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Abstract

Whenever treatment effects are heterogeneous and there is sorting into treat-
ment based on the gain, monotonicity is a condition that both Instrumental Variable
and fuzzy Regression Discontinuity designs have to satisfy for their estimand to be
interpretable as a LATE. Angrist and Imbens (1995) argue that the monotonicity
assumption is testable whenever the treatment is multivalued. We show that their
test is informative if counterfactuals are observed. Yet applying the test without
observing counterfactuals, as it is generally done, is not. Nevertheless, we argue
that monotonicity can and should be investigated using a mix of economic intuition
and data patterns, just like other untestable assumptions in an IV or RD design.
We provide examples in a variety of settings as a guide to practice.
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1 Introduction

In the early 90’s, work by Imbens and Angrist (1994), Angrist and Imbens (1995) and
Angrist, Imbens, and Rubin (1996) provided the theoretical foundation for the identi-
fication of the Local Average Treatment Effect (LATE): the treatment effect for those
individuals who are influenced by the instrument. Their result is crucial in any context
where (i) the gain from treatment is heterogeneous across the population and (ii) there
is some degree of sorting into treatment based on the anticipated gain from treatment.
Heckman, Urzua, and Vytlacil (2006) define any context where both (i) and (ii) occur as
essential heterogeneity. They show that, under essential heterogeneity, the identification
of the LATE requires the additional assumption of monotonicity: for a given change in
the value of the instrument, it can not be that some individuals switch into treatment
while others switch out of treatment. Hahn, Todd, and Van der Klaauw (2001) show
that under essential heterogeneity, the assumption of monotonicity is also needed for
the identification of a LATE in a fuzzy regression discontinuity approach. Whenever
monotonicity does not hold, the IV and RD estimands are uninterpretable.

Angrist and Imbens (1995) go on to argue that the monotonicity assumption is testable
whenever the treatment is multivalued: if monotonicity holds, the cumulative distribution
functions (CDFs) of the endogenous variable should not cross for alternative values of the
instrument. In other words, one CDF should first-order stochastically dominate the other.
The justification for the Angrist and Imbens (1995) test is based on counterfactuals, as
one should compare CDFs for the full sample under alternative values of the instrument.
Nevertheless, counterfactuals are generally not observed. Angrist and Imbens (1995)
thus apply their test to cross sectional data and claim that it is informative about the
monotonicity assumption.

The aim of this paper is twofold. First, we reiterate that monotonicity is fundamen-
tally untestable, whether the treatment is binary or multivalued. We argue that the
monotonicity test proposed in Angrist and Imbens (1995) is informative only when ap-
plied to counterfactuals. However it is misleading to apply the test to any data where
individuals are observed under only one of the possible values of the instrument. To clar-
ify the distinction between the theoretical result of Angrist and Imbens (1995) based on
counterfactual CDFs and its implementation using cross-section CDFs, we show plausible
examples where:

1. the test rejects the monotonicity assumption even though monotonicity holds. Two
recent studies, Barua and Lang (2009) and Aliprantis (2012), use cross-section CDFs
to support their argument that monotonicity is violated. Our example shows that,
since the test is uninformative, the monotonicity assumption cannot be rejected
based on the test alone.

2. the test fails to reject the monotonicity assumption even though monotonicity is
violated. Angrist and Imbens (1995) rely on the test to argue that the Angrist and
Krueger (1991) quarter of birth instrument satisfies the monotonicity assumption
because the cross-section CDFs do not cross. Our example clarifies that monotonic-
ity might be violated even if the cross-section CDFs do not cross.

For clarity, we often provide an illustration using the school entry age setting, where the
endogenous variable is school entry age, the instrument or the discontinuity is motivated
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by school entry laws, and the outcome of interest is given by test scores or lifetime
outcomes. We use this setting because this literature is among the first to discuss the
monotonicity assumption but also to implement the Angrist and Imbens (1995) test.
Nevertheless, our arguments can be easily generalized to different contexts.

The second aim of this paper is to argue that applied work should devote space to
discussing monotonicity. Heckman, Urzua, and Vytlacil (2006) point out that there is an
asymmetry in the way empirical researchers discuss heterogeneity: outcomes of choices
are often allowed to be heterogeneous, choices themselves are not. But since choices
are plausibly also heterogeneous in the sense that individuals might respond differently
to changes in some variable of interest (such as the instrument), monotonicity cannot
be assumed to hold a priori. While the assumption of monotonicity is not testable,
common sense, economic intuition and data patterns can be used to argue in favour of or
against the assumption. After all, this is what researchers ordinarily do when discussing
the untestable independence assumption in an IV setting, or the untestable continuity
assumption in an RD setting. We go through three different studies in a variety of settings
that adopt either the IV or RD estimator. For each study, we try to make a case for or
against monotonicity.

2 General Setting

To illustrate the notion of essential heterogeneity and monotonicity in the simplest way,
let us define a model where both the endogenous variable (D) and the instrumental
variable (Z) are binary:

Yi = β0i + β1iDi (Outcome) (1)

D∗i = α0i + α1iZi (Latent Utility)

with

Di =

{
1 if D∗i > 0 (Observed Treatment)
0 if D∗i ≤ 0

where {β0i, β1i, α0i, α1i} are random coefficients. Here β1i is the heterogeneous gain from
treatment and α1i is the heterogeneous response to the instrument. The case of essential
heterogeneity arises when E(β1iα0i) 6= 0, that is when the treatment decision is partly
driven by the gain from treatment.1 Monotonicity is violated when α1i has a positive
sign for some individuals and a negative sign for some others.

2.1 Monotonicity in the IV design

Let Yi(0) be the response without treatment for individual i. Yi(1) is the response with
treatment. Define Di(w) as the treatment when Zi = w. Imbens and Angrist (1994) show
that, provided a random variable Zi satisfying the 3 following conditions is available,
instrumental variable estimation identifies β1 for those individuals who are influenced by
the instrument.

IV1. P (w) = E[Di|Zi = w] is a non trivial function of w (rank)

1Essential heterogeneity is different from selection on levels: E(β0iα0i) 6= 0.
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IV2. for all w ∈ < the triple [Yi(0), Yi(1), Di(w)] is jointly independent of Zi (indepen-
dence)

IV3. for all z, w ∈ <, either Di(w) ≥ Di(z) ∀i OR Di(w) ≤ Di(z) ∀i (monotonicity)

Condition IV1 is the rank condition. Condition IV2 is stronger than the standard IV
exclusion restriction: in model (1) it not only implies that Zi is independent of β0i but
also that Zi is independent of β1i. Condition IV3, named monotonicity in Imbens and
Angrist (1994), is needed to identify a LATE whenever there is essential heterogeneity.
The monotonicity assumption requires that, for every individual, a change in the value
of the instrument from z to w must either leave the treatment decision unchanged or
change the treatment in the same direction. Monotonicity is violated if, because of the
same change in the value of the instrument from z to w, some individuals respond by
getting the treatment (“switching in”) while others stop getting it (“switching out”).
Monotonicity is a condition on counterfactuals: it refers to an individual’s behaviour in
2 alternative states of the world Z = w and Z = z.2 To understand the importance of
the monotonicity condition Angrist, Imbens, and Rubin (1996) rewrite the IV estimate
of β1 as

βIV
1 = (1 + λ)×E[Yi(1)− Yi(0)|Di(z)−Di(w) = 1] (2)

−λ×E[Yi(1)− Yi(0)|Di(z)−Di(w) = −1]

where

λ =
P [Di(z)−Di(w) = −1]

P [Di(z)−Di(w) = 1]− P [Di(z)−Di(w) = −1]

Equation 2 is very informative. It says that

• IV estimation does not “use” individuals that do not respond to changes in the
value of the instrument: Di(z)−Di(w) = 0.

• if monotonicity holds, such that for instance Di(z) − Di(w) ≥ 0 ∀i, then λ =
0 and IV estimates βIV

1 = E[Yi(1) − Yi(0)|Di(z) − Di(w) = 1]: the effect for
those individuals that are induced to take the treatment because of the instrument
(LATE). Viceversa if Di(z) − Di(w) ≤ 0 ∀i then λ = −1, and βIV

1 = E[Yi(1) −
Yi(0)|Di(z) − Di(w) = −1]: the effect for those individuals that stop getting the
treatment because of the instrument (a different LATE).

• if monotonicity does not hold and individuals respond differently to a given change
in the value of Zi, such that for some Di(z) −Di(w) = 1 while for others Di(z) −
Di(w) = −1, then the IV estimate is not a treatment effect for any specific individ-
ual or group of individuals. It is not necessarily a weighted average of treatment
effects either: λ is unbounded, thus the IV estimand does not necessarily fall in be-
tween E[Yi(1)− Yi(0)|Di(z)−Di(w) = 1] and E[Yi(1)− Yi(0)|Di(z)−Di(w) = −1]
but can be more extreme.

2Because every individual has to respond in the same direction, Heckman and Vytlacil (2005) and
Heckman, Urzua, and Vytlacil (2006) rename monotonicity with the term “uniformity”.
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• if the return to treatment is heterogeneous but there is no sorting on gain, then
monotonicity is not required. Without sorting on gain E[Yi(1) − Yi(0)|Di(z) −
Di(w) = 1] = E[Yi(1) − Yi(0)|Di(z) − Di(w) = −1] = E[Yi(1) − Yi(0)]: that
is, the expected return from treatment is the same among those who switch in
and out, and equal to the average treatment effect (ATE). In this case βIV

1 =
E[Yi(1) − Yi(0)|Di(z) − Di(w) = 1] = E[Yi(1) − Yi(0)], so the IV estimand is the
ATE.

2.2 Monotonicity in the fuzzy RD design

Let the setting be the same as in equation (1). Also let

lim
z↓zc

P [Di = 1|Zi = z] 6= lim
z↑zc

P [Di = 1|Zi = z]

such that the probability of treatment jumps at the threshold zc, without requiring
the jump to be equal to 1. Hahn, Todd, and Van der Klaauw (2001) show that there
is a very close analogy between the fuzzy Regression Discontinuity design and the IV
estimator. Both the IV and the RD estimand can be expressed as a Wald coefficient with

βIV
1 =

E[Yi|Z = z]− E[Yi|Z = w]

E[Di|Z = z]− E[Di|Z = w]

and

βRD
1 =

limz↓zc E[Yi|Z = z]− limz↑zc E[Yi|Z = z]

limz↓zc E[Di|Z = z]− limz↑zc E[Di|Z = z]

Hahn, Todd, and Van der Klaauw (2001) show that under essential heterogeneity,
regression discontinuity estimation identifies β1 for those individuals with Zi = zc and
only for those individuals who are affected by the threshold (LATE at zc) under the
following conditions

RD1. limz↓zc P [Di = 1|Zi = z] 6= limz↑zc P [Di = 1|Zi = z] (RD)

RD2. E[Y (0)|Z = z] is continuous in z at zc (continuity)

RD3. (β1i, Di(z)) is jointly independent of Zi near zc (independence)

RD4. There exist a small number ξ > 0 such that either Di(zc + e) ≥ Di(zc − e), ∀i OR
Di(zc + e) ≤ Di(zc − e), ∀i and for all 0 < e < ξ (monotonicity)

Condition RD1 is the RD equivalent of the rank condition in the IV setting. Condition
RD2 implies that in the absence of treatment, individuals close to the threshold zc are
similar. These first two conditions must hold whether there is essential heterogeneity or
not. Like in IV estimation, whenever there is essential heterogeneity the independence
between Zi and β1i together with monotonicity are needed to identify a LATE at zc. Note
again that monotonicity is a condition on counterfactuals: for every individual, crossing
the threshold must either leave the treatment decision unchanged or change the treatment
in the same direction. Invoking the reasoning in Angrist, Imbens, and Rubin (1996), we
can rewrite the RD estimate of β1 as
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βRD
1 = (1 + λ)×E[Yi(1)− Yi(0)|Di(zc + e)−Di(zc − e) = 1] (3)

−λ×E[Yi(1)− Yi(0)|Di(zc + e)−Di(zc − e) = −1]

where

λ =
P [Di(zc + e)−Di(zc − e) = −1]

P [Di(zc + e)−Di(zc − e) = 1]− P [Di(zc + e)−Di(zc − e) = −1]

Equation (3) is the equivalent of equation (2) in an RD setting.3 Thus, if monotonicity
holds, λ is equal to either 0 or −1, and the RD estimand can be interpreted as a LATE.
When monotonicity is violated, λ is neither 0 nor −1, and the RD estimand does not
measure the treatment effect for any particular group of individuals.

2.3 Monotonicity when the treatment is multi-valued

Angrist and Imbens (1995) extend the setting in equation (1) to the case where the
treatment D takes more than two values. They show that IV estimates a weighted average
of causal responses to a unit change in treatment, for those whose treatment status is
affected by the instrument. They call this parameter the average causal response (ACR).
The ACR still requires monotonicity otherwise the same interpretation problem arises as
in the binary treatment case. Similarly, Lee and Lemieux (2010) show that monotonicity
is also required in the fuzzy RD setting with a multi-valued treatment, in which case the
interpretation of the RD estimand is still the same as that of the IV estimand.

3 Can we test for Monotonicity?

Given the importance of the monotonicity condition in both IV and RD designs, it is
remarkable that this condition is seldom investigated in applied studies. This is in stark
contrast to the lengthy discussions dedicated to the IV independence and rank conditions,
and to the RD discontinuity (in the probability of treatment) and continuity (in the
conditional regression function) conditions.

Angrist and Imbens (1995) argue that the monotonicity assumption has a “testable”
implication whenever the treatment Di takes more than two values. Let D ∈ {0, . . . , K}
withK > 1, and let monotonicity hold such thatDi(z) ≥ Di(w), ∀i. SinceDi(z) ≥ Di(w)
with probability 1, then P [Di(z) ≥ k] ≥ P [Di(w) ≥ k] for every individual i and for every
value k. That is, since the multivalued treatment is always (weakly) larger under Z = z
than under Z = w, the CDF for D(z), Fz(D), dominates the CDF for D(w), Fw(D):

Fz(D) ≤ Fw(D) (4)

Angrist and Imbens (1995) use this result based on counterfactuals to argue that, under
monotonicity, the empirical CDF for Z = z and Z = w will not cross.4 They then apply
the test in the Angrist and Krueger (1991) context, where quarter of birth is used as an

3Proof in the Appendix.
4If D is binary the CDFs cannot cross by construction.
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instrument (Z) to estimate the return to years of schooling (D). Figure 1 is extracted
from Angrist and Imbens (1995) and shows that the two CDFs do not cross: the schooling
CDF for individuals born in the fourth quarter first-order stochastically dominates the
CDF for individuals born in the first quarter. Angrist and Imbens (1995) then state that
“This is important evidence in favor of the monotonicity assumption in this example.”
Moreover, since in their data first-order stochastic dominance holds for any adjacent pair
of quarters, they also state that “This is evidence that any adjacent pair of quarters can be
used to define a binary instrumental variable that satisfies the monotonicity assumption.”
Thus, they conclude that the IV estimates can be interpreted as the return to schooling
for those individuals induced to take more schooling because they were born in the fourth
quarter (LATE).5

Figure 1: Angrist and Imbens (1995), page 438

3.1 Testing Monotonicity in the Age at School Entry setting

Two recent studies investigate monotonicity according to the Angrist and Imbens (1995)
procedure: Barua and Lang (2009) and Aliprantis (2012). Both papers study the effect
of school entry age on educational attainment.

There has been a recent explosion of interest in school entry age. Following evidence
that in any grade, older children tend to perform better academically than younger chil-
dren, it has become increasingly common to keep children out of kindergarten or first
grade even when they are legally eligible to attend (see Deming and Dynarski (2008)
for a discussion). This practice is often called “red-shirting”, a term originally used to
describe the practice of holding college athletes out of play to add size and strength

5Angrist and Krueger (1991) explain that, for men in the 1980 US Census who were born in the 1930s
and 1940s, school districts typically required a student to have turned age six by January 1 of the year
in which he or she entered school. Therefore, students born earlier in the year entered school at an older
age and attained the legal dropout age at an earlier point in their educational careers than students born
later in the year.
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prior to participating. Estimating the causal effect of school entry age is problematic
because of potential endogeneity. Affluent parents can afford child-care costs associated
with delaying their child’s school entry and are therefore more likely to do so. On the
other hand, children who are less precocious intellectually and/or emotionally are also
more likely to be delayed. These children may also perform poorly on cognitive tests.
For both reasons OLS estimates could be biased, albeit in different directions. Bedard
and Dhuey (2006) suggest solving the endogeneity problem by using the legal entry age
(LEA) as an instrument for entry age. LEA is the age at which a child could start school
given his/her birth date and given the country-specific school entry cut-off date. Figure
2 illustrates the relationship between legal entry age and date of birth in a context where
the school year starts on September 1 and the law stipulates that children should be 5
years old when they start school. The LEA then jumps at the cut-off date: children
born August 31st can start school in September of the year they turn 5, while children
born September 1st (or later) are expected to start school a year later. Unless month
of birth is related to parental background characteristics, it is reasonable to assume that
the IV independence condition is satisfied. Even if one believes that month of birth and
parental background are correlated, the RD continuity and independence conditions are
still satisfied for a narrow window around the cut-off. Bedard and Dhuey (2006) also
show that actual entry age is strongly correlated with the LEA in their data.

Figure 2: Legal Entry Age as a function of Date of Birth (September 1 cutoff date and
school start)

The idea of using LEA as an instrument for school entry age is very similar to the
Angrist and Krueger (1991) idea of using quarter of birth as an instrument for schooling.
In both cases the date of birth provides the variation in the instrument. A variety of
studies then use the same intuition in an IV or RD setting to estimate the causal effect
of school entry age for different countries and/or outcomes: Datar (2006), Puhani and
Weber (2007), McEwan and Shapiro (2008), Black, Devereux, and Salvanes (2011), Elder
and Lubotsky (2009), Fredriksson and Ockert (2009), Muhlenweg and Puhani (2010),
Muhlenweg, Blomeyer, Stichnoth, and Laucht (2012).

Barua and Lang (2009) and Aliprantis (2012) independently argue that the results
in this literature on school entry age should be interpreted with caution because the
monotonicity condition is most likely violated. Barua and Lang (2009) use 1960 US
census data, for individuals born between 1949-1953, to show that many parents do
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(a) Barua and Lang (2009), page 7 (b) Aliprantis (2012), page 328

Figure 3: Applications of the monotonicity test

not enroll their children when eligible, with many parents delaying school start and
others enrolling them earlier than is formally allowed. For instance, in states with a
September cutoff date, Barua and Lang (2009) show that almost all students born in the
first quarter enter kindergarten in September following their fifth birthday. In contrast,
some children born in the fourth quarter enter before their fifth birthday, when they are
younger than those born in the first quarter, while others enter the following year when
they are older than entrants born in the first quarter. Therefore, the authors believe
that quarter of birth (QoB) (and thus legal entry age, LEA) is not monotonically related
to school entry age (EA): EA(QoB = 1) < EA(QoB = 4) for some individuals but
EA(QoB = 1) > EA(QoB = 4) for some others. Barua and Lang (2009) complement
their discussion with the Angrist and Imbens (1995) stochastic dominance test. Figure 3a
is extracted from Barua and Lang (2009) and shows the CDFs for those individuals born
in the first and last quarters of 1952 using reported age and grade at the time of the 1960
US Census. The CDFs clearly cross multiple times.6 Barua and Lang (2009) conclude
that figure 3a gives clear evidence that monotonicity is not satisfied when quarter of birth
or legal entry age are used as an instrument for entry age.

Aliprantis (2012) similarly argues that redshirting makes it all but impossible to in-
terpret estimates of the effects of educational attainment when date or quarter of birth is
used as an instrument for educational attainment. He compares the schooling of six year
old children in the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99
(ECLS-K) data set. Figure 3b is extracted from Aliprantis (2012). It shows the schooling
CDFs for children born the quarter before (Z = 1) and the quarter after (Z = 0) the
entrance cutoff date: the CDFs of school entry age cross.7 Aliprantis (2012) uses figure
3b to strengthen his argument that monotonicity fails in this instance as well.

6Barua and Lang (2009) do not observe the exact date of birth, but only the quarter. Thus, all
individuals born in the first quarter are categorized as being born 1 March, while individuals born in
the fourth quarter are categorized as being born 1 December. The Age at Entry values in figure 3a are
derived accordingly.

7In the figure, schooling attainment at age 6 is measured in quarters and thus takes discrete values
in steps of 0.25 years.
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3.2 Why monotonicity is not testable

In this section we use simple examples to show that the Angrist and Imbens (1995) test
applies to counterfactuals only: a situation where individuals are observed under different
values of the instrument (or on both sides of the discontinuity).

If counterfactuals were observed, the test would detect a violation of the monotonicity
assumption: if the CDFs cross, then monotonicity is violated. However, when counter-
factuals are not observed and a cross-section of individuals is used instead, the test is not
informative: even if the CDFs cross, monotonicity might still hold.

We then clarify that the test cannot assure that monotonicity holds even if coun-
terfactuals are observed: if the CDFs do not cross, monotonicity might still be violated.
Therefore, first order stochastic dominance of the counterfactual CDFs can only be in-
terpreted as weak evidence in favour of monotonicity. Moreover, when a cross-section
is used instead of counterfactuals, the test is again is not at all informative. Table 1
summarizes our main points.

Table 1: Monotonicity and CDFs

Monotonicity
Holds Violated

Counterfactual CDFs cannot cross can cross or not
Observed Cross-Section CDFs can cross or not can cross or not

3.2.1 How the test can reject monotonicity even though monotonicity holds

In table 2 we construct a simple example in the school entry age setting: we think of
counterfactuals, where each of 10 children could be born either in the first or fourth
quarter. Depending on the quarter of birth the parents might make a different decision
as to when the child will start school. We assume a context where the school year starts
on 1 September and the law stipulates that children should be 5 years old when they
start school. Thus the cut-off is the same as the school start date. Nevertheless, parents
can send their children to school early, on-time or might redshirt them.

Barua and Lang (2009) find that there was a large variance in the school starting age
of children born in 1952 with the youngest children entering when 3.75 years old and the
oldest entering when 6.5 years old (see figure 3a). Thus for many of those children the
parents opted for an early entry. Our example in table 2 tries to replicate this variance
and the entry age pattern. For instance, John’s parents would send him to school early,
aged 4.5 years, had he been born in the first quarter, and send him to school in the
same year, aged 3.75 years, had he been born in the fourth quarter. Importantly, in
our example all children would go to school younger had they been born in the fourth
quarter. Thus, if quarter of birth is used as instrument for entry age, monotonicity holds
since EA(QoB = 1) ≥ EA(QoB = 4) for every child. It is easy to see that the entry
age CDFs derived using all counterfactuals do not cross. This is illustrated in figure
4a. Nevertheless, when Barua and Lang (2009) derive the empirical CDFs, they cannot
observe the counterfactuals but have to use a cross-section: children were either born in
the first or fourth quarter. Let’s now consider a cross-section of children in our example,
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Table 2: Test rejects monotonicity even though monotonicity holds

Date of Birth
Child 01/03 (QoB=1) 01/12 (QoB=4)

Choice Entry Age Choice Entry Age
John Early (1) 4.5 Early (2) 3.75
Mike Early (1) 4.5 Early (2) 3.75
Pete On-Time 5.5 Early (1) 4.75
Nick On-Time 5.5 Early (1) 4.75
Rob Redshirt 6.5 On-Time 5.75
Laura Early (1) 4.5 Early (2) 3.75
Sam On-Time 5.5 Early (1) 4.75
Jeanie On-Time 5.5 Early (1) 4.75
Emily Redshirt 6.5 On-Time 5.75
Kirsten Redshirt 6.5 On-Time 5.75

Values in bold indicate observed QoB and Entry Age (Cross-Section)
Early (1) indicates that the child enters 1 school-year prior to when
he/she is supposed to start
Early (2) indicates that the child enters 2 school-years prior to when
he/she is supposed to start

(a) Table 2: Counterfactuals (b) Table 2: Observed Cross-Section

Figure 4: Monotonicity holds but the observed cross-section CDFs cross

indicated by the observations in bold in table 2: we observe all the boys, John-Rob being
born in QoB = 1 and all the girls, Laura-Kirsten, being born in QoB = 4. Figure 4b plots
the CDFs using the observations in bold only. Importantly, even though monotonicity is
satisfied, the CDFs now cross with the pattern of crossings replicating the one in Barua
and Lang (2009). Note that we could extract a different cross-section selecting other
observations in the table, and possibly ensure that the cross-section CDFs do not cross.
The point we want to emphasize here is that with a cross-section any pattern is possible,
even if the monotonicity assumption is satisfied in the underlying counterfactuals.8

8To obtain a crossing of cross-section CDFs (while monotonicity holds) in the example in table 2,
there needs to be at least one child among the December-borns that makes different school entry decisions
than in the January-born group (e.g. Mike versus Kirsten). When comparing all children on both sides
of the threshold, as done in the Angrist and Imbens (1995) test, it is this discrepancy in behaviour that
creates a type of “observed” rise in EA and thus a crossing of CDFs. This difference in EA behaviour
across the threshold can be driven by aspects that do not have a direct impact on the outcome, such as
monetary costs of redshirting a child or parental preferences with respect to school EA.
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3.2.2 How the test can fail to reject monotonicity even though monotonicity
is violated

In this section we construct a simple example using the Angrist and Krueger (1991)
setting, where quarter of birth partly determines years of schooling through a combination
of school entry cutoff date and legal drop out age. Compulsory school attendance age
varies by state but the minimum is generally age 16. This context is used by Angrist
and Imbens (1995) to apply their monotonicity test. Again, we think of counterfactuals,
where each of 10 children could be born either in the 1st or 4th quarter.

Case A In our example in table 3 most children have less schooling when born in the
first quarter. For instance, John would drop out before completing High School if born
in the first quarter, but completes High School if born in the fourth quarter. Similarly,
Nick also stays in schooling longer, attaining college education, if born in the fourth
quarter. However, this is not true for all children: Mike, Pete and Laura have less
schooling when born in the fourth quarter. Thus, monotonicity does not hold. Figure
5a plots the counterfactual CDFs: the CDFs do not cross while monotonicity is violated.
This confirms that the first-order stochastic dominance of the counterfactual CDFs is a
necessary but not sufficient condition for monotonicity to hold. Figure 5b is obtained
using the observations in bold only: also the cross-section CDFs do not cross.

Table 3: Test fails to reject monotonicity even though monotonicity is violated: Case A

Date of Birth
Child 01/03 (QoB=1) 01/12 (QoB=4)

Choice Schooling Choice Schooling
John Dropout 11 High-School 12
Mike High-School 12 Dropout 11
Pete High School 12 Dropout 11
Nick High School 12 College 16
Rob College 16 College 16
Laura High School 12 Dropout 11
Sam Dropout 11 High School 12
Jeanie Dropout 11 High School 12
Emily High School 12 College 16
Kirsten High School 12 College 16

Values in bold indicate actual observed students/choices

Case B Table 4 is identical to table 3 but for Sam’s choice: she would now attain high
school irrespectively of when she is born. Monotonicity is still violated because of Mike,
Pete and Laura’s choices. Figure 6a plots the counterfactual CDF from table 4: the
counterfactual CDFs now cross and monotonicity is violated. The cross-section CDFs in
figure 6d do not cross and are identical to those in figure 5b: that’s because the observed
(bold) choices have not changed.

The examples in section 3.2.1 and 3.2.2 could be altered to derive different scenarios.
The key point is that the stochastic dominance test suggested by Angrist and Imbens
(1995) only applies when counterfactuals are observed. Since this is generally impossible,
monotonicity remains fundamentally untestable. The stochastic dominance test applied
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(a) Table 3: Counterfactuals (b) Table 4: Cross-Section

Figure 5: Monotonicity does not hold, and both the counterfactual and observed CDFs
do not cross

Table 4: Test fails to reject monotonicity even though monotonicity is violated: Case B

Date of Birth
Child 01/03 (QoB=1) 01/12 (QoB=4)

Choice Schooling Choice Schooling
John Dropout 11 High-School 12
Mike High-School 12 Dropout 11
Pete High-School 12 Dropout 11
Nick High-School 12 College 16
Rob College 16 College 16
Laura High-School 12 Dropout 11
Sam High-School 12 High-School 12
Jeanie Dropout 11 High School 12
Emily High School 12 College 16
Kirsten High School 12 College 16

Values in bold indicate actual observed students/choices

(a) Table 4: Counterfactuals (b) Table 4: Cross-Section

Figure 6: Monotonicity does not hold, but the counterfactuals CDFs cross while the
observed cross-section CDFs do not
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to an observed cross section of data is not informative. Whether stochastic dominance is
satisfied in the cross section will depend on which choices we observe, and the result of
the test could go either way irrespective of whether monotonicity is satisfied.

Thus when Barua and Lang (2009) show the CDFs crossing in figure 3a and conclude
that monotonicity is violated we can not be sure, because monotonicity might still be
satisfied. Similarly for Aliprantis (2012) and the evidence in figure 3b. When Angrist
and Imbens (1995) show first order stochastic dominance in figure 1 and conclude that
monotonicity is likely to hold, we are again skeptical: while stochastic dominance in the
counterfactual CDFs is necessary but not sufficient for monotonicity to hold, the cross sec-
tion CDFs can exhibit any kind of stochastic dominance pattern (whether monotonicity
holds or not).

4 Monotonically Hopeless?

Since Angrist and Imbens (1995) test is not informative, should we just ignore the mono-
tonicity assumption as is common practice? We believe the answer to this question is
no. In an IV setting, the exclusion restriction (or independence) is not testable. Yet, the
tools of common sense, economic intuition and data patterns are ordinarily used to argue
in favour of or against that assumption. Similarly in an RD setting the assumption that
individuals close to the threshold are similar is not testable. Nevertheless, one can at
least check whether the observable characteristics have the same distribution just above
and just below the cutoff. In that case there are reasons to believe that the same is true
for unobservable characteristics. In this section the goal is to show that the plausibility of
the monotonicity assumption can and should be investigated like any other assumption.
We go through three different studies in various settings that adopt either the IV or RD
estimator. For each study, we try to make a case for or against monotonicity.9

4.1 Angrist (1990): Vietnam lottery draft

Angrist (1990) uses Vietnam era draft lottery numbers (Z) as an instrument to esti-
mate the effect of veteran status (D) on subsequent earnings (Y ). These numbers were
randomly assigned and influenced the probability of military service. Individuals with
a number below a certain threshold were draft eligible (Z = 1). This is the simplest
setting where both the treatment and the instrument are binary and can be modelled
as in equation (1). If we assume that D∗i = α0i + α1iZi and that α1i is homogeneous
across eligible individuals then monotonicity is clearly satisfied. Thus, with α1i = α1 > 0
eligible individuals (Z = 1) would always be more likely to serve in Vietnam than non-
eligible ones (Z = 0). In this model, for monotonicity to be violated we need α1i to be
heterogeneous. One could imagine that there is a group of individuals (group A) that
would like to serve in the army independently of the lottery number: for them αA

1 = 0.
There was certainly a large group of individuals (group B) that would go to Vietnam only

9As explained earlier, monotonicity is needed only under essential heterogeneity. We do not investigate
or test essential heterogeneity. This would lengthen the discussion considerably and it is not our focus.
Yet, at least on intuitive grounds we cannot see how essential heterogeneity could be ruled out a priori in
any of these studies. Heckman, Urzua, and Vytlacil (2006) and Heckman, Schmierer, and Urzua (2010)
provide a thorough discussion of essential heterogeneity and describe a way to test it.
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if drafted: for them αB
1 > 0. If every individual belongs to either group A or B, there

is heterogeneity in the way individuals respond to the instrument but monotonicity still
holds since Di(Z = 1) ≥ Di(Z = 0), ∀i. By contrast, monotonicity fails if there is also
a group of individuals (group C) who would go to Vietnam only if not eligible (Z = 0):
for them αC

1 < 0. While this is possible it is very unlikely. Thus, in the Angrist (1990)
setting one could argue that monotonicity is not a major concern.

Keane (2010) provides a hypothetical example, similar to Angrist (1990), where mono-
tonicity is more likely to fail. Suppose we use draft eligibility as an IV for completed
schooling in an earnings equation. This seems as sensible as using it as an IV for military
service, since draft eligibility presumably affects schooling while being uncorrelated with
unobserved characteristics. Thus D = 1 if the individual went to college and D = 0 oth-
erwise; Y and Z are the same as above. Amongst the draft eligible group, some (group
B) stay in school longer than they otherwise would have, as a draft avoidance strategy:
αB
1 > 0. Others (group C) get less schooling than they otherwise would have, either be-

cause their school attendance is directly interrupted by the draft, or because the threat of
school interruption lowers the option value of continuing school: αC

1 < 0. This behaviour
is more plausible than in Angrist (1990). It implies that monotonicity is violated since
the instrument, draft eligibility, lowers school for some and raises it for others.

4.2 Black, Devereux, and Salvanes (2011): school entry age
effects on test scores and adult outcomes

Black, Devereux, and Salvanes (2011) investigate the effect of school entry age (D = EA)
on military IQ test scores and adult outcomes (Y ) in Norway. To deal with endogeneity,
they use Legal Entry Age as an instrument (Z = LEA). In Norway, school starts
in August and children are expected to enter school in the calendar year they turn 7
(implying a January 1st cut-off date). Note that Black, Devereux, and Salvanes (2011)
use both an IV and RD approach, with the latter relying only on children born one month
either side of the cut-off date. The RD approach is implemented to account for potential
manipulation of the date of birth by parents or the seasonality of births. In this section
we focus on the monotonicity assumption in the RD approach by centring our attention
around the December-January discontinuity. Nevertheless, the reasoning equally applies
to all months of birth in a more general IV setting. Figure 7b plots the LEA by month
of birth. Variation in the LEA is fully determined by the date of birth.10 In this context,
one case where monotonicity holds is when all children start school on-time (EA = LEA):
all December-borns would enter school older had they been born in January, and vice
versa.

In a next step, we exploit data patterns to scrutinise the monotoniticy assumption.
Although Black, Devereux, and Salvanes (2011) do not discuss monotonicity, they pro-
vide useful information. Table 7a is taken from their paper and shows the proportion
of children who enter school on-time, before and after the expected school entry age.
Throughout the year, almost all children start school in the year they turn 7 (On Time).
However, about 15% of December-borns are redshirted (Late), while 10% of January-
borns start school before the year they turn 7 (Early). Overall, the youngest children in

10LEA is defined as 7.7− (month of birth−1)
12 .
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(a) Black, Devereux, and Salvanes (2011) page 458.

(b) LEA by month of birth (c) LEA and observed school Entry Age

Figure 7: Monotonicity in Black, Devereux, and Salvanes (2011)
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an eligible school entry cohort (Oct-Dec borns) are the most likely to be redshirted, while
the oldest ones (Jan-Feb borns) are the most likely to enter school early. This entry age
behaviour is consistent with parents/educators making school-entry decisions based on
either a child’s absolute or relative age. Figure 7c replicates figure 7b but we now add the
observed EA patterns as shown in the table.11 The size of the circles mirrors the propor-
tions by month of birth. The largest circles are found along the LEA line, reflecting the
high on-time entry rates. The smaller circles on the dotted line reflect early school entry
(EA < LEA), which occurs mainly among children born in January-February. Instead,
the smaller circles on the dashed lines reflect delayed school entry (EA > LEA), which
is most common among October-December borns.

We then consider counterfactuals to discuss monotonicity. It is possible to distinguish
9 groups based on actual and counterfactual EA behaviour, as shown in table 5. The sign
in each cell indicates the change in EA if a child is born in January rather than December.
For instance, Group E represents December-born on-time school entrants who would also
enter school on-time had they been born in January. This implies an increase in EA for
members of group E: EAi(Dec) < EAi(Jan),∀i ∈ E. The (+) sign reflects the associated
increase in EA. Figures 7a and 7c suggest that group E is most likely the largest group.

Table 5: Monotonicity

January Born
December born Early On Time Late
Early A(+) B(+) C(+)
On Time D(-) E(+) F(+)
Late G(-) H(-) I(+)

The (+) term indicates that children enter school
older when born in January. Viceversa, the (-) term
indicates that children enter school younger when
born in January.

Since late school entry among January-borns does not occur, we choose to ignore
groups C, F and I. Similarly, since early school entry among December-borns does not
occur, we choose to ignore groups A, B and C.12 Any other December-born on-time
entrants would enter school early had they been born in January (group D). Crossing the
cut-off date implies a drop in EA for this group: EAi(Dec) > EAi(Jan), ∀i ∈ D. Since
10% of January-born children enter school early, existence of this group cannot be ruled
out. Similarly, groups G and H represent December-borns entering school late, but who
would enter school early or on-time if they had been born in January. This again implies
a drop in EA: EAi(Dec) > EAi(Jan), ∀i ∈ G,H. Figures 7a and 7c again suggest that
the existence of these groups cannot be ruled out. Crucially, the existence of either of
the (−) groups D, G or H alongside the most numerous group E (+) creates a violation
of monotonicity.13

11Since table 7a reports entry age by month, figure 7c is derived assuming children are born the first
day of the corresponding month.

12We choose to ignore these groups for simplicity, but including them in the discussion does not change
any of the intuition provided.

13The above reasoning equally applies to children born in January, had they been born in December
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Since counterfactuals are fundamentally unobserved, this discussion does not provide
definite evidence that monotonicity is violated. However, the data patterns should raise
serious concerns.

4.3 Heckman, Lochner, and Taber (1998): General-Equilibrium
treatment effects

Heckman, Lochner, and Taber (1998) consider a setting where changes in tuition are used
as an instrument (Z) to measure the impact of having a college degree (D) on earnings
(Y ). Their focus is on illustrating general equilibrium effects in skill prices. The idea is
that a quantitatively large tuition-reduction policy financed by a proportional tax can
have two-way effects. On the one hand, it can increase enrollment by directly reducing
the cost of attending college. This is a standard partial equilibrium effect. On the other
hand, it can reduce enrollment by reducing the wage premium of going to college, because
of the increased supply of college-educated individuals. This is a general equilibrium (GE)
effect.

Extending their discussion, let Yi be earnings and Di be a binary college attainment
indicator. Suppose a tuition subsidy had been introduced across states at different points
in time. One could then consider using the state × time interaction as an instrument
for college attainment. Assuming the instrument satisfies the independence and rank
conditions, monotonicity holds if being in a state/time where the subsidy is available
either leaves individuals’ enrollment decisions unchanged (because one would enroll even
without the subsidy or because the subsidy was too small to change the decision) or
leads to additional enrollment: Di(Subsidy) ≥ Di(NoSubsidy), ∀i. Monotonicity would
be violated if, given the GE effect of reduced college returns, someone in a state/time
where the subsidy is available would no longer enroll. This can happen if for a group
of individuals the partial equilibrium effect dominates and pushes them into taking the
treatment, while for another group of individuals the general equilibrium effect outweighs
the partial equilibrium effect and stops them from taking the treatment. When simulating
the impact of a tuition subsidy, Heckman, Lochner, and Taber (1998) find evidence that
both groups are present.14 Hence, in the case of policies that cause general equilibrium
effects, using that policy as a source of identification in an IV or RD setting requires a
thorough discussion of the monotonicity assumption.

instead. For example, group E also includes January-born on-time entrants who would also start school
on-time had they been born in December. The (+) sign still indicates an increase in EA when moving
from a counterfactual birth in December to an actual birth in January.

14Let Vj be the discounted present value of earnings from choice j, with j = C (Collge) or j = H (High-
School). In their model Vj is proportional to the price of skill j, so these prices enter multiplicatively,
while tuition enters additively. Individuals with a larger VC will lose more from a decrease in the price
of skill C. Those with a high VH will benefit more from an increase in the price of skill H. A change in
tuition affects everyone equally. This is what generates the two-way flow.
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4.4 Special Case: violations of monotonicity occurring at ran-
dom

In this section we discuss a special case. Klein (2010) shows how to recover the LATE
for violations of monotonicity occurring at random. Let us rewrite the IV estimand in
equation (2) as

βIV
1 = E[Yi(1)− Yi(0)|Di(z)−Di(w) = 1] (5)

+ λ (E[Yi(1)− Yi(0)|Di(z)−Di(w) = 1]− E[Yi(1)− Yi(0)|Di(z)−Di(w) = −1])︸ ︷︷ ︸
bias

When P [Di(z) − Di(w) = −1] 6= 0 such that λ 6= 0, one can see equation (5) as the
Local Average Treatment Effect for those individuals taking the treatment because of
the instrument, plus a bias term. Klein (2010) provides an approximation of this bias
when violations of monotonicity occur at random. In the general setting of equation
(1), this implies that there is some random variable Ui causing individuals to respond
to the instrument differently, with Ui being independent of the instrumental variable Zi

and (Yi(0), Yi(1), α0i). In other words, Ui is a random variable that causes α1i to have a
different sign for different individuals.

Klein (2010) provides an example using schooling choices which can be applied to
our discussion of the Black, Devereux, and Salvanes (2011) context. There we discussed
how the existence of 2 groups of children would lead to a violation of the monotonicity
assumption: group E who enters school on-time irrespective of their month of birth,
and group H who is redshirted when born in December.15 For instance, suppose that a
child belongs to either group based on parental preferences for absolute and relative age.
December-born children who enter school on-time would be the youngest in class, and
group H parents are sensitive to this issue while group E parents are not. Then, the bias
correction proposed by Klein (2010) requires that these preferences are independent of the
child’s ability, the gain from delayed school entry, parental background or anything else
that is related to the child’s outcomes or affects the school entry decision. While these
conditions seem restrictive in this context, in other settings violations of monotonicity
might be more likely to occur at random.

5 Conclusion

Several studies have emphasised that IV and fuzzy RD estimates can be interpreted as
a local average treatment effect only if monotonicity is satisfied, see Imbens and Angrist
(1994), Angrist and Imbens (1995), Angrist, Imbens, and Rubin (1996), Hahn, Todd, and
Van der Klaauw (2001), Heckman, Urzua, and Vytlacil (2006). This requirement applies
in a context with essential heterogeneity, a situation with heterogeneous treatment effects
and sorting into treatment based on the gain. Monotonicity is a restriction on the impact
of the instrument on the treatment. It implies that a change in the instrument from
value z to w affects the treatment of all individuals in the same direction: all individuals
are either unaffected or switch into treatment, either all are unaffected or switch out

15In our discussion monotonicity would also be violated by the existence of group D or G alongside
group E.
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of treatment. If monotonicity does not hold then the IV and RD estimands are not
interpretable.

Surprisingly, very few of the applied studies that rely on IV and fuzzy RD designs
discuss the monotonicity assumption. This is in stark contrast to the lengthy discussions
dedicated to the IV independence and rank conditions, and to the RD discontinuity
(in the probability of treatment) and continuity (in the conditional regression function)
conditions. But can we test for monotonicity or at least reasonably argue in favour of or
against it? We believe that the answer to the former question is no, while the answer to
the latter question is yes.

We show that a test of monotonicity designed by Angrist and Imbens (1995) only
applies when counterfactuals are observed. Whenever counterfactuals are not observed,
the test cannot provide conclusive evidence about monotonicity. Thus the test is generally
uninformative. Unfortunately, we are not aware of any other test or rule of thumb that
allows for a quick assessment. Nevertheless, we argue that the applied literature is not
“monotonically hopeless”. IV and RD designs are incredibly powerful in dealing with
endogeneity problems. A discussion of the monotonicity assumption is just an extra step
that should be included to validate the results. We provide examples of such a discussion.
In each case, we use a mix of common sense, economic intuition and data patterns to
argue in favour of or against the monotonicity assumption. These are the same tools that
are commonly used to justify, on a case by case basis, other untestable assumptions in
IV and RD designs.
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Appendix

In this section we want to illustrate what the Wald estimator in (3) measures if the
monotonicity assumption RD4 does not hold. Let e > 0 denote an arbitrary small
number.

Consider first the numerator. The mean difference in outcomes for individuals above
and below the discontinuity point is

E[Yi|zi = zc + e]− E[Yi|zi = zc − e] =

E[Yi(0) + (Yi(1)− Yi(0))Di|zi = zc + e]− E[Yi(0) + (Yi(1)− Yi(0))Di|zi = zc − e] =

E[Yi(0)|zi = zc + e]− E[Yi(0)|zi = zc − e]+
E[(Yi(1)− Yi(0))Di|zi = zc + e]− E[(Yi(1)− Yi(0))Di|zi = zc − e]

By assumption RD2, the first two terms cancel out at the limit e→0. By assumption
RD3, the remaining terms can be written as

E[(Yi(1)− Yi(0))Di(zc + e)]− E[(Yi(1)− Yi(0))Di(zc − e)] =

E[(Yi(1)− Yi(0))(Di(zc + e)−Di(zc − e))] =

1× E[Yi(1)− Yi(0)|Di(zc + e)−Di(zc − e) = 1]× P [Di(zc + e)−Di(zc − e) = 1]−
1× E[Yi(1)− Yi(0)|Di(zc + e)−Di(zc − e) = −1]× P [Di(zc + e)−Di(zc − e) = −1]

The denominator can be rewritten:

E[Di|zi = zc + e]− E[Di|zi = zc − e] =

E[Di(zc + e)]− E[Di(zc − e)] =

E[Di(zc + e)−Di(zc − e)] =

P [Di(zc + e)−Di(zc − e) = 1]− P [Di(zc + e)−Di(zc − e) = −1]

The Wald estimator in (3) can then be rewritten as follows:

lime↓0E[Yi|zc + e]− lime↑0E[Yi|zc − e]
lime↓0E[Di|zc + e]− lime↑0E[Di|zc − e]

=

lim
e→0
{(1 + λ)× E[Yi(1)− Yi(0)|Di(zc + e)−Di(zc − e) = 1]−

λ× E[Yi(1)− Yi(0)|Di(zc + e)−Di(zc − e) = −1]}

where

λ =
P [Di(zc + e)−Di(zc − e) = −1]

P [Di(zc + e)−Di(zc − e) = 1]− P [Di(zc + e)−Di(zc − e) = −1]
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