
The University of Sydney Business School 
The University of Sydney 

 
 

 
BUSINESS ANALYTICS WORKING PAPER SERIES 

 
Practical use of sensitivity in econometrics with an illustration to 

forecast combinations 
 
 

Jan R. Magnus 
Tilburg University, The Netherlands 

Andrey L. Vasnev 
University of Sydney, New South Wales 2006, Australia 

 
 

Abstract 
 
Sensitivity analysis is important for its own sake and also in combination with 
diagnostic testing. We consider the question how to use sensitivity statistics in 
practice, in particular how to judge whether sensitivity is large or small. For this 
purpose we distinguish between absolute and relative sensitivity and highlight the 
context-dependent nature of any sensitivity analysis. Relative sensitivity is then 
applied in the context of forecast combination and sensitivity-based weights are 
introduced. All concepts are illustrated through the European yield curve. In this 
context it is natural to look at sensitivity to autocorrelation and normality assumptions. 
Different forecasting models are combined with equal, fit-based and sensitivity-based 
weights, and compared with the multivariate and random walk benchmarks. We show 
that the fit-based weights and the sensitivity-based weights are complementary. For 
long-term maturities the sensitivity-based weights perform better than other weights. 

 
 

 
 
 

March  6, 2013 
 

BA Working Paper No: 04/2013 
http://sydney.edu.au/business/business_analytics/research/working_papers  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/41236789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://sydney.edu.au/business/business_analytics/research/working_papers�


Practical use of sensitivity in econometrics with

an illustration to forecast combinations

Jan R. Magnus

Tilburg University, The Netherlands

Andrey L. Vasnev
University of Sydney, New South Wales 2006, Australia

March 6, 2013

Abstract

Sensitivity analysis is important for its own sake and also in combina-
tion with diagnostic testing. We consider the question how to use sensi-
tivity statistics in practice, in particular how to judge whether sensitivity
is large or small. For this purpose we distinguish between absolute and
relative sensitivity and highlight the context-dependent nature of any sensi-
tivity analysis. Relative sensitivity is then applied in the context of forecast
combination and sensitivity-based weights are introduced. All concepts are
illustrated through the European yield curve. In this context it is natural to
look at sensitivity to autocorrelation and normality assumptions. Different
forecasting models are combined with equal, fit-based and sensitivity-based
weights, and compared with the multivariate and random walk benchmarks.
We show that the fit-based weights and the sensitivity-based weights are
complementary. For long-term maturities the sensitivity-based weights per-
form better than other weights.

1 Introduction

The majority of applied econometric papers concentrates on the fit of the models
and the statistical significance of the coefficients. Sensitivity analysis is often not
or only tangentially reported. This is unfortunate, because sensitivity analysis is
at least as important as diagnostic testing. While diagnostic testing attempts to
answer the question: is it true (for example, that a coefficient is zero), sensitivity
analysis addresses the question: does it matter (that we set the coefficient to
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zero). At first glance, the two questions seem to be closely related. But Magnus
and Vasnev (2007) showed that this is not the case. In fact, the two concepts are
essentially orthogonal.
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Figure 1: The sample is given by three points. The straight line provides minimal
fit, but it is not sensitive to model assumptions. The curve gives perfect fit, but
is very unstable.

A simple stylized example presented in Figure 1 shows the potential danger
of ignoring sensitivity. The sample is given by three points (x1, y1), (x2, y2), and
(x3, y3) and two models are fitted. A flat line, given by the average value of the
dependent variable y = (y1+y2+y3)/3, provides minimal fit, but it is not sensitive
to autocorrelation, non-normality, or any other model assumption. The other
model provides perfect fit, but it can only be used in a very small neighborhood of
the sample points. It is unstable outside the data range [x1, x3], and even within
this range it produces unjustified values that are bigger than the maximum in the
observed data. In this situation the simple non-sensitive model is more reliable.

There are also situations where one might be interested in a model with high
rather than low sensitivity. For example, if we are interested in detecting a crisis or
abnormalities in the market, then we prefer a model which is maximally sensitive
to even small indications of a crisis.

Magnus and Vasnev (2007) provide an overview of the sensitivity literature,
and prove formally the asymptotic independence of the commonly used diagnostic
tests and the sensitivity statistic. Diagnostic tests and sensitivity statistics are
therefore complementary, and both require our attention when analyzing a model.
It is possible to derive sensitivity statistics, and several papers have suggested local
or global sensitivity measures. It is, however, more difficult to answer the question
when a sensitivity statistic is large or small. This question is addressed in the
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current paper. The paper gives practical recommendations with regards to how
the sensitivity statistics can be used, following the suggestion of Severini (1996)
that the best approach is to consider sensitivity in relation to the problem under
consideration.

In some situations the value of the sensitivity statistic is important, requiring a
threshold in order to decide whether the model is sensitive or not. We call this case
‘absolute sensitivity’. In other situations only the relative magnitude is important.
We call this case ‘relative sensitivity’. Essential for both cases is the realization
that sensitivity (unlike a diagnostic test) is context-dependent, and will be closely
related to the estimator we analyze or the dependent variable we are modeling.
To bring out this dependence, we illustrate all concepts introduced in this paper
in a specific context, namely forecasting the Euro yield curve.

We show that when several forecasts are available, the weights based on relative
sensitivity perform well and are complementary to the fit-based weights. The main
purpose of combining forecasts is to improve forecast accuracy, as first shown by
Bates and Granger (1969). The choice of weights, however, is still an open ques-
tion. Timmermann (2006) provides a thorough overview of the sizeable forecast
combination literature, but in practice the optimal weights have to be estimated
and this affects their actual performance. The adaptive weights seem to work well
in many situations, but sometimes a simple alternative with equal weights gives
better results as shown by Stock and Watson (2004). This fact is explained by
Winkler and Clemen (1992) as instability of estimated weights used in generating
the combined forecast.

The paper is organized as follows. Section 2 introduces the practical aspects
of sensitivity analysis and provides a brief overview of the sensitivity literature. It
highlights the context-dependent nature of sensitivity analysis (Section 2.1), and
distinguishes between absolute (Section 2.2) and relative (Section 2.3) sensitivity.
Section 3 applies the concept of relative sensitivity to forecast combinations, and
introduces sensitivity-based weights. The empirical Euro yield curve illustration
is given in Section 4 and a detailed description of the data is given in the data
appendix. Section 5 concludes.

2 Practical aspects of sensitivity analysis

Magnus and Vasnev (2007) introduced local sensitivity through a Taylor expansion.
If the variable (or parameter) of interest, say y, depends on a nuisance parameter,
say θ, then ŷ(θ) denotes the estimator of y for each given value of θ. Special cases
are the ‘restricted’ estimator ŷ(0) obtained by setting θ = 0, and the ‘unrestricted’
estimator ŷ(θ̂) obtained by setting θ equal to its estimated value θ̂. The function
ŷ(θ) provides not only these two special cases, but the whole sensitivity curve,
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given by the estimates of y for each given value of θ.
The first-order Taylor expansion of the sensitivity curve at the restricted point

is given by
ŷ(θ) = ŷ(0) + S θ +O(θ2), (1)

where

S =
∂ŷ(θ)

∂θ

∣∣∣∣
θ=0

(2)

is the first derivative at the restricted point θ = 0, and is called the local sensitivity
statistic or simply the sensitivity.

One might think that the sensitivity statistic and the corresponding diagnos-
tics would be highly correlated. If this were the case, then the Durbin-Watson
statistic (diagnostic) should be highly correlated to the sensitivity statistic of the
regression coefficients as a function of the autocorrelation parameter. Magnus and
Vasnev (2007) showed that this is not the case. In fact, under general conditions,
the sensitivity statistic and the most common diagnostic tests are asymptotically
independent, and these general conditions are satisfied in the case of mean, vari-
ance, and distribution misspecification. In other words, sensitivity analysis answers
an essentially different (and arguably more important) question than diagnostic
testing.

Magnus and Vasnev (2007) also provided an overview of the sensitivity area and
the connection to related concepts in econometrics. Since then the area has been
further investigated. Wan et al. (2007) studied the sensitivity of the restricted least
squares estimators. Qin et al. (2009) looked at the sensitivity of the one-sided t-
test. Ashley (2009) assessed instrumental variable inference via sensitivity analysis.
Sensitivity in panel data was studied in Vasnev (2010). Sensitivity analysis also
attracted attention in quantitative finance; see Pospisil and Vecer (2010) and, in
a somewhat different framework, the earlier work by Gourieroux et al. (2000).

2.1 When is sensitivity ‘large’ or ‘small’?

In order to use sensitivity in practice, we need to decide when sensitivity is large
and when it is small. Ideally we would like to have a threshold similar to the 5%
significance level typically used in diagnostic testing. If a sensitivity is below this
threshold, then we call it not sensitive; otherwise we call it sensitive.

Unfortunately, this is not easy; in fact it is impossible. Of course, since sensi-
tivity is a statistic with a estimable variance, we can obtain an interval in which
sensitivity lies with a probability of 5%. In other words, we can make statements as
to the significance of our sensitivity statistic. But this is not quite what we want.
We don’t want to know the significance but the importance of the sensitivity, and
the importance is not revealed by such intervals.
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Sensitivity is and must be context-specific. For example, if the temperature
outside changes by one degree, most of us hardly notice it. But it is easy to think
of control environments in medicine or chemistry where a fraction of one degree is
already too much. Another example: in the stock market changes of around 1%
are routine events, but yield fluctuations in fixed income of 1% would be considered
colossal; here changes of 0.05% (five basis points) are considered normal.

The temperature example also depends on the scale of measurement (Celsius,
Fahrenheit). This is true in many situations: if ŷ represents personal expenditure
then a change of 100 dollars is substantial, but if ŷ represents national savings
then a 100 dollar difference is negligible. This issue can be resolved by considering
relative changes, except of course when ŷ is close to zero.

Duan (1993) measured the sensitivity S relative to the estimated value ŷ. Sev-
erini (1996) suggested that the magnitude of a particular sensitivity value should
be considered large if a change of this size would have an ‘important’ effect on the
conclusion of the analysis. A less desirable, but more general, approach is based
on comparing sensitivity to the internal variability of the estimator, that is the
standard error of ŷ(0).

2.2 Absolute sensitivity

One can be interested in absolute sensitivity or in relative sensitivity, depending on
the context. If one is interested in absolute sensitivity, then a sensitivity threshold,
say δ, should be determined in advance (just like the significance level). Severini
(1996) suggests using half the standard error of the estimator to distinguish sen-
sitive from non-sensitive cases.

θ

ŷ(0)

ŷ(θ)

ŷ(0) + Sθ

ŷ(θ)

Figure 2: Sensitivity approximation.

Figure 2 illustrates that there are two components of importance when the
sensitivity curve ŷ(θ) is approximated by a first-order Taylor expansion, namely
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the direction S and the magnitude θ. Therefore, in order to determine δ, we need
two bounds:

1. an upper bound for the nuisance parameter θ representing our worst-case
scenario in the direction given by θ; and

2. a bound for the quantity of interest ∆y = ŷ(θ)− ŷ(0) that we are willing to
tolerate.

These two bounds then lead to a sensitivity threshold

δ = ∆y/θ, (3)

so that when |S| < δ we may call the sensitivity small, meaning that if the worst-
case scenario θ is realized, the change in ŷ is smaller than our tolerance ∆y.

2.3 Relative sensitivity

Generally, sensitivities of different models in different directions are not compa-
rable. One important exception is when the direction is the same. For example,
if we have two models ŷ1 and ŷ2 that predict (or estimate) the same thing, then
their sensitivities in the same direction (θ) are comparable.

θ

ŷ1(0)

ŷ1(θ)

ŷ1(0) + S1θ
ŷ1(θ)

ŷ2(0)
ŷ2(θ)

ŷ2(0) + S2θ

ŷ2(θ)

Figure 3: Sensitivity comparison of two models.

Figure 3 illustrates this idea. In this case, a comparison of a change in y ap-
proximated by S1 θ and S2 θ is equivalent to a comparison between the sensitivities
S1 and S2 themselves. Therefore, if |S1| < |S2| then model 1 is less sensitive than
model 2 because it will produce a smaller change in y when θ deviates from zero.
In some situations the sign might be of importance as well.
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3 Forecast combinations and relative sensitivity

3.1 Model/forecast combination

A natural application of the relative sensitivity discussed in Section 2.3, where
many models are used for predicting the same thing, is the combination of forecasts.
We refer the reader to Timmermann (2006) for an overview of this area; our focus
is only on the sensitivity aspect. We simplify by considering two models, but the
generalization to more models is straightforward.

Suppose we consider the weighted average of two models with outputs ŷ1 and
ŷ2 respectively:

ŷc = wŷ1 + (1− w)ŷ2 (0 ≤ w ≤ 1). (4)

If the sensitivities of the individual models are S1 and S2 then the sensitivity of
the combination is given by

Sc = wS1 + (1− w)S2. (5)

The (absolute value of the) sensitivity of the combination is smaller than the
average (absolute value of the) sensitivity of the individual models, because

|Sc| ≤ w|S1|+ (1− w)|S2|. (6)

Also, Sc will be in-between S1 and S2: if S1 ≤ S2, then S1 ≤ Sc ≤ S2. More
generally,

minSi ≤ Sc ≤ maxSi (7)

holds for a weighted average of any number of models.
Of particular importance is the case when the two sensitivities have opposite

signs, say S2 < 0 < S1, as illustrated in Figure 4.

θ

ŷ1(0)

ŷ1(θ)

ŷ2(0)

ŷ2(θ)(ŷ1(θ) + ŷ2(θ))/2

Figure 4: Sensitivity of the average of two models.
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When the sensitivities of two models have different signs, they will compensate
each other and the combination becomes less sensitive than each of the underlying
estimates. Regarding the absolute value of the sensitivities, we find that |Sc| <
min(|S1|, |S2|)





for 0 < w < −2S2/(S1 − S2) < 1 when S1 + S2 > 0;

for 0 < w < 1 when S1 + S2 = 0;

for 0 < −(S1 + S2)/(S1 − S2) < w < 1 when S1 + S2 < 0.

(8)

Hence, if S1 + S2 = 0, then every combination will be an improvement in terms of
(absolute) sensitivity. But, if S1 + S2 6= 0, then only some choices of w will lead
to an improvement. For example, if S1 = 2 and S2 = −1, then an improvement
occurs when we choose 0 < w < 2/3, but not when 2/3 < w < 1. Similarly, if
S1 = 2 and S2 = −3, then an improvement occurs when we choose 1/5 < w < 1,
but not when 0 < w < 1/5.

In Figure 4 we have chosen w = 1/2, and the sensitivity is obviously much
reduced. This reduction in sensitivity provides a possible explanation of the good
performance of the forecast combination in applications. The combination is often
less sensitive than the individual models. In the case of two models with sensitiv-
ities of opposite signs, we can in fact reduce the combined sensitivity to zero by
choosing the weight w = S2/(S2 − S1).

3.2 Sensitivity-dependent weights

In applications the weight is usually determined by a measure of fit, but one can
also introduce weights based on sensitivity, for example

w =
1/|S1|

1/|S1|+ 1/|S2|
, (9)

giving the model with lower sensitivity a higher weight in the combination. The
sensitivity of the combined model is then

Sc =
S1/|S1|+ S2/|S2|

1/|S1|+ 1/|S2|
. (10)

If the sensitivities have opposite signs, then Sc = 0, irrespective of the size of the
sensitivities. If they have the same sign, then

Sc =
2S1S2

S1 + S2

. (11)
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A second possibility is to choose the weights proportional to the sensitivity,

w =
|S1|

|S1|+ |S2|
, (12)

so that the model with higher sensitivity gets a higher weight in the combination.
In that case the sensitivity of the combined model will be

Sc =
S1|S1|+ S2|S2|

|S1|+ |S2|
. (13)

If the sensitivities have opposite signs, then Sc = S1 + S2. If the sensitivities have
the same sign, then

Sc = S1 + S2 −
2S1S2

S1 + S2
. (14)

A third possibility is to combine fit and sensitivity. If the fit is measured by
the root mean square forecast error (RMSFE), then one might define the weight
as

w ∼ 1/RMSFE1 + 1/|S1|. (15)

More generally, w can be defined as a function w(RMSFE1, S1), which is non-
increasing in the first argument and non-increasing (or non-decreasing in some
situations) in the second argument.

4 Empirical illustration: Euro yield curve

Since sensitivity is context-dependent, the concepts introduced above should be
illustrated with a concrete example. As our example we have chosen the European
yield curve.

4.1 Data

The yield of a zero coupon bond is the rate that equates the current price of the
bond and the discounted principal repayment. The yield y thus solves the equation

Z = (1 + y)TP, (16)

where Z is the current price, P is the principal and T is the maturity of the bond.
In reality, there are many types of bonds that differ by origination date, ma-

turity, payment structure, and embedded flexibility. Also, the creditworthiness of
the issuer and the liquidity can vary substantially. A yield curve is a convenient
way to aggregate all this information into one object. The process of creating the
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yield curve from the original bonds is sometimes called distilling or stripping the
yield curve. The final outcome depends on the methodology used to select the
data and to fit the curve.

In Europe, the centralized statistical office Eurostat collects the data and pro-
vides an estimate of the yield curve for the Eurozone area. Time series for matu-
rities from 1 to 15 years are presented in Figure 5.
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Figure 5: Monthly Zero-coupon yield curve spot rate for AAA rated euro area
(EA11-2000, EA12-2006, EA13-2007, EA15-2008, EA16-2010, EA17) central gov-
ernment bonds between January 1999 and September 2011. The bottom line gives
the 1-year maturity; the top line gives the 15-years maturity. The left vertical line
(black) indicates the switch in methodology in October 2004. The right vertical
line (red) indicates July 2005, the beginning of the out-of-sample forecast period.

In October 2004, Eurostat changed their methodology, and this produces a
break in the series indicated by the black vertical line. The change does not affect
the behavior of the yield curve, but produces a shift in the level. In the empirical
analysis we therefore look at three periods:

1. historical period, January 1999 – June 2005;

2. current methodology period, October 2004 – September 2011; and

3. extended (combined) period, January 1999 – September 2011 where the new
methodology is used from October 2004.

To account for the difference created by the change in methodology we use a
dummy variable for the period starting in October 2004 when dealing with the
extended period.
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The European yield curve for the maturities from 1 to 15 years is forecasted
with the help of macro and financial variables. We extend the data set used
in Magnus and Vasnev (2008) to include the latest available observations. The
detailed dataset description is provided in the data appendix.

4.2 Absolute sensitivity

Figure 6 shows the dynamics of the yield curve and highlights the fact the curve
can shift and can change slope and curvature.
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Figure 6: Euro yield curve dynamics. The horizontal axis gives maturity from 1
to 15 years. The vertical axis measures the yield.

The 1-year yield in December 2011 is 0.21%. In this context the natural tol-
erance bounds would be ∆ = 1bp (0.01%) or ∆ = 10bp (0.1%). The reference
interval for absolute sensitivity analysis of the forecast/estimator ŷ is given by

ŷ ±∆. (17)

There are many directions one can look at when analyzing a model that predicts
the yields. The natural directions for sensitivity analysis in this example are:

1. autocorrelation in the model error term, which can be captured by sensitivity
in AR(1) direction introduced by Banerjee and Magnus (1999),

2. asymmetry in the error distribution as the yield cannot be negative, which
can be captured by sensitivity to skewness introduced by Magnus and Vasnev
(2007).

Autocorrelation is important as we deal with time series and asymmetry is impor-
tant because of the positiveness of the yield curve.
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If sensitivity in a particular direction θ is given by S, then to answer the
question of absolute sensitivity, i.e. whether sensitivity is ’large’ or ’small’, one
has to compare |Sθ| and ∆ (or equivalently |S| and ∆/θ), where θ represents the
worst-case scenario in the chosen direction.

For the yield curve, the sign of the change is important. For borrowers ’+’ is
bad and ’−’ is good; for lenders the opposite holds.

4.3 Forecast combination based on relative sensitivity

Following Stock and Watson (2004), we consider univariate models for forecast
combinations in order to study the performance of different weights. We use the
following weights

1. equal weights;

2. fit-based weights (weights inversely proportional to the root mean squared
forecasting error, RMSFE, computed from the previous periods); and

3. sensitivity-based weights introduced in Section 3.2.

We use multivariate and random walk models as benchmarks. We also use standard
one-step-ahead out-of-sample forecast with increasing windows and RMSFE for
forecast evaluation.

4.4 Sensitivity to AR(1) misspecification

From Magnus and Vasnev (2007) the sensitivity statistic of the forecast ŷf = x′

f β̂
computed at the point of interest x′

f is given by

S
AR(1)
ŷf

= x′

fS
AR(1)

β̂
= x′

f (X
′X)−1X ′T (1)My, (18)

where X is the matrix of the regressors, y contains the observations on the de-
pendent variable used to compute the OLS estimator β̂, T (1) denotes the Toeplitz
matrix of order one (that is, it contains ones just above and below the diagonal
and zeros elsewhere), and M = In −X(X ′X)−1X ′.

Figure 7a shows the sensitivities of the univariate models and of the equal-
weight combination across the historical out-of-sample forecast period. As ex-
pected, the sensitivity of the combination is smoother than of the individual mod-
els. The most extreme behavior is exhibited by the model with RTT.
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Figure 7: Sensitivities of the univariate models and the equal weight combination
for 3 year maturity during the historical period.
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The numerical results are contained in the left panel of Table 1. The panel
shows the out-of sample RMSFE of the forecast combinations of univariate models
with equal weights, weights based on the fit, weights proportional to the sensitivity
of the univariate model, and weights inversely proportional to the sensitivity. In
the historical period for short maturities the weights proportional to sensitivity
perform best, for the medium maturity the fit appears to be important, and for
the long-term the inversely proportional weights to sensitivity are better. This
shows again that weights are case-specific and illustrates the value of sensitivity
analysis and its complementarity to diagnostic testing and measures of fit.
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1/
|S
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|

1 0.739 0.632 0.533 0.860 0.478 1.003
2 0.764 0.690 0.597 0.813 0.567 0.930
3 0.748 0.687 0.618 0.747 0.597 0.910
4 0.725 0.671 0.625 0.699 0.605 0.939
5 0.701 0.652 0.625 0.687 0.612 0.821
6 0.678 0.632 0.622 0.627 0.613 0.795
7 0.658 0.615 0.616 0.614 0.608 0.745
8 0.641 0.600 0.608 0.615 0.597 0.731
9 0.628 0.589 0.601 0.614 0.584 0.721
10 0.618 0.581 0.596 0.604 0.572 0.717
11 0.611 0.576 0.592 0.598 0.561 0.702
12 0.605 0.572 0.588 0.580 0.551 0.702
13 0.601 0.571 0.586 0.550 0.543 0.699
14 0.598 0.570 0.583 0.553 0.538 0.693
15 0.596 0.570 0.581 0.552 0.534 0.687

Table 1: RMSFE of forecast combinations with different weights for the historical

period. The best performing weight for each maturity is dark shaded in the first
pane. The weights proportional to skewness sensitivity are light shaded in the
second pane as they are the best performing across all weights.
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4.5 Sensitivity to skewness

From Magnus and Vasnev (2007), the sensitivity statistic of the forecast ŷf = x′

f β̂
computed at the point of interest x′

f is given by

Ssk
ŷf

= x′

fS
sk

β̂
= −

1

2
x′

f σ̂(X
′X)−1

n∑

i=1

(ǫ̂2i − 1)xi, (19)

where σ̂ is the OLS estimator of standard deviation, ǫ̂ is the vector of normalized
residuals ǫ̂ = My/σ̂, ǫ̂i is its i-th component, and x′

i represents the i-th row of the
matrix X .

Figure 7b shows the sensitivities of the univariate models and of the equal-
weight combination across the historical out-of-sample forecast period. Again, the
combination is smoother than the individual models.
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w
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1 0.376 0.268 0.924 0.714 0.942 0.856 0.789 1.253
2 0.435 0.267 0.873 0.714 0.948 0.708 0.743 1.179
3 0.416 0.247 0.794 0.671 0.890 0.662 0.719 1.002
4 0.383 0.227 0.715 0.618 0.812 0.607 0.701 0.867
5 0.355 0.213 0.643 0.567 0.735 0.565 0.686 0.754
6 0.336 0.202 0.583 0.524 0.667 0.516 0.641 0.658
7 0.320 0.192 0.535 0.492 0.614 0.493 0.573 0.589
8 0.311 0.186 0.498 0.467 0.573 0.444 0.516 0.565
9 0.302 0.180 0.470 0.448 0.539 0.433 0.464 0.547
10 0.297 0.176 0.451 0.433 0.511 0.424 0.436 0.526
11 0.295 0.173 0.437 0.422 0.491 0.406 0.420 0.502
12 0.295 0.171 0.430 0.417 0.480 0.409 0.413 0.487
13 0.296 0.170 0.424 0.410 0.473 0.409 0.410 0.475
14 0.297 0.169 0.422 0.411 0.468 0.403 0.410 0.471
15 0.299 0.171 0.422 0.411 0.466 0.404 0.410 0.469

Table 2: RMSFE of forecast combinations with different weights for the new

methodology period. The best performing weight for each maturity is shaded.
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The right panel in Table 1 shows that the weights proportional to skewness sen-
sitivity outperform other weights. This indicates that skewness is a very important
feature for the forecast during the historical period.

4.6 Further analysis

The results for the new methodology period (October 2004 – September 2011) are
given in Table 2.

The weights inversely proportional to autocorrelation sensitivity perform best
in most of the cases. The table also provides the benchmark models and shows
that the forecast combination can be further improved.
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1 0.283 0.217 0.769 0.565 0.776 0.876 0.800 0.731
2 0.297 0.223 0.730 0.576 0.766 0.793 0.718 0.858
3 0.286 0.211 0.670 0.548 0.723 0.710 0.641 0.762
4 0.274 0.197 0.608 0.509 0.672 0.568 0.571 0.715
5 0.264 0.187 0.553 0.472 0.621 0.506 0.517 0.641
6 0.255 0.178 0.507 0.442 0.576 0.470 0.478 0.580
7 0.247 0.171 0.473 0.421 0.540 0.446 0.453 0.540
8 0.241 0.166 0.448 0.406 0.513 0.424 0.440 0.494
9 0.237 0.162 0.429 0.397 0.493 0.415 0.432 0.482
10 0.234 0.159 0.418 0.392 0.478 0.392 0.421 0.450
11 0.232 0.155 0.410 0.389 0.468 0.381 0.409 0.440
12 0.232 0.154 0.407 0.390 0.462 0.381 0.403 0.446
13 0.232 0.152 0.405 0.391 0.458 0.380 0.399 0.443
14 0.233 0.152 0.405 0.393 0.455 0.374 0.398 0.440
15 0.234 0.152 0.406 0.396 0.454 0.379 0.398 0.433

Table 3: RMSFE of forecast combinations with different weights for the extended

period (with dummy variable). The best performing weight for each maturity is
shaded.
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Figure 8: Sensitivities of the univariate models and the equal weight combination
for 3 year maturity during the extended period.
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The results for the extended period (January 1999 – September 2011) are given
in Table 3. They show the complementarity of sensitivity and fit-based weights.
For maturities up to 9 years the fit is more important, while for maturities over 9
years autoregression sensitivity weights give the best result.

Sensitivities of univariate models and the equal-weight combination are given
in Figures 8a and 8b. The AR(1) sensitivities show visibly more fluctuations in
2008 and destabilize in 2009. Skewness sensitivities declined during 2008 and
destabilize dramatically in 2009. This highlights the forward-looking nature of
sensitivity. The RMSFE only captures past performance, while sensitivity looks
at the effect of additional features that might come into play. During the global
financial crisis and after, the situation has changed and sensitivity was able to
capture this change.
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1 0.2145 0.2169 0.2092 0.2102 0.2089 0.2143 0.2043 0.2172
2 0.2518 0.2231 0.2218 0.2232 0.2211 0.2250 0.2182 0.2251
3 0.2440 0.2109 0.2125 0.2139 0.2128 0.2153 0.2114 0.2141
4 0.2288 0.1974 0.2006 0.2020 0.2014 0.2027 0.2015 0.2002
5 0.2159 0.1868 0.1911 0.1922 0.1922 0.1940 0.1931 0.1910
6 0.2045 0.1782 0.1832 0.1841 0.1844 0.1850 0.1854 0.1825
7 0.1955 0.1713 0.1768 0.1774 0.1779 0.1780 0.1789 0.1772
8 0.1883 0.1659 0.1718 0.1722 0.1726 0.1727 0.1738 0.1712
9 0.1841 0.1620 0.1682 0.1684 0.1686 0.1702 0.1699 0.1686
10 0.1799 0.1586 0.1650 0.1650 0.1651 0.1677 0.1664 0.1652
11 0.1756 0.1551 0.1616 0.1615 0.1615 0.1642 0.1627 0.1613
12 0.1743 0.1536 0.1603 0.1599 0.1599 0.1623 0.1613 0.1610
13 0.1731 0.1523 0.1592 0.1587 0.1586 0.1608 0.1602 0.1581
14 0.1728 0.1516 0.1586 0.1579 0.1578 0.1596 0.1595 0.1575
15 0.1740 0.1521 0.1591 0.1584 0.1583 0.1603 0.1601 0.1593

Table 4: RMSFE of forecast combinations with different weights for the extended

period (with dummy variable and random walk component). The best performing
weight for each maturity is shaded.
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Nevertheless, the forecasts can be improved further. For this purpose the ran-
dom walk component is extracted first and the forecasts are made for the re-
maining component. The results are given in Table 4. The distance between the
benchmarks and combinations is reduced. All combinations are better than in the
multivariate model. The best-weight combination is better than the random walk
benchmark for 1- and 2-year maturities. For other maturities it comes very close
as well.

5 Concluding remarks

This paper has considered practical aspects of sensitivity analysis, and has iden-
tified two feasible approaches. First, if the magnitude is important, then context-
dependent thresholds can be introduced that classify the models as sensitive or
non-sensitive. Second, in some situations when the models estimate the same pa-
rameter or forecast the same variable, their sensitivities in one common direction
can be compared directly. When applied to forecast combinations, relative sensi-
tivity gives an additional dimension for comparing the forecasts. It also gives a
new possibility to choose the weights for forecast combinations. In our empirical
illustration, the sensitivity-based weights often perform better than the fit-based
weights. Although the results vary across different periods, we see that for long-
term maturities the sensitivity-based weights perform better than other weights.
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Data Appendix

The data used in the empirical example of Section 4 have been obtained from the
Eurostat website

http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home

and cover the period from January 1999 until September 2011. We analyze the
Eurozone countries Austria, Belgium, Finland , France, Germany, Ireland, Italy,
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Luxembourg, The Netherlands, Portugal, Spain, Greece (from 1 January 2001),
Slovenia (from 1 January 2007), Cyprus and Malta (from 1 January 2008), Slovakia
(from 1 January 2009), and Estonia (from 1 January 2011).

The dataset includes the 14 monthly predictors described below and a constant.
The gross wages and salaries (GWS) variable used in Magnus and Vasnev (2008)
is excluded as it is no longer available. The unit root situation is addressed as in
Magnus and Vasnev (2008) with year-on-year log differences.

HICP: Inflation is captured by the consumer price indices, which are measured for each
country separately and further combined in one harmonized index. We use the
harmonized index provided by Eurostat. The series contains a unit root, so we
use its year-on-year log change and denote it as HICP.

IDOP: Producer prices are reflected in the index of industrial domestic output prices.
It contains a unit root, so we use its year-on-year log change, which we denote as
IDOP.

HUNE: Unemployment is measured by the seasonally-adjusted harmonized unemploy-
ment index of all age classes including males and females, which we denote as
HUNE. Similar to the price index it is measured for each country separately and
then combined into one harmonized measure using the weighted sum transforma-
tion.

RTT: The condition of industry and services is reflected by the seasonally-adjusted
retail trade turnover index. The unit root in the series is removed in the standard
way using the year-on-year log change, which we denote as RTT.

DUR: The seasonally adjusted index of the industrial production of consumer durables
is differentiated in order to remove the unit root and denoted DUR.

IND: Stationary adjusted version of the industrial production index for the total in-
dustry excluding construction we denote as IND.

DR: The relation between the official deposit rate (DR), the official refinancing op-
eration rate (REF), and the official lending rate (LOAN) is kept fixed (with the
exception January–March 1999 when the gap between REF and LOAN was 1.5%)
by the Central Bank with a gap of 1%. Therefore we arbitrarily choose DR for
our analysis.

EURIBOR, LIBOR: To account for other possibilities for investment we include money
market short-term interest rates EURIBOR for euro contracts and LIBOR for
interbank loans in London. The LIBOR is taken because of the high influence this
market has on the whole of Europe.
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GBP, USD: We also include the exchange rate for the most important currencies: Pound
Sterling (GBP) and United States Dollar (USD). In this way we take into account
international competition for investments.

SPRD: Piazzesi and Swanson (2004) find the yield spreads particularly useful for the
analysis. We include three of them: the spread between 2 and 1 year yields
(SPRD2,1), between 5 and 2 years (SPRD5,2), and between 10 and 5 years (SPRD10,5).
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