition has appeared only in recent years. By contrast, the 

use of the likelihood principle by other authors is based on the following 

observation of G. A. Barnard in 1947: 
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The connection between a simple statistical hypothesis H and 

observed results R is entirely given by the likelihood, or proba­

bility function L(RIH). If we make a comparison between two 

hypotheses, H and H', on the basis of observed results R, this 

can be done only by comparing the chances of, getting R, if H 

were true, with those of getting R, if H' were true. 

(Barnard 194 7, p. 659) 

This is clearly the likelihood principle as I define it, not the law oflikelihood. 

This definition immediately gained currency, and was widely popularised 

by a much-cited paper in 1962 (Birnbaum 1962). So it has very clear 

precedence in the literature. 

Secondly, we can ask whose version of the principle is most accept­

able on pragmatic grounds. Forster and Sober agree that the likelihood 

principle is a better foundation for statistical inference than either of the 

dominant two schools of thought ("Neyman-Pearson-Fisher statistics and 

... Bayesianism", (Forster & Sober 2004a, p. 152)). It follows that it would 

be extremely useful to have a name for this principle which shows it in 

the best light possible. After all, we all want to avoid attacking a straw 

man. Forster and Sober's definition is clearly not the best, since it falls 

to at least one of their criticisms while alternative definitions do not (as 

I show below). Moreover, elsewhere Sober himself has accepted that the 

likelihood principle can validly be defined as I define it.97 Of course we 

could accept Forster and Sober's definition despite these objections, but I 

have shown that that would be expensive. 

97. Sober has written: "the Likelihood Principle, taken at its word, does not rule out the 
possibility that one can talk about the evidence for or against a given hypothesis without 
reference to alternative hypotheses. True, advocates of 'likelihoodism' have endorsed the 
Likelihood Principle and have also insisted that evidence is essentially comparative ... " 
(Sober 2002b) (my emphasis). In (Sober 2002b) Sober does not say what he takes the likelihood 
principle to be, but he does say that it need not take evidence is essentially comparative, from 
which it follows that it cannot be the same as the law of likelihood. 
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On the same lines of reasoning, DEGREE should not be taken to be 

part of the likelihood principle. I agree with Forster and Sober's criticisms 

of DEGREE- for example, that it uses an ad hoc confirmation function, 

which Fitelson 200 I has shown to be problematic. But again, this is not a 

criticism of the likelihood principle. 

OBJECTION 9.2 CONTINUED 

According to Forster and Sober, QUAL cannot generally be used to com­

pare hypotheses which have different numbers of parameters. They use an 

example to show this. They consider the set containing all hypotheses of 

the form y = a+ bx + u and all hypotheses of the form y = a+ bx + cx2 + u. 

Note that the former subset consists of all the straight lines in the plane, 

and that it is nested inside the latter subset, the parabolas, since every 

straight line is also a parabola. 

At this point in their argument, Forster and Sober say that to compare 

the likelihoods of composite hypotheses we may do one of two things. We 

may take an average of the likelihoods of the members of each - a move 

taken from Bayesian theory, in which likelihoods may be combined using 

weighted averages, with the weights being ascribed by a prior probability 

function. Or we may compare the likeliest member of one subset with the 

likeliest member of the other. They dismiss the former possibility with the 

following argument: 

Because LIN [the set of straight-line hypotheses] is nested in­

side of PAR [the set of parabolic hypotheses], it is impossible 

that Pr(LINjData) > Pr(PARjData), no matter what the data 

say. When scientists interpret their data as favoring the simpler 

298 



model, it is impossible to make sense of the judgement within 

the framework of Bayesianism." 

(Forster & Sober '2004a, p. 159) 

No argument is given for this, and it is mathematically wrong, as is probably 

obvious; if not, just slot in the following prior probability density function: 

Pr( straight line with slope a and intercept b) ex a 

Pr(parabola with coefficients a, b and c) = 098 

Forster and Sober's hasty rejection of the Bayesian option for evalu­

ating composite hypotheses leads them to accept the following principle 

(which they do not name, so I name it for them): 

[COMPARE] Composite hypotheses are to be compared "by com­

paring their likeliest special cases." 

(Forster & Sober '2004a, p. !59) 

COMPARE tells us how to compare the likelihoods of composite hypothe­

ses- hypotheses, like the subsets above, which do not themselves assign 

probabilities to individual possible observations but which contain sub­

hypotheses which do. 

The fact that the straight line subset is nested in the subset of parabo­

las, along with COMPARE, entails that the maximum likelihood must be 

found within the set of parabolas. Forster and Sober say that "when models 

are nested, it is almost certain that more complex models will fit the data 

better than models that are simpler. However, scientists don't take this as 

98. This function is known as an improper prior because it does not integrate to l. Some 
Bayesians allow improper priors. For the others, the improper function can be replaced by the 
proper but less perspicuous prior Pr(parabola with coefficients a, band c) = 0 if c (/. [o, €], 
Pr(parabola with coefficients a, band c) = J(c) otherwise, where € << Pr(PARjData) andf 
is any function which integrates to 1/c- a Random Bessell function would do, for example. 
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a reason to conclude that the data always favor" the more complex models. 

Therefore QUAL, which says that they should favour the more complex 

models in this case, is implausible. Thus, Forster and Sober conclude, the 

likelihood principle is implausible. This ends the statement of the current 

objection. 

RESPONSE TO OBJECTION 9.2 

Strictly speaking, I have already defused this objection by showing that 

it applies only to the law of likelihood, not to the likelihood principle. 

Nevertheless, let us see whether criticism 2 tells us anything at all. I 

will conclude that it does have some force, but not enough to rule out the 

likelihood principle. 

There are two logical errors in criticism 2. Firstly, the principle 

COMPARE is not part of the likelihood principle even as it is stated by 

Forster and Sober; it requires an additional argument, and the additional 

argument given is mathematically flawed, as shown above. Secondly, even 

if we allow COMPARE, we still have a small non sequitur: it follows 

from Forster and Sober's argument that the likeliest hypothesis must be a 

parabola, but it may also be a straight line. (If cis o theny = a+bx+d +u is 

both a parabola and a straight line, according to mathematical convention.) 

Hence it is not "almost certain" that the best parabola will be more likely 

than the best straight line, although it is certain that it will be at least as 

likely. 

Despite those quibbles, we should take some note of criticism 2. After 

all, some (although I think very few) proponents of the likelihood principle 

do accept COMPARE (separately from the likelihood principle). Also, 

300 



the "almost certain" clause does apply in some situations. So criticism 2 

does have some force; but it is not a criticism of the likelihood principle 

and, as I have shown, the likelihood principle is important and should 

not be maligned merely because it bears a superficial resemblance to the 

law of likelihood. Thus, the likelihood principle is saved; but to avoid a 

Pyrrhic victory I will conclude my response to Forster and Sober by saying 

something about how the likelihood principle can be used in the absence of 

COMPARE. 

CAN WE DO INFERENCE IN THE ABSENCE OF COMPARE? 

Forster and Sober might argue that COMPARE is indispensable for in­

ferring anything about composite hypotheses, and hence that there is no 

point in promulgating a likelihood principle which is incompatible with it. 

In this section I will briefly discuss the alternatives to COMPARE. I will 

also give an exceedingly brief case study. 

The most obvious way to choose between models is a Subjective 

Bayesian one. The problem which COMPARE addresses is the assignment 

of likelihoods to composite hypotheses. The Subjective Bayesian uses 

her beliefs about the particular matters at hand to decide how composite 

hypotheses relate to their simple components. Specifically, she uses these 

beliefs in the form of a prior probability function, as a way of determining 

a weighted average over the various member hypotheses of each model. 

Forster and Sober reject this Bayesian move, but their rejection is 

based on a mathematical error, as I mentioned above. In any case, one 

need not be a Subjective Bayesian in order to have alternatives to COM­

PARE. A non-subjectivist can still take a leaf out of the Bayesian's book 
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and use domain-specific synthetic considerations to decide how to assign 

likelihoods to composite hypotheses. Examples of this way of working 

include the many applications of Bayesian mathematics by objectivist non­

Bayesians, especially so-called "Empirical Bayes" methods in biostatistics 

(Breslow 1990, Morris 1983).99 

Let me sketch a case study of how one might apply the above rea­

soning to choose between a parabola and a straight line in the absence 

of COMPARE. Suppose that amateur astronomers observe a small body 

moving through the upper atmosphere. Suppose that their observations 

are not well enough calibrated to determine the body's speed nor its exact 

trajectory, but that its path appears to be roughly but not exactly a straight 

line. Then an analysis of the data could model the body's trajectory as a 

straight line or as a parabola, just as in Forster and Sober's example. The 

body could be a large meteor, in which case it is best modelled using hy­

potheses consisting of various straight lines (because meteors move very 

fast and hence in approximately straight lines). In this case, deviations 

from straightness would be best modelled as observational error. Alter­

natively, it could be a ballistic missile moving more slowly, in which case 

its path is best modelled as a parabola. A non-COMPARE consideration 

might be that amateur astronomers are unlikely to notice something as 

small as a missile, while they are much likelier to notice a large meteor. 

The notion of "unlikely" at work here can be an informal one, taking into 

account any cogent but non-mathematical considerations: for example, it 

might be thought that there are no missiles big enough to be widely noticed 

99. Empirical Bayes methods are so-called because they use mathematical tools superficially 
identical to Bayesian mathematics. They are, arguably, not Bayesian in the philosophical sense, 
and are certainly not subjectivist (Deely & Lindley 1981, Bernardinelli & Montomoli 1992). 
See chapter 3 for further discussion. 
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unless a new missile has been developed in secret, and that possibility might 

be thought unlikely, for no formally specifiable reason. Alternatively, the 

measure of unlikeliness might depend on the average likelihood of noticing 

a small body, averaged over the various linear hypotheses (meteors) and 

judged to be large compared to an average over the various parabolic hy­

potheses (missiles). Either way; this is not an application of COMPARE, 

which would tell us to take into account only the single likeliest hypothesis 

on each model. 
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Is the Likelihood Principle Unclear? 

This chapter and the next two examine objections which apply to the 

likelihood principle as I have stated it (as opposed to the objections which 

apply only to misreadings of the likelihood principle which I dealt with in 

the previous chapter). This chapter looks at objections which claim that 

the likelihood principle does not make sense. The next chapter, chapter 11, 

considers objections which are based on conflicts between the likelihood 

principle and other principles and practices, including cases in which the 

likelihood principle seems at first sight to lead to incorrect analysis of 

specific statistical models (models which are known in the literature as 

counter-examples to the likelihood principle) which, supposedly, can be 

analysed better by applying other methods. Finally, in chapter 12, I will 

consider miscellaneous other objections to the likelihood principle. The 

division between these three chapters is not meant to be important; I make 

it primarily to keep each chapter short. 

Some of the criticisms of the likelihood principle presented here are 

valid when applied to earlier versions of the principle. I will not try the 

reader· s patience by listing for each objection the versions of the principle 

for which it succeeds and the versions for which it fails, because when 

earlier versions have been defeated by objections it has been in relatively 

uninteresting ways. Each of the earlier versions has some degree of slop­

piness in its statement of its conditions of applicability, and it is this which 

has made it vulnerable. I have already catalogued the dimensions of this 
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sloppiness in chapter 8, and it would be redundant to revisit each dimen­

sion in this chapter. Instead, I will compare each objection to my new 

version of the likelihood principle. This version (which I concocted in 

chapter 8) agrees in spirit with all earlier versions of the principle (except 

for the Group III version of Forster and Sober) while tightening up the 

conditions of applicability. I wish to show that this new version survives 

all the objections which have been levied at earlier versions. 

Some of the objections which I will consider turn on the incompati­

bility of the likelihood principle with some currently standard Frequentist 

method of statistical inference. Such objections, in the forms in which they 

appear in the literature, tend to hide the fact that they turn on the mutual 

incompatibility of the likelihood principle and Frequentism; as we will see, 

it is often silently assumed that if the likelihood principle were true it would 

be compatible with Frequentist inference. Typically, this is put together 

with substantive considerations of some other sort, which are displayed 

as the ostensible subject of the objection, and inconsistencies are seen to 

follow, from which it is concluded that the likelihood principle is false. 

In organising the discussion of objections of this sort, I have had to 

choose between A stating all such arguments as a single objection and B 

stating each separately. I have chosen route B, partly because it follows 

the organisation of the literature, but mainly because route A would have 

been unenlightening. It is well known that the likelihood principle is 

incompatible with Frequentist methods; this claim is neither surprising 

nor helpful. Frequentist methods correspond to analysing Table 1 by rows, 

while likelihood methods correspond to analysing it by columns. I show in 

detail, in many places in this thesis (especially chapter 7 and chapter 15), 
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that these two approaches to statistical inference arise from fundamentally 

different motivations and are fundamentally incompatible. Demonstrating 

a specific incompatibility with Frequentism cannot therefore be considered 

an objection to the likelihood principle. Blaming such incompatibilities on 

the likelihood principle simply begs the question of which we should prefer: 

Frequentist inference or the likelihood principle. This thesis as a whole 

(especially chapter 7 and chapter 13) is an answer to that question. It 

would be unhelpful to give a necessarily condensed version of the whole 

thesis as the answer to the objection that the two are incompatible (route 

A). On the other hand, route B will prove to be interesting, as I uncover 

the fundamental objection that the likelihood principle is incompatible with 

Frequentism from apparently unrelated objections. Once I have uncovered 

this as the sole source of the objection (by considering the substantive 

issues in each case), I will of course repeat that the likelihood principle is 

not shown to be false by its incompatibility with a method (Frequentism) 

which I have already devoted a whole chapter (chapter 7) to undermining. 

This chapter is mostly concerned with the objection that the likeli­

hood principle does not make sense, because either the hypothesis space 

or the likelihood function (or both) is not well defined. There is no com­

parable objection that the sample space may not be well defined, because 

the likelihood principle does not rely on the existence of a sample space: 

the reader may recall that this is one of its advantages over Frequentist 

principles. 
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1. OBJECTION 10.1 

THE HYPOTHESIS SPACE IS NOT WELL DEFINED 

Lane (Berger & Wolpert 1988, pp. 176-178) objects that there are three 

possible definitions of h, each of which leads to major problems for the 

likelihood principle. The following list is quoted from (Berger & Wolpert 

1988, pp. 176-178), but with Lane's variables relabelled to match mine, so 

that his (X, 8, {Po}) becomes my (X, H,p). 

The possible definitions of h which Lane canvasses are: 

I. h is the distribution p; 

2. H is an abstract set and h merely indexes the distribution fh; 

3. h is a possible value for some 'real' physical parameter, and p is to be 

regarded as the distribution of the random quantity X should h be the 

true value of that parameter. 

These options require some explanation; and then we will see that Lane's 

objections to each of them is right but that he has missed a better option. 

I. Option: "h is the distribution p" 

Explanation: Each hypothesis h consists solely of a probability dis­

tribution. 

Objection: Proofs of the likelihood principle (including mine) make 

use of "mixed experiments" consisting of one merriment followed by 

another. But these mixed experiments do not have the same prob­

ability distribution as either of the simple experiments that they're 

constructed from. A typical mixed experiment has observations of 

the form (j, x1), a cross-product which cannot be described by the 

same probability distribution as the one that describes observations 
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of the form x;, if only because there are more possible observations in 

the mixed case as in the simple case (if we are dealing with discrete 

distributions; otherwise the mismatch is not in size but in dimension­

ality). So the weak conditionality principle, which describes mixed 

experiments of the general form (X 0 'l,h,p), is using h in a context 

in which it cannot possibly be applied. 

This objection is correct, strictly speaking. The obvious riposte is that h 

is meant to apply just to part of the mixed experiment. That too fails to 

work, strictly speaking, so long as the mixed experiment is described as 

(J 0 X, h,p). When we get to my final solution to Lane's objections, I will 

give a precise way to avoid this problem; but already we are nearly there. 

'2. Option: "H is an abstract set and h merely indexes the distribution 

Ph" 

Explanation: His the set {1,'2,3, ... n}, telling us which member 

of a set of distributions {p,, p2 , p3 , • •• p.} we should use. 

Objection: In that case, we could apply the likelihood principle to 

any two merriments so long as they had the same number of possible 

outcomes. But then the principle would no longer be plausible. For 

example, we consider a merriment in which we examine a human blood 

sample, and another in which we examine the Soviet flag. We might 

then ask what colour our object is. On receiving the answer "red", 

which has likelihood I in both experiments, the likelihood principle 

would tell us to draw the same conclusions about the world from 

either one. 
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This objection is also correct. h cannot be merely an index applicable 

equally to any set of probability distributions. 

3. Option: "his a possible value for some 'real' physical parameter, and p 

is to be regarded as the distribution of the random quantity X should 

h be the true value of that parameter." 

Explanation: his the probabilistic equivalent of a truthmaker for the 

probability distribution p. 

Objection: It is unclear what these underlying properties might be. 

Lane gives the example of a coin toss: in using the likelihood principle 

in such a case, one would have to be a realist, non-pragmatist believer 

in propensities in order to think that there is an underlying real 

physical parameter. 

This objection is almost certainly correct, bearing in mind the great variety 

of uses of the likelihood principle. Even if the world contains propensities, 

there would have to be a separate propensity underlying every useful 

probabilistic statement that a scientist can make. Since that is contrary 

to standard propensity theories, I will not investigate that possibility any 

further; instead, I now come to my proposed alternative to which none of 

Lane's objections apply. 

4. his none of the above. his any one of the various equivalent statements 

of a hypothesis by the community of people who understand that 

hypothesis. 

One can construct cases in which this idea is difficult to apply; and this 

problem forms one of the main limitations of the likelihood principle. But 
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in the sort of Kuhnian normal science which I have primarily set out to 

examine, this option is completely unproblematic. Moreover, it is very 

similar to Lane's option I: according to my option 4, h directly tells us 

which distribution p to use; but h does not actually consist of p. This 

distinction serves as a precise way to avoid the problem I noted under 

Lane's objection I. It is true, as Lane says, that if h wasp it would be 

wrong to use it directly in the mixed experiment 0* = (J 0 X, h,p*), 

if only because it would have the wrong size (or, in the continuous case, 

dimensionality). But if h is a scientific hypothesis which tells us what pis, 

it is perfectly straightforward for it to also tell us what p* is in the mixed 

experiment. 

It is not surprising that the distinction between options I and 4 has 

escaped Lane's notice, because in many cases the most natural way for a 

scientist to write down a hypothesis h is actually to write down p! But 

she does not mean h as a purely mathematical object, equal to everything 

it's isomorphic to 100 (or, if she does, I don't, when I use it in an instance 

of the likelihood principle). Rather, she means h as a linguistic direction 

for obtaining probabilities - in which guise it is easily used in mixed 

experiments, with a flexibility only limited by the natural language m 

which the scientist is working. 

Earman, in his book on Bayesianism (p. 35), comes to the conclusion 

that this is how Bayesian statisticians operate: they assign "probabilities 

100. If the reader has any doubt about this, consider a scientist who says, "I have the most 
excellent hypothesis about temperature inversions over Los Angeles. It is ... (some convoluted 
equation)." What would we make of a scientist who replies by saying, "My hypothesis about 
the distribution of temples in Angkor Wat is also ... [the same convoluted equation]." We 
would say that these two hypotheses are related in an interesting way; but we would not say 
that they were the same hypothesis. We would distinguish between my option 4 and Lane's 
option 1, and we would prefer option 4. 
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to objects that express propositions, namely sentences". Earman comes 

to this conclusion not as a solution to Lane's problem (which he does not 

consider) but as the most reasonable explication of how scientists actually 

work. My own point is normative rather than descriptive, but a little 

descriptive support does it no harm. 

2. OBJECTION 10.2 

THE LIKELIHOOD FUNCTION IS NOT 
WELL DEFINED 

Some Bayesians have argued that Bayesianism does not imply the likelihood 

principle, on the grounds that there is no such thing as an isolated likelihood 

function (Bayarri et al. 1987). They argue that in a Bayesian analysis there 

is no principled distinction between the likelihood function and the prior 

probability function. A related possible assertion which I will consider 

at the same time is that the likelihood function fails to be well defined 

for non-Bayesians also, although this latter form of the objection does not 

appear in the literature. 

This objection is motivated in the literature by the fact that Bayesians 

generally reject the idea that the likelihood principle is useful on its own, 

because (they say) we need prior probabilities in order to apply the like­

lihood principle; and once we have admitted the universal necessity of 

using prior probabilities (they say) we will no longer need to separate the 

likelihood function from the prior (Bayarri et al. 1987, Berger & Wolpert 

1988). Thus, they accept proofs of the likelihood principle, conditional on 

the assumption that a likelihood function has been specified; but they deny 

that specifying a likelihood function is necessary, and they deny that it is 
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possible to do so in a principled way. Thus, they believe that the likelihood 

principle is true, if stated carefully, but not straightforwardly applicable. 

Despite decrying the applicability of the likelihood principle in this 

way, Bayesians in this school see it as a useful weapon with which to combat 

Frequentism. I like to think of this view as Bayesian Hegelianism, as it 

sees the likelihood principle as an important part of a historical dialectic 

which will inevitably lead to a synthesis in which it is no longer required. 

Such a prediction has been beautifully summarised by Bayarri, DeGroot 

and Kadane, following a metaphor proposed by Butler (1987, p. '21 ): 

The [Frequentist] Cheshire Cat vanished quite slowly, first the 

tail and then the body of freq uentist methods. The last visible 

part was the likelihood [principle J grin, "which remained some 

time after the rest of it had gone". But that, too, disappeared. 

(Bayarri eta!. 1987, p. '27) 

To return to the objection itself: the claim is that there is no principled 

definition of the likelihood function because there is no principled way of 

deciding what should be labelled x (data) and what should be labelled h 

(hypothesis) in the definition of the likelihood as p(xalh). 

Bayarri, DeGroot and Kadane's examples all involve the following 

set-up. (Throughout this section I replace Bayarri, DeGroot and Kadane's 

y by Xa, x by y, (}by 7/J, andf by p, in order to remain consistent with the 

terminology of chapter '2.) 

Suppose that the random variable Y is not observed but an­

other random variable X is observed with conditional density 

p(xalJ', 'lj;). [Then J it is irrelevant which of the factors on the 

right -hand side [of 

313 



are regarded as part of the [likelihood function J and which are 

regarded as part of the prior distribution. 

(Bayarri eta!. 1987, pp. 6-7) 

This is correct: although elsewhere I have presented the Bayesian method 

as if it distinguished between the likelihood function and the prior prob­

ability function, mathematically speaking such a distinction is not needed 

once the above equation has been specified. In contrast, we do have to dis­

tinguish the likelihood function in order to apply the likelihood principle. 

Three natural choices are p(x.I.,P), p(x.,yi.,P) and p(x.[y, .,P) [ = p(xalY)], but 

there is no natural way to choose between these three possibilities ... or 

so Bayarri, DeGroot and Kadane claim. 

The problem for the likelihood principle, as thus stated, is very easily 

solved. One need merely specify what one means by "likelihood function". 

I have already done this, in chapter 2: for me, the likelihood function is 

always p(xaiJ, .,P). As Berliner (1987, p. 19) correctly notes, the likelihood 

principle "applies equally well, though separately, in each of the potential 

cases [which Bayarri, DeGroot and Kadane] enumerate", so my solution 

is perfectly adequate, as would be any other solution which serves to 

disambiguate the term "likelihood function". 

However, it may appear that a problem remains, since others may 

disambiguate the likelihood function differently from me. For example, 

Bayarri, DeGroot and Kadane imagine a case in which two doxastic agents 

see the same observation, and analyse it using the same mathematical 

model except that one of them introduces an unobserved variable y into 
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the model while the other does not. This leads the two agents to define 

the likelihood function in different ways, following which they cannot use 

the likelihood principle to compare their results. 

To see that my version of the likelihood principle still applies, we have 

only to note that these two agents are using different hypothesis spaces H: 

for one of them, H includes a specification of an unobserved variable, while 

for the other it does not. Given a fixed H (which is an explicit precondition 

of my version of the likelihood principle), only one likelihood function is 

possible, namely p(xalh E H). (Note that they agree on X 0 ; otherwise no 

joint analysis of any sort would be possible.) A merely practical problem 

remains if neither of the two agents accepts the other's parameterisation 

of the hypothesis space, but there is no reason why this should happen, 

since the two parameterisations essentially agree with each other (more 

precisely, one parameterisation is easily reducible to the other by taking a 

marginal distribution with respect toy). 

My reply to this objection is essentially the same as a reply due to 

Berliner. He states his definition of the likelihood function as follows: 

The (likelihood function J is that function of the quantities of 

interest which is the carrier of the information concerning those 

quantities provided by the observed variables. 

(Berliner 1987, p. 19) 101 

101. Berliner's definition, unlike mine (p(x.zlh E H), for some fixed H), makes the problem 
of specifying the likelihood function seem worse than it is. We do not need the apparently 
vague term "carrier of the information"; all we need is a unique specification of the hypothesis 
space. 
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Berger and Wolpert agree that definitions of the likelihood function such 

as mine and Berliner's solve the problem posed by Bayarri, DeGroot and 

Kadane. 102 

Berger and Wolpert give a different reply to the current objection. 

This reply functions as a wicket-keeper for my purposes: I think it is right 

but less helpful than the replies I have given above, and hence best ignored 

by those who find the replies I have already given convincing. For the as 

yet unconvinced, the third reply runs as follows: 

[We] view [this point] as tangential to the LP [likelihood prin­

ciple]. The LP leaps into action after [the likelihood function 

has J been defined, and X = [ xa] observed. The process of get­

ting to this point is inherently vague and rather arbitrary; but 

that doesn't alter the fact that, having reached this point and 

assuming that the model is correct, all information about (} ... is 

contained in [the likelihood function J for the given data. 

(Berger & Wolpert 1988, p. 39) 

To see that Berger and Wolpert's reply is right, it is only necessary to look 

at the likelihood principle as I have worded it in chapter 8. The assumption 

102. These authors note (correctly) that such solutions may be misleading, since my defi­
nition of the likelihood function for the purposes of applying the likelihood principle is not 
always the best definition for the purposes of maximum likelihood estimation (defined in 
chapter 5) (Bayarri, DeGroot & Kadane 1987, pp. 7-8; Berger & Wolpert 1988, p. 39). This 
is of course irrelevant to the work of this thesis since the only use I make of my definition is 
to defend the likelihood principle, but it should be borne in mind in the unlikely event that 
my definition is adopted widely. It is also relevant to anyone who thinks that the method of 
maximum likelihood is uniquely defined. This may be a problem for advocates of inference to 
the best explanation. 

An alternative reply to Bayarri, DeGroot and Kadane's problem, due to Butler (1987, 
p. 21 ), is to define the likelihood function relative to the "model and inferential aim" of the 
agent. In some cases this may yield a diflhent likelihood function from mine, but this raises 
no inconsistencies because the likelihood principle applies (separately) to both likelihood 
functions. Butler's definition is better suited than mine to maximum likelihood estimation, 
but I do not adopt it because it is open to a charge of excessive subjectivity (at least prima 
facie). 
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that the likelihood function has been defined before the likelihood princi­

ple becomes applicable is simply my Well Defined Likelihood Function 

assumption. 

3. OBJECTION 10.3 

THE LIKELIHOOD PRINCIPLE IS UNIMPORTANT 
BECAUSE IT DOES NOT TELL US HOW 

TO PERFORM STATISTICAL INFERENCE 

This objection is suggested by (Berger & Wolpert 1988, p. 2). 

It is true that the likelihood principle does not tell us how to perform 

statistical inference; it only tells us how not to. However, since the ways 

in which it tells us not to include almost all of the commonest statistical 

methods (namely, Frequentist methods), it is important. In addition, my 

case study in chapter 15 shows how the likelihood principle can at least 

suggest, if not mandate, promising statistical methods. 

In the next chapter, I move on from objections to the clarity of the likelihood 

principle to objections based on conflicts between the likelihood principle 

and other principles, including cases in which the likelihood principle seems 

at first sight to lead to incorrect analysis of specific statistical models. 
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-11-

Conflicts With the Likelihood Principle 

This chapter discusses objections which are based on conflicts between the 

likelihood principle and other principles and practices. 

1. OBJECTION 11.1 

THE LIKELIHOOD PRINCIPLE UNDERMINES 

STATISTICS AS CURRENTLY PRACTISED 

By far the most influential argument against the likelihood principle is 

hinted at more often than stated, and is rather unphilosophical in nature. 

This most influential of arguments is that statisticians successfully make 

inferences from data to hypotheses using Frequentist methods which con­

tradict the likelihood principle. Thus, it is claimed, regardless of what is 

wrong with the likelihood principle, something must be, for it rules out the 

use of exactly the methods that seem to be most successful. A rare explicit 

statement of this objection is in (Mayo 1996, p. 362). 

I have three and a half answers to this objection. 

Firstly, the likelihood principle does not entail that the conclusions 

drawn by Frequentist methods are wrong; it only entails that statisticians 

can do better than to choose methods on the basis of their Frequentist 

properties. It therefore does not rule out any token statistical procedures, 

only methods for choosing procedures. Incorrect methods for choosing 

procedures may, as it happens, have chosen good procedures. I do not 
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have space to discuss whether this is really plausible; I offer it in order 

to question where the burden of proof lies rather than as a knock-down 

answer to the objection. 

Secondly; and more importantly, I deny that Frequentist methods are 

generally successful. The reasons why we might think they are successful 

are twofold: that they are successful in their own terms, instantiating as 

they do guaranteed low error rates; and that applied science, which rests 

on Frequentist methods, produces successful technology. 

But if Frequentist methods are successful in their own terms that 

proves nothing about whether the Frequentist way of evaluating inference 

procedures is the one we should use. 103 And that Frequentist methods 

produce successful technology, while it shows that Frequentist methods 

are not sufficiently bad to entirely disrupt technological progress, does not 

show that they are generally successful, nor that they are more successful 

than the alternatives. 

This brings me to my final answer to the objection, namely that it 

only succeeds if the alternatives to Frequentist methods are unsuccessful. 

I am not aware of any empirical reasons to think that Bayesian methods 

(for example) are unsuccessful. On the contrary, in chapter 15 I present a 

prima facie successful use of Bayesian methods to solve a problem to which 

Frequentist methods offer only an impractical solution. Moreover, in the 

103. It is also false that Frequentist methods are generally successful in their own terms, 
as they guarantee that both type I error and type II error will be small only if sample sizes 
are large and measurement error is fully modelled, neither of which caveats is commonly 
observed. The most obvious cases in which these caveats are broken are in psychometric 
research, in which sample sizes of under 20 are the norm and in which questionnaires which 
are known to correlate very badly with the mental states which they purport to measure are 
treated as if they had no measurement error at all. But I do not claim to have conclusively 
demonstrated the falsity of the claim that Frequentism is successful in its own terms: that 
would require an unmanageably large survey of the uses of statistical inference. So I count 
this as only half an answer to the objection. 
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few areas in which Bayesian methods are the norm (for example, analysis of 

noisy digital images, and email spam filtering) they appear to be admirably 

successful. 

2. OBJECTION 11.2 

THERE ARE COUNTER-EXAMPLES 

TO THE LIKELIHOOD PRINCIPLE 

A counter-example to the likelihood principle is, of course, any case in 

which two likelihood functions are derived from a situation fitting within 

the conditions of applicability of the likelihood principle, and are propor­

tional, and yet ought to lead to different conclusions. I deny that there 

are any such cases. I present the supposed counter-examples which have 

appeared in the literature and explain why the two likelihood functions in 

question need not lead to different inferences. 

OBJECTION 11.2.1 

FRASER'S EXAMPLE 

A form of this example was first suggested in (Fraser 1963, pp. 642-

643). I will give an example from (Evans eta!. 1986, pp. 186-187) which 

is essentially similar but which has been discussed more widely in the 

literature. 

Consider (X] = { 1, 2, ... }, and let the distribution for (X] be 

uniform on { l 8 I 2 J, 28, 28 + 1 }, where l s J is the greatest-integer 

function except that l~J is taken to be I. 

(Evans eta!. 1986, pp. 186-187) 
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In other words, for some parameter B, the probability of observing anything 

except l B I !2 J, !28 or !28 + I is zero, while the probability of observing each 

of those three options is ~. 

Probably the only way to understand this example is to draw the 

following table of values of p(xjB). 

x=l x=!2 x=3 x=4 x=5 x=6 x=7 x=8 

8 = I 1. ! ! 0 0 0 0 0 3 3 3 

8=!2 ! 0 0 ! ! 0 0 0 
3 3 3 

8=3 ! 0 0 0 0 ! ! 0 
3 3 3 

8=4 0 ! 0 0 0 0 0 ! 
3 3 

8=5 0 ! 0 0 0 0 0 0 
3 

8=6 0 0 1. 0 0 0 0 0 
3 

8=7 0 0 1. 0 0 0 0 0 
3 

8=8 0 0 0 ! 0 0 0 0 
3 

8=9 0 0 0 I 0 0 0 0 
3 

Table 4 

Note that the table is symmetrical in x and B. 

Evans, Fraser and Monette continue: 

For a given [x], the likelihood function is flat on three possible B 
values[.] 

x=9 

0 

0 

0 

! 
3 

0 

0 

0 

0 

0 

This is clearly right. In any given column, there is nothing to choose 

between the three values of B which have non-zero probability. This is the 
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only conclusion compatible with the likelihood principle, which says that 

our inferences can depend on x only via the likelihood function. Hence, 

from the likelihood point of view, once X a is observed each of three values 

of() is equally well supported. But: 

an examination of the probability matrix shows that choosing 

the smallest of the three possible B-values provides a confidence 

procedure at level ~'that is, one of the three B-values (each with 

the same likelihood) is a 2-to-1 favourite. 

(Evans eta!. 1986, p. 187) 

The table shows that this is right too. Suppose we fix () at 2, for example. 

The values x = 4 and x = 5 are twice as likely. put together, as x = 1. 

So any policy which gets () right when we observe x = 4 and when we 

observe x = 5 is twice as good as one which only gets () right when we 

observe x = 1. And the same is true for any value of B: for any value 

of B, a policy which gets () right when we observe one of the two larger 

x values compatible with the () in question is twice as good as one which 

only gets () right when we observe the smallest of the x values. Now, the 

proposed policy of choosing the smallest plausible () for a given x is just 

such a policy. Suppose once again that () is actually 2. If we follow the 

proposed policy, we will get() right in 2/3 of the plausible cases (when we 

observe x = 4 or x = 5); and similarly for any value of B. Since one value 

of() is right (according to the model), even though we do not know which 

one, and since this policy is apparently such a good policy for any fixed B, 

we should (Evans, Fraser and Monette imply) adopt this policy. Once we 

have observed X a, we should estimate () as the smallest of the three values 

compatible with the observation. 
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And yet estimating(} according to this policy contradicts the likelihood 

principle which, as we have already seen, says that for any observed Xa 

all three plausible values of(} are equally well supported. (We may not 

choose the best-supported B, because of our prior probabilities or other 

considerations, but that is orthogonal to what is at issue in this example.) 

An easy solution to this problem would be to note that Evans, Fraser 

and Monette's analysis begs the question of whether we should take any 

notice of Frequentist evaluations of the proposed procedure. After all, we 

already know that the likelihood principle is incompatible with Frequentist 

analysis in many cases, and strictly speaking this is all that the example 

tells us. It is not news. However, the example shows a case in which our 

intuitions are particularly likely to pull both ways. It may well seem to 

the reader that in this particular case we ought to opt for the policy which 

Evans, Fraser and Monette recommend. In order to show that even in this 

sort of case- perhaps the worst possible case for the likelihood principle, 

from the point of view of clashes of intuitions - the likelihood principle 

is still clearly right, I will criticise Evans, Fraser and Monette's proposed 

method of estimating(} directly, instead of relying on the general criticisms 

I have already made ofFrequentist methods. 

I would like to open my criticism of Evans, Fraser and Monette's 

analysis of this example with a story: 

the teacher asked her to imagine she was an Eskimo walking 

across the North Pole when she was suddenly attacked by a huge 

polar bear. 

'What would you do?' the teacher asked. 

T d throw a spear at him,' the girl answered. 
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'And what would you do if a second polar bear appeared?' 

the teacher asked. 

T d throw another spear at him.' 

'And what if a third and a fourth and a fifth bear attacked?' 

T d throw three more spears,' the girl answered. 

Then the teacher said, 'Hang on, where are you getting all 

the spears from?' 

And the girl said, 'The same place you're getting all the 

polar bears.' 

(Ball2001, pp. 18-19) 

The moral of this parable is that we should ask where Evans, Fraser and 

Monette are getting their infinite list of values of x from. (The same place 

as the spears?) Each x must be finite since it is a member of the real 

numbers and, moreover, if the list comes from any physically describable 

source then the length of the list must be finite and hence x must have 

an upper bound. This is so even if the list comes from a physical source 

which is in principle unbounded, because epistemic agents such as humans 

can only explicitly list a finite number of quantities before dying of old 

age. One could argue that we may well not know what the bound on xis, 

and hence that the table above is a reasonable representation of our state 

of knowledge about x. That seems fair enough. But since nevertheless x is 

bounded, albeit at a possibly unknown bound, let us represent the bound 

by B and see whether we can draw any conclusions which are valid on 

any (finite) value of B. It will turn out that we can, because Evans, Fraser 

and Monette's analysis turns on the possible values of x being literally 

unbounded, not merely bounded by an unknown bound. 

Have another look at the table, this time cutting it off at x = B. I will 

draw this as if B were 3, although we can imagine it to be as big as we like 
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just as long as it is finite. Omitting rows in which all the values are zero 

(i.e., rows in which e > 7), the table looks like this: 

x=l x=2 x=.'l 

e = I l I l 
s s s 

e=2 l 0 0 s 

e=.'l l 0 0 s 

e=4 0 I 0 s 

e=5 0 l 0 s 

e=6 0 0 l 
s 

e=7 0 0 l 
s 

Table 5 

Now the policy of choosing the smallest e for the observed Xa is no longer 

sensible. Recall that the justification for the policy was that it was on to a 

good thing for any fixed e. But this is no longer the case. If e is I then the 

policy is still good, for it gets e right on any of the three values of x. But 

if e is anywhere from 2 to 7, the policy is guaranteed to get e wrong. 

This argument works for any value of B: imagining the table to be 

larger shows that for any finite value of B the Frequentist error rate of 

the proposed procedure is t or less for most values of e. So this supposed 

counter-example to the likelihood principle fails, provided only that x has 

some bound, however large. 

An analysis similar to this is given by Hill in (Berger & Wolpert 

1988, pp. 167-171), although Hill uses decision-theoretic analysis where 

I stick strictly to an inferential analysis with no mention of utilities or 
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loss functions. Other authors such as Berger & Wolpert (1988) give an 

analysis of the example which solves the problem on the assumption that 

Bayesianism is right, which seems to me to miss the point of the objection. 

OBJECTION 11.2.2 

EXAMPLES WHICH RELY ON IMPROPER PRIORS 

Recall that improper priors are prior probability functions which do not 

sum to 1 over the hypothesis space. The likelihood principle is incompatible 

with such functions, in the sense that the joint use of the likelihood principle 

and improper priors can lead to inconsistent inferences, as I will illustrate 

in a moment. 

In the literature, this objection is sometimes phrased in a much more 

aggressive way, by saying that the likelihood principle is wrong simpliciter 

and by supporting that claim with examples which demonstrate that the 

likelihood principle leads to incoherence in plausible inference scenarios. I 

collect here a number of such scenarios which depend on the use ofBayesian 

methods with improper prior probability functions. I will admit that these 

scenarios lead to incoherence; but I will exonerate the likelihood principle 

by arguing that improper priors are illicit. 

The following supposed counter-example to the likelihood principle 

is adapted from (Stein 1962). 

Suppose a statistical experiment has two possible measurements, x 

andy, with x EX= (-oo, oo) such that 

X~ Normal (B, o-2
) 

· andy E Y = (o, bB) such that 
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(yl(}) c -'<i'(l-')' p = -e ~ y 

y 

where a is known, cis the normalising constant 

I 
c = -J-,-_...,,...,d':-:(-,_-,,.),:-d-. 

-e 2 , ry 
y 

d =50 and b = 10 10"~. 

Now suppose that we observe either Xa = ad or Ya = ad. Then for 

all B, p(xaiB) ex PCYaiB) except for a term in y I b, which is negligible since 

b is so large. In other words, Xa generates practically the same likelihood 

function as Ya· So, according to the likelihood principle, we must draw 

the same conclusions about an experiment which observes Xa as about one 

which observes Ya· 
104 

Stein observes that the following interval is a 95% Neyman-Pearson 

confidence interval for B: 

(X a - I. 96a, X a + I. 96a) 

and so, by the likelihood principle, the following interval must also be a 

95% Neyman-Pearson confidence interval forB: 

And yet the (Frequentist) probability of y falling into that interval on 

repetitions of such an experiment is less than 1 ~,00 • So the likelihood 

principle has caused us to produce an unsatisfactory Frequentist interval. 

104. Or so Stein c1aims. I do not concede that the likelihood principle is always applicable to 
likelihood functions which are merely approximately proportional to each other; but for the 
sake of argument let us go along with Stein's claim that it applies in this particular case. 
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This only shows once again that the likelihood principle is incom­

patible with Frequentism, and so it is no real objection to the likelihood 

principle. However, there is a troubling extension of Stein's example due to 

Basu. Suppose a Bayesian endorses the likelihood principle, and also holds 

a flat prior probability function for 0. Then she must calculate the same 

results as the Frequentist (numerically speaking; their interpretations of 

the results may differ): she must give each of the above intervals a 95% 

probability, and must also give a probability ofless than 1 ~,00 to the second 

interval (Basu 1975, p. 50, translated into the terminology of Berger & 

Wolpert 1988, p. 134). 

The Bayesian prior which leads to this difficulty is an improper prior 

(one which does not integrate to 1), as recommended by Jeffreys (see 

chapter 3). In order to fully defend the likelihood principle, I must therefore 

give some independent reason for being wary of improper priors. I do this 

in the following section. 

Are improper priors satiifactory idealisations? 

Commenting on the Stein example discussed above, Basu says: 

Mathematics is a game of idealizations. We must however rec­

ognize that some idealizations can be relatively more monstrous 

than others. . .. the super-idealization of a uniform prior over 

the infinite half-line (0, oo) is really terri(ying in its monstrosity. 

Can anyone be ever so ignorant to begin with about a positive 

parameter 0 that he is (infinitely) more certain that 0 lies in the 

interval (C,oo) than in the interval (0, C)- and this for all fi­

nite C however large?! Naturally, everything goes completely 

haywire when such a person, with his ... all-consuming belief 

in 0 > C for any finite C, is asked to make an inference about 0 
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by observing a variable Y which is almost sure to be at least 10 

times larger than e itself! 

(Basu 1975, p. 52) 

I would not like to endorse Basu's piece of philosophy-by-exclamation­

mark as it stands, because it does not give us a clear reason to disallow 

improper priors (only a reason to be unsurprised when they cause trouble), 

but I would like to take on board Basu's suggestion that Stein's improper 

priors are unsatisfactory idealisations of any epistemic agent's situation. 

Basu's point is that an epistemic agent whose mental state is repre­

sented by an improper prior is one who believes that the probability of e 
falling in any finite region is zero; consequently (and unlike an agent with 

a vague but proper prior) she must believe that e has probability zero of 

being around the same size as C; consequently; we should not be surprised 

if her belief state cannot be rationally updated to take account of an event 

which she counts as essentially impossible 105
, such as the observation of 

Y>O. 

Berger and Wolpert claim that it is rational to use improper priors 

as an approximation "[ w ]hen prior opinions are ... reflected by a locally 

noninformative prior (in the region of8 for which the likelihood function is 

significant)" (Berger & Wolpert 1988, pp. 135-1366). This is tantamount 

to saying that improper priors are reasonable whenever they are likely 

(according to the model in use) to give similar results to a proper prior, 

because regions of X in which the likelihood function is small are unlikely to 

105. One might respond to Basu that events with probability zero can occur, and hence are 
not impossible. This may be true, but such events are only anticipated by an epistemic agent 
when they fall in regions of a probability density function which have a non-zero measure, the 
zero probability of the events themselves being an artifact of our representation of continuous 
probability on a real axis. In contrast, the event which Basu's epistemic agent cannot cope 
with not only has zero probability itself but also occurs in a large region of zero probability. 
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be observed. However, sometimes such a region is observed, and it would 

not make sense to apply Berger and Wolpert's reasoning retrospectively 

in such a case; and therefore it would be dangerous to hold it as a general 

principle. The Stein example rests on assuming that such a case is observed, 

so the Stein example shows that Berger and Wolpert's suggestion can lead 

to contradictory inferences. 

Hill (Berger & Wolpert 1988, p. 167-171) argues in more generality 

that improper priors can be used to approximate flat (but bounded) proper 

priors whenever there is a physical limit on (the absolute value of) the size 

of the possible observations which, arguably, is always. 106 Hill's argument 

is not essential to my discussion, since I have no need to support the use of 

improper priors; I mention it only to show, as a matter of separate interest, 

that the debate on this issue is still open. 

I conclude that Stein's improper priors (in the mathematical sense) are 

improper (in a normative sense). This disposes of any remaining worries 

about Basu's version of Stein's supposed counter-example to the likelihood 

principle. 

The same reply as I have given to Stein serves to deal with other 

examples in which an improper prior is shown to introduce difficulties into 

a Bayesian analysis, such as a number of variations on Fraser's example 

(Goldstein & Howard 1991) and a well-known example due to Stone ( 1976) 

which is occasionally proposed (although never by Stone himself, according 

to his ( 1991 )) as a putative counter-example to the likelihood principle. No 

new philosophical issues are raised in these other examples. 

106. As Hill points out, even if there are no limits on the sizes of parameters in nature there 
certainly are limits on the sizes of physical quantities which finite epistemic agents can report. 
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3. OBJECTION 11.3 

AKAIKE'S UNBIASED ESTIMATOR IS 
PREFERABLE TO THE LIKELIHOOD PRINCIPLE 

Forster and Sober claim that a major goal of statistical inference is to 

produce a model which is "predictively accurate", in the sense that it makes 

predictions which are good at predicting as-yet-unseen data. They note 

that this is a big ask: "the predictive accuracy of a model depends on 

what the true underlying distribution is. In making an inference, we of 

course don't know in advance what the truth is. [So) maximizing predictive 

accuracy ... so far ... appears to be epistemologically inaccessible." (Forster 

& Sober 2004a, p. 160) 

They then state that, despite this apparently knock-down argument 

against the accessibility of predictive accuracy, ':Akaike has shown that 

predictive accuracy is epistemologically accessible" after all (and this claim 

is repeated in (Forster 2002, Sober 2002a)) by demonstrating, under some 

fairly mild statistical and epistemic assumptions, 

that an unbiased estimate of a model's predictive accuracy can be 

obtained by taking the log-likelihood of its likeliest case, relative 

to the data at hand, and correcting that best-case likelihood with 

a penalty for complexity: 

An unbiased estimate of the predictive accuracy of 
model M =Log Pr[DataiL(M))- k [where) k is the 
number of adjustable parameters in the model 

(Forster & Sober 2004a, p. 161) 107 

107. In fact, it is Akaike's estimator (the function), not his estimate (a realised value of the 
function) which is unbiased. There is no such thing as an unbiased estimate, as we will see. 
The distinction between estimator and estimate will be particularly important in my reply to 
objection 11.4. 
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Foster and Sober do not give any further justification for caring about 

Akaike' s estimator, so presumably they see its unbiasedness as the property 

which should recommend it to us. Their reply to earlier criticism seems to 

confirm this (Forster & Sober 2004 b). 

It then transpires that the use of Akaike's estimator contradicts the 

likelihood principle in some cases. This completes Forster and Sober's 

objection: in cases in which the two conflict, they say, we should prefer 

Akaike's estimator to the likelihood principle, and hence the likelihood 

principle is false. 

I will not attempt to show that Akaike' s criterion is unimportant, 108 

but I will rebut Forster and Sober's reasons for thinking it can be used to 

overrule the likelihood principle. 

Forster and Sober's criticism amounts to citing a Frequentist principle 

which gives a different result from the likelihood principle. Of course that 

is going to contradict the likelihood principle- Frequentist methods do, 

as is well known. Why, though, should we just assume that the Frequentist 

approach is right, as Forster and Sober do? I will give reasons to think that 

the Frequentist approach is wrong in the particular use of it that Forster 

and Sober make, which is to support the criterion of unbiasedness in an 

estimator used for inference after the data have been observed. 

As we saw earlier, Forster and Sober at first thought that "the predic­

tive accuracy of a model depends on what the true underlying distribution 

is" and hence was not something we could know at the time of doing a 

108. Having said that, it is easy to show that Forster and Sober's use of Akaike's criterion 
cannot be the final word on statistical inference. This is because it cannot be right to imply 
that the best estimate of a model's predictive accuracy depends only on the properties of the 
model's likeliest case. This would mean that a maximally vague model which contains a true 
case would count as predictively accurate even if the true case were effectively swamped in 
the model by many dreadfully inaccurate cases. 
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statistical inference. This is because the only way in which we can know 

anything about predictive accuracy, over and above what the likelihood 

function tells us about it (and over and above a Bayesian prior distribution, 

for those who believe in such things), is if we already know the parameters 

we are trying to estimate, in which case the statistical inference in ques­

tion is completely superfluous. But Forster and Sober were able to pull a 

rabbit out of a hat: they discovered an unbiased estimator of the predictive 

accuracy of an estimate which does tell us something over and above the 

likelihood function. I will put the rabbit back into the hat. Forster and 

Sober were right in the first place: we cannot know the predictive accu­

racy of our methods unless we know the truth about the parameters we 

are trying to estimate. 

Forster and Sober's choice of Aka ike's criterion rests on the fact that 

it is an unbiased estimator, 109 but they do not give any reason for prefer­

ring unbiased estimators. A response which is obvious to anyone familiar 

with the literature on Bayesian statistical inference is that lack of bias (in 

the technical sense) gives us no reason to approve of an estimator. In 

itself this perhaps does not bother Forster and Sober, because they are not 

Bayesians, presumably because they distrust the prior probability distri­

butions required for Bayesian inference; but if we look at the reasoning 

about unbiasedness which is commonplace in the Bayesian literature, and 

which I outline below, we will see that the reasoning makes no use of prior 

distributions, and that one need not be Bayesian to accept it. 

The need to investigate unbiasedness will make my reply to Forster 

and Sober rather long-winded. I will examine what unbiased estimators 

109. In fact, contra (Forster & Sober 2004a), Akaike's estimator is not generally an unbiased 
estimator (Boik 2004, Forster & Sober 2004b), but it sometimes is, and to simplify the 
argument I will pretend it always is. 
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are, briefly look at how they are discussed in the literature, give arguments 

against relying on them, and then give a theory tentatively explaining their 

spurious appeal. (Of course this theory is not essential for my argument, 

but it does make my conclusion more plausible: without it, it would seem 

as ifl were saying that the world had gone mad.) 

THE DEFINITION OF AN UNBIASED ESTIMATOR 

Any function 0 which is used to estimate an unknown parameter(} is known 

as an estimator of (}. 

An estimator 0 is an unbiased estimator of(} if and only if 

j O(x)p(xiB)dx = (} 

where the integration is, of course, taken over the space of observations, X. 

I cannot state my view of unbiasedness any better than it was stated 

by Hacking in 1965, although I will give more detailed arguments for the 

view than Hacking did. 

It has quite often been proposed that estimators should be unbi­

ased, or at any rate that the best estimators are in fact unbiased. 

The thesis is no longer as fashionable as it once was, probably be­

cause no good reason for it has ever been given. Notice that there 

is not only no reason for believing that, in general, an unbiased 

estimator will give a better individual estimate than some biased 

estimator. There is also no reason for believing that in general 

unbiased estimators are better on the average than biased ones. 

For an estimator can on the average be persistently awful, but as 

long as its errors are of opposite sign, it may still be unbiased, 

and have an average estimate equal to the true value. 
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... it might be true that some very good estimators are 

unbiased, but this would be an incidental fact. We cannot use 

unbiasedness as a criterion of excellence. 

(Hacking 1965, pp. 182-183)110 

Applied statisticians do often expect estimators to be unbiased. One reason 

for this is that restricting attention to unbiased estimators is a convenient 

way to cull an otherwise overwhelming field of possibilities. This is a 

pragmatic consideration in the most superficial sense of the term. (Not 

that this consideration is bad; it is merely unimportant.) I will discuss later 

another, psychological, reason why statisticians might prefer unbiased 

estimators; but first I will consider whether there is some less pragmatic, 

more strongly normative reason. 

Neyman claimed that: 

[t]he advantage of the unbiased estimates and the justification of 

their use lies in the fact that in cases frequently met the probabil­

ity of their differing very much from the estimated parameters 

is small. 

(Neyman 1967, p. 259) 

There are two problems with this justification. Firstly, it is simply false, if 

"cases frequently met" is meant to include all the cases in which Neyman 

and his successors recommend that we use unbiased estimators. Secondly; 

it is not strong enough to justify Forster and Sober's argument, which 

requires that unbiased estimators are always desirable. 

110. Hacking was writing several decades after the invention of unbiasedness, so the failure 
of statisticians to provide a rationale for it was not a temporary oversight; nor was it an 
oversight which has since been corrected, as we will see in a moment. Hacking's view that 
unbiasedness is no criterion of excellence was not new in the 1960s, and arguably the most 
influential statistician ever, R. A. Fisher, saw no use at all for unbiased ness, despite supporting 
almost every other criterion for statistical inference. 

336 



Apart from Neyman, theoretical statisticians do - often - say that 

unbiasedness is a desirable property in and of itself, but without ever saying 

why. I am genuinely perplexed by this. The theoretical statisticians I am 

thinking of are authors who are in masterful command of the mathematics 

behind their assertions, so they are not omitting to mention any putatively 

desirable properties of unbiased estimators through failure to understand 

them ... and yet they simply do not mention any such properties. I cannot, 

of course, survey here the hundreds of books on the topic by reputable 

statisticians, but I will quote briefly from two authorities on statistical 

inference to give the flavour ofthe literature. 

Kendall and Stuart on unbiasedness 

Consider the sampling distribution of an estimator t. If the 

estimator is consistent, its distribution must, for large samples, 

have a central value in the neighbourhood of B. We may choose 

among the class of consistent estimators by requiring that B shall 

be equated to this central value not merely for large, but for all 

samples. 

If we require that for all nand B the mean value oft shall be 

B, i.e. that 

E(t) = B, 

we call t an unbiased estimator of B. This is an unfortunate word, 

like so many in statistics. The mean value is used, rather than 

the median or the mode, for its mathematical convenience. This 

is perfectly legitimate, but the term should not be allowed to 

convey non-technical overtones. 

(Stuart et a!. 1999, pp. 4-5) 
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I give arguments below for thinking that unbiasedness, E( t) = (}, is not 

really a desideratum, followed by a speculative argument suggesting why 

people might think it is. Note that Stuart et a!. do not explicitly disagree 

with me; they only say that this is one way of narrowing the class of 

consistent estimators, which would otherwise be inconveniently large, and 

they give no other justification for it at all. Indeed, they later give a reason 

to think that unbiasedness is not a desideratum in general: 

Our discussion in I 7.8 shows that consistent estimators are not 

necessarily unbiased. We have already (Example 14.5) encoun­

tered an unbiased estimator that is not consistent. Thus neither 

property implies the other. . .. In certain circumstances, there 

may be no unbiased estimator (ct: Exercise 17.12). Even if there 

is one, it may be forced to give absurd estimates at times, or even 

always. 

(Stuart et a!. 1999, p. 5) 

When Stuart et a!. discuss censoring (unavailable data), they note that 

censoring makes it hard to preserve unbiasedness, and comment in this 

context: 

A user of statistical methods must decide upon the properties 

considered desirable in an estimator and, for example, an overly 

rigid insistence upon unbiasedness may lead to difficulties. 

Nevertheless, the notion of unbiasedness has considerable 

intuitive appeal and many would be reluctant to abandon it. 

(Stuart eta!. 1999, pp.432)" 1 

Ill. Stuart et al. also mention the concept of an "unbiased estimating equation", due to 
Godambe, which has some of the properties of unbiasedness but which is not affected by 
censoring. Since this new concept is much more general than unbiasedness, I do not expect 
that it would be able to play the role ofunbiasedness in an alternative version of Forster and 
Sober's criticism of the likelihood principle. In any case, Stuart et al. present no justification 
for the new concept but do say, rather inconclusively, that "(i]t may be argued that this revised 
concept ofunbiasedness gives away too much" (Stuart et al. 1999, pp. 432). So their discussion 
on this point is unhelpful: I mention it only for completeness. 
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Why does unbiasedness have intuitive appeal? We are not told here, nor 

anywhere else that I can find in the literature. (The statistical literature is 

far too vast to permit an exhaustive search, but I have searched hard.) I 

will suggest an answer in a later section. 

Casella and Berger on unbiasedness 

(A J comparison of estimators based on MSE (mean squared error J 
considerations may not yield a clear favorite. Indeed, there is 

no one "best MSE" estimator. Many find this troublesome or 

annoying, and rather than doing MSE comparisons of candidate 

estimators, they would rather have a "recommended" one. 

The reason that there is no one "best MSE" estimator is 

that the class of all estimators is too large a class. . .. One way 

to make the problem of finding a "best" estimator tractable is 

to limit the class of estimators. A popular way of restricting 

the class of estimators, the one we consider in this section, is to 

consider only unbiased estimators. 

(Casella & Berger 2002, p. 334) 

The bias of a point estimator W of a parameter(} is the difference 

between the expected value of W and (}; that is, Biaso W = 
E9W- e. An estimator whose bias is identically (in(}) equal to 

0 is called unbiased and satisfies Eo W = (} for all (}. 

Thus, MSE incorporates two components, one measuring 

the variability of the estimator (precision) and the other mea­

suring its bias (accuracy). An estimator that has good MSE 

properties has small combined variance and bias. 

(Casella & Berger 2002, p. 330) 

Casella and Berger partition the mean squared error of an estimator into 

two components. One component measures the variability ofthe estimator; 
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this component is independent of the bias. The other component measures 

its bias. Nowhere do Casella and Berger say why the bias is important, and 

nowhere do they justify calling it "bias" or its inverse "accuracy". They 

might as well have called them "squiggle" and "squoggle". 

UNBIASED NESS IS NOT A VIRTUE 

So much for what the authorities say about unbiasedness. What should 

we say about unbiasedness? We should say that, despite having a nice 

mathematical symmetry, unbiased estimators can have wildly unacceptable 

epistemological properties. Later I will explain how the nice symmetry 

is compatible with the horrible epistemological properties; but first, let us 

see what the horrible properties are. 

Bernardo & Smith (1994) list four well-known epistemological rea­

sons against requiring an estimator to be unbiased, of which I quote two. 

Of the other two, one, that sometimes there are no unbiased estimators, is 

not relevant to Forster and Sober's use of Akaike's theory; while the other, 

that "the unbiasedness requirement [makes J the answer dependent on the 

sampling mechanism", would make no sense without a long discussion to 

disentangle various different types of dependence on experimental design, 

since biased estimators suffer from the same problem unless we distinguish 

cases very careful! y. 

(ii) ... unbiased estimators may give nonsensical answers, and 

no theory exists which specifies conditions under which this can 

be guaranteed not to happen. For example, ... ifO is the mean of 

a Poisson distribution, Pn(xiO) = e-00" I x!, x = o, 1, ... , then 

the only unbiased estimator of e-0, a quantity which [cannot be 

1 or o J, is 1 if x is even and o if it is odd ... but--even more 
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ridiculously-the only unbiased estimate of e-20 is ( -1 y, leading 

to the estimate of a probability as -1 (for all odd x)! 

So the only unbiased estimator available is often a value which the param­

eter cannot take according to the definition of the model; and sometimes 

it is a value which the parameter cannot take on any model, as we can see 

from the fact that a probability cannot be -1. These facts alone should be 

enough to convince us that we need not feel pressured into using unbiased 

estimators to estimate anything. 

(iv) ... unbiased estimators may well be unappealing if they lead 

to large mean squared errors, so that an estimator with small bias 

and small variance may be preferred to one with zero bias but a 

large variance. 

Point (iv) ought to be particularly telling for Forster and Sober, since they 

refer to Akaike's estimator as a measure of predictive accuracy. Its unbi­

asedness does not protect it from being an extremely inaccurate measure 

of accuracy; and whether it is actually accurate or not in a given situation 

is impossible to assess since (again) we do not know (). 

A further argument against unbiased estimators is that the mean of a 

posterior probability distribution cannot be an unbiased estimator of any 

unknown parameter (Casella & Berger 2002, pp. 368-369). For Bayesians 

this is a knock-down argument. It is also a persuasive argument for those 

of us who are not entirely subjectivist Bayesians but who believe that the 

Bayesian mathematical machinery applies in at least some cases. 

A typical response to the assertion that unbiased estimators are often 

bad estimators is to accept the instances but reject the generalisation that 

we should not care about bias. Here is a typical example of this move: 
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Unbiasedness may not be a compelling property of an estimator: 

there are certainly examples in which the best unbiased estimator 

is terrible, and other examples where biased estimators more 

than compensate for their bias through reduced [error rates]. 

However, substantial bias in the absence of such considerations 

seems like a bad thing[.] 

(Martinsek 1988, p. 58) 

This move is always made (as far as I can find) without any good reason 

being given for why we should care about bias. Martinsek is unusual in 

giving any reason at all: he cites his own intuition, and the fact that many 

laypeople agree with him. These arguments from authority might well 

give us pause, but in the absence of any better arguments for unbiasedness 

anywhere in the literature they do not bear much weight against Bernardo 

and Smith's substantial arguments. 

So I claim that unbiasedness is no indication of a good estimator. 

It follows that the unbiasedness of Akaike's estimator is a bad card with 

which to try to trump the likelihood principle. Since Forster and Sober 

are claiming precedence for a particular use of Akaike's unbiased estimator 

over the likelihood principle, the fact that unbiased estimators often come 

unstuck is sufficient to shift the burden of proof away from the defenders of 

the likelihood principle and onto its attackers: they will have to attack the 

likelihood principle with something stronger than an unbiased estimator 

chosen merely because it is unbiased. 

I forsee two objections to my claim that the unbiasedness of an es­

timator is unimportant. (Thanks to Huw Price, Alan Hajek and others 

for enunciating these objections for me. I have borrowed Alan Hajek's 

wording of the objections.) 
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Objection 1: Although unbiased estimators may be bad estimators, 

they are not bad in virtue of their unbiasedness. Their unbiasedness is a 

good thing, admittedly outweighed by other bad things. 

Response: Assuming as most do that mathematical properties are not 

causally related to each other, what can it mean to say that it is not in virtue 

ofunbiasedness that unbiased estimators can have unacceptable properties? 

(Compare for example the claim that it is not in virtue of being odd that 

17 is a prime number.) Presumably it must mean that unbiased estimators 

need not have unacceptable properties. (Compare: odd numbers need not 

be prime.) This is true. But in certain particular situations it ceases to be 

true. As the thesis clearly shows, there are cases in which an estimator, if it 

is to be unbiased, must have unacceptable properties such as being negative 

despite representing a probability. (Compare: if we are only considering 

numbers which are single digits, as sometimes we do, then odd numbers 

must be prime; so, in such a situation, numbers are prime by virtue of 

being odd.) I conclude that unbiased estimators can have unacceptable 

epistemological properties in virtue of their unbiasedness, insofar as such 

a claim means anything. 

Objection 2: To be sure, unbiasedness can be trumped by other consid­

erations -e.g. high variance, or inconsistency, or intractability. But if all 

other things are equal then unbiasedness is a desideratum of an estimator. 

Response: I can only take this to mean that if other two estimators are 

equal in their other desirable properties but one is biased while the other 

is unbiased then the unbiased one should be chosen. I have two replies 

to this. Firstly, I do not see any argument in favour of it apart from the 

bad argument which I will outline below. Secondly, it cannot be argued 
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in the absence of a complete list of the desirable properties of estimators; 

for if one could argue, in the absence of such a list, that any property 

of an estimator is desirable then it is impossible for two such estimators 

to exist (since they cannot differ in any property and hence must be the 

same estimator). Both of these arguments could perhaps be challenged by 

suitable counter-arguments, but I cannot find any such counter-arguments 

in the literature to date. 

I now turn to possible reasons why, despite the apparent nonexistence 

(to date) of explicit reasons for caring about unbiasedness, people still do 

care. 

AN EXAMPLE OF TALK ABOUT BIAS 

When we think of bias with our layman's hat on, we might think of a darts 

player who tends to hit the board to the left of the bull' s eye. (Thanks to 

Alan Hajek for this example.) 

What does "tends to" mean here? !fit means has a propensity to, then it 

illustrates almost perfectly that what people (very reasonably) think "bias" 

refers to is not what it currently refers to in statistics. A player who tends 

to hit the board to the left of the bull' s eye, indeed one who almost always 

does that, may still be unbiased. 

Now let us consider a player whose throws are mostly to the left of 

the bull' s eye and are biased to the left in the technical sense. Whether that 

is bad depends on what, quantitatively; the examiner means by saying that 

the thrower "tends to" hit the board to the left. It also depends on what 

counts as bad in a particular context - on the game's scoring system, 

whether and if so how bets are placed, and so on. Let us compare two 
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example players, A and J. J tends to hit the board to the left, in the sense 

that almost all of his throws end up to the left of the hull's eye. However, 

when he misses the bull he always hits the semi-bull or whatever that ring 

thing around the hull's eye is called. J is biased and therefore inaccurate in 

the statistical senses. In lay parlance, however, he is reasonably accurate. 

A throws to the left exactly as much as he throws to the right, so he 

is perfectly unbiased. Moreover, for the sake of argument, I will imagine 

(although I do not need to concede this much) that A also hits the semi-bull 

whenever he misses the bull, so he is also reasonably accurate in the lay 

sense. If you like, we can even arrange that A has the same mean squared 

error, measured from the centre of the bull, as J. However, A hits the hull's 

eye less often than J does. (This is perfectly consistent with everything 

else I am stipulating.) Who should we expect to win games of darts: the 

biased J, or the equally lay-accurate and perfectly unbiased A? The answer 

is J. So I continue to maintain that the fact that player J is biased is totally 

unimportant. 

If we were to rewrite the example so that J is biased in certain par­

ticular ways while A is a good player, we might expect A to win. That 

would show that some (token) biased estimators are bad estimators. That 

is consistent with everything I claim. In particular, it is consistent with 

the claim that we should not care about bias. My claim is that we can see 

that a particular biased estimator is a bad estimator without calculating 

its bias. I can, for example, calculate instead how far away from the hull's 

eye the thrower throws, on average. Or I can calculate his or her expected 

score. 
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WHY IS UNBIASED NESS CONSIDERED GOOD? 

The very strength of Bernardo and Smith's arguments may make the 

reader suspicious. If they are right, why does anybody ever look for 

unbiased estimators? I have already suggested a pragmatic answer to this 

question, but now I would like to suggest a more plausible, psychological 

answer. 

A property which it really would be nice for an estimator {J to have is 

{J = E(O) (!) 

where E(O) is the expected value (average value) of 0. But a non-Bayesian 

statistician cannot calculate such a thing, because 0 (as defined) is an un­

known fixed parameter whose expected value is itself and is, ex hypothesi, 

unknown. Only Bayesians have a solution to this problem and can calculate 

E(O) in a useful and non-trivial way, using prior probabilities. 

Any statistician, Bayesian or non-Bayesian, can, however, consider the 

equation 

('2) 

which is really shorthand for E(OIO) = 0. 

It is generally possible to evaluate ('2) without knowing 0, because it 

is (almost always) possible to calculate E(O) for each possible value of 0, 

and it usually eventuates that a suitable choice ofE(O) is equal to 0 in all of 

these possible cases. A pleasant feeling then ensues. This pleasant feeling 
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is my explanation for the apparent value of seeking unbiased estimators: if 

we expand equation (2), we get 

j B(x)p(x!O)dr = 0, 

which is the definition ofunbiasedness I gave above. So, in finding unbiased 

estimators, we are finding estimators which satisfy ( 2 ); and in doing that, 

we feel as though we have satisfied ( 1 ). 112 

But we have not. And I submit that it is only the superficial similarity 

between equations ( 1) and (2) which makes equation (2) seem important. 

After any amount of data has been collected, B is still going to have a single 

value. Knowing that its unknown expected value (its average expected 

value over hypothetical repetitions of the data-gathering process) is equal 

to the also unknown value of 0 does us no good at all. 

In conclusion, I do not claim that unbiasedness is a bad thing, but I 

do claim that I can find only bad reasons for preferring it in an estimator. 

Unbiased estimators are like estimators which use only even numbers: they 

are neither here nor there, inferentially speaking. In the absence of any 

good reason for preferring unbiasedness, it cannot play a substantive role 

in objections to the likelihood principle. 

4. OBJECTION 11.4 

WE SHOULD USE ONLY CONSISTENT ESTIMATORS 

An estimator t is consistent iff p( t -----> 0 as the sample size tends to 

oo) = 1. 

112. Equation (1) does not have a name, since most people believe it can't be calculated and 
all the other people- Bayesians- can show that within their theory it is trivially easy to 
satisfy. 
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Unlike unbiasedness, which, as we have seen, is not considered to be 

important by canonical works such as (Stuart et al. 1999), consistency is 

taken to be a virtue in almost all thorough presentations of Frequentist 

inference. 

Estimators produced using the likelihood principle are not guaranteed 

to be consistent. So it would be open to an objector to frame an argument 

against the likelihood principle by producing a consistent estimator and 

claiming that that estimator trumps the likelihood principle in certain cases. 

Howson and Urbach (1993) give two excellent responses to such an 

objection. Firstly: 

A corollary of this [objection J is that an estimate's worth depends 

on who derived it. For suppose statistician A employed the 

sample mean to estimate a population mean, while B used some 

non-consistent ... function of the sample mean; and imagine that 

they each arrived at identical estimates from the same sample. 

[It is perfectly possible to arrive at the same estimate (value) 

from different estimators (functions). What it requires in this 

particular case is that the function of the mean which statistician 

B uses is equal to the mean at the particular sample size that was 

actually collected.] According to classical [Frequentist J ideas, 

since these identical estimates have different pedigrees, they must 

be differently evaluated: one would be 'good', the other 'bad'! 

This, of course, contradicts the difficult-to-gainsay assumption 

that logically equivalent statements are equally 'good'. 

(Howson & Urbach 1993, p. 233) 

There is nothing wrong with evaluating a statement according to who 

made it (consider indexicals, for a start), so Howson and Urbach's complaint 

is a little misleading. It is best rephrased as follows. The only way to 
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find out whether an estimate is consistent is to find out which estimator 

(function) the estimate (value) is taken from. Thus, there is no such thing as 

an estimate being consistent simpliciter. It can only be consistent relative 

to some choice or other of estimators. That is Howson and Urbach's 

complaint, more properly stated. 

Secondly, Howson and Urbach respond to such an objection by citing 

an example in which an 'inconsistent' method of estimation yields 

a perfectly satisfactory and confidence-inspiring estimate. Let 

the goal of the estimation be the mean of some population [param­

eter J and imagine a scientist eccentrically selecting x+( n- 1 oo )x" 
as the estimating statistic, where ... x and n are the sample mean 

and sample size, respectively. Clearly this odd statistic is not 

consistent (in the statistical sense), for it diverges ever more 

sharply from the population mean as the sample is enlarged. 

Nevertheless, for the special case where n = 100, the statistic is 

just the familiar sample mean, which on intuitive grounds gives 

a perfectly satisfactory estimate. 

(Howson & Urbach 1993, p. 233) 

Since the objection we are considering is that we should use only consistent 

estimators, this counter-example is decisive. It is no good to reply that 

of course we can use inconsistent estimators provided that they give an 

estimate which coincides with that given by a consistent estimator (as the 

counter-example obviously does) because, as I have already mentioned, 

the fact that the definition of consistency is asymptotic ensures that all 

inconsistent estimators always give an estimate which coincides with that 

given by some consistent estimator. In principle it remains open to the 

objector to the likelihood principle to say that we can use inconsistent 

estimators provided that they give an estimate which coincides with that 
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given by some particular consistent estimator, but that objection would 

need a separate justification having nothing to do with consistency. 

This concludes my responses to objections to the likelihood principle on the 

basis of conflicts with other principles and practices. In the next chapter I 

consider a miscellany of further objections to the likelihood principle. 
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12-

Further Objections to the Likelihood Principle 

This chapter continues my examination of objections to the likelihood 

principle. A general introduction to these objections is given in chapter 

10. 

1. OBJECTION 12.1 

THERE ARE NO ARGUMENTS IN 
FAVOUR OF THE LIKELIHOOD PRINCIPLE 

Mayo writes: 

Apparently, the LP is regarded by some as so intrinsically plau­

sible that it seems any sensible account of inference should obey 

it. Bayesians do not seem to think any argument is necessary for 

this principle, and rest content with echoing Savage's declaration 

in 1959: "I can scarcely believe that some people resist an idea so 

patently right". However much Savage deserves reverence, that 

is still no argument. 

(Mayo 1996, pp. 345-346) 

If all of the detailed argument in favour of the likelihood principle given 

in this thesis were entirely original then perhaps this objection would at 

least have been right in 1996, when Mayo made it. In fact, my work is not 

that original, as my citations show. (And almost all of the most relevant 

citations were published before the above objection was made.) In any case, 

this thesis as a whole shows that the objection is not currently tenable. 
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Incidentally, Mayo gives a reason tor concentrating on Bayesian ad­

vocates of the likelihood principle: 

The LP is regarded as having been articulated by non-Bayesian 

statisticians, principally George Barnard (1947) and R. A. Fisher 

( 1956). [I believe this reference to Fisher is a confusion of the 

likelihood principle with the method of maximum likelihood -

see chapter 5.] But, as it is their principle now, I will let the 

Bayesians do the talking. 

(Mayo 1996, p. 339) 

This is odd, because of the tour book-length monographs to date which 

discuss the likelihood principle in detail, three are by non-Bayesians, and 

two of these predate Mayo's claim ((Hacking 1965), (Edwards 1972); (Roy­

all 1997) postdates (Mayo 1996), and (Berger & Wolpert 1988) alone is 

by Bayesians). It is true that the set of statisticians who tacitly accept the 

likelihood principle is dominated by Bayesians, but the set of authors who 

discuss the likelihood principle is not, so it makes no sense to let only the 

Bayesians "do the talking". 

2. OBJECTION 12.2 

THE LIKELIHOOD PRINCIPLE IS LESS 

WIDELY APPLICABLE THAN I CLAIM 

I will discuss two versions of this objection: that the framework of chapter 

2 is importantly incomplete (i.e., fails to capture important problems of 

statistical inference), and that the likelihood principle does not endorse 

any reasonable methods of statistical inference. 
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OBJECTION 12.2.1 

MY FRAMEWORK IS SERIOUSLY INCOMPLETE 

In discussing (Birnbaum 1962), Barnard criticises Birnbaum's assertion 

that the likelihood principle is widely applicable, on the grounds that 

Birnbaum's framework, which is similar to mine, fails to capture many 

important problems of statistical inference. 

[The likelihood principle J applies to those situations, and essen­

tially only to those situations, which are describable ... in terms 

of the sample space S, and the parameter space !1 and a prob­

ability function f of X and (} defined for X in s and (} in e. If 

these elements constitute the whole of the data of a problem, 

then it seems to me the likelihood principle is valid. But there 

are many problems of statistical inference in which we have less 

than this specified, and there are many other problems in which 

we have more than this specified. In particular, the simple tests 

of significance arise, it seems to me, in situations where we do 

not have a parameter space of hypotheses; we have only a sin­

gle hypothesis essentially, and the sample space then is the only 

space of variables present in the problem. 

(Barnard 1962, p. 308) 

It is certainly true that in such a case we cannot usefully apply the likelihood 

principle, because the likelihood function will consist of a single point; 

having nothing to compare that point to, the likelihood principle tells us 

nothing. In a moment I will argue that such a case need not arise. 

Barnard continues: 

The fact that the likelihood principle is inconsistent with sig­

nificance test procedures in no way; to my mind, implies that 

significance tests should be thrown overboard; only that the 
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domain of applicability of these two ideas should be carefully 

distinguished. 

(Barnard 1962, p. 308) 

I believe I have stated the domain of applicability of the likelihood principle 

more carefully than ever before; so, having taken Barnard's advice about 

that, I am in a good position to consider his objection. 

Barnard's objection is compatible with everything I claimed in chap­

ter 8; but it is incompatible with my claim that the likelihood principle 

renders Frequentist inference invalid. In particular, Barnard believes that 

P-values are often required (P-values justified by Fisher's theory in which 

no alternative hypothesis is required, not by Neyman's). 

Barnard's premise is that often "we want to have a single hypothesis 

with which to confront the data [and ask:] Do they agree with this hypoth­

esis or do they not?" (Savage & discussants 1962, p. 7 5). The likelihood 

principle does not help us with this question, as far as either Barnard or 

I can see, because it says that we must base our inferences on the sample 

space X only via the observed data Xa. If, in addition to considering only 

one point in the sample space, we are considering only one point in the 

hypothesis space, there seems to be only one number on which we can 

base inferences, namely p(xalh), and nothing to which we can compare it. 

But considering p(xalh) raw, as it were (not in comparison to anything, 

just in terms of its absolute magnitude) does not give sensible inferences, 

because if X is large and h assigns probabilities anywhere near uniformly 

then p(xih) will be approximately zero; and if X is infinite (as it often is) 

and pis a genuine probability function (integrating to 1) then p(xalh) will 

be precisely zero. 
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Barnard's question, "Do [the data J agree with this hypothesis ... ?", is 

one which statisticians often ask (and often answer), but I do not believe 

it is a meaningful question. I will argue that the notion of "agreement" 

is not a useful notion in a probabilistic situation. In a non-probabilistic 

situation, the idea of a hypothesis agreeing with data is straightforward, 

apart from Duhem-Quine problems: the two things agree if and only if 

they are relevant to each other and do not contradict each other. Both 

relevance and non-contradiction are symmetrical notions, so it does not 

matter whether we ask whether the hypothesis agrees with the data or 

vice versa. But what could agreement mean in a probabilistic situation? 

The usual statistical answer is that data and hypothesis agree if and only 

if p(datalhypothesis) is large. But there is an alternative definition: that 

data and hypothesis agree if and only if p(hypothesisldata) is large. These 

two numbers are generally very different from each other. As we saw 

in chapter 4, Frequentist statistical methods use functions of the former 

number, while the likelihood principle is usually applied by using the latter 

number. So there is no univocal answer to Barnard's question as stated. 

As Barnard knows, the commonest methods for answering his ques­

tion, namely Neyman-Pearson hypothesis tests, require at least two hy­

potheses to be specified. I take it, from the quotation, that this is something 

which he believes he would not be willing to do in some cases, but I do 

not know why. If we have an arbitrary hypothesis h (and even Barnard 

is willing to assume that there is always at least one hypothesis available) 

then the other hypothesis that we need in order to apply the likelihood 

principle can be the catch-all hypothesis. Barnard may have in mind the 

fact that the general catch-all hypothesis - the logical negation of h, or 

355 



equivalently the set-theoretic negation of h within the set of all possible 

hypotheses - is often undefined. But a more local catch-all hypothesis, 

the set-theoretic negation of h within the universe of models under consid­

eration (Lipton 1993 ), is always well defined in the types of mathematical 

models that statisticians use (see chapter 2). For example, if we take h 

to be the hypothesis that the effect of AZT on HIV in Australia is a de­

crease in death rate characterised by a rate ratio of approximately 0. 4, we 

can produce an alternative hypothesis by considering the local catch-all 

hypothesis h' that the rate ratio is not approximately 0. 4 (as opposed to 

the logical negation of h, which is that it is not the case that the rate ratio 

is approximately 0.4 ). All we need to do to counter the argument I am 

imputing to Barnard is produce a relevant alternative hypothesis of this 

sort. We may have nothing to say about the logical negation of h, because 

probabilities based on the logical negation of h depend on the probabilities 

of all sorts of strange possibilia such as (inter alia) the probability that 

there is no such thing as HIV and therefore no such thing as the rate ratio 

of AZT in reducing it; but this is not a problem, because h' is perfectly 

adequate for our current epistemic need. 

So I dispute Barnard's claim that we often need Fisherian (single­

hypothesis) significance tests. As far as I can see, we never do. 

Barnard also claims that sometimes we have rrwre information than 

my framework allows for, and that in these cases too we have to use 

procedures contrary to the likelihood principle. I admit that when we have 

more information than my framework allows for - something which is 

clearly logically possible- I cannot show that the likelihood principle still 

applies. However, I cannot see any such cases in inference from data to 
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hypotheses. Prima facie we should think that they are rare or perhaps even 

nonexistent, bearing in mind that the hypothesis space and sample space 

in my framework can encode any amount of structure. Barnard has given 

(in various publications) many cases in which he believes pivotal inference 

(defined in chapter 5) takes advantage of the mathematical structure of a 

problem in a way which is not part of the usual construction of hypothesis 

and sample spaces; but I cannot find any such case which cannot be covered 

by my framework. 

To the best of my knowledge, Barnard does not suggest any particular 

such case as a counter-example to the likelihood principle. He does give two 

general examples of types of structure which may be added to a problem, 

but neither of these presents any difficulty for the likelihood principle, at 

least in the form in which I have presented it in this thesis. These two 

general examples are as follows. 

(I) We may have properties of in variance, and such things, 

which enable us to make far wider, firmer assertions of a 

different type; for example, assertions that produce a prob­

ability when these extra elements are present. 

(Barnard 1962, p. 308) 

But I see no argument against incorporating such things into the hypoth­

esis space of my framework, especially when they produce a probability. 

(2) And then, of course, there are the decision situations where 

we have loss functions and other elements given in the 

problem which may change the character of the answers we 

g1ve. 

(Barnard 1962, p. 308) 
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Decision problems which specify loss functions (or, equivalently, utilities) 

are outside the scope of this thesis, so I admit Barnard's charge that my 

framework is not all-encompassing. However, it is worth noting that the 

principles of the most prominent version of decision theory, Bayesian deci-

sion theory, entail the likelihood principle (Berger 1980, Raiffa & Schlaifer 

!WOO). 

OBJECTION 12.2.2 

THERE ARE NO ADEQUATE THEORIES OF INFERENCE 

WHICH OBEY THE LIKELIHOOD PRINCIPLE 

The following existing theories of statistical inference obey the likeli­

hood principle (see chapter 3 and chapter 5 for definitions): all forms of 

Bayesianism except Empirical Bayesianism, and all pure likelihood meth­

ods including maximum likelihood estimation and the method of support. 

Of these, Subjective Bayesianism, Restricted Bayesianism and maximum 

likelihood estimation are in active use (although much less so than Fre­

quentism). The objection therefore cannot be that there are no theories 

which obey the likelihood principle; it must be that the theories in question 

are inadequate in some way. 

Objectors to the likelihood principle can argue that only a very gen­

eral method for applying the principle will do, because a principle which 

cannot be demonstrably applied in every case does not deserve its name. 

Neither Restricted Bayesianism, nor the method of support, nor maximum 

likelihood estimation is as widely applicable as Frequentism, as I showed 

in chapter 3 and chapter 5. This leaves Subjective Bayesianism as the best 

competitor to Frequentism. 
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The likelihood principle is widely associated with Subjective Bayesian­

ism, as demonstrated both by several of the definitions in chapter 8, notably 

Lindley's, and by many of the attacks on its rationality, notably Mayo's. 

Subjective Bayesianism is difficult to defend precisely because it is such a 

complete theory: to defend it properly, a large number of examples would 

need to be discussed, in addition to a good deal of basic epistemology. (For 

just some of the details, see (Howson & Urbach 1993).) I cannot rehearse 

these arguments here, so the question of whether Subjective Bayesian ism 

is an adequate champion for the likelihood principle will have to remain 

open. 

The objection is doing quite well up to this point: I have conceded that 

there are no widely applicable, practical methods of statistical inference 

which can easily be demonstrated to be rational and which have decent 

histories of practical application. However, having a history of practical 

application is almost irrelevant to a theory's adequacy. What the objector 

needs to show- or at least make plausible- is not that the current theories 

of statistical inference which obey the likelihood principle cannot easily be 

shown to be rational, but that at no point in the future will there be a theory 

of statistical inference which obeys the likelihood principle and is rational. 

This is a hard task; such a hard task that I cannot see how it could be 

attempted except by attacking the likelihood principle directly, as the other 

objections I discuss do. But the burden of proof is on the objector since I 

have motivated the likelihood principle, and will prove it, in ways which 

do not depend on the existence of a general theory of statistical inference 

which implements it; so as long as this objection remains an open question, 

the likelihood principle remains unscathed by it. 
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To give a bit more flesh to this response, note that I have conceded 

that Objective Bayesianism does not have much of a history of practi­

cal application; but I have certainly not conceded that there is anything 

wrong with all possible forms of Objective Bayesianism, and thus Objec­

tive Bayesianism remains a contender as a practical implementation of the 

likelihood principle. Nor do I concede that Subjective Bayesianism has 

been defeated. Moreover, I showed in chapter 5 that there are methods of 

statistical inference which have not yet been enunciated, and one of these 

may turn out to be just what we need. 

3. OBJECTION 12.3 

THE LIKELIHOOD PRINCIPLE ALLOWS 

SAMPLING TO A FOREGONE CONCLUSION 

Mayo examines the problem of sampling to a foregone conclusion by 

discussing the following example: 

[W]e will imagine that the researchers have an effect they would 

like to demonstrate, and that they plan to keep experimenting 

until the data differ statistically significantly, say at the .05 level, 

from the null hypothesis of"no effect." 

(Mayo 1996, p. 338) 

As Mayo rightly says, such a procedure is problematic, because one can be 

sure that such a procedure will achieve statistical significance, regardless 

of which hypothesis is true ... not in literally any case, as Mayo goes on 

to imply, but certainly in many cases. 

The literature on the likelihood principle, including books and pa­

pers which Mayo herself cites, is full of passages which emphasise that 
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statisticians using the likelihood principle should not also use significance 

(P-value) tests. In this case, the point is that Mayo is envisaging a Frequen­

tist rule being used to determine what counts as sampling to a foregone 

conclusion: namely, the rule that says that sampling to a foregone conclu­

sion has occurred iff a certain P-value is less than 0.05. If, on the contrary, 

a rule compatible with the likelihood principle is used to determine what 

counts as sampling to a foregone conclusion, then sampling to a foregone 

conclusion is no longer inevitable. I will illustrate this later by showing 

that if we use posterior odds to fashion such a rule then there is no problem. 

This result is well known in the Bayesian literature. 

Mayo comments on one passage which mentions this result, by Sav­

age, and argues against the point in two ways: (a) with an unsupported 

rhetorical question - "Why should we accept the likelihood principle?" 

(Mayo 1996, p. 345) - a question to which there are a number of pub­

lished answers which I have summarised elsewhere, and (b) by saying that 

the person who convinced Savage of the truth of the likelihood principle, 

Barnard, has now "changed his mind" (Mayo 1996, p. 345). Although I 

realise that there is little point in replying to an ad hominem argument 

with another ad hominem argument, it is interesting to note that the au­

thor who Mayo describes as "the most forthright error [i.e., Frequentist] 

statistician at the 1959 Savage forum", Armitage, later changed his mind 

to a much greater extent than Barnard did. Armitage moved from roughly 

Mayo's anti-Bayesian position in 1959 to a pro-Bayesian position in his 

(1989). Mayo (1996, pp. 343-334) describes Armitage further as "a leader 

in the development of sequential trials, having devoted whole books to their 

use and interpretation within the error statistical framework", apparently 
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not realising that by the time she writes Armitage no longer supports her 

anti-Bayesian interpretation of his work. Even as early as 1969 Armitage 

was sufficiently fond of certain Bayesian methods to make a public call for 

an assessment of their error rate characteristics (Armitage et al. 1969). 

When such an assessment was made for the first time, in (Grossman et al. 

1994), Armitage (the same Armitage) cited it approvingly in his textbook 

(Armitage & Berry 1994, p. 506; Armitage et al. 2002, p. 622). 

A REPLY TO THE OBJECTION 

Besides such ad hominem arguments, there is, of course, a more direct way 

to clear the likelihood principle from the charge which Mayo incorrectly 

attributes to him. 

The reply is straightforward. It is to note that the likelihood principle 

applies to analyses of observations, not to analyses of significance tests. (This 

was made abundantly clear in chapter 2 and again in chapter 8.) Conse­

quently, a correct application of the likelihood principle to the case Barnard 

discusses would be as follows: ignore the significance tests and conduct a 

new analysis. So the point which Mayo sees Barnard as making is simply 

irrelevant to the likelihood principle. Thus, the likelihood principle does 

not allow sampling to a foregone conclusion; at least, certainly not in the 

way in which Mayo claims it does and, as far as I can tell, not at all. 
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4. OBJECTION 12.4 

THE LIKELIHOOD PRINCIPLE IMPLIES A COUNTER­

INTUITIVE STOPPING RULE PRINCIPLE 

First, a rough definition to get our bearings. A stopping rule is an agree­

ment by experimenters and statistical analysts to execute an experiment 

in parts, with each part being subjected to a pre-agreed type of statistical 

analysis as soon as possible after its completion, and with the series of 

sub-experiments guaranteed to terminate "early" (before some pre-agreed 

maximum sample size has been reached) if one of the analyses has some 

pre-agreed outcome. The sequence of sub-experiments which results from 

applying a stopping rule is called a sequential experiment. Typically the 

only outcome which is allowed to cause early termination of a sequential 

experiment is a pre-agreed rate of events (e.g. deaths) among the exper­

imental subjects. The outcome required to trigger early termination of 

the experiment is typically; but not necessarily, worked out by requiring a 

pre-agreed level of significance against some pre-agreed null hypothesis. I 

will discuss the use of stopping rules in much more detail in chapter 15. 

Birnbaum's version of the likelihood principle entails the following 

principle: 

In a sequential experiment W, with observed final data [xa], 
Ev(W,[xa]) should not depend on the stopping rule T. 

(Berger & Wolpert 1988, p. 76) 

Revising this to avoid the undefined term "Ev(W, [xa])", we get the follow­

ing version of the SRP, which follows from my version of the likelihood 

principle: 
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The stopping rule principle (SRP) (Grossman version): In­

ferences about hypotheses made on the basis of experimental 

data should not depend on the stopping rule which was either 

planned or actually used in the experiment in which the data 

were collected, provided that the conditions of applicability of 

the likelihood principle are satisfied. 

Mayo claims that the stopping rule principle is false, and hence that the 

likelihood principle is false. 

Mayo"s main argument against the stopping rule principle is that it 

allows sampling to a foregone conclusion. I have already defended the 

likelihood principle against the allegation that it allows sampling to a 

foregone conclusion. An exactly parallel argument defends the stopping 

rule principle against the same allegation. 

OBJECTION 12.4.1 

THE LIKELIHOOD PRINCIPLE IMPLIES A 

FALSE STOPPING RULE PRINCIPLE 

There are other versions of the stopping rule principle, and the various 

versions are easily confused. Consider, in particular, the following: 

The universal stopping rule principle: in any experiment, the 

stopping rule is always irrelevant to inferences from the experi­

mental data to conclusions about hypotheses. 

A possible objection to the likelihood principle is that it entails the universal 

stopping rule principle. I acknowledge that the universal stopping rule 

principle is counter-intuitive; in fact, it is false, as I will show in a moment. 

So, to defend the likelihood principle I must show that it does not entail 

the universal stopping rule principle. Mayo, the most prominent opponent 
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of the SRP, acknowledges that the likelihood principle does not entail the 

universal stopping rule principle (Mayo 1996, p. 342, footnote). In this 

section I will show that she is right: the universal SRP is false. 

Howson and Urbach give a nice illustration of the falsity of the univer­

sal SRP. They note that an experiment's stopping rule would be relevant 

to one's conclusions about hypotheses 

... if one were relying upon a random sample to measure the 

mean height of a group of cooks who happened to be preparing 

lunch at the same time as the experiment was in progress [and if 

we also knew J that tall chefs cook faster than short ones and that 

the trial was concluded as soon as lunch was ready .... Ignoring 

the stopping rule in such a case would be overlooking relevant 

information .... 

This concession should not be misunderstood. It does not 

mean that the scientist's intention to stop the trial at a particular 

point is of any inductive significance; hence, our position is quite 

different from that of the classical [Frequentist] statistician. We 

are simply claiming that in estimating a parameter, one normally 

would derive all one's information from the composition of a suit­

able sample, but that sometimes events attending the sampling 

process also have significance as evidence. 

(Howson & Urbach 1993, p. 366) 

It is fortunate for the likelihood principle, in the face of this decisive criti­

cism of the universal SRP, that it (the likelihood principle) does not entail 

the universal SRP. This can be seen by noting that the stopping rule in this 

example is naturally seen as part of Xa and hence may be used in a likelihood 

analysis. If, perversely, Howson and Urbach's stopping rule is not made 

part of Xa then the SRP might seem to apply, but in fact it does not (at 

least, my version does not), because it is a precondition of the application 
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of my version of the likelihood principle, and hence of my version of the 

SRP, that X a represents "all observations considered relevant to any of the 

hypotheses" (chapter 8). A last gasp objection might be that Howson and 

Urbach's stopping rule might not be considered relevant to the hypotheses, 

even though it is relevant. In answer to this I can only say that when a 

mistake of this kind is made it is rational (although unfortunate) to accept 

an unsatisfactory analysis until the mistake is discovered and corrected, at 

which point the analysis can be amended. Consequently, the fact that an 

analysis which leaves out part of the observation can give bad results is no 

criticism of the likelihood principle. 

A stopping rule which is naturally seen as part of Xa is known as 

an informative stopping rule. As we have just seen, a stopping rule can 

be informative even if the agent doing the analysis doesn't know that it's 

informative (or falsely believes that it isn't). This holds the solution to a 

puzzle about deliberate misleading of the analyst by an experimenter. For 

example, a pollster employed by the Evil Bayesian Party might start his 

poll in the suburbs most likely to vote for his party; and might stop when 

the proportion of support for his party went above say 90%. A statistician 

analysing the results but unaware of the order in which the experimenter 

had sampled would, rightly from her point of view, ignore the stopping 

rule. The stopping rule is informative (because of the ordering of the data; 

otherwise it would not be), but the analyst does not know this. She is 

performing an unsound analysis, but only because of ignorance. It is hard 

not to be worried about the impact of accepting the stopping rule principle 

on this sort of example - it even worries me - but the situation is no 

different in principle from any other withholding of information to mislead 
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an epistemic agent. Of course an evil experimenter can mislead a statistical 

analyst. He can always do so, by withholding information or by lying. The 

stopping rule principle, because it is a powerful analytic tool, gives him 

one more way to do so; but that should not count against the stopping rule 

principle. At most, it means that the stopping rule should be put to one 

side if the analyst believes the experimenter to be evil, just as various other 

rules of inference from testimony need to be suspended in such a case. 

Alternatively, a Bayesian analyst can put a prior probability distribution 

on the behaviour of the evil experimenter, and then the analysis becomes 

unproblematic. 

OBJECTION 12.4.2 

THE STOPPING RULE PRINCIPLE IS FALSE EVEN 

WHEN NO FREQUENTIST METHODS ARE USED 

This objection is certain to be a remaining niggle in the minds of readers: 

that Mayo's argument above is irrelevant, because the likelihood princi­

ple and the stopping rule principle do not apply when significance tests 

(Frequentist methods) are used; but that it does not follow that everything 

is OK when Frequentist methods are not used. Perhaps sampling to a 

foregone conclusion is possible anyway. 

It is impossible to certify that this cannot happen in complete gener­

ality, since the likelihood principle does not specify exactly how a statistical 

analysis is to be done, and there is no limit to the (rational and irrational) 

ways in which it can be used. But it is possible to certify that sampling to 

a foregone conclusion cannot happen when the likelihood principle is used 

as part of a Bayesian analysis (subject to the constraints of chapter 2), and 

similar arguments are in principle available for other reasonable ways of 
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using the likelihood principle. The Bayesian issue has been dealt with a 

number of times in the literature. A particularly succinct version is given 

in the forum from which Mayo quotes: 

Dr P. ARMITAGE: I should like Professor Savage to clari(y a 

point he made in Part I. He remarked that, using conventional 

significance tests, if you go on long enough you can be sure of 

achieving any level of significance; does not the same sort of 

result happen with Bayesian methods? The departure of the 

mean by two standard errors corresponds to the ordinary five 

per cent level. It also corresponds to the null hypothesis being 

at the five per cent point of the posterior distribution. Does it 

not follow that by going on sufficiently long one can be sure of 

getting the null value arbitrarily far into the tail of the posterior 

distribution? 

SAVAGE: The answer is surely no, under any interpretation. 

It is impossible to be sure of sampling until the data justifies 

an unjustifiable conclusion, just as surely as it is impossible to 

build a perpetual-motion machine. After all, whatever we may 

disagree about, we are surely agreed that Bayes's Theorem is 

true when it applies. But to understand this impossibility let us 

examine first a simple case. 

Consider an urn that contains three red balls and a black one 

or three black balls and a red one. To convince you of the first 

hypothesis as opposed to the second, for some given purpose, 

would mean to make the likelihood ratio in favour of the first 

sufficiently large, say at least 10. Suppose that I, in my zeal, 

decide to keep sampling (with replacement) until the likelihood 

ratio, which in this particular case is s<'-6>, exceeds 10. This 

will happen if and only ifl sometimes succeed in drawing three 

more red balls than black ones; if there are really three black 

balls and a red one, it is quite probable that I never will succeed 

until the end of time. In fact, the probability of failure in this 
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unfavourable circumstance is at least 9 I !0, as it ought to be on 

general principles; the exact value is 26 I 27. 

As I understand it, Dr Armitage is particularly interested 

in the following sort of example. The prior distribution of a 

parameter J.L is rather broadly distributed around 0, and observa­

tions of J.L with unit standard deviation are sequentially available. 

From 'your' point of view, that is, the point of view summarized 

by the assumed prior distribution, what is the probability P that 

I should succeed in sampling until your posterior odds that J.L is 

positive are at least 10 times your initial odds that J.L is positive, 

if J.L is in fact negative? There can be no escape from the simple 

formula that P is at most a tenth. 

(Savage & discussants 1962, pp. 72-75) 

Since this is an important example, I will expand on it a little. Suppose 

there are N balls in the urn: either N- I reds and one black or N- 1 blacks 

and one red. We will look at one ball at a time, with replacement, to decide 

which of those hypotheses to believe. I will allow you, the experimenter, to 

have whatever stopping rule you like, including "continue sampling until I 

have falsely proved that the balls are mostly black". I am willing to make a 

bet at even odds that there are more red than black balls, on the condition 

that you use a straightforward likelihood method to evaluate the evidence, 

namely: I lose the bet if p( observed balls conditional on there being mostly 

blacks in the urn) I p( observed balls conditional on there being mostly reds 

in the urn) exceeds some ratio, say 10. (Ifl were instead to agree that the 

Frequentist rule p < 0. 05 was an adequate test of a hypothesis, you would 

be able to deceive me with probability !.) 

Ifthere are N balls of which I is red, and if the alternative hypothesis is 

that all except I are red, then the likelihood ratio p(mostly blacks)/ p(mostly 
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reds) is (N- Iib-r). So I will lose the bet if at any time before you choose 

to stop the experiment there have been log 
10
(N- I) more blacks than reds. 

And you are completely in charge of the stopping rule. Still I should expect 

to win the bet, as a little algebra will show. This is a nice illustration of 

the fact that we may intuitively expect to be able to sample to a foregone 

conclusion even when in fact we cannot. 

Mayo (1996, p. 352) quotes the above question from Armitage about 

sampling to a foregone conclusion but not the response from Savage, and 

adds: 

and 

Although Savage wants to deny Armitage's implication, he ap­

pears to grant it, though fuzzily, and moves on to another exam­

ple 

(Mayo 1996, p. 353) 

Savage [is J plainly uncomfortable with Armitage's result 

(Mayo 1996, p. 356) 

Apparently ''The answer is surely no, under any interpretation" is a way 

of granting a proposition and shows discomfort. (Nowhere does Savage 

qualify his "no" to a "yes" or even a "perhaps".) In the face of a claim that 

an author says almost the exact opposite of what he actually says I am at a 

loss for words. 

In addition to misrepresenting her opposition on this point, Mayo 

claims to give an example in which a Bayesian would sample to a foregone 

conclusion. Her example involves the assumption that "In certain cases, 

rejecting a null hypothesis H0 , say at level of significance .05, corresponds 
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to a result that would lead a Bayesian to assign a low (e.g., .05) posterior 

probability to Ho'' (Mayo 1996, p. 352). It follows that, since the Frequen­

tist would sample to a foregone conclusion if he ignored the stopping rule, 

the Bayesian (who does ignore the stopping rule, in line with the likelihood 

principle) will also sample to a foregone conclusion. The stated assump­

tion is prima facie plausible, but in fact it is not true, unless the Bayesian 

uses prior probabilities which do not form a probability distribution (an 

improper prior). Mayo claims that "the kind of prior that leads to the 

trouble [is J a commonly acceptable one" (Mayo 1996, p. 356). It is true that 

some Bayesians use such priors, while other Bayesians have been attacking 

them for doing so since the 1920s (e.g. Hill in (Berger & Wolpert 1988, 

p. 162)). In any case, the probability calculus forbids improper priors, so 

they are ruled out by the framework I set out in chapter 2. 113 

In an example like Armitage's, if we sample until the posterior odds 

that 11. is positive are at least k times the initial odds that 11. is positive, 

the probability of sampling to the "foregone" conclusion that 11. is positive 

113. At the worst, Mayo has convicted those Bayesians who both use improper priors and 
take the stopping rule principle seriously of inconsistency; but it has been known since the 
1970s that Bayesians who use improper priors can be shown to be inconsistent with or 
without the stopping rule principle (Stone 1976). If Bayesian methods based on improper 
priors are inconsistent with or without the stopping rule principle then Mayo's proof that 
they are inconsistent with it proves nothing important about the stopping rule principle and 
hence nothing about the likelihood principle. It does perhaps prove that Bayesians ought to 
be even more careful about using improper priors than some of them realise, but that point 
does not reflect badly on the stopping rule principle. 

Incidentally, although sampling to a foregone conclusion is possible with an improper 
prior it is still, usually, not feasible: a typical realistic Bayesian analysis, conducted in a 
reasonable amount of time, cannot reach a foregone conclusion even if it uses an improper 
prior (Berger & Wolpert 1988, pp. 81-82). Hill argues that this result generalises to a proof 
that it is impossible for an improper prior to result in a betting loss (Berger & Wolpert 1988, 
p. 167-171 ), contra Mayo's claim. An intuitive understanding of why this is so must consider 
that Mayo's claim about improper priors is true only if an infinite number of analyses is 
possible: any less than infinite time changes the outcome substantially. This is why some 
Bayesians still feel free to use improper priors. A related point is that even a prior which 
differs only slightly from Mayo's improper prior can make sampling to a foregone conclusion 
impossible. 
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when in fact it is negative is at most f; and hence it is not really foregone 

at all. 

One final remaining worry might be that we ought to be able to make 

the probability of making this mistake even lower, perhaps by breaking 

the likelihood principle. The answer to this is that, yes, it can be made 

lower. By breaking the likelihood principle and taking the stopping rule 

into account in a Frequentist manner we can make this particular false 

conclusion as rare as we like. We can do this, for example, by refusing to 

document a given proportion of red balls, or by using a non-ignorance prior, 

or by introducing a utility function. But if we do these things we make 

sampling to the opposite false conclusion (that J1 is negative when in fact 

it is positive) more frequent. I conclude that there is nothing particularly 

unsatisfactory about the repeated-sampling properties of the Bayesian use 

of the likelihood principle. 

This completes my responses to all the objections to the likelihood 

principle of which I am aware. In the next chapter, I give a proof of the 

likelihood principle, followed in chapter 14 by responses to objections to 

the proo( 
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A Proof of the Likelihood Principle 

1. INTRODUCTION 

I hope that Part II of this thesis has made the likelihood principle plausible. 

Part III completes my story in two ways: first by giving proofs of the 

likelihood principle, and then by offering a serving suggestion showing 

how it can best be eaten, by discussing a case study of its application. 

In this chapter I present a proof of the likelihood principle, for discrete 

statistical distributions. Mathematically speaking, my proof is only slightly 

different from a number of previous proofs of the likelihood principle, all 

of which follow the general strategy of(Birnbaum 1962); I have borrowed 

especially from (Berger & Wolpert 1988, pp. 27-28). My proof differs from 

its predecessors mostly in the careful wording of its premises, which for 

the first time incorporate all the necessary conditions of applicability. In 

the following chapter I will present and refute objections to my proof. 

The main premise from which the proof proceeds is essentially the 

uncontentious conclusion which I drew from Cox's example in chapter 

7. Recall Cox's example: if we send blood to one of two non-equivalent 

laboratories, basing the decision as to which on the toss of a coin, it is 

reasonable to take into account which laboratory it actually went to when 

making inferences from the results the laboratory sends back, even though 

that makes it impossible to fix the overall error rate for the experiment 
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at any predetermined level (counting both the coin toss and the labora­

tory results as part of the same experiment). The conclusion I drew from 

Cox's example was that inferences about the blood must take into account 

properties of the laboratory that was actually used, and must ignore prop­

erties of the one that wasn't. In other words, one should condition on the 

coin toss. In this particular case at least one should treat the coin toss 

and the laboratory measurement as two separate merriments, regardless 

of whether they were planned together. I have never come across anyone 

who disagrees with this conclusion. There are many authors (such as 

Mayo) who believe that one should not always condition on observed data, 

but there are none who believe that one should not condition on the coin 

toss in Cox's example. 

I promised earlier that we would be able to generalise this conclusion, 

using very mild assumptions indeed, to a fully-fledged principle which 

makes precise the idea that we should analyse Table I by columns instead 

of by rows. This principle is, of course, the likelihood principle. One of 

the most stunning results in twentieth-century applied mathematics, due 

to Birnbaum (possibly based on a sketch of a proof in (Pratt 1961, p. 166), 

and also independently discovered by Barnard in 1962), is that agreement 

about what to do with the results of an experiment chosen by a coin 

toss is very nearly enough to support a proof of the likelihood principle. 

No assumptions about experiments which are chosen in another way -

perhaps a deterministic way, or even a deliberate way - are required, 

even though the likelihood principle can be applied to such experiments 

once it has been proved. Once the Cox example is formalised as the weak 

conditionality principle (below), all that needs to be added is a small set of 
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conditions limiting the domain of applicability in line with the framework 

of chapter Q and a weak sufficiency principle which is fairly uncontentious 

(although I consider some objections to it in chapter 14). 

The idea of proving a normative principle may seem strange. What 

makes it possible is that the conditioning premise drawn from the Cox 

example is normative (although very, very weak): it says that we must 

take into account the properties of one laboratory and must ignore the 

properties of the other. The weak sufficiency principle is also normative. 

The chain of reasoning from these premises to the likelihood principle is 

purely mathematical but slightly difficult, and therefore takes the form of 

a deductive proof. 

By proving the likelihood principle from a premise about conditioning 

which mentions only a single coin toss, I will show in this chapter that 

authors who are squeamish about conditioning on observed data in some 

cases must bite the bullet and disown conditioning in all cases, even in Cox's 

case; because if they give me Cox's case then they give me the likelihood 

principle, and that in turn entails that conditioning is always necessary 

(when we are doing inference within the framework of chapter 2). 
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2. PREMISES 

FORMAL DEFINITION OF A LIKELIHOOD FUNCTION 

A likelihood L(h) is a function p(xalh), where pis a probability function or 

a probability density function, h ranges over a set of hypotheses H, and Xa 

is some observed data considered as a constant. 

Recall that two likelihood functions are the same if and only if they're 

proportional to each other. In other words: 

L 1(h) = L,(h) iffqh) ex L,(h) 

-i.e., iff(3c > 0) (Vh) L 1(h) = cL,(h)114 

THE WELL DEFINED LIKELIHOOD FUNCTION CONDITION 

The concept of a statistical measurement is only useful under a condition 

which is not always made explicit but which, if made explicit at this stage, 

will save a lot of trouble later. It is what I call the Well Defined Likelihood 

Function condition (WDLF): 

For each hypothesis h under consideration in a statistical analysis, 

Ph(xa) = p(xalh) must be well defined (i.e., have a single value). 

The WDLF is an explicit condition of applicability of my version of the 

likelihood principle. Although I state it explicitly here for maximum clarity, 

it really follows from the framework which I set up way back in chapter 2. 

114. If the two functions L 1 and~ both have finite integrals then this condition is the same 
as saying that they are the same likelihood function iff they reduce to the same function when 
normalised. To normalise a function is to ensure that it integrates to 1, without changing its 

shape. This is easily done by replacing the function fwith f I j(f). 
But likelihood functions need not have finite integrals; and functions without finite 

integrals cannot be normalised in this way. 
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There I stated that the hypothesis space H must be fixed for the duration 

of the analysis. 115 Since the likelihood function, p(.xaih) with Xa fixed and 

h variable, obviously supervenes on H, the assumption that H is fixed for 

the purposes of the analysis of a statistical measurement implies that the 

likelihood function is also fixed. 

In situations in which merriments are described formally, the WDLF 

or something very like it is often made explicit, especially when disagree­

ments about the likelihood function would have legal ramifications, as in 

clinical trials. In any case it is a sensible assumption. Even in an informal 

situation in which the likelihood function is not explicitly agreed by all 

parties to an analysis, my discussion is still relevant: it simply applies to 

the statistical model which is being used after all personal disagreements 

have been ironed out. 

The following important sub-premises are implicit in the WDLF. 

Sub-premise A: H takes into consideration all the hypotheses we're going 

to consider, no matter what the data turn out to be. 

In most scientific cases this is very easy to ensure. It may be a 

problem for the representation of our actual psychological processes by 

statistical models, but in this thesis I am only worrying about normative 

considerations. 

Sub-premise B: All factors that are considered epistemically relevant to 

the problem are included in the model. 

115. H need not be held fixed in any temporal sense; it merely needs to be held fixed across 
possible observations for the purposes of any single analysis of the data. Specifically, the mode] 
need not be fixed in advance of the data collection. Also, as far as the likelihood principle is 
concerned those parts of the model representing possible observations which did not occur 
are irrelevant and therefore need not be held fixed, nor even exist, at any time. 

379 



Usually all the factors of interest to the agents who are making the 

statistical model are represented as components of hypotheses of interest, 

which reduces Sub-premise B to Sub-premise A; but some may be unknown 

factors which may not be of interest on their own account but may still be 

epistemically relevant. Such factors are called "nuisance parameters". 

When Assumption B is broken, things can become very confusing. 

The most interesting example for us is probably the case of stopping rules, 

as discussed in chapter II. We saw there that stopping rules are relevant 

to an analysis if and only if they are proxies for important information 

(e.g., sample size) that was not mentioned in the stated model. It is hard to 

think of reasons why this situation should be allowed to arise: it is hard to 

think of reasons why any acknowledged important aspects of the epistemic 

situation should not be included in the model. (It is hard to think of a 

reason why sample size should ever be ignored, for example.) Note in this 

context that we can add any type of data we like to the model: we are not 

restricted to parameters of a distribution. 

Sub-premise C: For the purposes of this statistical measurement we have 

decided not to change H in an ad hoc way as a result of seeing the data. 

(By ad hoc I mean without a principled reason.) 

The literature tends not to worry about this issue. Dawid's version 

of the likelihood principle, for example, allows for ad hoc inference proce­

dures but not for unpredictable ad hoc inference procedures: "an [inference 

procedure J may be entirely ad hoc, so long as it specifies the particular 

inference to be made in every relevant situation." (Dawid 1977, p. 247) 

Sub-premise D: We have decided not to change H in a non-ad hoc way. 
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We could combine Sub-premises C and D, of course. But they are 

clearer if kept separate. 

The obvious argument in favour of Sub-premise D is that if we con­

tradicted it by deciding to change Ph( d) to q = f(fh, d) on seeing data d, 

apparently contradicting Sub-premise D, we could and should replace Ph 

by q in the initial description of the statistical measurement, which would 

result in a well-behaved probability distribution (modulo a normalisation) 

for which Sub-premise D would hold. In that case we might as well accept 

Sub-premise D after all. Any non-ad hoc decision to change H should 

be forseeable, so Sub-premise D is reasonable in every case. The only 

weak point of this argument is that it assumes a rational doxastic agent. 

While there is something to be said for assuming that a single doxastic 

agent ought to be rational, it may be impossible -for logistical reasons, 

quite apart from the theoretical problems inherent in collective decision­

making (problems which are well discussed in (Kadane et al. 1999))- for 

a group of agents to be rational to the extent required by Sub-premise D. 

Consequently, I cannot pretend to deal fully with the problem of multiple 

doxastic agents. 

A possible argument against Sub-premiseD is that statisticians, even 

lone statisticians, do not always behave in accordance with it: they some­

times accept rules which require them to change H after seeing data. Two 

examples will illustrate this. 

Firstly, Bayesians of many schools are willing to make small changes 

to their priors if the data suggest that the likelihood function ought to have 

a different functional form - for example, after seeing the outcome of a 

merriment, a statistician might change the functional form of the likelihood 
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fuction from a Normal (Gaussian) distribution to a log-Normal distribution 

of a very similar shape and size. This can be shown to have very little effect 

on the conclusions the statistician will draw in a very wide range of cases, 

but obviously there are cases in which changing the functional form of the 

likelihood function will make a difference to some conclusion. We cannot 

doubt that Sub-premise D is broken by such scientists. 

Secondly, some authors (Basu 1975, p. 19; Gelman eta!. 1995) advocate 

changing the likelihood function in a more substantial way if the data turn 

out in certain ways. The most interesting issue is whether such changes 

are merely matters of convenience, in which case agreement that one could 

validly apply the transformationf(ph, d) would make Sub-premiseD still 

valid in principle. 

Despite the plausibility of these objections in certain circumstances, 

two points need to be made in favour of Sub-premise D. The first is that the 

objections of Gelman et al. only apply in unusual circumstances. In typical 

scientific uses of the likelihood principle, such as fixed-size biomedical 

experiments, the WDLF (and therefore Sub-premise D) is uncontested. 

The second point to be made is how extremely little Sub-premiseD claims, 

even in contentious circumstances. The availability of the transformation 

f(ph, d) means that changing the likelihood function after seeing the data is 

fine, provided that the participants in the analysis either agree on the change 

and hence agree to re-analyse the data or agree to report their results 

separately (agree to disagree); and this latter situation is no different in 

principle from what would have happened if the participants had not been 

able to agree on a statistical model in the first place. 116 

116. Incidentally, it is rare for scientists to fail to agree on a statistical model, perhaps 
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SUFFICIENCY 

Then the simplest definition of sufficiency is as follows: 

sufficiency definition 1 

T(x) is a sufficient statistic for h iff p(xl T(x)) is algebraically 

(functionally) independent of h. 

A sufficient statistic for h, T(x), typically contains much less information 

about the world than X does, but the same amount of information (in a 

sense which I will make precise in the rest of this section) about h. 117 

The reason for the name "sufficient" is that if T(X) is sufficient for h 

(in the technical sense above) then it is all we need to know about X, if our 

sole purpose is to infer things about h, and so it is sufficient information 

in the lay sense. Anything else we know about X, over and above T(X), is 

epistemically redundant. For example, if we're sure that all we care about 

is the average height of a population (a big if), there is no point in recording 

more than the average height of the test sample; any other information 

about the test sample can be thrown away. 

There is a problem with the above definition of sufficiency: it can 

only be applied by people who are willing to talk about p(h). According 

to Neyman and many others, including some proponents of the likelihood 

principle, such as Hacking (1965) and Edwards ( 197'2), p(h) is meaningless 

in many circumstances. Happily, there is an alternative definition of suffi­

ciency which agrees with the first version whenever p(h) exists but which 

because their reputations as productive members of their community depend on being able 
to conclude statistical analyses quickly and without fuss. 

117. For example, if xis a vector of the heights of a sample of people then, under the Normal 
or log-Normal models most often used for human heights, the average (mean) height of the 
sample, T(x) = :E;=,xi In, is a sufficient statistic for the average (mean) height of the 
population. ' 
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does not require p(h) to exist, and which has the same epistemological 

properties as the first version. This more widely applicable definition is: 

sufficiency definition 2 

T( X) is a sufficient statistic for h iff we can find a function T' 

which allows p to be factorised in the following way: 

(Vh E H) p(xlh) = T'(T(x),h) xp(xiT(x)). 

A theorem known as the factorization theorem shows that this definition 

is equivalent to the earlier definition. 118 

Seeing that statistical sufficiency implies epistemic sufficiency is even 

easier using definition 2 than it was using definition I. For definition 

2 shows that all functions of p(xlh) can be calculated from T(x) and h, 

when T is sufficient for h. This point may look superficially as though it 

assumes the likelihood principle, but it does not. That all inferences about 

h depend on p( X a I h) is, more or less, the likelihood principle; but that all 

such inferences depend on p( x; I h) for some set { x;}, is an unrelated, trivial 

claim. 

For example, in most experiments on com tossing, the number of 

heads and the number of tails are jointly sufficient for all inferences; the 

order in which we observe the heads and tails is irrelevant. (x1 , x2 , ••• 

are jointly sufficient iff the ordered tuple (xt. x2 , ••• ) is sufficient.) The 

only assumption we need to make in order to be sure that we have a 

118. One part of the factorization theorem is easy to prove. It is easy to see that if this 
equation holds then T(X) is sufficient fOr h on definition 1, thus: if we know T(x) then we 

know the right-hand side as a function of h (bearing in mind that we can calculate p(xl T(x)), 
because it does not depend on h); hence, we know the left-hand side, which establishes that 
T( X) is sufficient for h. The converse is more long-winded to prove, and I will not be relying 
on it (since my working definition of sufficiency will be the second version, and all I need 
show is that whatever fits my definition also fits the other one, not vice versa), so I will omit 
the proof. 
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non-trivial sufficient statistic in the coin-tossing case is the assumption of 

exchangeability explained in chapter 2. As we have seen, this requirement 

is trivially satisfied if the results take the form of a multiset. 

All statistical models have sufficient statistics, trivially; since h itself 

is a sufficient statistic for h according to the above definition. Of course, 

such trivial sufficient statistics are not very useful. In addition, a model 

may have many sufficient statistics. 

PREMISE: THE WEAK SUFFICIENCY PRINCIPLE (WSP) 

The weak sufficiency principle: If T(X) is a sufficient statistic 

for h, and if T(x,) = T(x2 ), then inference procedures should not 

derive different inferences about h from x1 and x2 • 

(adapted from Basu 197 5, p. 9) 

The weak sufficiency principle was named thus by Dawid ( 1977) because 

it is weaker (claims less) than other similar principles. I will not be consid­

ering rival principles, but I have retained the name, partly for consistency 

with the literature but mostly because it is useful to be reminded how 

modest the principle's claims are. 

No statistician knowingly breaks the WSP. If a conflict with the WSP 

ever arises, the only reasonable conclusion is that T(X) is not a sufficient 

statistic for h after all. I would like to give four arguments for this. I do 

not claim that the four arguments are independent of each other; only that 

one might convince where the others fail. 

Firstly, the WSP follows directly from the claim (defended above) that 

statistical sufficiency entails epistemic sufficiency. 
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A second argument for the WSP, adapted from (Basu 1975, p. 9), 

IS as follows. Let us imagine that we have observed Xa in a two-step 

procedure: we have first conducted an experiment with sample space X 

but noted only the value of T(x), not the precise value of x. Then we 

conduct a further, separate experiment with sample space T(x), noting 

this time the exact value Xa obtained. Since Tis sufficient for h, the second 

experiment is "statistically trivial" (Basu's term) and tells us nothing about 

h. Hence, the outcome of the second experiment can make no difference to 

our inferences about h. Hence values x 1 and x2 which are possible outcomes 

of the second experiment (i.e., such that T(x1 ) = T(x2 )) should lead to the 

same inferences about h. 

Thirdly, here is a Bayesian argument for the WSP. We can prove that 

ifT(X) is sufficient for h, as defined above, then (\lx)p(h!T(x)) = p(hix). So 

knowing T(x) allows us to know the entire function p(hix) (as a function 

of h). 119 

119. This Bayesian argument will only be helpful for those who believe that p(hlx) is mean­
ingful - some do not- but since the proof is simple it is worth presenting. 

Proof (\Ia, b, c) p(aib) = p(aic)p(cib) + p(aiC)P(Cib), either from the definition of 
conditional probability or (better, since I take conditional probability as primitive) from the 
probability axioms of chapter Q. 

So p(hi.x) = p(hix = .x) 

T(.x)l X = .r) 

= p(hiT(X) = T(.x)).p(T(X) = T(.x)IX = .x)+p(hiT(X) I T(.x)).p(T(X) I 

= p(hi T(X) = T(.x)) X I + p(hi T(X) I T(.x)) X 0 

= p(hi T(.x)). 

Interestingly, the above proof assumes a classical logic; otherwise, the fact that knowing 
parts of .x above and beyond T(.x) cannot affect the fact that we know the whole of p(hi.x) 
might not imply that it cannot affect our conclusions about h in any way. In a paraconsistent 
logic (one in which some but not all contradictions are true (Priest 1987)), knowing T(x) 
might enable one to know p(hlx), but finding out more about x might enable one to find 
out that some of the truths previously discovered were false (as well as true). This would 
invalidate the weak sufficiency principle, and thus the likelihood principle (since the converse 
of the likelihood principle can be proved from the converse of the weak sufficiency principle 
given the weak conditionality principle, as I prove below when I show that the likehhood 
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PREMISE: THE WEAK CONDITIONALITY PRINCIPLE (WCP) 

Informal statement: 

If one of two possible statistical measurements is chosen by the 

toss of a fair and indeterministic coin, no inference procedure 

should require information about the merriment that was not 

performed. 

Formal statement: 

The weak conditionality principle: Consider two statistical 

measurements M, = (X"H,p1) and M 2 = (X2 ,H,p2 ). (By this 

I mean that M 1 has sample space X" hypothesis space H and 

probability function p" and similarly for M 2 .) 

Note that the set of hypotheses is the same for each. This is 

a deliberate restriction which entails that this principle does not 

apply to hypotheses about alchemy compared with hypotheses 

about chemistry, although it does apply to comparing statistical 

models that each consider both alchemy and chemistry. This is 

in accordance with the WDLF. 

Now consider an observation from a new merriment, M*, 

which consists of using a fair, epistemically indeterministic coin 

to select one of M 1 and M 2 at random with probability 1/2 each. 

M* still falls within our definition of a statistical measurement: 

formally, M* = ( (J, XJ ), H, Pi (J, XJ) ). (By "epistemically 

indeterministic" I mean simply that no deterministic pattern in 

the behaviour of the coin has been noted or is expected. Some 

people are known to be able to toss a coin so as to yield a pre­

determined outcome. Our coin-tosser must not be one of those 

people.) 

principle is logically equivalent to the union of the two weaker principles, and since the weak 
conditionality principle is not thrown into doubt by paraconsistency). As far as I know this 
is an original point, and perhaps worth following up ... but not here. 
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Suppose M* is performed, and turns out to consist of M 1 • 

Then any inference procedure should derive the same inference 

from this instance of M* as it would have derived from M 1 alone. 

The weak conditionality principle is called "weak" for the same reasons 

as the weak sufficiency principle: for consistency with the literature and 

to remind us how modest it is. Stronger versions of the conditionality 

principle replace the coin with an arbitrary ancillary statistic, thus: 

The conditionality principle is given as follows: 

C: cont(I1) = cont(I2 ) if I 2 is the conditional inference base 

given the value of an ancillary for I 1[.] 

(Evans eta!. 1986, p. 185) 

where "cont(I)"' refers to "what the model and data in I ... say concerning 

the unknown ()"" (Evans et a!. 1986, p. 184). I will not dwell on this 

more general principle, because I do not need it. I only need the Weak 

Conditionality Principle, which is so similar to Cox's example given above 

that it is barely even a generalisation of it. The coin is still a coin. All that 

has changed is that the two laboratory measurements have been replaced 

by two arbitrary measurements relevant to H. 

ALTERNATIVE PREMISES 

The likelihood principle is not just entailed by the the WSP and the WCP, 

it is actually logically equivalent to their conjunction. So it is impossible 

to weaken or remove either principle without strengthening the other one, 

unless a new principle is added. 

The WSP can be replaced, in the proof of the likelihood principle, by 

a principle saying that if an ancillary statistic exists then it is acceptable 
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to condition on it, provided that we add an additional axiom saying that 

certain types of structural information can be ignored (types of structural 

information which only turn up in the structural theory of Fraser and the 

pivotal theory of Barnard). A proof using these alternative axioms is given 

in (Berger 1985, pp. 37-39). 

Evans, Fraser and Monette ( 1986) have a proof that depends only on 

a version of the conditionality principle, but it is a stronger version than 

the one given here, and it makes additional assumptions about ancillarity. 

It seems to most authors, and to me, that the weak sufficiency principle is 

already so uncontentious that it is better to leave it in the proof, in return 

for being able to use such a weak conditionality principle. 

Birnbaum pulls a similar trick: he proves the likelihood principle from 

a conditionality principle slightly stronger than mine plus the following 

"principle of mathematical equivalence": 

Mathematical equivalence (M): Iff( x, 0) = f( x', 0) for all 0 E !1, 
then Ev(E, x) = Ev(E, x'). 

(Birnbaum 1972, p. 858) 

Dawid ( 1977, p. 249) gives a proof of the principle of mathematical equiv­

alence from the transformation principle which we met in chapter 7 plus 

the assumption that the description of a statistical observation such as the 

one given in chapter 2 in terms of X, Xa and H is complete: this second 

assumption rules out structural inference (chapter 4) and pivotal inference 

(chapter 5). 

According to Pratt (1962, pp. 3 14-315) and Birnbaum (1972, p. 861) 

it is also possible to eliminate the conditionality principle by replacing it 
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with a Weak Relabelling Principle implied by Pratt's voltmeter example 

which I discussed in chapter 7. Pratt" s relabelling principle is: 

A relabelling of possible outcomes which does not affect the 

outcome actually observed surely should not change an inference 

or decision. 

(Pratt 1961, p. 166) 

Pratt sketches a proof of the likelihood principle from this relabelling 

principle: 

However, there are almost always such relabellings which change 

the P-value and hence may change an inference or decision based 

on a significance test. Suppose, for instance, an experiment 

has possible outcomes a, b, · · · , z. Suppose Meter I tells the 

outcome, while Meter 2 tells only whether the outcome was or 

was not d. If in fact the outcome is d, you would learn this 

from reading either meter and would want, therefore, to make 

the same inference or decision; yet the result of a significance 

test would ordinarily depend on which meter you were reading. 

A direct continuation of this argument shows an inference or 

decision should depend on the probability under the possible 

hypotheses of the outcome observed only (and on this only up 

to multiplication by a constant). The use of the probabilities 

of other outcomes also, as in the Neyman-Pearson formulation, 

inevitably leads to inconsistencies. 

(Pratt 1961, p. 166) 

Why does Pratt say that a Frequentist analysis "would ordinarily depend 

on which meter you were reading''? Because using Meter I forces a 

Frequentist to use a detailed ordering of possible outcomes - either the 

obvious numerical ordering or some other fixed ordering, say 0- in order 
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to calculate a P-value (for reasons explained in detail in chapter 7). Meter 

2 prevents us from having such a detailed ordering: the only possible 

orderings based on Meter 2 are < d, not-d > and < not-d, d >. Hence­

and this is where the caveat "ordinarily" comes in- we will get different 

P-values from Meter I and Meter 2 unless it happens that the detailed 

ordering and the coarse ordering coincidentally give the same result ... 

which is unlikely unless d happens to be at the very top or the very bottom 

of the ordering used with Meter 1. This is not "ordinarily" the case, as 

we can see from the fact that the value of d is completely arbitrary: some 

particular values of dare at the top or bottom of the ordering Oof a, b, · · ·, z, 

but most are not. Hence Pratt's example is extremely general. All that 

remains to turn it into a proof of the likelihood principle is a bit more 

precision (especially a plausible definition of "inconsistency" which covers 

this case- a role played by the WCP in my proof), plus an extension from 

the theory of P-values to Frequentist theories in general. Indeed, Pratt's 

example is sometimes cited as the first proof of the likelihood principle 

(Berger & Wolpert 1988), although this seems to me to be stretching the 

notion of proof a little. 

Of course such a relabelling principle is almost identical to the Weak 

Conditionality Principle: the main difference between them is that in the 

Weak Relabelling Principle the choice (as it were) of a censored or a non­

censored observation may be part of a single run of a single experiment, 

whereas in the Weak Conditionality Principle it is a separate coin toss. 

It seems to me that the latter is even more clearly irrelevant to what we 

ought to infer than the former, and consequently in the next section I will 
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present a proof of the likelihood principle from the Weak Conditionality 

Principle rather than from the Weak Relabelling Principle. 

I call Pratt's relabelling principle the Weak Relabelling Principle 

(this is my own terminology, unlike "Weak Conditionality Principle") be­

cause Pratt himself objects to a stronger relabelling principle suggested 

by Birnbaum. Birnbaum's relabelling principle, also known as a principle 

of mathematical equivalence, is as follows: 

let (E, x) and (E',y) be any two instances of statistical evidence, 

with E and E' having possibly different mathematical structures 

but the same parameter space n = { 8}. Suppose that there exists 

a one-to-one transformation of the sample space of E onto the 

sample space of E' : y = y(x), x = x(y), such that the probabilities 

of all corresponding (measurable) sets under all corresponding 

hypotheses are equal: Prob(Y E A'IO) = Prob(X E Aj8) if 

A' = y(A). Then the models E and E' are mathematically equiva­

lent, one being a relabelling of the other. If respective outcomes 

x of E andy of E' are related by y = y(x), they also are mathe­

matically equivalent, and the two instances of statistical evidence 

(E, x) and (E',y) may be said to have the same evidential mean­

ing: Ev(E, x) = Ev(E',y). A simple concrete example is that of 

models of measurements which differ only in the units in which 

measurements are expressed. 

(Birnbaum 1962, pp. 277-278) 

This version of the relabelling principle is much stronger than Pratt's, 

because in Pratt's the relabelling cannot assign different values to the 

outcome which actually occurred (xa). while in Birnbaum's it can. Pratt's 

objection to the stronger principle is as follows: 

I believe there is more to relabelling than meets the eye when 

the framework is left abstract [as it is in Birnbaum's relabelling 
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principle]. It is not merely a matter of interchanging the labels 

attached to the states of nature. What is really involved is inter­

changing the distributions attached to the states of nature. An 

example, over-simplified to bring it into a two-state framework, 

would be this. If a certain drug has no effect, it helps the same 

proportion of patients as a placebo, which, let us say; is '25 per 

cent; if it has an effect, it helps 40 per cent. Relabelling does 

not mean that the two states are called '2 and I rather than I 

and '2 respectively. It seems to me relabelling gives a situation 

where no treatment effect means 40 per cent are helped and effect 

means '25 per cent are helped, instead of no effect meaning '25 per 

cent are helped and effect 40 per cent. This makes no physical 

sense to me, and accordingly I don't feel compelled to accept 

equal prior probabilities in Jeffreys' framework .... two samples 

giving the same likelihood on the same parameter space need not 

logically have the same evidential meaning unless the physical 

interpretations of the parameters are identical in the two cases. 

(Pratt 196'2, pp. 315-316) 

This amounts to the complaint that a relabelling may incorrectly over-ride 

prior knowledge of the sort which a Bayesian would incorporate using a 

probability distribution. (I say this because the fact that there is any lack of 

symmetry between the phrases "effect" and "no effect", which is the basis of 

Pratt's complaint, is a piece of prior, non-mathematical knowledge.) Pratt 

ought to observe that this same complaint applies to his Weak Relabelling 

Principle. However, had he noticed that, he could have replied that it has 

less force against his own principle than against Birnbaum's, because in 

his own principle we can at least be sure that we are not interchanging an 

actual state of nature with a non-actual one. 

Be that as it may, this discussion is only indirectly relevant to the issue 

of alternative proofs of the likelihood principle: it has no direct impact on 
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the rest of this thesis, since I do not use either relabelling principle in 

my proof of the likelihood principle. Moreover, I make it part of my 

statement of the likelihood principle that Pratt's requirement that "the 

physical interpretations of the parameters are identical in the two cases" 

is met. I do this by insisting that two likelihood functions are considered 

equal only if all their variables have the same meanings. 

We might wonder whether either relabelling principle is implied by 

the likelihood principle, in which case of course I am committed to it. The 

answer is that Pratt's weak principle is implied by the likelihood principle 

but Birnbaum's stronger principle is not, as we can see from the fact that 

orthodox Bayesian inference is compatible with the likelihood principle and 

yet can take into account prior knowledge such as the difference between 

"effect" and "no effect" (when such a difference exists). 

3. A PROOF OF THE LIKELIHOOD PRINCIPLE 
FROM THE WSP AND THE WCP 

PROOF OF THE LIKELIHOOD PRINCIPLE 

Recall the likelihood principle: 

Terminology 

By "inferences" I mean any beliefs and partial (probabilistic) beliefs 

which are held or followed and any actions which are taken, as delib­

erate results of an observation. 
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n Xa denotes a vector representing all observations considered relevant 

to any of the hypotheses in some set H. Xa can be purely observa­

tional: it need not result from one or more deliberately constructed 

experiments. 

m By "inferences about hypotheses·· I mean any inferences about the 

hypotheses in H: such inferences must not mention any hypotheses 

not contained in H except that they may (trivially) mention any 

hypotheses whose truth is not in doubt and any hypotheses on which 

Xa has no bearing. 

IV Two likelihood functions are considered equal if all their variables 

have the same meanings within the theories represented by each 

hypothesis, and if the two functions are proportional (iff(3c > o) (Vh) 

(Lt(h) = c. I..,( h)). 

Conditions qf applicability 

I. We cannot infer anything about the relative importance of the various 

possible inferential errors from the observation (i.e., the loss func­

tion, or equivalently the utility function, is either independent of the 

observation or unimportant). 

'2. The choice of observation is not informative about the hypotheses, only 

its outcome. 

3. The Well Defined Likelihood Function condition: (perhaps trivially) 

for each hypothesis h under consideration in a statistical analysis, 

Ph(xa) = p(xalh) must be well defined (i.e., have a single value). 

The likelihood principle 
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Inferences from observations to hypotheses should not de­

pend on the probabilities of observations which have not 

occurred, except for the trivial constraint that these probabili­

ties place on the probability of the actual observation under the 

rule that the probabilities of exclusive events cannot add up to 

more than I. 

Consider two statistical measurements M, = (X, H, p,) and M2 = (X2 , H, b)· 

Next, consider the mixed merriment M* (which was defined in state­

ment of the weak conditionality principle as follows: a fair, epistemically 

indeterministic coin is tossed; according to its outcome, one of the merri­

ments M, and M2 is performed). Now suppose that whichever merriment 

hasn't been performed yet is also performed. At this stage we have an 

outcome x 1 from M, an outcome x2 from M2 , an outcome j indicating 

which experiment was performed first (j = I forM, andj = 2 for M2 ), and 

an outcome from M*. The outcome from M* is J = I or 2 and x* = x 1 or 

x2 . The possible outcomes are denoted (j, Xj ). 

Then let to = ( 0, 0) and consider the statistic 

T(j,xj) =to if(j,xj) = (1,x1 ) or (2,x2 ) 

= (j, x1) otherwise. 120 

ls T a sufficient statistic for h? Generally, no. Recall that T is a sufficient 

statistic for h iff p can be factorised as 

120. The otherwise clause can never represent an actual outcome, since I have defined the 
indexing of the merrimens in such a way that only ( 1, x1 ) can occur if M 1 is performed first 
and only (2, X-.2) can occur if M2 is performed first. The fact that other outcomes cannot occur 
need not stop us considering their mathematical properties. According to the likelihood 
principle we should not base inference procedures on such properties; but we are currently 
proving the likelihood principle and so cannot assume it to be true. And even if we were able 
to assume it to be true at this point we could sti11 consider such properties, even though we 
would have to refrain from endorsing inference procedures based on them. 
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(Vh E H) plj,x1 lh) = T'(Tij,xj),h). p!J,xJIT!J,xJ)). 

There need not, in general, exist a suitable T' to match our choice ofT. But 

suppose that the likelihoods of x 1 and x2 are equal (i.e.,h(x,lh) ex: p2 (x2 lh), 

or (3k > O)(Vh E H)(p1(xdh) = k. (p,(x1 lh)). To prove the likelihood 

principle, we require to show that T is now sufficient for h. Let T' be as 

follows: 

T'((j,xj),h) = ~p1 (X = xdh) + ~p2(X = x2 lh), if(j,xj) = t, 

= p!j, xilh) otherwise. 

Then 

T'(T!j, Xj), h) = ~h(X = xdh) + ~p2(X = x2 lh), if lj, Xj) = (1, x 1 ) or (2, x2 ) 

= p(j, .ljlh) otherwise. 

To calculate p!j, x1 1 Tlj, x1)) (the final term in the sufficiency equation), note: 

p(( I, xi) IT= t,, h) = p*(J = II T = t,, h). p1 (X, = x,l T = t,, h) 

= ~h(X, = x,IT = t,, h) 

_ 'p,(X=x, I h) 
- ;p,(X-x,lh)+ ;p,(X->;Ih) 

I _ _ 'p,(X=x,lh) 
p((2, x2 ) T- (,,h)- ;p,(X-x,lh)+ ;p,(X->;Ih)' by symmetry 

p(IJ,xJ)IT = lj,x1),h) = 1, (j,x) f. t,. 

Now we can check the sufficiency equation: 

If J = 1, X1 = x 1 then 

T'(T(j, Xj), h). p(j, Xjl Tlj, Xj)) 

1 7p,(X=x,lh) 
= ~p,(X = x,lh) + oPz(X = rzlh) X ip,(X=x,lh)+ ;p,(X->;Ih) 

= ~p1 (X = x 1 lh) 

= p(j, Xjlh). 
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By symmetry, if J = 2, X2 = .r, then 

T'(T(j, Jj), h). p(j, Xj! T(j, Xj)) = p(j, Xj!h). 

And for all other ( J, XJ ), 

T'(T(j,xj),h). p(j,xj!T(j,xj)) = p(j,xj!h) xI. 

This establishes that Tis sufficient for h. 

It follows the sufficiency of T for h and from the weak sufficiency 

principle (applied to the fact that (T(1,x1) = T(2,x2 )) that no inference 

about his valid on observation (1, x1 ) in the mixed experiment unless it is 

also valid on ( 2, Xz ). 

Now recall that j is chosen by a fair, indeterministic coin toss. Con­

sequently, the weak conditionality principle applies. It tells us that no 

inference about his valid on (1,x1 ) unless it is also valid on x 1 alone. (x1 

corresponds to M 1 in my formal statement of the weak conditionality prin­

ciple above.) In other words, the observations (1, x 1 ) and x 1 are equivalent 

in terms of the inferences they license. Similarly, the observations (2, x2 ) 

and x2 are equivalent in terms of the inferences they license. And we de­

termined in the previous paragraph that the observations (1,x1) and (2,x2 ) 

are equivalent in the same sense. Hence, the observations x1 and x2 license 

the same observations as each other. 121 Consequently, no inference is valid 

on x1 (regardless of the value ofj) unless it is also valid on x2 • 

We have proved this for any x1 and x2 with equal likelihoods under the 

models under consideration (fi(xdh) ex Pz(x2 !h)). It follows that any two 

observations which share likelihood functions must share inferences about 

any unknown parameters mentioned by their statistical models, provided 

121. To summarise this paragraph: if we write "=" for "license the same observations as 
each other", we have just shown that x1 - (l,.r1) = (2,x2) - x2 . The relation= is 
transitive, so x 1 = x2 . 
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only that those unknown parameters index the same set of hypotheses for 

both. 

The proof so far is sufficient to prove some versions of the likelihood 

principle, including Barnard's (1947) and Birnbaum's (1962) (see chapter 

8). I am grateful to Daniel Steel for pointing out to me that the proof so far 

is not sufficient to prove all versions of the likelihood principle, because it 

leaves one important question ambiguous. Steel distinguishes (in personal 

communication) between two statements: 

(1) Ifp(x1 lh) = p(x2 lh)thenx1 andx2 havethesameevidentialimpacton 

h. 

(2) If p(xlhd = p(xlh,) then x has the same evidential impact on h1 as on 

h,. 

I have already proved (1), by proving that ifp1(x1 lh) <X p2 (~1h) then no 

inference about H (and hence about any h) is valid on x 1 unless it is also 

valid on~· But many versions of the likelihood principle, including mine, 

also imply (2). So it is necessary to extend the proof to handle this issue. 

Consider any merriment M =(X, H,p), label the outcome of M x (as 

usual), and based on M and x define a new merriment MO = ( Y, H, Pr) 

where Y is I or 0 according to whether X = x or not, thus: 

so that: 

Y= {~ if X= X 

if X 7' X 
(1) 

p(Y = llh) = p(xlh) and p(Y = olh) = I- p(xlh). (2) 
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So (V h) Pr( Y = II h) <X p( xi h): the observations Y = I and x share 

likelihood functions. Hence no inference is valid on the observation of x in 

M unless it is also valid on the observation of Y = 1 in MO. (All this is 

a trivial consequence of the part of the likelihood principle already proved 

above.) So we should ask which inferences are valid on the observation of 

Y=IinMO. 

If all we know is that Y = I, whatever we can infer about H from X 

and x must be a function of the functions of X and x that appear in the 

description of MO. But the only such functions are p(xih) and I - p(xih) 

(from (2), or directly from (I) if you prefer). But these are just the likelihood 

function of x and I minus the likelihood function of x. And, in particular, 

no mention of any part of X except xis made in the description of MO. So 

all inferences from MO and hence from M must depend functionally on 

x only via the likelihood function, and in particular no inferences from M 

may use probabilities of any part of X except the part which was actually 

observed. 

This establishes the full likelihood principle. 

To see that it establishes (2) along the way, note that I have proved 

that inferences from x to h must depend on x only via p( xi h). So inferences 

from x to h1 and h, must depend on x only via p(xlh1) and p(xlh,). When 

these are the same, as in ( 2 ), the inferences must be the same. 

The premises used in this proof are exactly the minimum needed to 

prove the likelihood principle, as can be proved by proving the premises 

from the likelihood principle. I will do this by showing that it implies each 

of them separately. (Since it is implied by both of them jointly, it must then 
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be equivalent to the union, since if (a !I b)=> c and c => a and c => b then 

c <=>(a !I b).) 

It follows directly from the likelihood principle that the correct con­

clusion in Cox's example is to ignore the characteristics of the laboratory 

not used. To prove the the weak conditionality principle given above (the 

formal version of the obvious solution to Cox's paradox), we note that in 

merriment M*, 

. 1 
p(J,xJih) = -PJ(xjih) ex PJ(xJih). 

2 

So M* and ~ have proportional likelihood functions, where ~ is the 

measurement chosen by the coin toss. Hence M* and ~ licence identical 

inferences. Hence only ~ matters. 

To prove the weak sufficiency principle from the likelihood principle, 

note that if T is sufficient for H then (by definition) p(XI T(X)) is inde­

pendent of h. If T(x1 ) = T(x2 ) (as in the premises of the weak sufficiency 

principle) then p(xd T(x1), h) = p(x,iT(x,), h). Then p(x1 ih) = p(x2 ih)-

x 1 and x2 have identical likelihood functions. So, by the likelihood principle, 

any inference procedure should draw the same different conclusions from 

x1 as from x2 • 

This completes the proof that the likelihood principle is logically 

equivalent to the conjunction of the weak conditionality principle and the 

weak sufficiency principle. 

HOW THE PROOF ILLUSTRATES THE LIKELIHOOD PRINCIPLE 

The only functions we needed to consider in the proof of the likelihood 

principle were p1 (xdh), p2 (x2 ih), pr(yih) etc., all considered as functions of 

h: 
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Figure 17 

The exciting thing about the likelihood principle is that only p(x.lh) is 

relevant to any inference about H. In stark contrast, as we saw in chapter 

4 almost all statistical methods in common use rely on p(xlho), considered 

as a function of x (fixing a single hypothesis and imagining the observation 

varying). This function is, in general, quite unrelated to any of the above 

functions: 
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Figure 18: The shape of the graph p(xJho) doesn't matter 

The likelihood principle says that the shape of this graph is totally irrele­

vant to inferences from any actual observation (or set of observations -

recall that xis generally a vector). 

THE LIKELIHOOD PRINCIPLE FOR INFINITE HYPOTHESIS SPACES 

The proofs above do not go through for arbitrary probability density 

functions, because of ambiguities in the notion of sufficiency (Basu 1975) 

(Evans et al. 1986) (Berger & Wolpert 1988, pp. 28-30). But they do go 

through (with very minor modifications) for continuous functions, where a 

continuous function is one such that the preimages122 of topologically open 

sets are topologically open sets (Berger & Wolpert 1988, p. 30) (Bj0rnstad 

1996)P5 Any function whose graph can be drawn without taking the 

122. The preimage of a set A is the maximal set whose members map onto members of A by 
j~fUlpfitfR@ flla'l%!\liB!'rs, topologically open sets are those which have the form of the union 
of a finite number of intervals (a, b), not including the endpoints a and b. 
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pen off the paper is continuous. The topological definition is needed to 

make this idea precise and to generalise it to arbitrary spaces. All of 

the functions commonly used as probability density functions in applied 

statistics are continuous. 

For the sake of completeness, and because the notation is pretty, I 

quote the following theorem of Berger and Wolpert, which is proved from 

measure-theoretically more sophisticated versions of the weak sufficiency 

principle and weak conditionality principle. The theorem shows that the 

likelihood principle applies to some (in a sense, most) non-continuous 

infinite hypothesis spaces. 

Let ¢ : U1 --> U2 be a Borel bimeasurable one-to-one mapping 

from U, C N, onto U2 C N2 , and suppose there exists a strictly 

positive function con U1 such that for all 0 E 6, 

Po(A) = 1 -(1 
)Po(dx,), A c U2. 

q,-•(A) C x, 

Then if an inference can only be drawn from the observation x if 

it can also be drawn from the observation ¢(x), for all x except 

for a set of probability zero (regardless of the value of 0). If it 

is agreed to ignore the possibility of events of probability zero 

then inferences about 6 may depend on N, and N2 only via x and 

¢(x). 

(Adapted from Berger & Wolpert 1988, pp. 33-34) 

Taken together with my proof above, this shows that the likelihood prin­

ciple is true for any finite set of hypotheses and for any parametric infinite 

set of hypotheses and for many non-parametric infinite sets of hypotheses. 
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BJ0RNSTAD'S GENERALISATION 

OF THE LIKELIHOOD PRINCIPLE 

Bjornstad has proved a version of the likelihood principle which applies 

even when the hypotheses to be examined depend on the observed data. 

This is a case which is excluded by my general framework, but I will 

briefly state Bjornstad's theorem because it holds the prize as the most 

general version of the likelihood principle to have been proved to date. 

In particular, Bjornstad's theorem is applicable even to instances of the 

prediction problem (see chapter 2), in which 0 is a function of x. 

Define Mas (X, h,p) as previously, but this time let the quantity 

about which we wish to draw inferences be not h but A, and let 

A be a function of x, thus: 

A = A(y, '1/J), where '1/J represents the unknown quantities 

which are being treated as variables. Let 0 represent the un­

known quantities which are being treated as parameters. 

Let h = (1/J, 0). 
Then inferences from x E X to A must be depend on x only 

via the ordered pair (A,p(xiA, 0)). The first term in this pair is 

new. The second term is a likelihood function, but not the same 

likelihood function as in the simpler case proved above (in which 

it was p(xlh)). 

See (Bjornstad 1996) for a proof of this principle. 

In real scientific cases A(x) is often independent of x, and in this com­

mon case Bjornstad's likelihood principle reduces to the simpler likelihood 

principle proved above. 

This concludes my discussion of proofs of the likelihood principle. In 

the next chapter, I give, and answer, objections which have been raised to 

proofs similar to mine. 
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0bjections to Proofs of the Likelihood Principle 

As yet the literature contains no objections specifically directed at my proof 

of the likelihood principle. But my proof is similar enough to proofs given 

by (Birnbaum 1962, Birnbaum 1972) and (Berger & Wolpert 1988) that 

objections to those proofs, if they succeed, may plausibly defeat my proof 

as well. 

The relationship between my work and the work of other authors in 

this chapter is a little different from the situation with regard to objections 

to the likelihood principle. I believe that my version of the likelihood 

priciple is immune to many criticisms which were valid criticisms of earlier 

versions of the principle; but I do not believe my proof is such a big 

improvement on earlier proofs that serious objections to the earlier proofs 

fail to apply to my proof. This is why I do not trouble the reader's patience 

by reproducing the earlier proofs. 

I will show that none of the objections to earlier proofs that I am aware 

of succeed either as criticisms of my proof (as I demonstrate explicitly) or 

(implicitly) as criticisms of Birnbaum's or Berger and Wolpert's proofs. 

1. OBJECTION 14.1 

THE WSP IS FALSE 

Evans, Fraser and Monette claim that the Weak Sufficiency Principle is 

false, on the following grounds. I must quote at length, because the 

407 



essential part of their objection - the third paragraph below - is not 

phrased as an objection. The fact that it is intended to be an objection only 

becomes clear in context. 

[T]he general deficiency of the ordinary statistical model pro­

vides the mechanism for the proofs giving the paradoxical re­

sults. 

Given the disturbing consequences of Birnbaum's formula­

tion of the common principles [the WSP and the WCP, defined in 

chapter 13 ], we examine more closely the meaning and uses of a 

principle. We recall that cont(/1 ) = cont(/2 ) means that 11 and / 2 

contain the same information concerning the parameter B. We 

... question to what degree a statistical principle is merely the 

statement of[ such J an equivalence. 

Consider the sufficiency principle .... the sufficiency prin­

ciple as described above [my WSPJ asserts that [ x and a suffi­

cient statistic T(x)] contain the same information. Operationally, 

however, the principle ... seems to imply more: that we should 

replace [x] by [T(x)] for purposes of inference. For associated 

with any inference base is a wealth of inference procedures that 

can commonly be invoked, and in replacing [x] by [T(x)] we are 

restricting this class, unless of course [ T] is trivial. In this sense 

su.fJiciency can be viewed as an operational step towards cont, and 

would be more than a mere statement of equivalence . 

. . . Birnbaum did not address these aspects of the principles, 

only treating them as equivalence relations. Accordingly his 

proofs ... allow the use of the principles in contexts where the 

justification for the principles is violated. Such applications are 

clearly inappropriate and indicate at least that some clarification 

is needed of the principle, or of the application context 

(Evans eta!. 1986, pp. 191-19'2) 
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It seems to me that Birnbaum's proofs are not subject to this objection, 

but I cannot show that without a considerable aside on Birnbaum's work. 

Instead, I will merely defend my own proof. 

There is a little confusion in this objection. Neither I nor other writers 

on the likelihood principle say that one must replace x with an arbitrary 

sufficient statistic T(x). It would clearly be daft to say that, since there are 

many such sufficient statistics. Nor do I assert that the WSP says that one 

must do this. 

Perhaps Evans, Fraser and Monette believe that the WSP is obviously 

false. However, they do not give any arguments against it apart from the 

above argument which, as I have just shown, misses its target. So, although 

I would like to support the WSP against objections, there is nothing explicit 

for me to argue against. Instead, I refer to the arguments I gave in favour 

of the WSP in chapter 13, and hope that the considerations I used there 

outweigh whatever considerations lie behind Evans, Fraser and Monette's 

objection. 

2. OBJECTION 14.2 

THE WCP IMPLIES THAT IT SHOULD BE 
IRRELEVANT WHICH MERRIMENT OCCURS 

In addition to objecting to the WSP, Evans, Fraser and Monette object to 

a class of proofs of which mine is one. I will translate the objection into 

the terminology of my proof, in square brackets. I do not quote the terms 

from which I am translating, because if! did so the objection would become 

unreadably messy. 
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consider a context in which a statistician who accepts [the Weak 

Conditionality Principle and the Weak Sufficiency Principle J 

is presented with the mixture inference base [M*J. Condi­

tionality indicates that the relevant model for inference about 

() is given by [ Md. On the other hand, application of [the 

WSPJ establishes-as is clearly seen via the sufficient statis­

tic [T(j, Xj) = 4:, if(j, Xj) = (1, x 1) or (2, x2), which I proved above 

to be sufficient for h provided the preconditions of the likeli­

hood principle are met}-that the information as to which model 

has occurred is irrelevant information for inferences about [ h}. 
The statistician is presented with contradictory recommenda­

tions from these principles. 

(Evans eta!. 1986, p. 190) 

This objection is mistaken, because the Weak Conditionality Principle does 

not say that the information as to "which model has occurred" (which way 

the coin toss came out and hence which merriment has been conducted) is 

irrelevant to inferences about h. It says that the information as to which 

model has occurred is irrelevant to inferences about h given the likelihood 

function p(j,xj)· This is just as it should be: we need to know which 

merriment has been made, since otherwise we could not interpret the 

results. But we don't need to know which merriment has been made once 

we have the likelihood function, since ex hypothesi it is the same for each. 

Of course these recommendations are only correct if the likelihood principle 

is correct, but even if the likelihood principle is wrong the recommendations 

are not (as Evans, Fraser and Monette claim) contradictory. 
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s. OBJECTION 14.8 

THE PROOF FAILS IF THE WCP IS LIMITED 

TO CONDITIONING ON A MINIMAL 
SUFFICIENT STATISTIC 

A minimal sufficient statistic is a sufficient statistic t(x) such that any other 

sufficient statistic T(x) depends on x only via t(x). Minimal sufficient 

statistics do not always exist, and when they do they are not always unique. 

Durbin (1970) shows that if the WCP is restricted to conditioning on 

a minimal sufficient statistic it can no longer play the role it is required to 

play in (Birnbaum's, or my) proof of the likelihood principle1
Q

4 

Why might one possibly think that the WCP should be restricted in 

this way? Durbin only sketches an answer: 

Birnbaum's sufficiency principle (similar to the WSPJ implies 

that, as a function of the observations, evidential meaning de­

pends only on the minimal sufficient statistic, where this exists 

... Since evidential meaning depends only on the minimal suf­

ficient statistic it would seem reasonable to require that any 

analysis or interpretation of the results of the experiment should 

depend only on the value of the minimal sufficient statistic. This 

leads naturally to the requirement that the domain of applicabil­

ity of(C) (roughly, the WCPJ should be restricted to components 

of the minimal sufficient statistic. 

(Durbin 1970, pp. 395-396) 

124. I am not sure that this point is intended by Durbin himself to be an objection to a 
proof of the likelihood principle, but it has been cited as an objection of this sort, without any 
elaboration, by a number of other authors. 
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In this passage, Durbin talks about conditioning only on "components of" 

minimal sufficient statistics. He does not say what he means by "compo­

nents of" a statistic, and he does not use this qualification anywhere else 

in his paper, so we must consider the possibility that it is a typographical 

error; however, his argument is much more plausible if it is not a typo­

graphical error but is, rather, what he means to say throughout his paper. 

I therefore consider both possibilities. 

OBJECTION 14.3.1 

THE WCP SHOULD BE LIMITED TO CONDITIONING 

ON A MINIMAL SUFFICIENT STATISTIC 

For the duration of this section, I ignore the idea of "components of" a 

minimal sufficient statistic, and take it that Durbin is asserting that the 

WCP should be restricted to conditioning on a minimal sufficient statistic 

itself Then Durbin's argument may be paraphrased as follows: in some 

cases, evidential meaning depends only on the minimal sufficient statistic 

(assuming the WSP is true; if not, then of course any proof based on 

it is unsound); but one should only condition on evidentially important 

variables; hence one should condition only on minimal sufficient statistics 

in general and, a fortiori, in applications of the WCP. 

It is true that according to Birnbaum's proof only sufficient statistics 

(and hence only minimal sufficient statistics, where such exist) are evi­

dentially important to inferences about H. This follows from Birnbaum's 

sufficiency principle, which is as follows: 

Princzple '![Sufficiency (S): Let E be any experiment, with sample 

space {x}, and let t(x) be any sufficient statistic (not necessarily 

real-valued). Let E' denote the derived experiment, having the 
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same parameter space, such that when any outcome x of E is 

observed the corresponding outcome t = t(x) of E' is observed. 

Then for each x, Ev(E,x) = Ev(E', t), where t = t(x). 

(Birnbaum 1962, p. 278) 

But there is no reason to restrict conditioning to "evidentially important 

variables". This is one place where Birnbaum's proof is significantly differ­

ent from mine, for my premises say nothing at all about what is "evidentially 

important", while Birnbaum's do. Birnbaum's terminology of evidential 

importance, as encapsulated in the sufficiency principle above, may suggest 

that only evidentially important variables are important simpliciter. But 

of course that need not be the case, and in applying the WCP it certainly 

is not the case. For although the variables in question are (according to 

Birnbaum) the only evidentially important variables for inferences about H, 

they are not the only important variables for analysis of the structure of the 

merriment. A variable can be vital for the latter purpose while, on its own, 

carrying no information at all about H and hence not being a sufficient 

statistic, never mind a minimal sufficient statistic. 125 

I have shown that Durbin has no clear argument against Birnbaum's 

proof, even if we allow the terminology of" evidentially important" variables 

on which Durbin's argument relies. If we avoid that terminology, as I do 

in my proof, Durbin's argument becomes even weaker. Recall that the only 

125. Cox's example illustrates this point nicely. Recall that in Cox's example the toss of a 
coin determines which laboratory receives a sample of blood. In the context of the example, 
H is a set of hypotheses about the blood. The result of the coin toss on its own carries 
no information about the blood, and so in Birnbaum's limited sense it is not evidentially 
important for H. It is, however, prima facie reasonable to condition on it- indeed, any 
statistician, even a Frequentist statistician, would condition on it (in the Frequentist's case, 
using the rationale that it is an ancillary statistic), and Durbin otTers no argument against 
doing so except for his incorrect assertion that the WSP tells us not to. 

Note, for fUture reference, that the pair (coin toss, laboratory result) is a minimal 
sufficient statistic for Cox's example, and so the coin toss is in some sense a component of a 
minimal sufficient statistic; I will show the importance of this in the next section. 
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version of the sufficiency principle which I use in my proof, namely the 

WSP, says: "If T(X) is a sufficient statistic for h, and if T(xt) = T(x2 ), 

then any procedure that derives different inferences about h from x 1 and 

x2 is incoherent." My WSP does not say that only sufficient statistics are 

evidentially important, never mind that one should condition only on them. 

Durbin's argument could perhaps be recast in terms of the incoherence of 

inferences based on other than sufficient statistics, but then the fact that 

it is only inferences about h which are so constrained would be even more 

obvious than it was in the previous paragraphs, and hence again Durbin's 

argument would fail. 

OBJECTION 14.3.2 

THE WCP SHOULD BE LIMITED 

TO CONDITIONING ON THE COMPONENTS 

OF A MINIMAL SUFFICIENT STATISTIC 

The possibility remains that Durbin's reference to the components of a 

minimal sufficient statistic was not a typographical error. Perhaps Durbin's 

assertion is best understood as being that one should only condition on 

the components of a minimal sufficient statistic. This assertion is plausibly 

true, if "components of" is taken to mean "functions which are part of a 

factorisation of" or, more weakly, "functions which are functions of", as 

Birnbaum ( 1970, p. 402) suggests Durbin's phrase should be interpreted. 

But the use I make of the WCP is compatible with this interpretation of 

Durbin's assertion, except for one special case which I will deal with in the 

next paragraph. 

Recall that the WCP says nothing more than that we may condition on 

the result of a coin toss in a mixture experiment such as the Cox example. 
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As I mentioned in the previous section, the coin toss is a component of 

the pair (coin toss, laboratory result) which in turn is a minimal sufficient 

statistic for Cox's example; similarly, in the terminology of my proof, 

the result of the coin toss, j, is a component of the pair (j, x1 ), which is 

minimal sufficient for the mixed merriment M*. Hence Durbin's assertion 

is compatible with my use of the WCP, which is merely to condition on j, 

except for one special case which must be dealt with separately. 

Berger & Wolpert (1988) interpret Durbin as I do in this section­

that is, as saying that we may condition on any part of a factorisation of a 

sufficient statistic- and perhaps it was stupid of me to consider any other 

interpretation. Berger & Wolpert also note that a special case arises when 

the two experiments which are performed as a result of the coin toss of 

the WCP happen to give results x1 and x2 which have proportional likeli­

hood functions ((3c) ('<:/h) p(x1 [h) = c.p(.Iz[h)). In this case alone, the coin 

toss is not part of any (non-trivial) factorisation of the minimal sufficient 

statistic, since the minimal sufficient statistic in this case is the (shared) 

likelihood function. So it follows from Durbin's assumption that the like­

lihood principle as it applies to this particular case cannot be considered 

proved. However, considering such a case makes it particularly clear why 

we should not accept Durbin's assertion. Berger and Wolpert illustrate 

this by applying Cox's example to two laboratories, one in California and 

one in New York: 

by Durbin's argument, whether or not one chooses to condition 

on the actually performed California experiment with observa­

tion [ Xa = x1 , say J would depend on the existence, or lack thereof, 

of an observation [x2 ], in the unperformed New York experiment, 

having a likelihood function proportional to that of[ xd. Such 
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dependence of conditioning on the incidental structure of an 

unpeiformed experiment would be rather bizarre. 

(Berger & Wolpert 1988, p. 46) 

Berger and Wolpert are content to let their case rest there. To clarify why, 

note that although Frequentist theory says that the possible outcomes of 

unperformed parts of mixed experiments are relevant because they form 

part of the sample space X, Durbin's assertion entails that something much 

more complicated: that the whole likelihood function p( x2 1 h) of an unob­

served part of X is relevant to inference if it happens to be proportional to 

p(x1 lh) but not otherwise. I cannot see any reason to accept this and, as far 

as I know, no argument in its favour has ever been presented. (Certainly 

Durbin presents none.) Savage (1970) points out that the inherent implau­

sibility of this idea is exacerbated by the fact that it makes p(x2 lh) relevant 

only if it is exactly proportional to p(x1 lh), but otherwise completely irrel­

evant; hence, if there is any doubt at all about the exact value of any part 

of p(x2 lh), Durbin's argument becomes impossible to apply. It seems to me 

that this is a sufficient argument against Durbin's assertion in its second 

interpretation. 
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Consequences of Adopting the Likelihood Principle 

In this chapter I first of all give a case study which I hope will make clear 

the importance and urgency of the likelihood principle. I then consolidate 

a number of theoretical conclusions which I have drawn in the thesis as a 

whole, and present some of their general implications for applied statistics 

and hence for most of science. 

1. A CASE STUDY 

INTRODUCTION 

It is now time to consider an example more realistic than that of Table 1. 

In this case study, I will describe an area of scientific enquiry - namely, 

large clinical trials- which has been extensively studied but in which no 

consensus has been achieved on the best method of statistical inference. 

I will sketch the history of the study of inference methods in this area. 

The history will show particularly clearly the ad hockery of Frequentist 

methods: Frequentist methods in this case are so ad hoc that not even 

the most committed Frequentists have been able to claim that there is any 

unique optimal Frequentist solution to the inference problem (at least, not 

to date). Literally dozens ofFrequentist methods are available, no two of 

which give equivalent results (with trivial exceptions), and no method for 

choosing between them is available to Frequentists. 
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As a matter of pragmatics - and the applied statistics community 

is nothing if not pragmatic - the statisticians who design clinical trials 

would benefit enormously fi·om standardising on a single method, so that 

their results could not be challenged by regulatory authorities, drug com­

panies or consumers. 126 Therefore, clinical trials centres have attempted 

to standardise on a single Frequentist method; but the methods are so ad 

hoc, and there is so little to choose between them, that they have not been 

able to do so. Of course the failure to standardise has depended on social 

issues as well as technical issues; but the technical issues have not been 

irrelevant. The result, to date, is that two or three Frequentist methods 

have become popular but none has become dominant. This lack of stan­

dardisation in itself represents a major scientific problem, in addition to 

the further problem that Frequentist methods are (as I have argued) often 

uninformative about H. 

In this case study I will describe an obvious solution to the problem 

which is compatible with the likelihood principle. This will be a Subjective 

Bayesian solution. This solution does not suffer from any of the ad hocness 

of the Frequentist solutions, but it has not been acceptable to regulatory 

bodies for two reasons: 

1. its subjective nature is fundamentally unacceptable to public regula­

tors (rightly or wrongly); and 

2. its Frequentist error rates have not been known until recently. 

126. The ability for a plaintiff to challenge a scientific result depends almost entirely on 
whether the result was achieved using standard methods, and practically not at all on whether 
the result was achieved using rational methods. 
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I will describe a modification of the Subjective Bayesian solution which 

remains compatible with the likelihood principle but which avoids the above 

two objections: it is not subjective (it does use prior probabilities, but they 

are not set subjectively), and its Frequentist error rates are known and, 

moreover, are excellent. 127 

This case study will show that the likelihood principle can be used 

to formulate methods which are less ad hoc, as well as (as the main part 

of this thesis has argued) more epistemically coherent, than the orthodox 

Frequentist methods. It will thus demonstrate that the arguments of 

this thesis have practical importance. My main aim in giving this case 

study is to show the beneficial effects that have accrued to the sections 

of the statistical community that accept the likelihood principle, and the 

otherwise intractable problems that have been faced by the sections of the 

statistical community that do not accept it. 

I present this study in some historical detail. I concentrate on the 

philosophical aspects of the history, but not to the exclusion ofthe scientific 

details. There is a rationale for this. Philosophers' toy examples of scientific 

practice, of the sort I have used up to this point, are unsafe: one can never 

be sure to what extent the lessons learned from them are relevant to what 

scientists actually do, unless one checks them against a real example which 

is sufficiently complicated to have some hope of being a fair representative 

of science as it is practised. This case study therefore uses a reasonably 

complicated example of scientific practice, alluding (although necessarily 

127. Mayo objects to non-Frequentists citing the good Frequentist error rates oflikelihood 
methods as a reason to use those methods, but I do not see the force of her objection. It is 
true that a non-Frequentist does not believe that it is rational to care about error rates, but it 
is extremely rational to want to use a method which one's opponents consider to be rational, 
both for social reasons and just in case one's philosophy turns out to be wrong. 
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briefly) to a number of complexities which bear on the importance of the 

likelihood principle and which would not be evident in a simpler example. 

SEQUENTIAL CLINICAL TRIALS 

My case study is on stopping rules for large clinical trials. 128 Meier has 

nicely introduced the importance of such stopping rules by comparing 

clinical trials to the agricultural trials with which Fisher was familiar 

when he developed the methods described in chapter 4: 

The planning, execution, and analysis of an agricultural field 

experiment are all well separated in time. The intended design, 

if properly executed, will be the framework for the final analysis. 

Long-term clinical trials, by contrast, are still recruiting patients 

when the findings of analysis begin to emerge. These findings 

may quite properly cause the design to change in radical ways 

-even, on occasion, leading to early termination of the study. 

For a time it was possible to consider such decision making 

as outside the domain of statistical analysis and to regard it 

rather as the intrusion of extrastatistical humane considerations 

that caused us on occasion to terminate or alter an ongoing study. 

More recently it has become clear that the possibility of 

changes in the study brought about by early findings is not a 

rare incursion by extrascientific elements but rather a necessary 

and typical feature of this type of clinical experimentation. 

(Meier 1981, p. 340) 

128. I introduced the idea of a stopping rule in chapter 12: recall that a stopping rule is an 
agreement by experimenters and statistical analysts to execute an experiment in parts, with 
each part being subjected to a pre-agreed type of statistical analysis as soon as possible after 
its completion, and with the series of sub-experiments guaranteed to terminate "early" (before 
some pre-agreed maximum sample size has been reached) if one of the analyses has some 
pre-agreed outcome. Typically the only outcome which is allowed to cause early termination 
of the experiment is a pre-agreed death rate among the experimental subjects. (There is some 
ambiguity in "allowed to", but that need not concern us here.) 
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The outcome (typically, the number of deaths) required to trigger early 

termination of a clinical trial is typically, but not necessarily, worked out by 

calculating a pre-agreed level of significance against some pre-agreed null 

hypothesis. If the null hypothesis is considered refuted then the treatment 

is considered to have been proved efficacious, and the trial stops. If the null 

hypothesis is not considered refuted then the trial continues until some 

pre-agreed sample size is reached. 129 

If a statistical analysis is performed after each trial subject has yielded 

an outcome (typically, either dying, or living for a pre-agreed period) then 

the experiment is called a folly sequential trial. If a new statistical analysis 

is performed every time a new group containing a pre-agreed number 

of subjects has yielded an outcome (or, equivalently, if the experiment is 

analysed up to a pre-agreed number oftimes before it reaches its maximum 

sample size), it is called a group sequential trial.'"0 

Group sequential methods are intended to provide statistically le­

gitimate methods for monitoring accumulating data, with the possibility 

of stopping a trial before it has reached its maximum size. For various 

economic reasons, group sequential theory concentrates on phase III trials: 

that is, large, randomised, controlled trials on a more or less representative 

129. The rationale for proceeding in this way is that an experiment on human subjects is 
only considered ethical (by the bulk of the medical community) if there is equipoise: that is, if 
and only if the treatment given to the experimental subjects is neither confidently believed 
to be efficacious (in which case it ought to be given to the control group too, thus making a 
clinical trial impossible) nor confidently believed to be inefficacious (in which case it ought 
not to be given to anybody, including the trial subjects). Early termination is often desirable, 
either because equipoise has been lost or because it comes to seem unlikely that the trial will 
reach any conclusion. The marginal cost of recruiting new subjects to a trial is high, so trials 
which will probably be inconclusive are to be abandoned as soon as possible. Various ethical 
arguments can be made against each aspect of this view, but the fact that it has been the 
accepted ethics of the medical research community since the second world war is enough to 
make it a sine qua non of the statistical methods considered in this case study, regardless of 
whether it is right. 

130. I will sometimes use the more general term sequential trial to refer indiscriminately to 
fully or group sequential trials. 
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population which are conducted to elucidate the best therapy for a given 

condition. Group sequential clinical trials gradually gained in popularity 

over the period covered by my case study, especially for large trials. Nowa­

days they are almost the only method used for large drug trials (at least, 

prior to government approval of drugs for population-wide use; after such 

approval, different methods are used, such as comparisons of individuals 

who have side effects with groups of individuals who don't- these are 

so-called case-control studies). 

The case study I have chosen is typical in many ways of the problems 

encountered in twentieth-century applied statistics, although it is special 

in the degree to which the scientists involved have discussed issues bearing 

on the likelihood principle. Indeed, the likelihood principle was first stated 

as a contribution to the debate I will present (Barnard 1947), and this first 

statement of the likelihood principle was immediately followed (within a 

few words) by the stopping rule principle (defined in chapter 12 ). 

In this case study, in keeping with the rest of the thesis, I treat 

the statistical analysis of clinical trials as a problem of inference about 

hypotheses, as opposed to treating it as decision theory. There have been 

many attempts to use decision theory to formulate sequential methods, but 

they are relatively unimportant, because the main question which is asked 

in a medical context is not "how can we maximise benefit?" (although 

this may be asked occasionally, for example when a drug is prohibitively 

expensive). It is usually something much simpler, which can be answered 

without recourse to decision-theoretic assumptions: "how effective is this 

intervention in this population?" 
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The problems posed by Frequentist sequential analyses 

All of the statistical methods which have been used in phase III trials 

of drugs (pharmaceuticals) and clinical implants, if they have been used 

as they were intended to be used, have been Frequentist and hence have 

approximately fixed the overall type I error of the experiment. As I have 

already discussed in chapter 7, this leads to epistemic paradoxes. These 

problems are worse than usual in the case of sequential trials, and they are 

joined by some brand new problems. 

As we saw in chapter 4, the essence of Frequentist statistics is that a 

probabilistic choice should be made in such a way as to do as well as possible 

in an arbitrarily long sequence of repetitions of the situation which led to 

the choice. This has been formalised in several ways, most notably by 

Neyman in his theory of hypothesis tests. To recap a little, Neyman's 

theory has passed on to modern Frequentist statistics a controversial 

feature: the only admissible pieces of evidence about a statistical procedure 

are the properties of the procedure averaged over the sample space (X). 

Properties of the procedure conditional on the occurrence of particular 

events in the sample space are not relevant except as part of such an average. 

This includes properties conditional on the event which actually occurs 

(xa)· Therefore, evidence from the experiment itself is not permissible in 

characterising the procedure. 

This criterion is not so very strong, in the ordinary run of things, 

because if one wants to condition on an event Xa which happens after an 

experiment, A, has been defined, one only has to start a new experiment, 

B; the design of this new experiment can then depend on Xa in any way 

one pleases. This is a typical Frequentist statistician's (partial) solution to 
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the problems raised in chapter 4: a Neyman non-epistemic probability can 

be made to seem much more rational if this trick is executed ad libitum. 131 

This trick is circumvented, though, when it is not feasible to perform a new 

experiment to take into account the new data- particularly in sequential 

applications, where Xa is recorded in an interim analysis. This point makes 

sequential analysis a field of enquiry in which the differences between 

Frequentist and likelihood inference are brought into particularly sharp 

relief. 

In addition to such basic epistemological problems of Frequentist 

methods, some new mathematical problems arise in sequential trials. The 

worst of these is the incompatibility of sequentially calculated P-values and 

confidence intervals. In the absence of multiplicity (a concept which is ex­

plained in chapter 7 and again below), the endpoints of standard confidence 

intervals are P-values, but in the presence of multiplicity they generally 

are not. Since sequential trials are always subject to multiplicity, fixing 

the type I error of a sequential trial generally (i.e., except in trivial cases) 

causes it to provide point and interval estimates which are incompatible 

with each other. 

This problem is best understood by first considering a simpler prob­

lem which makes P-values problematic in their own right: 

We need to be extra careful with the term statistically significant 

difftrence in the optional stopping case. Here, one keeps taking 

more and more samples until the observed difference is computed 

to be statistically significant ... The computed significance level 

with an optional stopping plan refers to the significance level 

131. Whether this trick is allowed by Neyman's own theory is neither important nor clear: 
as I mentioned in chapter 4, Neyman does not tell us exactly when, if ever, a reference class 
can be changed, although he does strongly imply that it should not happen during a statistical 
analysis. 
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that would be calculated under a fixed sample size plan . . . 

Say it took k tries to achieve a difference computer to be .05 

statistically significant. The actual or overall significance level is 

the probability that out of k tries at least one would be computed 

to be .05 statistically significant, even if the null hypothesis is 

true. 

(Mayo 1996, p. 343) 

The sequential ("optional stopping") problem which Mayo describes for 

Frequentists is very simple. Frequentists, by definition, consider it nec­

essary to design trials such that they have a predetermined overall error 

rate, and the error rate which they consider it most important to fix is the 

type I error (which they usually set at 5%). Analysing the results more 

than once gives an overall type I error for the trial greater than the type 

I error of each analysis. 132 The Frequentist' s sequential problem is how 

best to adjust the individual analyses in order to fix the overall type I 

132. Recall that the type I error is the probability (in the non-epistemic, Neyman sense) of 
rejecting the null hypothesis, conditional on the null hypothesis being true; and in repeated 
analyses there is more than one opportunity to do so, so the overall type I error is greater 
than the individual type I error of any of the analyses. 

Why is the null hypothesis considered so important? In biostatistics the null hypothesis 
is generally taken to be the statement that a treatment has no more effect than standard 
treatment or a placebo (whenever such a statement is meaningful, which it always is in a large 
drug trial, at least in rich countries, in which treatments are standardised). Given this, type 
I error is particularly close to the hearts of clinical trial designers because of the overriding 
principle of nonmalejicence: above all, the trial must not mistakenly report a new treatment as 
effective. It is considered much better to risk perpetuating an inferior standard treatment. 
It is almost universally held that the principle ofnonmaleficence is represented in statistical 
terms by a very small overall type I error. Consequently, maintaining a small type I error is 
of supreme importance to trial designers. 

In evaluating this position, it is important to realise that the type I error is defined as 
the Neyman (pre-trial, relative to a fixed reference class) probability under the null hypothesis of 
falsely claiming a positive result. This quantity is often treated, by clinicians and statisticians 
alike, as though it were equal to the probability of falsely claiming a positive result - in 
other words, the two italicised phrases tend to be used when the type I error is calculated but 
ignored when it is interpreted. The statement that the type I error represents the principle of 
nonmaleficence is an example of such a confusion. It is easy to construct artificial examples 
in which it leads to absurdities, along the lines of the examples of chapter 7. Whether it 
leads to absurdities in real life is a different question, and one which has been examined very 
little. Certainly, one would have thought that if confusion about type I error was going to be 
a problem anywhere it would be in sequential medical trials, because of the relevance of type 
I error to the Frequentisfs sequential problem. We will see that this is indeed the case. 

425 



error. It is easy to find a way to do this; what is hard is to choose the 

best way from among the many (in fact, infinitely many) alternatives. It 

turns out that several of the various methods of adjustment which have 

been proposed to fix the overall type I error are equally acceptable to the 

statistical community, which leads to an embarrassing problem of deciding 

which to use- embarrassing because the various methods give different 

answers. A drug company does not want to have to say to the regulatory 

agencies (or to a court, in the event oflitigation), "our drug is acceptable 

according to statistical method I but not according to method 2, and we 

have no way of choosing between these methods". 

Multiplicity 

Recall the general problem of multiplicity in Frequentist methods which I 

described in chapter 7. The best that can be said for Frequentist methods 

is that they have the property that if the same analysis is repeated on a long 

sequence of experiments which are identical except for random variation 

they will make errors in a known proportion of cases, conditional on the 

null hypothesis. Even this is not true in practice, because measurement 

error is generally not included in the model; but let us leave that issue to 

one side. Still, Frequentist methods fail to have this attractive property in 

typical applications because practically no experiment calculates a single 

Frequentist statistic. When more than one is calculated, each one has a 

chance of being in error, so the statistical analyst faces a dilemma, which 

I present here in terms of P-values for simplicity but which could be 

described in terms of any Frequentist measure including the coverage of 

confidence intervals. The Frequentist's dilemma is that he must either: 
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or 

• give each P-value an error rate of 5%, in which case the analysis as 

a whole will have an error rate greater than 5% and, in many cases, 

approaching 100%; 

• adjust each P-value so that the overall error rate of the analysis re­

mains 5%. 

Since the whole point ofFrequentist theory is to limit overall error rates, 

a fully Frequentist theory must take the second fork of the dilemma and 

adjust each P-value (Neyman 1937, Kendall & Stuart 1967, Stuart eta!. 

1999, Mayo 1996), even though this means that the error rate of each 

interim analysis is changed in an arbitrary fashion to suit the context in 

which the interim analysis happens to take place. 

I noted in chapter 7 that the correction for multiplicity usually takes 

the form of a Bonferroni correction: that is to say; the cut-offfor attributing 

statistical significance "at the 5% level" becomes ( 5% I n), where n is the 

number of P-values being calculated. The Bonferroni method can also be 

applied to the endpoints of confidence limits. However, the Bonferroni 

correction does not give the right answer (an overall error rate of 5%) in 

sequential trials. 133 Once the Bonferroni correction is abandoned, we get 

a problem even worse than ad hocness: it becomes impossible to find a 

133. The Bonferroni correction only works, in the Frequentist's sense of"works", when the 
P-values being combined are independent (in the statistical sense of"independent" explained 
in chapter 13); but the repeated measurements on the same subjects which are made in 
sequential trials are not independent. This is for two reasons. A single subject's health at 
one point of time is, of course, not independent of the same subject's health at a previous 
point of time; and even if it were, the measurements which are subjected to analysis in a 
Frequentist analysis are cumulative, so that the analysis at time t includes all the data from 
times < t, and necessarily so or else important information would be being discarded in the 
later analyses. Hence the measurements cannot be independent of each other, not merely as 
a point of biology but also as a point of mathematics. So the Bonferroni correction does not 
apply. Consequently, a Frequentist analysis of clinical trials is saddled with the problem of 
finding a mathematically valid correction for multiplicity (i.e., one which gives an overall error 
rate of 5%), in addition to the epistemological problems raised by any such method. 
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method of correcting P-values and confidence intervals which leaves them 

compatible with each other (in the obvious sense that the P-values are the 

endpoints of confidence intervals). 

Are these problems bad enough to warrant abandoning Frequentist 

methods for designing clinical trials? 

The two groups of commentators on this question- the yessers and 

the noers- have, since the 1950s, drawn up battle lines along the great 

divide between proponents of the likelihood principle and Frequentists. As 

we will see, the yessers have often been drawn into prodigious complexities 

in trying to solve the sequential problem, while the noers have usually been 

content to rest on their laurels, have not, until (Grossman et a!. 1994), 

published in detail the statistical procedures which they recommend, and 

until very recently have been roundly ignored by practising statisticians. 

I will give my own answer to this question gradually. I have al­

ready presented many problems with Frequentist methods (in chapter 7) 

-enough to answer the question peremptorily- but rather than assume 

that my arguments there have been successful in showing that we should 

not use Frequentist methods, I propose to approach the issue from a dif­

ferent angle in this case study. I will arrive in essentially the same place 

as I did in chapter 7, but with more of an emphasis on the problem of 

multiplicity which I briefly introduced there and the ad hocness which that 

particular problem introduces, and less of an emphasis on the fundamental 

epistemological incoherence ofFrequentism. In order to give this different 

angle a chance to shed fresh light on the problem, I will put the objections 

of chapter 7 to one side for the time being, returning to them only at the 

end ofthe chapter when I sum up the whole thesis. 
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In this case study (unlike the rest of the thesis), all of the supporters 

of the likelihood principle of any importance have been Bayesians. That 

Bayesianism and Frequentism would come into particular conflict over 

sequential clinical trials has been noted often in the literature. For example: 

At the heart of this debate are two conflicting fundamental prin­

ciples for assessing the meaning of experimental data. These are 

the Likelihood Principle and the [Frequentist] Repeated Sam­

pling Principle [that only the properties of a procedure on re­

peated application are important]. If we accept the Likelihood 

Principle, it follows that all inferences should be based on the 

experiment that was was actually performed, the data that was 

actually obtained, and the relative probabilities of obtaining the 

observed results under various plausible alternative hypotheses. 

If we accept the Repeated Sampling Principle, it follows ... that 

strength of evidence should be quantified by sequentially ad­

justed P values or other probabilities. In most of statistics, these 

two principles lead to remarkably similar inferences. However, 

in sequential clinical trials, they come into sharp contradiction. 

(Dupont 1984, p. 277) 

Conditioning and the likelihood principle 

The only system compatible with the likelihood principle which has been 

applied to sequential analysis is the Bayesian system. Although I do not 

wish to defend any form of Bayesianism in all its details, I hope to show 

in this case study that Bayesianism fares better than Frequentism. It will 

then follow that the best of the methods compatible with the likelihood 

principle, whether that be Bayesianism or not, will fare at least as well as 

Bayesianism and hence better than Frequentism. 
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The Bayesian system, of course, has the drawback of demanding that 

every problem is analysed using an expression of belief which is ulterior 

("prior") to the experiment. Bayesians who have worked on sequential 

analysis have developed an interesting approach to this problem. It is well 

known to clinical epidemiologists that although the likelihood principle 

allows one to calculate likelihood ratios for diagnostic tests, it is impossible 

to give the rate at which a test for a disease gives false positive results 

without specifying the prevalence of disease in the population to which it 

will be applied. In a way which is mathematically exactly analogous, these 

Bayesians claim that the false positive rate of clinical trials can be specified 

by finding the prevalence of false positives in similar trials. This false 

positive rate can then (they argue) be used to construct a reasonable prior 

probability distribution for the trial's main parameters. 

Although such Bayesians clearly have epistemological problems of 

their own, they easily avoid the ad hoc choice between many different 

methods of adjusting type I errors which faces Frequentists. Bayesians 

need not care about type I error rates. The only constraints on their pro­

cedures are the prior probability distribution and the probability calculus; 

from these two ingredients, a Bayesian can directly calculate the probabili­

ties of hypotheses, as we saw in chapter 3, and Bayes's Theorem guarantees 

that there is only one way to do this. 

I will give the mathematical details of this Bayesian approach later. 

First, here is a concise history ofFrequentist approaches to the problem. 
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A BRIEF HISTORY OF GROUP SEQUENTIAL PROCEDURES 

The first important publication on sequential analysis was (Wald 1947). 

This book established general Frequentist methods for fully sequential 

analysis. Bross was the first to apply sequential methods to medical re­

search, in his (Bross 1952). The work of Wald, Bross and others was 

followed by (Armitage 1960), which adapted Wald's methods to clinical 

trials. These books established the importance of adjusting P-values in 

Frequentist sequential analysis. 

The first statement of the likelihood principle (and one which I quoted 

at length in chapter 8) was by Barnard in (1947, p. 659). An advocate of 

Barnard's new likelihood principle, Anscombe, reviewed Wald's book in 

1954 and Armitage's in 1963. In the latter review, he asserts that 

'Sequential analysis' is a hoax. The correct statistical analysis 

of the observations consists primarily of quoting the likelihood 

function. So long as all observations made are fairly reported, the 

sequential stopping rule that may or may not have been followed 

is irrelevant. 

(Anscombe 1963, p. 381) 

One direct result of Anscom be's 1963 article was that a group of prominent 

clinical trials statisticians at the U.S. National Institutes of Health held a 

seminar to discuss the role of hypothesis testing from a practical point 

of view. This seminar lead to the first published suggestion of group 

sequential trials, by Shaw (Cutler et al. 1966). 

In 1969, Armitage, McPherson and Rowe (1969) first discussed group 

sequential methods in detail. They introduce there what was later to 

become known as the Pocock stopping rule based on uniformly spaced 
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analyses and a uniformly distributed correction for multiplicity (the closest 

thing possible to a Bonferroni correction). They give approximate values 

for the necessary Frequentist adjustment for 5, 10, 15, 20, 50, 100 and 200 

analyses. They also discuss the appropriateness of repeated Frequentist 

significance testing, and note the lack of error rates for Bayesian group 

sequential methods: 

The exchanges of opinion on these matters have been remark­

able for the lack of quantitative information about the optimal 

stopping effect. It has not, for example, been possible to answer 

questions such as the following. 

(a) What is the probability of obtaining a result "significant" at 

a certain nominal level, within the first 50 tests? 

(b) Does the enhancement of the probability of obtaining a 

significant result reach a noticeably high level only after a 

very large number of tests? 

(c) What is the effect of repeated tests when the null hypothesis 

is not true? 

(Armitage et a!. 1969) 

Such unanswered questions dominated the debate for three decades. These 

error rates were soon quantified for repeated significance tests, but not for 

Bayesian methods. They were quantified for Bayesian tests for the first 

time (albeit only for a simple family of priors, and considering only up to 

10 tests) in (Grossman eta!. 1994). 
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Subsequently, there was an extraordinary proliferation of mutually 

incompatible Frequentist group sequential methods. 134 

134. Let me present a few prominent examples from the literally dozens of methods. A 
reader who is willing to take my word fOr the fact that the various Frequentist methods differ 
substantia1ly from each other can skip this footnote. 

Haybittle (1971) suggests an extremely simple group sequential procedure: stop the 
trial if the difference between the treatment and control groups at an interim analysis 
exceeds three standard deviations (on some parameter ofinterest). 
Elfring and Schultz (1973) present a very advanced group sequential plan for binary 
outcomes. It incorporates features which were not rediscovered until much later: for 
example, it gives a stopping rule for incorrectly failing to reject the null hypothesis as 
well as one for incorrectly rejecting it, an idea reinvented by Emerson and Fleming 16 
years later (1989). Elfring and Schultz also allow for interim analyses to be conducted 
on variably-sized groups of trial subjects (not permitted by any other method until 
1983). But as far as I know, Elfring and Schultz's method has never been used in a large 
phase III trial. A major drawback was that their stopping rule is not given explicitly 
but has to be separately computed by simulation for each trial. 
Peto and nine colleagues ( 1976) propose considering a P-value significant at interim 
analyses only if it reaches some arbitrary very extreme value, followed by an unadjusted 
P-value test in the final analysis. 
Pocock (1978) suggests a simple P-value test with a significance level of 1% for every 
analysis (including the final analysis) in a trial with up to 11 analyses. This gives an 
overall significance level of less than 5%. (This is not the same as the standard "Pocock" 
test described above and tabulated below.) 
O'Brien and Fleming (1979) suggest a stopping rule which becomes less conservative 
(more likely to reject the null hypothesis) as time passes. Formally, an O'Brien and 
Fleming trial stops iff X2(n) > k I n, where k is a constant. This increases the 
power of the study (decreases the type II error), but it also increases the discrepancy 
between unadjusted and adjusted significance levels. This is currently the most popular 
stopping rule in large trials, along with the original Pocock method (the one described 
in (Armitage et al. 1969), not the one described in (Pocock 1978)). 

- DeMets and Ware ( 1980) suggest a one-sided design, which means that one chosen 
arm of the trial (usually the placebo arm) cannot be found to be better than the other. 
Such a design has higher power (lower type II error) than the more usual two-sided 
design. The issue of whether we should use one-sided or two-sided designs can 
be generalised to the issue of whether the null hypothesis should be no treatment 
difference, a small treatment difference, or a small or negative treatment difference. All 
of these possibilities have associated Frequentist group sequential methods (O'Brien 
& Fleming 1979, Pocock 1983, Freedman et al. 1983). It has even been suggested 
that we should test for one chosen arm being better than the other in interim analyses 
but then only test for the opposite effect in the final analysis (Chi et al. 1986). The 
rationale seems to be that one might want to stop the trial as soon as possible if the 
new treatment is worse than the standard treatment or placebo, but continue the trial 
if the new treatment is better, in order to look at its safety. (At least, this is the way 
the argument is presented in English. The algebra in (Chi et al. 1986) reads the other 
way around- that one only stops the trial early if the new treatment is better than the 
standard treatment- but I presume this is a typographical error.) This suggestion 
requires yet another Frequentist group sequential method. Similar choices must be 
made in a Bayesian analysis, but for a Bayesian they need not be made once and for 
all; different approaches can be tried, without worrying about the effect of such extra 
analyses on the type I error. 

- Rubinstein and Gail (1982) suggest that data which accrue after the trial has been 
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A problem which has been faced by all these Frequentist attempts at 

a stopping rule is that the sample space at the ith interim analysis is not 

one-dimensional: it is the space of vectors consisting of the main response 

variable evaluated at each interim analysis to date. (I gave an example 

of such a vector in chapter 7.) The necessity of averaging over more 

extreme data which could have occurred (see chapter 4) means that this 

i-dimensional space must have an ordering imposed on it. The most radical 

attempt to solve this problem within a Frequentist framework would be 

to simplify the sample space by taking it to consist of the main response 

variable at the end of the trial plus the time at which the trial was stopped. 

But even with such an extreme simplification, there seems to be no natural 

ordering for this pair of numbers, and nor will any ordering give confidence 

intervals which are always consistent with P-values from the same trial. 

This consideration is what makes the problem of multiplicity even worse 

in sequential analysis than it is in other domains ofFrequentist inference. 

formally stopped (as some data almost always do, because of delays in postage and so 
on) should be included in the analysis. Such a move invalidates all the above Frequentist 
methods, which are not specifically designed to take such data into account. (It makes 
no difference to a method compatible with the likelihood principle.) 

- Falissard and Lellouch ( 1991) suggest stopping a trial early only if a series of r interim 
analyses all give unadjusted P-values under 5%, where r is an arbitrary number (typi­
cally set to 2 or 3). This rule has mathematical advantages: in particular, it avoids the 
possibility of the adjusted P-values becoming more and more significant even while 
the unadjusted P-values become less and less significant, a problem which affects all 
other Frequentist methods. However, Falissard and Lellouch's plan has severe practical 
disadvantages. Under their rule, a scientist who is planning seven analyses would be 
forbidden to stop the trial at the first or second analysis, no matter what the sample size 
was and no matter how many trial subjects had been killed. This nicely illustrates the 
desperate measures which some statisticians have felt forced to advocate in struggling 
with the problems ofFrequentist sequential analysis. 

- Koepcke (1989) recommends half of an O'Brien and Fleming stopping rule combined 
with half of a Pocock stopping rule. There is nothing particularly interesting about 
this suggestion except that it illustrates the increasingly obviously ad hoc nature of the 
Frequentist stopping rule enterprise. 

This Jist includes only about a tenth of the Frequentist group sequential methods which have 
been advocated to date. 
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To solve this problem without abandoning Frequentism, one must find 

some natural way of reducing the number of dimensions of the ordering 

of the sample space. Jennison and Turnbull ( 1984) do this by stipulating 

(without justification) that the confidence intervals are to be symmetrical 

and centred on the unadjusted point estimate at each interim analysis. 

However, it is clear that this point estimate will be biased by the stopping 

rule, and Hughes and Pocock ( 1988) show this to be a severe problem 

in particular, realistic cases. Moreover, because Jennison and Turnbull's 

point estimates are naive (unadjusted), the only way to secure control over 

the confidence interval error rates is to force a large increase in the width 

of the intervals, leading to some very counterintuitive results. The width 

of the intervals is of more concern than the bias to those of us who do not 

consider bias to be a problem (see chapter II). Primarily for these reasons, 

when Jennison and Turnbull presented their work to the Royal Statistical 

Society in 1989 they attracted a lot of criticism. 

The good news is that an ordering of the sample space is only neces­

sary so long as we insist on fixing the coverage probability averaged over 

the sample space. Any procedure which follows the likelihood principle 

avoids this problem entirely, since unobserved points in the sample space 

are no longer relevant. 

Thus, there are four options: 

(I) Specify a complete ordering of the sample space. 

(2) Use very wide confidence intervals centred on estimates which may 

be wildly biased. 

( 3) Reduce the number of dimensions of the problem in some other way 

-but a plausible way has not been found. 
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( 4) Refuse to average over the sample space, in accordance with the like­

lihood principle. 

I now turn to what happens if we take option 4. 

A SUBJECTIVE BAYESIAN SOLUTION 

In the 1950s and 1960s, Anscombe suggested separating the stopping 

rule from the analysis, on the grounds that the stopping rule ought to be 

sequential but the analysis oughtn't (Anscombe 1954, Anscombe 1963). 

This idea is fundamentally incompatible with Frequentist reasoning, since 

the overall type I error of a trial analysed in this way could not be fixed at 

any particular value. However, it was revived in 1983 by Dupont, with the 

following motivation: 

it is hard to see why decisions that would have been made in 

response to outcomes that did not occur should have any bearing 

on the strength of evidence that can be attributed to the results 

that were actually observed. 

(Dupont 1983, p. 3) 

This is of course a statement of the likelihood principle (at least, on a loose 

interpretation of"decisions" it is). 135 

The first suggestions of a fully Bayesian solution to this problem were 

published, by Anscombe (1954) and Cornfield (1966, 1976), substantially 

before it became obvious that Frequentist solutions were unacceptably ad 

hoc. Neither Anscombe nor Cornfield described the Bayesian solution in 

135. There is an unsatisfying inconsistency in Dupont's approach if the P-values in both 
the sequential interim analyses and the non-sequential final analysis are given the same 
interpretation; so Dupont suggests that the non-sequential P-value should be read as an 
approximation to the likelihood ratio (whereas Anscombe preferred to forswear P-values 
altogether). This problem is not relevant to my own proposed Bayesian analysis, so we need 
not consider it further. 
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any detail, probably because the details of a solution are so obvious to a 

Bayesian, and so mathematically simple, that they felt there was no need to 

do so. But of course a statistical method with no published details was not 

going to be widely adopted, so in 1985 Berry published for the first time the 

mechanics of an explicit Bayesian method for analysing group sequential 

trials (Berry 1985, Berry 1987, Berger & Berry 1988, Berry 1991). In such 

a system, all of the problems which plague sequential methods disappear: 

at any stage in a trial, point and interval estimation are easy to do, need no 

adjustment, and are automatically compatible with each other and easy to 

interpret. 

The simplest Bayesian method for analysing a group sequential trial 

is as follows. 2n subjects enter a trial with two treatment arms (one of 

which may be a placebo). The primary outcome is represented by a real­

valued variable, and the unknown true difference in outcome between the 

two treatments is represented by 8. 136 

Suppose further, without much loss of generality (Pocock 1977), that 

the differences in paired samples from the two arms of the trial are Nor­

mally (Gaussianly) distributed with variance 0"2
• Our task, given nand u, 

is to estimate 8. 

Let Y1 be the mean treatment difference in block t (the block of 

subjects recruited between analysis t and analysis t - I). Then the Y1 are 

independently distributed as N(8,u2 T In). 

A prior probability distribution p(O) is ascertained. For simplicity, 

we can consider this distribution to be N(J.L0 , u~). Nothing much rests 

136. This can be given a population interpretation, as the difference in outcome which would 
be seen in the population from which the samples were drawn if all members of the population 
were given the treatment, or it can be given a subjective interpretation. Which interpretation 
it should be given is an interesting issue, but the choice does not affect anything I have to say. 
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on the shape of the distribution (provided that it is mathematically well 

behaved); only its low-order moments (mean, standard deviation and skew) 

have much effect on the results, and it is reasonable in most trials to set the 

skew to zero. Moreover, since we are considering a clinical trial which aims 

to convince regulatory authorities to overcome a natural conservatism, it 

makes sense for flo, the mode (most probable value) of the prior probability 

function, to be set at o (no treatment difference), so that the prior becomes 

N(o, ag). Strictly speaking this is sullying the Subjective Bayesian method 

with an element which is supposedly set according to the belief state of 

a doxastic agent but actually set with its effect in influencing another 

doxastic agent in mind. The reason that the epistemic sleight-of-hand 

involved in setting {Lo to zero does not bother me is that it is almost always 

the case that the two treatments are believed by all the doxastic agents 

involved to be approximately equivalent. This is because an agent who 

thought otherwise would find the trial unethical. (See the discussion of 

equipoise above.) If this argument fails in a particular case then a non-zero 

value of {Lo can be worked into the mathematics below without difficulty. 

At each analysis, we construct the statistic 

where k = l !0<. 
n V a 

' Y· 
s- ""-' ,-~t+k 

i::: 1 

81 is our point estimate of 8. It is the mean of the Bayesian posterior 

distribution N(8, a 2 I n1), where '2n1 is the number of subjects seen to date. 

(This follows from the definition of Bayesianism which I gave in chapter 

s.) 
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We can also construct Bayesian credible intervals for 8. For example, 

a 95% credible interval is 

{i+k 
C/.95%(81) = S, ± 1.96 ay [· 

Again, this follows from the definitions in chapter 3. 

The most natural Bayesian stopping rule is to use a two-sided test 

which stops the trial if CI95%(S1) excludes 0; in other words, if 

t 

L:::r; 
i=l 

> 1.96 a {i+k Vt· 

Since this is a Bayesian method and therefore one which observes the 

likelihood principle, no adjustment is made for the number of analyses. 

This simple Bayesian method can easily be generalised to more com­

plicated trials such as those with more than two arms, if necessary; but 

many complications can be ignored. 137 

This Subjective Bayesian solution is of course compatible with the 

likelihood principle, and hence with the likelihood principle. It does not 

suffer from any of the ad hocness of the Frequentist solutions, but it has 

not been acceptable to regulatory bodies for two reasons: 

1. its subjective nature is fundamentally unacceptable to public regula­

tors (whether or not it ought to be); 

2. its Frequentist error rates have not been known until recently. 

137. For example, the simple procedure gives approximately the same results as the obvious 
generalisations even when the group sizes are unequal, up to about a 20% difference in size, 
and even when adjustments are made for the differing health states of individuals ("prognostic 
factors") (Jennison & Turnbull 1989). 
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A MORE OBJECTIVE SOLUTION 

A breakthrough in the acceptability of Bayesian methods came in 1988, 

when Hughes and Pocock, luminaries of the Frequentist school which I 

considered in the historical section above, embraced a Bayesian method. 

Hughes and Pocock recommended using a fixed, relatively objective prior 

distribution (Hughes & Pocock 1988, Pocock & Hughes 1989, Pocock & 

Hughes 1990). I will not consider their method in detail, because it suffers 

from a major flaw: although it uses a Bayesian to calculate its results, it 

uses Frequentist considerations to choose the stopping rule. It is thus 

open to objections from both Frequentists and Bayesians. 

Until 1989, despite previous interest in Bayesian methods of param­

eter estimation, there was nothing to show whether a Bayesian group 

sequential method could have reasonable error probabilities. Freedman 

and Spiegelhalter (1989) took the first step towards finding this out by 

showing that for certain reasonable priors 138 a Bayesian trial would have 

a stopping rule very similar to those in common use- specifically, those 

of Pocock and O'Brien and Fleming. My own work has made these results 

more precise, as I describe below. 

Only a couple of other non-subjective Bayesian solutions to the group 

sequential problem have been proposed. Mehta and Cain ( 1984) and Gold­

man (1987) consider using a flat (improper) prior probability function; but 

this gives an extremely radical stopping rule (one which stops the trial 

extremely easily), and inherits the problems of improper priors which I 

discussed in earlier chapters. Gharraf and Al-Nassar (1990) propose a 

138. similar to those proposed by McPherson (1982) and Hughes and Pocock (1988) 
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prior which distributes the probability on just two points in the hypothesis 

space; they do not justify this choice. 

The relatively objective procedure which I propose is similar, math­

ematically, to the Subjective Bayesian procedure discussed in the previous 

section. The details are as follows. 

Up to 2n subjects enter a trial with two treatment arms (one of 

which may be a placebo) in up to T groups, with an analysis planned 

after each group. (The number of subjects receiving each treatment is 

then n I T per group.) As before, the true difference in primary outcome 

between the two treatments is represented by 8. Again, let Y1 be the mean 

treatment difference in block t. Then the Y1 are independently distributed 

as N(8,u2 T In). 

Unlike the Subjective Bayesian method, the objective method sets a 

prior distribution in terms of a handicap which the data must overcome in 

order to overturn the null hypothesis. This handicap is mathematically 

equivalent to a set off x n outcomes distributed according to the null 

hypothesis, for some f yet to be determined. lf is no longer defined as 

*~as it was in the Subjective Bayesian analysis.) This yields the prior 

probability function of N(o, u 2 I f. n). 

Now I play a dirty trick. I assert, without detailed justification, that 

~ is a reasonable value off. This value can be supported in three ways: 

I. It is, approximately, the value given by clinicians asked what degree of 

conservatism in favour of the null hypothesis is required in particular 

trials (Freedman eta!. 1983). 
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2. It is, very approximately, the degree of conservatism in favour of the 

null hypothesis required by regulatory authorities (in so far as we can 

estimate such a thing). 

3. It gives the objective likelihood method which I am proposing here ex­

cellent Frequentist properties. Although the Frequentist properties 

of a procedure are not important from the point of view of a rational 

doxastic agent's own belief revisions (or so I have argued), they are 

important in gaining acceptance for a procedure in a predominantly 

Frequentist world. Taking this issue seriously is part of my claim 

that this case study is a realistic application of the likelihood principle. 

I do not claim that any of these reasons for choosingf = t is conclusive, 

only that they make the choice plausible and not entirely ad hoc. 

At each analysis, we construct the statistic 

t y 

s -"'-' t- '2 t+ JT' 

S1 is our point estimate of 8. It is the mean of the Bayesian posterior 

distribution N(8,a2
/ n1), where 2n1 is the number of subjects seen to date. 

Just as in the Subjective Bayesian case, we can construct Bayesian 

credible intervals for 8. A 95% credible interval is 

(t+]f 
C/95%(81) = S, ± I. 96 ay ----r-· 

And just as before, the most natural Bayesian stopping rule is to use a 

two-sided test which stops the trial if CJ95%(S1) excludes 0; in other words, 

if 
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t 

L:r; 
i=l 

> 1.96avt+.rr t . 

If the amount of conservatism, f, is chosen so as to fix the Frequentist error 

rates at some prespecified levels, the procedure contravenes the likelihood 

principle, as is inevitable for any general Bayesian procedure constrained 

in such a way (Sweeting 2001, p. 658). If, however, it is chosen so as to 

include a reasonable amount of conservatism, it abides by the likelihood 

principle but still has excellent Frequentist error rates, as my colleagues 

and I show in (Grossman et al. 1994). We show there that the procedure 

given above has a type I error between 2~% and 5% for any number of 

interim analyses between 0 and 10. We also show that its stopping rule is 

similar numerically to the Frequentist rules most commonly used (those 

of O'Brien and Fleming (1979) and Pocock (1997)). More surprisingly, we 

show that our method has a lower expected sample size than the standard 

Frequentist methods in many cases, as the following table shows. 

power Grossman Armitage, O'Brien & 
et al McP. & R. Fleming 

50% 16.0 14.3 14.7 

75% 23.4 23.4 22.8 

90% 28.8 31.5 29.1 

95% 31.3 36.2 32.5 

Table 6 

443 



Expected sample size for a trial with 4 interim analyses 

To interpret this table, multiply each entry by a 2 I 82
, where 8 is an estimate 

of the treatment difference between groups. 139 'Armitage, McP. &R." 

stands for the method of (Armitage eta!. 1969), which is essentially the 

same as the method of Pocock (1997); "O'Brien & Fleming" stands for the 

method of (O'Brien & Fleming 1979). The expected sample sizes of the 

Armitage et a!. and O'Brien and Fleming methods are taken from (Geller 

& Pocock 1987). 

It is possible to investigate the expected sample size of the new method 

m more detail. Pocock (1982) has calculated the smallest sample size 

attainable for a g1ven power. There is no such thing as a sequential 

procedure which is optimal (in this sense) at every power; but one might 

hope for a procedure which is optimal for a reasonable power (not too high, 

since very high powers require unfeasibly large study sizes, and not too 

low, since Frequentist audiences find low-powered trials unconvincing). 

Table 7, below, gives the cut-off to which P-values are compared in 

various published procedures and compares them to the optimal levels for 

various powers as given in (Pocock 1982). It shows that the new design 

is remarkably close to optimal for a power of between 75% and 80%. For 

my method, the values tabulated are not strictly P-values, since it is not 

a Frequentist method; but they are sufficiently cognate to P-values that 

a power calculation based on them is correct. For details see (Grossman 

1993, Grossman et a!. 1994 ). 

139. The power of the procedures is defined in terms of such an estimate of treatment 
difference. Recall that the power of a procedure is 1 - {3, where /3 is the type II error 
rate. This rate depends on the values of the unknown parameters, as explained in chapter 4. 
Factualists do not care about the power of a test, of course, since the power is an average over 
the sample space. 
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No. of Armitage, O'Brien Grossman Optimal Optimal 
analyses McP. & R. & et al for power for power 

Analysis Fleming of75% of8o% 

2 1st 0.029 0.005 0.024 0.023 0.025 

2 2nd 0.029 0.048 0.035 0.036 0.034 

3 1st 0.022 0.0005 0.011 0.012 0.014 
3 2nd 0.022 0.014 0.024 0.021 0.021 
3 3rd 0.022 0.045 0.031 0.033 0.030 

4 1st 0.018 0.0001 0.006 0.006 0.008 
4 2nd 0.018 0.004 0.016 0.016 0.017 
4 3rd 0.018 0.019 0.024 0.020 0.020 
4 4th 0.018 0.043 0.029 0.032 0.029 

5 1st 0.016 0.00001 0.003 0.003 0.004 
5 2nd 0.016 0.0013 0.011 0.011 0.013 
5 3rd 0.016 0.008 0.018 0.016 0.017 
5 4th 0.016 0.023 0.023 0.019 0.018 
5 5th 0.016 0.041 0.027 0.031 0.028 

Table 7 

P-value cut-offs compared to optimal cut-offs 

The fact that the new method is approximately optimal in the sense ofT able 

7 means that it has approximately the lowest possible expected sample size 

for a given power. Lowering expected sample sizes not only saves money, 

it also protects trial subjects from receiving inferior treatments and gets 

good drugs to market earlier. It saves lives. 

Having said that, I have only shown that the new method saves lives, 

on average, for a given power; and I know of no cogent reason for a non­

Frequentist to wish to assign or fix a given power. So the small expected 
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sample size of this procedure ought to be convincing to Frequentists only. 

Non-Frequentists, on the other hand, may not see it as optimal in any sense 

but will see my method as better than any Frequentist method, provided 

they accept the likelihood principle. 

It is possible that likelihood-principle-based methods which are better 

than my own will appear in the future. I do not claim that my method is the 

best possible. I only claim that it is better in every way than any method 

so far available in the literature, including any Frequentist method. 

What has this case study shown about the likelihood principle? It 

has shown that in a practical, important, non-toy case study the likelihood 

principle, despite being incompatible with standard methods, is compatible 

with what turns out to be the best method available so far. This speaks in 

its favour. 

2. GENERAL CONCLUSIONS 

I will now sum up the most important conclusions from the thesis as a 

whole. 

I started this thesis by claiming that the study of the philosophy of 

statistics (and hence, derivatively, the philosophy of most of the special 

sciences) could .be clarified tremendously by analyses of inference proce­

dures. I promised that I would delineate a clear, precise class of cases of 

statistical inference in which Frequentist error rates are irrelevant. I have 

done that. By analysing inference procedures, and especially by consider­

ing how inference procedures are evaluated, I have shown that- subject 

to caveats which I trust I have made clearer than they have been made 
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by other authors - the sample space of a merriment, and hence any Fre­

quentist error rate, is irrelevant to the conclusions which should be drawn 

from that merriment about a hypothesis space. This, when the caveats are 

spelled out, is what I have called the likelihood principle. Indeed, I have 

shown that a merriment need not even have a sample space, and hence 

that accidental observations can be analysed in the same way as designed 

experiments. 

I have shown, in a case study, that the likelihood principle can lead 

us to statistical inference procedures which are better (in every sense, 

even, sometimes, the Frequentist sense) than standard non-likelihood pro­

cedures, in realistic (non-toy) situations. 

The rest of my conclusions are somewhat negative, because the direct 

consequences of the likelihood principle is entirely negative. By ruling out 

certain inference procedures, it tells us what not to do. As Basu puts this 

point, 

It is best to look upon [the likelihood principle J as a sort of code of 

conduct that ought to guide us in our inference making behaviour. 

In this respect it is analogous to the unwritten medical code that 

... disallows a Doctor to include a symmetric die or a table of 

random numbers as a part of his diagnostic gadgets. 

(Basu 1975,p.22)140 

140. Alan Hajek has pointed out to me that the current unwritten code of conduct for 
statisticians, if not for doctors, does in fact allow them to do something very similar to 
throwing a die as part of a diagnosis. The procedure in question is one which is used when 
it is desired to get a certain significance level (say, 5%). If the P-value of a given experiment 
is bound to be either strictly greater than or strictly less than 5%, as is sometimes the case, 
a random number generator is used to determine which of the possible levels to use as the 
level at which significance will be proclaimed. For example, if the possible outcomes include 
P-values of 4% and 6% but not 5%, one might randomly, according to the toss of a coin, use 
the 4% level as one's cut-ofTfor significance half of the time and use 6% the other half of the 
time. However, I think it is uncontroversial among philosophers that such a procedure is 
irrational. If not, I will have to assert that the likelihood principle is even less rational than 
such a procedure. 
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My main negative conclusions about the consequences of the work pre­

sented in this thesis come in the form of two consequences of the likelihood 

principle, as follows: 

I. The likelihood principle invalidates almost all Freq uentist methods 

of applied statistics at least mildly. 

2. The likelihood principle grossly invalidates some Frequentist meth­

ods of applied statistics. 

1. MILDLY INVALIDATING ALMOST ALL FREQUENTIST METHODS 

With [the likelihood principle J as the guiding principle of data 

analysis, it no longer makes any sense to investigate (at the 

data analysis stage) the 'bias' and 'standard error' of point es­

timates, the probabilities of the 'two kinds of error' for a test, 

the 'confidence-coefficients' associated with interval estimates, 

or the 'risk functions' associated with rules of decision making. 

(Basu 1975, p. 16) 

Basu's claim amounts to the assertion that the likelihood principle inval­

idates the criteria by which Frequentist procedures are selected. I will 

argue here for an even stronger version of this claim: that the likelihood 

principle alone is enough to invalidate those criteria, even though the fac­

tual principle is weaker than the likelihood principle. I will take each of the 

criteria which Basu mentions in turn. 

I have argued at length against caring about the bias of estimates in 

chapter II. Part of my argument was that bias is something which the like­

lihood principle cautions us to avoid in statistical inference, since it depends 

on averages over the sample space. (This was a rather small part of my 

argument, since it is obvious; I spent more time establishing independent 
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reasons for being wary of bias.) As we saw, the bulk of authors continue 

to care about bias not because they have any positive arguments in favour 

of doing so but because it helps to reduce the otherwise unmanageable 

number ofFrequentist procedures available for most estimation problems. 

But the likelihood principle helps with this problem too: by saying that 

none of these methods is coherent, it leaves us with a smaller number of 

non-Frequentist methods from which to choose. 

The standard error of an estimator is a measure of how much that 

estimator is expected to vary on repeated applications of a procedure. It 

is clearly something else which we should not use in statistical inference, 

according to the likelihood principle, because it requires averages over the 

sample space (as does any measure which depends on taking averages over 

imaginary repeated applications of a procedure). 

The claim that "it no longer makes any sense to investigate ... the 

probabilities of the 'two kinds of error' for a test"' formed the main argument 

of the second part of chapter 7. 

The claim that "it no longer makes any sense to investigate 

the 'confidence-coefficients' associated with interval estimates"' formed the 

main argument of the third part of chapter 7. 

Basu's final claim, that "it no longer makes any sense to investigate 

... the 'risk functions' associated with rules of decision making"', is outside 

the scope of this thesis, since a risk function is a type of utility function, 

something which statistical inference per se may not have available to it. 

However, it is, at least, compatible with my claims, since some forms of 

decision theory which are compatible with the principle, including standard 
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Bayesian decision theory, have no use for risk functions (Raiffa & Schlaifer 

2000). 

2. GROSSLY INVALIDATING SOME FREQUENTIST METHODS 

The claim that the likelihood principle grossly invalidates some Frequentist 

methods can be proved by example. I gave an example in chapter 7, 

where we met a Frequentist 7 5% confidence interval which we could be 

certain contained the true value of the parameter (the height of a bonobo 

chimpanzee). I gave another, more detailed example in the sequential 

trials case study above, where we saw that Frequentist methods with equal 

plausibility are drastically at odds with each other. We saw that factualist 

analyses avoid both the epistemic incoherence of the bonobo's confidence 

interval and the ad hockery of the case study. Hence, if the likelihood 

principle is right, some ofFrequentist applied statistics is grossly wrong. 

FINAL CONCLUSIONS 

I have argued that we should accept the likelihood principle, but I have 

come to no firm conclusions about how it should be applied (as opposed to 

how it should not be applied). 

As we have seen, the only likelihood method which has yet been 

worked out in detail and shown to be applicable to a wide variety of prob­

lems is Bayesianism. Bayesianism appears to most people to be necessarily 

more subjective than the standard methods, and consequently the stan­

dard methods are in no danger of disappearing quickly. But there are some 

contexts in which we don't have to wait for complete agreement on the 
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subjectivity of Bayesian methods. Areas in which likelihood methods could 

replace non-likelihood methods with no loss of objectivity include: 

• problems in which the priors are so important and so obviously subjec­

tive that they can and should be provided separately by each decision 

participant, leaving the statistician free to publish only the likelihood 

function; 

• problems in which inferences can be drawn from raw likelihood func­

tions or raw likelihood ratios; 

• problems in which the priors correspond to empirically known fre­

quencies - these are fairly common, covering, for example, almost 

all of clinical epidemiology, as I showed in chapter 3. 

This thesis has argued that the likelihood principle should be applied 

in all areas of statistical inference. We now see that it can be applied 

uncontentiously in at least some areas. The exact extent of these areas is 

a matter for further research. 
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Insert 

hypotheses 

vomiting 

(observed 
in this case) 

dehydration 0. 03 

PTSD 0.001 

anything else 0. 00 I 

possible symptoms 
diarrhoea social 

(not observed 
in this case) 

0.2 

0.01 

0.001 

Table I 

withdrawal 
(not observed 
in this case) 

0.5 

0.95 

0.001 

other symptoms 
& combinations 
(not observed 
in this case) 

0.27 

0.029 

0.997 
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