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Abstract 

 

This study applies a pseudo panel approach to analyse public transport demand 

in the Sydney Greater Metropolitan Area (SGMA). A public transport demand 

model is constructed to incorporate two factors that have been highlighted in the 

literature of travel behaviour but still under-researched, which are: (i) the 

temporal effect of demand adjustment; and (ii) the land use characteristics of the 

built environment. The research gaps in previous applied pseudo panel data 

research including estimation techniques and issues involved with the 

applications to public transport are identified and addressed in this study.  

 

The pseudo panel approach allows for the identification of long-term demand 

changes using repeated cross-sectional data, which are collected at an individual 

level with detailed travel-related information and geographical information. This 

study constructs static and dynamic pseudo panel data models to analyse public 

transport demand in terms of its associations with price, socio-economic factors, 

level of public transport service, and land use factors. The research findings 

identify the significant determinants of public transport demand in the SGMA, 

with a distinction between short-run and long-run demand elasticities. This 

suggests a timeframe of 2.13 years is required to reach the long-run demand 

equilibrium. The estimated demand elasticities are used to forecast demand for 

the SGMA with validated results supporting the applicability of the public 

transport model based on the pseudo panel data.  

 

The main contribution of this thesis is the identification of long-run public 

transport demand elasticities using a pseudo panel dataset created from existing 

repeated cross-sectional household travel survey data which uses more individual 

information than aggregate data. This approach enables a longitudinal analysis 

in the absence of genuine panel data, and this in turn provides important 

implications for urban public transport planning and policy formulation.  
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CHAPTER 1 INTRODUCTION  

 

This thesis studies public transport demand in the Sydney Greater Metropolitan 

Area (SGMA) incorporating various measures of land use characteristics using a 

pseudo panel approach to take the temporal effect of travel demand changes into 

account. This chapter first introduces the research background and identifies the 

research questions addressed in this study. The framework of research 

approaches is presented next in Section 1.2. Section 1.3 highlights the key 

contributions of this study in terms of contributions to the literature and 

research methodology as well as the contribution to practice in urban transport 

planning and policy implementation. Finally, this chapter describes the structure 

of the thesis in Section 1.4.  

 

1.1 Background and research questions 

The importance of public transport systems has been receiving substantial 

attention in the urban and transport planning sectors. Understanding public 

transport demand in terms of the associations between public transport use and 

its determinants provides important information for transport policy formulation 

and implementation. The associations between public transport demand and its 

determinants can be investigated through public transport demand models, 

which have been extensively researched in transport literature. However, 

although widely discussed, there are some components which have not been fully 

incorporated in previous public transport demand studies. One is the temporal 

effect of travel demand adjustment which has not been captured by conventional 

static demand models. The other is the integration of public transport demand 

with a comprehensive set of land use variables, despite the strong connections 

established in the literature of travel behaviour and built environment. This 

study focuses on these two elements of travel demand determinants which are 

under-researched in the literature, using the SGMA as a case study. 

 

 The temporal effect of demand adjustment, also referred as the dynamics of 

travel demand, relates to the way in which travellers do not tend to adjust their 

travel behaviour instantly in response to transport system changes. The reasons 
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for the lagged demand adjustments may come from travellers’ habits, imperfect 

information, or changes of residential or workplace locations (Dargay and Hanly, 

2002), which in turn leads to the differences in the short-run and long-run 

demand elasticities. International evidence has suggested that this temporal 

effect is significant in the determination of public transport demand where this 

has come from comparing multiple state-wide or worldwide transport systems at 

an aggregate level (Bresson et al., 2003, Graham et al., 2009, Souche, 2010). The 

investigation of the temporal effect would be of more benefit to urban transport 

planning if the magnitude of short-run and long-run demand elasticities could be 

identified for a single transport system or a specific study area, but this research 

is not common in the literature because it relies on longitudinal data, normally 

collected from continuos travel surveys, which are difficult to conduct at a large 

scale either in space or in time. Thus, although lagged demand adjustment has 

been suggested to be significant in travel demand analysis, there is a need to 

demonstrate this in public transport demand models to provide robust evidence 

for transport planners who typically only have information of short-run demand 

changes. This context provides the background for research questions in study 

which are defined as follows: 

 

Question 1: What are the determinants of public transport demand and 

the demand elasticities with respect to each of the determinants in the 

SGMA? 

Question 2: Is the temporal effect of public transport demand significant in 

the SGMA? What are the short-run and long-run demand elasticities if the 

temporal effect is significant? 

 

The other element of public transport demand modelling addressed in this study 

is the connections between public transport demand and land use. The 

association between travel behaviour and land use characteristics of a built 

environment has been identified and widely recognised in transport research. 

However, conventional public transport demand models tend to only take account 

of land use density (Dargay et al., 2010, Souche, 2010). Other land use variables 

such as land use diversity, urban design, and accessibility to public transport 
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services have not been fully incorporated in public transport demand models, 

although their impact on travel behaviour has been demonstrated (Cervero and 

Kockelman, 1997). Ignoring these other factors of land use characteristics may 

not only under-estimate the influence of land use characteristics on public 

transport demand, but also restrict urban and transport planners in their use of 

strategic land use planning to increase public transport usage. To investigate the 

associations between public transport demand and land use factors in the context 

of the SGMA, the following research question is analysed in this study: 

 

 Question 3: What are the magnitudes of the impact of land use density, 

diversity, design, and accessibility on public transport demand in the 

SGMA?  

 

In summary, this study constructs a public transport demand model 

incorporating the temporal effect and land use characteristics. The demand 

model is estimated to identify the relationship between public transport demand 

and its determinants, and is used to forecast public transport demand for the 

SGMA. The research approach is summarised in the next section.  
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1.2 Research approach  

The general research approaches to public transport demand modelling are 

summarised in 

Public Transport Demand

Price; Supply; Socio-Economic factors;
Temporal effects; Land use factors;

Short-run demand Long-run demand

Aggregate approach Disaggregate approach

Time-series data;
Regional statistics

Genuine panel data;
Continuous Travel 

surveys;
Individual data

Pseudo panel data;
Repeated cross-
sectional travel 

surveys

Not available
or insufficient data

Lagged 
adjustments

Cross-sectional data;
Time-series data;
Regional statistics

SP surveys;
Individual data

Aggregate approach Disaggregate approach

Static Models Dynamic Models

Short-run or long-run demand

 

Figure 1.1. Public transport demand is a function of various factors including 

price, supply, socio-economic variables, and the two elements highlighted in the 

previous section: the temporal effect and land use factors. The existence of the 

temporal effect leads to a difference between short-run and long-run demand as a 

result of the lagged demand adjustment. The public transport demand model can 

be specified in a static or dynamic form, and the data used for model estimation 

are categorised into aggregate and disaggregate data. When the static model is 

employed, either short-run demand or long-run demand can be estimated 

depending on the type of data in use.    

 

Short-run demand can be analysed using cross-sectional data based on regional 

statistics at an aggregate level, or using Stated-Preference Survey (SP) data or 
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combined SP and Reveal-Preference Survey data (RP) to retrieve individual 

information, whereas long-run demand requires time-series data with the status 

of long-run equilibrium being assumed in a static model estimation. However, 

Goodwin (1992) suggested that the assumption of long-run equilibrium for static 

model calibration is subject to model specification errors and thus a dynamic 

model is preferred for time-series data.  

 

 
Figure 1.1 A Summary of Research Approaches to Public Transport Demand Modelling 
 

 

A dynamic demand model includes lagged variables to capture the lagged 

demand adjustment as a result of the temporal effect of travel behaviour, which 

is unable to be controlled in a static model. In terms of the data used for dynamic 

model estimation, previous studies usually used aggregate time-series data from 

regional statistics of several study areas to give panel data analysis with 

sufficient sample observations and time scales. The drawback of this approach is 
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that aggregate data do not provide individual travel information and the research 

results are not representative of a specific study area. To incorporate individual 

travel information in travel demand models for a specific study area, the ideal 

approach is to use panel data based on individual records, usually collected from 

continuous household travel surveys over time, which is known as genuine panel 

data. However, genuine panel data are not commonly available in transport due 

to their high costs and sample attrition problems, and thus a disaggregate 

approach is not common in longitudinal public transport demand analysis. As 

compared to genuine panel data, repeated cross-sectional travel surveys are more 

commonly available in some countries but the shortcoming of the repeated cross-

sectional data is that individuals are not traced over time. Instead, new samples 

are drawn in each wave of the survey although this approach provides more 

sufficient and consistent survey data it is not possible to trace travel behaviour 

change. However, a pseudo panel approach does enable panel data analysis using 

repeated cross-sectional data (Deaton, 1985), with results being able to 

distinguish the short-run and long-run demand by employing a dynamic pseudo 

panel data  model.  

 

The pseudo panel approach has been increasingly applied to travel demand 

studies because of its sound theoretical grounding and its ability to accommodate 

the dynamics of travel behaviour using individual travel survey data. However, 

some issues related to applied pseudo panel research still remain under-

researched and require further investigation, such as the construction of pseudo 

panel data for limited sample observations and the estimation techniques for 

dynamic pseudo panel data models. These issues are discussed and addressed in 

this study.   

 

1.3 Thesis contributions 

In this section, the contributions of this study are classified into scientific 

contributions and practical contributions. Scientific contributions include new 

knowledge added to the relevant literature that has not been fully addressed in 

the past and refinements of research methodology in the research field which 

collectively benefits future research. Practical contributions are research findings 
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that are practice-ready which can be applied to urban transport planning with 

policy implications. The specific contributions from these two perspectives are 

highlighted as follows.  

 

Scientific contribution to the literature and research methodology:  

• This thesis incorporates a comprehensive set of land use variables 

including land use density, diversity, design, and accessibility in a public 

transport demand model, together with price variable and other 

determinants as identified in the literature of public transport demand 

modelling (Chapter 3). 

• This thesis introduces the principles and process of pseudo panel data 

constructions which have not been comprehensively reviewed in the 

literature (Chapter 4). 

• This thesis applies the pseudo panel data approach to public transport 

demand analysis and address the research issues that constrain its 

application. The application of a pseudo panel data approach to public 

transport has not yet been evident in the literature (Chapter 4). 

• This thesis examines estimation techniques for pseudo panel data models 

through a Monte Carlo simulation experiment. The issue of pseudo panel 

data estimation has been discussed in the literature but the results are 

still inconclusive with different research findings from different studies. 

The Monte Carlo experiment suggests an appropriate estimator to 

estimate pseudo panel data and provides a guideline for future applied 

pseudo panel research (Chapter 5). 

• This thesis employs a dynamic Partial Adjustment Model to investigate 

the temporal effect of travel demand public transport demand using the 

constructed pseudo panel dataset. This closes the research gap in public 

transport demand modelling which conventionally was unable to 

incorporate the temporal effect for a specific study area due to the 

unavailability of genuine panel data (Chapter 7). 

Practical contributions to urban transport planning and policy 

• This thesis shows the importance of taking account of spatial variation in 

the analysis of associations between public transport demand and its 
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determinants which provide policy implications for urban and transport 

planning (Chapter 3). 

• This thesis uses the currently-available repeated cross-sectional household 

travel surveys to conduct a longitudinal study with individual information 

incorporated (Chapter 4). 

• This thesis estimates the short-run and long-run public transport demand 

elasticities showing the significance of lagged demand adjustments which 

is critical to long-term transport planning (Chapter 7). 

• This thesis estimates the short-term and long-term impacts of land use 

characteristics on public transport demand and shows the differences of 

land use elements to provide evidence for long-term urban planning 

(Chapter 7). 

• This thesis forecasts public transport demand for the study area using the 

dynamic demand model with sensitivity analysis to forecast public 

transport demand under different policy scenarios (Chapter 8) 

 

1.4 Thesis outline 

This thesis is organised in nine chapters. The present chapter has introduced the 

background to the research and the research questions to be addressed in this 

study. It outlines the framework of research approach and the thesis 

contribution. The contents of the following chapters in this thesis are outlined in 

the rest of this section.  

 

Chapter 2 reviews the literature for each of the components of this study. The 

literature of public transport demand modelling and studies on the relationship 

between travel behaviour and land use are first discussed. This discussion points 

to the way in which a pseudo panel approach could be applied to address the 

research questions. The pseudo panel approach is then comprehensively reviewed 

from its theoretical development, modelling and estimation issues, and the 

applications in travel demand analysis. This review identifies the research gaps 

in the pseudo panel literature which are accommodated in the following chapters.  
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Chapter 3 introduces the study area of this research and the data sources 

comprising travel-related and land use data for this study. The two domains of 

data are integrated in this chapter with an exploratory analysis on the 

relationship between public transport demand and land use characteristics. This 

analysis uses Geographically Weighted Regression based on the pooled Sydney 

Household Travel Survey data from 1997 to 2009. This exploratory analysis 

validates the selected explanatory variables of public transport demand and 

provides suggestions for pseudo panel data construction in Chapter 4.  

 

Chapter 4 presents the pseudo panel data approach for this study. This chapter 

details the process and principles of constructing the pseudo panel dataset, and 

specifies the general form of the pseudo panel data model. The estimation 

techniques for pseudo panel data models are also discussed which highlights the 

need of examining the performance of various estimators for pseudo panel data 

estimation.  

 

Chapter 5 conducts a Monte Carlo simulation experiment to examine the 

estimation techniques developed for genuine panel data estimation which are 

commonly applied to pseudo panel data models. The simulation results provide 

insights into the estimation bias and efficiency for each of the panel data 

estimators with their potential causes under various data properties. This 

experiment in turn suggests guidelines for estimating pseudo panel data models 

in Chapter 6 and 7.  

 

Chapter 6 and Chapter 7 present the static and dynamic pseudo panel data 

models respectively. These two chapters specify the public transport demand 

model in different functional forms. The estimation results are evaluated to 

justify the best public transport demand model. The suggested demand model is 

then used to estimate the demand elasticities with respect to each of the 

determinants of public transport demand in the study area.  

 

Chapter 8 conducts demand forecasting using the public transport demand model 

from Chapter 7. The demand model is validated and then used to forecast 
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demand for the SGMA. The forecast demand is compared to the actual public 

transport demand in 2009 and 2010 to evaluate the forecasting power of the 

dynamic pseudo panel data model.  

 

Chapter 9 summarises the research findings and research contributions to the 

literature and policy implications, followed by a discussion on the limitations of 

this study and directions for future research before concluding.  
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CHAPTER 2 LITERATURE REVIEW  

 

The literature review of this study comprises five sections in this chapter. Section 

2.1 reviews the previous public transport demand elasticity studies, and 

highlights the importance of the temporal effect of travel demand by discussing 

the differences between short-run and long-run demand elasticities. Section 2.2 

reviews the previous work on identifying the association between travel 

behaviour and land use characteristics. Section 2.3 introduces the background of 

the pseudo panel data approach and its previous applications in transport 

research. Section 2.4 and 2.5 discuss the issues of estimation techniques and 

model assumption testing which have not been fully discussed in previous pseudo 

panel data studies. The literature review identifies the research gaps to be 

addressed in this study which are summarised in Section 2.5.  

 

2.1 Public transport demand elasticity 

There has been an extensive body of demand elasticity studies in the field of 

public transport research. Some excellent review papers and meta-analysis 

studies have been reported to summarise the research outcomes and identify the 

research contribution (Goodwin, 1992, Oum et al., 1992, Nijkamp and Pepping, 

1998, Kremers et al., 2002, Balcombe et al., 2004, Paulley et al., 2006, Holmgren, 

2007, Hensher, 2008). In general, demand elasticity studies show a great 

variation in results due to six characteristics: (1) type of data used (aggregate or 

disaggregate), (2) time frame analysed (month, quarter, or year), (3) model 

structure (static or dynamic), (4) econometric technique used (pooled OLS or 

Fixed Effect estimator, (5) specification of the dependent variable (travel demand 

or mode choice), and (6) demand specification (Graham et al., 2009). Table 2.1 

summarises previous studies on public transport demand elasticities in recent 

decades. This table shows the diversity of research scope, approaches, and 

results. The comparison of determinants, the distinction between short-run and 

long-run demand elasticities, and the evaluation of methodology is reviewed in 

the following sub-sections. 
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Table 2.1 Summary of Selected Public Transport Demand Elasticity Studies  

Author Mode Area Data Source Methodology Explanatory 
Variables 

Price Elasticity 
Short-
Run 

Long-
Run 

Voith 
(1991) Rail US Transport Authority

(aggregate) 
Dynamic econometric 
model 

Fare;   
Alternative costs; 
Peak/off-peak; 
Speed; 
Vehicle-km 

-0.62 -1.59 

Hensher 
(1998) 

Rail 
Bus 
Car 

Australia SP and RP survey 
(disaggregate) Discrete choice model Fare; 

Travel time 

-0.22 
-0.36 
-0.2 

n/a 

Hensher and 
King 

(1998) 

Car 
Bus 

Australia SP and RP survey 
(disaggregate) 

Discrete choice model 
Fare; 
Alternative costs; 
Travel time 

note 1 n/a 

Dargay and 
Hanly 
(2002) 

Bus UK 
Department of 
Transport 
(aggregate) 

Dynamic econometric 
model 

Fare;   
Alternative costs; 
Income;  
Vehicle-km; 
Population; 
Urban Density 

-0.33 -0.62 

Douglas et al. 
(2003) 

Bus 
Rail 

Ferry 
Australia 

SP survey; 
Second best survey 
(disaggregate) 

Scenario model 
Fare; 
Travel time; 
Service interval  

-0.36 
-0.38 
-0.56 

n/a 

Bresson et al. 
(2003) 

Public transport France 
Bus Operators 
National Statistics 
(aggregate) 

Dynamic econometric 
model 

Fare;   
Income; 
Vehicle-km 

-0.32 -0.61 

Bus UK National Statistics 
(aggregate) 

Dynamic econometric 
model 

Fare;   
Income; 
Vehicle-km 

-0.51 -0.69 

Garcı´a-
Ferrer et al. 

(2006) 

Metro 
Bus Spain 

Dept. of Transport 
(aggregate) 

Dynamic econometric 
model 

Fare;   
Vehicle-km 

-1.03 
-1.07 n/a 
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Author Mode Area Data Source Methodology Explanatory 
Variables 

Price Elasticity 
Short-
Run 

Long-
Run 

Graham et al.
(2009) Metro Worldwide 

Railway and 
Transport Strategy 
Centre 
(aggregate) 

Dynamic econometric 
model 

Fare; 
Income; 
Vehicle-km 

-0.05 -0.33 

Wang 
(2009) 

Bus  
Rail 

New 
Zealand 

NZ Transport 
Agency 
(aggregate) 

Dynamic econometric 
model 

Fare; 
Fuel Price; 
Car ownership 

-0.24 
-0.83 

-0.4 
-1.31 

Dargay 
et al. 

(2010) 

Car 
Rail 
Coach 
Air 

UK 
British National  
Travel Survey 
(aggregate) 

Dynamic econometric 
model 

Fare;   
Alternative costs; 
Income;  
Population; 
Car ownership; 
Travel time;  
Age; 
Gender; 
Employment; 
Household 
characteristics 

-0.30 
-0.30 
-0.20 
-0.10 

-1.00 
-1.00 
-0.80 
-0.30 

Souche 
(2010) 

Car 
Public transport Worldwide 

IUTP 
(aggregate) 

Dynamic econometric 
model 

Fare; 
Alternative cost; 
Income; 
Land use density 

-0.74 
-0.22 n/a 

         1Cross elasticities are examined with various ticket types in two scenarios. 
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2.1.1 Determinants of demand elasticity 

Public transport demand is determined by various factors. The components of the 

explanatory variables selected for a demand model have a significant impact on 

the estimated demand elasticities. In regard to the choice of variables, previous 

researchers have highlighted some important factors to be considered in a 

demand model. Balcombe et al. (2004) had a full discussion on the relationship 

between public transport demand and these factors. This report explicitly 

analysed the effects of fare, quality of service, competing modes, income, car 

ownership, and land use factors on travel demand. This study concluded that 

fare, quality of service, and car ownership are the most significant factors for 

public transport demand. A meta-analysis reported by Holmgren (2007) 

suggested that an ideal demand model should include fare, car ownership, fuel 

price, quality of service, and income.  

 

The literature reviewed in Table 2.1 demonstrates that existing studies show a 

great diversity of explanatory variables in the public transport demand models. 

In general, the composition of independent variables varies with the purposes of 

study, research methodology, and data availability. Table 2.2 lists all the 

variables examined in the previous studies reviewed, classified into four groups: 

(1) travel costs; (2) quality of public transport service; (3) socio-economic factors; 

and (4) land use factors, with the number of studies that include this variable in 

their demand models in brackets after each variable. 

 

Table 2.2 Categories of Explanatory Variables in Demand Models (Number of studies 
using these variables) 

Category Explanatory Variables 

Travel Costs Fare (11); Alternative costs (5); Travel time (4); Fuel price (1) 

Quality of Service 
Vehicle-km (5); Peak/off-peak vehicles (1); Speed (1);  

Service Interval (1) 

Socio-economic Factors 
Income (6); Car ownership (2); Age (1); Gender (1); 

Employment status (1); Household characteristics (1) 

Land Use Factors Population (3); Land use density (2) 

Source: summarised from Table 2.1 
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Table 2.2 shows that fare, alternative costs, vehicle-km, and income are the most 

commonly examined variables, with fuel price and travel time as variables 

reflecting related and alternative costs to public transport fares. On the other 

hand, land use factors, where used, appear to have less diversity of measures. 

Balcombe (2004) has documented that the land use could influence public 

transport demand through dispersion of activities, shape of urban area, density, 

clustering of trip ends, and settlement size. Cervero and Kockelman (1997) also 

suggested that the density, diversity, and design (3Ds) of land use would have 

impacts on the non-auto trips. However, only land use density has been used as a 

measure to represent land use characteristics in the reviewed studies, partly 

because of data availability and partly because of the complexity of land use 

characteristics. Therefore, although most studies show a common pattern of 

variable composition, some factors such as land use variables deserve more 

attention.   

 

2.1.2 Short-run and long-run elasticity 

Whilst modelling the travel demand for public transport systems, many 

researchers have pointed out the importance of distinguishing between short-run 

and long-run demand elasticities. Voith (1991) suggested that the ridership of 

public transport systems might not change immediately in response to system 

changes, so the public transport operators need to be aware of potential long-

term effects when proposing their financial plans. Oum et al. (1992) indicated 

that long-run demand is likely to be more elastic than short-run demand because 

travellers have more options to change their travel behaviour in the long run as 

compared to the short run. Goodwin (1992) suggested that an individual’s 

adjustment of travel behaviour, as affected by travel costs, is not immediate and 

because this reaction may take a longer time period, so this temporal effect 

should be taken into account in a travel demand model. In transport planning, 

the long-run demand is particularly of interest for strategic planning and, in this 

context, Litman (2004) pointed out that conventional travel demand models 

based on short-run elasticity may underestimate the long-term impacts of service 

changes on public transport ridership. Collectively these studies show the 
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importance of identifying long-run demand elasticities when studying public 

transport demand. 

 

Despite the importance of distinguishing between short-run and long-run public 

transport demand, the existing literature does not identify uniform timeframes 

which distinguish between short-run and long-run travel demand.  Studies have 

varied in their choice of absolute time period selected and this appears to depend 

on the context of the study. The long-run demand is the demand derived after 

individuals have fully adjusted their travel behaviour and reached the long-run 

equilibrium as a result of system changes (Oum et al., 1992), and the time period 

for individuals to fully adjust their travel behaviour in response to the changes in 

exogenous variables may take years (Batley et al., 2011). This time period tends 

to be affected by individuals’ lagged adjustment of residential and work location 

choice, habits of travel, travel costs, imperfect information, and uncertainty 

(Dargay and Hanly, 2002).  The lagged behaviour change has been identified 

from demand modelling through a distinction between short-run and long-run 

demand elasticities, with results showing long-run demand elasticities being 

greater than short-run demand elasticities if the lagged adjustment exists. As 

shown in Table 2.1, the estimated long-run demand elasticities are generally two 

times to three times greater than their associated short-run elasticities.  

 

Previous studies that have attempted to identify long-run demand elasticities 

have mostly applied a dynamic Partial Adjustment Model (PAM) which allows a 

lagged dependent variable to take the time effects into consideration. The lagged 

dependent variable is used to control for the fact that the current demand is 

affected by demand in previous time periods. The coefficient of the lagged 

dependent variable in a demand model therefore represents the speed of 

adjustment between short-run demand and long-run demand. In a dynamic 

model, the time periods for short-run demand and long-run demand are thus not 

fixed but vary with the speed of behaviour adjustment. By definition, the short-

run time period refers to the shortest time period that can be measured using the 

data of the study (Batley et al., 2011). For example, a model that uses yearly data 

defines the short-run period as one year. From the estimated model, the short-
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run elasticities are directly derived from the coefficients of the explanatory 

variables, whereas the long-run elasticities are adjusted by the coefficient of the 

lagged dependent variable with the “long-run” being defined as the time period 

for 95 percent of the demand response to be adjusted (Jevons et al., 2005). A 

greater coefficient of the lagged dependent variable means that the demand is 

more influenced by previous demand which will result in greater long-run 

elasticities. Therefore, if individuals’ behaviour is highly affected by their 

previous decision, they will need to take a longer time to adjust their behaviour.  

 

However, although well-recognised in the literature, the distinction between 

short-run and long-run demand has mostly studied at an aggregate level by 

comparing multiple systems across different regions (Bresson et al., 2003; 

Graham et al. 2009, Souche, 2010). There is no much work focusing on a specific 

study area using the individual level of data. As a result, the local transport 

planners lack the information about individuals’ long-run demand changes and 

thus impede the long-term transport planning.  

 

2.2 The relationship between land use and travel behaviour  

2.2.1 Evidence from previous studies 

There has been extensive work on identifying the interactions between travel 

behaviour and land use characteristics outside studies concerned with explaining 

public transport demand. Travellers’ choice of trip mode can be influenced by 

land use characteristics such as land use density, diversity, design, and 

accessibility (Cervero and Kockelman, 1997). The measurement of these land use 

factors in previous studies is shown in Table 2.3. In principle, land use density 

generally refers to housing, population, or employment density. Diversity is used 

to illustrate the mixed nature of land use and is normally measured as the 

entropy of the land mix. Land use design refers to the connectivity or walkability 

of neighbourhood environment, such as the number of intersections, whereas 

accessibility usually refers to the access to the local public transport station or 

trip destinations.  
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Table 2.3 The Measurement of Land Use Factors from Selected Previous Studies 

Author 
Dependent 
Variables 

Measurement of land use factors 

Density Diversity Design Accessibility 

Cervero 
and 

Kockelman 
(1997) 

Vehicle mile; 
Probability of 
non-car travel

Intensity 
factors; 
 

Land use mix; 
Vertical mixing; 
Population within 
¼ mile of a store 

Four-way 
intersections; 
Quadrilaterals; 
Sidewalk width; 
Parking 

Accessibility 
index 

Kitamura 
et al. 

(1997) 

No. of 
vehicles; 
Trip distance; 
Mode share 

- - 

Sidewalk width; 
Proportion of 
parking, four-way 
intersections, and 
quadrilateral blocks 

Distance to rail 
stations; 
Distance to the 
nearest park 

Cervero 
(2002) 

Mode Choice 

Population 
and 
employment 
density 

Employment and 
population relative 
to county ratio 

Ratio of sidewalk 
miles to road miles 

Proportion of 
households 
within 0.5 mile of 
metro stations 

Rajamani 
(2003) Mode Choice Population 

density Land use mix 
Park area per  
housing unit; 
Cul-de-sacs 

Distance to bus 
stops 

Rodriguez 
and Joo 
(2004) 

Mode Choice 
Population 
density - 

Percentage of 
shortest route to 
closest bus stop 
with sidewalk 

- 

Zhang 
(2004)- 
Boston 

Mode Choice - Land use mix; 
retail floor area ratio Intersection density - 

Zhang 
(2004)- 

Hong Kong 
Mode Choice 

Population 
density; 
Job density 

Land use mix - 
Distance to the 
nearest public 
transport station 

Bentol et 
al. 

(2005) 
Mode Choice Population 

density Job-housing balance Population 
Centrality - 

Cervero 
(2006) 

Station 
boarding 

Housing 
density Land use mix Parking supply - 

Pinjari 
et al. 

(2007) 
Mode choice 

Household 
density; 
Employment 
density 

L and use mix 

Street block 
density; 
Bicycle facility 
density 

Access time to 
bus stop 

Frank  
et al. 

(2008) 
Mode choice 

Population 
density; 
Job density 

Land use mix 
measures Intersection density - 

Estupiñán 
and 

Rodríguez 
(2008) 

Station 
boarding 

Population 
density Land use mix 

Bike path; 
Sidewalk design; 
No. of intersections 

- 

Sohn and 
Shim 
(2010) 

Station 
boarding 

Population 
density; 
Employment 
density 

Land use mix 
Road length; 
No. of dead ends; 
No. of intersections 

Accessibility 
indices 

Buehler 
(2011) Mode choice Population 

density Land use mix - Distance to public 
transport 

Sung and 
Oh (2011) 

Station 
boarding 

Residential 
density; 
Commercial 
density; 

Land use mix; 
Commercial/business 
mix; 
 

Road length;  
Road width; 
No. of intersections; 
Dead end roads 

Subway 
accessibility 
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From the studies reviewed in Table 2.3, the land use factors show different levels 

of influence on travel behaviour which are reflected in their elasticity. Ewing and 

Cervero (2010) estimated the weighted average elasticities of public transport to 

these land use factors from existing studies as shown in Table 2.4. The results 

indicate that public transport demand appears to be inelastic to the individual 

land use factors, although the relationship is significant. However, Ewing and 

Cervero (2010) suggested that even if individually the effect is small, the 

combined contribution of all these land use factors could be significant. 

  

Table 2.4 Weighted Average Elasticity of Public Transport Demand with Land Use 
Factors 

Criterion Measures Elasticity 

Density 
Household/ Population density 0.07 
Job density 0.01 

Diversity Land use mix (entropy) 0.12 

Design 
Intersection/street density 0.23 
Percentage of four-way intersections 0.29 

Accessibility Distance to nearest public transport stop -0.29 
Source: Ewing and Cervero (2010) 

 

Table 2.5 summarises the research methodology and results from these studies 

reported in literature. In terms of methodology, the choice modelling approach is 

the most widely adopted method because the choice model is capable of 

examining the probability of an individual’s choice of travel modes. The 

estimated elasticities with respect to land use factors show a variety of results. In 

general, most elasticities estimated in previous studies show a positive sign 

indicating that public transport use increases with higher density, diversity, 

accessibility, and more walking-supportive urban design. However, some inverse 

signs and insignificant estimates are shown implying that the interaction 

between travel behaviour and land use factors might be uncertain in some cases. 

This uncertainty is possibly from the limitations of the modelling approach or 

from data availability, with results varying by locations. 
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Table 2.5 Selected Studies on Public Transport Demand Elasticities with respect to 
Land Use Measures 

 

2.2.2 Land use factors in public transport demand modelling 

Although the interaction between travel behaviour and land use characteristics 

has been demonstrated in the literature as discussed above, this has not been 

commonly integrated into the reported literature of public transport demand 

studies as reviewed in Section 2.1. The literature shows a distinct separation of 

two areas with one modelling public transport demand with respect to its 

determinants; and the other pursuing the relationship between travel mode 

choices and land use characteristics. These two areas of studies are clearly 

interrelated but it seems there has been little effort to integrate these two fields 

of knowledge.  

Author Area Methodology Data 
Elasticities of public transport trips to land use 
factors 
Density Diversity Design Accessibility 

Cervero and 
Kockelman 

(1997) 

San 
Francisco 

Multiple 
regression 
model; 
Logit choice 
model 

Travel 
Diary; 
Census 

0.084~ 
0.113 0.365 0.087~ 

0.183 - 

Kitamura et 
al. (1997) 

San 
Francisco 

Linear 
regression 
model 

Field 
Survey - - - - 

Cervero 
(2002) 

North 
America 

Logit choice 
model 

Household 
Travel 
Survey 

0.268~ 
0.511 

0.452~ 
0.615 0.327 0.195 

Rajamani 
(2003) 

North 
America 

Logit choice 
model 

Activity 
survey 0.0775 -0.037 

-0.012~ 
0.0004 0.418 

Rodriguez 
and Joo 
(2004) 

North 
America 

Multinominal 
choice model 

Field 
survey; 
Census 

-0.204~    
-0.537 - 0.251~ 

2.762 - 

Zhang (2004) 
Boston 

Discrete choice 
model 

Household 
Travel 
Survey  

0.004~ 
0.118 0.121 - 0.044~ 

0.083 

Hong 
Kong 

0.005~ 
0.014 - - - 

Bento et al. 
(2005) 

North 
America 

Discrete choice 
model 

Household 
Travel 
Survey 

-2.70~ 
-2.41 insignificant -5.35~ 

4.26 - 

Cervero 
(2006) 

North 
America 

Post-
processing and 
direct models 

National 
Database 0.145 0.043 0.045  

Frank et al. 
(2008) Seattle 

Choice model; 
Tour based 
trips 

HTS; 
GIS 
database 

 0.01~ 
0.34 

0.14~ 
0.26 - 

Sung and Oh 
(2011) 

Seoul 
Multiple 
regression 
models 

Smart 
card; 
GIS tools 

0.106~ 
0.176 

0.116~ 
0.223 

-0.233~ 
0.333 

0.145 
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As discussed in Section 2.1, a conventional public transport demand model is 

used for demand forecasting and elasticities investigation. The elasticities 

derived from demand models are clearly affected by the set of explanatory 

variables examined. However, the conventional public transport demand studies 

have not yet comprehensively incorporated land use variables. Although land use 

characteristics can be evaluated from various measures as discussed above, these 

measures have only entered the demand model studies in terms of population 

density. Other factors including land use diversity, urban design, and 

accessibility, which have demonstrated their importance in travel behaviour, 

have not been fully considered in demand modelling studies. Excluding factors 

from demand modelling that have a significant impact on travel demand 

potentially causes biased estimates. Thus, the integration between the two fields 

of knowledge is needed to strengthen the linkage between public transport 

demand and land use characteristics.   

 

2.2.3 Self-selection of location choice 

The association between travel behaviour and land use has been evident, but the 

causality that generates this association is not fully understood. A possible 

causality that links travel behaviour and land use characteristics is an 

individual’s location choice, because the choice of residential location can be 

influenced by people’s preference of mode choice. For example, people who do not 

have a car are more likely to choose a residential location close to public 

transport stations and thus walk and use public transport more. These 

attitudinal attributes of mode choice preferences involved in the decision of 

location choice is called ‘self-selection’ in the literature.  

 

When investigating the relationship between travel behaviour and land use 

characteristics, it is important to understand the extent to which an individual’s 

mode choices are attributed to the land use characteristics and self-selection. If 

self-selection exists but ignored, the impact of land use on travel behaviour will 

be overestimated. The self-selection problem has received significant attention 

and there is a rich body of literature which aimes to identify the causality of 
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people’s travel behaviour and location choice (Golob, 2003, Simma and Axhausen, 

2004, Rivera and Tiglao, 2005, Bhat and Guo, 2007, Cao et al., 2007, Cervero, 

2007, Pinjari et al., 2007). A comprehensive review paper (Mokhtarian and Cao, 

(2008) summarises seven approaches to investigate the self-selection problem: 

direct questioning using questionnaires to ask respondents’ attitude toward their 

choices of household locations, statistical control, instrumental variables models, 

sample selection models, joint discrete choice models, structural equations 

models, and longitudinal designs. They concluded that a longitudinal structural 

equations modelling using genuine panel data or designed experiment is the most 

ideal approach to identify the causality of travel behaviour and land use 

characteristics. However, if attitudinal data are not available and the self-

selection is not the main focus of the demand study, it can be controlled by 

controlled by incorporating the socio-economic factors of travellers in the demand 

model. This approach has been suggested by Zhang (2011) as a way of mitigating 

the impact of self-selection on travel demand. 

 

2.3 Pseudo panel data 

2.3.1 Background of pseudo panel data 

As shown in Section 2.1.2, differences between short-run and long-run elasticities 

are to be expected. Given the importance of time effects on people’s decisions on 

travel, the data used for estimating travel demand models need to identify the 

individuals’ dynamics of travel behaviour. Dargay and Vythoulkas (1999) 

suggested two types of data that can be used for dynamic modelling. One is 

genuine panel data collected by conducting surveys with the same participants 

over a significantly long time period at a disaggregate level. The other is 

aggregate time-series data collected from observations on a larger group of 

people, aggregated at some spatial – usually regional - level.  

 

Genuine panel data at a disaggregate level are ideal to investigate a traveller’s 

long-term travel behaviour, but in practice this sort of data is rarely available. In 

comparison, aggregate time-series data are easier to obtain but they lack 

information at the individual level. Dargay and Vythoulkas (1999) suggested that 

using pseudo panel data can reduce the constraints of existing data availability. 
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Pseudo panel data were first introduced by Deaton (1985) in consumer economics. 

In the field of transport planning, it has been adopted by studies on forecasting 

car ownership and car use (Dargay and Vythoulkas, 1999, Dargay, 2001, Dargay, 

2002, Dargay, 2007, Huang, 2007, Weis and Axhausen, 2009). The concept of a 

pseudo panel dataset is to use existing repeated cross-sectional data and to group 

individuals or households into cohorts by time-invariant variables such as birth 

year and household characteristics. This allows the identification of the patterns 

of travel behaviour in each defined cohort to be examined. In turn this approach 

can better explain individuals’ travel behaviour since it has a micro-economic 

level basis for the examination of behaviour over time and thus provides the 

potential to adapt  aggregate modelling approaches to the disaggregate context. 

 

A comparison of the benefits and disadvantages of genuine panels, repeated 

cross-sectional data, and pseudo panels are summarises in Table 2.6. Genuine 

panels are the most ideal data sources to capture individuals’ behavioural 

changes over time and to identify a causality effect. However, genuine panels also 

possess some deficiencies from sampling and survey process that may limit data 

availability. Compared to genuine panels, repeated cross-sectional data offer 

greater sample observations, because representative samples are drawn for each 

wave of the survey independently. The main shortcoming of repeated cross-

sectional data is that the respondents are not traced over time, so the travel 

behaviour change over time cannot be captured from different individuals. A 

pseudo panel, grounded in sound theory, is an alternative approach to conduct a 

longitudinal study on behavioural changes. Although the cohort level of 

aggregation in a pseudo panel dataset loses some individual information, it has 

been suggested that this loss can be minimised if the variation within cohorts can 

be controlled to be much smaller than the variation between cohorts (Verbeek 

and Nijman, 1992).  
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Table 2.6 A Comparison of Genuine Panels, Repeated Cross-sectional Data, and Pseudo 
Panels  
 Pros Cons 

Genuine Panels 

• Capture behavioural change over 
time  

• Identify causality effect 
• Ideal for forecasting purpose  

• Coverage limitation 
• Sample attrition 
• Panel conditioning and fatigue  
• Data are rarely available 

Repeated 
Cross-Sectional 

Data 

• Sufficient data sources 
• Steady sampling condition 

• Larger sampling errors 
• Not tracking the same 

individuals 

Pseudo Panels 

• Identify the dynamics of travel 
behaviour  

• Appropriate if the samples within 
cohorts are grouped homogenously  

• Tracking the same observations 
based on a cohort level 

• Loss of individual information 
after cohort aggregation 

• Loss samples after matching 
cohorts 

 

Summarised from Verbeek (1992), Yee and Niemeier (1996), and Raimond and Hensher (1997) 

 

2.3.2  Principles of pseudo panel data construction 

A pseudo panel dataset is created by using existing repeated cross-sectional data 

to create cohorts by forming individuals or households into groups by time-

invariant variables such as birth year. Each created group is constituted of 

cohorts with the same grouping criteria identified over the observed time period.  

After forming the pseudo panel dataset, a cohort is treated as a single 

observation in the dataset and the mean values of the variables are computed to 

represent the observations. Provided that the pseudo panel dataset can be 

created in a way to generate sufficient inter-group heterogeneity, the pseudo-

panel approach can allow the identification of the patterns of travel behaviour 

from the defined groups.  

 

The aim of cohort creation is to reduce the variation within the cohorts and 

increase the variation between cohorts to ensure each cohort can be treated as an 

independent individual and be traced over time (Verbeek, 1992). From Table 2.7 

which summarises previous pseudo panel data studies, birth year is the most 

commonly used variable to create groups.  It is also clear that other variables can 

be adopted to complement birth year if further subdivision of cohorts becomes 

necessary. The selection of complementary criteria depends on the context of 

study. For example, Bernard et al. (2010) chose household location and house size 

because people living in the same region and the same size of house share 

common features of electricity consumption. Therefore, although birth year is the 
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most obvious variable to create cohorts and its representativeness has been 

demonstrated from previous studies, other variables complementary to birth year 

can be used to make the observations within cohorts more homogenous or create 

additional cohorts.  

 

Table 2.7 A Comparison of Selected Previous Pseudo Panel Data Studies  

Author Context of Study Study Area Grouping 
Criteria 

Gassner 
(1998) Telephone access UK Birth year 

Dargay and  
Vythoulkas  

(1999) 
Car ownership UK Birth year 

Dargay 
(2002) Car ownership UK Birth year 

Gardes 
et al. 

(2005) 
Food consumption US Birth year; 

Education  

Dargay 
(2007) Car travel demand UK Birth year 

Huang 
(2007) Car ownership UK Birth year 

Weis and 
Axhausen 

(2009) 
Travel demand Switzerland 

Birth year; 
Gender; 
Region 

Warunsiri and 
McNown 

(2010) 
Return to education Thailand Birth year 

Bernard  
et al. 

(2011) 
Electricity  Canada Region; 

House size 

 

 

2.3.3 Pseudo panel data in transport literature 

Although the pseudo panel data approach has been developing since 1985, there 

is not much empirical work applied in transport field, and previous pseudo panel 

data studies in transport have focused on car travel studies rather than public 

transport.  

 

The first application of the pseudo panel approach in transport was conducted by 

Dargay and Vythoulkas (1999). They constructed a pseudo panel dataset from the 
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UK Family Expenditure Surveys from 1970 to 1994, and studied the relationship 

between car ownership and its determinants including income, car costs, public 

transport fare, and the socio-demographic factors of the households. The short-

run and long-run elasticities were investigated by employing a dynamic Partial 

Adjustment Model. The results show the long-run elasticities to be generally 

three times greater than short-run elasticities. This was the first attempt 

applying a pseudo panel dataset to a transport study, and empirically it 

demonstrated that the pseudo panel data can be estimated as conventional panel 

data if the cohorts are created with sufficient inter-group variation.  

 

Based on the UK data, Dargay (2002) extended this car ownership study to 

investigate the difference in car ownership between rural and urban areas. The 

results indicated that households in urban and rural areas do have different 

sensitivity to motoring costs for their household car ownership, and long-run 

elasticities are around 40 percent greater than short-run elasticities. This study 

showed the ability of a pseudo panel data approach to distinguish the difference 

in travel behaviour across cohorts possessing different characteristics.  

 

Dargay (2007) further investigated the asymmetry of the relationship between 

car travel, car ownership, and household income. This study found that the 

relationship between car ownership and the changes in household income is not 

symmetric, because rising income encourages households to purchase more cars, 

whereas the falling income does not make households abandon their purchased 

cars. This finding can be regarded as showing the benefit gained from a pseudo 

panel approach over an aggregate approach because it provides a certain level of 

micro-economic underpinning travel behaviour. 

 

Huang (2007) also created a pseudo panel dataset from the UK Family 

Expenditure Surveys. This study employed a linear dynamic econometric model 

as well as a non-linear discrete choice model to study the household car 

ownership in the UK. He suggested that although the cohort dataset is an 

intermediate level between disaggregate and aggregate level, it does not violate 
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the random utility theory of disaggregate choice modelling based on an individual 

level.  

 

Weis and Axhausen (2009) studied induced travel based on a pseudo panel 

dataset constructed from the Swiss National Travel Survey. A Structural 

Equations Model (SEM) was applied to take account of the interactions among 

endogenous variables such as share of mobiles, number of trips, and travel 

distance Their findings confirm that  generalised cost has a significant impact on 

travellers’ mobility. The results show that pseudo panel data can be empirically 

estimated in SEM as if they were conventional panel data.  

 

The empirical evidence shows that the pseudo panel data can be treated as 

genuine panel data at a cohort level in the estimation process. Despite the loss of 

the real individuals’ information, pseudo panel data still provides a deeper 

insight into the variation of respondents’ socio-economic characteristics over time 

as compared to aggregate data. In terms of modelling flexibility, existing studies 

in both transport and other contexts have also demonstrated that the pseudo 

panel data can be applied in a wide range of models, including dynamic models, 

random utility models, and SEM.  

 

However, the data requirement for pseudo panel data is still demanding. First, 

the cohort size has to be sufficiently large, suggested as more than one hundred 

individuals within each cohort (Verbeek and Nijman, 1992). Second, the number 

of observations also needs to be large enough to have valid statistical efficiency, 

thus a trade-off between cohort size and number of observation occurs. Third, the 

pseudo panel dataset must allow sufficient group-specific variation and thus 

choosing variables to be examined becomes a difficult task. This is because after 

averaging the cohort variables, the variation of variables across observations is 

reduced, and the explanatory power of the chosen variables becomes lower. These 

issues are obstacles for empirical applications if the repeated cross-sectional data 

do not provide sufficient and quality samples. 
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2.3.4 Issues of application to public transport   

The issues of a pseudo panel data approach mentioned above appear to be more 

severe for public transport demand studies, and thus explain the lack of pseudo 

panel studies focusing on public transport in the literature. In practice, the 

challenges to be overcome in the context of public transport include: 

(1) The limited number of public transport trips as a result of low public 

transport usage. 

(2) The interpretation of public transport demand at the cohort level needs to 

be defined, whether demand is the number of trips or mode share. 

(3) The difficulty in generating a group-specific price variable for public 

transport, given the complexity of fare types and ticket types. 

Although repeated cross-sectional travel surveys offer a consistent and large 

scale data, the number of observations will be considerably reduced after forming 

the cohorts. Besides, the cohort size also needs to reach a certain level of 

threshold to reduce the measurement errors. If the research context is car travel 

or car ownership, this issue is less problematic since the number of car users 

from travel surveys is mostly sufficient for statistical analysis. In contrast, where 

the public transport usage is only a minor proportion of total trips, the low 

number of public transport observations will limit the flexibility of the cohort 

construction and lead to the loss of the statistical power as a result of small 

cohort size or small number of observations. 

 

The second issue in public transport studies is how the public transport demand 

should be interpreted. Compared to car travel studies, in which the car travel 

distance or the number of household car ownership are used to explain the car 

travel demand, the interpretation of public transport demand at a cohort level 

appears to be more complicated. The travel distance used in car travel studies 

should not be applied to public transport trips, because the travel distance of 

public transport trips is expected to be highly correlated with the individual 

location information which determines the distance between travellers’ origin 

and destination, thus confounding the relationship between the level of public 

transport use and its explanatory factors. Apart from pseudo panel studies, 
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conventional public transport demand research tends to use passenger-km or 

ridership for an aggregate study, and discrete mode choice for disaggregate study 

as shown in Table 2.1. Both approaches can not be directly applied to a cohort 

analysis because of the different aggregation level. Besides, the variable used in a 

cohort analysis is expected to have some group-specific characteristics, which 

means that respondents assigned to different groups are expected to carry 

sufficient variation. Therefore, careful attention must be given to the choice of a 

reasonable dependent variable used to explain the pubic transport demand at a 

cohort level.   

 

In the context of public transport demand elasticity, the travel cost as the price 

variable is certainly one of the main research interests. At a cohort level, the 

price variable ought to possess some group-specific variation. This issue has been 

identified in Dargay and Vythoulkas (1999) where a weighted train and bus fare 

was used which was not group-specific in this study. They pointed out that more 

transport related questions could be analysed if more variation in the price 

variable can be established.  

 

Weis and Axhausen (1999) used a travel price index to represent a measure of 

the travel price relative to the general consumer price. This measure had 

variation over time but was constant across the defined groups. In public 

transport demand studies, it is important to incorporate the variation of public 

transport fares, as applied to different groups of users, such as concession price 

for students and pensioners as price variation is expected to have an impact on 

the public transport demand. This will be especially the case for pseudo panel 

studies that use birth year to create groups and can identify the travel behaviour 

across different generations.  

 

2.4 Panel data model estimation 

Pseudo panel data models have been empirically estimated in previous applied 

research, and there have been some technical reports examining the performance 

of various estimators on pseudo panel data. This section reviews the conventional 

estimation techniques developed in the literature of panel data analysis, and 
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discusses the estimation techniques applied in previous pseudo panel data 

studies.  

 

2.4.1 Static genuine panel data model and estimation 

The theoretical background of the estimation techniques and model assumptions 

of genuine panel data are the fundamental knowledge of pseudo panel data 

models.  A simple panel data model can be described as Equation (2.1): 

 

 0 1 ,   i=1,...,N; =1,...,Tit it ity x u tβ β= + + Equation (2.1)
 

where ݅ denotes the panel units (eg. firm, country, or household), ݐ denotes the 

time period, and ݑ௜௧ represents the error term.   

 

The main concern of genuine panel data estimation is that the panel units are 

likely to possess unobserved heterogeneity that are correlated with ݑ௜௧, and this 

leads to biased and inconsistent estimates using the pooled Ordinary Least 

Squares estimator (OLS) through the violation of the error term independency. 

To control for unobserved heterogeneity, various estimators have been developed 

for genuine panel data models such as the Fixed Effect (FE), Random Effect 

estimator (RE), and Instrumental Variable estimator (IV). These estimators are 

based on different model assumptions and are used to accommodate different 

panel data properties and model forms. A comprehensive introduction to these 

developed estimators is summarised in Hsiao (1986). 

 

Given that unobserved heterogeneity is hidden in the error term as a part of  ݑ௜௧ 
in Equation (2.1), the FE model modifies Equation (2.1) by adding a time-

invariant unobserved factor ߙ௜ assumed to be correlated to ݔ௜௧ and replacing ݑ௜௧ by ߝ௜௧  which has a mean value of zero and is independent of ݔ௜௧  as described in 

Equation (2.2). In the FE estimation, ߙ௜  is eliminated through a demeaned 

transformation to ensure the error term is not correlated with the regressors.  

 

 0 1 ,    E( ) 0it it i it ity xβ β α ε ε= + + + = Equation (2.2)

To eliminate ߙ௜, the FE estimator averages Equation (2.2) over time period ݐ: 
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 0 1i i i iy xβ β α ε= + + + Equation (2.3)

Subtracting Equation (2.3) from Equation (2.2) : 

 

 0 0 1

1

( ) ( ) ( ) ( ) ( )

              ( ) ( )
it i it i i i it i

it i it i

y y x x

x x

β β β α α ε ε
β ε ε

− = − + − + − + −
= − + −

 
Equation (2.4)

 

In Equation (2.4), the unobserved individual effect ߙ௜ is eliminated, so the OLS 

estimator will be unbiased after transformation. This OLS estimator, based on 

the demeaned deviation, is called the FE estimator or within estimator which 

only take accounts of the within variation in the variables by treating ߙ௜ as fixed 

parameters.  

 

Another way to estimate a FE model is called Least Squares Dummy Variable 

(LSDV) estimator. This is undertaken by including a dummy variable to each of ܰ െ 1 panel units as an explanatory variable. This approach can be written as 

Equation (2.5). In Equation (2.5), each dummy variable ݀  in unit ݅  is used to 

incorporate the individual effect. The estimation results from the FE estimator 

and the LSDV estimator are identical in terms of slope coefficients and standard 

errors, but LSDV takes account of the dummy variables in the estimation process 

and thus loses degrees of freedom. 

 

 * * *
1 1 2 2 1...it i i N Ni it ity d d d xα α α β ε= + + + + +  Equation (2.5)

The FE estimator is used to accommodate the correlation between unobserved 

heterogeneity ߙ௜ and explanatory variables ݔ௜௧. However, if no correlation exists, 

then there is no efficiency gained from using a FE model. Instead, a Random 

Effect (RE) estimator is preferred over the pooled OLS estimator which is still 

biased because of the unobserved heterogeneity in ߙ௜ leads to serial correlation of 

error terms. This can be seen in Equation (2.6) where the composite error term ݑ௜௧ is serial correlated due to the presence of ߙ௜. 
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 0 1 ,     it it it it i ity x u uβ β α ε= + + = + Equation (2.6)

The RE estimator employs a Generalised Least Squares (GLS) transformation by 

introducing a scalar,ߠ, defined as Equation (2.7). 

 

 2

2 2
1

T
ε

ε α

σθ
σ σ

= −
+

 
Equation (2.7)

 

The variables in Equation (2.6) are next averaged and multiplied by ߠ  , and 

subtracted from Equation (2.6) to give Equation (2.8) where the transformed 

error terms are serially uncorrelated. Given that θ  is only constituted of two 

parameters 2
εσ  and 2

ασ , these can be estimated through a LSDV estimator and a 

OLS estimator respectively. This process yields the RE estimator using the GLS 

transformation based on the assumption that the unobserved heterogeneity is 

uncorrelated with explanatory variables. 

 

 0 0 1( ) ( ) ( ) ( )it i it i it iy y x xθ β θβ β θ ε θε− = − + − + −  Equation (2.8)

The choice between the FE and RE estimator depends on the nature of model 

forms and data properties. The key distinction is that the FE estimator allows 

correlation between unobserved heterogeneity and explanatory variables, 

whereas the RE estimator assumes that they are uncorrelated. If the assumption 

is that there is no correlation between unobserved heterogeneity and explanatory 

variables, then the RE estimator will provide more efficient estimation over the 

FE estimator. Conversely, if this assumption is violated, then the RE estimator is 

inconsistent so the FE estimator is preferred. This assumption can be examined 

by employing a Hausman’s test in which the null hypothesis is that the 

correlation between unobserved heterogeneity and explanatory variables is zero.  

 

Another characteristic of the FE estimator is that it only takes accounts of 

within-group variation and thus any time-invariant variables such as gender 

cannot be estimated through a FE estimator, whereas the RE estimator which is 

a weighted estimation of the between-group variation and within-group variation 
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is able to incorporate time-invariant variables. Plümper and Troeger (2007; 2011) 

have examined the performance of the FE estimator when estimating time-

invariant or rarely changing variables in the model and found that the FE 

estimator will be inefficient under this circumstance. Therefore, the FE estimator 

may not be preferred if the model includes some variables that are of interest but 

rarely changing over time. 

 

2.4.2 Dynamic panel data model and estimation 

Genuine panel data models capture the dynamic economic behaviour through a 

dynamic panel data model. In transport, individuals’ travel behaviour in 

response to transport system changes is suggested to be affected by their lagged 

adjustments of residential and work location choice, car ownership, habits of 

travel, travel costs, life cycle changes, imperfect information, and uncertainty 

(Voith, 1991; Goodwin, 1992; Oum et al. 1992, Dargay and Hanly, 2002, Batley et 

al., 2011). The dynamic economic behaviour in genuine panel data analysis can 

be modelled using a dynamic functional form. A general dynamic panel data 

model form can be specified as Equation (2.9). 

 
 

0 , ,
1 1 0

   i=1,...,N; t=t-q,...,T
p qn

it m i t m jq i jt m it
m j m

y y xβ λ β ε− −
= = =

= + + + 
 

Equation (2.9)
 

 

Equation (2.9) is known as an autoregressive distributed lag model where ݌ 

denotes the number of lags of ݕ௜௧, q denotes number of lags of ݔ௜௧, and ݊ is the 

number of exogenous regressors. ߝ௜௧ represents the error term. The model can be 

simplified when ݌ ൌ ݍ ൌ ݊ ൌ 1 as Equation (2.10).  

 

 0 1 1 1 2 1it it it it ity y x xβ λ β β ε− −= + + + + Equation (2.10)

This simplified general dynamic model identifies that the current economic 

behaviour is expected to be affected by the exogenous variable ݔ௜௧, and its lagged 

value at ݔ௜௧ିଵ as well as the lagged value of the dependent variable ݕ௜௧ିଵ. The 

estimated coefficients ߚଵ  and ߚଶ  are short-run multipliers which represent the 
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effect on ݕ௜௧ of a unit change in ݔ௜௧ and ݔ௜௧ିଵ, whereas ߣଵ is used to derive the long-

run multiplier ሺሺఉభାఉమሻሺଵିఒభሻ ሻ. 

 
Various dynamic model forms have been developed including models 

incorporating the lagged adjustments higher than the first order and they have 

been empirically employed according to the nature of economic behaviour 

assumed. The Partial Adjustment Model (PAM) as specified in Equation (2.11) is 

commonly applied to take account of the effect of previous behaviour on current 

behaviour where the lagged dependent variable, ݕ௜௧ିଵ, is used to represent the 

economic behaviour in previous time period ݐ െ 1, and ߚଶ is assumed to be zero 

which assumes that the lagged value of ௜ܺ௧ has no significant impact on ௜ܻ௧.  
 

 1 1 ,     ,  1, ..., ,   1, ...,it it it it it i ity y x u u i N t Tλ β α ε−= + + = + = =  Equation (2.11)

 

The major problem in estimating the dynamic model (Equation (2.9)) is that 

without controlling for the individual effect ߙ௜ ௜௧ିଵݕ ,  is correlated with the 

composite error term ߤ௜௧  because ߙ௜ , which does not change over time, will 

influence ݕ௜௧ିଵ in the estimation process. Thus, using pooled OLS estimation will 

result in biased estimates of λ. In a static model, where ߣ ൌ 0 in Equation (2.9), 

the correlation between ߙ௜ and ߤ௜௧ can be controlled by using a FE estimator as 

discussed above. However, in the presence of ݕ௜௧ିଵ , pooled OLS estimation is 

biased upward and FE estimation is biased downwards (also known as Nickell 

bias, Nickell (1981)) as a result of the endogeneity between  ݕ௜௧ିଵ and the error 

term.  

 

The FE estimator transforms model (Equation (2.9)) to eliminate ߙ௜  and then 

gives Equation (2.12). 

 

 1 1 1( ) ( ) ( ) ( ) ( )it i it it it i i i it iy y y y x xλ β α α ε ε− −− = − + − + − + − Equation (2.12)
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 where 

1 1 1 1 1

1
( ... ... )

1it it it i it iTy y y y y y
T− − − −− = − + + + +

−
                       

2 1

1
( ... ... )

1it i it i it iTT
ε ε ε ε ε ε−− = − + + + +

−
                                

The issue in Equation (2.12) is that ሺെ ௬೔೟்ିଵሻ is correlated with ߝ௜௧, and ሺെ ఌ೔೟షభ்ିଵ ሻ is 

correlated with ݕ௜௧ିଵ.  Therefore, although ߙ௜  is eliminated through the 

transformation, the estimates are still biased in finite ܶ because the transformed 

lagged dependent variable and the transformed error term are correlated.  

 

The RE estimator is also biased in the dynamic model, because the GLS 

transformation does not eliminate ߙ௜  in the estimation process as shown in 

Equation (2.13). Therefore, the presence of ߙ௜ leads to biased estimates. 

 

 1 1 1( ) ( ) ( ) ( ) ( )it i it it it i i i it iy y y y x xθ λ θ β θ α θα ε θε− −− = − + − + − + − Equation (2.13)

 

Anderson and Hsiao (1981) proposed an Instrumental Variable (IV) estimator to 

address this endogeneity problem. This method introduces an instrument, ݖ௜௧ , 

which is correlated with ∆ݕ௜௧ିଵ but uncorrelated with ∆ߝ௜௧, so the parameters are 

estimated in two stages. In the first stage ∆ݕ௜௧ିଵ is regressed by ݖ௜௧ using an OLS 

estimator in Equation (2.14). In the second stage, ∆ݕ௜௧ is regressed by the fitted 

values generated from the first stage using an OLS estimator in Equation (2.15). 

Thus, this IV estimator is also called the two-stage least square estimator 

(2SLS).  

 

 1it it ity zδ ω−Δ = + Equation (2.14)

 
1 ( )it it it itity y zλ ε λ δ ε

∧ ∧

−Δ = + Δ = + Δ  
Equation (2.15)

 

   

As it is important that the instrument ݖ௜௧ has to be correlated with ∆ݕ௜௧ିଵ but 

uncorrelated with ∆ε୧୲, Anderson and Hsiao (1981) proposed to use ݕ௜௧ିଶ as an 

instrument because it lies in the assumption, as seen in Equation (2.16). 
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 2, 1 2 1 2 2 1 2cov( ) cov[ , ( )] ( ( )] 0it it it it it it it ity y y y y E y y y− − − − − − − −Δ = − = − ≠  

2, 2 1 2 1cov( ) cov[ , ( )] ( ( )] 0it it it it it it it ity y E yε ε ε ε ε− − − − −Δ = − = − =  
Equation (2.16)

 

However, with regards to the IV estimator, Arellano and Bond (1991) suggested 

that the 2SLS estimator is inefficient because the first-differenced 

transformation is likely to produce serial correlation. Thus, they proposed to use 

the Generalised Method of Moments (GMM) estimator, as a form of IV 

estimation, to estimate the parameters more efficiently than the 2SLS estimator 

by imposing the moment conditions: 

 

 '( ) 0 for i=1,2,...,Nt iE Z uΔ =  Equation (2.17)
 

In general, if there is no serial correlation in the error terms, both IV and GMM 

estimators are consistent. If there is still serial correlation present after using 

instrument ݕ௜௧ିଶ, then further lags of dependent variables ݕ௜௧ିଷ or ݕ௜௧ିସ should be 

employed. In the GMM framework the serial correlation can be tested and 

adjusted by using robust standard errors (Arellano and Bond, 1991). 

 

The dynamic panel data differs from static panel data model by including a 

lagged dependent variable. Thus, on top of the static panel data model 

assumptions, a dynamic model produces another issue of concern- the correlation 

between lagged dependent variable and error terms which violates the 

assumption of strict exogeneity in a panel data model. Advanced IV estimators 

have been introduced to accommodate this problem, but the assumptions of the 

instruments also need to be tested. In choosing between the Anderson-Hsiao IV 

estimator and Arellano-Bond GMM estimator, Halaby (2004) identified that 

neither of the estimators has shown uniform superiority in every circumstance, 

and thus analysts should experiment both estimators in applied work.  

 

Although the IV estimators have been acknowledged as an effective tool to deal 

with the endogeneity problem in dynamic panel data modelling, this method also 

suffers from some restrictions. Kiviet (1995) demonstrated that the IV estimation 

methods may lead to small sample bias and large standard errors which together 
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result in poor efficiency. Bruno (2005a) pointed out that the IV estimators are 

appropriate when the number of cross-section units (ܰ) is large, but when ܰ is 

small, IV estimators will lead to problematic estimates. On the other hand, 

although the FE estimator with standard OLS is biased in the dynamic model, in 

principle it generates smaller standard errors than IV estimators and thus 

makes the statistical inference more reliable (Beck and Katz, 2011). Therefore, if 

the bias in the standard OLS can be approximated, the corrected estimates with 

smaller standard errors from the standard OLS estimation will be favoured over 

the IV estimator.  

 

Based on this concept, Kiviet (1995) developed a bias-corrected least squares 

dummy variables (LSDV) estimator that approximates and removes the bias 

from the standard LSDV estimator for dynamic panel data in the following way. 

Consider the PAM dynamic model as Equation (2.11) with observations collected 

over time and across panel units give Equation (2.18). Kiviet’s work was 

extended and simplified as a more general form in Bun and Kiviet (2003) as 

follows: 

 

 ( )N Ty W Iδ ι α ε= + ⊗ + Equation (2.18)
 

where 1( , )δ λ β= ݕ ;  and ܹ ൌ ሺݕ െ 1, ܺ ) are ሺܰܶ ൈ 1ሻ  and ሺܰܶ ൈ ݇ሻ  matrices of 
stacked observations; N TI ι⊗  is the matrix of individual dummies where Tι  refers 
to the ሺܶ ൈ 1ሻ vector of all unity elements. ε  is ሺܰܶ ൈ 1ሻ vector of error terms.   
 

Using OLS yields the LSDV estimator as Equation (2.19). 
 
 
 1 1ˆ ( ' ) '  where ( )LSDV N T T TW AW W Ay A I I

T
δ ι ι− ′= = ⊗ −  Equation (2.19)

 

The bias of the LSDV estimator when ܰ is infinite has been examined by Nickell 

(1981) and is of order O(T-1). Bun and Kiviet (2003) suggested that in small 

samples there is additional bias given by Equation (2.20). 

 
 1 1 1 1 2 2 2ˆ( ) ( ) ( ) ( ) ( )LSDVE O T O N T O N T O N Tδ δ − − − − − − −− = + + +  Equation (2.20)
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The total bias can be approximated by applying a Monte Carlo simulation. Kiviet 

(1995) concluded that the standard LSDV estimator generates smaller standard 

errors than the IV estimators for small samples suggesting the LSDV estimator 

is potentially more efficient at reducing the bias in dynamic modelling. The 

Monte Carlo experiment conducted in Judson and Owen (1999) also supported 

the use of the bias-corrected LSDV estimator in balanced panel data when ܰ is 

small.  

 

Some panel data observations can be missed or dropped during the observed time 

period, and this is known as unbalanced panel data. Focusing on unbalanced 

panel data, Bruno (2005b) extended the corrected LSDV estimator to dynamic 

unbalanced panel data by imposing a selection rule which selects the 

observations identified in both current time ݐ and ݐ െ 1. The select rule is given 

by Equation (2.21). 

 

 11 if ( ,  ) (1,1)
    i=1,...,N and t=1,...,T

0              otherwise
it it

it

r r
s − =

= 


 Equation (2.21)

where rit is the selection indicator.  

 

Thus, the dynamic panel data model can be modified as Equation (2.22) 

 

 1 1( ),     ,  1, ..., ,   1, ...,it it it it it it it i its y s y x u u i N t Tλ β α ε−= + + = + = =  Equation (2.22)
 

Therefore, the LSDV estimator differs from Equation (2.18) by imposing the 

selection rule as shown in Equation (2.23). 

    

 1

1

ˆ ( ' ) '  

( ( ' ) ')

LSDV S S

S

W A W W A y

A S I D D SD D S

δ −

−

=

= −
 Equation (2.23)

where S refers to the (NT×NT) of usable observations excluding missing values 

and D= N TI ι⊗  
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Bruno (2005) suggested that in finite samples, if all the regressors other than the 

lagged dependent variable are exogenous, then the bias-corrected LSDV 

estimator is preferred to IV estimators. As the LSDV estimator is identical to the 

FE estimator with standard OLS in terms of the parameter estimates and 

standard errors, the corrected-bias method can be applied to both the LSDV 

estimator and the FE estimator with standard OLS in practice. However, this 

approach is only valid when the all the explanatory variables are exogenous, 

which is a rather strong assumption and is difficult to justify in practice. In 

addition, the corrected-bias LSDV method can only take account of time-series 

variation in the same way as the conventional FE and LSDV estimators do. 

Hence, this method has been rarely employed in applied panel data analysis, and 

thus is not considered for the empirical analysis of this study in the following 

chapters. 

 

2.4.3 Pseudo panel data model and estimation 

The pseudo panel data model introduced by Deaton (1985) is specified as follows: 

 
 

 0 1gt gt gt gty xβ β α ε= + + + Equation (2.24)

 

Compared to the genuine panel data Equation (2.1), Equation (2.24) uses the 

subscript ݃ instead of ݅ to denote the created groups in the pseudo panel data. 

The variables ݕത௚௧ and ݔҧ௚௧ represent the way in which the variables are the mean 

values of each cohort. The critical element of Equation (2.24) that distinguishes 

the pseudo panel data model from the genuine panel data model is that the 

average unobserved group effect ߙത௚௧  is time-varying because the cohorts are 

constituted of different members although they are defined in the same group, 

whereas in genuine panel data the individual effect is time-invariant and 

denoted as ߙ௜ . The result is that the time-varying group effects will not be 

eliminated through the demeaned transformation in the FE estimation (as shown 

in Equation (2.12)), so the conventional FE estimator will be biased whether in 

the static or dynamic model when pseudo panel data are in use. 
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Deaton (1985) highlighted this by emphasising sample cohort means in pseudo 

panel data sets are consistent but “error-ridden” estimates of the true population 

means which are unobservable. Deaton proposed using an errors-in-variable 

estimator to estimate this population relationship. Verbeek and Nijman (1992) 

conducted an empirical analysis to compare the estimates obtained using the FE 

estimator with standard OLS for a genuine panel dataset and a pseudo panel 

dataset created from the genuine panel data. They found the difference between 

the estimates from genuine panel data and from pseudo panel data can be 

reasonably ignored if the cohort size is sufficiently large. Large in this context 

was a cohort size greater than one hundred individuals with smaller cohorts 

remaining reliable if they contained sufficient inter-cohort variation. This result 

implies that with sufficiently large cohorts the time-varying ߙത௚௧ can be treated as 

a constant over time as ߙത௚ , so that the pseudo panel data can be used in 

estimation as if they were genuine panel data, using conventional estimation 

techniques.  

 

Given that one of the advantages of using pseudo panel data is that it permits 

longitudinal analysis where no genuine panel data exist, capturing the dynamics 

of the behaviour is particularly valuable from the use of pseudo panel data. 

Moffitt (1993) extended Deaton’s (1985) work to a dynamic context by using the 

partial adjustment dynamic model, concluding that a dynamic model can be 

consistently estimated with an IV-2SLS estimator, as discussed in the previous 

section. 

 

McKenzie (2004) has more recently studied a dynamic model in a pseudo panel 

data context where the cohorts displayed inter-group heterogeneity. Using Monte 

Carlo simulation, he investigated dynamic model estimation using an OLS 

estimator and a GMM estimator separately. The simulation results demonstrated 

that a downward bias occurs for an OLS estimator if the cohort size is small, but 

this bias reduces if both cohort size and time periods become large. On the other 

hand, the bias from the GMM estimator is less severe but the estimates from the 

GMM estimator had more variability than the OLS estimator.  
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Verbeek and Vella (2005) further considered the estimation techniques for 

dynamic pseudo panel models. Monte-Carlo simulations identified that imposing 

time-varying instruments as in Moffitt (1993) resulted in severe estimation bias 

but this bias declined if the cohort size is larger than one hundred individuals 

and inter-group variation is present in the explanatory variables. Their 

conclusion was that a necessary condition of having a consistent estimation 

result in pseudo panel dynamic estimation is for the explanatory variables to 

have time-varying and inter-cohort variation as with genuine panel data. 

 

Inoue (2008) proposed using GMM estimation to estimate dynamic pseudo panel 

data. He found that the GMM estimator was more precise than the FE estimator 

if the cohort size is large relative to the number of cohorts and the time periods. 

However, Inoue confirmed the finding from Verbeek and Vella (2005) that the 

identification condition may fail if the cohort-specific variation is not present.  

 

In general, if the pseudo panel data can be created in a way that allows 

sufficiently large cohort size and inter-group variation, the literature suggests 

that pseudo panel data can be estimated as genuine panel data using 

conventional estimation methods. Table 2.8 summarises recent pseudo panel 

studies and the estimation techniques used in the analysis.  

 

For studies using static models, most studies adopted the FE estimator to 

estimate the pseudo panel data (Gassener, 1998; Gardes et al., 2005; Huang, 

2007; Weis and Axhausen, 2009; Warunsiri and McNown, 2010). These studies 

refer to the results of Deaton (1985) and Verbeek and Nijman (1992) which 

allows time-varying unobserved heterogeneity to be ignored if the cohort size is 

sufficiently large giving theoretically unbiased and consistent results using the 

FE estimator. Some studies also used other estimators and compared the results 

with the FE estimator. Gassner (1998) estimated the pseudo panel data with 

both the FE and RE estimator. The Hausman’s test suggested that the FE 

estimator was preferred.  
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Table 2.8 Estimation Techniques in Previous Applied Pseudo Panel Studies 

1Observations included in the estimation. The number of observations in some studies may be smaller than the 
product of T and G as a result of dropping cohorts less than one hundred individuals.  
2The RE estimator is employed but rejected after the Hausman’s test. 
3Households are grouped based on the geographical locations. This study created 134 cohorts in rural areas, 152 
cohorts in urban areas, and 159 cohorts in other areas.  
4Structural Equation Model. 
5220 cohorts from 2-year band age grouping and 440 cohorts from 1-year band age grouping. 

 

 

Huang (2007) conducted a Likelihood Ratio Test and a Ramsey Regression 

Equation Specification Error Test (RESET) and concluded the FE estimator was 

more favourable than the pooled OLS estimator. Warunsiri and McNown (2010) 

compared the estimation results from the pooled OLS, FE, and IV estimators. 

They found that the pooled OLS estimator without cohort dummies had a 

downward estimation bias as a result of not controlling for unobserved 

heterogeneity. The FE estimator and IV estimator generated similar slope 

Author Context of Study Area Observations1 Model 
Estimation 
technique 

Gassner 
(1998) 

Telephone Access UK 
324  

(G=27, T=12) 
Static 

FE;  
RE2 

Dargay and  
Vythoulkas 

(1999) 
Car ownership UK 

165 
(G=16, T=12) 

Dynamic 

FE; 
Pooled OLS; 
RE; 
RE-IV 

Dargay 
(2002) 

Car ownership UK 

134, 
152, 
1593 

(G=15, T=14) 

Dynamic FE 

Gardes 
et al. 

(2005) 
Food consumption US 

90 
(G=18, T=5) 

Static 
Between; 
FE; 
First-differences 

Dargay 
(2007) 

Car travel UK 
256 

(G=16, T=20) 
Dynamic FE 

Huang 
(2007) 

Car ownership UK 
254 

(G=16, T=19) 
Static; 
Dynamic 

Pooled OLS; 
FE 

Weis and 
Axhausen 

(2009) 
Travel demand 

Switzerlan
d 

838 
(G =140, T=7) 

Static; 
SEM4 

FE 

Warunsiri and 
McNown 

(2010) 
Return to education Thailand 

220; 
(G =11, T=20) 

4405 

(G =22, T=20) 

Static 
Pooled OLS; 
FE; 
IV 

Bernard  
et al. 

(2011) 
Electricity  Canada 

100 
(G =25, T=4) 

Dynamic IV-dummy 
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coefficients but the standard errors from the IV estimator were larger than those 

from the FE estimation thus confirming the results of McKenzie (2004).  This 

reported applied research for a static model suggests that the FE estimator 

appears to be a more appropriate estimator to estimate pseudo panel data as 

compared to the pooled OLS estimator. 

 

Estimation of dynamic models using pseudo panel data has also been reported. 

As with genuine panel data, the lagged dependent variable is likely to be 

correlated with the error term and cause estimation bias. Dargay and Vythoulkas 

(1999) and Bernard et al. (2011) used the IV estimator to address this 

endogeneity problem and the results from Dargay and Vythoulkas (1999) show 

that the IV estimator should be chosen over the FE estimator.  

 

2.5 Diagnostics and correction of panel data model assumptions 

The estimation techniques for genuine panel data and pseudo panel data have 

been widely discussed in the literature. However, the diagnostics of the basic 

assumptions underpinning these estimation techniques which are routinely 

tested in genuine panel data analysis do not seem to have transferred to the 

pseudo panel data literature. This relates in particular to the structure and 

assumptions of the error term which are similar to multiple regression models.  

These are: 

 

(1) Error term ߝ௜௧ is homoscedastic. 

(2) Error term ߝ௜௧ is not serial correlated. 

(3) Error term ߝ௜௧ is not cross-sectionally dependent. 

(4) Strict exogeneity so the error term is not correlated with explanatory 

variables. 

 

Assumptions (1) to assumption (3) are captured by Equation (2.25) with 

assumption (4) by Equation (2.26). 
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 2  for j=i and t=s;
( )

0    otherwise        
it jsE εσε ε =  Equation (2.25) 

 
 

 
1[ ,..., ] 0it i iTE x xε =  Equation (2.26)

  

 

These four assumptions apply to both static and dynamic models, and for both 

genuine panel data and pseudo panel data with assumption (4) being particularly 

important for dynamic models where the lagged dependent variable is included 

as an explanatory variable. In reported pseudo panel studies, discussion has 

focussed on time-varying unobserved heterogeneity with little consideration of 

the implications of the failure to meet the assumptions of the error term.  

 
Reed and Ye (2011) showed that most genuine panel data suffer from serial 

correlation or cross-sectional dependence and conventional estimators cannot 

control both these effects (more generally referred as non-spherical errors). 

Ignoring the presence of non-spherical errors may cause biased or inefficient 

estimation, showing the importance of testing model assumptions to validate the 

estimation results.  

 
In the literature concerned with genuine panel data analysis, some statistical 

methods have been developed to test model assumptions as summarised in Table 

2.9. To test the homoscedasticity of the error term, Greene (2000) compared the 

Lagrange Multiplier (LM) test, likelihood ratio test, and standard Wald test, and 

proposed a modified Wald test for groupwise heteroscedasticity. For serial 

correlation, the Wooldridge’s test is regarded as more robust than the Durbin-

Watson test and the LM test (Wooldridge, 2002). The first test of cross-sectional 

dependence was introduced by Breusch and Pagan (1980) but this is only applied 

to panel data when the number of time periods exceed the number of panel units 

(ܶ ൐ ܰ).  It was extended by Pesaran (2004) to address the circumstance when ܰ 

and ܶ  are both infinitely large and is known as the Pesaran Cross-section 

Dependence (CD) test.  For strict exogeneity, Hausman’s test can be used, as 
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suggested by Hayashi (2000) through a comparison of the results of a FE 

estimation and a FE-IV estimation.  

 
Table 2.9 Panel Data Model Assumption Tests 

Assumption test Test Method Developer 

Heteroscedasticity Modified Wald test Greene (2000) 

Serial correlation 

Durbin-Watson test; Durbin and Watson (1971); 

LM test; Baltagi and Li (1991) 

Wooldridge test Wooldridge (2002) 

Cross-sectional 

dependence 

Breusch-Pagan LM test (T>>N) Breusch and Pagan (1980);  

Pesaran CD test Pesaran, M.H. (2004) 

Strict exogeneity Endogeneity test Hayashi (2000) 

 
 

To address heteroscedasticity, serial correlation, and cross-sectional dependence 

problems in panel data models, Reed and Ye (2011) summarised three estimators 

that can be used: OLS with robust standard errors, Feasible Generalized Least 

Squares (FGLS) and Panel-Corrected Standard Error (PCSE) estimator. If 

Equation (2.24) is the pseudo panel data model to be estimated, the first adjusts 

OLS estimators by imposing robust standard errors to control for 

heteroscedasticity, serial correlation, and cross-section dependence as described 

by Equation (2.27). 

 

^
1 1 1

^ ^
1 1 1 1 1 1

( ' ) '

Var( ) ( ' ) ( ' )( ' )

X W X X W Y

X W X X W W X X W X

β

β

− − −

− − − − − −

=

= Ω
 Equation (2.27)

 

where ܹ  is the weighting matrix and Ω෡  incorporates the estimated error 

variance-covariance matrix, ܺ  is the ܶ 1ݔ vector of observations of the exogenous 

explanatory variables, and ܻ  is ܶ 1ݔ  vector of observations of the dependent 

variable.  

 

An extension of this is the FGLS introduced first by Parks (1967). The FGLS 

estimator uses a similar estimation formula as the standard OLS as shown in 

Equation (2.28). 
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1^ ^
1 1

^
1 1

( ' ) '

Var( ) ( ' )

X X X Y

X X

β

β

−
− −

− −

= Ω Ω

= Ω
 Equation (2.28)

 
 
The difference between the standard OLS estimator and FGLS estimator is that 

the FGLS estimator allows for group-wise heteroscedasticity, first order serial 

correlation and time-invariant cross-sectional dependence. The FGLS estimator 

involves two transformations: first to eliminate the serial correlation by the OLS 

estimator, and second to correct the cross-sectional dependence by using the 

residuals from the first estimation.  

 

Beck and Katz (1995) have demonstrated the FGLS estimator can only be applied 

when ܶ ൐ ܰ using a Monte Carlo simulation.  However, even when ܶ ൐ ܰ, FGLS 

tends to underestimate standard errors and thus inflate the confidence in the 

estimated parameters. Beck and Katz’s simulations showed that the 

underestimation of standard errors with FGLS was most severe when ܶ ൌ ܰ, 

with overconfidence of parameter significance reaching 408 percent when ܶ ൌ ܰ ൌ 10 , as compared to the OLS estimator. A Panel-Corrected Standard 

Error (PCSE) estimator was developed by Beck and Katz (1995) to address this 

problem and was shown to perform better than FGLS.  The PCSE estimator can 

be described as Equation (2.29). 
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1 1
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−

−

= −

= −


  Equation (2.30)

 
where X෩  and Y෩  are the transformed vectors of  independent variables and 

dependent variable using Prais-Winsten transformation (Equation (2.30)) to 

control for serial correlation ሺߩොሻ of the error term(Prais and Winsten, 1954). ∑෡ is 

the variance matrix which is estimated by the residuals from the OLS estimation.  
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The literature shows that the presence of any heteroscedasticity, serial 

correlation, or cross-sectional dependence does not lead to biased coefficients but 

instead gives estimation inefficiency that makes the statistical inference 

unreliable. In contrast, the presence of endogeneity causes biased estimates.  

Whilst the literature for genuine panel data analysis also has developed 

estimation techniques to correct or allow estimation in the presence of relaxed 

model assumptions, these have not been highlighted or used in applied pseudo 

panel studies.  

 

Dargay and Vythoulkas (1999) noted the error terms in pseudo panel data 

estimation are likely to be heteroscedastic because the number of observations in 

each cohort is different. This was corrected by weighting all variables by the 

square root of the number of observations in each cohort (i.e., Weighted Least 

Squares method) in this study. Dargay (2007) also identified that the potential 

presence of serial correlation would lead to inconsistent estimates and tested for 

the presence of serial correlation but found none. Huang (2007) corrected for 

homoscedastic errors weighting the variables by the square root of the cohort size 

(as undertaken by Dargay and Vythoulkas, 1999) but further investigated 

potential outliers by carrying out an analysis of residuals. Bernard et al. (2011) 

instrumented the error term to control for serial correlation and 

heteroscedasticity, but the analysis assumed no cross-sectional dependence in the 

error term between the defined groups which would require further validation. 

All studies using the Weighted Least Squares (WLS) method have not 

demonstrated how this eliminates the non-spherical errors, as they did not 

undertake or present further model assumption tests after the WLS estimation. 

 
The discussion above suggests that violations in the error term assumptions in 

genuine panel data analysis can lead to biased or inefficient estimation. However, 

the error term assumptions have not been as rigorously examined in the applied 

pseudo panel data studies as in genuine panel data analysis. This review 

highlights the importance of model assumption diagnostics and correction 

techniques that has not been comprehensively applied in previous pseudo panel 

studies.   
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2.6 Research gaps and summary 

The literature review on public transport demand elasticities and land use 

studies suggests that an ideal travel demand model should take three elements 

into account: the temporal effect, land use characteristics, and individuals’ 

behaviour. Previous studies using either an aggregate modelling approach or a 

disaggregate modelling approach have not yet integrated these three elements in 

one study.  

 

Aggregate modelling approaches are able to investigate time effects based on 

aggregate time-series data. However, few aggregate studies include multiple land 

use variables in demand models, and individuals’ travel behaviour cannot be 

identified through aggregate data. These shortcomings can be overcome by a 

disaggregate modelling approach, because disaggregate models can incorporate 

more information about individuals’ location characteristics as well as 

individuals’ choices of travel. However, disaggregate modelling, as reported in the 

literature, has not properly taken account of the temporal effect of demand 

changes.   

 

The limitation in disaggregate data seems to arise from a lack of data at the 

appropriate level of disaggregation to conduct a time-series study to determine 

the long-run demand elasticities. Given that land use factors can generate long-

term effects on travel behaviour, the approach applied to investigate public 

transport demand elasticities which takes account of land use characteristics 

needs to have the ability to identify the temporal effect, and distinguish between 

short-run and long-run elasticities.    

 

As genuine panel data are rarely available, pseudo panel data analysis provides a 

potential solution to the research gap identified above. Pseudo panel data, 

derived from repeated cross-sectional data can be established from travel surveys 

of individuals, creating cohorts which allow the temporal effect to be identified. A 

pseudo panel approach creates a dataset which allows both static and dynamic 

econometric models to be applied at a cohort level whilst incorporating the 

potential for behavioural grounding. Therefore, combining a disaggregate 
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modelling approach and pseudo panel data analysis can be a potential method to 

investigate the effect of time and land use on individuals’ travel behaviour.  

 

This study applies the pseudo panel data approach to identify the short-run and 

long-run public transport demand elasticities in Sydney by constructing a 

dynamic public transport demand model incorporating a comprehensive land use 

dataset together with price, socio-economic variables, as well as the supply 

variable as identified being important in the public transport demand literature. 

The dataset including all the variables are introduced in Chapter 3.  

 

The review on previous pseudo panel data studies highlights the current 

practices of pseudo panel data approach in transport literature. Although the 

pseudo panel approach has been increasingly applied in travel demand analysis, 

applications to public transport demand have not yet been evident in the 

literature. As discussed in Section 2.3.4, when applying the pseudo panel 

approach to public transport demand studies, the dependent variable used to 

represent the public transport demand need to possess sufficient variation across 

defined groups. This is investigated in Chapter 4 in which the pseudo panel 

dataset is presented and the inter-group variation of the variables is examined. 

The other issue highlighted in Section 2.3.4 is the price variable for public 

transport. The public transport price variables used for previous pseudo panel 

studies on car travel demand were generic across groups, which limited the 

explanatory power of effects of price variation on the demand change. This study 

derives the public transport price variable from the household travel survey data, 

which is specific to each single trip and individual traveller. The inter-group 

variations of the price variable as well as other explanatory variables are also 

examined in Chapter 4.  

 

Another constraint in applying pseudo panel analysis to public transport demand 

is the lack of sufficient public transport observations in most study areas, 

because conventionally the pseudo panel data construction requires at least more 

than one hundred members in each cohort as a rule of thumb. This constraint in 

turn limits the statistical power of conventional estimation techniques such as 
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the IV estimator that requires a large sample size to be efficient. As a result, the 

FE estimator becomes the most commonly applied technique to estimate pseudo 

panel data models although it is not able to take account of the between-group 

variation, which is usually substantial in a pseudo panel dataset. This indicates 

that the estimation techniques for pseudo panel data models need to be further 

examined, especially for applied pseudo panel datasets that possess some unique 

properties different from genuine panel data. In Chapter 5, a Monte Carlo 

simulation experiment is presented to evaluate the performance of various 

estimators under the scenarios of applied pseudo panel data. The simulation 

results in turn provide suggestions for empirical model estimations which are 

presented in Chapter 6 and Chapter 7.  
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CHAPTER 3 DESCRIPTION OF CASE STUDY  

 

3.1 Introduction 

Chapter 1 and Chapter 2 have discussed the research questions of this study and 

the research gaps identified in the literature. This chapter introduces the study 

area of this study and presents an exploratory analysis on the association 

between public transport demand and land use characteristics. The Sydney 

Greater Metropolitan Area (SGMA) is chosen as the study area and its general 

demographic and geographic characteristics as well as the public transport 

network in the SGMA are presented in Section 3.2. Section 3.3 summarises the 

data sources collected for this study and defines the variables of the dataset. 

Section 3.4 presents a preliminary analysis on the relationship between public 

transport demand and its explanatory variables using a Geographically Weighted 

Regression (GWR) approach 1 . This exploratory analysis investigates the 

variation of public transport demand in the SGMA with respect to the 

explanatory variables hypothesised to be important whilst taking account of 

geographical variations in order to define the geographical boundaries for the 

pseudo panel data analysis in Chapter 4.   

 

3.2 The Sydney Greater Metropolitan Area 

3.2.1 Demographics and geography   

Sydney is the most populous city in Australia and the state capital city of New 

South Wales. The metropolitan area of Sydney is defined by the Sydney Greater 

Metropolitan Area (SGMA), which comprises Sydney Statistical Division (Sydney 

SD), Illawarra Statistical Division (Illawarra SD), and Newcastle Statistical 

Subdivision (Newcastle SSD) as shown in Figure 3.1. The total geographical 

coverage of the SGMA is summarised in Appendix 1 (Table A1.1). The SGMA is 

chosen as the study area because it is the geographical coverage of Sydney 

Strategic Travel Model which is the transport planning model used to project and 

                                            
1 A journal paper based on this GWR analysis has been published in Tsai et al. (2012). This paper 
was previously presented in the 35th Australasian Transport Research Forum and won the David 
Willis Memorial Prize which is awarded to the best paper conducted by a young professional in 
the conference. The author wishes to acknowledge the contribution of the co-authors- Corinne 
Mulley and Geoffrey Clifton. 
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predict travel patterns with respect to strategic land use planning and transport 

planning operated by Bureau of Transport Statistics (2011e). Sydney SD, where 

the Sydney Central Business District (CBD) is located, is the core business and 

activity centre of the area with highest number of population and employments 

in NSW. Illawarra SD and Newcastle SSD are located to the south and the north 

of Sydney SD with local labour markets developed in both regions.  

 

 
Figure 3.1 The Sydney Greater Metropolitan Area 

Source: Bureau of Transport Statistics (2011e) 

 

The population, area size, and population density of each division are 

summarised in Table 3.1. In 2010, the total population in the SGMA is around 

5.56 million with the majority of people residing in Sydney SD. The total area of 

the SGMA is 24,499 km2 with the average population density of 227 
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(persons/km2). Of the three statistical divisions in the SGMA overall, Sydney SD 

is the densest area with the highest population density of 377 persons/km2, 

followed by 135 persons/km2 in Newcastle SSD and 52.5 persons/km2 in Illawarra 

SD (Australian Bureau of Statistics, 2011b). 

 
Table 3.1 Demographics of the Sydney Greater Metropolitan Area 

Division Population 
(persons) 

Area 
(km2) 

Population Density 
(persons/km2) 

Sydney SD 4,575,532 12,138 377

Newcastle SSD 546,788 4,052 135

Illawarra SD 436,117 8,309 53

Total 5,558,437 24,499 227
Source: Australian Bureau of Statistics (2011a) 

 
3.2.2 Public transport in the Sydney Greater Metropolitan Area 

Table 3.2 summarises the general statistics of travel mode split in the SGMA 

between July 2010 and June 2011 (2010/2011). The major mode of travel in the 

SGMA is private vehicles including vehicle driver and vehicle passenger trips, 

which collectively take account of 70.6 percent of the mode share, followed by 

walk only trips sharing 17.4 percent of the total trips. Train and bus as the two 

major public transport systems share around 9.8 percent in the SGMA. Of the 

three divisions, Sydney SD has the highest number of trips as a result of the 

higher population and employment. Comparing the mode share among the three 

statistical divisions, Sydney SD has the higher share of train, bus, and walk only 

trips as compared to the other two divisions and the public transport network is 

more intensive in Sydney SD. Public transport trips are substantially lower in 

Newcastle SSD and Illawarra SD, so the total public transport mode share of the 

SGMA is mostly driven by Sydney SD.  

 

Train and bus form the major public transport system in the SGMA. The train 

system is solely operated by CityRail which operates 1,595 km of mainline tracks 

which also provide services between Newcastle SSD and Illawarra SD via Sydney 

SD.  Most areas within the SGMA are served by local buses. The inner Sydney 

areas in Sydney SD are mainly served by Sydney Buses which is a state-owned 

agency. In other outer suburbs, bus services are commonly contracted to private 

bus companies. Other public transport systems, including ferries and light rail, 

share less than one percent of total trips, so they are not included in this study.  
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Table 3.2 Statistics of Trip Modes in the SGMA in 2010/2011 

Trip Mode 
Sydney 

SD 
Newcastle 

SSD 
Illawarra 

SD SGMA 

Vehicle  
driver 

Trips ('000) 8,062 1,234 938 10,326 
Mode Share 46.9% 59.1% 54.0% 48.9% 

Vehicle 
passenger 

Trips ('000) 3,653 489 418 4,575 
Mode Share 21.2% 23.4% 24.1% 21.7% 

Train 
Trips ('000) 920 14 25 960 
Mode Share 5.3% 0.7% 1.4% 4.5% 

Bus 
Trips ('000) 1,007 68 46 1,118 
Mode Share 5.9% 3.3% 2.7% 5.3% 

Walk only 
Trips ('000) 3,153 249 266 3,667 
Mode Share 18.3% 11.9% 15.3% 17.4% 

Other modes 
Trips ('000) 407 34 43 485 
Mode Share 2.4% 1.6% 2.5% 2.3% 

Source: Bureau of Transport Statistics (2012e) 

 

 

The CityRail network was first opened in 1855. The rail network was 

substantially completed before 1997, and only three new lines have been added in 

the network since 1997 as summarised in Table 3.3 with a map of new extension 

lines in Figure 3.2. The Olympic Park Line was built for the Sydney Olympic 

Games in 2000 with a five-kilometre track connecting Lidcombe and Olympic 

Park Stations. The Airport Line is a Public Private Partnership project which 

provides a rail link between Central Station and Sydney Airports (including the 

international and domestic terminals) located to the south of Sydney CBD. The 

Airport Line is operated by a private company named Airport Link which 

operates Mascot, Green Square, Domestic Airport, and International Airport 

stations. The latest network extension was in February 2009 when the Epping-

Chatswood Line was opened. This 12.5-kilometre rail link connects western north 

and eastern north of Sydney. Compared to the total 1,595-kilometre network 

length of CityRail, the three new lines opened after 1997 do not share a large 

proportion of total network size so that train supply has not changed 

dramatically since 1997. 
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Table 3.3 CityRail Network Changes since 1997 

Date Opening Length 

27 April 1999 Olympic Park Line 
 (Lidcombe Station-Olympic Park Station) 5 km 

21 May 2000 Airport Line 
(Central Station- Wolli Creek Station) 7.3 km 

23 February 2009 Epping to Chatswood Rail Link 
(Epping Station to Chatswood Station) 12.5 km 

Source: Summarised from Rail Corporation New South Wales annual reports               
(http://www.railcorp.info/publications/annual_reports) 

 

 
Figure 3.2 Extended Railway Lines of CityRail after 1997 

Source: Developed from Sydney GIS layers 

 
The bus services in Sydney are supplied by both public and private operators. 

The public bus service is operated by State Transit Authority of New South 

Wales, which is a government owned authority responsible for the operations of 

Sydney Buses, Newcastle Buses and Ferries, and Western Sydney Buses (known 

as Liverpool-Parramatta Transitway commenced in February 2003). In other 

areas apart from STA service coverage, bus services are contracted to private bus 

companies, and both public and private bus trips are taken into account of this 

study.  
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The introductions of the case study presented above highlight the key socio-

demographic characteristics, travel patterns, and general urban forms of the 

SGMA. In general, the urban development in the SGMA is planned based on the 

CBD as the core of business and activities centres and is gradually expanded to 

outer areas. The outer areas are supplied by commuter trains to access the CBD 

and its surrounding business centres, and the outer areas are also served by local 

buses for the need of local mobility and accessibility to the trip destinations 

where the train service is not available. As population grows, the outer areas 

have moderately developed their local labour markets but still with high travel 

demand to the CBD. This type of urban form and public transport supply is 

commonly seen in most metropolitan cities in Australia. Although the outcomes 

of this study cannot be perfectly generalised to other areas, the investigation of 

the associations between public transport demand and land use characteristics 

on the SGMA may reasonably provide practical relevance to other cities with 

similar urban forms and travel patterns.  

 

3.3 Data description 

3.3.1 Data sources 

The dataset used in this study consists of travel-related data and land use data. 

The travel-related data including public transport demand and trip price, as well 

as socio-economic variables of public transport users, are retrieved from the 

Sydney Household Travel Survey (SHTS) collected by Bureau of Transport 

Statistics (BTS). The SHTS has been undertaken continuously since 1997/1998, 

with approximately 8,500 people in 3,500 households recruited annually (Bureau 

of Transport Statistics, 2011b). The SHTS comprises data about individuals’ 

travel behaviour from a one-day travel diary that records each single trip with 

related information such as trip modes. The SHTS also includes a household form 

and personal from to collect the socio-economic information of households and 

household members. This database provides consistent repeated cross-sectional 

data with comprehensive travel related information.  

 

The land use data are collected from Australian Census conducted by the 

Australian Bureau of Statistics (ABS) and Geographical Information System 
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(GIS) layers of the road network in the SGMA. The Australian Census is 

conducted at five-year intervals and the most recent data available for this study 

in 2006 are merged into the SHTS database by matching geographical codes. The 

road network data used to retrieve other land use variables and accessibility 

measures are based on the 2010 road network GIS layers provided by BTS. 

Whilst the most recent census data has typically been used for the land use 

variables (apart from where noted in Section 3.3.2), sensitivity analysis has been 

undertaken which compared the change in these variables over all possible 

census data for the time period covered by the dataset. This sensitivity analysis 

concluded that changes in land use variables happened only slowly so that the 

use of 2006 and 2010 data respectively does not introduce significant error. A 

further discussion about the sensitivity analysis is presented in Section 4.3.2. 

 

The geographical locations of the individual data from the SHTS and Census are 

only available at the Census Collection District (CD) level as the finest 

aggregation level. The geographical coordinates of household locations are 

desirable for this study but not available due to confidentiality issues. This study 

uses Travel Zones (TZ) as the aggregation level for most of the variables that 

require geographical information such as land use variables, except for a few 

variables available at household level provided by BTS as noted in the next 

section. The CD level is considered to be too disaggregate to have sufficient 

variations within each CD, and the TZ is more consistent to the strategic 

transport planning for the SGMA as TZ is designed in a way to create 

homogeneous areas in terms of travel patterns, land use characteristics, and 

public transport supply.  

 

3.3.2 Definitions of variables 

Dependent variable 

In this study, public transport demand as the dependent variable of the demand 

model is defined by the number of public transport (bus and train) trips made by 

a traveller per day. Other modes of public transport in the SGMA including ferry, 

light rail, and monorail are excluded from the public transport sample because 

they only account for around 2.4 percent of total trips in the SGMA collectively as 
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shown in Table 3.2, and the service coverage of these modes are restricted to a 

certain number of Travel Zones and hence the demand and its association with 

explanatory variables may not be representative of the whole SGMA.  

 

As discussed in Section 2.3.4, the definition of public transport demand must be 

given careful consideration. Compared to the public transport demand defined in 

some previous studies, which conventionally defined public transport demand by 

passenger patronage (Dargay and Hanly, 2002, Cervero, 2006) at an aggregate 

level, this measure is used because it can be calculated for each individual in the 

SHTS and thus the associations between public transport demand and the 

explanatory variables can be investigated at an individual level. For further 

investigation of the demand at a higher aggregation level, this measure can be 

aggregated to the SGMA by weighting it to the total population. 

 

Independent variable 

As identified in Section 2.1 and 2.2, the literature on travel demand suggests that 

the determinants of public transport demand should include price, socio-economic 

factors, public transport supply, and land use factors.   

 

Price 

The impact of price on demand provides important policy implications for 

transport operators and government sectors when setting public transport fare 

policy.  There are several ways of estimating public transport price for public 

transport demand models. Studies based on panel data across various systems 

usually calculate public transport trip price by dividing the total fare revenues by 

total patronage of a system (Dargay and Hanly, 2002, Graham et al., 2009). 

Studies based on Stated Preference (SP) surveys using disaggregate data 

typically use public transport fare prices for demand modelling (Hensher, 1998). 

However, neither of the two common measures is able to represent a specific 

price for each journey. Considering the importance of individual information for 

each single public transport trip made in the SGMA, the public transport price in 

this analysis is calculated for each single public transport trip by dividing the 

total ticket price reported by the respondents in the SHTS by the total number of 
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trips provided by this ticket. There are many ticket types in Sydney such as 

single tickets, return tickets, and periodical tickets, but SHTS respondents only 

report their purchased ticket prices and ticket types and thus a ticket journey 

multiplier is employed to assume the average number of trips for periodical 

tickets (Table 3.4) to approximate the ticket price for each single trip. The use of 

the reported trip price from the STHS as opposed to the average public transport 

fare allows the price variable to vary across the observations rather than being 

fixed at an aggregate level.  

 

Table 3.4 Ticket Journey Multipliers 
Ticket Type Number of Trips 

Single 1 
Return 2 
Weekly 11 
Monthly 48 

Quarterly 144 
Yearly 585 

    Source: CityRail (2010) 

 

The alternative cost of a public transport trip, in terms of fuel price, has been 

investigated in this analysis but was found to be insignificant in the model, and 

thus it was removed from the dataset to improve the model degrees of freedom. 

 

Socio-economic variables 

Socio-economic factors have also been suggested as important explanatory 

variables of public transport demand. The socio-economic variables in this study 

include the annual personal income and the age of the public transport user 

which are both retrieved from the SHTS database. The inclusion of socio-

economic factors in the demand model is not only used to explain the variation of 

public transport demand, but also to mitigate the self-selection problem when 

attitudinal data are not available (Zhang, 2011).  

 

Car ownership, although suggested as relevant to travel behaviour in the 

literature, is not included in this study because car ownership is recorded at a 

household level in the SHTS giving a confounding relationship between 

individual public transport usage and the number of cars available in a 

household. For example, young students may only choose to use public transport 
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regardless the number of cars available for use in their households. Car 

ownership was investigated in the initial model but found insignificant so it was 

removed from the dataset as a result.  

 

Public transport supply 

Bus frequency is used to control for public transport supply and quality of public 

transport service in the SGMA. Bus frequency is computed from the number of 

bus services in each bus stop during peak hours 6am to 10am on a typical 

weekday, and then the bus frequencies at bus stops are aggregated to a 400-

meter buffer of a TZ centroid, which is considered as a reasonable walking 

distance from household locations to bus stops and the rule of thumb of service 

planning guidelines.  Train frequency is not included in the dataset because it is 

highly correlated with bus frequency (Pearson’s Correlation Coefficient: 0.82) and 

also because bus services are more accessible than train stations for most of the 

population and the train network does not cover the whole study area.  

 

Land use variables 

The impact of land use characteristics on travel demand can be identified 

through land use density, diversity, design and accessibility. Land use density in 

this study is defined by population density in terms of number of populations 

within 800 meters of a TZ centroid. This measure is used instead of population 

per squared kilometre of each TZ in order to control for the impact of TZ sizes on 

density. Of the total 2,742 TZs within the SGMA, the mean TZ area size is 3,623 

km2 with a large standard deviation of 35,217 and a median of 103 km2. This 

suggests that the TZ boundaries do not necessarily represent the residents’ 

activity areas. Hence, an 800 meter buffer, which is assumed to be a maximum 

walking distance for a traveller to access business and recreational activities, is 

used to standardise the population density measurement. Employment density 

was initially investigated but eventually removed from consideration because of 

its strong correlation with population density.    

 

The entropy of land use types is used to measure land use diversity. The entropy 

derived from Equation (3.1) represents the diversity of land use in a TZ. Entropy 
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has a value between zero and one with zero representing extremely homogenous 

land use, and an entropy of one indicates the land use is equally heterogenous 

across all land use types. The entropy of the land use mix is measured from four 

land use types including agricultural and parkland, commercial, residential, and 

other. 

 

1

ln *(ln / ln )
n

i i
i

ENTROPY M M Q
=

= −  Equation (3.1)

where ܯ௜ ൌproportion of land use type ݅ in a TZ 

            ܳ =total number of land use types 

 

Land use design can be observed from the connectivity and walkability of a local 

built environment. This study uses the number of pseudo nodes within 800 

meters of a TZ centroid to measure land use design. Pseudo nodes are retrieved 

from the GIS layers of the road network by measuring the curvature and the 

number of dead ends in the built environment, and the denser the pseudo nodes, 

the curvier and more disconnected are the roads. Figure 3.3 and Figure 3.4 

illustrate the composition of pseudo nodes in the GIS layer which represent two 

contrasting walking environments. In general, a built environment with more 

curvy roads and more cul-de-sacs has more pseudo nodes (Figure 3.3) than an 

area with a grid network (Figure 3.4). The hypothesis of the relationship between 

public transport demand and land use design is that the relationship would be 

negative for pseudo nodes, that is, public transport demand is higher in areas 

with fewer pseudo nodes. This hypothesis is based on previous studies of the 

relationship between travel behaviour and built environment which found that 

people tend to drive less and walk or use public transport more in areas with 

fewer cul-de-sacs (Cervero and Kockelman, 1997, Rajamani et al., 2003). The 

higher degree of road curvature is expected to have a negative impact on 

walkability and connectivity because travellers will need to walk further and 

more indirectly to public transport stations or trip destinations. 
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Figure 3.3 Pseudo Nodes in a Cul-de-sac Built Environment 

 

 
Figure 3.4 Pseudo Nodes in a Built Environment with a Grid Road Network 

 

A broader definition of accessibility is the accessibility to trip destinations or 

major activity attractions, and access to local public transport stations. The 

former measure is captured by the distance to Sydney CBD measured by the road 

distance between the centroid of a TZ to the CBD. This measure is considered to 
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be important in explaining public transport demand in the context of Sydney, 

because the major public transport network is focused on accessing the Sydney 

CBD. For a local access measure, the walk distance between household locations 

and the nearest train station or bus stop has been suggested influential for public 

transport demand. This variable is provided by Bureau of Transport Statistics for 

every household recruited in SHTS. In addition, the number of train stations and 

bus stops is also used as a proxy of local public transport access. This is 

calculated as the total number of train stations and bus stops within 800 meters 

of the household location.  

 

The dataset including price, socio-economic variables, public transport supply, 

and land use variables covering land use 3D and accessibility with their 

hypothesised relationships to public transport demand are summarised in Table 

3.5. The next section presents a preliminary analysis on the relationship between 

public transport demand and the explanatory variables at a TZ level. This micro-

level analysis allows for the identification of a global relationship between public 

transport demand and the explanatory variables in the SGMA using a multiple 

regression as well as the spatial variation in space within the study area using a 

Geographically Weighted Regression (GWR) method.  
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Table 3.5 Summary and Descriptive Statistics of Variables 
Variable Description Unit Hypothesis Source 

Dependent variable 

PTTRIP No. of public transport trips per 
person 

Trips/person n/a SHTS 

Price variable 

PRICE Public transport trip price Dollars (AUD) Negative SHTS 

Socio-economic factors 

INCOME Annual personal income Thousand 
dollars (AUD) Negative SHTS 

AGE Age Years Negative SHTS 

Public Transport Supply 

BUS FREQUENCY  

Number of buses serving a bus 
stop between 6am and 10am on 
Tuesday within 400 meters of a 
TZ centroid 

Thousands     Positive BTS 

Land use density 

POPULATION 
DENSITY 

Population within 800 meters of a 
TZ centroid Thousands Positive Census 

Land use diversity  

LANDMIX Entropy of land use mix n/a Positive Census  

Land use design 

PSEUDO NODES 
Number of pseudo nodes within 
800 meters of a travel zone 
centroid 

Thousands Negative Road 
network 

Accessibility 

DISTACNE TO 
CBD 

Distance between CBD and travel 
zone centroids 

meter Negative Road 
network 

DISTANCE TO PT 
STOP 

Distance between households and 
the nearest train station or bus 
stop 

meter Negative Road 
network 

PT STOPS 
Number of train stations and bus 
stops within 800 meters of a 
household 

n/a Positive Road 
network 

 

 

3.4 Exploratory analysis 

This section presents an exploratory analysis on the relationship between public 

transport demand and its explanatory variables including price, socio-economic 

factors, public transport supply, and land use factors, using data introduced in 

Section 3.3.  This exploratory analysis is conducted to identify the variation of 
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public transport demand with respect to the geographical information in the 

SGMA, with preliminary findings being used to underpin the pseudo panel data 

construction and analysis in Chapter 4.  

 

Although the relationship between public transport demand and land use has 

been identified in the existing literature, there is a lack of micro-analysis which 

comprehensively incorporates all the land use factors (3D and accessibility) in a 

public transport demand model, together with other key determinants such as 

price and socio-economic factors. Previous studies, based on the regional level 

(e.g., cities, states, or countries), have not been able to provide insights into the 

spatial variation of different variables across local communities on public 

transport demand within a specific study area. Moreover, the relationship 

between demand and land use has been conventionally examined at an average 

level assuming a homogenous parameter across all observations, without taking 

the spatial variability of land use variables into consideration. Spatial variability 

is important because if it exists it indicates a heterogeneous association between 

public transport demand and its determinants in the local areas, which provides 

important policy implications for local transport and urban planning. Spatial 

variability is particularly considered relevant when analysing land use data as 

shown by Wang et al. (2011) with land use factors tending to be correlated across 

space. The use of a Geographically Weighted Regression (GWR) methodology to 

identify the spatial variation addresses the issue.   

  

The GWR approach which can effectively capture the spatial variability of 

parameter estimates was developed by Fotheringham et al. (2002). GWR consists 

of a global model and a local model. The global model is essentially a multiple 

regression model, whereas the local model takes account of the spatial 

dependency in the estimation process by weighting the observations according to 

their geographical locations. The first application of GWR in transport research 

was by Du and Mulley (2006) who investigated the association between land use 

value and public transport demand in the Tyne and Wear region in the United 

Kingdom. In modelling travel demand, Mulley and Tanner (2009) applied the 

GWR approach to model household vehicle kilometres travelled (VKT) in Sydney. 
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In terms of modelling public transport demand, Chow et al. (2006) used a mixed 

GWR approach to predict public transport demand in Broward County of Florida 

using accessibility to employment, car ownership, employment density, and the 

composition of population.   

 

This analysis applies the GWR methodology to model public transport demand in 

the SGMA at a TZ level. A global public transport demand model incorporating 

comprehensive land use variables as well as price and socio-economic factors is 

constructed to identify the average relationship in the SGMA, and GWR local 

models are estimated to investigate the spatial variability of these relationships.  

 

3.4.1 Introduction of Geographically Weighted Regression 

The global public transport demand model constructed for this analysis 

hypothesises that public transport demand ሺܻሻ in a TZ ሺ݅ሻ is determined by public 

transport trip price ሺ ௜ܲሻ, a vector of socio-economic factors ሺܧ௜ᇱሻ, a measure of 

public transport supply and quality of service ( ௜ܵ ), and a vector of land use 

variables ሺܮ௜ᇱ ሻ and an independent error term ሺߝ௜ሻ as specified in Equation (3.2). A 

linear functional form is chosen in this analysis as it is an exploratory 

investigation. A linear model implies that elasticities vary with the 

corresponding public transport demand and the explanatory variable concerned. 

The elasticity of variable ݇ , evaluated at the mean, can be derived from the 

average demand ሺ തܻሻ and explanatory variables ሺ തܺሻ by Equation (3.3). 

 

' '
0 1 2 3 4+ + +i i i i iY P E S Lβ β β β β ε= + +  Equation (3.2)
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β= ⋅ = ⋅  Equation (3.3)

 

A drawback of the global multiple regression model is that all observations in the 

study area are equally weighted in the estimation process, and thus the 

relationship between the dependent variable and independent variables is 

homogenous. This assumption is over-simplified when there is spatial 

heterogeneity across the observations. Therefore, the local model of GWR is used 
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to accommodate spatial effects by allowing for heterogenous parameters for 

observations located in different geographical coordinates ሺݑ௜, ௜ሻݒ  as shown in 

Equation (3.4). 

 

' '
0 1 2 3 4( , ) ( , ) ( , ) + ( , ) + ( , ) + ( , ) +i i i i i i i i i i i i i i i i iY u v u v u v P u v E u v S u v Lβ β β β β ε= +  Equation (3.4)

 

The local model employs a kernel weighting scheme in the estimation process as 

defined in Equation (3.5). This analysis uses an adaptive weighting approach 

which allows a same number of observations for each estimation when the 

observations are not regularly distributed in geographical space (Figure 3.5), so 

the bandwidth of a kernel (Figure 3.6) is larger when the observations are 

sparser and is smaller when the observations are densely clustered (Charlton 

and Fotheringham, 2009). The estimated parameters for a location ሺ݅ሻ are more 

influenced by its surrounding areas than areas further away within a given 

bandwidth. As a result, the estimated parameters in different locations vary over 

geographical space to capture spatial heterogeneity.  

 

2 2( , )
( , ) (1 ( ) )i i i

i i i

d u v
w u v

h
= −  Equation (3.5)

where ݓ௜ = geographical weight for an observation ݅ ݀௜ = distance between the ith observation and the location ሺݑ௜,  ௜ሻݒ

h = bandwidth 

 

In short, the global model provides the general relationship between the 

dependent variables and its determinants without taking the spatial variation 

into consideration, so the results can only be interpreted as an average value for 

the study area. In contrast, the local model investigates the spatial heterogeneity 

of this relationship for each observation, and the results can be projected to GIS 

maps to visualise this effect. The performance of the local model as compared to 

the global model is identified through the Akaike Information Criterion (AIC) 

and adjusted R-squared value. The AIC is used to optimise the bandwidth in the 

estimation, where the bandwidth with the lowest AIC is used for estimating the 
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models, and a model with a lower AIC represents a better goodness of fit 

(Charlton and Fotheringham, 2009).  

 

 
Figure 3.5 Adaptive Kernels in Local Model Estimation 

Source: http://ncg.nuim.ie/ncg/gwr 

 

 
Figure 3.6 Bandwidth of a Kernel 

Source: http://ncg.nuim.ie/ncg/gwr 

 

 

3.4.2 Global model estimation 

The descriptive statistics of the variables in the dataset are presented in Table 

3.6. This analysis only considers TZs where public transport trips are identified 

between 1997 and 2009 so the number of observations is 1824 TZs. Around 900 

TZs with no public transport identified in the SHTS are excluded from this 

dataset because there is no information on trip price, age, and income. Some 
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variables show very high standard deviations which indicate that spatial 

variation appears to be present across TZs since each observation represents a 

TZ, and this effect is more substantial in the land use variables such as pseudo 

nodes, distance to CBD, and distance to the nearest public transport stops. This 

corresponds to Wang et al. (2011) as identified earlier, in which spatial 

variability is more significant in land use analysis. The entropy of land use mix 

appears to be small given a maximum entropy of 0.26 with a mean value of 0.13, 

suggesting that the land use types are generally homogenous within TZs. This is 

possibly because the TZ level of the land use mix measurement, which is 

aggregated from mesh blocks as the finest statistical level in Census, is not large 

enough to generate sufficient variation in land use types within TZs. Using a 

larger aggregation level may create more variation but is not applied in this 

analysis to ensure the geographical aggregation level of the land use variables is 

consistent in the dataset.  

 
Table 3.6 Descriptive Statistics of Variables 

Variable Obs Mean Std. Dev. Min Max 

PTTRIP 1824 0.40 0.32 0.01 3.00
PRICE 1824 2.19 1.02 0.25 9.00
AGE 1824 43.95 5.80 22.00 81.80
INCOME 1824 40.04 13.87 6.90 153.64
POPULATION DENSITY  1824 19.22 9.44 0.25 65.45
LAND MIX 1824 0.13 0.07 0.00 0.26
PSEUDO NODES 1824 1.60 1.72 0.08 29.87
DISTANCE TO CBD 1824 29.64 29.07 0.16 152.70
DISTANCE TO PT STOP 1824 274.77 304.42 0.36 4622.26
BUS FREQUENCY 1824 0.20 0.47 0.00 4.40

PT STOPS 1824 37.69 19.64 0.00 121.00

 

 

The correlation matrix in Table 3.7 is presented to identify potential collinearity 

among independent variables, with correlation coefficient higher than 0.500 

highlighted in bold texts. The highest correlation occurs between population 

density and number of bus stops at 0.655, and this is expected since public 

transport supply is usually higher in more populated areas. The correlation 

between population density and distance to CBD is also relatively high at -0.519 

because in Sydney as elsewhere, the urban development originated from the CBD 

as a core so population density is higher in areas closer to the CBD. Another 
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strong correlation is identified between bus frequency and number of bus stops at 

0.578 as might be expected since the bus frequency is the sum of bus services for 

each bus stop around 400 meters of the TZ centroid. 

 

Table 3.7 Correlation Matrix 
  PTTRIP PRICE AGE INCOME DENSITY LANDMIX PSEUDO CBD DISTANCE FREQ STOPS 

PTTRIP 1   

PRICE -0.186 1   

AGE -0.153 -0.117 1   

INCOME 0.054 0.013 -0.050 1   

DENSITY 0.384 -0.252 -0.244 0.119 1   

LANDMIX -0.040 0.036 0.010 -0.006 -0.075 1   

PSEUDO -0.226 0.161 -0.001 -0.081 -0.208 0.065 1   

CBD -0.427 0.163 0.101 -0.328 -0.519 0.114 0.239 1   

DISTANCE -0.107 0.132 0.053 0.005 -0.255 -0.063 0.225 0.135 1   

FREQ 0.255 -0.123 -0.290 0.077 0.423 -0.183 -0.140 -0.273 -0.121 1   

STOPS 0.334 -0.219 -0.187 0.001 0.655 -0.142 -0.264 -0.392 -0.348 0.578 1 

 

 

The estimation results of the global model using pooled Ordinary Least Squares 

(OLS) estimation are displayed in Table 3.8. The adjusted R-squared is 0.252 

which suggests that 25.2 percent of the variation in the dependent variable is 

explained by the explanatory variables. The global model does not have a good 

model goodness-of-fit with omitted variables identified from the Ramey’s RESET 

test. However, the F-test of the global regression model confirms the relationship 

between dependent and independent variables is statistically significant and this 

is the focus of this exploratory analysis. The Variance Inflation Factor (VIF) 

indicators are minimal suggesting that there is not a significant multicollinearity 

problem.  
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Table 3.8 Global Model Estimation Results 
Dependent Variable: PTTRIP Coef. S.E. t P>t [95% C.I.] VIF 

PRICE*** -0.026 0.007 -3.84 0.000 -0.039 -0.013 1.13 

AGE*** -0.005 0.001 -3.76 0.000 -0.007 -0.002 1.17 

INCOME***  -0.002 0.000 -3.68 0.000 -0.003 -0.001 1.16 

POPULATION DENSITY***  0.004 0.001 3.93 0.000 0.002 0.006 2.16 

LAND MIX* 0.173 0.101 1.71 0.088 -0.026 0.372 1.06 

PSEUDO NODES***  -0.020 0.004 -4.91 0.000 -0.027 -0.012 1.14 

DISTANCE TO CBD*** -0.003 0.000 -12.45 0.000 -0.004 -0.003 1.58 

DISTANCE TO PT STOP  0.036 0.023 1.55 0.121 -0.009 0.081 1.20 

BUS FREQUENCY** 0.036 0.018 2.05 0.041 0.001 0.071 1.64 

PT STOPS * 0.001 0.001 1.82 0.069 0.000 0.002 2.45 

_CONS 0.718 0.073 9.84 0.000 0.575 0.861  n/a 

Observations 1824  

Prob>F 0.00  

R-squared 0.256  

Adj R-squared 0.252            

Ramsey RESET Test ( Ho:  model has no omitted variables)  

F(3, 222)  42.51     

Prob > F  0.000     

* P<0.10, ** P<0.05, *** P<0.01 

 

As this is a linear regression model, the interpretation of the estimated 

coefficients relates to the units of variables. The model estimation results suggest 

that most variables are significant at 95 percent confidence level with the 

expected signs. According to the estimated coefficients, public transport demand 

is expected to be higher in TZs with lower average trip price, lower income, and 

lower age. For public transport supply, increasing bus frequency is expected to 

increase public transport demand given the positive sign of its coefficient. In 

terms of land use variables, public transport demand is expected to increase with 

higher population density, but decrease with the increase of distance to CBD and 

pseudo nodes at 95 percent confidence level. This confirms the hypothesis that a 

built environment with fewer curvy roads and cul-de-sacs such as a grid network 

provides better connectivity and walkability for public transport users and thus 

increases public transport demand.   
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The land use mix entropy and number of bus stops are only significant at 90 

percent confidence level but with expected signs. This is possibly a result of the 

fine aggregation level of land use mix measurement and the correlation between 

number of public transport stops and population density as well as bus frequency 

which have already captured the similar effects on public transport demand. 

 

The distance to the nearest bus stop, although suggested as relevant to travel 

behaviour in some previous studies, is not significant in this exploratory analysis. 

This may be because people living closer to a bus stop or a train station are not 

necessarily more likely to use public transport services, and instead, the 

frequency of public transport services is more important. People may not take 

public transport in a low-frequency station or stop although they live close to the 

services. This finding highlights the importance of including a public transport 

supply measure to control for the quality of public transport service.  

 

The average elasticity derived from Equation (3.3) is a convenient way to 

interpret the proportional change of public transport demand caused by the 

changes in the explanatory variables as shown in Table 3.9. All the elasticities 

are less than one in absolute value indicating public transport demand is 

inelastic to each of the variables individually. The highest elasticity is the age 

elasticity at -0.49 suggesting that a one-hundred percent increase in age is 

expected to decrease public transport demand by 49 percent. The second highest 

elasticity based on the absolute value is distance to CBD at -0.25, followed by 

population density, income, and price. Other land use variables have relatively 

smaller elasticities but the joint effect can be considerably influential. Given the 

two highest elasticities of age and distance to CBD, public transport demand in 

the SGMA is expected to have more variation with respect to these two measures. 

This result is used in the construction of the pseudo panel data analysis 

presented in Chapter 4.   
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Table 3.9 Average Elasticity to Public Transport Demand 
Variable1 Elasticity 

PRICE -0.14 

AGE -0.49 

INCOME -0.18 

POPULATION DENSITY 0.19 

LAND MIX 0.05 

PSEUDO NODES -0.08 

DISTANCE TO CBD -0.25 

BUS FREQUENCY 0.02 

PT STOPS  0.09 

    1Distance to PT stops is not included because it is not significant in the global model  

 

3.4.3 Local model estimation  

The local models of GWR are estimated by taking account of the spatial 

variability with results being compared to the global model estimation discussed 

above. The goodness of fit of the GWR local model can be compared to the global 

model using the AIC and adjusted R-square values. The local model estimation 

results suggest that the AIC and adjusted R-square are 247.21 and 0.40 

respectively, and both are improved as compared to the global model (AIC: 470.96 

and adjusted R-square: 0.252). This confirms that the local model has better 

model explanatory power and model goodness-of-fit by taking account of the 

spatial heterogeneity of the observations. The Monte Carlo test can be used to 

examine the significance of the spatial variability of parameters identified in the 

local model. The results of this, shown in Table 3.10, suggest that the spatial 

variability is significantly evident in the price, pseudo nodes, distance to CBD, 

distance to the nearest bus stop, and bus frequency variables. 

 

The GWR local model estimates the parameters for each observation, and the 

results can be displayed using GIS layers to visualise the spatial variation. The 

spatial variation of this analysis is only apparent in the urban area close to the 

Sydney CBD, so only the Sydney urban area as highlighted in Figure 3.7 is 

discussed in this analysis. 

 

 
 
 



74 
 

Table 3.10 Results of the Monte Carlo Test for Spatial Variability 
Variable P-value 

PRICE 0.000

AGE 0.050

INCOME 0.210

POPULATION DENSITY 0.190

LAND MIX 0.810

PSEUDO NODES 0.000

DISTANCE TO CBD 0.000

DISTANCE TO PT STOP  0.000

BUS FREQUENCY 0.000

PT STOPS  0.960

 

 

 
Figure 3.7 Location of the Sydney Urban Area 

in the Sydney Greater Metropolitan Area 
(Source: developed from GIS maps) 

 

The estimated parameters of price, pseudo nodes, bus frequency, and distance to 

CBD are presented in Figure 3.8 to 3.11. TZs with significant parameters are 

highlighted in colour, with positive signs coloured in green and negative signs 

coloured in red. The grey areas and white areas are TZs with insignificant 
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parameters at 95 percent confidence level or no public transport observations 

respectively.  

 

As shown in Figure 3.8, price has a significantly negative impact on public 

transport demand in the North Sydney areas. The estimated parameters of price 

in these negative areas are larger in absolute terms than the global parameter of 

price at -0.026, suggesting that public transport users in these TZs are more 

sensitive to the price change than the average in the SGMA. It is also important 

to note that in the south of the CBD, there is an area which has a significantly 

positive relationship between public transport demand and price. This is possibly 

because the “Airport Link” service between the CBD and the Airports operated 

by a private sector charged an access fee for passengers using train stations 

between Sydney Airport and the CBD, even when the airport itself was not being  

accessed2 giving higher train trip prices in this area as compared to surrounding 

areas whilst the public transport demand here is also higher. 

 

 
Figure 3.8 Map of the Local Model Estimates of Price in the Sydney Urban Area 

 

                                            
2 This access fee for using stations other than the domestic and international terminals was 
cancelled in March 2011, but the fee remains in place for accessing the terminals. 
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For the local estimates of pseudo nodes shown in Figure 3.9, TZs with 

statistically significant parameters mostly have a negative relationship between 

public transport demand and the number of pseudo nodes, with larger 

parameters in absolute terms than in the global model at -0.020. It is interesting 

to note that both Manly and Watsons Bay in the East have a particularly strong 

relationship between public transport demand and pseudo nodes. These two 

areas are popular attractions for tourists and leisure activities which have more 

public transport usage than their surrounding areas so this relationship stands 

out in this area. In the North Sydney areas close to the Sydney CBD, the number 

of pseudo nodes has a positive impact on the public transport demand. This is 

because although the local road network here consists of more curves and cul-de-

sacs because of the topological features in these areas close to Sydney harbour, 

residents in this area highly rely on the public transport to access the CBD due to 

the congestion and tolls on Sydney Harbour Bridge connecting North Sydney and 

the CBD and thus results in an inverse relationship between public transport 

demand and the number of pseudo nodes.  

 

 
Figure 3.9 Map of the Local Model Estimates of Pseudo Nodes in the Sydney Urban 
Area 
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The local parameter of bus frequency is displayed in Figure 3.10. The inner 

Sydney and the west of Sydney show two distinctive patterns in the relationship 

between bus frequency and public transport demand. Public transport demand is 

higher in areas with higher bus frequency in the west of Sydney, but an inverse 

relationship is identified in inner Sydney. In inner Sydney this maybe because 

there are more short trips which can be made by walking given the higher land 

use density. This is supported by the way that the proportion of walk trips in 

inner Sydney (40 percent) is considerably larger than the total average in the 

SGMA (18.3 percent), and the average trip distance in inner Sydney (4.6 km) is 

shorter than the average in the SGMA (8.5 km) in 2010/2011 (Bureau of 

Transport Statistics, 2011d). As a result, the higher frequency of bus services 

does not guarantee higher public transport use in inner Sydney. In contrast, the 

relationship is positive in the west of Sydney suggesting an increase in bus 

frequency is expected to raise public transport demand as identified in the global 

model estimation results. This distinctive difference between the two regions has 

important policy implications. Increasing bus frequency is expected to encourage 

more public transport use in the outskirts of Sydney, particularly in the western 

areas, as compared to inner Sydney where the bus services are already frequent.  

 

 
Figure 3.10 Map of the Local Model Estimates of Bus Frequency in the Sydney Urban 
Area 
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For distance to CBD, the negative relationship to public transport demand is 

more obvious in TZs closer to the CBD than in the outskirts of the city as shown 

in Figure 3.11. There is no TZ with a positive parameter and all the local 

parameters are larger in absolute terms than the global parameter suggesting 

that public transport users residing in inner Sydney are more sensitive to the 

travel distance to the CBD, as opposed to people living in the outer Sydney who 

may travel more frequently to local business centres instead of the CBD so this 

relationship is less significant. Distance to CBD appears to have the most 

consistent and strongest relationship to public transport demand, given its high 

elasticity in the global model estimation and this local model evidence which 

shows that the magnitude of the impact of distance to CBD on public transport 

demand gradually decreases from the city centre to the outskirts. This indicates 

that variation in public transport demand in the SGMA can be fairly 

distinguished according to the distance to CBD and households, and this finding 

provides a rationale for the pseudo panel data analysis presented in Chapter 4.  

 

 
Figure 3.11 Map of the Local Model Estimates of Distance to CBD in the Sydney Urban 
Area 
 
In GWR local model estimation, it is possible that the model exhibits spatial 

dependency and thus introduces spatial autocorrelation in the error term. Spatial 

dependency can be investigated by mapping the residuals of the local model on 

the GIS map as shown in Figure 3.12. The spatial dependency may exist if the 
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signs and values of residuals are similar in the neighbouring geographical zones, 

but this is not strongly evident in Figure 3.12 which indicates that the potential 

spatial autocorrelation is not substantial. More advanced models and statistical 

tests have been developed to address the spatial autocorrelation (Charlton and 

Fotheringham, 2009) but are not further discussed in this study, since the aim of 

the GWR model estimation is an exploratory analysis to investigate the 

relationship between public transport demand and selected independent 

variables. 

 

 
Figure 3.12 The Residuals of the Local Model Estimation in the Sydney Urban Area 

 
 
 

3.5 Summary  

This chapter starts with the introduction of the SGMA with its key geographical 

and demographical information, followed by a summary of travel-related 

statistics and public transport network in the SGMA. This introduction shows 

how Sydney is a city highly dependent on vehicle use rather than public 

transport which only take accounts of around ten percent of total trips. Although 

public transport is not the major means of travel, urban development and the 

strategic public transport planning in Sydney are aimed to provide better and 

easier accessibility to and from the urban area through public transport. This 
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highlights the importance of understanding public transport demand and its 

explanatory variables with respect to their relationship to the Sydney CBD which 

is the core of business and trip attractions in Sydney. 

 

Section 3.3 presents and defines the variables in the dataset of this study. This 

study aims to investigate the variation in public transport demand with respect 

to various aspects of factors, including public transport price, public transport 

supply, socio-economic factors, and most importantly, a comprehensive set of land 

use variables comprising 3D of land use measures and accessibility. A public 

transport demand model integrated with these multiple types of variables at a 

micro-level has not been commonly identified in the literature of conventional 

public transport demand modelling as reviewed in Section 2.1 and 2.2.  

 

The exploratory analysis conducted in Section 3.4 confirms the relationship 

between public transport demand and the explanatory variables as hypothesised, 

with expected signs identified in the global model estimation which can be 

interpreted as an average relationship for the SGMA as a whole. The GWR local 

model gives more insight into the relationship at a disaggregate level, showing 

how the variation in public transport demand is related to the geographical 

location of the observations. This exploratory analysis not only identifies that 

there is a relationship between public transport demand and the selected 

variables, but also provides evidence for a pseudo panel data analysis presented 

next by giving an understanding of the variation of public transport demand 

across geographical locations.  

 

However, this exploratory analysis is not able to take account the temporal effect 

of public transport demand. Using pooled data from 1997 to 2009, this analysis 

can only be considered as a cross-sectional analysis across all TZs and does not 

capture the changes in public transport demand and its explanatory variables 

over time. Moreover, the global model does not suggest good model fit with 

omitted variable bias being identified. This may not be a serious issue if only the 

relationship between the dependent variable and independent variables is of 

interest, but the validity of the model will be questionable if the model is used for 
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demand forecasting. Therefore, the following chapters use a pseudo panel data 

approach as reviewed in Section 2.3 to construct a public transport demand 

model which is capable of taking account of the dynamics of travel behaviour, 

with a potentially more rigorous modelling approach and better model goodness-

of-fit for demand forecasting purpose.  
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CHAPTER 4 PSEUDO PANEL DATA APPROACH  

 

4.1 Introduction 

The preliminary analysis presented in Section 3.4 is conducted to investigate the 

relationship between public transport demand and its explanatory variables 

using pooled data in the Sydney Household Travel Survey (SHTS) from 1997 to 

2009. This analysis identifies this relationship across geographical locations 

without taking account of the temporal effect of travel demand. The investigation 

of the temporal effect of public transport demand is one of the key research 

questions of this study as discussed in Section 1.1 as the presence of the temporal 

effect will lead to a difference between short-run and long-run demand.  

 

A longitudinal analysis is required to investigate the temporal effect of public 

transport demand change. As discussed in Section 2.3, when genuine panel data 

are not available, a pseudo panel data approach with sound theory developed in 

the literature can be used to address this research question and thus is employed 

in this study. This chapter explicitly introduces the process of pseudo panel data 

construction for this study in Section 4.2 and Section 4.3, followed by an 

exploratory analysis on the created cohort data in Section 4.4. The general form 

of the pseudo panel data models and a discussion on the estimation techniques 

are presented in Section 4.5. 

 

4.2 Grouping criteria for pseudo panel data  

Pseudo panel data, introduced by Deaton (1985), are created from repeated cross-

sectional data by classifying individuals into analyst-defined cohorts based on 

time-invariant criteria such as birth year. A collection of cohorts which share 

some common characteristic across time are defined as a “group” in this study. 

The pseudo panel dataset of this study is constructed from individual records 

repeatedly collected in the Sydney Household Travel Survey (SHTS). The SHTS 

database contains all modes of trips made by respondents recruited in the survey. 

As the focus of this study is public transport, only public transport trips, 

constituted of train and bus trips as the two major public transport systems in 

the Sydney Greater Metropolitan Area (SGMA), are selected for this study. 
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Respondents under 18 years old are excluded because their travel mode choices 

are considered to be constrained by their ineligibility of driving.  

 

Public transport demand in the pseudo panel data analysis is defined as same as 

the Geographically Weighted Regression (GWR) analysis in Chapter 3, which is 

the average number of public transport trips made by a traveller (where a 

traveller refers to a respondent making at least one trip using any trip mode) in a 

day. The historical total number of public transport tips and travellers recorded 

in the SHTS are summarised in Table 4.1.  

 

Table 4.1 Historical Statistics of Public Transport Trips from 
                       the Sydney Household Travel Survey data 

 
No. of Public 

Transport Trips 
No. of 

Travellers

Average Public 
Transport Trip  
per Traveller 

1997 2,100 6,053 0.35 

1998 2,020 5,697 0.35 

1999 1,763 5,044 0.35 

2000 1,776 5,323 0.33 

2001 1,708 4,979 0.34 

2002 1,813 5,173 0.35 

2003 1,540 4,782 0.32 

2004 1,441 4,883 0.30 

2005 1,613 4,885 0.33 

2006 1,476 5,208 0.28 

2007 1,577 5,097 0.31 

2008 1,697 5,275 0.32 

2009 1,798 5,304 0.34 

AVG 1,717 5,208 0.33 

 

From the aggregate data, the annual public transport demand does not change 

substantially from 1997 to 2009 with an average of 0.33 public transport trips 

made by a traveller per day. Thus, at an aggregate level, there is little evidence 

of public transport demand changing over time which limits the identification of 

long-run travel demand change if an aggregate approach is in use, and thus the 

differentiation of short-run and long-run demand remains under-researched in 

the literature. Therefore, a pseudo panel dataset is constructed to investigate the 
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long-run travel demand change whilst incorporating more individual information 

collected from household travel survey data. 

 

The principles of constructing a pseudo panel dataset have been reviewed in 

Section 2.3.2. A pseudo panel dataset is constituted of analyst-formed cohorts 

using grouping criteria that aim to increase the inter-group heterogeneity of the 

cohorts. The previously used grouping criteria in the existing pseudo panel data 

literature are summarised in Table 4.2 and are evaluated next for this study.  

 

Table 4.2 An Evaluation of Grouping Criteria 
Grouping 
Criteria Pros Cons Scale 

Birth Year 

• Time-invariant 
• Related to travel behaviour 
• Identification of life-cycle 

and generation effects 
• Has been commonly used 

• Correlated to age which 
is one of the 
explanatory variables 

• 5-year band 
• 10-year band 
• Variable band 

Gender 
• Time-invariant 
• Independent of exogenous 

variables 

• Not substantially 
related to public 
transport use in Sydney 

• Male 
• Female 

Household 
Location 

• Highly related to travel 
behaviour 

• Allows geographical 
analysis 

• Correlated to land use 
characteristics 

• Time-varying 

• SD   (3 regions) 
• SSD (18 regions) 
• Other 

aggregation levels

Household 
Structure 

• Related to travel behaviour • Time-varying 
• Correlated to car 

ownership and 
household income 

• Single 
• Couple 
• Couple and 

children 

Education 
Level 

• Independent of exogenous 
variables 

• Not related to travel 
behaviour  

• Time-varying 

• High school 
• Vocational college 
• University 
• Postgraduate 

 

From the list in Table 4.2, birth year is the most commonly used variable to 

create cohorts because it is time-invariant and it also allows the identification of 

the “life-cycle effect” and “generation effect” of travel behaviour as demonstrated 

in Dargay and Vythoulkas  (1999). In the context of Sydney, age appears to have 

a strong relationship to public transport demand as demonstrated in the 

exploratory analysis in Chapter 3 which shows that the age elasticity of public 

transport demand is the highest among all the explanatory variables at -0.49 (see 

Table 3.9). In Figure 4.1 which presents the relationship between public 

transport mode share and age in Sydney, people age between 11 and 30 years old 

have higher train and bus mode share as compared to other generations. The 
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mode shares of train and bus both drop when people reach their middle age. The 

bus mode share then increases again for age groups over 60 years old, whereas 

train mode share remains as low as the middle-age groups. This clearly shows 

that the public transport use in the SGMA is related to travellers’ life-cycle and 

age generation, and hence birth year is selected as one of the grouping criteria to 

form the cohorts for this study in order to increases the inter-group heterogeneity 

of the created pseudo panel data in terms of public transport demand.  

 

 
Figure 4.1 Train and Bus Mode Share by Age Group in 2009/10 

Source: Bureau of Transport Statistics (2011b) 

 

Gender, although time-invariant, is not strongly related to public transport 

demand in the context of Sydney. According to the 2009/10 household travel 

summary report by Bureau of Transport Statistics (2011b), the mode share of 

train is 5.6 percent for males and 4.9 percent for females, and bus mode share is 

5.6 percent for males and 5.9 percent for females. The total public transport mode 

share, combining train and bus, is also not very different between male and 

female travellers, so gender is not considered as an appropriate grouping 

criterion for constructing heterogenous cohorts for this study.  

 

The household location can be defined in various ways and at different 

geographical aggregation levels. Although household locations may be variable 

over time, the advantage of using the geographical information of households is 
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that it is expected to affect travel behaviour and it also allows for geographical 

analysis. In Sydney, the major public transport network is designed for accessing 

the Sydney Central Business District (CBD) and its surrounding areas. People 

living closer to the CBD have better accessibility to public transport than people 

in suburban areas and those living close to the CBD also have higher public 

transport demand. The demand elasticity with respect to the distance to CBD is 

the second highest at -0.25 among all the variables examined in Chapter 3 (see 

Table 3.9). In addition, as shown in Figure 4.2, the average number of public 

transport trips made by a traveller per day from 1997 to 2010 is higher in the 

areas closer to the Sydney CBD, and gradually declines with the distance to 

CBD. Therefore, using the household distance to CBD to group public transport 

users is expected to generate more homogenous groups and greater inter-group 

heterogeneity across the created groups in the pseudo panel dataset, and hence 

this variable is used to create the pseudo panel data although it is not time-

invariant. 

 

 
Figure 4.2 Average Public Transport Trips by Travel Zones 

Source: Summarised from the Sydney Household Travel Survey database 
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Household structure and education level are considered as inappropriate for this 

research because these variables are time-varying and not highly related to 

public transport demand in Sydney. Therefore, to ensure the individuals within 

cohorts display a relatively homogenous pattern of public transport demand, 

birth year and household distance to CBD are chosen for their capability of 

creating distinctive groups.  

 

4.3 Pseudo panel data construction  

4.3.1 Forming the cohorts 

The next step of pseudo panel data construction is to assign individual records 

from the STHS to distinctive groups according to the two grouping criteria (i.e., 

birth year and household distance to CBD), and to create groups consisting of 

similar cohorts created for each year of survey. Only public transport (train and 

bus) trips from the SHTS are selected for the pseudo panel data construction. 

Trips made by other modes are excluded because they do not contain the 

information about the public transport price, which is the key variable of the 

public transport demand model. Moreover, in the SGMA, around 90 percent of 

trips are not made by public transport, and hence including all modes of trips is 

likely to confound the demand elasticity estimated from the demand models. 

Thus, this study focuses on public transport users only and the research 

outcomes such as demand elasticities in the following chapters are applied only 

to the current public transport users.   

 

To create groups by birth years, most pseudo panel studies have applied a fixed-

range band to each birth year group (for example: five years or ten years). The 

shortcoming of this approach is that it generates large variation in cohort sizes 

across all the created cohorts. For example, the older groups tend to contain 

fewer individuals than middle-age groups. As a result, this grouping method 

generates more cohorts with insufficient individuals in a cohort. This may not be 

a serious issue when the overall sample size is sufficiently large as in most car 

travel studies. In this case, the average number of public transport trips from the 

SHTS is only around 1,717 trips annually (as shown in Table 4.1) which may not 
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be sufficient for cohort construction if a fixed range of birth year is adopted. 

Therefore, variable ranges are applied to the grouping process in a way to 

equalise the number of individuals assigned to each birth year group. This 

approach to define the scales of groups has not been evident in previous pseudo 

panel data research in the literature. 

 

The other grouping criterion is the household distance to CBD. The distance to 

CBD is determined by measuring the distance between the centroid of the Local 

Government Area (LGA) where a household is located and the centroid of the 

LGA containing Sydney CBD. This grouping process also aims to equalise the 

number of individuals included in each of the distance-to-CBD groups created by 

equally allocating all the individual records to the defined distance-to-CBD 

groups.   

 

The other issue in constructing the pseudo panel dataset is the number of cohorts 

to be created. As discussed in Section 2.3.2, given the number of total individual 

records is fixed, having a larger number of cohorts gives more observations which 

results in the better estimation efficiency, whereas increasing the cohort size 

(implying decreasing the number of cohorts) reduces measurement errors from 

the population means but with a lower statistical power.  

 

From the SHTS, two pseudo panel datasets with different numbers of cohorts are 

first created as shown in Table 4.3. Other combinations were considered but did 

not show as much heterogeneity across the created groups than these two 

combinations. The first pseudo panel dataset consists of four birth year groups 

and three distance-to-CBD groups across 13 years (ܶ ൌ 13) yielding 156 cohorts 

in total. The second dataset reduces the cohort sizes and increases the number of 

groups (ܩ ) which generate 256 cohorts, after excluding four cohorts with an 

average age below 18 years old. The average cohort size of the second dataset has 

fallen from 143 trips to 86 trips, with 74 percent of the cohorts having less than 

one hundred cohort members.  
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Table 4.3 A Comparison between Two Different Pseudo Panel Datasets 
 4 Birth Year Group 

3 Distance-to-CBD Group 
5 Birth Year Group 
4 Distance-to-CBD Group 

Number of 
Cohorts 

156 
(G=12, T=13) 

256 
(G=20, T=13) 
(4 cohorts have an average  
age below 18 years old) 

Cohort Size 
Avg: 143 trips 
Cohort size<100: 16% 
Cohort size<80: 5% 

Avg: 86 trips 
Cohort size<100: 74% 
Cohort size<80: 49% 

 

A drawback of the first dataset is the small number of cohorts, which potentially 

leads to inefficient model estimation given the small number of panel units (ܩ) 

and the short time period (ܶ). In contrast, the second dataset is likely to induce 

more measurement errors as a result of small cohort size which may generate 

larger estimation bias. With regard to this trade-off, a Monte Carlo experiment is 

conducted to examine the estimation efficiency and bias from the two types of 

datasets by simulating data with the similar properties. The experiment is 

presented in Chapter 5, and one of the key findings suggests that increasing the 

number of groups (ܩ) substantially improves the estimation efficiency at a lower 

cost of bias. The overall Root Mean Square Error (RMSE) is also reduced and 

thus the second dataset is suggested as the preferred dataset for this study. 

 

The final pseudo panel dataset is constituted of 20 groups with corresponding 

birth years and distances to CBD as shown in Table 4.4.  

 

A table summarising the number of individual records in each cohort is presented 

in Table A2.1 in Appendix 2. Each group has thirteen cohorts from 1997 to 2009 

except Group 5, Group 10, Group 15, and Group 20 with only 12 cohorts. These 

are young groups which have an average age of less than eighteen years in 1997 

and thus are excluded from the dataset. As a result, there are 256 cohorts in total 

with an average cohort size of 86 members. The average cohort sizes still vary 

across the created groups although the grouping process aimed to equalise the 

numbers. This is because the distribution of respondents across birth year groups 

and distance-to-CBD groups can not be simultaneously controlled in the grouping 

process.  
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Table 4.4 Results of Pseudo Panel Construction 

Group Birth Year 
Distance 
to CBD1 

Average 
 Cohort Size 

1 1907-1945 Zone 1 100 

2 1946-1959 Zone 1 92 

3 1960-1971 Zone 1 124 

4 1972-1979 Zone 1 129 

5 1980-1991 Zone 1 80 

6 1907-1945 Zone 2 78 

7 1946-1959 Zone 2 68 

8 1960-1971 Zone 2 79 

9 1972-1979 Zone 2 71 

10 1980-1991 Zone 2 65 

11 1907-1945 Zone 3 99 

12 1946-1959 Zone 3 83 

13 1960-1971 Zone 3 88 

14 1972-1979 Zone 3 77 

15 1980-1991 Zone 3 86 

16 1907-1945 Zone 4 80 

17 1946-1959 Zone 4 82 

18 1960-1971 Zone 4 90 

19 1972-1979 Zone 4 71 

20 1980-1991 Zone 4 77 

     1Household distance to CBD- Zone 1: within 7.26km; Zone 2: 7.26-12.81km;  
                          Zone 3: 12.81-28.07km; Zone 4: over 28.07km. 
 

 

As public transport demand in this study is defined by the number of trips made 

by a traveller per day, around 16 percent of SHTS respondents report no trips 

made on the reporting day and are excluded. The distribution of these non-

travellers across cohorts was investigated as shown in Table A2.2 (Appendix 2) 

and found to be similar to the distribution of travellers, so these non-travellers 

are not expected to distort the representativeness of the selected data.  

 

4.3.2 Variables in the pseudo panel dataset 

The variables in the pseudo panel dataset are based on the dataset used for the 

Geographically Weighted Regression (GWR) analysis introduced in Section 3.3, 

which comprises public transport demand as the dependent variable and public 
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transport price, travellers’ socio-economic factors, public transport supply, and 

land use characteristics at household locations as explanatory variables. The only 

difference is that household distance to Sydney CBD is excluded from the pseudo 

panel dataset to avoid endogeneity problems which would arise because it has 

been used as a grouping criterion to create groups. On the other hand, age is 

retained in the pseudo panel dataset because it is a time-varying measurement 

which is different from birth year as a time-invariant grouping criterion.  

 

In a panel data analysis, it is essential to have historical data available to 

investigate the effect of changes in explanatory variables over time on the 

dependent variable. Variables collected from the SHTS have been recorded 

consistently since 1997, so trip price and socio-economics variables including age 

and income are available with annual records between 1997 and 2009. Trip price 

and personal annual income are deflated by using the Australian Consumer Price 

Index (CPI=100 in 1997) to compute the real values of both variables. 

 

Data collected from Australian Census are not available continuously for every 

year because the Census is conducted only every five years. For this study, recent 

Census years of 1996, 2001, and 2006 are used to identify population density. To 

investigate how population density changes over time between 1996 and 2006 at 

a cohort level, s simple moving average method is employed to smooth data 

between 1996 and 2006. The moving-averaged data in 2006 and the actual data 

collected in 2006 are compared in Figure 4.3. The result suggests that there is a 

strong linear relationship between these two measures, and this is because the 

population density in Sydney has not changed substantially over the 13 years of 

data in the SHTS database after it is aggregated to the cohort level. Thus, this 

study uses the 2006 data for population density since there is no evidence to 

show that the moving average method is superior and there is no population 

density data available between Census years.  
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Figure 4.3 Moving-averaged Population Density versus Population Density in 2006 

 

Other variables are collected at a single point of time because of the 

unavailability of historical data, such as land use mix (which is only available 

from 2011 Census), frequencies of train and bus in 2006, and number of road 

links, pseudo nodes, public transport stops, as well as the walk distance to the 

nearest public transport stop derived from the 2010 road network GIS layer. 

These variables are assumed to be time-invariant between 1997 and 2009 

because the land use type, public train supply, and road network have not 

substantially changed in the past ten years. Nevertheless, these variables are 

still essential in the dataset because their cross-sectional variation are expected 

to have an impact on public transport demand across geographical space, and the 

capture of the cross-sectional variations can also be used as a reference for long-

term planning. A summary of the variables in the pseudo panel dataset with 

their timeframes is presented in Table 4.5. 
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Table 4.5 A Summary of Variables in the Pseudo Panel Dataset 
Variable Description Unit Timeframe Source 

Dependent variable 

PTTRIP No. of public transport trips per person Trips/person 
Annual data 
1997-2009 

SHTS 

Price variable 

PRICE Public transport trip price Dollars (AUD) 
Annual data 
1997-2009 

SHTS 

Socio-economic factors 

INCOME Annual personal income 
Thousand dollars 
(AUD) 

Annual data 
1997-2009 

SHTS 

AGE Age Years 
Annual data 
1997-2009 

SHTS 

Public Transport Supply 

BUS FREQUENCY  
Number of buses serving a bus stop 
between 6am and 10am on Tuesday 
within 400 meters of a TZ centroid 

Thousands  2006 BTS 

Land use density 

POPULATION 
DENSITY 

Number of population within 800 
meters of a TZ centroid 

Thousands 2006 Census 

Land use diversity  

LANDMIX Entropy of land use mix n/a 2011 Census  

Land use design 

PSEUDO NODES 
Number of pseudo nodes within 800 
meters of a travel zone centroid 

Thousands 2010 
Road 
network 

Accessibility 

DISTACNE TO CBD 
Distance between CBD and travel zone 
centroids 

meter 2010 
Road 
network 

DISTANCE TO PT 
STOP 

Distance between households and the 
nearest train station or bus stop 

meter 2010 
Road 
network 

PT STOPS 
Number of train stations and bus stops 
within 800 meters of a household 

n/a 2010 
Road 
network 

 

 

4.4 Preliminary analysis  

4.4.1 Group-specific effects 

After constructing the pseudo panel dataset, it is important to investigate 

whether there is sufficient inter-group variation with group-specific patterns of 

travel behaviour in the pseudo panel dataset. The effectiveness of the grouping 

criteria to create cohorts can be examined by comparing the between-group 

standard deviations and within-group standard deviations of the variables. The 

between-group standard deviation represents the differences between the group 

means and the overall mean, whereas the within-group standard deviation is 

derived from the differences between each value and the mean of its group. From 

Table 4.6, which summarises the between-group and within-group variances of 
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all variables in the dataset, shows that the between-group standard deviations 

are larger than the within-group standard deviations for all variables except for 

land use mix and distance to the nearest bus stop which show a similar 

magnitude of between-group and within-group variation. The between-group 

variation of land use mix is small, possibly as a result of the low aggregation level 

of this measure (TZ level), and the distance to bus stop also shows little variation 

because the NSW planning guidelines specify that 90 percent of households in 

the metropolitan bus contract regions should be within 400 m of a rail line and/or 

bus route during the day, to ensure a minimum accessibility to local public 

transport (NSW Ministry of Transport, 2006). Nevertheless, the key variables 

such as public transport demand and trip price as well as other socio-economic 

and land use variables have demonstrated sufficient inter-group heterogeneity, 

which confirms that the grouping method has created sufficient between-group 

variation not only in the public transport demand but also in most of the 

explanatory variables.  

 

For the time-invariant variables such as number of pseudo nodes and bus 

frequency, there are still some time-varying variations in the pseudo panel 

dataset although they are time-invariant variables. This is because the cohorts 

are constituted of different members, even when they are within the same group. 

Hence, the within-group variance of the time-invariant variables comes from the 

composition of cohort members rather than their actual changes over time. 

Despite the unavailability of historical data, the analysis on these time-invariant 

variables also provides information about their relationships with public 

transport demand at a cross-sectional basis, and these relationships can be used 

as guidance for strategic policy and planning such as transforming the land use 

characteristics or increasing bus frequency to encourage public transport use in 

the long-term plan. 
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Table 4.6 Between-group and Within-group Variances of all Variables 

Variable Unit Mean S.D. 

PTTRIP Trips overall 0.45 0.28 
between 0.26 

    within   0.11 

PRICE AU$ overall 1.73 0.59 
between 0.56 

    within   0.21 

INCOME AU$(000') overall 28.64 12.98 
between 11.64 

    within   6.37 

AGE Years overall 41.32 17.64 
between 17.80 

    within   3.33 

BUS FREQUENCY Buses (000') overall 0.19 0.15 
between 0.14 

    within   0.05 

POPULATION 
DENSITY 
  

Populations(000') overall 22.08 5.59 
between 5.50 

  within   1.54 

LAND MIX Entropy overall 0.13 0.01 
between 0.01 

    within   0.01 

PSEUDO NODES Nodes (000') overall 1.36 0.62 
between 0.59 

    within   0.23 
DISTANCE TO PT 
STOP 

Kilometre overall 0.24 0.08 
between 0.05 

  within   0.06 

PT STOPS Stops overall 41.45 7.58 
between 6.91 

    within   3.44 

 

Dargay and Vythoulkas (1999) demonstrated that the group-specific patterns of 

travel behaviour can be identified from the generation effect and the life-cycle 

effect. The former refers to the variation between birth year groups, and the later 

effect is investigated by considering the cohort variation over time for a specific 

group.  

 

The life-cycle effect in this example is shown in Figure 4.4. Each line in Figure 

4.4 represents a birth year group, with the corresponding average numbers of 

public transport trips an average ages of cohorts from 1997 to 2009. For example, 

the group “1972-1979” has an average age of 21 years in 1997 and 34 years in 



96 
 

2009 with and average 0.69 public transport trips in 1997 and 0.44 public 

transport trips in 2009. There is an age gap between birth group “1907-1945” and 

“1946-1959”. The reason is that there are many more public transport users over 

65 years old in the group “1907-1945” than people between 55 and 65 years old 

and thus the average age is largely weighted by the older people in those cohorts. 

Figure 4.4 shows that the average number of public transport trips decreases 

over time for younger groups, whereas it is more stable for middle-age groups. 

This pattern confirms that the life-cycle effect of people’s travel behaviour in 

terms of their public transport demand is evident from the constructed pseudo 

panel dataset. 

 

 
Figure 4.4 Number of Public Transport Trips by Age for Different Birth Year Groups 

    1PTTRIP: Number of public transport trips per person per day 

 

 

Figure 4.5 and Figure 4.6 show the box plot of average number of public 

transport trips by birth year groups and by distance-to-CBD groups respectively. 

In Figure 4.5, the average number of public transport trips is larger in the oldest 

group “1907-1945” and the younger groups “1972-1979” and “1980-1991”, which 

suggests that the level of public transport usage for people in middle-age is 

relatively lower. This generation effect is considered to be a result of the 

travellers’ socio-economic factors and the concession public transport fares for 
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students and pensioners in Sydney. In Figure 4.6, the relationship between the 

average number of public transport trips and household location is also evident. 

People living closers to CBD have a higher level of public transport use than 

people in the suburban areas. This is thought to be related to the public transport 

price and public transport supply and urban development characteristics. 

 

 
Figure 4.5 Box Plot of Number of Public Transport Trips by Birth Year Groups 

 
 

 
Figure 4.6 Box Plot of Number of Public Transport Trips of Distance-to-CBD Groups 
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This exploratory analysis confirms that the grouping method employed to 

construct the pseudo panel creates distinctive groups which demonstrate more 

individual characteristics than the aggregate data as shown in Table 4.1.  This 

corresponds to the purpose of a pseudo-panel approach: providing an alternative 

way to conduct a panel data analysis that allows a certain degree of micro-

economic information to be identified. 

 

4.4.2 Historical trends of variables by groups 

A panel data analysis is used to investigate the time-series changes (i.e., within-

group variation) and cross-sectional changes (i.e., between-group variation). The 

between-group variation of the pseudo panel dataset has been presented in 

Section 4.4.1, and the within-group variation of time-varying variables in the 

dataset is introduced in this section. 

 

Figure 4.7 shows the historical trend of number of public transport trips per 

person per day (i.e., ܴܲܶܶܲܫ) from the 256 cohorts out of the 20 groups created for 

the pseudo panel dataset of this study. Each plot represents a defined group of 12 

to 13 cohorts over 13 waves of surveys from 1997 to 2009. The definition of group 

numbers is summarised in Table 4.4. The scatter plots in Figure 4.7 show that 

the younger groups born between 1972 and 1979 (Group 4, 9, 14, 19) and between 

1980 and1991(Group 5, 10, 15, 20) have more substantial changes over time with 

a decreasing trend, whereas older groups and middle-age groups appear to be 

more stable over time. This is because of the life-cycle effect shown in Section 

4.4.1 where younger generations tend to reduce their public transport use as they 

become older.  
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Figure 4.7 Time Trends of Number of Public Transport Trips from 1997-2009 by Group 

 
 

The historical changes in public transport trip price are displayed in Figure 4.8 

for the groups. Apart from the oldest birth year group 1907-1945 (Group 1, 6, 11, 

16), and Group 7, 12, and17 in birth year groups 1946-1959, public transport trip 

price in real terms has been increasing since 1997, with the most substantial 

increase being in the youngest group 1980-1991 where some public transport 

users are eligible for student concession prices on tickets. The trip price 

fluctuates more in older birth year groups as older people become eligible to 

pensioner concession price over the period.   
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Figure 4.8 Time Trends of Public Transport Trip Price from 1997-2009 by Groups 

 
 
The personal income change over time in Figure 4.9 shows that the average 

personal income has been increasing for the younger groups largely as a result of 

changes of social status as they become older. In comparison, the income of 

middle-age groups fluctuates over time with no substantial increase or decrease 

identified, whereas the income of older groups appears to be more stable as a 

result of most people in the older groups being of retirement age.  
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Figure 4.9 Time Trends of Personal Income from 1997-2009 by Groups 

 
 

The exploratory analysis on these time-varying variables of the pseudo panel 

dataset suggests that the time-series variation is not consistent across the 

created groups, and these variations over time are not as substantial as 

variations across groups. This indicates that the inter-group variation needs to be 

taken into account in the estimation process because it is substantially larger 

than within-group variation. This finding requires further discussion of pseudo 

panel estimation techniques presented which is in the next section.  

 

4.5 Pseudo panel data model 

The general form of the public transport demand model (Equation (4.1)) defines 

the public transport demand ܦ௜,௧ for an individual ݅ in period ݐ is determined by 

public transport price ௜ܲ,௧, a vector of travellers’ socio-economic factors ܧ௜,௧ᇱ , public 

transport supply ௜ܵ,௧ and a vector of land use characteristics ܮ௜,௧ᇱ . 

 

 

' '
, , , , ,( ,  , ,  )i t i t i t i t i tD f P E S L=  Equation (4.1)
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To capture the dynamics of public travel behaviour adjustments, a partial 

adjustment model is employed to take account of the effect of previous behaviour 

on current behaviour as specified in Equation (4.2), where the public transport 

demand for an individual ݅ in period ݐ െ  ௜,௧ିଵሻ is assumed to have an impactܦ)  1

on the current demand in period ݐ, with the coefficient λ representing the speed of 

adjustments. 

 

' '
, , , , , , 1( ,  , ,  ) *i t i t i t i t i t i tD f P E S L Dλ −= +  Equation (4.2)

                        

Assuming a linear relationship between public transport demand and its 

explanatory variables, the static and dynamic models are expanded as Equation 

(4.3) and Equation (4.4) respectively, where ߚ଴  is the constant and ݑ௜,௧  is the 

combined error term constituted of the unobserved fixed individual effect ߙ௧ and 

the independent error term ߝ௜,௧. 
 

' '
, 0 , , , , , , ,+ + +  ,  = +    i t P i t E i t S i t L i t i t i t t i tD P E S L u uβ β β β β α ε= + +  Equation (4.3)

 

' '
, 0 , 1 , , , , , , ,+ +  ,  = +i t i t P i t E i t S i t L i t i t i t t i tD D P E S L u uβ λ β β β β α ε−= + + + +  Equation (4.4)

 

The pseudo panel data model introduced by Deaton (1985) uses average cohort 

data aggregated from individuals with the static and dynamic pseudo panel data 

models written as the following forms: 

 

' '
, 0 , , , , , , , ,+ +  ,  = +g t P g t E g t S g t L g t g t g t g t g tD P E S L u uβ β β β β α ε= + + +  Equation (4.5)

 

' '
, 0 , 1 , , , , , , , ,+ + +  ,  = +g t g t P g t E g t S g t L g t g t i t g t g tD D P E S L u uβ λ β β β β α ε−= + + +  Equation (4.6)

 

Compared to the genuine panel data model (Equation (4.3) and Equation (4.4)), 

Equation (4.5) and Equation (4.6) use the subscript ݃ instead of ݅ to denote the 

created groups in the pseudo panel data instead of individuals in the genuine 

panel data. These variables represent the way in which the observation of each 

variable is the mean value for all individuals classified into group g in period ݐ. 
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As reviewed in Section 2.4.3, the main difference between pseudo panel data 

models (Equation (4.5) and Equation (4.6)) and genuine panel data models 

(Equation (4.3) and Equation (4.4)) in terms of model estimation is that because 

the cohorts within the same group are constituted of different members, the 

average unobserved group effect ߙത௚௧ is time-varying in contrast to the unobserved 

individual effect (ߙ௜ሻ which is fixed in a genuine panel data model. The result is 

that the time-varying group effects will not be eliminated through the demeaned 

transformation in the standard fixed effect estimation, so the conventional fixed 

effect estimator will be problematic for both in the static or dynamic pseudo panel 

models. 

 

Most pseudo panel data studies reviewed in Section 2.3 have adopted the Fixed 

Effect (FE) estimator as the preferred estimator (Gassener, 1998; Gardes et al., 

2005; Huang, 2007; Weis and Axhausen, 2009; Warunsiri and McNown, 2010) for 

static model estimation. This follows Deaton (1985) and Verbeek and Nijman 

(1992) who found that, with a sufficiently large cohort size (݊௖) with sufficient 

inter-group variation, the time-varying ߙത௚௧ can be treated as constant over time 

as ߙത௚, so that the pseudo panel data can be treated as genuine panel data using 

conventional estimation techniques.  

 

Dynamic models can also be estimated on pseudo panel data. As with genuine 

panel data, the lagged dependent variable is likely to be correlated with the error 

term which causes estimation bias (Nickell, 1981). Some pseudo panel studies 

have employed Instrumental Variable (IV) estimators address the endogeneity 

problem (Dargay and Vythoulkas, 1999, Bernard et al., 2011) and results show 

that the IV estimator should be chosen over the FE estimator. However, the IV 

estimator has been criticised for its inefficiency as a consequence of using 

instruments (Beck and Katz, 2011) and bias when the number of panel units is 

not sufficiently large (Bruno, 2005a).   

 

From the pseudo panel data literature, there has not been a "superior" estimator 

suggested for either the static model or the dynamic model. The common practice 

is to employ the FE estimator for static models by ignoring the measurement 



104 
 

errors if the cohort sizes are considered to be sufficiently large (i.e., one hundred 

members as a rule of thumb) to ensure the time-varying unobserved group effect 

is a serious issue in model estimation. However, Plümper and Troeger (2007) 

demonstrated that the FE estimator will be inefficient if panel data have much 

larger between-group variation than within-group variation. This indicates that 

the FE estimator typically used for pseudo panel data model estimation is likely 

to be inefficient and thus generate unreliable statistical inference if the ratio of 

between-group variation and within-group variation is large. This property of 

pseudo panel data has not been well acknowledged by previous applied pseudo 

panel data studies. Indeed, the unique properties of pseudo panel datasets, and 

the way in which between-group and within-group variation can differ mean that 

there is no defaulted rule for which in the best estimation process. This issue is 

investigated in Chapter 5.  

 

4.6 Summary  

This chapter details the construction process of the pseudo panel dataset for this 

study. It discusses selection of grouping criteria and the determination of cohort 

sizes. The grouping criteria used to create cohorts are first evaluated to ensure 

the grouping approach is able to create sufficient inter-group variation. The 

discussion on the scale of grouping bands has also addressed the issue of a 

limited number public transport observations from the survey data. The adoption 

of a variable range for defining groups by age and by distance to CBD appears to 

be a good approach to approximately equalise the number of individual records in 

each cohort to reduce the number of small cohorts in the pseudo panel dataset. 

This discussion on constructing pseudo panel datasets for limited sample 

observations has not yet been identified in published pseudo panel data research.   

 

The effectiveness of the grouping approach is investigated in Section 4.4. The 

statistics for the between-group and within-group variances show that the 

heterogeneity between the created groups is fairly substantial, which meets the 

aim of the pseudo panel data construction. The variations in public transport 

demand as well as the explanatory variables are also identified through 

generation effects, life-cycle effects, and location effects, which demonstrate that 
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the pseudo panel dataset shows more individual information, as compared to 

aggregate data.  

 

In the final section, the theoretical foundations for pseudo panel estimation are 

outlined. Whist the literature suggests pseudo panel models may be empirically 

as genuine panel data models, the discussion of pseudo panel data model and the 

estimation techniques suggests that the pseudo panel data model should not be 

simply treated as genuine panel data models due to its unique properties such as 

minimal within-group variation in some explanatory variables. These unique 

properties of pseudo panel data mean that simply adapting panel models without 

rigorously examining the performance of applied estimators could potentially 

lead to estimation bias or inefficiency, as commonly applied in previous pseudo 

panel data research. With regard to this, Chapter 5 presents a Monte Carlo 

simulation experiment to examine the performance of various estimators for 

pseudo panel data models, whilst incorporating the properties of pseudo panel 

data that are expected to influence the estimation results.  
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CHAPTER 5 MONTE CARLO SIMULATION  

 

5.1 Introduction 

Applied pseudo panel data research reported in the literature (Gassner, 1998, 

Dargay and Vythoulkas, 1999, Gardes et al., 2005, Dargay, 2007, Huang, 2007, 

Weis and Axhausen, 2009, Warunsiri and McNown, 2010, Bernard et al., 2011) 

have empirically estimated pseudo panel data as if they were genuine panel data, 

and conventional estimation techniques such as pooled Ordinary Least Squares 

(OLS), Fixed Effect (FE), Random Effect (RE) and Instrumental Variable (IV) 

estimators are commonly applied in pseudo panel data research.  

 

However, as discussed in Section 4.5, some unique properties of pseudo panel 

data need to be taken into consideration in the estimation process. Evaluating 

the various estimators for pseudo panel data models require a Monte Carlo 

simulation experiment, and there has been no discussion in the literature as to 

why a particular estimation technique might be better and hence there is a need 

to investigate this. 

 

The unique properties of pseudo panel data that may lead to problematic 

estimation results when using conventional panel data estimators are discussed 

below. 

 

As a consequence of how cohorts are created, the cross-sectional variation of the 

exogenous variables among cohorts across different groups (between-group 

variance) is usually larger than the variation of the exogenous variables among 

cohorts in the same group across time (within-group variance). Variables with 

relatively small within-group variance known as “rarely changing variables” may 

lead to inefficient estimation for some estimators in panel data analysis, 

especially for the FE estimator that only takes account of within-group variation 

as recently discussed in Plümper and Troeger (2007, 2011). 

 

With pseudo panel data, the unobserved group effect is time-varying because 

each cohort, even within the same group, is composed of different individuals 
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over time as demonstrated in Section 4.3. Hence, non-spherical errors such as 

heteroscedasticity are likely to be introduced which cannot be controlled through 

conventional estimation techniques that incorporate only fixed individual or 

group effects. Moreover, since repeated cross-sectional surveys are not primarily 

concerned with understanding longitudinal questions at a disaggregate level, a 

rather small number of groups (ܩ ) and short time periods (ܶ ) are normally 

obtained as compared to aggregate genuine panel data, resulting in finite-sample 

properties being embedded in pseudo panel data. Therefore, as seen in Section 

4.3, pseudo panel data construction has a trade-off between the cohort size 

(number of individuals in a cohort) and the number of groups (ܩ). Increasing the 

cohort size reduces the estimation bias, but it also decreases the estimation 

efficiency because the number of groups being estimated is reduced (Verbeek and 

Nijman, 1992). 

 

Given the features identified above, applying estimation techniques developed for 

genuine panel data to finite-sample pseudo panel data without recognising its 

unique properties, as is commonly practised in the literature, may lead to 

problematic estimation results and invalid policy interpretations. This chapter3 

investigates the performance of various estimators in static and dynamic pseudo 

panel models, whilst taking account the properties of pseudo panel data 

including: time-varying unobserved group effect; larger between-group variance 

than within-group variance; a small total number of cohorts; and the trade-off 

between cohort size and number of groups. The performance of estimators is 

measured by the degree of bias, efficiency, and Root Mean Square Error (RMSE) 

for each estimator. The property of consistency which is typically used to examine 

the asymptotic behaviour of estimators in large samples is not examined in this 

experiment, because the main contribution of this exercise is to provide empirical 

suggestions for estimating the pseudo panel model of this study, which has a 

finite sample property. The purpose of this investigation is to identify 

benchmarks to analyse the suitability of different estimation techniques (as 

                                            
3 The work presented in this chapter has been published in Tsai et al. (2013). The author wishes 
to acknowledge the contribution of the co-authors: Waiyan Leong, Corinne Mulley, and Geoffrey 
Clifton. 
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reviewed in Section 2.4), under the properties of pseudo panel data as highlighted 

above.  

 

5.2 Experiment design 

The following static model in Equation (5.1) and dynamic Partial Adjustment 

Model (PAM) in Equation (5.2) for pseudo panel data are designed for the data 

generating process of the simulation experiment. The simulation models simplify 

the pseudo panel data models introduced in Section 4.5 with one single 

exogenous variable ( ௚௧ݔ ) and one lagged dependent variable ( ௚௧ିଵሻݕ  being 

employed. This simplification is to avoid the confounding results from possible 

interactions between multivariate exogenous variables.  

 

0 1gt gt gty x uβ β= + +  Equation (5.1)  

     1 1gt gt gt gty y x uλ β−= + +
 

Equation (5.2)
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The composite error term ݑത௚௧  includes three elements: the unobserved group 

effect ൫ߙത௚൯  for a given created group in the pseudo panel data set, the time 

varying cohort effect within groups ( ഥ߱௚௧), and independent identically distributed 

(i.i.d.) disturbances (ߝҧ௚௧ሻ. ߪఈഥଶ  is an experimentally controlled variable to simulate 

the variance of the unobserved group effect. Allowing ഥ߱௚௧ to be drawn from a 

random distribution allows time variation in the cohort effect since within-group 

cohorts across time are not created from the same individuals in contrast to 

genuine panel data. ഥ߱௚௧ is assumed to be normally distributed with a mean of 

zero, and its variance is positively related to ߪఈഥଶ but negatively related to the 

square root of cohort size (݊௖). This assumption is a convenient way of allowing 

the variance of ഥ߱௚௧ to be smaller than the variance of  ߙത௚ and to allow a larger ݊௖ 

to reduce the variance of ഥ߱௚௧. To simulate the unequal cohort sizes found in real 
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life pseudo panel data, ݊௖ is assumed to be normally distributed across all the 

created cohorts, with a mean and variance bounded in the experiment by values 

computed from the pseudo panel data constructed from the Sydney Household 

Travel Survey (SHTS) data.  

 

As highlighted in Section 5.1, the features of pseudo panel data requiring 

examination include: time-varying unobserved group effects ( ഥ߱௚௧ሻ ; larger 

between-group variance in the exogenous variable ሺߪ஻,௫ଶ ሻ than within-group 

variance ሺߪௐ,௫ଶ ሻ ; small total number of cohorts (ܥ); and the trade-offs between 

cohort size (݊௖ሻ and number of groups (ܩሻ. ഥ߱௚௧  has been incorporated in the 

simulation models as specified in Equation (5.1) and (5.2). The other properties 

are examined through seven scenarios (Table 5.1). Each scenario is replicated for 

one thousand times in the simulation experiment. The experiment uses Stata 

12.0 package to program the simulation models. Parts of the programming codes 

are provided in Appendix 3.  

 
Table 5.1 Scenario Design for Monte Carlo Experiments 

Scenario 
Variance in exogenous 

variable (࢞gt) 

Distribution of 
unobserved group 

effects (હഥ܏ሻ Size of data 
 (ࢀ ;ࡳ)

Cohort Size 
 (࡯࢔)

1 
஻,௫ଶߪ ௐ,௫ଶߪ = =1; 

E(ݔ௚௧)=0 
αത୥~N(0,0.52) 13=ܶ ;12=ܩ nc~N(150, 502) 

2 
஻,௫ଶߪ ௐ,௫ଶߪ = =1; 

E(ݔ௚௧)=0 
αഥ୥~N(0,0.22) 13=ܶ ;12=ܩ nc~N(150, 502) 

3 
ሺߪ஻,௫ଶ ௐ,௫ଶߪ , )=(0.52, 0.22); 

E(ݔ௚௧)=0 
αഥ୥~N(0,0.52) 13=ܶ ;12=ܩ nc~N(150, 502) 

4 
ሺߪ஻,௫ଶ ௐ,௫ଶߪ , )=(0.52, 0.22); 

E(ݔ௚௧)=0 
αഥ୥~N(0,0.22) 13=ܶ ;12=ܩ nc~N(150, 502) 

5 
ሺߪ஻,௫ଶ ௐ,௫ଶߪ , )=(0.22, 0.52); 

E(ݔ௚௧)=0 
αഥ୥~N(0,0.52) 13=ܶ ;12=ܩ nc~N(150, 502) 

6 
ሺߪ஻,௫ଶ ௐ,௫ଶߪ , )=(0.52, 0.22); 

E(ݔ௚௧)=0 
αഥ୥~N(0,0.52) 13=ܶ ;36=ܩ nc~N(50, 152) 

7 
ሺߪ஻,௫ଶ ௐ,௫ଶߪ , )=(0.52, 0.22); 

E(ݔ௚௧)=0; corr (ݔҧ௚௧,  ௚)=0.5ߙ
αഥ୥~N(0,0.52) 13=ܶ ;12=ܩ nc~N(150, 502) 
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Scenario 1 and Scenario 2 are designed as the base scenarios which assume that 

the between-group variance and the within-group variance are the same in order 

to investigate the impact of unobserved group effects (ߙത௚ ) on the estimation 

performance. Scenarios 3/4/6 are designed to allow for the commonly observed 

feature of pseudo panel datasets of larger between-group variance than within-

group variance ሺߪ஻,௫ଶ ൐ ௐ,௫ଶߪ ), as compared to ߪ஻,௫ଶ ൌ ௐ,௫ଶߪ  in Scenario 1/2. Scenario 5 

reverses Scenarios 3/4/6 and assumes that ߪ஻,௫ଶ ൏ ௐ,௫ଶߪ . The magnitude of ߪఈഥଶ  is 

likely to have an impact on the estimation results because it is the factor that 

causes endogeneity and non-spherical errors, so a larger (i.e., ߪఈഥ ൌ 0.5ሻ and a 

smaller effect (i.e., ߪఈഥ ൌ 0.2ሻ are tested between Scenario 1 and 2 as well as 

Scenario 3 and 4.  

 

Scenario 6 is designed for a larger number of groups (ܩ), with a correspondingly 

smaller cohort size (݊௖), as compared to Scenario 3. ܩ and ݊௖ will be inversely 

related as in the situation, as for the situations where the total number of 

sampled individuals is fixed. The simulation data in the experiment is made 

more similar to the real data used in this study by conditioning the values of the 

between-group variance, the within-group variance, the number of cohorts and 

the cohort size on the SHTS pseudo panel data. 

 

Scenario 7 allows for correlation between the explanatory variable and the 

unobserved group effect. Investigating the impact of the correlation on the 

estimation results is important because this is the main difference between the 

theoretical assumptions of the FE and RE estimators. This correlation is only 

introduced in Scenario 7 to avoid confounding other results due to the other 

experimental conditions of Scenarios 1 to Scenario 6.  

 

In all scenarios the number of time periods (ܶ) is kept constant at thirteen, with 

the number of groups (ܩ) being changed only in Scenario 6 for the main purpose 

of investigating the trade-off between cohort size and number of groups. The 

consistency of an estimator is not the primary focus in this analysis because the 

aim of this simulation experiment is to examine estimator properties within the 

constraints of real data estimation where there is little flexibility in expanding 
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the number of panel units (whether in pseudo or genuine panel data) or number 

of time periods whilst keeping the cohort size constant. 

 

5.3 Estimators and performance measurements 

The properties of estimators commonly used in pseudo panel studies are 

examined in this Monte Carlo experiment. The theoretical foundations of these 

panel data estimators are reviewed in Section 2.4 and their key properties are 

summarised in Table 5.2. 

 
 

Table 5.2 Summary of Estimator Properties 
Estimator Theoretical Properties 

Pooled Ordinary Least 
Squares  

( pooled OLS) 

1. Does  not control for unobserved individual 
effects 

2. Biased in the presence of unobserved 
individual effects 

3. Inefficient in the presence of non-spherical 
errors 

Fixed Effect (FE) 

1. Controls for unobserved individual effects 
2. Allows  correlation between explanatory 

variables and unobserved individual effects 
3. Biased in dynamic model estimation 
4. Efficient with time-varying variables; 

inefficient when variables rarely change over 
time 

Random Effect (RE) 

1. Controls for unobserved individual effects 
2. Assumes no correlation between explanatory 

variables and unobserved individual effects 
3. Biased in dynamic model estimation 
4. Weights between-group variances and within-

group variances  

Panel-Corrected Standard 
Error (PCSE) 

1. Accounts for non-spherical errors  
2. Corrects serial correlation and cross-sectional 

dependency in estimation 
3. Biased in the presence of unobserved 

individual effects 

Instrumental Variable  
(IV, including GMM) 

1. Controls for unobserved individual effects by 
using instrumental variables 

2. Inefficient when number of panel units is small 
 

For static models, the pooled OLS estimator is used as a benchmark to be 

compared to FE, RE and PCSE estimators.  For dynamic models, the System 

Generalized Method of Moments (GMM) (Blundell and Bond, 1998) is included 

because of its ability to incorporate the endogeneity between the lagged 

dependent variable and error terms, and because it has been suggested as a an 

appropriate estimator for pseudo panel data from previous Monte Carlo 

experiments under certain conditions (McKenzie, 2004, Inoue, 2008). The GMM 
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method applied in this analysis employs the second lag of the dependent variable 

  .௚௧ିଶሻ as an instrumental variableݕ)

 

Two fundamental criteria to measure an estimator’s performance are bias and 

efficiency. Bias refers to the expectation of the difference between the value of the 

parameter estimate and its assumed value in the experiment. An efficient 

estimator is an unbiased estimator with the least variance. If none of the 

evaluated estimators have minimum variance among all possible estimators, a 

measurement of relative efficiency can be used to compare the performance of the 

applied estimators. A more efficient estimator requires fewer observations to 

achieve the same statistical power, has smaller standard errors of estimates 

when the same number of observations is applied to the estimation procedures 

being compared, and thus generates more reliable statistical inferences.  

 

The choice of estimators often depends on both bias and efficiency considerations. 

An unbiased but inefficient estimator is not necessarily superior to a biased but 

efficient estimator. When a "best" estimator needs to be determined,  a common 

approach is to use the RMSE as specified in Equation (5.3) as an overall 

performance measure (Judson and Owen, 1999) which equally weights bias and 

efficiency.  

 
2RMSE= Bias( ) +Var( )β β   

Equation (5.3)

 

5.4 Analysis of Monte Carlo simulation 

5.4.1 Simulation results for static models 

Scenario 1 to 3 are analysed for the static model and the results are presented in 

Table 5.3.  The simulation results from Scenario 1, which assumes an identically 

distributed ݔ௚௧ across time and groups and a large variance for the unobserved 

group effect (ߪఈഥ ൌ 0.5ሻ, show that there is no substantial bias in the small pseudo 

panel data set (13=ܶ ,12=ܩ). The FE and RE estimators, as expected, are more 

efficient than pooled OLS and PCSE in the presence of unobserved group effects ߙത௚ . In Scenario 2 where ߪఈഥଶ is reduced, it can be seen that the FE and RE 

estimators are not necessarily more efficient than pooled OLS and PCSE 
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estimators. This is because ߙത௚ which makes pooled OLS and PCSE estimators 

inefficient now has a much smaller impact on the estimation process. In these 

two scenarios, using PCSE to correct the non-spherical errors does not 

substantially improve the efficiency of pooled OLS, indicating that the simulation 

data generated for pseudo panel data do not possess strong non-spherical errors 

when ݔ௚௧ is identically distributed.  

 
 

 Table 5.3 Simulation Results for Static Models  
Model:    ݕത௚௧ ൌ 0.2 ൅ 0.8 כ ҧ௚௧ݔ ൅  ത௚௧ݑ
  

Pooled 
OLS FE RE PCSE 

Scenario 1: σB,୶ଶ = σW,୶ଶ =1; α୥~N(0,0.52) ߚଵ 0.803 0.805 0.805 ଵ_SE1 0.090ߚ 0.803 0.084 0.083 ଵ_BIAS 0.003ߚ 0.089 0.005 0.005 ଵRMSE 0.090ߚ 0.003 0.084 0.083 0.089 

Scenario 2: σB,୶ଶ = σW,୶ଶ =1; α୥~N(0,0.22) ߚଵ 0.798 0.798 0.798 ଵ_SE1 0.082ߚ 0.798 0.084 0.082 ଵ_BIAS -0.002ߚ 0.081 -0.002 -0.002 ଵ_RMSE 0.082ߚ 0.002- 0.084 0.082 0.082 
Scenario 3: ሺߪ஻,௫ଶ ௐ,௫ଶߪ , ଵ 0.791ߚ ௚~N(0,0.52)ߙ ;(0.22 ,0.52)=( 0.783 0.789 ଵ_SE1 0.181ߚ 0.791 0.419 0.265 ଵ_BIAS -0.009ߚ 0.162 -0.017 -0.011 ଵ_RMSE 0.181ߚ 0.009- 0.420 0.266 0.162 

                                 1 Standard errors 
 
Scenario 3 simulates data with a larger between-group cross-sectional 

variance ሺߪ஻,௫ଶ ) for the exogenous variable ݔ௚௧, compared to its within-group time 

variance (ߪௐ,௫ଶ ). Comparing Scenario 3 with Scenario 1, the most noticeable 

difference is that the standard error of the FE estimator substantially increases 

from 0.084 to 0.419, whilst the standard errors of other estimators have a 

relatively minor increase. This result shows that when there is larger between-

group variation in  ݔ௚௧, the FE estimator, which only takes account of within-

group variation, is inefficient. Comparing the results from pooled OLS, RE, and 

PCSE estimators, it can be seen that the PCSE estimator has improved the 

efficiency of the pooled OLS estimator as the standard error of ߚଵ drops from 

0.181 to 0.162, showing that non-spherical errors are more influential in this case 
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than in Scenarios 1 and 2 where ݔ௚௧ is identically distributed. It is also important 

to note that the bias in Scenario 3, for all estimators, is increased by more than 

two hundred percent as compared to Scenario 1, although the magnitude of the 

bias remains small.  

 

In summary, there is no one superior estimator for static models under the 

scenario where ݔ௚௧ is identically distributed (i.e., ߪ஻,௫ଶ ൌ ௐ,௫ଶߪ ). In contrast, when 

larger between-group cross-sectional variance relative to within-group time 

variance is present ሺߪ஻,௫ଶ ൐ ௐ,௫ଶߪ ሻ , the FE estimator is particularly inefficient 

because the explanatory variable is rarely changing over time which confirms the 

finding in previous research (Plümper and Troeger, 2007, Plümper and Troeger, 

2011). In this case, the PCSE estimator is suggested as the preferred estimator 

because of its lower RMSE. 

 
5.4.2 Simulation results for dynamic models 

The dynamic model simulation results for Scenarios 1/2/3/4 are summarised in 

Table 5.4. For Scenario 1 and Scenario 2 where ݔ௚௧  is identically distributed 

across time and groups, ߣଵ clearly shows an upward bias when using pooled OLS 

and a downward bias when using the FE estimator: this identifies the Nickell 

bias (Nickell, 1981) as reviewed in Section 2.4.2. The pooled OLS bias in ߣଵ is 

reduced in Scenario 2 when ߪఈഥ  is lowered to 0.2 but the bias remains the same in 

FE. This is because the bias of pooled OLS comes from the interaction of ߣ and ߪఈഥ , whereas the bias of FE results from the correlation between the transformed 

lagged dependent variable and the transformed error terms (Baltagi, 2008). In 

contrast, ߚଵ does not show obvious bias for all estimators in either scenario. This 

suggests that the endogeneity problem in dynamic models only makes the 

estimate of ߣଵ problematic but does not have a strong impact on ߚଵ. In these two 

scenarios, FE performs better than other estimators when ߪఈഥ  is large, but FE 

may not be the favoured estimator when ߪఈഥ  is small. On the other hand, GMM 

appears to be inefficient given the relatively large standard errors for both 

parameters. This concurs with Kiviet’s (1995) finding that IV estimation methods 

may lead to small sample bias and large standard errors.  

 



115 
 

It is also important to note that the RE estimator gives almost identical results to 

the pooled OLS estimation results in the dynamic model. This effect has been 

identified by Baltagi (2008, p. 20) and the reason is that the variance of the 

unobserved group effect (ߪఈഥଶ) may be negative and replaced by zero from the RE 

estimation process when it is minimal in the composite error term4. This effect is 

not identified in Scenario 1 and Scenario 3 of the static model estimation where ߪఈഥ =0.5 but is evident in Scenario 2 where ߪఈഥ =0.2, showing that the smaller 

variance of unobserved individual (or group) effects may degenerate the RE 

estimator into the pooled OLS estimator. In the dynamic model estimation the 

degeneration happens either when ߪఈഥ =0.5 or ߪఈഥ =0.2 possibly because the 

inclusion of the lagged dependent variable increases the explanatory power and 

thus reduces the impact of the unobserved individual effect on the estimation 

results.  

 

Table 5.4 Simulation Results (Scenarios 1 – 4) for Dynamic Models 

Model:    ݕത௚௧ ൌ 0.2 כ ത௚௧ିଵݕ ൅ 0.8 כ ҧ௚௧ݔ ൅    ത௚௧ݑ
  

Pooled 
OLS FE RE PCSE GMM

Pooled 
OLS FE RE PCSE GMM 

Scenario 1: σB,୶ଶ = σW,୶ଶ =1; α୥~N(0,0.52) λଵ 0.328 0.134 0.328 0.328 0.282 ଵ 0.798ߚ 0.795 0.798 0.798 0.790λଵ_SE 0.065 0.069 0.065 0.085 0.249 ଵ_SE 0.093ߚ 0.088 0.093 0.091 0.106λଵ_BIAS 0.128 -0.066 0.128 0.128 0.082 ଵ_BIAS -0.002ߚ -0.005 -0.002 -0.002 -0.010λଵ_RMSE 0.143 0.096 0.143 0.154 0.262 ଵ_RMSEߚ 0.093 0.089 0.093 0.091 0.107
Scenario 2: σB,୶ଶ = σW,୶ଶ =1;  α୥~N(0,0.22)  λଵ 0.219 0.134 0.219 0.219 0.215 ଵ 0.799ߚ 0.795 0.799 0.799 0.787λଵ_SE 0.065 0.069 0.065 0.081 0.242 ଵ_SE 0.086ߚ 0.088 0.086 0.084 0.103λଵ_BIAS 0.019 -0.066 0.019 0.019 0.015 ଵ_BIAS -0.001ߚ -0.005 -0.001 -0.001 -0.013λଵ_RMSE 0.068 0.095 0.068 0.084 0.243 ଵ_RMSEߚ 0.086 0.088 0.086 0.084 0.104
Scenario 3: ሺߪ஻,௫ଶ ௐ,௫ଶߪ , ௚~N(0,0.52) λଵ 0.366 0.098 0.365 0.366ߙ ;(0.22 ,0.52)=( 0.319 ଵ 0.659ߚ 0.816 0.660 0.659 0.688λଵ_SE 0.077 0.087 0.077 0.109 0.293 ଵ_SE 0.198ߚ 0.440 0.198 0.197 0.365λଵ_BIAS 0.166 -0.102 0.165 0.166 0.119 ଵ_BIAS -0.141ߚ 0.016 -0.140 -0.141 -0.112λଵ_RMSE 0.183 0.134 0.183 0.199 0.316 ଵ_RMSEߚ 0.243 0.441 0.243 0.243 0.382
Scenario 4: ሺߪ஻,௫ଶ ௐ,௫ଶߪ , ௚~N(0,0.22) λଵ 0.221 0.097 0.221 0.221ߙ ;(0.22 ,0.52)=( 0.208 ଵ 0.778ߚ 0.790 0.778 0.778 0.782λଵ_SE 0.081 0.087 0.081 0.111 0.303 ଵ_SE 0.187ߚ 0.441 0.187 0.187 0.325λଵ_BIAS 0.021 -0.103 0.021 0.021 0.008 ଵ_BIAS -0.022ߚ -0.010 -0.022 -0.022 -0.018λଵ_RMSE 0.083 0.135 0.083 0.113 0.303 ଵ_RMSEߚ 0.188 0.441 0.188 0.188 0.326

 

                                            
4 The variance of unobserved individual effect (Baltagi, 2008, p.20): 2 2 2

1
ˆ ˆ[( / ) ] /

N

gG
T G Tα εσ α σ

=
= −  
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In Scenario 3 and Scenario 4 where ݔ௚௧ has a larger between-group variance (ߪ஻,௫ଶ ) 

than within-group variance ሺߪௐ,௫ଶ ሻ, the bias and standard errors of ߣଵ are both 

increased as compared to Scenarios 1 and 2. ߚଵ also becomes more biased for all 

estimators suggesting that the large between-group variation scenarios are likely 

to induce bias in exogenous variable estimates which were unbiased when ݔ௚௧ 
was assumed to be identically distributed. As with the static model simulations, 

the standard errors of ߚଵ obtained from the FE estimator are increased by more 

than four hundred percent suggesting severe inefficiency in the FE estimator. 

Although FE is the least biased estimator, the inefficient standard errors will 

enlarge the confidence intervals and make the statistical inference unreliable. 

Therefore, the pooled OLS or RE estimator is favoured given the lowest combined 

RMSE of ߣଵ and ߚଵ estimates in these scenarios.  

 

The simulation results from Scenario 3 and Scenario 4 show that there is no one 

absolutely unbiased estimator for a dynamic model when the exogenous variable 

has a larger between-group variance than within-group variance. The degree of 

bias and efficiency of an estimator must be both taken into consideration when 

determining a preferred estimator. Figure 5.1 to Figure 5.4 visualise the density 

distributions of the parameter estimates of ߣଵ and ߚଵ by comparing the pooled-

OLS and FE estimation results in Scenario 3 and 4. Only Scenario 3 and 4 are 

discussed here because these two scenarios are closer to the data property of the 

pseudo panel dataset of this study. The bias of parameter estimates can be 

identified from the difference between the mean of the distribution and zero 

(given the assumptions of experimental design), whereas the efficiency can be 

observed from the bandwidth of the distribution.  

 

For Scenario 3, Figure 5.1 shows that both the pooled OLS estimator and FE 

estimator have a similar degree of bias in ߣଵ but in different directions, with the 

same level of efficiency. On the other hand, Figure 5.2 shows that the pooled OLS 

estimator is much more efficient than the FE estimator for ߚଵ, with minor bias 

identified in both estimators. Therefore, the pooled OLS estimator should be 

chosen over the FE estimator when both parameter estimates (ߣଵ andߚଵ ) are 

taken into consideration.   
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            Figure 5.1 Density Plots of ૃ૚ Estimates from Pooled OLS and FE Estimators  
             (Scenario 3) 

 
 

 
            Figure 5.2 Density Plots of ઺૚ Estimates from Pooled OLS and FE Estimators  
            (Scenario 3) 
 

In Scenario 4 (Figure 5.3 and Figure 5.4) where the variance of the unobserved 

group effect is reduced, it can be seen that the bias of ߣଵ in the pooled OLS 

estimation is substantially decreased, whereas the bias of ߣଵ from the FE 

estimation remains at the same level. The bias of ߚଵ from both estimators is also 

reduced, but the FE estimator is still more inefficient than the pooled OLS 

estimator. This suggests that if the unobserved group effect can be minimised, 
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possibly through better model specification, the pooled OLS estimator has the 

potential to be an unbiased and efficient estimator for dynamic model estimation. 

This comparison highlights the importance of weighting both bias and efficiency 

when evaluating estimation performance using the visualised graphs from the 

simulation results.  

 
Figure 5.3 Density Plots of ૃ૚ Estimates from Pooled OLS and FE Estimators  
(Scenario 4) 

 
 

 
Figure 5.4 Density Plots of ઺૚ Estimates from Pooled OLS and FE Estimators  
(Scenario 4) 
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To further investigate the relationship between the distribution of ݔ௚௧  and 

estimators’ performance, Scenario 5 assumes that ߪௐ,௫ଶ  is larger than ߪ஻,௫ଶ . In 

Table 5.5, the bias of ߚଵ in Scenario 5 is moderately reduced for all estimators as 

compared to scenario 3, whilst the bias of ߣଵ  does not change noticeably. 

Furthermore, all the standard errors are decreased, particularly for the FE 

estimator where the standard error drops from 0.440 to 0.176 for ߚଵ. Given the 

lowest combined RMSE, FE is the preferred estimator in this case.  

 

Scenario 6 is used to evaluate the trade-off between cohort sizes (݊௖) and number 

of groups (ܩ). In this scenario, ݊௖ is specified as ݊௖ ~N(50, 152) as opposed to ݊௖ 

~N(150, 502) in previous scenarios. In Table 5.5, comparing Scenario 6 to 

Scenario 3 with the same variance of unobserved group effects and the same 

distribution of  ݔ௚௧, the results show that the biases are moderately increased for 

the pooled OLS, RE, and PCSE estimators, but are less evident for the FE and 

GMM estimators in Scenario 5. However, similar to the results of Verbeek and 

Nijman (Verbeek and Nijman, 1992), standard errors are reduced for all 

estimators by around 40 percent to 45 percent as a result of the increase in the 

number of groups. If the RMSE for ߣଵand ߚଵ are added up to form an overall 

measurement of error, then using a smaller ݊௖ and a larger ܩ as in Scenario 6 

results in better results across all estimators as compared with Scenario 3. 

Therefore, reducing the average cohort size improves the overall statistical 

inference at a relatively low cost of increasing the bias. This results supports the 

choice of the two constructed pseudo panel datasets as discussed in Section 4.3, 

where the dataset with more groups but smaller average cohort size is chosen 

based on this simulation finding. 
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Table 5.5 Simulation Results (Scenarios 3/5/6) for Dynamic Models 
Model:    ݕത௚௧ ൌ 0.2 כ ത௚௧ିଵݕ ൅ 0.8 כ ҧ௚௧ݔ ൅    ത௚௧ݑ
  

Pooled 
OLS FE RE PCSE GMM 

Pooled 
OLS FE RE PCSE GMM 

Scenario 3: ሺߪ஻,௫ଶ ௐ,௫ଶߪ ,  ଵ_RMSE 0.243 0.441 0.243 0.243 0.382ߚ ଵ_BIAS -0.141 0.016 -0.140 -0.141 -0.112 λଵ_RMSE 0.183 0.134 0.183 0.199 0.316ߚ ଵ_BIAS 0.166 -0.102 0.165 0.166 0.119ߣ ଵ_SE 0.198 0.440 0.198 0.197 0.365ߚ ଵ_SE 0.077 0.087 0.077 0.109 0.293ߣ ଵ 0.659 0.816 0.660 0.659 0.688ߚ ௚~N(0,0.52) λଵ 0.366 0.098 0.365 0.366 0.319ߙ ;(0.22 ,0.52)=(

Scenario 5: ሺߪ஻,௫ଶ ௐ,௫ଶߪ ,  ଵ_RMSE 0.175 0.177 0.175 0.172 0.202ߚ ଵ_RMSE 0.180 0.123 0.179 0.193 0.293ߣ ଵ_BIAS -0.029 -0.012 -0.029 -0.029 -0.015ߚ ଵ_BIAS 0.164 -0.092 0.164 0.164 0.101ߣ ଵ_SE 0.173 0.176 0.173 0.170 0.201ߚ ଵ_SE 0.073 0.082 0.073 0.102 0.275ߣ ଵ 0.771 0.788 0.771 0.771 0.785ߚ ଵ 0.364 0.108 0.364 0.364 0.301ߣ ௚~N(0,0.52);  G=12;  nc~N(150, 502)ߙ ;(0.52 ,0.22)=(

Scenario 6: ሺߪ஻,௫ଶ ௐ,௫ଶߪ ,  ଵ_RMSE 0.188 0.252 0.188 0.198 0.248ߚ ଵ_RMSE 0.197 0.113 0.197 0.212 0.232ߣ ଵ_BIAS -0.154 0.005 -0.154 -0.154 -0.123ߚ ଵ_BIAS 0.192 -0.102 0.192 0.192 0.106ߣ ଵ_SE 0.108 0.252 0.108 0.124 0.215ߚ ଵ_SE 0.044 0.050 0.044 0.090 0.206ߣ ଵ 0.646 0.805 0.646 0.646 0.677ߚ ଵ 0.392 0.098 0.392 0.392 0.306ߣ ௚~N(0,0.52);  G=36;  nc~N(50, 152)ߙ ;(0.22 ,0.52)=(

 

5.5 Investigation of correlation 
Scenarios 1 to 6 are designed for models with no correlation between the 

explanatory variable ݔҧ௚௧ and the fixed group effect ߙ௚. The results do not favour 

the use of the FE estimator when ݔҧ௚௧  has a larger between-group variation. 

However, it is well known that the pooled OLS and RE estimators are biased and 

inconsistent if this correlation is present although this is hard to identify in 

applied research because ߙ௚ is unobserved. Scenario 7 is designed to be compared 

with Scenario 3 by adding a correlation coefficient of 0.5 between ݔҧ௚௧ and ߙ௚. The 

comparison is conducted for both static and dynamic models and addresses the 

important question of estimator performance when there is correlation between ݔҧ௚௧ and ߙ௚.  

 

The simulation results of Scenario 7 for the static model are shown in Table 5.6. 

Comparing Scenario 7 to Scenario 3, the bias of the pooled OLS, RE, and PCSE 

estimators increases substantially from around -0.010 to 0.336 or 0.251, whereas 

the bias of the FE estimator only slightly changes from -0.017 to -0.037, 

demonstrating the FE estimator’s ability to control for the correlation between ݔҧ௚௧ and ߙ௚. However, the inefficiency of the FE estimator still remains the same 

in Scenario 7 as in Scenario 3, and this is larger than the other estimators. This 
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suggests a trade-off between an unbiased but inefficient estimator (i.e., FE) and a 

biased but efficient estimator (i.e., pooled OLS, RE, PCSE) when a preferred 

estimator needs to be chosen. If RMSE is used as the measure to determine the 

best estimator, the RE estimator would be preferred. 

 
Table 5.6 of Scenario 3 and Scenario 7 in the Static Model 

Static Model:    ݕത௚௧ ൌ 0.2 ൅ 0.8 כ ҧ௚௧ݔ ൅  ത௚௧ݑ
  

Pooled 
OLS FE RE PCSE 

Scenario 3: ሺߪ஻,௫ଶ ௐ,௫ଶߪ , ଵ 0.791ߚ ௚~N(0,0.52)ߙ ;(0.22 ,0.52)=( 0.783 ଵ_SE 0.181ߚ 0.791 0.789 0.419 ଵ_BIAS -0.009ߚ 0.162 0.265 -0.017 ଵ_RMSE 0.181ߚ 0.009- 0.011- 0.420 0.266 0.162 

Scenario 7: ሺߪ஻,௫ଶ ௐ,௫ଶߪ , ,ҧ௚௧ݔ)௚~N(0,0.52); corrߙ ;(0.22 ,0.52)=( ଵ 1.136ߚ ௚)=0.5ߙ 0.763 ଵ_SE 0.161ߚ 1.136 1.051 0.419 ଵ_BIAS 0.336ߚ 0.145 0.235 -0.037 ଵ_RMSE 0.373ߚ 0.336 0.251 0.421 0.344 0.366 

 
 

Table 5.7 summarises a comparison of Scenario 3 and Scenario 7 in the dynamic 

model estimation. The introduction of correlation between ݔҧ௚௧  and ߙ௚  does not 

change the estimation results of ߣଵ  noticeably, with standard errors for all 

estimators remaining almost the same. Although the absolute bias of ߚଵ 

estimates does not change between Scenario 3 and Scenario 7, the sign is 

reversed for all estimators but with standard errors remaining about the same. 

As a result, the RMSE of all estimators between the two scenarios do not vary 

substantially. The FE and GMM estimators are still not favoured given their 

large combined RMSE of ߣଵ  and ߚଵ , despite the presence of the correlation 

coefficient of 0.5 between ݔҧ௚௧ and ߙ௚. 
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Table 5.7 Comparisons of Scenario 3 and Scenario 7 in the Dynamic Model 
Dynamic Model:    ݕത௚௧ ൌ 0.2 כ ത௚௧ିଵݕ ൅ 0.8 כ ҧ௚௧ݔ ൅    ത௚௧ݑ
  

Pooled 
OLS FE RE PCSE GMM 

Pooled 
OLS FE RE PCSE GMM 

Scenario 3: ሺߪ஻,௫ଶ ௐ,௫ଶߪ ,  ௚~N(0,0.52)ߙ ;(0.22 ,0.52)=(

λଵ 0.366 0.098 0.365 0.366 0.319 ߚଵ 0.659 0.816 0.660 0.659 0.688 

λଵ_SE 0.077 0.087 0.077 0.109 0.293 ߚଵ_SE 0.198 0.440 0.198 0.197 0.365 

λଵ_BIAS 0.166 -0.102 0.165 0.166 0.119 ߚଵ_BIAS -0.141 0.016 -0.140 -0.141 -0.112 

λଵ_RMSE 0.183 0.134 0.183 0.199 0.316 ߚଵ_RMSE 0.243 0.441 0.243 0.243 0.382 

Scenario 7: ሺߪ஻,௫ଶ ௐ,௫ଶߪ , ,ҧ௚௧ݔ)௚~N(0,0.52); corrߙ ;(0.22 ,0.52)=(  ௚)=0.5ߙ

λଵ 0.346 0.099 0.346 0.346 0.285 ߚଵ 0.942 0.784 0.942 0.942 0.987 

λଵ_SE 0.077 0.087 0.077 0.106 0.294 ߚଵ_SE 0.194 0.439 0.194 0.204 0.431 

λଵ_BIAS 0.146 -0.101 0.146 0.146 0.085 ߚଵ_BIAS 0.142 -0.016 0.142 0.142 0.187 

λଵ_RMSE 0.165 0.133 0.165 0.181 0.306 ߚଵ_RMSE 0.240 0.439 0.240 0.249 0.470 

 
 

5.6 Summary 

This chapter examines the estimation performance of pooled OLS, FE, RE, PCSE, 

and GMM estimators, using Monte Carlo simulation experiments based on the 

typical properties of pseudo panel data, and where appropriate, the calibration of 

the SHTS pseudo panel dataset used in this study. These experimental results 

illustrate the importance of measuring bias as well as efficiency when comparing 

various estimators. As emphasised in Plümper and Troeger (2011), bias 

represents an expected deviation from the true value of the coefficient in finite 

sample econometrics, and both bias and inefficiency increase the probability that 

a point estimate differs from its true value in applied research. It is possible that 

an optimal estimator is not available, and in this case the RMSE that equally 

weighs bias and variance as suggested in the literature can be adopted to 

determine a second best estimator which potentially generates estimates closest 

to the true parameter value.  

 

The static model simulation results suggest that the variance of unobserved 

group effects does not lead to substantial bias on the exogenous variable and the 

FE estimator performs slightly better than other estimators under this 

circumstance. However, when the exogenous variable has a larger between-group 

variance than the within-group variance, the PCSE estimator is the preferred 

estimator after taking account of both bias and efficiency.  



123 
 

For dynamic models, there is likewise no unambiguously superior estimator 

when the exogenous variable has a larger between-group variation. The FE 

estimator appears to be the least biased estimator but with the largest standard 

errors, whereas the pooled OLS, RE, and PCSE estimators are more efficient but 

with larger biases, even when the correlation between the explanatory variable 

and unobserved group effect is present at the correlation coefficient of 0.5. 

However, the bias of the pooled OLS, RE, and PCSE estimators can be decreased 

by reducing the variance of unobserved group effects. This suggests that the 

pooled OLS, RE and PCSE estimators are potentially unbiased and efficient if 

the variance of unobserved group effects can be minimised, possibly through 

better model specifications.  

 

The trade-off between cohort size ݊௖ and total number of groups ሺܩ) in pseudo 

panel data construction is also investigated. The findings indicate that using a 

dataset with a smaller ݊௖  but a larger ܩ  effectively improves the estimation 

efficiency, with just a slight increase in bias. This result justifies the selection 

between the two pseudo panel datasets constructed in Section 4.3 where the 

dataset with a larger number of groups (ܩ ൌ 20) is chosen over the other dataset 

with a smaller number of groups (ܩ ൌ 12). 

 

This data generating process of the simulation model presented in this chapter is 

based on one single exogenous variable because of the technical difficulties of 

extending to multiple explanatory variables. Its simulation results may not 

perfectly transfer to empirical panel data models with multiple exogenous 

variables, since the correlation and interaction of the multiple exogenous 

variables may cause a certain degree of estimation bias or inefficiency. However, 

the simulation analysis in this chapter identifies the causes of estimation bias 

and inefficiency by controlling the data conditions in various scenarios. The 

results still provide important information for guiding the empirical pseudo panel 

data estimation in the following chapters. 

 

Rather than proposing a best estimator for pseudo panel data, this exercise 

highlights the necessity of understanding the nature and properties of pseudo 
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panel data before deciding which estimator to use in empirical applications. The 

findings of this experiment provide a reference point for empirical pseudo panel 

data estimation, which are presented in Chapter 6 and Chapter 7.  
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CHAPTER 6 STATIC MODEL ESTIMATION  

 

6.1 Introduction  

This chapter presents the relationship between public transport demand and its 

determinants whilst not taking the temporal effect of demand changes into 

account in the form of a static model. It presents a static pseudo panel data 

model to analyse public transport demand in the Sydney Greater Metropolitan 

Area (SGMA) with respect to its determinants. Section 6.2 first discusses the 

various functional forms of regression models with their associated economic 

theory and implications  before defining the static public transport demand 

model for this study. The dataset used to estimate the static model is 

summarised in this section together with the descriptive statistics of the 

variables. The estimation techniques are discussed building on the simulation 

findings presented in Chapter 5. Section 6.3 presents the estimation results for 

the static model and compares parameters estimated from various functional 

forms and estimators, together with an analysis of the model diagnostics. A 

summary of research findings from the static pseudo panel data model is 

discussed in Section 6.4. 

 

6.2 Static public transport demand model 

6.2.1 Functional forms 

The general form of the pseudo panel data model in this study is introduced in 

Section 4.5. In econometric analysis, there are a number of alternative functional 

forms, each of which assumes a certain relationship between the dependent 

variable and the explanatory variables. Evaluating these various functional 

forms is important because a misspecification of functional form may result in 

biased or inconsistent estimated parameters.  This section discusses the economic 

theory underpinning the various functional forms and model specification tests 

for evaluating model functional forms when estimated.  

 

The most basic functional form is a linear regression model which assumes a 

linear relationship between the dependent variable (ܻ) and explanatory variables 

(ܺ) as defined in Equation (6.1). 
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1 2Y Xβ β ε= + + Equation (6.1)

 

The coefficient ߚଶ represents the impact of a unit change in ܺ on ܻ. The elasticity 

derived from this linear model is defined by Equation (6.2). The elasticity from a 

linear model is not constant but will vary with the values of ܺ and ܻ, with a 

larger ratio of ܺ to ܻ giving a larger elasticity.  

 

dY X
e

dX Y
= ⋅  Equation (6.2)

 

Another functional form is the double-logarithmic (abbreviated as double-log) 

model which is derived from a non-linear model as in Equation (6.3). 

 

2Y KX β=  Equation (6.3)

 

The double-log model can be transformed from Equation (6.4) by taking logs on 

both sides of the equation: 

 

1 2 1ln ln ,    where lnY X Kβ β β= + = Equation (6.4)

 

The double-log model is commonly employed because of its convenience in 

interpreting the relationship between ܻ and ܺ. The coefficient ߚଶ represents the 

impact of percentage changes in ܺ on percentage changes in ܻ. The elasticity 

derived from the model is constant as shown in Equation (6.5), and is represented 

by ߚଶ. In the context of this study this would imply that the elasticity is the same 

across all individuals regardless the values of  ܻ or ܺ. 

 

2

2

1
2 2

dY X X
e K X

dX Y KX
β

ββ β−= ⋅ = ⋅ =  Equation (6.5)

 

The other non-linear functional form is an exponential function (Equation (6.6)) 

which yields the log-linear function shown in Equation (6.7) by taking logs on 

both sides of the equation.  
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2XY Ke β=  Equation (6.6)

1 2 1ln ,    lnY X Kβ β β= + = Equation (6.7)

 

In the log-linear function, ߚଶ  represents the effect of a unit change in ܺ  on 

percentage changes in  ܻ , with the elasticity defined by Equation (6.8). The 

elasticity from the log-linear function is not constant but varies with ܺ. 

 

2

22 2
X

X

dY X X
e K e X

dX Y Ke
β

ββ β= ⋅ = ⋅ =  Equation (6.8)

 

The other alternative of the exponential function is Equation (6.9): 

 

2XY Ke β=  Equation (6.9)

1 2 1ln ,    lnY X Kβ β β= + = Equation (6.10)

 

Equation (6.10) is a linear-log function derived from Equation (6.9), in which ߚଶ 

measures the effect of percentage changes in ܺ  on unit changes in ܻ . The 

elasticity as defined by Equation (6.11) is not constant but varies with the value 

of ܻ. 
 

2
2

1dY X X
e

dX Y X Y Y

β β= ⋅ = ⋅ =  Equation (6.11)

 

The preferred model among these various functional forms can be evaluated by 

comparing the model goodness of fit in terms of adjusted R-squared values 

amongst the models that have the same dependent variable. However, models 

with different dependent variables, for example, ܻ and ݈ܻ݊, cannot be compared 

at the basis of R-squared values. In this case, the Regression Specification Error 

Test (RESET) developed by Ramsey (1969) can be employed to evaluate the 

functional forms based on their relative specification errors.  
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The RESET model specification test is derived from the following regression 

model (Equation (6.12)): 

 

2 3
1 2 1 2

ˆ ˆ
i i i i iY X Y Y vβ β γ γ= + + + +  Equation (6.12)

 

where ෠ܻ௜ଶ and ෠ܻ௜ଷ are the predicted values of dependent variables for higher-order 

models and they are used as test variables to examine the significance of the 

explanatory variable ( ௜ܺሻ in higher orders and their cross-products. If the joint 

effect of ߛଵ and ߛଶ  is significant, then the assumption that the relationship 

between ௜ܻ  and ௜ܺ  is linear in the parameters is violated because of potential 

omitted variables. The RESET test can be used as a general test for model 

misspecification with the null hypothesis being there are no omitted variables 

existing in the regression model.  

 

The static public transport demand model presented in this chapter does not 

presume a preferred functional form. Instead, this analysis examines the four 

functional forms introduced above by comparing their model goodness-of-fit and 

their RESET test results. The linear model is estimated as a base model with the 

estimation results being compared to the Geographically Weighted Regression 

(GWR) global model in Chapter 3 which is also a static linear model but with a 

different modelling approach.  

 

The static linear pseudo panel data model expanded from the general model 

(Equation (4.3)) is specified as Equation (6.13). 

 

, , ,, 0 1 2 3 4 ,

, , , ,5 6 7 8

,9 , , , ,

+ +  +

 ,  = +    

g t g t g tg t g t

g t g t g t g t

g t g t g t g t g t

D PRICE INCOME AGE FREQ

DENSITY LANDMIX PSEUDO DISTANCE

STOPS u u

β β β β β

β β β β
β α ε

= +

+ + + +

+ +

 Equation (6.13)

 

where public transport demand ሺܦഥ௚,௧ሻ of a cohort in a group ݃  at time ݐ is 

predicted by a set of explanatory variables as reviewed in Section 2.1.1,  which 

includes: the average public transport trip price ሺܴܲܧܥܫതതതതതതതതത௚,௧ሻ, socio-economic factors 

including average personal income ሺܧܯܱܥܰܫതതതതതതതതതതതത௚,௧ሻ  and average age ሺܧܩܣതതതതതത௚,௧ሻ , 



129 
 

average bus frequency ሺܳܧܴܨതതതതതതതത௚,௧ሻ as a measure of public transport supply, land 

use factors including average population density ሺܻܶܫܵܰܧܦതതതതതതതതതതതതത௚,௧ሻ, average entropy of 

land use mix ሺܺܫܯܦܰܣܮതതതതതതതതതതതതതത௚,௧ሻ , average number of pseudo nodes ሺܱܲܵܦܷܧതതതതതതതതതതതത௚,௧ሻ , 

average walk distance to the nearest public transport stop ሺܧܥܰܣܶܵܫܦതതതതതതതതതതതതതതത௚,௧ሻ, and 

average number of public transport stops within 800 meters of a traveller’s 

household location ሺܱܵܶܲܵതതതതതതതതത௚,௧ሻ, with a composite error term ሺݑത௚,௧ሻ comprising the 

unobserved time-varying group effects ሺߙത௚,௧ሻ and an i.i.d. error term ሺߝҧ௚,௧ሻ. 

 

The static linear public transport demand model in Equation (6.13) has the same 

dependent variable and explanatory variables as the GWR global model 

(Equation (3.2)) except for the variable of distance to CBD. Distance to CBD is 

included in the GWR model to investigate the relationship between public 

transport demand and its potential predictors. After the strong relationship 

between public transport demand and distance to CBD is identified in the GWR 

analysis, this variable is used as one of the grouping criteria for the pseudo panel 

data construction as presented in Chapter 4. Therefore, distance to CBD is not 

included in the pseudo panel data model because its influence on public transport 

demand variation has been captured by the way in which the groups are created 

for the pseudo panel dataset. Apart from the variable of distance to CBD, the 

other explanatory variables in the GWR model of Chapter 3 are included in this 

static pseudo panel data model with the same units, using the mean values of the 

variables in the pseudo panel data model as computed for each of the cohorts.   

 

6.2.2 Descriptive statistics 

The descriptive statistics of the pseudo panel dataset are displayed in Table 6.1. 

As discussed in Section 4.4.1, the variation of each variable can be observed 

either as a between-group standard deviation or as a within-group standard 

deviation as well as an overall standard deviation. The between-group standard 

deviations represent the variations across the 20 groups in the pseudo panel 

dataset which can be interpreted as cross-sectional variations without taking 

time-varying changes into consideration. In contrast, within-group standard 

deviations are the average variation within each defined group over time, which 

can also be referred as time-series variation.  
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Table 6.1 Descriptive Statistics of Variables 

Variable Unit Mean S.D. Min Max 

PTTRIP Trips overall 0.45 0.28 0.08 1.63
between 0.26 0.12 1.02

    within   0.11 0.12 1.06

PRICE Dollars (AUD) overall 1.73 0.59 0.39 2.88
between 0.56 0.64 2.57

    within   0.21 1.09 2.35

INCOME Thousand dollars 
(AUD) 

overall 28.64 12.98 2.08 58.38
between 11.64 13.48 46.32

    within   6.37 10.51 47.78

AGE Years overall 41.32 17.64 18.00 75.65
between 17.80 20.25 70.10

    within   3.33 34.35 48.24

BUS FREQUENCY Thousands overall 0.19 0.15 0.02 0.77
between 0.14 0.05 0.52

    within   0.05 -0.04 0.44

POPULATION 
DENSITY 
  

Thousands overall 22.08 5.59 11.45 33.15
between 5.50 13.76 30.61

  within   1.54 17.21 26.63

LAND MIX Entropy overall 0.13 0.01 0.09 0.17
between 0.01 0.11 0.14

    within   0.01 0.09 0.17

PSEUDO NODES Thousands overall 1.36 0.62 0.76 4.14
between 0.59 0.90 2.46

    within   0.23 0.71 3.04
DISTANCE TO PT 
STOP 

Kilometre overall 0.24 0.08 0.12 0.59
between 0.05 0.19 0.35

  within   0.06 0.12 0.52

PT STOPS Stops overall 41.45 7.58 25.60 60.77
between 6.91 29.50 50.27

    within   3.44 27.24 51.95

 

Most variables in the dataset have substantially higher between-group standard 

deviations than within-group standard deviations as a result of the pseudo panel 

data construction process which aimed to produce sufficient inter-group 

variations. It is important to note that these time-series variations not only come 

from the time-varying changes in variables, but also from the composition of 

cohort members who are different individuals over time although within the 

same group. Hence, some variables that are collected at a single point of time, 

such as land use variables, still display a certain degree of within-group 

variations which comes from the different composition of cohort members. 

Although it would be ideal to have all variables with true historical values, most 
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land use variables do not show sufficient time-varying variations at the cohort 

level, as shown by the sensitivity analysis presented in Section 4.3.2. However, 

estimating the within-group variations of these time-invariant variables in the 

pseudo panel dataset can also provides information for long-term transport 

planning and policies by capturing the current cross-sectional variations in these 

variables and the elasticity of public transport demand with respect to changes in 

these rarely-changing over time variables.   

 

As the variables in the pseudo panel dataset are the mean values of the 

individuals in each cohort, this level of aggregation mitigates a certain degree of 

measurement error from extreme values in the individual data.  This is shown by 

the overall standard deviations being relatively smaller than the anticipated 

mean for most variables.  

 

According to the mean values of variables, public transport demand in terms of 

the average number of public transport trips per person per day is low at 0.45 

trips per day, but this is expected given the low overall usage of public transport 

in the Sydney Greater Metropolitan Area (SGMA) as discussed in Section 3.2.2 

which shows that the overall mode share of train and bus trips is around ten 

percent in the SGMA.  

 
Average trip price and average person income appear to be lower than 

expectation with an average public trip price of 1.73 dollars and an average 

annual person income of 28.64 thousand Australian dollars. This is partly 

because these two variables are adjusted to real terms based on 1997 CPI, and 

partly because there is a considerable number of students and pensioners with 

lower incomes who are entitled to free school buses and concession tickets and 

thus lower the average income and age of public transport users in the dataset. 

However, these generation and life-cycle effects are captured by the way in which 

the individuals are allocated to groups according to their birth years.  

 

The entropy of land use mix also has a low average value at 0.13, with a 

maximum value of 0.17 in which suggests a very homogenous land use mix with 

small variation across Travel Zones (TZs). As discussed in Section 3.4.2, this is 
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due to the fine aggregation level of this measurement, which does not have much 

variation within the TZs, and for which this effect becomes more marked when 

the data are aggregated at the cohort level giving a more homogenous land use 

mix in the pseudo panel dataset.  

 

The correlation matrix of all variables in the pseudo panel dataset is shown in 

Table 6.2. Similar to the GWR dataset in Table 3.7, high correlations occur 

among bus frequency, population density, pseudo nodes, and distance to the 

nearest public transport stop. The correlation coefficients appear to be generally 

higher than they are in the GWR dataset in Table 3.7, as a result of fewer 

observations (256 cohorts) in the pseudo panel data model as opposed to 1,824 

observations (TZs) in the GWR model. Given the potential for multi-collinearity, 

the model estimations presented in the following sections also test the magnitude 

of collinearity based on the Variance Inflation Factor (VIF) of parameters.  

 

Table 6.2 Correlation Matrix of Variables in the Pseudo Panel Dataset 

  PTTRIP PRICE INCOME AGE 
BUS 
FREQ1 DENSITY2 

LAND 
MIX PSEUDO 3 DISTANCE4 

PT 
STOPS 

PTTRIP 1   

PRICE -0.26 1   

INCOME -0.35 0.53 1   

AGE -0.41 -0.60 -0.01 1   

BUS FREQ1 0.65 -0.26 0.06 -0.10 1   

DENSITY2 0.66 -0.30 0.12 -0.08 0.82 1   

LAND MIX -0.29 0.23 0.09 0.02 -0.21 -0.36 1   

PSEUDO3 -0.56 0.40 -0.07 -0.06 -0.59 -0.78 0.36 1   

DISTANCE4  -0.38 0.28 -0.10 -0.06 -0.47 -0.61 0.12 0.64 1   

PT STOPS 0.60 -0.23 0.08 -0.11 0.68 0.83 -0.34 -0.81 -0.64 1 
1BUS FREQUENCY 
2POPULATION DENSITY 
3PSEUDO NODES 
4DISTANCE TO PT STOP 

 

6.2.3 Estimation techniques 

The estimation techniques for pseudo panel data models are reviewed in Section 

2.4 and examined in Chapter 5 through Monte Carlo simulation experiments. 

The simulation results for static pseudo panel data models in Section 5.4.1 

suggest that there is no one superior estimator among the pooled Ordinary Least 

Squares (OLS), Fixed Effect (FE), Random Effect (RE), and Panel-Corrected 

Standard Error (PCSE) estimators when explanatory variables are equally 
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distributed across groups and across time, that is, between-group standard 

deviations are the same as within-group standard deviations. However, when 

explanatory variables have substantially larger between-group standard 

deviations than within-group standard deviations, the FE estimator will become 

inefficient and cause inflation of the standard errors of parameters. Under this 

circumstance, the pooled OLS and PCSE estimators outperform to other 

estimators in terms of RMSE, with PCSE giving the lowest RMSE when 

heteroscedasticity is present in the model.  

 

The static pseudo panel data model in the following section is first estimated by 

the pooled OLS estimator. The omitted variable bias and heteroscedasticity are 

also tested through RESET test and Breusch-Pagan Test respectively. If 

heteroscedasticity is present, the pooled OLS estimation will need to be corrected 

by using the PCSE estimator which allows for serial correlation or cross-sectional 

dependency in the error terms.  If there is no evidence of non-spherical errors, the 

pooled OLS estimator and the PCSE estimator will give the exactly same 

estimated coefficients, with slight differences in standard errors. A comparison of 

estimation results using the FE, RE, and PCSE estimators are demonstrated in 

Section 6.3.4 to validate the choice of estimator corresponding to findings from 

the simulation results of Section 5.4.1.  

 

6.3 Estimation results  

6.3.1 Base model 

The estimation results of the static linear public transport demand model 

estimated by the pooled OLS estimator are shown in Table 6.3. This model is 

estimated as a base model to be compared to other functional forms. In terms of 

general estimation performance, the model goodness-of-fit is fairly good given the 

adjusted R-squared of 0.782 which suggests that 78.2 percent of variation in 

public transport demand can be explained by the explanatory variables. The F-

test suggests that the joint relationship between dependent variable and 

predictors is significant (P-value=0).  
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Table 6.3 Pooled OLS Estimation Results of Static Linear Model (Base Model) 
Dependent  Variable: 
PTTRIP Coef. Std. Err. T P-value [95% C.I.] VIF 

PRICE -0.065 0.033 -1.98 0.049 -0.130 0.000 5.68
INCOME -0.007 0.001 -6.82 0.000 -0.009 -0.005 2.84
AGE -0.007 0.001 -9.18 0.000 -0.009 -0.006 3.01
BUS FREQUENCY 0.507 0.099 5.13 0.000 0.313 0.702 3.34
POPULATION DENSITY 0.012 0.004 3.11 0.002 0.004 0.019 6.97
LAND MIX 0.024 0.671 0.04 0.972 -1.298 1.346 1.29
PSEUDO NODES -0.101 0.026 -3.82 0.000 -0.153 -0.049 4.13
DISTANCE TO PT STOP 0.009 0.151 0.06 0.953 -0.289 0.307 1.97
PT STOPS -0.001 0.002 -0.46 0.645 -0.006 0.003 4.63
CONSTANT 0.888 0.176 5.04 0.000 0.541 1.236   

Observations 256
F( 9,   246) 102.08

P-value  0
R-squared 0.789
Adj. R-squared 0.782

Root MSE 0.129

Ramsey RESET Test ( Ho:  Model has no omitted variables) 
F(3, 243)   16.46
P-value  0.000
Breusch-Pagan Test for heteroscedasticity (Ho: Constant variance) 
chi2(1)                                       55.22 
Prob >Chi2 0.000

Wooldridge test for autocorrelation (H0: No first order autocorrelation) 
F(  1,      19)  0.581
Prob > F  0.455         

 

In terms of the significance of individual explanatory variables, most variables 

are significant at 95 percent statistical confidence level with the expected sign. 

Price has a significantly negative impact on public transport demand which 

conforms to the economic theory of a negative relationship between demand and 

price. The socio-economic measures of personal income and age, are negatively 

significant to public transport demand changes, indicating that public transport 

demand is expected to decrease with higher income and age. The public transport 

supply measure, bus frequency, has a positive sign as expected, which confirms 

that higher bus frequency is expected to increase public transport demand.  

 

The relationships between public transport demand and land use variables 

mostly confirm the hypotheses of this study, apart from land use mix and 

accessibility measures are inconclusive with their coefficients insignificantly 
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different from zero. The estimation results of this static linear model support the 

findings from the linear GWR global model as shown in Table 3.8 in terms of the 

relationships between public transport demand and its explanatory variables. As 

discussed in Section 3.4.2, the insignificance of land use mix and accessibility 

measures are likely to be due to the aggregation level of land use categories and 

the inclusion of the public transport supply measure which explains the variation 

in public transport demand better than distance to the nearest public transport 

stop and number of bus stops.  

 
In general, the static pseudo panel data model performs better than the GWR 

global model in terms of model goodness-of-fit and the prediction power of the 

explanatory variables, even when the number of observations (256 cohorts) is 

considerably lower than the observations (1,824 TZs) in the GWR global model. 

This suggests that the pseudo panel dataset, constructed in a way to increase 

inter-group heterogeneity, generates more variation in public transport demand 

with respect to the explanatory variables and offers a better way of explaining 

public transport demand.  

 

Although the general performance of the static linear model appears to be quite 

good, it is essential to diagnose potential multi-collinearity and omitted variable 

bias, as well as heteroscedasticity in error terms which may lead to problematic 

estimation results. The multi-collinearity is tested by the (VIF) of each variable. 

As a rule of thumb, a VIF larger than ten indicates strong a multi-collinearity 

which gives unacceptable inflation of standard errors, and a VIF between five 

and ten suggests a certain degree of multi-collinearity which may inflate the 

standard errors slightly but it will not alter the coefficient estimates. The VIF 

shown in Table 6.3 suggest that most variables have a VIF lower than five, 

except for the price and population density which are moderately impacted by 

multi-collinearity at VIF of 5.68 and 6.97 respectively. Despite these higher VIF 

values, price and population density are both significant at 95 percent confidence 

level, so the standard errors are not so over-inflated to change their significance. 

The insignificance of land use mix, distance to public transport stops, and 

number of public transport stops, are not likely to be a result of multi-collinearity 

because their VIF indicators are lower than five.  
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Potential omitted variable bias is tested by the Ramsey’s RESET test, with 

results showing a null hypothesis of no omitted variables is rejected. This implies 

that although the relationship between the dependent variable and explanatory 

variables is significant, there may be potential omitted variable bias so the 

coefficients cannot be interpreted as the true magnitudes of explanatory 

variables’ impacts on dependent variables. Therefore, other model forms should 

be further investigated to justify a preferred model where no omitted variable 

bias is identified.  

 

The Breusch-Pagan Test for heteroscedasticity in error terms is also reported in  

Table 6.3, with results showing that the assumption of homogenous error terms 

is rejected, although serial correlation is not significant according to the 

Wooldridge test. The presence of heteroscedasticity is likely to alter the standard 

errors of estimated parameters. Therefore, not only the model functional form but 

also the estimation techniques should be further explored for the static pseudo 

panel datal model estimation.  

 

6.3.2 Test of functional forms 

The static models with various functional forms (as defined in Section 6.2.1) are 

evaluated according to their model fits and RESET test results as presented in 

Table 6.4. The model fit, in terms of adjusted R-squared, can only be compared 

for models with the same dependent variable. Hence, the linear model and the 

linear-log model, as well as the double-log model and the log-linear model are 

compared as two pairs where each pair has the same dependent variable. 

Although the differences are not substantial, the linear-log model and the double-

log model are the two preferred models given their higher adjusted R-squared 

values than the linear model and the log-linear model respectively. It is also 

important to note that the significance of the explanatory variables across all the 

models is very similar, apart from the price and number of public transport stops 

which show different results in the linear-log model.  
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Table 6.4 Comparison of Static Model Functional Forms 

  LINEAR 
LINEAR 
LOG 

DOUBLE 
LOG 

LOG 
LINEAR 

PRICE -0.065** -0.005    -0.269*** -0.243*** 
(0.033) (0.038)    (0.0709) (0.0639) 

INCOME -0.007*** -0.210*** -0.221*** -0.012*** 
(0.001) (0.031)    (0.0572) (0.002) 

AGE -0.007*** -0.260*** -0.750*** -0.017*** 
(0.001) (0.035)    (0.0656) (0.002) 

BUS FREQUENCY 0.507*** 0.139*** 0.206*** 0.438** 
(0.099) (0.025)    (0.0462) (0.192) 

POPULATION DENSITY 0.012*** 0.286*** 0.753*** 0.042*** 
(0.004) (0.077)    (0.142) (0.007) 

LAND MIX 0.024 0.071   0.000963 -0.589 
(0.671) (0.064)    (0.120) (1.302) 

PSEUDO NODES -0.101*** -0.189*** -0.570*** -0.276*** 
(0.026) (0.053)    (0.0986) (0.051) 

DISTANCE TO PT STOP 0.009 0.018    0.0610 0.386 
(0.151) (0.034)    (0.0634) (0.293) 

PT STOPS -0.001 -0.151*   -0.200 0.004 
(0.002) (0.079)    (0.146) (0.004) 

CONSTANT 0.888*** 1.943**  0.0227 -0.314 
  (0.176) (0.858)    (1.595) (0.342) 

Observations 256 256 256 256 
R-squared 0.789 0.801 0.872 0.851 
Adjusted R-squared 0.781 0.794 0.867 0.846 
Ramsey RESET Test 

Prob > F 0.000 0.000 0.007 0.000 

Breusch-Pagan Test 

Prob >Chi2 0.000 0.000 0.044 0.307 
Note: Standard errors in parentheses; * P<0.10, ** P<0.05, *** P<0.01;  
          Models are estimated by OLS. 
 

The comparison between the linear-log model and the double-log model is 

evaluated by the Ramsey’s RESET test. The result suggests that both the linear-

log model and the double-log model reject the null hypothesis of no omitted 

variable bias. However, the double-log model has a slightly lower F-statistic and 

thus the probability of rejecting the null hypothesis is slightly higher than all 

other models, so the double-log model is considered as the preferred functional 

form for the static public transport demand model although the omitted variable 

bias is present in each model. The omitted variable bias appears to exist in the 

static models possibly because the static models do not take account of the 
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temporal effects of demand adjustment, that is, the lagged dependent variable 

which captures travellers’ lagged adjustments of travel behaviour (as reviewed in 

Section 2.1.2). As a result, although the goodness-of-fit of the double-log model is 

considered good given an adjusted R-squared of 0.867, the static model still has 

potential omitted variable bias that requires further investigation, and the 

parameter estimates should not be interpreted for economic and policy 

implications.  These issues are further explored in Chapter 7. 

 

6.3.3 Model Diagnostics 

In a multiple regression model analysis, it is essential to test the normality of 

error term distribution. The Breusch-Pagan Test for heteroscedasticity has been 

conducted for the double-log model with the result suggesting that it rejects the 

null hypothesis of constant variance in error terms at 95 percent confidence level, 

but the p-value of 0.044 implies that the degree of heteroscedasticity may not be 

substantial.  

 

The heteroscedasticity can be further investigated by residual plots of the 

regression model as shown in Figure 6.1 to Figure 6.7. The scatter plot of 

residuals and fitted values (i.e., predicted values of the dependent variable) in 

Figure 6.1 can be used to detect linearity, heteroscedasticity, and outliers from 

the regression model. The distribution of residuals in Figure 6.1 does not show 

noticeable patterns and it appears to be fairly random. There are several 

residuals slightly greater than 0.5 or smaller than -0.5. Those data points are 

mostly cohorts constituted of less than 50 members. Although this may suggest 

some degree of measurement errors for those cohorts, they do not strongly distort 

the distribution. Therefore, the regression analysis does not drop these 

observations in order to improve the estimation efficiency.  
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Figure 6.1 Scatter plot of Residuals and Fitted Values 

 

The residuals can also be plotted against each of the explanatory variables to 

evaluate the performance of a predictor on the dependent variable. As with the 

residual plots versus fitted values, the distribution of the data points is expected 

to be random with no distinctive patterns. In Figure 6.2 which shows the scatter 

plot of residuals and the price variable, it is noticeable that there are two 

moderately different populations of the data points. The data points located on 

the left hand side of the plot have relatively smaller trip price in natural 

logarithms, and there is a gap between the two populations of data points. This is 

because the data points on the left hand side are from cohorts with an average 

age older than 65 years, and people at this age are mostly eligible to a pensioner 

excursion tickets which allows for unlimited travel using a ticket with a face 

value of 2.5 dollars and results in a smaller average price per trip. This effect is 

captured by the age variable included in the pseudo panel data model which 

reduces its influence on the overall estimation result.  
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Figure 6.2 Scatter Plot of Residuals and Price 

 
 

The scatter plot of residuals against income in Figure 6.3 shows that most of the 

data points are randomly distributed, apart from a potential outlier with the 

lowest income in the natural log term. This data point is the cohort at an average 

age of 18 years so the low average income is expected. This effect is also 

noticeable to some data points with lower income on the left hand side of the 

graph, and they are all identified as cohorts of younger generations.  
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Figure 6.3 Scatter Plot of Residuals and Income 

 

 

The residual plots of age and bus frequency in Figure 6.4 and Figure 6.5 do not 

show distinctive patterns. The only noticeable pattern is in Figure 6.4 in which 

there is a small gap between age 4 and 4.2 in natural logarithms. Their 

corresponding ages in real terms are 55 and 65 approximately. As discussed in 

Figure 4.4, there is an age gap of public transport users in the SGMA between 55 

and 65 years as a result of the pensioner ticket discount for people above 65 years 

old. Apart from this, the residuals of age and bus frequency do not show 

distinctive distributions.  
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Figure 6.4 Scatter plot of Residuals and Age 

 

 
Figure 6.5 Scatter Plot of Residuals and Bus Frequency 
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Figure 6.6 and Figure 6.7 show the residual plots of population density and 

pseudo nodes respectively. Both plots show two noticeable distributions, observed 

from one distribution of lower population density and one distribution of higher 

pseudo nodes in each of the plots. Those data points with lower density and 

higher number of pseudo nodes are cohorts located in Zone 4 of the pseudo panel 

dataset, which is the furthermost area from the Sydney CBD. Therefore, these 

areas have substantially lower population density and more pseudo nodes as 

compared to other areas closer to the CBD, and these two distributions 

demonstrate an inverse relationship between population density and pseudo 

nodes as a result of their high correlation with a negative sign (correlation 

coefficient: -0.78).  

 

 
Figure 6.6 Scatter Plot of Residuals and Population Density 
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Figure 6.7 Scatter plot of Residuals and Pseudo Nodes 

 

The scatter plots of residuals and each of the explanatory variables provide more 

insight into the nature of data and their potential impacts on model estimation. 

Although there are some distinctive patterns and outliers identified in the 

residual plots, the plot of residuals and fitted values in Figure 6.1 demonstrates 

that those potential impacts from each explanatory variable are mitigated 

through the model specification. Despite the presence of heteroscedasticity 

evident from the Breusch-Pagan Test, the analysis on the residuals does not 

suggest strong non-linearity or non-normality of the static pseudo panel datal 

model.  

 

6.3.4 Comparison of estimation techniques 

The estimation results presented above are based on the pooled OLS estimation. 

The pooled OLS estimator is suggested by the Monte Carlo simulation 

experiment discussed in Chapter 5 as the preferred estimator for static pseudo 

panel data models. This section compares the estimation results of the static 

pseudo panel data model based on various estimators examined in the Monte 

Carlo experiment. This comparison is conducted not only to evaluate the 
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performance of these estimation techniques, but also to validate the simulation 

results presented in Chapter 5.  

 
Table 6.5 summarises the estimation results of the static pseudo panel data 

model using the pooled OLS, FE, RE, and PCSE estimators. The FE estimator, 

which has been commonly used in previous pseudo panel data studies, essentially 

applies the OLS estimation to the static model whilst controlling the unobserved 

group effects and gives the same estimation results as using the Least Square 

Dummy Variable (LSDV) estimation. Its estimation results do not show a good 

model fit based on the low adjusted R-squared and the insignificances of 

explanatory variables. This is because most explanatory variables in this pseudo 

panel dataset have a much larger between-group variance than the within-group 

variance. As a result, the FE estimator, which only takes account of the within-

group variance in order to eliminate unobserved group effects, is inefficient and 

thus inflates the standard errors of the parameters and shows a poor fit. These 

results correspond to the findings from the simulation experiment which suggests 

that the FE estimator has poor efficiency when the between-group variance is 

larger than the within-group variance.  

 

The RE estimator, which controls for the unobserved group effects but assumes 

no correlation between explanatory variables and error terms, gives similar 

estimation results to the pooled OLS estimator. All the explanatory variables 

have the same signs as the pooled OLS estimation with very minor differences in 

the coefficient values. The RE estimation also identifies that the contribution of 

the variance from the unobserved group effects (݋݄ݎ) is only around ten percent of 

total variance in the estimation. This indicates that the effect of the variance of 

unobserved group effects (ߪఈሻ in the static model is fairly small and thus is not 

expected to cause strong bias in the pooled OLS estimation.  
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Table 6.5 A Comparison of Static Model Estimation Results with Various Estimators 

  OLS FE RE PCSE 

PRICE -0.269*** 0.017 -0.262*** -0.269*** 
(0.071) (0.097) (0.079) (0.068)    

INCOME -0.221*** -0.108 -0.184*** -0.221*** 
(0.057) (0.068) (0.063) (0.056)    

AGE -0.750*** -0.967*** -0.751*** -0.750*** 
(0.066) (0.165) (0.079) (0.065)    

BUS FREQUENCY 0.206*** -0.004 0.177*** 0.206*** 
(0.046) (0.060) (0.051) (0.045)    

POPULATION DENSITY 0.753*** 0.025 0.741*** 0.753*** 
(0.142) (0.184) (0.151) (0.138)    

LAND MIX 0.001 -0.021 -0.011 0.001   
(0.120) (0.112) (0.119) (0.119)    

PSEUDO NODES -0.570*** -0.003 -0.543*** -0.570*** 
(0.099) (0.134) (0.105) (0.102)    

DISTANCE TO PT STOP 0.061 0.047 0.0570 0.061 
(0.063) (0.058) (0.062) (0.063)    

PT STOPS -0.200 -0.011 -0.171 -0.200    
(0.146) (0.148) (0.149) (0.149)    

CONSTANT 0.023 3.139 -0.391 0.023 
  (1.595) (1.910) (1.711) (1.587)    

Observations 256 256 256 256 
R-squared 0.872 0.248 0.871 0.872 
Adjusted R-squared 0.867 0.155 
 ఈ 0.071ߪ 
 ఌ 0.205ߪ 

rho1     0.107 
      Note: Standard errors in parentheses; * P<0.10, ** P<0.05, *** P<0.01; 
                Double log models are employed and estimated by OLS. 
         1fraction of variance due to unobserved group effect 
 

 

The PCSE estimator, which corrects for heteroscedasticity from the pooled OLS 

estimator, shows exactly the same coefficients as the pooled OLS estimator. This 

is expected because the PCSE estimator only corrects the standard errors from 

the pooled OLS estimator due to the presence of heteroscedasticity. It can also be 

observed that the standard errors of parameters in the PCSE estimator differ 

only slightly from the standard errors in the pooled OLS estimation. This 

confirms that the heteroscedasticity in the static model is not substantial. The 

comparison of the estimation techniques validates the use of the pooled OLS 

estimator and also confirms the findings from the simulation experiments in 

Chapter 5 in this empirical case study.  
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6.4 Summary 

This chapter presents the analysis of public transport demand in the SGMA 

using a static pseudo panel data model with standard procedures of statistical 

analysis, including descriptive statistics, model estimations and evaluations, and 

model diagnostics. The step-by-step analysis investigates the nature of the data 

employed and tests the validity of model forms and estimation techniques in use.  

 

The discussion of the descriptive statistics highlights the unique properties of the 

pseudo panel dataset, including the large between-group variation and the issues 

related to the aggregation level of the cohort data. These properties in turn 

impact on the estimation results. The large between-group variation in the 

explanatory variables leads to inflated standard errors of parameters for the FE 

estimation, the importance of the Monte Carlo simulation to underpin the choice 

of the estimation technique. The aggregation level of cohort data is shown to 

reduce measurement errors as evident by the smaller standard deviations of 

variables, as compared to the GWR global model, thus improving the model 

goodness-of-fit despite the smaller number of observations being estimated in the 

pseudo panel data model. 

 

From the model diagnostics, the static model shows some degree of 

heteroscedasticity but this is not considered to have a strong impact on the 

estimation results, and the biased standard errors due to heteroscedasticity can 

also be corrected by the PCSE estimator. However, omitted variable bias is 

evident in the static models, regardless of which functional form is used. This is 

suspected to be a consequence of omitting the lagged dependent variable which 

captures the dynamics of travel behaviour changes. Thus, Chapter 7 

accommodates this issue by employing a dynamic partial adjustment model to 

identify the lagged adjustments of public transport demand in the SGMA.  

 

Although the estimation results from the static model are not further discussed 

in terms of their policy implications due to the potential bias of omitted variables, 

this chapter presents a rigorous statistical analysis which details each procedure 

in the econometric analysis. The contribution of this chapter to this study is the 
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investigation of the basic model structures and the preliminary findings of the 

pseudo panel data approach. The procedures of the analysis also contribute to the 

literature by highlighting the importance of these basic model assumption tests 

and the evaluation of model forms, which may lead to questionable research 

findings if they are ignored in an econometric analysis.  
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CHAPTER 7 DYNAMIC MODEL ESTIMATION  

 

7.1 Introduction 

As identified in Chapter 6, the static pseudo panel data model shows omitted 

variable bias and thus requires further investigation for a better model 

specification. This chapter presents the analysis of the dynamic pseudo panel 

data model taking account of the lagged demand adjustment which is not 

captured by the static model. The estimation results from this dynamic modelling 

are compared to the static models to identify the potential causes of the 

estimation bias identified in the static models5.  

 

The theoretical background of dynamic models and their various functional forms 

and model specification are first introduced in Section 7.2. The estimation results 

and related model assumption diagnostics as well as model specification tests are 

presented and discussed in Section 7.3. The best dynamic model functional form, 

evaluated from Section 7.3, is then used to estimate short-run and long-run 

demand elasticities with respect to each of the explanatory variable, with a 

detailed discussion on their policy implications in Section 7.4. A final summary 

and discussion for future research directions extended from the dynamic model 

analysis is presented in Section 7.5.  

  

7.2 Model specifications 

7.2.1 Dynamic models 

The purpose of dynamic modelling is reviewed in Section 2.1.2 and the dynamic 

models can be specified in various forms. The general form of a dynamic model 

specified by Equation (7.1) is known as a distributed-lag model in which the 

duration of the lagged adjustment is infinite. The lagged adjustment can be 

captured by a short-run multiplier given coefficient ߚ଴  and the long-run 

multiplier given by ∑ ௜௞௜ୀଵߚ  which represents the cumulated effects of independent 

variables ܺ on the dependent variable ܻ. 

                                            
5 Parts of the work presented in this chapter were presented in the 13th International Conference 
on Travel Behavior Research in July 15-20, 2012 (Tsai and Mulley, 2012). A revised paper has 
been accepted for publication in Journal of Transport and Economics Policy (Tsai and Mulley, 
2013).   
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0 1 1 2 2 ...t t t t k t k tY X X X X uα β β β β− − −= + + + + + + Equation (7.1)

 

The issue in the estimation of this distributed-lag model is the determination of 

the number of lags to be included. Although this may be determined by using a 

general-to-specific approach (Campos et al., 2005) which applies a testing-down 

procedure to eliminate insignificant lagged variables, the successive lags 

remaining in the model tend to be highly correlated and thus lead to multi-

collinearity problems.  

 

An alternative approach to estimating the distributed-lag model is to impose 

prior restrictions on the coefficients of the lagged variables. Kyock (1954) 

assumed that the coefficients of the lagged values of ܺ decline geometrically as 

Equation (7.2). 

 

0 ,      0 1k
kβ β λ λ= < <  Equation (7.2)

 

Equation (7.2) shows that the effect of the lags on the dependent variable 

becomes progressively smaller and are captured by the coefficient ߣ. Thus, the 

distributed-lag model (Equation (7.1)) can be re-written as Equation (7.3). 

 

2
0 1 1 2 2 ...t t t t tY X X X uα β β λ β λ− −= + + + + +  Equation (7.3)

 

To transform Equation (7.3) into a linear function and mitigate the multi-

collinearity problem, Koyck proposed to lag Equation (7.3)  by one time period 

and multiply all variables by ߣ: 

 

2 3
1 0 1 1 2 2 3 1...t t t t tY X X X uλ αλ β λ β λ β λ λ− − − − −= + + + + +  Equation (7.4)

 

Subtracting Equation (7.4) from Equation (7.1) gives: 

 

0 1 1(1 ) ,     t t t t t t tY X Y v v u uα λ β λ λ− −= − + + + = − Equation (7.5)
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Equation (7.5) is known as Koyck’s model which eliminates the multiple lags of ܺ, 

transforming the distributed lag model to an autoregressive model.  

 

A different form of the geometric lag model is the Partial Adjustment Model 

(PAM) introduced by Nerlove (1958). The PAM assumes that the desired level of ܻ is a linear function of ܺ as Equation (7.6),  

 

*
0t t tY X uα β= + +  Equation (7.6)

 

and an adjustment Equation (7.7). 

 

*
1 1(1 )( )t t t tY Y Y Yλ− −− = − −  Equation (7.7)

 

Substituting Equation (7.6) into Equation (7.7) gives: 

 

0 1

' ' '
0 1

(1 ) (1 ) (1 )

   

t t t t

t t t

Y X Y u

X Y u

α λ β λ λ λ
α β λ

−

−

= − + − + + −

= + + +
 

Equation (7.8)

 

As a result, the PAM (Equation (7.8)) contains only the first lag of the dependent 

variable and eliminates the lags of independent variables. The PAM has been 

widely applied in modelling the dynamics of economic behaviour (as reviewed in 

Table 2.1) because of its practical advantages and the parsimonious functional 

form. It is an unrestricted linear function with a non-auto-correlated disturbance, 

so this model can be estimated using Ordinary Least Square (OLS). In contrast, 

the Koyck’s model has an auto-correlated disturbance ݒ௧  which leads to 

problematic estimation results by the OLS estimator because of autocorrelation.  

 

A dynamic model form which can be used to accommodate the auto-correlation 

problem thus addressing the issues raised by Koyck's model is the Error 

Correction Model (ECM). A general form of the ECM can be specified as Equation 

(7.9). 
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1
1 1

k k

t i t k t i t k t
i i

Y Y X Xλ β β ε− −
= =

Δ = + Δ + +   Equation (7.9)

 

The ECM applies a first-differencing approach to eliminate the nonstationarity in 

the model. It can also be used to estimate the short-run and long-run elasticities 

for time-series data. Jevons et al. (2005) compared the elasticities estimated from 

a PAM and a ECM and suggested that the results may vary depending on the 

model and time intervals in use. However, in a panel data analysis, the ECM is 

not able to incorporate the between-group variance because it only takes account 

of the over time changes in the dependent variable and exogenous variables. 

Given the substantial between-group variance in the pseudo panel dataset of this 

study, the ECM is not considered for this study and the partial PAM is employed 

to estimate the dynamic pseudo panel data models instead. 

 

The dynamic public transport demand model for this analysis in the PAM form 

expanded from the general dynamic pseudo panel data model (Equation (4.5)) is 

defined by Equation (7.10). 

 

, , ,, 0 1 , 1 1 2 3 4 ,

, , , ,5 6 7 8

,9 , , , ,

+ +  +

 ,  = +    

g t g t g tg t g t g t

g t g t g t g t

g t g t g t g t g t

D D PRICE INCOME AGE FREQ

DENSITY LANDMIX PSEUDO DISTANCE

STOPS u u

β λ β β β β

β β β β
β α ε

−= + +

+ + + +

+ +

 Equation (7.10)

 

Compared to the static pseudo panel datal model presented in Chapter 6 

(Equation (6.13)), this dynamic pseudo panel data model adds a lagged dependent 

variable of public transport demand (ܦഥ௚,௧ିଵ) to estimate the impact of demand at 

time period ݐ െ 1 on the current demand at time period ݐ. As discussed in Section 

2.1.2, this lagged dependent variable captures the temporal effects of demand 

adjustment, which has been suggested as a result of travellers’ habits or other 

factors such as household locations that are not able to change in the short term. 

Other lag structures of the dependent variable were initially tested but only the 

first lag of dependent variable was found significant, and hence further lags were 

removed from the PAM model. 
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Although the dynamic pseudo panel data model form is similar to the static 

model, the introduction of the lagged dependent variable leads to more issues 

related to model estimation that need to be accommodated. These issues are 

reviewed in Section 2.4.2 and briefly summarised in the next section.  

 

7.2.2 Estimation techniques 

Section 2.4.2 reviews the theory of the dynamic panel data model estimation and 

discusses the performance of estimators including the pooled Ordinary Least 

Squares (OLS), Fixed Effect (FE), Random Effect (RE), Pane-Corrected Standard 

Error (PCSE), and Instrumental Variable (IV) estimators when they are 

employed to estimate a dynamic panel data model. In short, the pooled OLS 

estimator is expected to be biased upwards due to the presence of unobserved 

individual effect in a genuine panel data model and unobserved group effects in a 

pseudo panel data model. The FE and RE estimators theoretically can be shown 

to be biased because of the endogeneity between the lagged dependent variable 

and the composite error term. The PCSE estimator that corrects for the non-

spherical errors is also biased when the pooled OLS estimator is biased. The IV 

estimator, although able to control for the endogeneity by introducing an 

instrumental variable, is practically difficult to implement because the 

appropriateness of the instrumental variable is hard to justify and it has been 

suggested that it may be inefficient when the number of panels is small in a 

panel dataset as discussed in Section 2.4.2.  

 

Given that most of the estimators are potentially problematic in estimating a 

dynamic panel data model, it is likely that a Best Linear Unbiased Estimator 

(BLUE) does not exist, especially in pseudo panel data analysis in which there 

are more restrictions in model estimation such as small sample size and time-

varying group effects.  However, a preferred estimator can still be determined by 

evaluating the relative bias and efficiency among estimators, and this is shown 

by the  Monte Carlo simulation experiment presented in Chapter 5.  
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The Monte Carlo experiment in Chapter 5 shows that the FE estimator is the 

preferred estimator using the overall RMSE as a justification when the 

exogenous variable is identically distributed across groups and time, that is, 

where there is the same between-group variance and within-group variance. 

However, when the explanatory variable has a substantially larger between-

group variance than the within-group variance, the FE estimator is extremely 

inefficient and thus the pooled OLS and the PCSE estimator perform better than 

the FE estimator. Although theoretically there is still a certain degree of bias 

existing in the pooled OLS and PCSE estimators, the bias can be mitigated by 

reducing the variance of unobserved group effects as shown in the simulation 

results in Chapter 5. .  

 

Therefore, based on the findings from the simulation experiments, the dynamic 

pseudo panel data model analysed in this chapter is first estimated by the pooled 

OLS estimator with the results being compared to other estimators in next 

section.  

 

7.3 Estimation results of dynamic pseudo panel data models 

7.3.1 Base model 

As with the static pseudo panel data analysis in Chapter 6, the dynamic pseudo 

panel data model is estimated by the pooled OLS estimator in the linear 

functional form as a base model. The pooled OLS estimation results of the base 

model are presented first in Table 7.1 and are then compared to the results 

estimated from the static base model in Table 7.2.  

 

Table 7.1 shows that the linear dynamic model has a fairly high adjusted R-

squared value of 0.820 with no strong multi-collinearity identified, but with 

significant omitted variable bias, heteroscedasticity and first-order 

autocorrelation as shown by the results of RESET test, Breusch-Pagan Test and 

Wooldridge test.  

 

In terms of the parameter estimates, the lagged dependent variable is significant 

at 0.433 with a positive sign which suggests that the demand of the previous time 
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period has an intermediate effect on current period demand given the same units 

of the dependent variable and the lagged dependent variable. For other 

explanatory variables, personal income and age are negatively significant at a 95 

percent confidence level, and population density and pseudo nodes are only 

significant at the 90 percent confidence level. Other variables do not show 

coefficients significantly differing from zero in this dynamic base model.  

 

Table 7.1 Pooled OLS Estimation Results of the Linear Dynamic Model (Base Model) 
Dependent Variable: 
PTTRIP Coef. Std. Err. T P-value [95% C.I.] VIF 

LAG1 0.433 0.062 6.99 0.000 0.311 0.555 5.38

PRICE -0.016 0.031 -0.52 0.603 -0.077 0.045 5.97

INCOME -0.004 0.001 -3.91 0.000 -0.006 -0.002 3.18

AGE -0.003 0.001 -3.67 0.000 -0.005 -0.002 4.56

BUS FREQUENCY 0.321 0.094 3.41 0.001 0.136 0.507 3.65

POPULATION DENSITY 0.006 0.004 1.80 0.073 -0.001 0.014 7.24

LAND MIX -0.824 0.623 -1.32 0.188 -2.051 0.404 1.29

PSEUDO NODES -0.043 0.025 -1.69 0.093 -0.093 0.007 4.43

DISTANCE TO PT STOP -0.006 0.139 -0.04 0.966 -0.280 0.268 1.92

PT STOPS 0.00004 0.002 0.02 0.985 -0.004 0.004 4.66

CONSTANT 0.489 0.168 2.92 0.004 0.159 0.820  

Observations 236
F( 10,   225) 109.48
Prob > F 0.000
R-squared 0.830
Adjusted R-squared 0.820
Root MSE 0.114
Ramsey RESET Test ( Ho:  Model has no omitted variables) 
F(3, 243) 5.07
Prob > F 0.002
Breusch-Pagan Test for heteroscedasticity (Ho: Constant variance) 
chi2(1) 89.35

Prob >Chi2 0.000
Wooldridge test for autocorrelation (Ho: No first order autocorrelation) 
F(  1,      19)  8.628

Prob > F  0.009             

 

Comparing the estimation results of the static and dynamic base models in Table 

7.2, it can be observed that the dynamic model has a better model goodness-of-fit 

according to its higher adjusted R-squared value than the static model, even 

though 20 observations in the dynamic model are removed as a result of the 
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missing lagged values in the first time period of each of the 20 groups. As 

mentioned, both models show significant omitted variable bias and 

heteroscedasticity, but the dynamic model also shows significant autocorrelation 

which is not evident in the static model. This typically occurs when there is a 

lagged dependent variable which is very likely to be correlated with its own value 

of the previous time period which introduces autocorrelation. The Variance 

Inflation Factors (VIFs), which indicate the magnitude of multi-collinearity, are 

generally higher in the dynamic model than the static model. This is also 

considered as a result of the inclusion of the lagged dependent variable which is a 

predicted value of the explanatory variables at time period  ݐ െ 1, and this in turn 

increases the degree of multi-collinearity among all explanatory variables. 

Nevertheless, the impact does not appear to be strong given that all the VIFs are 

lower than ten.  

 

The parameter estimates show some differences between the static and dynamic 

models. The price variable becomes insignificant in the dynamic model, and 

population density as well as pseudo nodes are only significant at 90 percent 

confidence level, whereas they are all significant at 95 percent confidence level in 

the static model. A possible reason is that the lagged dependent variable has a 

stronger explanatory power than these explanatory variables, so the variation in 

public transport demand is explained by the lagged dependent variable more 

than price, population density, and pseudo nodes in the dynamic model. However, 

the presence of the omitted variable bias in both models may also confound the 

estimation results so this comparison can only be seen as exploratory analysis, 

and the justification of the best dynamic model form requires further analysis as 

presented in the next section (Section 7.3.2).  
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Table 7.2 A Comparison of Pooled OLS Estimation Results between the Static and 
Dynamic Base Models 

Dependent Variable: Static Model Dynamic Model 

PTTRIP Coef. P-value VIF Coef. P-value VIF

LAG1 n/a n/a n/a  0.433 0.000 5.38
PRICE -0.065 0.049 5.68 -0.016 0.603 5.97
INCOME -0.007 0.000 2.84 -0.004 0.000 3.18
AGE -0.007 0.000 3.01 -0.003 0.000 4.56
BUS FREQUENCY 0.507 0.000 3.34 0.321 0.001 3.65
POPULATION DENSITY 0.012 0.002 6.97 0.006 0.073 7.24
LAND MIX 0.024 0.972 1.29 -0.824 0.188 1.29
PSEUDO NODES -0.101 0.000 4.13 -0.043 0.093 4.43
DISTANCE TO PT STOP 0.009 0.953 1.97 -0.006 0.966 1.92

PT STOPS -0.001 0.645 4.63 0.00004 0.985 4.66

CONSTANT 0.888 0.000 n/a  0.489 0.004  n/a 

Observations 256  236 
Adjusted R-squared 0.782  0.820 
Root MSE 0.129  0.114 
Ramsey's RESET TEST:   

F-statistics 16.46  5.07 

Prob > F 0.000   0.002     
Breusch-Pagan Test 

chi2(1) 55.00 89.35 

Prob >Chi2 0.000 0.000 

Wooldridge test 

F-statistics  0.581 8.628 

Prob > F  0.455 0.009 

 

 

7.3.2 Test of functional forms 

Table 7.3 summarises the estimation results of the dynamic pseudo panel data 

model with four different functional forms. Based on the adjusted R-squared and 

the Ramsey’s RESET test, the double-log model outperforms other functional 

forms given the highest adjusted R-squared at 0.872, with no significant omitted 

variable in contrast to all other models where the omitted variable bias is 

significant. The double-log model has no heteroscedasticity or autocorrelation 

present, evident in both the linear model and the linear-log models. The double-

log model also demonstrates better explanatory power as demonstrated by the 

significance of explanatory variables. Variables that are not significant at 95 

percent confidence level in the dynamic linear model including price, population 

density, and pseudo nodes, are significant in this double-log model. The evidence 
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discussed above collectively suggests that the double-log is the best functional 

form for the dynamic pseudo panel data model in this study.  

 

Table 7.3 Evaluation of Dynamic Model Functional forms 

  LINEAR 
LINEAR-
LOG 

DOUBLE-
LOG 

LOG-
LINEAR 

LAG1 0.433*** 0.425*** 0.245*** 0.360*** 
(0.062) (0.061) (0.067) (0.066) 

PRICE -0.016 -0.003 -0.219*** -0.146** 
(-0.031) -0.037 (-0.076) -0.066 

INCOME -0.004*** -0.113*** -0.160** -0.007*** 
-0.001 (-0.032) (-0.062) -0.002 

AGE -0.003*** -0.141*** -0.573*** -0.01*** 
-0.001 (-0.039) (-0.086) -0.002 

BUS FREQUENCY 0.321*** 0.074*** 0.148*** 0.296 
-0.094 (0.026) (0.051) -0.190 

POPULATION DENSITY 0.006* 0.171**  0.596*** 0.027*** 
0.004 (0.0741) (0.152) 0.008 

LAND MIX -0.824 -0.001 -0.028 -1.240 
-0.623 (-0.061) (-0.121) -1.287 

PSEUDO NODES -0.043* -0.103**  -0.458*** -0.166*** 
-0.025 (-0.052) (-0.109) -0.055 

DISTANCE TO PT STOP -0.006 0.019 0.0679 0.207 
-0.139 (0.033) (0.066) -0.293 

PT STOPS 0.040 -0.079 -0.174 0.003 
-0.002 (-0.075) (-0.151) -0.004 

CONSTANT 0.489*** 0.767 -0.164 -0.184 
  (0.168) (0.828) (-1.645) -0.342 

Observations 236 236 236 236 
R-squared 0.830 0.828 0.877 0.866 
Adjusted R-squared 0.822 0.820 0.872 0.860 
Ramsey RESET Test 
Prob > F 0.002 0.000 0.072 0.027 
Breusch-Pagan Test     
Prob >Chi2 0.000 0.000 0.074 0.097 
Wooldridge test     
Prob > F 0.009 0.020 0.423 0.227 

 Note: Standard errors in parentheses; * P<0.10, ** P<0.05, *** P<0.01;  
                       Models are estimated by OLS. 
  

The implications of these estimation results are next discussed and compared to 

the static double-log model. Table 7.4 shows that the dynamic model has a 

slightly better adjusted R-squared than the static model, and both the omitted 

variable bias and heteroscedasticity identified in the static model are not 

significant in the dynamic model. This implies that the omitted variable bias in 
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the static model may be a consequence of omitting the lagged dependent variable 

which is therefore identified as significant in public transport demand. Moreover, 

the coefficients are relatively smaller in the dynamic model than in the static 

model arising from the way in which the lagged dependent variable has a certain 

degree of impacts on the variation in the dependent variable, which in turn 

reduces the impacts from other explanatory variables. This indicates that the 

static model over-estimates the influence of the explanatory variables on public 

transport demand as a result of omitting the lagged adjustments of demand 

changes.  

 

Table 7.4 A Comparison of the Best Static and Dynamic Functional Forms 
Dependent Variable: 
PTTRIP 

Static Model 
(DOUBLE-LOG) 

Dynamic Model 
(DOUBLE-LOG) 

LAG1 n/a  0.245*** 
PRICE -0.269*** -0.219*** 
INCOME -0.221*** -0.160** 
AGE -0.750*** -0.573*** 
BUS FREQUENCY  0.206***  0.148*** 

POPULATION DENSITY  0.753***  0.596*** 
LAND MIX  0.001 -0.028 
PSEUDO NODES -0.570*** -0.458*** 
DISTANCE TO PT STOP  0.0610  0.0679 

PT STOPS -0.200 -0.174 
CONSTANT  0.0227 -0.164 

Observations 256 236 

R-squared 0.872 0.877 

Adjusted R-squared 0.867 0.872 
Ramsey RESET Test 

Prob > F 0.007 0.072 

Breusch-Pagan Test 

Prob >Chi2 0.044 0.074 
  Note: Standard errors in parentheses; * P<0.10, ** P<0.05, *** P<0.01;  
                                    Models are estimated by OLS. 
 

 

Comparing the parameter estimates between the static and dynamic models, all 

the explanatory variables have the same significance at 95 percent confidence 

level with the same expected signs. Price, income, age, and pseudo nodes have 

negative impacts on public transport demand in the Sydney Greater 

Metropolitan Area (SGMA), whereas bus frequency and population density have 
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positive impacts on public transport demand. The lagged dependent variable does 

not dominate the model prediction power or change the significance or signs of 

other exogenous variables suggesting that the selected explanatory variables 

properly explain variations in public transport demand. The coefficient of the 

lagged dependent variable at 0.245 suggests that if public transport demand in 

the previous period was to increase by one hundred percent, then current public 

transport demand would increase by 24.5 percent change in current demand. 

This parameter can also be used to distinguish between short-run and long-run 

demand elasticities as presented in the next section (Section 7.4). 

 

Although the analysis above shows that the double-log model appears to be the 

best functional form of the dynamic pseudo panel model, there are three 

insignificant variables that require further investigation for the best model 

specification. These are land use mix, distance to the nearest bus stop, and 

number of bus stops, which are selected as explanatory variables in the public 

transport demand model because they have been suggested to be influential on 

travel behaviour in the literature (as discussed in Section 2.2.1).  The possible 

reasons for the insignificance of these three variables in this public transport 

demand model are discussed in Section 6.3, with no evidence suggesting that the 

insignificance is resulted from multi-collinearity. Nevertheless, there is always a 

trade-off between a parsimonious regression model with significant variables 

only and an unrestricted regression model that consists of variables suggested 

from the theory. Hence, a test of model specifications is conducted by removing 

each of these three insignificant variables from the double-log model to 

investigate the impact on the estimation results. This is summarised in Table 

7.5. 
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Table 7.5 Test of Dynamic Model Specifications 

  Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7   Model 8 

LAG1 0.245*** 0.248*** 0.252*** 0.246*** 0.257*** 0.253*** 0.248*** 0.257*** 
(0.067) (0.067) (0.067) (0.067) (0.067) (0.067) (0.067)    (0.067) 

PRICE -0.219*** -0.213*** -0.232*** -0.218*** -0.227*** -0.231*** -0.212*** -0.226*** 
(0.076) (0.076) (0.075) (0.075) (0.075) (0.075) (0.075)    (0.075) 

INCOME -0.160** -0.163*** -0.149** -0.161*** -0.150** -0.150** -0.164*** -0.151** 
(0.062) (0.062) (0.062) (0.062) (0.062) (0.061) (0.062)    (0.061) 

AGE -0.573*** -0.569*** -0.575*** -0.572*** -0.572*** -0.574*** -0.569*** -0.571*** 
(0.086) (0.086) (0.086) (0.086) (0.086) (0.086) (0.086)    (0.086) 

BUS FREQUENCY 
0.148*** 0.146*** 0.148*** 0.146*** 0.145*** 0.144*** 0.143*** 0.141*** 
(0.051) (0.051) (0.051) (0.050) (0.051) (0.050) (0.050)    (0.050) 

POPULATION DENSITY 
0.596*** 0.603*** 0.500*** 0.603*** 0.491*** 0.507*** 0.610*** 0.498*** 
(0.152) (0.152) (0.127) (0.149) (0.127) (0.125) (0.149)    (0.125) 

PSEUDO NODES 
-0.458*** -0.449*** -0.404*** -0.463*** -0.383*** -0.409*** -0.454*** -0.388*** 
(0.109) (0.108) (0.098) (0.107) (0.097) (0.097) (0.107)    (0.096) 

LAND MIX -0.028 -0.028 -0.038 n/a -0.040 n/a n/a            n/a 
(0.121) (0.121) (0.121) (0.121)                  

DISTANCE TO PT STOP 
0.068 n/a 0.081 0.0679 0.081 n/a           n/a 
(0.066) (0.065) (0.066) n/a  (0.065)                  

PT STOPS -0.174 -0.200 n/a -0.176 n/a n/a -0.202    n/a 
(0.151) (0.148) (0.150) (0.148)     

CONSTANT -0.164 0.165 -0.391 -0.104 -0.031 -0.315 0.224    0.049 
  (1.645) (1.614) (1.635) (1.622) (1.611) (1.614) (1.591)    1.589 

R-squared 0.877 0.877 0.877 0.877 0.876 0.877 0.877 0.876 
Adj. R-squared 0.872 0.872 0.872 0.872 0.871 0.872 0.872 0.872 
RESET TEST 0.072 0.072 0.040 0.072 0.038 0.039 0.072 0.038 
HET TEST 0.074 0.066 0.058 0.080 0.048 0.063 0.070 0.052 

                         Note: Standard errors in parentheses; * P<0.10, ** P<0.05, *** P<0.01; double log models are employed and estimated by OLS.
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In Table 7.5, Model 1 is the unrestricted model and is used as the benchmark to 

compare to other restricted models. The three insignificant variables are placed 

at the bottom of the table for easier comparison. The models have minimal 

differences in their adjusted R-squares. However, models that include number of 

public transport stops (Model 1/2/4/7) appear to have a slightly better model 

specification than others, given their RESET test results suggesting no omitted 

variable bias (highlighted in bold text). This indicates that the number of public 

transport stops has a certain degree of explanatory power in public transport 

demand and even though it is not significant at the 90 percent confidence level or 

better.  

 

Comparing the parameter estimates of these models, it can be seen that all the 

parameters have the same level of significance and the same signs with the 

exception of income which shows some slight difference in its level of significance. 

In terms of estimated coefficients, these are similar over the eight models. The 

lagged dependent variable, price, income, age, and bus frequency vary less than 

five percent between their highest and lowest values across the eight models. 

However, population density and the number of pseudo nodes show more 

sensitivity to the inclusion of insignificant variables, with population density 

varying from 0.491 in Model 5 to 0.610 in Model 7 and pseudo nodes ranging 

between -0.383 in Model 5 and -0.458 in Model 1. Moreover, models including 

number of bus stops (Model 1/2/4/7) and models not including number of bus 

stops (Model 3/5/6/8) appear to be two distinctive clusters according to the 

coefficients of population density and pseudo nodes. In general, Model 1/2/4/7 

have higher values for the estimated coefficients of population density and 

pseudo nodes than Model 3/5/6/8 in absolute terms. This confirms the way in 

which the number of public transport stops has a certain degree of influence on 

explaining public transport demand in the model. Including number of public 

transport stops increases the coefficient of population density and decreases the 

coefficient of pseudo nodes, as a result of its inverse correlation to population 

density and pseudo nodes, but these changes are not substantial and do not 

distort the model prediction results.  

 



163 
 

As the difference of the coefficients between the unrestricted model and other 

restricted models is minimal, the three insignificant variables are kept in the 

model for the following analysis because collectively they still have some minor 

explanatory power on public transport demand although not significant at 90 

percent statistical confidence level.  

 

7.3.3 Model diagnostics 

The model tests summarised in Table 7.3 have shown that the best dynamic 

model, the double-log model, has no significant omitted variable, 

heteroscedasticity, or autocorrelation. This section further investigates the 

distributions of residuals with respect to the fitted values and the lagged 

dependent variable as shown in Figure 7.1 and Figure 7.2 respectively. The two 

scatter plots show that the residuals are distributed randomly with no distinctive 

patterns identified. Some observations have relatively small residuals because of 

the small cohort size of those observations. Similar to the static model residual 

plots, those observations are not expected to distort the estimation results and 

are kept in the model estimation to improve estimation efficiency.  

 

 
Figure 7.1 Scatter Plot of Residuals and Fitted Values from the Dynamic Model 
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Figure 7.2 Scatter Plot of Residuals and the Lagged Variable from the Dynamic Model 

 

In short, the double-log form of the dynamic pseudo panel data model 

demonstrates the best model goodness-of-fit, with no omitted variables or any 

significant non-spherical errors identified. There is a small degree of multi-

collinearity among some of the explanatory variables but they are not influential 

to the prediction power of this model. This choice of the best model functional 

form is thus made on the basis of the model specification tests and diagnostics 

presented above.  

 

7.3.4 Comparison of estimation techniques 

The dynamic pseudo panel data models presented above are estimated by the 

pooled OLS estimator. The use of the pooled OLS estimator for the 

characteristics displayed by the dataset for this study is recommended by the 

Monte Carlo experiment results concluded in Chapter 5. This section further 

investigates the estimation results from other estimators using the findings in 

the simulation experiments for completeness.  

 

 



165 
 

Table 7.6 summarises the estimation results of the dynamic model in the double-

log functional form using the pooled OLS, FE, RE, and GMM estimators. The 

PCSE estimator which corrects the non-spherical errors from OLS estimation is 

not included here because the double-log model does not show any significant 

non-spherical errors as discussed in the previous section. In Table 7.6, it can be 

clearly seen that the FE estimator has the lowest model goodness-of-fit with a 

weak model predictive power, given its low adjusted R-squared and the 

insignificance of explanatory variables. This is the result of the large ratio of 

between-group variance to within-group variance in the variable, and also 

identified in the static model estimation (see Section 6.3.4).  

 
Table 7.6 Dynamic Model Estimation Results using Various Estimators 

  OLS FE RE GMM 

LAG1 0.245*** -0.048 0.245*** -0.678 
(0.067) (-0.072) (0.067) (-0.674) 

PRICE -0.219*** -0.003 -0.219*** -0.489** 
(-0.076) (-0.100) (-0.076) (-0.225) 

INCOME -0.160** -0.087 -0.160** -0.297*   
(-0.062) (-0.080) (-0.062) (-0.160) 

AGE -0.573*** -1.024*** -0.573*** -1.318** 
(-0.086) (-0.201) (-0.086) (-0.550) 

BUS FREQUENCY 0.148*** 0.020 0.148*** 0.368**  
(0.051) (0.064) (0.051) (0.179) 

POPULATION DENSITY 0.596*** -0.048 0.596*** 1.147**  
(0.152) (-0.201) (0.152) (0.500) 

LAND MIX -0.028 -0.049 -0.028 -0.200 
(-0.121) (-0.117) (-0.121) (0.199) 

PSEUDO NODES -0.458*** 0.007 -0.458*** -0.912** 
(-0.109) (0.143) (-0.109) (-0.406) 

DISTANCE TO PT STOP 0.068 0.080 0.068 0.054 
(0.0656) (0.062) (0.066) (0.117) 

PT STOPS -0.174 -0.0001 -0.174 -0.301 
(-0.151) (-0.156) (-0.151) (0.298) 

CONSTANT -0.164 3.375 -0.164 
  (1.645) (2.128) (-1.645)           

Observations 236 236 236 236 
R-squared 0.877 0.200 0.877 
Adjusted R-squared 0.872 0.087 
 ఈ 0ߪ 
 ఌ 0.208ߪ 

rho     0   
               Note: Standard errors in parentheses; * P<0.10, ** P<0.05, *** P<0.01; 
                    Double log models are employed 
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The estimation results from the GMM estimator show larger standard errors for 

every parameter than other estimators. As reviewed in Section 2.4.2, the GMM 

estimator tends to be inefficient and thus inflate the standard errors when the 

number of groups (or number of panels in a genuine panel dataset) is small 

(Bruno, 2005a) and this is the case given the number of groups in the pseudo 

panel dataset is 20 which is considered to be rather small. Although most 

explanatory variables are still significant in the GMM estimation, albeit with a 

lower confidence level, the lagged dependent variable is insignificant. This 

finding might be expected from the simulation experiment results for dynamic 

models presented in Table 5.4, which identify that the GMM estimator 

substantially inflates the standard errors of the lagged dependent variable much 

more than the standard errors of the explanatory variable. Thus, the lagged 

dependent variable of the pseudo panel data model becomes insignificant because 

of estimation inefficiency, whilst other exogenous variables have only marginal 

increases in standard errors but remain significant.  

 

The RE model degenerates to the OLS model as evident from exactly same 

estimation results between the two estimators in Table 7.6. This effect has been 

identified by Baltagi (2008, p. 20) and the reason is that the variance of the 

unobserved individual effect ( ఈഥଶߪ ) may be negative from the RE estimation 

process6 and will be replaced by zero when it is negative. This happens when the 

unobserved individual effects (or group effects in a pseudo panel dataset) is 

minimal and the variance of the i.i.d error terms is substantially larger than the 

variance of the unobserved individual effects. This effect is confirmed in this 

dynamic model by the zero value of σ஑ in Table 7.6 and the ݋݄ݎ (representing the 

fraction of variance due to unobserved group effects) as zero. This effect is not 

evident in the static model but in the dynamic model where the model 

specification is improved by the inclusion of the lagged dependent variable which 

reduces the variance of the unobserved group effects. This suggests that the bias 

of the pooled OLS estimator or the RE estimator may not be substantial since the 

unobserved heterogeneity which causes bias in the pooled OLS model is 

substantially reduced after including the lagged dependent variable in the model. 
                                            
6 The variance of unobserved individual effect (Baltagi, 2008, p.20): 2 2 2

1
ˆ ˆ[( / ) ] /

N
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= −  
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To conclude, although a pseudo panel data model in theory may require cohort 

dummies or may be better estimated using the FE estimator to control the 

unobserved group effects, this study finds that the unobserved group effects are 

not substantial in this public transport demand model because of the proper 

model specification. Moreover, the FE estimator has been shown to be inefficient 

for the pseudo panel data model because its inability of capturing the between-

group variance as demonstrated in Section 5.4.2. Hence, the use of the pooled 

OLS estimator for the dynamic pseudo panel data model of this study is justified, 

and it is considered to be the most appropriate estimator with the lowest RMSE 

among all the estimators presented in this section.  

 

7.4 Estimation of demand elasticities 

Public transport demand elasticity is a measure of how travellers’ demand 

changes in response to the changes in its determinants. The demand elasticity is 

not necessarily constant over time. Instead, it may vary over time in accordance 

with the speed of demand adjustment and thus there is a distinction between 

short-run and long-run demand elasticities as reviewed in Section 2.1.2. The 

short-run elasticity ( ҧ݁௞ௌோ) estimated from the double-log regression model is the 

coefficient of the variable concerned, whereas the long-run elasticity ( ҧ݁௞௅ோ) is a 

function of the short-run elasticity and the coefficient of the lagged dependent 

variable as specified in Equation (7.11), with a speed of adjustment derived from 

Equation (7.12). The speed of adjustment and demand elasticities presented in 

this section are estimated from the double-log form of the dynamic pseudo panel 

data model which is justified as the preferred model, based on the pooled OLS 

estimator as the preferred estimator for the dynamic public transport demand 

model discussed in Section 5.4.2. 

                                         

/1LR
k ke β λ= −  Equation (7.11)

ln(1 ) / ln( )T A λ= − Equation (7.12)

where ܶ: number of years for A percent of demand to adjust ܣ: proportion of demand adjustment ߣ: coefficient of the lagged dependent variable  
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The timeframes for the shot-run demand and long-run demand are referred by 

Jevons (2005), who defines the long-run time period as the number of years for 95 

percent of long-run demand to work through. Although some studies have 

suggested using one hundred percent of long-run demand adjustment to 

determine the long-run time period (Dargay, 2002), the speed of demand 

adjustment derived from Equation (7.12) (where 0.245= ߣ) shown in Figure 7.3 

shows that the difference in the number of years required for 95 percent and one 

hundred percent demand adjustment is very minimal. This minimal difference is 

not expected to make a significant difference in the long-run demand estimation. 

From Figure 7.3, it can be seen that the speed of adjustment decreases over time, 

with around 75 percent of demand adjusted within the first year which is defined 

as the timeframe for short-run demand change. It then takes around 2.13 years 

for 95 percent of demand to be fully adjusted and this is the timeframe required 

to reach the long-run demand equilibrium. The speed of demand adjustment 

implies that the responsiveness of public transport users to system changes, such 

as fare or population density, may take up to 2.13 years to be fully observed. This 

gives a strong message to policy makers that long-run demand changes are 

important to take account of when planning public transport systems.  

 

 
Figure 7.3 The Speed of Public Transport Demand Adjustments 
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The short-run and long-run demand elasticities with respect to the significant 

explanatory variables in the dynamic double-log model are summarised in Table 

7.7.  

 
 

Table 7.7 Demand Elasticities Derived from the  
Best Dynamic Public Transport Demand Models 

Dynamic Model 

 Short-Run Long-Run 

PRICE -0.22 -0.29 

INCOME -0.16 -0.21 

AGE -0.57 -0.76 

BUS FREQUENCY 0.15 0.20 

POPULATION DENSITY 0.60 0.79 

PSEUDO NODES -0.46 -0.61 

 

The short-run and long-run price elasticities estimated from the dynamic model 

are -0.22 and -0.29 respectively, suggesting that a ten percent increase in price is 

expected to reduce public transport demand by 2.2 percent in the short run (i.e., 

one year), but it will reduce public transport demand by 2.9 percent in the long 

run (i.e., 2.13 years). The estimated price elasticities from the dynamic pseudo 

panel data model are of the same order of magnitude as the public transport 

price elasticities estimated by Hensher (1998) using mixed Reveal Preference and 

Stated Preference data in Sydney, in which the price elasticity of train travel was 

found to be between -0.093 and -0.218 and the price elasticity of bus travel 

ranged between -0.098 and -0.357 varying with the ticket types in use, where the 

elasticities were estimated at a point of time so the distinction between short-run 

and long-run elasticities was not examined. The price elasticity found in this 

study and Hensher’s finding, which both use disaggregate data, are generally 

smaller than the international evidence based on aggregate data, and the 

difference between the short-run and long-run elasticity in this study (32 percent) 

is also smaller than international evidence which has generally found that the 

long-run price elasticity is two to three times larger than sort-run elasticities 

(Voith, 1991; Dargay and Hanly, 2002; Bresson et al., 2003; Graham et al., 2009; 

Dargay et al., 2010), regardless the type of functional form in use.  This is 

possibly because the price variation in a pseudo panel dataset for a specific study 

area is smaller than would be exhibited using a panel data analysis of aggregate 
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data from multiple transport systems. This difference shows the demand 

elasticity of price may be sensitive to the methodology in use, and the elasticity 

estimated from the pseudo panel approach is representative of the focussed study 

area which is more relevant for local transport planning. 

 

The age elasticity is -0.57 in the short run and -0.76 in the long run. The age 

elasticities appear to be high since these suggest a one-hundred percent increase 

in age gives a significant change over a life cycle. For example, students aged 

around 20 years old with high public transport demand will become middle-age 

people in the workforce after a one-hundred percent increase in age, who are 

expected to have a lower usage of public transport in the context of Sydney. Thus, 

public transport demand in Sydney is very sensitive to age in terms of percentage 

changes.  

 

The two land use variables, population density and pseudo nodes, also have 

moderately high elasticities because a one-hundred percent change in population 

density and pseudo nodes indicates a dramatic changes in land use, so population 

density and number of pseudo nodes have strong impacts on public transport 

demand in terms of percentage changes, and the magnitudes of the impacts are 

greater than price, income, and bus frequency.  

 

Comparing the elasticities estimated from the dynamic model with the static 

model shows that the elasticities of the static model are higher than those short-

run elasticities of the dynamic model. Some, such as income and bus frequency, 

have even greater elasticities in the static model than those long-run elasticities 

estimated from the dynamic model. This suggests that the static model, which 

does not take the lagged demand adjustment into account, is likely to over-

estimate the demand elasticities for some explanatory variables.  

 

The differences between short-run and long-run demand elasticities discussed 

above confirm that public transport users do take time to change their travel 

behaviour in response to changes in the explanatory variables. This implies that 

failing to recognise the long-run travel behaviour may mislead policy formulation 
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and implementation by mistakenly under-estimating the influence of system 

changes on long-run demand. For example, if a public transport fare is increased 

by one hundred percent on average, the public transport demand is expected to 

decrease by 22 percent in the first year according to the short-run price elasticity, 

but there is another seven percent reduction in public transport demand which is 

expected to occur in following 1.13 years. If this long-term effect is neglected by 

the policy maker, the influence of fare increases on changes in passenger volume 

or the adjustment of service level would be under-estimated.   

 

Income of travellers is an important socio-economic factor which influences the 

impact of public transport system changes. Dargay (2001) has shown that 

demand elasticity would be different across people with different levels of income. 

By classifying all the observations (i.e., cohorts) in the pseudo panel dataset into 

two income levels based on the median annual personal income (AU$28,825) of 

all observations, the elasticities can be estimated separately for these two 

clusters. Table 7.8 summarises the descriptive statistics of cohorts with lower 

income and higher income. It can be observed that cohorts with lower income 

have higher public transport use at 0.54 public transport trips per person as 

opposed to 0.37 trips per person for higher income cohorts. The average public 

transport trip price is also lower for lower-income cohorts at 1.40 dollars as 

opposed to 2.06 dollars for higher income cohorts because concession tickets and 

school buses are more commonly available for people with lower income such as 

students and retired people. Other land use variables and bus frequency do not 

show substantial differences between the two clusters which suggests that the 

effects of land use characteristics and bus frequency is not distinguishable 

between low-income and high-income residential areas in Sydney. 

  

Table 7.9 displays the estimation results of the dynamic pseudo panel data model 

in the double-log functional form for lower income cohorts and higher income 

cohorts separately.  
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Table 7.8 Descriptive Statistics of Low Income and High Income Cohorts Divided by 
the Median Income 

  Low Income High Income 

Variable (Units) Obs Mean S.D. Obs Mean S.D. 

PTTRIP (Trips/person) 128 0.54 0.31 128 0.37 0.20
PRICE (AU dollars) 128 1.40 0.60 128 2.06 0.33
INCOME (AU dollars p.a.) 128 17494.55 6170.47 128 39790.32 7053.93
AGE (years) 128 42.72 23.19 128 39.92 9.13

BUS FREQUENCY 128 193.84 159.33 128 193.63 140.20

DENSITY (population/800 m2) 128 21623.20 5475.54 128 22531.67 5690.77
PSEUDO NODES (Nodes) 128 1387.45 637.83 128 1336.83 609.67
LAND MIX (Entropy) 128 0.12 0.01 128 0.13 0.01
DISTANCE TO PT STOP (meter) 128 246.87 84.63 128 235.40 64.44

PT STOPS (no. of stops) 128 40.77 7.80 128 42.13 7.32

 

Table 7.9 Estimation Results classified by Personal Income 

  
Lower 
Income 

Higher 
Income    

Two-sample  
t-test  presented 
by t-value 

LAG1 0.193* 0.283*** -3.39 
(0.101) (0.0914)     

PRICE -0.234** 0.0621    -25.8 
(0.114) (0.183)     

INCOME -0.0677 -0.109    3.09 

(0.105) (0.141)     

AGE -0.594*** -0.483*** -2.50 
(0.137) (0.119)     

BUS FREQUENCY 
0.175** 0.103    6.46 
(0.0726) (0.0763)     

POPULATION DENSITY 
0.457** 0.828*** -4.89 
(0.228) (0.211)     

PSEUDO NODES 
-0.350** -0.569*** 4.18 
(0.167) (0.150)     

LAND MIX -0.0836 0.144    -11.44 

(0.173) (0.189)     

DISTANCE TO PT STOP 
0.146 0.0153    14.07 

(0.104) (0.0900)     

PT STOPS 0.155 -0.404*   13.75 
(0.223) (0.214)     

CONSTANT -2.189 -1.003     
  (2.687) (2.679)     

R-squared 0.864 0.884     

Adjusted R-squared 0.851 0.873     

           Note: Standard errors in parentheses; * P<0.10, ** P<0.05, *** P<0.01;  
                     Double log models are employed and estimated by the OLS estimator 
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Both estimations show good model goodness-of-fit although the number of 

observations is reduced for each of them as compared to the estimation for the 

full dataset (see Table 7.6). Two-sample student’s t-tests are undertaken to 

compare the parameters of the two models, with result showing the differences 

between the parameters are significant. The most noticeable difference between 

the two sets of parameter estimates is the coefficients for the lagged dependent 

variable and the price variable. The lower income cohorts are more sensitive, 

than higher income cohorts, to price variations but less elastic in their behaviour 

for the previous time period. The price variable is insignificant for the higher 

income cohorts suggesting that people with higher income are not sensitive to 

public transport price changes. Instead, their travel behaviour in terms of public 

transport use is more dependent on their previous behaviour as captured by the 

lagged dependent variable.  

 

The influence of bus frequency on public transport demand is different between 

the two income clusters. Bus frequency is significant for the lower income cohorts 

but insignificant for higher income cohorts. This is possibly because people with 

lower income have higher dependency on public transport than people with 

higher income, given that the average number of public transport trips per 

person is higher in the lower income cohorts than higher income cohorts as 

shown in Table 7.8. Other variables do not show substantial difference in terms 

of the parameter significance.  

 

This analysis shows the behavioural differences in people with difference income. 

People with lower income choose to use public transport because of its lower 

monetary costs and better level of service in terms of frequency, whereas the 

reason for people with higher income choosing to use public transport is more 

related to their previous behaviour, maybe as a result of habit or other factors 

that require them to use public transport such as inconvenient or inability of 

parking at their destination. This provides important information for public 

transport policy in terms of the impact of fare increase on travellers with 

difference income status. For example, if the operator or policy maker needs to 

predict the reduction of passenger volume due to a fare increase, the prediction is 
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expected to be more accurate if customers are segmented by income with specific 

care being taken to separate lower income from the overall population since they 

are more sensitive to fare changes.  

 

7.5 Summary and discussion  

This chapter presents a comprehensive analysis for the dynamic pseudo panel 

data model. Given the various forms of dynamic models, the best dynamic public 

transport demand is justified using statistical tests from models with different 

model specifications and estimation techniques. These suggest that the double-

log model using the pooled OLS estimator determines the most plausible 

estimation results from the dynamic pseudo panel data model for this study.  

 

Public transport demand elasticities are computed using the preferred model. 

The price elasticity is -0.22 in the short run and -0.29 in the long run which are 

similar to previous studies conducted in Sydney. Other explanatory variables 

including age, income, bus frequency, and land use characteristics in terms of 

population density and pseudo nodes are also demonstrated to be significantly 

influential to public transport demand. The distinction between short-run and 

long-run provides important policy implications by highlighting the necessarily of 

realising the long-term effects in response to system changes which are 

sometimes neglected by policy makers.  

 

In distinguishing the short-run and long-run effects, this study employs the 

dynamic PAM which only takes account of the first lag of dependent variable in 

the model prediction process. The inclusion of the second lag in the dynamic 

model was also estimated but not presented in this chapter because the second 

lag parameter is not significantly different from zero. The results from the PAM 

imply that the differences between the short-run and long-run elasticities are the 

same across all the explanatory variables as a result of being determined by the 

coefficient of the lagged dependent variable.  

 

The use of pseudo panel data approach has closed some research gaps in this 

field of study as discussed in Section 2.6. First, the dynamic pseudo panel data 
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model take account of the temporal effect of behaviour changes in the public 

transport demand model. Second, this public transport demand model 

incorporates a comprehensive set of land use variables covering the land use 3D 

and accessibility measures. Third, the use of pseudo panel data allows a 

longitudinal analysis on a specific study area, with a certain level of individual 

information being incorporated. This allows the identification of demand 

elasticities with respect to people with different socio-economic status such as 

income. The research findings discussed above collectively contribute to the 

literature of transport demand analysis and land use studies, and also provide 

practical policy suggestions for long-term transport and urban planning.  

 

The model specification and model form of the dynamic public transport demand 

model is determined in this chapter. The predictive power of this model can be 

examined by conducting demand forecasting, which also demonstrates the 

usefulness and applicability of this pseudo panel data model in empirical 

transport planning. Demand forecasting for the SGMA using the dynamic pseudo 

panel data model is introduced in the next chapter. 
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CHAPTER 8 DEMAND FORECAST 

 

8.1 Introduction 

To demonstrate the applicability of the dynamic public transport demand model 

presented in Chapter 7, this chapter employs the demand model to forecast 

public transport demand for the Sydney Greater Metropolitan Area (SGMA). This 

process validates the demand model by comparing the forecast demand and the 

observed public transport demand in the HTS report in the past years.  

 

In Section 8.2, the public transport demand model is validated by estimating 

data between 1997 and 2007 to compare the predicted demand and the observed 

demand in 2008 and 2009. Section 8.3 projects the public transport demand 

predictors for future years using various data sources in the preparation for the 

demand forecasting.  Section 8.4 forecasts future public transport demand for the 

SGMA using the best dynamic pseudo panel data model selected in Chapter 7. 

Section 8.5 presents sensitivity analysis to investigate the potential public 

transport demand growth based on various policy scenarios. Section 8.6 

concludes this chapter.  

 

8.2 Model validation 

One of the difficulties in assessing the accuracy of a demand forecast is the lack 

of information about actual demand in the future to be compared to the 

forecasted demand. In principle, the accuracy of a travel demand forecast can be 

evaluated by comparing differences between the forecast demand estimated from 

a demand model and the actual demand observed from real data. However, the 

demand model constructed in this study is based on the Sydney Household 

Travel Survey (SHTS) data from 1997 to 2009, and there has only been one more 

year of data in 2010 released by Bureau of Transport Statistics that could be 

used to compare with the demand forecast. Hence, before forecasting demand for 

future years, the demand model is first validated through taking a holdout 

sample approach using data between 1997 and 2007 in the pseudo panel dataset 

to estimate the public transport demand in 2008 and 2009. These results are 

compared to the demand observed in 2008 and 2009.  
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The estimation results of the model based on 1997 and 2007 data and the 

dynamic pseudo panel model presented in Chapter 7 are compared in Table 8.1. 

Both models have exactly the same functional form and explanatory variables in 

natural logarithms. The only difference is that one model only uses data between 

1997 and 2007 out of the whole dataset for estimation (the holdout model). The 

estimation results show that there is little difference between the two models in 

terms of the model goodness-of-fit and the significance of the parameters. The  

two-sample t-test also confirms that the differences of the parameters between 

the two models are insignificant. The coefficients of the parameters of the holdout 

model are slightly different to the original model but their significances and signs 

remain the same. This demonstrates that the dynamic pseudo panel data model 

is well specified as the estimation results are not sensitive to the data from 

different time periods.  

 

The public transport demand in 2008 and 2009 is predicted and compared to the 

demand observed in the original dataset. Table 8.2 summarises the mean values 

of the explanatory variables in real terms in 2008 and 2009, with the predicted 

public transport demand (i.e., ܴܲܶܶܲܫ, number of trips per person) in comparison 

to the observed demand in 2008 and 2009. In 2008, the predicted public transport 

demand is 0.32 trips per person as compared to 0.34 for the observed demand 

which is around six percent lower. In 2009, the difference is larger at around 11 

percent of demand under-estimated. This larger prediction difference is 

considered to be as a result of unexpected changes in explanatory variables 

between 2008 and 2009 rather than prediction errors. Looking at the mean 

values of explanatory variables in 2009, some variables have lower values than 

might be expected from historical averages. For example, price, income, and 

population density have decreased in 2009 as compared to 2008 although their 

average trends are increasing between 1997 and 2009 (as shown in Section 8.3 

below). As a result, this variation from the historical trend is likely to lead to 

larger prediction errors. These prediction differences, as a result of using the 

observed values of explanatory variables, is expected to be mitigated when using 

projected data for demand forecasting as demonstrated in the next section. 
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Table 8.1 Model Estimation Results Using Data from 1997-2009 and 1997-2007 

Variable Model 1997-2009 Model 1997-2007 
Two-sample 
t-test  presented by 
t-value 

LAG1 0.245*** 0.225*** 0.43 

(0.067) (0.076)     
PRICE -0.219*** -0.251*** 0.43 

(0.076) (0.086)     
INCOME -0.160** -0.142**  0.57 

(0.062) (0.070)     
AGE -0.573*** -0.604*** 0.18 

(0.086) (0.096)     
BUS FREQUENCY 0.148*** 0.208*** 0.57 

(0.051) (0.062)     
POPULATION DENSITY 0.596*** 0.528*** 0.49 

(0.152) (0.176)     
LAND MIX -0.028 -0.123    1.04 

(0.121) (0.138)     

PSEUDO NODES -0.458*** -0.411*** 0.47 

(0.109) (0.127)     
DISTANCE TO PT STOP 0.0679 0.075 0.96 

(0.066) (0.075)     

PT STOPS -0.174 -0.191    1.09 

-0.151 -0.176  
Constant -0.164 -0.352 1.50 

  -1.645 -1.901 0.43 

Observations 236 196  

R-squared 0.877 0.876  

Adjusted R-squared 0.872 0.869  

 Note: Standard errors in parentheses; * P<0.10, ** P<0.05, *** P<0.01; double log modes are 
estimated by the OLS estimator. 
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Table 8.2 Predicted Public Transport Demand for 2008 and 2009 

Variable Unit 
2008 2009 
Mean Mean 

LAG1 trips/person 0.32 0.34 

PRICE AU dollars 1.46 1.43 

INCOME AU dollars 23,966.21 21,687.71 
AGE years 41.59 42.21 
BUS FREQUENCY services 100.59 102.82 
POPULATION DENSITY populations 20,119.12 19,271.70 
PSEUDO NODES nodes 1,112.15 1,045.48 
LAND MIX entropy 0.12 0.13 
DISTANCE TO PT STOP meter 146.29 158.89 
PT STOPS stops 38.35 37.65 

Predicted PTTRIP (ݕො) 0.32 0.33 
Observed PTTRIP 0.34 0.37 

Difference (%)   -6% -11% 

 

 

8.3 Projection of predictors 

The first step of demand forecasting is projecting the predictors forward. As the 

dynamic pseudo panel data model is estimated using data from 1997 to 2009, 

2009 is selected as the base year for forecasting future demand. The predictors, 

which are the explanatory variables in the dynamic model, are projected for 2010, 

and 2011 and then to 2026 in five year intervals using various data sources as 

summarised in Table 8.3. Public transport demand is forecast for 2011 to 2026 in 

order to be compared with population forecast years and Australian Census years 

with the same timeframe. Public transport demand in 2010 is also forecast using 

the demand model given that the number of public transport trips has been 

observed and published, so a comparison between the observed demand and 

forecast demand in 2009 and 2010 can be used as another approach to assess the 

accuracy of the forecast model. 
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Table 8.3 Projections of Predictors for Demand Forecasting 

Variable Annual  
% change 

2009-2026  
total change 

Data Source 

PRICE 1.03% 19% ABS (2012b) 

INCOME 1.90% 38% ABS (2012a) 

AGE 0.50% 9% ABS (2008) 

BUS FREQUENCY 0.90% 16% BTS (2012c) 

POPULATION DENSITY 1.40% 24% BTS (2012d) 

PSEUDO NODES 0% 0% Assumed to be time-invariant

LAND MIX 0% 0% Assumed to be time-invariant

DISTANCE TO PT STOP 0% 0% Assumed to be time-invariant

PT STOPS 0% 0% Assumed to be time-invariant
   

 

The projection of public transport price uses the Urban Transport Fare Index of 

New South Wales, published by Australian Bureau of Statistics (ABS) (2012b). 

This index is a subgroup of the Consumer Price Index (CPI) for which historical 

data are also available. As there is no specific methodology for predicting future 

public transport price, the historical average percentage increase in Urban 

Transport Fare Index from 1997 to 2009 is used as the average annual price 

change (1.03 percent per year) for the forecast years, with all indices being 

adjusted to real terms based on 1997 CPI.  

 

Annual person income is projected forward using the historical weekly income 

released by ABS (2012a). This weekly income is equally weighted to the annual 

incomes for each year between 1997 and 2008. This historical trend shows that, 

on average, annual income has increased in NSW by 3.86 percent in money 

terms, which is slightly higher than the average increase of the Australian CPI 

at 2.64 percent. This is converted to an average of 1.9 percent in real terms.  

 

The growth of the age variable is not as substantial as that of the income and 

price variables. According to the Australian Historical Population Statistics 

published by ABS (2008), the median age in NSW has been increasing by around 

0.5 percent per year since 1998, from 35.2 years in 1998 to 36.9 in 2007. In this 

study this is used as the future age increase for demand forecasting.  
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The three variables discussed above are projected on the basis of historical 

statistics collected by ABS. These ABS statistics are based on the geography of 

NSW state. As no further level of aggregation is publicly available, the 

projections for the SGMA are assumed to be the same as for NSW.   

 

On the other hand, bus frequency and population density are projected forward 

using the SGMA data forecast by the Bureau of Transport Statistics (BTS). BTS 

forecasts travel demand by trip mode for the SGMA using the Strategic Travel 

Model. Bus frequency and population density are two inputs for this Strategic 

Travel Model and are used in this study. The projection of bus frequency can be 

retrieved from Transport Supply and Demand Forecasts for the Greater 

Metropolitan Area published by BTS (2012c), in which the bus frequency is 

assumed to increase by around 0.9 percent per year between 2006 and 2036. The 

increase of population density is assumed to be proportional to total population 

growth in the SGMA, since land area is fixed over time. The population growth in 

the SGMA is forecast by BTS (2012d) based on 2006 Census data for each five-

year interval between 2006 and 2036. This population forecast is non-linear and 

estimated by taking account of various factors such as the supply of dwellings, 

birth and deaths rates, and migration flows. Populations between each two 

forecast years are linearly weighted. For this study, the average population 

growth is estimated at 1.4 percent per year between 2009 and 2026. 

 

Other variables including pseudo nodes, land use mix, walk distance to the 

nearest public transport stop, and number of bus stops are assumed to be time-

invariant in the forecast model. This is because they are time-invariant variables 

in the pseudo panel dataset and there is no historical data or forecast data 

available to estimate a reasonable increase rate. However, these are subject to 

sensitivity tests in Section 8.5 to investigate how public transport demand might 

change in response to the changes in these time-invariant variables as this 

relevant for policy analysis.  
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8.4 Public transport demand forecast 

Based on the projected variables introduced above, public transport demand in 

the SGMA for future years is forecast using the double-log dynamic pseudo panel 

data models. The unrestricted model and the restricted model which excludes the 

insignificant variables are both employed. Public transport demand is first 

predicted for 2009 as the base year demand, followed by 2010, 2011, and then 

every five years until 2026.  

 

As the dynamic demand model of Chapter 7 defines the dependent variable as 

number of public transport trips per person per day, this is aggregated to total 

public transport demand on an average day in the SGMA in 2009 by multiplying 

the predicted number of trips per person (0.336 trips in 2009) by the total 

population of the SGMA (5,317,330 persons in 2009). The daily public transport 

demand is then multiplied by 365 to estimate the annual public transport trips in 

the SGMA in order to compare the annual number of public transport trips 

published in the HTS report (BTS, 2012e). Public transport demand for future 

years is forecast using the dynamic models based on the projected data in future 

years.  

 

Table 8.4 summarises these forecasted results, based on unrestricted and 

restricted dynamic model separately, and compares these to the reported demand 

published by BTS (2012e). The reported demand published by BTS is estimated 

from the SHTS data by expanding the sample observations to the total 

population of the SGMA through a weighting scheme (2011c). This statistic is 

published annually and the most recent data available is in 2010.  
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 Table 8.4 Results of Annual Public Transport Demand Forecast 

Year 
  

Reported Demand  
(HTS report) 

Forecast Demand by unrestricted 
model 

Forecast Demand by restricted 
model 

PT Trips 
(million) Growth1 

PT Trips 
(million) Growth1 Difference2

PT Trips 
(million) Growth1 Difference2 

2009 606.7 N/A 651.5 N/A 7.32% 651.8 N/A 7.43%
2010 624.4 2.90% 659.6 1.29% 5.64% 659.1 1.12% 5.57%
2011 N/A N/A 675.8 2.47% N/A 673.3 2.14% N/A
2016 N/A N/A 714.3 5.69% N/A 708.3 5.20% N/A
2021 N/A N/A 756.1 5.85% N/A 745.4 5.24% N/A

2026 N/A N/A 797.6 5.49% N/A 781.9 4.90% N/A
1As compared to the demand forecast for the previous time period (2009-2010-2011-2016-2021-
2026)  
2As compared to the reported demand based on the SHTS report published by BTS (2012e). 
 

Comparing the reported demand and forecast demand in the base year 2009, the 

forecast demand is higher than the reported demand by 7.32 percent for the 

unrestricted model and 7.43 percent for the restricted model. The difference 

between the unrestricted and restricted models is small (651.5 million for the 

unrestricted model and 651.8 for the restricted model). The unrestricted model is 

chosen as the preferred model for demand forecasting, given that its forecast 

results are closer to the HTS report in terms of the annual growth and the 

difference between the forecast demand and the reported demand.  

 

This difference between the reported demand and the forecast demand by the 

unrestricted model is around 7.32 percent in 2009 and 5.64 percent in 2010. This 

difference could result from the weighting scheme used by BTS which is different 

to the aggregation process of this analysis. In addition, the forecast demand is 

based on the selected sample of this study, which is constituted of public 

transport users only. It is possible that people may stop using public transport or 

there are new public transport users in the future, and this effect is unable to be 

captured by this forecast model.  

 

The validity of the demand forecast can also be evaluated by comparing the 

demand changes over time between the reported demand and forecast demand 

shown in Table 8.4. The growth rate of the reported demand between 2009 and 

2010 is 2.90 percent, which is close to the growth rate of the forecast demand 

using the unrestricted model of 1.29 percent. The estimated demand changes 
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over time correspond to the reported demand changes which suggest that the 

demand model has sound forecasting power. The growth rate of the forecast 

demand between 2011 and 2026 is around five percent to six percent at a five-

year basis and, although the reported demand is unknown for future years, this 

forecast demand is similar to the forecast demand estimated by the Strategic 

Travel Model conducted by BTS (2012c), which also predicts a growth rate of 

around six percent every five years for the same timeframe. This evidence 

validates the forecasting power of the dynamic pseudo panel data model.  

 

8.5 Sensitivity analysis 

 As there are uncertainties of future changes in explanatory variables as well as 

there being some time-invariant variables in the model, sensitivity analysis is 

conducted to forecast public transport demand based on various scenarios. These 

scenarios are designed by adjusting the projections of explanatory variables 

based on the base scenario as presented in Table 8.3. Only variables that are 

considered to be adjustable by policy makers are selected for this sensitivity 

analysis, which include the public transport price, bus frequency, population 

density, and pseudo nodes. Income and age are not included because it is less 

likely to adjust future changes of personal income and age. Land use mix, the 

distance to public transport stop, and the number of public transport stops are 

also excluded since they are insignificant in the public transport demand model.  

 

The public transport demand is forecast from 2009 to 2026 using the unrestricted 

dynamic model. The results of the sensitivity analysis are summarised in Table 

8.5. The base scenario, which assumes that all explanatory variables will change 

as projected in Table 8.3 in the future, shows that public transport demand is 

forecast to increase by around 26.53 percent between 2009 and 2026. This growth 

rate is used as a baseline to be compared to the following scenarios.  
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Table 8.5 Sensitivity Analysis of Public Transport Demand Forecasting  
     (Unit: million trips) 

Year Base 
Scenario 

Price  
(+0%) 

+1.03%1 

Bus 
Frequency 

(+1.5%) 
+0.9% 1 

Density 
(+2%) 
+1.4%1 

Pseudo 
Nodes 
(-0.5%) 
+0%1 

Combined
Effect2 

2009 672.0 672.0 672.0 672.0 672.0 672.0
2010 684.0 685.5 684.6 685.4 685.6 689.1
2011 704.3 707.8 705.7 700.6 707.9 709.2
2016 751.9 766.9 757.7 773.8 767.3 811.8
2021 801.0 829.3 812.0 850.2 830.0 924.5

2026 850.3 893.4 867.0 931.8 894.5 1,050.3
2009-2026 

Total Growth 26.53% 32.96% 29.02% 38.67% 33.12% 56.30%

Increased 
Demand3 - 6.42% 2.48% 12.14% 6.59% 29.77%

      1Percent change in the Base Scenario 
    2The scenario that combines all the scenarios on the left 
      3The total increased public transport demand as compared to the base scenario in 2026  
 

The first sensitivity analysis assumes a constant public transport price over time, 

in comparison to the assumption of a 1.03 percent annual increase in the base 

scenario, whilst keeping the changes of other variables the same as the base 

scenario. This scenario is tested to examine how public transport demand 

changes in response to adjustments of public transport price. The result shows 

that public transport demand is expected to increase by 32.96 percent from 2009 

to 2026 which is higher than the demand growth of the base scenario by 6.43 

percent, indicating that the public transport demand could be increased by 6.43 

percent if the price of public transport was to remain constant in the future as 

compared to the current level of average price increase.  

 

The next scenario investigates to which extent public transport demand can be 

increased by providing more frequent bus services. This scenario assumes a 

higher increase in bus frequency at 1.5 percent per year as opposed to the 0.9 

percent of the base scenario. The chosen scenarios are based on likely outcomes, 

given known policy and, although other changes in bus frequency could be tested, 

they are not because this is not the focus of this study. The forecasted result 

shows that public transport demand will increase by 29.02 percent which is 

slightly higher than the base scenario as expected because the long run elasticity 

with respect to bus frequency is positive at 0.20, and the demand increase 
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between 2009 and 2026 is slightly lower than the first scenario as a result of the 

smaller elasticity as compared to the price elasiticty at -0.29 in absolute term. 

 

The third scenario assumes an increase in population density of two percent per 

annum which is higher than the base scenario of 1.4 percent. This assumption is 

to examine the impact of increasing population density on public transport 

demand. A two percent annual increase in population density means that there 

will be a 34 percent increase from 2009 to 2026. Figure 8.1 and Figure 8.2 

visualise two built environments with around 34 percent difference in population 

density in Sydney in the current year. Figure 8.2 represents the image of the 

built environment after the population density is increased by 34 percent, and 

shows that there are more high-rise buildings as compared to Figure 8.1. As 

shown in Table 8.5, when population density increases at two percent annually, 

public transport demand is forecast to increase by 38.67 percent from 2009 to 

2006 as compared to 26.53 percent increase in the base scenario. This result 

shows that public transport demand is more elastic to population density than 

with regard to public transport price or bus frequency.  

 

 
Figure 8.1 A Built Environment with Lower Population Density as a Baseline 

         (Population: 31,958 persons/800m2; Source: Google Earth) 
 



187 
 

 
Figure 8.2 A Built Environment with Higher Population Density for  

                  Sensitivity Analysis 
     (Population: 42,489 persons/800m2; Source: Google Earth) 

 

 

Similar results can be found in the next scenario which assumes a 0.5 percent 

reduction in pseudo nodes. Although the number of pseudo nodes is assumed to 

be time-invariant in the base scenario, in the long-term it is possible to slightly 

change the road network by reducing cul-de-sacs and by designing grid networks 

in new communities to improve the walking environment and accessibility to 

local public transport stops. Around 8.5 percent of pseudo nodes would be 

reduced by 2026 as a result of an annual reduction rate of 0.5 percent. Figure 8.3 

and Figure 8.4 show two built environments with eight percent difference in the 

number of pseudo nodes within an 800-metre buffer of a Travel Zone centroid 

(marked as a dot in Figure 8.3 and 8.4). The two figures do not show noticeable 

difference in terms of the structure of network, although Figure 8.4 has 8 percent 

fewer pseudo nodes. Nevertheless, this scenario results in public transport 

demand increasing by 33.12 percent between 2009 and 2026 which is around 6.59 

percent higher than the base scenario. This suggests that public transport 

demand could be effectively increased by only a slight improvement in the 

walking environment of the built environment and without a dramatic reform of 

road network.  
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Figure 8.3 A Built Environment with more Pseudo Nodes as a Baseline 

             (Number of Pseudo nodes: 3,240; Source: developed from Sydney GIS layers) 

 

 
Figure 8.4 A Built Environment with Fewer Pseudo Nodes for Sensitivity Analysis 

             (Number of Pseudo nodes: 2,942; Source: developed from Sydney GIS layers) 

 

The last scenario, which combines all the scenarios introduced in Table 8.5, 

shows that the total public transport demand could be increased by 48.81 percent 

between 2009 and 2026 which is 29.77 percent higher than the base scenario. 

This sensitivity analysis demonstrates the way in which public transport demand 

can be forecast, based on various policy scenarios. A comparison of all the policy 

scenarios with their incremental demand growth between 1997 and 2026 is 
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presented in Figure 8.5. It shows that land use changes in terms of population 

density and number of pseudo nodes are expected to have a greater impact on 

public transport demand than changes in price or bus frequency, and the public 

transport demand could be increased by a total number of 56.3 percent if all the 

four policy scenarios in the sensitivity analysis are achieved.  

 

 Figure 8.5 A comparison of Public Transport Demand Growth of all Scenarios 

 

8.6 Summary 

This chapter presents various demand forecasts using the dynamic pseudo panel 

data introduced in Chapter 7. The forecast model is first validated by 

investigating the difference between the observed demand and predicted demand 

using data between 1997 and 2007 only. The result shows that the demand model 

is robust to the reduction in time periods of the dataset, and it also demonstrates 

that the differences between the predicted demand and observed demand in 2008 

and 2009 are not substantial. 

 

The dynamic pseudo panel model based on the full dataset is then employed to 

forecast demand for the SGMA in future years. The forecast demand is close to 

the demand observed in 2009 and 2010 with similar growth rates being 

identified. This result confirms the validity of the demand elasticities estimated 

from the dynamic model which can reflect the demand changes over time in 

response to changes in predictors.  

 

The sensitivity analysis of the demand forecasting demonstrates to which extent 

the public transport demand can be influenced by different policy scenarios. The 

findings suggest public transport demand is the more elastic to land use 

characteristics in terms of population density and number of pseudo nodes than 
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price changes or improvement of bus frequency. The outcomes of the demand 

forecasting have suggested the usefulness and potential empirical applications of 

the public transport demand model, given its capability of forecasting public 

transport demand for the SGMA. 
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CHAPTER 9 CONCLUSIONS 

 

In this thesis, Chapter 1 and Chapter 2 introduce the research questions and 

research gaps addressed in this study. Chapter 3 through to Chapter 8 present 

the research work conducted to address the research questions and research 

gaps. This chapter summarises the research outcomes of the thesis in Section 9.1 

and highlights the research contributions in Section 9.2. The limitations of this 

study and directions for future research are discussed in Section 9.3 and Section 

9.4 respectively, followed by a concluding remark in Section 9.5.  

 

9.1 Summary of research findings 

The research findings of this study are concluded in turn in the context of 

research questions introduced in Chapter 1. 

 

Question 1: What are the determinants of public transport demand and 

the demand elasticities with respect to each of the determinants in the 

SGMA? 

 

The determinants of public transport demand in the Sydney Greater 

Metropolitan Area (SGMA) are investigated in Chapter 3 using the 

Geographically Weighted Regression (GWR) approach and Chapter 6 and 

Chapter 7 analysed using pseudo panel data models. The global model of the 

GWR analysis identifies that public transport trips price, travellers’ personal 

income and age, bus frequency, population density, pseudo nodes, and the road 

distance to the CBD are significant determinants of public transport demand in 

the SGMA. On the other hand, the local model suggests that public transport 

demand consistently varies spatially with distance to the CBD and confirms the 

importance of spatial variability. However, the GWR analysis is here only an 

exploratory analysis which does not incorporate the time-series variations of 

public transport demand or explanatory variables which is addressed in the 

pseudo panel analysis. 

  



192 
 

The pseudo panel data models take account of the time-series variations in the 

demand model. The static and dynamic models demonstrate consistent findings 

in terms of the significance of the determinants. Both models confirm that public 

transport trip price, travellers’ personal income and age, bus frequency, 

population density, and pseudo nodes are significant to public transport demand, 

whereas land use mix, number of public transport trips, and walk distance to the 

nearest bus stop are not significant at the 95 percent statistical confidence level. 

This result suggests that public transport service frequency is more important 

than accessibility to local public transport stops in the determination of public 

transport demand, and thus it needs to be considered in public transport demand 

modelling.  

 

Question 2: Is the temporal effect of public transport demand significant in 

the SGMA? What are the short-run and long-run demand elasticities if the 

temporal effect is significant? 

 

The temporal effect of public transport demand is captured by the lagged 

dependent variable in the dynamic pseudo panel data model. The estimation 

results confirm the significance of the lagged dependent variable with a 

coefficient of 0.245, which suggests that the timeframe for public transport 

demand in the SGMA to reach the long-run equilibrium is around 2.13 years.  

 

The short-run and long-run demand elasticities are summarised in Table 7.7. 

One of the key findings is that the price elasticity of demand is -0.22 in the short 

run and -0.29 in the long run, which corresponds to international evidence and a 

previous finding conducted in Sydney (Hensher, 1998). Elasticities of other 

variables suggest that public transport demand in the SGMA is expected to 

increase with decreasing income, lower age, higher bus frequency, higher 

population density, and a lower number of pseudo nodes, with evidence showing 

that public transport demand is the most sensitive to population density.   
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 Question 3: What are the magnitudes of the impact of land use density, 

diversity, design, and accessibility on public transport demand in the 

SGMA?  

 

The GWR and pseudo panel data analysis consistently indicate that population 

density and number of pseudo nodes as a measure of land use design are 

significant determinants of public transport demand in the SGMA, whereas other 

measures including land use mix and accessibility to local public transport 

services, as measured by the number of public transport trips and walk distance 

to the nearest public transport stop, are insignificant.  

 

The magnitudes of the impact of the significant land use variables on public 

transport demand can be identified by the estimated elasticities. The demand 

elasticity with respect to population density is 0.60 in the short run and 0.79 in 

the long run, which implies that a ten percent increase in population density is 

expected to raise public transport by six percent in the first year (i.e., short run) 

and 7.9 percent within 2.13 years (i.e., long run). The impact of number of pseudo 

nodes on public transport demand is inversely related with a negative short-run 

elasticity of -0.46 and long-run elasticity of -0.61. The elasticities of population 

density and pseudo nodes are both greater than the elasticities of price, income, 

and bus frequency, which indicate that the influence of land use characteristics 

on public transport demand is fairly large as compared to the other determinants 

discussed under Question 1.  

 

Land use mix, number of public transport stops, and walk distance to the nearest 

bus stop show insignificant results although they have been identified as 

influential on travel behaviour in some studies. As discussed in Section 7.3.2, 

land use mix is perhaps insignificant because of the low level of aggregation 

which does not allow for sufficient variation across space, whereas the impacts of 

number of public transport stops and walk distance to the nearest bus stop have 

been partly captured by the bus frequency measure, so these variables are found 

to be insignificant in the context of this study.  

 



194 
 

9.2 Research contributions 

The research findings of this study do not only address the research questions, 

but also contribute to the literature and provide important policy implications for 

urban and transport planning. These research findings are summarised in this 

section.  

 

9.2.1 Contributions to the literature and research methodology 

As reviewed in Chapter 2, the linkage between public transport demand and land 

use characteristics as well as the lagged adjustments of travel demand has been 

identified in the literature, but not yet fully incorporated in conventional public 

transport demand models. The application of the pseudo panel approach applied 

in this study demonstrates its capability in addressing this research gap. The 

pseudo panel approach is comprehensively introduced in Chapter 4 and takes 

account of the research issues identified in previous applied pseudo panel 

research. One of the key contributions in this regard is applying the pseudo panel 

approach to a limited number of sample observations. Although the pseudo panel 

approach typically requires a large number of sample observations from repeated 

cross-sectional surveys, this study addresses the challenge of limited public 

transport observations in the SGMA by the way in which the individual records 

are equally assigned into groups and by the use of appropriate estimation 

technique to improve the estimation efficiency. This exercise is expected to 

extend the applicability of pseudo panel approach in future research.  

 

One of the key findings with regard to the pseudo panel approach is the analysis 

of estimation techniques. As the debates on the appropriate use of the estimator 

for pseudo panel data models have been unhelpful in the literature, the Monte 

Carlo experiment conducted in Chapter 5 evaluates the performance of 

conventional panel data estimators for pseudo panel data models, under various 

scenarios observed from the empirical pseudo panel dataset of this study. The 

review and examination of the estimation techniques have been widely discussed 

in the discipline of econometrics in relation to panel data analysis but are less 

commonly evident in transport research. This simulation experiment can be used 

as a reference for future econometrics analysis in transport with its application 
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being not limited to pseudo panel data research but also to other econometric 

analysis with similar data properties. For example, the time-invariant variables 

or rarely-changing variables which have substantially larger between-group 

variations than within-group variations are likely to lead to estimation 

inefficiency for the FE estimator, and thus the pooled OLS estimator may be 

preferred over the FE estimator when taking account of both estimation bias and 

inefficiency.  

 

The simulation experiment highlights the importance of understanding the data 

properties before directly choosing an estimator suggested in theory or in 

previous applied research. It is important to note that the preferred estimator 

depends on the data properties which vary with the context of study. Instead of 

pointing out the unambiguously best estimator, the simulation results provide 

useful guidelines for estimating pseudo panel data models based on different 

properties of data. 

 

9.2.2 Contributions to practical urban and transport planning  

The research findings of this study also suggest policy implications for urban and 

transport planning. In Chapter 3, the GWR analysis explores the spatial 

variability of the explanatory variables and its impact on public transport 

demand. For example, the results suggest that increasing bus frequency is 

expected to raise public transport demand more effectively in the outer Sydney 

areas than in the inner Sydney. Other variables also show moderate spatial 

variability across space which provides practical information for local urban and 

transport planning.  

 

The use of the pseudo panel approach, based on repeated cross-sectional 

household travel surveys conducted in Sydney, extends the applicability of the 

survey data. The Sydney Household Travel Survey (SHTS) database comprises 

detailed individual travel information with representative sample observations of 

the SGMA since 1997, but suffers from the limitation that the individuals are not 

traced over time. Without the pseudo panel approach, this database is not able to 

capture the behaviour changes including the lagged demand adjustment. The 
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pseudo panel approach enables a longitudinal analysis using this database to 

identify the short-run and long-run demand elasticities for this specific study 

area. The distinction between short-run and long-run demand has important 

policy implications in predicting the short-term and long-term demand changes 

in responses to policy changes such as public transport fare adjustment as 

discussed in Section 7.4.  

 

The demand elasticities estimated by the dynamic pseudo panel data model 

identify that public transport demand is more elastic to land use characteristics 

such as population density and the number of pseudo nodes. According to the 

sensitivity analysis of the demand forecast in Chapter 8, increasing population 

density and providing a better connectivity of road network are more likely to 

increase public transport demand as compared to adjusting the public transport 

price or frequency. This result highlights the importance of understanding the 

role land use planning plays in travel behaviour and provides empirical evidence 

for the integration of transport and urban planning in the SGMA.  

 

The dynamic public transport demand model has also demonstrated a reasonable 

capability of forecasting demand, given that the forecast demand only differs 

from the observed demand by around 5 percent to 7 percent in 2009 and 2010, 

and the forecasted annual growth of demand (1.29 percent) is close to the 

observed demand growth (2.9 percent) reported by BTS (2012e). The forecast 

model with the demand elasticities can be a useful tool to forecast demand under 

different policy scenarios such as adjusting price or increasing population 

density. This model can possibly be integrated with the Strategic Travel Model 

run by BTS as the principle transport planning model for the SGMA.   

 

9.3 Limitations of this study 

There are several limitations or constraints which need to be discussed to 

understand the scope of the research, its outcomes and direction for future 

research in the related field of study.  
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One of the limitations of this study is related to the data collection. The public 

transport price variable in the dataset is derived from the reported ticket price in 

the SHTS. As discussed in Section 3.3, there are various ticket types including 

periodical tickets and multi-model tickets. This study applies a general multiplier 

to estimate the average price for each single public transport trip. This approach 

is not able to distinguish price elasticities among travellers with different ticket 

types but is applied in this study since the cohort construction of the pseudo 

panel data mitigates the variation of public transport price across ticket types in 

its aggregation. The identification of the demand elasticity of price with respect 

to different ticket types would require a cross-sectional analysis based on the 

individual data from the SHTS but this is not the focus of this study.  

 

Another limitation with regard to data sources is land use data collection. One of 

the constraints in retrieving land use variables is the unavailability of household 

locations. Some land use variables, such as populations and number of pseudo 

nodes, are analysed at the TZ level by estimating populations and pseudo nodes 

in a buffer around a TZ centroid. It would be more ideal to use the household 

locations as the centroids of the buffers. Unfortunately, the household locations 

are not available for some of the data sources due to confidentiality issues.  

 

The other limitation related to the land use variables is the availability of 

historical data. Land use data collected from Census are only available every five 

years, and other land use variables provided by Bureau of Transport Statistics, 

such as accessibility measures, are available at a single point of time. Although 

most of the land use characteristics are not expected to substantially change 

between 1997 and 2009, having the continuously historic data would allow for a 

more detailed investigation of the short-term and long-term impact of land use 

changes on public transport demand. 

 

In terms of the pseudo panel methodology applied in this study, the constraint is 

the lack of public transport observations in the SHTS data due to the low usage 

of public transport in the SGMA. This in turn reduces the flexibility of 

constructing the pseudo panel dataset. For example, this analysis attempted to 
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separate bus and train trips in the pseudo panel data model since the two 

categories of travellers may have different demand elasticities with respect to 

some of the determinants such as price and age. However, there were insufficient 

trips for this study to be able to distinguish bus and train users.  

 

For the dynamic pseudo panel data modelling, this analysis employs a Partial 

Adjustment Model (PAM) which takes account of the first lag of the dependent 

variable. The differences between short-run and long-run demand elasticities 

estimated from the PAM are the same for each explanatory variable because the 

long-run elasticities are weighted by the coefficient of the lagged dependent 

variable only. Including lags of independent variables in the PAM is likely to 

introduce strong multicollinearity and it is inconsistent with the theoretical 

derivation of the PAM as discussed in Section 7.2. The distinction between short-

run and long-run elasticities among the explanatory variables could be possibly 

investigated by an Error Corrected Model (ECM) by taking account of multiple 

lags of independent variables in the model, but this modelling approach requires 

significant time-series variations in variables because it does not take account of 

cross-sectional variations. Hence, the PAM which estimates both the time-series 

and cross-sectional variations has been chosen over the ECM given the 

substantial cross-sectional variance in the pseudo panel dataset of this study.  

 

The demand forecast in Chapter 8 shows plausible results, but the forecast 

demand is subject to sample selection bias, where only public transport users are 

selected in the sample. Hence, this forecast demand is not able to capture the 

demand changes caused by non-public transport users outside of the sample, and 

this is considered to be one of the factors contributing the prediction difference as 

compared to the HTS report.  

 

9.4 Directions for future research 

The research approaches used in this study are transferable to other study areas 

where repeated cross-sectional data are available. The refined pseudo panel data 

approach can be applied to other fields of transport studies. The above 

discussions on the limitations of this study already point to some directions for 
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future research. Further potential extensions, based on this research topic but 

not covered in the scope of this study, are highlighted in the following 

paragraphs.  

 

The GWR analysis in Chapter 3 uses pooled data between 1997 and 2009 without 

taking account of the temporal effect. This is a general practice of GWR research 

as this methodology is very data hungry, which limits its applicability to a panel 

data analysis. Besides, the current version of GWR package has not incorporated 

panel data models or time-series models in the algorithms. The incorporation of 

the temporal effect in the GWR analysis would provide more information for 

long-term urban and transport planning.  

 

With regard to issues of data, some further work can be done to improve the 

measurement of some land use characteristics. For example, land use mix is 

insignificant in the public transport demand models partly because of the level of 

aggregation and partly because of the appropriateness of the use of land use 

types in this context. The TZ level of aggregation appears to be too small for land 

use types to vary within a TZ and thus does not significantly explain the 

variations in public transport demand changes. Future research could attempt to 

use other measures such as job categories based on the TZ or household level, or 

as the basis of aggregating the land use types into a higher level of aggregation.  

 

In accommodating the land use data, the correlation between various land use 

variables appears to be high. As a result, some variables highly correlated to 

others had to be removed from the dataset including employment density. The 

remaining variables still present a certain level of multicollinearity although it is 

not too substantial to distort the estimation results after model diagnostics. If 

those variables are of interest for strategic urban planning and they must be 

included in the model, the correlations will need to be controlled in the 

estimation process using other modelling approaches.  

 

The other issue in land use data is the self-selection problem as reviewed in 

Section 2.2.3. It is possible that the self-selection problem may exist in this case 



200 
 

study. However, given that attitudinal data are unavailable, the degree of self-

selection cannot be quantitatively identified in the context of this study. This 

would require separate research investigating this effect and could be an area for 

future research.  

 

The other direction of future research which may be outside of transport domain 

is the development of a Best Linear Unbiased Estimator (BLUE) for pseudo panel 

data model. As shown in Chapter 5, neither of the current estimators developed 

for panel data model estimation is BLUE. Although the bias and inefficiency can 

be mitigated by better model specification as demonstrated in Chapter 7, 

developing an estimator that controls for the unobserved heterogeneity and the 

lagged dependent variable whilst taking account of cross-sectional variance 

would be a breakthrough not only for pseudo panel data models but also for other 

models with similar properties.  

 

Last but not least, the pseudo panel data model has demonstrated its capability 

of forecasting demand. This demand model can be extended to other modes of 

travel or multi-modal demand models, especially for car travel which is the major 

means of travel in the SGMA. Constructing a flexible pseudo panel data model 

for car travel demand would be easier than for public transport demand only as 

there are many more observations of car trips in the SGMA. Hence, applying this 

approach to car travel demand analysis would present a useful tool for urban 

transport planning.  

 

9.5 Concluding remarks 

Research in public transport demand modelling and the interaction between 

travel behaviour and land use has been extensively evident in the literature, but 

the gap between these two fields of knowledge has been under-addressed. 

Longitudinal analysis on public transport demand for a specific study area based 

on travel survey data is not identified in the literature. This thesis applies and 

refines the pseudo panel approach to model public transport demand using the 

SGMA as a case study, whilst incorporating land use variables as well as the 

temporal effect of travel demand. In spite of some limitations and constraints as 
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discussed above, this thesis has closed some research gaps to provide a useful 

reference for future research in this filed of study. The research outcomes of the 

demand elasticities and the interaction between public transport demand and 

land use also suggest important policy implications for the study area. This 

research is thus a step forward in travel demand analysis with strong potentials 

for related future research which is of benefit to urban transport. 
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APPENDICES 

Appendix 1 

 

Table A1.1. Geographical Coverage of the Study Area by  
Statistical Division and Statistical Subdivision  
Statistical Division Statistical Subdivision 
Sydney Inner Sydney 
Sydney Gosford-Wyong 
Sydney Eastern Suburbs 
Sydney St George-Sutherland 
Sydney Canterbury-Bankstown 
Sydney Fairfield-Liverpool 
Sydney  Outer South Western Sydney 
Sydney Inner Western Sydney 
Sydney Central Western Sydney 
Sydney Outer Western Sydney 
Sydney Blacktown 
Sydney Lower Northern Sydney 
Sydney Central Northern Sydney 
Sydney Northern Beaches 
Sydney Central Coast 
Hunter Newcastle 
Illawarra Illawarra SD  
Illawarra Nowra-Bomaderry 
Illawarra Wollongong 

Source: Australian Bureau of Statistics (2011) 
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Appendix 2 

 

 

Table A2.1. Number of Individual Records in Each Cohort by Group and by Wave  
in the Final Pseudo Panel Dataset 

Group 
Wave 

Total 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 
1 130 167 143 143 145 135 55 60 54 85 75 67 39 1,298
2 155 150 95 101 91 84 87 71 88 60 84 69 59 1,194
3 207 212 161 118 168 134 100 103 83 77 58 116 73 1,610
4 118 144 177 138 170 211 103 95 87 99 125 118 87 1,672
5 0 18 31 40 36 66 85 55 110 123 163 178 140 1,045
6 118 126 106 87 76 96 77 51 84 51 47 38 52 1,009
7 106 105 68 77 52 72 71 57 68 47 63 55 46 887
8 85 98 90 79 83 81 97 77 88 66 70 58 49 1,021
9 92 95 70 64 84 107 58 56 63 76 49 50 64 928
10 0 24 20 49 39 39 73 77 108 96 86 80 152 843
11 167 146 124 114 93 54 88 118 87 65 68 80 87 1,291
12 107 112 62 64 119 78 91 83 89 81 44 59 90 1,079
13 109 84 75 92 102 67 87 95 83 81 90 92 86 1,143
14 136 105 91 89 65 76 77 76 66 41 48 62 71 1,003
15 0 21 44 50 38 78 64 64 110 95 134 198 217 1,113
16 112 93 131 116 57 99 48 68 73 42 79 55 67 1,040
17 155 100 67 93 75 80 70 44 52 72 73 75 109 1,065
18 142 100 79 116 93 82 79 90 63 84 96 65 75 1,164
19 161 106 95 75 71 68 60 27 59 45 30 65 58 920
20 0 14 34 71 51 106 70 74 98 90 95 117 177 997

Total 2,100 2,020 1,763 1,776 1,708 1,813 1,540 1,441 1,613 1,476 1,577 1,697 1,798 22,322
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Table A2.2. Number of Non-travellers in Each Cohort by Group and by Wave from 
 the Sydney Household Trave Survey Database 

Group 
Wave 

Total 
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

1 77 74 69 58 59 54 29 34 28 37 32 36 31 618 

2 25 33 19 24 22 24 21 18 22 36 22 27 14 307 
3 35 35 24 29 28 21 21 17 22 18 25 25 11 311 
4 20 26 24 26 23 23 18 19 11 17 21 20 8 256 
5 0 1 2 10 6 13 11 5 13 21 15 26 23 146 
6 76 99 88 62 60 45 59 52 59 48 60 40 44 792 
7 23 28 29 21 25 19 27 36 17 20 29 34 18 326 
8 23 34 35 29 21 17 22 28 24 25 21 24 21 324 
9 13 17 17 12 21 14 22 15 18 17 8 19 16 209 
10 0 4 4 4 7 12 14 17 18 14 18 17 28 157 
11 152 160 136 129 120 88 95 99 88 78 102 101 75 1423 
12 62 73 55 72 52 39 45 55 44 57 59 62 56 731 
13 47 58 56 51 48 36 40 40 42 39 45 45 42 589 
14 30 36 25 32 29 24 26 25 25 25 40 36 33 386 
15 0 4 7 18 10 9 29 26 36 31 49 50 53 322 
16 260 287 253 271 248 200 210 166 154 171 164 157 160 2701 
17 124 134 112 124 136 88 97 80 94 123 113 124 119 1468 
18 102 114 76 80 97 99 85 73 86 80 85 79 104 1160 
19 58 47 50 57 49 49 38 52 41 46 41 43 51 622 

20 0 9 11 23 36 31 34 41 50 49 66 61 87 498 

Total 1127 1273 1092 1132 1097 905 943 898 892 952 1015 1026 994 13346 
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Appendix 3 

 
Stata code for static model simulation (Scenario 4): 
(Programming codes for other scenarios can be requested from the 
author) 
 

global numobs 12 
program xtsim1, rclass 
version 11.0 
drop _all 
set obs $numobs  
gen id = _n 
gen u = rnormal(0,0.2) 
gen xi=rnormal(0,0.5) 
expand 13 
sort id 
by id: generate year=_n 
gen s=_n 
gen nc=rnormal(150,50) if s<156 
egen nct=total(nc) 
replace nc=23400-nct if s==156 
gen c= u+rnormal(0,0.2/sqrt(nc)) 
gen e = rnormal() 
gen x=xi+rnormal(0,0.2) 
gen y = 0.2 + 0.8*x + c + e 
xtset id year 
regress y x 
return scalar OLS_b1 = _coef[x] 
return scalar OLS_SE = _se[x] 
 
xtreg y x, fe 
return scalar FE_b1 = _coef[x] 
return scalar FE_SE = _se[x] 
 
xtreg y x, re 
 
return scalar RE_b1 = _coef[x] 
return scalar RE_SE = _se[x] 
 
xtpcse y x 
 
return scalar PCSE_b1 = _coef[x] 
return scalar PCSE_SE = _se[x] 
end 
 
simulate OLS_b1 = r(OLS_b1) OLS_SE = r(OLS_SE)  FE_b1 = r(FE_b1) FE_SE = 
r(FE_SE)   RE_b1 = r(RE_b1) RE_SE = r(RE_SE) PCSE_b1 = r(PCSE_b1) 
PCSE_SE = r(PCSE_SE), reps(1000): xtsim1 
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egen OLS_bhat=mean(OLS_b1) 
egen OLS_MSE=total((OLS_b1-OLS_bhat)^2) 
egen OLS_SSE=total((OLS_SE)^2) 
gen OLS_CONF=100*sqrt(OLS_MSE)/sqrt(OLS_SSE) 
 
egen FE_bhat=mean(FE_b1) 
egen FE_MSE=total((FE_b1-FE_bhat)^2) 
egen FE_SSE=total((FE_SE)^2) 
gen FE_CONF=100*sqrt(FE_MSE)/sqrt(FE_SSE) 
 
egen RE_bhat=mean(RE_b1) 
egen RE_MSE=total((RE_b1-RE_bhat)^2) 
egen RE_SSE=total((RE_SE)^2) 
gen RE_CONF=100*sqrt(RE_MSE)/sqrt(RE_SSE) 
 
egen PCSE_bhat=mean(PCSE_b1) 
egen PCSE_MSE=total((PCSE_b1-PCSE_bhat)^2) 
egen PCSE_SSE=total((PCSE_SE)^2) 
gen PCSE_CONF=100*sqrt(PCSE_MSE)/sqrt(PCSE_SSE) 
 
gen OLS_BIAS= OLS_bhat-0.8 
gen FE_BIAS= FE_bhat-0.8 
gen RE_BIAS= RE_bhat-0.8 
gen PCSE_BIAS= PCSE_bhat-0.8 
 
gen OLS_RMSE=sqrt(OLS_BIAS^2+OLS_SE^2) 
gen FE_RMSE=sqrt(FE_BIAS^2+FE_SE^2) 
gen RE_RMSE=sqrt(RE_BIAS^2+RE_SE^2) 
gen PCSE_RMSE=sqrt(PCSE_BIAS^2+PCSE_SE^2) 
 
sum OLS_b1 OLS_SE FE_b1 FE_SE RE_b1 RE_SE PCSE_b1 PCSE_SE 
OLS_CONF FE_CONF RE_CONF PCSE_CONF OLS_BIAS FE_BIAS RE_BIAS 
PCSE_BIAS OLS_RMSE FE_RMSE RE_RMSE PCSE_RMSE 
 
Stata code for static model simulation (Scenario 4): 

global numobs 12 
program xtsim2, rclass 
version 11.0 
drop _all 
set obs $numobs  
gen id = _n 
gen xi=rnormal(0,0.5) 
gen u = rnormal(0,0.2) 
expand 13 
sort id 
by id: generate year=_n 
gen s=_n 
gen nc=rnormal(150,50) if s<156 
egen nct=total(nc) 
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replace nc=23400-nct if s==156 
gen c= u+rnormal(0,0.2/sqrt(nc)) 
gen e = rnormal() 
gen x=xi+rnormal(0,0.2) 
gen y = 0.8*x + c + e if year==1 
xtset id year 
gen y_1=l.y  
forvalues year=2/13{ 
                replace y=0.2*y_1+0.8*x+c+e if year==`year' 
    replace y_1=l.y 
                } 
 
regress y y_1 x 
return scalar OLS_b0 = _coef[y_1] 
return scalar OLS_SE0 = _se[y_1] 
return scalar OLS_b1 = _coef[x] 
return scalar OLS_SE1 = _se[x] 
 
xtreg y y_1 x, fe 
return scalar FE_b0 = _coef[y_1] 
return scalar FE_SE0 = _se[y_1] 
return scalar FE_b1 = _coef[x] 
return scalar FE_SE1 = _se[x] 
 
xtreg y y_1 x, re 
 
return scalar RE_b0 = _coef[y_1] 
return scalar RE_SE0 = _se[y_1] 
return scalar RE_b1 = _coef[x] 
return scalar RE_SE1 = _se[x] 
 
xtpcse y y_1 x  
 
return scalar PCSE_b0 = _coef[y_1] 
return scalar PCSE_SE0 = _se[y_1] 
return scalar PCSE_b1 = _coef[x] 
return scalar PCSE_SE1 = _se[x] 
end 
 
simulate OLS_b0 = r(OLS_b0) OLS_SE0 = r(OLS_SE0)  FE_b0 = r(FE_b0) 
FE_SE0 = r(FE_SE0)  RE_b0 = r(RE_b0) RE_SE0 = r(RE_SE0) PCSE_b0 = 
r(PCSE_b0) PCSE_SE0 = r(PCSE_SE0) OLS_b1 = r(OLS_b1) OLS_SE1 = 
r(OLS_SE1)  FE_b1 = r(FE_b1) FE_SE1 = r(FE_SE1)   RE_b1 = r(RE_b1) 
RE_SE1 = r(RE_SE1) PCSE_b1 = r(PCSE_b1) PCSE_SE1 = r(PCSE_SE1), 
reps(1000): xtsim2 
 
egen OLS_b0hat=mean(OLS_b0) 
egen OLS_b0MSE=total((OLS_b0-OLS_b0hat)^2) 
egen OLS_b0SSE=total((OLS_SE0)^2) 
gen OLS_b0CONF=100*sqrt(OLS_b0MSE)/sqrt(OLS_b0SSE) 
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egen FE_b0hat=mean(FE_b0) 
egen FE_b0MSE=total((FE_b0-FE_b0hat)^2) 
egen FE_b0SSE=total((FE_SE0)^2) 
gen FE_b0CONF=100*sqrt(FE_b0MSE)/sqrt(FE_b0SSE) 
 
egen RE_b0hat=mean(RE_b0) 
egen RE_b0MSE=total((RE_b0-RE_b0hat)^2) 
egen RE_b0SSE=total((RE_SE0)^2) 
gen RE_b0CONF=100*sqrt(RE_b0MSE)/sqrt(RE_b0SSE) 
 
egen PCSE_b0hat=mean(PCSE_b0) 
egen PCSE_b0MSE=total((PCSE_b0-PCSE_b0hat)^2) 
egen PCSE_b0SSE=total((PCSE_SE0)^2) 
gen PCSE_b0CONF=100*sqrt(PCSE_b0MSE)/sqrt(PCSE_b0SSE) 
 
gen OLS_b0BIAS= OLS_b0hat-0.2 
gen FE_b0BIAS= FE_b0hat-0.2 
gen RE_b0BIAS= RE_b0hat-0.2 
gen PCSE_b0BIAS= PCSE_b0hat-0.2 
 
gen OLS_b0RMSE=sqrt(OLS_b0BIAS^2+OLS_SE0^2) 
gen FE_b0RMSE=sqrt(FE_b0BIAS^2+FE_SE0^2) 
gen RE_b0RMSE=sqrt(RE_b0BIAS^2+RE_SE0^2) 
gen PCSE_b0RMSE=sqrt(PCSE_b0BIAS^2+PCSE_SE0^2) 
 
 
egen OLS_b1hat=mean(OLS_b1) 
egen OLS_b1MSE=total((OLS_b1-OLS_b1hat)^2) 
egen OLS_b1SSE=total((OLS_SE1)^2) 
gen OLS_b1CONF=100*sqrt(OLS_b1MSE)/sqrt(OLS_b1SSE) 
 
egen FE_b1hat=mean(FE_b1) 
egen FE_b1MSE=total((FE_b1-FE_b1hat)^2) 
egen FE_b1SSE=total((FE_SE1)^2) 
gen FE_b1CONF=100*sqrt(FE_b1MSE)/sqrt(FE_b1SSE) 
 
egen RE_b1hat=mean(RE_b1) 
egen RE_b1MSE=total((RE_b1-RE_b1hat)^2) 
egen RE_b1SSE=total((RE_SE1)^2) 
gen RE_b1CONF=100*sqrt(RE_b1MSE)/sqrt(RE_b1SSE) 
 
egen PCSE_b1hat=mean(PCSE_b1) 
egen PCSE_b1MSE=total((PCSE_b1-PCSE_b1hat)^2) 
egen PCSE_b1SSE=total((PCSE_SE1)^2) 
gen PCSE_b1CONF=100*sqrt(PCSE_b1MSE)/sqrt(PCSE_b1SSE) 
 
gen OLS_b1BIAS= OLS_b1hat-0.8 
gen FE_b1BIAS= FE_b1hat-0.8 
gen RE_b1BIAS= RE_b1hat-0.8 



218 
 

gen PCSE_b1BIAS= PCSE_b1hat-0.8 
 
gen OLS_b1RMSE=sqrt(OLS_b1BIAS^2+OLS_SE1^2) 
gen FE_b1RMSE=sqrt(FE_b1BIAS^2+FE_SE1^2) 
gen RE_b1RMSE=sqrt(RE_b1BIAS^2+RE_SE1^2) 
gen PCSE_b1RMSE=sqrt(PCSE_b1BIAS^2+PCSE_SE1^2) 
 
 
sum OLS_b0 OLS_SE0 FE_b0 FE_SE0 RE_b0 RE_SE0 PCSE_b0 PCSE_SE0 
OLS_b1 OLS_SE1 FE_b1 FE_SE1 RE_b1 RE_SE1 PCSE_b1 PCSE_SE1 
OLS_b0CONF FE_b0CONF RE_b0CONF PCSE_b0CONF OLS_b0BIAS 
FE_b0BIAS RE_b0BIAS PCSE_b0BIAS OLS_b0RMSE FE_b0RMSE 
RE_b0RMSE PCSE_b0RMSE OLS_b1CONF FE_b1CONF RE_b1CONF 
PCSE_b1CONF OLS_b1BIAS FE_b1BIAS RE_b1BIAS PCSE_b1BIAS 
OLS_b1RMSE FE_b1RMSE RE_b1RMSE PCSE_b1RMSE 
 
global numobs 12 
program xtsim3, rclass 
version 11.0 
drop _all 
set obs $numobs  
gen id = _n 
gen xi=rnormal(0,0.5) 
gen u = rnormal(0,0.2) 
expand 13 
sort id 
by id: generate year=_n 
gen s=_n 
gen nc=rnormal(150,50) if s<156 
egen nct=total(nc) 
replace nc=23400-nct if s==156 
gen c= u+rnormal(0,0.2/sqrt(nc)) 
gen e = rnormal() 
gen x=xi+rnormal(0,0.2) 
gen y = 0.8*x + c + e if year==1 
xtset id year 
gen y_1=l.y  
forvalues year=2/13{ 
                replace y=0.2*y_1+0.8*x+c+e if year==`year' 
    replace y_1=l.y 
                } 
 
xtabond2 y y_1  x, gmmstyle(y_1, lag(2 2)) ivstyle(x) twostep  robust orthogonal 
noleveleq 
return scalar DGMM_b0 = _coef[y_1] 
return scalar DGMM_SE0 = _se[y_1] 
return scalar DGMM_b1 = _coef[x] 
return scalar DGMM_SE1 = _se[x] 
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xtabond2 y y_1 x, gmmstyle(y_1, lag(2 2)) ivstyle(x) twostep  robust orthogonal 
nocons 
return scalar SGMM_b0 = _coef[y_1] 
return scalar SGMM_SE0 = _se[y_1] 
return scalar SGMM_b1 = _coef[x] 
return scalar SGMM_SE1 = _se[x] 
 
end 
 
simulate DGMM_b0 = r(DGMM_b0) DGMM_SE0 = r(DGMM_SE0)  SGMM_b0 = 
r(SGMM_b0) SGMM_SE0 = r(SGMM_SE0) DGMM_b1 = r(DGMM_b1) 
DGMM_SE1 = r(DGMM_SE1) SGMM_b1 = r(SGMM_b1) SGMM_SE1 = 
r(SGMM_SE1), reps(1000): xtsim3 
 
egen DGMM_b0hat=mean(DGMM_b0) 
egen DGMM_b0MSE=total((DGMM_b0-DGMM_b0hat)^2) 
egen DGMM_b0SSE=total((DGMM_SE0)^2) 
gen DGMM_b0CONF=100*sqrt(DGMM_b0MSE)/sqrt(DGMM_b0SSE) 
egen SGMM_b0hat=mean(SGMM_b0) 
egen SGMM_b0MSE=total((SGMM_b0-SGMM_b0hat)^2) 
egen SGMM_b0SSE=total((SGMM_SE0)^2) 
gen SGMM_b0CONF=100*sqrt(SGMM_b0MSE)/sqrt(SGMM_b0SSE) 
 
gen DGMM_b0BIAS= DGMM_b0hat-0.2 
gen SGMM_b0BIAS= SGMM_b0hat-0.2 
 
gen DGMM_b0RMSE=sqrt(DGMM_b0BIAS^2+DGMM_SE0^2) 
gen SGMM_b0RMSE=sqrt(SGMM_b0BIAS^2+SGMM_SE0^2) 
 
egen DGMM_b1hat=mean(DGMM_b1) 
egen DGMM_b1MSE=total((DGMM_b1-DGMM_b1hat)^2) 
egen DGMM_b1SSE=total((DGMM_SE1)^2) 
gen DGMM_b1CONF=100*sqrt(DGMM_b1MSE)/sqrt(DGMM_b1SSE) 
 
egen SGMM_b1hat=mean(SGMM_b1) 
egen SGMM_b1MSE=total((SGMM_b1-SGMM_b1hat)^2) 
egen SGMM_b1SSE=total((SGMM_SE1)^2) 
gen SGMM_b1CONF=100*sqrt(SGMM_b1MSE)/sqrt(SGMM_b1SSE) 
 
gen DGMM_b1BIAS= DGMM_b1hat-0.8 
gen SGMM_b1BIAS= SGMM_b1hat-0.8 
 
gen DGMM_b1RMSE=sqrt(DGMM_b1BIAS^2+DGMM_SE1^2) 
gen SGMM_b1RMSE=sqrt(SGMM_b1BIAS^2+SGMM_SE1^2) 
 
sum DGMM_b0 DGMM_SE0 SGMM_b0 SGMM_SE0 DGMM_b1 DGMM_SE1 
SGMM_b1 SGMM_SE1 DGMM_b0CONF SGMM_b0CONF DGMM_b0BIAS 
SGMM_b0BIAS DGMM_b0RMSE SGMM_b0RMSE DGMM_b1CONF 
SGMM_b1CONF DGMM_b1BIAS SGMM_b1BIAS DGMM_b1RMSE 
SGMM_b1RMSE 


