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Summary Applications of duration analysis in Economics and Finance exclusively
employ methods for events of stochastic duration. In application to credit data, previ-
ous research incorrectly treats the time to pre-determined maturity events as censored
stochastic event times. The medical literature has binary parametric ‘cure rate’ models
that deal with populations that never experienced the modelled event. We propose and
develop a Multinomial parametric incidence and duration model, incorporating such
populations. In the class of cure rate models, this is the first fully parametric multino-
mial model and is the first framework to accommodate an event with pre-determined
duration. The methodology is applied to unsecured personal loan credit data provided
by one of Australia’s largest financial services organizations. This framework is shown
to be more flexible and predictive through a simulation and empirical study that re-
veals: simulation results of estimated parameters with a large reduction in bias; superior
forecasting of duration; explanatory variables can act in different directions upon inci-
dence and duration; and, variables exist that are statistically significant in explaining
only incidence or duration.

1. INTRODUCTION

Within industry, the practice of risk assessment for retail credit is dominated by logistic
and probit regression techniques. These models are most commonly employed to establish
the incidence of default over a twelve-month time horizon, see e.g. Altman and Saunders
(1998) and Crook et al. (2007). More recently, researchers have investigated the use of
survival analysis methods to assess credit risks. The papers of Banasik et al. (1999),
Stepanova and Thomas (2002), Andreeva (2006) and Bellotti and Crook (2009) each
examine time to prepayment and default events individually, treating all other failure
times as censored observations. The risks of, and times to, these events are examined
simultaneously in the papers of Deng et al. (2000), Pavlov (2001) and Ciochetti et al.
(2002). Deng et al. (2000) emphasizes the importance of the jointness of the decision to
default or prepay on mortgages in their option pricing framework.

The event of loan maturity is incorrectly treated as a censored observation in previous
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credit risk research. The framework, common to the latter three papers above, used to
simultaneously analyse the time to prepayment and default events is developed in Han
and Hausman (1990), Sueyoshi (1992) and McCall (1996), which as a group has been
coined HHSM. HHSM develop a proportional hazards survival analysis framework for the
examination of labour market problems. The factors influencing the time to transition
to non-terminal employment states are assessed using this framework.

In credit data, the events of prepayment, maturity and write off are terminal. Although
the simultaneous estimation of the prepayment and write off risks is important, the
treatment of the maturity events has not been adequate. A class of mixture models,
known as cure rate models in the medical literature, provide motivation for the framework
developed in this paper to address this issue. This class of survival analysis model mixes
a binary distribution, usually logistic, with a typical distribution used for the analysis
of failure time data, e.g. Weibull. This method is pioneered in Boag (1949) and Berkson
and Gage (1952) for the analysis of the fraction of patients cured after experiencing
cancer therapies, who were previously erroneously classified as censored observations.
The method is further employed in Farewell (1982), Sy and Taylor (2000), Peng and
Dear (2000) and Cancho et al. (2009). The use of such models to analyse failure times in
medical research is motivated by a biological possibility of cure and often evidenced by
heavy censoring and Kaplan-Meier (KM) non-parametric survival function estimates that
plateau to values strictly greater than zero, see e.g. Sy and Taylor (2000). These latter
papers extend the cure rate method in multiple ways, including to the non-parametric
sphere of analysis.

Hoggart and Griffin (2001) uses a binary cure rate model to analyse customer attrition
rates in the banking industry, adopting the Bayesian cure rate method developed in
Chen et al. (1999). Cancho et al. (2009) uses the same framework in a clinical study
on cancer patients. Tsodikov et al. (2003) extend the framework of Chen et al. (1999)
to a multinomial non-parametric Bayesian cure rate method. In addition, Chen et al.
(1999) argues that extending to a multinomial parametric cure rate model would be
theoretically and computationally cumbersome. However, our paper reveals this is not
the case, at least for credit data where all events can be observed and the events of
interest, prepayment, maturity and write off, are all terminal, mutually exclusive and
collectively exhaustive events.

The methods developed in this paper contribute to the current literature in three ways:

i.) the framework resolves the estimation bias in previous models caused by treating
a pre-determined or non-stochastic terminal event as a censored observation;

ii.) the model is the first in its class to allow for the simultaneous incidence and
duration modelling of a set of M mutually exclusive events, where up to M — 1 of
the events’ duration times may be non-stochastic or pre-determined, and;

iii.) the application to unsecured credit data is the first empirical study to extend the
seminal work of Deng et al. (2000) to the simultaneous and joint modelling of write
off, prepayment and maturity events in credit data.

An empirical study utilises a unique data set of over one million unsecured personal
loan observations provided by one of Australia’s largest financial services organisations.
The data contains limited application form fields, indicating the financial, demographic
and risk characteristic of the loan applicant and also, if available, the final outcome of
these loans, indicating if they were written off, closed good on maturity or prepaid before
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maturity. This data is used for evaluation of the performance of the model in predicting
loan lifetime outcomes, an essential part of any retail bank’s originations framework.
The application simultaneously estimates parameters for both incidence and duration of
credit events. The results show:

i.) Superior forecasting of time to prepayment and write off over previous applications
of duration analysis methods to credit data;
ii.) Regressors can act in opposite directions upon the incidence of the event and the
conditional duration, and;
iii.) Regressors exist that are only significant in explaining incidence or conditional
duration, but not both.

A simulation study compares additional models used in past research and finds the model
developed in this paper more accurately estimates the true parameter values and does
not suffer from biases caused by treating maturity observations as censored prepayment
and write off events.

The following topics are left for further research. First, unobserved heterogeneity is not
included in the current model. It could be incorporated in the spirit of Deng et al. (2000)
with different parameters across the groups or with random heterogeneity factors as in
Mealli and Pudney (1996). Second, dynamics are not incorporated due to the restricted
time frame of our application. We refer the reader to McNeil and Wendin (2007), Duffie
et al. (2009), Koopman et al. (2009), and Koopman et al. (2011) for a possible avenue
to extend of our model with unobserved time specific frailty factors.

The rest of the paper is divided into the following sections: Section 2 examines survival
analysis methods and cure rate models; Section 3 develops the proposed model; Section 4
presents the results of the simulation, empirical and forecasting studies; and, Section 5
concludes.

2. MOTIVATION AND PREVIOUS ADVANCES

The fundamental quantity under assessment is time to event data, from a risk assessment
perspective, where the event of interest may be default or write off, and where the ’failure’
time would be measured from loan origination to loan closure. The set of observable
failure times are in the set of non-negative real numbers. In past research, each observed
failure time, t;, is treated as a random variable with a probability density function (pdf),
f (¢). The cumulative density function (cdf), F(¢), also defines the survival function,
via S (t) = 1 — F (t). The focus of many applications is to specify and estimate the
distribution for the failure time variable, though non-parametric estimation techniques
are also frequently used.

In Banasik et al. (1999), Stepanova and Thomas (2002), Andreeva (2006) and Bellotti
and Crook (2009), duration analyses with an independent competing risk assumption
for the events of prepayment and write off are conducted, where the observed maturity
events are treated as censored prepayment and default event times. Under this indepen-
dent competing risks assumption the prepayment and default observations are analysed
separately, treating all other observed failure times as censored default or prepayment
times, respectively. The likelihood function (L(©)) across observations i = 1, ..., N is:

N
L©)=[[r@)' s )" (2.1)
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where J; takes the value of 1 for censored observations, and 0 otherwise, and © is a
generic parameter vector.

Deng et al. (2000) simultaneously model the events of prepayment and default, using an
extended framework originally developed in the series of seminal papers HHSM. Pavlov
(2001) and Ciochetti et al. (2002) apply the same framework where the data is split into
the mutually exclusive sets of prepayment, default, censoring and unknown event types.
The set of censored events again contains all maturity observations. The log-likelihood
function (£(©)) is maximised and is written as:

N
£(0) =Y {dpiln[Fp (t:)] + pi n [Fp (t:)] + duvi I [Fyr ()] + dci In [Fe ()]} (2.2)
i=1
where Fj (t;) for j = P,D,U,C are the probabilities of mortgage termination due to
(P)repayment, (D)efault, (U)nkown reason and (C)ensoring, respectively. The d;; for
j = P,D,U,C are indicator variables taking the value of 1 when the *" individual
experiences event j, and 0 otherwise.

The treatment of maturity as a censored observation, whose true observed ‘failure’
time is then treated as an under-estimate of the actual time to maturity (i.e. of itself),
can potentially lead to bias in the parameter estimates and is clearly not appropriate
or optimal. The class of cure rate models motivate a solution to this issue, as developed
here, being a class of mixture model, where a binary distribution is mixed with a typical
failure time distribution, with positive support, and applied to time-to-event data where
there are individuals who never experienced, and will never experience, one or more of
the events under study. In addition, it is not known ab initio to which group an individual
belongs, and in fact the incidence of all the events are treated as stochastic. Tsodikov
et al. (2003) define the surviving proportion (i.e. those ‘cured’) as the non-zero asymptotic
value, p, of the survival function, S (), as ¢ tends to infinity. In the medical literature the
term survival analysis is used, while in economic applications the term duration analysis
is more frequent. In this paper we do not distinguish between the two.

This then leads to the two-component (binary) mixture model that Tsodikov et al.
(2003) show can be characterized as:

SW=E{S¢=DI} =1 -p)+pS(HC=1) (2:3)

where ( is a binary variable taking the value 1 with probability p and 0 otherwise.
The surviving fraction is (1 — p) and the incidence of susceptible individuals is p, with
duration described by the conditional survival function, S (t|{ = 1).

Hoggart and Griffin (2001) apply the cure rate methodology to customer attrition from
banks, assuming there are N 4id Poisson risks with mean 6, so that the probability an
individual does not attrite becomes exp {—60}. This method is applied to clinical data
on patients suffering from cancer in Cancho et al. (2009). Farewell (1982) parameterises
the incidence proportion using logistic regression and the duration distribution using the
Weibull density function. Sy and Taylor (2000) and Peng and Dear (2000) develop semi-
parametric techniques for the binary cure rate model. Tsodikov et al. (2003) develop
non-parametric and semi-parametric Bayesian multinomial methods for cure rate models.
In all these situations, and for credit data, hurdle rate or zero-inflated models would be
inadequate to resolve the issue of treating pre-determined terminal events as censored
observations. This is due to the density mass of each pre-determined variable being
observable; all these density masses do not occur at the zero value; and, these models
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would not appropriately incorporate censoring. In the following section a fully-parametric
model incorporating cure rate techniques is developed.

3. MODEL FOR SIMULTANEOUS DURATION ESTIMATION OF M MUTUALLY
EXCLUSIVE EVENTS WITH A SUBSET OF NON-STOCHASTIC EVENTS

Assume there are M mutually exclusive terminal events in the set M, where the first J
events have non-stochastic or pge—determined event times and where J < M — 1. The
actual failure times are denoted Tj;, where j € M indicates the j-th event andi =1,..., N
indicates the i-th individual. The time to the pre-determined events is @; and with this
we can define

T;; =aj forj=1,....J (34)

Tij € [0,00) for j=J +1,... M (3.5)

Next, define q as a vector of labels where the i-th element, ¢;, indicates which event in
M was observed for the i-th individual. Then, M binary indicators are defined as:

Yij = { (1) fthqgrwige }, for jeM and i¢=1,...,N. (3.6)
The density of q, being the observed incidences of each event, follows a multinomial
distribution, characterized with likelihood: T2, Hﬁ1 o

Here, the probability of incidence for each event is: Pr(y;; = 1) = pi; = F; (%3, 015);
where x; and f8y; are (k x 1) column vectors of individual specific regressors and corre-
sponding coeflicients, respectively. The subscript “I” indicates these effect parameters
solely pertain to the incidence of events. The function, F}, must satisfy the following
conditions: p;; € [0,1] and Z]]Vil pi; = 1, so that the events form a set of mutually exclu-
sive and exhaustive events. Note that events j = 1, ..., J occur stochastically, even though
they have non-stochastic durations. Thus, we do not know which loans or observations
will have non-stochastic durations ab initio, but conditional on observing an event in
J=1,...,J, we know the duration exactly, as detailed below.

The actual failure times or durations, 7j;, are assumed to be conditionally iid across
i, with pdf f; (¢t |xi, 05,y =1) for j = 1,..., M, where ¢; = (B'Lj,'yj)/ is the set of
parameters for distribution f;. Here, the subscript “L” indicates parameters pertaining
to duration (latency) only; x; and y;; are as above. For the events with fixed duration,
ie. j =1,...,J, it follows that Pr [ﬁj :Ej} = 1. In the case that j = J +1,..M, a
density with positive support is used for the duration of these events.

Our method also deals with censored observations, as follows. Let C; be the time to
censoring for the i*" individual. Each individual will have a censoring time, however,
only a subset of individuals will have censoring times without also having an observed
failure time, i.e. will actually be a censored observation. The observed time to an event
or censoring is defined as:

T, =Tij AC; (3.7)

Let T = (T} ---Tx)" be the vector of observed failure or censoring times for all indi-
viduals. A binary indicator variable is then defined, to signal if an event has an observed
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duration or is still active, i.e it is then censored, as

1 T, <G
5; = i3 = Yo 3.8
{ 0 if Tij > Ci, ( )

which is defined conditionally on either observing event j (so that 6, = 1), or on loan
i being still active but censored (§; = 0). In the latter case, the information on which
event will occur is not available in the sample. This is taken into account in further
derivations with the help of the binary indicators, y;;, for the observed component in
the likelihood function. In the censored component of the likelihood function, all event
survival densities are used with the corresponding probabilities.

Under this “right” censoring mechanism, the random variables C; are iid across i, with
pdf v; and cdf V;. Conditional on the observed regressors for individual 7, the data pairs
(T3, 6;) are assumed independent over i. The censoring mechanism here is consistent with
the non-informative censoring mechanisms detailed in Kalbfleisch and Prentice (2002).

The uncensored events, including those non-stochastic durations, have incidence prob-
abilities:

Pr(T; € [t,t +dt),d; = 1| x5, ¢;]

=Pr[C; > t+dt|Prly;; = 1] Pr [ﬂj €t,t+dt) | xi, 05,y =1
~ 1=V ()] pijfi (t ] xi, 04,955 =1)dt for j=J+1,..., M, (3.9)
while for j =1, ..., J, we obtain
Priy,; =1Pr[T; € t,t +dt),0; = 1| xi, 05, yi; = 1] = [1 = V; (¢)]pi; (3.10)

For the censored observations we do not know which event will occur, thus their proba-
bility is:

Pr(T; € [t,t +dt),d; = 0| x5, ¢;]
M ~
=Pr [Cl S [t,t + dt)] Zj:l Pr [yij = ].] Pr [Tij >t | Xia¢j7yij =1

J M
~ (t) Zpij + Z piij (t | Xi,(bj,yij = 1) dt fOI‘j =1,... M (3.11)
j=1 j=J+1

Note that for j =1,..., J:
Sj(t | xis 95,95 =1) =Pr [Tij 2t =05 | Xi, ¢5,Yi5 = 1}
=1—-Pr {ﬂj<t:6j|xi,¢j,yij:1} =1 (3.12)
since conditional on y;; = 1, ¢ is the maturity date.
Given that the censoring mechanism is noninformative, the terms relating to the pdf
and cdf of the censoring variables can be ignored, as constants of proportionality. The

resulting likelihood for the set of parameters © = (87, ..., 81y, &y -y Phy)s with inde-
pendent and noninformative right censoring times is:
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N (J M Sy M 1-4
L(®]|X,q,T,0) H HPZJ H [pij [ (1)) Zpij + Z pijSj (t)
i=1 | j=1 J=J+1 j=1 J=T+1
(3.13)

where X = (x7 - - XN)/; 0 has typical element §; as defined in equation 3.8. For j = J +
1., M, fj(t)is f; (t | x4, &5, vi5 = 1) and S (¢) is the survival function S; (¢ | x;, ¢;, yi; =
where the conditional statements have been dropped for notational ease. In addition,
for j =1,...J, f; (t) and S, (t) take values of unity as in equation 3.12. This model does
not decompose when censored observations are present and must be estimated jointly.
When all events under observation have occurred, i.e. there is no censoring, the likelihood
naturally decomposes into the individual event components.

4. SIMULATION STUDY AND EMPIRICAL APPLICATION
4.1. Model Application to Credit Data

There are three terminal events and one event, maturity, has predetermined duration
(J =1) in credit data applications. Let M = {1, 2, 3} for maturity, write off and prepay-
ment events, respectively. The failure time variables have the following restrictions:

ﬁl - 617 ﬁQ S [Oval + 5)7 ﬁB S [0561)) (414)
where ¢ is a small and positive, to account for the write off process in banks’ collections
departments. The chosen functional form for the incidence probabilities, F}, will be the
alternative-invariant form of the Multinomial Logit (MNL), characterised as:

__oxp (%[ B1)

= — .
>y exp (x¥ Bn)

For identification, the regression parameters for the incidence of maturity are set to zero,

i.e. 11 = 0, making (j = 1) the base category for comparison.

The distributional assumptions applied to the events with stochastic duration, ﬁj
where j = 2,3, are

F; (i, 8) (4.15)

e Gamma (vr;,0r;)
Ty ¥ (—x! Bryves) 77" exp {—exp [In(t:) —x] Bry]}

with 0z; = exp (x!'Br;),
o Weibull (vzj,01;)

g exp (—x7 Brives) 677 exp {—exp [yr; (In(t:) — x7 Br;)] }

with 0r; = exp (XzTﬁLj), and
e Log-Normal (,uLj,U%j)

2
1 exp [ — [hl(ti) — X;TﬁLj}
V27myLiti 23,

with 9Lj = exp (/LLJ‘) = exp (XzTBLj) and orLj =Lj-
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These distributions are respectively represented by the labels: G, W;, and Nj, for j =
2,3. For example, the application of the Gamma and Weibull distributions to write
off and prepayment durations, respectively, will subsequently be denoted by “GoW3”.
Alternatively, density functions that specifically account for the upper bound in (4.14)
could be employed. However, each density had negligible weight at this upper bound in
each case for our data. This is because all loans that were prepaid were done so well
before the maturity date and the same is observed for the vast majority of loans that
were written off.

The empirical application of this model will focus on the origination decision of retail
banking firms. The core problem facing the origination decision of a financial institution
is whether to extend credit to an applicant based on information available at that point
in time. Lifetime forecasts of applicant behavior are made to determine whether the
business is profitable.

The aims of the simulation and empirical application are:

1 Perform simulations to explore the biases of each model applied in the literature.

2 Model lifetime account behavior using application data exclusively. This is to repli-
cate the modelling used to inform the credit origination decision.

3 Explore the risk factors specific to this application data

4 Compare the forecasts of the most common competing risk survival analysis em-
pirical studies against those of the model developed in this paper.

4.2. Simulation Study

The extent of the biases in the competing risks (CR) model and other models applied
in the literature are explored through a simulation study, where random event times
are generated from Log-Normal and Weibull distributions for write off and prepayment
events, respectively (NoWs3). Four studies are detailed below, differing in chosen param-
eter values and chosen incidence proportions. The fixed proportions are created using
a uniform (0,1) random variable labelled U;. Five models (labelled T to V) are used to
estimate the parameters on sets of 1,000 observations, replicated 20,000 times. Once an
incidence of maturity, write off, or prepayment has been randomly observed for each of
the 1,000 data points, a duration vector, T, can be constructed. Each element of T will
correspond to the elements of the randomly and independently generated (NoW3) event
times. The vector of event times and the corresponding indicator vectors are then used
as observations in the likelihood equation, e.g. as in equation (3.13), which is maximised
via the simplex method in Matlab software. The following models from the literature are
estimated for each simulated data set:

e Model I: developed in this paper;

e Model II: same as model I except treats maturity events as censored;

e Model III: simultaneous estimation of prepayment and default without separation
of incidence and duration;

e Model IV: examines prepayment individually, treating all other events as censored
observations (Competing Risks (CR) for prepayment); and,

e Model V: examines write off individually, treating all other events as censored
observations (CR for write off).
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Scenario P1 D2 p3s  In(oa) P 3 53

2
Sim01 LoW3 | 0.05 0.20 0.75 In(0.6) 4.50 7.00 5.50
Sim02 LoWs3 | 0.05 0.75 0.20 In(0.6) 4.50 7.00 5.50
Sim03 LoW3 | 0.40  0.20 040 In(0.6) 4.50 7.00 5.50
Sim04 LoW3 | 0.60 0.10 0.30 In(0.6) 4.50 7.00 5.50

Table 1. Parameter values used to generate simulation scenarios 01 to 04

P2 s In (72) B2 gk! B3
Sim01  True Values 0.20 0.75 -0.5108 4.50 7.00 5.50
Model I  Mean 0.2000 0.7500 -0.5150 4.5002 7.0129 5.4999
Std 0.0126 0.0137 0.0507 0.0421 0.2004 0.0054
Prct Err. -0.02% 0.01% 0.82% 0.00% 0.18% 0.00%
Model 1T Mean 0.2500 -0.0630 4.8769 7.0129 5.4999
Std 0.0137 0.0525 0.0650 0.2004 0.0054
Prct Err. 24.98% -87.67% 8.38% 0.18% 0.00%
Model 11T~ Mean -0.0630 4.8769 7.0129 5.4999
Std 0.0525 0.0650 0.2004 0.0054
Prct Err. -87.67% 8.38% 0.18% 0.00%
Model IV Mean 4.3454 5.5711
Std 0.2784 0.0102
Prct Err. -37.92% 1.29%
Model V. Mean 0.4791 6.7995
Std 0.0403 0.1105
Prct Err. -193.78%  51.10%

Table 2. Summary of parameter estimates from Sim01; where ‘Prct Err.” is the percent
difference of the mean simulation value from the true parameter value.

Table 1 shows the actual parameter and distribution settings for the simulation study.
The results for the simulation scenario Sim01 are displayed in Table 2. Even at only 5%
maturity events being incorrectly classed as censored observations, these results clearly
show significant bias in the parameter estimates for models II through to V, while in-
dicating that there is negligible bias in the estimates from the model developed in this
paper, being less than 1% in each case, and usually far less than that, when properly
accounting for maturity events. The bias in the estimates from the other models is demon-
strably larger, between 10 to 200 times larger in direct comparisons between the same
parameters, thus indicating the framework developed in this paper assists in controlling
the clear and significant types of bias caused by not accounting for the introduction of
a non-random terminal event time that is part of a set of mutually exclusive terminal
events. The other three simulation scenarios have quite similar results and are available
from the authors upon request.

Note that the 0.82% bias observed in the estimate of the Log-Normal distribution
shape parameter is also viewed as negligible for the following reasons: the absolute bias
of this shape parameter (0.0042) is 3 times smaller than the Weibull distribution shape
parameter; the absolute value of this shape parameter is 14 times smaller than that of
the Weibull distribution whilst the relative bias is only 4 times larger.
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4.3. Application Data Example

The data set of over one million observations contains information on unsecured personal
loans that originated between 1 March 2001 and 31 March 2008, and were provided by
one of Australian’s largest financial services institutions. These loans could be contracted
for terms of whole years ranging from 12 months to 84 months, and we emphasise that
these are not mortgages but unsecured fixed term credit facilities. In addition to appli-
cation data at the account level, sufficient information on opening and closing dates of
accounts and the reason for their terminations was also provided. The list of personal
loan application data/variables provided for this research is outlined in Table 3.

Number of Applicants per Loan
Total Assets

Time with Current Employer

Time with Previous Employer

Total Liabilities

Current State

Other Bank Home Loan

Time at Current Address

Other Bank Liabilities

Time at Previous Address

House Value

Guarantor

Other Value

Number of Installments

Accommodation Status

Total Loan Amount

Gender

Interest Rate at Application

Age at application

Repayment Amount

Table 3. List of Application Data.

Table 4 details the proportion of maturity, write off, prepayment and censored ob-
servations across each contracted loan term. Both censoring and maturity form a large
proportion of the events in most loan term stratum. The treatment of maturity events
as censored observations would likely have significant impacts on parameter estimation.

Models were estimated for each loan term strata excluding the 72 and 84 month loan
term data sets. The omission is due to the length of the observation window relative to
the time to the predetermined maturity events. The period under consideration covers
85 months, leaving only 13 and 1 month, respectively, where observations with 72 and
84 month maturity could be observed. Thus, small sample sizes, in conjunction with
the heavy censoring, led us to omit these loan term strata. Since loan term strata are
analyzed separately, this causes no selection bias in our results.

Kaplan-Meier (KM) survival curves were constructed on the data set, see Figure 1.
Each event type was examined treating the others as censored in this figure. Panels (a)
to (c) show, respectively, the effects of: non-stochastic duration events with probability
mass at that date; heavy censoring of observations impacting survival curve estimates;
and, KM survival curves that plateau to values strictly greater than zero, a trait that
indicates the use of cure rate mixture models is recommended, as described in Sy and
Taylor (2000). Each of these issues are managed under the model framework developed
in this paper and applied in the following section.

4.4. Results of Model Fitting

Maximum Likelihood Estimation (MLE) is performed utilising the Nelder-Mead method
of simplexes, which is the preferred method due to its generally more optimal conver-
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TERM | Full Term | Write Off | Prepayment | Censored | TOTAL
12 43.69% 1.63% 40.87% 13.79% 1.68%
24 20.04% 2.44% 63.37% 14.16% 8.20%
36 8.56% 3.10% 69.08% 19.27% 12.40%
48 3.41% 4.23% 70.55% 21.79% 10.10%
60 1.38% 5.28% 62.98% 30.37% 24.10%
72 0.54% 5.96% 63.99% 29.49% 4.03%
84 0.01% 6.70% 52.89% 40.38% 39.50%

TOTAL 4.14% 5.18% 60.20% 30.50% 100.00%

Table 4. Percent of Accounts Experiencing Defined Permanent Events and Censoring
with Contracted Term as Stratum

(a) SDF for Full Term Events (b) SDF for Write Off Events
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Figure 1. Kaplan Meier survival function estimates on the full data set with 12 to 84
month loan term stratum labels.

gence properties, compared to a Newton-Raphson type search, for these models and data
sets. The best fitting model, with a separate set of regressors for incidence and duration,
and distributions for duration for write-offs and pre-payment, was chosen based on its
Bayesian Information Criteria (BIC). The parameter estimates for this model are sub-
sequently presented and briefly discussed. Each regression effect estimate is interpreted
with particular attention to the new results showing risk factors that can act in different
directions upon incidence and duration whilst other risk factors are significant for either
incidence or duration, but not both. All results are, in our opinion, logically consistent
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with expectation and intuition and are explored by examining conditional log odds and
impacts of increases in regressors on the mean duration.

LAR In (Loan Amount/ Total Assets) Hv In (House Value in 1000’s)
TL In (Total Liabilities in 1000’5) Lamt Total Loan Amount
TA In (Total Assets in 1000’5) TCA Time at Current Address
TCE Time with Current Employer TPA Time at Previous Address
TPE Time with Previous Employer GEN 1 if Female, 0 otherwise
PCR | 1 if Period 36 to 56 of low credit quality, else 0 AddYrs TCA + TPA
Guar 1 if guarantor on loan, 0 otherwise EmpYrs TCE + TPE
Int Interest Rate at Application Age Age in years

Table 5. Variables used in empirical application

The regressors used in this empirical application capture financial, demographic, so-
cial stability and collective responsibility aspects of the applicants and are described
in Table 5. The set of parameters for the k regressors can be charactised as ® =
(Blg, Blra, b, 05)', where ¢; = (B'Lj,'yj)/ and each f3 vector is k x 1 and the +’s are
scalar, bringing the total number of parameters in the model to (k x 4) + 2.

12 24 36 48 60
G2Gs 130,550.09 999,820.49  1,691,494.65  1,457,727.29  3,233,059.25
GoN3 132,062.25  1,011,948.31  1,709,043.73  1,470,431.32  3,252,580.28
CoWs 129,316.02  T992,108.73  F1,683,201.80 T1,454,077.57  ¥3,230,943.09
N2Gg 130,518.20 999,958.15  1,691,834.76  1,458,044.18  3,233,504.08
N5N3 132,020.61  1,012,086.80 21,710,278.91 21,470,751.17  ¥3,253,084.87
NoWs | F120,285.01 992,336.37  1,683,622.32  1,454,381.49  3,231,320.38
WoGs 130,645.22 999,976.88  1,691,509.26  1,457,749.99  3,233,488.50
WoNg | B132,155.08  ¥1,012,080.73  1,709,957.94  1,470,447.48  3,252,984.85
WoWs | 129,411.40 992,348.72  1,683,307.10  1,454,103.83  3,231,386.54

Table 6. Bayesian Information Criteria for distribution pairs across 12 to 60 month term
unsecured personal loans (¥: minimum; and; M. maximum for each term data set)

The BIC for each of the nine distribution combinations across the five data sets is
displayed in Table 6. These indicate that the combination of the Gamma for for write-
off and the Weibull distributional for pre-prepayment, resulted in the best model in the
largest four of the five data sets. The Weibull was always the optimal distribution for
pre-payment, whilst the log-normal was the least optimal distribution for pre-payment.
The parameter estimates of the models with the optimal BIC values are presented in
Tables 8 to 11.

Estimated conditional log odds ratios are used to interpret the results of the incidence
models. Further, impacts of the parameter estimates on the mean duration are used to
interpret conditional duration components of the model. The conditional log odds ratio
of the k*" regressor between any two events (j and 1) is M = Bjr — Bix. Direct

interpretations of the parameters yield comparison of relative risk to the base category
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event of maturity (since 871 = 0)). The means of each duration distribution are presented
below in Table 7:

Distribution Gamma Weibull Log-Normal
Mean yexp(zX'BL) | exp(zlBL)T(1 +1/7) | exp(a] BL + %/2)

Table 7. Mean durations for distributions used in this study

The estimates of [y, all act directly on the mean duration of an event allowing for
interpretation that a positive point estimate’s effect is to increase the time to the event
occurring, holding all other variables constant.

The financial variables in this model are the Loan to Asset Ratio (LAR) and Total
Liabilities (TL). The LAR is a measure of how leveraged the applicant is at loan origi-
nation, whilst the TL variable is more closely correlated to wealth and borrowing power.
The conditional log odds ratios are consistent with expectation, where the more geared
an applicant is the more likely they are to write off than mature or prepay (Table 8,
Bracrary > 0 and Brapar) > Brsrar) from Table 9 for all terms). Whereas the rela-
tive risk of write off to prepayment or maturity is decreased as TL increases (Table 8,
Bracrry < 0and Brarry < Bracrr) from Table 9 for all terms). Despite the relative risk of
write off decreasing as TL increases, conditional on experiencing write off the higher the
applicant’s TL the sooner they will write off in the shorter loan term data sets (Table 10,
Bra(rr) = —0.0011 for 24 month term loans). This represents a risk to the revenue line on
the profit and loss statement of the lending institution. The impact of LAR to the revenue
line can be interpreted similarly. The higher the gearing of an applicant, the sooner they
will write off if they were to actually experience write off (Table 10, Br2ar) = —0.0115
for 60 month term loans).

The number of months with current and previous employer (EmpYrs) and the months
at current and previous address (AddYrs) are proxies for the employment and residential
stability of an applicant. Neither of these characteristics is significant in explaining the
incidence of a credit event (see Tables 8 and 9 for incidence parameters), holding the
other factors constant. Whilst residential stability is also not significant in explaining
the conditional duration of any event (see Tables 10 and 11 for duration parameters),
EmpYrs does significantly impact the conditional write off duration (see Table 10): the
more one has been employed with their last two employers, the sooner they may write
off in the 24 and greater month loan term data sets (Table 10, Br2(Empyrs) = 0.0005 for
60 month term loans), conditional on write off occurring. Though this seems somewhat
counter intuitive, it could be related to long term employment, perhaps in the same role
with a set of (now) redundant skills. However, the very small magnitude of the parameter
estimates (times the actual values for Empyrs) for this variable ensure it does not have
an economically significant effect on the portfolio.

Age and gender are the two personal demographic variables in this best fitting model.
Age is insignificant in explaining both incidence and conditional duration (see Tables 8
to 11 for the age variable significance) as would be expected in a model that is already
conditioned on financial variables where higher LAR is concentrated in the youth and
higher TL is strongly correlated with age in this data. This is not the case for gender
which is significant in all parts of the models, except two (Table 8, Brogrn) for 48
month term and from Table 11, Br3(gEn) for 12 month term). Following, if the applicant
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is female, the relative risk of write off to prepayment or maturity is significantly reduced
(Table 8, Bra(aen) < 0 for 24, 36 and 60 month terms, and Braen) < Brscen) from
Table 9 for 24 and greater month terms) and conditional on experiencing write off the
mean time to write off is increased if the applicant is female (Table 10, Sr2(gEn) > 0 for
all terms). The effects of an applicant being female are to increase the relative incidence
of prepayment (Table 9, Br3gen) = 0.1615 for 48 month terms and Br3gen) > 0 for
24 and greater terms) whilst increasing the conditional mean duration to prepayment
(Table 11, Brseny > 0 for all statistically significant parameter estimates). In industry
application, gender would likely not be used, despite being a powerful discriminator of
financial risks, given that it is not legal to discriminate based on gender alone. It is
possible there are omitted variables not available in this study, that could be substituted
for gender, such as cash savings balances or risk based pricing to control for the impact
of adverse selection.

The last variable in the models is the guarantor (Guar) indicator and gives insights into
moral obligation and collective responsibility. At the origination of a loan, for there to be
a guarantor it is most likely a parent or guardian of a young adult guaranteeing to support
the servicing of the loan. This creates a powerful relationship between the applicant and
the guarantor in their focus toward the responsibilities of servicing the loan. With the
repercussions of being liable for the loan should the main party fail, an individual would
normally not guarantee a loan they believed they would end up paying for. This is also
evidenced in the relative risk of write off to prepayment and maturity being significantly
reduced with the presence of a guarantor (Table 8, Bro(Guar) = —1.4184 for 60 month
term, Bra(Guary < 0 and Bra(Guar) < Br3(Guar) from Table 9 for all terms). Furthermore,
in the presence of a guarantor the write off conditional mean duration is also increased
(Table 10, Bra(Guar) > 0 for all terms). The presence of a guarantor is also significant
in explaining the incidence of prepayment but not the conditional mean duration (see
Tables 9 and 11 for significance of Sr3(Guar) and Br3(Guar), respectively). These results
indicate that the effect of the guarantor will significantly reduce the losses and the relative
risk of prepayment to write off is increased (Tables 8 and 9, Brs(Guar) > Bra(Guar)
for all terms) whilst the relative risk of prepayment to maturity is decreased (Table 9,
Br3(Guary < 0 for all terms), making them likely to be more profitable applicants for a
financial institution.

Overall these results are logically consistent with expectations. The flexibility of this
framework has enabled this through allowing parameters to act freely in any direction on
incidence and latency whilst simultaneously and jointly estimating them under one like-
lihood function. The next section of the paper explores how well the model discriminates
between the incidence of the events and how well it forecasts the conditional durations
of the events.

4.5. Forecasting Results

This section of the paper examines forecast comparisons between a typical competing
risks (CR) survival analysis framework (see equation 2.1) and the model developed in
this paper (see equation 3.13). A Multinomial Logit (MNL) (see equation 4.15) is also
employed so as to compare with the MNL component of the model developed in this
paper. The data was split into sample and forecast periods: the first 80% of the data,
is the sample period for fitting, being all loans resolved or completed in the period 1
March 2001 to 31 March 2008. The last 20% of the data points are reserved as an
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12 NoW3 24 GoW3 36 GoW3 48 Go W3 60 GaW3
—2.7773% —1.3675% —0.3377° 0.6039¢ 1.2310¢
Constant
(0.0180) (0.0124) (0.0083) (0.0080) (0.0052)
0.2108% 0.1739¢ 0.1291¢ 0.1542¢ 0.1643*
LAR
(0.0023) (0.0013) (0.0008) (0.0007) (0.0004)
—0.0671¢ —0.0418% —0.0332° —0.0175 —0.0232¢
TL
(0.0009) (0.0005) (0.0004) (0.0004) (0.0002)
I —0.0048 —0.0043 —0.0029 —0.0041 —0.0031
P (0.0079) (0.0048) (0.0034) (0.0033) (0.0021)
—0.0027 —0.0032 —0.0032 —0.0032 —0.0027
AddYrs
(1.9394) (0.2976) (0.1916) (0.1847) (0.1435)
A —0.0002 —0.0028 —0.0098 —0.0058 —0.0052
8¢ (0.1564) (0.1056) (0.0704) (0.0675) (0.0443)
—1.4361° —1.1311¢ —1.1199% —1.1441° —1.4184°
Guar
(0.0465) (0.0233) (0.0263) (0.0458) (0.0452)
0.0466* —0.1988% —0.1012° 0.0008 —0.0926“
GEN
(0.0111) (0.0060) (0.0068) (0.0119) (0.0117)

Table 8. Write off incidence parameter estimates {/12}; a, b, & ¢ indicate the parameter
estimates are significant at the 1%, 5% and 10% levels, respectively. Standard errors are

displayed for each parameter estimate in brackets.

12 NoW3 24 GoW3 36 GoW3 48 GoW3 60 GoW3
0.3850¢ 1.6696“ 2.3822¢ 3.2075¢ 3.6645"
Constant
(0.0038) (0.0021) (0.0023) (0.0041) (0.0038)
—0.0544¢ —0.0733% —0.0621¢ —0.0469¢ 0.0239¢
LAR
(0.0003) (0.0001) (0.0002) (0.0002) (0.0002)
0.0017¢ 0.0124¢ 0.0110¢ 0.0046* 0.0310¢
TL
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
I 0.0001 —0.0001 0.0000 —0.0002 —0.0003
P (0.0017) (0.0008) (0.0009) (0.0015) (0.0015)
—0.0004 —0.0003 —0.0002 —0.0003 —0.0000
AddYrs
(0.1166) (0.0374) (0.0376) (0.0583) (0.0596)
A —0.0180 —0.0214 —0.0199 —0.0224 —0.0244
8¢ (0.0314) (0.0167) (0.0188) (0.0319) (0.0306)
—0.2471 —0.1028% —0.0887% —0.1864" —0.0525
Guar
(0.2552) (0.0043) (0.0049) (0.0070) (0.0055)
—0.0675¢ 0.0564¢ 0.1094¢ 0.1615% 0.1078%
GEN
(0.0021) (0.0007) (0.0010) (0.0014) (0.0014)

Table 9. Prepayment incidence parameter estimates {fr3}; a, b, & ¢ indicate the param-
eter estimates are significant at the 1%, 5% and 10% levels, respectively. Standard errors
are displayed for each parameter estimate in brackets.

out of sample forecast period, being all censored observations and all loans completed
or continuing in the period 1 April 2008 to 30 June 2010. The forecasts for incidence,
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12 NoWj3 24 GoW3 36 GoW3 48 Go W3 60 GaW3
Constant 5.7465% 4.4881“ 5.0458% 5.3545% 5.5759¢
(0.0013) (0.0003) (0.0004) (0.0005) (0.0005)
LAR 0.0159¢ —0.0007¢ —0.0099¢ —0.0151¢ —0.0115¢
(0.0002) (0.0000) (0.0000) (0.0001) (0.0001)
L —0.0001°¢ —0.0011° 0.0029¢ 0.0035% 0.0081¢
(0.0001) (0.0000) (0.0000) (0.0000) (0.0000)
EmpYrs 0.0004 0.0006* 0.0003¢ 0.0005° 0.0005%
(0.0006) (0.0001) (0.0002) (0.0002) (0.0002)
AddYrs —0.0002 0.0001 0.0002 0.0003 0.0001
(0.2644) (0.0081) (0.0091) (0.0137) (0.0153)
A 0.0036 —0.0008 —0.0015 —0.0004 0.0000
8¢ (0.0114) (0.0029) (0.0033) (0.0047) (0.0037)
Cuar 0.1307¢ 0.0996% 0.1779¢ 0.2550¢ 0.3292¢
(0.0145) (0.0060) (0.0054) (0.0068) (0.0053)
GEN 0.1034¢ 0.0489 0.0117¢ 0.0290¢ 0.0642¢
(0.0036) (0.0016) (0.0014) (0.0018) (0.0014)
In (722) —0.9542° 1.7555¢ 1.4760¢ 1.2425% 1.0702¢
(0.3478) (0.1549) (0.1040) (0.0990) (0.0652)

Table 10. Write off duration parameter estimates {12, vr2}; a, b, & ¢ indicate the pa-
rameter estimates are significant at the 1%, 5% and 10% levels, respectively. Standard
errors are displayed for each parameter estimate in brackets.

conditional duration and unconditional duration are compared between models on the
basis of forecast accuracy, discriminatory power of the model and bias removal.

Lorenz curves (Figure 2) and Gini coefficients (Table 12) are used to compare MNL
estimates and the incidence component of the model developed in this paper (Watkins-
Vasnev-Gerlach: WVG). The events of write off and prepayment are banded into groups
of equal size and ordered by the score (21 3). The z and y axes plot the cumulative percent
of the event of interest against the cumulative percent of all other events, respectively.
The further these curves depart from a unit (1) gradient, the better is the model’s
discriminatory ability. The power of discrimination is directly measured by the Gini
coefficient, which is the ratio of the area between the curve with unit slope and the
Lorenz curve, to the area under the curve with unit slope.

The WVG and MNL Gini coefficients are all relatively similar. Both models are better
at discriminating write off events than maturity or prepayment. The incidence of matu-
rity is better discriminated as the loan term increases for both models. Neither model,
using this set of application data, offers a level of discrimination above a 0.5 Gini coef-
ficient which would be a benchmark for industry standard models. Results for the Gini
coefficients are displayed in Table 12.

The parameter estimates for the competing risks (CR) model (see equation 2.1 for the
likelihood function specification) are displayed for 36 month term loans in Table 13. The
MNL (columns 1 and 2 of Table 13) and WVG incidence estimates (Tables 8 and 9) are
similar in sign and magnitude, particularly for Guarantor and LAR characteristics. The
MNL incidence parameter estimates are all highly significant for the CR model.
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Figure 2. Lorenz curves for 12 months loan write off and 48 months loans prepayment;
where WVG = Watkins-Vasnev-Gerlach, MNL = Multinomial Logit, In = Fitting Sam-
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Survival Density Function (SDF)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

! !

!

1

— WVGIN
= = =WVG OUT
CRIN

= = =CROUT
POP IN

= = =POP OUT

10 15

Months from Origination

20

25

30 35

Figure 3. Write Off SDF for 12 months loans; where WVG = Watkins-Vasnev-Gerlach,
CR = Competing Risks, POP = Population, IN = Fitting Sample, OUT = Out Of

Sample



18 J.G.T. Watkins, A.L.Vasnev and R.Gerlach

12 NoWs3 24 GoW3 36 GoW3 48 Go W3 60 GaW3
5.4251° 6.0404¢ 6.3416% 6.4742¢ 6.5554¢
Constant
(0.0012) (0.0005) (0.0005) (0.0006) (0.0005)
0.0102¢ 0.0159¢ 0.0258% 0.0341¢ 0.0577¢
LAR
(0.0001) (0.0000) (0.0000) (0.0000) (0.0000)
0.0005* —0.0015% —0.0041° —0.0063 —0.0069
TL
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
I —0.0001 0.0001 0.0002 0.0002 0.0002
P (0.0005) (0.0002) (0.0002) (0.0003) (0.0002)
0.0000 0.0000 0.0001 0.0001 0.0001
AddYrs
(0.0501) (0.0102) (0.0085) (0.0100) (0.0082)
A 0.0001 0.0032 0.0050 0.0066 0.0081°
8¢ (0.0099) (0.0042) (0.0037) (0.0045) (0.0035)
0.0560 0.0240° 0.0293 0.0333 0.0650
Guar
(0.0983) (0.0111) (0.0183) (0.0211) (0.0119)
—0.0034 0.0242¢ 0.0357¢ 0.0361¢ 0.0493¢
GEN
(0.0271) (0.0087) (0.0060) (0.0058) (0.0035)
‘ 2.7903¢ 2.4056 2.0529¢ 1.8044¢ 1.6060°
VL3 (0.0383) (0.0272) (0.0218) (0.0218) (0.0168)

Table 11. Prepayment duration parameter estimates {Sr3,vr3}; @, b, & ¢ indicate the
parameter estimates are significant at the 1%, 5% and 10% levels, respectively. Standard
errors are displayed for each parameter estimate in brackets.

EVENT Write Off Prepayment Maturity
SAMPLE In  Out In  Out In  Out
WVG 12 ] 0.3031 0.3912 | 0.0901 0.0648 | 0.1003 0.0758
WVG 24 | 0.3661 0.2565 | 0.1205 0.0908 | 0.1263 0.0920
WVG 36 | 0.2326 0.2297 | 0.1152 0.0742 | 0.1495 0.0877
WVG 48 | 0.2062 0.1970 | 0.0975 0.0600 | 0.1997 0.0708
MNL 12 | 0.3099 0.3807 | 0.0970 0.0743 | 0.1050 0.0783
MNL 24 | 0.2635 0.2664 | 0.1153 0.0932 | 0.1248 0.0961
MNL 36 | 0.2372 0.2409 | 0.1112 0.0745 | 0.1522 0.0917
MNL 48 | 0.2060 0.1964 | 0.0784 0.0534 | 0.1936 0.0762

Table 12. Gini coefficients for the MNL and WVG models for 12 to 48 month terms

There are three notable high-level comparisons between the parameter estimates for
the CR and WVG models. First, the CR and WVG models have estimates that are simi-
lar in sign for all location parameter estimates. Second, there are significant differences in
magnitude for each location parameter for the write off duration estimates. Third, there
are significant differences in the shape parameter estimates for both write off and pre-
payment. The WVG model’s shape parameters are all above unity whereas the opposite
is true of the CR shape parameters. All CR duration parameter estimates are significant
for the model specified in equation 2.1. These differences have led to similar incidence
discriminatory power, similar duration discriminatory power and a significantly lower
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ability to accurately forecast duration for the CR model.

Incidence Duration
Write Off Prepayment Write Off Prepayment
0.1079° 2.6554 7.6190¢ 6.5162¢
Constant
(0.0505) (0.0269) (0.0216) (0.0052)
0.1523¢ —0.0410¢ —0.0595¢ 0.0304¢
LAR
(0.0130) (0.0076) (0.0047) (0.0015)
—0.0856 0.0353¢ 0.0341¢ —0.0184¢
TL
(0.0126) (0.0064) (0.0047) (0.0012)
— —0.0034¢ 0.0003° 0.0014¢ 0.0001¢
P (0.0004) (0.0002) (0.0002) (0.0000)
—0.0032¢ —0.0001¢ 0.0012¢ 0.0000¢
AddYrs
(0.0002) (0.0001) (0.0001) (0.0000)
A —0.0101 —0.0209¢ 0.0014¢ 0.0073¢
8¢ (0.0017) (0.0009) (0.0006) (0.0002)
—1.2581¢ —0.3034¢ 0.4296¢ 0.0347¢
Guar
(0.0881) (0.0380) (0.0338) (0.0074)
—0.1037¢ 0.1205% 0.1002¢ 0.0049
GEN
(0.0359) (0.0194) (0.0128) (0.0035)
0.4169¢ 0.5558¢
VL (0.0049) (0.0014)

Table 13. CR model parameter estimates for 36 month term data set with Gamma and
Weibull distribution for Write Off and Prepayment, respective; a, b, & ¢ indicate the
parameter estimates are significant at the 1%, 5% and 10% levels, respectively. Standard
errors are displayed for each parameter estimate in brackets.

The CR model forecasts for the write off conditional survival density function (SDF)
show severe over estimation of the time to write off. The forecasts from the WVG model
are significantly closer estimates of the observed write off conditional SDF; see Figure 3
and Figure 4 for a comparison between the population, WVG and CR models for both
in and out of sample. In longer term structure loan strata the CR model shows under
estimation and then over estimation of the time to write off; Figure 4. The WVG forecasts
are close to the development data sample (IN), however, the speed to write off greatly
increased over the out of sample data set which corresponded to the global financial crisis
(GFC). Neither model responded to the change as the same types of people were now
proceeding to write off faster.

The forecasts for prepayment conditional SDFs in Figure 5 show similar results as for
the write off event. The CR model again shows under estimation then significant over
estimation. By removing the bias created by censoring all other terminal events, the
WVG model predicts the time to prepayment with greater accuracy; see Figure 5 for a
comparison of the population, WVG and CR models for both in and out of sample.

Despite the WVG model providing demonstrably better forecasts upon visual inspec-
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Figure 4. Write Off SDF for 48 months loans; where WVG = Watkins-Vasnev-Gerlach,
CR = Competing Risks, POP = Population, IN = Fitting Sample, OUT = Out Of
Sample
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Figure 5. Prepayment SDF for 48 months loans; where WVG = Watkins-Vasnev-Gerlach,
CR = Competing Risks, POP = Population, IN = Fitting Sample, OUT = Out Of Sample
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Figure 6. Rank Ordered Relative Area under SDF for prepayment events 12 and 48
months.

tion, there is little difference between the CR model and the WVG model’s ability to
order the fastest and slowest observations together; see Figure 6. In Figure 6 the observa-
tions were grouped uniformly by the score (z'3) from the SDF estimates and empirical
SDF's were plot for each group. The area under each empirical SDF was summed to find
the total area. The relative share each group had of the total area was plot by the ordered
groups. The lowest scores had the least area and the highest score the most area under
the prepayment empirical SDFs, with the discriminatory power becoming stronger as
term increased, but differing little between models. Figure 6 plots these discriminatory
power results for the 12 and 48 month prepayment loans.

Combining all components of incidence and conditional duration, a forecast of the
unconditional SDF can be created, see Figures 7 and 8. The MNL results were combined
with the CR model results and compared against the unconditional SDF WVG model
forecast in Figure 7. The results again visually indicate a significantly closer estimate
of the empirical unconditional SDF. Forecast errors in the CR model are compounded
when brought together with the MNL estimates. The estimates from the WVG model
tend to match the in sample data set trends, with in and out of sample forecasts almost
identical in this model built on limited data from the application form.

The forecasting results indicate there is little difference in discriminatory power be-
tween the models. However, the accuracy of the SDF forecasts is visually superior to
those of the typical CR model. These forecasting biases in the application of the CR
models reflects the extent of bias shown in the simulation study. The removal of this bias
is seen in Figures 3 to 8 in the forecasts performed using the WVG model.

4.6. Diagnostics

This section examines the distributional assumptions and standard errors of estimates
to assess if the model specifications, distributional assumptions and optimisation were
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Figure 7. Unconditional SDF for 12 months loans; where WVG = Watkins-Vasnev-
Gerlach, CR = Competing Risks, POP = Population, IN = Fitting Sample, OUT =
Out Of Sample
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Figure 8. Unconditional SDF for 48 month loans; where WVG = Watkins-Vasnev-
Gerlach, CR = Competing Risks, POP = Population, IN = Fitting Sample, OUT =
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adequate. Anderson Darling (AD) and Kolmogorov-Smirnov (KS) statistics (available
upon request from the authors) found sufficient evidence to reject the null hypothesis
that the distribution assumptions were correct. However, these classical statistics are
sensitive to large data sets such as the one used in this empirical application.

Under correct Weibull distributional assumption the negative log of the KM survival
curve function against log time should appear linear and should have an intercept term
of —B1,;71; and a slope coefficient of 77,;. A regression was performed to test the linearity
KM survival curve estimates, such that:

Yi =N+ In (t:) + i (4.16)

where y; = In {—ln [gKM (tl)}} and was regressed on the natural logarithm of the

observed failure times (t;) separately for each event. Should the time to the particular
event be distributed Weibull then the estimates should hold the following relationship
with the optimised parameters of the parametric survival estimation:

o = —Ar;Br; and Ny =7L; (4.17)

A Wald test for the linearity of the log negative log KM survival curve plots was
performed. The results (available upon request from the authors) indicate that only two
instances do not reject the null hypothesis that the linear regression coefficients are equal
to the appropriate combination of MLE parameter estimates. This was exclusive to the
Weibull-Weibull and Log-Normal-Weibull distribution pairs for the prepayment event
with 48 month term.

The residuals for time to each event were plotted to compare to the Extreme Value
Minimum (EVM) distribution to examine the Weibull distribution model assumption
and the domain of the errors is examined to determine relative accuracy. The histogram
plots in Figure 9 indicate that the Weibull Weibull distribution assumption appears to
match the EVM pdf most closely of the nine distribution pairs. The Gamma Weibull
and Log-Normal Weibull (distribution pair assumptions for write off and prepayment,
respectively) depart most from the pdf plot of the EVM distribution, characterised by
an approximate tenfold decrease in the domain of the residuals. However, these plots
correspond to the estimates with the lowest BIC. In addition, there may be correlation
between the write off and prepayment events that needs to be addressed.

These diagnostics give evidence to support the Weibull distribution assumptions for
prepayment despite the classical statistics such as the Wald test, AD and KS statistics
rejecting all distribution assumptions. The Gamma and Log-Normal assumptions for the
write off event deliver the lowest residual domains whilst still having consistent shape
to the EVM distribution. These results provide some support to the appropriateness of
applying fully parametric models to these credit data sets. The smooth, uniform profile
likelihoods with clear maxima indicate the model specification results in unique global
solutions in this application to credit data.

5. SUMMARY AND CONCLUSION

Research into the application of duration analysis to credit data has become increas-
ingly abundant in recent years. Typical applications examine the credit events of default
and prepayment individually. There have been applications treating the aforementioned
events as dependent competing risks and have simultaneously estimated their parame-
ters, arguing the option theoretic is the motivation for loan termination. However, all
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Figure 9. Time to prepayment residual histograms and EVM pdf plot

applications have failed to adequately treat credit maturity events which will lead to
biases in parameter estimation.

This paper has developed the first integrated methodology for the analysis of a set
of mutually exclusive events, where the duration time to a subset of events may be
non-stochastic or pre-determined. It has been motivated by the cure rate method in the
medical literature, augmenting these binary models to a fully parametric multinomial
mixture model framework, best applied to credit data. Incidence and duration of each
event in the system are estimated simultaneously.

The empirical application of the model used Australian unsecured retail personal loan
credit data. The key aim is to build models using data available at application to ex-
amine: relative risk of events; impacts of risks to mean duration; compare forecasts and
simulation parameter estimates for the most commonly applied models. The results found
that the model developed in this paper lead to:

Significant reduction of bias in parameter estimates

Improved forecast accuracy over the typical competing risk applications

Risk factors that can work in opposite directions upon incidence and duration
Risk factors that are significant in explaining incidence or duration but not both.

The study utilised information on personal financials, employment stability, residential
stability, demographics and moral obligations. All variables except age and residential
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stability were found to be significant in explaining some part of the credit terminations.
The financial variables relating to gearing and total liabilities increased and decreased the
relative risk of write off as they increased in value. However, conditional on experiencing
write off higher values in either variable lead to write off occurring sooner. This poses a
risk of loss and a risk to the revenue line as the less time an account is on the books the
less interest that is paid back to the lending institution.

The results within this paper were unattainable using existing methodologies. This
aspect of the model allows for a deeper and more rigorous examination of credit data.
There are far reaching applications of this model ranging from profit scoring to portfolio
funding optimisation. Future research can extend this framework to explicitly to examine
the dependence structure between prepayment and write off through either a copula or
bivariate framework, in addition to an exclusively empirical study employing techniques
to deal with unobserved heterogeneity and dynamics.
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