

Variation and Breeding of Kikuyu Grass (Pennisetum clandestinum)

Brett Morris M.Agr

Amenity Horticulture Research Unit Plant Breeding Institute Camden Campus, University of Sydney

A thesis submitted to the University of Sydney in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Agriculture, Food and Natural Resources March 2009

Declaration of Originality

The contents of this thesis are, to the best of my knowledge, entirely my own work except where otherwise attributed. This material has not been submitted previously to this University or any other higher education institution for any degree or diploma.

Brett W. Morris 10th December, 2009

Dedication

To Kellie and Charlotte

For your love, support, understanding and encouragement,

For without you I would not be where I am today.

Acknowledgements

I wish to start by sincerely thanking my supervisor, Dr Peter Martin, who oversaw this research project and who provided assistance whenever it was asked at any stage. It was indeed a great pleasure learning from you.

I also wish to pass on my sincere thanks to the consortium who made this research project possible, led by Mr. Geoff Hatton. Geoff's enthusiasm in furthering turf research and development in Australia is unrivalled, and his support throughout this project was very much appreciated.

Special thanks to the staff at the Plant Breeding Institute of The University of Sydney who assisted throughout this project, in particular Mr. James Bell who always had time to discuss any aspect of the work and always made himself available to assist in organising any equipment or research space when required.

I wish to also thank the fellow students of the Plant Breeding Institute for their support throughout the period of this project, as well as all of the support staff at the Camden Library for their sourcing of literature materials. Also thanks to all of the past and present researchers and family members who made their time available to discuss personally certain aspects of this study.

Finally, a special thanks to Dr. Jodie Harris for her invaluable assistance, and criticism when needed, with the genetic study, and for her great efforts in the printing and collation of this thesis. It is very much appreciated.

Abstract

This study examined the variation existing in naturalised populations of kikuyu grass (Pennisetum clandestinum Hochst. ex. Chiov) in Australia, as well as initiating a breeding programme aimed at producing new hybrid lines for the Australian turfgrass and agricultural market. The first part of the study examines the phenotypic variation which exists within kikuyu grass populations; the genotypic variation of those populations via DNA marking; and, the basis of male sterility within those populations. The second part examines kikuyu grass within a breeding perspective through pollen viability and storage; the potential presence of an endophyte within the seed; classical hybridisation of ecotypes through to field planting; and, whether the oomycete Verrucalvus flavofaciens can be controlled via a modern day fungicide programme. It also rewrites the history of kikuyu introduction, first seeding occurrence, and previously unrecorded importations into Australia. General observations record the first photographic images of kikuyu grass chromosomes.

Significant phenotypic variation exists within naturalised kikuyu grass populations across Australia. From a collection of about 200 ecotypes 16 were selected for detailed study. Analysis of the ecotypes identified two lines from several which show great potential within the Australian turfgrass and agricultural market; the first selected at Grafton, NSW, which in the leaf width analysis displayed a leaf width over 18% finer than the mean; with the second selected at Morphettville, SA, which in the stolon width analysis displayed a stolon width over 15% thicker than the mean. Both selections, as well as others, displayed positive traits which would appeal to a wide range of end users.

Genetic investigations using RAPD marker techniques are undertaken on kikuyu for the first time. A total of thirteen decamer primers produced 195 markers of which 93.85% were polymorphic. Genotypic variation amongst the Australian selections was found to range from 28.8% - 82.4%. Relatedness between the cluster accessions used in the phenotypic analysis and the dendogram produced in the genetic analysis was not found. Male sterility within Australian kikuyu grass was determined to exist as a recessive condition. From the F_1 population, 100% transformation from male sterile to fully fertile was observed; with the F_2 population segregating into a 52.5% fully fertile, 47.5% male sterile. Negative interactions between parental lines were observed.

Kikuyu grass pollen is most viable in the first few hours after shedding, and deteriorates significantly within 24 hours, even at low temperatures, if it is stored. Pollen viability varies amongst genotypes. Prior additions of dry colloidal material does not assist in storage capabilities.

Investigations into seedling mortality of kikuyu identified the possible presence of an endophyte within the seed. Surface sterilisation techniques provided no control, with an addition of 0.1% PPM to the base agar mixture the most effective form of control. Intercellular hyphae were identified and photographed after staining with Rose Bengal.

Hybridisation studies of kikuyu grass resulted in several potential lines worthy of continued analysis. Selections from varying growing environments around Australia were hybridised with three pollen parents derived from chemical mutagenesis producing a total of 349 hybrid F_2 seeds. Germination and screening in the glasshouse resulted in 14 hybrid lines being field planted alongside cv. 'Whittet' for comparison. The opportunity exists within the turfgrass market for elite lines of kikuyu, which will cover a wide range of uses from golf course tees and fairways, sporting grounds and race tracks, to pasture and commercial use.

Efficacy with modern day fungicides *in vitro* was found not successful in controlling Kikuyu Yellows (*Verrucalvus flavofaciens*). Resistance of kikuyu grass to the oomycete will have to come in the form of genetically resistant cultivars; production of a specific fungicide; or both.

Table of Contents

Declaration	ii
Dedication	iii
Acknowledgements	iv
Abstract	v
Table of Contents	vii
List of Tables	xvi
List of Figures	xvii
Abbreviations	xx

2.	CHAPTER 2: Review of Literature	4
2.1	Origins	4
2.2	Identification and Naming	6
2.3	Morphology	7
2.4	Initial Spread from Kenya	8
2.5	Initial Trial Work	9
2.5.1	Initial Publications and Reports	9
2.6	The Edwards Ecotypes	11
2.6.1	'Kabete'	12
2.6.2	'Molo'	12
2.6.3	'Rongai'	12
2.7	Current Registered Australian Kikuyu Lines	13
2.7.1	'Whittet'	13
2.7.2	'Breakwell'	14
2.7.3	'Crofts'	14
2.7.4	'Noonan'	14
2.8	Reproductive System	15
2.8.1	Male Sterile Kikuyu	15
2.8.2	Fully Fertile Kikuyu	17
2.9	Flowering Incidences	19

2.10	imactic Factors Affecting Kikuyu Distribution and	
	Growth in Australia	20
2.11	Pasture Usage	24
2.12	Kikuyu Pests and Diseases	29
2.13	Kikuyu Breeding	30
2.14	Ecotype Populations	31
2.14.1	Gene Flow	33
2.15	Genetic Studies	33
2.16	Summary	34

3.	CHAPTER 3: Kikuyu Grass: A History of its	
	Introduction and Spread throughout Australia	35
3.1	Introduction	35
3.2	The interception of the seed used by Breakwell	36
3.3	Breakwell's second introduction	39
3.4	The originating source in east Africa	39
3.4.1	The Congo Botanic Gardens	40
3.5	Spread around Australia	42
3.6	Australian demand and expansion at HAC	43
3.7	Australian trial work	44
3.8	Further importations	45
3.9	Conclusions	46

4.	CHAPTER 4: Kikuyu Grass: The First Report of	
	Seeding in Australia and Flowering Observations	47
4.1	Introduction	47
4.2	The first published recording of seeding of kikuyu grass	47
4.3	Rewriting the first observed setting of kikuyu seed in Australia	49
4.4	Seeding kikuyu trial work in Australia	53
4.5	Flowering observations	54
4.5.1	Practical observations	54
4.5.2	Observations	55
4.5.3	Why was seeding not observed until the 1930s in pastures	
	established on the 1918 and 1920 introductions?	56

4.5.4	Observed flowering in longer stands of kikuyu	57
4.6	Conclusions	58

5.	CHAPTER 5: Phenotypic Variation amongst	
	Populations of Pennisetum clandestinum	59
5.1	Introduction	59
5.2	Materials and Methods	59
5.2.1	Selection of kikuyu lines	59
5.2.2	Germplasm Establishment	62
5.2.3	Plot Establishment and Layout	62
5.2.4	Plug Establishment	64
5.2.5	Trial Period	64
5.2.6	Field Measurements	64
5.2.7	Environmental Data	65
5.2.8	Calculation of Relative Growth Rate	65
5.2.9	Statistical Analysis of Data	66
5.3	Results	66
5.3.1	Environmental Data	66
5.3.2	Stolon Width	68
5.3.3	Foliage Height	69
5.3.3.1	Relative Foliage Height Growth Rate	70
5.3.4	Node Width	71
5.3.5	Internode Length	72
5.3.6	Leaf Width	73
5.3.6.1	Relative Leaf Width Growth Rate	74
5.3.7	Longest Runner	75
5.3.7.1	Relative Runner Extension Rate	76
5.3.8	Coverage	77
5.3.8.1	Relative Coverage Rate	78
5.4	Discussion of Results	79
5.4.1	Stolon Width Increase	79
5.4.1.1	Finest stolon diameter	79
5.4.1.2	Thickest stolon diameter	80
5.4.1.3	Fine turf environments	81
5.4.1.4	Stolon width summary	81

5.4.2	Foliage Height	81
5.4.2.1	Highest top growth	81
5.4.2.2	Effects of average temperature on foliage height	82
5.4.2.3	Lowest foliage height	83
5.4.2.4	Foliage height summary	85
5.4.3	Node Width	86
5.4.3.1	Average gain after 15 weeks	86
5.4.3.2	Thickest node width	87
5.4.3.3	Narrowest node width	87
5.4.3.4	Node width summary	88
5.4.4	Internode length	88
5.4.4.1	Internode length gains	89
5.4.4.2	Longest internode length	89
5.4.4.3	Shortest internode length	89
5.4.4.4	Other factors influencing internode length	90
5.4.4.5	Internode length summary	90
5.4.5	Leaf Width	91
5.4.5.1	Average leaf width increase	91
5.4.5.2	Finest leaf width	91
5.4.5.3	Coarsest leaf width	92
5.4.5.4	Leaf width summary	93
5.4.6	Longest Runner	93
5.4.6.1	Fastest runner extension	93
5.4.6.2	Slowest runner extension	94
5.4.6.3	Longest runner summary	95
5.4.7	Coverage	96
5.4.7.1	General coverage	96
5.4.7.2	Greatest coverage	97
5.4.7.3	Lowest coverage	98
5.4.7.4	Coverage summary	98
5.5 Rela	tionship between some of the parameters (R^2 values)	98
5.6 Gene	eral Summary	100

6. CHAPTER 6: Genotypic Variation of *Pennisetum* clandestinum Utilising RAPD Marking Techniques 101

6.1	Introduction	101
6.2	Background	102
6.2.1	Polymerase Chain Reaction (PCR)	102
6.2.2	Visualisation	104
6.3	Aims and Hypothesis	104
6.4	Material and Methods	105
6.4.1	Plant material	105
6.4.2	Template DNA isolation	106
6.4.3	PCR amplification	108
6.4.4	Primer selection	109
6.4.5	Visualisation	109
6.4.6	Statistical analysis	110
6.5	Results and Discussion	110
6.5.1	DNA purity and quantity	110
6.5.2	DNA amplification banding patterns	110
6.5.3	Primer banding pattern images	112
6.5.3.1	Primer OPM20	113
6.5.3.2	Primer OPAE	113
6.5.3.3	Primer K07	114
6.5.3.4	Primer K17	114
6.5.3.5	Primer M01	115
6.5.3.6	Primer OPAA	115
6.5.3.7	Primer OPK20	116
6.5.3.8	Primer P19	116
6.5.3.9	Primer OPB15	117
6.5.3.1	Primer OPB17	117
6.5.3.1	Primer OPO06	118
6.5.3.12	2 Primer OPA11	118
6.5.3.1	3 Primer A17	119
6.5.4	Genetic variation of kikuyu grass	119
6.5.5	Cluster analysis	120
6.5.6	Geographic distribution in relation to clusters	
	and similarity percentages.	124
6.5.7	Genetic distances revealed by similarity matrix.	125
6.5.8	Specific markers	128
6.6	Conclusions	129

7. CHAPTER 7: Male Sterility within Populations of

	Pennisetum clandestinum	130
7.1	Introduction	130
7.2	Aims	131
7.3	Material and Methods	132
7.3.1	Ecotype Selection	132
7.3.2	Fertilisation	132
7.3.3	Post fertilisation management	133
7.4	Results and Discussion	134
7.4.1	Seed set	134
7.4.2	Germination results	135
7.4.3	F ₁ progeny	135
7.4.4	Selfing	138
7.4.5	F ₂ progeny	138
7.5	Concluding Discussion	140

8. CHAPTER 8: Pollen Viability and Storage of

	Pennisetum clandestinum	141
8.1	Introduction	141
8.1.1	Pollen distribution and viability testing	141
8.1.2	The need for pollen storage	142
8.2	Materials and Methods	142
8.2.1	In vitro pollination – The floating cellophane method	142
8.2.2	Storage examinations	143
8.2.3	Counting	143
8.2.4	Pollen sources	144
8.2.5	Pollen collection	144
8.2.6	Heat shock	144
8.2.7	Experimental design and analysis	144
8.3	Results and Discussion	145
8.3.1	Pollen grain dehydration	145
8.3.2	Media composition and germination of fresh pollen	145
8.3.2.1	Boric acid additions	146
8.3.3	Storage at 4°C, -8°C and -180°C	149
8.3.4	Additions of polyvinylpolypyrrolidone	151

8.3.5	Pollen storage results summary	151
8.4	Pollen studies: General conclusion	152

9. **CHAPTER 9:** Investigations into Seedling Mortality of Pennisetum clandestinum 153 9.1 Introduction 153 9.2 Seed and Base Agar Mixture 154 9.3 Germination 154 9.3.1 Agar and Seed Sterilisation Amendments 156 9.3.1.1 Hot water treatment 156 9.3.1.2 Mercuric Chloride 156 9.3.1.3 Plant Preservative Mixture 157 9.4 Endophyte presence as a cause of the seedling fungal infections 158 9.4.1 Leaf staining 158 9.5 Fungal identification 160 9.5.1 Possible role of kikuyu endophytes in ruminant toxicity 161 9.6 Conclusions 162

10. CHAPTER 10: Hybridisation Studies of Pennisetum

	clandestinum	163	
10.1	Introduction		
10.2	Aims		
10.3	Materials and Methods		
10.3.1	Selections	164	
10.3.2	Pollen collection	165	
10.3.3	Hybridisation	165	
10.3.4	After-ripening	166	
10.3.5	Agar germination base and seed sterilization	166	
10.3.6	Growth data	166	
10.4	Results and Discussion	166	
10.4.1	Initial hybridisation and F_1 seed of the 2004/2005 crossing	166	
10.4.2	Lack of initial heterosis	168	
10.4.3	Hybridisation programme 2005/2006	171	
10.4.3.	1 Hybridisation results	171	

10.4.3.2 Germination		174
10.4.3.3 Establishment		174
10.4.4	Selection of superior F_1 lines for field analysis	
10.4.5	Field plot layout and establishment	177
10.4.5.1	Results of Selected F1 Field Trial: General Overview	179
10.5 Conclusions		184

11. CHAPTER 11: Performance of Commercially Available Fungicides on Kikuyu Yellows (Verrucalvus flavofaciens)

	In Vitro	185	
11.1	Introduction	185	
11.2	Disease cycle of Verrucalvus flavofaciens		
11.3	Background		
11.4	Aims	188	
11.5	Materials and Methods	189	
11.5.1	Culturing of Verrucalvus flavofaciens	189	
11.5.2	Fungicides	191	
11.5.3	Media and fungicide preparation	191	
11.5.4	Addition of pure cultures	191	
11.6	Results and Discussion	192	
11.7	Summary	193	
12.	CHAPTER 12: General Discussion	194	
13.	References	197	
14.	APPENDICES		
Apper	ndix 1: General Observations	213	
1.1	Chromosome observations of Pennisetum clandestinum	213	
1.1.1	Introduction	213	

1.1.2Methodology for staining chromosomes in kikuyu grass2141.1.3Chromosomes of *Pennisetum clandestinum* cv. 'Whittet'215

Apper	Appendix 2: Agar Compositions, Sterilants and Cytology Stains		216
2.1	Agar (Compositions	216
2.1.1		Germination Base for Kikuyu Seed	216
2.1.2		Quarter PDA	216
2.1.3		Quarter PDA with Novobiocin	216
2.1.4		Plain Agar	217
2.1.5		Soil Extract Solution	217
2.2	Surfac	ee Sterilants	217
2.2.1		Pathology Surface Sterilant for Leaf Tissue	217
2.2.2		95% EtOH	218
2.2.3	3 70% EtOH		218
2.3	Cytolo	ogy Stains	218
2.3.1		2% Aceto-Carmine	218
2.3.2		2% Aceto-Orcein	219
2.3.3		Leuco-basic Fuchsin	219
2.3.4	3.4 Fixative for plant rootlets		219

Attached CD:

Vegetative Planting Register
Phenotypic Recordings
Pollen Germination Tables
Growth Data F ₁ Hybrids
F ₂ Seeding Register

List of Tables

Table 2.1:	Prescott Model showing rainfall and evaporation figures	21
Table 5.1:	Descriptions of the 16 ecotypes used in the study	61
Table 5.2:	Environmental data for the duration of the 16 week trial	67
Table 5.3:	Solar radiation data at Sydney Airport	67
Table 5.4:	\mathbf{R}^2 values for the kikuyu grass lines at observation 16	98
Table 6.1:	Kikuyu grass selections used in the RAPD analysis	106
Table 6.2:	Extraction protocol for the ABI PRISM 6100 Nucleic	
	Acid Preparation Station	107
Table 6.3:	PCR reaction mixture for the RAPD analysis	108
Table 6.4:	PCR cycling time and temperatures	109
Table 6.5:	Final primer selection for RAPD analysis	111
Table 6.6:	Primers and marker results	112
Table 6.7:	Similarity matrix for kikuyu grass selections	127
Table 7.1:	Seed set in Line 924 following hybridisation in Oct. 2005	134
Table 7.2:	Germination of F ₁ progeny of ecotype 924	135
Table 7.3:	F ₁ sexual ratio for progeny of ecotype 924	136
Table 7.4:	F ₂ seed collection after selfing	138
Table 7.5:	F ₂ plant establishment flowering behavior	139
Table 8.1:	Percentage germination of KC902 after storage at -8°C	
	for 24h in differing in vitro cultures	150
Table 10.1:	Accessions selected for initial hybridisation exercise	167
Table 10.2:	Hybrid seed register for crossing programme of 2004/2005	168
Table 10.3:	Hybrid seed register for crossing programme of 2005/2006	172
Table 10.4:	Hybrid lines selected for field trial	177
Table 11.1:	Fungicides used for in vitro analysis of Verrucalvus flavofaciens	191
Table 11.2:	Mean radial growth of Verrucalvus flavofaciens	192

List of Figures

Figure 2.1:	Plant succession stages in Kenyan highlands 5	
Figure 2.2:	Photographic image of the Edwards ecotype 'Kabete'	12
Figure 2.3:	Photographic image of the Edwards ecotype 'Molo'	
Figure 2.4:	Photographic image of the Edwards ecotype 'Rongai'	
Figure 2.5:	Image of a male sterile floret of Pennisetum clandestinum	
	with the outer sheath removed	15
Figure 2.6:	Image of a male sterile stamen showing lack of pollen	16
Figure 2.7:	Image of male sterile stamen in 1925 showing lack of pollen	16
Figure 2.8:	Observations of a gynodioecious sward of Pennisetum	
	clandestinum over a 4 year period	17
Figures 2.9:	Images showing the rapid extension of the filaments in	
	fully fertile Pennisetum clandestinum	18
Figure 2.10:	Reduction of nitrate in the rumen	28
Figure 3.1:	Letter from Ernest Breakwell to the principal of HAC	37
Figure 3.2:	Plot layout grass gardens C1 & C2 at HAC	38
Figure 3.3:	Growth regions for kikuyu grass in Africa with locations	
	of the Belgian Congo botanic gardens	41
Figure 4.1:	1934 article from The Daily Telegraph announcing the	
	first seed setting of Pennisetum clandestinum	48
Figure 4.2:	Letter from Cyril Hungerford to the principal of HAC	50
Figure 4.3:	The Hungerford lawn where kikuyu set seed for the first	
	time in Australia	52
Figure 4.4:	Kikuyu representative of the original form of from Kenya	
	at the Hungerford property	53
Figure 4.5:	Flowering incidence observational trial	55
Figure 4.6:	Flowering in undefoliated kikuyu	57
Figure 5.1:	Plot layout of ecotypes used in the phenotypic analysis	63
Figure 5.2:	Stolon width graph	68
Figure 5.3:	Foliage height graph	69
Figure 5.4.	Relative foliage height growth rate (\log_2 scale) for	
	several kikuyu grass accessions.	70
Figure 5.5:	Node width graph	71
Figure 5.6:	Internode length graph	72
Figure 5.7:	Leaf width graph	73

Figure 5.8:	Relative leaf width growth rate (log ₂ scale) for several	
	kikuyu grass accessions.	74
Figure 5.9:	Longest runner graph	75
Figure 5.10:	Relative runner extension growth rate (\log_2 scale) for several	
	kikuyu grass accessions	76
Figure 5.11:	Coverage graph	77
Figure 5.12:	Relative coverage rate (\log_2 scale) for several kikuyu	
	grass accessions.	78
Figure 5.13:	Stolon width differences between ecotypes 950 and 965	80
Figure 5.14:	The original selection location for ecotype 941	84
Figure 5.15:	Image showing natural dwarf tendencies of ecotype 965	88
Figure 5.16:	Image showing consistent radial coverage of ecotype 965	96
Figure 5.17:	Image showing inconsistent radial coverage of ecotype 903	97
Figure 5.18:	Image showing some of the ecotypes used in the phenotypic	
	analysis	100
Figure 6.1:	Gel of Pennisetum clandestinum with primer OPM20	113
Figure 6.2:	Gel of Pennisetum clandestinum with primer OPAE	113
Figure 6.3:	Gel of Pennisetum clandestinum with primer K07	114
Figure 6.4:	Gel of Pennisetum clandestinum with primer K17	114
Figure 6.5:	Gel of Pennisetum clandestinum with primer M01	115
Figure 6.6:	Gel of Pennisetum clandestinum with primer OPAA	115
Figure 6.7:	Gel of Pennisetum clandestinum with primer OPK20	116
Figure 6.8:	Gel of Pennisetum clandestinum with primer P19	116
Figure 6.9:	Gel of Pennisetum clandestinum with primer OPB15	117
Figure 6.10:	Gel of Pennisetum clandestinum with primer OPB17	117
Figure 6.11:	Gel of Pennisetum clandestinum with primer OPO06	118
Figure 6.12:	Gel of Pennisetum clandestinum with primer OPA11	118
Figure 6.13:	Gel of Pennisetum clandestinum with primer A17	119
Figure 6.14:	Phylogenic tree of Pennisetum clandestinum relationships	123
Figure 7.1:	Example of a bagged stigma after fertilization	133
Figure 8.1:	Pollen germination in genotype KC900 as affected by boric acid	147
Figure 8.2:	Pollen germination in genotype KC901 as affected by boric acid	147
Figure 8.3:	Pollen germination in genotype KC902 as affected by boric acid	148
Figure 8.4:	Pollen germination across three genotypes at 40% sucrose	
	and a range of boric acid concentrations	148
Figure 8.5:	Pollen germination on genotype KC901 after storage at -8°C	150
Figures 9.1-9.2	E: Examples of fungi emerging from germinating seeds of	

	kikuyu grass	155		
Figures 9.3-9.4: Examples of fungi emerging from germinating seeds of				
	kikuyu grass	155		
Figure 9.5:	Germination of kikuyu grass showing radicle, plumule and			
	the emerging fungi from the scutellum	156		
Figure 9.6:	Control of fungal growth in germinating seeds of kikuyu			
	using PPM	157		
Figure 9.7:	Hyphae observed in leaf of kikuyu grass 'Whittet'	159		
Figure 9.8:	Hyphae observed in leaf of kikuyu grass 'Whittet'	159		
Figure 10.1:	Lack of heterosis in F ₁ lines of <i>Pennisetum clandestinum</i>			
	from the 2004/2005 hybridisation programme	169		
Figure 10.2:	General lack of vigor in F ₁ lines of <i>Pennisetum clandestinum</i>	169		
Figure 10.3:	Excavation of diseased F_1 of Pennisetum clandestinum	170		
Figure 10.4:	Surviving hybrid of the 2004/2005 hybridisation programme	171		
Figure 10.5:	Hybrid seeds of <i>Pennisetum clandestinum</i> grown on individual			
	agar slopes in a controlled micro-climate	173		
Figure 10.6:	Variation in general heterosis of F ₁ lines of <i>Pennisetum</i>			
	clandestinum with the same parental lines	174		
Figure 10.7:	Establishment of the F ₁ lines of <i>Pennisetum clandestinum</i>	176		
Figure 10.8:	F ₁ field plot layout	178		
Figure 11.1:	Disease cycle of Verrucalvus flavofaciens	186		
Figure 11.2:	Kikuyu grass infected with Verrucalvus flavofaciens	188		
Figure 11.3:	Oospores and sporangia of Verrucalvus flavofaciens	190		
Figure 11.4:	Isolation of pure cultures of Verrucalvus flavofaciens using			
	the Rapers Ring method	190		

Appendices

Figure A1:	1: Kikuyu grass chromosomes in several cells of	
	cv. 'Whittet' (x1000)	215

List of Abbreviations

ASL:	Above sea level
bp:	Base pair
°C:	Degrees Celsius
Ca:	Calcium
CaNO ₃ :	Calcium Nitrate
cal:	Calorie
cm:	Centimetre
CMS:	Cytoplasmic Male Sterility
CP:	Crude Protein
Cu:	Copper
d:	Day
DM:	Dry matter
DNA:	Deoxyribonucleic Acid
EC:	Electrical Conductivity
Fe:	Iron
ft:	Feet
GDR:	Great Dividing Range
g:	Gram
g/L:	Grams per litre
h:	Hour
Ha:	Hectare
HAC:	Hawkesbury Agricultural College
H_3BO_3 :	Boric Acid
K:	Potassium
KC:	Kikuyu Collection
kg:	Kilogram
KH:	Kikuyu Hybrid
km:	Kilometre
KNO ₃ :	Potassium Nitrate
m: Mai	Metre
Mg: MgCl.:	Magnesium Chlorida
MgCl ₂ : MgSO ₄ :	Magnesium Chloride Magnesium Sulphate
mgSO ₄ .	Millimetre
mM:	Millimolar
Mn:	Manganese
Mo:	Molybdenum
N:	Nitrogen
Na:	Sodium
NaOC1:	Sodium Hypochlorite
ng:	Nanogram
NSW:	New South Wales
P:	Phosphorus
PBI:	Plant Breeding Institute
PCR:	Polymerase Chain Reaction
ppm:	Parts per million
QLD:	Queensland

RAPD:	Random Amplified Polymorphic DNA
rpm:	Revolutions per minute
rps:	Revolutions per second
S:	Sulphur
SA:	South Australia
sec:	Seconds
t:	Tonne
TAS:	Tasmania
U:	Unit
UV:	Ultraviolet
V:	Volts
VIC:	Victoria
WA:	Western Australia
Zn:	Zinc
%	Percent
-	Minus
£	Pound Currency
μL	Microlitre
μM	Micromolar