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ABSTRACT 

In educational and organisational settings it has become common practice to 

use computer-based complex problems that represent dynamic systems for 

assessment and training purposes. In the interpretation of performance scores and the 

design of training programs, it is often assumed that the capacity to effectively 

control the outcomes of a dynamic system depends on the acquisition of structural 

knowledge. Control performance scores are generally interpreted as evidence of 

individual differences in the capacity to acquire and utilise structural knowledge and 

training programs typically try to improve learners‘ mental models of the system of 

interest. However, a causal relationship between the acquisition of structural 

knowledge and successful system control has not been established, and some 

findings suggest that it may be possible to control dynamic systems in the absence of 

structural knowledge. 

Therefore, the goals of this project were to determine the conditions that are 

required to learn how to control dynamic systems and the psychological processes 

that separate successful from less successful problem solvers in the performance of 

this task. The main emphasis of this investigation was to clarify the role of structural 

knowledge in the control of dynamic systems and to identify sources of individual 

differences in problem solvers‘ capacity to acquire such knowledge and apply it in a 

goal-orientated application.  

In a series of studies, a combined experimental and differential approach was 

adopted to address these goals. This consisted of the experimental manipulation of 

the task and structural characteristics of complex problems combined with the use of 

process indicators and external psychometric tests. Study 1 examined whether 

problem solvers need to directly interact with a dynamic system in order to acquire 

structural knowledge that is useful for system control. Study 2 examined whether 

increments in structural knowledge lead to improvements in control performance and 

whether dynamic systems can be successfully controlled without structural 

knowledge. Study 3 examined whether the relationship between structural 

knowledge and control performance is moderated by system complexity. Each of 

these studies also investigated the role of fluid intelligence in the acquisition and 

application of knowledge. Additional methodological contributions include the 



 iv 

application of Cognitive Load Theory to the design of the instructions used to 

manipulate structural knowledge, the use of randomly generated control performance 

scores to evaluate the success of performance and the development of a theoretically 

driven operationalisation of system complexity. 

Across the studies, it was found that structural knowledge was a necessary 

condition of better than random performance and that there was a causal relationship 

between structural knowledge and control performance. However, the likelihood that 

structural knowledge would be acquired and utilised was found to be dependent on 

the complexity of the system. Small increments in system complexity resulted in 

floor effects on performance. Fluid intelligence was found to play a crucial role in 

the acquisition and subsequent application of knowledge. Overall, the results indicate 

that the complexity of the system determines the amount of knowledge that is 

acquired by the problem solver, which in turn, combined with their intelligence, 

determines the quality of their control performance. 
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CHAPTER ONE 

AIMS AND OVERVIEW 

1.1 Introduction 

Many situations require us (as human problem solvers) to interact with, and 

learn how to control, dynamic systems of causally connected variables. Learning 

how to heat food in a microwave, respond to emails and buy train tickets are just a 

few of the many examples that might be encountered in everyday life. On a more 

complex scale, the successful management of stock levels in a factory, hospital 

admissions, military operations and inflation in economies, requires problem solvers 

to manipulate and control the outcomes of highly inter-connected systems of 

variables. This thesis will examine the conditions that are required to learn how to 

effectively control the outcomes of dynamic systems and the cognitive processes that 

separate successful from less successful problem solvers in the performance of this 

task. 

Since the 1970s a myriad of computer-based problems that represent dynamic 

systems have been constructed to investigate how people behave in complex 

environments. They are referred to as dynamic decision-making tasks (e.g. Brehmer 

& Allard, 1991; Gary & Wood, 2007), micro-worlds (e.g. Brehmer & Dörner, 1993; 

Kluge, 2008; Cañas & Waern, 2005, Funke & Frensch, 2007), simulations (Bühner, 

Kröner, Ziegler, 2008; Wood, Beckmann & Birney, 2009), computer-simulated 

scenarios (e.g. Funke, 2001), process-control tasks (e.g. Broadbent, 1977), complex 

dynamic control tasks (e.g. Osman, 2010), finite state automata (e.g. Buchner & 

Funke, 1993; Buchner, Funke & Berry, 1995) and complex problems (e.g. Beckmann 

& Guthke, 1995). In this thesis, for the sake of simplicity they will all be referred to 

as complex problems.   

Complex problems consist of a number of inputs (variables that the problem 

solver can change) and outputs (outcomes that are generated by the system). The 

problem solver can change the values of the inputs, which affects the values of the 

outputs via causal structures that can be described algorithmically. The systems are 

considered to be ―dynamic‖ because the values of the outputs change in response to 

the problem solvers‘ actions, as well as independently over time (Edwards, 1962; 
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Brehmer, 1992; Funke, 1992). Typically, problem solvers are required to discover 

the relationships between the variables in the system; this is referred to as their 

structural knowledge. Concurrently or subsequently, they are also required to 

manipulate the inputs to reach certain goal values for the outputs; this is referred to 

as the quality of their system control, or control performance.  

In educational and organisational settings, it has become common practice to 

use complex problems for assessment and selection purposes (Funke, 1998; U. 

Funke, 1998; Hornke & Kersting, 2005; Kluge, 2008). For example, in 1999 the 

Program for International Student Assessment (PISA) used the complex problem 

RAUMFAHRT (a virtual space shuttle) to assess the capacities to acquire knowledge 

and learn to control dynamic systems (Wirth & Funke, 2005). A set of similar 

complex problems will be included in PISA 2012 (The MicroDYN Approach; Greiff 

& Funke, 2008; 2009). The results of PISA are used to compare the knowledge and 

skills of students from different educational systems to inform the educational policy 

of the 60 participating countries (OECD Program for International Student 

Assessment). In organisational settings, complex problems are frequently used to aid 

the selection of personnel for roles in management, complex machinery operation 

and industrial research (Funke, 1998; U. Funke, 1998). For instance, in Germany, 

they are often preferred for the purpose of selection over traditional measures of 

intelligence (U. Funke, 1998; Kluge, 2008). The widespread adoption of complex 

problems in assessment and selection settings indicates that the capacity to control 

dynamic systems is seen as a key factor in job and educational success.  

A large number of complex problems have also been developed for the 

purposes of education and training. Over the last ten years, the use of complex 

problems that represent scientific principles has become prevalent in primary and 

secondary education, although they are not typically considered to be a replacement 

for mainstream teaching and learning practices (de Freitas & Oliver, 2006; de Jong & 

Van Joolingen, 1998; Hulshof & De Jong, 2006; Goldstone & Sakamoto, 2003). 

Similarly, complex problems that represent systems in business are used pervasively 

in MBA programs and for personnel training (Wolfe & Rogé, 1997; U. Funke, 1998; 

Wood, Beckmann & Birney, 2009; Stainton, Johnson & Borodzicz, 2010). 

Proponents of this approach to teaching argue that complex problems are 

advantageous for training and education because they: a) have high face validity, b) 
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provide a new way of communicating with the ―net generation‖, c) are more 

engaging than traditional methods of teaching, d) allow for experimentation in a 

―low-risk‖ environment, e) reduce the time needed to expose learners to a wide-

variety of situations and f) are adaptable to different training objectives (Wolfe & 

Rogé, 1997; U. Funke, 1998; Goldstone & Sakamoto, 2003; Hornke & Kersting, 

2005; de Freitas & Oliver, 2006; Wood, Beckmann & Birney, 2009; Stainton, 

Johnson & Borodzicz, 2010). Nevertheless, these assertions are usually tempered by 

the acknowledgement that there is dearth of empirical evidence to support the claim 

that the use of complex problems benefits traditional learning outcomes (e.g. the 

transfer of skills and knowledge to real world settings).  

In assessment and training contexts, there is a long held assumption that the 

problem solvers‘ capacity to effectively control the outcomes of dynamic systems 

depends on their knowledge of the underlying structure of the system. Consequently, 

differences in control performance scores are interpreted as evidence of individual 

differences in the capacity to acquire and utilise structural knowledge in dynamic 

environments (Hornke & Kersting, 2005; Kluge, 2008; Greiff & Funke, 2008; 2009). 

Similarly, interventions designed to improve the control of dynamic systems often 

encourage learners to map their mental models, challenge their mental models or 

improve their mental models of the underlying structure of the system in question 

(Sterman, 1994; Wolfe & Rogé, 1997; U. Funke, 1998; Gonzalez, 1999; de Freitas & 

Oliver, 2006). In both contexts poor control performance is typically interpreted as 

evidence that test takers or learners do not possess sufficient knowledge of the 

underlying structure of the system. 

Such an assumption might seem sensible, considering the well-established link 

between expertise and domain knowledge in naturalistic settings, such as chess and 

physics. In comparison to novices, experts are characterised by a high level of 

successful performance in a particular domain. Concomitantly, they possess a large 

amount of highly structured domain knowledge and tend to focus on the deep 

structure of problems rather than on their surface features (de Groot, 1978; Chase & 

Simon, 1973; Chi, Glaser & Rees, 1982; Ericsson & Charness, 1994; Ericsson, 

Prietula & Cokely, 2007). This suggests that the superior performance of experts is 

crucially dependent on their abstract domain knowledge (Holyoak, 1991; Ericsson, 

2003). 



 4 

However, the results of studies that have investigated how people learn to 

control dynamic systems do not clearly support a causal relationship between the 

acquisition of structural knowledge and successful system control. On the one hand, 

a number of studies have shown strong associations between the amount of structural 

knowledge acquired by problem solvers and their capacity to control the outcomes of 

dynamic systems (Funke & Müller, 1988; Beckmann & Guthke, 1995; Vollmeyer, 

Burns & Holyoak, 1996; Kröner, Plass & Leutner, 2005; Burns & Vollmeyer, 2002; 

Osman, 2008). On the other hand, a number of studies have demonstrated that 

problem solvers can learn to control the outcomes of dynamic system seemingly in 

the absence of structural knowledge (Broadbent, 1977; Broadbent, Fitzgerald & 

Broadbent, 1986; Berry & Broadbent, 1984; Berry, 1984; Berry, 1991; Stanley, 

Matthews, Buss & Kotler-Cope, 1989; Marescaux, Luc & Karnas, 1989; Dienes & 

Fahey, 1995). Most importantly, the provision of structural information appears to 

have no significant effect of the quality of system control (Putz-Osterloh & Lüer, 

1981; Putz-Osterloh, 1993; Preußler, 1996). This suggests that the efficient control of 

dynamic systems may not depend on the acquisition of structural knowledge (these 

findings are discussed in detail in Chapter 3).  

This possibility has been widely discussed, and a number of alternative views 

on how people learn to control dynamic systems have been put forward. One 

perspective is that dynamic systems can be controlled through trial-and-error (Putz-

Osterloh, 1993). Another is that problem solvers require a period of practice at 

controlling the system before they can effectively utilise structural knowledge 

(Preußler, 1998; Schoppek, 1998; 2002; 2004). Still others put forward the case that 

problem solvers must acquire knowledge of specific actions and their outcomes 

through practice, and that the acquisition of structural knowledge has no bearing on 

the success of this endeavour (Broadbent, Fitzgerald & Broadbent, 1986; Marescaux, 

Luc & Karnas, 1989; Dienes & Fahey, 1993; Kluwe, Haider & Misiak, 1990; Kluwe, 

1993, 1995; Berry & Broadbent, 1995; Gonzalez, Lerch & Lebiere, 2003). 

Obviously, these arguments are inconsistent with each other and at the present time 

there is no clear evidence that favours any particular argument. 

Clearly, an accurate model of how people learn to control dynamic systems is 

critical for the valid use of complex problems in applied settings. Currently, the 

cognitive processes that differentiate successful from less successful problem solvers 
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in the control of dynamic systems remain unspecified (Kluwe, Misiak & Haider, 

1991; Funke, 1992; U. Funke, 1998). Hence, complex problem solving can only be 

defined as whatever the complex problem solving tests measure (to appropriate 

Boring‘s (1923) famous answer to the question of ―what is intelligence?‖). As a 

result, we do not know how best to train people to control dynamic systems. 

Consequently, the development of training programs can only progress through trial-

and-error (Gonzalez, 1999). This state of affairs is clearly incongruent with an 

evidence-based approach to assessment and training. 

Therefore, the aim of this thesis is to investigate the conditions that are 

required to learn how to effectively control the outcomes of dynamic systems, with a 

particular focus on the role of structural knowledge. The following questions will be 

addressed: 

 Do problem solvers need structural knowledge in order to control 

dynamic systems effectively? 

If so, 

 How must this knowledge be acquired? 

 Is there is a systematic relationship between the amount of structural 

knowledge that is acquired and the quality of system control?  

 Are there systematic sources of individual differences that might explain 

the capacity to acquire and utilise knowledge?  

 Does the complexity of the underlying structure of the system influence 

the relationship between structural knowledge and the quality of system 

control?  

The aim of the following sections is to provide a guide for the reader of this 

thesis. The first section will define the key terms that are used throughout this thesis. 

The second section will outline the importance of a combined experimental and 

differential approach to the study of system control, which is the basic 

methodological approach adopted in the empirical work reported in this thesis. The 

final section will give an overview of the subsequent chapters. 
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1.2 Key terms 

1.2.1 Tasks and Problems 

Firstly, in order to avoid confusion, it is necessary to define what is meant by 

the terms ―task‖ and ―problem‖. The use of cognitive tasks is central to the study of 

human behaviour in psychology in general, and problem solving in particular 

(Hackman, 1969; Wood, 1986).  A task has a recognisable beginning and an end, and 

contains a certain set of stimuli and guidelines concerning the goals to be achieved 

(Hackman, 1969). Clearly, problems have these characteristics too; yet problems are 

usually seen as distinct from cognitive tasks more generally. 

A commonly used distinction between a ―task‖ and a ―problem‖ is whether the 

solution to the desired goal state is known from the outset of performance. For 

example, Frensch and Funke (1995) review a number of alternative definitions of the 

term ―problem‖, and conclude that a problem can be said to exist when an individual 

does not immediately know how to address the difference between the current state 

of affairs and the desired state of affairs (the goal state). This definition can be traced 

as far back to Duncker (1945), who writes: ―A problem arises when a living creature 

has a goal but does not know how this goal is to be reached‖ (p.1). Thus, in line with 

this definition, whether a situation constitutes a ―task‖ or a ―problem‖ can only be 

determined with reference to the knowledge of the particular individual who is 

required to achieve the desired goal state. 

This definition is problematic as it implies that individual and situational 

characteristics determine whether a situation is to be defined as a ―task‖ or a 

―problem‖. A problem for one person may be a task for another, depending on their 

level of prior experience. Conversely, a problem may be transformed into a task by 

providing the individual with the relevant solution to apply. In turn, this suggests that 

a problem might become a task once an individual has identified the correct solution. 

In effect, this excludes solution application from the collection of processes that can 

be considered as part of problem solving. As such, this distinction between ―task‖ 

and ―problem‖ is insufficient for the purposes of this thesis. 

In order to overcome these issues, the terms ―problem‖ and ―task‖ are used 

more concretely in this thesis. The term ―problem‖ is used to encompass the entire 
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situation that the individual encounters within the experimental setting.  The term 

―task‖ is used to refer to an overarching goal that is imposed by the instructions 

given in the situation. For example, in the context of complex problems, most often 

the tasks to be performed by the problem solver are ―acquire knowledge about the 

relationships between the variables in the system‖ and ―control the outcomes of the 

system‖. Thus, the task to be performed constitutes one aspect of the overall problem 

encountered by the individual. 

1.2.2 Complex problems 

Three major research approaches have been developed that use complex 

problems to investigate how people learn to control dynamic systems: Dynamic 

Decision Making (e.g. Dörner, 1975, Brehmer, 1987; Sterman, 1994; Busemeyer, 

2002; Omodei & Wearing, 1995), Implicit Learning (e.g. Broadbent, 1977; Berry & 

Broadbent, 1984) and the Linear Structural Equation approach (e.g. Funke, 1985; 

1993; 2001; Beckmann, 1994). Each approach entails the use of complex problems 

that have specific structural, surface and task characteristics. As Chapter 2 presents a 

comprehensive comparison of the approaches in these terms, the following sections 

will broadly describe each of these characteristics. This will also serve to highlight 

the heterogeneous nature of complex problems more generally. 

1.2.2.1 Structural characteristics 

Structural characteristics describe the properties of the system that is 

represented in the complex problem. The design of the structure of a system may be 

guided by a formal framework which specifies the characteristics that the system 

must contain (e.g. Funke, 1985; 1993; 2001) or informed by data and assumptions 

about a particular system in the real world (Goosen, Jensen & Wells, 2001; Stainton 

et al., 2010). Quesada, Kintsch and Gomez (2005) have suggested that the structural 

characteristics of complex problems can be further described in terms of time-

related, variable-related and system-behaviour-related elements: 

Time-related elements include whether the system is event-driven or clock-

driven, and the degree of time pressure. Event-driven systems change in discrete 

steps triggered by problem solvers‘ actions, while clock driven systems change in 

response to an internal clock. The degree of time pressure that problem solvers may 
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be exposed to varies considerably across different systems (Quesada et al., 2005). In 

some systems, the problem solver may take as much time as they need to make a 

decision within the reasonable constraints of the experimental session (e.g. CHERRY 

TREE; Beckmann, 1994). In other systems, such as FIRECHIEF (Omodei & 

Wearing, 1995), the time pressure is intense and the problem solver must make quick 

decisions.  

Variable-related elements include the type and number of variables, the 

number of relationships between the variables and whether these relationships are 

linear or non-linear (Quesada et al., 2005). All systems include input and output 

variables, but mediating and moderating variables may also be present which cannot 

be directly observed (Wood, Beckmann & Birney, 2009). The number of variables 

present in different structures varies considerably; at the lower end of the spectrum 

CITY TRANSPORTATION (Broadbent, 1977) consists of a single input and a 

single output variable, while at the extreme upper end of the spectrum 

LOHHAUSEN (Dörner, Kreuzig, Reither & Stäudel, 1983) consists of over 2000 

variables. The number of variables is not indicative of the number of relations in a 

system, as some structures contain many variables with few connections, while 

others contain few variables with highly inter-connected structures (Blech & Funke, 

2005). While many systems contain purely linear relationships between the variables, 

DURESS (Christoffersen, Hunter & Vicente, 1996), FIRECHIEF (Omodei & 

Wearing 1995), LOHHAUSEN (Dörner et al., 1983) and MORO (Dörner, Stäudel & 

Strohschneider, 1986) contain quadratic and exponential relationships. The effect of 

the number of variables and relations on system control, and their relationship to the 

complexity of the system, is discussed in Chapter 7. 

System-behaviour-related elements include whether the system is opaque or 

transparent, stochastic or deterministic, and whether the feedback is immediate or 

delayed (Quesada et al., 2005). In opaque systems, the underlying structure of the 

system cannot be fully determined by the problem solver as the system contains 

layers of hidden variables. In transparent systems, all the variables are displayed in 

the user interface (Funke, 1991; Quesada et al., 2005). In the literature, transparency 

also sometimes means that problem solvers are informed as to the underlying 

structure of the system prior to the instruction to control the system (Putz-Osterloh & 
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Luer, 1981; Funke, 1991; Putz-Osterloh, 1993; Latzina, 1990). However, in this 

thesis the term transparency is used strictly in the former sense.  

Stochastic systems contain random components in their underlying structures 

(Quesada et al., 2005). For example, in Broadbent and Berry‘s (1984) SUGAR 

FACTORY problem, which consists of a single input and output variable, ±1000 is 

added on a psudo-random basis to the value of the output variable on two-thirds of 

the trials. This means that no unique output value is associated with any one starting 

state and input value. In comparison, in deterministic systems, the same starting state 

and action will always produce the same outcome.  

Problem solvers receive feedback about the effect of their actions on the 

system via the value of the output variables. In systems where the feedback is 

immediate, the effect of the problem solvers‘ actions on the outputs is evident as 

soon as the action is executed. In systems where the feedback is delayed, the effect 

of the problem solvers‘ actions may only become apparent after a certain number of 

trials have passed or a set period of time has elapsed. The presence of feedback 

delays makes it more difficult to connect specific actions to their outcomes, and 

distinguish between autonomous changes in the output variables and changes that are 

the result of direct interventions on the system variables (Brehmer & Allard, 1991; 

Brehmer, 1995).  

1.2.2.2 Surface characteristics 

The surface of a complex problem is the user interface that the problem solver 

interacts with (Wood, Beckmann & Birney, 2009). The most widely discussed 

surface characteristic is the type of cover story and labels given to the system 

variables. A distinction is often made between ―domain-independent‖ or ―abstract‖, 

and ―semantically meaningful‖ or ―concrete‖ cover stories and variable labels (e.g. 

Hesse, 1982; Beckmann, 1994; Beckmann & Guthke, 1995; Goldstone & Sakamoto, 

2003; Lazonder, Wilhelm & Hagemans, 2008; Bühner, Kröner & Ziegler, 2008, 

Lazonder, Wilhelm & Van Lieburg, 2009). Semantically meaningful or concrete 

cover stories and variable labels refer to familiar systems in the real world. For 

example, in LOHHAUSEN the problem solver is instructed to act as the mayor of a 

virtual small town dealing with variables labelled ―living standard of the workforce‖ 

and ―energy consumption‖ (Dörner, 1987), while in FIRECHIEF individuals are 
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required to control variables labelled as ―helicopters‖ or ―trucks‖ to stop simulated 

forest fires spreading (Omodei & Wearing, 1995). Domain-independent or abstract 

cover stories and variable labels do not refer to any known or previously experienced 

system (e.g. COLORSIM, Kluge, 2008; MULTIFLUX, Kröner, 2001). For example, 

in MULTIFLUX problem solvers are instructed to work out how to control a 

fictitious machine that consists of four control devices labelled ―A‖, ―B‖, ―C‖ and 

―D‖ and four instruments labelled ―1‖, ―2‖, ―3‖ and ―4‖.  

It could be argued that the important difference between problems such as 

LOHHAUSEN and MULTIFLUX is not in their ―concreteness‖ or ―abstractness‖. 

Rather, the important difference is whether the cover story and variable labels seem 

familiar or novel to the problem solver, and thus whether prior experience may be 

useful (Goode & Beckmann, under revision). Therefore, in this thesis, rather than 

classifying the surface features of complex problems in terms of whether they are 

―abstract‖ or ―concrete‖, the terms ―familiar‖ and ―novel‖ will be used.  

The surface of complex problems can also be described in terms of whether the 

user interface is graphical or numerical, or a combination of the two. In graphical 

user interfaces, the values of the system variables are represented as lines or bars on 

graphs. On each trial, problem solvers are able to set the input variables at positive, 

negative or constant values. The graphs that display the value of the output variables 

are then updated to show whether each variable has increased, decreased or remains 

unchanged (e.g. MACHINE, Beckmann, 1994; MULTIFLUX, Kröner, 2001). In 

contrast, numerical user interfaces display the exact values of the variables in a series 

of tables. On each trial, problem solvers are able to enter a number for each input 

variable that is typically constrained within a certain range. The table that displays 

the output variables is then updated to show the resulting numerical values (e.g. 

MICRODYN, Greiff & Funke, 2009). In some complex problems, such as 

COLORSIM (Kluge, 2008), the values of the input and output variables are 

represented in both graphs and tables.  

1.2.2.3 Task characteristics 

Task characteristics describe the goals that are imposed by the instructions 

given in the experimental setting. Knowledge-related goals direct the problem solver 

to acquire knowledge about the underlying structure of the system. Control-related 
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goals direct the problem solver to bring the system into a certain state. Each of these 

goals defines a task to be performed in relation to the system.  

With regard to control-related goals, a further distinction is often made 

between well- and ill-defined goals. Well-defined goals instruct the problem solver 

to achieve specific values for the output variables. For example, in MACHINE 

(Beckmann 1994) problem solvers are instructed to match the value of the outputs 

with lines indicated on the output graphs over a series of seven trials. In contrast, ill-

defined goals require the problem solver to interpret the instructions in order to 

formulate their own specific goals. For example, in MORO (Dörner, Stäudel & 

Strohschneider, 1986) problem solvers are instructed to improve the living 

conditions of a fictitious African tribe by manipulating variables such as pastures, 

cattle, fertiliser and housing. Problem solvers have to decide which of these variables 

are relevant to the living conditions of the fictitious tribe and how they should be 

altered. The consequences of well- and ill-defined goals for the interpretation of 

control performance scores are discussed in Chapter 2.   

Another particularly critical task characteristic is whether problem solvers are 

instructed to simultaneously acquire knowledge and control the system, or whether 

these tasks are separated experimentally. In many studies, problem solvers are 

instructed to perform both tasks simultaneously (e.g. Berry & Broadbent, 1984; 

1989; Sanderson, 1989; Rigas, 2000; Rigas, Carling & Brehmer, 2002; Süß, 1999; 

Wittmann & Süß, 1999; Wittmann & Hattrup, 2004). However, there is much debate 

over whether it is actually possible for problem solvers to perform both of these tasks 

concurrently because the optimal strategy required to discover the relationships 

between variables in a system often differs from the one that is required to control its  

outcomes (Vollmeyer, Burns & Holyoak, 1996; Burns & Vollmeyer, 2002). This 

issue is discussed in detail in Chapters 2 and 3.  

1.3 A combined experimental and differential approach 

Complex problems have been studied from two different research traditions: 

The differential and the experimental. Differential research in this area has largely 

been occupied with the question of whether (or not) individual differences in system 

control can be explained by traditional measures of intelligence (e.g. Dörner, 

Kreuzig, Reither & Stäudel, 1983; Gediga, Schottke & Tuck-Bressler, 1984; Putz-
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Osterloh , 1981; Putz-Osterloh & Lüer, 1981; Reichert & Dörner, 1988; Joslyn & 

Hunt, 1998; Kröner, 2001; Kröner & Leutner, 2002; Kröner, Plass & Leutner, 2005; 

Bühner, Kröner & Ziegler, 2008). As yet, findings are rather inconsistent, and this is 

likely because these studies have to a certain extent ignored the effect of structural, 

surface and task characteristics on performance.  In contrast, while experimental 

research in this area has made significant progress towards documenting the 

structural, surface and task characteristics that influence the acquisition of structural 

knowledge and control performance on average, this research has treated individual 

differences between subjects as error variance (e.g. Berry & Broadbent, 1984; Funke, 

1992; Kluge, 2008). As a result, our ability to explain and predict the performance of 

individuals on complex problems that have specific characteristics is severely 

limited.   

In this thesis we will attempt to address these limitations through the adoption 

of a combined experimental and differential approach, as advocated by Cronbach 

(1957; 1975). In particular, the amount of structural information available to problem 

solvers and the complexity of the underlying structure of systems will be 

manipulated experimentally. Process indicators and traditional measures of 

intelligence will be used to account for individual differences in the effect of these 

experimental manipulations on the acquisition of structural knowledge and control 

performance. This approach should allow us to identify whether the control of 

dynamic systems is causally dependent on the acquisition of structural knowledge, 

and explain why individuals differ in their capacity to acquire and utilise such 

knowledge. 

1.4 Overview of the thesis 

The initial literature review is presented in three short chapters. Overall, the 

purpose of Chapters 2, 3 and 4 is to identify inconsistencies and gaps in our 

knowledge of how people control dynamic systems, which then provides the basis 

for the experimental studies reported in Chapters 5, 6, and 7.  

Chapter 2 describes and critically examines the three major approaches that 

have investigated how people learn to control dynamic systems using complex 

problems (i.e. Dynamic Decision Making, Implicit Learning and Linear Structural 

Equations). The purpose of this chapter is to establish a context for the current 
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research and provide a justification for the selection of the methodological approach 

adopted in this thesis. 

Based on this analysis, Chapter 3 reviews and integrates the experimental 

findings from the different approaches with regard to the role of structural 

knowledge in the control of dynamic systems. The purpose of this section is to 

identify the structural, surface and task characteristics that might influence whether 

structural knowledge can be effectively acquired and utilised to control dynamic 

systems, and how this process may take place. 

Chapter 4 explicates a model of successful system control based on the 

findings presented in Chapter 3, and discusses possible sources of individual 

differences in the tasks of acquiring structural knowledge and controlling the 

outcomes of dynamic systems.  

Chapter 5 reports the data from a study (N = 91) that investigated the role of 

structural information and fluid intelligence in controlling a dynamic system.  The 

aim of this study was to determine whether problem solvers need to directly interact 

with a dynamic system in order to acquire structural knowledge that can be 

effectively utilised to control its outcomes, and to identify sources of individual 

differences in the acquisition and application of knowledge.  

Chapter 6 consists of a paper that was published in the journal Intelligence 

(Goode & Beckmann, 2010). This study (N = 75) investigated whether there is a 

causal relationship between the acquisition of structural knowledge and the 

efficiency of system control. The aim of this study was to establish whether 

structural knowledge is a necessary component of successful performance, and the 

extent to which the utilisation of knowledge depends on the problem solvers‘ level of 

fluid intelligence.  

Chapter 7 reports the data from a study (N = 293) that represents a synthesis 

and expansion of the work reported in Chapters 5 and 6. The aim of this study was to 

determine whether the results reported in Chapters 5 and 6 generalise to systems of 

differing complexity. 

Chapter 8 integrates the findings presented in Chapters 5, 6 and 7, in order to 

propose a model of successful system control. We consider the implications of the 
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current work for the use of complex problems for the purposes of assessment and 

training. 
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CHAPTER TWO 

COMPLEX PROBLEM SOLVING RESEARCH APPROACHES: A CRITICAL 

EVALUATION 

2.1 Introduction 

A recurrent tension exists in psychological research between a desire to 

maintain both experimental control and ecological validity (Neisser, 1976; Brehmer, 

1992; Brehmer & Dörner, 1993; DiFonzo, Hantula & Bordia, 1998; Gray, 2002). For 

example, Brehmer and Dörner (1993) express their concern that ―in field research 

there is often too much [complexity] to allow for any more definite conclusions, and 

in laboratory research, there is usually too little complexity to allow for any 

interesting conclusions‖ (p.172). On the one hand, this reflects an on-going concern 

as to whether laboratory tasks adequately represent the complex demands of real-life 

situations, and thus whether it is appropriate to generalise the theoretical concepts 

derived from such tasks to real life performances. On the other hand, there is also a 

concern that real life situations are far too complex to allow conclusive insights to be 

drawn about the cognitive processes that underlie performance. 

With this dilemma in mind, in the late 1970s researchers criticised traditional 

problem solving tasks, such as the Tower of Hanoi, for being far too simple, too 

transparent and static (Dörner, 1975; Broadbent, 1977). It was argued that in 

comparison, real-life tasks such as flying an aircraft, driving a car or managing an 

economy, were complex, opaque and dynamic (Buchner, 1995; Wenke, Frensch & 

Funke, 2004). In response, three major experimental approaches developed to 

examine how people behave in, and learn to control, complex and dynamic 

environments: Dynamic Decision Making (e.g. Dörner, 1975, Brehmer, 1987; 

Sterman, 1994; Busemeyer, 2002), Implicit Learning (e.g. Broadbent, 1977; Berry & 

Broadbent, 1984) and the Linear Structural Equation approach (e.g. Funke, 1985; 

1993; 2001; Beckmann, 1994; Vollmeyer, Burns & Holyoak, 1996).
1
  

Broadly, all researchers working within the constraints of these approaches are 

concerned with how people learn to control dynamic systems of variables. However, 

                                                        
1
 Computer-based simulations of complex and dynamic systems are also used to investigate discovery 

learning in conceptual domains. The approach adopted in these studies is similar to the dynamic 

decision making approach.  
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researchers from different approaches have addressed markedly different aspects of 

this question. Researchers who have used the Dynamic Decision Making (DDM) 

approach have largely been concerned with why people perform poorly in complex 

and dynamic environments, and whether or not traditional measures of intelligence 

reflect the same demands as those required to control dynamic systems (e.g. Dörner, 

1975, Brehmer, 1987; Sterman, 1994; Busemeyer, 2002). In this research, the effects 

of structural, surface and task characteristics on performance have largely been 

ignored. In comparison, researchers who have utilised the Linear Structural Equation 

approach have typically examined the effect of various problem characteristics on 

acquiring knowledge about, and controlling, dynamic systems (see Funke, 1991; 

1993; 2001). A limited number of researchers have used this approach to examine 

the role of individual differences in performance. Finally, researchers who have used 

the Implicit Learning approach have drawn distinctions between different modes of 

learning that are possible in dynamic environments (e.g. Broadbent, 1977; Berry & 

Broadbent, 1984; 1987). However, an integrated theory of how people learn to 

control dynamic systems needs to encompass all of these different perspectives: The 

cognitive mechanisms that operate during performance, individual differences, as 

well as structural, surface and task characteristics. 

Therefore, the aims of this chapter are to a) determine whether the research 

findings from the Dynamic Decision making (DDM), Implicit Learning and Linear 

Structural Equation approaches can be integrated into a holistic model of how people 

control dynamic systems and b) determine which approach provides the most 

methodologically sound framework for the study of the processes that underlie 

system control. Firstly, common elements across the approaches will be discussed. 

Secondly, each approach will be described and critically evaluated in terms of the 

type of systems they employ, whether they present complex problems in a familiar or 

novel context, the tasks set for the problem solver, the operationalisation of 

dependent variables and the ecological validity of the approach. 

2.2 Common features across the approaches 

Each approach uses computer-based problems that represent dynamic systems 

of inter-connected variables. At a mere descriptive level, these problems consist of a 

number of inputs (variables that the problem solver intervenes on) and outputs 
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(outcomes that are generated by the system) that are represented in a computer 

program. The values of inputs can be changed, which affects the values of the 

outputs via more or less complex causal structures that relate the inputs to the 

outputs, and which can be described algorithmically. This is referred to as the 

underlying structure of the system. Systems are considered to be ―dynamic‖ when 

the values of the outputs change in response to problem solvers‘ actions and 

independently over time (Edwards, 1962; Brehmer, 1992; Funke, 1992). Typically, 

problem solvers are allowed to interact with the system over a set period of time or 

for a set number of trials, where a trial consists of setting the value of the input 

variables and viewing the subsequent effect on the output variables. 

In order to ―solve‖ the problem, problem solvers must learn how to manipulate 

the values of the input variables in order to control the values of the output variables 

to reach and maintain desired goal states. This is referred to as control performance. 

Efficient control performance is analogous to identifying the ―correct‖ solution in a 

traditional laboratory problem-solving task, such as an intelligence test item. 

However, unlike traditional problems, the application of a solution requires the 

problem solver to constantly intervene ime on the system variables to maintain the 

goal output variable states over a period of time. Therefore, the efficiency of control 

performance is typically evaluated over a set period of time during which the 

problem solver continuously interacts with the system to reach and maintain the 

desired goal states.  

In some studies, performance is also evaluated in terms of the amount of 

structural knowledge that problem solvers acquire while they interact with the 

system. Structural knowledge refers to verbalisable knowledge about the underlying 

structure of the system. This knowledge may be represented at different levels of 

precision. At the broadest level, only the existence of a relationship between two 

variables is known; this is referred to as qualitative structural knowledge. At a more 

specific level, the direction of the relationship is known, and optimally, the strength 

or numerical weight of the relationship can also be specified; this is referred to as 

quantitative structural knowledge (Funke, 1992; van Joolingen & de Jong, 1997; 

Kluge, 2008; Kröner, Leutner & Plass, 2005).  
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The distinction between structural knowledge and control performance is 

similar to that found in the cognitive skill acquisition literature between declarative 

and procedural knowledge, respectively. Declarative knowledge is general factual 

knowledge about a task, while procedural knowledge is how to perform a particular 

task (Anderson, 1983; 1993). In the case of complex problems, declarative 

knowledge entails knowing that one variable influences another (e.g. that variable X 

has a strong negative impact on variable Y) whilst procedural knowledge entails 

knowing how to achieve a particular result (e.g. knowing how to increase variable X 

by 3 points to decrease variable Y by 8 points).  

2.3 The Dynamic Decision Making approach 

2.3.1 Structural characteristics 

In this approach, complex problems are referred to as dynamic decision-

making tasks, micro-worlds or simulations. The systems that they represent share a 

number of key characteristics. In particular, they contain a large number of highly 

interconnected variables (between 10 and 2000), many of the relationships between 

the variables cannot be directly observed, and may be non-linear, and decisions must 

be made in real time. It is often argued that these characteristics mirror those of 

complex, dynamic and uncertain environments in the real world (Brehmer, 1992; 

Brehmer & Dörner, 1993; Kerstholt & Raaijmakers, 1997; DiFonzo, Hantula, & 

Bordia, 1998, Gray, 2002; Waern & Cañas, 2003; Cañas  & Waern, 2005; Brehmer, 

2005). 

Two frequently used complex problems in this approach are ―MORO‖ and 

―TAILORSHOP‖. In ―MORO‖ problem solvers must advise a tribe in Africa on how 

to improve their living conditions (Dörner, Stäudel & Strohschneider, 1986). The 

system contains 49 highly inter-connected variables, such as pastures, cattle, 

fertiliser, population and housing. ―TAILORSHOP‖ requires problem solvers to 

manage the supply chain of a virtual shirt-making factory. The system contains 24 

variables, such as raw materials, number of machines and workers. The goal is to 

maximise the profits of the company over a 12-month period (Putz-Osterloh, 1981). 

What makes these problems particularly challenging to solve is that the systems are 

opaque. That is, many of the effects cannot be directly observed because the 

variables change as a result of complex causal sequences of effects.  
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Although the complex problems used in this approach share some common 

structural characteristics, they are far from homogenous. This is problematic because 

a range of system properties, such as the number of variables (Preußler, 1997), the 

number of relations (Kluge, 2008; Funke, 1992), the type of relations (Funke, 1992), 

feedback delays (Sterman, 1989; Brehmer & Allard, 1991), the consistency of the 

relationships between the inputs and the outputs (Ackerman & Cianciolo, 2002), the 

type of connectivity pattern (Howie & Vicente, 1998) and whether the relationships 

in the system are linear or non-linear (Dörner, 1989; Dörner & Scholkopf, 1991) 

have been shown to have significant impacts on the difficulty of knowledge 

acquisition and control performance. This state of affairs has led many to argue that a 

comparison of the experimental findings from studies that use different complex 

problems is almost impossible (Buchner, 1995; Funke, 1992; Brehmer, 2005; 

Kerstholt & Raaijmakers, 1997; Buchner & Funke, 1993; Diehl & Sterman, 1995; 

Mackinnon & Wearing, 1985). 

In order to compare the experimental results from different complex problems, 

Quesada et al. (2005) suggest that system structures should be formally described. In 

an effort towards the construction of a taxonomy of system characteristics they 

describe ten different dimensions on which problems used in the DDM literature 

differ, including the number of variables, the type of variables (continuous or 

discrete), whether there are feedback delays and whether the system is stochastic or 

deterministic (see also Gonzalez, Vanyukov & Martin, 2005 for a similar taxonomy). 

However, it could be argued that this does not resolve the problem, as Quesada et al. 

(2005) provide no guidelines as to how similar systems should be to yield 

comparable experimental results.  

2.3.2 Type of cover story 

As the explicitly stated aim of the DDM approach is to ―bring the field into the 

laboratory‖ (Brehmer, 2005, p.75) researchers use cover stories that refer to familiar 

situations in the real world. Many cover stories have been used, including managing 

an economy (Sterman, 1989), acting as the mayor of a town (Dörner, 1987), 

directing a fire fighting unit (Brehmer, 1990; 1992) and diagnosing medical 

problems (Kleinmuntz & Thomas, 1987). The use of familiar cover stories is 
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designed to encourage problem solvers to bring their prior experience to bear in 

laboratory tasks, as they would in real life (Brehmer & Dörner, 1993). 

This approach has been frequently criticised precisely because it encourages 

subjects to form assumptions about the underlying structure of the system, and often 

no attempt is made to ensure that the underlying structure of the system reflects the 

structure of the real life situation that it is supposed to represent (Buchner, 1995; 

Funke, 1992; Beckmann & Guthke, 1995). This is problematic because some 

findings suggest that the acquisition of structural knowledge is facilitated if prior 

experience is in concordance with the actual underlying structure of the system, but 

is hindered if it is in conflict (Reither, 1981; Hesse, 1982; Lazonder, Wilhelm, & 

Hagemans, 2008; Lazonder, Wilhelm & Van Lieburg, 2009). These results suggest 

that assumptions evoked by the cover story of a problem may confound the 

interpretation of other experimental manipulations. 

Even if experimenters do try to explicitly replicate the structure of real world 

situations, there is no reason to assume that it is aligned with a particular individual‘s 

prior experience. This is clearly demonstrated in the results of Lazonder et al.‘s 

(2008) study, in which the underlying structure of the system was explicitly designed 

to reflect commonly known relationships in everyday life. The task required subjects 

to investigate how training frequency, smoking and nutrition affected the time it took 

an athlete to run 10km. Increased training frequency, eating ―sport food‖ and not 

smoking decreased the athlete‘s time, while eating ―junk food‖ increased their time. 

These relations might seem rather obvious; however, a knowledge test revealed that 

two subjects (out of forty) had incorrect assumptions about these relationships. These 

findings suggest that even in carefully designed problems, individual differences in 

prior knowledge are likely to be a source of potential error variance. It is perhaps 

surprising then, that prior knowledge is rarely controlled for in experimental studies 

within the DDM approach (with the notable exceptions of Leutner, 2002; Wittmann 

& Hattrup, 2004).  

2.3.3 Task characteristics 

The key task characteristics utilised in the DDM approach are that: a) subjects 

must simultaneously try to acquire knowledge about the underlying structure of the 

system while they try to control it and b) the goal states are usually ill-defined. It has 
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been argued that these demands reflect reality because we (as human problem 

solvers) rarely have the opportunity to acquire knowledge about a system 

independently from our attempts to manipulate it and we are often required to decide 

which goals are relevant to a particular context (Dörner & Wearing, 1995; Rigas, 

Carling & Brehmer, 2002). However, these characteristics place a serious limit on 

the validity and reliability of the dependent variables that can be derived as 

performance measures, and make it difficult to determine which behaviours lead to 

successful performance. 

The requirement that subjects simultaneously control and acquire knowledge 

about a system presents two main challenges to the assessment of performance. 

Firstly, the strategy that is necessary to acquire knowledge about a system may be 

incompatible with the one that is needed to control it. Thus, the problem solver who 

first undertakes the task to systematically discover the underlying structure of a 

system before they attempt to control it may appear to have worse control 

performance than the problem solver who attempts to incrementally manipulate the 

output variables towards the goal state using a trial-and-error strategy (Kerstholt & 

Raaijmakers, 1997). Secondly, if we assume that problem solvers do not initially 

know how to control the outcomes, then this implies that control performance should 

improve over the course of the task. This will limit the reliability of aggregated 

measures of control performance because performance at different points in time will 

reflect different levels of expertise. This is one possible reason as to why the 

reliability of control performance measures is often low (Funke, 1983; 1984; Kluwe, 

Misiak & Haider, 1991; Wenke & Frensch, 2003; Wenke, Frensch & Funke, 2004). 

This is problematic because any researcher using correlations must demonstrate that 

the variables of interest show sufficient reliability. Thus, the requirement to 

simultaneously acquire knowledge and control a system poses a significant threat to 

the validity and reliability of performance measures. 

The use of ill-defined goals is also likely to pose a threat to the validity of 

control performance measures because problem solvers must formulate their own 

goals and these self-set goals may differ across individuals. For example, in 

LOUHHAUSEN (Dörner, Kreuzig, Reither & Stäudel, 1983), in which subjects act 

as the mayor of a virtual small town, the goal is to ensure that the residents are 

―satisfied with both the town and their own lives‖ (Dörner & Wearing, 1995, p.67). 
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Given such instructions, it is clear that different subjects may prioritise different sub-

goals, according to their personal values. This makes it difficult to compare the 

performance of different subjects (Funke, 1993) and any operationalization of 

solution quality is somewhat arbitrary. 

Self-set goals are also problematic because findings from verbal protocols 

suggest that subjects may not adhere to consistent goals for performance over the 

course of interacting with the system. Dörner (1980) reports that subjects often jump 

from one goal to the next, relatively quickly, without achieving any goal, and treating 

all goals superficially. In the most extreme situation, problem solvers may fail to set 

any concrete goals at all. Dörner (1980) sees this as a general problem that people 

confront when dealing with real-world tasks. Alternatively, however, it could be 

argued that it may reflect the fact that subjects are not sure what they are actually 

supposed to be doing. 

More recently, the proponents of the DDM approach have recognised the 

problems with ill-defined goals, and have advocated in favour of the use of specific 

goals (e.g. Rigas, Carling & Brehmer, 2002). However, the complex nature of most 

of the systems utilised in the DDM approach means that there are multiple ways in 

which any particular goal might be achieved. For example, in TAILORSHOP (Putz-

Osterloh, 1981) subjects are told to maximise the profits of a clothing factory. 

Subjects who invest heavily in equipment and supplies will produce greater profits in 

the later half of simulation than subjects who makes no investment in the company. 

On average, however, there will be no difference in their 12-month profit. Therefore, 

successful performance cannot be clearly specified on a behavioural level, as no 

optimal solution exists to the problem (Kluwe et al., 1991). This makes it difficult to 

distinguish the processes that differentiate successful from less successful problem 

solvers. 

2.3.4 Operationalisation of dependent variables 

Within the DDM approach, there is little consensus as how control 

performance should be operationalised, even within studies that use the same 

complex problem. For example, using the complex problem TAILORSHOP, Putz-

Osterloh (1981) operationalised control performance in terms of the number of 

months with increased capital assets, while Barth and Funke (2010) calculated the 
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profits at the end of every month. Most significantly, findings show that when 

different dependent measures of performance are derived from the same task, 

different results are obtained with regard to the correlation between traditional 

measures of intelligence and control performance (i.e. TAILORSHOP e.g. Funke, 

1983; Putz-Osterloh, 1981; Süß, Kersting & Oberauer, 1991 and MORO, e.g. Elg, 

2005). This may suggest that different performance measures reflect different facets 

of control performance (Elg, 2005) or it may simply indicate that the measures differ 

in their reliability (Kluwe et al., 1991; Wenke & Frensch, 2003; Wenke et al., 2004). 

Similarly, no general method has been developed to assess what problem 

solvers have learnt about the underlying structure of such systems. Typically, 

subjects are given a series of questions designed to assess their knowledge of how 

the system works (e.g. Wittmann & Hattrup, 2004; Elg, 2005). However, the format 

and content of these assessments (i.e. whether they assess quantitative, qualitative or 

both types of structural knowledge) is inconsistent. Obviously, this makes 

comparisons across studies problematic. 

The majority of studies do not directly measure structural knowledge (e.g. 

Reither, 1981; Diehl & Sterman, 1995; Rigas, Carling & Brehmer, 2002; Jobidon, 

Rousseau & Breton, 2005; Barth & Funke, 2010). In these studies, it is assumed, 

either explicitly or implicitly, that successful control performance indicates that 

problem solvers have acquired an accurate mental representation of the underlying 

structure. Hence, control performance is used as an indirect indicator of structural 

knowledge. The problem is that a causal relationship between structural knowledge 

and control performance has not yet been established, and indeed, the results of some 

studies suggest that structural knowledge and control performance may be unrelated 

(e.g. Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993). These findings suggest that 

structural knowledge needs to be assessed independently from control performance. 

2.3.5 Ecological validity 

Regardless of these problems, proponents of the DDM approach argue that the 

advantage of studying decision-making in ecologically valid environments far 

outweighs the disadvantages (Brehmer, 1992; Brehmer & Dörner, 1993; DiFonzo, 

Hantula, & Bordia, 1998, Gray, 2002; Waern & Cañas, 2003; Cañas  & Waern, 

2005; Brehmer, 2005). While this may be true, it is questionable whether the 
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complex problems used in many of the studies within the DDM approach are 

actually ecologically valid. Complex problems tend to be dramatic 

oversimplifications of the complex environments that they purport to represent. This 

is partly because the real world is far too complex to be represented via computer 

models and also because many of the relationships that govern real world situations 

are unknown or change over time (Keys & Biggs, 1990; Goosen, Jensen, & Wells, 

2001; Gold, 2003). Given such constraints, designers of complex problems within 

the DDM approach are encouraged to aim for the perception of reality by the 

problem solver, rather than true fidelity to the real world (Norris, 1986; Brehmer & 

Dörner, 1993; Gold, 2003; Stainton, Johnson & Borodzicz, 2010). 

Thus, the claim that any particular complex problem is ecological valid is 

usually based exclusively on surface characteristics (i.e. ―face validity‖). That is, the 

problem has the appearance of reflecting some situation in reality due to the cover 

story, and so it is assumed that the psychological demands of the task mirror reality 

(Beckmann & Guthke, 1995). One way of testing this assumption would be to 

compare the performance of experts from the relevant domain and novices on a 

particular task. We would expect that experts should perform better than novices in 

the real situation, and therefore should show better performance in the simulated 

situation. The results of two studies illustrate that there is no reason to assume that 

this is the case, based on the surface features of the complex problem.  

Reither (1981) compared the performance of a group of ―experts‖ and 

―novices‖ in a computer simulation of a fictitious tribal village in Africa. The experts 

had 6-8 years experience as aid workers in developing countries, while the novices 

were preparing for their first assignment. Against expectations, the novices were 

more successful in promoting the long-term growth of the village. Reither (1981) 

attributed the experts‘ comparatively poor performance to the fact that they believed 

that they knew what was to be done before they fully understood the system. On the 

other hand, this also suggests that the task is not ecologically valid, as the behaviours 

that are successful in the real world situation do not apply to the simulated situation.  

In a more recent study, Rolo and Diaz-Caberera (2005) designed a complex 

problem based on an analysis of a petrol refinery. They then compared performance 

in the field and experimental settings. In the field study verbal protocol analysis was 
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used to investigate expert performance in a petrol refinery. In the experimental study, 

it was found that similar decision sequences were observed in experts in the field and 

―good‖ performers in the laboratory. For example, when subjects have to cope with 

the systems instability, good performers and experts seek information about the 

variable states in order to diagnose the cause of the problem. The results of these 

studies illustrate that the surface characteristics of a complex problem provide no 

indication of its ecological validity, and that ecological validity needs to be 

demonstrated on a problem-by-problem basis. 

2.3.6 Summary of the DDM approach 

In summary, the DDM approach utilises problems that claim to simulate a 

particular situation in reality. They are embedded in a rich semantic network, have 

highly complex structures, and problems solvers are typically required to formulate, 

or at least further specify, their own goals, as well as acquire knowledge about the 

system while they control it. While the proponents of this approach argue that these 

demands reflect those of real life situations, these demands also result in a reduction 

of experimental control. The extent to which the complex problems used in this 

approach actually do mirror real world situations is also questionable. In addition, no 

standard method has been developed to assess problem solvers‘ knowledge about the 

underlying structure of the system or control performance. These factors make it 

difficult to compare the results of studies even within this approach. 

2.4 The Implicit Learning approach 

2.4.1 Structural characteristics 

At the opposite end of the spectrum, proponents of the Implicit Learning 

approach advocate the use of relatively simple and mathematically well-defined 

systems in order to isolate the underlying psychological processes involved in system 

control (Broadbent, 1977; Berry & Broadbent, 1984; 1988). The problems used are 

referred to as process-control (e.g. Broadbent, 1977), complex dynamic control tasks 

(e.g. Osman, 2008; 2010) or finite state automata (e.g. Buchner & Funke, 1993; 

Buchner, Funke & Berry, 1995). The problems contain between 2 and 4 variables 

that are governed by a set of linear equations, which typically include a random error 

factor. The tasks are usually, but not always, dynamic, so that the current output 
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value depends on the value of the input selected by the subject and the previous 

value of the output.  

One of the earliest examples is the CITY TRANSPORTATION problem 

(Broadbent, 1977), in which subjects can control the number of free parking spaces 

and passenger load on a virtual bus system. This system consists of a two output 

variables that can be manipulated by changing the value of two input variables. The 

relationship between the variables is described by two simultaneous linear equations. 

The system is not dynamic, as the outputs depend only on the current values of the 

inputs.  

Another example is the SUGAR PRODUCTION problem, (Berry & 

Broadbent, 1984), which contains only one input (the number of workers) and one 

output (sugar production). Subjects are told that they can control the rate of sugar 

production by manipulating the number of workers in a factory. The linear equation 

that describes the relationship between the variables is dynamic and includes a 

random error factor.  

Most of the studies in this approach use the SUGAR FACTORY problem or 

structurally isomorphic problems with different cover stories (e.g. PERSON 

INTERACTION, PERSON CONTROL). On the one hand, this makes it easy to 

synthesize the research findings from this approach with regard to how people learn 

to control dynamic systems. The results are rather consistent across different studies, 

as they are not confounded by differences in system properties. On the other hand, 

the consistent use of the same system begs the question of whether these results are 

generalisable to different systems, or whether the results obtained are to some degree 

an artefact of the SUGAR FACTORY system. These issues are discussed in more 

detail in Chapter 3 when we present the main findings from this approach. 

2.4.2 Type of cover story 

As in the DDM approach, one criticism is that the problems are typically 

presented with familiar labels given to the system variables (with the notable 

exceptions of Buchner & Funke, 1993; Buchner, Funke & Berry, 1995). As 

previously discussed, this may have an impact on the acquisition of structural 

knowledge. Indeed, Sanderson and Vicente (1986) found that subjects confronted 
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with the CITY TRANSPORTATION problem typically started with a number of 

beliefs about how the system should work and that these beliefs incongruent with the 

actual underlying structure of the system. This problem has largely been overcome, 

however, as key findings have been replicated with structurally isomorphic versions 

of the SUGAR FACTORY problem with different cover stories (Berry & Broadbent, 

1984; Berry & Broadbent, 1988). 

2.4.3 Task characteristics 

In comparison to the DDM approach, the Implicit Learning approach 

emphasises the use of well-defined goals. For example, in the SUGAR FACTORY 

problem subjects are instructed to ―…reach and maintain a target output of 9,000 

tons‖ (Berry & Broadbent, 1984, p. 212). As the system is mathematically tractable, 

it is possible to specify an optimal intervention given an arbitrary system state. 

Therefore, in comparison to the DDM approach, it is possible to validly compare 

different subjects‘ performance. 

The main similarity to the DDM approach is, however, that subjects are 

typically required to learn about the underlying structure of the system while they 

control it. As previously discussed, this makes it difficult to separate the process of 

acquiring knowledge from controlling the system, and may limit the reliability of 

measures of control performance. Indeed, Gebauer and Mackintosh (2007) report 

that if participants are explicitly instructed to infer the rules underlying the SUGAR 

FACTORY task before they receive specific goals for system control, the reliability 

of control performance measures is somewhat higher than if they are instructed to 

infer the rules while they control the task (Spearman-Brown Split-half reliability .87 

and .69, respectively).  

2.4.4 Operationalisation of dependent variables 

No standardised methods have been developed to assess either structural 

knowledge or control performance. With regard to control performance, multiple 

methods are often utilised even within the same study. For example, Berry and 

Broadbent (1987) use both the number of attempts that it takes to reach the goal state 

and the number of times that the subject moves away from, rather than towards, the 

goal, as measures of performance. Berry and Broadbent (1984) use the number of 
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trials on which the goal state is reached. Although the criterion for performance is 

similar, the use of different measures makes it difficult to directly compare the effect 

of different task characteristics and experimental manipulations on performance.  

The number of trials on which the goal state is reached is the most commonly 

used indicator of control performance. However, this is particularly problematic as 

the number of times that any particular goal state can be reached is highly dependent 

on the characteristics of the underlying system structure. For example, Buchner and 

Funke (1993) constructed a ―small‖ and a ―large‖ version of a complex problem that 

were identical in their surface features but the underlying structure of the small 

problem was designed to be less complex than the large problem. In the small 

complex problem, given the actions that must be performed to achieve the goal state, 

the goal state can be achieved on 12 out of 50 trials. In the large complex problem 

the goal state can only be achieved on 5 trials. Given these limitations, it is 

impossible to conclude whether the large complex problem is actually more difficult 

to control than the small complex problem, or whether this is an artefact of the 

system. 

Similarly, a number of different methods have been used to assess structural 

knowledge. Knowledge is sometimes assessed quantitatively, for example subjects 

are required to predict an output, given a specific input (Berry & Broadbent, 1984; 

Berry & Broadbent, 1987), or qualitatively, for example, they must indicate the 

direction of a change, given a general input direction (e.g. ―If the size of the 

workforce is increased…would you expect the sugar output level to 

increase/decrease/stay the same/don‘t know?‖, Berry & Broadbent, 1987, p. 9). 

However, the measurement of structural knowledge at least allows researchers to test 

the assumption that control performance and knowledge acquisition are dependent 

processes.  

2.4.5 Ecological validity  

Although these tasks have been criticised as overly simple (Quesada, Kintsch 

& Gomez, 2005), Buchner (1995; Buchner & Funke, 1993) argues that many 

technical systems, such as ―video recorders, computer programs, TV sets, digital 

wrist watches and banking machines‖ (p.53) can be adequately described in the same 

way. All of these systems have a finite number of possible input and output states, 
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and functions that map the relationships between them. This suggests that although 

these tasks have the appearance of being highly artificial, they may well be 

ecologically valid.   

2.4.6 Summary of the Implicit Learning approach 

In summary, the Implicit Learning approach utilises complex problems that 

represent only the abstract features of dynamic environments. That is, they have a 

limited number of input and output variables that are causally connected by a set of 

linear equations. Subjects are given a specific learning goal and the underlying 

structures of the systems are mathematically well defined. As a consequence, it is 

possible to precisely specify the interventions that produce optimal performance. 

Although the complex problems tend to be embedded in a familiar cover story, this 

problem is overcome by the replication of experimental findings with complex 

problems that have isomorphic structures but different cover stories. The main 

criticisms of this approach are that only a limited number of system structures have 

been utilised, standardised methods have not been developed to assess control 

performance and structural knowledge, and that the reliability of such measures are 

likely to be limited as subjects are required to simultaneously acquire knowledge and 

control the system. 

2.5 The Linear Structural Equation approach 

Funke (1985; 1986; 1992; 2001) introduced Linear Structural Equation systems 

as a formal framework in which to study complex problem solving. This framework 

entails a formal description of the task environment, assumptions about how 

knowledge is represented and systems are controlled, and a set of diagnostic 

procedures for assessing what has been learnt.  

2.5.1 Structural characteristics 

In this approach, the problems are referred to as complex problem solving 

(CPS) tasks or micro-worlds. Overall, the problems used in the this approach are 

similar to those used in the Implicit Learning approach, as they have a limited 

number of input and output variables that are governed by a set of linear equations. 

The systems are dynamic, so that the current output value depends on the value of 

the input selected by the subject, and the previous value of the output. Some systems 
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also include autonomic changes, so that the values of particular output variables 

change independently on each trial. In terms of structural characteristics, the main 

difference between the Implicit Learning and Linear Structural Equation approaches 

is that the systems used in the latter approach contain more variables (typically 

between 6 and 8). 

The underlying structures of the systems used in this approach typically differ 

on only a few dimensions: The number of variables, the number of relations and the 

kind of relations between the variables. One example is ―MACHINE‖ (Beckmann, 

1994). In this problem, subjects are initially instructed to work out how three 

controls, ―A‖, ―B‖ and ―C‖ (the input variables) affect three displays, ―1‖, ―2‖ and 

―3‖ (the output variables). The underlying structure of the system is described by a 

set of three linear equations. Each of the outputs change in response to the decisions 

made by the problem solver and two outputs change independently on each trial. An 

example of a larger system is ―LINAS‖ (Putz-Osterloh, 1993). LINAS contains four 

inputs and seven outputs interconnected by fifteen linear relations. The labels given 

to the system variables do not refer to objects in the real world (e.g. ―Bulmin‖, 

―Ordal‖, ―Trimol‖) to control for the influence of prior knowledge. As the systems 

differ on only a few dimensions and are described by linear equations, these factors 

make it possible to compare the results obtained using different systems, and 

systematically manipulate system properties to determine whether results generalise 

to different systems. 

2.5.2 Type cover story 

The complex problems used in this approach can be broadly split into two 

categories with respect to whether they are presented in a novel or familiar context. 

Novel problems such as ‗SINUS‘ (Funke, 1992) and ‗MACHINE‘ (Beckmann, 1994; 

Beckmann & Guthke, 1995) have novel labels of the system variables. For example, 

in ‗SINUS‘, participants are told that they must discover how creatures, called 

‗OLSCHEN‘, ‗MURKERN‘ and ‗RASKELN‘ affect other creatures called 

‗GASELN‘, ‗SCHMORKEN‘ and ‗SISEN‘. In contrast, other problems contain 

labels that refer to familiar systems in the real world. For example, in Beckmann‘s 

(1994) CHERRY TREE problem subjects are instructed to work out how ―HEAT‖, 
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―LIGHT‖ and ―WATER‖ affect the production of ―CHERRIES‖, ―LEAVES‖ and 

―BEETLES‖.  

Unlike in the other approaches, the familiarity of the variables and context is 

seen as a factor that is open to experimental manipulation. The effect of familiarity 

on performance is somewhat disputed, however, as some studies have found that it 

hinders the acquisition of structural knowledge (Beckmann, 1994; Beckmann & 

Guthke, 1995; Funke, 1992), and others have found that it makes no difference 

(Burns & Vollmeyer, 2002). For this reason, the majority researchers now emphasise 

the use of novel systems, in order to control for the influence of prior knowledge or 

assumptions (e.g. Funke, 2001; Blech & Funke, 2005; Kröner, Leutner & Plass, 

2005; Kluge, 2008). 

2.5.3 Task characteristics 

As in the Implicit Learning approach, the goal states are well defined and as 

the systems are mathematically tractable it is possible to specify an optimal 

intervention. However, the processes of acquiring knowledge about the system, and 

controlling the system are separated experimentally. A typical experimental 

procedure consists of an initial exploration phase in which problem solvers are first 

required to determine how the inputs affect the outputs in the absence of specific 

goals. In a subsequent control phase they are instructed to control the system by 

manipulating the input variables to reach and maintain defined goal states of the 

output variables. This means that separate measures of structural knowledge and 

control performance can be derived. From a methodological perspective, this 

represents a major advantage over the DDM and Implicit Learning approaches. 

2.5.4 Operationalisation of dependent variables 

Standardised methods have been developed to assess structural knowledge and 

control performance. Almost all studies utilise causal or structure diagrams to assess 

problem solvers‘ knowledge of the underlying structure of the system (Blech & 

Funke, 2005). In this procedure, subjects are given a diagram that depicts all the 

possible relations in the system and they must indicate which relations exist, as well 

as the direction and strength of each effect. This diagram is usually presented on 

paper (e.g. Funke, 1985; Vollmeyer, Burns & Holyoak, 1996; Burns & Vollmeyer, 
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2002), however, computer-based versions have also been realised (e.g. Beckmann, 

1994; Beckmann & Guthke, 1995; Osman, 2008). Subjects are typically required to 

complete multiple causal diagrams over the course of the exploration phase, and they 

are later used to compare subjects‘ structural knowledge to the actual underlying 

structure of the system. This makes it possible to construct learning curves and to 

determine how problem solvers‘ mental models of the system change as they 

intervene on the system variables. 

The major problem with the causal diagram method is that subjects tend to 

differ in the degree to which they are willing to guess about the structure of the 

system (Funke, 1992). This problem can be overcome by analysing subjects‘ causal 

diagrams using an adaptation of the discrimination index from the two-high 

threshold model for recognition memory (Snodgrass & Corwin, 1988). In this index, 

structural knowledge scores are corrected for guessing by subtracting the false alarm 

rate from the hit rate. The hit rate is the number of correctly identified relations 

divided by the actual number of relations in the system. The false alarm rate is the 

number of incorrectly identified relations divided by the number relations that are not 

present in the system, but that could possibly exist given the number of variables. 

Thus, as in conventional recognition tasks, the discrimination index corrects for 

subjects‘ individual response tendency. This method can be used to generate 

sensitivity indexes for the detection of the existence of relations in the system, as 

well as the detection of the strengths and directions, and has been shown to be highly 

reliable (Müller, 1993; Beckmann, 1994). 

A more minor problem with the use of causal diagrams is that there is evidence 

that their use improves the acquisition of structural knowledge (Blech & Funke, 

2006). The negative implication of this finding is that causal diagrams may force 

problem solvers to represent the system in an artificial manner that is more aligned 

with the method of assessment than real life processes. The positive implication is 

that causal diagrams may to some extent homogenise problem solvers‘ initial models 

of the system, which Vollmeyer et al. (1996) have found can vary radically from 

subject to subject. These differences may confound assessments of knowledge 

acquisition because the problem solvers‘ initial mental model may partly determine 

how difficult it is to acquire knowledge about the underlying structure of the system. 

For example, if the initial mental model includes only direct effects between 
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variables, then the search space is relatively small and the strategies for detection are 

fairly obvious. Alternatively, if the initial model includes interaction or random 

effects, the search space becomes much larger, and it is unclear what strategies might 

be employed to uncover such effects, or disconfirm their existence (Burns & 

Vollmeyer, 2000). The provision of a causal diagram informs subjects that only 

certain relations may be expected in the system, and that in addition, they should test 

for the direction and strength of the relationships between variables. So, whilst the 

use of causal diagrams may reduce the ecological validity of the process of 

knowledge acquisition, it also controls for differences in problem solvers‘ initial 

mental models of the system which may confound assessments of structural 

knowledge. 

Other methods have also been used to assess subjects‘ structural knowledge. In 

prediction tasks, subjects are asked to predict the values of the output variables, 

given certain values of the input variables (Funke & Müller, 1988; Beckmann, 1994; 

Vollmeyer, Burns & Holyoak, 1996; Kröner, Plass & Leutner, 2005; Bühner, Kröner 

& Ziegler, 2008).  Another approach is Preußler‘s (1996) ―pair-task‖, in which two 

variables names are presented to the subjects and they must decide whether a 

relationship exists or not. These measures provide less detailed information about the 

quality of subjects‘ structural knowledge than the causal diagram method, as they do 

not allow for a differentiated analysis of knowledge in terms of relations, directions 

and strengths. 

In early studies, control performance was operationalised by calculating the 

deviation of the current states of the output values from the goal states of the output 

values in terms of the root means squares criterion (RMS). In this method, deviations 

become higher the further away the actual states of the system variables are from the 

goals (e.g. Funke & Müller, 1988; Putz-Osterloh, 1993). Funke (1992; 1993) 

criticised this method as it assumes that control performance is on an interval scale, 

which implies that someone who has missed the goal by 100,000 points has 

performed 10 times are poorly as someone who misses it by 10,000 points. In order 

to overcome this problem, Funke (1992; 1993) argues that RMS scores should be 

logarithmically transformed so that larger distances from the goal states are not 

weighted more heavily. Most recent studies adopt this method (Funke, 1991; 1992; 

1993; Vollmeyer, Burns & Holyoak, 1996; Burns & Vollmeyer, 2002; Schoppek, 
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2002; Kluge, 2008), and many studies report that is that such measures are highly 

reliable (Kluge, 2008; Körner, Plass & Leutner, 2005; Bühner, Kröner & Ziegler, 

2008).  

However, Beckmann (1994) argues that this method unduly focuses on the 

behaviour of the system rather than the behaviour of the problem solver. In 

particular, it does not take into account that the values of the input variables are 

usually constrained. Thus, if a poor decision is made on a given trial, a number of 

trials may be required to realign the output values with the goal states. Hence, the 

RMS criterion penalises subjects although they may be making an optimal 

intervention towards the goal state given the current state of the system. 

An alternative method, proposed by Beckmann (1994), is to calculate the 

Euclidean distance between the optimal input intervention (that would bring the 

system closest to the goal state) and the actual input intervention made by the 

subject. Using this method, a score closer to zero reflects a more ―optimal‖ 

intervention to bring the system in line with the desired goal states.  

In order to calculate the Euclidean distance between the actual and the optimal 

intervention for each trial, the values of the output variables on the previous trial and 

the goal state values are used to solve the set of linear equations underlying the 

system. This indicates the ideal values of the input variables for that particular trial.  

If the ideal values are within the possible limits of the input variables then the ideal 

values of the input variables are equal to the optimal values of the input variables. 

However, if an ideal value is outside the limits of the input variables, then the 

optimal value is set to the closest limit. For example, if the ideal value is 110, and the 

inputs are constrained to values between -100 and 100, then the optimal value would 

be set to 100. Once the optimal value for each input variable is determined, the 

Euclidean Distance (DEuclid) between the actual and the optimal values of the input 

variables can be calculated for the trial using the equation: 

DEuclid = √∑ (Xit
actual

 - Xit
optimal

)
 2
 

where Xit
actual

 represents the actual value of input variable i at trial t, and  

Xit
optimal 

represents the optimal value of input variable i at trial t.  
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For example, imagine a system that consists of three input variables (X, Y and 

Z) and three output variables (A, B and C). On the first trial, the optimal values of 

the input variables are calculated to be X = 13, Y = 5 and Z = 8. The subject enters 

the values 12, 8 and 6 for X, Y and Z, respectively. The Euclidean Distance would 

then be calculated as: 

DEuclid = √ (12 - 13)
 2

 + (8 - 5)
 2

 + (6 - 8)
 2

 

which gives a control performance score of 3.74 for the first trial. 

This method avoids the main limitations associated with the RMS criterion. 

Firstly, it focuses on the subjects‘ behaviour (i.e. input interventions) and not on the 

outcomes of the system. Secondly, it does not penalize the subject for poor decisions 

made on previous trials as it takes into account that their intervention strategy is 

limited by the constraints on the values of the output variables. In addition, this 

performance measure has been shown to have excellent reliability and to correlate 

with control performance scores based on the RMS criterion (Beckmann, 1994). 

One problem with all of the above methods is that they do not take into account 

the controllability of the system. Controllability reflects the extent to which a goal 

state can be achieved through random interventions (Strauß, 1993; Beckmann, 1994; 

Hornke & Kersting, 2006). The controllability of the system is significant because 

Hornke and Kersting (2006) have found that in some systems it may be possible to 

reach the desired goal state through random interventions. This suggests that if 

subjects‘ control performance scores are not compared to control performance scores 

generated by random interventions, then it is impossible to conclude whether 

experimental effects (or lack of them) are in fact psychologically meaningful or are 

an artefact of the system. Few studies have taken controllability into account (with 

the notable exceptions of Beckmann, 1994; Kluge, 2008), and obviously this 

criticism is also relevant to the assessment of control performance in the DDM and 

Implicit Learning approaches. 

2.5.5 Ecological validity 

Finally, there is some question over whether the complex problems used in this 

approach are ecologically valid. Buchner (1995) argues that few systems in the real 

world will have the ―exact properties‖ (p.48) of linear equations. However, in many 
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sciences, a general linear model is often used to represent the relationships between 

variables (Blech & Funke, 2005). So to some extent, these systems can be said to 

approximate reality. 

More importantly, parallels have been identified between hypothesis testing in 

science and the acquisition of knowledge in the complex problems used in this 

approach. Both situations involve finding out about the relationships between 

variables in an unknown environment through the systematic manipulation of 

variables (Funke, 1992; Burns & Vollmeyer, 2000). In this sense, the demands of 

complex problems can be said to approximate those required in the context of 

scientific discovery. 

2.5.6 Summary of the Linear Structural Equation approach 

In summary, the Linear Structural Equation approach overcomes a number of 

the problems that are associated with the DDM and Implicit Learning approaches.  In 

contrast to the DDM approach, an optimal solution can be specified for system 

control as the systems are mathematically well defined and a specific goal is given to 

problem solvers. This makes is possible to validly compare subjects‘ control 

performance scores. Secondly, the use of linear equations limits the number of 

dimensions on which problems may differ in terms of their system characteristics. 

This makes it possible to compare the experimental results obtained using problems 

with different underlying structures. In contrast to both the DDM and Implicit 

Learning approaches, the experimental separation of the tasks of knowledge 

acquisition and system control allows for an independent examination of the 

processes that underlie the performance of each of these tasks. In addition, reliable 

measures have been developed to assess structural knowledge and control 

performance which have been consistently used in a large body of prior research.  

2.6 Conclusions 

One aim of this chapter was to determine whether the research findings from 

the DDM, Implicit Learning and Linear Structural Equation approaches could be 

integrated into a holistic model of how people control dynamic systems. On the one 

hand, the critical evaluation of each approach suggests that a number of factors might 

preclude a complete integration of the experimental findings in this field, and that 
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findings from the DDM approach in particular need to be interpreted cautiously. On 

the other, as the Implicit Learning and Linear Structural Equation approaches share a 

number of key features their findings should be comparable. In this section, the key 

issues will be summarised to provide a guide for the subsequent literature reviews 

presented in Chapters 3 and 4. 

Firstly, in terms of structural characteristics, the approaches differ in terms of 

whether they advocate the use of systems that attempt to represent the complexity of 

real life or are limited to a number of abstract features. In the former camp, DDM 

complex problems have highly complex structures that differ on at least ten 

dimensions. A number of researchers have argued that this makes the comparison of 

experimental findings that use different complex problems highly problematic, and 

by extension, this suggests that it will be difficult to reconcile findings from this 

approach with those reported in the Implicit Learning and Linear Structural Equation 

approaches. In the latter camp, the dynamic systems utilised within the Implicit 

Learning and Linear Structural Equation approaches are highly similar: They consist 

of a small number of input and output variables that are governed by sets of linear 

equations. The main difference is that the systems used in the Linear Structural 

Equation approach tend to be larger than those used in the Implicit Learning 

approach, in that they have more variables and more relations between those 

variables. This suggests that differences in structural characteristics should not 

completely confound the comparison of experimental results from these two 

approaches, and that inconsistent findings might be attributable to differences in 

system size (the implications of system size for the interpretation of experimental 

results are discussed in detail in Chapter 3). 

Secondly, the use of familiar labels for the system variables may in some cases 

confound the interpretation of experimental results. The DDM and Implicit Learning 

approaches utilise familiar cover stories and labels for the system variables, which 

encourages problem solvers to form assumptions about the underlying structure of 

the system that may or may not be correct. This suggests that findings from the DDM 

and Implicit Learning literature with regard to the acquisition of structural 

knowledge may be confounded by differences in problem solvers‘ assumptions about 

the system. In the Implicit Learning literature, however, this issue can be discounted 

because experimental findings have been replicated with problems with isomorphic 
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structures but different cover stories. Alternatively, the Linear Structural Equation 

approach advocates the use of novel cover stories and labels for the system variables 

to control for the influence of prior experience. The subsequent literature reviews 

will take into account the possible influence of prior experience in the interpretation 

and integration of experimental results. 

Thirdly, the task(s) set for the problem solver may influence the reliability and 

validity of control performance scores. In the DDM approach subjects are typically 

required to formulate, or at least further specify, their own goals. This implies that 

different subjects may formulate different goals, and thus the comparison of control 

behaviour to any external criteria of success is somewhat arbitrary. In comparison, 

the Implicit Learning and Linear Structural Equation approaches advocate the use of 

well-defined goals. This allows valid comparisons of control performance to be made 

between subjects, and suggests that what is being measured is due to systematic 

sources of variability. Consequently, the literature review presented in Chapter 4, 

which concerns individual differences in knowledge acquisition and control 

performance, excludes studies in which non-specific goals were given to problem 

solvers.  

Another factor that may influence the interpretation of experimental results is 

whether the tasks of knowledge acquisition and system control are performed 

simultaneously or consecutively. In the DDM and Implicit Learning approaches 

subjects are required to acquire knowledge about the system while they control it. In 

comparison, in the Linear Structural Equation approach these tasks are separated into 

an exploration phase and a control phase. The question that remains is whether the 

tasks of acquiring knowledge and controlling the system involve the same processes 

when the problem solver is required to do both at the same time. This question is 

addressed in detail in the literature review presented in Chapter 3.  

Finally, only the Linear Structural Equation approach has standardised and 

reliable measures to assess structural knowledge and control performance. Although 

the methods of assessment do have some minor problems associated with them, their 

consistent use makes it possible to directly compare the results of different studies 

that use the Linear Structural Equation approach. In comparison, researchers within 

the Implicit Learning and DDM approaches have used a number of different methods 
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to assess structural knowledge and control performance. Another problem is that 

reliability coefficients are rarely reported. This suggests that correlational evidence 

from the Implicit Learning and DDM approaches needs to be interpreted cautiously 

due to a possible lack of reliability in performance scores. 

The issues discussed above also address the second aim of this chapter which 

was to determine which approach provides the most methodologically sound 

framework for the study of system control. The evaluation suggests that a 

methodologically sound approach should entail: Mathematically tractable systems 

that can be formally described, the use of novel cover stories and variable labels to 

control for the influence of prior knowledge, the experimental separation of the tasks 

of knowledge acquisition and system control, well-defined goals for system control 

and reliable measures of structural knowledge and control performance. In 

comparison to the DDM and Implicit Learning approaches, the Linear Structural 

Equation approach can be implemented to meet each of these requirements. 

Consequently, this is the approach adopted in the empirical work reported in this 

thesis. 

In conclusion, the DDM, Implicit Learning and Linear Structural Equation 

approaches differ in the extent to which they attempt to replicate the complexity of 

real world environments in the laboratory. The Implicit Learning and Linear 

Structural Equation approaches advocate the use of complex problems that represent 

only the abstract features of complex and dynamic environments. In comparison, the 

DDM approach attempts to simulate the complexity of the real world in the 

laboratory. However, although the complex problems utilised in the latter approach 

may seem to have a closer correspondence to real world situations, the lack of 

experimental control inherent in their design makes it difficult to draw firm 

conclusions from the results of studies that utilise them. In contrast, the Implicit 

Learning and Linear Structural Equation approaches strike a balance between the 

desire for complexity and experimental control that makes it possible to draw both 

interesting and valid conclusions from the results of their experimental studies. 
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CHAPTER THREE 

THE ROLE OF KNOWLEDGE IN CONTROLLING A DYNAMIC SYSTEM 

3.1 Introduction 

Currently, there is little consensus regarding the role of that knowledge plays in 

learning how to control the outcomes of dynamic systems. There are two main points 

of contention that will be addressed in this chapter. Firstly, there is disagreement 

over the type of knowledge that has to be acquired in order to learn how to control a 

dynamic system. An argument will be put forward that given certain structural and 

task characteristics, problem solvers will acquire structural knowledge, and that the 

acquisition of structural knowledge is preferable if the goal is to develop a flexible 

skill base for the control of dynamic systems. Secondly, there is disagreement over 

whether structural knowledge alone is sufficient to produce successful control 

performance. It will be argued that as yet there is not enough evidence to resolve this 

debate. As the influence of prior knowledge was discussed in the preceding chapter, 

this chapter will primarily deal with complex problems that are designed to be novel. 

3.2 What type of knowledge is acquired? 

With regard to learning to control novel dynamic systems, two main types of 

knowledge are discussed in the literature: Instance-based knowledge and structural 

knowledge. Instance-based knowledge, which is also referred to as input-output 

knowledge (Schoppek, 2002), state transitions (Buchner, Funke & Berry, 1995) or 

exemplar knowledge (Stanley, Matthews, Buss & Kotler-Cope, 1989) represents 

particular states of a system. A state of a system consists of the initial value of the 

output variables, specific input values and the resulting values of the output 

variables. Structural knowledge represents abstractions of particular instances to 

rules that describe the relationships between the variables in the system, and may be 

more or less specific. At the broadest level, only the existence of a relationship 

between two variables is known. At a more specific level, the direction of the 

relationship is known, and optimally, the strength – represented in numerical weight 

values – of the relationship can also be specified (Funke, 1992). Although instance-

based and structural knowledge are conceptually distinct, they are also 
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interdependent because instances can be used to test or infer rules (i.e. acquire 

structural knowledge). 

The distinction between instance-based and structural knowledge is derived 

from models of rule-induction in problem solving and cognitive skill acquisition (e.g. 

Simon & Lea, 1974; Dunbar & Klahr, 1988; Anderson, 1983; 1993; Ackerman, 

1988; Anderson & Lebiere, 1998; Logan, 1988; 1990). Simon and Lea (1974) 

describe problem solving that requires rule-induction as a search in two distinct 

problem spaces: One of instances and one of rules. The instance space consists of all 

possible states of the problem, while the rule space consists of all possible rules 

underlying the problem. In complex problems, the instance space corresponds to all 

the possible states of the system, while the rule space corresponds to all the rules that 

the problem solver thinks might govern the relationships between the inputs and the 

outputs. Thus, the rule space is defined by the problem solvers‘ conceptualisation of 

the plausible rules within the system. For example, the rule space may or may not 

include exponential relationships or interactive effects (Burns & Vollmeyer, 2000). 

Thus, instance-based knowledge consists of information contained in the instance 

space, while structural knowledge consists of information contained in the rule 

space.  

Similarly, competing models of cognitive skill acquisition emphasise either 

top-down or bottom-up learning processes that correspond to the acquisition of either 

structural or instance-based knowledge prior to skilled performance (Taatgen & 

Wallach, 2002). Top-down models of skill acquisition generally assume that 

individuals first learn general, abstract rules that through practice turn into specific, 

usable procedural skills (Anderson, 1983; 1993; Ackerman, 1988; Anderson & 

Lebiere, 1998).   In bottom-up models of skill acquisition, the knowledge base is 

thought to develop concurrently with performance through practice.  Initially, 

general strategies are applied to reach a desired goal state and the results of each 

intervention are stored as an instance. After a certain period of practice, skilled 

action is the result of the storage and retrieval of specific instances that achieve the 

desired goal state (Logan, 1988; 1990).  

A central question then is what type of knowledge is necessary for successful 

control performance in dynamic systems tasks? Control performance requires 
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problem solvers to enter specific values of the input variables in order to achieve 

specific values of the output variables (i.e. generate specific instances). This means 

that the control behaviour of problem solvers who have acquired either relevant 

instance-based or structural knowledge is indistinguishable.  

However, the key difference in control performance that results from the 

application of structural knowledge as opposed to the retrieval of instances should be 

flexibility. Instance-based knowledge should only be useful in situations that are 

identical to those that have been previously experienced. In comparison, as structural 

knowledge takes the form of general rules about the inter-relationships between the 

system variables, it could, at least theoretically, be used to generate any desired 

system state. Hence, from a training perspective, the acquisition of structural 

knowledge would be preferable to instance-based knowledge if the goal of training is 

to develop a flexible skill base. Of course, this is dependent on whether problem 

solvers can actually acquire and effectively utilise structural knowledge. The 

following sections will review the evidence for the role of both types of knowledge 

in system control.  

3.2.1 Evidence for the role of instance-based knowledge in system control  

In a series of early articles, Berry and Broadbent (Broadbent, 1977; Berry & 

Broadbent, 1984) drew a comparison between the acquisition of manual skills and 

learning how to control dynamic systems. They argued that both tasks require a 

series of inter-related decisions which must be enacted over time. In the case of 

manual skills, they argued that it is generally accepted that people cannot completely 

describe how they perform a particular task, and that conversely, knowledge about a 

task is probably insufficient for successful performance. For example, knowledge of 

the relationships between the gears and the wheels of a bicycle is unlikely to result in 

being able to ride a bicycle. Similarly, they argued that knowledge about the 

relationships in a dynamic system, such as an economy or hospital, is unlikely to be 

sufficient for successfully controlling its outcomes. Rather, the knowledge base 

required for successful control performance must be developed as the problem solver 

attempts to perform the task (i.e. reach the desired goal states).  

This argument found support in a series of studies conducted by Broadbent and 

colleagues (Broadbent, 1977; Broadbent, Fitzgerald & Broadbent, 1986; Berry & 
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Broadbent, 1984; 1988) who found that problem solvers learnt to control dynamic 

systems seemingly in the absence of reportable structural knowledge. Berry and 

Broadbent (1984; 1988) gave subjects the task of learning to control the outcomes of 

either the SUGAR PRODUCTION or PERSON INTERACTION complex problems. 

As discussed in Chapter 2, these problems require subjects to learn how to 

manipulate the value of an output variable by changing the value of a single input 

variable while concurrently attempting to acquire structural knowledge. In these 

initial studies, after they interacted with the complex problem, subjects were required 

to complete questionnaires that assessed their knowledge of the relationship between 

the system variables by asking them to predict the value of the output variable, given 

certain values of the input variable. They found that practice increased the subjects‘ 

ability to control the value of the output variable but not their ability to answer the 

questionnaire. Using the CITY TRANSPORTATION task, this dissociation between 

structural knowledge and control performance was also observed by Broadbent 

(1977; Broadbent, Fitzgerald & Broadbent, 1986). These results were interpreted as 

evidence that the development of skilled control performance is independent of the 

acquisition of knowledge regarding the underlying structure of the system. 

One criticism of these studies is that subjects may have had knowledge about 

the underlying structure of the system that was not adequately assessed by the 

particular questionnaires used in Berry and Broadbent‘s studies (Sanderson, 1989; 

Shanks & St John, 1994; Berry & Broadbent, 1995). However, Berry (1984; 1991) 

used a number of different question types and still found evidence for the 

dissociation. Most strikingly, this dissociation was observed in Stanley et al.‘s (1989) 

study, even when subjects were asked to describe what they knew about the system 

in their own words. They asked subjects to practice either the SUGAR 

PRODUCTION or the PERSON INTERACTION complex problems and to 

subsequently explain to someone unfamiliar with the complex problem how to 

control it. They found that subjects‘ performance improved long before they could 

tell someone else how to control it.  

The dissociation between verbalisable knowledge and control performance, 

however, was not entirely supported by the results of Stanley et al.‘s (1989) study. 

They found that after 570 trials, subjects were able to express information that would 

be useful in helping others control the system. In comparison, subjects in Berry and 
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Broadbent‘s (1984; 1989) studies completed a maximum of 60 trials. Similarly, 

Sanderson (1989) found that structural knowledge was associated with control 

performance in the CITY TRANSPORTATION complex problem after a significant 

amount of practice. These results demonstrate that knowledge of the underlying 

structure of the system is acquired at a much slower rate than knowledge of how to 

control the system. This supports the claim that controlling the outcomes of a system 

is not dependent on the amount of knowledge acquired about its underlying structure 

(Sanderson, 1989; Stanley et al., 1989).  

Berry (Berry & Broadbent, 1984; 1988) initially interpreted these results as 

evidence of implicit learning, which has been characterised as ―… a process whereby 

a person learns about the structure of a fairly complex stimulus environment, without 

necessarily intending to do so, and in such a way that the resulting knowledge is 

difficult to express‖ (Berry & Broadbent, 1995, p.132). That is, the problem solver 

acquires structural knowledge but they are unable to verbalise it. This knowledge is, 

however, reflected in their ability to control the system. This explanation has found 

little support, however, as it has proved quite difficult to demonstrate that subjects 

acquire ―unconscious‖ structural knowledge.  

An alternative interpretation, first put forward by Broadbent et al. (1986), is 

that these results can be explained in terms of a look-up table, which stores the 

correct actions to be taken in certain situations. The concept of a look-up table 

corresponds closely to Logan‘s (1988; 1990) model of cognitive skill acquisition. In 

Broadbent et al.‘s model, the most appropriate action is determined by comparing the 

current situation to previously experienced situations. The same response is given to 

situations in which a previous response led to the goal state and a random response is 

given in new situations. If the random response leads to the goal state then this 

response is stored for future retrieval. This is a form of instance-based knowledge, as 

it implies that specific values of input and output variables are stored and retrieved to 

produce successful performance.  

This model of control performance has found considerable empirical support. 

Marescaux, Luc and Karnas (1989) found that in the SUGAR FACTORY subjects 

tended to perform better in situations that they had previously experienced and not so 

well in situations that they had not previously experienced. Subjects also tended to 
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give the same response in situations in which they had been correct rather than 

incorrect. Dienes and Fahey (1995) replicated these results using the SUGAR 

FACTORY and PERSON INTERACTION complex problems. These results suggest 

that subjects do not need to have any knowledge, either implicit or explicit, of the 

underlying structure of the system. Rather, performance can be explained by the 

memorisation and retrieval of specific instances that produce the goal state 

(Marescaux, Luc & Karnas, 1989; Dienes & Fahey, 1995). 

Computational models of system control also support this conclusion. Dienes 

and Fahey (1995) developed two models of how people learn to control the SUGAR 

FACTORY; one that stored instances of specific actions that achieve the goal state, 

and another that started off with a number of different rules to be tested. The former 

model produced the closest match to the actual data generated by subjects. Similar 

studies have been conducted which also show that computer models of system 

control that store instances, rather than rules, most closely fit the data generated by 

subjects as they learn to control the SUGAR FACTORY (Lebiere, Wallach & 

Taatgen, 1998; Gibson, Fichman & Plaut, 1997).  

More recently, Gonzalez, Lerch and Lebiere (2003) have argued that instance-

based knowledge might also account for performance in more complex dynamic 

systems. They investigated how subjects learnt to control a virtual water distribution 

system called the WATER PURIFICATION PLANT. The task requires subjects to 

schedule five water pumps to open and close over a period of time to meet a series of 

production deadlines. Subjects are only instructed to meet these specific goals and 

not to try to acquire knowledge about the relationships in the system. 

In their computer model of system control, general heuristic strategies are first 

used to determine the most appropriate action. With exposure to the task, instances 

that achieve the desired goal state are stored in long-term memory. Gradually, 

performance shifts from decisions based on the application of general heuristic 

strategies to the retrieval of appropriate actions from memory. Gonzalez et al. (2003) 

do not clearly define what is meant by a general heuristic strategy. However, in their 

computer model, if a situation has not been previously experienced then the water 

pump with the closest deadline is to be opened. A series of experiments showed that 

this computer model of task performance closely approximates the learning curves 
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and performance of human problem solvers. Gonzalez et al. (2003) argue that this 

indicates that human problem solver rely on a mix of heuristic strategies and 

instance-based knowledge to control dynamic systems. 

A number of other researchers have also proposed that successful control 

performance might be achieved through the application of heuristic rules, without 

necessitating the remembrance of instances or the acquisition of structural 

knowledge (Stanley et al., 1989; Buchner, Funke & Berry, 1995). Buchner et al. 

(1995) define a heuristic rule as a simple strategy that does not take into account the 

underlying structure of the system but nevertheless results in adequate performance 

when it is consistently applied. Like instance-based knowledge, the efficacy of such 

strategies is highly context specific. Buchner et al. (1995) ran a series of simulation 

studies that tested the adequacy of different heuristic rules on 30 intervention trials in 

the SUGAR FACTORY with 500 simulated subjects. In the first simulation study, 

for 30 trials a workforce of either 800, 900 or 1000 was randomly chosen. In a 

second simulation study, a workforce of 900 was consistently employed across 30 

trials. The success of these strategies was considerable, and in both cases the number 

of trials on target was close to or better than the number of trials on target of real 

subjects who interacted with the task for 30 trials. Buchner et al. (1995) argue that if 

subjects used heuristic strategies, they would not have to store instance-based 

knowledge and that knowledge of heuristic strategies would not be reflected in post-

task questionnaires that assessed structural knowledge. 

Similarly, Stanley et al. (1989, Experiment 3) instructed subjects dealing with 

the SUGAR FACTORY to ―Always select the response level half-way between the 

current production level and the target level, and you will get as close to the target 

level as possible‖ (p. 566). They found that such a strategy had an immediate 

positive impact upon control performance. Thus, it appears that control performance 

can be successfully achieved through the application of heuristics. This suggests that 

perhaps the dissociation between structural knowledge and control performance 

occurs because subjects develop and use heuristic strategies to reach the desired goal 

states. 

There are, however, a number of problems with this argument. Firstly, it seems 

implausible that subjects should be able to develop efficient heuristic strategies 
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without instruction or considerable experience with the system. Secondly, if subjects 

were to apply heuristic strategies, we would expect them to respond consistently to 

every situation that they encounter. Instead, findings show that subjects respond 

consistently to situations in which they have been correct, and randomly to new 

situations and situations in which they have been incorrect (Marescaux, Luc and 

Karnas, 1989; Dienes & Fahey, 1995). Thus, the dissociation observed between 

structural knowledge and control performance cannot be attributable to the use of 

heuristic strategies. 

3.2.2 Evidence for the role of structural knowledge in system control  

In consideration of the evidence presented above, it may perhaps come as a 

surprise that there are a significant number of studies that have found that problem 

solvers actually do acquire structural knowledge about dynamic systems. In these 

studies, a strong association is found between the quality of system control and the 

amount of structural knowledge that is acquired by problem solvers (e.g. Funke & 

Müller, 1988; Beckmann & Guthke, 1995; Vollmeyer et al., 1996; Kröner et al., 

2005; Burns & Vollmeyer, 2002; Osman, 2008a; Kluge, 2008). These studies use 

Funke‘s Linear Structural Equation approach (1985; 1986; 1992, see Chapter 2 for 

more details). In this approach, the complex problems consist of input and output 

variables that are causally connected through a set of linear equations. A novel cover 

story and labels are given to the system variables in order to control for the influence 

of prior experience. As described in Chapter 2, the general experimental procedure 

consists of an initial exploration phase, during which problem solvers must first try 

to determine the underlying structure of the system. At certain points during the 

exploration phase, subjects are asked to create a diagram of the causal relationships 

that they have detected within the system, including the direction and estimated 

strength of each effect. A measure of structural knowledge is derived from a 

comparison of subjects‘ causal diagrams and the actual underlying structure of the 

system. This is then followed by a control phase in which problem solvers must try 

to control the outputs to reach specific goal values by manipulating the inputs. 

In direct conflict with the results reported by Broadbent and colleagues 

(Broadbent, 1977; Broadbent, Fitzgerald & Broadbent, 1986; Berry & Broadbent, 

1984; 1988), these studies suggest that the quality of problem solvers‘ control 
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performance is dependent on the amount of knowledge that they have acquired about 

the underlying structure of the system. For example, Funke and Müller (1988) report 

that control performance and knowledge of the underlying structure of the system are 

significantly negatively correlated (r = -.41), as did Beckmann and Guthke (r = -.51, 

1995), Vollmeyer and Burns (r = -.48 and r = -.61, 1995), Vollmeyer et al. (r = -.57 

and r = -.65, 1996), Kröner, Plass and Leutner (r = -.77 and r = -.61, 2005), Burns 

and Vollmeyer (r = -.28, r = -.40, 2002), Osman (r = -.48 and r = -.53, 2008a) and 

Kluge (r = -.68, r = -.66 and r = -.50, 2008). The correlation coefficients are negative, 

as a lower control score indicates better performance. 

How can these results be reconciled with those reported by Broadbent and 

colleagues? In the following sections, we will discuss structural and task 

characteristics that may influence whether problem solvers are more likely to acquire 

instance-based or structural knowledge.  

3.3 Explanations for conflicting results 

3.3.1 The size of the problem space 

Schoppek (2002) argues that the size of a systems‘ problem space determines 

whether problem solvers will use instance-based or structural knowledge to control 

the outcomes of the system. In systems where the input variables are independent of 

each other and there are no side effects, the size of the problem space can be 

calculated by multiplying the number of possible input values with the number of 

possible output values. The complex problem used by Broadbent and Berry (1984; 

1988) has one input variable and one output variable, each with twelve possible 

states. Therefore, the number of possible states is 12 x 12 = 144. In comparison, in 

studies that report a relationship between structural knowledge and control 

performance (e.g. Funke & Müller, 1988; Vollmeyer et al., 1996; Kröner et al., 2005; 

Burns & Vollmeyer, 2002; Osman, 2008a; Beckmann & Guthke, 1995), the 

problems have three inputs and three outputs, and as such the number of possible 

states is much larger. For example, Schoppek (2002) gives an example of a system 

with three input variables and three output variables, with integer ranges from -

10000 to 10000. This would result in 20000
3 

= 8 x 10
12 

possible states. He argues 

that in these larger systems it is implausible that problem solvers would be able to 

store the amount of instance-based knowledge necessary to successfully control the 
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system. Hence, they must reduce the amount of information to be stored by 

abstracting general rules from the data. 

The problem with this argument is that problem solvers do not need to store all 

possible states in the problem space; rather, they only need to store instances that 

achieve the desired goal state. In the SUGAR FACTORY complex problem, if the 

goal is to reach a target production of 9,000 tonnes there are only 6 possible input 

values that would realise this target state, given various starting values (this is the 

goal given in all the studies that use the SUGAR FACTORY e.g. Berry & 

Broadbent, 1984; 1988; Sanderson, 1989; Stanley et al., 1989; Marescaux et al., 

1989; Dienes & Fahey, 1995; Buchner et al., 1995). Similarly, in larger systems, the 

number of on-target instances will still only represent a small fraction of the entire 

problem space. Essentially, we would argue that the size of the problem space is not 

indicative of the number of instances that must be stored by problem solver and is 

therefore not informative as to whether problem solvers will acquire instance-based 

or structural knowledge. 

Moreover, it could be speculated that if a system contains a large number of 

highly inter-connected variables it may be more efficient to remember instances, 

rather than derive rules, which is directly the opposite of Schoppek‘s (2002) 

argument. For example, LOUHAUSEN (Dörner et al., 1983) contains over 2000 

highly inter-connected variables. In such systems, it may be impossible to derive an 

accurate model of the underlying structure of the system because of the information 

processing limits imposed by the human cognitive system. Given these limits, 

remembering and re-enacting particular actions that achieve the desired goal state 

may be the only way to perform successfully, unless one indeed has structural 

knowledge. Thus, we argue that it seems unlikely that there is any relationship 

between the size of the systems‘ problem space and whether problem solvers will use 

instance-based or structural knowledge. 

3.3.2 Random error factor 

 In the SUGAR FACTORY the random error factor makes it difficult to 

calculate the relationship between the variables from the data. The underlying 

structure of the system is given by the equation: 
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 Pt = 20 x Wt – Pt-1 

where Pt is the current sugar production, Wt is the number of workers and Pt-1 is 

the sugar production on the previous trial. On two thirds of the trials ± 1000 is added 

to the results derived from the above equation as a random error factor. This means 

that no one input state is associated with a particular output state. This makes it 

difficult to calculate the exact relationship between the variables from the data, 

unless the random error factor is known. 

3.3.3 Constraints on the values of the output variables 

In addition, constraints on the values of the output variables may also make it 

difficult to derive the underlying structure of the system. The values of W and P are 

constrained to values between 1000 and 12000. This means that many interventions 

do not lead to any change in the output value, and thus that there are only a limited 

number of system states that are informative as to the underlying structure. For 

example, if the current output value is 3000 and an input value of 300 is entered, this 

will lead to an output value of 3000 (assuming that the error factor is not active on 

that trial). This reflects the rule underlying the system, as (20 x 300) – 3000 = 3000. 

Alternatively, if an input value of 1000 is entered this will produce an output of 1000 

due to the constraints on the values of the outputs. Given the equation however, we 

would expect an output value of -2000.  Based on this system state, the underlying 

equation cannot be successfully derived. The problem solver, however, is naive to 

the constraints on the system variables and to which of the system states are 

informative. Hence, it could be speculated that if they were trying to derive a linear 

equation governing the behaviour of the system based on the generated system states 

they may come to believe that the relationship between the variables is random. In 

addition to the random error factor, the constraints on the system variables are likely 

to make inducing the underlying structure of the system difficult, if not impossible. 

In comparison, the complex problems used in studies that have found that 

problem solvers do acquire structural knowledge do not include random error factors 

or constraints on the output variable values (e.g. Funke & Müller, 1988; Vollmeyer 

et al., 1996; Kröner et al., 2005; Burns & Vollmeyer, 2002; Osman, 2008a; 

Beckmann & Guthke, 1995). Consequently, any system state that is produced will 

reflect the equations that govern the behaviour of the system, and therefore problem 
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solvers will have more opportunities to correctly induce the rules underlying the 

system. This may explain why problem solvers are able to acquire structural 

knowledge about these systems.  

3.3.4 The type of learning goal given to problem solvers 

The third significant point of difference between studies that find an 

association between structural knowledge and control performance and those that do 

not is the type of learning goal that is given to subjects. Specifically, in the studies 

that report that structural knowledge and control performance are not associated, 

subjects received a specific learning goal from the beginning of the task. That is, they 

were instructed to learn to produce and maintain a specific output value (e.g. 

Broadbent, 1977; Broadbent et al., 1986; Berry & Broadbent, 1984; Berry, 1984; 

Berry, 1991; Stanley et al., 1989; Marescaux et al., 1989; Dienes & Fahey, 1995). In 

Berry and Broadbent‘s (1988) study, subjects were additionally told to look for the 

pattern underlying the system and to do this whilst reaching and maintaining the 

specific goal. The latter type of instruction means that subjects essentially have two 

goals to pursue at the same time; a goal to reach and maintain the target outcome and 

a goal to test the accuracy of their knowledge. Trying to pursue both goals might 

result in only a narrow search of the problem space in order to find the solution path 

to the specific goal, with the result that general structural knowledge is not acquired 

(Geddes & Stevenson, 1997; Vollmeyer et al., 1996; Burns & Vollmeyer, 2002; 

Wirth, Künsting & Leutner 2009).  

In comparison, in studies that report an association between the amount of 

structural knowledge acquired and the quality of control performance, subjects 

initially received a non-specific learning goal (Funke & Müller, 1988; Beckmann & 

Guthke, 1995; Vollmeyer & Burns, 1995; Vollmeyer et al., 1996; Kröner et al., 

2005; Kluge, 2008; Burns & Vollmeyer, 2002; Osman, 2008a). That is, subjects 

were first instructed to explore the system in order to look for relationships between 

variables. During the exploration phase, they were not informed of the goals that 

they later had to reach in the separate control phase. This type of instruction might 

result in a wider search of the problem space and so foster rule learning (Vollmeyer 

et al., 1996; Geddes & Stevenson, 1997; Burns & Vollmeyer, 2002; Wirth et al., 

2009). 
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Findings from a number of studies support the claim that the type of 

knowledge that is acquired is dependent upon the learning goal given to subjects. 

Using Berry and Broadbent‘s (1984) PERSON INTERACTION complex problem, 

Geddes and Stevenson (1997) instructed subjects to explore and induce the rules 

underlying the system (non-specific goal), practice reaching a specific goal state 

(specific goal), or practice reaching a specific goal state while trying to induce the 

rules (dual goal). They found that subjects who were given a non-specific learning 

goal showed evidence of rule learning, as they performed well on familiar and 

unfamiliar prediction questions and could answer general questions about the 

underlying structure of the system. Subjects who received a specific goal or dual 

goals performed poorly on this task. In addition, subjects who received a non-

specific goal had better control performance than subjects in the other conditions in a 

later control phase in which new goals were set for performance. Most importantly, 

and in contrast to the results previously reported with this complex problem (e.g. 

Broadbent & Berry, 1984; 1989), structural knowledge was significantly positively 

correlated with control performance, but only in the non-specific goal group. This 

suggests that if the underlying structure of the system is induced, then it will be used 

to control the outcomes of the system.  

Burns and Vollmeyer (2002) tested the hypothesis that the presence of specific 

goals during the exploration phase hinders the acquisition of structural knowledge. 

The complex problem was based on the Funke‘s (1985; 1986; 1992) Linear 

Structural Equation approach and the system consisted of three inputs and three 

output variables. All subjects were instructed to learn about the relationships between 

the variables during an initial exploration phase. In addition, half the subjects were 

told the values of the output variables that they would have to reach during a later 

control phase. Consistent with the results of Geddes and Stevenson (1997), subjects 

who knew about the goals during the exploration phase acquired less structural 

knowledge than subjects who did not know about the goals. This suggests that 

problem solvers cannot acquire structural knowledge while they attempt to control 

the system. 

The results of this study also suggest that subjects who have specific goals 

during the exploration phase acquire instance-based, rather than structural 

knowledge. When the goals for performance were the same as those given during the 
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exploration phase, subjects who had received a specific goal performed similarly to 

those who had received a non-specific goal. However, when novel goals were set for 

performance then subjects who had been given a specific goal performed more 

poorly than those who had been given a non-specific goal. This shows that the 

method used to control the outcomes by subjects who had been given a specific goal 

did not transfer to new situations, and suggests that the knowledge they acquired was 

instance based. In a study utilising the same complex problem, Osman (2008a) 

replicated these results, as did Wirth et al., (2009), who found the same results using 

a complex problem that represented the principles of buoyancy in liquids.  

Some evidence also suggests that, in addition to having a non-specific goal 

(e.g. explore and induce the rules), direct instructions to test hypotheses also foster 

rule learning. In a series of experiments, Vollmeyer and Burns (1995) attempted to 

promote structural knowledge by giving subjects a specific hypothesis to test. The 

complex problem used in the experiments was based on the Funke‘s (1985; 1986; 

1992) Linear Structural Equation approach and the system consisted of three inputs 

and three output variables. The first experiment examined the effect of goal 

specificity and hypothesis instruction on the acquisition of structural knowledge and 

control performance. Subjects in a specific goal condition were informed as to the 

goals that they would have to reach from the outset of the exploration phase, while 

subjects in a non-specific goal condition were given the goals at the start of the 

control phase. In addition, half of all subjects were given a hypothesis and instructed 

to test it to determine whether it was correct. Unbeknownst to the subjects, the 

hypothesis was indeed correct. Overall, the results showed that subjects with a non-

specific goal acquired more structural knowledge, as did subjects who received a 

hypothesis to test. There was no interaction between these variables, and Burns and 

Vollmeyer argue that this suggests that a non-specific goal and hypothesis testing 

instructions have a similar effect; That is, they both encourage a search of the 

hypothesis space. Burns and Vollmeyer then conducted a follow-up experiment to 

test whether the positive effect of hypothesis instruction that was initially observed 

was actually because subjects were given a correct piece of information about the 

system. This time, subjects were either given a correct hypothesis to test, an incorrect 

hypothesis to test or just told there was a possible link between two variables. The 

results showed that the instruction to test any hypothesis (correct or incorrect) lead to 
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the acquisition of more knowledge than just information that a link might be present. 

Hence, these results suggest that problem solvers will acquire structural knowledge 

when the task characteristics are conducive to searching the hypothesis space. 

In summary, the type of knowledge that is acquired about complex problems 

appears to be dependent on certain structural and task characteristics. In particular, 

the random error factor and constraints on the values of the output variables in the 

complex problems used by Broadbent and colleagues (Broadbent, 1977; Broadbent 

et al., 1986; Berry & Broadbent, 1984; Berry, 1984; Berry, 1991; Stanley et al., 

1989; Marescaux et al., 1989; Dienes & Fahey, 1995) limit the number of instances 

that can be used to abstract general rules. This may explain why rule-induction is so 

difficult even though the equation that governs the behaviour of these systems 

appears to be very simple. This subsequently suggests that problem solvers may have 

no alternative but to remember instances that achieve the desired goal state. 

Secondly, Broadbent and colleagues gave subjects a specific goal from the outset of 

the task, and findings suggest that a specific goal inhibits the acquisition of structural 

knowledge. The evidence suggests that subjects must first explore the complex 

problem, in the absence of a specific goal, in order to acquire structural knowledge 

(Geddes & Stevenson, 1997; Vollmeyer & Burns, 1995; Vollmeyer et al., 1996; 

Burns & Vollmeyer, 2002; Osman, 2008a; Wirth et al., 2009). This suggests that 

structural knowledge must be acquired prior to the instruction to control the system. 

The question that now arises is whether structural knowledge alone is sufficient 

in order to effectively control the outcomes of dynamic systems.  Namely, is there a 

direct causal relationship between the amount of knowledge acquired by problem 

solvers and the quality of their system control? Or is an additional process required 

before knowledge can be translated into effective control actions? Studies that have 

found an association between structural knowledge and control performance do not 

adequately answer this question because subjects had the opportunity to interact with 

the system prior to controlling it. Successful control performance may then be 

attributable to a combination of structural knowledge and activity, rather than 

structural knowledge alone. Therefore, in the following section, we will examine 

whether there is evidence for a direct causal relationship between structural 

knowledge and control performance.  
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3.4 The acquisition of structural knowledge through direct instruction 

One way to address the question of whether the acquisition of structural 

knowledge is sufficient for successful system control is to attempt to promote 

structural knowledge through direct instruction and observe the effect on control 

performance. If structural knowledge is sufficient to control the outcomes of 

dynamic systems, then the provision of structural information should provide an 

immediate benefit to control performance (Blech & Funke, 2005).  

In a series of studies Putz-Osterloh (Putz-Osterloh & Lüer, 1981; Putz-

Osterloh, 1993) attempted to promote structural knowledge through the provision of 

a causal diagram. Putz-Osterloh and Lüer (1981) gave an experimental group a 

diagram of the underlying structure of the complex problem TAILORSHOP, while a 

control group received no supporting information. The diagram was presented on a 

sheet of paper, as a system of arrows linking the input and the output variables.  It 

was found that the experimental group were no better at controlling the system than 

the control group. Although this suggests that structural knowledge cannot be 

directly translated into effective control actions, this interpretation is problematic as 

TAILORSHOP has a familiar cover story and labels for the system variables. This 

may obviate any beneficial effect that structural information has on control 

performance because problem solvers‘ assumptions about the system might make it 

difficult to incorporate new information into their existing mental model of the 

system. 

This problem was overcome in a later study conducted by Putz-Osterloh 

(1993). The design was the same as that used by Putz-Osterloh and Lüer (1981), 

however, this study used the complex problem LINAS which has a novel cover story 

and labels for the system variables. The results replicate those found by Putz-

Osterloh and Lüer (1981): Subjects who received the causal diagram did not perform 

significantly better than those who were required to control the system without such 

information. Putz-Osterloh (1993) argues that these results indicate that successful 

control performance can be accomplished without the aid of specific knowledge and 

that a simple strategy of trial-and-error may be as efficient in reaching the goal states 

as the application of the rules underlying the system.  
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However, this implies that all subjects were able to effectively control the 

system regardless of the amount of information that they received. This conclusion 

seems unjustified given that a criterion for successful performance was not used in 

either study. An equally plausible explanation is that those who were given structural 

information simply failed to apply it, and that all subjects performed poorly. This 

suggests that structural knowledge cannot be directly translated into effective control 

actions. 

This is the conclusion reached by Preußler (1996), who also found that 

structural information did not have the expected beneficial effect on control 

performance. Subjects in a control group explored the complex problem LINAS 

without assistance, while subjects in an experimental group were instructed using 

standardised examples as to how each input affected each output with text-based 

explanations. No differences in control performance were detected. This result is 

particularly surprising considering that findings show that most problem solvers are 

unable to acquire a complete or accurate representation of the underlying structure of 

a system through an unguided exploration of the system variables (Funke & Müller, 

1988, Müller 1993; Beckmann, 1994; Beckmann & Guthke, 1995; Vollmeyer et al., 

1996; Burns & Vollmeyer, 2002; Kröner, 2001; Schoppek, 2002; Kröner et al., 2005; 

Kluge, 2008; Osman, 2008a). These results suggest that structural knowledge, when 

it is acquired through direct instruction, does not provide an advantage to control 

performance over knowledge that is acquired through a free exploration of the 

system variables. 

In summary, the results suggest that the acquisition of structural knowledge 

through direct instruction may be insufficient to promote control performance. The 

results of Putz-Osterloh‘s (Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993) and 

Preußler‘s (1996) studies show that subjects who acquire structural knowledge 

through direct instruction do not have better control performance than subjects who 

perform without knowledge or incomplete knowledge. In contrast, a number of 

studies have found that the amount of knowledge acquired by problem solvers 

through an exploration of the system variables is strongly associated with the quality 

of their control performance (Funke & Müller, 1988; Vollmeyer et al., 1996; Kröner 

et al., 2005; Burns & Vollmeyer, 2002; Osman, 2008a; Beckmann & Guthke, 1995; 

Kluge, 2008). This inconsistent pattern of results suggests that problem solvers may 
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need to interact with the system variables before structural knowledge can be 

effectively utilised.  

One alternative explanation that should be considered is that the instructional 

methods used to inform subjects of the underlying structure of the system in these 

studies may not have been sufficient to promote structural knowledge. Firstly, in 

Putz-Osterloh‘s studies (1993; Putz-Osterloh & Lüer, 1981), subjects may not have 

understood how the diagram presented on paper related to the input and output 

variables presented on screen. In order to understand the meaning of the diagram, 

subjects may require a direct demonstration of how the inputs affect the outputs. 

Secondly, although subjects in Preußler‘s (1996) study did receive an explanation as 

to how the inputs affect the outputs, they did not receive a structural diagram that 

they could refer to during the control task. Therefore, they may have been unable to 

recall this information during the control task. Findings show that information that is 

permanently available, or provided as it is needed, is much more effective in 

promoting the acquisition of knowledge than information that is given prior to the 

interaction with a task (Kotovsky, Hayes & Simon, 1985; Berry & Broadbent, 1987; 

Leutner, 1993; Hulshof & De Jong, 2006). If these conditions were met then 

structural information may well benefit control performance.  

These limitations indicate that as yet there is insufficient evidence to conclude 

whether there is a direct causal relationship between the acquisition of structural 

knowledge and control performance. We can conclude, however, that structural 

information in the form of a causal diagram or standardised examples does not 

benefit control performance. One reason for this may be that these instructional 

methods are inadequate to promote problem solvers‘ structural knowledge. Another 

reason for this may be that declarative knowledge must first be translated into 

procedural knowledge in order to be useful for system control. This in turn implies 

that the relationship between structural knowledge and control performance may be 

moderated by another factor. In the following sections we will examine the 

conditions that may allow problem solvers to translate structural knowledge into 

effective control actions.  
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3.5 Practice 

A number of researchers argue that a period of goal-orientated practice may be 

required before problem solvers can effectively translate structural knowledge into 

control actions (Putz-Osterloh, 1993; Preußler, 1996; Preußler, 1998; Schoppek, 

2004). As discussed above, Putz-Osterloh (1993) found that subjects who were given 

structural information performed no better than those who did not receive such 

information. However, differences were observed in a follow-up study conducted six 

months later. This included only those subjects who had reached the highest level of 

control performance in the initial study. Subjects dealt with a complex problem that 

was identical to that used previously, except that one new relationship was added to 

the system. This time, subjects who had received the causal diagram had better 

system control, and were more likely to detect the difference between the initial 

system and the new system. Given that the advantage to control performance was 

only evident after subjects had considerable exposure to the system, Putz-Osterloh 

(1993) suggests that in order to benefit from structural information problem solvers 

may need to practice applying it.  

This claim seemingly finds further support in a study conducted by Preußler 

(1998), which used the complex problem LINAS to examine the effect of structural 

information and practice on control performance. An experimental group were given 

a causal diagram and completed practice tasks in which goal values had to be 

attained by manipulating the input variables. Each task was repeated until the subject 

reached the target values. The control group had to perform the same practice tasks, 

although without having the diagram available and without having the chance of 

retries until the correct response was found. In a subsequent control phase in which 

new goals were set for performance, subjects who received the diagram had better 

control performance than those who performed without such information. Again, it 

has been argued that these findings suggest that structural information does not 

directly benefit control performance, as it seems knowledge needs to be practiced in 

the context of application (Schoppek, 2004; Preußler, 1998).  

However, one significant limitation of Preußler‘s (1998) study is that the 

additional instructions given to the experimental group confounds the results. Both 

the experimental and control group completed the practice tasks. As the experimental 
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group had also to find the correct solutions to the practice tasks, this setting provided 

them with more opportunity to: a) interact with the system, b) evaluate the accuracy 

of their acquired knowledge and c) acquire more knowledge about the system. The 

observed advantage in control performance may be the result of any of these 

differences. Therefore, it is impossible to conclude from the results of this study that 

subjects benefit from structural information if they practice using it.  

In summary, although the aforementioned studies have some significant 

limitations, they do suggest that under some conditions structural information may 

benefit system control. More research is required to determine whether a period of 

goal-orientated practice is required before problem solvers can utilise knowledge, or 

whether problem solvers may simply need to interact with the system in order to 

better understand how to apply the information that they have been given. To the 

author‘s knowledge, no studies have tested the latter hypothesis. However, a number 

of studies have investigated whether problem solvers who interact with a system 

have better structural knowledge and system control than those who observe the 

same pattern of interventions. These studies will be reviewed in the following 

section. 

3.6 Intervention vs. observation 

Controlling the outcomes of a system requires declarative as well as procedural 

knowledge; declarative knowledge about the dependencies between the system 

variables and procedural knowledge about how to change input variables in order to 

achieve the desired effect on the output variables. There is an ongoing debate, 

however, as to whether subjects must directly interact with a system in order to 

acquire procedural as well as declarative knowledge.  

In order to address this debate, Funke and Müller (1988) allowed subjects in 

one condition to explore the complex problem SINUS. In a yoked-control design, 

subjects in a second condition observed the interventions made by their experimental 

twin in the first condition. Both groups had to complete causal diagrams and 

subsequently control the system to reach specific goals. The system consisted of 

three inputs and three outputs linked by a set of linear equations and had a novel 

cover story and labels for the system variables. Subjects who observed interventions 

acquired more knowledge of the underlying structure of the system, yet those who 
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interacted with the system variables had better system control. These findings 

demonstrate that advantages in terms of structural knowledge do not necessarily 

translate into advantages in controlling the system, and that problem solvers who 

interact with a system may acquire some additional sort of knowledge that benefits 

control performance in comparison to those who only observe the outcomes of a 

system. 

Beckmann (1994) found a similar pattern of results using a method that was 

designed to encourage subjects to acquire complete knowledge of the underlying 

structure of the system. Using the complex problem MACHINE, which is similar to 

SINUS, Beckmann (1994) instructed subjects in one condition to make the 

interventions that were considered optimal to diagnose the underlying structure of 

the system. That is, on the first trial the inputs were to be set at zero, so that any 

autonomic changes in the output variables could be detected. Subsequently, the 

inputs were to be changed one at a time, so that the effect of each input could be 

observed on each output. Subjects in another condition observed the same optimal 

interventions being made on the system variables. Although subjects in each 

condition did not differ in terms of the structural knowledge that they acquired, 

subjects who interacted with the system variables had significantly better control 

performance than those who observed interventions, as in Funke and Müller‘s (1988) 

study. Beckmann (1994) argues that this advantage is due to the acquisition of 

procedural knowledge, as well as declarative knowledge in relation to the system 

variables.  

In a series of studies, however, Osman (2008a; 2008b) has found that 

―observation can be effective as action‖ in learning to control dynamic systems. As 

in Funke and Müller‘s (1988) study, Osman (2008a) manipulated whether subjects 

explored the task or observed the exploration of another subject. In addition, subjects 

were either given a specific or non-specific learning goal. The system consisted of 

three inputs and three outputs linked by a set of linear equations and had a novel 

cover story and labels for the system variables. Whether or not subjects intervened 

on the system variables appeared to have no impact on either knowledge or control 

performance. The same result was observed in a second study with a slightly 

different manipulation of the type of learning goal that subjects received (Osman, 

2008b). In contrast to previous findings (Funke & Müller, 1988; Beckmann, 1994), 
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these results suggest that interacting with the system variables confers no additional 

advantage for system control over observing the same system states. 

One possible explanation for this inconsistency could lie in differences in the 

complexity of the systems used in these studies. The main difference between these 

studies is that the systems used by Funke and Müller (1988) and Beckmann (1994) 

appear to be much more complex than used by Osman (2008a; 2008b), in that they 

have more relationships between the variables (all the systems have three input and 

three output variables). It may be that intervening on the system variables provides 

an advantage over observing the same interventions only when the amount of 

information to be processed exceeds certain limits. In other words, activity may 

promote the processes of chunking and efficiently organising information in 

functional units that otherwise would overload the cognitive system. However, this 

explanation is purely speculative, and requires further investigation. 

3.7 Conclusions 

In conclusion, there is sufficient evidence to answer the question of whether 

structural knowledge is necessary to control the outcomes of dynamic systems. A 

number of studies suggest that dynamic systems can be controlled through the 

application of heuristic strategies or instance-based knowledge (Broadbent, 1977; 

Broadbent & Berry, 1984; 1987; Berry, 1984; 1991; Broadbent et al., 1986; Stanley 

et al., 1989; Buchner et al., 1995; Gonzalez et al., 2003). The success of heuristic 

strategies and instance-based knowledge is, however, highly context specific, as it 

does not generalise to new goals for system control (Marescaux et al., 1989; Dienes 

& Fahey, 1995). Flexible system control requires the acquisition of structural 

knowledge (Geddes & Stevenson, 1997; Burns & Vollmeyer, 2002). Thus, the 

acquisition of structural knowledge is necessary to promote the development of 

transferrable control skills. 

The question that then arises is whether the acquisition of structural knowledge 

is sufficient for successful system control. Some findings suggest that structural 

knowledge either has to be acquired through an exploration of the system variables 

or practiced in the context of application in order to be useful for system control 

(Putz-Osterloh & Lüer, 1981; Funke & Müller, 1988; Putz-Osterloh, 1993; 

Beckmann, 1994; Preußler, 1996; 1998). This would suggest that structural 
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knowledge must be translated into procedural knowledge through an additional 

process before it can be used to control the outcomes of a system. Alternatively, it 

may be that the methods used to inform subjects of the underlying structure of the 

system in previous studies (e.g. Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993; 

Preußler, 1996) may have been inadequate to effectively promote structural 

knowledge, and thus directly influence control performance. The empirical study 

reported in Chapter 5 addresses these issues. 

A second issue is that a causal relationship between the amount of structural 

knowledge that is acquired by the problem solver and the quality of their control 

performance has not been sufficiently established. While the findings of a number of 

studies show an association (correlation) between structural knowledge and control 

performance, these results do not imply causality (e.g. Funke & Müller, 1988; 

Beckmann & Guthke, 1995; Vollmeyer & Burns, 1995; Vollmeyer et al., 1996; 

Burns & Vollmeyer, 2002; Kröner et al., 2005; Osman, 2008a; Kluge, 2008). 

Systematic manipulations of the amount of knowledge that problem solvers are able 

to acquire are needed to examine the nature of this relationship. Thus far, previous 

studies have only evaluated whether different methods of control (e.g. trial-and-error 

as opposed to knowledge-based) or different methods of acquiring knowledge (e.g. 

structural information as opposed to exploration) result in differing levels of control 

performance (Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1981; Preußler, 1996). As 

such, it is unclear whether increments in structural knowledge result in 

improvements in control performance. This issue is addressed in the empirical 

studies reported in Chapters 6 and 7.  

Finally, the evidence suggests that whether activity or practice is required to 

promote the application of knowledge may be dependent on the complexity of the 

system. In the literature, system complexity is often discussed as a potential 

moderator variable (Dörner, 1987; Brehmer & Dörner, 1993; Kerstholt & 

Raaijmaker, 1997; Kluge, 2008). However, experimental results are rarely replicated 

with different systems. This state of affairs makes it difficult to determine whether 

the experimental results obtained with complex problems are scalable to real world 

systems which are likely to be much more complex. Therefore, the empirical study 

reported in Chapter 7 attempts to replicate the results derived in Chapters 5 and 6 

with systems of differing complexities. 
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CHAPTER FOUR 

INDIVIDUAL DIFFERENCES IN THE ACQUISITION OF STRUCTURAL 

KNOWLEDGE AND CONTROL PERFORMANCE 

4.1 Introduction 

Thus far our discussion has focussed on how knowledge influences the control 

of complex problems at an aggregate level. Although a direct causal link is yet to be 

established, findings suggest that given certain structural and task characteristics, 

problem solvers who acquire more knowledge about the underlying structure of a 

system will have better control performance than problem solvers who acquire less 

knowledge. The outcome of performance can then be seen as a function of a) 

individual differences in the capacity to acquire knowledge and b) individual 

differences in the capacity to apply knowledge. This section will be concerned with 

possible sources of individual differences in performing these two tasks.  

A number of researchers have argued that the role of intelligence in system 

control remains unclear (Kluwe, Misiak & Haider, 1991; Wenke & Frensch, 2003; 

Wenke, Frensch & Funke, 2004). The nature of this debate will be described in more 

detail in Section 4.3, however, its resolution seems critical considering that 

traditional measures of intelligence have been shown to be the best predictors of job 

and academic performance (Neisser, Boodoo, Bouchard, Boykin, Brody, Ceci, 

Halpern, Loehlin, Perloff, Sternberg & Urbina, 1996; Schmidt & Hunter, 1998) and 

that complex problems are now used as additional predictors of success in such 

settings (Funke, 1998; U. Funke, 1998; Hornke & Kersting, 2005; Kluge, 2008). 

Therefore, in order to contribute to this debate, our search for the sources of 

individual differences will be restricted to the cognitive or intellectual abilities that 

are likely to influence performance.
2
 

In this thesis, we adopt the cognitive approach to understanding intelligence, 

which regards intellectual ability as a set of general cognitive resources that are 

                                                        
2 We do, however, acknowledge that individual differences in the acquisition of structural knowledge 

and system control is likely to be the result of both cognitive and non-cognitive factors. A number of 

studies have found that non-cognitive factors such as motivation, metacognition and emotions have a 

significant impact on the cognitive processes involved in the acquisition of structural knowledge and 

system control (e.g. Vollmeyer, Rollett & Rheinberg, 1997, 1998; Vollmeyer & Rheinberg, 1999, 

2000; Spering, Wagener & Funke, 2005; Barth & Funke, 2009). 



 64 

available to an individual (Snow & Lohman, 1989; Lohman, 2000)
3
. According to 

this view, performance on intelligence tests and experimental tasks can be 

understood in terms of the information processing demands that they impose on the 

cognitive system (e.g. Carroll, 1993; Sternberg, 1988). Obtained correlations 

between intelligence test scores and experimental tasks can then be explained on the 

basis of shared information processing demands (Carroll, 1993), and there is now a 

large body of research that has detailed the information processing demands of 

intelligence tests (for a review see Lohman, 2000). Therefore, the comparison of 

performance on intelligence tests and the acquisition of structural knowledge and 

control performance in complex problems should allow us to identify consistent 

sources of individual differences in the cognitive processes that discriminate between 

successful and less successful problem solvers.  

Few studies have separately considered the cognitive demands of acquiring 

knowledge and controlling the outcomes of dynamic systems at an individual 

differences level (with the exceptions of Beckmann, 1994; Beckmann & Guthke, 

1995; Kröner et al., 2005; Bühner, at al., 2008). This is in part because until recently 

few studies had experimentally separated these two tasks, and/or measured structural 

knowledge independently from control performance (see Chapter 2 for more details). 

The main limitation of this approach is that these two tasks are likely to impose 

different demands on the problem solver, and yet control performance also appears 

to be related to the acquisition of structural knowledge. Therefore, to understand 

what makes control performance difficult, some idea is needed of the distinctive 

processes that underlie the acquisition of structural knowledge and control 

performance.  

Thus, in the following sections firstly a framework will be introduced that 

describes at a process level how problem solvers might acquire knowledge about 

dynamic systems. This will be mapped onto what is known about the demands of 

traditional intelligence tests. This exercise will then be repeated for control 

performance. The empirical relationships between performance on intelligence tests 

and performance on complex problem solving tasks, demonstrated in previous 

                                                        
3
 This approach can be seen as complementary to the psychometric approach to the study of 

intelligence, which is primarily concerned with the organisation of abilities within a nomological 

network (e.g. Vernon, 1965; Cattell, 1971; Horn, 1968). 
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research, will then serve as a test of our hypotheses about possible sources of 

individual differences in the acquisition of structural knowledge and control 

performance. 

4.2 Individual differences in the acquisition of structural knowledge 

4.2.1 Understanding the knowledge acquisition process: Dual-space Search Model 

Klahr and Dunbar‘s (1988) model of Scientific Discovery as a Dual-space 

Search (SDDS) has frequently been used to describe the process of knowledge 

acquisition in dynamic systems (e.g. Shute, 1990; Vollmeyer et al., 1996; de Jong & 

van Joolingen, 1997; Geddes & Stevenson, 1997; Burns & Vollmeyer, 2000; 2002). 

This model is an extension of Simon and Lea‘s (1974) model of problem solving that 

requires rule-induction to the domain of scientific discovery. In scientific discovery 

the main task for the learner is to discover the properties of a given domain through 

hypothesis testing. Conceptually, this is identical to knowledge acquisition in 

complex problems as it also involves the exploration of a novel environment (Funke, 

1992). 

The main assumption in the SDDS model is that hypothesis testing involves a 

search in two distinct, but related, spaces: A hypothesis space and an experiment 

space. The hypothesis space consists of all the possible relationships between the 

variables in a task, while the experiment space consists of all the possible states 

within a task. In Simon and Lea‘s (1974) original model, these were referred to as 

the rule space and instance space, respectively. Three performance components are 

specified: Search hypothesis space, test hypothesis and evaluate evidence. In the 

context of acquiring knowledge about a dynamic system, a search in the hypothesis 

space involves generating a hypothesis about the underlying structure of the system, 

and making a prediction about the behaviour of the system based on this hypothesis. 

Testing hypotheses involves a search in the experiment space by designing and 

implementing experiments through the manipulation of the input variables. The 

resulting evidence is then evaluated with respect to the initial prediction, and 

hypotheses are confirmed or modified on the basis of the results. This is an iterative 

process that continues until the problem solver decides that he or she has correctly 

induced the underlying structure of the system. Extensions of this model have been 

proposed that deal with how knowledge about the system is represented, but they do 
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not propose any additional performance components (Burns & Vollmeyer, 2000; de 

Jong & van Joolingen, 1997).  

To test this model, Klahr and Dunbar (1988) examined subjects‘ verbal 

protocols as they learnt how to operate a computer controlled robot. They confirmed 

that the discovery process seemed to fit the model of a search in the two spaces. 

However, they noted that prior knowledge of computer programming was a key 

determinant of whether subjects began their search in the hypothesis space or in the 

experiment space. If prior knowledge was available, then subjects formed hypotheses 

immediately through ―analogical mapping, heuristic search, priming, remindings or 

conceptual combination‖ (Klahr, 2000, p. 33). Thus, a hypothesis was initially 

generated and tested in the experiment space. If hypotheses could not be evoked 

from memory, then a correct hypothesis was generalised based on the results of an 

experiment. The basic components of performance remained the same, however, 

regardless of whether the problem solver began their search in the hypothesis or the 

experiment space (Klahr & Dunbar, 1988). This model has found further support in 

subsequent studies both within the domain of scientific discovery (Dunbar, 1993; 

Klahr, Fay, & Dunbar, 1993), and in relation to knowledge acquisition in complex 

problems (Vollmeyer et al., 1996; Vollmeyer & Burns, 2002; van Jooligen & de 

Jong, 1997; Schoppek, 2002).  

4.2.2 Implications of the SDDS model for individual differences in knowledge 

acquisition 

In the context of novel complex problems for which prior knowledge is not 

available, the SDDS model implies that effective knowledge acquisition involves a) 

the design of experiments that are appropriate for abstracting general rules from the 

data or testing hypotheses, b) making predictions based on abstracted rules about the 

values of the outputs given certain inputs and c) the abstraction of general rules from 

the data. The latter two demands can be categorised as types of reasoning, and thus it 

can be inferred that reasoning ability represents one possible source of individual 

differences in the acquisition of structural knowledge. A number of other researchers 

have proposed that reasoning ability is the most important criterion for detecting 

systematic patterns among variables and to develop hypotheses about the causal 

structure of systems (Süß, Kersting, & Oberauer, 1991; Wittmann & Süß, 1999). 
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The SDDS model, in addition, predicts that the successful execution of these 

components is dependent on the problem solvers capacity to conduct appropriate 

experiments. In the context of scientific discovery learning, an appropriate 

experiment consists of a test that will control the influence of other variables in order 

to determine whether there is a causal relationship between two variables (Klahr & 

Dunbar, 1988). Similarly, in complex problem solving, the underlying structure of 

the system cannot be determined unless the input variables are changed 

systematically. Firstly, all variables should be held constant, in order to determine 

whether the outputs change independently. Then, each input should be varied 

individually, while the others are held constant, in order to determine how each input 

affects each output. This is referred to as the ―Vary One Thing at a Time‖ (VOTAT) 

strategy (Tschirigi, 1980; Putz-Osterloh, 1993; Vollmeyer et al., 1996; Kröner et al., 

2005).  The empirical evidence supports the assumption that the abstraction of 

general rules with regard to the relationships between the variables in complex 

problems is causally dependent on the identification and use of the VOTAT strategy. 

Findings show that subjects who use the VOTAT strategy more frequently tend to 

acquire more structural knowledge than subjects who use it less frequently or 

consistently change all variables at the same time (Vollmeyer et al., 1996; Putz-

Osterloh, 1993; Kröner et al., 2005). Most importantly, if subjects are instructed to 

use this strategy then they acquire more structural knowledge than subjects who do 

not receive this instruction (Vollmeyer et al., 1996).  Thus, the SDDS model and 

empirical evidence converge on the hypothesis that a second significant source of 

individual differences in the acquisition of structural knowledge is likely to be the 

identification and use of the VOTAT strategy.  

4.2.3 Conceptual and empirical overlap with traditional measures of intellectual 

ability 

Kröner (Kröner, 2001; Kröner & Leutner, 2002; Kröner et al., 2005) argues 

that both reasoning ability and strategy identification are required in traditional 

measures of intellectual ability, and in particular, those that measure fluid 

intelligence such as the Raven‘s Advanced Progressive Matrices (APM; Raven, 

1958). However, while there is broad consensus that reasoning ability is central to 

performance on intelligence tests (Sternberg, 1986; Lohman, 2000), there seems to 

be little grounds for the claim that intelligence tests should also reflect individual 
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differences in strategy identification. Carpenter, Just and Shell‘s (1990) analysis of 

the requirements of the APM incorporated an extensive set of data derived from 

verbal protocols, eye-tracking and simulation models of performance. They found 

that ―the processes that distinguish among individuals are primarily the ability to 

induce abstract relations and the ability to dynamically manage a large set of 

problem solving goals in working memory.‖ (p. 404). Other studies have found 

further support for Carpenter et al.‘s (1990) analysis of the processing requirements 

of the APM (e.g. DeShon, Chan & Weissbein, 1995; Embretson, 1998). These 

findings do not support a link between performance on traditional intelligence tests 

and strategy identification. 

From a theoretical perspective, such a relation is not to be expected either. 

Klahr and Dunbar (1988) argue that the process that primarily distinguishes 

traditional rule induction tasks from scientific discovery is the need to perform 

experiments to generate data that can be used to test hypotheses. In traditional rule 

induction tasks, the entire set of instances that can be used to test hypotheses are 

given in the problem.  In comparison, in scientific reasoning tasks, experiments must 

be designed and enacted by the problem solver. Similarly, in complex problems, the 

set of system states that are generated will be determined by how the user interacts 

with the system. This was the main motivation behind Klahr and Dunbar‘s (1988) 

extension of Simon and Lea‘s (1974) initial model of problem solving, as the original 

model did not specify a need to generate experiments to test hypotheses. These 

analyses suggest that while structural knowledge and performance on traditional tests 

of intelligence are likely to be strongly related due to the shared requirement to 

induce abstract relations, strategy identification may constitute an independent 

source of individual differences in knowledge acquisition.  

Few studies, however, have examined the inter-relationships between strategy 

identification, structural knowledge and tests of fluid intelligence, and the results that 

are available are somewhat inconsistent. In two studies, Kröner (Kröner & Leutner, 

2002; Kröner et al., 2005) found that structural knowledge was moderately correlated 

with tests of fluid intelligence, as assessed by the APM (r = .43) and the inductive 

reasoning scale of the Berlin Structure of Intellect Test (r = .47; BIS; Jäger, Süß & 

Beauducel, 1997). In contrast, Beckmann and Guthke (1995) found that structural 

knowledge and performance on the reasoning sub-tests of the Intelligence Structure 
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Test (IST; Amthauer, 1973) were only weakly related (r = .11). This is surprising 

considering that both studies operate within the linear structural equation framework, 

and presented the system with a novel cover story, in order to control for the 

influence of prior knowledge.  

Similarly, the results regarding the relationship between strategy identification 

and performance on tests of fluid intelligence are also rather inconsistent. Kröner 

(2001) found no significant relationship between strategy identification and the APM 

(r = .17), while Kröner et al. (2005) found that strategy identification and the 

inductive reasoning scale of the BIS were moderately correlated (r = .41). Clearly, 

the inter-relationships between these constructs are in need of further investigation.  

4.3 Individual differences in control performance 

The situation with regard to identifying possible sources of individual 

differences in control performance is somewhat more complicated. Most theoretical 

analyses of the requirements of system control focus exclusively on the structural 

characteristics of complex problems (e.g. Dörner, Kreuzig, Reither & Stäudel, 1983; 

Putz-Osterloh, 1993b; Brehmer & Dörner, 1993; Rigas, Carling & Brehmer, 2002; 

Gonzalez, Thomas, & Vanyukov, 2005; Elg, 2005). These theorists argue that system 

control involves dealing with complex causal networks of inter-related variables, 

which must be uncovered by the problem solver while they deal with dynamic 

changes in the states of the system variables. An attempt is then made to map these 

demands onto those of traditional intelligence tests, and there is little agreement as to 

whether they are similar (Rigas, Carling & Brehmer, 2002; Gonzalez, Thomas, & 

Vanyukov, 2005) or dissimilar (Dörner et al., 1983; Putz-Osterloh, 1993b; Brehmer 

& Dörner, 1993; Elg, 2005).   

The main problem with this approach is that, as Kluwe, Misiak and Haider 

(1991) argue, ―subjects when operating complex systems elaborate highly different 

mental representations of the simulated complex environment, establish different 

goals for system control and apply different strategies‖ (p. 241). Thus, performance 

on the same complex problem does not necessarily reflect the same processes. This 

criticism can be generalised to comparisons of different studies, in which different 

constellations of task and structural characteristics determine whether structural 

knowledge will be acquired, and hence the strategies that are used to control the 
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outcomes of the system. This state of affairs is evident in the inconsistent results of 

previous research regarding the relationship between tests of intellectual abilities and 

control performance. While some studies report that the performance on the two 

types of tasks are highly related (e.g. Funke, 1985; Misiak & Kluwe, 1986; Krörner, 

2001; Wagener, 2001; Kröner & Leutner, 2002; Körner et al., 2005; Bühner, at al., 

2008), other studies report that they are not at all related (e.g. Dörner et al., 1983; 

Funke, 1983; Gediga, Schottke & Tuck-Bressler, 1984; Putz-Osterloh, 1981; 

Reichert & Dörner, 1988; Joslyn & Hunt, 1998). Clearly then, an approach simply 

based on an examination of the correlation between measures of intellectual ability 

and control performance across various studies is insufficient to identify consistent 

sources of individual differences in performance.  

An alternative approach, which is the one adopted in this thesis, is to analyse 

the demands of control performance given certain conditions, in order to predict 

when we might reasonably expect intellectual ability to contribute to control 

performance. As discussed in Chapter 2, the use of ill-defined goals has significant 

consequences for the reliability and validity of control performance measures.  Let us 

assume then that specific goals for the output variables are given. Secondly, in line 

with our discussion in Chapter 3, let us assume that the amount of structural 

knowledge that the problem solver acquires is a key determinant of the processes that 

will be used to control the outcomes of the system. Two extreme situations can be 

imagined with respect to the amount of structural knowledge that is acquired by the 

problem solver. In the first situation, the problem solver has been unable to acquire 

any structural knowledge. In the second situation, the problem solver is able to 

acquire or is instructed as to the complete underlying structure of the system. The 

following discussion will address the processing requirements of each of these 

situations in turn. 

4.3.1 Individual differences in control performance under conditions of no 

knowledge 

When no structural information, or relevant domain pre-knowledge, is 

available then problem solvers will not have any cognitive structures to apply to the 

task. Under these conditions, problem solvers may have to learn by doing, and 

control performance may be the result of ad hoc, or trial-and-error, processes. These 
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demands are not required in traditional psychometric tests of intellectual ability, and 

thus we should not expect to find any relationship between control performance and 

tests of intelligence under these conditions (Raaheim, 1985, 1989; Putz-Osterloh, 

1993).  

An alternative perspective is that if control behaviour is in fact random under 

conditions where no structural knowledge is acquired then it may not reflect any 

consistent source of individual differences. Again, control performance is not 

expected to correlate with measures of intelligence. In other words, zero correlations 

will not be informative as to whether knowledge acquisition took place (i.e. learning 

by doing) or not (i.e. random behaviour). One way to test this would be to compare 

the internal consistency of control performance scores under conditions where no 

knowledge has been acquired to conditions where complete structural knowledge has 

been acquired. The internal consistency of control performance scores should be low 

under conditions of no knowledge, if behaviour is in fact random. In comparison, the 

internal consistency of control performance scores under conditions of complete 

knowledge should be high, if problem solvers are repeatedly trying to apply the same 

rules to control the outcomes of the system. 

The results of two studies provide preliminary support for the claim that the 

internal consistencies of control performance measures vary as function of the 

amount of structural knowledge that is acquired by problem solvers. Strohschneider 

(1986) found that control performance scores in MORO had test-retest coefficients in 

the range of .26 and .44, which indicates that the differences between individuals 

over time are rather unstable. In this study, subjects were required to reach specific 

goals from the start of the task and reported very little knowledge of the underlying 

structure of the system. In comparison, in Körner et al.‘s (2005) study, subjects 

acquired at least half of the underlying structure of the system through a free 

exploration of the system variables prior to control performance, and in a later 

session were instructed as to the complete underlying structure of the system before 

controlling the task again. The internal consistency of the control performance scores 

was high in the two separate sessions (α = .90 and α = .91), and the correlation 

between control performance in the first and second session was also strong (r = .65). 

This indicates that the differences between people were highly stable within each 

testing session and between testing sessions. These results imply that under 
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conditions where no structural information is acquired or available, control 

performance may be random and is thus unlikely to reflect consistent sources of 

individual differences. In comparison, when structural knowledge is acquired, 

control performance appears to reflect stable sources of individual differences.  

However, further, more systematic research is required to adequately test this claim. 

4.3.2 Individual differences in control performance under conditions of complete 

knowledge 

In the alternative scenario, the problem solver has knowledge of the complete 

underlying structure of the system prior to control performance. Verbal protocols of 

successful problem solvers indicate that an efficient strategy for the application of 

structural knowledge entails a number of distinct steps. Firstly, problem solvers 

predict the next state of the output variables, under the assumption that the input 

variables are held constant. This accounts for the influence of autonomic changes in 

the output variables. Secondly, problem solvers then calculate the difference between 

the predicted states and goal states for each output variable. They then consider the 

dependency of each output on the inputs in turn and calculate the intervention 

required to bring each output to the desired state. Finally, they apply the 

interventions (Schoppek, 2002; 2004).  

Schoppek (2004) argues that the consideration of the dependency of each 

output on the inputs during knowledge application requires a different perspective 

than that which is taken during knowledge acquisition. The acquisition of structural 

knowledge by systematically testing hypotheses encourages problem solvers to 

identify effects, given a particular cause. In contrast, knowledge application requires 

problem solvers to determine possible causes, given a particular effect (i.e. the 

desired goal state). In addition, the formulation of an intervention strategy to bring an 

output towards the desired goal state requires the problem solver to chunk the effect 

of multiple inputs together. Thus, structural knowledge must be translated into a 

different format before it becomes useful for system control (see also Beckmann, 

1994, p. 82-86). In support of this hypothesis, Schoppek (2004) found that subjects 

who received instructions regarding the dependency of each output variable on the 

input variables had better control performance than those instructed as to the effect 

of each input variable on each output variable.  
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This suggests that there are three related sources of individual differences in 

control performance under conditions where complete structural information is 

acquired or available. Firstly, there may be differences in problem solvers capacity to 

transform effects-based knowledge into dependency-based knowledge. Secondly, 

problem solvers may have difficulty chunking such information into useable 

components. Finally and thirdly, problem solvers must co-ordinate this information 

in order to plan the correct sequence of interventions to bring about the desired goal 

state. 

4.3.3 Conceptual and empirical overlap with traditional measures of intellectual 

ability 

At a conceptual level, the processes involved in system control under 

conditions where complete structural is acquired have a clear overlap with the 

construct of working memory capacity. Oberauer, Süß, Schulze, Wilhelm, and 

Wittmann (2000) state that it is ―generally assumed that working memory has a 

constrained capacity which acts as a limiting factor on performance in cognitive 

tasks, especially complex reasoning tasks‖ (p. 1018). They go on to argue that 

working memory has three main functional attributes. Firstly, working memory 

influences individuals‘ capacity to manipulate and store information (Daneman & 

Carpenter, 1980). Secondly, it performs a supervisory function in monitoring task 

performance and inhibiting irrelevant responses (Baddeley, 1986; 1996). Thirdly, it 

coordinates and chunks information into structures (Halford, Wilson & Phillips, 

1998; Oberauer, 1993).  Thus, considering our task analysis, it seems likely that 

working memory capacity might contribute a significant source of individual 

differences in control performance when problem solvers attempt to apply their 

knowledge of the system to control its outcomes. 

Studies indicate that performances on tasks designed to assess working 

memory capacity and control performance in complex problem solving are 

moderately correlated (Wittmann & Hattrup, 2004; Wittmann & Süß, 1999; Bühner, 

at al., 2008). The main problem with interpreting the results of these studies, 

however, is that subjects were required to independently acquire knowledge about 

the underlying structure of the tasks. As discussed, this results in the situation where 

subjects are rather heterogeneous in terms of the amount of knowledge that they 
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acquire. Therefore, this is likely to be an underestimation of the effect of working 

memory capacity on control performance under conditions where complete structural 

knowledge is acquired.  

Further support for this claim can be found in studies that have investigated the 

relationship between fluid intelligence and control performance. Although there is an 

extensive and on-going debate as to whether working memory capacity and fluid 

intelligence are distinct constructs (e.g. Ackerman, Beier & Boyle, 2005; Oberauer, 

Schulze, Wilhelm & Süß, 2005), analyses of the processing requirements of tests of 

fluid intelligence, such as the APM, indicate that they place significant demands on 

working memory capacity (e.g. Carpenter, Just & Shell, 1990; DeShon, Chan & 

Weissbein, 1995; Embretson, 1998). Further, many studies have shown a strong 

relationship between measures of fluid intelligence and working memory capacity 

(e.g. Kyllonen & Christal, 1990; Kane, Hambrick, Tuholski, Wilhelm, Payne & 

Engle, 2004; Bühner, Krumm & Pick, 2005; Süß, Oberauer, Wittmann, Wilhelm & 

Schulze, 2002). Considering these results, and following our analyses of 

performance under different levels of structural knowledge, we would therefore 

expect that correlations between control performance and measures of fluid 

intelligence to be substantive when complete knowledge is acquired or instructed, 

and close to zero when no knowledge is acquired.  

In line with this expectation, the results of a number of studies suggest that the 

relationship between control performance and measures of fluid intelligence varies 

according the amount of structural information that is available to or was acquired by 

the problem solver. For example, the correlation between scores on the APM and 

control performance is moderate when subjects receive a structural diagram of the 

underlying structure of the system, yet in comparison, when no diagram is given, the 

reported correlation is close to zero (Putz-Osterloh, 1981; Putz-Osterloh & Lüer, 

1981; Hörmann & Thomas, 1988). Similarly, Beckmann and Guthke (1995) found 

that the relationship between intellectual ability, as measured by the reasoning sub-

tests of the IST (Amthauer, 1973) and control performance was moderate (r = .36) 

when a complex problem was presented with a novel cover story, and close to zero (r 

= .03) when the same complex problem was presented with a familiar cover story. 

Under conditions where the complex problem was presented with a novel cover story 

subjects acquired a significant amount structural knowledge, while no to little 
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knowledge was acquired when it was presented with a familiar cover story. These 

findings lend support to the claim that the processes used to control complex 

problems differ according to the amount of information that is available about the 

underlying structure of the system, and indicate that working memory capacity, as 

indicated by measures of fluid intelligence, may contribute significantly to individual 

differences in control performance under conditions where structural knowledge is 

available. 

Thus far, we have discussed two extreme positions with respect to structural 

knowledge. One in which the problem solver fails to acquire any knowledge, and one 

in which the problem solver acquires complete knowledge of the underlying 

structure of the system. However, as discussed previously, problem solvers typically 

acquire only an incomplete representation of the underlying structure of the system. 

Under such conditions, it could be predicted that differences between people will still 

be attributable to differences in working memory capacity, if they are trying to apply 

their incomplete representations of the rules governing the systems‘ behaviour.  

If different processes underlie control performance when different amounts of 

knowledge are acquired, this may explain why the relationship between control 

performance and traditional measures of intelligence is so inconsistent across 

different studies. The studies in this area can be broadly categorised in terms of 

whether subjects are given a specific goal from the outset of the task, or first allowed 

to acquire structural knowledge in the absence of a specific goal. As discussed in 

Chapter 3, if subjects receive a specific goal, then they are unlikely to acquire 

structural knowledge. In comparison, if subjects are required to explore the system in 

the absence of a specific goal, then they generally acquire at least some knowledge 

of the underlying structure of the system (Beckmann, 1994; Geddes & Stevenson, 

1997; Vollmeyer et al., 1996; Burns & Vollmeyer, 2002). Typically, in studies where 

a specific goal is given from the outset of the task, no or only a weak relationship is 

found between control performance and traditional measures of intelligence (e.g. 

Dörner, Keuzig, Reither & Stäudel, 1983; Funke, 1983; Gediga, Schottke & Tuck-

Bressler, 1984; Putz-Osterloh, 1985; Reichert & Dörner, 1988; Joslyn & Hunt, 

1998). There are, however, a few studies that report moderate correlations between 

intellectual ability and control performance, even when subjects did not initially 

explore the complex problem (Rigas, 2000; Rigas, Carling & Brehmer, 2002; Süß, 
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1999; Wittmann & Süß, 1999; Wittmann & Hattrup, 2004). In comparison, in studies 

where subjects are first allowed to explore the system, a moderate to strong 

correlation is found between control performance and these same measures of 

intelligence. In addition, these studies report that subjects acquired at least some 

knowledge of the underlying structure of the system (Funke, 1985; Misiak & Kluwe, 

1986; Krörner, 2001; Wagener, 2001; Kröner & Leutner, 2002; Krörner et al., 2005; 

Bühner, at al., 2008). Although this is to some extent an oversimplification of the 

differences between these studies, the overall pattern of results does suggest that the 

demands of traditional measures of intellectual ability and control performance are 

similar only when control performance is based on previously acquired knowledge. 

This pattern of results must be interpreted cautiously, however, as the 

relationship between fluid intelligence and control performance may be mediated by 

the amount of knowledge that is acquired by the problem solver. As discussed, 

reasoning ability is likely to be a significant source of individual differences in the 

acquisition of structural knowledge through a goal-free exploration of the system 

structure. The quality of problem solvers‘ control performance then becomes an 

indirect function of the amount of knowledge that is acquired. Therefore, the 

question that remains is whether measures of intellectual capacity account for any 

additional variance in control performance, once the influence of structural 

knowledge has been taken into account.  

4.4 Summary and conclusions 

The application of the SDDS model to describe the acquisition of structural 

knowledge has identified two possible sources of individual differences in 

performance: Strategy identification and reasoning ability. A question is the extent to 

which the processes underlying traditional tests of fluid intelligence and strategy 

identification overlap. Theoretical analyses suggest that they should be distinct 

constructs, although the empirical evidence is inconclusive. Secondly, if the 

acquisition of structural knowledge is dependent on the identification and application 

of an efficient strategy, the question is then whether there is remaining variance in 

structural knowledge that can be accounted for by fluid intelligence. As yet, this 

question has not been empirically tested.  
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With regard to possible sources of individual differences in control 

performance, our task analyses suggest that the relationship between intelligence and 

control performance may be moderated by the amount of knowledge that is acquired 

by problem solvers. Under conditions where no knowledge is acquired, control 

performance may be random, or the result of ad hoc interventions. As yet it has not 

been established whether the differences between individuals under such conditions 

are consistent (i.e. if there is anything systematic to be explained), however, it is 

predicted that performance under such conditions should not be related to measures 

of intelligence. Alternatively, when complete structural knowledge is acquired, we 

expect that significant demands are made on working memory capacity, as problem 

solvers are required to simultaneously store and process information and coordinate 

between various sources of information and sub-goals. Therefore, it is predicted that 

under such conditions performance should be strongly related to measures of 

intelligence. Similarly, under conditions where only partial knowledge is acquired, 

we expect that differences between people will still be attributable to differences in 

intelligence, if they are trying to apply their incomplete representations of the rules 

governing the systems‘ behaviour.  

As yet, these predictions have not been sufficiently tested for the following 

reasons. Firstly, in previous studies direct estimates of the impact of intelligence on 

control performance have not been obtained due to carry over effects of individual 

differences in knowledge acquisition. Secondly, few studies report the reliability of 

control performance measures. Therefore, as yet it is unclear whether the sources of 

individual differences in control performance differ according to the amount of 

knowledge that is available to problem solvers. 

The empirical work reported in the subsequent chapters will address these 

challenges in the following ways. Firstly, in order to control for the effect of the 

individual differences in knowledge acquisition, the amount of knowledge available 

to problem solvers will be manipulated experimentally. This should allow us to 

determine whether the relationship between intelligence and control performance 

varies as a function of the amount of knowledge available to problem solvers. 

Secondly, the reliability of control performance measures will be examined across 

different trials and goal states under different levels of knowledge. This should allow 

us to determine whether the differences between individuals are systematic under 



 78 

different levels of knowledge. Thirdly, and finally, we will examine whether there is 

still remaining variance in control performance that can be explained with respect to 

differences in intellectual ability, once differences in structural knowledge have been 

taken into account. 
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CHAPTER FIVE 

STUDY 1: THE EFFECT OF STRUCTURAL INFORMATION ON THE 

CONTROL OF DYNAMIC SYSTEMS 

5.1 Introduction 

5.1.1 The effect of structural information on control performance 

The acquisition of knowledge through an unguided exploration of a system and 

its interrelated variables can be characterised as discovery learning. In this approach, 

the learner is seen as an independent and active agent in the process of knowledge 

acquisition. In order to acquire a mental model of the underlying structure of the 

system they must develop hypotheses, design experiments to test them and 

appropriately interpret the data (see Chapter 4).  

The problems that learners experience with discovery learning in hyper-media 

and computer simulations of conceptual domains are well documented, and there is 

no clear evidence that favours discovery learning over more traditional forms of 

learning such as expository instruction. Reviews of the findings of numerous studies 

show that learners need extensive guidance in order to facilitate the acquisition of 

deep conceptual knowledge (de Jong & van Joolingen, 1998; Mayer, 2004; de Jong, 

2005; 2006; Kirschner, Sweller & Clark, 2006). Overall, unguided discovery 

learning is considered to be insufficient for the purposes of instruction and training, 

especially when it involves novice learners (Mayer, 2004). 

Similarly, in research with complex problems, it has been found that most 

problem solvers are unable to acquire a complete or accurate representation of the 

underlying structure of a system through an unguided exploration of its variables 

(Funke & Müller, 1988, Müller, 1993; Beckmann, 1994; Beckmann & Guthke, 1995; 

Vollmeyer et al., 1996; Burns & Vollmeyer 2002; Kröner, 2001; Schoppek, 2002; 

Kröner et al., 2005; Kluge, 2008; Osman, 2008a). These studies also report a 

consistent positive relationship between the amount of structural knowledge that is 

acquired and the quality of problem solvers‘ control performance. It might be 

expected then, that the direct instruction of structural information should result in 

better control performance than an unguided exploration of the system variables, 
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because problem solvers will acquire more knowledge about the underlying structure 

of the system.  

Against expectations, as discussed in Chapter 3, attempts to promote control 

performance through the direct instruction of structural information have proved 

unsuccessful (Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993; Preußler, 1996). 

Findings show that structural information only appears to benefit control 

performance after a period of goal-orientated practice (Putz-Osterloh, 1993; 

Preußler, 1998). This suggests that declarative knowledge about the underlying 

structure of a system can only be translated into procedural knowledge about how to 

control a system through practice. 

However, Putz-Osterloh‘s (Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993) 

and Preußler‘s (1996; 1998) studies have a number of instructional and 

methodological shortcomings that call this conclusion into question. From an 

instructional design point of view it is quite possible that subjects in Putz-Osterloh‘s 

(Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993) studies may not have understood 

how a causal diagram depicted on paper related to input and output variables 

presented on a computer. Subjects in Preußler‘s (1996) study may not have been able 

to remember the information provided in the instructional phase when they were later 

required to control the outcomes of the system. In effect, problem solvers may not 

have understood the information that they were provided with, or have been able to 

remember it during the control task.  

From a methodological point of view, one limitation of Preußler‘s (1998) study 

is that subjects who were provided with a diagram had more opportunities to interact 

with the system, and therefore independently induce the underlying structure of the 

system, than those who did not receive the diagram. All subjects completed the 

practice tasks. However, only those with the diagram were required to repeat these 

tasks until they found the correct answer. Clearly, this setting provided subjects with 

an opportunity to acquire structural knowledge and evaluate the accuracy of this 

knowledge. It could be speculated that they may not have used the diagram at all. 

Therefore, the results of Preußler‘s (1998) study do not clearly show that practice is 

necessary in order to effectively utilise structural information (see Chapter 3 for a 

detailed critical review of these issues). 
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With the current study the aim is to address some of the identified 

shortcomings in order to determine whether structural information can directly 

benefit control performance without practice, or provide an advantage over 

incomplete knowledge that is acquired through an unguided exploration of the 

system variables. In the proposed design, subjects will first explore a complex, 

dynamic system without guidance and try to acquire knowledge about its underlying 

structure.  They will then try to control the system to reach specific goal values of the 

output variables.  Subjects in an experimental condition will then watch an 

instructional video that explains the underlying structure of the system. Both the 

experimental and the control groups will then control the system again. If a period of 

practice is necessary in order to utilise structural information, then subjects who 

watch the instructional video should not show an improvement in their control 

performance, and should not be better at controlling the system than subjects who do 

not receive information.  

In order to ensure the effectiveness of the structural information, the 

instructional material was designed in accordance with the principles of Cognitive 

Load Theory (CLT) (e.g. Sweller, 1994; 1999; for recent reviews see Beckmann, 

2010; Sweller 2010). In the design of the video, the aim was to reduce the number of 

cognitive activities that subjects would have to undertake to translate the information 

provided into knowledge about the system. In particular, a number of studies have 

shown that cognitive effort is reduced, and learning is facilitated, when explanations 

of visual material are presented aurally, rather than as text (Kalyuga, Chandler & 

Sweller, 1999, 2000; Tindall-Ford, Chandler & Sweller, 1997; Tabbers, Martens & 

Van Merriënboer, 2004). This is known as the modality effect (Sweller, Van 

Merriënboer & Pass, 1998) or the modality principle (Mayer, 2001). In addition, 

findings show that information that is permanently available, or provided as it is 

needed, is much more effective in promoting the acquisition of knowledge than 

information that is given before the interaction with the task begins (Kotovsky, 

Hayes & Simon, 1985; Berry & Broadbent, 1987; Leutner, 1993; Hulshof & De 

Jong, 2006). In accordance with these findings, in the instructional video, visual 

material that shows how each input effects each output is explained by a narrator, 

and a causal diagram depicting this information will remain on screen during the 

control task as an external memory aid. These improvements should reduce the 
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extraneous cognitive effort that may be associated with understanding and 

remembering structural information. 

5.1.2 Individual differences in the acquisition and application of knowledge 

Even when the design of instructional material is optimised to reduce cognitive 

effort, the cognitive abilities of the problem solver may still influence whether such 

information can be effectively utilised. As discussed in Chapter 4, the application of 

structural information requires problem solvers to transform effects-based knowledge 

into dependency-based knowledge, chunk this knowledge into useable components, 

and co-ordinate this information in order to plan the correct sequence of 

interventions to bring about the desired goal state (Schoppek, 2002; 2004). At a 

conceptual level these processes have a clear overlap with the construct of fluid 

intelligence, and we would therefore expect that correlations between control 

performance and measures of fluid intelligence to be substantive when complete 

knowledge is acquired or instructed. In line with this expectation, previous findings 

show that when a causal diagram is provided, control performance is moderately to 

strongly correlated with scores on the APM, which is a key marker test of fluid 

intelligence (Putz-Osterloh, 1981; Putz-Osterloh & Lüer, 1981; Körner et al., 2005). 

This seems particularly relevant to studies that report that the provision of structural 

information has no effect on control performance (Putz-Osterloh & Lüer, 1981; Putz-

Osterloh, 1993; Preußler, 1996), as it could be speculated that the positive effect of 

structural information on control performance may be contingent on the subjects‘ 

level of fluid intelligence. That is, subjects who are more intelligent may be able to 

make use of structural information, while the provision of structural information may 

have little, or even a negative, impact on control performance for subjects who are 

less intelligent.  

Therefore, in the current study it is predicted that under conditions where 

subjects receive structural information, the extent of improvements in control 

performance will be a function of their fluid intelligence. In comparison, the extent 

of improvements in control performance when subjects do not receive additional 

information should be due to practice applying their partial representations of the 

underlying structure, and therefore less strongly related to fluid intelligence. 
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There are also likely to be individual differences in the extent to which 

problem solvers can acquire knowledge through an unguided exploration of the 

system variables. As discussed in Chapter 4, Klahr and Dunbar‘s (1988) model of 

discovery learning implies that effective knowledge acquisition involves a) the 

design of experiments that are appropriate for abstracting general rules from the data 

or testing hypotheses, b) making predictions based on abstracted rules about the 

values of the outputs given certain inputs and c) the abstraction of general rules from 

the data. In the context of complex problems the pattern of interventions that are 

necessary to generate data that can be used to abstract rules or test hypotheses is 

known as the VOTAT strategy. As argued in Chapter 4, the capacity to identify and 

use the VOTAT strategy is unlikely to be reflected in tests of fluid intelligence. 

Alternatively, b) and c) can be categorised as types of reasoning, and hence are likely 

to be reflected by tests of fluid intelligence. Therefore, it is predicted that the use of 

the VOTAT strategy should be a significant predictor of the amount of structural 

knowledge that subjects are able to acquire through an unguided exploration of the 

system variables, in addition to fluid intelligence.  

5.1.3 Aims and hypotheses 

In summary, the aims of this study are to determine whether the provision of 

structural information confers any additional advantage in controlling a dynamic 

system over knowledge that is acquired through an unguided exploration of the 

system variables, and to investigate possible sources of individual differences in the 

acquisition and application of structural knowledge. Firstly, it is hypothesised that 

VOTAT strategy use should account for additional variance in the acquisition of 

structural knowledge over fluid intelligence (VOTAT Hypothesis). Secondly, it is 

hypothesised that subjects who acquire more structural knowledge through an 

unguided exploration of the variables should show better control performance than 

those who acquire less knowledge (Knowledge Hypothesis). Thirdly, subjects who 

receive structural information should improve their control performance more than 

those who receive no additional structural information (Information Hypothesis). 

Finally, under conditions where subjects receive structural information, the 

improvement in their control performance scores will be a function of their fluid 

intelligence. Under conditions where subjects do not receive structural information, 
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the improvement in their control performance scores will be a result of practice, and 

therefore less related to fluid intelligence (Intelligence Hypothesis).  

5.2. Method 

5.2.1 Subjects 

Ninety-eight first year psychology students at the University of Sydney 

participated for course credit. Nine subjects failed to complete all tasks therefore 

their data were excluded from further analysis. A sample size of 100 would 

guarantee sufficient statistical power (1 – β ≥ .80) in identifying at least medium 

effects (d = .50) at a significance level of α ≤ .05 (one-tailed) in the planned 

comparison between the partial and no information conditions. 

5.2.2 Design 

Subjects were randomly assigned to one of two conditions (45 subjects in the 

Information condition, 44 subjects in No Information condition). As subjects were 

required to control the system on two separate occasions this resulted in a (2) x 2 

design. The within-subjects factor was control performance (phase 1 and phase 2). 

The between-subjects factor was whether or not they received structural information 

(Information and No Information). Subjects were assessed on their VOTAT strategy 

use, the amount of knowledge that they acquired through an unguided exploration of 

the system variables (structural knowledge), control performance for phase 1, control 

performance for phase 2 and performance in a test of fluid intelligence. Figure 5.1 

displays the procedure of the experiment for each condition and indicates which 

performance measures were collected in each phase of the experiment.  
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Figure 5.1: Diagram for the procedure of the experiment, illustrating the phases of the experiment by 

condition and indicating which performance measures were collected in each phase. 

5.2.3 Dependent variables and individual differences measures 

5.2.3.1 VOTAT strategy use 

To determine whether subjects used the VOTAT strategy during the 

exploration phase, the number of trials on which one or less input at a time was 

varied was recorded. VOTAT scores range between 0 and 14, with the higher value 

implying a more frequent use of the VOTAT strategy. 

5.2.3.2 Structural knowledge 

Subjects‘ structural knowledge was assessed by asking them to create causal 

diagrams of the relationships between the input and output variables at the end of 

each trial during the Exploration Phase. The diagram that was generated on the final 

exploration trial (after 2 times 7 trials) was used to derive a structural knowledge 

score. Using a procedure introduced by Beckmann (1994), the operationalisation of 

structural knowledge is based on a threshold model for signal detection (Snodgrass & 

Corwin, 1988). Using the procedure, structural knowledge scores are corrected for 
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Exploration Phase 

(2 sets of 7 trials each) 

 

Structural knowledge, 

VOTAT strategy use 
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guessing by subtracting the false alarm rate from the hit rate. The hit rate is the 

number of correctly identified relations divided by six (the actual number of relations 

in the system). The false alarm rate is the number of incorrectly identified relations 

divided by six (the number relations that are not present in the system, but that could 

possibly exist given the number of variables). The final score has a theoretical range 

from -1 to 1, where a score below zero indicates inaccurate knowledge and a score 

above zero indicates accurate knowledge.  

5.2.3.3 Control Performance 

The scoring procedure used was based on Beckmann‘s (1994) scoring system 

(see Chapter 2, pp.33 - 35, for a discussion of the relative merits of different scoring 

procedures for control performance and for a detailed example of how Beckman‘s 

scoring procedure is calculated). Control performance was calculated by determining 

the Euclidean Distance between the actual and optimal values of the input variables. 

The ideal values for each input variable were calculated by using the values of the 

output variables on the previous trial and the goal output values to solve the set of 

linear equations underlying the system
4
.  The theoretical range of this score is from 0 

to 34, where a lower score indicates a smaller deviation from optimal control 

interventions and therefore better performance. 

5.2.3.4 Fluid Intelligence 

The Raven‘s Advanced Progressive Matrices (APM) was used as an indicator 

of fluid intelligence. Raw scores were transformed into percentage correct. This test 

has been extensively validated as an indicator of fluid intelligence for a university 

level population (Raven, Raven & Court, 1998). 

5.2.4 Materials 

The complex problem was programmed using Adobe Flash 8 and Captivate 

3, and administered via a web browser on PCs. 

As discussed in Chapter 2, previous research has found that the presence of a 

familiar context has an unpredictable effect on acquisition of structural knowledge 

                                                        
4 If the ideal values were within the range of possible input values (which was 10 to -10), then the 

ideal values were equal to the optimal values. In cases where the ideal value fell outside this range, 

then the optimal value was adjusted to the nearest possible value. 
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(Beckmann, 1994; Burns & Vollmeyer, 2002; Lazonder et al., 2008; Lazonder et al., 

2009). Therefore, in order to ensure that the complex problem was relatively novel 

for all subjects and thus control for the influence of prior knowledge, the input and 

output variables are neutrally labelled with letters. As can be seen in Figure 5.2, the 

input variables are labelled A, B, and C, while the output variables are labelled X, Y 

and Z. 

 

Figure 5.2: Screenshot of the task, as presented in the information condition after the instructional 

phase. The goals are indicated as dotted lines on the graphs for the output variables. The underlying 

structure of the system is represented on screen as a causal diagram, where the arrows represent the 

relationships between the variables, while the positive and negative signs denote the direction of the 

relationship, and the letters the relative strength. In this example, Input A, B and C were increased on 

Trial 5. As a result, Output X increased, Output Y increased, and Output Z decreased, as depicted in 

the output variable windows.  

The user-interface is in a non-numerical graphical format, in order to 

encourage the formation of mental representations that are more aligned with the 

development of causal diagrams. In accordance with the principles of CLT, this 

should minimise the cognitive activities that are not directly relevant to the task. 

Figure 5.2 shows that the values of the input variables are displayed as bars in the 
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boxes on the input variables, where positive values are show above the input label 

and negative values are shown below. Each box represents the value of the input 

variable on a single trial and in total seven trials can be conducted before the values 

are reset. Although the numerical values of the inputs are not available to subjects, 

the inputs can be varied in increments of one unit, within the range of -10 to 10.  

The underlying structure of the system was originally developed by Beckmann 

(1994), and is based on the Linear Structural Equation approach developed by Funke 

(1985; 1993; 2001) (see Chapter 2). It consists of three input and three output 

variables that are connected by a set of linear equations: 

Xt+1:= 1.0 * Xt  +  0.8 * At +  0.8 * Bt  +  0.0 * Ct   

Yt+1:= 0.8 * Yt  +  1.6 * At +  0.0 * Bt  +  0.0 * Ct  

Zt+1:= 1.2 * Zt   +  0.0 * At   +  0.0 * Bt   - 1.0 * Ct  

Xt,, Yt, and Zt denote the values of the output variables and At,, Bt, and Ct denote the 

values of the input variables during the present trial while Xt+1, Yt+1, Zt+1 denote the 

values of the output variables in the subsequent trial. The system is dynamic because 

the values of the output variables change as a result of the decisions made by the 

subject and independently on each trial. 

5.2.5 Procedure 

The complex problem and the APM were presented to subjects on PCs, over 

two separate sessions.  

The complex problem began with a set of instructions that explained to 

subjects that they were required to perform three tasks. Firstly, they would have to 

explore the system to discover its underlying structure (Exploration Phase). In two 

subsequent tasks, they would have to control the system to reach certain goal values 

of the output variables (Control Phase 1 and 2). Further instructions explained how 

the values of the input and output variables were represented in the user-interface, 

how to change the values of the input variables and how to record what they learnt 

during the Exploration Phase using the causal diagram.  
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The Exploration Phase then began, in which subjects were prompted to explore 

the system for two cycles of 7 trials each by changing any of the input variables and 

observing the effect on the output variables displayed in the graphs.  At the end of 

each trial, subjects had to record what they had learnt about the system using the 

causal diagram that was displayed on the screen.  

The causal diagram could be altered using a set of twelve buttons (one for each 

possible relationship in the system) at the bottom of the screen. Each button referred 

to a particular relationship in the system. Using these buttons, subjects could record 

if they thought there was a relationship between two variables or if they thought the 

output variables changed independently. They could also specify the direction of the 

effect and its perceived strength.  The buttons were designed to restrict subjects‘ 

search of the hypothesis space to the relationships that could potentially exist within 

the system (i.e. autonomic changes of the output variables and direct effects between 

input and output variables).  

Subjects then had to control the system by manipulating the inputs to reach 

goal values of the outputs for seven trials (Control Phase 1). The goals were 

indicated as dotted lines on the output graphs. The causal diagram they had 

constructed during the Exploration Phase remained on screen, providing access to the 

structural knowledge that they had acquired.  

In the information condition, subjects then watched the instructional video that 

explained the actual underlying structure of the system. The instructional video 

consisted of a recording of seven intervention trials with an accompanying narration, 

which explained what could be seen on screen during each trial. On the first trial the 

inputs were set at zero, so that the autonomic changes in the outputs could be 

detected. Subsequently, Input A was increased to maximum while the other inputs 

were set at zero, then on the next trial Input A was reduced to minimum while the 

other inputs were set at zero. This was repeated with Inputs B and C on subsequent 

trials so that the effect of each input on the outputs could be clearly observed. On 

each trial, the narrator explained how the inputs had been altered, how each of the 

outputs had changed and how this reflected the underlying structure of the system. A 

causal diagram was constructed on screen, to record this information, and it remained 

onscreen during Control Phase 2 (see APPENDIX A for a record of these 
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instructions). Figure 5.2 shows a screenshot of the complex problem in the 

information condition after the instructional video. 

Subjects in the no information condition did not receive any additional 

information. In this condition, the causal diagram that subjects had constructed 

during the Exploration Phase remained on screen during Control Phase 2. 

All subjects had to control the system again for seven trials, with different 

goals indicated on the output variables (Control Phase 2).  

In a subsequent session, approximately one week later, subjects completed the 

APM. 

5.3. Results 

5.3.1 Internal consistencies 

Firstly, internal consistency analyses were conducted to determine the 

variability in control performance scores across the trials and for different goal states 

as an estimate of the reliability of the dependent variables. Internal consistency was 

good across the first control phase (αinformation  = .83, αno information = .83) and the second 

control phase (αinformation  = .92, αno information = .90) (Cronbach, 1951). This indicates 

that subjects are rather consistent in their performance and justifies averaging the 

scores across each control phase.  

An additional internal consistency analysis indicated that the reliability of the 

APM scores was acceptable across the 36 items (α  = .75) (Cronbach, 1951).  

Correlations among the variables used in this study as well as their means and 

standard deviations are presented in Table 5.1.  
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Table 5.1: Descriptive statistics, and inter-correlations between the variables for each condition. 

  M (SD) 2 3 4 5 

No Information 

Condition 
1.VOTAT strategy 5.68 (4.15) .60** -.45** -.49** .11 

N = 44 2. Knowledge .21 (.33) 
… 

-.38* -.51** .45** 

 3. Phase 1 13.88 (4.20) 
… 

… .56** -.24 

 4. Phase 2 13.21 (5.28) 
… 

… … -.18 

 5. APM (% correct) 63.75 (16.32) 
… 

… … … 

Information 

Condition 
1.VOTAT strategy 5.76 (3.94) .60** -.20 -.30 .26 

N = 45 2. Knowledge .22 (.35) 
… 

-.31* -.36* .26 

 3. Phase 1 13.92 (4.14) 
… 

… .27 -.11 

 4. Phase 2 10.24 (5.29) 
… 

… … -.52** 

 5. APM (% correct) 58.00 (17.75) 
… 

… … … 

Notes: *p < .05; **p < .01 

 

5.3.2 VOTAT hypothesis 

Across the conditions, there was a significant strong correlation between 

VOTAT strategy use and structural knowledge; r = .60, p < .01. This indicates that 

subjects who used the VOTAT strategy more frequently acquired more knowledge of 

the underlying structure of the system during the Exploration Phase than those who 

used it less frequently. Further, there was a significant moderate correlation between 

scores on the APM and structural knowledge scores across the conditions; r = .34, p 

< .01. This indicates that subjects who were more intelligent were able to acquire 

more knowledge of the underlying structure of the system than those who were less 

intelligent. Finally, as predicted, VOTAT strategy use and scores on the APM were 

not significantly correlated; r = .18, p = .09. This indicates that the use of effective 

experiments in order to infer abstract rules is not a matter of fluid intelligence. 

In order to determine whether VOTAT strategy use accounts for additional 

variance in structural knowledge over fluid intelligence, a hierarchical regression 

analysis was conducted. Mean corrected scores on the APM were entered in the first 

step, and VOTAT strategy use in a second step. Fluid intelligence accounted for 

11.3% of the variance in structural knowledge scores, Fchange(1, 87) = 11.09, p < .01. 

VOTAT strategy use accounted for an additional 30% of the variance in structural 

knowledge scores, Fchange(1, 86) = 43.90, p < .01). In support of the VOTAT 

hypothesis, this indicates that although differences in fluid intelligence are important, 
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the largest source of individual differences in the acquisition of structural knowledge 

is the use of effective experiments.  

5.3.3 The acquisition of structural knowledge during the exploration phase 

For both information conditions (no information and information), the amount 

of structural knowledge that was acquired was significantly greater than zero; M = 

.22, SD = .34, t(88) = 6.00, p < .01. This indicates that on average, subjects had 

acquired some knowledge of the underlying structure of the system prior to the first 

control phase. However, as the histograms in Figure 5.3 show, the range of structural 

knowledge scores, -.50 to 1.00, indicates that subjects differed widely in the amount 

of knowledge that they were able to acquire about the underlying structure of the 

system during the initial exploration phase. That is, while some subjects were able to 

acquire complete knowledge of the underlying structure of the system (one subject in 

the no information condition, and two subjects in the information condition), others 

acquired an incorrect representation of the underlying structure. Overall these results 

indicate that subjects found it difficult to acquire an accurate representation of the 

underlying structure of the system through an unguided exploration of the system 

variables, and that for the majority of subjects in the information condition the 

instructions given prior to the second control phase provided a significant source of 

new information about the underlying structure of the system.  
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Figure 5.3: Histograms of structural knowledge test scores, by information condition 

5.3.4 Knowledge hypothesis 

In support of the knowledge hypothesis, across the conditions, there was a 

significant moderate negative relationship between structural knowledge scores and 

control performance in Phase 1 (r = -.34, p < .01). This indicates that subjects who 

acquired more knowledge about the underlying structure of the system through an 

unguided exploration of the system variables produced smaller deviations from 

optimal control interventions, and were therefore better at controlling the system. 

More knowledge is associated with better control performance. 

5.3.5 Information and intelligence hypotheses 

In order to determine whether the provision of structural information facilitates 

control performance (Information Hypothesis) and whether the extraction of 

knowledge from information in this context is determined by fluid intelligence 

(Intelligence Hypothesis) we conducted a series of hierarchical linear modelling 

analyses using the HLM software package (Raudenbush, Bryk, Cheong, & Congdon, 
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2000). This approach allowed us to model subject‘s change in performance from 

control phase 1 to control phase 2 as function of their fluid intelligence (see 

Raudenbush & Bryk, 2002). We used a two level model in which performance in 

control phase 1 and control phase 2 (level 1) was clustered within people (level 2).  

Firstly, to examine the effect of condition (no information and information) 

and fluid intelligence on control performance it was necessary to check whether 

control performance under different conditions differed prior to the instructional 

phase. The amount of structural knowledge acquired by subjects during the 

exploration phase did not differ by condition; t(87) = -.09, p = .93, nor did their 

control performance scores in phase 1; t(87) = -.05, p = .96, or scores on the APM; 

t(87) = 1.59, p = .12. This demonstrates that the procedure used to randomly allocate 

subjects to the conditions was effective. 

Secondly, a random coefficient regression analysis was conducted to assess 

whether control performance changed across the two control phases. At level 1, each 

subjects‘ performance was represented by an intercept term that denoted their mean 

performance across control phase 1 and control phase 2, and a slope that represented 

their change in performance from control phase 1 to 2. Control phase (1 or 2, effect 

coded as -.5 and .5, respectively) was entered as an independent variable at this level. 

The mean control performance scores and the change in control performance then 

became the outcome variables in a level-2 model, in which they were modelled as 

random effects. The results of this analysis are presented in the top section of Table 

5.2. This analysis indicated that the mean control performance score was 12.81 

across control phase 1 and 2 and on average, control performance scores improved 

by 2.19 points from control phase 1 to 2. The change in control performance was 

significantly different from zero; t(88) = -3.86, p < .001. There were also significant 

differences between problem solvers in terms of their mean control performance 

scores and the change in their control performance; χ
2
 = 2867895259.55, df = 88, p < 

.001 and χ
2
 = 1274245149.43, df = 88, p < .001, respectively. Variability in subjects‘ 

change in control performance from control phase 1 to 2 accounted for 64% of the 

total variability in control performance scores. These findings are an important 

prerequisite for the subsequent analyses, as they indicate that individuals show 

substantial variability in their mean control performance and the extent to which their 

control performance changed across the two phases. 
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Finally, in order to test the Information and Intelligence hypotheses an 

intercept- and slope-as-outcomes regression analysis was conducted in which mean 

control performance and the change in control performance from control phase 1 to 2 

were modelled as a function of condition (as an effect coded variable indicating 

condition: -.5 = no information, .5 = information) and scores on the APM at level 2. 

The level 1 model was the same as in the random coefficients regression analysis. 

The results of this analysis are presented in the middle panel of Table 5.2, and are 

reported in relation to the Information and Intelligence hypotheses in the next 

sections. 

5.3.5.1 Information hypothesis 

The intercept- and slope-as-outcomes regression analysis indicated that 

information had a significant impact on average control performance scores as well 

as on the change in control performance from control phase 1 to 2, controlling for the 

effects of fluid intelligence; t(86) = -2.33, p < .05, ∆R
2
 = 5% and t(86) =  -3.13, p < 

.01, ∆R
2
 = 9%, respectively. In the second control phase, subjects in the information 

condition had an average control performance score 1.91 points better than those in 

the no information condition. Similarly, the change in control performance from 

Phase 1 to 2 for subjects in the information condition was 3.43 points higher than 

those in the no information condition. In support of the information hypothesis, as 

can be seen in Figure 5.4, these results indicate that subjects who received additional 

information with regard to the underlying structure of the system performed better in 

the second control phase, and improved at a greater rate from control phase 1 to 

control phase 2 than those who did not receive information. 
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Figure 5.4: Change in control performance scores from Phase 1 to 2, by information condition 

5.3.5.2 Intelligence hypothesis 

The intercept- and slope-as-outcomes regression analysis also indicated that 

subjects scores on the APM had a significant impact on average control performance 

scores and their change in performance from control phase 1 to 2, controlling for the 

effects of condition; t(86) = -3.42, p < .01, ∆R
2
 = 7%  and t(86) = -2.34, p < .05, ∆R

2
 

= 2%. On average, a one-point increase in scores on the APM was associated with a 

.07 increase in average control performance, and a .06-point increase in the change in 

performance scores from control phase 1 to 2. These results indicate that subjects 

with a higher score on the APM, tended on average to perform better overall, and 

improved more from control phase 1 to 2. 

In order to determine whether the effect of fluid intelligence on control 

performance differed by condition a third analysis was conducted in which an 

interaction term (APM x Condition) was added to the main effects of the variables at 

level 2. The results are presented in the bottom panel of Table 5.2. There was no 

evidence that the effect of fluid intelligence (as measured via APM scores) on mean 

control performance scores varied by condition, as the interaction term was small 

and insignificant; t(85) = -.03, p = .50, ∆R
2
 = 0%. However, the effect of fluid 
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intelligence on the change in performance from control phase 1 to control phase 2 

did vary significantly by condition; t(85) = -2.48, p < .05, ∆R
2
 = 3%. In support of 

the intelligence hypothesis, the results show that the change in performance scores 

for subjects who received information was more strongly related to fluid intelligence 

than for subjects who did not receive information. 

Table 5.2 Results of the Random Coefficients Regression (RCR) Analysis and the Intercept- and 

Slope-As-Outcome Regression (ISAOR) Analyses 

Variable Parameter Estimate SE t ∆R
2
 

RCR Analysis 

Mean control performance (ß00) 12.81 .43 30.10**  

Mean change in control performance (ß10) -2.19 .57 -3.86**  

ISAOR Analysis 1 

Intercept-as-outcome     

Condition (ß01) -1.91 .82 -2.32* 5% 

APM (ß02) -.08 .02 -3.21** 7% 

Slope-as-outcome     

Condition (ß11) -3.42 1.07 -3.19** 9% 

APM (ß12) -.07 .03 -2.17* 2% 

ISAOR Analysis 2 

Intercept-as-outcome     

Condition (ß01) -1.89 .82 -2.33* 5% 

APM (ß02) -.08 .02 -3.32** 7% 

Condition x APM (ß03) -.03 .04 -.68 0% 

Slope-as-outcome     

Condition (ß11) -3.38 1.03 -3.29** 9% 

APM (ß12) -.06 .03 -2.37* 2% 

Condition x APM (ß13) -.13 .05 -2.48* 3% 

*p < .05; **p < .01 

Notes: 

  

Level 1 model (for all analyses): Yti = π0i + πli x (Control Phase), where Yti is person i‘s control 

performance score at time t, π0i is their mean control performance score and πli is their change in 

control performance from control phase 1 to control phase 2. 

Level 2 model for RCR Analysis:  

π0i  = ß00 + r0i and πli = ß10 + rli 

Level 2 model for ISAOR Analysis 1:  

π0i  = ß00 + ß01 x (Condition) + ß02 x (APM) + r0i and πli = ß10 + ß11 x (Condition) + ß12 x (APM) + rli 

Level 2 model for ISAOR Analysis 2:  

π0i  = ß00 + ß01 x (Condition) + ß02 x (APM) + ß03 x (Condition x APM) + r0i  

and  

πli = ß10 + ß11 x (Condition) + ß12  x (APM) + ß13 x (Condition x APM) + rli 

When intercepts are outcomes, ∆R
2
 is expressed as a percentage of the variability in mean control 

performance scores. When slopes are outcomes, ∆R
2
 is expressed as a percentage of the variability in 

the change in control performance.  
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5.4. Discussion 

In summary, the results supported each of the hypotheses: 1) VOTAT strategy 

use accounted for additional variance in structural knowledge over and above fluid 

intelligence (VOTAT hypothesis); 2) subjects who acquired more structural 

knowledge during the exploration phase had better control performance in phase 1 

(Knowledge hypothesis); 3) subjects who received additional information improved 

their control performance more than those who received no additional information 

(Information hypothesis) and 4) when subjects received additional information, their 

change in control performance scores from control phase 1 to 2 was more strongly 

related to fluid intelligence than the change in control performance scores for 

subjects who did not receive information (Intelligence hypothesis). These results 

suggest that the provision of structural information does confer an advantage in 

controlling a dynamic system over knowledge that is acquired through an unguided 

exploration of the system variables and that subjects can translate such information 

into effective control actions without practice. However, benefiting from structural 

information depends on fluid intelligence; information needs to be translated into 

knowledge and this process involves intelligence-related capacities. 

As in previous studies, it was found that the amount of structural knowledge 

acquired by problem solvers is strongly related to the quality of control performance 

(Funke & Müller, 1988; Beckmann & Guthke, 1995; Vollmeyer et al., 1996, Burns 

& Vollmeyer, 2002; Osman, 2008a). In contrast to previous studies (Putz-Osterloh, 

1993; Preußler, 1998), it was found that the provision of structural information 

provided an immediate advantage over incomplete knowledge that was acquired 

through an unguided exploration of the system variables. These findings suggest that 

the quality of problem solvers‘ control performance is causally dependent on the 

amount of knowledge that they are able to acquire.  

The seemingly discrepant results obtained in previous studies (Putz-Osterloh & 

Lüer, 1981; Putz-Osterloh, 1993; Preußler, 1996) can be explained by differences in 

the instructional methods used to provide structural information. The results of the 

present study show that if problem solvers receive a direct demonstration as to how 

each input effects each output and have access to this information in the form of a 

diagram during control performance, then they will be able to immediately and 
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effectively translate this information into the appropriate actions for control. This 

provides further support for the claim that information that is provided as needed is 

much more effective in promoting changes in performance than information that is 

provided before interaction with the task begins (Kotovsky et al., 1985; Berry & 

Broadbent, 1987; Leutner, 1993; Hulshof & De Jong, 2006).  

On the other hand, the argument could be made that subjects‘ exploration of 

the system, prior to the instruction of knowledge, may have prepared them to 

effectively extract knowledge from the diagram. It remains an open question as to 

whether the same instruction might result in effective control performance without 

prior exposure to the complex problem. This issue will be addressed in Study 2 and 

3. Nevertheless, these findings imply that it is not practice in applying information 

that is important for improving system control, but rather the efficacy of the 

instruction.  

Indeed, as subjects in the no information condition showed little improvement 

across the control phases this suggests that practice at controlling the system does not 

have a significant impact upon the quality of problem solvers‘ control performance. 

The high level of internal consistency in control performance scores further suggests 

that problem solvers do not dramatically change their control behaviours through 

practice. Hence, improvements in control performance with practice are rather 

limited.  

With regard to the relationship between fluid intelligence and control 

performance, these results are in line with previous findings that have shown that 

when a causal diagram is provided, control performance is moderately to strongly 

correlated with fluid intelligence. That is, more intellectually capable individuals are 

able to make use of structural information more effectively than individuals who are 

less so (Putz-Oterloh, 1981; Putz-Osterloh & Lüer, 1981; Kröner et al., 2005). This 

study extended on these previous findings, as it was also found that fluid intelligence 

had an impact on the acquisition of structural knowledge during the exploration 

phase, and subsequently in controlling the system when only incomplete knowledge 

was available. These results suggest that subjects who are more intelligent are at a 

double advantage in comparison to those who are less intelligent with regards to 

acquiring and utilising structural knowledge: They are able to acquire more 
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knowledge without assistance, and they also benefit more from direct instruction. 

These results support the view, frequently advanced by Snow (Snow & Yallow, 

1982; Snow, 1986; Snow, 1989; Snow & Lohman, 1989), that individual differences 

among learners ―…present a pervasive and profound problem to educators‖ (p.1029, 

Snow, 1989). 

On the other hand, the findings with regard to the inter-relationships between 

VOTAT strategy use, fluid intelligence and knowledge acquisition indicates that 

problem solvers who lack in fluid intelligence might benefit from instruction in 

experimental design.  The results found in the current study are in line with previous 

research that has found that the acquisition of structural knowledge is related to the 

use of the VOTAT strategy and that instruction of the VOTAT strategy also 

improves performance (Kröner et al., 2005; Vollmeyer et al., 1996; Putz-Osterloh, 

1993). However, the results extend upon these previous findings, as they indicate 

that the use of this strategy is only weakly related to individual differences in fluid 

intelligence. This supports Dunbar and Klahr‘s (1988) claim that a key difference 

between the demands of traditional rule-induction tasks and scientific discovery 

learning is that the latter situation requires the design of appropriate experiments for 

effective rule induction. The results of the current study suggest that VOTAT 

strategy instruction may significantly reduce the problems that learners experience 

during discovery learning, regardless of their level of fluid intelligence. 

The results with regard to the role of fluid intelligence also provide support for 

the claim that in previous studies (Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993; 

Preußler, 1996), the effect of structural information on control performance may 

have been masked by individual differences in the ability to understand and utilise 

the information. In addition, Preußler‘s (1998) finding that all subjects are able to 

effectively utilise information after a period of practice, may now be interpreted in a 

different light. It may be that practice per se is not the essential component, but 

rather that subjects who are less intellectually capable require more extensive 

instructions in order to be able to make sense of, and use, the information that is 

provided. 

Overall, these results imply that the direct instruction of structural information 

has the potential to increase the amount of knowledge acquired by problem solvers 
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and improve the quality of their control performance. The crucial aspect of 

instruction, however, is that it is well designed. These findings are in line with those 

from other domains that show that learners experience many difficulties when they 

are required to acquire knowledge without guidance (de Jong & van Joolingen, 1998; 

Mayer, 2004; de Jong, 2005; 2006). There are also substantial individual differences 

in problem solvers‘ capacity to make use of such information, however, which seem 

to be attributable to differences in fluid intelligence. These results suggest that a 

combination of VOTAT strategy instruction, an exploration of the system variables, 

and direct instruction may be most appropriate for encouraging learners of differing 

levels of ability to develop complete and accurate models of systems for later control 

performance.  



 102 

CHAPTER 6 

STUDY 2: YOU NEED TO KNOW: THERE IS A CAUSAL RELATIONSHIP 

BETWEEN STRUCTURAL KNOWLEDGE AND CONTROL PERFORMANCE 

IN COMPLEX PROBLEM SOLVING TASKS 

6.1 Permissions for published work 

The following chapter consists of a published paper: 

Goode, N. & Beckmann, J.F. (2010). You need to know: There is a causal 

relationship between structural knowledge and control performance in complex 

problem solving tasks. Intelligence, 38 (3), 345-352. 

It has been amended in some sections in response to examiners comments. 

The majority of the work in this paper is my own. The second author, 

Associate Professor Jens F. Beckmann, was a full collaborator in the publication of 

this paper. 

 

Signed: Associate Professor Jens F. Beckmann 
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6.2 Introduction 

The production of goods in a factory, managing an economy, and driving a car, 

could all be described as complex, dynamic systems of interdependent relationships 

between variables. Presumably, once the causal relationships between variables have 

been discovered, this information could be used to control the outcomes of the 

system, or change the system, although as yet this has not been established 

empirically. There might also be individual differences in how well problem solvers 

are able to understand or utilise such information. The aim of this study is to 

determine whether the amount of information problem solvers have about a system 

has a causal impact on how well they can control it, and whether their level of fluid 

intelligence co-determines the extent to which this information can be applied. 

Several computer-based complex problem solving (CPS) tasks, sometimes 

referred to as simulations or micro-worlds, have been developed to represent the key 

features of dynamic systems (e.g. Dörner, 1986; Funke, 1992). They consist of a 

number of input and output variables that are represented in a computer program. 

The values of inputs can be changed, which affects the values of the output variables 

through a set of mathematical equations. These tasks are ―dynamic‖ because the 

values of the outputs change in response to user input and independently over time. 

In order to study the role of structural knowledge in system control, often, problem 

solvers are first required to determine how the inputs affect the outputs (i.e. 

exploration phase). This is referred to as the underlying structure of the system. They 

then try to control the system through the input variables to reach and to maintain 

defined goal states of the output variables (i.e. control phase). 

In complex problem solving research a common assumption is that problem 

solvers‘ control of a task is dependent upon their knowledge of the underlying 

structure of the problem (Blech & Funke, 2005). Indeed, the available correlational 

evidence supports this assumption. Funke and Müller (1988) found that control 

performance and knowledge of the underlying structure of the task were significantly 

positively correlated (r = .41), as did Beckmann and Guthke (r = .51, 1995), 

Vollmeyer, Burns and Holyoak (r = .57 and r = .65, 1996), Kröner, Plass & Leutner 

(r = .77 and r = .61, 2005) and Kluge (r = .82, 2008).   
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These findings trigger two seemingly contradictory interpretations. One is that 

the quality of problems solvers‘ control performance is a function of the amount of 

structural knowledge acquired about the task. The other interpretation is that the 

acquisition of structural knowledge and the control of a complex, dynamic system 

depend on the same set of cognitive abilities.  

In line with the latter explanation direct manipulations of the amount of 

structural information available to participants do not appear to improve control 

performance. For example, in an early study by Putz-Osterloh and Lüer (1981) an 

experimental group received a diagram of the underlying structure of the task, while 

a control group received no supporting information. The diagram was presented on 

paper, as a system of arrows linking the input and output variables. Although the 

groups differed in terms of their verbal protocols, they did not differ in the success of 

their control performance. Later, Putz-Osterloh (1993) replicated this design with a 

different task. Again, the experimental group performed no differently to the control 

group. Putz-Osterloh (1993) argues that these results show that successful control 

performance can be accomplished without the aid of specific knowledge, and that a 

simple strategy of trial-and-error may be as efficient in reaching the goal states as the 

application of the rules underlying the system.  

However, in the following section we will argue that the method used to 

inform participants as to the underlying structure of the task in these studies has 

some limitations, and that these studies have not provided a strong enough test of the 

hypothesis that complex problems can be controlled without structural knowledge. 

Firstly, the instructional method used in these studies presents two sources of 

difficulty to the participants. Firstly, the user interface of complex problem solving 

tasks can be quite complicated. Wagener (2001) has found that computer familiarity 

was a significant predictor of complex problem solving, even when reasoning ability 

was partialled out.  Therefore, it may take time for the participant to understand how 

to apply the information that they have been given. This source of difficulty may 

initially diminish any advantage that problem solvers with structural knowledge hold 

with regard to controlling the system. A direct demonstration of how to alter the 

values of the input variables may be needed to familiarize participants with the user 

interface. 
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Secondly, participants are unlikely to have encountered causal diagrams as a 

method of representing relationships between variables in a computer program. 

Therefore, they may not have understood how the diagram presented on paper 

related to the input and output variables as they were presented in the task on the 

computer.  In order to overcome this problem the structure of the task could be 

presented on screen as arrows linking the input and output variables. Given these 

improvements, it is predicted that problem solvers with supporting structural 

information should display better control performance than those without such 

information. 

A question however that cannot be answered through the comparison of control 

performance under different amounts of information is whether a group‘s 

performance that received no information is as good as a group‘s performance that 

received full information or whether the full information group‘s performance was as 

poor as their no-information counterparts‘. That is, whether there are two 

qualitatively different, but equally effective, methods that can be used to control a 

system: One that is knowledge based, and another that is ad hoc, or whether those 

that are given structural information fail to apply it. 

This question is not adequately addressed in Putz-Osterloh‘s (Putz-Osterloh & 

Lüer, 1981; 1993) studies, as they do not provide a clear criterion for successful 

performance. Beckmann (1994) has suggested that control performance should be 

compared with what might have been achieved through the random action of the 

participant (see also Kluge, 2008).  Unless this comparison is undertaken, there is no 

objective measure of successful performance. In the current study control 

performance under different conditions of structural information will be compared to 

scores resulting from simulated random control interventions. It is predicted that 

problem solvers who are given information about the structure of the system should 

perform better than random, while those without such information should perform no 

better than random. 

We expect that even when provided with complete information control 

performance will not be perfect due to significant individual differences in problem 

solvers‘ capacity to apply what they have learnt. Fluid intelligence, as the capacity to 

reason abstractly, seems a likely source of individual differences in the application of 



 106 

knowledge (Cattell, 1971). In particular, tests of fluid intelligence and control 

performance when structural information is given require problem solvers to manage 

sub-tasks related to the application of rules, and once a correct response to a situation 

has been produced, generalise these responses to new items, or in the case of 

complex problem solving tasks, trials with the same goal state. Therefore, we would 

expect that correlations between control performance under full information 

conditions and tests of fluid intelligence to be substantive. However, reported 

correlations between Raven‘s Advanced Progressive Matrices (APM) and control 

performance under such conditions are rather moderate (Putz-Osterloh, 1981; Putz-

Osterloh & Lüer, 1981). 

In comparison, no relationship has been found between fluid intelligence and 

control performance when participants are not given any structural information, 

which suggests that under such conditions the demands of the two tasks are relatively 

dissimilar (Putz-Osterloh, 1981; Putz-Osterloh & Lüer, 1981).  Putz-Osterloh (1993) 

argues that when little structural information is available problem solvers must learn 

by doing. It could be argued that this skill is usually not required in traditional tests 

of intelligence.   

However, if control performance is in fact not better than random in the first 

place, then we should not expect to find a relationship between intelligence and 

control performance. Another contributor to the lack of substantial correlations 

between control performance and indicators of intellectual capacity may be the poor 

reliability of control performance measures (Kluwe, Misiak & Haider, 1991). CPS 

researchers do not consistently report reliability indices and those reported tend to be 

low (Wenke & Frensch, 2003), with the notable exception of Kröner et al. (2005).   

Therefore, in the present study we will address these issues in three ways: 

Firstly, we will report reliability indices for all performance measures. Secondly, 

control performance will be assessed across different goal states to test whether 

variability in performance is attributable to properties of the system, or the 

individual. Thirdly, control performance will be operationalised in a more 

meaningful way. Classically, knowledge application, or system control performance, 

has been operationalised by calculating the deviation of the current states of the 

output values from the goal states of the output values in terms of the root means 
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squares criterion (RMS). Thus, deviations become higher the further away the actual 

state of the system variables are from the goals (Funke, 1992; 1993). However, this 

approach does not take into account that the value ranges of the input variables are 

usually constrained in CPS tasks. If a poor decision is made on a given trial, a 

number of trials may be required to realign the output values with the goal states. 

Hence, the RMS criterion penalises participants although they may be making an 

optimal intervention towards the goal state given the current state the system is in. 

Therefore, Beckmann‘s (1994) approach to measuring the quality of knowledge 

application will be adopted in which the deviation from an optimal intervention (that 

would bring the system closest to the goal state) and the actual intervention made by 

the problem solver is the operationalisation of the quality of system control. 

As the main goal of this paper is to determine whether there is a causal 

relationship between the amount of structural knowledge and the quality of system 

control we will also introduce a condition in the experimental design where problem 

solvers are provided with partial information. This should allow us to determine 

whether different amounts of structural information lead to quantitative changes in 

performance.   

In summary, three hypotheses are put forward with regards to the effects of 

structural information and fluid intelligence on control performance in complex 

problem solving tasks. Firstly, it is hypothesised that the quality of participants 

control performance will be a function of the amount of structural information that is 

available to them (Information Hypothesis). Secondly, structural information is a 

precondition of better than random performance (Success Hypothesis). Thirdly, the 

magnitude of the relationship between fluid intelligence and control performance 

will increase as a function of the amount of structural information available to 

participants (Intelligence Hypothesis).  

6.3. Method 

6.3.1 Subjects 

75 first year psychology students (32 male) at the University of Sydney 

participated for course credit. The sample size chosen guarantees sufficient statistical 
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power (1 – β ≥ .80) in identifying at least medium effects (f
2
 ≥ .15) at a significance 

level of α ≤ .05 in the planned contrast analyses. 

6.3.2 Design 

A between-subjects design was used with three levels of structural 

information available to participants (complete, partial and no information). In the 

complete condition, participants were informed as to all the relationships between the 

variables, in the partial they were informed as to all the relationships but one, and in 

the no information condition they did not receive any information about the 

underlying structure of the task. A set of simulated data for twenty-five fictitious 

participants was also constructed based on randomly-generated control inputs. The 

simulated ―random‖ condition served as a benchmark to assess the quality of the 

empirical data in the three experimental conditions. Three dependent variables were 

derived: control performance for phase 1, control performance for phase 2 and 

performance in a test of fluid intelligence. 

6.3.3 Dependent Variables 

6.3.3.1 Control performance 

The system used in the current study consisted of three input variables and the 

participants were given seven trials to reach and maintain the goal values for three 

output variables during each control phase. Control Performance was operationalised 

as the distance between the intervention on the input variables made by the 

participant, and the optimal intervention necessary to reach the goal values for the 

output variables, averaged across the seven trials for each control phase. To calculate 

the distance between the intervention made by the participant and the optimal 

intervention for each trial, the previous values of the output variables and the goal 

state values were used to solve the set of linear equations underlying the system. This 

indicated the ideal values of the input variables.  If the ideal values were between –

10 and 10, (which were the limits of the input variables in this system), then the ideal 

values were equal to the optimal values. However, if an ideal value was greater than 

10, then the optimal value was set at 10. If it was less than -10, then the optimal 

value was set at -10. The Euclidean Distance (DEuclid) between the actual and the 

optimal values of the input variables was calculated using the equation: 
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DEuclid = √∑ (Xit
actual

 - Xit
optimal

)
 2
    (1) 

where Xit
actual

 represents the actual value of input variable i at trial t, and  

Xit
optimal 

represents the optimal value of input variable i at trial t.  

The distances calculated for the first set of seven trials and the second set of 

seven trials were then averaged to provide control performance scores for phase 1 

and 2, respectively. The theoretical range of the score is from 0 to 34, where a lower 

score indicates that participants had better control.  

6.3.3.2 Fluid intelligence 

Raw scores on the Raven‘s Advanced Progressive Matrices (APM) were used 

as an indicator of fluid intelligence. The maximum score possible was 38. This test 

has been standardised for a university-level population and extensively validated as 

an indicator of fluid intelligence (Raven, Raven & Court, 1998). 

6.3. 4 Materials 

The underlying causal structure of the complex problem employed in the study 

is identical to that used by Beckmann (1994), which is based on Funke‘s (1992) 

linear structural equation approach. The two main differences, in comparison to 

previous studies (Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993), refer to the 

interface and the semantic embedment. With regard to the interface all inputs and 

outputs are non-numerical graphical (see Fig. 1). The main argument for this 

decision was that such an interface discourages low-level calculations and attempts 

to infer equations.  Rather, the graphical interface is expected to encourage the 

development of mental representations that are more aligned with the causal 

diagrams that are used to inform participants of the underlying structure of the 

system than equation-like mental models would be. In order to avoid uncontrolled 

influences of prior knowledge the labels used in the complex system are context free. 

As can be seen in Figure 6.1, the input variables were labelled A, B and C, while the 

output variables were labelled X, Y and Z. 

The complex problem consists of three input and three output variables that are 

connected by a set of linear equations: 
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Xt+1:= 1.0 * Xt +  0.8 * At +  0.8 * Bt +  0.0 * Ct    (2) 

Yt+1:= 0.8 * Yt +  1.6 * At +  0.0 * Bt +  0.0 * Ct  

Zt+1:= 1.2 * Zt   +  0.0 * At +  0.0 * Bt  - 1.0 * Ct   

Xt,, Yt, and Zt denote the values of the output variables and At,, Bt, and Ct denote the 

values of the input variables during the present trial while Xt+1, Yt+1, Zt+1 denote the 

values of the output variables in the subsequent trial. Beckmann (1994; Beckmann & 

Guthke, 1995) has used this set of equations in previous studies to study complex 

problem solving in different semantic contexts. The system structure does not 

contain any dependencies between input variables nor between output variables. The 

structure is considered balanced, as out of a possible twelve relationships between 

the variables, six of these are active.  

6.3.5 Procedure 

The complex problem solving task was presented to participants on PCs. In 

contrast to previous studies, participants did not explore the system actively. Instead, 

a recording of seven intervention trials was shown to participants with an 

accompanying narration. As can be seen in Figure 6.1, the boxes on the input 

variables represent the values of the input variables over the seven trials, and for 

each trial positive values of the input variables are show above the input line, while 

negative values are shown below. The strength of the inputs is indicated by the 

vertical dimension of the hatched field in the respective box per trial. After the 

values for each of the three input variables are set, the effects upon the output 

variables were displayed in graphs.  

In the complete condition on the first trial the inputs were set at zero, so that 

the autonomic changes in the outputs could be detected. Subsequently, input A was 

increased to maximum while the other inputs were set at zero, then on the next trial 

input A was reduced to minimum while the other inputs were set at zero. This was 

repeated with inputs B and C on subsequent trials so that the effect of each input on 

the outputs could be clearly observed. After each trial, the narrator explained how 

each of the outputs had changed, and how this reflected the underlying structure of 

the system. A causal diagram was constructed on screen, to record this information.   
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Figure 6.1 shows a screen shot of the task, with the causal diagram as 

presented in the complete information condition. The arrows represent the 

relationships between the variables, while the positive and negative signs denote the 

direction of the relationship, and the letters the relative strength, where ―W‖ 

represents a weak relationship, ―M‖ represents a medium relationship and ―S‖ 

represents a strong relationship. Rather than comparing the absolute value of the 

coefficients, the strength of each relationship was determined by comparing similar 

effects of similar quality.  The direct effect of Inputs A and B on Output X, and Input 

C on Output Z, were considered to be weak effects in comparison to the strong effect 

of Input A on Output Y. The dynamic changes in the system were both considered 

medium effects, as the increase in Input Y is the same as the decrease in Output Z.  

Participants in the partial information condition received similar instructions; 

however, the effect of input B on the outputs was omitted. On the first trial, the 

inputs were set at zero, so that the autonomic changes in the outputs could be 

detected. Subsequently, on the second trial input A was increased to maximum while 

the other inputs were set at zero, then on the third trial input A was reduced to 

minimum while the other inputs were set at zero. On the fourth trial all the inputs 

were increased to maximum and on the fifth trial all the inputs were decreased to 

minimum. This intervention was designed to disguise the effect of input B on the 

outputs.  On the sixth and seventh trial, as in the complete information condition, the 

effect of input C on the outputs was demonstrated. After each of the seven trials, the 

narrator explained how each of the outputs had changed, and how this reflected the 

underlying structure of the system. A causal diagram was constructed on screen to 

record this information. The narration and diagram was identical to that given in the 

complete information condition except that they omitted information concerning the 

effect of Input B on the outputs. 

 In the no-information condition multiple inputs were varied on each 

intervention trial. This pattern of interventions mirrors what can be observed in 

problem solvers who fail to acquire knowledge when confronted with the task to 

explore the causal structure of a system, as if all inputs are varied at the same time 

inferences cannot be made concerning individual effects. In this condition, at the end 

of each trial the narrator explained how the outputs had changed, but did not make 

any inferences with regards to the structure of the system, and they did not receive 
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any additional supporting information. During this period participants were not 

informed about the goals that they would later have to reach. 

 

Figure 6.1: Screenshot of the task, as presented in the complete information condition, with the goals 

indicated as dotted lines on the graphs for the output variables. In this example, the fictitious problem 

solver set all inputs to zero in trial 1; in trial 2 only Input A was set to its maximum positive value 

while all other inputs were set to zero; in trial 3 Input B was set to a medium negative value; in trial 4 

Input C was set to a medium positive value. In trial 5 all inputs were changed: Input A was set at a 

medium positive value, Input B at the maximum positive value and Input C was set to three quarters 

of its maximum positive value 

In the second phase of the task, all participants had to control the system by 

manipulating the inputs to reach certain values of the outputs, which were indicated 

as lines on the output graphs. The structural information appropriate to each 

condition was available on screen. There were two control phases consisting of seven 

trials each. Each trial required three decisions from the participant. On each trial they 

had to decide whether they wanted to increase, decrease or set each input variable to 

zero. This was done step by step, such that after they decided what they wanted to do 

with input A, they then decided what they wanted to do with input B and ultimately 

input C. Previous decisions could not be altered. Although the numerical values of 
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the inputs were not available to participants, the inputs could be varied 

incrementally, within the range of -10 to 10. Each click of the mouse on either the 

―increase‖ or ―decrease‖ button increases or decreases the value of the selected input 

variable by one unit. At the end of seven trials (control phase 1), the graphs were 

reset, and new goals were indicated onscreen (control phase 2).  

Afterwards, participants completed the APM.  

6.4. Results 

6.4.1 Internal consistencies 

Firstly, an internal consistency analysis was conducted to determine the level 

of variability in control performance across the trials and for different goals states. 

Reliability was consistently good in the complete, partial and no information 

conditions across the fourteen trials (αcomplete = .89, αpartial = .79, αno = .82), and for the 

first seven trials (αcomplete  = .87, αpartial = .72, αno  = .73), and the second seven trials 

(αcomplete  = .72, αpartial = .63, αno  = .70). These results indicate that the variability in 

control performance within each individual is rather low, which also justifies 

averaging the scores across each set of seven trials. 

In comparison, and as would be expected, the reliability of the randomly 

generated performance scores was poor across the fourteen trials (αrandom = .34), and 

for the first seven trials (αrandom = .28), and the second seven trials (αrandom = .41). 

This indicates that in comparison to randomly generated inputs, potential differences 

in control performance between the no, partial and complete information conditions 

is the result of systematic sources of variability. 

6.4.2 The success hypothesis 

To determine whether participants‘ control performance was better than 

random, a multiple regression was conducted, using dummy coded variables to 

compare each experimental condition to the random performance scores. Mean 

control performance in the first phase was 11.03 (SD = 4.10) in the complete 

condition, 14.17 (SD = 3.57) in the partial condition and 16.39 (SD = 4.44) in the no 

information condition. In the second phase, mean control performance was 10.33 

(SD = 5.25) in the complete condition, 13.82 (SD = 3.96) in the partial condition and 
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16.76 (SD = 4.25) in the no information condition. The mean random control 

performance was 16.77 (SD = 2.18) in the first phase, and 18.96 (SD = 2.34) in the 

second phase. In support of the success hypothesis, control performance in the 

complete condition was significantly better than random across both phases; b = -

5.74, t(96) = -5.52, p < .01, f
2
 = .32 and b = -8.63, t(96) = -7.46, p < .01, f

2
 = .58 for 

the first and second phase respectively, as was control performance in the partial 

condition; b = -2.60, t(96) = -2.50, p = .01, f
2
 = .07 and b = -5.14, t(96) = -4.44, p < 

.01, f
2
 = .21. In contrast, control performance in the no information condition did not 

differ significantly from random in either of the control phases; b = -.38, t(96) = -

0.37, p = .72, f
2
 = .001 and b = -2.19, t(96) = -1.90, p = .06, f

2
 = .04 respectively. 

This indicates that only participants who received structural information performed 

better than random.   

6.4.3 The information hypothesis 

To determine whether participants‘ control performance was dependent on the 

amount of structural information that was available to them, multiple regression 

analyses were conducted, using Cohen coded variables to conduct a contrast 

analysis. The model contained three predictors of control performance. Firstly, 

scores on the APM were included in order to control for any potential group 

differences in fluid intelligence, contrast 1 compared the conditions that received any 

information (complete and partial) to the no information condition and contrast 2 

compared the complete and partial information conditions. 

In support of the information hypothesis, in the first and second phases, control 

performance in the complete and partial information conditions was significantly 

better than those in the no information condition; b = 3.22, t(71) = 3.30, p < .01, f
2
 = 

.15, and b = 3.81, t(71) = 3.70, p < .01, f
2
 = .19, respectively. Control performance in 

the complete information condition was significantly better than in the partial 

information condition across both control phases; b = -3.07, t(71) = -2.82, p < .01, f
2
 

= .11 and b = -3.81, t(71) = -2.94, p < .01, f
2
 = .12. These reported differences are 

independent of any potential group differences in fluid intelligence, although scores 

on the APM were a significant predictor of performance across both goal phases; b = 

-.23, t(71) = -2.95, p < .01 f
2
 = .12 and b = -.34, t(71) = -4.24 p < .01, f

2
 = .25, 

respectively. These results show that increasing the amount of structural information 
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available to the problem solver improves performance, and that even small changes 

in the amount of information available has a significant impact upon performance.  

6.4.4 The intelligence hypothesis 

We predicted that the relationship between fluid intelligence and control 

performance would increase as a function of the amount of information that problem 

solvers have about the structure of the task. As can be seen in Table 6.1, across both 

control phases the relationship between fluid intelligence and control performance is 

significant and strong in the complete information condition, while in the partial and 

no information conditions it is non-significant and weak to moderate. Overall there 

was a significant moderate correlation between control performance and fluid 

intelligence across the conditions in both control phases. 

Table 6.1 

The Relationship between APM scores and Control Performance in each Phase by Condition 

 Complete information Partial information No information 

Goal 1 -.53* -.25 -.19 

Goal 2 -.61* -.29 -.37* 

*p < .05, one tailed 

 

In order to determine whether the strength of the relationship between fluid 

intelligence and control performance differs across the conditions two moderator 

analyses were conducted, which are presented in Table 6.2. The non-significant 

interaction terms indicate that the relationship between scores on the APM and 

control performance was not significantly moderated by condition in either control 

phase; R
2

change = .01, p = .23, f
2 

= .02 and R
2

change = .02, p = .17, f
2 

= .03, respectively. 

However, the effect sizes for the interaction terms are small and the sample size is 

not sufficient to detect such effects. Nevertheless, our findings do not directly 

support the intelligence hypothesis. Rather, it appears that control performance is 

related to fluid intelligence, to a certain degree, regardless of the amount of 

information available to the problem solver. 
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Table 6.2 

Results of two moderator analyses examining the dependency of the relationship between control 

performance (phase 1 and phase 2, respectively) and fluid intelligence (APM score) 

Control Phase 1: 

Step Variables entered β t p R
2
change F 

1 APM -.29  -2.90 < .01   

 Condition -.43  -4.28 < .01   

     .312 16.36 

2 APM -.01  -0.05 .96   

 Condition -.02  -0.06 .95   

 APM x Condition -.55  -1.22 .23   

     .014 1.48 

Control Phase 2: 

Step Variables entered β t p R
2

change F 

1 APM -.39  -4.22 < .01   

 Condition -.43  -4.69 < .01   

     .406 24.64 

2 APM -.10  -0.44 .66   

 Condition -.01  -0.02 .98   

 APM x Condition -.58  -1.39 .17   

     .016 1.92 

Note: The degrees of freedom for the F-test of R
2
change in the step 1 models are (2, 72) and for the 

step 2 models are (1, 71). 

 

6.5 Discussion 

In summary, support was found for the information hypothesis, as performance 

improved systematically as the amount of structural information available to 

participants increased. With regards to the success hypothesis, control performance 

was better than random only when partial or complete information was available to 

participants. This strengthens the conclusions that can be drawn from the differences 

between the conditions, demonstrating again that control performance when partial 

or complete information is available is better than when no information is available. 

Finally, the results did not support the intelligence hypothesis. Although it appears 

that the relationship between control performance and fluid intelligence differs 

between the different information conditions, the potential moderator effect was too 

small to be statistically identified under the given circumstances. This suggests that 

the quality of decision making in CPS tasks under different levels of information is 

associated with measures of intellectual capacity, although to various degrees. 

The results presented contradict some previous findings (Putz-Osterloh & 

Lüer, 1981; Putz-Osterloh, 1993). This is likely because of the different method used 

to inform participants of the underlying structure of the problem in previous studies. 
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The results of this study suggest that if participants understand how to interact with 

the problem, and structural information is available on screen during the performance 

of the control task, then structural information does benefit control performance.  

The study provides a causal explanation to the consistent positive correlation 

found between structural knowledge and control performance reported in other 

studies (Funke & Müller, 1988; Beckmann & Guthke, 1995; Vollmeyer, Burns & 

Holyoak, 1996; Kröner, 2001; Kluge, 2008).  The finding that control performance 

was better than random only when (any) structural information was available 

demonstrates that complex problems cannot successfully be controlled without 

structural knowledge, and contradicts Putz-Osterloh‘s (1993) claim that participants 

learn by doing when information about the structure of the system is not provided. 

Rather, the results indicate that the quality of control performance is a function of the 

amount of information available (and utilised). The design of the study presented 

also made it possible to establish a causal link between knowledge and control 

behaviour that previously was based on correlational evidence alone. 

With regard to the generalisability of these findings to more complex tasks we 

can speculate that at a certain level of complexity there might be no difference in 

control performance under conditions where partial or complete information is 

available given that there is a limit on how many causal relationships problem 

solvers can consider at one time. Future studies could systematically vary the 

complexity of the system with the amount of information available. However, the 

fact that withholding information about only one out of a total of six relations in the 

current system results in a significant reduction in control performance suggests that 

the sheer count of the number of existing or non-existing relationships between 

variables within a complex system represents a rather poor proxy of its complexity. 

With regard to the relationship between fluid intelligence and control 

performance, the results of this study contradict those reported by Putz-Osterloh 

(1981; Putz-Osterloh & Lüer, 1981) to some extent. Putz-Osterloh found that the 

correlation between fluid intelligence and control performance was moderate when 

complete structural information is available, and close to zero when no information 

is available. In the current study, it was found that the correlation between fluid 
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intelligence and control performance is strong when complete structural information 

is available, and weak to moderate when no information is available.  

The present study extends upon previous findings, as it was found that the 

correlation between performance and fluid intelligence is weak to moderate even 

when partial structural information is provided. This indicates that when incomplete 

structural information is available to the problem solver, success in controlling a 

complex system cannot be sufficiently predicted by fluid intelligence. Given the 

complexity of the environment we are living in on one hand and the limitations of 

human information processing capacity on the other, it seems quite likely that people 

often operate using incomplete representations of the systems they attempt to control, 

a situation that appears to be reflected by control performance under incomplete 

information conditions. However, it remains an open question as to whether 

performance under such conditions has the potential for incremental validity in 

predicting real world problem solving over and above traditional intelligence tests.  

It could be argued that the relationship between fluid intelligence and control 

performance might be attenuated because information about the system was 

presented, and problem solvers did not have a chance to actively explore the task in 

order to acquire information about the underlying structure of the system. If problem 

solvers were required to actively acquire knowledge, then it might be expected that 

intellectually more capable problem solvers would be able a) to create system states 

that are more informative with regard to the underlying structure, and b) to extract 

more knowledge about the system. Given that control performance is dependent 

upon the amount of structural knowledge acquired, they should then have an even 

greater advantage when they are required to control the system. From this 

perspective, the decision to homogenise the amount of information available to 

participants within each experimental group leads to a rather conservative testing of 

the intelligence hypothesis.  

Findings in the current study may also indicate that control performance under 

different levels of knowledge has differential validity. That is, the processes used to 

control the task under different levels of information may differ. The strong 

correlation between control performance and scores on the APM suggest that when 

complete structural information is available the demands of the two tasks are highly 
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similar, as previously discussed. In comparison, the correlation between control 

performance and fluid intelligence is weak to moderate when partial or no 

information is available. This, in conjunction with the high levels of consistency in 

performance observed across trials and goal states, indicates that under these 

conditions control performance is systematically influenced by factors not 

sufficiently captured by traditional measures of intelligence.  However, further 

studies are needed to investigate the determinants of control performance under 

different levels of information. 

In conclusion, the results of this study indicate that successful problem solving 

in complex and dynamic situations requires task-specific knowledge, which is 

unlikely to be acquired while trying to control the system. Furthermore, individual 

differences in fluid intelligence appear to play a role in the utilisation of available 

information and the subsequent application of the acquired knowledge. Thus, 

complex problem solving performance, as measured by the current task, can be seen 

as a function of the amount of information available combined with the ability to 

utilise such information. 
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CHAPTER SEVEN 

STUDY 3: THE EFFECT OF SYSTEM COMPLEXITY ON THE ACQUISITION 

OF STRUCTURAL KNOWLEDGE AND CONTROLLING THE OUTCOMES OF 

A DYNAMIC SYSTEM 

7.1 Introduction 

The research documented in this thesis indicates that the quality of system 

control is a function of the amount of structural information that is available to 

problem solvers (Study 1 and 2), and that dynamic systems cannot be successfully 

controlled without structural knowledge (Study 2). However, in previous research, 

the provision of structural information did not show the expected benefit to control 

performance (Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993; Preußler, 1996). In 

Chapter 5 and 6 it was argued that these results were inconsistent due to differences 

in the method used to inform subjects about the underlying structure of the system. 

An alternative, or perhaps complementary, explanation is that the underlying 

structures of the systems, TAILORSHOP (Putz-Osterloh & Lüer, 1981) and LINAS 

(Putz-Osterloh, 1993; Preußler, 1996) that were used in previous studies, may be 

more complex than that used in Study 1 and 2.
5
 This may have made it more difficult 

for subjects to understand and utilise the information that they were given. Therefore, 

the aim of the study reported in this chapter is to determine to whether the 

complexity of the system has an impact on the translation of information into 

structural knowledge and effective control actions. 

As a starting point then, we need to establish what makes one system more or 

less complex than another, and why a more complex system should be more difficult 

to acquire knowledge about and to control. However, although a number of 

researchers have commented on the need for a framework to compare the complexity 

                                                        
5
 In comparison to the complex problem used in Study 1 and 2, TAILORSHOP and LINAS differ on 

a number of dimensions. LINAS was constructed using Funke‘s (1985; 1993; 2001) Linear Structural 

Equation approach, and so it is comparable to the complex problem used in Study 1 and 2. In both 

problems, the underlying structure of the system is described by a set of linear equations, specific 

goals were given for system control and abstract labels are given to the system variables to control for 

the influence of prior knowledge. In contrast, the construction of TAILORSHOP is more aligned with 

the Dynamic Decision Making approach (which is described in Chapter 2). The problem is embedded 

in a rich semantic context and ill-defined goals were given for system control. These factors may 

influence the difficulty of system control, independently of the complexity of the system. Therefore, 

comparisons in this chapter will be limited to LINAS and the complex problem used in Study 1 and 2. 
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of different systems (Quesada, Kintsch & Gomez, 2005; Gonzalez, Vanyukov & 

Martin, 2005; Osman, 2010), as yet this has not materialised. Moreover, in past 

research, system complexity has been only defined at an operational level. Due to a 

lack of proper theoretical conceptualisation, the explanatory link between system 

complexity and task performance is unclear.  

Therefore, in the following sections, firstly system complexity will be defined 

at a conceptual level. This will a) establish an explanatory link between system 

complexity and task performance and b) identify a basis for the manipulation of 

system complexity that will be used in the empirical study reported in this chapter. 

Secondly, we will discuss the implications of this conceptualisation of system 

complexity for the effect of structural information on the acquisition of structural 

knowledge and system control, and the relationship between fluid intelligence and 

system control. 

7.1.1 Definition of a construct: System complexity 

In research concerned with dynamic systems, system complexity is often 

discussed as a potential moderator variable, although it is usually only defined at an 

operational level and there exist multiple views as to what makes one system more or 

less complex than another. For example, many researchers argue that the number of 

relations in a system is indicative of system complexity (e.g. Kluge, 2008; Gonzalez, 

Thomas & Vanyukov, 2005; Sterman, 2000). Other researchers argue that the 

characteristics of the entire system are important, such as the number of variables 

and the number and kind of relations that exist among those variables (e.g. Brehmer 

& Dörner, 1993; Kerstholt & Raaijmakers, 1997; Gonzalez, Vanyukov & Martin, 

2005; Brehmer & Allard, 1991; Leutner, 1993). Funke (2001) argues that it is the 

connectivity of the system that is most important because it requires problem solvers 

to figure out the connections between variables. Connectivity is understood as the 

―dependency between two or more variables‖ (Funke, 2001, p. 73). The common 

theme across these perspectives is an emphasis on the number of certain system 

properties, where a higher number is taken as indicative of a higher level of system 

complexity, which in turn is thought to make it more difficult to acquire structural 

knowledge and to control the outcomes of the system (e.g. Dörner, 1987; Brehmer & 

Dörner, 1993; Kerstholt & Raaijmakers, 1997; Kluge, 2008). 



 122 

However, any account of system complexity that defines the construct through 

the value of a particular system property is likely to be problematic for a number of 

reasons. Firstly, such an account does not explain why we might expect certain 

system properties to be indicative of system complexity, and not others. The 

explanation usually given, which is consistent with a predominantly data driven 

approach, is that these properties reliably predict the difficulty of knowledge 

acquisition and system control. However, a range of system properties, such as 

feedback delays (Brehmer & Allard, 1991; Brehmer, 1995), the consistency of the 

relationships between the inputs and the outputs (Ackerman & Cianciolo, 2002), the 

type of connectivity pattern (Howie & Vicente, 1998), and whether the relationships 

in the system are linear or non-linear (Dörner, 1987; Dörner & Scholkopf, 1991), 

have been shown to have significant impacts on the difficulty of knowledge 

acquisition and control performance. Hence, the justification for the selection of any 

particular system property over others is unclear.  

Secondly, such an approach assumes that estimates of system complexity will 

be the same regardless of the task to be performed in relation to the system (i.e. 

acquiring knowledge on one hand, controlling the outcomes on the other). This is 

inconsistent with findings that show dissociations between the difficulty of 

knowledge acquisition and system control when certain system properties are 

manipulated (e.g. the number of variables; Preußler, 1997).  

Thirdly, and perhaps most importantly, system properties cannot be used as a 

psychological explanation as to why one system is more or less complex than 

another, and thus more or less difficult to acquire knowledge about or to control.  

Such an explanation requires some reference to the impact that system properties 

have on the processes that must be executed by the problem solver. Overall, these 

issues highlight the need for a theoretically driven account of system complexity. 

The problem of complexity is not confined to research with dynamic systems, 

and there exists an extensive literature on how the complexity of cognitive tasks 

might be conceptualised and measured. One perspective on this problem is that 

complexity can conceptualised as a function of the information processing demands 

of a task (Wood, 1986; Campbell, 1988; Bonner, 1994; Halford, Wilson & Phillips, 

1998a; Spilsbury, Stankov & Roberts, 1990; Stankov & Crawford, 1993; Stankov, 
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1999; Park & Jung, 2007). Although a number of different frameworks exist to 

measure these demands, they converge on the idea that complexity is a function of 

the number of cognitive processes that need to be executed in the performance of a 

task, and the dependencies among those processes. This is determined by the internal 

representation of the task-doer and the objective requirements of the task. Hence, 

decrements in performance related to complexity are explained by constraints on the 

human information processing system (see Appendix D for a review of the literature 

on task complexity). 

Under this approach, system complexity could be conceptualised as one facet 

of task complexity. Task complexity represents the overall information processing 

demands of the task to be performed (i.e. acquiring knowledge in one case, 

controlling the outcomes of the system in the other). System complexity indicates the 

information processing demands of the task to be performed engendered by the 

properties of the system. This approach provides an explanatory link between the 

properties of the system and task performance, such that systems with more complex 

structures are more difficult to acquire knowledge about and to control because 

problem solvers must execute a larger number of processes in the performance of 

each of these tasks.  

This approach has a number of implications for the operationalisation of 

system complexity. Firstly, it implies that estimates of system complexity may differ 

according to whether the task to be performed is to acquire knowledge or to control 

the system. Some system properties may have an impact on the number of processes 

that must be executed in order to acquire knowledge about the structure of a system, 

but not on system control. Conversely, some system properties may have a greater 

impact on the information processing demands of system control in comparison to 

knowledge acquisition. This accounts for dissociations between the difficulty of 

knowledge acquisition and system control. Secondly, under this view, any system 

property that has an impact on how the tasks of knowledge acquisition and system 

control are performed could be used to manipulate system complexity, or to compare 

different systems. These implications address some of the limitations associated with 

a purely operational approach to system complexity.  
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7.1.2 Indicators of system complexity 

The aim of this section is to identify system properties that might be used to 

manipulate system complexity, and compare the complexity of LINAS to the system 

used in Study 1 and 2. As discussed above, system complexity can only be estimated 

in relation to a particular task to be performed. In this study we are primarily 

interested in how system complexity might influence the effect of structural 

information on control performance. This can be conceptualised as two separate 

tasks. Firstly, the problem solver must acquire structural knowledge through direct 

instruction. That is, convert information into knowledge (knowledge acquisition). 

Secondly, they must translate knowledge into effective and systematic control 

actions (system control). System properties may have a differential impact on the 

complexity of each of these tasks. 

A complete review of the system properties that might influence the 

complexity of these tasks is far beyond the scope of this chapter. It is also 

unnecessary considering that we are primarily interested in whether the complexity 

of the underlying structure of LINAS differed to the system used in Study 1 and 2. 

These systems only differ on three dimensions: The number of variables, the number 

of relations and connectivity. Each of these properties may have a differential impact 

on the information processing demands of the task to be performed, although it 

should be noted that they are not entirely independent of each other, as connectivity 

is limited by the number of relationships in the system, which in turn is limited by 

the number of variables in the system. The following sections will examine how each 

of these properties might influence the information processing demands of 

knowledge acquisition and system control. 

7.1.2.1 The number of variables 

It could be argued that the number of variables in a system is likely to have a 

stronger impact on the complexity of knowledge acquisition and less impact on 

system control. With regard to knowledge acquisition, systems with more variables 

require problem solvers to incorporate more information into their mental model of 

the system, and this is likely to make it more difficult to acquire complete structural 

knowledge. In comparison, the total number of variables may not always provide an 

appropriate indicator of the information processing demands of system control. If the 
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problem solver is aware that some variables can be ignored while controlling the 

system (e.g. input variables that do not have any effect on other variables or output 

variables that do not have defined goal states) then they should have only a small 

effect on the information processing demands of the control task. At a conceptual 

level then, the number of variables is not a good candidate for estimating the 

complexity of both knowledge acquisition and system control. 

In line with these expectations, findings show that the number of variables is 

related to the difficulty of knowledge acquisition, but not system control. Preußler 

(1997) presented subjects with a complex problem with abstract letters for the system 

variables. The underlying structure consisted of a set of linear equations. In one 

condition, subjects were presented with a system that contained four inputs and three 

output variables. In a second condition, the system contained four additional input 

variables that had no effect on the output variables. Subjects in both conditions tried 

to control the system to reach specific goals for two sets of 8 trials, after which they 

were given a test of structural knowledge.  Subjects controlling the version of the 

system with fewer variables acquired significantly more structural knowledge, yet 

for control performance, the pattern was reversed; those who dealt with the system 

with more variables performed significantly better.  

These results confirm our expectations that systems with more variables will be 

more complex in relation to knowledge acquisition but not necessarily in relation to 

system control. Further, they suggest that variables influence the information 

processing demands of system control via their relationship to other variables. It is 

not the variables per se that are important, but rather the relationships between them. 

This suggests that the number of relationships in a system may provide a more 

appropriate indicator of system complexity in relation to system control.  

7.1.2.2 The number of relations 

It has often been argued that the number of relations in a system is a key 

indicator of system complexity (e.g. Kluge, 2008; Gonzalez, Thomas & Vanyukov, 

2005; Sterman, 2000). However, again, it could be argued that the number of 

relations may be related to system complexity in relation to knowledge acquisition, 

but not necessarily to system control. With regard to knowledge acquisition, a larger 

number of relations will increase the amount of information that must be 
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incorporated into the problem solvers‘ mental model. Hence, it should be more 

difficult to acquire knowledge about systems with more relations.  

With regard to system control, the goals set for the problem solver must be 

taken into account. If some relations can be ignored because they link variables that 

do not have defined goal states, then the number of relations may not be directly 

related to system complexity in relation to system control. Alternatively, in cases 

where all relations do impact upon desired goal states, then systems with more 

relations, but the same level of connectivity, will be more difficult to control because 

more information must be processed serially in order to make decisions about the 

goal states. However, this distinction between the number of relations in a system 

and the number of relations that impact upon goal states has not been made in 

previous research, so as yet there is insufficient empirical evidence to support this 

claim.  

Nevertheless, a number of studies have examined the effect of the number of 

relations on knowledge acquisition and system control (Funke, 1985; 1992; Kluge, 

2008). The experimental design of these studies is identical: Subjects were presented 

with a complex problem which consisted of three input and three output variables 

which were linked by a set of linear equations. Abstract labels were used for the 

system variables in order to control for the influence of prior knowledge. The 

number of relations in the system was varied across different experimental 

conditions, and all of the relations were linked to output variables with desired goal 

states. Subjects were first instructed to explore the system in order to acquire 

structural knowledge. Subsequently, they were instructed to control the system to 

reach specific goals for all of the output variables. Across these studies, findings 

indicate that systems with more relations, but the same number of variables, are more 

difficult to acquire knowledge about, and to control.  

However, the conclusions that can be drawn from the results of Funke‘s (1985; 

1992) studies with regard to the effect of the number of relations on system control 

are limited because the analysis did not take into account the controllability of 

different systems. Controllability reflects the control performance score that can be 

achieved through random interventions. If the underlying structure of the system 

changes, the controllability may change too. This may artificially inflate or deflate 
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control performance scores. This will confound comparisons of control performance 

across different system (Strauß, 1993; Kluge, 2008). Funke (1985; 1992) did not 

correct for controllability, and hence his findings may be attributable to differences 

in controllability, rather than differences in the information processing demands of 

the control task engendered by the system properties.  

Kluge (2008), however, did correct for controllability in her comparisons of 

control performance across different systems. These results replicate those reported 

by Funke (1985; 1992), which makes it possible to conclude that the number of 

relations in a system appears to affect the difficulty of both knowledge acquisition 

and system control. Therefore, it appears that the number of relations in a system 

may provide an appropriate indicator of system complexity in relation to both of 

these tasks.  

7.1.2.3 Connectivity 

As discussed, Funke (2001) defines connectivity as the number of 

dependencies between two or more variables. It should be noted that connectivity 

and the number of relations in a system are not identical. A system may have many 

relations, but a low level of connectivity if they form single connections between 

many variables. Alternatively, systems with few relations may form highly 

interconnected structures if they exist between few variables. Systems may also have 

the same number of variables and relations, but different levels of connectivity, as 

Figure 7.1 shows. Thus, connectivity can be distinguished from the number of 

relations in a system. 

(A) 

 

 

 

(B) 

 

Figure 7.1: Diagram A depicts a system that has four relations between two input and two output 

variables. The value of Output U depends on three relations and the value of Output V depends on one 

relation. Diagram B depicts a system that has the same number of variables and relations. However, 

the connectivity is different; the value of Output U and V both depend on two relations. 

Input A Input B 

Output U Output V 

Input A Input B 

Output U Output V 
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Connectivity is likely to have a significant impact on the complexity of 

knowledge acquisition, as the number of dependencies will determine the amount of 

information that must be integrated into the problem solvers‘ mental model of the 

system. However, connectivity may have less of an impact on how system control is 

performed if these variables are not relevant to achieving the desired goal states.  

Therefore, in the current chapter, we offer a revised definition of connectivity, 

based on our view of system complexity as a function of the information processing 

demands of the task to be performed engendered by the system properties. We 

propose that connectivity will be closely related to the complexity of system control 

when it is estimated in relation to output variables that have defined goal states. This 

can be undertaken by counting the number of relations that affect an output variable 

with a defined goal state. Under these circumstances, connectivity indicates the 

number of relations that must be processed in parallel in order to make a decision 

about a particular goal state. This will also impact upon the complexity of knowledge 

acquisition, as it reflects the number of relations that must be processed in parallel in 

order to understand how a particular output variable can be altered. Therefore, in the 

current chapter, all future references to connectivity define it in relation to the goal 

states.  

Conceptually, the connectivity implied by the goal states has a close 

correspondence to the information processing demands of the task. The amount of 

information that can be processed in parallel has long been recognised as a critical 

constraint on human performance (e.g. Miller, 1956), and findings show that 

increases in the number of relations that must be processed in parallel in reasoning 

tasks consistently lead to increases in task difficulty (e.g. Halford et al., 1998a; 

Andrews & Halford, 1998; Birney & Halford, 2002; Halford, Baker, McCredden & 

Bain, 2005). In terms of the limit on human information processing, initial estimates 

placed it at seven relations, plus or minus two (Miller, 1956). However, this estimate 

has since been revised downwards in the light of further empirical evidence (e.g. 

Broadbent, 1975; Fisher, 1984; Halford, Maybery & Bain, 1986; Halford et al., 

2005), which suggests that human information processing capacity is likely to be 

constrained to a soft limit of processing four relations in parallel (Halford et al., 

1998a; Halford et al., 2005). This suggests that the connectivity implied by the goal 

states should be closely aligned with system complexity in relation to knowledge 
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acquisition and system control. Moreover, floor effects on performance should be 

expected when the connectivity implied by the goal states requires problem solvers 

to process four or more relations in parallel.  

To the authors‘ knowledge, there have been no studies that have directly 

examined the effect of connectivity in general, or the connectivity implied by the 

goal states on the difficulty of system control or knowledge acquisition. However, in 

Funke‘s (1985; 1992) and Kluge‘s  (2008) studies the manipulation of the number of 

relations also resulted in changes in the connectivity implied by the goal states. Thus, 

the results of these studies could also be interpreted as evidence that the connectivity 

implied by the goal states provides a good indicator of system complexity in relation 

to knowledge acquisition and system control. However, obviously, it cannot be 

determined whether these results are attributable to the number of relations, the 

connectivity implied by the goal states or both. The current study will attempt to 

determine whether each of these factors has an independent effect on system 

complexity. 

In summary, it seems plausible that the number of relations and the 

connectivity implied by the goal states should impact upon the information 

processing demands of knowledge acquisition and system control, although for 

different reasons. Systems with larger numbers of relations, but similar levels of 

connectivity, require more information to be processed serially during knowledge 

acquisition and system control. Systems with higher levels of connectivity implied 

by the goal states, but the same number of relations, require problem solvers to 

process larger amounts of information in parallel during knowledge acquisition and 

system control. In the following section, these properties will be used to compare 

LINAS and the system used in study 1 and 2, to determine whether system 

complexity may account for the inconsistent effect of structural information on 

control performance. 

7.1.3 The effect of system complexity on the effect of structural information on 

knowledge acquisition and system control 

The question of interest in the current chapter is whether the inconsistent effect 

of structural information on system control is attributable to differences in the 

complexity of the systems used in different studies (i.e. Study 1 and 2; Putz-Osterloh, 
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1993; Preußler, 1996). We predict that the number of relations and the connectivity 

implied by the goal states can be used as an estimate of system complexity in relation 

to knowledge acquisition and system control. However, with regard to system 

control, the goals set for performance must be taken into account. 

The underlying structure of LINAS entails more relations and a higher level of 

connectivity implied by the goal states than the complex problem used in Study 1 

and 2. LINAS contains four input and seven output variables interconnected by 

fifteen relations. In comparison, the complex problem used in Study 1 and 2 contains 

three input and three output variables interconnected by six relations. In both of these 

systems, all relations were relevant to system control, as they all impacted upon 

output variables with defined goal states. In terms of the connectivity implied by the 

goal states, in LINAS, the maximum number of relations to be considered to reach a 

goal state is three.  In comparison, in the system used in Study 1 and 2, the maximum 

number of relations to be considered to reach a goal state was two. This suggests that 

LINAS is at a higher level of system complexity in relation to knowledge acquisition 

and system control than the complex problem used in Study 1 and 2. 

This may explain why we found in Study 1 and 2 that structural information 

benefited control performance, while Putz-Osterloh (1993) and Preußler (1996) did 

not. In effect, the information processing demands implied by LINAS may have been 

too high for subjects to effectively convert information into knowledge or translate 

knowledge into effective control actions (or at least the effect may have been too 

small to detect given the power implied by the sample size). It should be noted that 

this interpretation differs significantly from that given by Putz-Osterloh (1993), who 

argues that problem solvers can perform effectively without structural knowledge. In 

comparison, we argue that floor effects are to be expected on performance when the 

information processing demands implied by the system properties are too high for 

problem solvers to understand or utilise the information that has been provided 

through direct instruction. 

Concomitantly, this implies that it should be easier to acquire knowledge about 

and to control systems that are less complex than LINAS and the complex problem 

used in Study 1 and 2. If the underlying structure of the system contains few relations 

or a low level of connectivity there will be less information for problem solvers to 
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incorporate into their mental model. Hence, it should be easier for problem solvers 

who are provided with structural information to acquire a complete representation of 

the system, which in turn should result in better control performance. When complete 

structural knowledge is acquired, systems with fewer relations or a lower level of 

connectivity implied by the goal states should also be easier to control because less 

cognitive steps are required to formulate effective control interventions.  

However, the effect of structural information may not necessarily be stronger 

when the system is less complex as it could be speculated that it may be possible to 

learn to control such systems through trial-and-error. If this is the case, then problem 

solvers provided with structural information would not have an advantage over those 

who are required to control the system without such information. This implies that 

the provision of structural information may have a weak effect on control 

performance when the complexity of the system is low, although the overall quality 

of control performance will be high. 

This suggests that the relationship between structural knowledge and control 

performance may be dependent on the complexity of the system. At high levels of 

system complexity, as realised in LINAS, there may be little relationship between 

structural knowledge and control performance because it may be too difficult for 

problem solvers to acquire knowledge or to control the system. In contrast, at 

moderate levels of system complexity, as in the complex problem used in Study 1 

and 2, information can be successfully converted into knowledge. Subsequently, the 

effectiveness of control actions crucially depends on the amount of knowledge that 

can be acquired. At low levels of system complexity, there may be little relationship 

between structural knowledge and control performance because problem solvers may 

be able to adequately control the system either through trial-and-error or knowledge-

based interventions. This may explain why the effect of structural information on 

control performance has been found to be inconsistent.  

7.1.4 The relationship between fluid intelligence and control performance  

Based on the insights gained in Study 1 and 2 in regard to the role of fluid 

intelligence in problem solving, we assume that more intelligent problem solvers 

benefit more from the provision of structural information and are better able to 

control the outcomes of dynamic systems than their less intelligent counter-parts. 
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Hence, in the current study we will test whether these findings generalise to systems 

of differing complexity.  

Evidence from the psychometric literature suggests that the magnitude of the 

relationship between fluid intelligence and control performance may vary as a 

function of system complexity. Findings show that tasks that entail the execution of 

more processes (i.e. complexity) load more highly on broad ability factors, such as 

fluid intelligence. Snow, Kyllonen and Marshalek (1984) have proposed that even 

though they are derived using different mathematical techniques, the radex and 

hierarchical models of intelligence ―…suggest a complexity continuum along which 

tasks can be arrayed‖ (Snow et al., 1984, p. 107). The most complex tasks in this 

framework, such as Raven‘s Advanced Progressive Matrices (APM), tend to load 

most highly on the central part of the radex model and on the general ability factor in 

hierarchical models. In comparison, more elementary cognitive tasks, such as 

Perceptual Speed, show only modest correlations with the general factor and lie on 

the periphery of the radex model. A similar conclusion can be derived from a series 

of studies conducted by Kyllonen (1985). Additive-factors logic was used to 

construct a set of information processing tasks that varied from tasks that entailed 

single processes, such as reaction time tasks, to tasks that entailed many processes, 

such as sentence verification tasks. Mirroring the findings observed in factor analytic 

studies, Kyllonen (1985) found that as the number of processes involved in task 

performance increased, so did the correlations with broad ability factors. This 

suggests that the association (correlation) between fluid intelligence and control 

performance should increase as system complexity increases because the control of 

more complex systems should require the execution of more processes. However, 

this effect may be attenuated in systems that are too complex to be effectively 

controlled; if there is a floor effect on control performance then there will not be any 

relationship between fluid intelligence and control performance. Therefore, we 

predict that the relationship between fluid intelligence and control performance 

should increase with system complexity, until there are floor effects on control 

performance.  

In Study 1 and 2 we also found preliminary evidence that the relationship 

between fluid intelligence and control performance may be stronger under conditions 

where complete structural information is available, in comparison to when partial or 



 133 

no information is available. This finding is consistent with previous research (Putz-

Osterloh, 1981; Putz-Osterloh & Lüer, 1981; Krörner et al., 2005). It was argued that 

this indicates that the demands of system control and tests of fluid intelligence are 

more similar when control actions are knowledge-based, rather than the result of 

trial-and-error. However, the effect size was too small to draw strong conclusions. In 

this study, we will test whether this effect can be replicated, and whether this finding 

holds across systems of differing complexity. 

7.1.5 Task manipulations and hypotheses 

In the current study, a between-subjects design will be utilised with three levels 

of structural information available to participants (information condition: Complete, 

partial and no information) and four levels of system complexity. The first factor 

replicates the design of Study 2. In the complete information condition, subjects will 

be informed as to all the relationships between the variables, in the partial 

information condition they will be informed as to all the relationships but one, and in 

the no information condition they will not receive any information about the 

underlying structure of the system. Subsequently, they will be given a test of 

structural knowledge, and then they will be asked to control the system to reach 

specific goals.  

With respect to system complexity, the underlying structure of the system used 

in Study 1 and 2 will be manipulated in order to create four systems of a 

comparatively increased and decreased system complexity. In two of the systems, we 

will manipulate the number of relations independently of the level of connectivity 

implied by the goal states to determine how each of these system properties impacts 

upon system complexity in relation to knowledge acquisition and system control. 

The complexity of each system will be defined in terms of the number of input 

and output variables (V(number of inputs) x (number of outputs)), relations between 

these variables (R) and the connectivity implied by the goal states (C). Although this 

may seem a rather complicated way of labelling the levels of system complexity, it is 

designed to remind the reader of the structural characteristics of each system because 

the proposed levels of system complexity do not increase in a linear fashion.  
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All of the relations in the systems will be relevant to system control, as all 

output variables will have defined goal states. As in Study 1 and 2, in order to control 

for the influence of prior knowledge, the variables will be labelled with letters. 

Figure 7.2 shows a graphical representation of the underlying structure of the four 

systems (see Appendix E for equations). 

The original system used in Study 1 and 2, which in this study is referred to as 

V3x3-R-6-C-2, contains six relations between three input variables and three output 

variables. The problem solver must consider two relations in parallel when making a 

decision about any of the goal states (i.e. connectivity = 2).  

V3x3-R-3-C-1 is less complex than V3x3-R-6-C-2. It contains three relations 

between three inputs and three outputs. The problem solver needs only to consider 

the effect of a single relation on each goal state (i.e. connectivity = 1).  

V6x6-R-12-C-2 is more complex than V3x3-R-6-C-2. The number of relations 

and input and output variables is double that of the V3x3-R-6-C-2, and consequently, 

problem solvers must reach six goals, rather than three. However, the connectivity is 

the same as V3x3-R-6-C-2 (i.e. connectivity = 2). V6x6-R-12-C-2 is similar to 

LINAS in terms of the number of relations in the system. 

V3x3-R-7-C-3 is again more complex than V3x3-R-6-C-2, as it contains seven 

relations between six variables and a maximum of three relations must be considered 

in parallel when making a decision about a goal state (i.e. connectivity = 3). The 

connectivity of V3x3-R-7-C-3 is the same as LINAS.  

To summarise, V3x3-R-3-C-1 is less complex than V3x3-R-6-C-2. V6x6-R-

12-C-2 and V-6-R-7-C-3 are more complex than V3x3-R-6-C-2. At the present point 

in time, we do not have sufficient evidence to predict whether V6x6-R-12-C-2 is 

more complex than V-6-R-7-C-3, or whether the reverse is to be expected. V6x6-R-

12-C-2 contains almost twice the number of relations of V-6-R-7-C-3, yet the 

connectivity of V-6-R-7-C-3 is higher than V6x6-R-12-C-2. This manipulation 

should allow us to determine whether the number of relations and the connectivity 

implied by the goal states have independent effects on the complexity of knowledge 

acquisition and system control.  
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V3x3-R-3-C-1: 3 inputs, 3 outputs, 3 relations, connectivity 1  

 

 
 

V3x3-R-6-C-2: 3 inputs, 3 outputs, 6 relations, connectivity 2 

 

 
 

V6x6-R-12-C-2: 6 inputs, 6 outputs, 12 relations, connectivity 2 

 

 
 

V3x3-R-7-C-3: 3 inputs, 3 outputs, 7 relations, connectivity 3 

 

 
 

 

Figure 7.2: A graphical representation of the underlying structure of the four systems  
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In summary, the primary aim of this study is to examine the effect of structural 

information and system complexity on the acquisition of structural knowledge and 

system control. Firstly, it is hypothesised that the effect of structural information on 

structural knowledge will be moderated by system complexity, as it will be more 

difficult to convert information into knowledge in more complex systems.  Secondly, 

system complexity will also moderate the effect of structural information on control 

performance, as the provision of structural information is not expected to confer an 

advantage to control performance at low and high levels of system complexity. 

Thirdly, it is hypothesised that the relationship between structural knowledge and 

control performance should be moderated by system complexity. The relationship 

should be curvilinear: With high correlations at medium levels of system complexity, 

and low correlations at low and high levels of system complexity, due to either floor 

or ceiling effects on control performance, respectively. 

 A secondary aim of this study is to consider the relationship between fluid 

intelligence and system control. Firstly, it is hypothesised that the magnitude of the 

relationship between fluid intelligence and control performance will increase as a 

function of the amount of structural information available to subjects, because the 

demands of the APM and the control task should be more similar when control 

behaviour is knowledge based rather the result of trial-and-error or random 

interventions. Secondly, it is hypothesised the magnitude of the relationship between 

fluid intelligence and control performance will increase with system complexity, 

because the number of processes involved in executing the control task should 

increase with system complexity.  

The exploratory component of this investigation involves an examination of 

the contribution of the number of relations and connectivity implied by the goal 

states to system complexity. Overall, V3x3-R-3-C-1 is less complex than V3x3-R-6-

C-2, which is less complex than V6x6-R-12-C-2 and V3x3-R-7-C-3. It is predicted 

that these differences should be reflected in structural knowledge and control 

performance scores and the relationship between fluid intelligence and control 

performance. However, at this stage, we cannot specify whether V6x6-R-12-C-2 is 

more or less complex than V3x3-R-7-C-3. It remains to be seen whether the number 

of relations, or the level of connectivity implied by the goal states both have an effect 

on system complexity.  
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7.2 Method 

7.2.1 Subjects 

Three hundred first-year psychology students at the University of Sydney 

participated for course credit (M = 19.06 years, SD = 3.56, range 17 – 55 years). 

Seven subjects failed to complete all of the tasks therefore their data was excluded 

from further analysis. A sample size of 286 would guarantee sufficient statistical 

power (1 – β ≥ .90) in identifying at least medium effects (f
2
 = .25) at a significance 

level of α ≤ .05 to detect the potential interaction effects. 

7.2.2 Procedure 

Subjects were randomly allocated to one of twelve experimental conditions, 

which determined the level of system complexity and structural information they 

would receive. All tasks were presented on PCs. The general procedure consisted of 

instructions relevant to the level of structural information (complete, partial and no 

information), a test of structural knowledge and two control phases. All subjects then 

completed the Raven‘s Advanced Progressive Matrices (APM).  

7.2.2.1 Instructions in each condition 

During the instructions subjects were not informed about the goals that they 

would later have to reach in the control phases. The instructional procedure used to 

implement the different levels of structural information was identical to that used in 

Studies 1 and 2. A recording of a number of intervention trials was shown to subjects 

with an accompanying narration, while a causal diagram was constructed on screen 

to record this information that remained on screen during the control phases. The 

number of intervention trials in the instructions differed according to the level of 

system complexity because the number of variables in each system differed and in 

the complete information condition the aim was to demonstrate the autonomic 

changes in the output variables and the independent effect of each input on the 

outputs. Thus, subjects who dealt with systems that contained six variables were 

shown seven intervention trials (V3x3-R-3-C-1, V3x3-R-6-C-1 and V3x3-R-7-C-1). 

Subjects who dealt with the system that contained twelve variables were shown 

thirteen intervention trials (V6x6-R-12-C-2). 
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In the instructions given in the complete information condition, on the first trial 

the inputs were set at zero, so that the autonomic changes in the outputs could be 

detected. Subsequently, Input A was increased to maximum while the other input 

variables were set at zero, and then on the next trial it was decreased to minimum 

while the other input variables were set at zero. This was repeated for each input 

variable, so that the effect of each input on the outputs could be clearly observed. 

After each trial, the narrator described how the inputs had been altered, how each of 

the outputs had changed, and how this reflected the underlying structure of the 

system. As in Study 1 and 2, a causal diagram was constructed concurrently on 

screen to record the information presented to subjects, which remained on screen 

during the control phases. 

Subjects in the partial information condition received similar instructions. 

However, they were not shown the effect of input B on the outputs, nor did their 

causal diagram reflect this piece of information. Instead, on these trials all the inputs 

were increased to maximum, and then all the inputs were decreased to minimum. In 

the no information condition multiple inputs were varied on each trial. In this 

condition, at the end of each trial the narrator explained how the outputs had 

changed, but did not make any inferences with regards to the structure of the system, 

and a causal diagram was not developed on screen.  

7.2.2.2 Test of structural knowledge 

Subjects then had to complete a test of structural knowledge. The structural 

information (i.e. the causal diagram) was available on screen in the partial and 

complete information conditions. For each item of the structural knowledge test, 

subjects were shown the input variables in a particular configuration. They then had 

to predict whether each output variable would increase, decrease or stay the same as 

a result of this intervention. The items replicated the intervention pattern that was 

shown to subjects in the complete information condition, at the appropriate level of 

system complexity. Thus, subjects who dealt with systems that contained six 

variables completed seven items (V3x3-R-3-C-1, V3x3-R-6-C-2 and V3x3-R-7-C-

3), while subjects who dealt with the system that contained twelve variables 

completed thirteen items (V6x6-R-12-C-2). This should allow us to determine 

whether problem solvers are aware of whether or not the output variables change 



 139 

autonomously and how each input affects each output. This method has been used to 

assess structural knowledge in previous studies (e.g. Funke & Müller, 1988; 

Beckmann, 1994; Vollmeyer, Burns & Holyoak, 1996; Kröner et al., 2005; Bühner et 

al., 2008). 

7.2.2.3 Control Phase 1 and 2 

The third and fourth part of the task consisted of two control phases of seven 

trials each. Subjects had to manipulate the inputs to reach certain values of the 

outputs, which were indicated as lines on the output graphs. The goals for each 

control phase were identical to those used in Study 1 and 2. However, as V6x6-R-12-

C-2 had six outputs, the goals set for outputs X, Y and Z were the same as those set 

for U, V and W.  

During the control phases, the structural information appropriate to each 

condition was available on screen. On each trial subjects had to decide whether they 

wanted to increase, decrease or set each input variable to zero. This was done step by 

step, such that in V3x3-R-3-C-1, V3x3-R-6-C-2 and V3x3-R-7-C-3, subjects first set 

the value for Input A, then B and ultimately input C. In addition, in V6x6-R-12-C-2, 

subjects had to subsequently decide what to do with inputs D, E and F. Previous 

decisions could not be altered. Although the numerical values of the inputs were not 

available to subjects, the inputs could be varied incrementally, within the range of -

10 to 10 units. At the end of seven trials (control phase 1), the graphs were reset, and 

the second set of goals were indicated on screen (control phase 2).  

The key difference between the test of structural knowledge and the control 

phases was that the former primarily requires the reproduction of knowledge about 

the individual effect of each input variable on any of the output variables. In 

comparison, the control phases require the joint analysis of relations between 

multiple variables in the system and the application of the results of this analysis to 

manipulate the input variables in order to reach values of the output variables.  
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7.2.3 Dependent variables and individual differences measures 

7.2.3.1 Structural knowledge 

For each item, the predicted value of all output variables had to be in the 

correct direction in order to receive one point. Partial credit was not awarded. As the 

number of items completed was dependent on the number of input variables in the 

task, the maximum number points that could be gained was seven for V3x3-R-3-C-1, 

V3x3-R-6-C-2 and V3x3-R-7-C-3, and thirteen for V6x6-R-12-C-2. The scores were 

transformed into percentages, in order to compare the scores from the different 

systems.  

7.2.3.2 Control performance 

The scoring procedure used was the same as that used in Study 1 and 2 (see pp. 

34 – 35 for a detailed example). Control performance was calculated by determining 

the Euclidean Distance between the actual and optimal values of the input variables. 

The ideal values for each input variable was calculated by using the values of the 

output variables on the previous trial and the goal output values to solve the set of 

linear equations underlying the appropriate system.
6
 A lower score indicates a 

smaller deviation from optimal control interventions and therefore better 

performance. 

7.2.3.3 Fluid intelligence 

Raw scores on the APM were used as an indicator of fluid intelligence. This 

test has been extensively validated as an indicator of fluid intelligence for a 

university-level population (Raven, Raven & Court, 1998). 

7.3 Results 

7.3.1 Internal consistencies 

Firstly, internal consistency analyses were conducted to determine the 

variability in raw control performance scores across the trials and for different goal 

states as an estimate of the reliability of the dependent variables in each experimental 

                                                        
6 If the ideal values were within the range of possible input values (which was 10 to -10), then the 

ideal values were equal to the optimal values. In cases where the ideal value fell outside this range, 

then the optimal value was adjusted to the nearest possible value. 
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condition. Table 7.1 shows the raw control performance scores and the associated 

alpha coefficients, by condition.  

Across the different systems, in the complete and partial information 

conditions, the internal consistency of the control performance scores was acceptable 

to excellent across the fourteen trials and individually for the first and second set of 

seven trials. Similarly, for V3x3-R-3-C-1 and V6x6-R-12-C-2, in the no information 

condition, the internal consistency was acceptable to good across the fourteen trials 

in the control phases and individually for the first and second set of seven trials 

(control phase 1 and 2, respectively). For V3x3-R-6-C-2, in the no information 

condition, internal consistency was poor across the fourteen trials and individually 

for the first and second set of seven trials. For V3x3-R-7-C-3, in the no information 

condition, internal consistency was poor across the fourteen trials and the first set of 

seven trials, but acceptable for the second set of seven trials.  

The pattern of internal consistency scores suggests that the reliability of the 

control performance scores depends on the level of structural information and system 

complexity. If any information was available with regard to the underlying structure 

of the system or system complexity was low, then the differences between people 

were consistent across different trials and goal states. However, when no information 

was available with regard to the underlying structure of the system, and system 

complexity was high, the differences between people were much less consistent. This 

also implies that control behaviour tends to be random when the amount of 

information available mismatches the requirements in more complex systems. This 

claim will be tested further in relation to the effect of structural information on 

control performance.  

In comparison, and as would be expected, the reliability of the random control 

performance scores was poor across the fourteen trials and individually for the first 

and second set of seven trials. This indicates that in comparison to randomly 

generated inputs, potential differences in control performance in the partial and 

complete information conditions are the result of systematic sources of variability. 

An analysis of internal consistency of the APM scores indicated that the 

reliability of this scale was acceptable across the 36 items (α  = .72).  
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Table 7.1 

Raw scores for control performance and alpha coefficients across the trials and for different goal states 

by condition 

System Information Phase 1  

(Trial 1 – 7) 

Phase 2  

(Trial 8 – 14) 

All trials 

(Trials 1 – 14) 

  M SD α M SD α M SD α 
V3x3-R-3-C-1 Complete 

n = 23 
3.12 3.42 .83 2.26 1.67 .80 2.56 1.93 .86 

 Partial 

n = 23 
3.40 3.42 .92 2.26 1.67 .83 2.83 2.15 .89 

 No 

n = 22 2.58 2.58 .79 2.50 1.52 .81 2.54 1.88 .86 

 Random 

n = 25 12.45 1.58 .06 11.41 1.67 .28 11.93 1.03 .13 

V3x3-R-6-C-2 Complete 

n = 25 13.32 3.95 .77 12.61 5.64 .91 12.97 4.64 .92 

 Partial 

n = 23 
14.25 3.52 .73 15.21 4.25 .76 14.73 3.47 .83 

 No 

n = 24 
16.38 3.03 .46 17.08 3.60 .67 16.73 3.05 .75 

 Random 

n = 25 
17.16 2.88 .57 17.20 2.87 .57 17.18 2.32 .66 

V6x6-R-12-C-2 Complete 

n = 23 
15.99 6.02 .90 14.34 7.21 .94 15.18 6.25 .95 

 Partial 

n = 26 
18.44 5.03 .85 19.27 6.34 .92 18.85 5.45 .94 

 No 

n = 26 
22.74 5.23 .82 22.36 6.55 .86 22.55 5.74 .92 

 Random 

n = 25 
24.44 2.31 .39 22.67 3.65 .62 23.55 2.43 .47 

V3x3-R-7-C-3 Complete 

n = 26 
12.72 3.43 .73 14.81 4.28 .83 13.77 3.41 .85 

 Partial 

n = 26 
10.02 3.31 .75 16.01 3.73 .85 13.01 2.68 .79 

 No 

n = 26 
13.43 2.37 .17 17.59 3.56 .73 15.51 2.49 .66 

 Random 

n = 25 
14.17 2.51 .43 16.08 2.87 .53 15.12 2.13 .53 

 

7.3.2 Correcting for controllability 

So that it is possible to compare control performance scores across the different 

systems, we need to correct for differences in the mean random control performance 

scores across the different systems (i.e. controllability). An analysis of variance 

(ANOVA) indicated that the mean random control performance scores in phase 1 

and phase 2 differed significantly across the systems; F(3, 96) = 124.73, p < .01 and 

F(3, 96) = 65.69, p < .01. To correct this problem, subjects‘ control performance 

scores were then divided by the mean random control performance scores of the 

appropriate system. The corrected scores then reflect the success of subjects control 

performance relative to random interventions for the appropriate system. 
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Subsequent analyses refer to the corrected control performance scores. As 

before a score close to zero means that performance approximates the goal state. In 

addition, scores less than 1.00 indicate that performance is better than random, while 

scores greater than 1.00 indicate that performance is worse than random. Table 7.2 

shows the means and standard deviations of the structural knowledge test scores, 

corrected control performance scores and APM scores by condition.  

Table 7.2 

Structural knowledge, corrected control performance and APM scores  

System Information Structural 

Knowledge  

Corrected 

Control 

Performance 

Phase 1 

Corrected 

Control 

Performance 

Phase 2 

APM 

  M SD M SD M SD M SD 
V3x3-R-3-C-1 Complete 

n = 23 

98.18 4.32 0.23 0.21 0.16 0.14 66.81 14.10 

 Partial 

n = 23 

98.55 4.10 0.26 0.27 0.19 0.15 55.86 18.80 

 No 

n = 22 

99.24 2.45 0.19 0.20 0.20 0.14 64.34 15.90 

 Random 

n = 25 

- - 1.00 0.13 1.00 0.16 - - 

V3x3-R-6-C-2 Complete 

n = 25 

60.00 24.30 0.78 0.23 0.74 0.33 60.00 15.59 

 Partial 

n = 23 

54.71 16.63 0.83 0.21 0.89 0.25 64.78 13.69 

 No 

n = 24 

40.63 11.08 0.96 0.18 1.00 0.21 67.50 19.09 

 Random 

n = 25 

- - 1.00 0.17 1.00 0.17 - - 

V-12-R-12-C-2 Complete 

n = 23 

70.39 23.87 0.66 0.24 0.63 0.32 54.81 17.23 

 Partial 

n = 26 

65.65 24.40 0.75 0.20 0.85 0.28 58.65 15.52 

 No 

n = 26 

58.42 15.91 0.93 0.21 0.99 0.29 62.11 16.38 

 Random 

n = 25 

- - 1.00 0.10 0.99 0.16 - - 

V3x3-R-12-C-3 Complete 

n = 26 

49.67 22.78 0.95 0.27 0.93 0.27 54.81 17.23 

 Partial 

n = 26 

51.28 21.17 0.74 0.25 1.00 0.24 54.42 16.08 

 No 

n = 26 

48.72 17.11 0.98 0.17 1.10 0.23 62.11 16.38 

 Random 

n = 25 

- - 1.00 0.18 1.00 0.18 - - 
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7.3.3 The effect of structural information and system complexity on the acquisition 

of structural knowledge 

In order to determine the effect of structural information and system 

complexity on the acquisition of structural knowledge a multiple regression analysis 

was conducted using effect-coded variables to conduct contrast analyses. The model 

contained 12 predictors of structural knowledge. Firstly, mean centred scores on the 

APM were included in order to control for any potential group differences in fluid 

intelligence, three contrasts examined the main effect of system complexity, two 

contrasts examined the main effect of structural information and six contrasts 

computed the interaction terms between these variables. It should be noted that in the 

construction of the system variants, system complexity was manipulated in relation 

to the system that was used in Study 1 and 2 (V3x3-R-6-C-2 in this study). 

Therefore, V3x3-R-6-C-2 is used as the baseline condition to evaluate the effect of 

system complexity on the outcome variables in this, and all subsequent, analyses.  

The results of this analysis are reported in Table 7.3, and the interpretation of 

main effects and interactions are presented in the subsequent sections. These reported 

differences are independent of any potential group differences in fluid intelligence, 

although scores on the APM were a significant predictor of structural knowledge; b = 

.27, t(280) = 4.53, p < .01 f
2
 = .26. Figure 7.3 shows structural knowledge test scores 

by information condition and level of system complexity. 
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Figure 7.3: Structural knowledge test scores by information condition and system complexity (error 

bars represent 95% confidence intervals) 

7.3.1 The effect of system complexity on the acquisition of structural knowledge  

It was predicted that in comparison to V3x3-R-6-C-2, subjects would acquire 

more knowledge about V3x3-R-3-C-1, and less knowledge about V6x6-R-12-C-2 

and V3x3-R-7-C-3. Across the levels of structural information, mean structural 

knowledge test scores were 98.65 (SD = 3.71) for V3x3-R-3-C-1, 51.58 (SD = 19.84) 

for V3x3-R-6-C-2, 64.60 (SD = 21.91) for V6x6-R-12-C-2 and 49.89 (SD = 20.25) 

for V3x3-R-7-C-3.  

As predicted, on average, subjects who interacted with V3x3-R-3-C-1 acquired 

significantly more structural knowledge than subjects who interacted with V3x3-R-

6-C-2; b = 47.11, t(280) = 16.16, p < .01, f
2
 = .70. Against expectations, subjects 

who interacted with V6x6-R-12-C-3 acquired significantly more structural 

knowledge than subjects who interacted with V3x3-R-6-C-2; b = 13.36, t(280) = 

4.69, p < .01, f
2
 = .27. This is surprising considering that V6x6-R-12-C-3 contains 
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more than twice the number of relations in comparison to V3x3-R-6-C-2. As 

predicted, on average structural knowledge test scores were higher for subjects who 

interacted with V3x3-R-6-C-2 in comparison to V3x3-R-7-C-3, although this 

difference was not significant; b = -.18, t(280) = -.06, p = .95, f
2
 = .004. These results 

show that the underlying structure of the system does have a significant impact on 

the amount of knowledge that subjects acquire through direct instruction. However, 

more relations per se does not seem to make the task of acquiring structural 

knowledge more difficult, rather, there is a trend that suggests that it is more difficult 

to acquire knowledge about systems with a higher level of connectivity implied by 

the goal states.  

7.3.3.2 The effect of structural information on the acquisition of structural 

knowledge 

It was predicted that the amount of structural knowledge acquired by subjects 

would be a function of the amount of structural information that was available to 

them. Across the levels of system complexity, mean knowledge test scores were 

68.68 (SD = 27.47) in the complete information condition, 66.99 (SD = 25.96) in the 

partial information condition and 60.79 (SD = 25.30) in the no information condition.  

On average, subjects who received any (complete or partial) structural 

information acquired more structural knowledge than those who received no 

information; b = -6.05, t(280) = -4.20, p < .01, f
2
 = .24. Although the means were in 

the expected direction, the amount of knowledge acquired by subjects in the 

complete information condition did not differ significantly from the partial 

information condition; b = -3.58, t(280) = -1.43, p = .15, f
2
 = .09. This indicates that 

those who received any structural information acquired more knowledge than those 

who did not receive such instructions. However, increments in the amount of 

information available to subjects did not have a significant impact on the amount of 

structural knowledge acquired. This is perhaps unsurprising, considering that the 

instructions in the partial information condition only omitted information about one 

relationship in the system.  

 



 147 

7.3.3.3 Interaction between structural information and system complexity on the 

acquisition of structural knowledge  

The main effects of system complexity and structural information on structural 

knowledge, however, are characterised by significant interaction effects, as depicted 

in Figure 7.3. The effect of structural information on the amount of knowledge that 

subjects acquired was much stronger in V3x3-R-6-C-2 in comparison to V3x3-R-3-

C-1; b = 5.53, t(280) = 2.67, p < .01, f
2
 = .16. An inspection of the means reveals that 

for subjects interacting with the least complex system (V3x3-R-3-C-1) structural 

knowledge test scores were close to ceiling level across the information conditions. 

This suggests that subjects interacting with this system who received only partial or 

no information were able to independently infer the complete underlying structure of 

the system.  

Similarly, the effect of structural information on the amount of knowledge that 

subjects acquired was much stronger for V3x3-R-6-C-2 in comparison to V3x3-R-7-

C-3; b = 4.75, t(280) = 2.38, p < .01, f
2
 = .14. An inspection of the means reveals that 

for the system with the highest level of connectivity (V3x3-R-7-C-3), structural 

knowledge test scores were uniformly poor across the information conditions. This 

suggests that when the level of connectivity was high, subjects who were given 

information were unable to convert it into knowledge.  

The effect of structural information on the amount of knowledge that subjects 

acquired was similar for V3x3-R-6-C-2 in comparison to V6x6-R-12-C-2. An 

inspection of the means reveals that under these conditions, the impact of 

information on the acquisition of structural knowledge is in the expected direction, 

with more structural information being associated with better structural knowledge 

test scores. As V6x6-R-12-C-2 has twice the number of relations of V3x3-R-6-C2, 

this indicates that the number of relations in a system does not have the expected 

detrimental impact on knowledge acquisition. 

In summary, we expected that the effect of structural information on the 

acquisition of structural knowledge would diminish as system complexity (as 

indicated by the number of relations or connectivity) increased. This expectation was 

partially supported as it was found that the connectivity implied by the goal states 

moderates the impact of structural information on the acquisition of structural 
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knowledge, and that this effect is curvilinear. The results show that the provision of 

structural information conferred little advantage to the acquisition of structural 

knowledge at low (V3x3-R-3-C-1) and high (V3x3-R-7-C-3) levels of connectivity. 

Information did confer an advantage to structural knowledge when the system was at 

a medium level of connectivity (V3x3-R-6-C-2 and V6x6-R-12-C-2). The number of 

relations in the system did not have a consistent impact on the acquisition of 

structural knowledge. This indicates that the number of relations in a system is not a 

good indicator of system complexity in relation to knowledge acquisition. 

Table 7.3 

Results of a regression analysis examining the effect of structural information and system complexity 

on structural knowledge test scores 

Variables entered β t p f
 2
 

APM .283 4.53 < .01 .26 

Main effect: System complexity     

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 47.11 16.16 < .01 .70 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 13.36 4.69 < .01 .27 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 -.18 -.06 .95 .004 

Main effect: Structural information     

No vs. Any information -6.05 -4.20 < .01 .24 

Partial vs. Complete information -3.58 -1.43 .15 .09 

Interaction effects     

(No vs. Any information) X (V3x3-R-

3-C-1 vs. V3x3-R-6-C-2) 

5.53 2.67 < .01 .16 

(No vs. Any information) X (V6x6-R-

12-C-2 vs. V3x3-R-6-C-2) 

2.07 1.04 .30 .06 

(No vs. Any information) X (V3x3-R-

7-C-3 vs. V3x3-R-6-C-2) 

4.75 2.38 < .05 .14 

(Partial vs. Complete information) X 

(V3x3-R-3-C-1 vs. V3x3-R-6-C-2) 

4.78 1.32 .19 .08 

(Partial vs. Complete information) X 

(V6x6-R-12-C-2 vs. V3x3-R-6-C-2) 

1.40 .40 .69 .02 

(Partial vs. Complete information) X 

(V3x3-R-7-C-3 vs. V3x3-R-6-C-2) 

4.43 1.28 .20 .08 

 

7.3.4 The effect of structural information and system complexity on the quality of 

system control 

7.3.4.1 Comparisons to random control performance scores 

Firstly, in order to appropriately interpret the effect of structural information on 

control performance, it is necessary to compare the control performance scores in 

each condition to random control performance scores. If control performance were in 

fact not better than random then it would be inappropriate to claim that efficient 

control performance is dependent on the amount of structural information that is 

available, regardless of whether subjects who receive structural information perform 
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better than those who do not receive such information. Therefore, to determine 

whether subjects‘ control performance was better than random, a series of multiple 

regressions were conducted, using dummy coded variables to compare performance 

in each information condition to the random performance scores for each system. 

Note that lower control scores indicate better performance. 

Subjects controlling V3x3-R-3-C-1 in the complete, partial and no information 

conditions performed significantly better than random in both control phases; bcomplete 

= -.77, t(89) = -12.61, p < .01, f
2
 = .80, bpartial = -.74, t(89) = -12.25, p < .01, f

2
 = -.79 

and bno = -.81, t(89) = -13.38, p < .01, f
2
 = .82, for the first phase, and bcomplete = -.84, 

t(89) = -19.26, p < .01, f
2
 = .89, bpartial = -.81, t(89) = -19.26, p < .01, f

2
 = .90 and bno 

= -.80, t(89) = -18.85, p < .01, f
2
 = .89, for the second phase.  

Subjects controlling V3x3-R-6-C-2 in the complete information condition 

performed significantly better than random across both phases; b = -.22, t(93) = -

4.01, p < .01, f
2
 = .38 and b = -.27, t(93) = -3.78, p < .01, f

2
 = .37. Similarly, in the 

partial information condition, subjects performed significantly better than random in 

the first phase; b = -.17, t(93) = -2.99, p < .01, f
2
 = .29. However, although the means 

are in the expected direction, subjects did not perform significantly better than 

random in the second phase; b = -.11, t(93) = -1.57, p = .12, f
2
 = .16. Subjects in the 

no information condition did not perform better than random in either control phase; 

b = -.04, t(93) = -.63, p = .53, f
2
 = .07 and b = -.01, t(93) = -.07, p = .94, f

2
 = .01.  

Subjects controlling V6x6-R-12-C-2 in the complete information condition 

performed significantly better than random across both phases; b = -.34, t(96) = -

6.13, p < .01, f
2
 = .53 and b = -.36, t(96) = -4.63, p < .01, f

2
 = .43. Similarly, in the 

partial information condition, subjects performed significantly better than random in 

the first phase; b = -.25, t(96) = -4.50, p < .01, f
2
 = .41. However, although the means 

are in the expected direction, performance was not significantly better than random 

in the second phase; b = -.14, t(96) = -1.89, p = .06, f
2
 = .19. Subjects in the no 

information condition did not perform better than random in either control phase; b = 

-.07, t(96) = -1.27, p = .21, f
2
 = .13 and b = -.01, t(96) = -.07, p = .94, f

2
 = .01. 

Subjects controlling V3x3-R-7-C-3 in the complete information condition did 

not perform better than random in either phase; b = -.05, t(99) = -.81, p = .42, f
2
 = .08 

and b = -.07, t(99) = -1.10, p = .27, f
2
 = .11, respectively. Subjects in the partial 
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information condition performed significantly better than random in the first phase, b 

= -.27, t(99) = -4.29, p < .01, f
2
 = .40, but not in the second phase; b = .01, t(99) = -

.05, p = .96, f
2
 = .01. Subjects in the no information condition did not perform better 

than random in either phase; b = -.02, t(99) = -.37, p = .71, f
2
 = .04 and b = -.10, t(99) 

= 1.60, p = .11, f
2
 = .16, respectively.  

In summary, these results suggest that the effect of structural information is 

dependent on the complexity of the system, and in particular, on the connectivity of 

the system. When the connectivity was low (i.e. V3x3-R-3-C-1), successful control 

performance did not depend on access to structural information. Rather, subjects 

performed better than random regardless of the amount of information that was 

available. At medium levels of connectivity (V3x3-R-6-C-2 and V6x6-R-12-C-2), 

complete structural information was a pre-condition of better than random 

performance. However, at high levels of connectivity (i.e. V3x3-R-7-C-3), even 

those provided with complete or partial structural information did not consistently 

perform better than random. This suggests that any differences between the 

information conditions for subjects interacting with V3x3-R-7-C-3 should be 

interpreted cautiously; as subjects who received information did not on average 

perform better than random, the claim cannot be made that structural information 

confers an advantage to control performance under these conditions. These results 

support our hypotheses, and extend upon the findings reported earlier, which showed 

that the effect of structural information on the acquisition of structural knowledge 

was moderated by system complexity.  

7.3.4.2 The effect of information condition on the quality of control performance 

In order to determine whether structural information conferred an advantage to 

control performance, and whether this effect was moderated system complexity, 

multiple regression analyses were conducted using effect-coded variables to conduct 

contrast analyses. These analyses excluded the random control performance scores 

and the model contained 12 predictors of control performance. Mean centred scores 

on the APM were included in order to control for any potential group differences in 

fluid intelligence, two contrasts examined the main effect of structural information, 

three contrasts examined the main effect of system complexity and six contrasts 

computed the interaction terms between these variables. The results of these analyses 
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are reported in Tables 7.4 and 7.5, and the interpretation of the main effects and 

interactions are presented in the subsequent sections.  These results are independent 

of any potential group differences in fluid intelligence, although scores on the APM 

were a significant predictor of performance across both control phases; b = -.01, 

t(280) = -4.81, p < .01 f
2
 = .28 and b = -.01, t(280) = -6.03, p < .01, f

2
 = .34, 

respectively. Figure 7.4 and 7.5 shows the corrected control performance scores, by 

information condition and level of system complexity. 

  

Figure 7.4: Corrected control performance scores in phase 1 by information condition and system 

complexity (error bars represent 95% confidence intervals) 
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Figure 7.5: Corrected Control performance scores in phase 2 by information condition and system 

complexity (error bars represent 95% confidence intervals) 

7.3.4.3 The effect of system complexity on system control 

It was predicted that in comparison to V3x3-R-6-C-2, subjects would have 

better control over V3x3-R-3-C-1, and worse control over V6x6-R-12-C-2 and 

V3x3-R-7-C-3. For V3x3-R-3-C-1, the mean control performance scores across the 

levels of structural information were .23 (SD = .23) in the first phase and .18 (SD = 

.14) in the second phase. For V3x3-R-6-C-2, the mean control performance scores 

were .86 (SD = .22) in the first phase, and .87 (SD = .29) in the second phase. For 

V6x6-R-12-C-2, the mean control performance scores were .79 (SD = .24) and .83 

(SD = .33). For V3x3-R-7-C-3, mean control performance scores were .89 (SD = .25) 

in the first phase and 1.01 (SD = .25) in the second phase.  

In line with our predictions, subjects had significantly better control over 

V3x3-R-3-C-1, in comparison to V3x3-R-6-C-2 in phase 1 and 2; b = -.63, t(280) = -

17.49, p < .01, f
2
 = .72 and b = -.69, t(280) = -17.51, p < .01, f

2
 = .72, respectively. 

Against expectations, subjects had significantly better control over V6x6-R-12-C-2, 
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in comparison to V3x3-R-6-C-2 in phase 1; b = -.08, t(280) = -2.30, p < .05, f
2
 = .14. 

This result was particularly surprising, considering that V6x6-R-12-C-2 has twice the 

number of relations of V3x3-R-6-C-2. However, although it was in the same 

direction, this difference was not significant in phase 2; b = -.06, t(280) = -1.43, p = 

.16, f
2
 = .09. As expected, subjects had better control over V3x3-R-6-C-2 in 

comparison to V3x3-R-7-C-3, although this differences was only significant in phase 

2; b = .01, t(280) = .22, p = .83, f
2
 = .01 and b = .11, t(280) = 2.81, p < .01, f

2
 = .17, 

respectively. These results suggest that systems that contain more relations are not 

more difficult to control. Rather, there is a trend that suggests that systems that entail 

a higher level of connectivity are more difficult to control. 

7.3.4.4 The effect of structural information on system control 

It was predicted that the quality of subjects‘ control performance would be a 

function of the amount of structural information that was available to them, with 

more information being associated with better control performance. In the complete 

information condition, across the levels of system complexity, the mean control 

performance scores in the complete information condition were .67 (SD = .35) in the 

first phase and .63 (SD = .39) in the second phase. In the partial information 

condition, the mean control performance scores were .65 (SD = .32) in the first phase 

and .74 (SD = .39) in the second phase. In the no information conditions, the mean 

control performance scores were .78 (SD = .37) in the first phase, and .84 (SD = .42) 

in the second phase.  

In line with our predictions, in the first and second phases, control performance 

when any information was available (complete and partial) was significantly better 

than when no information was available; b = .06, t(280) = 3.37, p < .01, f
2
 = .20, and 

b = .07, t(280) = 3.56, p < .01, f
2
 = .21, respectively. We predicted that control 

performance in the complete information condition should be better than in the 

partial information condition. In the first control phase, this difference was not 

significant, although the means are in the expected direction; b = .04, t(280) = 1.26, p 

= .21, f
2
 = .08. However, in the second control phase, control performance in the 

complete information condition was significantly better than in the partial 

information condition; b = .09, t(280) = 2.75, p < .01, f
2
 = .16. Overall, these results 

show that structural information shows an advantage to control performance, with a 
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trend that suggests that increasing levels of structural information results in better 

control performance.  

7.3.4.5 Interaction between structural information and system complexity on the 

quality of system control 

These main effects on control performance, however, are further qualified by 

significant interaction effects between the level of structural information and system 

complexity, as depicted in Figures 7.4 and 7.5. The results indicate that the 

difference in control performance for subjects who received any information in 

comparison to no information was much larger for V3x3-R-6-C-2 in comparison to 

V3x3-R-3-C-1 in phase 1 and 2; b = -.07, t(280) = -2.90, p < .01, f
2
 = .17 and b = -

.06, t(280) = -1.96, p < .05, f
2
 = .12, respectively. Similarly, the difference in control 

performance for subjects who received complete information in comparison to partial 

information was much larger for V3x3-R-6-C-2 in comparison to V3x3-R-3-C-1 in 

phase 2; b = -.11, t(280) = -2.23, p < .05, f
2
 = .13. These interactions support the 

findings observed in relation to the comparisons to the random control performance 

scores. For subjects controlling V3x3-R-3-C-1, across the information conditions, 

control performance was close to ceiling level, and all subjects performed better than 

random. In comparison, for subjects controlling V3x3-R-6-C-2, structural 

information was a pre-condition of better than random performance, and hence the 

difference between the information conditions in terms of control performance is 

much larger than for V3x3-R-3-C-1. 

The effect of structural information on control performance was similar for 

V3x3-R-6-C-2 in comparison to V6x6-R-12-C-2. An inspection of the means reveals 

that under these conditions, the impact of information on control performance is in 

the expected direction: With more structural information being associated with better 

control performance. Again, this supports the findings reported in relation to random 

control performance scores, as subjects controlling these systems only performed 

better than random when structural information was provided. Thus, we can infer 

that under this level of system complexity, structural information does have a 

beneficial impact on control performance.  

The difference in control performance for subjects who received complete 

information in comparison to partial information was much larger for V3x3-R-6-C-2 
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in comparison to V3x3-R-7-C-3 in phase 2; b = -.15, t(280) = -3.45, p < .01, f
2
 = .20. 

Again, this supports the findings in relation to the comparisons to random 

performance scores, as control performance for subjects controlling V3x3-R-7-C-3 

was uniformly poor across the levels of structural information. In comparison, 

subjects controlling V3x3-R-6-C-2 who received structural information performed 

better than random.  

Overall, these results indicate that system complexity, as indicated by the 

connectivity implied by the goal states, to some extent determines whether structural 

information will be utilised. The number of relations does not seem to be a good 

indicator of system complexity in relation to system control. In contrast, the 

connectivity implied by the goal states appears to be systematically related to system 

complexity in relation to system control. At low and high levels of connectivity 

structural information does not show an advantage to control performance. In 

comparison, at medium levels of connectivity, structural information has the 

expected effect on control performance. These results support our hypothesis and 

further clarify the relative contribution of the number of relations and connectivity to 

system complexity. 

Table 7.4 

Results of a multiple regression analysis examining the effect of structural information, system 

complexity and the interaction between these variables on control performance in phase 1 

Variables entered β t p f
 2
 

APM -.01 -4.81 < .01 .28 

Main effect: System complexity     

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.63 -17.49 < .01 .72 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 -.08 -2.30 < .05 .14 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 .01 .22 .83 .01 

Main effect: Structural information     

No vs. Any information .06 3.37 < .01 .20 

Partial vs. Complete .04 1.26 .21 .08 

Interaction effects     

(No vs. Any information) X (V3x3-

R-3-C-1 vs. V3x3-R-6-C-2) 

-.07 -2.90 < .01 .17 

(No vs. Any information) X (V6x6-

R-12-C-2 vs. V3x3-R-6-C-2) 

.03 1.02 .31 .06 

(No vs. Any information) X (V3x3-

R-7-C-3 vs. V3x3-R-6-C-2) 

-.01 -.24 .81 .01 

(Partial vs. Complete information) X 

(V3x3-R-3-C-1 vs. V3x3-R-6-C-2) 

-.04 -.99 .32 .06 

(Partial vs. Complete information) X 

(V6x6-R-12-C-2 vs. V3x3-R-6-C-2) 

.01 .19 .86 .01 

(Partial vs. Complete information) X 

(V3x3-R-7-C-3 vs. V3x3-R-6-C-2) 

-.15 -3.45 < .01 .20 
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Table 7.5 

Results of a multiple regression analysis examining the effect of structural information, system 

complexity and the interaction between these variables on control performance in phase 2 

Variables entered β t p f
 2
 

APM -.01 -6.03 < .01 .34 

Main effect: System complexity     

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.69 -17.51 < .01 .72 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 -.06 -1.43 .16 .09 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 .11 2.81 < .01 .17 

Main effect: Structural information     

No vs. Any information .07 3.56 < .01 .21 

Partial vs. Complete information .09 2.75 < .01 .16 

Interaction effects     

(No vs. Any information) X (V3x3-R-3-C-1 vs. 

V3x3-R-6-C-2) 

-.06 -1.96 < .05 .12 

(No vs. Any information) X (V6x6-R-12-C-2 

vs. V3x3-R-6-C-2) 

.02 .10 .32 .06 

(No vs. Any information) X (V3x3-R-7-C-3 vs. 

V3x3-R-6-C-2) 

-.01 -.40 .69 .02 

(Partial vs. Complete information) X (V3x3-R-

3-C-1 vs. V3x3-R-6-C-2) 

-.11 -2.23 < .05 .13 

(Partial vs. Complete information) X (V6x6-R-

12-C-2 vs. V3x3-R-6-C-2) 

.01 .28 .78 .02 

(Partial vs. Complete information) X (V3x3-R-

7-C-3 vs. V3x3-R-6-C-2) 

-.06 -1.21 .23 .07 

 

7.3.5 The relationship between structural knowledge and system control 

It was predicted that the relationship between structural knowledge and control 

performance would be weaker at lower and higher levels of system complexity in 

comparison to V3x3-R-6-C-2. In order to test this prediction, a moderator analysis 

was conducted for each control phase. The model included: The information 

condition to control for the effect of the experimental manipulation of knowledge, 

effect-coded variables to compare control performance in V3x3-R-6-C-2 to each of 

the other systems, mean centred structural knowledge test scores and the interactions 

between system complexity and structural knowledge test scores. The results of these 

analyses are reported in Table 7.6 below.  Overall, the results indicate that 

controlling for the level of structural information and system complexity, subjects 

who acquired more structural knowledge had better control performance across both 

phases; b = -.006, t(284) = -4.35, p < .01, f
2
 = .25 and b = -.007, t(284) = -4.73, p < 

.01, f
2
 = .27, respectively.  

In line with our expectations, in the first control phase, this result is qualified 

by a significant interaction effect that indicates that the strength of this relationship is 

stronger in V3x3-R-6-C-2 than in V3x3-R-7-C-3; b = .005, t(284) = 2.82, p < .01, f
2
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= .17. The findings reported in the preceding sections may account for the weaker 

relationship between structural knowledge and control performance observed for 

V3x3-R-7-C-3. Subjects dealing with this system were unable to convert information 

into knowledge and subjects did not perform better than random regardless of the 

amount of information that they received. It is therefore not surprising that the 

relationship between structural knowledge and control performance should be weak: 

Control interventions cannot be knowledge-based when knowledge has not been 

acquired. However, these results should not be over interpreted, as this effect was not 

significant in the second control phase. 

The relationship between structural knowledge and control performance was 

similar for V3x3-R-6-C-2 in comparison to V3x3-R-3-C-1 and V6x6-R-12-C-2 

across both phases. Overall, these results do not support the hypothesis that the 

relationship between structural knowledge and control performance is moderated by 

system complexity. Rather, it appears that the amount of structural knowledge that 

subjects acquire is a significant predictor of performance regardless of the 

complexity of the system. 

Table 7.6 

Results of a moderator analysis examining the relationship between structural knowledge and control 

performance by system complexity for phase 1 and 2, respectively 

Variables entered β t p f
 2
 

Control Phase 1     

Information condition -.036 -2.22 .03 .13 

Structural knowledge -.006 -4.35 < .01 .25 

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.550 -2.23 < .05 .13 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 .003 .07 .94 < .01 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 .099 2.22 < .05 .13 

(Structural knowledge) X  

(V3x3-R-3-C-1 vs. V3x3-R-6-C-2) 

.006 .80 .43 .05 

(Structural knowledge) X  

(V3x3-R-3-C-1 vs. V3x3-R-6-C-2) 

.001 .69 .49 .04 

(Structural knowledge) X  

(V3x3-R-3-C-1 vs. V3x3-R-6-C-2) 

.005 2.82 < .01 .17 

Control Phase 2     

Information condition -.080 -4.68 < .01 .27 

Structural knowledge -.007 -4.73 < .01 .27 

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.516 -2.01 < .05 .12 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 .041 .97 .33 .06 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 .172 3.67 < .01 .21 

(Structural knowledge) X  

(V3x3-R-3-C-1 vs. V3x3-R-6-C-2) 

.004 .54 .59 .03 

(Structural knowledge) X  

(V6x6-R-12-C-2 vs. V3x3-R-6-C-2) 

.001 .32 .75 .02 

(Structural knowledge) X  

(V3x3-R-7-C-3 vs. V3x3-R-6-C-2) 

.003 1.50 .13 .09 
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7.3.6 The relationship between fluid intelligence and system control by information 

condition 

It was predicted that the magnitude of the relationship between fluid 

intelligence and control performance would increase with the amount of information 

available to subjects. As can be seen in Table 7.7, across both control phases the 

relationship between fluid intelligence and control performance is strong in the 

complete information condition, while it is weak in the partial and no information 

conditions. 

Table 7.7 

The relationship between APM scores and control performance in each phase, by information 

condition 

 Complete 

information 

Partial information No information 

Phase 1 -.42** -.10 -.11 

Phase 2 -.43** -.16 -.17 

** p < .01 

In order to test whether the strength of the relationship between fluid 

intelligence and control performance varied across the information conditions two 

moderator analyses were conducted, which are presented in Table 7.8. The 

significant interaction terms indicate that the relationship between scores on the 

APM and control performance was significantly moderated by the amount of 

information available to subjects across both phases, b = -.004, t(289) = -2.45, p < 

.05, f
2
 = .14, and b = -.003, t(289) = -1.91, p < .05, f

2
 = .11. This indicates that the 

strength of the relationship between fluid intelligence and control performance 

increased as the amount of information available to subjects increased. Thus, 

subjects with a higher level of fluid intelligence were at a greater advantage in terms 

of control performance when more structural information was available. 
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Table 7.8 

Results of two moderator analyses examining the dependency of the relationship between control 

performance and fluid intelligence (APM score) for phase 1 and 2. 

Step Variables entered β t p R
2

change F 

Control Phase 1 

1 Information 

condition 

-.066 -2.66 < .01  
 

 APM -.004 -3.27 < .01   

     .052 7.88 

2 Information 

condition 

-.062 -2.52 < .05  
 

 APM .003 .96 .340   

 Information 

condition X APM 

-.004 -2.45 < .05  
 

     .019 6.01 

Control Phase 2 

1 Information 

condition 

-.119 -4.25 < .01  
 

 APM -.006 -4.28 < .01   

     .100 16.06 

2 Information 

condition 

-.116 -4.14 < .01  
 

 APM .000 .07 .949   

 Information 

condition X APM 

-.003 -1.91 < .05  
 

     .011 3.65 

Note: The degrees of freedom for the F-test of R
2
change in the step 1 models are (2, 290) and for the step 

2 models are (1, 289).  

 

7.3.7 The relationship between fluid intelligence and system control by system 

complexity 

It was predicted that the magnitude of the relationship between fluid 

intelligence and control performance would increase with system complexity, as long 

as there were no floor effects on control performance. As can be seen in Table 7.9, 

across both control phases, the relationship between fluid intelligence and control 

performance appears to be weak to moderate across the levels of system complexity. 

Table 7.9 

The relationship between APM scores and control performance in each phase, by system 

complexity 

 V3x3-R-3-C-1 V3x3-R-6-C-2 V6x6-R-12-C-2 V3x3-R-7-C-3 

Phase 1 -.23 -.33* -.27* .01 

Phase 2 -.19 -.25* -.29* -.25* 

*p < .05 

 

However, as the relationship between fluid intelligence and control 

performance varies according to the amount of structural information available to 

subjects (see section 7.3.6) we must also take this into account. Therefore, in order to 

test whether the strength of the relationship between fluid intelligence and control 
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performance differed according to the level of system complexity, a moderator 

analysis was conducted for each control phase at each level of structural information. 

The model included: a) mean centred scores on the APM, b) dummy-coded variables 

to compare control performance in V3x3-R-6-C-2 to each of the other systems and c) 

the interaction between these variables to compare the differences in the strength of 

the relationship between the APM and control performance for each of the systems. 

The results are reported in Table 7.10 for the no information condition, in Table 7.11 

for the partial information condition and in Table 7.12 for the complete information 

condition.  Against expectations, the interaction terms are not significant, which 

indicates that controlling for the amount of structural information that subjects 

received, the strength of the relationship between fluid intelligence and control 

performance did not vary across the levels of system complexity. 

Table 7.10 

Results of moderator analyses examining the relationship between fluid intelligence (APM score) 

and control performance by system complexity for the no information condition 

Variables entered β t p f
 2
 

Control Phase 1     

APM -.003 -1.71 .091 .18 

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.782 -14.16 < .01 .83 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 -.022 -.40 .688 .04 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 -.007 -.13 .899 .01 

(APM) X (V3x3-R-3-C-1 vs. V3x3-R-6-C-2) .001 .47 .638 .05 

(APM) X (V6x6-R-12-C-2 vs. V3x3-R-6-C-2) -.001 -.49 .628 .05 

(APM) X (V3x3-R-7-C-3 vs. V3x3-R-6-C-2) .004 1.32 .191 .14 

Control Phase 2     

APM -.004 -1.63 .106 .17 

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.803 -12.34 < .01 .79 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 .015 .23 .817 .02 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 .091 1.46 .148 .15 

(APM) X (V3x3-R-3-C-1 vs. V3x3-R-6-C-2) .001 .28 .781 .03 

(APM) X (V6x6-R-12-C-2 vs. V3x3-R-6-C-2) -.003 -.82 .416 .09 

(APM) X (V3x3-R-7-C-3 vs. V3x3-R-6-C-2) .001 .24 .813 .03 
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Table 7.11 

Results of moderator analyses examining the relationship between fluid intelligence (APM score) 

and control performance by system complexity for the partial information condition 

Variables entered β t p f
 2
 

Control Phase 1     

APM -.007 -2.04 < .05 .21 

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.612 -8.75 < .01 .68 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 -.114 -1.70 .092 .18 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 -.128 -1.85 .068 .19 

(APM) X (V3x3-R-3-C-1 vs. V3x3-R-6-C-2) .004 .86 .393 .09 

(APM) X (V6x6-R-12-C-2 vs. V3x3-R-6-C-2) .002 .48 .631 .05 

(APM) X (V3x3-R-7-C-3 vs. V3x3-R-6-C-2) .006 1.40 .167 .15 

Control Phase 2     

APM -.009 -2.62 < .01 .27 

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.742 -10.95 < .01 .76 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 -.086 -1.32 .189 .14 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 .036 .54 .590 .06 

(APM) X (V3x3-R-3-C-1 vs. V3x3-R-6-C-2) .008 1.85 .068 .19 

(APM) X (V6x6-R-12-C-2 vs. V3x3-R-6-C-2) .003 .65 .519 .07 

(APM) X (V3x3-R-7-C-3 vs. V3x3-R-6-C-2) .002 .50 .622 .05 

 

Table 7.12 

Results of moderator analyses examining the relationship between fluid intelligence (APM score) 

and control performance by system complexity for the complete information condition 

Variables entered β t p f
 2
 

Control Phase 1     

APM -.008 -2.57 < .05 .26 

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.499 -7.18 < .01 .61 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 -.105 -1.59 .115 .17 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 .185 2.80 .006 .29 

(APM) X (V3x3-R-3-C-1 vs. V3x3-R-6-C-2) .005 .99 .322 .11 

(APM) X (V6x6-R-12-C-2 vs. V3x3-R-6-C-2) .001 .21 .831 .02 

(APM) X (V3x3-R-7-C-3 vs. V3x3-R-6-C-2) .006 1.52 .133 .16 

Control Phase 2     

APM -.008 -2.13 < .05 .22 

V3x3-R-3-C-1 vs. V3x3-R-6-C-2 -.544 -6.72 < .01 .58 

V6x6-R-12-C-2 vs. V3x3-R-6-C-2 -.092 -1.21 .231 .13 

V3x3-R-7-C-3 vs. V3x3-R-6-C-2 .186 2.42 < .05 .25 

(APM) X (V3x3-R-3-C-1 vs. V3x3-R-6-C-2) .007 1.30 .197 .14 

(APM) X (V6x6-R-12-C-2 vs. V3x3-R-6-C-2) -.002 -.45 .653 .05 

(APM) X (V3x3-R-7-C-3 vs. V3x3-R-6-C-2) .003 .66 .510 .07 
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7.4 Discussion 

In summary, the results indicate that the effect of structural information on the 

acquisition of structural knowledge and control performance is dependent on system 

complexity, as indicated by the connectivity implied by the goal states. It was more 

difficult for subjects to understand and utilise information in relation to systems with 

higher levels of connectivity. The effect of the number of relations on knowledge 

acquisition and system control was inconsistent. The strength of the relationship 

between fluid intelligence and control performance increased with the amount of 

information available to subjects, which suggests that the demands of system control 

most closely match those required in traditional measures of intelligence when 

control behaviour is knowledge-based. The strength of the relationship between fluid 

intelligence and control performance did not vary as a function of system 

complexity, which suggests that more intelligent problem solvers have a general 

advantage over their less intelligent counter-parts regardless of the complexity of the 

system.  

The results elucidate important boundary conditions for the effect of structural 

information on control performance. Consistent with the results reported in Study 1 

and 2, when the system consisted of 6 relations between 6 variables, and two 

relations had to be considered in parallel, only subjects provided with structural 

information performed better than random. This result was shown to generalise to a 

system that entailed the same level of connectivity, but twice the number of variables 

and relations. However, subjects who interacted with the system that had a lower 

level of connectivity and half the number of relations performed better than random 

regardless of the amount of information they received. In contrast, subjects who 

interacted with the system that required the consideration of three relations in 

parallel, and consisted of 7 relations between 6 variables had poor control 

performance regardless of the amount of information that they received. Overall, the 

results indicate that the beneficial effect of structural information on control 

performance is dependent on the complexity of the system. 

This may explain why previous studies have found that structural information 

did not benefit control performance (Putz-Osterloh, 1993; Preußler, 1996). In both 

LINAS and V3x3-R-7-C-3 three relations must be considered in parallel in order to 



 163 

make a decision about a goal state. The results of the current study show that at this 

level of system complexity, it is difficult for problem solvers to acquire structural 

knowledge through direct instruction or utilise structural information to control the 

outcomes of dynamic systems. This suggests that the level of system complexity 

entailed in LINAS may have been too high for problem solvers to effectively make 

use of structural information. 

However, the criticism that the instructional method used in previous studies 

may have been inadequate remains valid. In the current study, subjects interacting 

with V3x3-R-7-C-3 failed to convert information into structural knowledge. In 

effect, this demonstrates that at this level of system complexity, even a direct 

demonstration of how each input affects each output, combined with a verbal 

explanation of the material and the presentation of the information on screen while 

the control task is performed, is insufficient to promote structural knowledge. The 

question that remains unanswered is whether any form of direct instruction would 

result in the acquisition of knowledge, and subsequently influence control 

performance, in systems with highly complex structures. It may be that under such 

conditions, problem solvers require an extended period of goal-orientated practice in 

order to acquire knowledge and chunk it into useable components. Effectively, this 

would reduce the information processing demands of the task (i.e. complexity) and 

hence the overall level of difficulty experienced by the problem solver. 

In Study 2, the effect of structural knowledge on control performance could 

only be inferred indirectly through the effect information on control performance. 

However, in the current study the test of structural knowledge directly after the 

instructions allowed us to test whether efficient control performance is dependent on 

the acquisition of structural knowledge. It was found that better than random 

performance was consistently associated with the acquisition of a high level of 

structural knowledge prior to control performance, and under these conditions the 

relationship between structural knowledge and control performance was strong. 

Concomitantly, performance was not better than random when little knowledge was 

acquired prior to the control phase, and under these conditions the relationship 

between structural knowledge and control performance was weak. These results 

clarify the results observed in Study 2, and demonstrate that successful control 

performance is dependent on the acquisition of structural knowledge. 
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However, an alternative conclusion might be drawn from the control 

performance scores of subjects who interacted with the low complexity system 

(V3x3-R-3-C-1) and did not receive structural information. These subjects had 

almost perfect control over the system. This could be interpreted as evidence that 

systems at a low level of complexity can be controlled without structural knowledge, 

through a process of trial-and-error. However, it seems likely that subjects‘ efficient 

control interventions were knowledge-based under these conditions. Firstly, their 

structural knowledge test scores were almost perfect, indicating that they acquired 

almost complete structural knowledge prior to the control phase. Secondly, their 

control performance scores showed high levels of internal consistency, which would 

not be expected if they were learning to control the system through trial-and-error. 

Thirdly, the relationship between structural knowledge and control performance was 

similar to that observed in relation to V3x3-R-6-C-2, which suggests that the amount 

of knowledge that subjects acquired determined the quality of their control 

performance. Taken together, these findings suggest that at low levels of system 

complexity problem solvers can easily infer the underlying structure of the system 

without assistance, and that efficient control actions are the result of knowledge-

based interventions. 

Nevertheless, it was particularly surprising that subjects dealing with the low 

complexity system in the no information condition acquired almost perfect structural 

knowledge. In the instructional phase in the no information condition multiple 

variables were changed on each trial. This pattern of interventions was selected to 

prevent subjects from independently inferring the underlying structure of the system. 

This suggests that the relationship between VOTAT strategy use and the acquisition 

of structural knowledge is dependent on the complexity of the system. That is, a 

strong relationship between the two will only be found when the system is 

sufficiently complex to require a systematic testing strategy for the acquisition of 

knowledge. 

With regard to the relationship between fluid intelligence and control 

performance, it was found that the strength of this relationship increased with the 

amount of structural information available to subjects. These results cross-validate 

those reported in Study 2, and support the hypothesis put forward in Chapter 4 that 

control performance under different levels of knowledge has differential validity. 
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That is, the processes used to control the systems under different levels of knowledge 

may differ.  

The strong relationship between control performance and scores on the APM 

when complete structural information is available is consistent with a number of 

previous studies (Putz-Osterloh, 1981; Putz-Osterloh & Lüer, 1981; Hörmann & 

Thomas, 1988). The strong relationship suggests that when complete structural 

information is available there is a large overlap between the underlying processes of 

the two tasks. As discussed in Chapter 4, Carpenter et al.‘s (1990) analysis of the 

requirements of the APM suggests that the main sources of individual differences in 

performance are the ability to induce abstract relations and dynamically manage 

information in working memory. One could argue, that the high correlation between 

the APM and control performance under conditions where complete information is 

available suggests that in both instances abstract relations have to be induced and 

dynamically managed.  

The lower correlations under partial and no information conditions, however, 

would suggest that the aforementioned processes are less prevalent. Considering that 

subjects in the no information condition did not perform better than random this 

suggests that their control actions were the result of random interventions. There 

should be no systematic differences in the success of random interventions, and 

therefore we would not expect a relationship between fluid intelligence and control 

performance. In comparison, under conditions of partial information, control 

interventions may be a combination of knowledge-based interventions and trial-and-

error. The presence of random interventions may introduce unsystematic sources of 

variability that may lower the relationship to fluid intelligence. Overall, these results 

suggest that a lower relationship between fluid intelligence and control performance 

is to be expected when problem solvers do not have access to complete knowledge of 

the underlying structure of the system, and thus are forced to act randomly to some 

extent. 

These results may explain why the relationship between fluid intelligence and 

control performance is so inconsistent in previous research. Typically, when problem 

solvers are required to control the system without an initial exploration phase, the 

relationship between fluid intelligence and control performance has been found to be 
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low (e.g. Dörner et al., 1983; Funke, 1983; Gediga et al., 1984; Putz-Osterloh, 1985; 

Reichert & Dörner, 1988; Joslyn & Hunt, 1998).  In contrast, when problem solvers 

first explore the system in order to acquire structural knowledge and then control the 

system, the relationship between fluid intelligence and control performance is 

moderate (Beckmann, 1994; Funke, 1985; Misiak & Kluwe, 1986; Krörner, 2001; 

Wagener, 2001; Kröner & Leutner, 2002; Krörner et al., 2005; Bühner et al., 2008). 

This pattern of results is consistent with the results of the current study, which 

suggests that if problem solvers do not get a chance to acquire knowledge then 

performance will be the result of random interventions, and thus will not reflect 

differences in fluid intelligence. Alternatively, when problem solvers acquire 

knowledge, performance is knowledge-based, and thus reflects differences in fluid 

intelligence. 

Against expectations, the relationship between fluid intelligence and control 

performance did not vary as a function of system complexity. This is particularly 

surprising considering that it was more difficult to control the systems that were 

designed to be more complex. This would suggest that the control of more complex 

systems requires the execution of a greater number of processes. One explanation for 

this result may be that the change in the number of processes to be executed across 

the levels of system complexity was too small to be detected by changes in the 

relationship to fluid intelligence. 

Nevertheless, the results of this chapter make an important contribution to our 

understanding of system complexity. In the introduction it was argued that system 

complexity could be conceptualised as a function of the information processing 

demands imposed by system properties in the performance of a particular task. In 

support of this claim, it was found that the connectivity implied by the goal states, 

rather than the number of relations, was a consistent predictor of the difficulty of 

knowledge acquisition and system control. This is interpretable from an information-

processing point of view, as increases in connectivity increase the amount of 

information that must be processed simultaneously by the problem solver. In 

contrast, an increase in the number of relations in a system, without an increase in 

connectivity, simply increases the number of operations that must be performed 

sequentially. The results of the present study are in line with those from other 

domains that have shown that the amount of information that must be processed in 
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parallel is directly related to task complexity (e.g. Halford et al., 1998a; Andrews & 

Halford, 2002; Birney & Halford, 2002; Halford et al., 2005; Beckmann, 2010). 

These results qualify those reported by Kluge (2008) and Funke (1985; 1992) 

in relation to the effect of the number of relations on the difficulty of knowledge 

acquisition and system control. In these studies, manipulations of the number of 

relations in systems with the same number of variables resulted in concomitant 

increases in the connectivity implied by the goal states. The results of the current 

study suggest that the connectivity implied by the goal states, rather than the number 

of relations, may be responsible for the decrements in knowledge acquisition and 

control performance observed in these studies. 

In contrast to the thinking of many researchers in this domain, the results 

suggest that a system complexity framework based on counting the number of certain 

system properties will be insufficient for predicting the difficulty of knowledge 

acquisition or control performance. Rather, the framework must take into account a) 

the task to be performed by the problem solver and b) how system properties 

influence the amount of information that must be processed in parallel in the 

performance of this task. One approach to this problem might be to decompose task 

performance into a series of sub-tasks, and then count the number of system 

properties that influence performance on each sub-task. The sub-task with the highest 

processing load could be taken as indicative of overall system complexity in relation 

to performing that particular task. Halford and colleagues (Halford et al., 1998a; 

Halford et al., 2005) have developed and successfully used a similar approach to 

estimate the complexity of reasoning tasks (i.e. Relational Complexity Theory). The 

results suggest that such an approach to system complexity might prove useful for 

the comparisons of different systems and for the prediction of knowledge acquisition 

and control performance. 

The results also point to the need to construct systems at the appropriate level 

of complexity for studying processes such as reasoning and decision-making, and to 

assess problem solving competencies. If the system is too complex, performance is 

likely to be random, and consequently there will be floor effects on performance. 

Under such conditions it would be inappropriate to derive inferences about cognitive 

processes or problem solving competencies from the data. The results of the current 
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study suggest that systems become ―too complex‖ when problem solvers are required 

to integrate three sources of information in order to make a decision about a goal 

state. However, strong conclusions cannot be drawn from the results of a single 

study. Further research is required to establish the limit on human performance in 

dynamic systems, and establish guidelines for the construction of systems at 

appropriate levels of complexity. 

In conclusion, the results of this study indicate that successful problem solving 

in complex and dynamic environments requires structural knowledge. The likelihood 

that problem solvers will be able to acquire such knowledge through direct 

instruction and use it to effectively control systems is dependent on fluid intelligence 

and system complexity. In particular, it was found that it is more difficult to convert 

information into knowledge and control systems that have a high level of 

connectivity. The number of relations in the system did not have a consistent impact 

on knowledge acquisition or system control. This indicates that the amount of 

information to be processed in parallel is an important determinant of performance 

on these tasks. This is congruent with our conceptualisation of system complexity as 

a function of the information processing demands of the task to be performed 

engendered by the properties of the system. Overall, the success of system control 

can be seen as a function of the interaction between the limitations imposed by the 

system in terms of the amount of information that must be processed in parallel and 

the knowledge and abilities of the problem solver. 
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CHAPTER EIGHT 

CONCLUSIONS AND IMPLICATIONS 

8.1 Introduction 

The overall goals of this project were to determine the conditions that are 

required to learn how to effectively control dynamic systems, and the psychological 

processes that separate successful from less successful problem solvers in the 

performance of this task. The main emphasis of this investigation was to clarify the 

role of structural knowledge in the control of dynamic systems, and to identify 

sources of individual differences in problem solvers capacity to acquire such 

knowledge and apply it in a goal-orientated application.  A combined experimental 

and differential approach was adopted to address these goals, which consisted of the 

experimental manipulation of the task and structural characteristics of complex 

problems combined with the use of process indicators and external psychometric 

tests. This allowed us to identify a causal relationship between structural knowledge 

and control performance across systems of differing complexities, and to account for 

individual differences in the strength of this relationship. This chapter will 

summarise the main findings from this project, and discuss the implications for the 

use of complex problems as a tool for the assessment of problem solving 

competencies and training. We will also identify some key issues in this domain that 

are in need of further research. 

8.2 How does structural knowledge influence the control of dynamic systems? 

At the outset of the project, a comprehensive review of the literature was 

conducted to integrate the findings from the three major research paradigms that 

have investigated how people learn to control dynamic systems (Dynamic Decision 

Making, Implicit Learning and Linear Structural Equations). This review revealed 

that the role of structural knowledge in the control of dynamic systems was unclear. 

While some studies had found that the amount of structural knowledge subjects 

acquire is positively associated with the quality of their control performance (e.g. 

Funke & Müller, 1988; Beckmann & Guthke, 1995; Vollmeyer et al., 1996; Kröner 

et al., 2005; Burns & Vollmeyer, 2002; Osman, 2008a), others had found evidence 

that subjects learn to control dynamic systems seemingly in the absence of structural 
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knowledge (e.g. Broadbent, 1977; Broadbent et al., 1986; Berry & Broadbent, 1984; 

1988). This inconsistency had not been adequately addressed in the literature, as each 

research approach had largely operated independently of the others. 

In order to reconcile this inconsistent pattern of results, a framework was 

constructed to describe complex problems in terms of their task, surface and 

structural characteristics. It was argued that each approach entails the application of a 

specific set of these characteristics to the design and use of complex problems, which 

in turn influences the type of knowledge that will be acquired and utilised. Based on 

this synthesis of the results of previous research, it was concluded that a positive 

association between structural knowledge and control performance is consistently 

observed when system states can be generated that are informative to the underlying 

structure of the system, the problem is presented in a novel context and problem 

solvers are given the opportunity to acquire knowledge prior to the instruction to 

control the system to achieve specific goals.  

However, the dependency of efficient system control on the acquisition of 

structural knowledge had not been clearly established. The results of a number of 

studies had found that subjects provided with structural information do not show 

better control performance than subjects who perform without such information, or 

who are required to acquire structural knowledge through an unguided exploration of 

the system variables (Putz-Osterloh & Lüer, 1981; Putz-Osterloh, 1993; Preußler, 

1996). This was particularly surprising considering that many studies had shown that 

the majority of subjects do not acquire complete knowledge of the underlying 

structure of systems through an unguided exploration of the system variables (Funke 

& Müller, 1988, Müller 1993; Beckmann, 1994; Beckmann & Guthke, 1995; 

Vollmeyer, etal., 1996; Burns & Vollmeyer 2002; Kröner, 2001; Schoppek, 2002; 

Kröner, etal., 2005; Kluge, 2008; Osman, 2008a). These findings had led some to 

argue that systems can be controlled successfully without the aid of specific 

knowledge, and that a simple strategy of trial-and-error may be as efficient in 

achieving goal states as the application of the rules underlying a system (Putz-

Osterloh, 1993).  

Our findings do not support this claim, but rather converge on the relevance of 

the acquisition of structural knowledge for successful system control. The main 
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findings were:  1) the amount of structural knowledge that problem solvers acquire 

has a systematic impact on the quality of their control performance, with increasing 

levels of structural knowledge resulting in better system control; 2) we found no 

evidence that problem solvers can efficiently control the outcomes of dynamic 

systems in the absence of structural knowledge. When structural knowledge was not 

acquired control performance was no better than random. When control performance 

was not better than random, individual differences in control performance were also 

rather inconsistent. This suggests that when problem solvers do not acquire structural 

knowledge their control performance is the result of trial-and-error, which is not a 

sufficient strategy for learning to control the outcomes of dynamic systems; and 3) 

these results were shown to generalise to systems at different levels of complexity. 

Overall, these results demonstrate that in order to successfully control the outcomes 

of dynamic systems, problem solvers must develop an accurate model of the 

underlying structure of the system. 

These findings are particularly significant considering that in many studies that 

have investigated how people learn to control dynamic systems, subjects have not 

been given the opportunity to build up their knowledge base prior to the instruction 

to control the system (e.g. The Dynamic Decision Making Approach; Dörner, 1975, 

Brehmer, 1987; Sterman, 1994; Busemeyer, 2002; Dörner, 1980; Dörner & Wearing, 

1995; Kerstholt & Raaijmakers, 1997). The conclusion that has been drawn from the 

results of these studies is that people perform poorly because they must process 

multiple sources of information in parallel, while co-ordinating between different 

goals and sub-tasks and acting within time constraints. It has been argued that these 

demands overwhelm the resources of the information processing system, which 

results in sub-optimal performance. However, the results of the current project 

suggest that problem solvers simply do not have the chance to acquire sufficient 

domain specific-knowledge to make effective decisions under such conditions. 

Previously, the benefit of structural information had only been observed when 

subjects first practiced applying structural information to reach specific goals (Putz-

Osterloh, 1993; Preußler, 1998). These results were interpreted as evidence that the 

application of structural information was a skill that had to be practiced in addition to 

learning the structure of the system. It was argued that structural knowledge alone is 
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insufficient to control the outcomes of dynamic systems (Schoppek, 2004; Preußler, 

1996; Preußler, 1998). 

The results of the current project lead to a significant revision of this view as 

well. We found that if problem solvers can convert information into structural 

knowledge, then it has a positive impact on the quality of control performance, 

without a period of goal-orientated practice or prior exposure to the system. Indeed, 

once structural knowledge was acquired, the quality of subjects‘ control performance 

was rather stable over a number of intervention trials and across different goal states. 

This indicates that practice does not have any significant impact on the effectiveness 

with which subjects are able to apply structural knowledge (at least within a limited 

time frame).  

The differing pattern of results observed in comparison to previous research 

may be attributable to two factors. Firstly, the instructions used in the current project 

may have been more effective in promoting structural knowledge as they were 

designed in accordance with the principles of CLT. Previous studies employed either 

a diagram of the underlying structure of the system presented on paper (Putz-

Osterloh & Lüer, 1981; Putz-Osterloh, 1993) or standardised examples as to how 

each input effected each output with text-based explanations (Preußler, 1996). In the 

current project, standardised examples with a concurrent audio explanation were 

utilised to try to minimise the number of cognitive activities that subjects would have 

to undertake to translate the information provided into knowledge about the system. 

Additionally, a diagram that depicted this information remained on screen during the 

control tasks as an external memory aid.  

It should be noted, however, that one potential confound is that the method 

used to instruct structural knowledge also demonstrated a useful strategy for 

acquiring that knowledge (i.e. the VOTAT strategy). It may be argued that if the 

structural information was not understood, subjects may have used the VOTAT 

strategy to acquire additional knowledge during the control phase. Improvements in 

performance may then be due to the instruction of the VOTAT strategy, rather than 

the instruction of structural information. However, this seems unlikely considering 

that a) in order to successfully control the system subjects must vary multiple inputs 

at the same time which is incompatible with the use of the VOTAT strategy and b) 
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subjects in Study 1 showed significant improvements in control performance directly 

after they received structural information. It therefore seems unlikely that they were 

trying to acquire knowledge during the control phase. Similarly, in Studies 2 and 3, 

control performance in the complete information conditions was consistently 

superior to control performance in the no information conditions. This would not be 

the case if subjects in the complete information condition were attempting to acquire 

new knowledge while they controlled the system.  Nevertheless, it must be 

acknowledged that the instruction of structural knowledge also demonstrated the best 

strategy for the acquisition of new knowledge.  

To return to the differing pattern of results observed in comparison to previous 

research, secondly, the results of the current project suggest that the complexity of 

the system, as indicated by the connectivity implied by the goal states, to some extent 

determines whether structural information will be understood and utilised by 

problem solvers.  In the study reported in Chapter 7, we constructed a complex 

problem that had an underlying structure that had the same level of connectivity 

implied by the goal states to that used by Putz-Osterloh (1993) and Preußler (1996). 

It was found that subjects interacting with this system failed to convert information 

into knowledge and subsequently did not perform better than random. This suggests 

that the benefit of practice proposed in previous studies may be attributable to the 

additional time needed to understand the information provided when the system is 

highly complex, rather than an effect of practice per se. Further research is required 

to determine the type of instructions that are required to promote structural 

knowledge when systems have highly complex structures. 

8.3 What differentiates successful from less successful problem solvers in the control 

of dynamic systems? 

Clearly, the results of this project establish the primary importance of the 

acquisition of structural knowledge for effective system control. Overall then, the 

quality of problem solvers‘ control performance can be seen as a product of their 

individual capacity to acquire knowledge and then use it to control the system. Few 

previous studies had considered the acquisition of structural knowledge and system 

control as capacities that might be determined by divergent sources of individual 

differences.   
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8.3.1 Individual differences in the acquisition of structural knowledge 

The results show that the acquisition of structural knowledge through an 

unguided exploration of the system variables is largely determined by the 

identification and use of the VOTAT strategy and fluid intelligence (indicated by 

scores on the APM). Importantly, these variables were found to be relatively 

unrelated to one another. On the one hand, this suggests that training on how to 

design effective experiments to test hypotheses, or homogenising the system states 

that subjects can observe during the exploration phase, might significantly reduce the 

difficulties that problem solvers at all levels of ability experience when they try to 

acquire structural knowledge. On the other hand, more intelligent problem solvers 

will still be at an advantage as they are able to more effectively induce the rules from 

the data and test hypotheses.  

In situations where problem solvers receive direct instruction with regard to the 

underlying structure of the system, the main requirement is that they effectively 

translate the information provided into knowledge. The results of the study reported 

in Chapter 7 showed that many subjects who received complete structural 

information had difficulty converting this information into knowledge. This was 

particularly surprising considering that the test of structural knowledge essentially 

required subjects to replicate system states that they had viewed in the instructional 

phase. It was also found that performance on the structural knowledge test was 

largely unrelated to fluid intelligence. Again, this suggests that training interventions 

designed to improve structural knowledge might have significant benefits to problem 

solvers at all levels of ability.  

Overall these results indicate that more successful problem solvers are better 

able to: 1) design experiments that provide clear tests of hypotheses; 2) convert 

structural information into knowledge about the system and 3) have a higher level of 

fluid intelligence.  Individual differences in structural knowledge are determined by a 

combination of acquired skills and cognitive ability. 

8.3.2 Individual differences in control performance 

The results of the current project indicate that individual differences in control 

performance can primarily be accounted for by the amount of knowledge that 
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problem solvers acquire. However, once the amount of structural knowledge is taken 

into account, control performance is strongly related to fluid intelligence. 

Importantly, the strength of this relationship did not depend on the complexity of the 

system or whether structural knowledge was acquired through direct instruction or an 

unguided exploration of the system variables. Indeed, it did not diminish even when 

subjects had practice on the control task prior to receiving structural information. 

Overall, this indicates that more successful problem solvers possess more structural 

knowledge and have a higher level of fluid intelligence.  

However, it must be acknowledged that it cannot be ruled out that the 

consistent correlation between fluid intelligence and control performance is not due 

to some other common factor. A number of studies have found that non-cognitive 

factors such as motivation, metacognition and emotions have a significant impact on 

the cognitive processes involved in the acquisition of structural knowledge and 

system control (e.g. Vollmeyer, Rollett & Rheinberg, 1997, 1998; Vollmeyer & 

Rheinberg, 1999, 2000; Spering, Wagener & Funke, 2005; Barth & Funke, 2009). It 

is therefore possible that one of these unmeasured sources of individual differences 

could account for some of the variance in control performance currently attributed to 

fluid intelligence.  

The results of the current thesis do, however, clarify the conditions that are 

required to observe a strong relationship between fluid intelligence and control 

performance: The strength of the relationship between fluid intelligence and control 

performance appears to depend, to a certain degree, on whether or not structural 

knowledge has been acquired. When complete structural knowledge was acquired, 

the quality of subjects‘ control performance was strongly related to fluid intelligence, 

which suggests that under these conditions the demands of the two tasks are similar. 

The main processes that distinguish between individuals on tests of fluid intelligence 

are the ability to induce abstract relations and working memory capacity (Carpenter 

et al., 1990). Since the requirements of system control precludes the acquisition of 

further structural knowledge (i.e. the abstraction of relations or rules), it can be 

inferred then, that the main source of individual differences in control performance is 

working memory capacity. These results support our task analysis that was presented 

in Chapter 4, and the results of previous research that has shown that control 

performance and working memory capacity are moderately correlated (Wittmann & 
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Süß, 1999; Wittmann & Hattrup, 2004; Bühner et al., 2008). These results extend 

upon these previous findings, as they show that the relationship holds when the 

amount of structural knowledge acquired by problem solvers has been taken into 

account. That is, that the effect of fluid intelligence on control performance is 

independent of the effect on fluid intelligence on the acquisition of structural 

knowledge.  

When no structural knowledge was acquired, the relationship between fluid 

intelligence and control performance was somewhat weaker, although those who 

were more intelligent were still at a significant advantage compared to those who 

were less intelligent. However, as the reliability of control scores was low and 

performance was not better than random under these conditions, it seems likely that 

the differences between people may be the result of unsystematic sources of 

variance. Thus, it seems inappropriate to draw inferences about the processes that 

separate successful from less successful problem solvers when no structural 

knowledge has been acquired.  

When only partial structural knowledge was acquired, the relationship between 

fluid intelligence and control performance was similar to that observed when no 

knowledge was acquired. This may be because for some subjects, the partial 

information instruction helped them gain insight into the structure, and for others it 

may have hindered learning. Thus, some subjects may have been using a knowledge-

based strategy to control the system and others may have been acting through trial-

and-error. This would weaken the relationship between fluid intelligence and control 

performance. This issue has significant implications for the assessment of problem 

solving competencies which will be discussed in more detail in the following section. 

8.4 Implications for the use of complex problems as a tool for the assessment of 

problem solving competencies 

Currently, no guidelines are available which describe how complex problems 

should be constructed and administered for the purposes of assessment and selection. 

Consequently, the task, structural and surface characteristics of the complex 

problems that are used in assessment settings are rather heterogeneous. Clearly, the 

results of the current project and previous research indicate that this has significant 

consequences in terms of what these so-called tests of complex problem solving are 
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actually measuring. However, it is usually claimed that complex problems measure 

the capacities to acquire and utilise structural knowledge (Hornke & Kersting, 2005; 

Kluge, 2008; Greiff & Funke, 2008; 2009. Therefore, in this section we will suggest 

some general guidelines for the construction and administration of complex problems 

that will ensure that performance does indeed reflect these capacities, based on the 

findings of the current project. 

The results of the current project indicate that the acquisition of structural 

knowledge and system control impose different cognitive demands on the problem 

solver. However, system control is dependent on the acquisition of structural 

knowledge; structural knowledge cannot be acquired while problem solvers try to 

control the outcomes of a system. Thus, in concordance with Funke (1984; 1992; 

2001), we argue that these tasks need to be separated experimentally in order to 

assess performance on each of these tasks independently of the other. This means 

that, firstly, test-takers should be given an opportunity to acquire structural 

knowledge through an unguided exploration of the system variables before they are 

required to control the outcomes of the system. This allows for an appropriate 

assessment of the problem solvers‘ capacity to design effective experiments, test 

hypotheses and induce rules. In addition, we suggest that before test-takers are 

required to control the outcomes they should be directly instructed as to the 

underlying structure of the system. This should allow for valid comparisons of 

control performance to be made between test-takers who may otherwise have 

acquired different levels of structural knowledge.  If complex problems are 

administered in this way, the capacity to acquire structural knowledge can be 

assessed independently of the capacity to utilise knowledge. 

There is some debate over whether it is appropriate to administer a single 

complex problem in order to assess problem-solving competencies, as is the typical 

practice in most assessment settings. The rationale for this practice is that complex 

problems are analogous to a work sample, in which the test-taker is required to deal 

with a complex and dynamic system (U. Funke, 1998; Kluge, 2008). Grieff and 

Funke (2008; 2009) argue that this practice is psychometrically questionable, and 

that multiple complex problems of differing complexity need to be administered in 

order to make valid inferences with regard to problem solving competencies. They 

propose that problems of differing complexity can be constructed by varying their 
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underlying structures. However, the results of Study 3 show that even small changes 

in the underlying structure of a system can result in ceiling and floor effects on 

performance. This suggests that the administration of multiple complex problems 

with different underlying structures may not provide any more information about 

test-takers than the administration of a single complex problem. The important point 

is that the complex problem must be at an appropriate level of complexity to 

differentiate between test takers, and that extensive pilot testing is required to ensure 

that performance on any individual complex problem does indeed reflect the 

capacities to acquire and utilise structural knowledge. 

The current project clearly demonstrates the necessity of comparing test-takers‘ 

control performance to control performance that has been produced through random 

interventions, in order to establish a clear standard for successful performance. While 

this is not a new idea (see Beckmann, 1994), it has rarely been employed (with the 

notable exceptions of Beckmann, 1994; Kluge, 2008). The results of Study 3 clearly 

demonstrate that if the controllability of the system is not taken into account then 

―good‖ performance may be attributable to ―good‖ decision making on the part of 

the test-taker or, alternatively, structural characteristics that result in ―good‖ control 

performance no matter what interventions are undertaken. 

The importance of structural knowledge for system control suggests that 

complex problems should be presented in a novel context. Currently, most of the 

complex problems that are used for personnel selection and assessment purposes are 

presented with familiar cover stories and labels for the system variables (U. Funke, 

1998; J. Funke, 1998; Greiff & Funke, 2009). While the situations are usually 

selected so that test-takers do not have direct experience with them in their everyday 

life, it is most likely that will be familiar with the variables in question, which may 

allow them to form assumptions about the underlying structure of the system. These 

assumptions may not be consistent across test-takers, and as such, the familiarity of 

the context represents a source of uncontrolled variance that is likely have a 

significant impact on the acquisition of structural knowledge and subsequent control 

performance. The presentation of problems in entirely novel contexts (i.e. with 

abstract labels for the system variables) will ensure that it is possible to make valid 

comparisons between test-takers. 
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All of the issues discussed so far, however, have only been concerned with 

how best to measure the capacities to acquire structural knowledge and use it to 

control the outcomes of dynamic systems. Clearly, a critical consideration in 

personnel selection and educational assessment must also be whether the scores that 

are produced are in fact meaningful predictors of job or academic performance. In 

addition, it is crucial to show that they have incremental validity in the prediction of 

job and academic performance over and above traditional measures of intelligence, 

which have been show to be one of the best predictors of these criterions (Neisser et 

al., 1996; Hunter & Schmidt, 1997). Although the current project did not address the 

first issue, with regard to the second, the results indicate that the acquisition of 

structural knowledge has some demands that are divergent from those that are 

captured in traditional tests of intelligence, such as the APM. In particular, problem 

solvers must design experiments that will yield data that can be used to test 

hypotheses in order to acquire structural knowledge. This skill is likely to be 

particularly relevant in jobs that require research and development, and educational 

settings that foster a constructivist perspective on learning. This suggests that the 

capacity to acquire structural knowledge through an unguided exploration of the 

system variables may show incremental validity in the prediction of success in 

certain types of jobs and academic settings over and above traditional measures of 

intelligence.  

8.5 Directions for future research 

It remains an important question as to whether structural information is useful 

when problem solvers already have a partial mental model of the system that is based 

on their real world experiences. The results of Study 1 suggest that problem solvers 

can incorporate new information into an existing mental model. However, this 

knowledge had only been acquired moments before, in the same context. If that 

knowledge was acquired over a more extensive period of time, in multiple contexts 

in the real world, then it may be more difficult to revise. To the authors‘ knowledge, 

there has not been any research that has addressed this question, although a number 

of studies have investigated how familiarity and domain expertise influences the 

acquisition of knowledge through an exploration of the system variables, and the 

results are rather inconsistent (e.g. Reither, 1981; Beckmann, 1994; Beckmann & 

Guthke, 1995; Burns & Vollmeyer, 2002; Rolo & Diaz-Caberera, 2005; Lazonder et 
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al., 2008; 2009). In order to address this issue, future research could examine the 

effect of structural information on system control with complex problems that are 

embedded in a familiar context. 

In other domains, it has been shown that practice influences the organisation of 

knowledge and strategies for performance in complex tasks. Findings show that 

increasing amounts of practice are associated with better performance (Holyoak, 

1991; Ericsson, 2003), and that the influence of intelligence declines as performance 

becomes more automatised (Ackerman, 1988; 1990; 1992; Kanfer & Ackerman, 

1989). In the current project, we did not find that practice had a significant impact on 

the quality of system control, or the relationship between control performance and 

fluid intelligence. However, our investigations were rather time-limited. Therefore, 

the need is apparent to determine whether and how control performance changes 

with practice over longer periods of time, and whether the sources of individual 

differences in control performance change as a result of practice.  

The current project primarily focussed on the role of cognitive factors in 

complex problem solving. Other research has shown that non-cognitive factors, such 

as motivation and emotions, also have a significant impact on performance in 

complex and dynamic environments (Vollmeyer et al., 1997, 1998; Vollmeyer & 

Rheinberg, 1999, 2000; Spering et al., 2005; Barth & Funke, 2010). Moving forward, 

one of the biggest challenges facing researchers in this field is to determine how 

cognitive and non-cognitive factors might interact and influence performance. Until 

then, our model of performance in complex and dynamic environments remains 

incomplete. 

8.6 Conclusion 

The conditions that are required to learn how to effectively control the 

outcomes of dynamic systems are now clear. The results of the current project 

demonstrate that the successful control of complex systems requires domain-specific 

knowledge. That is, knowledge of the relationships between the variables in the 

system. Without such knowledge, control behavior is rather unsystematic, and as a 

result, performance is no better than what might be achieved through random 

interventions on the system variables. The acquisition of structural knowledge can be 

achieved either through an unguided exploration of the system variables, or direct 
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instruction. Direct instruction is preferable if the aim is to provide the problem solver 

with maximal amounts of structural knowledge, however, it may be ineffective if the 

underlying structure of the system is highly complex. Individual differences in the 

capacity to design effective experiments in order to test hypotheses plays a crucial 

role in the acquisition of knowledge, as does fluid intelligence, which also influences 

the subsequent application of the acquired knowledge. The success of control 

performance can then be seen as a function of the amount of knowledge that is 

acquired, combined with the intelligence of the problem solver.  
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APPENDIX A 

INSTRUCTIONS IN THE COMPLETE INFORMATION CONDITION 

The following screenshots and text show the instructions given in the 

information condition for Study 1, and in the complete information condition in 

Study 2 and 3. The text was presented as a concurrent narration. 

 

On the first trial, we should determine whether any of the outputs change 

independently of the inputs. So we should set each input to zero, and see if the 

outputs change.  



 211 

 

So we set each of the inputs to zero, and U didn‘t change, V decreased, and W 

increased. So it looks like V and W change on their own over time.  

 

Let‘s record that result. So we found that V and W changed. So output V, yes it 

changes. It decreased, so that‘s a negative effect, and I‘m going to say that it‘s a 

medium effect. Output W, yes it changed, it increased, so that‘s a positive effect, and 

it‘s quite small, so I‘m going to say it‘s a weak effect. 
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This time I‘m going to look at the effect of input A on the outputs. So I‘m going to 

increase A to maximum, and set each of the other inputs to zero.  

 

o I increased A to maximum, and U increased, V increased and W increased. Now 

we would expect W to increase on its own anyway, so it has not effect there. So we 

can say A effects U and V. 
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Let‘s record that result. So we found that input A effects output U. Yes there‘s an 

effect, increasing A increases U, so it‘s a positive effect. And I‘m going to say it‘s a 

weak effect. We also found that A effects V. Increasing A increases V, yes there‘s an 

effect, it‘s a positive effect, and I‘m going to say it‘s a strong effect because it has to 

work against the independent decline in V. 

 

So this time I‘m going decrease A to minimum and set the inputs to zero.  
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So we decreased A, and U decreased, V decreased and W increased slightly.   

 

So I‘ve already recorded that result that A affects U and V. 
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This time I‘m going to look at the effect of B on the outputs. So I‘m going to set A at 

zero, increase B to maximum, and set C at zero.  

 

So increased B, and U increased, V decreased and W increased slightly. We know 

that V and W change on their own anway, so it looks like B only effects U.  
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So let‘s record that result. B only affected U. Yes there was an effect, we increased B 

and U increased, so that‘s a positive effect, and I‘m going to say it‘s a weak effect. 

 

This time I‘m going to look at the effect of B again, but I‘m going to decrease it to 

minimum and set the other inputs at zero.  
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So I decreased B, and U decreased, V decreased and W increased slightly.  

 

So I‘ve already recorded that B only effects U. 
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This time I‘m going to look at the effect of C on the outputs. So I‘m going to set A to 

zero, B to zero and increase C to maximum.  

 

So I set C to maximum, U stayed the same, V decreased slightly, and W decreased. 

So I would expect V to decrease on its own anyway, so there‘s no effect there. And 

this time W decreased, so we found that C effects W. 
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So let‘s record that result. We found that C affected W. Yes there was an effect. We 

increased C and W decreased, so that‘s a negative effect, and I‘m going to say it‘s a 

medium effect. 

 

OK, so looking at the effect of C again, setting A to zero, B to zero and decreasing C 

to minimum.  
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We decreased C to minimum. U stayed the same, V decreased slightly and W 

increased slightly. So C only effects W.  

 

So I‘ve already recorded that C has a positive, medium effect on W. 
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APPENDIX B 

INSTRUCTIONS IN THE PARTIAL INFORMATION CONDITION 

The following screenshots and text show the instructions given in the partial 

information condition (Study 2 and 3). The text was presented as a concurrent 

narration. 

 

On the first trial, we should determine whether any of the outputs change 

independently of the inputs. So we should set each input to zero, and see if the 

outputs change.  
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So we set each of the inputs to zero, and U didn‘t change, V decreased, and W 

increased. So it looks like V and W change on their own over time.  

 

Let‘s record that result. So we found that V and W changed. So output V, yes it 

changes. It decreased, so that‘s a negative effect, and I‘m going to say that it‘s a 

medium effect. Output W, yes it changed, it increased, so that‘s a positive effect, and 

it‘s quite small, so I‘m going to say it‘s a weak effect. 
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This time I‘m going to look at the effect of input A on the outputs. So I‘m going to 

increase A to maximum, and set each of the other inputs to zero.  

 

So I increased A to maximum, and U increased, V increased and W increased. Now 

we would expect W to increase on its own anyway, so it has not effect there. So we 

can say A effects U and V. 
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Let‘s record that result. So we found that input A effects output U. Yes there‘s an 

effect, increasing A increases U, so it‘s a positive effect. And I‘m going to say it‘s a 

weak effect. We also found that A effects V. Increasing A increases V, yes there‘s an 

effect, it‘s a positive effect, and I‘m going to say it‘s a strong effect because it has to 

work against the independent decline in V. 

 

So this time I‘m going decrease A to minimum and set the inputs to zero.  
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So we decreased A, and U decreased, V decreased and W increased slightly.   

 

So I‘ve already recorded that A affects U and V. 
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This time I‘m going to look at the effect of C on the outputs. So I‘m going to set A to 

zero, B to zero and increase C to maximum.  

 

So I set C to maximum, U stayed the same, V decreased slightly, and W decreased. 

So I would expect V to decrease on its own anyway, so there‘s no effect there. And 

this time W decreased, so we found that C effects W. 
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So let‘s record that result. We found that C effects W. Yes there was an effect. We 

increased C and W decreased, so that‘s a negative effect, and I‘m going to say it‘s a 

medium effect. 

 

OK, so looking at the effect of C again, setting A to zero, B to zero and decreasing C 

to minimum.  
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We decreased C to minimum. U stayed the same, V decreased slightly and W 

increased slightly. So C only affects W.  

 

So I‘ve already recorded that C has a medium, negative effect on W. 
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This time I‘m going to increase all the inputs to maximum. So increasing A to 

maximum, B to maximum and C to maximum.  

 

So all the inputs are set at maximum.  U increases, V increases and W decreases. 



 230 

 

So nothing new to record on that trial. 

 

This time I‘m going to increase all the inputs to minimum. So increasing A to 

minimum, B to minimum and C to minimum.  
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So all the inputs are set at minimum.  U decreased, V decreased and W decreased. 

 

So nothing new to record on that trial. 
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APPENDIX C 

INSTRUCTIONS IN THE NO INFORMATION CONDITION 

The following screenshots and text show the instructions given in the no 

information condition (Study 2 and 3). The text was presented as a concurrent 

narration. 

 

OK on the first trial I‘m going to look at the effect of input A and B on the outputs. 

So I‘m going to increase A to maximum, increase B to maximum and set input C to 

zero.  
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So we increased A and B, and U increased, V increased and W increased slightly.  

 

OK, I‘m going to look at the effect of A and B on the outputs again. This time I‘m 

going to increase A to maximum, decrease B to minimum, and set C to zero.  
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So we increased A and decreased B. U stayed the same. V increased and W 

increased slightly. 

 

OK on the third trial I‘m going to look at the effect of B and C on the outputs. So I‘m 

going to set A at zero, increase B to maximum, and increase C to maximum. 



 235 

 

So we increased B and C and U increased, V decreased and W decreased. 

 

OK on the fourth trial I‘m going to look at the effect of B and C on the outputs again. 

So I‘m going to set A at zero, decrease B to minimum, and increase C to maximum. 



 236 

 

OK, so we decreased B and increased C and U decreased, V decreased and W 

decreased. 

 

So on the fifth trial I‘m going to look at the effect of A and C. So I‘m going to 

increase A to maximum. Set B at zero, and increase C to maximum.  
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So we increased A and C, and U increased, V increased and W decreased. 

 

OK, so on the sixth trial I‘m going to look at the effect of all the inputs on the 

outputs. So I‘m going to increase A to maximum, increase B to maximum and 

increase C to maximum.  
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So we increased A, B and C, and U increased, V increased and W decreased.  

 

OK, so this time I‘m going to decrease all the inputs to minimum. So decreasing A to 

minimum, decreasing B to minimum, and decreasing C to minimum. 
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So I decreased A, B and C and U increased, V decreased, and W increased slightly.   
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APPENDIX D 

THE CONCEPTUALISATION AND MEASUREMENT OF TASK COMPLEXITY 

D.1 Introduction 

Task complexity has been discussed as a potential moderator variable on 

performance in a wide range of applied and experimental settings, such as medical 

diagnosis (Xiao, Hunter, MacKenzie & Jefferies, 1996; Park & Jung, 2007), the 

maintenance of electronic systems (Wohl, 1982; Rouse & Rouse, 1979; Rasmussen 

& Lind, 1981), instructional design (Speier, 2006; Stahl, Pieschl & Bromme, 2006; 

Beckmann, 2010), goal-setting (Wood, Mento & Locke, 1987), problem solving 

(Kotovsky, Hayes & Simon, 1985; Sweller, 1976; Haerem & Rau, 2007; Vakkari, 

1999; Spilsbury, Stankov & Roberts, 1990; Halford et al., 2005) and decision-

making (Hu, Huhmann & Hyman, 2007; Olshavsky, 1979; Payne, 1976; Earley, 

1985; Simon & Tversky, 1992; Mone & Shalley, 1995; Paquette & Kida, 1988). 

Currently, task complexity is conceptualised, measured, and operationalised in 

multiple ways, even within particular fields of research. Firstly, in this chapter we 

will review this diverse literature in order to clarify what is meant by task 

complexity. Secondly, the various frameworks that are available to estimate task 

complexity will be evaluated in terms of whether they are likely to provide accurate 

estimates of task performance.  Overall, the purpose of this chapter is to derive a 

more comprehensive account of complexity than is currently given in the complex 

problem solving literature. 

D.2 Dimensions of Task Complexity 

Within the literature, task complexity is often treated as a multi-dimensional 

construct. The primary dimension, which is consistently referred to in all fields of 

research, captures notions of intricacy and inter-connectedness (Spilsbury, Stankov 

& Roberts, 1990). Under this view, typically, task complexity is defined as the 

number of components of the task or mental operations involved when solving the 

task. Different researchers tend to emphasise either the sheer number of procedures 

and/or task elements as the most important contributor to task complexity (e.g. Park 

& Jung, 2007), or the extent to which these procedures and/or task elements must be 
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integrated in a single step (e.g. Halford et al., 1998a) or a combination of the two 

(e.g. Wood, 1986; Campbell, 1988) in order to reach a particular goal.  

Dynamics (Wood, 1986; Woods, 1988), risk (Woods, 1988), task structure 

(Bonner, 1994; Byström & Järvelin, 1995; Haerem & Rau, 2007) and uncertainty 

(Schroder, Driver & Streufert, 1967; Wood, 1986; Woods, 1988; Xiao, Hunter, 

Mackenzie & Jeffries, 1996; Osman, 2010) have been proposed as additional 

dimensions of task complexity by various researchers. Dynamics refers to whether 

the outcomes of the task change in response to the decisions made by the problem 

solver and independently over time. It may also refer to whether there are feedback 

delays in the task (Wood, 1986; Woods, 1988). It could be argued that the extent to 

which a task is dynamic essentially captures a temporal aspect of the primary 

dimension, relating to intricacy and inter-connectedness, and so, these two factors 

should not be considered to be independent.  

Risk refers to the possibility that incorrectly enacting the procedures needed to 

reach a desired solution can have large costs in certain situations (Woods, 1988). For 

example, the negative impact would be considerable if workers fail to correctly 

perform the emergency procedures in a nuclear power plant. Woods (1988) argues 

that risk is typically low in most problem solving and decision-making tasks that are 

performed in a laboratory setting. Nevertheless, it could be argued that the evaluation 

of risk by the task-doer essentially increases the number of mental activities, or 

number of variables that need to be taken into account when performing the task, and 

thus is likely captured by the primary dimension of task complexity relating to 

intricacy and inter-connectedness. 

Task structure usually refers to the level of specification of what is to be done 

in the task. This includes whether the goals are ill or well defined and whether the 

procedures needed to solve the task are known to the task-doer (Bonner, 1994; 

Byström & Järvelin, 1995). However, Haerem and Rau (2007) propose an alternative 

interpretation of task structure. In an extension of Chomsky‘s (1957) work on 

linguistics to an analysis of cognitive tasks they refer to task structure as the level of 

processing that is required in the task. In deep structure tasks, solution requires a 

search through the processes or procedures related to the task. In surface structure 

tasks, solution requires a search through the inputs and outputs of the task. Mixed 
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structure tasks require a combination of the two. As with risk, it seems reasonable to 

expect that task structure, under either definition, is also likely impact upon the 

intricacy and inter-connectedness of the task.  

Uncertainty can be defined as either as an objective property of the task or a 

subjective experience of the problem solver. From an objective perspective, Wood 

(1986) argues that uncertainty exists when the relationships between the variables in 

the task change, or the relationships between actions and outcomes change. 

Similarly, but from a subjective perspective, Osman (2010) defines uncertainty as the 

extent to which the problem solver is confident in predicting the outcome of events 

and that an action will lead to an expected outcome. Alternatively, Guastello (2004) 

argues that uncertainty exists when ―the decision maker knows what the possible 

outcomes would be, knows the probabilities associated with each outcomes, but is 

compelled to guess which of the outcomes will actually take place… [or when] the 

decision maker knows what the possible outcomes would be, but does not know the 

probabilities that each will take place.‖ The common theme across these 

conceptualizations of uncertainty appears to be reliability of the task, where 

subjective uncertainty occurs as a result of objective uncertainty. Of course, a 

situation can also be imagined in which the objective uncertainty of the task is low, 

while the subjective uncertainty of the task is high due to lack of information about 

the task (Osman, 2010). 

Certainly, it seems likely that intricacy and interconnectedness, risk, task 

structure and uncertainty might all contribute to overall task difficulty. However, it 

could be argued that the inclusion of each of these factors within the construct of task 

complexity might reflect a somewhat misplaced desire to unite every aspect of task 

difficulty under the banner of task complexity. Such a strategy, however, is likely to 

be counter-productive because a) it is unclear whether each of these facets are 

independent, and thus whether they should be measured separately, and b) the 

construct may become too broad to posit as a clear explanation for task performance. 

Nevertheless, this problem is largely ignored in the literature as most of the 

frameworks that have been developed to estimate task complexity focus almost 

exclusively on the primary facet that relates to the intricacy and inter-connectedness 

of the task. 
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In the following sections, the frameworks that have been developed to estimate 

the intricacy and inter-connectedness of task (i.e. complexity) will be reviewed, with 

the general organising principle as to whether task complexity is treated as an 

objective property of the task or an interaction between psychological and task 

characteristics. Objective treatments of task complexity claim to consider the task 

independently of any task doer, although it will be argued that this assumption is not 

met in most objective formulations of task complexity. Interactive perspectives 

consider the task in relation to the psychological processes that must be performed in 

order to reach a particular goal.  

D.3 A starting point: The relationship between difficulty and task complexity 

Firstly, however, it is necessary to differentiate between task complexity and 

difficulty. It should be noted that difficulty is not synonymous with task complexity, 

although sometimes the two terms are sometimes used interchangeably (e.g. Kluge, 

2008a; Woods, 1988; Byström & Järvelin, 1995; Earley, 1985; Sweller, 1976). Tasks 

can become more difficult, without necessarily becoming more complex (Rouse & 

Rouse, 1979; Wood, 1986; Campbell, 1988; Bonner, 1994; Spilsbury, Stankov & 

Roberts, 1990; Quesada, Kintsch & Gomez, 2005; Halford et al., 1998a). For 

example, Rouse and Rouse (1979) note that ―While lifting weights, running ten miles 

and monitoring a radar screen for long periods of time may be difficult tasks, they 

are not necessarily complex tasks. A task can be difficult because it is a physically 

hard thing to do, or hard to put up with (i.e. boring) or perhaps because it is complex. 

Thus, complexity should be viewed as a possible component of difficulty‖ (p.724). 

Essentially, complexity is not the only factor that influences difficulty; therefore, it is 

not appropriate to use the terms synonymously.  

However, given our conceptualization of complexity as the intricacy and inter-

connectedness of the task, a more complex task should also be one that is more 

difficult. If hypothesised changes in complexity do not result in empirical changes in 

difficulty, then we might have reason to suspect that our operationalisation of 

complexity may be lacking. In the following sections, alternative conceptualizations 

of task complexity will be evaluated with respect to this assumption.  
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D.4 Complexity as an objective property of the task 

D.4.1 Computational Complexity 

Computational complexity theory examines the complexity of effective 

computations for solving problems that consist of a set of instances (i.e. goals for 

performance) and a set of solutions to these problem instances. Computational 

complexity can be expressed as a function of the amount of time needed to solve a 

particular instance of a problem using the most efficient computation or algorithm. 

Similar calculations can be made in terms of the computer resources needed to solve 

an instance with a particular algorithm. Problems that cannot be solved within a 

certain time frame are referred to as intractable problems. Such problems are 

assigned the highest level of computational complexity, and hence difficulty (Gary & 

Johnson, 1979; Wagner & Wechsung, 1986). 

In the early stages of theoretical development, it was argued that computational 

complexity might provide an index of task complexity for human problem solvers, 

and hence task difficulty (Gary & Johnson, 1979; Rouse & Rouse, 1979; Wagner & 

Wechsung, 1986). However, from a theoretical perspective, the concept of 

computational complexity seems inadequate for this purpose, for at least three 

reasons. Firstly, computational complexity essentially provides an estimate of how 

difficult it is to apply an algorithm, and ignores the difficulty of algorithm selection. 

This is problematic because many tasks require human problem solvers to identify 

and apply solutions, and it is well known that solution identification accounts for a 

large proportion of task difficulty. To cite an extreme example, the effort to create an 

algorithm that can solve the game of checkers (8 x 8 draughts), in the sense that 

perfect play on both sides leads to a draw, started in 1989 and was only recently 

completed in 2007 (Schaeffer, Burch, Björnsson, Kishimoto, Müller, Lake, Lu & 

Sutphen, 2007). Secondly, it has been argued that computational complexity is 

limited in its application to human problem solving because it is only relevant for 

algorithms that guarantee a solution to every instance (i.e. every possible goal state) 

of a problem.  Human problem solvers, on the other hand, tend to search for 

solutions that are relevant to a particular goal state, unless instructed otherwise 

(Brattico, 2008). Thirdly, in mathematical proofs ―…not only is it necessary to make 

explicit the changes an action brings about, it is also necessary to make explicit the 
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things that do not change, and for most actions this will be a great deal‖ (Shanahan & 

Baars, 2005, p.158). It seems doubtful that at a day to day level human problem 

solvers explicitly consider the trivial non-effects of their actions (the frame problem, 

McCarthy & Hayes, 1969; Shanahan & Baars, 2005). Thus, the problems that are 

relevant to the formulation of mathematical proofs or their application are quite 

unlike those that are relevant to human problem solvers in many cognitive tasks.  As 

such, it seems unacceptable to appropriate the concept of computational complexity 

to estimate task complexity.  

Secondarily, the empirical evidence shows that humans can solve many 

problems that are considered to be intractable with little difficulty, and conversely, 

many computationally ―simple‖ problems are quite difficult for human problem 

solvers (Halford et al., 1998a; Quesada, Kintsch & Gomez, 2005). For example, one 

of the most frequently cited examples of an intractable problem is the traveling 

salesman problem. In this problem, subjects are given a list of European cities and 

their distances, and the task is to find the shortest possible route between them, in 

which each city is visited only once. As the number of possible routes increases 

exponentially with the number of cities to be visited, determining the shortest route is 

usually impossible for a computer. Human subjects, on the other hand, solve this 

problem, and it‘s variants, relatively easily (Pizlo, Stefanov, Saalweachter, Li, 

Haxhimusa & Kropatsch, 2006). In contrast, some logic problems such as Wason‘s 

(1966; Wason & Shapiro, 1971) selection task, that have a low computational 

complexity, are extremely difficult for many human problem solvers (Quesada, 

Kintsch & Gomez, 2005). These results suggest that computational complexity does 

not provide a useful metric for operationalising task complexity in the context of 

human problem solvers, or for explaining why one task is more complex than 

another.  

D.4.2 Size of the problem space 

Newell and Simon (1972) proposed that problems, and by extension tasks, 

could be represented by a ―problem space‖, which consists of an initial state, a goal 

state, all the possible states of the problem, and a number of operators that contain 

constraints for moving between states. This idea has been utilised in a study 

conducted by Buchner and Funke (1993) to estimate the complexity of a complex 
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problem in which they argued that ―…complexity is determined by the number of 

states that a device can be in, and by the number of interventions with different 

consequences possible for a given system state. The number of different 

interventions corresponds to the number of potential user decisions given a particular 

state‖ (p.89). Similarly, in decision-making tasks, task complexity is often 

operationalised as the number of alternatives and attributes that must be considered 

in order to make a choice (Olshavsky, 1979; Payne, 1976; Simonson & Tversky, 

1992; Kerstholt, 1992). This essentially reflects the size of the problem space that 

must be considered.   

From the problem space approach has emerged the idea that the size of the 

problem space determines problem difficulty (Kotovsky, Hayes & Simon, 1985), and 

by extension, it has been proposed that the size of the problem space may provide a 

useful proxy for task complexity (Buchner & Funke, 1993; Schoppek, 2002; 

Quesada et al., 2005; Jonassen & Hung, 2008). However, a range of empirical 

evidence suggests that the size of the problem space is not a good indicator task 

difficulty. Firstly, Kotovsky, Hayes & Simon (1985) argue that problems with 

relatively small problem spaces can be extremely difficult to solve. They give the 

example of the Missionaries and Cannibals problem that has a problem space of 16 

nodes and the Tower-of-Hanoi problem that has 27 nodes, and argue that both of 

these problems are quite difficult for problem solvers (see also Quesada, Kintsch & 

Gomez, 2005). Similarly, Buchner and Funke (1993) found that subjects were unable 

to successfully control a dynamic system that had only 9 possible states of the system 

variables. Most strikingly, subjects who controlled this system performed no better 

than subjects who controlled a system that had 46 possible states. These findings 

show that there is not a direct relationship between the size of the problem space and 

task difficulty, and hence that the size of the problem space is not a good indicator of 

task complexity. 

Secondly, the cover story of the problem appears to have a strong effect on task 

difficulty, even though this has no impact on the objective size of the problem space. 

Findings show that problem isomorphs of the Tower-of-Hanoi with different cover 

stories but identical problem spaces have substantially different difficulties.  These 

problem isomorphs can be categorised into two broad classes, according to whether 

the operators that constrain the transitions between states involve moving a variable, 
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or changing a variable. Problems that involve changing a variable take 

approximately twice as long to solve as those that involve moving a variable, 

although they have identical problem spaces (Hayes & Simon, 1974; Kotovsky et al., 

1985). Similarly, as discussed previously, the difficulty of acquiring structural 

knowledge in dynamic systems tasks with different cover stories but identical 

structures, and thus problem spaces, can vary considerably (Hesse, 1982; Beckmann, 

1994; Beckmann & Guthke, 1995; Lazonder, Wilhelm, & Hagemans, 2008; 

Lazonder, Wilhelm & Van Lieburg, 2009). Strong content effects have also been 

observed in numerous studies on decision-making in static tasks (see Goldstein & 

Weber, 1995 for a comprehensive review). This suggests that the content of the 

cover story has an influence on task difficulty, which is not accounted for by the size 

of the problem space.
7
  

Thirdly, findings from a number of different areas of research have shown that 

how the task is visually represented has a strong effect on the difficulty of the task. 

For example, Stock and Watson (1984) found that accountants were more accurate in 

predicting the bond rating of a stock if it was represented schematically, rather than 

numerically. Similarly, in dynamic systems research, graphical presentations of the 

system variables have been shown to result in better control performance than 

numerical presentations (for reviews see Vessey, 1994; Speier, 2006).   Again, these 

manipulations should have no effect on the size of the problem space, yet they result 

in significant effects on problem difficulty.  

Finally, increasing the number of possible decisions open to the problem 

solver, and thus the size of the problem space, does not necessarily hinder 

performance. In decision-making tasks, there is an inverted U-shaped relationship 

between the number of decision alternatives and task difficulty. Numerous 

researchers have found that decision making times increase with the number of 

possible decision alternatives that must be evaluated up until a certain point, after 

which people actually take less time to make a decision (e.g. Naylor, 1968; Payne, 

1976; Hogarth, 1975; Bruce & Johnson, 1996). This suggests that if there is a 

relationship between the size of the problem space and task difficulty, it may not be 

                                                        
7
 Obviously, these objections are also relevant to the computational complexity approach, which 

would also not predict strong content effects. 
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linear. Overall, these results indicate that the size of the problem space does not 

indicate task difficulty, as thus cannot be used to estimate task complexity. 

D.4.3 Campbell‘s (1988) Information Processing Framework 

Campbell (1988) has proposed an Information Processing Framework for 

determining the complexity of cognitive tasks.   Task complexity is conceptualised 

as a function of the information processing demands that the task places on the 

individual, which can be quantified in relation to the information load, information 

diversity and the rate of information change. In the framework, any task 

characteristic that results in an increase in any of these factors implies an increase in 

task complexity.  

Campbell (1988) identifies four task characteristics that result in either a high 

level of information load, diversity or rate of information change, and hence imply 

different levels of task complexity: Multiple paths to a desired goal state, multiple 

desired outcomes, conflicting paths to different desired outcomes and a high level of 

uncertainty between the relationships between inputs and outputs. A typology of 

tasks is proposed that categorises tasks in terms of whether they contain each of these 

characteristics, or combinations of these characteristics. Campbell (1988) argues that 

as tasks contain more of these characteristics, they become more complex. 

This framework is insufficient for the purposes of estimating task complexity 

for a number of reasons, many of which have already been discussed in relation to 

the computational complexity and the problem space approaches. Firstly, the strong 

content effects that are observed in problem solving research cannot be explained 

within this framework. Secondly, the specific limitation of this framework is that it is 

unclear how tasks that are classified as the same within Campbell‘s (1988) typology 

of tasks might be differentiated in terms of their task complexity. For example, all 

items in the Raven‘s Progressive Matrices have only one path to the desired goal 

state, contain one desired goal state, should not have conflicting paths, and contain 

no uncertainty. Clearly, however, the least difficult items are less complex than the 

most difficult items. Thirdly, it could be argued that multiple paths to a desired goal 

state might actually result in a decrease in task difficulty, unless the task-doer is 

required to determine which of the paths is most efficient. Otherwise, it seems 

unlikely that the task-doer will necessarily consider every possible path to the desired 
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goal state. Finally, the emphasis on task characteristics results in a framework that is 

descriptive, rather than explanatory. No explanation is given for why these particular 

task characteristics might result in increases in information processing load. 

D.4.4 Summary of objective measures of task complexity 

Although this is by no means an exhaustive review of objective measures of 

task complexity, it serves to highlight the limitations of this perspective. Firstly, 

objective measures of task complexity may not reflect how the problem solver 

actually approaches the problem. In particular, there is little evidence that problem 

solvers develop mathematically optimal algorithms for solving problems or 

exhaustively search through the problem space for the best solution. Secondly, the 

empirical evidence suggests that task difficulty is dependent on the problem solvers‘ 

internal representation of the task, as strong content effects have been shown on 

problem difficulty. Hence, any measure of task complexity that does not take into 

account how human problem solvers internally represent a task is likely to be 

inadequate. Finally, these approaches do not make any predictions about the limits of 

human performance, as they do not specify when we are likely to encounter a ceiling 

effect on the relationship between complexity and difficulty. Thus, the 

conceptualisation of task complexity as an objective property of the task is likely to 

prove inadequate for the purposes of cognitive research.   

D.5 Complexity as an interaction between psychological and task characteristics 

With these limitations in mind, a number of researchers have attempted to 

conceptualise complexity as an interaction between psychological and task 

characteristics. Although a number of different approaches have been developed, the 

common theme is the description of the task in ―terms of the behaviours and 

cognitive processes that subjects need to perform in order to reach a certain criteria 

of success‖ (Hackman, 1969, p. 103).  

D.5.1 Relational Complexity 

Relational complexity theory (RCT) has been developed by Halford and 

associates (Halford et al., 1998a) in order to account for the limited nature of human 

information processing. In RCT, the task is broken down into a series of sub-tasks, 

which must be completed in order to arrive at the solution. Each sub-task consists of 
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a number of relations and sources of variation that must be integrated in order to 

formulate a solution to the sub-task. A unary relation consists of a single argument 

and one source of variation. A binary relation consists of two arguments and two 

sources of variation and so on. For example, a cat has the property of being a certain 

size (unary relation), as does a dog. If we specify that a cat is smaller than a dog, 

then this constitutes a binary relation. If we further specify that a cat is smaller than a 

dog, under the condition that the breed of the cat and dog is known, then this 

constitutes a tertiary relation. The key claim is that complexity is essentially a 

function of the demand imposed by integrating different sources of information, and 

the relational complexity of a task is defined by the sub-task with the largest number 

of arguments that the problem solver represents in parallel in order to arrive at a 

solution. The relational complexity metric has been applied to a wide range of 

cognitive tasks, and the empirical evidence supports the assumption that increases in 

relational complexity lead to increases in task difficulty (e.g. Halford et al., 1998a; 

Andrews & Halford, 1998; Birney & Halford, 2002; Halford et al., 2005). 

RCT offers a psychological explanation as to why increases in complexity 

should lead to decrements in performance, as the amount of information that can be 

processed in parallel has long been recognised as a critical constraint on human 

performance. Miller (1956) first suggested that human capacity is constrained to 

processing a small number of chunks of information, where a chunk is a unit of 

information of arbitrary size. For instance, the word ―cat‖ can be represented as a 

single chunk or as three chunks if the letters are encoded separately (Halford et al., 

1998a). Initial estimates placed the limit of human information processing at seven 

chunks, plus or minus two (Miller, 1956). However, this estimate has since been 

revised downwards in the light of further empirical evidence (e.g. Broadbent, 1975; 

Fisher, 1984; Halford, Maybery & Bain, 1986; Halford et al., 2005), which suggests 

that human information processing capacity is likely to be constrained to a soft limit 

of processing four relations in parallel (Halford et al., 1998a; Halford et al., 2005). 

Thus, the theory also makes empirically based predictions for the limitations of 

performance in relation to the complexity of tasks.  

In order to overcome these limits on processing, RCT proposes that conceptual 

chunking and segmentation can reduce the number of relations that must be 

processed in parallel. Conceptual chunking occurs when concepts are recoded into 
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fewer dimensions through learning over time (Halford et al., 1998a). For example, 

experienced readers chunk the individual letters of a word together in long-term 

memory, so that they are processed as a single dimension when encountered in text. 

Halford et al., (1998a) argue that the cost of conceptual chunking is that the 

individual dimensions ―…become temporarily inaccessible‖ (p.810). Segmentation 

occurs when relations are broken into steps so that they can be processed serially. 

For example, in multi-digit addition, experienced problem solvers break the process 

down into sub-tasks by grouping like digits and blocking units into groups of 10 so 

they can be handled more easily. As with conceptual chunking, such strategies are 

acquired through experience with the particular problem type. As conceptual 

chunking and segmentation can be used to reduce the relational complexity of a task, 

―…the number of arguments in a relation does not immediately translate into 

effective complexity‖ (Halford et al., 1998a, p.811). Rather, it is dependent on the 

problem solvers‘ internal representations and strategies for solution. These 

mechanisms could potentially explain the strong content effects that have been 

observed in relation to problem solving and decision-making.  

As comprehensive as RCT may be, it does have some general practical 

limitations. Firstly, not all tasks involve processing relations so the theory is limited 

in its application (Halford et al., 1998b). Secondly, the researcher must have a 

comprehensive model of how the task is performed in terms of the sub-tasks that 

must be executed for successful performance. Thirdly, as experienced relational 

complexity is influenced by the problem solvers‘ internal representation and acquired 

strategies, this makes it hard to predict the difficulty of tasks where problem solvers 

have a large amount of domain knowledge and experience (Halford et al., 1998a). 

Fourthly, unless the internal representation of a particular individual is known, then it 

is impossible to determine the complexity of the task as it is experienced by that 

individual (Sweller, 1998).  

D.5.1.1 Complexity frameworks similar to RCT 

D.5.1.1.1 Element interactivity 

In cognitive load theory (CLT), element interactivity has been proposed to 

account for the load on working memory imposed by the demands of instructional 

material (Sweller, 1994; Sweller & Chandler, 1994; Sweller, 2010). In the early 



 252 

stages of its theoretical development (e.g. Sweller, 1994; Sweller & Chandler, 1994), 

element interactivity was used to explain only the intrinsic cognitive load imposed by 

the task, which is the ―…natural complexity of information that must be understood 

and material that must be learned…‖ regardless of the instructional format (Sweller, 

2010, p.124). However, more recently it has been argued that it can be used to 

estimate the cognitive load of the task as a whole (Sweller, 2010).  

Element interactivity is the extent to which information elements in learning 

material interact, and hence must be processed in parallel in order to be learned, 

where ―an element is anything that needs to be or has been learned, such as a concept 

or a procedure‖ (Sweller, 2010, p.124). Thus, in CLT the emphasis is on the 

narrower concept of ―learning‖, in comparison to the broader concept of 

―processing‖ in RCT, which includes learning, but also encompasses other mental 

activities such as reasoning.  

In addition, the concept of an ―element‖ is less clearly defined than a 

―relation‖. However, it could be argued that if an element can consist of a procedure 

to be learned then it is likely to be composed of a number of (possibly interacting) 

relations. Hence, the examination of tasks at the relational level provides a finer 

grained level of analysis than an examination of tasks at the level of elements. 

As in RCT, the level of element interactivity depends, to some extent, on the 

internal schemas of the learner. To return to an example given earlier, Sweller (2010) 

similarly argues that while novice readers may process the letters of a word as 

individual elements, an expert reader will process it as a single element. As in RCT, 

CLT proposes that element interactivity, and thus cognitive load, can be reduced 

through the design of efficient instructional materials, in order to encourage 

chunking or segmentation so that interacting elements can be processed serially, or at 

a lower level of interactivity (Sweller, 2010). A range of empirical evidence supports 

the claim that reductions in element interactivity lead to better learning in 

instructional settings, and hence reductions in task complexity (for a review see 

Sweller, 2010). Considering that the tenants of CLT in relation to element 

interactivity are essentially identical to those proposed by RCT, these empirical 

results add weight to the utility of relational complexity as an effective means of 

estimating task complexity in different domains.  
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D.5.1.1.2 Step complexity 

Park and colleagues (Park, Jung & Ha, 2001; Park, Jung, Kim, Ha & Shin, 

2001; Park, Jung, Kim & Ha, 2003; Park, Jung, Ha & Park, 2002; Park, Jung, Kim & 

Ha, 2003) have proposed a similar metric to RCT for estimating the complexity of 

emergency operating procedures, which they refer to as step complexity. The task to 

be performed is broken down into a series of sub-tasks, each with separate goals, 

which are further decomposed into a series of procedural steps. Procedural steps are 

at an equivalent level of analysis to relations in RCT. The complexity of each sub-

task is then estimated as a function of the amount of information that is needed to 

complete the sub-task, the logical structure of the procedural steps to be performed 

and the number of procedural steps that need to be executed. As in RCT, the 

complexity of the task is equated with the step complexity for the most complex sub-

task. The utility of the measure was demonstrated in a series of studies conducted by 

Park and associates (Park et al., 2001; Park et al., 2002; Park et al., 2003), who found 

that it was a significant predictor of response times in accomplishing the procedural 

steps associated with each sub-task in the emergency operating procedures of a 

nuclear power plant.  

One problem with this measure is that it is difficult to quantify the complexity 

of a procedural step (Park & Jung, 2007). For example, is a step that entails the 

comparison of two values more complex than a step that entails the prediction of a 

value, given a certain state in the system? Park and Jung (2007) suggest a rather 

complex answer to this problem that involves modelling individual procedural steps 

though graph entropy, a method that has traditionally been used to evaluate the 

complexity of software. However, as mentioned previously, as procedural steps are 

at the same level of analysis as a relation in RCT, it would be possible to quantify the 

complexity of procedural steps as a function of the number of relations that must be 

integrated in order to instantiate them. In psychological terms, this has a clear 

advantage over the graph entropy method, as it provides an explanation for the 

complexity of procedural steps with regards to cognitive processes. In comparison, 

the application of the graph entropy procedure is likely to suffer from the same 

problems that were discussed in relation to computational complexity earlier, as the 

assumption that we (human problem solvers) process information in the same way as 

computers is highly questionable.  
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D.5.2 Wood‘s (1986) conceptualisation of task complexity 

Wood (1986) proposes that tasks can be described in terms of their required 

acts, products and information cues. Acts are the mental activities and behaviours 

that are undertaken to produce a given product, where a product is the measurable 

result of an act. Information cues are the knowledge relevant for performance and 

feedback from the task. Overall, task complexity is conceptualised as a function of 

the information processing demands of the task to be performed. 

It is argued that three types of complexity contribute to the overall information 

processing demands of the task: Component complexity, coordinative complexity and 

dynamic complexity. Component complexity is ―…a direct function of the number of 

distinct acts that need to be executed in the performance of the task and the number 

of distinct information cues that must be processes in the performance of these acts‖ 

(Wood, 1986, p.66). It can be reduced if there is a degree of overlap among the acts 

or information cues. For example, if a particular act must be repeated at multiple 

stages of the task. Coordinative complexity is the extent to which acts require precise 

scheduling and timing. For example, coordinative complexity increases if acts must 

be performed in a specific order. Dynamic complexity is the extent to which there is 

uncertainty between the relationships between acts and products. A mathematical 

metric is provided to assess each component of task complexity, although Wood 

(1986) notes that at the current stage of research it is not clear how each type of 

complexity interacts with the other, and it is unlikely that the factors are orthogonal. 

In comparison to RCT, the emphasis here is on the demand imposed on the task-doer 

by the entire task, rather than the demand imposed by the most complex sub-task.  

One essential problem with this approach involves determining what 

constitutes an elementary level of analysis in terms of acts and information cues. 

With regard to the analysis of acts, Wood (1986) notes that an act can be defined at 

varying levels of abstraction, ranging from the very to specific to the more complex. 

For example, ―inference‖ is considered to be one act because it produces a single 

product, although it is likely composed of multiple mental processes. As with the 

step complexity metric discussed earlier, it then becomes difficult to compare the 

complexity of different acts. As the quantification of the complexity of acts is not 

specified, this provokes the question of whether a task that requires many acts that 
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are composed of few processes is more complex than a task that requires a single act 

that is composed of many interacting processes. This issue remains unresolved in 

Wood‘s (1986) task complexity metric. 

With regard to the representation of information cues, Wood (1986) does not 

explicitly address how expertise or domain-relevant knowledge might affect the 

formation of information cues, and thus overall task complexity. However, he does 

acknowledge that domain-relevant knowledge is likely to have a significant impact 

on the number of information cues that are perceived by the task doer. The 

framework also specifies that a comprehensive model of how the task is internally 

represented by the problem solver is required before adequate estimates of task 

complexity can be made using this metric. 

Bonner (1994) argues that Wood‘s (1986) conceptualisation of task complexity 

is insufficient because it does not adequately capture the uncertainty of real world 

tasks. He proposes an alternative approach in which tasks are described in terms of 

their inputs, processes and outputs, which are essentially equivalent to Wood‘s 

(1986) information cues, acts and products, respectively. As in Wood‘s (1986) 

approach, task complexity is described as a function of the number of each of these 

elements. The main extension is that task complexity is also related to the clarity of 

each of these elements. Although Bonner (1994) names a number of distinct factors 

that may influence clarity, it essentially seems to reflect to the extent to which the 

situation is uncertain. For example, the extent to which there are consistent 

relationships between inputs and outputs, and the extent to which cues and goals are 

specified. Thus, although Wood (1986) metric for dynamic complexity captures 

some of these factors, it does not reflect all of them.  

The empirical validity of Wood‘s (1986) metrics is not addressed in the 

original paper. In addition, although a Google Scholar search undertaken on the 25
th

 

June 2010 indicated that Wood‘s (1986) paper is cited in 473 separate papers, few 

researchers have actively applied the framework as it is set out in its original 

formulation. This perhaps reflects the difficulty of meaningfully decomposing a task 

into required acts, products and information cues. It has, however, been used to 

classify tasks on a post hoc basis in a meta-analysis conducted by Wood, Mento & 

Locke (1987) on the effect of goal-setting in cognitive tasks. Across the studies 
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included in the meta-analysis, setting challenging goals led to higher levels of 

performance in simple tasks, but the effect was much smaller in more complex tasks. 

This indicates that task complexity, as defined by Wood (1986), does appear to have 

a psychologically meaningful impact on task performance across a wide range of 

cognitive tasks. 

In a more recent study, Beckmann (2010) has applied Wood‘s (1986) approach 

to quantify the complexity of figural series completion tasks. In these tasks, subjects 

are shown a series of geometric shapes and must describe the next shape in the 

series. The tasks were presented differently in two conditions, ―Standard‖ and 

―Memory Eased‖.  In the former condition, subjects had to describe all the features 

of the next shape in a single answer, while in the latter condition, verbal descriptions 

of the next shape could be made gradually, and as the subject named a feature, such 

as the colour green, it appeared on screen. An information-processing approach was 

used to describe the tasks in both conditions in terms of their component acts, 

products and information cues, and subsequently, Wood‘s (1986) component 

complexity metric was used to determine their level of task complexity. This 

approach was contrasted with a task analysis based on the notion mental load as 

indicated by element interactivity in CLT, which was discussed earlier. Different 

complexity estimates were derived for the tasks presented under different conditions, 

and these estimates lead to the prediction that difficulty would be lower in the 

―Memory Eased‖ than in the ―Standard‖ condition. In contrast, mental load estimates 

did not predict such differences. The results showed that tasks presented in the 

memory eased format did have a lower level of difficulty than in the standard format. 

This suggests that Wood‘s (1986) approach provides an empirically valid means by 

which to provide an a priori estimate of the effect of the task and the situation on 

performance.  

D.5.3 Summary of complexity as a function of psychological and task characteristics 

RCT and Wood‘s (1986) framework converge on the idea that task complexity 

is a function of the information processing demands imposed by the task, which is 

indicated by the number of processes that need to be executed in the performance of 

the task, and the dependency among those processes. This is determined by the 

internal representation of the task-doer and objective requirements of the task. 



 257 

Hence, decrements in performance related to task complexity are explained by 

constraints on the human information processing system.  

In general, the limitations of each these frameworks are similar. Firstly, the 

researcher must have a model of ideal task performance. Secondly, as complexity is 

influenced by the problem solvers‘ internal representation of the task and acquired 

strategies, this makes it hard to predict the difficulty of tasks where problem solvers 

have a large amount of domain knowledge and experience. Thirdly, unless the 

internal representation of a particular task-doer is known, then it is impossible to 

determine the complexity of the task as it is experienced by that task-doer (Sweller, 

1998). In cognitive research, these problems could be overcome through the 

development of comprehensive models of task performance, and utilising tasks that 

are novel for all problem solvers. 

The main difference between the two main frameworks discussed above is in 

terms of their applicability. RCT is limited in application to tasks that involve the 

processing of relations. In comparison, Wood‘s (1986) explicit aim was to develop a 

general theoretical model for the description of tasks that are used to study human 

behaviour. As ―required acts‖ and ―information cues‖ can be specified at varying 

level of abstraction, the framework is flexible enough that it has the potential for 

application to a wide range of cognitive and motor tasks. For example, an ―act‖ may 

involve the processing of a relation, but it could equally be used to describe the 

generation of a strategy, or the retrieval of declarative knowledge. Therefore, 

Wood‘s approach may be applied to a wider range of cognitive tasks than RCT. 

D.5 Conclusions 

At a conceptual level, complexity has been aligned with the intricacy and inter-

connectedness of tasks. In turn, this can be conceptualised as an objective property of 

the task, or as an interaction between psychological and task characteristics. The 

adoption of the first perspective is problematic, as it essentially ignores how the task 

is performed by the task-doer. The second perspective emphasises a process-

orientated account of task complexity. Under this view, complexity is seen as a 

function of the information processing demands of the task to be performed. This 

approach is likely to prove more successful in the prediction of task performance, as 

it takes into account the internal representation of the task-doer and the objective 
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requirements of the task, which are both likely to impact upon the overall difficulty 

of the task to be performed.  
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APPENDIX E 

EQUATIONS FOR THE SYSTEMS USED IN STUDY 3 

V3x3-R-3-C-1: 3 inputs, 3 outputs, 3 relations, connectivity 1  

 

U = Ut-1 + 0.8A 

V = V t-1 + 1.6B 

W = W t-1 – C 

 

V3x3-R-6-C-2: 3 inputs, 3 outputs, 6 relations, connectivity 2 

 

U= U t-1 + 0.8A + 0.8B 

V = 0.8V t-1 + 1.6A 

W = 1.2W t-1 – C 

 

V6x6-R-12-C-2: 6 inputs, 6 outputs, 12 relations, connectivity 2 

 

U = U t-1 + 0.8A + 0.8B 

V = 0.8V t-1 + 1.6A 

W = 1.2W t-1 – C 

X = X t-1 + 0.8D + 0.8E 

Y = 0.8Y t-1 + 1.6D 

Z = 1.2Z t-1 – F 

 

V3x3-R-7-C-3: 3 inputs, 3 outputs, 7 relations, connectivity 3 

 

U = 0.8U t-1 + 0.8A + 0.8B 

V = 0.8V t-1 + 1.6A 

W = 1.2W t-1 – C 

 

 

 


