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Abstract
Lashika Janith Bandara Medagoda Doctor of Philosophy
The University of Sydney March 2012

Mid-water Localisation for
Autonomous Underwater Vehicles

Survey-class Autonomous Underwater Vehicles (AUVs) rely on Doppler Velocity Logs
(DVL) for precise localisation and navigation near the seafloor. In cases where the
seafloor depth is greater than the DVL bottom-lock range, localising between the
surface, where GPS is available, and the seafloor presents a localisation problem since
both GPS and DVL are unavailable in the mid-water column.

Reliance on acoustic tracking methods such as Ultra Short Base Line (USBL) requires
a ship to track the vehicle, while Long Base Line (LBL) requires the setting up of an
acoustic transponder network. These methods provide bounded error position locali-
sation (O(10m)) of the underwater vehicle, but inhibits the flexibility and autonomy
of the vehicle due to tending or set-up requirements. Proposed alternatives to these
include combining GPS on the surface, navigation-grade IMU, the DVL water-track
mode and a vehicle model to reduce the dead-reckoning error, although results show
that this error is still not competitive with acoustic tracking methods after approxi-
mately 10 minutes of descent. Often ocean depth requires hours of descent without
GPS or DVL, thus acoustic tracking methods are preferred.

This work proposes a solution to localisation in the mid-water column that exploits
the fact that current profile layers of water columns are stable over short periods of
time (in the scale of minutes). As demonstrated in simulation, using observations
of these currents with the ADCP (Acoustic Doppler Current Profiler) mode of the
DVL during descent, along with sensor fusion of other low cost sensors, position error
growth can be constrained to near the initial velocity uncertainty of the vehicle at
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the sea surface during a vertical dive. Following DVL bottom-lock, the entire velocity
history is constrained to an error similar to the DVL velocity uncertainty. When
coupled with a tactical-grade IMU and Time Differenced Carrier Phase (TDCP) GPS
measurements, approximately 15 m/hr (2σ) position error growth is possible prior
to DVL bottom-lock, and 6.5 m/hr (2σ) position error growth is possible following
DVL bottom-lock. The method is demonstrated using real data from the Sirius AUV
coupled with on-bottom view-based SLAM (Simultaneous Localisation and Mapping),
without the use of an IMU.

Horizontal localisation in the mid-water zone is also explored using an extension to
the water-layer framework. The layered water currents are extended to include hor-
izontal gridding, while the ADCP sensor is remodelled to use beam coordinates to
exploit horizontal observation. The water current vector field is modelled as correlated
spatially through neighbourhood least-squared constraints. Simulations illustrate the
performance possible with this method, and results from real data validate this ap-
proach.

In order to minimize the dead-reckoning error during mid-water zone transits, a novel
method to incorporate Inertial Measurements and the constraints of a drag-based
vehicle model is outlined. The drag-based Vehicle model uses the water current
velocity estimates from the ADCP aiding method, while also accounting for the error
from the Vehicle parameters given a prior system identification. Due to the redundant
observations of motion from the IMU and DVL when available, there is potential
for further improvement in estimates of the Vehicle parameters. Simulations are
undertaken to assess the advantage of incorporating a vehicle model, and application
on real data from the Sirius AUV validates this method.
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Chapter 1

Introduction

1.1 Background

Autonomous Underwater Vehicles (AUVs) have found application in general under-

water exploration and monitoring. This includes high-resolution, georeferenced opti-

cal/acoustic oceanfloor mapping, along with providing measurements of water column

properties including currents, temperature and salinity. This data collection aids sci-

entific research in areas such as climate change and oceanography. An advantage of

AUVs over other methods of ocean observation is that as a self-contained vehicle, an

AUV provides autonomy and decoupling from the sea surface.

Georeferencing, or the correct positioning in a global reference frame, is important for

AUVs for path planning according to mission requirements, for registering indepen-

dently navigated information, and for being able to revisit previous missions. Pictured

in Figure 1.1 are AUV transects superimposed on large-scale ship-based bathymetry.

This task could only have been achieved with georeferencing of the vehicle to fulfil

the mission plan. The registration of the data collected during these dives with the

large-scale bathymetry is also reliant on accurate georeferencing.
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Figure 1.1 – AUV transects in the context of ship based bathymetry from South East
Tasmania [59].

Revisitation requires georeferencing accuracy which is a function of the size of the

area to be revisited, and the area of the sensor footprint. Pictured in Figure 1.2 is

the same patch of rocks of the coast of Tasmania visited in the day, and then again

at night, which is only possible with accurate georeferencing [61].

Figure 1.2 – A day and night revistation of the same patch of rocks, showing nocturnal
urchin feeding [61].
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AUV georeferencing is typically achieved in the following manner. The Global Po-

sitioning System (GPS) is available on the surface, but when underwater, the radio

signals required for GPS do not penetrate the water. Instead, dead reckoning with

Doppler Velocity Log (DVL) when underwater gives velocity-over-ground informa-

tion when coupled with an attitude sensor, such as a magnetic compass or Inertial

Measurement Unit (IMU) based Attitude Heading Reference System (AHRS). Pres-

sure measurements are available for accurate absolute depth information. The Sirius

AUV onboard devices are shown in Figure 1.3, which is a typical sensor suite for

survey-class AUVs.

Figure 1.3 – The devices onboard the Sirius AUV.

Combined with Simultaneous Localisation and Mapping (SLAM), the relative seafloor

map can be tightly constrained. However, the DVL has a limited range, therefore

there are sections of a deeper dive which may not have DVL bottom-lock, and thus
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other solutions are required in this situation.

Figure 1.4 illustrates present localisation options and their applicability at certain

sections of the water column. On the surface we have GPS. Below the surface, but

away from DVL bottom-lock, we rely on acoustic methods such as Ultra Short Base

Line (USBL), which requires a ship to track the vehicle acoustically, or Long Base

Line (LBL), which necessitates the setting up of an acoustic transponder network.

Figure 1.4 – Various present localisation options for AUVs at certain sections of the
water column (excluding SLAM).

Alternatively, we may attempt localisation combining a navigation-grade IMU with a

vehicle model and the water-track mode of the DVL, which measures the velocity of

the sensor relative to a volume of water [17]. The accuracy of this method, however,

is limited, as will be shown in the Literature review in the following chapter.

Once near the seafloor, low-frequency, high-power and lower-accuracy DVL will be

within bottom-lock range at ∼200m altitude, and at ∼40m we have DVL bottom-lock

with the high-frequency, low-power, high-accuracy DVL.

With the majority of the world’s ocean floor significantly deeper than the 200m

where DVL can be relied for underwater localisation, many missions will rely on

USBL or LBL methods to achieve the desired accuracy for their mission. A depth

map of the Ocean is illustrated in Figure 1.5. This requirement for using USBL or
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establishing LBL infrastructure motivates the need for an alternative high-accuracy

solution using only onboard instruments. A method which allows this provides AUVs

with the potential for true autonomy, which would be valuable for AUV operations.

Figure 1.5 – The depth of the Ocean. Adapted from [54].

1.2 Problem Statement

This thesis will explore a solution to the problem of the lack of feasible mid-water

localisation options without recourse to acoustic time-of-flight sensors. This method

should rely on the vehicle’s own measurements in order to improve the range and

autonomy of AUV operations. This localisation information can then be fed back

into a control algorithm to achieve real-time navigation according to the prescribed

mission.

The proposed system should have the potential to work in real-time on board the

vehicle with typical sensors to maximise the applicability of this method. It should
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also be able to incorporate existing localisation techniques, such as SLAM, LBL or

USBL, to increase the accuracy of localisation.

1.3 Principle Contributions

The principle contributions of this thesis include:

• The development, implementation, testing and validation of an isocurrent layer

model for the water environment, along with a 3D velocity Acoustic Doppler

Current Profiler (ADCP) sensor model to achieve localisation during vertical

descent through the water column. The implementation and analysis of the

developed models is achieved through the fusion of sensor measurements in an

Extended Information Filter (EIF). Simulation and real data are utilised to

validate the approach.

• The development, implementation, testing and validation of a gridded Isocurrent

Water Volume Element (IWVE) model, along with a beam-directional ADCP

sensor model. Spatial correlation in the water current vector field is accounted

for in the EIF, through implementing least-squared constraints in the filter

between IWVE states. Simulation and real data are utilised to validate the

approach.

• The incorporation of IMU measurements and vehicle model constraints to simul-

taneously aid the localisation. Simulation and real data are utilised to validate

the approach.

1.4 Thesis Structure

Chapter 2 outlines and discusses the literature surrounding underwater localisation.

The direction for subsequent work is framed to incorporate existing work on the

subject, while identifying areas of further work that are possible.
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Chapter 3 introduces the ADCP-aided localisation method assuming the water cur-

rent environment is a series of stacked water current layers, which are assumed to be

constant with time in the order of a few minutes. The EIF is proposed as a method

to fuse sensor information for localisation, while alternatives are also discussed. The

ADCP localisation method is applied to a simple 2D example for illustrative and

analytical purposes. Then a 3D example with a simulated AUV illustrates the per-

formance in localisation. A full mission from the Sirius AUV is localised with ADCP

sensor aiding during the descent and ascent phase of the mission, with view-based

SLAM and DVL while within bottom-lock range, validating the approach.

Chapter 4 develops further ADCP sensor and water current environment modelling

techniques for more general localisation, particularly in the horizontal direction where

a non-constant water current layer may occur. A gridded isocurrent water volume

element (IWVE) model is proposed to parameterise the ocean water. The radial

velocity measurements of the ADCP sensor along the beam direction are exploited for

their lateral looking capability. Neighbourhood correlation models are incorporated

to aid the estimation of the water current vector field. Simulation and real data from

the Sirius AUV are used to evaluate and validate this formulation.

Chapter 5 introduces a novel method to simultaneously incorporate measurements

from an IMU and predictions from the vehicle model into the localisation. It exploits

the fact that in a delayed-state framework, the inertial and vehicle model can be con-

verted into a delayed-state constraint between poses. Previous methods attempting

to do this required tuning a correlation state to model the vehicle constraint; the

proposed method does not require such a tuning. Simulations show the applicability

of this method, while real data from the Sirius AUV is used to validate the method.

Chapter 6 summarises the contributions of this thesis, and suggests avenues for

future research.



Chapter 2

Literature Review

2.1 Global Positioning System (GPS)

The Global Positioning System is a satellite-based navigation system. It includes a

set of orbiting satellites that are used as active beacons at known locations in space,

and provides a measurement of 3D position to the user by providing a measurement

of distances (derived from the time delay of a signal) to the satellite. Velocity is also

determined by measuring the frequency shift of the signal [48]. The accuracy of these

measurements are a function of errors in ephemeris, satellite clock, ionospheric/tro-

pospheric propogation, receiver noise, resolution and multipath [48]. While an AUV

can have access to GPS position and velocity measurements while on the sea surface,

the signals do not penetrate water, requiring alternatives during submerged missions.

2.2 Doppler Velocity Log (DVL)

The DVL operates by sending out an acoustic pulse, and measuring the return pulse

from the sea floor. Using the Doppler effect, the velocity of the sea floor relative to

the instrument can be determined in the radial direction, as illustrated in Figure 2.1.

By using four differently aligned sensor beams, the 3D velocity of the DVL can be
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Figure 2.1 – The operation of the DVL sensor relies on measuring the radial velocity
along a beam, and processing this information to arrive at the 3D velocity of the
DVL sensor

determined. The fourth sensor beam provides redundancy in the estimation of the

current profile velocities [11]. The result is a velocity estimate with accuracies typi-

cally about 10 mm/s (2σ). The method of combining the beam velocities to attain a

3D velocity as achieved by the RDI DVL is summarised as follows [19].

The beam velocity is the component of the DVL velocity along the beam.

vk = (Cn
b r̂

b
k) · (−vnDV L) (2.1)

Where vnDV L is the velocity of the DVL in the navigation frame (such the North
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East Down (NED) for a Local Transverse Mercator Projection [12] of the mission

area), vk is the beam velocity measurement of the kth beam, Cb
n is the coordinate

transformation matrix from navigation to body frame and r̂bk is the unit vector along

beam k. The four beams, asummed to be mounted at 30 degrees from the vertical in

the RDI Navigator DVL, are combined to arrive at a 3D velocity.

vbeam = [v1 v2 v3 v4]T (2.2)

T =


a −a 0 0

0 0 −a a

b b b b

d d −d −d

 (2.3)

a =
1

2sin(π/6)
(2.4)

b =
1

4cos(π/6)
(2.5)

d = a/
√

2 (2.6)

zDV L = Tvbeam (2.7)

The resultant 3D velocity measurement (zDV L) is then modelled as the velocity of

the DVL sensor along ground, transformed into body coordinates:

vbDV L = Cb
nv

n
DV L (2.8)

The redundant measurement allows the calculation of an error velocity term which can

be used for error checking. For shallow waters, low-frequency (150kHz) DVL can be

in continuous use for depths less than 200m. The DVL sensor provides measurements

of the seafloor-relative velocity of the AUV. By combining this information with an

appropriate heading reference, the observations can be placed in the global reference

frame and integrated to facilitate underwater dead reckoning.
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Figure 2.2 – Operation of the DVL sensor in Water track mode

2.2.1 DVL Water-Track Mode

The DVL in water-track mode provides a measurement of the velocity of the AUV

relative to a user-programmable water sampling volume that extends away from the

instrument. The assumption of horizontally homogenous currents must be applied

across a water layer to arrive at a water current estimate [11]. This is portrayed in

Figure 2.2.

In addition to the motion of the DVL, the beam velocity will include a component of

the water current velocity.
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vk = (Cn
b r̂

b
k) · (−vnDV L + vnc ) (2.9)

Where vnc is the water current velocity in the navigation frame. In present underwater

localisation, currents are typically treated as a single time-varying parameter [36] [16]

using observations from the DVL water-track mode. In [16], the water current in the

sampled volume is modeled as a first-order Markov process model of the form

v̇c = − 1

τc
vc + νc (2.10)

where τc is a time constant which affects the rate at which the bias changes, and νc
is a random variable with standard deviation [8]

σc =

√
2fσ2

c limit

τc
(2.11)

where σc limit is the standard deviation of the bias in the long term, a limit of the

magnitude of the water current random walk with time (a manually tuned parameter),

f is the frequency at which the process model operates and τc is a tuned parameter

for the time constant of the expected rate change of the water current.

Thus, since the AUV will also be moving during time periods, spatial and temporal

changes in the water currents are coupled.

2.3 Time of Flight Acoustic Localisation methods

In cases where the seafloor depth is greater than the DVL bottom-lock range, tran-

siting from the surface, where GPS is available, to the seafloor presents a localisation

problem, since both GPS and DVL are unavailable in the mid-water column. Tra-

ditional solutions during this descent include range-limited Long Base Line (LBL)

acoustic networks which require additional ship time to deploy and survey (shown in
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Figure 2.3 – The LBL localisation method relies on surveying in a series of acoustic
beacons from a ship, and then navigating the Remotely Operated Vehicle (ROV)
or AUV inside the acoustic transponder network. Image courtesy of Sonardyne.

Figure 2.3), along with methods requiring tending, such as ship-based Ultra Short

Baseline (USBL) acoustic transceivers (visualised in Figure 2.4). Acoustic positioning

may also suffer from multipath returns and the sound speed profile through the water

column needs to be accurately known. These acoustic methods typically give O(10m)

accuracy at 1-10 kilometre ranges [24] [33].

2.4 Inertial Measurement Unit (IMU)

IMUs employ accelerometers and gyroscopes to provide body-relative accelerations

and rotation rates to constrain the position, velocity and attitude estimates through

integration of the outputs. Assuming low velocities as experienced by an AUV, the

equations governing this integration are as follows:
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Figure 2.4 – The USBL localisation method requires a ship with GPS to track the
relative bearing, tilt and range to the AUV, allowing the AUV to be georeferenced.
Image from [45].
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(2.12)

vnt2 = vnt1 +

∫ t2

t1

(Cn
b,tf

b
t + gn)dt (2.13)

pnt2 = pnt1 +

∫ t2

t1

vnt dt (2.14)

φnt2 = φnt1 +

∫ t2

t1

En
b,t(ω

b
t −Cb,t

n Ωn
e )dt (2.15)

(2.16)

where:

• vnt is the velocity of the IMU at time t in the navigation frame,

• Cn
b,t is the coordinate transformation matrix from body to navigation frame at

time t,

• f bt is the specific force (the IMU accelerometer output) in the body frame at

time t,

• gn is the gravity vector in the navigation frame,

• pnt is the position of the IMU at time t in the navigation frame,

• φnt is the attitude of the IMU at time t in the navigation frame,

• En
b,t is the rotation rates transformation matrix from body to navigation frame

at time t,

• ωbt is the rotation rates (the IMU gyroscope output) in the body frame at time

t,

• Cb,t
n is the coordinate transformation matrix from navigation to body frame at

time t,

• Ωn
e is the rotation rate vector of the Earth in the navigation frame.
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Given an IMU capable of gyrocompassing (observing the locally projected 15 deg/hr

rotation of the Earth), the position error growth is approximately [52]:

δp ≈ δωR0t (2.17)

Where δp is the position drift, δω is the gyro bias, R0 is the radius of the Earth, and

t is time.

Thus a navigation-grade IMU (often in excess of $100K US [24]) with 0.01◦/hr gyro

bias, will achieve ∼1 km/hr position drift without aiding. Alternatively, a tactical

grade IMU (approximately $16K US) with 1◦/hr gyro bias will achieve ∼100 km/hr

position drift without aiding.

While on the sea surface, the iXSea PHINS IMU (Navigation grade) achieves hori-

zontal localisation with three times better accuracy than the aiding GPS according

to specification [20]. The Novatel OEM628 GPS receiver specification [40] quotes a

horizontal RMS error with dual frequency (L1/L2) of 1.2 m. Thus the 2σ uncertainty

will be 2.4 m. Therefore an iXSea PHINS IMU coupled with the Novatel OEM628

GPS receiver could achieve 0.8 m 2σ position uncertainty on the sea surface.

Once underwater, when the vehicle is within DVL range of the seafloor, ∼ 0.2%

distance travelled position error growth (2σ) is possible when DVL is coupled with

a navigation-grade IMU [38] [20]. In [53], the position error growth in this case is

expected to grow with the square root of time.

2.5 Vehicle Model based Navigation

Using the vehicle dynamics to predict how the vehicle will move given the estimated

control action, such as thrusters, allows additional information to be fed into the

localisation algorithms.

x(tk+1) = fvehicle model(x(tk),u(tk)) (2.18)
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Where x(tk) is the pose (position, velocity and attitude) of the vehicle at the kth

timestep, and u(tk) is a vector of control inputs at the kth timestep.

In [17], the vehicle model aids the localisation by modelling the AUV dynamics given

control actions and the surrounding water current field. The AUV model parameters

must be estimated prior to their usage in the localisation [18]. This is fused with

the predicted motion from an IMU in the update stage of an Extended Kalman

Filter (EKF), and adding a correlation term to the state vector which has a first-order

Markov bias model. This model would require tuning, and may not fully capture the

true dynamics of this correlation.

This correlation is modeled as a first-order Markov process model of the form

∆̇vwb = − 1

τvwb
∆vwb + νvwb (2.19)

where τvwb is a time constant which affects the rate at which the bias changes, and

νvwb is a random variable with standard deviation [8]

σvwb =

√
2fσ2

vwb limit

τvwb
(2.20)

where σvwb limit is the standard deviation of the state in the long term, a limit to the

magnitude of the vehicle model correlation state random walk with time (a tuned

parameter), and f is the frequency at which the process model operates. τvwb is a

tuned parameter for the time constant of the expected rate change of the vehicle

model correlation.

A navigation-grade IMU coupled with a vehicle model and DVL water-track mode

estimates of currents can achieve ∼120m per hour (2σ) position uncertainty growth

[16], by assuming a time-varying current in the measured water sampling volume, and

after acquiring DVL bottom-lock. Prior to DVL bottom-lock, the position uncertainty

growth is ∼900m per hour [16].
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Figure 2.5 – The ADCP mode of the DVL sensor operates by looking at the returns
from scatterers in the water column along each of the 4 beams. This information
can be combined to arrive at the 3D velocity of the water currents relative to the
ADCP sensor in a similar way to the DVL sensor. In this diagram, the measurement
cell is set to the same size as the depth cell (because M = N), this is optional and
need not be the case, although it simplifies modelling.

2.6 Acoustic Doppler Current Profiler (ADCP)

The ADCP is in fact a different mode of the same DVL sensor. It operates by

sending out an acoustic pulse, and relying on scatterers, such as plankton, to reflect

back the pulse. Using the Doppler effect, the velocity of the scatterers relative to the

instrument can be determined in the radial direction. Since it is assumed that the

scatterers move with the water currents, the ADCP is measuring the radial velocity of

the water column currents relative to the ADCP. By gating the returned signal with

time, currents at different ranges from the ADCP sensor can be measured, segmenting

the observation into measurement cells. This is illustrated in Figure 2.5.
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The radial velocities measured by the ADCP sensor are:

vi,k = (Cn
b r̂

b
k) · (−vnADCP + vnc,j) (2.21)

Where vi,k is the radial velocity measurement in the ith measurement cell, along the

kth beam and vnc,j is the water current velocity in the navigation frame of the jth

depth cell.

By using 4 differently aligned sensor beams and assuming horizontally homogeneous

currents, the 3D velocity of the current can be determined. This is done in a similar

manner to the DVL sensor. The fourth sensor provides redundancy in the estimation

of the current profile velocities [11]. Echo intensity can also be used to check if

there are anomalies corrupting the returns, such as schools of fish [41]. The result

is a current estimate with accuracies typically about 20 mm/s (2σ) observing 2 m/s

currents1.

The focus within the oceanographic community with regard to ADCP use is on esti-

mating water current profiles, such as applying least-squares methods to fuse lowered

ADCP and DVL bottom-lock information [57]. Accounting for ADCP sensor biases

[11] and sensor uncertainties are not tackled, as the effect on the overall current pro-

file is minimal, however there are implications in the velocity estimates of the ADCP

sensor itself during descent or ascent. This is important for localisation as the velocity

uncertainty relates to the position uncertainty growth rate.

More recently, in [50], a least-squares approach to the localisation problem focusing on

vertical descent and ADCP and DVL measurements is explored, along with optimizing

ADCP configuration. This work shows ADCP localisation performance for a well-

configured 1 km depth dive can give qualitatively similar results to USBL in this

case, with errors of the order of 10m. Fusion with other sensors, such as IMU, bias

modelling of the ADCP sensor and generalising to horizontal motion was not explored.

1Sourced from email from RD Instruments providing standard deviation of the instrument
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Concurrent work

Undertaken concurrently to this thesis is the work of Stanway in [51]. Part of Stan-

way’s work is directly relevant to this thesis as the ADCP is used for localisation.

He explores a least squares approach to estimate water currents and vehicle pose.

It can be seen as complementary solutions to the same problem in this thesis. In

Stanway’s work, ADCP sensor configuration and diagnostics are performed, which

looks at information such as return strength of the signal, and looks at practical

ADCP implementation issues for deep water. In his work, biases are not considered,

and an IMU or vehicle model are not incorporated. Additionally, uncertainty bounds

are not analysed in Stanway’s work. The recursive least squares approach is similar

to the compututational complexity of the delayed-state filter (with marginalisation)

used in this thesis, for the same sensor usage. Incorporating SLAM or retaining the

entire state history of the filter for relinearisation purposes will increase the compu-

tational complexity, but Stanway’s implementation does not tackle these additions.

The accuracy of the method used in this thesis is superior to that of Stanway’s, since

more sensors will be accommodated. With the same sensors, the incorporation of the

ADCP biases in the filter will provide better accuracy than Stanway’s work.

2.7 Underwater SLAM

While not directly applicable in the mid-water column, when close to the seafloor,

Simultaneous Localisation and Mapping (SLAM) methods allow further navigation

improvements [60] by identifying previously explored regions to constrain the local-

isation solution. This can be achieved by using visual features [32], as shown in

Figure 2.6, bathymetric features [2] or a combination of both [26] as shown in Fig-

ure 2.7.

SLAM allows more accurate relative localisation when close to the seafloor, as well as

enforcing map consistency. To georeference this map, mid-water localisation would

need to occur when GPS is unavailable, or USBL/LBL will need to be available the

entire mission.
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Figure 2.6 – The green lines in (a) represent loop closure hypotheses which could be
used to correct the localisation. In (b), a match between the previous image and
the current image is made, and a loop closure constraint is applied in red.

Figure 2.7 – The map created following Visual and Bathymetric SLAM, allowing map
consistency to be improved through coupling the mapping with localisation [26].
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2.8 Summary

A hypothetical example is used to compare the aforementioned localisation options

as typically applied in the current state-of-the-art of underwater localisation. For

a one hour descent, which is typically between approximately 700m and 1400m of

depth depending on AUV descent rates, Figure 2.8 shows the performance of various

options. Without USBL and LBL and relying on an IMU/vehicle model/DVL water

track navigation solution will give 120m (2σ) accuracy. Therefore, missions requiring

revisit capabilities in depths beyond a few hundred metres must invest in the greater

effort of external acoustic methods. LBL is the typical mode of operation for vehicles

such as the lost-at-sea Autonomous Benthic Explorer (ABE) AUV when searching

for hydrothermal vents [21], where high revisitation accuracy is required for nested

surveys (shown in Figure 2.9).

Present methods using on-board sensors to aid localisation in the mid-water column,

which do not rely on external acoustics such as LBL or USBL, include IMUs, vehicle

model and DVL in water-track mode. Methods using the DVL water-track mode

to incorporate observed water currents rely on the assumption that the correlation

model is known, and constant, for all time [16]. In reality, the sampled water current

is changing due to the vehicle translating and observing a spatially changing water

current vector field, along with any temporal change in the water currents.
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Figure 2.8 – Comparison between different underwater localisation methods where
GPS is unavailable for a 1 hour dive, which is typically between approximately
700m and 1400m of depth depending on AUV descent rates. No sensing at all
results in errors due to the unestimated water currents.
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Figure 2.9 – The nested survey strategy used by the ABE AUV to pinpoint the location
of a hydrothermal vent [21].



Chapter 3

ADCP Sensor Aiding with Water

Layers

An alternative to using the bulk water volume relative velocity from the DVL water-

track mode [16], is to use the ADCP mode to provide finer depth resolution current

estimation. This opens the possibility of improved vehicle motion estimates, given

the observation of fine-scale current structure.

The standard parametrisation of the ocean for Lowered ADCP (LADCP) is to layer

the ocean into discrete, isocurrent layers [57], or depth cells. This relies on the as-

sumption of horizontal homogeneity across the water current layer [11]. This chapter

applies additional modelling to the ADCP sensor along with further sensor fusion to

the standard LADCP formulation, with a focus instead on the vehicle localisation

performance instead of the water current profile estimation. As will be shown, ac-

counting for the correlation in the vehicle and water current profile estimates result

in improvements in the quality of the estimation of both the vehicle pose and water

column current profile.

This chapter explores the performance of the ADCP-aided localisation algorithm as an

alternative form of georeferencing for AUV missons for vertical dives. A two degrees-

of-freedom simulation allowed the analysis of the error dynamics of the problem. A

six degrees-of-freedom simulation is undertaken to explore the possible performance
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of the algorithm under typical parameters for the Sirius AUV. Finally, a validation of

the ADCP localisation algorithm was completed with real data from the Sirius AUV.

As a result, this chapter demonstrates the ability to achieve constrained error growth

in position by incorporating ADCP measurements into the navigation solution while

a vehicle is transitting between the sea surface and the seafloor.

3.1 ADCP estimation and navigation aiding process

In order to illustrate a typical scenario where mid-water localisation is possible with

ADCP, a sensing process is outlined. We assume that initially the AUV has position

and velocity estimates in the navigation frame at the sea surface from GPS. With the

ADCP sensor, body-relative water depth cell velocities below the vehicle are observed

with each ADCP measurement cell. These observations can be used to estimate the

full current profiles in the navigation frame using the estimated vehicle velocity at

the surface. This is illustrated in Figure 3.1(a).

After another ADCP measurement is made, the vehicle reobserves the same depth

cells. Given the estimated water current velocity of the reobserved depth cell and

the body-relative velocity of these depth cells from the ADCP a filter can be used to

simultaneously update the estimate of the vehicle velocity and current profile veloci-

ties. This relies on the assumption that the water current velocity in this depth cell

remains constant, which is realistic over a reobservation period of minutes. This is a

standard assumption in oceanographic water current profiling [57]. This is shown in

Figure 3.1(b).

New depth cells can also now be estimated as the vehicle changes depth as shown in

Figure 3.1(c). The result is an estimate of the vehicle motion and a water column

current profile. When the vehicle is within DVL range of the seafloor, this velocity

constraint on the vehicle is also incorporated into the filter. The process is summarised

in Algorithm 1.
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Depth cells

(a)

Depth cells

(b)

Depth cells

(c)

Figure 3.1 – ADCP-aiding method sequence (a) Initial GPS position and velocity are
known, and water velocities can be deduced. (b) The AUV moves, and reobserves
the same depth cells.(c) The AUV velocity in the world frame can be deduced,
along with new depth cells shown in red.
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Algorithm 1 ADCP-aided localisation during vertical descent
while On Surface do

pnv (tk) = pGPS
vnv (tk) = vGPS,Doppler
vbcurrents = vADCP
vncurrents = vnv (tk) + vbcurrents

end while
while Underwater do

pnv , z(tk) = pz,PRESSURE DEPTH

vbcurrents = vADCP
vnv (tk) = vncurrents − vbcurrents
pnv,horizontal(tk) = pnv,horizontal(tk−1) + vnv (tk)∆T
if New water current observed with depth then

vnnew currents = vnv (tk) + vbnew currents
end if
if Within DVL bottom-lock range then

vnv (tk) = vDV L
end if

end while
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3.2 Information filter with current profiling

Vehicle pose states, ADCP bias states and water current velocity are all to be si-

multaneously estimated. The ADCP bias states are estimated as this could lead to

corrections in the localisation, and the uncertainty that they introduce can be mod-

elled. Water velocity states are parameterised as isocurrent depth cells, each with

an associated velocity vector. If water currents grid cells are assumed approximately

constant temporally, their reobservation following their initial observation with an

ADCP should be able to constrain the vehicle velocity as illustrated in Figure 3.1(b).

An Extended Information Filter (EIF) can be applied to estimate the states of the

vehicle given the various vehicle sensor measurements [58], allowing implementation

of the water current layer depth cell states for estimation, along with maintaining the

correlations between the states. The EIF also allows relinearisation if required and

can incorporate view-based SLAM if applicable. It also enables viewing the entire

state history of the vehicle for analysis purposes, as it acts as a delayed state smoother.

Further practical usage discussion is contained in Section 3.2.1.

The EIF maintains the correlations between states in addition to a mean estimate of

the states. Vehicle pose states such as position, velocity and attitude (IMU bias states

are included if IMU bias estimation is incorporated), ADCP bias states and water

current velocity states are stored in a state vector (representing the mean estimate of
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the states) of the form

x̂+(tk) =



x̂+
P1

(tk)
...

x̂+
PnP

(tk)

x̂+
bc,1

(tk)
...

x̂+
bc,nb

(tk)

x̂+
vc,n(tk)

...

x̂+
vc,nv

(tk)



=


x̂+
P (tk)

x̂+
bc

(tk)

x̂+
vc(tk)

 (3.1)

where x̂+
P (tk) =

[
x̂+T
P1

(tk), ..., x̂
+T
PnP

(tk)
]T

is a vector of past and present pose states

where nP is the number of vehicle pose states, x̂+
bc

(tk) =
[

x̂+T
bc,1

(tk), ..., x̂
+T
bc,nb

(tk)
]T

is

a vector of past and present ADCP bias states where nb is the number of ADCP bias

states and x̂+
vc(tk) =

[
x̂+T
vc,1

(tk), ..., x̂
+T
vc,nv

(tk)
]T

is a vector of past and present ADCP

water current velocity states where nv is the number of water current velocity states.

The covariance between the pose states and the water current states are in the form

P̂+(tk) =


P̂+
PP (tk) P̂+

Pbc
(tk) P̂+

Pvc
(tk)

P̂+T
Pbc

(tk) P̂+
bcbc

(tk) P̂+
bcvc

(tk)

P̂+T
Pvc

(tk) P̂+T
bcbc

(tk) P̂+
vcvc(tk)

 (3.2)

In the information form, the filter maintains the matrix Y, which is the inverse of

the covariance matrix, also known as the information matrix

Ŷ+(tk) = [P̂+(tk)]
−1 (3.3)

and the information vector y, which is related to the state estimate by

ŷ+(tk) = Ŷ+(tk)x̂
+(tk) (3.4)
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The information vector has the form

ŷ+(tk) =


ŷ+
P (tk)

ŷ+
bc

(tk)

ŷ+
vc(tk)

 (3.5)

and the information matrix has the form

Ŷ+(tk) =


Ŷ+
PP (tk) Ŷ+

Pbc
(tk) Ŷ+

Pvc
(tk)

Ŷ+T
Pbc

(tk) Ŷ+
bcbc

(tk) Ŷ+
bcvc

(tk)

Ŷ+T
Pvc

(tk) Ŷ+T
bcbc

(tk) Ŷ+
vcvc(tk)

 (3.6)

Observations, which include ADCP measurements, are assumed to be made according

to

z(tk) = h[x(tk)] + ν(tk) (3.7)

in which z(tk) is an observation vector, h[x(tk)] is the sensor model relating states to

observations, and ν(tk) is a vector of observation errors with covariance R(tk). New

information from sensor measurements are incorporated into the information vector

and matrix

ŷ+(tk) = ŷ−(tk) + i(tk) (3.8)

Ŷ+(tk) = Ŷ−(tk) + I(tk) (3.9)

in which

i(tk) = ∇T
xh(tk)R

−1(tk)(z(tk) . . .

−h[x̂−(tk)] +∇xh(tk)x̂
−(tk)) (3.10)

I(tk) = ∇T
xh(tk)R

−1(tk)∇xh(tk) (3.11)

where x̂−(tk) is the a priori state estimate and ∇xh(tk) is the Jacobian of the ob-

servation with respect to the state. Using this framework, the recursive non-linear

weighted least squares solution to the states can be estimated.
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Joint Marginal Conditional
p(α,β) p(α) =

∫
p(α,β)dβ p(α|β) = p(α,β)/p(β)

ŷ =

[
ŷα
ŷβ

]
Ŷ =

[
Ŷαα Ŷαβ

Ŷβα Ŷββ

] ŷ = ŷα − ŶαβŶ
−1
ββ ŷβ

Ŷ = Ŷαα − ŶαβŶ
−1
ββ Ŷβα

ŷ = ŷα − Ŷαβx̂β
Ŷ = Ŷαα

Table 3.1 – Marginalisation and Conditioning operations in the Information Filter.
Adapted from [6].

3.2.1 Practical Filter Usage

To implement the Extended Information Filter, a variety of strategies exist to main-

tain computational efficiency. Given np and nb are the number of states in the pose

and bias states respectively and if nv is the number of water current velocity states,

let n = np +nb +nv. Then the naïve Information Filter solve step for the filter states

x̂+(tk) in Equation 3.4 will be O(n3). The cubic complexity is due to the inversion

of Ŷ+ which would be required in order to solve for x̂+(tk).

Thus if the entire pose, bias and water current history are kept, for revisitation or

pose-based SLAM, then the solve time will increase cubicly if implemented naïvely.

If real-time performance is required and no form of SLAM loop-closure is attempted,

then all unrequired poses and water current states (those which will no longer be part

of the observations) can be marginalised out by taking the marginal with respect to

the remaining states of the filter, and the Information matrix will be of bounded

size. Marginalisation still allows the correlations in the states to be maintained, but

removes the states from the estimation, disabling relinearisation and smoothing of this

state with future information. If the mission plan is known, and there will be no re-

observation of a water current velocity state in the time frame for the constant water

current assumption to hold, this water current velocity state can be marginalised out

of the filter. Thus the filter will run in constant time in this case.

Since the Jacobians in Equations 3.10 and 3.11 are evaluated at the present state es-

timate, the linearisations of these Jacobians will have an error dependent on the error

in the estimate. Stabilizing noise, which is an increase in the estimated covariance
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of the measurement to account for this linearisation error, is required in order ensure

the filter does not become inconsistent.

The vehicle sensors could identify previously visited regions, with this information

constraining the pose estimate. This is known as loop-closure in SLAM. If loop-

closure is desired to be incorporated into the filter, strategies for conditioning and

marginalising poses, and sparsification of the Information matrix in order to keep

the filter sparse and constant-time are discussed in [58] and [56]. Graphical based

methods such as those discussed in [26] and [23] could also be applied, depending on

the application. If the states are not marginalised away and the previous poses are

kept as part of the estimation, then once corrected estimates for previous states exist,

these Jacobians can be made more accurate. This is known as relinearisation.

3.2.2 ADCP observation equation

Given the 3D velocities output from the ADCP, the observation function for each

ADCP measurement is

zADCP,i = Cb
n(−vnv +

∑
Wjvnc,j) + bc,i + νADCP (3.12)

Figure 3.2 illustrates the observation function.

where:

• zADCP,i = ADCP measured current vector in the ith measurement cell

• Cb
n = Coordinate transform from navigation/world frame to ADCP/body frame

• vnv = Vehicle velocity in the world/navigation frame

• Wj = Weighting function for each water current velocity from depth cell j,

outlined in [11]

• vnc,j = water current velocity from depth cell j. Each depth cell contains a

current velocity state in the X and Y direction, which represents the average

velocity of the current through that layer
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Figure 3.2 – ADCP observation model for 3D velocities. Measurement cells are the
zADCP,i values. Depth cells are represented by j.
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• bc,i = Bias in the ith measurement cell in the body frame

• νADCP = Random noise in the ADCP measurement, with standard deviation

given by the sensor manufacturer

3.2.3 ADCP biases

Sources of ADCP biases [11] [1] include measurement cell dependent biases, such

as beam and sensor misalignment, beam geometry and signal/noise ratio and biases

dependent on changing depth, including temperature, pressure, scatterers and sound

speed estimate error. These ADCP biases are estimated as the summed effect on the

measurement cell observation in the body frame. In order to improve the observability

of the ADCP sensor relative biases (bc,i) and allow disambiguation from the true

currents (vnc,j), rotation about heading is required, due to the transformation Cb
n in

Equation 3.12.

A process can be described by a first order Markov process model to simulate bounded

random walk. For example, given a state b undergoing bounded random walk, the

following model can be applied:

˙bc,i = −1

τ
bc,i + ν (3.13)

where τ is a time or scale constant which affects the rate at which the state changes,

and ν is a normally distributed random variable with standard deviation:

σ =

√
2fσ2

state limit

τ
(3.14)

where σstate limit is the bound on the long term state. This bound is set such that the

state sampled at a random point in its evolution will be normally distributed with

standard deviation σstate limit [8].

Thus, the ADCP bias with time can be modeled as a first order Markov process model



3.2 Information filter with current profiling 36

of the form
˙bc,i = − 1

τbias
bc,i + νbias (3.15)

where τbias is the expected rate change of the ADCP sensor, which is a tuned param-

eter and νbias is a normally distributed random variable with

σbias =

√
2fσ2

bias drift

τbias
(3.16)

where σbias drift is the standard deviation of the bias in the long term, and a limit

to the magnitude of the bias (a tuned parameter), f is the frequency at which the

process model operates and τ is a tuned parameter that can be be determined through

accounting for the expected bias drift rate, which may depend and change on a number

of factors as described previously. In a discrete form appropriate to be used in the

information filter, the observation equation which links the previous bias state to the

present bias state is

hbiasmodel(x̂(tk)) = bc,i(tk)− (1− ∆t

τ
)bc,i(tk−1) (3.17)

zbiasmodel = 0 (3.18)

Rbiasmodel = σ2
bias∆t

2 (3.19)

where bc,i(tk) is the present bias state, bc,i(tk−1) is the previous bias state, and ∆t is

the time between new bias states (= 1/f).

3.2.4 ADCP measurement weighting function

The ADCP sensor measures velocities in depth cells with a triangular weight function

in the case of the Teledyne RDI ADCP, with 15% overlap with adjacent depth cells

as described in the RDI ADCP primer [11], shown in Figure 3.3. This is due to

currents at the centre of the measurement cell contributing more to the measurement

value than those at the edge of the measurement cell. Between 2 and 3 depth cells

affect each measurement, depending on the depth where the measurement was taken
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Depth cell j0 (e.g. 20-21m depth)

Depth cell j0+1 (e.g. 21-22m depth)

Depth cell j0+2 (e.g. 22-23m depth)

Figure 3.3 – Depth cell weight functions: depth cells are more sensitive to currents at
the center of the cell than at the edges. The area in blue is approximately 15% of
the total area of one measurement cell triangle. [11]

relative to the depth cell. The weighting for each depth cell depends on the area of

the triangle of the measurement cell in that depth cell, and determines the Wj term

in Equation 3.12.

The ADCP measurement for measurement cell 2 is assumed to have a weighting

function according to:

M ze
z0

=

∫ ze

z0

w(z)vbc(z) dz (3.20)

where vbc(z) is the velocity of the water currents in the ADCP body-frame as a function
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of depth, and for a triangular weighting function such as that described in Figure 3.3

for ADCPs, the term w(z) is described as:

w(z) =

 4(z − z0)/(ze − z0) when (z − z0)/(ze − z0) ≤ 1
2

4− 4(z − z0)/(ze − z0) when (z − z0)/(ze − z0) > 1
2

(3.21)

3.2.5 ADCP observation equation Jacobians

The predicted observation from the ADCP sensor is given by:

hADCP [x̂(tk)] = Ĉ
b

n(−v̂n +
∑

Ŵjv̂nc,j) + b̂c,i (3.22)

The Jacobian of this predicted observation with respect to position, velocity and

attitude is given by:

∂hADCP [x̂(tk)]

∂p̂nv
=

 02×1

∂
∑

Ŵj v̂nc,j
∂p̂v,z

 (3.23)

∂hADCP [x̂(tk)]

∂v̂nv
= −Ĉ

b

n (3.24)

∂hADCP [x̂(tk)]

∂v̂nc,j
= −Ĉ

b

n

∑
Ŵj (3.25)

∂hADCP [x̂(tk)]

∂φ̂
n =

∂Ĉ
b

n

∂φ̂
n

v

(−v̂nv +
∑

Ŵjv̂nc,j) (3.26)

As can be seen in Equation 3.23, the predicted observation will not change given

translation in the north and east directions since it would merely be sliding across

the water layer, with no change. In the down direction, the observation changes

due to the weighting function changing with depth, although this will have minimal

localisation estimation impact as the pressure depth sensor will be providing accurate

absolute depth estimation.



3.2 Information filter with current profiling 39

Figure 3.4 – There exists some correlation between vertically adjacent water current
depth cells due to shear in the water column. Thus the water current velocities
are not randomly distributed with respect to each other, but instead have some
dependence on water currents above and below.

In Equation 3.24 and 3.25, the predicted observation will change depending on the

orientation of the vehicle. The vehicle velocity states will be constrained by the water

current velocity estimates according to this correlation. As a result of Equation 3.26,

the predicted observation will change depending on attitude, vehicle velocity and the

weighted water current measurements, resulting in any attitude misalignment causing

localisation errors. A more thorough sensitivity analysis remains as future work.

3.2.6 Vertical Correlation Model

Vertically adjacent water current depth cells should have some correlation, due to

shear in the water column. This is often applied as a smoothing function to the

current profile [57]. This is visualised in Figure 3.4, where the water current velocities

are not randomly distributed, but instead have some dependence on water currents

above and below. Thus, an update with the following measurement model is applied

between water current depth cells which are part of the state vector:

hvertical correlation(x̂(tk)) = vnc,j0 − vnc,j0+1 (3.27)

zvertical correlation = 0 (3.28)

Rvertical correlation = σ2
vertical correlation (3.29)

where vnc,j0 is the vertically higher water current depth cell, vnc,j0+1 is the verti-
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cally lower water current depth cell. The standard deviation of this constraint

σvertical correlation is set according to the expected rate of current change between the

current grids, similar to a smoothing term in LADCP implementations [57]. This

standard oceanographic assumption will be applied to vertically adjacent water cur-

rent velocity states. The sensitivity of the localisation performance on this additional

information depends on the frequency of ADCP measurements. The higher the rate

of ADCP measurements per depth cell, the less reliance there is on the vertical corre-

lation information to aid the estimation of the water currents. Incorporating physical

constraints, even very coarsely, will help the filter decide initialisation values and

uncertainties for the unestimated water currents.

3.3 Vertical descent simulations

This section explores the performance of the ADCP localisation algorithm given ver-

tical descent in simulation.

3.3.1 Simulated Vertical Water Currents

The current field is generated as a first order Markov process, to simulate correlated

and randomly walking currents with depth, but with a bound on the random walk.

The targeted behaviour of the water currents with depth is illustrated in Figure 3.5

[42]. A simulated current field is shown in Figure 3.6.

3.3.2 Two degrees-of-freedom simulation

The example illustrated in Section 3.1 and Figures 3.1(a) to 3.1(c) can be simulated to

examine how the errors evolve in the states. A 1-dimensional current field is simulated

in which the vehicle is travelling vertically down, and free to move left or right (but

not into and out of the page of the figures).
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Figure 3.5 – Results for Lowered acoustic Doppler current profiler (LADCP) velocity
profiles (dotted lines) and higher-resolution expendable current profiler (XCP) mea-
surements (solid lines) in u (north) and v (east) directions. The y-axis represents
depth, and the x-axis represents separate current profiling missions [42].
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Figure 3.6 – A simulated current profile for the (a) north and (b) east velocity.
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Table 3.2 – Parameter values used in the 2DOF simulation

GPS receiver Lassen iQ GPS receiver
Initial GPS position fix accuracy 10 m (2σp)
Initial GPS velocity accuracy 0.04 m/s (2σv)
AUV descent rate 0.2 m/s
ADCP make and model RDI 1200 kHz
ADCP measurement uncertainty 0.02 m/s (2σa)
ADCP range 30 m
Water current depth cell size 1 m
Simulation time 1000 seconds
Simulated depth 240 m
DVL accuracy 0.006 m/s (2σDV L)
DVL range 40 m
DVL acquisition time 1000 seconds
ADCP and DVL update rate 3 Hz
Maximum currents 20 cm/s

The vehicle experiences unmodelled (in the localisation filter) drag which causes it to

move with the currents. The vehicle is also assumed not to pitch in this simulation,

resulting in two degrees-of-freedom (2DOF) in translation. To further simplify the

analysis of this example, the bias states are not simulated. The ADCP and DVL

operate at approximately 3 Hz in practice for the 1200 kHz sensor, and this is used

in the simulation.

Table 3.2 lists parameter values used for the 2DOF simulation. Figure 3.7 outlines

the localisation architecture for this simulation.

To facilitate analysis, the full state history, or smoothed solution, of the information

filter is used. All poses are kept in the state estimator. The state estimates (x) and

uncertainties (p(x)) are defined as:

x = x̂(t0) : x̂(tk)|z(t0) : z(tk) (3.30)

p(x) = p(x̂(t0) : x̂(tk)|z(t0) : z(tk)) (3.31)

Figures 3.8(a) and 3.8(c) show the position estimate with a constant velocity (CV)
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Figure 3.7 – The localisation architecture for the 2DOF simulation.
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model and ADCP-aiding respectively before DVL bottom-lock. The CV model as-

sumes currents are approximately 20 cm/s at maximum, therefore it is assumed that

the vehicle will experience unknown drift due to this water current uncertainty as it

descends. No sensor information other than depth observations are available. The

position uncertainty growth for the CV model is approximately 150m (2σ) over the

1000 second dive, while the ADCP-aiding filter position uncertainty growth is ap-

proximately 40m (2σ).

Figures 3.8(b) and 3.8(d) show the position estimate for the entire state history with a

CV model and ADCP-aiding respectively after DVL bottom-lock. The DVL bottom-

lock has constrained some of the velocity history of the dive for the CV model. The

position error growth for the CV model is now approximately 90m (2σ) over the 1000

second dive. The DVL bottom-lock in the case of the ADCP-aiding filter allows the

entire velocity history to be constrained due to the correlations of vehicle velocity with

water current velocity states. The observation of DVL body-relative velocity is back-

propagated to the entire descent because these correlations are accounted for in the

Information Filter through the corrected water current estimates. The ADCP-aiding

filter position uncertainty growth is now approximately 6m (2σ).

Figures 3.10(a) and 3.10(c) show the velocity errors for the entire state history for

the CV model and ADCP-aiding filter respectively before DVL bottom-lock. The CV

model velocity uncertainty deteriorates to the 20 cm/s water current uncertainty. For

the ADCP-aiding filter, the velocity uncertainty slightly increases with time because

of information loss from a finite number of uncertain measurements from the ADCP

during the descent. Information loss is defined as the increase in velocity uncertainty

as velocity estimates are extracted through reobserving the water currents with the

ADCP, which translates into position uncertainty due to the position being the inte-

gral of velocity with time. This increase in velocity uncertainty is negligible because

of the number of reobservations of the current velocity bins (750 times at most in this

case). The concept of information loss is examined in more detail is Section 3.3.3.

The error in velocity is primarily from the initial GPS velocity error, at 0.04m/s (2σ).

While undergoing descent prior to DVL bottom-lock, the velocity error is seen to
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Figure 3.8 – 2DOF simulation position estimates for the entire state history for the con-
stant velocity model (a) before DVL bottom-lock and (b) after DVL bottom-lock,
and ADCP-aiding filter (c) before DVL bottom-lock and (d) after DVL bottom-
lock.
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Figure 3.9 – The error in the water current estimate from the 2DOF simulation prior
to DVL bottom-lock.

have a Markov nature, the initial velocity error remains like a bias in the vehicle

velocity estimate. It acts like a bias because the error in velocity which the vehicle

has while on the surface, behaves as a bias in the initial measured water currents.

Thus, no matter how many subsequent measurements of the water currents are made

while underwater without GPS, this initial velocity bias in the water currents can

never be overcome without another georeferenced velocity measurement. Figure 3.11

shows the the ADCP aided velocity uncertainty during the descent, showing a slight

increase in velocity uncertainty following GPS loss, and then a slowly increasing

velocity uncertainty with time. The bias in all the water currents, except the water

currents at the surface which are only observed with the ADCP a limited amount of

times during descent, can be seen in Figure 3.9.

In [3], it is proven that the relative map which can be constructed in SLAM has

an uncertainty which has a lower bound defined only by the initial vehicle position

uncertainty. The same concept applies in this case, except initial vehicle position

uncertainty in SLAM is the equivalent of initial vehicle velocity uncertainty in the

ADCP localisation scenario. The problems are equivalent due to this initial condition
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dependence. This lower bound in the velocity uncertainty is set by the initial veloc-

ity uncertainty of the vehicle. Just as the initial velocity uncertainty will strongly

determine the position uncertainty growth rate, once DVL bottom-lock is achieved,

a georeferenced velocity measurement will be available to the filter.

Figures 3.10(b) and 3.10(d) show the velocity errors for the entire state history for

the CV model and ADCP-aiding filter respectively after DVL bottom-lock. The CV

model velocity estimates are improved in the time near DVL bottom-lock. For the

ADCP-aiding filter, the entire velocity history estimate error is just above 0.006 m/s

(2σ), which is similar to the DVL accuracy, but for the entire descent. It is slightly

higher than the DVL velocity uncertainty as a result of the small information loss, due

to a finite number of uncertain measurements from the ADCP during the descent.

Figure 3.12 shows the ADCP aided velocity uncertainty that is smoothed for the

entire state history, following DVL bottom lock. The velocity uncertainty is about 8

mm/s for the entire dive. It shows an increasing velocity uncertainty backwards in

time from DVL bottom lock acquisition. It is similar to the descent behaviour except

in reverse. It shows the slight information loss due to noisy measurements through

the water column. This absolute velocity measurement allows the bias in all of the

water current measurements from the initial GPS velocity to be reduced in magnitude

according to the uncertainty of the DVL. This correction in all the water currents in

turn reduces the previous uncertainty in the vehicle velocity.

Figure 3.13 shows the estimated water currents from the filter post-DVL compared

to the truth, showing the reduction in uncertainty for all the water column current

velocities, while the errors and uncertainty bounds for this estimate are shown to be

consistent in Figure 3.14.

3.3.3 Two degrees-of-freedom simulation with varying param-

eters

The position uncertainty growth, as established in the previous chapter, is closely

related to the initial velocity uncertainty of the vehicle. The reliance on other variable
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Figure 3.10 – 2DOF simulation velocity errors for the entire state history for the con-
stant velocity model (a) before DVL bottom-lock and (b) after DVL bottom-lock,
and ADCP-aiding filter (c) before DVL bottom-lock and (d) after DVL bottom-lock.
The Y axis scale above is significantly different comparing (a) and (b) to (c) and
(d). Note that the velocity uncertainty for the ADCP-aiding filter is significantly
lower than the constant velocity model.
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Figure 3.11 – The ADCP aided velocity during the descent, showing a slight increase
in velocity uncertainty, and then a slowly increasing velocity uncertainty with time
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Figure 3.12 – The ADCP aided velocity uncertainty that is smoothed for the entire
state history, following DVL bottom lock. It shows an increasing velocity uncer-
tainty backwards in time from DVL bottom lock acquisition.
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Figure 3.13 – Current profile derived from the 2DOF simulation
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Figure 3.14 – The error in the water current estimate from the 2DOF simulation
following DVL bottom-lock.
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parameters is yet to be determined. A two degrees-of-freedom simulation, similar

to the previous section but with 20 m of descent in 60 m of water, is simulated

between GPS blackout and DVL bottom-lock. The following parameters are adjusted

to compare the filter uncertainty estimates:

1. AUV descent rate

2. ADCP measurement rate

3. ADCP measurement standard deviation (σa)

4. Initial velocity standard deviation (σv) whether from GPS or other sources (such

as GPS/IMU)

Appendix A contains the details of this analysis. In summary, for a given mission

depth:

• The faster the descent rate, the lower the position error. There is a near linear

relationship between the mission time and the position uncertainty growth. The

increase in velocity uncertainty during faster descents is negligible compared to

the reduced mission time.

• The initial velocity standard deviation has a near linear relationship with the

position uncertainty error growth prior to DVL bottom-lock. Following DVL

bottom-lock, the initial velocity standard deviation will have a negligible impact

on the final position uncertainty growth. The exception is if the initial velocity

standard deviation (e.g. GPS) is close to the final DVL bottom-lock standard

deviation, and if the information loss is not significant. The information loss

increases due to a low ADCP measurement rate or high ADCP measurement

uncertainty. In this case, further accuracy in the position uncertainty growth is

achieved.

• The ADCP measurement rate only improves the position error significantly if

the ADCP measurement uncertainty is relatively high. Even with low ADCP
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measurement rates, there is often enough reobservation of previously observed

water currents to limit information loss and position uncertainty growth.

• The ADCP measurement standard deviation becomes important as the AUV

descent rate increases and/or if the ADCP measurement rate is reduced prior

to DVL bottom-lock. Once DVL bottom-lock occurs, the ADCP measurement

uncertainty itself becomes important as the information loss results in the DVL

bottom-lock velocity uncertainty not being able to reduce the uncertainty of the

earlier water current velocities. This feeds back into the vehicle velocity esti-

mates and hence the position uncertainty growth. This effect can be mitigated

by having a low initial velocity standard deviation to reduce the uncertainty

growth during the earlier portion of the descent.

Given this simulation is a simplified representation of the true dynamics of the ADCP

localisation filter, a more realistic simulation is undertaken in the following section.

3.3.4 Six degrees-of-freedom simulation

A six degrees-of-freedom (6DOF) simulation of a typical AUV dive was also completed

with the following characteristics:

1. An initialisation phase for the GPS/IMU is first simulated, using real IMU/GPS

output from a Novatel GPS system to give a realistic initialisation. This allows

heading resolution.

2. A vertical dive phase, where no GPS or DVL bottom-lock is possible. The AUV

rotates due to hydrodynamic forces or through direct control of thrusters, and

allows sensor biases to be estimated.

3. After 1000 seconds, the vehicle reaches within 40m of the seafloor, and acquires

bottom-lock to resolve velocity over ground.

4. Following DVL bottom-lock, 30 seconds of DVL measurements are undertaken

to allow velocity over ground to be estimated in combination with the IMU.
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Figure 3.15 – The localisation architecture for the 6DOF simulation.

5. The water current velocities are correlated with depth, with a maximum current

around 15 cm/s. This is indicative of a typical current profile [57].

The filter architecture is outlined in Figure 3.15.

AUV vehicle modelling

To model the vehicle motion through the water current environment, it is assumed

that the vehicle has differential thrust to control heading and forward velocity. The

differential equation defining a 3DOF AUV model [9] with differential thrust such as

the Sirius AUV [60] is:

Mv̇ + C(v)v + D(v)v + Cb
n(mgn + bn) = τ (3.32)
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v =


ẋb

ẏb

żb

ψ̇

 (3.33)

τ =


F1 + F2

0

F3

F1r − F2r

 (3.34)

M = diag{Mx,My,Mz, Iz} (3.35)

C(v) =


0 0 0 −Myẏb

0 0 0 Mxẋb

0 0 0 0

Myẏb −Mxẋb 0 0

 (3.36)

D(v) = −diag{Dẋ|ẋb|, Dẏ|ẏb|, Dż|żb|, Dψ̇|ψ̇|} (3.37)

where

• ẋb, ẏb and żb are the water relative velocities of the vehicle in the body frame

in the forward, starboard and down directions respectively.

• ψ̇ is the yaw rotational velocity of the vehicle

• M is the inertia matrix (including added mass)

• C(v) is the matrix of Coriolis and centripetal terms (including added mass)

• D(v) is the damping matrix

• τ is the vector of control inputs

• F1, F2 and F3 are the thrusts from the port, starboard and vertical thruster

respectively

• m is the true mass of the vehicle
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• gn is the gravity vector in the navigation frame

• bn is the buoyancy force in the navigation frame

Due to the lack of previously accurately derived vehicle parameters for the Sirius

AUV, they are estimated using [35] as a baseline, to represent a hypothetical AUV in

simulation, although the model itself is generic. The parameters of the vehicle model

used in the simulation are:

Symbol True value

Mx 500 kg

My 500 kg

Mz 225 kg

Iz 179.049 kg m2

Dẋ 500 kg m−1

Dẏ 800 kg m−1

r 0.2 m

Additionally, a thruster model according to [15] and [9] is utilised:

F = 0.4ρd4|n|n− 1

3
vTρd

3|n| (3.38)

where

• ρ is the density of water

• d is the diameter of the propellor

• n is the revolution speed of the thruster

• vT is the velocity of the water going into the propellor

This information is used to generate the true motion of the vehicle given vertical

thrust through the water column, but for the subsequent ADCP localisation, this

information has not been fused into the filter.
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Table 3.3 – Parameter values used in the 6DOF simulation which are in addition or
different to the 2DOF simulation.

IMU Honeywell HG1700A58
IMU bias stability 1 degree/hour
AUV rotation rate 8 degrees/second
Bias magnitude (σbias drift) 0.01 m/s (2σ)
Time constant of bias change (τbias) 500 seconds

IMU integration method

A tactical-grade Honeywell HG1700A58 IMU was simulated, providing position, ve-

locity and attitude constraints through the integration of the body rotation rates

and accelerations. The method used to incorporate the inertial measurements into

the filter are similar to [30]. A global reference frame is used, and initial attitude

is assumed accurate for linearisation purposes, and an addition to account for Earth

rotation (∼15 degrees/hour is significant in this case) as calculated in [52]:

∆φt+1 = ∆φt + Et1
t (ωbt − biasobsw −Ck

nΩn
e )∆t (3.39)

where −Ck
nΩn

e is the apparent Earth rotation in the body frame.

Further details on the incorporation of inertial measurements are available in Sec-

tion 5.2. The latitude that the simulation occurs is at approximately 34 degrees

South, the same latitude as Sydney, Australia. This information is required for the

apparent rotation-rate of the Earth vector.

Results

The simulation mission is illustrated in Figure 3.16.

Table 3.3 summarises the parameter values used in the 6DOF simulation which are

in addition or different to the 2DOF simulation. In the subsequent simulation, the

measurement cell bias magnitudes are constrained to zero within 0.01 m/s (2σ), in

alignment with the RDI specification [11] and the calibration report on the RDI ADCP
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Figure 3.16 – The simulated mission trajectory.



3.3 Vertical descent simulations 59

[46], which contains biases of around 0.01 m/s total at most. The biases change with

time in a correlated fashion (which accounts for changing depth during descent),

simulating the bias effects described in section 3.2.2. A value for τbias in equation

3.15 of 500 seconds is used to simulate drifting biases over this time scale, although

controlled experiments of the ADCP sensor in real environments are required to tune

a true value for this parameter.

As can be seen in Figure 3.17, the run-time filter uncertainty estimate of velocity is

constrained to about 0.011 m/s (2σ) in the north and east directions. This uncer-

tainty in velocity during the dive phase is from the initial velocity uncertainty after

GPS/IMU initialisation and ADCP estimation on the surface. Given a better initial

velocity estimate, the error in velocity will be further reduced during the dive, as

mentioned in Section 3.3.3. The velocity uncertainty is also not deteriorating notice-

ably within the 1000 second time, as there are a large number (at most 750 in this

case) of reobservations of the same water current depth cells. Since the water current

depth cells are continually reobserved, the primary source of error in their estimate is

from the initial velocity uncertainty. The errors in the estimates are consistent with

the uncertainty bounds.

As illustrated in to Figure 3.18, after 1000 seconds, just prior to DVL bottom-lock,

the position uncertainty estimate is 9.5 m (2σ) in the north and east directions. Since

the initial position uncertainty was 1 m (2σ) on the surface, the uncertainty growth

is 8.5 m. Figure 3.19(a) shows the error plot with time. Figure 3.19(b) shows a zoom-

in of the effect of DVL bottom-lock on the position estimates, with the 2σ position

estimate uncertainty reaching approximately 2 m, and uncertainty growth of 1 m.

The velocity uncertainty does not necessarily equal the position uncertainty growth

rate, as a result of the non-linear IMU integration resulting in non-trivial correlation

between the position and velocity estimates.

Figure 3.20 shows the north and east velocity state history for the entire dive after

DVL bottom-lock. Due to the back-propogation of the DVL body-relative velocity

after bottom-lock, the velocity uncertainty is on average about 3.8 mm/s (2σ). This

is better than the DVL velocity estimate alone (6 mm/s 2σ) as there is also a tactical-
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Figure 3.17 – In the 6DOF 1000 second simulation prior to DVL bottom-lock, the
north and east run-time vehicle velocity uncertainty is approximately constant as
the reobservation of the depth cells allows the error to be maintained at the surface
velocity error.

0

20

40

60

80

100

120

140

160

180

200
−10 −8 −6 −4 −2 0 2 4 6 8 10

D
ep

th
 (

m
)

Position error (m)

 

 
2σ North position uncertainty estimate

North position estimate error

2σ East position uncertainty estimate

East position estimate error

Figure 3.18 – In the 6DOF 1000 second simulation, the vehicle position 2σ uncer-
tainty grows linearly given the velocity estimates have constant error, prior to DVL
bottom-lock.
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Figure 3.19 – 6DOF 1000 second simulation (a) The run-time filter position 2σ uncer-
tainty with time. (a) A zoom in on the effect of the DVL bottom-lock occuring at
1000 seconds on the position uncertainty estimate.
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Figure 3.20 – In the 6DOF 1000 second simulation smoothed velocity history in the
north and east directions shows that the velocity of the vehicle for the whole descent
has been corrected.

grade IMU providing observations.

Figure 3.21 shows the position error for the entire state history after bottom-lock,

with a final uncertainty of 2 m (2σ) after 1000 seconds, with uncertainty error growth

of 1 m (2σ). The entire smoothed position history has been corrected due to the

acquisition of DVL bottom-lock.

To illustrate the ADCP bias estimation, Figure 3.22 illustrates the 10th measurement

cell bias error with time after DVL bottom-lock. The measurement cell bias estimates

and uncertainties are consistent within the filter. They are estimated to within 2.5

mm/s (2σ) compared to their initial uncertainty of 1 cm/s (2σ), implying the rotation

has allowed observability of the bias.

Figure 3.23 shows the simulated current in the north and east directions, and the

estimated current with this filter following DVL bottom-lock. Figure 3.24 illustrates

the water current errors and uncertainty estimates following DVL bottom-lock. The

water current estimation is consistent with the uncertainty bounds.
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Figure 3.21 – 6DOF 1000 second simulation position full state history after DVL
bottom-lock.
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Figure 3.22 – 6DOF 1000 second simulation 10th measurement cell bias error history
after DVL bottom-lock.
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Figure 3.23 – 6DOF 1000 second simulation current profile estimate and truth from
simulation in the (a) north and (b) east directions
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Figure 3.24 – 6DOF 1000 second simulation current profile estimate error and uncer-
tainty from simulation in the (a) north and (b) east directions
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3.3.5 Six degrees-of-freedom simulation with TDCP GPS

As can be seen in the results so far the error growth in position before bottom-lock

is dependent on the intial velocity uncertainty. According to van Graas [55], 4-8

mm/s velocity error (2σ) in the horizontal directions is possible with standard GPS

by exploiting the carrier phase on the GPS receiver. This is in constrast to the 4

cm/s (2σ) GPS velocity error used in the previous simulations for the Lassen iQ.

This means that initial velocity error and thus descent position error growth can

also be constrained to the 4-8 mm/s (2σ) range, which is similar to DVL velocity

uncertainty.

Time Differenced Carrier Phase (TDCP) [49] is a particular implementation of carrier

phase processing. It can be approximately modelled as tracking the change in position

of the vehicle.

hTDCP (x̂(tk)) = pn(tk)− pn(tk−1) (3.40)

RTDCP = σ2
TDCP (3.41)

The TDCP observation is dissimilar to the DVL observation, as it is a change in

position measurement rather than an instantaneous velocity measurement. The de-

layed state structure of the EIF allows this observation to be correctly accounted for,

as modelling it instead as an instantaneous velocity measurement to be input into a

naïve EKF implementation could result in modelling errors. The same simulation in

the previous section is undertaken with the addition of TDCP GPS on the surface for

comparison. The TDCP measurement is assumed to have an uncertainty of 10 mm/s

(2σ).

To illustrate the performance improvement possible, Table 3.4 shows the position

uncertainty growth can be reduced by incorporating TDCP in the following simu-

lations, especially during the dive phase. Once DVL bottom-lock is obtained, the
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Figure 3.25 – The localisation architecture for the 6DOF simulation with TDCP.

Table 3.4 – Position uncertainty growth rates compared to the initial uncertainty at
the sea surface with and without TDCP.

Position uncertainty growth 2σ
Without TDCP With TDCP

Prior to DVL bottom-
lock

∼8.5 m/1000 seconds
(∼30.6 m/hour)

∼3 m/1000 seconds
(∼10.8m/hour)

Following 30 seconds of
DVL bottom-lock

∼1 m/1000 seconds
(∼3.6 m/hour)

∼0.9 m/1000 seconds
(∼3.2 m/hour)



3.3 Vertical descent simulations 68

0 100 200 300 400 500 600 700 800 900 1000
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time (s)

V
el

oc
ity

 e
rr

or
 (

m
/s

)

 

 
North velocity estimate error
2σ North velocity uncertainty estimate
East velocity estimate error
2σ East velocity uncertainty estimate

Figure 3.26 – In the 6DOF with TDCP 1000 second simulation, the filter vehicle ve-
locity uncertainty is approximately constant as the reobservation of the depth cells
allows the uncertainty to be maintained at the initial surface velocity uncertainty.

difference in localisation performance compared to TDCP being absent is minor. In

the 1000 second simulations, the position uncertainty growth is almost linear, with

the per-hour uncertainty listed in the table above.

As can be seen in Figure 3.26, the run-time filter uncertainty estimate of velocity

is constrained to about 0.007 m/s (2σ) in the north and east directions. This un-

certainty in velocity during the dive phase is from the initial velocity uncertainty

after GPS/IMU initialisation and ADCP estimation on the surface, including TDCP.

Similarly to the TDCP-absent case, the velocity uncertainty is also not deteriorating

noticeably within the 1000 second time frame.

As illustrated in Figure 3.27, after 1000 seconds, just prior to DVL bottom-lock, the

position error is 4 m (2σ) in the north and east directions, or 3 m uncertainty growth

compared to the surface position uncertainty of 1 m (2σ). Figure 3.28(a) shows the

error plot with time. Figure 3.28(b) shows a zoom-in of the effect of DVL bottom-lock

on the position estimates, with the 2σ position estimate uncertainty reaching approx-

imately 1.9 m, or 0.9 m uncertainty growth compared to the surface uncertainty.

The post-DVL uncertainty growth is only slightly lower compared to the no TDCP
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Figure 3.27 – In the 6DOF with TDCP 1000 second simulation, the vehicle position
2σ uncertainty grows linearly given that the velocity estimates have constant error.
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Figure 3.28 – 6DOF with TDCP 1000 second simulation (a) The run-time filter position
2σ uncertainty with time. (b) A zoom in on the effect of the DVL bottom-lock on
the position estimate at 1000 seconds.



3.3 Vertical descent simulations 71

0 100 200 300 400 500 600 700 800 900 1000
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Time (s)

V
el

oc
ity

 e
rr

or
 (

m
/s

)

 

 
North velocity estimate error
2σ North velocity uncertainty estimate
East velocity estimate error
2σ East velocity uncertainty estimate

Figure 3.29 – 6DOF with TDCP 1000 second simulation smoothed velocity history in
the north and east directions shows that the velocity of the velocity for the whole
descent has been corrected.

case. This implies that while the TDCP is aiding the position estimation during

descent, the post-descent position uncertainty primarily depends on the DVL/IMU

observations.

Figure 3.29 shows the north and east velocity state history for the entire dive after

DVL bottom-lock. Similarly to the TDCP-absent case, the velocity uncertainty is on

average about 3.4 mm/s (2σ).

Figure 3.30 shows the north and east position error for the entire state history after

bottom-lock, with a final uncertainty of 1.9 m (2σ) after 1000 seconds.

Figure 3.31 illustrates the 10th measurement cell bias error with time after DVL

bottom-lock. The measurement cell bias estimates are consistent with the filter.

Figure 3.32 shows the simulated current and the estimated current with this filter

following DVL bottom-lock. The water current estimation is consistent with the

uncertainty bounds, as evident in Figure 3.33.

A simulation in deeper water is undertaken to validate the uncertainty growth rates
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Figure 3.30 – 6DOF with TDCP 1000 second simulation position full state history
after DVL bottom-lock.
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Figure 3.31 – 6DOF with TDCP 1000 second simulation 10th measurement cell bias
error history after DVL bottom-lock.
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Figure 3.32 – 6DOF with TDCP 1000 second simulation current profile estimate and
truth from simulation in the (a) north and (b) east directions
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Figure 3.33 – 6DOF with TDCP 1000 second simulation current profile estimate error
and uncertainty from simulation in the (a) north and (b) east directions
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over longer periods of time. The following simulation possesses a one hour period

of mid-water localisation, without DVL or GPS. With a descent rate of 0.2 m/s,

the simulated dive is 760m of water depth. Since it is prohibitive computationally

to perform smoothing and maintain the full pose history for this time period, the

marginalised filter as described in Section 3.2.2 was applied to provide run-time pose

estimates and uncertainties. The run-time filter is the maximum likelihood estimate

of the state of the vehicle at the present time, and not for past states, unlike the

smoothed solution. The state estimates (x) and uncertainties (p(x)) are defined as:

x = x̂(tk)|z(t0) : z(tk) (3.42)

p(x) = p(x̂(tk)|z(t0) : z(tk)) (3.43)

As can be seen in Figure 3.34, the run-time filter uncertainty estimate of velocity is

constrained to about 0.007 m/s (2σ) in the north and east directions. This uncer-

tainty in velocity during the dive phase is from the initial velocity uncertainty after

GPS/IMU initialisation and ADCP estimation on the surface, including TDCP. The

actual error in the north velocity is exceeding the upper 2σ bounds regularly. The

initial velocity estimate in the north direction on the surface was near the boundary

of the 2σ uncertainty estimate. Thus, it will continue to be on the boundary, and this

is normal behaviour for the filter, as outlined in Section 3.3.2. In this case, over the

3600 second time span, the velocity uncertainty is slightly increasing, implying some

information loss from the continual initialisation of new water current depth cells.

As shown in Figure 3.35, after 1000 seconds, just prior to DVL bottom-lock, the

position uncertainty estimate is approximately 16 m (2σ) in the north and east direc-

tions, or 15 m uncertainty growth compared to the surface uncertainty. Figure 3.36(a)

shows the error plot with time. Figure 3.36(b) shows a zoom-in of the effect of DVL

bottom-lock on the position estimates, with the 2σ position estimate uncertainty

reaching approximately 7.5 m, or 6.5 m uncertainty growth compared to the surface

uncertainty of 1 m. The position estimates show a correlated, but consistent error
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Figure 3.34 – 6DOF with TDCP 1 hour simulation (a) The run-time filter velocity 2σ
uncertainty with time. (b) A zoom in on the effect of the DVL bottom-lock on the
velocity estimate at 1000 seconds.
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Figure 3.35 – In the 6DOF with TDCP 1 hour simulation, the run-time filter vehicle
position 2σ uncertainty grows near-linearly given the velocity estimates have con-
stant error. Following DVL bottom-lock, the error reduces markedly. Figure 3.28(b)
shows this effect in detail.
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Figure 3.36 – 6DOF with TDCP 1 hour simulation (a) The run-time filter position 2σ
uncertainty with time. A black line is drawn for a portion of the position uncertainty
bounds to illustrate the slight non-linearity of the uncertainty growth. (b) A zoom
in on the effect of the DVL bottom-lock on the position estimate.
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Table 3.5 – Position uncertainty growth rates compared to the initial uncertainty at
the sea surface with TDCP over 1000 and 3600 seconds.

Position uncertainty growth 2σ
Over 1000 seconds Over 3600 seconds

Prior to DVL bottom-
lock

∼3 m/1000 seconds
(∼10.8m/hour)

∼15 m/hour

Following 30 seconds of
DVL bottom-lock

∼0.9 m/1000 seconds
(∼3.2 m/hour)

∼6.5 m/hour

with respect to the 2σ uncertainty bounds. This shows that the north velocity esti-

mates, with errors exceeding their 2σ uncertainty bounds, once integrated through the

IMU model produce the expected, consistent result for position uncertainty. Table 3.5

outlines the performance over one hour compared to 1000 seconds. The increased un-

certainty growth rate over one hour can be attributed to information loss and velocity

uncertainty increase during descent.

The one hour descent uncertainty with TDCP is compared to present localisation

methods in Figure 3.37, showing similar performance to acoustic beacon methods

and significantly improved performance in comparison to the previous state-of-the-

art in self-contained localisation.

3.4 Sirius AUV results and View-based SLAM

In order to validate the ADCP-aided localisation algorithm, the following results

are obtained through the use of Sirius [60], the University of Sydney’s Australian

Centre for Field Robotics (ACFR) oceangoing AUV. It is a modified version of the

mid-sized SeaBED robotic vehicle from Woods Hole Oceanographic Institution [47].

This class of AUV is designed for relatively low-velocity, high-resolution imaging

and is passively stable in roll and pitch. The Sirius AUV is pictured in Figure

3.38 performing a mission. It is equipped with a suite of oceanographic sensors.
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cally between approximately 700m and 1400m of depth depending on AUV descent
rates. The new localisation method compares favourably in this case with acoustic
localisation methods, and outperforms existing self-contained techniques.
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Navigation sensors onboard include a 1200 kHz RDI DVL/ADCP, Tracklink 1500

HA USBL and a Lassen iQ GPS receiver, along with a stereo imaging platform,

which allows for view-based loop closures [32] [62]. The parameters used in the Sirius

AUV experiments are outlined in Table 3.6. Images to allow view-based loop closure

are available to the Sirius AUV when it is at 2 m altitude. The process model used

for the vehicle is a constant velocity model. The process noise is tuned according to

the worst case dynamics possible by the vehicle, as no thruster model is incorporated

in this experiment.

Attitude information is supplied by the in-built magnetic compass and accelerometers

in the RDI DVL/ADCP. The 1200 kHz RDI DVL/ADCP uses less power and is more

accurate than the 150 kHz version, and can be used at a lower minimum range, which

is important for localisation during image acquisition which occurs at 2m altitude.

This comes at the cost of the maximum range for bottom-lock, which is 40m in

practice for the 1200 kHz compared to 200m for the 150 kHz. The USBL is only

utilised for ground truth in the following experiments, and is not fused into the filter.

The vehicle USBL position estimate accuracy is a function of the position and attitude

uncertainty from the ship (from a Novatel INS/GPS system), in addition to the USBL

uncertainty. USBL errors can occur due to multipath, as well as sound speed estimate

errors (including variation through the water column) and signal receive strength and

noise. The result is an uncertainty of approximately 10m (2σ) in typical conditions.

If the USBL was to be fused into the filter, the uncertainty estimates will be further

reduced, although the focus of this chapter is to be able to use it as a ground truth for

validating the performance without relying on USBL in the filter. Additionally, it is

difficult to verify the performance of fusing the USBL into the localisation without a

separate ground truth, such as that from LBL. Verifying the performance of utilising

all of these sensors simultaneously remains as future work.

Loop-closure observations are created using a six degree-of freedom stereovision rel-

ative pose estimation algorithm [32] [62]. The SIFT algorithm is used to extract and

associate visual features, and epipolar geometry is used to reject inconsistent feature

observations within each stereo image pair. Triangulation is performed to calculate
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Table 3.6 – Parameters for the following experiments involving the Sirius AUV.

INS/GPS on ship Novatel (including Honeywell HG1700A58 IMU)
USBL Tracklink 1500 HA
USBL total uncertainty 10m (2σ) in typical conditions
GPS receiver Lassen iQ GPS receiver
GPS position uncertainty 10 m (2σ)
GPS velocity uncertainty 0.04 m/s (2σ)
DVL/ADCP sensor RDI 1200 kHz
DVL velocity uncertainty 0.006 m/s (2σ)
ADCP velocity uncertainty 0.01 m/s (2σ)
Heading sensor RDI internal fluxgate compass
Heading uncertainty 4 degrees (2σ)
Constant velocity model process noise (2σ) 0.5 m/s2(surface) 0.1 m/s2(submerged)
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initial estimates of the feature positions relative to the stereo rig, and a redescending

M-estimator [31], is used to calculate a relative pose hypothesis that minimises a

robustified registration error cost function. Any remaining outliers with observations

inconsistent with the motion hypothesis are then rejected. Finally, the maximum

likelihood relative vehicle pose estimate and covariance are calculated from the re-

maining inlier features. The following pose constraints are added to the EIF following

this process:

hV isual SLAM(x̂(tk)) =

 p̂n(tk)− p̂n(tk−1)

MatrixToEuler(Ĉk2
k1

)

 (3.44)

RV isual SLAM = Prelative transformation (3.45)

3.4.1 Results

Data from two missions completed in 2010 by the vehicle in Tasmania are used to illus-

trate the performance of the proposed ADCP-aided navigation filter. The first mission

is shorter, in relatively shallow water such that DVL lock was available throughout

the dive. The second mission was completed in deeper water and relies on USBL ob-

servations to validate the positioning accuracy. The filter architecture being verified

is outlined in Figure 3.39.

Shallow water dive

The Sirius vehicle was used in a mission which involved descending in water which

was just within DVL bottom-lock range (about 40m depth for the 1200 kHz DVL),

completing some subsurface manoeuvres with visual loop closures for SLAM, and

then ascending. The total dive time was approximately 1000 seconds. This mission’s

position estimates are shown in Figure 3.40. In order to compare the ADCP-aided

method with the ground truth from DVL, the DVL measurements were not fused into

the filter during the descent and ascent phase for 150 seconds each. This simulates

a greater depth where DVL bottom-lock would not be possible, while providing a
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Figure 3.38 – The Sirius AUV imaging cuttlefish populations.
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Figure 3.39 – The tested localisation architecture for the Sirius AUV.
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correction following the DVL acquisition is a step change.

comparison with ground truth. Comparisons can illustrate how the ADCP-only case

compares to the DVL while descending and ascending. The ADCP was interleaved

with the DVL in a 1:1 ratio, with an ADCP reading occuring at approximately 1 Hz.

USBL allows ship-based tracking of the vehicle, which allows independent verification

of the localisation.

The full state history, or smoothed solution, of the filter is defined as the output of

the Information Filter at the end of the mission, with all poses kept in the estimation.

The run-time filter is the maximum-likelihood estimate of pose of the vehicle at that

time during the mission. As shown in Figure 3.41(a), during descent for the online

run-time filter, the error in position grows quickly because there is an error in the
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Figure 3.41 – (a) Shallow water dive position uncertainty estimates for filters with
partial and full DVL, in-run and for the full state history (b) Differences between
filter results and USBL measurements for the shallow water dive, along with 2 σ
uncertainties of this difference, showing that the filter is consistent. The error has
a constant offset factor during the bottom phase due to the georeferencing position
uncertainty linking the GPS position from the surface, to the ADCP-aided descent
and ascent, which the relative SLAM corrections cannot adjust.
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estimate of velocity, at about 10 cm/s (2σ). The uncertainty in GPS velocity is

inflated as the antenna is attached to a flexible shaft pointing upwards, while the

vehicle is undergoing roll and pitch in swell, affecting the ability of the GPS Doppler

velocity to estimate the velocity at the DVL sensor. When DVL bottom lock was

available, the DVL velocity was used as a ground truth to arrive at an estimate of the

GPS velocity uncertainty of 20 cm/s (2σ). Once DVL bottom-lock is acquired, the

position uncertainty during the descent is reduced. The reason for this is that once

DVL bottom-lock is acquired after descent, the velocity estimates of the water currents

in the entire water column are improved. By maintaining correlations between states

during the descent, the filter propagates the accurate velocity information attained

upon reacquiring bottom-lock back through the entire state history.

During run-time, the position uncertainty of the mission is 12m (2σ) just prior to

post-ascent GPS acquisition, and after it is within 6m (2σ) for the full state history.

This compares with the error estimate of at most 5m (2σ) for the full state history

when using DVL the entire time. So even with only 1 Hz ADCP measurements for 150

seconds during the ascent and descent, the uncertainty associated with the estimates

of the entire mission approaches the full DVL localisation case.

This correction is accurate to almost the DVL velocity accuracy. It does not have the

same accuracy to the equivalent DVL during this time because only a finite number

of measurements with the noisy ADCP sensor are used to observe the water column

currents. Thus, there is a slight information loss as expected from the analysis in

Section 3.3.3.

The action of a view-based SLAM loop closure is seen at about 800 seconds of mis-

sion time, evident from the sudden decrease in uncertainty for the filter while in-run,

where the AUV has detected a revisit to a previous site in the mission through image

feature matching. This and subsequent loop closure observations act to limit the

position uncertainty during the seafloor mapping portion of the dive as the vehicle

undertakes its mission. Additionally, a greater improvement in the localisation so-

lution following the post-ascent GPS acquisition is possible, as there exists stronger

correlations throughout the dive to link the prior-descent GPS positioning to the
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Figure 3.42 – Current estimates for 40m-depth short mission, with ascent and descent
occuring approximately 1000 seconds apart with a separation of approximately
200m in the horizontal direction. There is a small change in the water currents over
this distance and period of time.

post-ascent GPS positioning.

Figure 3.41(b) compares the filter result with the independently observed USBL ob-

servations. It can be seen that the ADCP filter is consistent with the USBL obser-

vations, validating that the filter operates as expected with real data, and that the

assumptions made throughout the filter formulation are sound.

Figure 3.42 shows the final estimated current for the mission, illustrating the water

profile current structure which the ADCP-aided method measures in order to navigate

against. Ground truth of the current profile was not available in this instance, however

the estimate of the ascent and descent portions of the dive appear consistent over the

period of the dive suggesting that the structure of the current profile has not changed

significantly over this period.

Deeper water dive

The vehicle also completed a longer dive in 100m of water in which DVL bottom-lock

was not available through the descent and ascent. The entire mission time is over 3
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hours. The position estimates are shown in Figure 3.43. Ground truth in this case is

more reliant on the USBL, as DVL bottom-lock is not available until approximately

40m altitude.

Results in Figure 3.44(a) show how the ADCP method, without the USBL, results

in georeferencing for the subsequent seafloor view-based SLAM-aided mission. Geo-

referencing uncertainty is within 20m (2σ) position accuracy while the mission is

underway on the seafloor, and after post-ascent GPS acquisition, the accuracy of the

seafloor portion is within 11m (2σ). Due to the mission configuration, the ADCP was

interleaved with the DVL in a ratio of 1:5, with the ADCP operating at approximately

0.5 Hz. The interleaving occurs as the DVL and ADCP are in fact the same sensor,

and must operate alternately. Even with such a low rate of ADCP measurements, it

is possible to localise without an external acoustic source such as USBL, although the

localisation uncertainty is higher than the equivalent of having DVL bottom-lock the

entire time due to information loss, which could be attained with higher rate ADCP

measurements.

The action of a view-based SLAM loop closure is seen at about 3500 seconds of

mission time in Figure 3.44(a), and subsequent loop closures limit the uncertainty

in position for the mission. The advantages of this coupled with the ADCP-aided

descent and ascent are the same as in Section 3.4.1 for the shallow dive mission, even

with a 3 hour long seafloor portion of the dive. A further advantage of view-based

SLAM is a significantly improved localisation for the seafloor portion of the mission

after the post-ascent GPS acquisition due to the increased correlation of temporally

distant poses, as seen in Figure 3.44(a).

Figure 3.44(b) compares the filter result with the independent USBL observations.

Prior to DVL bottom-lock during the descent using the in-run filter estimate, there

is accumulating linearisation error due to the inaccurate velocity estimates and the

non-linear rotation in the ADCP sensor model, and the filter becomes inconsistent.

Once DVL bottom-lock is acquired, relinearisation can occur with the EIF and the

linearisation error is reduced, providing some evidence that the inconsistency observed

previously was due to linearisation error. Subsequently, it can be seen that the ADCP
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Figure 3.43 – (a) Oblique and (b) Bird’s eye view of the trajectory for 100m depth
deeper water mission, where DVL bottom-lock is only available at 40m altitude.
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Figure 3.44 – (a) Deeper water dive position uncertainty estimates for filter in-run and
for the full state history, with and without loop closures (b) Differences between fil-
ter results and USBL measurements, along with 2 σ uncertainties of this difference,
showing that the filter is consistent after DVL bottom-lock
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Figure 3.45 – Current estimates for 100m deep water dive, with ascent and descent
occuring approximately 3 hours and 600 m apart.

filter is consistent with the USBL observations, validating the performance of the

ADCP-aiding method.

The resultant water column current profile is shown in Figure 3.45. It can be seen

that a noticeable change in the water current profile has occured over the 3 hours,

and translation of approximately 600m in the horizontal direction, between the ascent

and descent.

The above results show how ADCP-aided navigation during the descent and ascent

of a mission, coupled with view-based SLAM on the seafloor, allows georeferencing
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Figure 3.46 – The uncertainty estimates when the ADCP operates at 0.1 Hz

even with infrequent ADCP measurements. Figure 3.46 show the mission uncertainty

estimates, combining view-based SLAM, and an ADCP operating at only 0.1 Hz

(approximately 30 times less frequent than the full frequency ADCP). The result is

30m (2σ) uncertainty in position during the mission, and 15m (2σ) uncertainty in

position following smoothing. The mission errors in Figure 3.47 show that the filter

becomes inconsistent during the descent and ascent stages, as a results of the low rate

of ADCP measurements. This is due to the accumulation of linearisation error due

to the heading non-linearities. Once DVL bottom lock is available following descent,

or GPS is available following the ascent, relinearisation allows the filter to become

more consistent.

In the case of untended long-term monitoring and exploration AUVs or underwater

gliders, tighter constraints on power consumption are imposed. This requires operat-

ing sensors sparingly. As shown by the results in this section, even infrequent ADCP

measurements provide information which permits localisation. This represents a vi-

able solution for untended and beaconless autonomous underwater navigation. Addi-

tionally, an accurate water current vector field estimate is output, which is a useful

data product.
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3.5 Summary 96

3.5 Summary

This chapter explored the performance of the ADCP-aided localisation algorithm

as an alternative form of georeferencing for AUV missons for vertical dives. A two

degrees-of-freedom simulation allowed the analysis of the error dynamics of the prob-

lem, and showed that a lower initial uncertainty of the velocity on the sea surface

and the faster descent rate have the greatest impact in reducing the vehicle posi-

tion uncertainty growth, and hence georeferencing accuracy prior to reaching DVL

bottom-lock range. Given faster descent rates, the uncertainty growth in velocity as

a consequence of less measurements of the water column is negligible compared to

the reduced time spent in the water column and hence integrating velocity error with

time to determine position. The effect of the ADCP measurement rate and standard

deviation was also seen to have effects on the localisation, although not as significant.

Once DVL bottom-lock was acquired, the primary driver for the position uncertainty

growth was again descent rate and the initial velocity uncertainty. If the initial ve-

locity uncertainty is similar to the DVL bottom-lock velocity uncertainty, and typical

ADCP measurement rates and standard deviations are experienced, the position error

growth rate will be reduced compared to a higher initial velocity uncertainty. Given

low ADCP measurement rates and/or higher standard deviations, a lower initial ve-

locity uncertainty reduces the position uncertainty growth, since information loss has

limited the ability of the DVL to reduce the velocity uncertainty for the entire dive.

A six degrees-of-freedom simulation reflected the possible performance of the algo-

rithm under typical parameters for the Sirius AUV. Given this more realistic simu-

lation, the impact of the initial velocity uncertainty on the vehicle was shown to still

be significant prior to DVL bottom-lock, but with only minor corrections once DVL

bottom-lock is acquired. A deeper descent over one hour was simulated, with infor-

mation loss being evident due to the non-linear increase in position uncertainty with

time, as a result of the increase in velocity uncertainty with time. The performance of

the algorithm for this one hour simulation was shown to be competitive with acoustic

localisation methods.
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Finally, a validation of the ADCP localisation algorithm was completed with real

data from the Sirius AUV. The scenario of low ADCP measurement rates in the

ascent and descent of the vehicle was shown to provide accurate localisation perfor-

mance compared to USBL ground truth, with the filter framework also allowing the

incorporation of loop-closures from view-based SLAM.

As a result, this chapter has demonstrated the ability to achieve constrained error

growth in position by incorporating ADCP measurements into the navigation solution

while a vehicle is transitting between the sea surface and the seafloor. This makes it

appropriate for long-term, accurate navigation of an AUV which dives and resurfaces,

and requires underwater position accuracy close to the seafloor, without DVL bottom-

lock the entire mission. This alleviates the requirement for a tending vessel or setup

of an acoustic network to achieve precise navigation, although including USBL or

LBL will only further improve the localisation accuracy.

The limitation of the approach so far is that the isocurrent water layer model does

not have the fidelity to account for changing horizontal water currents. The following

chapter will explore this problem.



Chapter 4

ADCP Sensor Aiding with Water

Grids

In Chapter 3, the assumption of water currents being arranged in isocurrent layers

was assumed. This is valid as long as the vehicle does not translate significantly in

the horizontal direction. If this was the case, then the assumption of water currents

being constant inside the layer will be violated as the water current field can exhibit

spatial change in the lateral direction. For example, the problem of navigating in a

turbulent water vector field in the horizontal direction, using a horizontally pointed

ADCP, was tackled in [10]. Thus it is clear that if horizontal transits occur while

in the water column, a new model must be applied. In order to achieve this, the

water current layer approach is generalised, with the water current field composing

of gridded isocurrent water volume elements (IWVEs), allowing spatial variation in

the horizontal direction. This allows general motion within the water column to

be accommodated in the localisation algorithm. Additionally, to exploit the lateral

looking beams of the ADCP, the raw beam coordinate velocities are utilised instead,

accounting for where they travel through the water column. The geometry of the

beams are outlined in Figure 4.1.

This chapter explores the extension of the ADCP-aided localisation by generalising

the water current layer model to isocurrent water volume elements. Additionally, real
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Figure 4.1 – The slanted beam arrangement for the ADCP allows lateral looking
capabilities. The beams are arranged in a Janus configuration, with 4 beams angled
30 degrees from the vertical on standard models.

data from the Sirius AUV is obtained with GPS ground truth. This was compared

to the ADCP-aided localisation while on the sea surface. Thus, this chapter has

demonstrates the ability to achieve constrained error growth in position by incorpo-

rating ADCP measurements into the navigation solution while a vehicle is undergoing

a significant horizontal underwater trajectory when GPS and DVL bottom-lock are

unavailable.
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4.1 ADCP estimation and navigation aiding process

Initially, the AUV has position and velocity estimates in the navigation frame at

the sea surface from GPS. With the ADCP sensor, body-relative radial velocities

along the beams of the ADCP are observed, and can be placed in the navigation

frame due to the velocity at the sea surface being initially observed. The slanted

beam characteristics of the ADCP sensor allow fore, aft, port and starboard direction

sensing, and thus allows future reobservation along these dimensions. The fore and

aft looking ability is illustrated in Figure 4.2(a).

Once the vehicle has submerged, it no longer can receive GPS. Once an ADCP mea-

surement is made, it reobserves the same IWVEs, as shown in Figure 4.2(b). Since

it is reobserving a cell, with its velocity resolved in the navigation frame, along with

the body-relative radial velocity of these cells from the ADCP, the vehicle velocity

in the navigation frame can be derived using a filter. New current cells can also now

be estimated as the vehicle changes position, as the vehicle velocity in the navigation

frame is known. This is outlined in Figure 4.2(c). The result is an estimate of vehicle

motion and a gridded water current estimate.

The observation function for each ADCP measurement when using the raw beam

coordinates is:

zadcp,i,k = (Cn
b ˆrb,k) · (−vnv +

∑
Wjvnc,j) + bc,i,k + νadcp (4.1)

where:

• zadcp,i,k is the ADCP measured radial current velocity in measurement cell i for

beam k. In Figure 4.3 the measurements zadcp,i,k are the radial velocities vi,k
without biases and noise

• Cn
b is the coordinate transform from adcp/body frame to navigation/world

frame

• ˆrb,k is the unit vector for beam k in the body frame
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(a) (b)

(c)

Figure 4.2 – ADCP-aiding method sequence (a) Initial GPS position and velocity are
known, and water velocities with black arrows can be deduced. (b) The AUV moves,
and reobserves the same IWVEs, shown as white arrows.(c) The AUV velocity in
the world frame can be deduced, along with new current bins shown in red.



4.1 ADCP estimation and navigation aiding process 102

Figure 4.3 – The ADCP sensor possesses 4 beams in a Janus configuration, 30 de-
grees from the vertical. This allows fore, aft, port and starboard direction sensing
capability.
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Value of water velocity 

horizontal component

Figure 4.4 – IWVE velocity changes with position, horizontal or vertical translation.

• vnv is the vehicle velocity in the world/navigation frame

• Wj is a weighting function for each water current velocity from grid cell j

• vnc,j is the water current velocity from IWVE j. Each IWVE contains a current

velocity vector, which represents the average velocity of the current in that cell

• bc,i,k is the bias in the measurement cell i for beam k

• νadcp is the random noise in the ADCP measurement, with the standard devia-

tion given by the sensor manufacturer

Figure 4.4 shows how the velocity of the modelled isocurrents would change across an

isocurrent water volume element boundary. Eliminating this quantization error of the

water current environment remains as future work. The impact of this assumption

will be explored in later sections.

The ADCP measurement is assumed to be from a 1 dimensional line with a weighting

function:

M le
l0

=

∫ le

l0

w(l)V b
xyz(l) dl (4.2)

Where V b
xyz(l) is the velocity of the water currents in the body-frame as a function of

the line segment through space, illustrated in Figure 4.5.
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l0

le

Figure 4.5 – Diagram illustrating a 1 dimensional line in a unit cube. Adapted from
[5]
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Given:

l0 = {x0, y0, z0} (4.3)

le = {xe, ye, ze} (4.4)

l =
x− x0

(xe − x0)
=

y − y0

(ye − y0)
=

z − z0

(ze − z0)
(4.5)

then:

x = x0 + l(xe − x0) (4.6)

y = y0 + l(ye − y0) (4.7)

z = z0 + l(ze − z0) (4.8)

Also, for a triangular weighting function such as that described in Figure 3.3 for

ADCPs, the term w(l) is described as:

w(l) =

 4l when l ≤ 1
2

4− 4l when l > 1
2

(4.9)

4.2 Spatially correlated horizontal water current grid

Given the nature of water mass transport, and the standard representation of the

horizontal currents as a vector field, there is an assumption of continuity [39]. In [34],

the spatial scale of the flow is considered about 50 m assuming homogenous conditions,

and standard practice in oceanography is to smooth the water currents spatially to

exploit this correlation. To apply some correlation into the horizontal vector field

that is being estimated, an update with the following measurement model is applied
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Figure 4.6 – Horizontally adjacent water current grid cells are expected to have similar
water current velocities due to continuity [39].

if newly initialised water current grids have pre-existing neighbouring grids:

hcorrelation(x̂(tk)) = vnc,jnew − vnc,jneighbour (4.10)

zcorrelation = 0 (4.11)

Rcorrelation = σ2
correlation (4.12)

where vnc,jnew is the new current grid, vnc,jneighbour is the old neighbouring current grid.

The standard deviation σcorrelation is set according to the expected rate of current

change between the current grids.

4.3 Horizontal trajectory simulations

This section will explore the performance in simulation of the ADCP localisation

algorithm given the new beam-coordinate ADCP model, the IWVE representation of

the water current velocity environment and the spatial correlation modelling.

4.3.1 Simulated Water Current Environment

To simulate the three-dimensional water current velocity vector field, the following

assumptions are made:

1. The ocean flow is assumed to be bi-dimensional in the north and east directions,
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resulting in strong vertical strafication. This assumption is due to the rapid

rotation of the Earth, resulting in strong stratification and horizontal scales

much larger than the vertical [43].

2. With this assumption, ocean dynamics are described by the two-dimensional

Navier-Stokes equation [10]:

∂ω

∂t
+ (~V∇)ω = νf 4 ω (4.13)

where ~V = (Vx, Vy) is the velocity field in the water current layer, νf is the

viscosity of the fluid, ω = ∂Vy
∂x
− ∂Vx

∂y
is the vorticity ,∇ is the gradient operator

and4 is the Laplacian operator. An approximate solution to Equation 4.13 can

be constructed as a superposition of one-point vortex solutions called viscous

Lamb vortices [27]:

Vx(~r) = −Γ
y − y0

2π(~r − ~r0)2
[1− e

r2

δ2 ] (4.14)

Vy(~r) = Γ
x− x0

2π(~r − ~r0)2
[1− e

r2

δ2 ] (4.15)

where x0, y0 is the coordinate of the centre of the vortex, ~r =
√

(x− x0)2 + (y − y0)2

δ is the radius scale of the vortex and Γ is the strength of the vortex. A number

of large scale Lamb vortices are simulated acting on each depth layer of water

current.

3. The water current velocity fields should be correlated across depth, due to

shear effects. This should result in vertical water current profiles given vertical

descent as in Chapter 3. To simulate this effect, the centres of the vortices

x0, y0 undergo a random walk with depth. Additionally, the parameters δ and

Γ undergo a constrained random walk through a first order Markov process as in

Equation 3.13. The resulting simulated water current environment is outlined

in Figures 4.7 and 4.8. This environment grids the water current velocity field
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Figure 4.7 – The simulated water current vector field at (a) 1 m depth and (b) 20 m
depth. The water currents in the horizontal are dictated by Lamb vortices, while
the vertical direction allows a random drift in the Lamb vortex parameters.

at 1 m depth resolution and 50 m horizontal resolution.
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Figure 4.8 – The (a) north and (b) east water current magnitude slices given constant
north at 500m. The vertical slice should have some correlation with depth due to
shear constraints.
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Figure 4.9 – Horizontal motion simulation trajectory from (a) above and (b) obliquely.

4.3.2 Horizontal motion simulation

The Sirius AUV [60] is simulated with access to GPS position, GPS Doppler velocity

and Time Differenced Carrier Phase (TDCP) [49] on the sea surface. The vehicle then

enables its lateral thrusters at maximum, achieving approximately 0.5 m/s relative

to the surrounding water. The vehicle dives to 10 m, losing GPS access, and then

continues for 700 seconds, and DVL bottom-lock is unavailable for the entire mission.

The mission trajectory is shown in Figure 4.9.
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Figure 4.10 – The horizontal motion simulation position uncertainty estimate is grow-
ing non-linearly with time as a result of the increasing velocity uncertainty.

Figure 4.10 shows the filter position estimate uncertainty increasing from the start

of the mission, with the non-linear increase in position uncertainty apparent as the

velocity uncertainty increases. The position uncertainty has grown from the initial 1

m 2σ to approximately 14 m and 16 m 2σ in the north and east directions respectively,

after 700 seconds of localisation.

The choice of grid size depends on scale of the water currents changing. In [34], the

spatial scale of the flow is considered about 50 m assuming homogenous conditions,

hence a grid size of 50 m was chosen. As seen in Figure 4.11, the velocity uncertainty

jumps as old water current velocity IWVEs are no longer observed and new IWVEs are

initialised. The result is increasing velocity uncertainty with time. The information

loss rate in the water currents and vehicle velocity for the horizontal case are greater

than for vertical descents. This occurs because the geometry of the ADCP beams

pointing primarily downward, a lack of absolute positioning among the water current

field as was the case with pressure depth and vertical descent, and the horizontal

homogeneity assumption being violated as beams intersect with different IWVEs.

The assumption of horizontal homogeneity which allowed all 4 beams of the ADCP
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to observe the same water current depth cell simultaneously is assumed to no longer

hold, resulting in limited observability of water currents and information loss. The

trend of increasing uncertainty in the water current velocity estimates are shown in

Figure 4.12. The large spikes in the water current velocity uncertainty estimates exist

if certain IWVEs are only observed from very limited geometry, for example one beam

makes a few measurements into the IWVE. The horizontal correlation in the filter for

this simulation is assumed to be pessimistic.

The localisation algorithm must discriminate between a changing ADCP bias, the

current velocity which changes spatially, and the changing velocity of the vehicle itself.

The ADCP bias is assumed to change slowly (in the order of 500 seconds), while the

currents are allowed to change according to spatial change, assuming velocity of a

current in an IWVE stays the same during the reobservation period. The vehicle

itself has access to IMU measurements. Thus, there exists some observability and

ability to discriminate between these factors.

Figure 4.13 shows the estimated vehicle trajectory and ground truth, along with the

estimated water current field surrounding the vehicle during its mission. This figure

also shows how the filter estimates the spatial water current field variation in the

horizontal and vertical direction, as there are different magnitudes in the vectors

across space.

This result illustrates that the purely horizontal localisation can be achieved by pa-

rameterising the water current velocity field into IWVEs. Errors due to the IWVE

formulation, such as step changes in the velocity uncertainty, indicate limitations in

this water current modelling method. Coupling horizontal and vertical motion will

be explored in the next section.

4.3.3 Spiral descent simulation

The Sirius AUV [60] is simulated with access to GPS position, GPS Doppler velocity

and Time Differenced Carrier Phase (TDCP) [49] on the sea surface. The vehicle then

enables it’s lateral and vertical thrusters to spiral descend, achieving approximately



4.3 Horizontal trajectory simulations 113

0 100 200 300 400 500 600 700
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time (s)

V
el

oc
ity

 e
rr

or
 (

m
/s

)

 

 

North velocity estimate error

2σ North velocity uncertainty estimate

East velocity estimate error

2σ East velocity uncertainty estimate

Figure 4.11 – The horizontal motion simulation velocity estimate uncertainty of the
vehicle is increasing with time as new IWVEs are encountered in the horizontal
direction.
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Figure 4.12 – The horizontal motion simulation water current velocity estimate errors
and uncertainty in the (a) north and (b) east in the order in which they are observed
and initialised. The spikes in uncertainty are due to poorly observed IWVEs.
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Figure 4.13 – The horizontal motion simulation estimated mission trajectory and
ground truth, along with the estimated water current field from two different views.
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0.5 m/s relative to the surrounding water. The spiralling movement occurs for AUVs

such as the Autosub6000 [37] and ABE [7]. The vehicle dives to 140 m over 700

seconds without GPS access, and then DVL bottom-lock is acquired. The mission

trajectory is shown in Figure 4.14.

As seen in Figure 4.15, the velocity uncertainty increases as old water current velocity

volume elements are no longer observed and new IWVEs are initialised. The rate of

velocity uncertainty increase is reduced compared to the purely horizontal motion

case as in the previous simulation. The velocity uncertainty increase is mitigated

by rotation, allowing the same IWVEs to be observed for a longer period of time.

Additionally, rotation allows better observability of the IWVEs velocity from different

beam angle orientations, improving the water current estimate and the subsequent

vehicle velocity estimate.

Figure 4.16 shows the filter position estimate uncertainty increasing from the start

of the mission, with the non-linear increase in position uncertainty apparent as the

velocity uncertainty increases. The position uncertainty has grown from the initial

1 m (2σ) to approximately 11.5 m (2σ) in the 700 seconds prior to DVL bottom-

lock. Following DVL bottom-lock, the position uncertainty estimate is reduced to

approximately 7 m (2σ), with the position uncertainty growth approximately 6 m

(2σ).

Figure 4.17 shows the estimated vehicle trajectory and ground truth, along with the

estimated water current field surrounding the vehicle during its mission. Note how

the filter estimates the water current field changes spatially in the horizontal and

vertical direction.

The water current velocity estimates are shown in Figure 4.18 following DVL bottom-

lock, with improved estimates throughout the mission where possible.

This result shows approximatley 9 mm/s (2σ) position uncertainty growth, com-

pared to the DVL velocity uncertainty of 6 mm/s (2σ). In this scenario, by utilising

radial-velocity beam coordinates and thus the lateral looking capability of the ADCP,

accurate horizontal localisation is possible during the mid-water column portion of
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Figure 4.14 – The spiral descent simulation mission trajectory from (a) above and (b)
obliquely.
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Figure 4.15 – The spiral descent simulation velocity estimate uncertainty of the vehicle
is increasing with time as new IWVEs are encountered in the horizontal direction.
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Figure 4.17 – The spiral descent simulation estimated mission trajectory and ground
truth, along with the estimated water current field from two different views.
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Figure 4.18 – The spiral descent simulation water current velocity estimate errors and
uncertainty in the (a) north and (b) east in the order in which they are observed
and initialised. The spikes in uncertainty are due to poorly observed IWVEs.
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the dive and is comparable to the equivalent of having DVL bottom-lock for the entire

mid-water column trajectory once DVL bottom-lock is acquired. This is despite no

GPS or DVL bottom-lock being available in this mid-water column.

4.4 Sirius Horizontal motion results

The following results are obtained through the use of Sirius [60]. The vehicle is drift-

ing on the sea surface with GPS available. In order to test the horizontal localisation

using the ADCP sensor, the experiment consists of 500 seconds of simulated GPS

blackout, while the Sirius AUV is travelling laterally across the sea surface. The ve-

hicle travels 40m in this time. The environment is gridded at 20 m to model spatially

varying currents during this short transit.

The water column aided localisation is compared to the GPS aided solution which is

considered ground truth. The mission is done while sea surface effects like swell is

affecting the vehicle, and due to the GPS antenna being attached to a flexible shaft

pointing upwards, the GPS Doppler velocity is considered inaccurate, leading to an

initial velocity uncertainty of 20cm/s (2σ) by observing previous missions where DVL

bottom-lock is available for comparison.

Figure 4.19 shows the filter position uncertainty and estimate error compared to the

ground truth prior to GPS reacquisition. The position error growth rate is higher

than in the simulation in Section 4.3.2 due to the initial velocity uncertainty from

GPS being much higher. As a result, the global reference for velocities are inaccurate,

and the entire water current map will have this error, since the ADCP can only supply

velocities in a relative frame of reference.

Figure 4.20 shows the filter position uncertainty and estimate error compared to the

ground truth after GPS reacquisition, demonstrating the improvement in the position

estimate for the entire state history during the GPS blackout once GPS is reacquired.

Figure 4.21 shows the estimated vehicle trajectory and ground truth, along with the

estimated water current field surrounding the vehicle during its mission. A grid re-
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Figure 4.19 – GPS simulated blackout experiment: Position estimate uncertainty and
error compared to the GPS aided ground truth prior to GPS reacquisition.
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localisation step was completed by using the new smoothed solution of past poses

following GPS reacquisition to place the previously incorrectly localised ADCP mea-

surements in the correct water current grids. This grid-relocalisation step is similar

to a relinearisation of the past Jacobians. This allows inaccurate linearisations and

data associations, in this case the incorrectly localised water current velocity states,

to be repositioned given the new knowledge of the past poses. Although the position

drifts markedly in this plot, this is due to the vehicle being close to stationary in the

ground truth, and as a result of the velocity error, the position drift grows. Given a

more accurate initial velocity, the position drift will be reduced to approximately this

accuracy. The important result from this experiment is that new horizontal IWVEs

have been initialised, while still maintaining a velocity estimate of the vehicle.

Although this result results in position uncertainty growth of approximately 65 m (2σ)

over 500 seconds, this still compares favourably to other self-contained localisation

methods. Given no other form of aiding, a navigation-grade IMU will have an error

of ∼140 m over 500 seconds, and the combination of navigation-grade IMU, DVL

water-track and vehicle model [16], prior to DVL bottom-lock, gives 125 m (2σ)

uncertainty. If a constant position model is assumed, there would be an uncertainty

associated with the assumption of the unmodelled water currents. The surface water

currents in areas such as Kurishio off Japan, or the Gulf Stream, can attain velocities

of 0.4-1.3 m/s [13]. Thus, if the water current is not observed or estimated, the

worst case in this scenario would be assumed, leading to between 200 m and 650 m

in position uncertainty given the AUV will drift with the currents. Thus, even with

poor initial velocity uncertainty, and without an IMU, the localisation performance

in this experiment gives promising results. Experiments with accurate GPS and IMU

would give performance which reflects the results in simulation to a greater degree,

and remains as future research.



4.4 Sirius Horizontal motion results 125

0 100 200 300 400 500 600
−20

−15

−10

−5

0

5

10

15

20

Mission time (s)

P
os

iti
on

 e
rr

or
 (

m
)

Position error after GPS reacquisition

 

 

2σ North position uncertainty estimate

North position estimate error

2σ East position uncertainty estimate

East position estimate error

Figure 4.20 – GPS simulated blackout experiment: Position estimate uncertainty and
error compared to the GPS aided ground truth following to GPS reacquisition.
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4.5 Summary

This chapter has explored the extension of the ADCP-aided localisation by generalis-

ing the water current layer model to isocurrent water volume elements. A simulation

of the Sirius AUV was undertaken with purely horizontal motion once the vehicle

had surmerged away from GPS. The information loss rates in the vehicle uncertainty

are significantly greater than the vertical descent case. The assumption of horizontal

homogeneity which allowed all four beams of the ADCP to observe the same water

current depth cell simultaneously is assumed to no longer hold, resulting in limited

observability and information loss. A spiralling descent simulation was undertaken,

which showed some mitigation of this information loss rate, as the rotation around

the water currents allowed greater observability and hence reduced the information

loss rate.

Additionally, real data from the Sirius AUV was obtained with GPS ground truth.

This was compared to the ADCP-aided localisation while on the sea surface. Although

the GPS accuracy is sub-optimal, the results showed that localisation by estimating

the horizontal water current vector field with IVWEs gives less position uncertainty

growth than alternative self-contained localisation methods. Future work will attempt

to obtain real data which further validates that the simulation results are in fact

attainable in real ocean conditions.

Thus, this chapter has demonstrated the ability to achieve constrained error growth

in position by incorporating ADCP measurements into the navigation solution while

a vehicle is undergoing a significant horizontal underwater trajectory when GPS and

DVL bottom-lock are unavailable. This makes it appropriate for long-term, accurate

navigation of an AUV which undertakes missions with horizontal translations in the

mid-water column. This alleviates the requirement for a tending vessel or setup of an

acoustic network to achieve precise navigation, which may not scale given horizontal

transit beyond the horizon. In order to further improve the localisation of the vehicle,

given the estimated water current environment surrounding the vehicle, knowledge of

the vehicle model could be utilised. The following chapter explores this possibility.



Chapter 5

Combined Inertial and Vehicle Model

aiding

From the results in Chapter 3 and 4, results show improved localisation by incorporat-

ing the ADCP aiding. The uncertainty bounds in position will still grow unbounded

with time, especially in the horizontal localisation case, without the aid of acoustic

localisation. Information about the vehicle dynamics could be used to improve the

localisation, with less reliance on USBL or LBL. Additionally, utilising the IMU and

vehicle model at the same time could improve the localisation better than using either

by itself. In Section 3.3.4, a differential thrust model for an AUV was outlined. A

method to incorporate a vehicle model simultaneously with an IMU without the need

to model or tune a correlation state as in [17] would ensure a more consistent filter.

Previous work on AUV localisation using an IMU and Vehicle model, whether drag

based or constant velocity model, tends to use either of them them as the prediction

stage of a Extended Kalman Filter, as the control actions into the control input model,

to evolve the state from a previous time to the present time [25] [17]. Then, the other

one is used as an update. But by doing this, the independent observation assumption

is violated, as the vehicle model or IMU is a constraint between the previous state

and the present state. With the prediction stage of an EKF, the previous state has

been marginalised away. Thus, this will lead to an inconsistent filter due to violation
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of this assumption.

Thus, there remains the open problem of achieving the use of an IMU and vehicle

model simultaneously, in a consistent manner. An IMU and a drag based vehicle

model are proposed to be incorporated into the navigation. A novel method for

incorporating the vehicle model and IMU simultaneously as the process models for

the EIF is now outlined.

This chapter formulates a novel method to incorporate measurements from an IMU

and predictions from the vehicle model at the same time into the localisation. It

exploits the fact that in a delayed state framework, the inertial and vehicle model

could be converted into a delayed state constraint between poses. Simulations show

that localisation improvements depend on the undertaken mission trajectory. For a

vertical descent with little horizontal motion, the improvement in localisation accu-

racy is minimal. For purely horizontal motion, localisation improvements are evident

given the introduction of the vehicle model. Finally, real data from the Sirius AUV

is processed, which compares the incorporation and absence of the vehicle model.

Improvements in the localisation are shown as a result of the vehicle model compared

to combined GPS and DVL position ground truth, validating the approach for this

data.

5.1 Integration concept

In [29], numerically integrating the IMU measurements as constraints between low

rate poses, for example at 5 Hz compared to the 100 Hz IMU output, was used to

allow an inertial SLAM formulation without initialisation. The contribution that this

chapter makes, is that the IMU and vehicle model can be numerically integrated to

be used as constraints between poses. The IMU integration is also modified from [29]

to be used in a global reference frame. Then, these constraints between poses can

then be applied in a delayed state framework. The idea is graphically represented in

Figure 5.1. The following equations now outline how this framework operates for a

simple 1-dimensional case.
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Figure 5.1 – The IMU and the vehicle model act as delayed state constraints between
poses Xk and Xk+1

Equation 5.1 begins with a constant acceleration (a) assumption and applying an

Euler integration for velocity (v). ∆t is the time step. For example, ∆t = 0.01

seconds for 100 Hz acceleration inputs. Equation 5.2 applies an Euler integration for

position (p). Equation 5.3 represents the change in velocity between pose states. This

constraint can be incorporated into the EIF. Given vN is the velocity at a certain pose

state, say 1 second after the initial velocity v1, the change in velocity will be the sum

of the accelerations times delta T, with 100 acceleration measurements used in the

integration if the rate of inputs is 100 Hz. The right hand side (RHS) of Equation 5.3

represents the constraint, while the left hand side (LHS) of the equation represents the

integrated measurement. If position is also part of the pose state, then the constraint

in Equation 5.4, which is the correction for non-zero acceleration compared to the

constant velocity assumption, is equal to the double integration of the acceleration

times delta T for the 100 acceleration measurements. The RHS of Equation 5.4

represents the constraints, while the LHS represents the integrated measurement.

The acceleration measurement from the IMU (zIMU) is the addition of the true accel-

eration at the IMU (aIMU) and noise (εIMU). Additionally, the acceleration measure-

ment from the vehicle model (zVM) is the addition of the true acceleration according
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to the vehicle model (aVM) and noise (εVM). These constraints can be incorporated in

parallel into a delayed state framework, and if they are non-linear and are linearised,

they can be re-linearised at an arbitrary time in the future if a better linearisation is

available [22]. This process would be more difficult if the standard prediction stage

used by an EIF was implemented instead.

v2 = v1 + a1∆t (5.1)

p2 = p1 + v1∆t (5.2)

vN − v1 =
N−1∑
n=1

an∆t (5.3)

pN − p1 − v1(TN − T1) =
N−1∑
n=1

N−1∑
n=1

an∆t (5.4)

zIMU = aIMU + εIMU (5.5)

zVM = aVM + εVM (5.6)

The purpose of the numerical integration of multiple IMU or vehicle model “control

actions” is the allow them to be represented as full rank constraints between poses.

This must be done in a way to be independent to previous observations, and thus

can be used as a delayed state update between two consecutive poses, which can be

achieved with this approach. The ADCP aiding method provides the water current

estimates, providing the water relative velocities of the vehicle, and thus feeds back

into the vehicle model localisation estimation.

Additionally, the uncertainty in the parameter estimates, such as drag coefficients of

the vehicle, from a previous system identification, can be input into the filter, since

the parameter can be treated as a state. So regardless of the accuracy of the previous

system identification, if the parameter uncertainty is specified, then the filter can

determine the amount of impact the vehicle model will have.
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5.2 Derivation of the integration framework

In order to apply both an inertial model and a vehicle model, the delayed state struc-

ture of the Information Filter is exploited. In a similar way to inertial integration [29],

a thruster and drag vehicle model is integrated, as described in Section 3.3.4. This

form of constraint makes the integrated inertial and vehicle model suitable for pose

based SLAM applications where vision and bathymetric based SLAM is applied [26],

since this constraint can be used in a least-squares optimization and be relinearised

later. The following formulation also has the advantage of not requiring the explicit

modelling of the correlation between each vehicle model update as in [17].

The algorithm used to construct the constraints between poses is outlined in Algo-

rithm 2. Algorithm 3 presents the Jacobians and covariances of these constraints.

The integration theory as derived from [29] relies on the following equations describ-

ing the evolution of position, velocity and attitude as a function of body-relative

accelerations and rotation rates:

pnt2 = pnt1 +

∫ t2

t1

vnt dt (5.7)

vnt2 = vnt1 +

∫ t2

t1

(Cn
b,tf

b
t + gn)dt (5.8)

φnt2 = φnt1 +

∫ t2

t1

En
b,tω

b
tdt (5.9)

where:

• vnt is the velocity of the IMU at time t in the navigation frame,

• Cn
b,t is the coordinate transformation matrix from body to navigation frame at

time t,

• f bt is the specific force (the IMU accelerometer output) in the body frame at

time t,

• gn is the gravity vector in the navigation frame,
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• pnt is the position of the IMU at time t in the navigation frame,

• φnt is the attitude of the IMU at time t in the navigation frame,

• En
b,t is the rotation rates transformation matrix from body to navigation frame

at time t,

• ωbt is the rotation rates in the body frame at time t,

• Cb,t
n is the coordinate transformation matrix from navigation to body frame at

time t,

Given the following identities:

∆p+t1
t2 =

∫∫ t

t1

Cn
b,tf

b
t dt

2 (5.10)

∆vt1t2 =

∫ t

t1

Cn
b,tf

b
t dt (5.11)

∆φt1t2 =

∫ t

t1

En
b,tω

b
tdt (5.12)

The term ∆p+t1
t2 represents the correction in the position estimate compared to con-

stant velocity. Then Equations 5.7, 5.8 and 5.9 become:

pnt2 = pnt1 + vnt1(t2 − t1) + Cn
t1

∆p+t1
t2 +

1

2
(t2 − t1)2gn (5.13)

vnt2 = vnt1 + Cn
t1

∆vt1t2 + (t2 − t1)gn (5.14)

φnt2 = EulerFromRotationMatrix(Cn
t1

∆Ct1
t2) (5.15)

The form for f bt and wb
t depends on the inertial model, or the vehicle model. For the

inertial model, they can be solved by Euler integration with the following equations:
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∆vimu,k+1 = ∆vimu,k + Cb,0
b,k(f

b
k − biasobsa )∆t (5.16)

∆p+
imu,k+1 = ∆p+

imu,k + vimu,k+1∆t (5.17)

∆φimu,k+1 = ∆φimu,k + Eb,0
b,k(ω

b
k − biasobsω −Ck

nΩ
n
e )∆t (5.18)

where Ωn
e is the rotation rate vector of the Earth in the navigation frame, biasobsa

is the estimated bias in the accelerometer, and biasobsω is the estimated bias in the

gyroscope.

For the vehicle model, the Euler integration is derived as follows:
ẍb,k

ÿb,k

ψ̈k

 =


(F1,k + F2,k −Dẋẋb,k |ẋb,k|+Myẏbωvm,k)/Mx

(−Dẏẏb,k |ẏb,k|+Mxẋb,kωvm,t)/My

(F1,kr − F2,kr −Dψ̇ωvm,k |ωvm,k| −Myẋb,kẏb,k +Mxẋb,kẏb,k)/Iz

 (5.19)

∆vvm,k+1 = ∆vvm,k + Rb,0
b,k

ẍb,k
ÿb,k

∆t (5.20)

∆p+
vm,k+1 = ∆p+

vm,k + ∆vvm,k+1∆t (5.21)

ωvm,k+1 = ωvm,k + ψ̈k∆t (5.22)

∆ψk+1 = ∆ψk + ωvm,k+1∆t (5.23)ẋb,k+1

ẏb,k+1

 =

ẋb,k
ẏb,k

+ Rb,0
b,k

ẍb,k
ÿb,k

∆t (5.24)

The vehicle model constraint is initialised with a rotation rate estimate from the

IMU. Therefore the correlation between the IMU constraint and the vehicle model

constraint must be accounted for. The vehicle model is only applied for the North and

East directions for localisation purposes, as the Down velocity component is already

well estimated with the IMU, ADCP and pressure depth sensor, and the roll and

pitch acting on the vehicle is assumed small. Attitude estimation occurs due to an
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interaction between the GPS, IMU and vehicle model. The process noise for the IMU

model is from the IMU measurement uncertainty itself. The process noise for the

vehicle model is from the uncertainty in the thruster action. Additionally, the vehicle

model used in this case is the generic model derived from [9], but any vehicle model

can be utilised in this framework.

Algorithm 2 solves the Equations 5.10, 5.11 and 5.12 through Euler integration for

both the inertial and vehicle model. Higher order integration could be used for more

precision, but Euler integration is used because of its relative simplicity and easier to

calculate analytical Jacobians. The Jacobians for the filter are solved using Algorithm

3. The state ordering for the Jacobian F in Algorithm 2 is: [∆p+
imu,k, ∆vimu,k,

∆φimu,k, biasobsa , biasobsw , ∆p+
vm,k, ∆vvm,k, ∆ψk, ωvm,k, Dẋ, Dẏ, Dψ̇, Mx, My, Iz, r,

Xi]

The form of the Noise Injection Covariance Q in Algorithm 2 is:

Q = diag{QIMU , σ
2
F1
, σ2

F2
}

While determining the partial derivatives for the FVM Jacobian, the following iden-

tities also need to be applied:

vi =

 ˙xb,0

˙yb,0

 (5.25)

φi = φnk=0 (5.26)

Xi =

vi
φi

 (5.27)

 ˙xb,k

˙yb,k

 = vi + ∆vvm,k (5.28)

The Xi and vc states exist in the Jacobian calculations to allow the extraction of the

derivatives of the vehicle model deltas with respect to the initial states of vehicle and

water current velocity in the body frame, and global heading. The vehicle and water

current velocities impact on the rate changes in ẍb,k and ÿb,k, while the global heading

affects the Earth rotation correction for ωvm,0 and ∆φimu,k+1.
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Algorithm 2 Inertial and Vehicle Model Constraint
N = Number of Inertial Measurements to be Integrated
k = 0
∆vimu,0 = 0
∆p+

imu,0 = 0
∆φimu,0 = 0
∆vvm,0 = 0
∆p+

vm,0 = 0[
ẋb,0
ẏb,0

]
= Rb,k

n,k

[
ẋn,0 − vnc,x
ẏn,0 − vnc,y

]
ωvm,0 = (ωb1 − biasobsw − C0

nΩn
e )3,1

∆ψ0 = 0
while k < N do

k = k + 1
∆t = tk+1 − tk
∆vimu,k+1 = ∆vimu,k + Cb,0

b,k(f
b
k − biasobsa )∆t

∆p+
imu,k+1 = ∆p+

imu,k + vimu,k+1∆t

∆φimu,k+1 = ∆φimu,k + Eb,0
b,k(ω

b
k − biasobsw −Ck

nΩ
n
e )∆t[

vT1

vT2

]
=

[
ẋb,k + rωvm,k
ẋb,k − rωvm,k

]
[
F1

F2

]
=

[
0.4ρd4|n1|n1 − 1

3
vT1ρd

3|n1|
0.4ρd4|n2|n2 − 1

3
vT2ρd

3|n2|

]
ẍb,kÿb,k
ψ̈k

 =

 (F1,k + F2,k −Dẋẋb,k |ẋb,k|+Myẏbωvm,k)/Mx

(−Dẏẏb,k |ẏb,k|+Mxẋb,kωvm,t)/My

(F1,kr − F2,kr −Dψ̇ωvm,k |ωvm,k| −Myẋb,kẏb,k +Mxẋb,kẏb,k)/Iz


∆vvm,k+1 = ∆vvm,k + Rb,0

b,k

[
ẍb,k
ÿb,k

]
∆t

∆p+
vm,k+1 = ∆p+

vm,k + ∆vvm,k+1∆t

ωvm,k+1 = ωvm,k + ψ̈k∆t
∆ψk+1 = ∆ψk + ωvm,k+1∆t[
ẋb,k+1

ẏb,k+1

]
=

[
ẋb,k
ẏb,k

]
+ Rb,0

b,k

[
ẍb,k
ÿb,k

]
∆t

end while
∆vimu = ∆vimu,k+1

∆p+
imu = ∆p+

imu,k+1

∆φimu = ∆φimu,k+1

∆vvm = ∆vvm,k+1

∆p+
vm = ∆p+

vm,k+1

∆ψvm = ψk+1
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Algorithm 3 Inertial and Vehicle Model Jacobian and Covariance Creation
N = Number of Inertial Measurements to be Integrated
k = 0
P = 032×32

J = I32×32

J21,21 = 0
J21,9 = 1/∆t
J21,15 = −1
while k < N do

k = k + 1D

FIMU =


I3 I3∆t 03×3 03×3 03×3

03×3 I3
∂∆vimu,k+1

∂∆φimu,k
−Ct1

t ∆t 03×3

03×3 03×3
∂∆φimu,k+1

∂∆φimu,k
03×3 −Et1

t ∆t

03×3 03×3 03×3 I3 03×3

03×3 03×3 03×3 03×3 I3


FVM =



I2 I2∆t 01×17

02×2
∂∆vvm,k+1
∂∆vvm,k

∂∆vvm,k+1
∂∆φvm,k

∂∆vvm,k+1
∂ωvm,k

∂∆vvm,k+1
∂vc

∂∆vvm,k+1
∂D

∂∆vvm,k+1
∂M

02×1
∂∆vvm,k+1

∂Xi
01×4 1 ∆t 01×15

01×2
∂ωvm,k+1
∂∆vvm,k

0
∂ωvm,k+1
∂ωvm,k

∂ωvm,k+1
∂vc

∂ωvm,k+1
∂D

∂ωvm,k+1
∂M

∂ωvm,k+1
∂r

∂ωvm,k+1
∂Xi

015×6 I15



FIMU,φ =

 06×18 06×3

03×18
∂∆φimu,k+1

∂φi

06×18 06×3


F =

[
FIMU FIMU,φ

017×17 FVM

]

G =



03×8

Ct1
t ∆t 08×5

03×3 Et1
t ∆t 03×2

08×8

02×6 Rb,0
b,k

[∂ẍb,k
∂n1

∂ẍb,k
∂n2

0 0

]
01×8

01×5
∂ψ̈k

∂biasobsw
∆t ∂ψ̈k

∂n1
r ∂ψ̈k
∂n2

012×8


Jt+1 = FJt
Pt+1 = FPtF

T + GQGT

end while
Jt2t1 = Jt+1

Pt2
t1 = Pt+1
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The predicted inertial and vehicle model constraints are derived from rearranging

Equations 5.7, 5.8 and 5.9. The vehicle model constraints are only for the North and

East directions. The predicted constraints for the present state estimate are:

h
∆p

+t1
imu,t2

(x̂(tk)) = Ct1
n (pnt2 − pnt1 − vnt1(t2 − t1)− 1

2
(t2 − t1)2gn)−∆vimu (5.29)

h
∆v

+t1
imu,t2

(x̂(tk)) = Ct1
n (vnt2 − vnt1 − (t2 − t1)gn)−∆p+

imu (5.30)

h
∆φ

+t1
imu,t2

(x̂(tk)) = EulerFromRotationMatrix(Ct1
n Cn

t2
)−∆φimu (5.31)

h
∆p

+t1
vm,t2

(x̂(tk)) = Rt1
n (pnt2 − pnt1 − vnt1(t2 − t1))−∆vvm (5.32)

h
∆v

+t1
vm,t2

(x̂(tk)) = Rt1
n (vnt2 − vnt1 − (t2 − t1)gn)−∆p+

vm (5.33)

h
∆φ

+t1
vm,t2

(x̂(tk)) = φt2 − φt1 −∆ψvm (5.34)

Thus the total predicted inertial and vehicle model constraint is:

hprocess(tk) =



h
∆p

+t1
imu,t2

(x̂(tk))

h
∆v

+t1
imu,t2

(x̂(tk))

h
∆φ

+t1
imu,t2

(x̂(tk))

h
∆p

+t1
vm,t2

(x̂(tk))

h
∆v

+t1
vm,t2

(x̂(tk))

h
∆φ

+t1
vm,t2

(x̂(tk))


(5.35)

zprocess = 014×1 (5.36)

The matching elements of Pt2
t1 resulting from Algorithm 3 will be used as the covari-

ance for the measurement update.

The IMU gyro and accelerometer biases are correlated according to the first order

Markov process described by Equation 3.13 within the Information Filter.
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5.3 Simulation

The following simulations from previous Chapters are repeated, with the same noise

seeds, and with the vehicle model added as part of the estimation:

1. Simulation from Section 3.3.5, with vertical descent over 1000 seconds.

2. Simulation from Section 4.3.2, with a horizontal trajectory underwater over 700

seconds.

The localisation results are compared between four separate scenarios:

1. The parameters in the vehicle model are assumed to have had a prior system

identification within 1% (3 σ) of their true value. This uncertainty is supplied

to the filter, which allows this constant parameter bias to be properly accounted

for in the uncertainty estimates of the filter. The applied force control action (F1

and F2) is supplied at 100 Hz, and is assumed to be modelled to an accuracy

of approximately 0.25 N (3 σ), which arises because of uncertain propellor

revolution speed, velocity through water and thrust modelling.

2. The parameters in the vehicle model are assumed to have had a prior system

identification within 10% (3 σ) of their true value. This uncertainty is supplied

to the filter, which allows this constant parameter bias to be properly accounted

for in the uncertainty estimates of the filter. The applied force control action

(F1 and F2) is supplied at 100 Hz, and is assumed to be modelled to an accu-

racy of approximately 2.5 N (3 σ), which arises because of uncertain propellor

revolution speed, velocity through water and thrust modelling.

3. The parameters in the vehicle model are assumed to have had a prior system

identification within 50% (3 σ) of their true value. This uncertainty is supplied

to the filter, which allows this constant parameter bias to be properly accounted

for in the uncertainty estimates of the filter. The applied force control action (F1

and F2) is supplied at 100 Hz, and is assumed to be modelled to an accuracy
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of approximately 12.5 N (3 σ), which arises because of uncertain propellor

revolution speed, velocity through water and thrust modelling.

4. No vehicle model is incorporated into the localisation.

5.3.1 Vertical descent with vehicle model aiding

Figure 5.2 shows very little difference in the estimate error between the four filters.

Figure 5.3 shows the uncertainty estimate prior to DVL bottom-lock goes from 4m

(no vehicle model) 3.9m (50% paramater uncertainty) to 3.8m (10% paramater un-

certainty) and finally to 3.6m (1% parameter uncertainty). Post DVL bottom-lock

gives a nearly identical result. For the vertical descent case, since the no vehicle

model case was already low in error relative to it’s uncertainty bounds, the addition

of a vehicle model does not appreciably improve the error, although the uncertainty

bounds have decreased slightly, with 2, 5 and 10 percent improvements with 50%,

10%, 1% uncertainty in the vehicle parameters respectively. In this case, the error

has not appreciably reduced, and even increased, while the uncertainty bounds have

decreased. This is due to the initial errors also being quite low relative to the un-

certainty bounded without the vehicle model in this case, while the addition of the

vehicle model has reduced the uncertainty, but increased the error, which is possi-

ble given the markov nature of the localisation information from the ADCP-aided

method and the vehicle model.
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Figure 5.2 – The vertical descent simulation position estimates and uncertainties for
(a) 1% (3 σ) vehicle model parameter uncertainty, (b) 10% (3 σ) vehicle model
parameter uncertainty and (d) without vehicle model aiding.
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Figure 5.3 – A zoom on the vertical descent simulation position estimates and uncer-
tainties (a) 1% (3 σ) vehicle model parameter uncertainty, (b) 10% (3 σ) vehicle
model parameter uncertainty and (d) without vehicle model aiding.
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5.3.2 Horizontal motion with vehicle model aiding

Figure 5.4 shows the estimate error and uncertainty estimates given the four filter

realisations. It shows the uncertainty reduction after 800 seconds of horizontal transit,

compared to no vehicle model is 0.8m (50% paramater uncertainty) to 2m (10%

paramater uncertainty) and finally 6m (1% parameter uncertainty). The uncertainty

bounds have decreased slightly, with 5, 12 and 37 percent improvements with 50%,

10%, 1% uncertainty in the vehicle parameters respectively. These figures shows a

definite trend towards improved accuracy given vehicle model incorporation in the

estimate error between the four filter instances. The uncertainty estimate at the end

of the 700 seconds of no GPS decreases as the vehicle model accuracy is increased,

and the position estimate error reduces accordingly. This result implies incorporating

a vehicle model gives some gain in accuracy if the velocity of the vehicle relative to

the water stays away from zero, as is the case in this simulation.
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Figure 5.4 – The horizontal motion simulation position estimates and uncertainties
for (a) 1% (3 σ) vehicle model parameter uncertainty, (b) 10% (3 σ) vehicle model
parameter uncertainty and (d) without vehicle model aiding.



5.4 Sirius AUV vehicle modeling aiding results 145

5.4 Sirius AUV vehicle modeling aiding results

In order to validate this application of the vehicle model in coupling with the IMU

and ADCP aided localisation, data obtained through the use of Sirius is utilised.

The vehicle model used is the same as generic model used in Chapter 3, derived from

[9], while initial parameters are also used from [35]. The model parameters were

assumed to have approximately 30% - 50% uncertainty in their values, due to the

lack of previously previous system identification. Even with such a coarse vehicle

model, slight improvements in the localisation can be made as will be shown. The

experiment consists of 250 seconds of simulated GPS and DVL blackout, while the

Sirius AUV is travelling laterally across the sea surface. The vehicle travels 65 m in

this time. The water current environment is gridded at 20 m in order to model the

spatial change in the currents during this small transit.

The water column aided localisation is compared to the GPS and DVL aided solution

which is considered ground truth. The mission is done while sea surface effects like

swell is affecting the vehicle, and due to the GPS antenna being attached to a flexible

shaft, the GPS Doppler velocity is considered inaccurate, leading to a velocity uncer-

tainty of 20cm/s (2σ) from the GPS derived velocity. This uncertainty is determined

by comparing to the more accurate DVL velocity available. To simulate a more ac-

curate GPS velocity sensor, the DVL is also fused to arrive at the initial velocity

uncertainty of 1cm/s (2σ). The uncertainty of the DVL is inflated from the standard

6 mm/s (2σ) due to a lever arm between the IMU and DVL sensor frames, introducing

velocity uncertainty as a result of misalignment and rotation rate uncertainty. The

ADCP data to aid the localisation in this case operates only every 3-4 seconds as the

sensor is operating with ten DVL measurements to one ADCP measurement.

With no vehicle model, the position estimate error compared to ground truth is shown

in Figure 5.5(a). Given the sparse ADCP measurements, the position uncertainty

grows rapidly. The estimated vehicle path, compared to ground truth, along with the

estimate water current environment is shown in Figure 5.6. The localisation error has

grown to approximately 25 m in the north, and 20 m in the east after 300 seconds,
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with an estimated uncertainty of 30 m (2σ).

With the addition of a vehicle model, the localisation performance compared to the

ground truth is illustrated in Figure 5.5(b). A localisation error within 20m from the

ground truth and with an estimated uncertainty of less than 30 m 2 σ is attained

following 300 seconds of simulated GPS and DVL blackout, exhibiting a slight im-

provement in the localisation accuracy. The uncertainty is reduced by 2m in this

case, over more than 200 seconds, or a 7% reduction. The large position uncertainty

growth is due to the low rate of ADCP measurements. The estimated vehicle path,

compared to ground truth, along with the estimated water current environment is

shown in Figure 5.7. Even with an uncertain vehicle model, slight improvements in

the localisation is possible.
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Figure 5.5 – (a) The ADCP aided localisation with IMU, but without vehicle model,
exhibits a high position uncertainty growth rate due to very sparse ADCP mea-
surements. (a) applies a vehicle model, with the localisation slightly improved

5.5 Summary

This chapter formulated a novel method to incorporate measurements from an IMU

and predictions from the vehicle model at the same time into the localisation. It

exploits the fact that in a delayed state framework, the inertial and vehicle model

could be converted into a delayed state constraint between poses. Previous methods



5.5 Summary 147

attempting to do this required tuning a correlation state, while this method does

not require such a tuning. By adding the vehicle states to the estimation, they are

correctly modelled in the estimation as a correlated state. There exists a coupling with

estimates of the water current field around the vehicle, which the ADCP localisation

method provides, and the water relative velocity of the vehicle which is input into the

vehicle model.

Simulations showed that localisation improvements depend on the undertaken mis-

sion trajectory. For a vertical descent with little horizontal motion, the improvement

in localisation accuracy is minimal. For purely horizontal motion, localisation im-

provements are evident given the introduction of the vehicle model. This is due to

the uncertainty reduction from using a vehicle model having more impact on the

higher uncertainty growth rate for the horizontal transit case. Finally, real data from

the Sirius AUV is processed, which compares the incorporation and absence of the

vehicle model. Improvements in the localisation are shown as a result of the vehicle

model compared to combined GPS and DVL position ground truth, validating the

approach for this data. Future research will include targeted experiments to further

validate this approach.
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Figure 5.6 – Two views of the estimated water current environment along with the
estimated vehicle localisation without a vehicle model, and the GPS/DVL ground
truth for comparison.
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Figure 5.7 – Two views of the estimated water current environment along with the
estimated vehicle localisation following the incorporation of a vehicle model, and
the GPS/DVL ground truth for comparison.



Chapter 6

Conclusions and Future Research

6.1 Introduction

This thesis has developed a solution to the problem of the lack of feasible mid-water

localisation options without recourse to acoustic time-of-flight sensors. This method

relies on the vehicle’s own measurements in order to improve the range and autonomy

of AUV operations, including ADCP measurements and vehicle modelling. This

localisation information can then be fed back into a control algorithm to achieve

real-time navigation according to the prescribed mission.

The proposed system has the potential to work in real-time on board an AUV with

typical sensors. The developed framework also allows the incorporation of existing

localisation techniques, such as SLAM, to increase the accuracy of localisation.

6.2 Summary of Contributions

Specific contributions in detail are as follows:

• The development, implementation, testing and validation of isocurrent layer

models for the water environment, along with a 3D velocity ADCP sensor model
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to achieve localisation during vertical descent through the water column. The

implementation and analysis of the developed models is achieved through the

fusion of sensor measurements in an EIF. Simulation and real data are utilised

to validate the approach. Specific novel contributions include:

I A two degrees-of-freedom simulation allowed the analysis of the error dy-

namics of the problem, and showed that a lower initial uncertainty of the

velocity on the sea surface and the faster descent rate have the great-

est impact in reducing the vehicle position uncertainty growth, and hence

georeferencing accuracy prior to reaching DVL bottom-lock range. Given

faster descent rates, the uncertainty growth in velocity as a consequence

of less measurements of the water column is negligible compared to the re-

duced time spent in the water column and hence integrating velocity error

with time to determine position. The effect of the ADCP measurement

rate and standard deviation was also seen to have effects on the localisa-

tion, although not as significant. Once DVL bottom-lock was acquired,

the primary driver for the position uncertainty growth was again descent

rate and the initial velocity uncertainty. If the initial velocity uncertainty

is similar to the DVL bottom-lock velocity uncertainty, and typical ADCP

measurement rates and standard deviations are experienced, the position

error growth rate will be reduced compared to a higher initial velocity un-

certainty. Given low ADCP measurement rates and/or higher standard

deviations, a lower initial velocity uncertainty reduces the position uncer-

tainty growth, since information loss has limited the ability of the DVL to

reduce the velocity uncertainty for the entire dive.

I A six degrees-of-freedom simulation reflected the possible performance of

the algorithm under typical parameters for the Sirius AUV. Given this

more realistic simulation, the impact of the initial velocity uncertainty on

the vehicle was shown to still be significant prior to DVL bottom-lock, but

with only minor corrections once DVL bottom-lock is acquired. A deeper

descent over one hour was simulated, with information loss being evident
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due to the non-linear increase in position uncertainty with time, as a result

of the increase in velocity uncertainty with time. The performance of the

algorithm for this one hour simulation was shown to be competitive with

acoustic localisation methods.

I A validation of the ADCP localisation algorithm was completed with real

data from the Sirius AUV. The scenario of low ADCP measurement rates

in the ascent and descent of the vehicle was shown to provide accurate

localisation performance compared to USBL ground truth, with the filter

framework also allowing the incorporation of loop-closures from view-based

SLAM.

• The development, implementation, testing and validation of a gridded IWVE

model, along with a beam-directional ADCP sensor model. Spatial correlation

in the water current vector field is accounted for in the EIF, through implement-

ing least-squared constraints in the filter between IWVE states. Simulation and

real data are utilised to validate the approach. Specific novel contributions in-

clude:

I The ADCP-aided localisation is extended by generalising the water current

layer model to isocurrent water volume elements. A simulation of the Sir-

ius AUV was undertaken with purely horizontal motion once the vehicle

had surmerged away from GPS. The information loss rates in the vehicle

uncertainty are significantly greater than the vertical descent case. The

assumption of horizontal homogeneity which allowed all 4 beams of the

ADCP to observe the same water current depth cell simultaneously is as-

sumed to no longer hold, resulting in limited observability and information

loss. A spiralling descent simulation was undertaken, which showed some

mitigation of this information loss rate, as the rotation around the water

currents allowed greater observability and hence reduced the information

loss rate.

I Real data from the Sirius AUV was obtained with GPS ground truth. This

was compared to the ADCP-aided localisation while on the sea surface.
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Although the GPS accuracy is sub-optimal, the results showed that locali-

sation by estimating the horizontal water current vector field with IVWEs

gives less position uncertainty growth than alternative self-contained lo-

calisation methods.

• The incorporation of IMU measurements and vehicle model constraints to simul-

taneously aid the localisation. Simulation and real data are utilised to validate

the approach. Specific novel contributions include:

I The formulation of a novel method to incorporate measurements from an

IMU and predictions from the vehicle model at the same time into the

localisation. It exploits the fact that in a delayed state framework, the in-

ertial and vehicle model could be converted into a delayed state constraint

between poses. Previous methods attempting to do this required tuning

a correlation state, while this method does not require such a tuning. By

adding the vehicle states to the estimation, they are correctly modelled in

the estimation as a correlated state. There exists a coupling with estimates

of the water current field around the vehicle, which the ADCP localisation

method provides, and the water relative velocity of the vehicle which is

input into the vehicle model.

I Simulations showed that due to the significant non-linearity of the vehicle

model close to zero vehicle velocity relative to the surrounding water cur-

rents, localisation improvements depend on the undertaken mission trajec-

tory. For a vertical descent with little horizontal motion, the non-linearity

in the vehicle model nullifies the localisation information that the vehicle

model provides. For a purely horizontal motion, where the vehicle veloc-

ity was away from the highly non-linear zero velocity point, localisation

improvements are evident given the introduction of the vehicle model.

I Real data from the Sirius AUV is processed, which compares the incorpo-

ration and absence of the vehicle model. Improvements in the localisation

are shown as a result of the vehicle model compared to combined GPS and

DVL position ground truth, validating the approach for this data.
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6.3 Future Work

6.3.1 Further modelling of the water current environment

Since the water current environment can be assumed to be smooth, a parametrisation

of the water current vector field which avoids the discretisation errors invoked by

the isocurrent water volume element based method could allow more accurate water

current modelling and thus localisation. Recent developments in Vector Field SLAM

(VFSLAM) [14] show parallels with the AUV localisation problem within a water

current vector field. Thus this problem can be categorised into a wider set of problems

which try to simultaneously estimate the state of a vector field and localise. The

observation of the vector field in the AUV case using an ADCP is dependent on

position, attitude as well as velocity through the field.

In [14], two infrared light spots are projected onto the ceiling. The robot measures

the bearing to the two lights spots using an optical sensor. This measurement, which

depends on multipath, is modelled as a time-invariant vector field over a 2D grid on

the ground for the robot to localise within, with equally spaced cell nodes. A bilinear

interpolation model is used between equally spaced cell nodes to model the vector

field. Extending this parameterisation and method to the underwater domain is a

potential area of future research.

Prior information from oceanographic insights could also be input into the water

current vector field model, such as well known local water current behaviour based

on the position of the vehicle in the ocean. One example includes the seasonal cycles

in the East Australian Current [44]. Additionally, physical models of the action of

small scale water currents would aid the localisation, potentially involving the mass

water transport equations [39].

6.3.2 Further Experimental validation

More targeted experiments to further validate the proposed localisation methods

would shed further insights into the performance of the algorithm in real circum-
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stances. Validation with real data using higher accuracy GPS velocity, and optimal

measurement rate ADCP, will help validate the performance seen in simulation. Real-

time implementation of the localisation and navigation procedures in this thesis would

present further challenges, and would increase the utility of AUV operations.

6.3.3 Multiple Vehicles

By incorporating multiple vehicles, with selective sharing of their state vector through

acoustic communications, a more extended view of the water current vector field could

be estimated. This would feed back into the localisation and potential planning algo-

rithms, given that knowledge of the water current vector field allows more accurate

forecasting of the vehicle motion.

6.3.4 Incorporating different vector and scalar fields

The paper by Leonard [28] also proposes navigation using Magnetic field sensing as

undertaken by aquatic fauna for navigation, or gravimetric sensing. These localisation

tasks could potentially use insights from this thesis and the Vector Field SLAM

problem.

Chemical sensing, such as that employed by Salmon to return to their natal river to

spawn [4], along with other environmental sensing such as salt water and temperature,

could be modeled as a Scalar Field, with potential for localisation.
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Appendix A

Position error growth for a two

degree of freedom simulation with

varying parameters

This appendix explores the reliance of the position uncertainty growth with respect to

mission parameters, as proposed in Section 3.3.3. The vehicle experiences unmodelled

(in the localisation filter) drag which causes it to move with the currents. The vehicle

is also assumed not to pitch in this simulation, resulting in 2 degrees of freedom

(2DOF) in translation. To further simplify the analysis of this example, the bias

states are not simulated. 20 m of descent in 60 m of water is simulated between GPS

blackout and DVL bottom-lock. A 1-dimensional current field is simulated in which

the vehicle is travelling vertically down, and free to move left or right (but not into

and out of the page of the figures). The default values for the parameters are listed

in Table A.1 below, and unless otherwise varying, they are kept at these values.
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Table A.1 – Parameter values used in the 2DOF simulation

GPS receiver Lassen iQ GPS receiver

Initial GPS position fix accuracy 10 m (2σ)

Initial GPS velocity accuracy (σv) 0.04 m/s (2σ)

AUV descent rate 0.2 m/s

ADCP make and model RDI 1200 kHz

ADCP measurement uncertainty (σa) 0.02 m/s (2σ)

ADCP range 30 m

Current bin size 1 m

Simulation time 1000 seconds

Simulated depth 60 m

DVL accuracy 0.006 m/s (2σ)

DVL range 40 m

DVL acquisition time 1000 seconds

ADCP and DVL measurement rate 3 Hz

Maximum currents 20 cm/s

The following parameters are varied in order to analyse the effect on the filter position

uncertainty estimates:

1. AUV descent rate

2. ADCP measurement rate or measurement frequency

3. ADCP measurement standard deviation (σa)

4. Initial velocity accuracy (σv) whether from GPS or other sources (such as GP-

S/IMU)

The following sections plot the relationships between these parameters, along with

some discussion of the trends. The position uncertainty growth is defined as the 2σ

uncertainty of the final position relative to the initial position, and thus is relative to

the initial position uncertainty.
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A.1 AUV descent rate vs. ADCP measurement rate

As evident from Figure A.1, the descent rate is a primary concern for the position un-

certainty growth. Figure A.2 shows that the uncertainty growth is in fact near linear

with respect to the time between GPS blackout and DVL bottom-lock. Therefore,

there is an inverse relationship between position uncertainty growth and descent rate.

Figure A.3 shows that ADCP measurement rate has no effect on position error growth

given changes in the descent rate. Once DVL bottom lock is acquired, the relation-

ship between these variables remains unchanged as evident in Figures A.4, A.5 and

A.6. This relationship between descent rate and position uncertainty growth is due

to faster descent rates having a negligible effect on the velocity uncertainty during

the descent, thus a similar velocity uncertainty is being integrated over a longer time

for a given mission.
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Figure A.1 – AUV descent rate vs. position uncertainty growth for various ADCP
measurement rates prior to DVL bottom lock
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Figure A.2 – Mission descent time vs. position uncertainty growth for various ADCP
measurement rates prior to DVL bottom lock
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Figure A.4 – AUV descent rate vs. position uncertainty growth for various ADCP
measurement rates following DVL bottom lock
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Figure A.5 – Mission descent time vs. position uncertainty growth for various ADCP
measurement rates following DVL bottom lock
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Figure A.6 – ADCP measurement rate vs. position uncertainty growth for various
descent rates following DVL bottom lock

A.2 AUV descent rate vs. ADCPmeasurement stan-

dard deviation (σa)

As can be seen in Figures A.7, A.8 and A.9, a slow descent rate prior to DVL bottom

lock is affected by high ADCP noise magnitudes, compared to the same ADCP noise

magnitudes for faster descent rates. Given that the vehicle velocity uncertainty can

deteriorate faster given high uncertainty ADCP measurements, this information loss

is integrated over a longer period of time with the slow descent rate, and is somewhat

mitigated by reaching the seafloor faster. Following DVL bottom lock, A.10, A.11

and A.12 exhibit this same property, implying that the information loss in the water

column is irreversible, and can be mitigated by having a faster descent rate.
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Figure A.7 – AUV descent rate vs. position uncertainty growth for various ADCP
measurement standard deviations prior to DVL bottom lock
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Figure A.8 – Mission descent time vs. position uncertainty growth for various ADCP
measurement standard deviations prior to DVL bottom lock
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Figure A.9 – ADCP measurement standard deviation vs. position uncertainty growth
for various descent rates prior to DVL bottom lock
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Figure A.10 – AUV descent rate vs. position uncertainty growth for various ADCP
measurement standard deviations following DVL bottom lock
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Figure A.11 – Mission descent time vs. position uncertainty growth for various ADCP
measurement standard deviations following DVL bottom lock
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Figure A.12 – ADCP measurement standard deviation vs. position uncertainty growth
for various descent rates following DVL bottom lock
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A.3 AUV descent rate vs. Initial velocity standard

deviation (σv)

As can be seen in Figures A.13, A.14 and A.15, the initial velocity standard deviation

is another primary driver for the position uncertainty growth in addition to descent

rate prior to DVL bottom-lock. There exists a near linear relationship between the

initial velocity standard deviation and the position error growth. As descent rates

increase, the position uncertainty growth is reduced depending on the magnitude

of the initial velocity standard deviation. Figures A.16 and A.17 show that once

DVL bottom lock is achieved, the uncertainty in position becomes independent of

the initial velocity standard deviation. The exception is when the magnitude of the

initial velocity uncertainty is similar to the DVL bottom lock uncertainty, in which

case both velocity estimates are combined to reduce the position uncertainty growth.

This is evident in Figure A.18.
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Figure A.13 – AUV descent rate vs. position uncertainty growth for various initial
velocity standard deviations prior to DVL bottom lock



A.3 AUV descent rate vs. Initial velocity standard deviation (σv) 172

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

Descent time for mission (s)

P
os

iti
on

 e
rr

or
 g

ro
w

th
 (

m
)

 

 

σ
v
 = 0.005 m/s

σ
v
 = 0.02 m/s

σ
v
 = 0.065 m/s

σ
v
 = 0.2 m/s

Figure A.14 – Mission descent time vs. position uncertainty growth for various initial
velocity standard deviations prior to DVL bottom lock
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Figure A.15 – Initial velocity standard deviation vs. position uncertainty growth for
various descent rates prior to DVL bottom lock
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Figure A.16 – AUV descent rate vs. position uncertainty growth for various initial
velocity standard deviations following DVL bottom lock
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Figure A.17 – Mission descent time vs. position uncertainty growth for various initial
velocity standard deviations following DVL bottom lock
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Figure A.18 – Initial velocity standard deviation vs. position uncertainty growth for
various descent rates following DVL bottom lock

A.4 ADCP measurement rate vs. ADCP measure-

ment standard deviation (σa)

Figures A.19 shows that the position uncertainty growth becomes independent of

ADCP measurement rate given low ADCP measurement standard deviation prior to

DVL bottom lock. Given higher ADCP measurement standard deviation as in Figure

A.20, lower measurement update rates result in higher position uncertainty growth.

This is a result of high amounts of information loss as there are few, noisy measure-

ments to estimate velocity as the vehicle travels down the water column, resulting

in the growth of water current velocity uncertainty, feeding back into the velocity

estimate uncertainty prior to bottom lock. Figure A.20 also has a concave up curve,

implying increasing impact on the position uncertainty growth superlinearly with

higher ADCP measurement standard deviation. Once DVL bottom is acquired, the

effect of information loss has been mitigated with respect to a low ADCP measure-

ment rate as shown in Figures A.21, as the velocity uncertainty of the water currents
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can be reduced. Figure A.22 shows that while the position uncertainty growth in-

creases as ADCP measurement standard deviation increases, the curve is concave

down, implying a stabilising effect by incorporating DVL bottom lock in this case.
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Figure A.19 – ADCP measurement rate vs. position uncertainty growth for various
ADCP measurement standard deviations prior to DVL bottom lock
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Figure A.20 – ADCP measurement standard deviation vs. position uncertainty growth
for various ADCP measurement rates prior to DVL bottom lock
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Figure A.21 – ADCP measurement rate vs. position uncertainty growth for various
ADCP measurement standard deviations prior to DVL bottom lock
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Figure A.22 – ADCP measurement standard deviation vs. position uncertainty growth
for various ADCP measurement rates prior to DVL bottom lock

A.5 ADCP measurement rate vs. Initial velocity

standard deviation (σv)

During descent, prior to DVL bottom-lock, the ADCP measurement rate has negligi-

ble impact on the error growth in comparison to the the effect of the initial velocity

uncertainy, as illustrated in Figure A.23. The initial velocity uncertainty continues to

have a linear impact on the position uncertainty growth, with the uncertainty growth

rate almost independent of the ADCP measurement rate, as seen in Figure A.24.

Once DVL bottom-lock is acquired, the ADCP measurement rate has a slight effect

on the final position uncertainty growth, as evidenced by Figure A.25 and A.26. As

the DVL bottom-lock is acquired, any information losses due to a low ADCP mea-

surement rate will have a more pronounced effect on the position error growth as it

reduces the impact the low uncertainty velocity measurement can have in reducing

previous uncertainty in velocity earlier in the mission.
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Figure A.23 – ADCP measurement rate vs. position uncertainty growth for various
initial velocity standard deviations prior to DVL bottom lock
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Figure A.24 – Initial velocity standard deviation vs. position uncertainty growth for
various ADCP measurement rates prior to DVL bottom lock
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Figure A.25 – ADCP measurement rate vs. position uncertainty growth for various
initial velocity standard deviations prior to DVL bottom lock
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Figure A.26 – Initial velocity standard deviation vs. position uncertainty growth for
various ADCP measurement rates prior to DVL bottom lock
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A.6 Initial velocity standard deviation (σv) vs. ADCP

measurement standard deviation (σa)

Prior to DVL bottom-lock, the initial velocity uncertainty is the dominant determi-

nant of the position uncertainty growth, as shown in Figure A.27. When the initial

velocity standard deviation is small compared to the ADCP measurement standard

deviation, a lower ADCP measurement standard deviation will allow position error

growth reductions. Figure A.27 illustrates this effect in more detail. Once DVL

bottom-lock occurs, due to a large correction possible in the vehicle velocity and

water current velocities, the standard deviation in the ADCP measurement becomes

important as the information loss rates limit the ability of the DVL bottom-lock ve-

locity to reduce the prior velocity estimates and hence position uncertainty growth.

This is illustrated in Figures A.29 and A.30. The ADCP measurement standard de-

viation becomes more important as the initial velocity uncertainty increases, as the

position uncertainty growth rates become more dependent on the DVL bottom-lock

velocity estimates to reduce the velocity uncertainty earlier in the mission.
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Figure A.27 – Initial velocity standard deviation vs. position uncertainty growth for
ADCP measurement standard deviations prior to DVL bottom lock
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Figure A.28 – ADCP measurement standard deviation vs. position uncertainty growth
for various initial velocity standard deviations prior to DVL bottom lock
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Figure A.29 – Initial velocity standard deviation vs. position uncertainty growth for
various ADCP measurement standard deviations prior to DVL bottom lock
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Figure A.30 – ADCP measurement standard deviation vs. position uncertainty growth
for various initial velocity standard deviations prior to DVL bottom lock
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