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Abstract

This study considers pure coordination games on networks and the waiting
time for an adaptive process of strategic change to achieve efficient coor-
dination. Although it is in the interest of every player to coordinate on a
single globally efficient norm, coalitional behavior at a local level can greatly
slow, as well as hasten convergence to efficiency. For some networks, when
one action becomes efficient enough relative to the other, the effect of coali-
tional behavior changes abruptly from a conservative effect to a reforming
effect. These effects are confirmed for a variety of stylized and empirical
social networks found in the literature. For coordination games in which
the Pareto efficient and risk dominant equilibria differ, polymorphic states
can be the only stochastically stable states.

Keywords: Evolution, stochastic stability, learning, coalition, social
norm, reform, conservatism, networks, social networks.
JEL: C71, C72, C73

1. Introduction

Why do some innovations spread rapidly and others slowly? Why are
some innovations never adopted, even though they are inexpensive and
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Figure 1: A two player pure coordination game, α > 1.

methods of equilibrium selection would point to their universal adoption?
An answer to these questions should consider waiting times. It takes time
for any novelty or innovation to be adopted. If the expected waiting time
to adoption of an innovation is long, it may be superceded and rendered re-
dundant before it has become widespread. The question of whether it would
have eventually been adopted, had the world remained the same in all other
respects following its invention, is then moot. Given the importance of wait-
ing times, it is natural to query how they are affected by sensible behavioral
assumptions. The behavioral assumption we make in the current paper is
the following: from time to time, players with interdependent payoffs come
together and adjust their actions to their mutual benefit. That is to say,
they form temporary coalitions.

This paper examines the effect of coalitional behavior on expected wait-
ing times for processes to reach long run equilibria. We focus on two action
pure coordination games with one efficient action A, and one inefficient
action B, as illustrated in figure 1. The relative efficiency of the efficient
action to the inefficient action is given by the parameter α. The set of
players with whom any given player interacts is governed by an underlying
network. A long run equilibrium (stochastically stable state) is the state
in which every player plays the efficient action. The waiting time for the
process to reach this long run equilibrium can thus be understood as the
delay before a society converges to an efficient social norm. In line with
the theoretical predictions of Olson (1965) and much of the subsequent lit-
erature on collective action, we are particularly interested in the effect of
joint strategic switching by coalitions which are small relative to the total
population size.2

Two possible effects of coalitional behavior are discovered, a reforming
effect and a conservative effect. For high values of α, we observe a reforming

2See also Poteete and Ostrom (2004). There also exist important provisos to such
predictions (Chamberlin, 1974), particularly in the presence of punishment (Mathew
and Boyd, 2011; Hwang, 2009).
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effect: convergence to the long run equilibrium is much faster when coali-
tional behavior is allowed. Less obviously, for some networks and low values
of α, there is a conservative effect: convergence to the long run equilibrium
is much slower in the presence of coalitional behavior. These effects, taken
singly or together, imply that coalitional behavior increases the sensitivity
of convergence speeds to the relative efficiency of competing norms.

Several network types display tipping point effects. For values of α below
some threshold α, coalitional behavior has a conservative effect. For values
of α above some threshold ᾱ, coalitional behavior has a reforming effect. In
some instances α and ᾱ take the same value. These speed-of-convergence
tipping points are driven by preferences in a similar way to those of Gra-
novetter (1978) and not by informational concerns such as in, for example,
Bikhchandani et al. (1992). However, in comparison to Granovetter (1978)
or Ellison (1993), additional tipping points are created at the values of α
above or below which certain coalitional deviations become optimal. For
example, it only makes sense for a group to coordinate a break away from
a current norm if the additional payoffs the members of the group generate
amongst themselves outweigh their losses from miscoordinating with the
rest of the population. The principal results of the paper are as follows:

(i) For any network, a reforming effect is observed for large enough α.
Furthermore, for any α, a reforming effect is observed if large enough
coalitions can form.

(ii) The notion of a parochial set of players is defined recursively, building
outwards from some core players who are completely isolated from the
network outside of the parochial set. It is shown that parochial sets
of players are the only sets which are immune to conservative effects
for any α and coalition size.

(iii) If all Nash equilibria for a network involve every player choosing the
same action, then there cannot be a conservative effect for any α and
coalition size. This set of networks includes the ring network and the
complete network.

(iv) We characterize sets of players which are immune to ‘contagion’ (in
the sense of Morris, 2000) by the efficient action. In the absence of
coalitional behavior, Morris (2000) gives an external stability condi-
tion: such a set of players must be sufficiently insular. In the presence
of coalitional behavior, there is also an internal stability condition:
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the set must not contain small groups of players which are insular
enough to profitably coordinate a switch to the efficient action.

The model can be considered a stylized representation of multiple phe-
nomena. These include the dissemination of ideas and socio-cultural memes,
the spread of process innovation within and between firms, and the choice
of consumer technology (e.g. mobile phone network providers). It can also
be considered a model of online platforms used for purposes such as photo
sharing (e.g. Flickr, My Opera, Fotki, Fotolog), microblogging (e.g. Twit-
ter, Tumbler, Plurk, Jaiku), or internet telephony (e.g. Skype, Google talk,
Oovoo). Essentially, it can be considered a model of any setting in which
(i) the main benefit or cost of the choice of action by a player arises through
his interaction with others, and (ii) switching costs between actions are rel-
atively low. For example, the direct cost of changing the political position
one advocates are small compared to the costs that arise through social
interaction as a consequence of making such a change. The same can some-
times be said for the choice of technology to be used for a specific purpose
within a firm.3

The theoretical results in the paper are confirmed as robust for non-
vanishing parameter values via simulations on both stylized and empirical
networks. These include coauthorship networks, workplace networks and
social networks, including fragments of friendship networks on Facebook.

The question arises as to what the model of the paper gives when instead
of a pure coordination game, the players play a game in which one of the
Nash Equilibria is Pareto efficient and the other is risk dominant. In these
circumstances, it is no longer the case that the state in which every player
chooses the efficient action is always stochastically stable. Neither need the
state in which all play the risk dominant action be stochastically stable. In
fact, long run equilibria may involve heterogeneous action choices by dif-
ferent parts of a population. Consider a population composed of cliques of
players such that players within any given clique are densely connected, but
each clique is only loosely connected to other cliques. For some parameter

3To give an example, employees may choose to keep track of appointments via a paper
diary or via particular software integrated with a system of electronic mail. Another
example is the choice faced by academic researchers of whether to use a TEX editor or
WYSIWYG software such as Scientific Workplace (or even Microsoft Word). Such a
choice generates significant payoff externalities for coauthors, as the default source code
generated by such software often has to be adjusted before it can be compiled in a TEX
editor.
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values, the stochastically stable states of such a population involve medium-
size cliques coordinating on the efficient equilibrium action and large cliques
coordinating on the risk dominant equilibrium action. This gives a justifi-
cation for the use of smaller teams in large organizations: efficient behavior
may not be long-run stable in large operating units.

The paper is organized as follows. Section 2 relates the paper and its re-
sults to existing literatures. Section 3 gives the model. Section 4 introduces
the ideas of the paper via an example. Section 5 gives some general results
for any network. Section 6 studies conservative effects. Sections 7 and 8
discuss small worlds and random regular networks. Section 9 gives results
of simulations. Section 10 analyzes the situation where Pareto efficiency
and risk dominance do not coincide. Section 11 concludes. All proofs not
in the main body of the text are given in the appendix.

2. Relation to existing literatures

2.1. Perturbed adaptive dynamics and stochastic stability

Whereas concepts of equilibrium stability such as asymptotic stability
or evolutionary stable strategies (Smith and Price, 1973) analyze robustness
to single errors (mutations) in strategies, Foster and Young (1990), Young
(1993) and Kandori et al. (1993) use the methods of Freidlin and Wentzell
(1984) to measure the robustness of equilibria of an adaptive strategy revi-
sion process to multiple errors in players’ choice of strategies. They show
that although there may be several stationary states in a dynamic process,
some of them may be more robust to such errors than others, and that if
the probability of errors becomes very small, then in the long run some
nonempty subset of stationary states which are relatively robust to such
errors will be observed almost all of the time. These are the stochasti-
cally stable states. Bergin and Lipman (1996) prove a kind of folk theo-
rem for stochastic stability, that is they show that any stable state of the
unperturbed dynamic process can be selected with appropriately chosen
state-dependent mutation rates. Therefore, the structure given to error
probabilities is crucial to the predictions of the model.4 Naidu et al. (2010)
analyze a model in which transitions between stochastically stable states
are driven by errors on the part of the players who stand to gain from the
move and arrive at different predictions to those of Young (1998a) for games

4van Damme and Weibull (2002) give conditions on error probabilities under which
the results of Young are recovered.
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of contracting.5 Logit models, in which more costly errors occur with lower
probability, are also common in the literature6.

A pervasive criticism of stochastic stability as a tool of equilibrium selec-
tion has been the large lengths of time it can take for the perturbed process,
starting at a non-stochastically stable equilibrium of the unperturbed dy-
namic, to reach a stochastically stable state (Ellison, 1993). This calls into
question the empirical validity of stochastic stability: if it takes a billion
periods to reach a stochastically stable state, the concept may not be pre-
dictively useful on human timescales. Results on waiting times can depend
on network topology, network size, and whether the small error probability
limit is analyzed or error probabilities are kept fixed.7 The current paper
finds that the potential problem of long waiting times can be considerably
worsened or mitigated by orders of magnitude when coalitional behavior
is introduced, and whether a worsening or a mitigation occurs depends on
knife edge parameter values. The literature sometimes neglects to mention
that whether a waiting time is long or short in absolute terms depends on
the interpretation of period length. The current study does not aim to prove
that convergence is ever fast or slow in absolute terms: the focus is on the
comparison of processes with and without coalitional behavior.

2.2. Coalitional behavior

There exists a large literature in cooperative game theory on the behav-
ior of coalitions.8 Concepts include ‘strong equilibrium’ (Aumann, 1959),
coalition proof Nash equilibrium (Bernheim et al., 1987), farsighted coali-
tional stability (Konishi and Ray, 2003), and coalitional rationalizability
(Ambrus, 2009). There is a small literature on coalitional behavior in per-
turbed evolutionary models. Newton (2012a) introduces a model of coali-
tional stochastic stability in which the ‘errors’ in the dynamic process are
actually small probabilities of payoff improving behavior by coalitions of
players, and shows that this can lead to significant differences in equilibrium
selection when compared to random error driven selection. Sawa (2012)
adapts coalitional stochastic stability for logit-style dynamics. The model

5See Binmore et al. (2003) for a good survey of results in evolutionary bargaining
models.

6See for example Blume (1993); Alós-Ferrer and Netzer (2010).
7See Ellison (2000); Young (1998b, 2011); Kreindler and Young (2013); Montanari

and Saberi (2010). Kreindler and Young contains a concise survey of this literature.
8For a survey the reader is referred to Peleg and Sudholter (2003).
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of Sawa (2012) also features coalitional behavior as part of the unperturbed
dynamic. Serrano and Volij (2008) and Newton (2012b) do similarly, ap-
plying stochastic stability to models of coalitional recontracting. Matching
models such as those found in Jackson and Watts (2002) and Klaus et al.
(2010), in which coalitions are pairs of recontracting agents, also fall into
this category.

2.3. Networks and local interaction

Some coalition structures can be considered more reasonable than others.
Suggestions have been made in the cooperative game theory literature that
subcoalitions of coalitions which are allowed to coordinate should also be
allowed to coordinate.9 Alternatively, it has been suggested that the union
of coalitions which are allowed to deviate and have a nonempty intersection
should also be allowed to deviate, the justification being that players who
belong to both potential coalitions could act as intermediaries.10

Networks are a natural way to represent payoff effects in games and are
also a natural way to delineate feasible coalition structures, for instance by
assuming that any coalitional activity is undertaken by connected subgraphs
of a graph representing a wider social network.11 This is the approach taken
in the current paper, in which it is assumed that aside from payoff effects, the
network ties represent the potential for communication and thus coalition
formation between sets of players. The authors believe that coalitional
effects are very natural in a local interaction setting such as those analyzed
in Ellison (2000, 1993); Eshel et al. (1998). In fact, often the motivations
for players’ being connected to one another in a network representing payoff
effects can double as reasons why coalitional behavior between the players
is plausible. However, although networks can facilitate the formation of
coalitions, the two are distinct concepts. To quote from the International
Encyclopedia of Civil Society (Anheier and Toepler, 2009) in the context of
transnational organization: “Sometimes these networks generate the shared
goals, mutual trust, and understanding needed to form coalitions capable of
collaborating.... But networks do not necessarily coordinate their actions,
nor do they necessarily come to agreement on specific joint actions (as
implied by the concept of coalition).”

9Algaba et al. (2004).
10Algaba et al. (2001).
11Myerson (1977), Jackson and Wolinsky (1996), Jackson (2005), Kets et al. (2011).
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The current paper studies interaction on given networks, and not net-
work formation. This is another reason that waiting times for convergence
to a stochastically stable state are important. For very long waiting times,
it may not be plausible to assume that the underlying network structure
remains static long enough for the long run equilibrium to be reached. Wait-
ing times in such models without coalitional behavior have been the subject
of recent studies by Montanari and Saberi (2010) and Young (2011). Monta-
nari and Saberi (2010) examine the effect of network structure on the order
of magnitude of convergence times as networks increase in size. Young
(2011) bounds convergence times for fixed, non-vanishing error probabili-
ties.

2.4. Homophily

The paper is related to the literature on ‘homophily’ - the desire of people
to associate with those similar to themselves. This is a well documented
phenomenon in the sociology literature. For a survey the reader is referred
to McPherson et al. (2001). The economic literature on the topic, presaged
by Schelling (1969), has been growing of late. For example, Currarini et al.
(2009) explain data on friendships via direct assumptions about people’s
preference to associate with those of a similar race. The most relevant
paper in the homophily literature is that of Golub and Jackson (2012), which
defines homophily as the level of preferential linking to vertices of the same
colour in a random network, then relates this level to convergence times for a
simple averaging process. They conclude that homophily slows convergence.
This result follows because for an averaging process the important factor
is the size of the channels through which innovation can spread, rather
than the probability with which any given innovation gains a foothold in
the population. To illustrate this point, consider a complete network. An
averaging process will quickly converge on such a network, whereas for a
two action coordination game such as the one in the current paper it will
take many errors (and therefore in expectation a very long time) for the
process to begin a move from an inefficient equilibrium to an efficient one.

From the perspective of the current paper and its emphasis on joint
strategic switching, we note that aside from the network formation and
informational (different types of player access different information) inter-
pretations of homophily as in Golub and Jackson (2012), there may exist
a further effect: players of the same type may find it easier to coordinate
their changes in action. This could be due to underlying cultural norms
or even the perception of similar ‘sunspots’. The location of players of the

8



same type close to one another in a network (i.e. homophily) would then fa-
cilitate coalitional behavior. The implications of this for convergence times
would be ambiguous and follow the proceeding analysis.

2.5. Poverty traps

Finally, we note that the results of the current paper can be consid-
ered to illustrate a potential poverty trap. A poverty trap is a persistent
institution which is harmful to economic growth. In our paper the relevant
institution is the ability of small groups of players to behave coalitionally,
or equivalently, the habits of trust and cooperation which facilitate such be-
havior.12 Intriguingly, we see that the ability of small groups to coordinate
their choice of actions can create a poverty trap by slowing the movement
of society towards the efficient equilibrium.

It has been shown that norms of kin-based sharing, which would have
been evolutionarily advantageous in the past, can create a poverty trap
by preventing members of a kin-group from successfully integrating in a
modern economy.13,14 The persistence of kin-sharing norms in such a setting
can be seen as a failure of strategic coordination amongst members of a
kin-group.15 In contrast, the poverty trap in our paper can be caused by
coordination success. In a model of adaptive behavior and poverty traps,
Bowles (2004) shows how inegalitarian and inefficient (though not Pareto
inefficient) social norms are sustained due to two classes having different
preferences over possible norms. In our model there exists an efficient norm
which is (weakly) preferred by every player to every other norm.

3. Model

Let N be a finite set of players. Players are arranged in a network, which
we represent as a graph g, where gij = 1 if there exists a link between players
i and j, and gij = 0 otherwise. We assume that the graph is undirected:

12Such norms can be highly persistent. See, for example, Nunn and Wantchekon (2011)
on the effect of the slave trade on trust in Africa.

13Hoff and Sen (2006). See also Jakiela and Ozier (2012); Baland et al. (2011) on how
kin-sharing norms can lead to less profitable investment and borrowing behavior.

14This switch from a norm being advantageous to disadvantageous can also be seen
where highly inegalitarian societal norms, which evolved to exploit economies of scale in
agriculture, later became a hindrance to development (Engerman and Sokoloff, 2006).
See also Acemoglu et al. (2002).

15See also Akerlof (1976) on the caste system in India.
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gij = gji. Set gii = 0 for all i ∈ N . The network will affect players in two
ways:

(i) The network determines the structure of payoffs, in particular which
players’ actions impose externalities on other players.

(ii) The network mediates joint action by coalitions of players.

Let xti ∈ {A,B} denote player i’s action at time t. Let xtS =
∏

i∈N x
t
i

denote the action profile of all players in S ⊆ N at time t. In the absence
of a subscript, xt := xtN . Let xi and xS denote representative actions and
action profiles respectively. Let Ni denote the set of neighbors of player i:
Ni = {j ∈ N : gij = 1}. For S ⊆ N , let NS =

(⋃
i∈S Ni

)
\ S. Payoffs of

player i in period t are given by:

ui(x
t) =

∑
j∈Ni

δ(xti, x
t
j)

where:

δ(A,A) = α > 1; δ(A,B) = δ(B,A) = 0; δ(B,B) = 1.

That is, the players play a pure coordination game on the network. If
a player chooses action B, his payoff is the number of his neighbors who
play action B. If a player chooses action A, his payoff is the number of
his neighbors who play action A multiplied by some constant α which is
strictly greater than 1. Effectively, the players play their chosen action
against each of their neighbors in the game in figure 1. The constant α
can be understood to represent some technological superiority of action
A over action B, with the magnitude of α representing the magnitude of
this superiority. The model can be understood as a threshold model, with
1/(α+ 1) being the proportion of a player’s neighbors who must play A for the
player to want to play A.16 Settings can be considered for which players’
thresholds differ, but for the purpose of the current paper, homogeneous
thresholds suffice to obtain rich results.17,18

16Action A is p-dominant for any p > 1/(α+ 1) under the definition of Morris et al.
(1995).

17Note that in a situation where a regulator enforces interoperability of the two ‘tech-
nologies’, giving some constant nonzero payoff for miscoordination, then payoffs can be
rescaled back to this setup, corresponding to a higher value of α and a lower threshold.

18For many networks and values of α which are not too high, the one-shot game will
have a very large number of pure Nash equilibria. This multiplicity can persist when
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The underlying dynamic process of this paper is one in which coalitions
of players adjust their actions in a coordinated manner. The sets of players
which can do this are determined by the underlying network.

Definition 1. A coalition of players S ⊆ N is feasible in g, denoted S|g if
and only if for all i, j ∈ S there exists {sm}m=l

m=1 such that s1 = i, sl = j,
and sm ∈ S, gsmsm+1 = 1 for m < l.

That is, S is a feasible coalition if and only if S is a singleton set or
there is a path between any two players in S that only uses edges between
players in S. That is, players in a feasible coalition either directly interact
with one another, or have interactions mediated by other players in the
coalition. Another way of stating this is that the network restricted to
players in S forms a connected subgraph. It is assumed that N is feasible:
g is a connected network. This is without loss of generality: if the network
comprised more than one component, analysis of each component would
proceed independently of the other components.

When a coalition chooses its actions, we mandate that it chooses a bet-
ter response. That is, players in the coalition adjust their actions in a
coordinated manner such that no member of the coalition loses from the
adjustment. Note that the addition of a Pareto condition to define a form
of coalitional best response would complicate definitions without changing
the results of the paper. Define the set of better responses for a set of
players S:

AS(xt) :=
{
xS : ui(xS, x

t
N\S) ≥ ui(x

t) ∀ i ∈ S
}
.

Let GAS(xt)(.) be a probability distribution over AS(xt). GAS(xt)(.) will de-
termine the actions chosen by a coalition S when it is called upon to better
respond. We assume full support on the set of better responses.

Assumption 1. Each GAS(xt)(.) has full support on AS(xt).

We are particularly interested in the effect of coalitional behavior by
coalitions which are small relative to the total size of the population. It
is natural to assume that there are limits to how large a coalition can be.
Such a limit could be a consequence of higher costs of communication for

k-strong Nash equilibria are considered, by which we mean action profiles which are
resistant to deviation by coalitions of at most k players.
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larger coalitions. One approach would be to bound the maximum path
length between coalition members on the network. Another approach, the
one taken here, is to limit the maximum number of players in a coalition.
Let N (k) be the set of feasible coalitions of size k or smaller:

N (k) = {S ⊆ N : (S|g and |S| ≤ k)}.

For given k, let Fk(.) be a distribution on N (k). Fk(.) will determine which
coalition gets the opportunity to update its actions in any given period.
The process is one of asynchronous updating: only one coalition at a time
updates its actions.19

Assumption 2. Fk(.) has full support on N (k).

The process of strategy updating is constructed as follows. Each period,
a coalition S is chosen according to Fk(.). The coalition decides on an
intended new action profile for its members. Denote this intended action
profile by yt+1

S . This profile is chosen from the set of better responses AS(xt):

yt+1
S ∼ GAS(xt)(.).

Following the decision on which actions to take, each player will play his
intended action. This is the unperturbed dynamic. A perturbed dynamic
is generated by considering the possibility that a player makes a mistake
when attempting to play the action he intends to play. Each player in the
coalition, independently of the other players, with a small probability ε
makes an error and chooses an action at random. That is, independently
for each i ∈ S:

With probability 1− ε : xt+1
i = yt+1

i

With probability ε : xt+1
i ∼ U [{A,B}].

Finally, all players who are not part of the chosen coalition for period t do
not update their actions. For all i ∈ N \ S:

xt+1
i = xti

19The general implications of the results of the paper do not change if instead of
bounding coalition size we bound diameter, or if we allow some possibility of synchronous
updating.
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So the change in the action profile is determined by a Markov process, Φk,α,ε,
on state space X := {A,B}|N |, with transition probabilities Pk,α,ε(., .) de-
rived from the above description of the process. Let P t

k,α,ε(., .) denote the
t-step Markov transition probabilities. Each period, this process involves
feasible coalitions of players changing their strategies in a payoff improving
manner. When choosing his strategy, each player in the coalition indepen-
dently makes an error with probability ε and chooses an action at random.20

The process with ε = 0 corresponds to an unperturbed dynamic in which
players do not make errors.

Note that for ε > 0, Φk,α,ε is irreducible and aperiodic and therefore has
a unique invariant distribution πk,α,ε which is ergodic. Denote the expected
time for the process Φk,α,ε to reach state y starting from x by Wk,α,ε(x, y).

Definition 2.
τy = min{t ≥ 0 : Φt

k,α,ε = y}; Wk,α,ε(x, y) = E[τy|Φ0
k,α,ε = x]

The focus of the paper is on Wk,α,ε(B
|N |, A|N |), the expected time for

the process to move from an inefficient social norm in which every player
plays B to an efficient social norm in which every player plays A. We shall
occasionally be interested in the set of absorbing states under the process
with ε = 0. Denote this set Λk,α.

Λk,α := {x ∈ X : Pk,α,0(x, x) = 1}

For expositional brevity, we avoid the existence of absorbing cycles under
the process with ε = 0 by making the following assumption which holds for
generically all values of α.21

Assumption 3.
∀ z ∈ N+, z ≤ max

i∈N
|Ni| : αz /∈ N+

20This describes errors in implementation. If errors were instead made in the process
by which a coalition chooses its actions, then errors within a coalition could be perfectly
correlated and different results would obtain. However, remarkably, even if a probability
ε event leads all the members of a coalition to make mistakes, conservative effects are
still possible. See Appendix D for just such an example. Some correlation between errors
in the process is fine: the results of the paper can be appropriately restated. Again, see
Appendix D.

21This assumption is weaker than assuming α is not rational.
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(i) B|N | (ii) Two errors

(iii) C2 (iv) C3

Figure 2: Square lattice in various states. Black vertices play B, red vertices play A.

Throughout the paper, for functions f(ε), g(ε), the notation f(ε) ∈
O(g(ε)) and f(ε) ∈ Ω(g(ε)) denotes that f(ε) is asymptotically (as ε→ 0)
bounded above or below respectively by some multiple of g(ε). f(ε) ∈
Θ(g(ε)) denotes that f(ε) ∈ O(g(ε)) and f(ε) ∈ Ω(g(ε)).

4. Leading example: the square lattice

Consider the square lattice with von Neumann neighborhood, pictured
in figure 2, embedded on a torus as in figure 3.

Consider the benchmark case without coalitional behavior, k = 1, α < 3.
We have that W1,α,ε(B

|N |, A|N |) ∈ Θ(ε−2). To see this, consider that two
errors (figure 2.ii) are necessary to move to a state C2 (figure 2.iii) in which
a block of four players play A and every other player plays B. From C2, it
takes a single error to move to a state such as C3 (figure 2.iv) in which a
larger block of players plays A. However, at least one error is required to
move backwards from C2 to B|N |. That is, the probability of moving to a
state in which a larger block of players plays A conditional on leaving C2 is
of order 1. This means that the waiting time until A|N | is reached involves
the wait for the initial two errors of order ε−2, followed by subsequent waits
of order ε−1. These terms combine additively and so the wait for the initial
two errors dominates as ε becomes small.22

22This argument is a slight adaptation of Ellison (2000).
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Figure 3: Square lattice on a torus.

Now consider k = 4, coalitions including up to four players can form.
First, consider the case α < 3/2; the relative benefits of the better technology
are not so great. Errors are no longer required to leave C2. If two adjacent
A players form a coalition, they can gain by switching to B and achieving a
payoff of 3, which is higher than the payoff of 2α they attain in state C2. In
the absence of random errors, C2 collapses and the process returns to B|N |.
More than two errors are required to exit the basin of attraction of B|N |.
Following three errors on a diagonal, the process can attain the state C3

which has a 3 by 3 block of players playing A. This block of players playing
A can expand with the aid of a single error. It is not possible to leave C3

without the help of errors, no matter how close α is to 1: the players who
play A in C3 form what will later be formally defined as a parochial set.
To see that errors are required to leave C3, first consider the player in the
centre of the square. He attains his maximum possible payoff of 4α, so he
will not intentionally change his action as part of a coalition or otherwise.
Secondly, consider the neighbors of the central player. Their payoffs at
C3 are 3α, so they will never intentionally change their action unless the
central player also changes his, which he will not. The players at the corners
of the block of A players cannot earn more than their C3 payoff of 2α unless
some non-corner player in the square changes his action, which will not
occur. Similar arguments to those in the case k = 1 lead us to conclude
that W4,α,ε(B

|N |, A|N |) ∈ Θ(ε−3). Convergence to the efficient social norm
is an order of magnitude slower in the presence of coalitional behavior:
small outbreaks of innovation are snuffed out as the players involved in the
outbreak collaborate to recoordinate with the population as a whole. The
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possibility of coalitional behavior has led to a conservative effect.
Now, consider the case 3/2 ≤ α < 2, k = 4. From state C2, pairs of

players who play strategy B in C2, and who each have a neighbor playing
A, can switch together to playing A and attaining a payoff of 2α which is
greater than their payoff of 3 in C2. In this way, the set of players playing
A can expand without errors. This speeds up the process of moving to the
efficient norm. However, to reach C2 the initial two errors are still necessary
so the order of magnitude of the wait is the same as that for the case without
coalitional behavior, W4,α,ε(B

|N |, A|N |) ∈ Θ(ε−2).
Finally, consider the case 2 ≤ α, k = 4. From state B|N |, a square of 4

players can form a coalition. By switching to playing A, thus reaching state
C2, they can attain a payoff of 2α which is greater than their payoff at B|N | of
4. This can happen for any such set of players on the grid.23 Therefore, the
process can move to A|N | without the aid of any errors. W4,α,ε(B

|N |, A|N |) ∈
Θ(1). Convergence to the efficient social norm is orders of magnitude faster
in the presence of coalitional behavior: coalitions coordinate innovation in
the population. The possibility of coalitional behavior has led to a reforming
effect.

The reasoning of the preceding three paragraphs leads to the following
proposition.24

Proposition 1. Let g be the n1 by n2, n1n2 = |N |, square lattice on a torus
with von Neumann neighborhoods, size 4 ≤ k � n1, n2. Then, as ε→ 0:

α <
3

2
=⇒ Wk,α,ε(B

|N |, A|N |)

W1,α,ε(B|N |, A|N |)
→∞

3

2
≤ α < 2 =⇒ Wk,α,ε(B

|N |, A|N |)

W1,α,ε(B|N |, A|N |)
∈ Θ(1)

2 ≤ α =⇒ Wk,α,ε(B
|N |, A|N |)

W1,α,ε(B|N |, A|N |)
→ 0

23Note that although the underlying game is a potential game with a potential function
given by the sum of the payoffs of all the players, local maxima of the potential function
are not necessarily absorbing states of the unperturbed dynamic when k > 1. For α < 3,
B|N | is a local maximum of the potential function. The move from B|N | to C2 changes
the potential by 8α− 24, which is negative for α < 3, and yet the move from B|N | to C2

occurs under the unperturbed dynamic for k = 4 and α ≥ 2.
24These results giving existence of reforming and conservative effects dependent on the

value of α extend readily to hyper-cubic lattices.
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(i) Overlapping triangles (ii) Kagome lattice at state Kag3

Figure 4: Kagome lattice and graph of overlapping triangles, with minimum group of A
players robust to coalitions highlighted for the Kagome lattice.

Proposition 1 tells us that coalitional behavior can have either a conservative
or a reforming effect. For low values of α, it has a conservative effect: when
small groups of players start to play A and form a configuration which is
stable under an individual best response dynamic, coalitions of players tear
apart the cluster of deviant behavior, taking the process back to the state
in which B is played by all. For large values of α, coalitional behavior
has a reforming effect: groups of players can coordinate their choice to
play A, increasing their payoffs from the change by ensuring that it occurs
simultaneously to that of their neighbors. This speeds up the process of
convergence to the efficient social norm.25

Note thatWk,α,ε(B
|N |, A|N |) is not necessarily monotonic in k. If k = |N |,

there is the possibility of the coalition S = N being chosen to respond, and
the players in N choosing to play A|N | in a single step without the aid of
any errors. Convergence is fast and the formation of the grand coalition has
a reforming effect.

Other networks display tipping point effects even starker than those of
the square lattice. Consider the regular graph of overlapping triangles with
local structure shown in figure 4(i). Action profiles in which a large majority
of players play B, but there exist triangles of A players, are stable under
the unperturbed dynamic for k = 1 when α < 3. However, when k = 2,
α < 3/2, pairs of A players at the edge of such a set of triangles gain from

25Montanari and Saberi (2010) would consider all of these parameter specifications to
give fast convergence as the order of magnitude of the waiting time does not increase
in population size. Given that period length is undefined, for fixed small ε this could
encompass massive differences in actual waiting times. The focus of the current paper
is not whether convergence is ‘fast’ or ‘slow’ as such (although simulation results can be
read this way), but on the effects of coalitional behavior relative to the baseline process
without coalitional behavior.
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agreeing to switch simultaneously to B to earn payoffs of 3 which are higher
than their existing payoffs of 2α. Such a configuration thus unravels and
the process returns to B|N |. When α > 3/2, pairs of B players who have a
common neighbor playing A gain from switching to A, so the set of players
who play A can expand rapidly following just a single error.

The Kagome lattice is slightly different. Limiting convergence times in
this case depend on the number of errors required to attain a configuration
such as that in figure 4(ii), which can be considered analagous to the 3
by 3 square of players in the square lattice. Players who play A in this
configuration will not switch to B without the aid of random errors. Similar
arguments to those for the square lattice show that for both the regular
graph of overlapping triangles and the Kagome lattice, coalitional behavior
slows convergence to A|N | by an order of magnitude when α < 3

2
and speeds

it by orders of magnitude when α ≥ 3
2
. Note that vertices in these networks

have clustering coefficients (the proportion of pairs of neighbors who are
themselves neighbors) of 1/3, unlike the square lattice with von-Neumann
neighborhoods, for which all vertices have clustering coefficients of 0. This
illustrates that the story of reforming and conservative effects is more than
just a story about clustering.

The question arises as to how far the results of the preceding paragraphs
can be extended to general network architectures. The answer is sometimes
unambiguously positive and sometimes not.

5. General results

Here we give some general observations for any network. We start by
noting that if α is large enough then there exists a reforming effect: in
the limit, the process with coalitional behavior, compared to the process
without coalitional behavior, has an infinitely faster transition to A|N |. The
reasoning behind this result is simple. In state B|N |, the players who obtain
the highest payoffs are those with the largest number of neighbors. Let one
of these players be player i. Let α > |Ni|. Then any pair of neighbors in the
network can switch to action A and obtain payoffs of α, which is higher than
their payoffs in state B|N |. So, without any errors occuring, the process can
transit to A|N |.

Proposition 2. For any k ≥ 2, there exists ᾱ such that, as ε→ 0:

∀α ≥ ᾱ :
Wk,α,ε(B

|N |, A|N |)

W1,α,ε(B|N |, A|N |)
→ 0
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Proof. Choose ᾱ = maxi∈N |Ni|. Then for α > ᾱ, Λk,α = {A|N |}.

The value of ᾱ in the proof of Proposition 2 is an upper bound on the value
of α above which a reforming effect is observed. This bound cannot be
improved without reference to the network in question or the value of k. To
see this, consider the ring network, k < |N |. In this setting a single error is
necessary and sufficient to transition to A|N | for any α < 2 = maxi∈N |Ni|,
so there is no reforming effect for α below the bound of Proposition 2.

Take any set of players S which is small enough to engage in coalitional
behavior, and is isolated in the sense that every member of S has ‘enough’
of his neighbors within S. All players in such a set will play A in any
absorbing state of the unperturbed process.

Proposition 3. If S ⊆ N , |S| ≤ k, is such that:

∀ i ∈ S : α >
|Ni|
|Ni ∩ S|

then for all x ∈ Λk,α, i ∈ S, we have that xi = A.

Proof. Assume S is feasible. If not, then analyze each component of S
in isolation. If S is chosen to better respond, for any xt ∈ X, we have
A|S| ∈ AS(xt), as either a player is already playing A and cannot be harmed
by others switching to A, or is playing B and earning a payoff lower than
|Ni| which is lower than the payoff obtained from A|S| which is at least
α|Ni ∩ S|. So a state in which all players in S play A is reached without
errors with some probability. The same inequality implies that any player
in S would strictly lose were he to switch to B in a later period.

This result implies that a reforming effect is obtained if k is large
enough.26 If k = N , the process can move to A|N | in a single step without

26The expression to the right hand side of the inequality in proposition 3 can be
understood as a measure of the surface tension of S local to player i (see Vinkovic
and Kirman, 2006). That is, coalitions which have low surface tension at every point
will rapidly adopt action A. However, the appropriate analogue of the model within
the physical sciences is not a dynamic-location—fixed-type model such as Vinkovic and
Kirman (2006), which discusses the physical analogue of Schelling (1971). The model is
rather a fixed-location—dynamic-type model such as those found in Ising field models
(see Blume, 1993; Montanari and Saberi, 2010): both the global topological structure,
and individual location within that topology, is fixed for our agents, whilst their type
varies under a constantly updating local ‘field’.
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errors, as every player agrees together to play A. For k = 1, at the very
least a single error is required to move from B|N | to A|N |.

Corollary 1. For any α > 1, there exists k̄ such that, as ε→ 0:

∀ k ≥ k̄ :
Wk,α,ε(B

|N |, A|N |)

W1,α,ε(B|N |, A|N |)
→ 0

Proof. Choose k̄ = |N |. Choose S = N . This gives |Ni ∩ S| = |Ni ∩ N | =
|Ni| > |Ni|α−1, so proposition 3 and its proof apply.

The basin of attraction of an absorbing state of the unperturbed dynamic
x ∈ Λk,α is the set of states from which, in the absence of errors, convergence
to x is guaranteed. The basin of possible attraction is the set of states from
which, in the absence of errors, convergence to x is possible. Allowing
coalitions of a greater size reduces the set of absorbing states. This is
equivalent to the fact that for any game, the set of (k + 1)-strong Nash
equilibria is a subset of the set of k-strong Nash equilibria. Furthermore, an
expansion of the set of allowable coalitions also (weakly) expands the basins
of possible attraction of absorbing states, as any path which was possible
with a lower k, is also possible with a higher k. No such monotonicity exists
for basins of attraction.27

Definition 3. The basin of attraction of x ∈ Λk,α is defined as:

Dk,α(x) =
{
y ∈ X : P t

k,α,0(y, x)→ 1 as t→∞
}

Definition 4. The basin of possible attraction of x ∈ Λk,α is defined as:

D̄k,α(x) =

{
y ∈ X :

∞∑
t=1

P t
k,α,0(y, x) > 0

}

Proposition 4. Assume k1 ≤ k2. Then Λk1,α ⊇ Λk2,α. Moreover, x ∈ Λk2,α

implies that D̄k1,α(x) ⊆ D̄k2,α(x).

27By increasing the size of basins of possible attraction, an increase in k will decrease
the size of basins of attraction, as long as the set of stable states remains the same. If
the set of stable states changes, this is no longer the case. Consider the example of
section 4 with α < 3/2. C2 /∈ D1,α(B|N |), but for k = 4, C2 is no longer stable and
C2 ∈ D4,α(B|N |).
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Furthermore, we can directly characterize the basin of possible attrac-
tion of A|N |. This is a result along the lines of Morris (2000) in that it
characterizes the states from which ‘contagion’, the spread of A across the
entire population under the unperturbed (ε = 0) dynamic, can occur.28

Proposition 5. For any x ∈ X, x ∈ D̄k,α(A|N |) if and only if there does
not exist S ⊆ {i : xi = B} such that:

∀T ⊆ S, |T | ≤ k : ∃ i ∈ T :
|Ni \ S|+ |Ni ∩ T |
|Ni|+ |Ni ∩ T |

<
1

1 + α

That is, contagion cannot occur if there exists a set of players which (i)
is insular enough to protect it from being ‘infected’ by A by the rest of the
population but (ii) does not contain subsets of players which are themselves
insular enough to coordinate their switch to A. When k = 1, T must be a
singleton, so Ni ∩ T is empty and we have, in essence, the result of Morris
(2000). The proof, however, is more similar to that of Easley and Kleinberg
(2010). Note that proposition 4 implies that the larger is k, the larger
is the basin of possible attraction of A|N |, from which contagion can occur.
However, the size of the basin of possible attraction is only part of the story,
and we have already seen in section 4 that although larger k increases the
size of D̄k,α(A|N |), it can also increase the waiting time until it is reached. To
emphasize: increasing k has a monotonic effect on deterministic contagion
in the style of Morris (2000); it can have a non-monotonic effect on the
contagion of the current model.

6. Conservative effects

It was seen in section 5 that a reforming effect of coalitional behavior
is always possible for large enough values of α. Is a conservative effect
similarly always possible? The answer is no, as can be seen if we consider
ring networks. In such a network each vertex is connected to m neighbors
on either side. For k = 1, the only absorbing states of the unperturbed
dynamic are A|N | and B|N |. No intermediate equilibria exist for any m,
α. The only possible effect of coalitional behavior is then to speed the
transition. This is a general result in the absence of intermediate equilibria.
From any state, without random errors, the process will converge to either

28Morris (2000) pays specific attention to countably infinite populations for which the
basin of possible attraction contains states in which a finite number of players play A.
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(i) (ii)

Figure 5: (i) Ring, connected to 2 neighbors on either side. (ii) Ring with rewiring.

A|N | or B|N |. Any number of errors that is enough to move the process into
the basin of possible attraction of A|N | when k = 1 is also enough to move
the process into the basin of possible attraction of A|N | when k > 1.

Proposition 6. If for k = 1, Λk,α = {A|N |, B|N |}, then for any k ≥ 1:

Wk,α,ε(B
|N |, A|N |)

W1,α,ε(B|N |, A|N |)
∈ O(1)

So, rings and square lattices give very different results when it comes to
predicting the impact of coalitional behavior on adaptive dynamics. This
is important as each is a commonly used model of local interaction. More-
over, they are common starting points for the construction of small world
networks. The question of whether such small worlds retain the proper-
ties derived for square lattices and ring networks is addressed in the next
section. Another important network that satisfies the conditions of proposi-
tion 6 is the complete network, in which every player neighbors every other
player. The complete network and the ring are very different networks: in
the class of connected networks with |N | vertices, the complete network has

the greatest number of links ( |N |(|N |−1)
2

); the ring with m = 1 has (|N |+ 1)
links, one more than the lowest possible number.

Now we turn our attention to a method for showing the existence of a
conservative effect for small enough α. This requires us to define the notion
of a parochial set of players.

Definition 5. For S ⊆ N , define:

I0(S) = {i ∈ S : Ni ⊆ S},
Im(S) = {i ∈ S : |Ni \ S| ≤ |Ni ∩ Im−1(S)|}, m ≥ 1.
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Note that Im−1(S) ⊆ Im(S). We say that S is parochial if there exists m ≥ 0
such that S = Im(S).

Note that unlike the concept of isolation used in the statement of propo-
sition 3, the definition of a parochial set does not depend on the value of
α. A parochial set, S, always contains a set of players, I0(S), who are com-
pletely isolated from the network outside of S. I1(S) is then formed from
all of the players in S who have at least as much exposure to I0(S) as they
have to the network outside of S. I2(S) is similarly defined, and so on.
Intuitively, the recursive definition means that every member of a parochial
set has at least as many neighbors who are more deeply embedded in the
set than he is, than he has neighbors outside of the set. Every member of
a parochial set will have at least half of his neighbors within the set, but
this fact alone does not suffice to make a set parochial. In fact, any set of
players, S, in which every player has at least one neighbor outside of the
set cannot be parochial, as I0(S) will be empty.

Define PA as the set of states such that the set of players playing A
contains a parochial subset.

Definition 6.
PA = {x ∈ X : ∃S ⊆ {i ∈ N : xi = A} such that S is parochial.}

If S is the set of players playing A and S is not parochial then there
exist, for some k, α, nonempty sets of A players who are not in Im(S) for
any m, and who can gain by coordinating a switch back to B. Iterating,
the process can return to either B|N |, or a state in which the set of players
playing A is a parochial set. Conversely, if some parochial set of players is
playing A, for any values of k and α, no member of the set will ever switch
to B unless at least one member of the set makes an error.

Proposition 7. x ∈ PA if and only if @ k, α such that x ∈ D̄k,α(B|N |).

As the process is time homogeneous and has a finite state space, this
implies that under parameters satisfying proposition 7, the process Φk,α,0

will either enter PA or reach state B|N |. Leaving the basin of attraction of
B|N | implies entering the basin of possible attraction of PA. This bounds
the waiting time to reach A|N | from below by the waiting time to reach
PA. That is, the waiting time to reach A|N | is at least of the order of ε to
the power of the number of errors required to reach a state in which some
parochial subset of players play A.
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(i) Cli2 (ii) Cli3

Figure 6: Interconnected cliques.

The use of this result can be seen in that for the square and Kagome
lattices, states C3 and Kag3 respectively are in the set PA. For α close
to 1, three errors are required to reach these states from B|N |. As the
waiting times to reach A|N | for these lattices without coalitional behavior is
O(ε−2), this immediately implies the existence of a conservative effect. The
same cannot be said for the regular network of connected cliques (figure 6).
Assume α is close to 1. Consider k = 4. Although it is true that Cli2 ∈ Λ1,α

and Cli2 /∈ Λk=4,α, there is no conservative effect. The reason for this is
that when k = 1, two errors are required to reach Cli2. When k = 4, only a
single error in which a player plays A is required, following which the three
other members of the clique can better respond by switching to A. It then
requires only one more error to move the process to Cli3 ∈ PA. From Cli3,
the process can expand via single error driven steps between states in Λk=4,α

until A|N | is reached. Therefore the waiting time for k = 1 and k = 4 is
Θ(ε−2).

Moreover, the introduction of coalitional behavior can completely alter
the paths by which A spreads in the population. Take a square lattice on
a torus and a clique of ten players and construct a connected network g
via the following step: select a player i on the torus, remove his exiting
edges to the right and below, and replace them with edges to player j and
l in the clique. The network is shown in figure 7. Assume α is close to 1.
When k = 1, the fastest paths from B|N | to A|N | involve action A invading
the torus (including player i), before errors by four players other than j in
the clique make it possible for j to better respond by playing A (for this
we require that he has five neighbors playing A). After j switches to A,
all of the other players in the clique have 5 neighbors playing A and can
individually better respond by playing A. The adoption of A on the clique
is the hardest step, requiring 4 errors, and the waiting time until A|N | is
reached is Θ(ε−4). When k = 9, the fastest way for A to spread is when
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(i) Hyb1 (ii) Hyb3

Figure 7: Square lattice on a torus connected to a clique.

it begins in the clique. A single player in the clique who errs and plays A
can result in the other players in the clique forming a coalition and better
responding by also switching to A. This in turn leads to player i on the
torus switching to A. This state, Hyb1, is in PA and it requires at least two
errors to leave its basin of attraction. Two such errors can prompt a move
to Hyb3 which is in PA. From here the process can move between states in
PA via single errors, culminating at A|N |. The waiting time is Θ(ε−2). So
the presence of a single clique on the edge of the network has changed what,
in its absence, would have been a conservative effect of coalitional behavior
into a reforming effect. It does this by making possible joint deviations by
a highly interconnected group of players, amongst whom, in the absence of
coalitional behavior, the efficient action A struggles to gain a foothold.

As an interesting aside, we relate the network of figure 7 to the discussion
in Granovetter (1973) of ‘strong’ and ‘weak’ ties. Recall the assertion in
the cited paper that if a player i is linked to j and k by strong ties, then
it is likely that j and k will be linked, whereas this is not the case if i is
linked to either j or k by a weak tie. An implication of this for the network
in figure 7 is that most of the links in the clique are ‘strong’ ties, and most
of the links in the lattice are ‘weak’ ties. We have seen that, depending
on the value of k, contagion by the efficient action can start either in the
part of the network rich in weak ties, or the part rich in strong ties. This
relates to the debate discussed by Granovetter, citing Becker (1970); Rogers
(1962); Coleman et al. (1966), over whether diffusion of innovation starts
with ‘central’ players who have many strong ties, or with ‘marginal’ players
who do not.

Finally, we note an interesting implication of the existence of networks
which admit conservative effects and of networks which do not admit con-
servative effects. Consider two networks of |N | vertices each, the first for
which conservative effects are not possible, the second for which they are
possible. If we move from the first network to the second network by adding
or deleting one link at a time, there must be at least one addition or sub-
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(i) (ii) x ∈ PA

Figure 8: Square lattices with randomly rewired edges.

traction of a link which causes a conservative effect to come into being.
That is, there exist ‘butterfly effects’ – the presence or otherwise of a single
link, even in a large network, can lead to the existence or nonexistence of a
conservative effect.

7. Small worlds

An important class of networks are small worlds: networks with small av-
erage shortest path lengths between players. Social networks often exhibit
small world properties, such as the six degrees of separation conjectured
in Friyges Karinthy’s short story ‘Chain Links’ and famously examined in
Milgram’s small world experiments. Other small worlds include neural net-
works and electric power grids. Two common ways to construct small worlds
involve small amounts of rewiring of square lattices or ring networks (see
Watts and Strogatz, 1998; Szabo and Fath, 2007).

7.1. Small world, square lattice

Consider small world networks formed by rewiring edges of a square
lattice. Specifically, consider square lattices with a small number of edges
rewired so that every player still has four neighbors. Such a network will
not necessarily exhibit a conservative effect for small α. For some rewirings,
a state in PA can be reached via only two errors. Such a rewiring is exhib-
ited in figure 8(ii). If, from such a state, there exists an onward path to
A|N | between states in PA with each step caused by a single error, then a
conservative effect will not exist for any α. Networks like this one, in which
several rewired edges affect a small neighborhood, will clearly be a small
proportion of the class of regular rewired square lattices when the number
of rewired edges is small enough relative to the network size. Moreover, if
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Figure 9: Rewired ring in state Rin2.

a proportion p of all the edges in the network are rewired, as the popula-
tion becomes large, the proportion of networks for which a state in PA can
be reached by two errors or fewer goes to zero. For a fixed neighborhood
size, the proportion of networks which include a neighborhood with two
or more rewirings that remain locally linked within said neighborhood de-
creases with |N |2, whereas the number of such neighborhoods in the graph
increases with |N |.

7.2. Small world, rings

Ring networks do not display limiting conservative effects. Small amounts
of relinking will not usually alter this property. Consider the graph of figure
9. A small amount of relinking compared to the network size means that
new links are likely to join nodes separated by a significant distance on the
original ring. The state Rin2 illustrated in figure 9 can be reached from B|N |

after two errors. Note that although Rin2 is an intermediate state which
did not exist before relinking, Rin2 ∈ PA so coalitional behavior does not
return the process to B|N |. At least one error is required to leave Rin2, but
only a single error suffices to continue the spread of A around the ring.

So, the existence or otherwise of a conservative effect of coalitional be-
havior on square lattices and rings is extended to small worlds constructed
from said networks. Simulation results demonstrate that behavior for even
large (10 percent) amounts of link rewiring is similar to that obtained for
the original networks. How the small world is constructed has important
ramifications for predictions regarding the effect of coalitional behavior on
convergence times. It is interesting to note that in ring derived graphs, there
is a large amount of clustering: the neighbor of a neighbor is likely to be a
neighbor. This differs from a square lattice derived graph, for which there is
almost no clustering. Yet, in the sense of there being a conservative effect,
the square lattice derived graph is more sensitive to coalitional behavior.
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(i) (ii)

Figure 10: (i) Random regular graph. (ii) Bethe lattice.

8. Random regular graph

As p→ 1 the graph in section 7.1 approximates a random regular graph.
Note that for all connected regular graphs of degree m, when α ≥ m − 1,
a single error will be enough to lead to convergence to A|N |. High values of
α always lead to fast convergence. The interesting case is when α < m− 1.
Let Qm,|N | be the set of connected m-regular graphs of size |N |. Let Qm,|N |
be the uniform distribution over Qm,|N |. For any a ∈ N+, k ≥ 1, define:

Ra,k
m,|N | =

{
q ∈ Qm,|N | : Wk,α,ε(B

|N |, A|N |) ∈ O(ε−a).
}
.

Ra,k
m,|N | is the set of connected m-regular networks which give convergence

times which are shorter or of the same order as ε−a. For large |N |, random
regular graphs are locally like the Bethe lattice. Any small set of players
playing action A will then have players on its edge who have only one
neighbor playing A. A player in this situation will benefit from switching
to B and earning a payoff of m− 1 rather than a payoff of α. Thus, the set
is rolled back from its edges. The order of magnitude of convergence times
grows with population size whether or not coalitional behavior is allowed.29

Proposition 8. For all a, k:

α < m− 1 =⇒ lim
|N |→∞

Qm,|N |(Ra,k
m,|N |)→ 0

This implies that for large random graphs, convergence will be very slow,
with or without coalitional behavior. This does not preclude coalitional

29The condition α < m − 1 imposes the condition that any player with only a single
neighbor playing A would like to play B. This plays a role in the proof by ensuring that
any state in Λk,α other than B|N | features cycles in the graph on which every player
plays A.
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Figure 11: Example runs on square lattice, α = 1.1, for k = 1 (pink) and k = 8 (green).
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Figure 12: Example runs on square lattice, α = 2.0, for k = 1 (pink) and k = 8 (green).

behavior from slowing or speeding convergence, and we refer you to the
simulation results of the following section for random graphs of size |N | =
256. What it does indicate is that for any k � |N |, convergence on random
graphs will become qualitatively slow as the population size becomes large,
regardless of the presence or otherwise of coalitional behavior.

9. Simulations

Simulations were carried out for a variety of networks to analyze the
effect of coalitional behavior on waiting times under small, positive values
of ε. The networks fall into two categories. The first category is generated
networks: squares, rings, associated small worlds and random graphs. The
second category, empirical networks, includes several examples of real life
networks from academic literature.

We apply the model to five empirical networks, visualisations of which
are given in Fig. 13.30 Zachary’s karate club describes social relationships

30Graph manipulation, measures, visualisation, and sub-graph formation performed
with Gephi: http://gephi.org/, an open source graph visualisation and analysis plat-
form.
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between 34 club members of a university karate club, observed over the pe-
riod 1970-1972. In the network, an edge indicates that two members were
observed to maintain significant interactions outside of the formal classes
and meetings of the club. Zachary interpreted these interactions as indi-
cating friendship outside of club activities. The network is of interest since
within the study period, a fission occured in the club’s social structure due to
a disagreement over tuition fees. As such, the network has been of interest to
developers of community identification algorithms for some time (Bagrow
and Bollt, 2005; Girvan and Newman, 2002; Newman, 2006b). Alterna-
tively, Newman (2006b,a) compiled a very large scientific collaboration
network for the network theory scientific community. Here, we only con-
sider the largest connected component, comprising 379 vertices (authors).
Edges indicate that two authors have co-authored a paper. Schwimmer’s
taro exchange network represents gift-giving, via taro-exchange, amongst 22
households in a Papuan village (Schwimmer, 1973). Kapferer’s tailor shop
network (Kapferer, 1972) represents observed interactions amongst workers
in a Zambian tailor factory during a 10 month period. Kapferer’s network
is of interest since during the period of observation, the workers collectively
negotiated for higher wages. The network we use in this study is the first
network (of two) which Kapferer described, after which an unsuccessful
strike occured.

Finally, we consider a sub-graph of the Facebook social-network. To
obtain a manageable size sub-graph for analysis we consider first the princi-
ple, connected, component of the graph ‘0’ from Stanford’s SNAP database31(McAuley
and Leskovec, 2012) (size 324 nodes) before taking three connected commu-
nities from this graph, comprising 95 nodes in total as identified by the
modularity algorithm of Blondel et al. (2008). The Facebook network
was collected by the ‘Social circles’ Facebook app (for details, see ref-
erence). Taken together, we have a diverse set of real networks amongst
human actors for either social, exchange, or collaborative purposes.

The simulations were conducted for ε = 0.01 unless convergence results
for comparison could not be readily obtained using the computational re-
sources at hand.32 In the latter case, a fast-convergence setting with ε = 0.1
was used, and is indicated for a row of results in the tables by a superscript
‘∗’ in the α column. In Tables 1 and 2 we describe the parameters used un-

31See: http://snap.stanford.edu/data/egonets-Facebook.html .
32As expected, this was the case with highly random networks and networks of rela-

tively high average degree.
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der each setting. γ is the proportion of B players in the population below
which the process is considered to have converged. Simulations were halted
when the convergence criterion was met, or 2×105 (2×106 for Facebook)
periods had elapsed.

Table 1: The default simulation parameter settings used in the study.

Parameter Symbol Value

Tremble probability ε 0.01
Convergence limit γ 5%
Replicates R 20

Table 2: The fast-convergence parameter settings used in the study.

Parameter Symbol Value

Tremble probability ε 0.10
Convergence limit γ 20%
Replicates R 5

In the simulation results tables in the paper, waiting times are given as
averages of all replicates for a given experimental condition. Where a result
is given as > x this indicates that some fraction of the replicates converged
within the maximum waiting time set for the experiment. Those replicates
which did not converge were assigned the maximal waiting time prior to
averaging across all replicates, and the average, in this case, is treated as a
lower bound.

As expected, reforming effects of coalitional behavior were found for all
networks for large enough α (Tables 3, 4, 5).33 Conservative effects for

33Simulations, by their nature, do not deal with limiting results. This introduces a
measure of imprecision into the reading of the results. Aside from the effects of small ε
considered in the theory of the paper, there can also be other effects of coalitional behav-
ior. Higher k could, for example, lead to faster convergence due to multiple switches per
period. Conversely, if a single player needs to move to continue on a path to convergence,
higher k can reduce the probability of that player being selected in any given period. How
any normalization of results for such effects should be carried out is unclear, therefore
raw results are presented. Only results displaying order of magnitude differences can be
understood to be due to different error requirements on paths to convergence.
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small α were also observed for several networks. Consider the small world
networks of table 3. A large conservative effect is seen for rewired square
lattices, whereas no effect is observed for rewired rings. Random graphs,
including scale-free networks, also exhibit strong conservative effects for
ε = 0.1, α = 1.1 treatments.34 Results for the empirical networks indicate
a conservative effect at small α for all networks other than the ‘Network
theory coauthorship’ graph and ‘Schwimmer taro exchange’.

Ratios of convergence times for different α vary markedly in the presence
and absence of coalitional behavior. For a square lattice with von-Neumann
neighborhood, the ratio of convergence times for α = 1.1 and α = 2.0 for
k = 1 is 1, whereas for k = 8 the ratio is over 200.35 Similarly marked
differences in the ratios of convergence times (α = 1.1 versus α = 2.0, 3.0)
for the process without and with coalitional behavior are seen for every
network we test, with the exception of the ‘Schwimmer taro exchange’.36

To emphasize: coalitional behavior makes convergence speeds more sensitive
to the relative efficiency of competing norms.

10. Pareto efficiency versus risk dominance

Consider the model adapted so that rather than play a pure coordination
game, the players instead play the ‘stag hunt’ game in figure 14 with each
of their neighbors. Note that for this game, there is never a conservative
effect of coalitional behavior, as in every situation in which a player would
wish to return to playing B as part of a coalition, he would also wish to
return to playing B when acting as an individual. As long as α < 2,

34For ε = 0.01, convergence in these networks was too slow to make meaningful com-
parisons.

35In line with the theory, the effects are predominantly felt early on, when almost
every player is playing B. As a comparison, additional simulations were carried out
for the square lattice with von-Neumann neighborhood, α = 1.1, with the initial state
randomized so that each player’s action was A or B with probability 1/2 each. Mean
convergence times were then 2245 for k = 1 and 1018 for k = 8. That is, there was
a similar order of magnitude of the convergence times for k = 1, 8, and certainly no
conservative effect.

36This is a small network and we have checked directly that the theory of the paper
predicts reforming effects of coalitional behavior for all values of α. Moreover, the theory
predicts the same order of magnitude reduction in convergence speeds for α = 1.1, 2.0, 3.0,
which explains the anomalous result pertaining to this network. The theory predicts a
greater reduction in convergence speeds for α = 1.6, which can be observed by comparing
the ratios of speeds for k = 1 and k = 4 for fixed values of α.
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Table 3: Average wait-times for convergence to the efficient strategy profile for gener-
ated networks over selected values of α, with (k > 1) and without (k = 1) coalitional
updating. (*) indicates that fast-convergence parameters were used. Note that only a
single replicate did not converge for the Regular Square lattice, k = 1. See Appendix for
details of networks and simulations.

α Square lattice Ring
k = 1 k = 4 k = 8 k = 1 k = 4 k = 8

Regular
1.1 >78,628 >200,000 >200,000 41,500 71,005 >100,179
1.6 >78,628 20,265 43,937 41,500 7,176 9,153
2.0 >78,628 1,467 902 41,500 1,045 499
3.0 3,622 1,134 758 7,006 964 466
Small-world
1.1∗ 7,919 61,449 >200,000 8,971 8,368 12,248
1.6 >105,310 24,731 >76,110 59,020 7,834 6,885
2.0 38,527 1,989 1,246 23,632 1,219 674
3.0 3,830 956 552 5,292 755 389
Random
1.1∗ 13,358 >200,000 >200,000 13,027 >200,000 >200,000
1.6∗ 5,260 5,487 >99,806 5,755 4,578 52,596
2.0 19,094 4,628 9,308 19,214 5,033 11,919
3.0 4,992 719 438 4,596 694 425

Table 4: Average wait-times for convergence to the efficient strategy profile for a scale-
free network over selected values of α, with (k > 1) and without (k = 1) coalitional
updating. (*) indicates that fast-convergence parameters were used. See Appendix for
details of networks and simulations.

α Scale-Free
k = 1 k = 4 k = 8

1.1∗ 8,458 >200,000 >200,000
1.6∗ 5,068 11,465 >200,000
2.0∗ 3,669 1,100 1,095
3.0∗ 2,070 456 253
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Table 5: Average wait-times for convergence to the efficient strategy profile for real
networks over selected values of α, with (k = 4) and without (k = 1) coalitional updating.
(*) indicates that fast-convergence parameters were used. Size of each real network given
in parentheses. The column ‘Conv.’ gives the convergence rate where not 100%. See
Appendix for details of networks and simulations.

α k = 1 Conv. k = 4 Conv.

Zachary’s Karate Club (|N | = 34)
1.1 55,758 >182,833 10%
1.6 14,846 15,008
2.0 4,740 469
3.0 1,683 152
Network Theory Co-authorship (|N | = 379)
1.1∗ 42,366 37,715
1.6∗ 16,947 6,037
2.0∗ 7,954 1,885
3.0∗ 4,243 802
Schwimmer Taro Exchange (|N | = 22)
1.1 >182425 20% 29,793
1.6 28,253 438
2.0 928 160
3.0 518 34
Kapferer’s Tailor Shop (|N | = 39)
1.1∗ >87,908 80% >200,000 0%
1.6∗ 2,634 28,685
2.0∗ 975 1,791
3.0∗ 593 227
Facebook sub-graph (|N | = 95)
1.1∗ 444,845 >1,494,273 60%
1.6∗ 6,699 24,165
2.0∗ 2,973 1,646
3.0∗ 1,258 365
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Zachary's Karate 
Club

Schimmer's Taro Exchange

Network Theory Collaboration

Kapferer's Tailor Shop

Facebook sub-graph

Figure 13: Visualisations of the five real networks considered in this study: the
Facebook sub-graph McAuley and Leskovec (2012); Schwimmer’s taro exchange net-
work Schwimmer (1973); Kapferer’s tailor shop Kapferer (1972); the co-author collabo-
ration network in network theory science Newman (2006a); and Zachary’s Karate Club
network Zachary (1977).
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A B
A α, α 0, 1
B 1, 0 1, 1

Figure 14: A two player coordination game, 1 < α < 2.

(B,B) is the risk dominant equilibrium of this game, whereas (A,A) is
the Pareto efficient equilibrium. Individual adaptive dynamics select the
equilibrium in which every player plays the risk dominant action B as a
stochastically stable state.37 This is not the case for the coalitional dynamics
of this paper. Instead, it can be the case that all stochastically stable states
are polymorphic states in which different players choose different actions
depending on their location in the network.

We consider a class of networks ΓCli composed of interconnected cliques
such that every member of a clique is connected to every other member of
the clique, and one player outside of the clique. An example in which every
clique comprises four players is given in figure 6. Here we allow cliques to
be of any size.

Proposition 9. Consider a network g ∈ ΓCli. For a given clique S, |S| > k,
in any stochastically stable state x:

|S| ≥ (k+1)α
2−α =⇒ xS = B|S|,

|S| ≤ (k−3)α
2−α =⇒ xS = A|S|.

So in networks composed of lightly interconnected cliques, stochastically
stable states involve medium-size cliques playing A and large cliques playing
B. In long run equilibria, efficiency is attained within medium-size cliques,
but not within larger ones.38 This means that on the margin, an additional

37Other stochastically stable states may also exist. Consider a two player connected
network. A single error suffices to move from B|N | to A|N | or from A|N | to B|N |. Both
monomorphic states are stochastically stable. See Blume (1996).

38Further information about the neighbors of the clique allows these bounds to be
tightened. If there is no B player in NS then the (k + 1),(k − 3) factors can be replaced
by (k+1),(k−1). If the number of A players in NS is less than k then the relevant factors
are (k− 1),(k− 3). If neither of these hold then the factors are (k),(k− 2). Furthermore,
if we replace ‘in any stochastically stable state’ with ‘in some stochastically stable state’
then the upper and lower bounds on |S| can be tightened by 1.
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Figure 15: Fragment of network of interconnected cliques. Clm indicates a clique of size
m.

player being added to a clique may decrease total payoffs. Despite the
positive payoff externalities enjoyed by clique members on the addition of
an extra player, the long run stable outcome may switch to one in which the
clique in question coordinates on the inefficient action. Now consider small
cliques such that the whole clique can form a coalition. For a stochastically
stable state x, if no player in the clique has a neighbor outside the clique
who plays B, then members of the clique all play A in x. If at least one
member of the clique has a neighbor who plays B, then all members of the
clique will play A if every member does better from this than he would do
if he played B. Otherwise, all members of the clique play B.

Proposition 10. Consider a network g ∈ ΓCli. For a given clique S,
|S| ≤ k, in any stochastically stable state x:

xNS
= A|NS | =⇒ xS = A|S|,

xNS
6= A|NS |, |S| > α

α−1 =⇒ xS = A|S|,

xNS
6= A|NS |, |S| < α

α−1 =⇒ xS = B|S|.

To see how this works in an example, consider the partial network illus-
trated in figure 15. Clm indicates a clique of size m, and the lines between
cliques indicate a link between one of the players in each of the cliques.
k = 8 and α = 4

3
. Then proposition 9 implies that members of a clique of

size m ≥ 18 play B in any stochastically stable state. This applies to the
members of the clique of size twenty in figure 15. Similarly, members of
a clique of size 8 < m ≤ 10 will play A in any stochastically stable state.
This applies to the three Cl10 in figure 15. The clique Cl3 of size three to
the left of the figure will then have no neighbors who play B, and thus by
proposition 10 will play A in any stochastically stable state. The cliques
Cl3 and Cl5 of size three and five to the right of the figure have at least one
neighbor who plays B, so their behavior depends on whether their size is
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greater or lower than the value α/(α− 1) = 4. So by proposition 10, members
of Cl3 on the right hand side play B and members of Cl5 play A in any
stochastically stable state.

So coalitional behavior can lead to heterogeneous choices by cliques
within a population depending on their size. This is not necessarily mono-
tonic, with large cliques playing the risk dominant action, medium-size
cliques the Pareto efficient action. In the absence of neighbors, small cliques
would also play the Pareto efficient action, but the presence of neighbors
playing the risk dominant action pushes them to do likewise. An interpre-
tation of this from the perspective of organizational design could be that
teams should not be so large that the internal pressure against risky yet effi-
cient behavior dominates, but neither should they be so small that external
pressure has the same effect.

11. Conclusion

In settings in which every member of a population has a common interest
in coordinating on a given efficient action, it might be expected that overt
cooperation by coalitions of players in their choice of action would facilitate
the spread of that action in the population. This paper has shown that
this is not always the case. Aside from the existence of such reforming
effects of coalitional behavior, there can also exist conservative effects by
which coalitions slow the spread of efficient behavior in a population. As the
relative efficiency of the efficient action increases, the effect of coalitional
behavior on a dynamic can switch abruptly from a conservative effect to
a reforming effect. Not all networks exhibit conservative effects and their
existence or otherwise depends on the structure of the underlying network.

Simulation results appear consistent with the theory of the paper and
indicate that we should expect conservative and reforming effects to mani-
fest themselves in dynamics of social and technological change on a variety
of network types, including several empirical social networks analyzed in
the literature. The introduction of coalitional behavior is seen to greatly
increase the sensitivity of convergence speeds to the relative efficiency of
competing technologies. Finally, for games in which the Pareto efficient and
risk dominant equilibria differ, we see that play of both actions can coexist
in the population in the long run and that the network design determines
which actions survive in which parts of the network.

This paper shows the effects of coalitional behavior on networked coor-
dination games to be important and non-obvious. The assumptions of the
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paper are not strong, the departure from existing literature being that small
groups of connected players coordinate their action choice some of the time.
Implications for the study of social dynamics and network design clearly
exist and merit subsequent study.
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Appendix A. Proofs

We use the concepts of and similar notation to Ellison (2000).39 For
x, y ∈ X, define the resistance r(x, y) so that the most probable transition
from x to y occurs with probability of order εr(x,y).

r(x, y) = min

{
r ∈ R+ : ∃ t ∈ N+ : lim

ε→0

P t
k,α,ε(x, y)

εr
> 0

}
and for x1, . . . , xT ∈ X, sets W,Y ⊆ X:

r(x1, . . . , xT ) =
t=T−1∑
t=1

r(xt, xt+1); r(W,Y ) = min
(x1,...,xT )
x1∈W
xT∈Y

r(x1, . . . xT ).

39Ellison (2000) cites a no longer extant working paper of Evans as containing the first
statements and use of some of these concepts.
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Extend the notion of basin of attraction to sets:

Dk,α(W ) =
{
y ∈ X : P t

k,α,0(y,W )→ 1 as t→∞
}

then the radius of a set W is:

R(W ) = r(W,X \Dk,α(W )).

The radius is the resistance of the lowest resistance path from W to outside
the basin of attraction of W . Define modified resistance:40

r∗(x1, . . . , xT ) = r(x1, . . . , xT )−
t=T−1∑
t=2

R(xt)

and

r∗(x,W ) = min
(x1,...,xT )
x=x1

xT∈W

r∗(x1, . . . xT ).

Finally, define the modified coradius :

CR∗(W ) = max
x/∈W

r∗(x,W )

For purposes of comparison, these quantities will sometimes be given sub-
scripts k, α.

Proof of proposition 1. For k = 1, α ≥ 3, a single error (and no fewer)
is enough to move the process to A|N |. For α < 3, two errors move the
process to C2. No fewer than two errors suffice to move the process out of
Dk,α(B|N |). From C2, a single error then suffices to move the process to C3,
and so on. Noting that from any state not equal to B|N |, a single error is

40The reason that modified resistances and associated quantities are useful is that when
using spanning tree arguments as found in Freidlin and Wentzell (1984), when edges are
added to an existing tree, other edges must be deleted for the graph to remain a tree.
Theorems using radii and coradii to give sufficient conditions for stochastic stability
follow trivially from this observation.
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enough to give an expanding set of squares, and that R1,α(Ci) = 1, we have:

α < 3 : CR∗1,α(A|N |) = 2

α ≥ 3 : CR∗1,α(A|N |) = 1

For 4 ≤ k � n1, n2, for α < 3/2, two errors do not suffice to leave Dk,α(B|N |).
Three errors, however, can take the process to C3, from where a single error
can take the process to C4 and so on. Note that Rk,α(Ci) = 1 for i ≥ 3.
For 3/2 ≤ α < 2, two errors are required to move to C2 ∈ D̄k,α(A|N |). For
α ≥ 2, B|N | ∈ Dk,α(A|N |). We have:

α < 3/2 : CR∗k,α(A|N |) = 3

3/2 ≤ α < 2 : CR∗k,α(A|N |) = 2

α ≥ 2 : CR∗k,α(A|N |) = 0

Results follow from Wk,α,ε(B
|N |, A|N |) ≥ Wk,α,ε(x,A

|N |) for all x ∈ X; and
Theorem 2 of Ellison (2000).

Proof of proposition 4. The set of feasible coalitions is independent of k, so
k1 ≤ k2 implies:

N (k1) ⊆ N (k2) =⇒ supp(Fk1) ⊆ supp(Fk2)

so for all x, y ∈ X:

Pk1,α,0(x, y) > 0 =⇒ Pk2,α,0(x, y) > 0

and

Pk1,α,0(x,X \ {x}) > 0 =⇒ Pk2,α,0(x,X \ {x}) > 0

which implies

x /∈ Λk1,α =⇒ x /∈ Λk2,α

which implies Λk1,α ⊇ Λk2,α. Furthermore, for x ∈ Λk2,α:

y ∈ D̄k1,α(x) =⇒ P t
k1,α,0

(y, x) > 0 for some t ∈ N+

=⇒ P t
k2,α,0

(y, x) > 0 =⇒ y ∈ D̄k2,α(x).
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Proof of proposition 5. For given x ∈ X, assume there exists S ⊆ {i : xi =
B} such that:

∀T ⊆ S, |T | ≤ k : ∃ i ∈ T :
|Ni \ S|+ |Ni ∩ T |
|Ni|+ |Ni ∩ T |

<
1

1 + α
.

Take such an S. Then for all T ⊆ S, |T | ≤ k, there exists i ∈ T such that:

α(|Ni \ S|+ |Ni ∩ T |) < |Ni ∩ S| ≤ ui(x).

The left hand side is the maximum payoff attainable by player i from playing
A if all players in S \T play B. So no subset of players in S of size ≤ k will
switch to A unless some subset of players in S have already switched to A.
Therefore x /∈ D̄k,α(A|N |). This proves the ‘only if’ part of the proposition.

To prove the ‘if’ part of the proposition assume that x /∈ D̄k,α(A|N |).
Starting from state x = x1, if there is any feasible coalition U ⊆ N , |U | ≤ k,
such that for all i ∈ U , ui(xU = A|U |, xt−U) ≥ ui(x

t), then with some
probability U better responds and the state moves to xt+1

S = A|U |, xt+1
−U =

xt−U . Iterate until there is no such subset of players, say at time τ . Let
S = {i : xτi = B}. This set must be nonempty or else xτ = A|N |, which
would contradict x /∈ D̄k,α(A|N |). Now, for all T ⊆ S, |T | ≤ k, as at least
one player, say player i, in T would be strictly worse off if T switched to
action A:

α(|Ni \ S|+ |Ni ∩ T |) < ui(x
τ ) = |Ni ∩ S| = |Ni| − |Ni \ S|.

Rearranging gives:

|Ni \ S|+ |Ni ∩ T |
|Ni|+ |Ni ∩ T |

<
1

1 + α
.

and we have our result.

Proof of proposition 6. Λ1,α = {B|N |, A|N |}. Note that D̄1,α(A|N |) ⊆ D̄k,α(A|N |)
for all k ≥ 1. So:

CR∗1,α(A|N |) = R1,α(B|N |) = r1,α
(
B|N |, D̄1,α(A|N |)

)
≥ r1,α

(
B|N |, D̄k>1,α(A|N |)

)
≥ rk>1,α

(
B|N |, D̄k>1,α(A|N |)

)
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= Rk>1,α(B|N |) = CR∗k>1,α(A|N |)

Proof of proposition 7. First the ‘only if’ part of the statement is addressed.
Let x ∈ PA and S ⊆ {i ∈ N : xi = A} be parochial. I0(S) must be
nonempty. For any α, i ∈ I0(S), N ⊇ T ⊇ {i}, as

ui(x) = α|Ni| > |Ni| ≥ ui(x̃i = B, x̂−i) for any x̂−i,

we have:

x̃T ∈ AT (x) =⇒ x̃i = A.

Then, by induction, for any i ∈ Im(S), m ≥ 1, N ⊇ T ⊇ {i}, as

ui(x) ≥ α(|Ni| − |Ni \ S|) > |Ni| − |Ni \ S| ≥ |Ni| − |Ni ∩ Im−1(S)|

≥ ui(x̃i = B, x̃Im−1(S) = A|Im−1(S)|, x̂−(Im−1(S)∪{i})) for any x̂−(Im−1(S)∪{i}),

we have:

x̃T ∈ AT (x) =⇒ x̃i = A.

So, for any xt ∈ PA: xt+1
S = A|S| and therefore xt+1 ∈ PA 6⊇ B|N |. So

x ∈ PA implies x /∈ D̄k,α(B|N |).
Now the ‘if’ part of the statement is addressed. Assume that x /∈

D̄k,α(B|N |) for any k, α. If there exists feasible S ⊆ N such that:

(∗) xS 6= B|S| and

∃α : ∀ i ∈ S : ui(B
|S|, x−S) ≥ ui(x),

then, assuming k ≥ |S|, we have S ∈ supp(Fk). Assuming α < α:

B|S| ∈ AS(x) so Pk,α,0(x, (B
|S|, x−S)) > 0.

Starting from xt /∈ D̄k,α(B|N |), let xt+1 = (B|S|, x−S) for such an S, and
iterate until a state, x̃, is reached such that there does not exist feasible S
which satisfies (∗). Let T = {i ∈ N : x̃i = A}. Then I0(T ) 6= ∅ or T would
satisfy (∗) as there would exist α such that:

∀ i ∈ T : ui(B
|T |, x̃−T ) = |Ni| ≥ α(|Ni| − 1) ≥ ui(x̃).
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If @m such that Im(T ) = T , then choose m such that Im(T ) = Im−1(T ).
Then:

∀ i ∈ T \ Im(T ) : |Ni \ T | > |Ni ∩ Im−1(T )| = |Ni ∩ Im(T )|.

But then, for all i ∈ T \ Im(T ), there exists α such that:

ui(B
|T\Im(T )|, x̃−(T\Im(T ))) ≥ |Ni \ T |+ |Ni ∩ (T \ Im(T ))|

> α(|Ni ∩ Im(T )|+ |Ni ∩ (T \ Im(T ))|) = α|Ni ∩ T | ≥ ui(x̃)

so some feasible subset of T \Im(T ) satisfies (∗) and we have a contradiction.
Therefore ∃m such that Im(T ) = T . T is a parochial set such that xT =
A|T |. Therefore x ∈ PA.
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Appendix B. Further proofs [ONLINE - NOT FOR PRINT]

Proof of proposition 8. Fix a. Define l1 as the largest integer l such that
d l
k+1
e < a. Let l2 = 3l1, l3 = 3l2. Assume |N | is large and that any cycle

with vertex set S, |S| ≤ l2, is of a distance at least l3 on the network from
any cycle with vertex set T , T 6= S, |T | ≤ l2. This is true asymptotically
almost surely as |N | → ∞ and follows from the fact that any subgraph with
more edges than vertices does not, asymptotically almost surely, appear in
a random regular graph as |N | → ∞ (Wormald, 1999).

Then, any cycle with vertex set S, l1 < |S| ≤ l2, requires at least a errors
to switch to playing A|S|, conditional on xNS

= B|NS |. If 2α > m − 1 (or
2α > m−2 for k = 1), assume the process is at the state in which all cycles
with vertex set S, |S| ≤ l1 play A, all other players play B. Otherwise
assume the process is at B|N |.

Note that for all x ∈ Λk,α, k ≥ 1, α < m− 1, all i ∈ N such that xi = A
have at least 2 neighbors playing A. We show that, starting from x, to reach
y ∈ Λk,α such that strictly more players play A in y than in x, requires at
least a errors.

For a path of players playing A to form between two cycles with vertex
sets S, T , |S|, |T | ≤ l2, we require at least d l3−k−1

k+1
e > a errors.

Assume a cycle with vertex set S, l1 < |S| ≤ l2, switches to play A.
For paths of players, starting from some player outside S to switch to A
and influence more than a single player in S requires at least a errors by
definition of l2. So we can rule out such outside influence. Therefore, by
definition of l1, at least a errors are required for S to switch to play A|S|.

Assume a cycle with vertex set S, l2 < |S|, switches to play A. As
l1 < |S|, for there to be a chance of this requiring fewer than a errors,
the formation of such a cycle must be assisted by existing small cycles of
A players. If there are two such cycles, a path of length at least l3 exists
between them, which similarly to above, would require more than a errors
to cross. So assume a single such influencing small cycle exists. At most,
such a cycle can cause l1 consecutive players on S to play A. Thus, for S
to switch to A|S| we require d |S|−l1−1

k+1
e ≥ d l2−l1

k+1
e = d 2l1

k+1
e > a errors.

Proof of proposition 9. For a clique S, let WA = {x ∈ X : xS = A|S|},
WB = {x ∈ X : xS = B|S|}. Note that xS /∈ {A|S|, B|S|} implies x /∈ Λk,α.
Now, from any state in WA, to escape the basin of attraction of WA (and
enter the basin of attraction of WB) requires that some player in S play B
without making an error. This will be easier when the external neighbor
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of such a player plays B, and harder when his external neighbor plays A.
Note that each player in S has |S| neighbors. This means R(WA) is bounded
below by rA, given by:

|S| ≥ α(|S| − 1− rA) =⇒ rA ≥
(α− 1)

α
|S| − 1

=⇒ rA =

⌈
(α− 1)

α
|S| − 1

⌉
and CR∗(WB) is bounded above by c̄rB, given by:

|S| ≥ α(|S| − c̄rB) =⇒ c̄rB ≥
(α− 1)

α
|S|

=⇒ c̄rB =

⌈
(α− 1)

α
|S|
⌉
.

For moves from WB to WA, coalitions of players can coordinate their move
to playing A. For each such player this gives an extra (k−1) neighbors who
play A, thus reducing resistances for such moves. Such moves are easier
when external neighbors play A, and harder when they play B. This means
R(WB) is bounded below by rB, given by:

α(1 + (k − 1) + rB) ≥ |S| =⇒ rB ≥
|S|
α
− k

=⇒ rB =

⌈
|S|
α
− k
⌉

and CR∗(WA) is bounded above by c̄rA, given by:

α((k − 1) + c̄rA) ≥ |S| =⇒ c̄rA ≥
|S|
α
− k + 1

=⇒ c̄rA =

⌈
|S|
α
− k + 1

⌉
.
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Simple manipulation then shows that:

|S| ≥ (k + 1)α

2− α
=⇒ rB > c̄rB =⇒ R(WB) > CR∗(WB)

|S| ≤ (k − 3)α

2− α
=⇒ rA > c̄rA =⇒ R(WA) > CR∗(WA)

The result follows from Theorem 2 of Ellison (2000).

Proof of proposition 10. For given x, if xNS
= A|NS | then A|S| ∈ AS(x).

Furthermore, if xNS
= A|NS | and xS = A|S| then AS(x) = {A|S|}. Therefore

xNS
= A|NS |, x ∈ Λk,α implies xS = A|S|. If xNS

6= A|NS | and |S| > α
α−1

then α(|S| − 1) > |S| and the same argument applies. If xNS
6= A|NS | and

|S| < α
α−1 then for some player in S with an external neighbor who plays

B, his payoff |S| from playing B is higher than his maximum payoff from
playing A of α(|S| − 1), so he will play B. But then all of the players in
S will have a neighbor who plays B, and the same argument will apply to
them.
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Appendix C. Simulation methodology [ONLINE - NOT FOR PRINT]

Appendix C.1. Introduction

We describe below the methodology behind the simulation results pre-
sented in the paper. Full, commented, code for the simulations is available
upon request from the authors.

Appendix C.2. The Main Algorithm

In Algorithm 1 we present pseudo-code to run a single replicate of the
model under a given set of parameters as required. After random seed ini-
tialisation (see section Appendix C.4), the underlying network is either
generated or imported from the empirical network library. Players’ actions
are initialised in all simulations at B|N | and payoffs calculated as per the
model of the paper. The main loop is iterated until either the maximum
number of steps (T ) is reached or the convergence condition has been at-
tained. Convergence in all simulations required the fraction of ‘B’ players
in the population to be less than γ, the convergence limit.

Appendix C.3. Coalition formation

The problem we address is to identify subsets of up to k agents, S ⊆ N ,
who form connected subgraphs of g. The complexity of enumerating feasible
coalitions of size |S| depends strongly on the topology of the network. For
example, if g is the complete graph, then there are

(|N |
|S|

)
such coalitions,

which for the generated networks in this paper (|N | = 256, k ∈ {4, 8}) gives
rise to over 174 million and over 4 × 1014 ways of forming S respectively.
On the other hand, for a 2−regular ring network, there are only |N | feasible
coalitions of size |S|, since the topology constrains the composition of S to
|N | consecutive index sets, each with a different starting vertex. However,
in most cases, even a small amount of density at the local level complicates
the picture dramatically.

For this reason, rather than enumerating every feasible coalition of size
less than k for a given network g and choosing S from a pre-defined library
each iteration, we perform a run-time algorithm to define S each iteration.
The algorithm is as follows: 1) Choose l from a uniform distribution on
{1, . . . k}; 2) Choose i ∈ N Set S = {i}; 3) Randomly (uniform) choose a
vertex from the set of vertices adjacent to some member of S which are not
in S and add this vertex to S. 4) Repeat step 3 until |S| = l. In effect,
the algorithm guarantees that every possible topological configuration of a
given coalition size will be selected with positive probability.
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Algorithm 1 One simulation replicate for given parameter values

Require: T , the maximum number of iterations in a simulation; Gtype or
Gid, the network type to generate or real network ID to import; |N |, the
number of agents in the population; α, the efficient coordination payoff;
k, the maximum size of a coalition; ε, the tremble probability; pb coalition
branching parameter; γ convergence limit.
{initialise:}
seed← Set and record random seed
G← Create or import network(Gtype|Gid)
x← initialise strategy vector(n)
π ← Update payoffs(G, x, α)
t← 1
converged?← FALSE
{main loop:}
while (t < T ) AND (converged? = FALSE) do
S ← Get coalition(G, k, pb)
x← Obtain better response(S,G, x, π, α)
x← Apply tremble(S, x, ε)
π ← Update payoffs(G, x, α)
converged?← Test convergence(x, γ)
t← t+ 1

end while
return (converged?, t)
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Appendix C.4. The random stream

The random stream used in the simulations is the Matlab stream
method mt19937ar, which is described by the Matlab documentation as
‘Mersenne Twister with Mersenne prime 219937 − 1’. In each experiment
(unless indicated), 20 replicates were used with this stream, each with an
individual seed defined by the number of the replicate (e.g. replicate 1 of
20 passed ‘1’ to the initialisation method) to create the stream41. Thus,
each replicate in a given experiment was conducted with identical random
number stream conditions to the corresponding replicate of another exper-
iment. Such a setup ensures that any differences amongst experiments can
be attributed wholly to the conditions of the experiment and not to differing
random number streams.

Appendix C.5. Networks

The simulation study considered two general categories of networks:
generated networks; and empirical networks. In the first category, we con-
structed square lattices with Von-Neumann (VN) neighborhoods and ring
networks via simple linear algebra methods written by one of the authors
(available on request). Next, we adopted the algorithm of Watts and Stro-
gatz (1998) to randomly ‘rewire’ 10% of the edges of these networks to form
so-called ‘small-world’ (SW) networks, and then 100% of the edges to form
random (rand) networks. The figure of 10% rewiring was settled on after
inspection of the characteristic path length L(g), and clustering coefficient
C(g), of each network type after systematic rewiring from 0% to 100%. A
‘small-world’ can be said to have been created when g, having |N | vertices
and K average degree, has L(g) similar to the equivalent (asymptotic) val-
ues for a random network of similar |N | and K, gR(N,K). The ‘small world’
will have an equivalently low average path length to a counterpart random
network but much higher local edge density.

In Table C.6 and Fig. C.16 we present summary statistics for the net-
works used in the simulations where |N |, E and K are the number of ver-
tices, edges and the average degree of the network respectively, whilst C(g)
and L(g) respectively give the clustering coefficiency and characteristic path
length of the network. As can be seen, the networks we study cover a diverse
region within L(g)

L(gR(N,K))
— C(g)

C(gR(N,K))
space.

41Actual Matlab code used:
s1 = RandStream.create(’mt19937ar’,’seed’,r);

RandStream.setDefaultStream(s1);, where ‘r’ is the replicate number.
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Appendix D. Further discussion of model assumptions [ONLINE
- NOT FOR PRINT]

Assumption 1: Better responses

Assumption 1 states that every best response by a coalition has a positive
probability. As a full support assumption, this assumption is weak in the
sense that any of the probabilities can be arbitrarily small as long as they are
positive. The independence of results with respect to the exact probabilities
is a consequence of the theoretical results being given for ε approaching zero.
One possible criticism of the use of coalitional better responses is that it
allows coalitions to choose action profiles which are Pareto dominated. The
addition of a Pareto condition to create coalitional best responses would
not change the analysis in this paper, but it should be borne in mind if
the theoretical apparatus of the paper is ever used to analyze a different
underlying game.

A second possible criticism is that coalitions are allowed heterogeneity
in their better responses. That is, a coalition may alter its actions in a
way that some members of the coalition play A while others play B. The
analyis in the current paper only uses coalitional changes from the status
quo whereby the entire coalition switches to play A or the entire coalition
switches to play B. Hence, the results of the paper would not change un-
der a restriction that a coalition changing its actions from the status quo
must do so homogeneously. The same proviso as in the previous paragraph
applies with regards to the further application of the theory. Furthermore,
the authors would defend the possibility of a coalition agreeing on hetero-
geneous actions on the grounds that it highlights the distinction between
action choice and payoff determination. Put simply, choosing what to do is
different from doing it, and the idea of two people agreeing to act differently
is plausible. Consider two cliques joined by a single edge. It is reasonable
to imagine a coalition of the two players at either end of this edge agreeing
something along the lines of “your other friends all play A so you can play
A, but my other friends all play B so I shall play B.”

Assumption 2: Full support

This is another full support assumption, stating that the set of coalitions
which will with some probability update their strategy profiles is the entire
set of feasible coalitions. The assumption is weak in the same sense as as-
sumption 1 discussed in the previous section. Criticisms must therefore be
directed at the support of the distribution. The authors regard allowing all
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coalitions below a certain size to be a fairly natural assumption. However,
there will exist domains of application for which different support assump-
tions, such as forbidding coalitions below a certain size, make greater sense.

Error probabilities

The paper works with errors that occur uniformly and independently
among members of the currently active coalition. Here we address several
questions that can arise about the error process.

Errors outside a coalition

The first question is: what if players outside the active coalition can also
make errors? This does not affect results: the effect of a player outside of an
active coalition making an error can be easily replicated within the model
of the paper by selecting that player as an active coalition and having him
make an error.

Payoff dependent errors

Aside from uniform errors, the other specification common in the lit-
erature is of error probabilities which are log-linear in payoff loss. Such a
specification would substantially complicate exposition, detracting from a
clear description of the forces at play. Moreover, there are good theoreti-
cal arguments why uniform error probabilities may be more plausible than
log-linear specifications (see van Damme and Weibull, 2002).

Perfectly correlated errors

Consider an adjustment to the model in which errors in a coalition are
perfectly correlated, and moreover, they still occur with probability ε. That
is, with probability ε, every player in the coalition makes an error. In this
way up to k players could make an error together. This is a different model,
and a full discussion is beyond the scope of this paper. However, we note
that a conservative effect of coalitional behavior can still exist in the model
with perfect correlation. Consider the graph of overlapping triangles in
figure 4. Then, for any k ≥ 2, if the graph is large enough relative to k,
a conservative effect exists for α < 3/2. This can be seen to be the case as
even if many errors have occurred to create a large block of A players, pairs
of players on the edges of this block can still profitably switch to play B.
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Slightly correlated errors

Consider an adjustment to the model in which the players in an active
coalition are sequentially given the opportunity to make an error, and errors
occur with probability ε if nobody in the coalition has yet made an error,
and with probability ε1−ρ, ρ close to zero, if a member of the coalition has
already made an error. For small enough ρ, the analysis in the paper will
remain substantially the same.

58


	2013 - 02

