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Introduction

Khovanov and Lauda [13, 12] and Rouquier [25] have introduced a remarkable new family
of algebras Rn, the quiver Hecke algebras, for each oriented quiver, and they showed that it
can categorify the positive part of the enveloping algebras of the corresponding quantum groups.
The algebras Rn are naturally Z-graded. Varagnolo and Vasserot [26] proved that, under this
categorification, the canonical basis corresponds to the image of the projective indecomposable
modules of the Grothendieck rings of the quiver Hecke algebras when the Cartan matrix is
symmetric.

The algebra Rn is infinite dimensional and for every highest weight vector in the corre-
sponding Kac-Moody algebra there is an associated finite dimensional ’cyclotomic quotient’
RΛ

n of Rn. The cyclotomic quiver algebras RΛ
n were originally defined by Khovanov and

Lauda [13, 12] and Rouquier [25] who conjectured that these algebras should categorify the ir-
reducible representations of the corresponding quantum group. Lauda and Vazirani [19] proved
that, up to shift, the simple Rn-modules are indexed by the vertices of the corresponding crystal
graph, and Kang and Kashiwara [11] proved the full conjecture by showing that the images of
the projective irreducible modules in the Grothendieck ring Rep(RΛ

n ) correspond to the canon-
ical basis of the corresponding highest weight module. Prior to this work, Brundan and Strop-
ple [6] proved this conjecture in the special the case when Λ is a dominat weight of level 2 and
Γ is the linear quiver and Brundan and Kleshchev [4] established the conjecture for all Λ when
Γ is a quiver of type A.

Brundan and Kleshchev [3] proved that every degenerate and non-degenerate cyclotomic
Hecke algebra HΛ

n of type G(r, 1, n) over a field is isomorphic to a cyclotomic quiver Hecke
algebra RΛ

n of type A. They did this by constructing an explicit isomorphisms between these
two algebras.

The algebras RΛ
n are defined by generators and relations and so these algebras are defined

over any integral domain. Let Γ be the quiver of type Ae, for e ∈ {0, 2, 3, 4, . . . }. Hu and
Mathas [9] defined a homogeneous basis {ψst} of the cyclotomic quiver algebras RΛ

n (see The-
orem 1.4.5 below), and they showed that RΛ

n is Z-free whenever e = 0 or e is invertible in the
ground ring. They asked whether the algebra RΛ

n is always Z-free. Kleshchev-Mathas-Ram [14]
defined Z-free Specht modules for the cyclotomic KLR algebras of type A (and the affine KLR
algebras of type A), but that the existence of these modules does not imply that the cyclotomic
KLR algebras are torsion free. The main result of this thesis shows that this is always the case.
More precisely, we prove the following.

0.0.1. Theorem. Let RΛ
n (Z) be a cyclotomic Khovanov-Lauda-Rouquier algebra of type A over

Z, where Λ is a dominant weight of height `. Then RΛ
n (Z) is a graded cellular algebra, with re-

spect to the dominance order, with homogeneous cellular basis {ψst | λ ∈PΛ
n and s, t ∈ Std(λ)}.

In particular, RΛ
n (Z) is Z-free of rank `nn!.

If O is any integral domain then RΛ
n (O) � RΛ

n (Z) ⊗Z O , so it follows that RΛ
n (O) is free

over O .
The proof of our main theorem is long and technical, requiring a delicate multistage induc-

tion. Fortunately, by [9, Theorem 5.14] we may assume that e , 2. Even though our arguments
1



2 Introduction

should apply in this case, being able to assume that e , 2 dramatically simplifies our arguments
because the quiver of type Ae is simply laced when e , 2.

The starting point for our arguments is the observation that the definition of Hu and Mathas’
the homogeneous elements ψst makes sense over any ring. Consequently, the linearly indepen-
dents elements {ψst} span a Z-free submodule RΛ

n of RΛ
n . To prove our Main Theorem it is

therefore enough to show that RΛ
n is closed multiplication by the generators of RΛ

n and that the
identity element of RΛ

n belongs to RΛ
n .

The algebra RΛ
n is generated by elements yr, ψs and e(i), where 1 ≤ r ≤ n, 1 ≤ s < n

and i ∈ (Z/eZ)n. These three classes of generators must all be treated separately. The cellular
basis element ψst is indexed by two standard λ-tableaux where λ is a multipartition of n; the
definitions of these terms are recalled in Chapter 1. We argue by simultaneous induction on n,
and on the lexicographic orderings on the set of multipartitions, to show that multiplication by
the KLR generators always sends ψst to a Z-linear combination of terms ψuv which are larger in
the lexicographic order. Multiplication by yr is the hardest case, partly because once this case
is understood it can be used to understand the action of ψr and e(i) on the ψ-basis of RΛ

n .
After we have proved Theorem 0.0.1, we obtain a graded cellular basis of RΛ

n . We then
extend it to obtain a graded cellular basis of Rn, which indicates that Rn is an affine graded
cellular algebra. Hence we can use similar argument to Graham-Lehrer [7] to give a complete
set of non-isomorphic graded irreducible Rn-modules. Koenig and Xi [18] introduced the no-
tion of affine cellular algebras and they have shown that the affine Hecke algebra of type A is
affine cellular. They gave a different approach to classify the irreducible representation of affine
Hecke algebras.

Finally, we work with the Jucys-Murphy elements of cyclotomic Hecke algebras of type A
for e > 0 and p > 0 in both degenerate and non-degenerate cases. We have known that the
cyclotomic KLR algebras are isomorphic to cyclotomic Hecke algebras of type A, our first task
is to express e(i)’s in RΛ

n using Jucys-Murphy elements in explicit form, and then we show that
the Jucys-Murphy elements have certain periodic property, i.e. we can find n and d such that
xn

r = xn+d
r , and we give information about the minimal values of n and d.

In more detail, this thesis is organized as follows. In Chapter 1 we summarise the back-
ground material from the representation theory of the cyclotomic Khovanov-Lauda-Rouquier
algebras that we need, including the theory of (graded) cellular algebras and the combinatorics
of multipartitions and tableaux. In Chapter 2 considers the special case where λ is a multicom-
position which has at most two rows. Once this case is understood we are able to show for an
arbitary multipartition λ that ψtλtλyr is a Z-linear combination of higher terms, where tλ is the
‘initial’ λ-tableau. Chapter 3 begins by proving, again by induction, that ψstyr is a linear com-
bination of bigger terms in RΛ

n . By considering the Garnir tableau of two-rowed multipartition
we then show that ψstψr can be written in the required form. This result is then extended to
multipartitions of arbitrary shape. Finally, we deduce that e(i) ∈ RΛ

n , for all i ∈ (Z/eZ)n, which
completes the proof of our main result. In Chapter 4 we define a sequence of weights (Λ(k)) and
using it to extend the graded cellular basis of RΛ

α to Rα and hence generate a graded cellular
basis for Rn. Then using similar arguments as Graham-Lehrer [7] we give a complete set of
non-isomorphic graded simple Rn-modules. In Chapter 5 first we give an expression of e(i)
using Jucys-Murphy elements and then simplify the expression to an explicit form. Finally us-
ing the nilpotency properties of yr’s in RΛ

n and our explicit form of e(i)’s we prove the periodic
property of the Jucys-Murphy elements in both degenerate and non-degenerate cases.

Finally, we remark that the calculations in Chapters 2 and 3 gives an algorithm inductively
for multiplying yr and ψs to ψst.
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Chapter 1

Khovanov-Lauda-Rouquier Algebras

In this chapter we are going to introduce the necessary background for our work. First
we will define our principal object of study — the (cyclotomic) Khovanov-Lauda-Rouquier
algebras RΛ

n . Then we give a brief introduction to (graded) cellular algebras and symmetric
groups. Finally after explaining tableaux combinatorics we describe a graded cellular basis for
the cyclotomic KLR algebra, found by Hu and Mathas [9].

1.1. The cyclotomic Khovanov-Lauda-Rouquier algebras

Fix an integer e ∈ {0, 2, 3, 4 . . .} and I = Z/eZ. Let Γe be the oriented quiver with vertex set
I and directed edges i → i + 1, for i ∈ I. Thus, Γe is the quiver of type A∞ if e = 0 and if e ≥ 2
then it is a cyclic quiver of type A(1)

e :

0 1

0 1

2

0 1

23

0 1

2

4

5

. . .

e = 2 e = 3 e = 4 e = 5
Let (ai, j)i, j∈I be the symmetric Cartan matrix associated with Γe, so that

ai, j =


2, if i = j,
0, if i , j ± 1,
−1, if e , 2 and i = j ± 1,
−2, if e = 2 and i = j + 1.

To the quiver Γe attach the standard Lie theoretic data of a Cartan matrix (ai j)i, j∈I , funda-
mental weights {Λi|i ∈ I}, positive weights P+ =

∑
i∈I NΛi, positive roots Q+ =

⊕
i∈I Nαi and

let (·, ·) be the bilinear form determined by

(αi, α j) = ai j and (Λi, α j) = δi j, for i, j ∈ I.

Fix a weight Λ =
∑

i∈I aiΛi ∈ P+. Then Λ is a weight of level l(Λ) = ` =
∑

i∈I ai. A multicharge
for Λ is a sequence κΛ = (κ1, . . . , κ`) ∈ I` such that

(Λ, αi) = ai = # { 1 ≤ s ≤ ` | κs ≡ i (mod e) }

for any i ∈ I.
The following algebras were introduced by Khovanov and Lauda and Rouquier who defined

KLR algebras for arbitrary oriented quivers.

1.1.1. Definition (Khovanov and Lauda [13, 12] and Rouquier [25]). Suppose O is an integral
ring and n is a positive integer. The Khovanov-Lauda–Rouquier algebra, Rn(O) of type Γe is
the unital associative O-algebra with generators

{ψ̂1, . . . , ψ̂n−1} ∪ {ŷ1, . . . , ŷn} ∪ { ê(i) | i ∈ In }

4



1.1. The cyclotomic Khovanov-Lauda-Rouquier algebras 5

and relations

ê(i)ê(j) = δijê(i),
∑

i∈In ê(i) = 1,(1.1.2)

ŷrê(i) = ê(i)yr, ψ̂rê(i) = ê(sr·i)ψ̂r, ŷrŷs = ŷsŷr,(1.1.3)

ψ̂rŷs = ŷsψ̂r, if s , r, r + 1,(1.1.4)

ψ̂rψ̂s = ψ̂sψ̂r, if |r − s| > 1,(1.1.5)

ψ̂rŷr+1ê(i) =

(ŷrψ̂r + 1)ê(i), if ir = ir+1,

ŷrψ̂rê(i), if ir , ir+1
(1.1.6)

ŷr+1ψ̂rê(i) =

(ψ̂rŷr + 1)ê(i), if ir = ir+1,

ψ̂rŷrê(i), if ir , ir+1
(1.1.7)

ψ̂2
r ê(i) =



0, if ir = ir+1,

ê(i), if ir , ir+1 ± 1,
(ŷr+1 − ŷr)ê(i), if e , 2 and ir+1 = ir + 1,
(ŷr − ŷr+1)ê(i), if e , 2 and ir+1 = ir − 1,
(ŷr+1 − ŷr)(ŷr − ŷr+1)ê(i), if e = 2 and ir+1 = ir + 1

(1.1.8)

ψ̂rψ̂r+1ψ̂rê(i) =



(ψ̂r+1ψ̂rψ̂r+1 + 1)ê(i), if e , 2 and ir+2 = ir = ir+1 − 1,
(ψ̂r+1ψ̂rψ̂r+1 − 1)ê(i), if e , 2 and ir+2 = ir = ir+1 + 1,(
ψ̂r+1ψ̂rψ̂r+1 + ŷr

−2ŷr+1 + ŷr+2
)
ê(i), if e = 2 and ir+2 = ir = ir+1 + 1,

ψ̂r+1ψ̂rψ̂r+1ê(i), otherwise.

(1.1.9)

for i, j ∈ In and all admissible r and s. Moreover, Rn(O) is naturally Z-graded with degree
function determined by

deg ê(i) = 0, deg ŷr = 2 and deg ψ̂sê(i) = −ais,is+1 ,

for 1 ≤ r ≤ n, 1 ≤ s < n and i ∈ In.

Notice that the relations depend on the quiver Γe. By [9, Theorem 5.14], if O is a commu-
tative integral domain and suppose either e = 0, e is non-zero prime, or that e·1O is invertible in
O , RΛ

n (O) is an O-free algebra.
Following Khovanov and Lauda [13], we will frequently use diagrammatic analogues of

the relations of Rn(O) in order to simplify our calculations. To do this we associate to each
generator of Rn(O) an I-labelled decorated planar diagram on 2n points in the following way:

e(i) =

i1 i2 in

, ψre(i) =

i1 ir−1 ir ir+1 in

, and yse(i) =

i1 is−1 is is in

,

for i ∈ In, 1 ≤ r < n and 1 ≤ s ≤ n. The r-th string of the diagram is the string labelled with ir.
Diagrams are considered up to isotopy, and multiplication of diagrams is given by concate-

nation, subject to the relations (1.1.2)–(1.1.9). In more detail, if D1 and D2 are two diagrams
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then the diagrammatic analogue of the relation e(i)e(j) = δije(i) is

D1 · D2 =

D1

i1 i2 in

j1 j2 jn

D2

= δij

D1

i1 i2 in

D2

That is, D1 ·D2 = 0 unless the labels of the strings on the bottom of D1 match the corresponding
labels on the top of the strings in D2 in which case we just concatenate the two diagrams.

Multiplication by yr simply adds a decorative dot to the r-th string, reading left to right, so
relations (1.1.3)–(1.1.5) become self when written in terms of diagrams. Ignoring the extrane-
ous strings on the left and right, and setting i = ir and j = ir+1, the diagrammatic analogue of
relations (1.1.6) and (1.1.7) is

(1.1.10)

i i

−

i i

= δi j

i i

=

i i

−

i i

.

Similarly, if e , 2 then relation (1.1.8) becomes

i j

=



0, if i = j,
i j

, if i , j ± 1,

±

i j

∓

i j

, if j = i ± 1.

(1.1.11)

and if e , 2 then the diagrammatic analogue of relation (1.1.9) is

i j k

−

i j k

= δi,k(δi, j+1 − δi, j−1)

i j k

.(1.1.12)

Using the relations in Rn(O) it is easy to verify the following identity which we record for
future use:

(1.1.13) ê(i)ŷk
r ŷ

k
r+1ψ̂r = ê(i)ψ̂rŷk

r ŷ
k
r+1

for any i. Clearly it is enough to prove this relation when k = 1 when, diagrammatically, this
identity takes the form

(1.1.14)

i j

=

i j

locally on the r and r + 1-th strings and where we set i = ir and j = ir+1.
Three more easy, and very useful, consequences of the relations are the following:
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i i

= −

i i

−

i i

−

i i

(1.1.15)

i i

= −

i i

−

i i

−

i i

−

i i

(1.1.16)

i i

(1.1.10)
=

i i

−

i i

(1.1.11)
= −

i i

(1.1.17)

(1.1.10)
=

i i

−

i i

(1.1.11)
=

i i

Note that (1.1.16) follows by multiplicating (1.1.15) by yr+1 and expanding.
In the rest of the thesis we will play around with these diagrammatic notations a lot. In order

to make the reader easy to follow our calculation we will use dotted strands to represent moving
strands and arrows to represent moving dots. If we are going to move a dot then we will also
write the strand which the dot is on dotted so the reader can see the arrow clearly. For example,
we will write

1 2 1 3 0 1

(1.1.12)
=

1 2 1 3 0 1

−

1 2 1 3 0 1

to signify the application of relation (1.1.12) and

1 2 1 3 3 0

(1.1.14)
=

1 2 1 3 3 0

to signify the application of relation (1.1.14).
We can define a linear map ∗ : Rn −→Rn by swapping the diagrams of Rn up-side-down.

For example, 
0 1 3 2 2



∗

=

3 0 2 1 2

.

It is obvious that ∗ is an anti-isomorphism and it preserves the generators of Rn.

Fix a weight Λ =
∑

i∈I aiΛi with ai ∈ N. Let NΛ
n (O) be the two-sided ideal of Rn generated

by the elements with form e(i)y(Λ,αi1 )
1 . We can now define the main object of study in this thesis,
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the cyclotomic Khovanov-Lauda-Rouquier algebras, which were introduced by Khovanov and
Lauda [13, Section 3.4].

1.1.18. Definition. The cyclotomic Khovanov-Lauda-Rouquier algebras of weight Λ and type
Γe is the algebra RΛ

n (O) = Rn(O)/NΛ
n (O).

Therefore, if we write e(i) = ê(i) + NΛ
n (O), yr = ŷr + NΛ

n (O) and ψs = ψ̂s + NΛ
n (O), the

algebra RΛ
n (O) is the unital O-algebra generated by

{ψ1, . . . , ψn−1} ∪ {y1, . . . , yn} ∪ { e(i) | i ∈ In }

subject to the relations (1.1.2)–(1.1.9) of Rn(O) together with the additional relation

(1.1.19) e(i)y(Λ,αi1 )
1 = 0, for each i ∈ In.

1.2. The (graded) cellular algebras and the symmetric groups

Following Graham and Lehrer [7], we now introduce the graded cellular algebras. Reader
may also refer to Hu-Mathas [9]. Let O be a commutative ring with 1 and let A be a unital
O-algebra.

1.2.1. Definition. A graded cell datum for A is a triple (Λ,T,C, deg) where Λ = (Λ, >) is a
poset, either finite or infinite, and T (λ) is a finite set for each λ ∈ Λ, deg is a function from∐

λ T (λ) to Z, and
C :

∏
λ∈Λ

T (λ) × T (λ)−→A

is an injective map which sends (s, t) to aλst such that:
(a) { aλst | λ ∈ Λ, s, t ∈ T (λ) } is an O-free basis of A;
(b) for any r ∈ A and t ∈ T (λ), there exists scalars cv

t (r) such that, for any s ∈ T (λ),

aλst·r ≡
∑

v∈T (λ)

cv
t (r)aλsv mod A>λ

where A>λ is the O-submodule of A spanned by { aµxy | µ > λ, x, y ∈ T (µ) };
(c) the O-linear map ∗ : A−→ A which sends aλst to aλts, for all λ ∈ Λ and s, t ∈ T (λ), is an

anti-isomorphism of A.
(d) each basis element aλst is homogeneous of degree deg aλst = deg(s) + deg(t), for λ ∈ Λ and

all s, t ∈ T (λ).

If a graded cell datum exists for A then A is a graded cellular algebra. Similarly, by
forgetting the grading we can define a cell datum and hence a cellular algebra.

Suppose A is a graded cellular algebra with graded cell datum (Λ,T,C, deg). For any λ ∈ Λ,
define A≥λ to be the O-submodule of A spanned by

{ cµst | µ ≥ λ, s, t ∈ T (µ) } .

Then A>λ is an ideal of A≥λ and hence A≥λ/A>λ is a A-module. For any s ∈ T (λ) we define
Cλ

s to be the A-submodule of A≥λ/A>λ with basis { aλst + A>λ | t ∈ T (λ) }. By the cellularity of A
we have Cλ

s � Cλ
t for any s, t ∈ T (λ).

1.2.2. Definition. Suppose λ ∈PΛ
n . Define the cell module of A to be Cλ = Cλ

s for any s ∈ T (λ),
which has basis { aλt | t ∈ T (λ) } and for any r ∈ A,

aλt ·r =
∑

u∈T (λ)

cr
uaλu
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where cr
u are determined by

aλst·r =
∑

u∈T (λ)

cr
uaλsu + A>λ.

We can define a bilinear map 〈·, ·〉 : Cλ ×Cλ−→Z such that

〈aλs , a
λ
t 〉a

λ
uv = aλusaλtv + A>λ

and let rad Cλ = { s ∈ Cλ | 〈s, t〉 = 0 for all t ∈ Cλ }. The rad Cλ is a graded A-submodule of Cλ.

1.2.3. Definition. Suppose λ ∈PΛ
n . Let Dλ = Cλ/rad Cλ as a graded A-module.

Exactly as in the ungraded case [7, Theorem 3.4] or [9, Theorem 2.10], we obtain the fol-
lowing:

1.2.4. Theorem. The set {Dλ〈k〉 | λ ∈ Λ,Dλ , 0, k ∈ Z } is a complete set of pairwise non-
isomorphic graded simple A-modules.

We give an example of graded cellular algebras here, which is called the cyclotomic Hecke
algebras.

Let Fp be a fixed field of characteristic p ≥ 0 with q ∈ F×p . Let e be the smallest positive
integer such that 1 + q + . . . + qe−1 = 0 and setting e = 0 if no such integer exists. Then define
I = Z/eZ if e > 0 and I = Z if e = 0.

For n ≥ 0, assume that q = 1. Let Hn be the degenerate affine Hecke algebra, working
over Fp. So Hn has generators

{x1, . . . , xn} ∪ {s1, . . . , sn−1}

subject to the following relations

xr xs = xsxr;
sr xr+1 = xr sr + 1, sr sx = xssr if s , r, r + 1

s2
r = 1;

sr sr+1sr = sr+1sr sr+1, sr st = stsr if |r − t| > 1

Now we assume that q , 1 and Hn be the non-degenerate affine Hecke algebra over Fp.
So Hn has generators

{X±1
1 , . . . , X±1

n } ∪ {T1, . . . ,Tn−1}

subject to the following relations

X±1
r X±1

s = X±1
s X±1

r , XrX−1
r = 1;

TrXrTr = qXr+1, TrXs = XsTr if s , r, r + 1;
T 2

r = (q − 1)Tr + q;
TrTr+1Tr = Tr+1TrTr+1, TrTs = TsTr if |r − s| > 1.

Then for any Λ ∈ P+, we define

(1.2.5) HΛ
n =

Hn/〈
∏

i∈I(X1 − qi)(Λ,αi)〉, if q , 1,
Hn/〈

∏
i∈I(x1 − i)(Λ,αi)〉, if q = 1.

and we call HΛ
n the degenerate cyclotomic Hecke algebra if q = 1 and non-degenerate cy-

clotomic Hecke algebra if q , 1.
By the definitions, degenerate and non-degenerate cyclotomic Hecke algebras are similar

with some minor difference. In order to minimize their difference we define

(1.2.6) qi =

i, if q = 1,
qi, if q , 1.
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and use xr instead of Xr when we don’t have to distinguish which case we are working with.
Hence we can re-write (1.2.5) as

(1.2.7) HΛ
n = Hn/〈

∏
i∈I

(x1 − qi)(Λ,αi)〉.

Murphy [24] gave a set of cellular basis for HΛ
n which shows that HΛ

n is a cellular algebra.
Brundan and Kleshchev [3] proved the remarkable result that every HΛ

n over Fp is isomorphic to
RΛ

n (Fp) introduced in Definition 1.1.1, where in both algebras Λ and e are the same. Therefore
when HΛ

n is over a field it is a graded cellular algebra.
In the rest of the section we will introduce a special case of HΛ

n , which is also an important
object we are going to need for the rest of the thesis.

The symmetric group Sn is the group of permutations on 1, 2, . . . , n. For i = 1, 2, . . . , n − 1,
let si be the transposition (i, i + 1). The following result is well-known; see for example, [20,
Exercise 1.1].

1.2.8. Definition. The symmetric group Sn is generated by s1, s2, . . . , sn−1 subject only to the
relations:

s2
i = 1, for i = 1, 2, . . . , n − 1,

sis j = s jsi, for 1 ≤ i < j − 1 ≤ n − 2,
sisi+1si = si+1sisi+1, for i = 1, 2, . . . , n − 2.

It is easy to see that HΛ
n = FpSn when q = 1 and Λ = Λi for some i ∈ I. Therefore FpSn is

a graded cellular algebras as well.
Suppose w is an element of Sn and w = si1 si2 . . . sim . If m is minimal we say that w has

length m and write l(w) = m. In this case we say si1 si2 . . . sim is a reduced expression of w.
In general an element of Sn has more than one reduced expressions. For example, we have
w = s1s2s1 = s2s1s2. Nonetheless, all the reduced expression of an element have the same
length.

In this thesis we let Sn act on {1, 2, . . . , n} from right. For example, (i)sisi+1 = (i + 1)si+1 =

i + 2.
The following result is well-known. See, for example, [20, Corollary 1.4].

1.2.9. Proposition. Suppose that w ∈ Sn. For i = 1, 2, . . . , n − 1,

l(siw) =

l(w) + 1, if (i)w−1 < (i + 1)w−1,
l(w) − 1, if (i)w−1 > (i + 1)w−1.

We recall the definition of the Bruhat order ≤ on Sn. For u,w ∈ Sn define u ≤ w if
u = sra1

sra2
. . . srab

for some 1 ≤ a1 < a2 < . . . < ab ≤ m, where w = sr1 sr2 . . . srm is a reduced
expression for w.

1.3. Tableaux combinatorics

In this section we recall the combinatorics of (multi)partitions and (multi)tableaux that we
will need in this thesis.

Let n be a positive integer. A composition of n is an ordered sequence of nonnegative
integers λ = (λ1, λ2, . . .) and |λ| =

∑∞
i=1 λi = n. We say λ is a partition of n if λ = (λ1, λ2, . . .)

is a composition and λ1 ≥ λ2 ≥ λ3 ≥ . . .. We can then identify λ with a sequence (λ1, . . . , λk)
whenever λi = 0 for i > k.

As we now recall, there is a natural partial ordering on the set of compositions of n. Suppose
λ = (λ1, λ2, . . . , ) and µ = (µ1, µ2, . . . ) are compositions of n. Then λ dominates µ, and we write
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λ D µ, if
k∑

i=1

λi ≥

k∑
i=1

µi

for any k. We write λB µ if λD µ and λ , µ. The dominance ordering can be extended to a total
ordering ≥, called the lexicographic ordering. We write λ > µ if we can find some k, such that
λi = µi for all i < k and λk > µk. Define λ ≥ µ if λ > µ or λ = µ. Then λ D µ implies λ ≥ µ.

A multicomposition of n of level ` is an ordered sequence λ = (λ(1), . . . , λ(`)) of com-
positions such that

∑`
i=1 |λ

(i)| = n. Similarly, a multipartition of level ` is multicomposition
λ = (λ(1), . . . , λ(`)) of n such that each λ(i) is a partition. We will identify multicompositions and
multipartitions of level 1 with compositions and partitions in the obvious way.

Let C Λ
n be the set of all multicomposition of n and PΛ

n be the set of all multipartitions of n.
We can extend the dominance ordering to C Λ

n by defining λ D µ if

k−1∑
i=1

|λ(i)| +

s∑
j=1

λ(k)
j ≥

k−1∑
i=1

|µ(i)| +

s∑
j=1

µ(k)
j

for any 1 ≤ k ≤ ` and all s ≥ 1. Again, we write λ B µ if λ D µ and λ , µ. Similarly, we extend
the lexicographic ordering λ > µ and λ ≥ µ to C Λ

n in the obvious way way.
The Young diagram of a multicomposition λ of level ` is the set

[λ] = {(r, c, l) | 1 ≤ c ≤ λ(l)
r , r ≥ 0 and 1 ≤ l ≤ `}

which we think of as an ordered `-tuple of the diagrams of the partitions λ(1), . . . , λ(`). The triple
(r, c, l) ∈ [λ] is node of λ in row r, column c and component l. A λ-tableau is any bijection
t : [λ]−→{1, 2, . . . , n}. We identify a λ-tableau t with a labeling of the diagram of λ. That is, we
label the node (r, c, l) ∈ [λ] with the integer t(r, c, l). For example,(

1 2 3 4
5 6 7
8

∣∣∣∣∣∣ 9 10
11 12
13

∣∣∣∣∣∣ 14 15 16
)

is a (4, 3, 1|22, 1|3)-tableaux. If t is a λ-tableau then the shape of t is the multicomposition λ and
we write Shape(t) = λ.

If t ∈ Std(λ) and 1 ≤ k ≤ n define t|k to be the subtableau of t obtained by removing all
the nodes containing an entry greater than k. We define an analogue of the dominance ordering
for standard tableaux by defining t D s if Shape(t|k) D Shape(s|k), for 1 ≤ k ≤ n. As with the
dominance ordering, if t D s then we write s E t and if s , t then write t B s and s C t. We also
define (s, t) B (u, v) if s D u, t D v and (s, t) , (u, v).

For any multicomposition λ, define tλ to be the unique λ-tableau such that tλ D t for all
standard λ-tableau t. For example, if λ = (4, 3, 1|22, 1|3) then tλ is the tableau displayed above.

The symmetric group acts on the set of all λ-tableaux. Let t be a λ-tableau, then t·sr is
the tableau obtained by exchanging the entries r and r + 1 in t, i.e. (r)t−1 = (r + 1)(t·sr)−1,
(r + 1)t−1 = (r)(t·sr)−1, and (k)t−1 = (k)(t·sr)−1 for k , r, r + 1. Then for each λ-tableau t let d(t)
be the permutation in Sn such that tλ·d(t) = t.

Recall the Bruhat order ≤ on Sn from section 1.1. The following result, which goes back to
work of Ehresmann and James, is part of the folklore for these algebras. The proof for level 1
can be found from [20, Lemma 3.7]. The higher level cases follow easily.

1.3.1. Lemma. Suppose λ ∈PΛ
n and s and t are standard λ-tableaux. Then s D t if and only if

d(s) ≤ d(t).
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Suppose λ is a multicomposition and γ = (r, c, l) ∈ [λ] and recall from Section 1.1 that
κΛ = (κ1, κ2, . . . , κ`) is a fixed multicharge of Λ. The residue of γ associate to κΛ is

res(γ) ≡ r − c + κl (mod e).

If t is a standard λ-tableau and the residue sequence of t is res(t) = it = (i1, i2, i3, . . . , in),
where ik = res(γk) and γk is the unique node in [λ] such that t(γk) = k. In particular, we write
itλ = iλ and rest(k) = res(γk).

Suppose that t is a λ-tableau. Then t is standard if λ = Shape(t) is a multipartition and if, in
each component, the entries increase along each row and down each column. More precisely,
if (r, c, l) ∈ [λ] then t(r, c, l) < t(r + 1, c, l) whenever (r + 1, c, l) ∈ [λ] and t(r, c, l) < t(r, c + 1, l)
whenever (r, c + 1, l) ∈ [λ]. Let Std(λ) be the set of all standard λ-tableaux and Std(> λ) be the
set of all standard µ-tableaux with µ > λ. We can define Std(≥ λ) similarly. Note that if t is
standard then so is t|k for 1 ≤ k ≤ n.

Recall that for each standard tableau t, we can define a permutation d(t) ∈ Sn such that
t = tλ·d(t). For each permutation we may have more than one reduced expression. Here we fix
a choice of the reduced expression of d(t).

For any standard λ-tableau t, define t(i) to be a standard λ-tableau where t(i)|k = tλ|k for any
1 ≤ k < i, and t(i)−1(k) = t−1(k) for any i ≤ k ≤ n. In particular, t(1) = t and t(n+1) = tλ. Therefore
we have a series of standard λ-tableau

tλ = t(n+1), t(n), t(n−1), . . . , t(2), t(1) = t.

Then define wi to be the unique permutation in Sn such that t(i+1)wi = t(i) and define
wnwn−1 . . .w2w1 to be the standard expression of d(t). Obviously this is a reduced expression
of d(t). In the rest of this thesis, we fix d(t) to be its standard expression.

1.3.2. Remark. For each wi, if wi , 1, we can write wi = sai sai+1sai+2 . . . si−2si−1 for some
ai ≤ i − 1. Notice that

(k)(t(i+1))−1 =


(i)(t(i))−1, if k = ai,
(k − 1)(t(i))−1, if ai < k ≤ i,
(k)(t(i))−1, otherwise.

and l(wi) is always greater than or equal to the length of the row containing i in t(i+1).
Also for each i, if Shape(t(i)|i−1) = λ, then t(i)|i−1 = tλ.

1.3.3. Example Suppose t(11) = 1 2 3 4 12
5 6 7 11
8 9 10 13

14 15

and t(10) = 1 2 3 10 12
4 5 6 11
7 8 9 13
14 15

. Therefore we

have w10 = s4s5s6s7s8s9 such that t(11)·w10 = t(10).
Notice that in this case, i = 10 and a10 = 4. So

(k)(t(11))−1 =


(10)(t(10))−1, if k = ai = 4,
(k − 1)(t(10))−1, if 4 = ai < k ≤ i = 10,
(k)(t(10))−1, otherwise.

Furthermore, t(11)|10 = 1 2 3 4
5 6 7
8 9 10

= t(4,3,3) and t(10)|9 = 1 2 3
4 5 6
7 8 9

= t(3,3,3). ^

1.3.4. Lemma. Suppose t is a standard λ-tableau and d(t) = sr1 . . . srm is the standard expres-
sion. For any 1 ≤ k ≤ m, define s = tλ·sr1 sr2 . . . srk . Then s is a standard λ-tableau.
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Proof. The proof is trivial by the definition of the standard expression. �

1.3.5. Example Suppose t = 1 2 4 6 7
3 5

. Then we have d(t) = s5s6·s4s5·s3. Then

tλ·s5 = 1 2 3 4 6
5 7

,

tλ·s5s6 = 1 2 3 4 7
5 6

,

tλ·s5s6s4 = 1 2 3 5 7
4 6

,

tλ·s5s6s4s5 = 1 2 3 6 7
4 5

,

and the above tableaux are all standard. ^

1.4. Graded cellular basis of KLR algebras over a field

Suppose O is a field, Hu and Mathas [9, Theorem 5.8] have found a homogeneous basis of
RΛ

n (O). Here we give an equivalent definition of their basis. For any multicomposition λ, recall
tλ to be the unique standard λ-tableau such that tλ D t for all standard λ-tableau t, and iλ is the
residue sequence of tλ. We define êλ = ê(iλ).

Suppose λ is a multicomposition. A node (r, c, l) is an addable node of λ if (r, c, l) < [λ] and
[λ]∪ {(r, c, l)} is the Young diagram of a multipartition. Similarly, a node (r, c, l) is a removable
node of λ if (r, c, l) ∈ [λ] and [λ]\{(r, c, l)} is the Young diagram of a multipartition. Given two
nodes α = (r, c, l) and β = (s, t,m) then α is below β if either l > m, or l = m and r > s.

Suppose that s ∈ Std(λ). Let As(k) be the set of addable nodes of the multicomposition
Shape(s|k) which are below s−1(k) and let

A Λ
s (k) = {α ∈ As(k) | res(α) = rest(k)}.

Similarly as in [9, Definition 4.12], define

ŷλ =

n∏
k=1

ŷ
|A Λ

tλ
(k)|

k ∈ Rn(O).

For example, if λ = (3, 1|42, 2|5, 1), e = 4 and Λ = 3Λ0 then

tλ =

(
1 2 3
4

∣∣∣∣∣∣ 5 6 7 8
9 10 11 12

13 14

∣∣∣∣∣∣ 16 17 18 19
20

)

and ŷλ = ŷ2
1ŷ5ŷ8ŷ10ŷ12ŷ18. Therefore,

êλŷλ = ê(0123012330122012303)ŷ2
1ŷ5ŷ8ŷ10ŷ12ŷ18.

We define a particular kind of element in Rn(O). Suppose w ∈ Sn has length ` and
si1 si2 . . . si` is a reduced expression for w inSn. Recall that Rn(O) has a unique anti-isomorphism
∗ which fixes all of the KLR generators. Define

ψ̂w = ψ̂i1ψ̂i2 . . . ψ̂i` ∈ Rn(O) and ψ̂∗w = ψ̂i`ψ̂i`−1 . . . ψ̂i2ψ̂i1 ∈ Rn(O).

Notice that ψ̂w and ψ̂∗w depend on the choice of the reduced expression of w, even though in
Sn all reduced expressions of w are the same. For example, s1s2s1 and s2s1s2 are equal to the
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same element of Sn, but in general ψ̂1ψ̂2ψ̂1 , ψ̂2ψ̂1ψ̂2 in Rn(O). Define l(ψ̂w) = l(ψ̂∗w) = l(w)
for any standard tableau t. Similarly we can define

ψw = ψi1ψi2 . . . ψi` ∈ RΛ
n (O) and ψ∗w = ψi`ψi`−1 . . . ψi2ψi1 ∈ RΛ

n (O)

and ψw and ψ∗w depends on the choice of reduced expressions of w as well.
Suppose l(d(t)) = ` and d(t) = si1 si2 . . . si` is the standard expression of d(t) where tλ·d(t) = t.

Define ψ̂d(t) = ψ̂i1ψ̂i2 . . . ψ̂i` and ψ̂∗d(t) = ψ̂i`ψ̂i`−1 . . . ψ̂i2ψ̂i1 .

1.4.1. Definition. Suppose Λ ∈ P+, λ ∈PΛ
n and s, t are two standard λ-tableaux. We define

ψ̂O
st = ψ̂∗d(s)êλŷλψ̂d(t) ∈ Rn(O),

and hence
ψO

st = ψ̂O
st + NΛ

n ∈ RΛ
n (O).

1.4.2. Remark. Notice that Hu and Mathas [9, Definition 5.1] defined ψO
st differently. Actually

if we define eλ, yλ and ψw in RΛ
n (O) as analogues of êλ, ŷλ and ψ̂w, and define ψO

st = ψ∗d(s)eλyλψd(t)

for s, t ∈ Std(λ), it is equivalent to Definition 1.4.1. We define ψO
st as in Definition 1.4.1 because

we need to work in Rn(O) later.

1.4.3. Remark. By construction, then this ψO
st is well defined as an element of RΛ

n (O) for any
ring O . Many of the calculations in this thesis depend heavily on the choice of O so we write
ψO

st to emphasize that ψO
st is an element of RΛ

n (O). Most of the time, however, we will work in
RΛ

n (Z) so for convenience we set ψst = ψZst.

1.4.4. Lemma (Hu and Mathas [9, Lemma 5.2] [10, Corollary 3.11,3.12]). Suppose O is a field
and s and t are standard λ-tableaux and 1 ≤ r ≤ n,

ψstψr =


∑

(u,v)B(s,t) cuvψuv, if t·sr is not standard
or d(t)·sr is not reduced,

ψsv +
∑

(u,v)B(s,t) cuvψuv, if v = t·sr standard and d(t)·sr = d(v).

for cuv ∈ O , and cuv , 0 only if res(s) = res(u) and res(t·sr) = res(v). Similarly, we have

ψO
styr =

∑
(u,v)B(s,t)

cuvψ
O
uv

for cuv ∈ O , and cuv , 0 only if res(s) = res(u) and res(t) = res(v).

1.4.5. Theorem (Hu and Mathas [9, Theorem 5.14]). Suppose O is an integral domain and that
either e = 0, e is a prime or e is a non-zero non-prime integer such that e · 1O is invertible in O .
Then

{ψO
st | s, t ∈ Std(λ) for λ ∈PΛ

n }

is a graded cellular basis of RΛ
n (O). In particular, RΛ

n (O) is free as an O-module of rank `nn!.

The main purpose of this thesis is to prove that RΛ
n (Z) is free of rank `nn!. To do this we

will show that {ψZst | s, t ∈ Std(λ) for λ ∈PΛ
n } is a homogeneous basis of RΛ

n (Z).

We define some notation for future use.

1.4.6. Definition. Suppose λ is a multipartition of PΛ
n . Define:

RΛ
n = 〈ψst | s, t ∈ Std(µ) for µ ∈PΛ

n 〉Z,

R≥λn = 〈ψst | s, t ∈ Std(µ) and µ ≥ λ for µ ∈PΛ
n 〉Z,

R>λ
n = 〈ψst | s, t ∈ Std(µ) and µ > λ for µ ∈PΛ

n 〉Z.

where R>λ
n ⊆ R≥λn ⊆ RΛ

n ⊆ RΛ
n (Z)
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This section closes with an important Proposition:
Khovanov and Lauda[13][12] have found a basis of Rn(O)

(1.4.7) { ê(i)ŷ`1
1 ŷ`2

2 . . . ŷ
`n
n ψ̂w | i ∈ In,w ∈ Sn, `1, `2, . . . , `n ≥ 0 }

for any ring O .
Consider the quiver Hecke algebra Rn(Q) defined over the rational field Q. We have

Rn(Q) � Rn(Z) ⊗ Q and we can define a linear map f : Rn(Z)−→Rn(Q) by sending x ∈ Rn(Z)
to x ⊗ 1.

1.4.8. Lemma. The linear map f : Rn(Z)−→Rn(Q) is an injection.

Proof. By (1.4.7), { ê(i)Z(ŷZ1 )`1(ŷZ2 )`2 . . . (ŷZn )`nψ̂Zw | w ∈ Sn, `1, `2, . . . , `n ≥ 0 } is a basis of Rn(Z)
and similarly, { ê(i)Q(ŷQ1 )`1(ŷQ2 )`2 . . . (ŷQn )`nψ̂Qw | w ∈ Sn, `1, `2, . . . , `n ≥ 0 } is a basis of Rn(Q). Be-
cause f sends the basis elements ê(i)Z(ŷZ1 )`1(ŷZ2 )`2 . . . (ŷZn )`nψ̂Zw of Rn(Z) to ê(i)Q(ŷQ1 )`1(ŷQ2 )`2 . . . (ŷQn )`nψ̂Qw ,
the basis elements of Rn(Q), it is sufficient to prove that f is an injection. �

From the definitions, it is evident that f (NΛ
n (Z)) ⊆ NΛ

n (Q). Hence, f induces a homomor-
phism,

f : RΛ
n (Z)−→RΛ

n (Q); x + NΛ
n (Z) 7→ f (x) + NΛ

n (Q),
which by abuse of notation we also denote by f . In particular, observe that f (ψZst) = ψQst. The
main Theorem of this thesis is equivalently to prove that f : RΛ

n (Z)−→RΛ
n (Q) is an injection.

We then introduce an important special case where we already know that f is injective.

1.4.9. Proposition. The homomorphism f : RΛ
n (Z)−→RΛ

n (Q) restricts to an injective map from
RΛ

n to RΛ
n (Q).

Proof. As we have already noted above, f (ψZst) = ψQst for all s, t ∈ Std(λ) and λ ∈ PΛ
n . Hence,

Theorem 1.4.5 implies the result. �

1.4.10. Corollary. The elements {ψZst | s, t ∈ Std(λ) for λ ∈PΛ
n } are a linearly independent

subset of RΛ
n (Z).

1.4.11. Remark. Proposition 1.4.9 is quite crucial. In this thesis we prove that ψZst·ψr ∈ RΛ
n

whenever d(t)·sr is not reduced or t·sr is not standard in RΛ
n (Z). We can only have

ψZst·ψr =
∑
u,v

cZuvψ
Z
uv.

In RΛ
n (Q), however, by Lemma 1.4.4, under these conditions we have

ψQst·ψr =
∑

(u,v)B(s,t)

cQuvψ
Q
uv

for some cQuv ∈ Q, where (u, v) B (s, t) if u D s, v D t and (u, v) , (s, t). Therefore, cQuv = cZuv by
Proposition 1.4.9 and we see that cZuv , 0 only if (u, v)B (s, t). In such case we have much more
information about u and v with cZuv , 0. Similar remarks apply to the products ψZst·yr.



Chapter 2

Integral Basis Theorem I

In the next two chapters we will prove that RΛ
n is Z-free. The essence of our argument is

that we will verify that the following three properties hold.

(1). e(iλ− ∨ k)yλ−y
bλ−k
n ∈ R>λ

n .
(2). ψstyr ∈ RΛ

n .
(3). ψstψr ∈ RΛ

n .
for any λ ∈ PΛ

n . We will define a partial ordering ≺ on P = ∪Λ ∪n PΛ
n . Our proof proceeds

by induction on multipartitions using ≺. The main result of this chapter is to prove that if for
any µ � λ, µ has above three properties, then λ will have the first property. This result is crucial
for showing that e(i) ∈ RΛ

n for any i ∈ In.
In the rest of this thesis we write Rn(Z) as Rn and RΛ

n (Z) as RΛ
n . Fix a weight Λ, a multi-

charge κΛ = (κ1, . . . , κl) corresponding to Λ and an integer e > 2. In this and the next chapter
we mainly work with the algebra RΛ

n .

2.1. The base step of the induction

In this section we set up the notations and inductive machinery that we use in the next two
chapters to prove our main theorem. We then consider the base case of our induction which is
when λ = (n|∅| . . . |∅). Finally we develop some technical Lemmas which will be useful later.

2.1.1. Definition. Suppose that λ is a multipartition of n. Let λ+ be the multicomposition of
n + 1 obtained by adding a node at the end of the last non-empty row of λ, and λ− = λ|n−1 be the
multipartition of n − 1 obtained by removing the last node from λ.

For example, if λ = (4, 3|3, 3) then λ+ = (4, 3|3, 4) and λ− = (4, 3|3, 2). Notice that in
general, λ+ will be a multicomposition rather than a multipartition.

For k ∈ I and λ ∈ PΛ
n , define A k

tλ = {α ∈ Atλ(n) | res(α) = k }. Recall iλ = res(tλ) and
eλ = e(iλ) from section 1.4.

2.1.2. Definition. Suppose that λ ∈PΛ
n and k ∈ I. Define the integer bλk by

bλk =

|A k
tλ | + 1, if λ+ is a multipartition and in + 1 = k,

|A k
tλ |, otherwise.

If i = (i1, i2, . . . , in) ∈ In and k ∈ I then define i ∨ k = (i1, i2, . . . , in, k) ∈ In+1.

2.1.3. Lemma. Suppose that λ ∈PΛ
n and k ∈ I. Then for each integer b with 0 ≤ b < bλk , there

exists a multipartition ν = ν(b) such that eνyν = e(iλ ∨ k)yλyb
n+1.

Proof. The definitions of λ and bλk ensure that there are bλk addable nodes of residue k below
(tλ)−1(n). Suppose those nodes are (r1, c1, l1), (r2, c2, l2), . . . , (rbλk

, cbλk
, lbλk

), where l1 ≥ l2 ≥ l3 ≥

. . . ≥ lbλk
, and if li = li+1 then ri ≥ ri+1. In another word, (ri, ci, li) is a node below (ri+1, ci+1, li+1).

For any b with 0 ≤ b < bλk , we define ν to be the multipartition obtained by adding the node
(rb+1, cb+1, lb+1) on to λ. Then yν = yλyb

n+1 and eν = e(iλ ∨ k) = e(i ∨ k). This completes the
proof. �

16
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2.1.4. Example Suppose that λ = (4, 3|2, 1|0|0) with e = 4 and κΛ = (0, 0, 2, 1). Then e(iλ) =

e(0123301013) and yλ = y1y2y3y4y6y7y9. Then bλ0 = 1, bλ1 = 1, bλ2 = 2 and bλ3 = 0 and the proof
of Lemma 2.1.3 shows that:

e(01233010130)y1y2y3y4y6y7y9 = eµ1yµ1 ,

e(01233010131)y1y2y3y4y6y7y9 = eµ2yµ2 ,

e(01233010132)y1y2y3y4y6y7y9 = eµ3yµ3 ,

e(01233010132)y1y2y3y4y6y7y9y11 = eµ4yµ4 ,

where µ1 = (4, 3|2, 2|∅|∅), µ2 = (4, 3|2, 1|∅|1), µ3 = (4, 3|2, 1|1|∅) and µ4 = (4, 3|2, 1, 1|∅|∅).
^

2.1.5. Definition. Let PΛ = ∪n≥0PΛ
n . Define three sets PΛ

I , PΛ
y and PΛ

ψ of multipartitions
by:

PΛ
I = {λ ∈PΛ | |λ| = n and e(iλ− ∨ k)yλ−y

bλ−k
n ∈ R>λ

n for all k ∈ I},

PΛ
y = {λ ∈PΛ | |λ| = n and ψstyr ∈ RΛ

n whenever s, t ∈ Std(λ) and 1 ≤ r ≤ n},

PΛ
ψ = {λ ∈PΛ | |λ| = n and ψstψr ∈ RΛ

n whenever s, t ∈ Std(λ) and 1 ≤ r < n}.

2.1.6. Remark. Notice that if for some s, t ∈ Std(λ) and 1 ≤ r ≤ n we have ψstyr ∈ RΛ
n , then

yrψst ∈ RΛ
n as well. Similar property holds for ψstψr. Therefore we can write

PΛ
y = {λ ∈PΛ | |λ| = n and yrψst ∈ RΛ

n whenever s, t ∈ Std(λ) and 1 ≤ r ≤ n},

PΛ
ψ = {λ ∈PΛ | |λ| = n and ψrψst ∈ RΛ

n whenever s, t ∈ Std(λ) and 1 ≤ r < n}

as well.

By Proposition 1.4.9 if one of e(iν)yλ−yn
n, ψstyr or ψstψr belongs to RΛ

n then it can be written
in a unique way as an (integral) linear combination of the ψ-basis elements. In particular, these
linear combinations must satisfy the restrictions imposed by Lemma 1.4.4.

We note also that our main theorem is equivalent to the claim that

PΛ
n ⊆PΛ

I ∩PΛ
y ∩PΛ

ψ .

We prove this by considering each of these three sets separately, beginning with PΛ
I .

Suppose λ and µ are two multipartitions, not necessarily of the same integer. Define µ ≺ λ
if |µ| < |λ|, or |µ| = |λ| and l(µ) < l(λ), or |µ| = |λ|, l(µ) = l(λ) and λ < µ.

2.1.7. Definition. Define S Λ
n = {λ ∈PΛ

n | µ ∈PΛ′

I ∩P
Λ′

y ∩P
Λ′

ψ whenever µ ∈PΛ′

m and µ ≺ λ}

Now we can state the main result of this chapter.

2.1.8. Theorem. Suppose λ ∈ S Λ
n . Then we have λ ∈PΛ

I .

As we mentioned before we are going to apply induction on λ to prove the main Theorem.
Lemma 2.1.9, Corollary 2.1.10 and Corollary 2.1.11 give the base case of the induction. Recall
that e , 2.

2.1.9. Lemma. Suppose that n ≥ 1 and λ = (n|0| . . . |0) ∈PΛ
n . Then e(iλ− ∨ k)yλ−y

bλ−k
n ∈ R>λ

n for
any k ∈ I.

Proof. As λ is the maximal element of PΛ
n , R>λ

n = {0}. Therefore the Lemma is equivalent to

the claim that e(iλ− ∨ k)yλ−y
bλ−k
n = 0. We prove this by induction on n.

If n = 1 then it is easy to see that bλ−k = (Λ, αi1). Therefore, e(iλ−∨k)yλ−y
bλ−k
n = e(k)y

(Λ,αi1 )
1 = 0

by (1.1.19).
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Suppose now that the Lemma holds for any n′ < n. Notice that for any m ≥ 1, set γ =

(m|0| . . . |0) then |A k
tγ | is independent to the value of m. For the rest of the proof we set ak = |A k

tλ− |.
In order to simplify the notations, for the rest of the proof we will omit i1i2 . . . in−3 and

simply write e(i) = e(in−2, in−1, in). We will also suppress yν, where ν = λ|n−3.
We consider four cases separately, depending on the value of k.

Case 2.1.9a: k = in−1. Then e(iλ− ∨ k)yλ−y
bλ−k
n = e(i|n−3, k − 1, k, k)yλ|n−3y

ak−1
n−2 yak

n−1yak
n . In this

case we have

e(k − 1, k, k)yak−1
n−2 yak

n−1yak
n

(1.1.6)
= −e(k − 1, k, k)yak−1

n−2 yak+1
n−1 yak

n ψn−1 + e(k − 1, k, k)yak−1
n−2 yak

n−1yak
n ψn−1yn

(1.1.13)
= ψn−1e(k − 1, k, k)yak−1

n−2 yak
n−1yak

n yn,

where e(k − 1, k, k)yak−1
n−2 yak+1

n−1 yak
n = 0 by induction. Therefore,

e(k − 1, k, k)yak−1
n−2 yak

n−1yak
n = ψn−1e(k − 1, k, k)yak−1

n−2 yak
n−1yak

n yn

= ψ2
n−1e(k − 1, k, k)yak−1

n−2 yak
n−1yak

n y2
n = 0

by relation (1.1.8).

Case 2.1.9b: k = in−1 + 1. Now, e(iλ− ∨ k)yλ−y
bλ−k
n = e(i|n−3, k − 2, k − 1, k)yλ|n−3y

ak−2
n−2 yak−1

n−1 yak+1
n .

Therefore,

e(k − 2, k − 1, k)yak−2
n−2 yak−1

n−1 yak+1
n

(1.1.8)
= e(k − 2, k − 1, k)yak−2

n−2 yak−1+1
n−1 yak

n + e(k − 2, k − 1, k)yak−2
n−2 yak−1

n−1 yak
n ψ

2
n−1

(1.1.6)
(1.1.7)

= e(k − 2, k − 1, k)yak−2
n−2 yak−1+1

n−1 yak
n + ψn−1e(k − 2, k, k − 1)yak−2

n−2 yak
n−1yak−1

n ψn−1 = 0,

where the last equality follows by induction.

Case 2.1.9c: k = in−1 − 1. If n = 2 then e(iλ− ∨ k)yλ−y
bλ−k
n = e(k, k − 1)yak

1 yak−1
2 . Then ak−1 ≥ 1.

Therefore,

e(k, k − 1)yak
1 yak−1

2
(1.1.8)

= e(k, k − 1)yak+1
1 yak−1−1

2 − ψ1e(k − 1, k)yak−1−1
1 yak

2 ψ1 = 0,

using relation (1.1.19) and induction. Hence, the lemma follows in this case when n = 2.

If n > 2 then e(iλ− ∨ k)yλ−y
bλ−k
n = e(i|n−3, k, k + 1, k)yλ|n−3y

ak
n−2yak+1

n−1 yak
n . Hence,

e(k, k + 1, k)yak
n−2yak+1

n−1 yak
n

(1.1.9)
= ψn−2ψn−1ψn−2e(k, k + 1, k)yak

n−2yak+1
n−1 yak

n

− ψn−1ψn−2ψn−1e(k, k + 1, k)yak
n−2yak+1

n−1 yak
n

= ψn−2ψn−1e(k + 1, k, k)yak+1
n−2 yak

n−1yak
n ψn−2

− ψn−1ψn−2e(k, k, k + 1)yak
n−2yak

n−1yak+1
n ψn−1

= 0,

where the last equality follows by induction.

Case 2.1.9d: |k − in−1| > 1. Because in−2 = in−1 − 1, we have in−2 , k. Therefore we have

e(iλ− ∨ k)yλ−y
bλ−k
n = e(i|n−3, in−2, in−1, k)yλ|n−3y

ain−2
n−2 y

ain−1
n−1 yak

n

(1.1.8)
= ψn−1e(i|n−3, in−2, k, in−1)yλ|n−3y

ain−2
n−2 yak

n−1y
ain−1
n ψn−1 = 0

by induction. This completes the proof. �
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Lemma 2.1.9 has two immediate Corollaries:

2.1.10. Corollary. Suppose n ≥ 2 and λ = (n|0| . . . |0). Then eλyλyr ∈ R>λ
n for any 1 ≤ r ≤ n.

2.1.11. Corollary. Suppose that n ≥ 2 and λ = (n|0| . . . |0). Then eλyλψr ∈ R>λ
n , for any

1 ≤ r ≤ n − 1.

Proof. Write yλ = yl1
1 yl2

2 . . . y
ln
n and iλ = (i1i2 . . . in),

e(i1 . . . in)yl1
1 . . . y

ln
n ψr = ψre(i1 . . . ir−1ir+1ir . . . in)yl1

1 . . . y
lr−1
r−1ylr+1

r ylr
r+1 . . . y

ln
n = 0,

by Lemma 2.1.9. �

The results in the rest of the section will be used frequently in the later proofs.
Recall that for any multipartition λ, R>λ

n is the subspace of RΛ
n spanned by all of the elements

ψst, where Shape(s) = Shape(t) > λ.

2.1.12. Lemma. Suppose λ ∈ S Λ
n . Then R>λ

n is a two-sided ideal of RΛ
n . More precisely, R>µ

n is
a two-sided ideal of RΛ

n whenever µ ≺ λ.

Proof. The Lemma follows directly from the definition of the set S Λ
n , PΛ

y , PΛ
ψ and Re-

mark 2.1.6. �

In order to simplify the notation, for each i ∈ I define θi : RΛ
n −→ RΛ

n+1 to be the unique
Z-linear map which sends e(i) to e(i ∨ i), yr to yr and ψr to ψr. It is easy to see that θi respects
the relations in RΛ

n , so θi is a Z-algebra homomorphism.

2.1.13. Lemma. Suppose λ ∈ S Λ
n and u, v ∈ Std(µ), where µ ∈ PΛ

m with m < n such that
µ > λ|m. Let σ = λ|m+1 ∈PΛ

m+1. Then θi(ψuv) ∈ R>σ
n , for any i ∈ I.

Proof. Write µ = (µ(1), . . . , µ(`)) and µ(`) = (µ(`)
1 , . . . , µ

(`)
k ) and define γ = (µ(1), . . . , µ(`−1), γ(`))

where

γ(`) =

(µ(`)
1 , . . . , µ

(`)
k−1, µ

(`)
k + 1), if µ(`)

k−1 > µ
(`)
k ,

(µ(`)
1 , . . . , µ

(`)
k−1, µ

(`)
k , 1), if µ(`)

k−1 = µ(`)
k .

Then γ is a multipartition of m+1 and γ|m = µ. Since m < n, if m = n−1, then γ|n−1 = µ > λ−,
so that γ > λ. On the other hand, if m < n − 1 then |γ| = m + 1 < n = |λ|. So we always have
γ ≺ λ. Therefore, γ ∈PΛ

I ∩PΛ
y ∩PΛ

ψ because λ ∈ S Λ
n .

As γ|m = µ, we have θi(ψuv) = θi(ψ∗d(u)eµyµψd(v)) = ψ∗d(u)e(iγ|m ∨ i)yµψd(v). First suppose that
bµi = 0. Then using the definition of PΛ

I , we have e(iγ|m ∨ i)yµ ∈ R>γ
n ⊆ R>σ

n . Hence, by
Lemma 2.1.12, we have θi(ψuv) = ψ∗d(u)e(iγ|m ∨ i)yµψd(v) ∈ R>σ

n .
Now supose that bµi > 0. By Lemma 2.1.3 we can find a multipartition ν with ν|m = µ such

that e(iγ|m ∨ i)yµ = eνyν. Further, as ν|m = µ, we can find two standard ν-tableaux s and t such
that s|m = u and t|m = v. That is, d(s) = d(u) and d(t) = d(v). Therefore,

θi(ψuv) = ψ∗d(u)e(iγ|m ∨ i)yµψd(v) = ψ∗d(s)eνyνψd(t) = ψst ∈ R≥νn ⊆ R>σ
n

because ν > σ. This completes the proof. �

If i = (i1, . . . , in) ∈ In and 1 ≤ m ≤ n let im = (i1 . . . im).

2.1.14. Lemma. Suppose λ ∈ S Λ
n , m ≤ n and σ = λ|m. For any i = (i1, i2, . . . , in−m) we have

RΛ
n θi(R>σ

n )RΛ
n ⊆ R>λ

n .
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Proof. Suppose r ∈ R>σ
n , we have that

r =
∑

u,v∈Std(>σ)

cuvψuv

for some cuv ∈ Z. For any i ∈ I,

θi(r) =
∑

u,v∈Std(>σ)

cuvθi(ψuv).

By Lemma 2.1.13, θi(ψuv) ∈ R>λ|m+1
n . Hence θi(r) ∈ R>λ|m+1

n . By induction we have θi(r) ∈
R>λ

n . By Lemma 2.1.12, R>λ
n is an ideal. Therefore RΛ

n θi(R>σ
n )RΛ

n ⊆ R>λ
n which completes the

proof. �

2.2. The action of yr on two-rowed partitions

Recall that the main result of this chapter is to prove that if λ ∈ Sn, then

e(iλ− ∨ k)yλ−y
bλ−k
n ∈ R>λ

n .

In the inductive process we consider different types of multipartitions λ and a residue k ∈
I. We will consider the more difficult case first, namely when λ = (λ(1), . . . , λ(`)) and λ(`) =

(λ(`)
1 , . . . , λ

(`)
l , 1) , ∅ with l ≥ 2, λ(`)

l−1 = λ(`)
l = m and k ≡ κ` − l + m + 1 (mod e). In this section

we assume that ` = 1 and l = 2. We will extend the result to the general case in the next section.
Notice that in this case λ = (m,m, 1) for some integer m and k ≡ κ1 − 1 + m (mod e). Then

e(iλ− ∨ k)yλ−y
bλ−k
n = eγyγ where γ = (m,m + 1). It is very hard to prove that eγyγ ∈ R>λ

n directly,
so we are going to work with γ which is in a more general form.

In this section we fix Λ = Λ j for some j ∈ I, γ = (γ1, γ2) and λ = (γ1, γ2 − 1, 1) with γ2 > 1
and γ2 − γ1 ≡ 1 (mod e). We will prove that if γ1 + 1 = γ2 and λ ∈ S Λ

n then eγyγ ∈ R>γ
n .

Without loss of generality we can assume that Λ = Λ0. Define i ≡ γ2 − 2 (mod e), which is
the residue of (2, γ2, 1). Because γ2 ≡ γ1 +1 (mod e), it is also the residue of the node (1, γ1, 1).
In diagrammatic notation, we have

eγyγ =

︸                       ︷︷                       ︸
γ1

︸                       ︷︷                       ︸
γ2

0 1 i − 1 i e − 1 0 i − 1 i

l1 l2 lm−1 lm lm+1 lm+2 l2m l2m+1

where iγ = (i1, i2, . . . , in) and lk = |A ik
tγ |k
| is the multiplicity of the green dot on the k-th string.

For the rest of this section, for clarity we will omit extraneous dots when they do not play an
important role in the argument.

Next we introduce an important equivalent relation =γ. For γ ∈ S Λ
n , and r1, r2 ∈ RΛ

n , we
write r1 =γ r2 if r1 ± r2 ∈ R>γ

n . It is clearly an equivalent relation. Moreover, by Lemma 2.1.12,
for any r ∈ RΛ

n we have r1·r =γ r2·r if r1 =γ r2. This will be helpful for us to simplify the
notations and calculations.

Recall that γ2 > 1. We can write γ2 = k·e+t for some nonnegative integer k and 2 ≤ t ≤ e+1.
We will first prove
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(2.2.1) eγyγ =γ



︸                       ︷︷                       ︸
γ1

︸                       ︷︷                       ︸
γ2

0 1 i − 1 i e − 1 0 i − 1 i

, if i , e − 1,

︸                       ︷︷                       ︸
γ1

︸                       ︷︷                       ︸
γ2

0 1 e − 2e − 1e − 1 0 e − 2e − 1

, if i = e − 1.

by induction on k, which can imply eγyγ ∈ R>λ
n easily.

In order to clarify the meaning of the diagrams in (2.2.1), let us give two examples below.
In these examples for convenience we fix e = 4.

2.2.2. Example Suppose γ = (8, 5), then γ = and i = 3. Then we are trying to
prove that

eγyγ =

0 1 2 3 0 1 2 3 3 0 1 2 3

=γ

0 1 2 3 0 1 2 3 3 0 1 2 3

.

^

2.2.3. Example Suppose γ = (9, 10), then γ = and i = 0. We are trying to
prove that

eγyγ =

0 1 2 3 0 1 2 3 0 3 0 1 2 3 0 1 2 3 0

=γ

0 1 2 3 0 1 2 3 0 3 0 1 2 3 0 1 2 3 0

.

^

The next Proposition is the base case of the induction. When k = 0, we have 2 ≤ γ2 ≤ e + 1.

2.2.4. Proposition. Suppose γ = (γ1, γ2) ∈ C Λ
n with γ2 > 1 and γ2 − γ1 ≡ 1 (mod e) and

λ = (γ1, γ2 − 1, 1) ∈ S Λ
n . Define i to be the residue of the node at position (1, γ1, 1) or (2, γ2, 1).

When 2 ≤ γ2 ≤ e + 1, (2.2.1) holds.

Before proving Proposition 2.2.4 we first give a useful lemma.
2.2.5. Lemma. For any i ∈ I, we have

i i + 1 i + 2 i − 1 i

=

i i + 1 i + 2 i − 1 i

−

i i + 1 i + 2 i − 1 i

−

i i + 1 i + 2 i − 1 i

+

i i + 1 i + 2 i − 1 i

+

i i + 1 i + 2 i − 1 i

.
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Proof. The Lemma follows by directly applying braid relations on the left hand side of the
equation. �

Now we are ready to prove Proposition 2.2.4.

Proof. We prove the Proposition by considering four different cases depending upon the value
of i. Notice that in this Proposition, we have γ1 ≥ γ2 − 1 because 2 ≤ γ2 ≤ e + 1 and γ2 − γ1 ≡ 1
(mod e).

Case 2.2.4a: i = 0, i.e. γ2 = 2.

eγyγ =

︸                       ︷︷                       ︸
γ1

0 1 e − 1 0 e − 1 0

(1.1.12)
=

0 1 e − 1 0 e − 1 0

−

0 1 e − 1 0 e − 1 0

(1.1.17)
= −

0 1 e − 1 0 e − 1 0

−

0 1 e − 1 0 e − 1 0

= −

0 1 e − 1 0 e − 1 0

−

0 1 e − 1 0 e − 1 0

.

Because
0 1 e − 1 0 e − 1 0

=

0 1 e − 1 0 e − 1 0

·

0 1 e − 1 0 0 e − 1

·

0 1 e − 1 0 0 e − 1

and if we define ν = (γ1, 1) = λ|γ1+1, then as λ ∈ S Λ
n and |ν| = γ1 + 1 < n = γ1 + γ2 = |λ|,

ν ∈PΛ
I . Moreover as bν−0 = 1,

0 1 e − 1 0

= e(iν− ∨ 0)yν−y
1
|ν| ∈ R>ν

n .

Then by Lemma 2.1.14,
0 1 e − 1 0 e − 1 0

∈ R>γ
n .

Therefore,

eγyγ =γ

0 1 e − 1 0 e − 1 0

,

which gives the proposition in this case.
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Case 2.2.4b: 1 ≤ i ≤ e − 3, i.e. 3 ≤ γ2 ≤ e − 1.

︸                       ︷︷                       ︸
γ1

0 1 i − 1 i e − 1 0 i − 2 i − 1 i

(1.1.12)
=

0 1 i − 1 i e − 1 0 i − 2 i − 1 i

−

0 1 i − 1 i e − 1 0 i − 2 i − 1 i

(1.1.12)
=

0 1 i − 1 i e − 1 0 i − 2 i − 1 i

−

0 1 i − 1 i e − 1 0 i − 2 i − 1 i

(1.1.11)
=

0 1 i − 1 i e − 1 0 i − 2 i − 1 i

−

0 1 i − 1 i e − 1 0 i − 2 i − 1 i

=

0 1 i − 1 i e − 1 0 i − 2 i − 1 i

−

︸                       ︷︷                       ︸
γ1

0 1 i − 1 i e − 1 0 i − 2 i − 1 i

.

For the same reason as in Case 2.2.4a,
0 1 i − 1 i e − 1 0 i − 2 i − 1 i

∈ R>γ
n ,

which implies the proposition in this case.

Case 2.2.4c: i = e − 2, i.e. γ2 = e. By Lemma 2.2.5,

︸                       ︷︷                       ︸
γ1

0 1 e − 3e − 2e − 1 0 e − 3e − 2

=

︸                       ︷︷                       ︸
γ1

0 1 e − 3e − 2e − 1 0 e − 3e − 2

−

0 1 e − 3e − 2e − 1 0 e − 3e − 2

−

0 1 e − 3e − 2e − 1 0 e − 3e − 2

+

0 1 e − 3e − 2e − 1 0 e − 3e − 2

+

0 1 e − 3e − 2e − 1 0 e − 3e − 2

.

Set ν = (γ1, γ2 − 1) = γ|n−1. As γ1 ≥ γ2 − 1, we have ν ∈PΛ
n−1. As λ ∈ S Λ

n and |ν| < |λ|, we
have ν ∈PΛ

I . It is not hard to see that bν−e−3 = 1. Hence

︸                       ︷︷                       ︸
γ1

︸                       ︷︷                       ︸
γ2−1

0 1 e − 3e − 2e − 1 0 e − 4e − 3

= e(iν− ∨ e − 3)yν−y
1
n−1 ∈ R>ν

n .
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Then by Lemma 2.1.14,

0 1 e − 3e − 2e − 1 0 e − 3e − 2

∈ R>γ
n .

Similarly, we have

0 1 e − 3e − 2e − 1 0 e − 3e − 2

,

0 1 e − 3e − 2e − 1 0 e − 3e − 2

∈ R>γ
n ,

and for the similar method as in Case 2.2.4a, we have

0 1 e − 3e − 2e − 1 0 e − 3e − 2

∈ R>γ
n .

Therefore,

0 1 e − 3e − 2e − 1 0 e − 3e − 2

=γ

0 1 e − 3e − 2e − 1 0 e − 3e − 2

= eγyγ,

which follows the Proposition.

Case 2.2.4d: i = e − 1, i.e. γ2 = e + 1. By Lemma 2.2.5,

︸                       ︷︷                       ︸
γ1

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

=

︸                       ︷︷                       ︸
γ1

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

+

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

+

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

.(2.2.6)
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For the first two terms of (2.2.6),

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

(1.1.11)
=

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

(1.1.15)
= −

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

.

Using the similar method as in Case 2.2.4a,

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

∈ R>γ
n ,

and using the similar method in Case 2.2.4c,

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

∈ R>γ
n .

Hence the first two terms of (2.2.6) is in R>γ
n . For the third term of (2.2.6),

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

(1.1.15)
= −

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

∈ R>γ
n .

For the fourth term of (2.2.6), by (1.1.16),

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

= −

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

−

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

=γ

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

= eγyγ,
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and for the last term of (2.2.6),

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

=

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

∈ R>γ
n .

Combine the result above, we have

0 1 e − 2e − 1e − 1 0 1 e − 3e − 2e − 1

=γ eγyγ,

which completes the proof.
�

2.2.7. Remark. The technique of applying Lemma 2.1.14 in proving Proposition 2.2.4 will be
used many times in the rest of the thesis. Although the process is straightforward, individual
details will vary from case to case, thus in order to simplify the process we will omit details in
the future.

Recall γ2 = k·e + t where k is a nonnegative integer and 2 ≤ t ≤ e + 1. Now we remove the
restriction on γ2 by applying the induction on k.

2.2.8. Proposition. Suppose γ = (γ1, γ2) ∈ C Λ
n with γ2 > 1 and γ2 − γ1 ≡ 1 (mod e) and

λ = (γ1, γ2−1, 1) ∈ S Λ
n . Define i to be the residue of the node at position (1,m, 1). Then (2.2.1)

holds.

Proof. We prove this Proposition by induction. As we claimed before that we can write γ2 =

k·e + t with 2 ≤ t ≤ e + 1 and we will apply induction on k. Proposition 2.2.4 implies that
for k = 0 the Proposition holds. Assume that for k ≤ k′ the Proposition holds. For k = k′, we
consider two different cases, which are i = e − 2, i = e − 1 and i , e − 2, e − 1. Recall that i is
the residue of the node at (1,m, 1) or (2,m + 1, 1).

Case 2.2.8a: i , e − 2, e − 1.

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

(1.1.10)
=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

by Lemma 2.2.5
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=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

(1.1.11)
(1.1.17)

=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

(1.1.10)
=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

.

Then by induction and Lemma 2.1.14, we have

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

=γ

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

= 0,

which implies that

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

∈ R>γ
n .

Hence by induction and Lemma 2.1.14

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

=γ

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸                               ︷︷                               ︸
e

0 1 i − 1 i e − 1 i − 1 i i + 1 e − 2 i − 1 i

=γ eγyγ.
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Case 2.2.8b: i = e − 2.

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

by Lemma 2.2.5

=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

(1.1.10)
(1.1.11)

= −

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

(2.2.9)

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

.

By induction and Lemma 2.1.14, the second and the third terms of (2.2.9) are both in R>γ
n .

Now for the last term.

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

(1.1.10)
=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

.(2.2.10)
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Substitute (2.2.10) to (2.2.9), let n = γ1 + γ2, we have

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

= (yn +

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

)·

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

(2.2.11)

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

,

where by Lemma 2.2.5

yn +

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2
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=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

(2.2.12)

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

.

Then by λ ∈ S Λ
n and Lemma 2.1.14, for the first term of (2.2.11),

(yn +

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

)·

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

by induction

=γ (yn +

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

)·

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

by (2.2.12)

=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

by Lemma 2.1.14

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

∈ R>γ
n .(2.2.13)

For the second term of (2.2.11), by induction, Lemma 2.2.5, λ ∈ S Λ
n and Lemma 2.1.14,

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

(1.1.11)
=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

by induction

=γ

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

(1.1.10)
(1.1.11)

= −

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

by Lemma 2.2.5
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=

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

+

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

−

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

by Lemma 2.1.14

=γ

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

= eγyγ.(2.2.14)

Substitute the results of (2.2.13) and (2.2.14) to (2.2.11), we have

︸                       ︷︷                       ︸
γ1

︸               ︷︷               ︸
γ2−e

︸               ︷︷               ︸
e

0 1 e − 3e − 2e − 1 e − 3e − 2e − 1 e − 3e − 2

=γ eγyγ.

Case 2.2.8c: i = e − 1. The method to prove this is the same as for Case 2.2.8a so it is left
as an exercise. Then by induction, this completes the proof. �

Finally, we can use (2.2.1) to prove our main result of this section.

2.2.15. Proposition. Suppose m is a positive integer, λ = (m,m, 1) ∈ S Λ
n and γ = (γ1, γ2) =

(m,m + 1). Recall λ− = (m,m). Write iλ− = (i1, i2, . . . , in−1). If k = in−1 + 1 ∈ I, we have

eγyγ = e(iλ− ∨ k)yλ−y
bλ−k
n ∈ R>λ

n .

Proof. Without loss of generally we assume Λ = Λ0. When m = 1, then γ = (1, 2) and

eγyγ =

0 e − 1 0

(1.1.12)
(1.1.17)

= −

0 e − 1 0

−

0 e − 1 0

∈ NΛ0
3 ⊆ R>λ

n .
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When m > 1, write i(γ1) = (i1, i2, . . . , im). Set σ = (γ1 − 1, γ2) = (m − 1,m). Then by
Proposition 2.2.8, we have

eγyγ =

0 1 im − 1 im e − 1 0 im − 1 im

=γ



0 1 im − 1 im e − 1 0 im − 1 im

, if im , e − 1,

0 1 e − 2e − 1e − 1 0 e − 2e − 1

, if im = e − 1.

In both cases, the parts bounded by square are both eσyσ. As |σ| = n − 2 and λ ∈ S Λ
n , by

induction, eσyσ ∈ R>σ
n . By the definition of σ and Lemma 1.4.4, it forces that eσyσ ∈ R>λ|n−2

n .
Then by Lemma 2.1.14, we have eγyγ ∈ R>λ

n . �

2.3. Final part of y-problem

In the last section we have proved that if λ = (m,m, 1) ∈ S Λ
n , then

e(iλ− ∨ k)yλ−y
bλ−k
n ∈ R>λ

n

with k = in + 1. In this section we will gradually remove the restrictions on λ and k. First we
are going to introduce a useful homomorphism and use it to prove a few more properties of
Rn and RΛ

n . After that we are going to show that if λ ∈ PΛ
I , then we can extend λ to a ` + 1

multipartition by adding an ∅ at the end and thus the new multipartition is in PΛ+Λi
I for any

i ∈ I. Analogous results are also true for PΛ
y and PΛ

ψ . These will allow us to extend the result
to an arbitrary multipartition λ.

For any j ∈ Im, we can define a linear map θ̂j : Rn−→RΛ
n+m sending e(i) to e(j∨ i), yr to yr+m

and ψr to ψr+m. This map θ̂j works as embedding from Rn to Rn+m followed by the projection
onto RΛ

n+m.

2.3.1. Lemma. For j ∈ Im, the map θ̂j is a homomorphism.

Proof. The map is defined to be linear. Hence we only have to check the relations. Since the
relations of Rn and RΛ

n+m from Definition 1.1.1 are independent of the value of r, we can see
that θ̂j is a homomorphism. �

It will be necessary to cut a multicomposition λ into one multicomposition µ and a compo-
sition γ for our later work. Note that in our work we will mainly set µ to be a multipartition and
γ to be a partition, but generally we don’t have such restriction.

2.3.2. Example Fix e = 4, Λ = 2Λ0 + Λ1, κΛ = (0, 1, 0). Suppose λ = (4, 2|22, 1|32, 2). So

[λ] =

( ∣∣∣∣∣∣
∣∣∣∣∣∣

)
.

We want to divide the last partition of λ after the first row. This is called the cut row of λ.
This gives us a multipartition µ with Young diagram

[µ] =

( ∣∣∣∣∣∣
∣∣∣∣∣∣

)
,
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and a partition γ with diagram

[γ] = .

We call µ and γ the cut part and the remaining part, respectively.
Moreover we want to preserve the following data. The value |µ| is called the cut of λ which

is 14 in this case. The residue of the top left node of γ as a subdiagram of λ(3) is called the cut
residue, which in this case is 3. ^

Now we give a formal definition.

2.3.3. Definition. Suppose λ = (λ(1), λ(2), . . . , λ(`)) ∈ C Λ
n with λ(`) = (λ(`)

1 , . . . , λ
(`)
k`

) and a is an
integer such that 0 ≤ a < k`. We call m a cut of λ and a the cut row associated to m where
m =

∑`−1
i=1 |λ

(i)| +
∑a

j=1 λ
(`)
j . Define Λ′ = Λs, where s = κ` + 1 − (a + 1) = κ` − a, the residue of

the node at position (a + 1, 1, `). We call s to be cut residue associated to m and Λ′ to be cut
weight associated to m. We then define µ = λ|m ∈ C Λ

m and γ = (λ(`)
a+1, λ

(`)
a+2, . . . , λ

(`)
k`

) ∈ C Λ′

n−m and
call µ and γ to be cut part and remaining part of λ associated to m, respectively.

Note we can either remove a portion of the last tableau, or cut out the whole partition.
We will start to work with θ̂i, which involving elements in both Rn and RΛ

n . Recall that ê(i),
ŷr, ψ̂s and ψ̂st are elements from Rn and e(i), yr, ψs and ψst are elements from RΛ

n .

2.3.4. Lemma. Suppose λ ∈ S Λ
n . Let m be a cut of λ with m < n − 1, ν = λ|m and Λ′ be the cut

weight associated to m. Consider NΛ′

n−m ⊆ Rn−m. If θ̂iν : Rn−m−→RΛ
n , then θ̂iν(N

Λ′

n−m)yν ⊆ R>λ
n .

Proof. Consider r ∈ NΛ′

n−m. Then by (1.4.7),

r =
∑

j=( j1, j2,..., jn−m)∈In−m

cjR′jê(j)ŷ(Λ′,α j1 )
1 Rj,

where Rj and R′j are some elements in Rn−m and cj ∈ Z. Therefore

θ̂iν(r)yν =
∑

j=( j1, j2,..., jn−m)∈In−m

cjθ̂iν(R
′
j)θ̂iν(ê(j)ŷ(Λ′,α j1 )

1 )θ̂iν(Rj)yν

=
∑

j=( j1, j2,..., jn−m)∈In−m

cjθ̂iν(R
′
j)e(iν ∨ j1 ∨ j2 j3 . . . jn−m)yνy

(Λ′,α j1 )
m+1 θ̂iν(Rj)

=
∑

j=( j1, j2,..., jn−m)∈In−m

cjθ̂iν(R
′
j)θ( j2, j3,..., jn−m)(e(iν ∨ j1)yνy

(Λ′,α j1 )
m+1 )θ̂iν(Rj).

Next we consider e(iν ∨ j1)yνy
(Λ′,α j1 )
m+1 ∈ RΛ

m+1.
Recall that we can write ν = (λ(1), λ(2), . . . , λ(`−1), ν(`)) and ν(`) = (ν(`)

1 , . . . , ν
(`)
l ). Let µ = λ|m+1.

As m < n − 1, |µ| = m + 1 < n = |λ|, and λ ∈ S Λ
n , we have µ ∈ PΛ

I . Write iν = (i1, i2, . . . , im).
Notice that (Λ′, α j1) = |A j1

tν |. We consider two cases.
Suppose j1 = im + 1 and ν+ is a multipartition. By Definition 2.1.2 we have |A j1

tν | = bνj1 − 1.

Then by Lemma 2.1.3 we have e(iν ∨ j1)yνy
(Λ′,α j1 )
m+1 = e(iν ∨ j1)yνy

bνj1
−1

m+1 = eν+yν+ . Because m is a
cut of λ and ν = λ|m, µ = λ|m+1, we must have ν+ > µ. Therefore eν+yν+ ∈ R>µ

n . So

e(iν ∨ j1)yνy
(Λ′,α j1 )
m+1 ∈ R>µ

n .

Otherwise, by Definition 2.1.2 we have |A j1
tν | = bνj1 . Then by µ ∈ PΛ

I and the definition of

PΛ
I , for any j1 ∈ I, we have e(iν ∨ j1)yνy

bνj1
m+1 ∈ R>µ

n because ν = µ−. Therefore

e(iν ∨ j1)yνy
(Λ′,α j1 )
m+1 = e(iν ∨ j1)yνy

bνj1
m+1 ∈ R>µ

n .
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Therefore for any j1 ∈ I we have e(iν ∨ j1)yνy
(Λ′,α j1 )
m+1 ∈ R>µ

n . Hence by Lemma 2.1.14 and
Lemma 2.1.12,

θ̂iν(R
′
j)θ( j2, j3,..., jn−m)(e(iν ∨ j1)yνy

(Λ′,α j1 )
m+1 )θ̂iν(Rj) ⊆ R>λ

n .

Therefore θ̂iν(r)yν =
∑

j=( j1, j2,..., jn−m)∈In−m cjθ̂iν(R
′
j)θ( j2, j3,..., jn−m)(e(iν ∨ j1)yνy

(Λ′,α j1 )
m+1 )θ̂iν(Rj) ⊆ R>λ

n .
�

2.3.5. Definition. Suppose λ is a multicomposition of m and µ is a composition. If we can find
a multicomposition γ such that λ and µ are cut part and remaining part of γ associated m, we
write γ = λ ∨ µ and say γ is the concatenation of λ and µ.

For example, suppose λ = (22, 1|33|2) and µ = (4, 2), then γ = λ ∨ µ = (22, 1|33|2, 4, 2).
Notice that in general γ is not a multipartition.

The following Corollaries follows by the definition of λ ∨ µ.

2.3.6. Corollary. Suppose λ is a multipartition of n and µ, γ are partitions of m. Then µ > γ if
and only if λ ∨ µ > λ ∨ γ.

2.3.7. Corollary. Suppose λ is a multipartition of n and µ is a partition of m. If γ = λ ∨ µ,
θ̂iλ(êµŷµ)yλ = eγyγ.

2.3.8. Corollary. Suppose λ and µ are multipartitions and γ is a partition such that λ = µ∨γ. If
u and v are standard γ-tableaux, we can find standard λ-tableaux u̇ and v̇ such that θ̂iµ(ψ̂uv)yµ =

ψu̇v̇.

Proof. Suppose λ ∈ PΛ
n and µ ∈ PΛ

m . By Definition 2.3.3, µ is the cut part of λ associated to
m. Let a be the cut row associated to m. Define u̇ to be the standard λ-tableau such that u̇|m = tµ,
and for any k > m, if u̇−1(k) = (r1, c1, `1) and u−1(k − m) = (r2, c2, 1), then

c1 = c2,
r1 = r2 + a.

Define v̇ similarly. It is trivial that θ̂iµ(ψ̂d(u)) = ψd(u̇) and θ̂iµ(ψ̂d(v)) = ψd(v̇). Therefore by
Corollary 2.3.7,

θ̂iµ(ψ̂uv) = θ̂iµ(ψ̂
∗
d(u))θ̂iµ(êγŷγ)θ̂iµ(ψ̂d(v)) = ψ∗d(u̇)eλyλψd(v̇) = ψu̇v̇.

�

2.3.9. Lemma. Suppose λ ∈ S Λ
n and µ ∈ C Λ

n with µ > λ. If µ− , λ−, then eµyµ ∈ R>λ
n .

Proof. As µ > λ and µ− , λ−, we can find m < n such that µ|m > λ|m and µ|m−1 = λ|m−1. Set
ν = µ|m. If ν ∈PΛ

m , we have eνyν = ψtνtν ∈ R>λ|m
n , so by Lemma 2.1.14 we have eµyµ ∈ R>λ

n .
If ν < PΛ

m , because λ ∈ S Λ
n and |ν| = m < n, we have ν ∈ PΛ

I . Notice that if we write
ν = (ν(1), . . . , ν(l), ∅, . . . , ∅) with ν(l) = (ν(l)

1 , . . . , ν
(l)
k−1, ν

(l)
k ), because ν|m−1 = µ|m−1 = λ|m−1 ∈ PΛ

m−1

and ν < PΛ
m , we must have ν(l)

k−1 + 1 = ν(l)
k . Therefore if we write iν = (i1, i2, . . . , im), we have

eνyν = e(iν− ∨ im)yν−y
bν−im
m ∈ R>ν

n ⊆ R>λ|m
n .

Then by Lemma 2.1.14, we have eµyµ ∈ R>λ
n . This completes the proof. �

Now we are ready to start proving the main result of this chapter. We start by proving two
more specialized Propositions. After that we will introduce a Proposition which removes these
restrictions and leads to the main Theorem of this chapter.
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2.3.10. Proposition. Suppose λ ∈ S Λ
n and λ− = (λ(1), . . . , λ(`)

− ) with λ(`)
− = (λ(`)

1 , . . . , λ
(`)
l−1, λ

(`)
l ) ,

∅. Write iλ− = (i1, i2, . . . , in−1). For k ∈ I, if k , in−1 + 1, or k = in−1 + 1 and λ(`)
l−1 > λ

(`)
l , we have

e(iλ− ∨ k)yλ−y
bλ−k
n ∈ R>λ

n .

Proof. For convenience set m = λ(`)
l and µ = λ|n−m−1. Therefore µ = (λ(1), . . . , λ(`−1), µ(`)) where

µ(`) =

(λ(`)
1 , . . . , λ

(`)
l−1), if l > 1,

∅, if l = 1.

Suppose i is the residue of node (l, 1, `) in λ and Λ′ = Λi. Define γ = (m + 1) ∈ PΛ′

m+1.
Notice that λ− = µ ∨ γ−. Because k , in−1 + 1 or k = in−1 + 1 and λ(`)

k−1 > λ(`)
k , we have

bγ−k = bλ−k . By Lemma 2.1.9, in RΛ′

m+1 we have e(iγ− ∨k)yγ−y
bγ−k
m+1 ∈ R>γ

n . This implies that in Rm+1,

ê(iγ− ∨ k)ŷγ− ŷ
bγ−k
m+1 ∈ NΛ′

m+1. Then let θ̂iµ : Rm+1−→RΛ
n , by Lemma 2.3.4,

e(iλ− ∨ k)yλ−y
bλ−k
n = e(iµ ∨ iγ− ∨ k)yλ−y

bγ−k
n = θ̂iµ(ê(iγ− ∨ k)ŷγ− ŷ

bγ−k
m+1)yµ ∈ θ̂iµ(N

Λ′

m+1)yµ ⊆ R>λ
n ,

which completes the proof. �

2.3.11. Proposition. Suppose λ = (λ(1), . . . , λ(`)) ∈ S Λ
n with λ(`) = (λ(`)

1 , . . . , λ
(`)
l−1, λ

(`)
l , 1) and

l ≥ 2, where λ(`)
l−1 = λ(`)

l . Write iλ− = (i1, i2, . . . , in−1). Suppose k ∈ I and k ≡ in−1 + 1 (mod e).
Then

e(iλ− ∨ k)yλ−y
bλ−k
n ∈ R>λ

n .

Proof. For convenience set m = λ(`)
l−1 = λ(`)

l , and µ = λ|n−2m−1. Therefore µ = (λ(1), . . . , λ(`−1), µ(`))
where

µ(`) =

(λ(`)
1 , . . . , λ

(`)
l−2), if l > 2,

∅, if l = 2.
Suppose i is the residue of node (l − 1, 1, `) in λ and Λ′ = Λi. Define γ = (m,m + 1) ∈

PΛ′

2m+1. Notice that λ− = µ ∨ γ−. Because k ≡ in−1 + 1 (mod e), we have bγ−k = bλ−k and

e(iγ− ∨ k)yγ−y
bγ−k
2m+1 = eγyγ. By Proposition 2.2.15, we have eγyγ ∈ R>γ

n . Therefore we can write
eγyγ =

∑
u,v∈Std(σ)

σ>γ
cuvψuv with σ = (σ1, σ2) where σ2 ≥ 0 and σ1 > γ1 = m. Therefore in R2m+1,

we have
êγŷγ =

∑
u,v∈Std(σ)

σ>γ

cuvψ̂uv + r,

with r ∈ NΛ′

2m+1 and cuv ∈ Z. Therefore

e(iλ− ∨ k)yλ−y
bλ−k
n = e(iµ ∨ iγ− ∨ k)yλ−y

bγ−k
n = θ̂iµ(ê(iγ− ∨ k)ŷγ− ŷ

bγ−k
2m+1)yµ = θ̂iµ(êγŷγ)yµ

=
∑

u,v∈Std(σ)
σ>γ

cuvθ̂iµ(ψ̂uv)yµ + θ̂iµ(r).(2.3.12)

For the first term of (2.3.12), define α = µ∨σ ∈ C Λ
n . Because σ > γ, by Corollary 2.3.6 we

have α = µ ∨ σ > µ ∨ γ > λ. Therefore

θ̂iµ(ψ̂uv)yµ = θ̂iµ(ψ̂
∗
d(u))θ̂iµ(êσŷσ)yµθ̂iµ(ψ̂d(v)) = θ̂iµ(ψ̂

∗
d(u))eµ∨σyµ∨σθ̂iµ(ψ̂d(v)) = θ̂iµ(ψ̂

∗
d(u))eαyαθ̂iµ(ψ̂d(v))

Because σ = (σ1, σ2) > γ = (m,m + 1), we must have σ1 > m. Therefore α− = µ ∨ σ− ,
µ ∨ γ− = λ−. Then by Lemma 2.3.9, eαyα ∈ R>λ

n . By Lemma 2.1.12, we have θ̂iµ(ψ̂uv)yµ =

θ̂iµ(ψ̂
∗
d(u))eαyαθ̂iµ(ψ̂d(v)) ∈ R>λ

n which yields
∑

u,v∈Std(σ)
σ>γ

cuvθ̂iµ(ψ̂uv)yµ ∈ R>λ
n .
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For the second term of (2.3.12), by Lemma 2.3.4, we have θ̂iµ(r) ∈ R>λ
n . Therefore

e(iλ− ∨ k)yλ−y
bλ−k
n ∈ R>λ

n .

�

Suppose λ ∈ S Λ
n . If λ− = (λ(1), λ(2), . . . , λ(`−1), λ(`)

− ) with λ(`)
− , ∅ by Proposition 2.3.10

and Proposition 2.3.11 we have λ ∈ PΛ
I . In the rest of the section we are going to prove the

result is still true if λ(`)
− = ∅.

Suppose µ = (µ(1), . . . , µ(`)) ∈PΛ
n and κΛ = (κ1, . . . , κ`), if µ(`) = ∅, we define Λ̄ = Λ − Λκ` ,

κΛ̄ = (κ1, . . . , κ`−1) and µ̄ = (µ(1), . . . , µ(`−1)) ∈ P Λ̄
n . Suppose u, v are two standard µ-tableaux,

define ū and v̄ to be standard µ̄-tableaux obtained by removing the ∅ at the end of u and v
respectively. Write k = κ` for convenience. If i = (i1, . . . , in) ∈ In, define

yi,k = y
δi1 ,k

1 y
δi2 ,k

2 . . . yδin ,k
n .

2.3.13. Lemma. Suppose the notations are defined as above and iv is the residue sequence of
v, then

ψuv = ψūv̄yiν,k,

where ψuv is an element in RΛ
n and ψūv̄ is an element in RΛ̄

n .

Proof. Without loss of generality, assume u = tµ. By the definition of µ and µ̄, writing iµ =

(i1, i2, . . . , in), we have yµ = yµ̄y
δi1 ,k

1 y
δi2 ,k

2 . . . yδin ,k
n = yµ̄yiµ,k.

Now for any residue sequence i = (i1, i2, . . . , in) ∈ In and any r, If ir , ir+1

e(i)yδi1 ,k

1 y
δi2 ,k

2 . . . yδin ,k
n ψr = (e(i)yδir ,k

r y
δir+1 ,k

r+1 ψr)y
δi1 ,k

1 . . . y
δir−1 ,k

r−1 y
δir+1 ,k

r+2 . . . yδin ,k
n

= e(i)ψry
δir+1 ,k
r yδir ,k

r+1y
δi1 ,k

1 . . . y
δir−1 ,k

r−1 y
δir+1 ,k

r+2 . . . yδin ,k
n

= e(i)ψry
δsr (i1),k

1 . . . yδsr (in),k
n = e(i)ψryi·sr ,k.

If ir = ir+1, then by relation (1.1.13), as δir ,k = δir+1,k, we have the same result.
Hence

ψtµv = eµyµψd(v) = e(iµ)yµ̄yiµ,kψd(v)

= e(iµ)yµ̄ψd(v)yiµ·d(v),k = eµyµ̄ψd(v)yiv,k.

As eµ = eµ̄ and ψd(v) = ψd(v̄), this completes the proof. �

2.3.14. Proposition. Suppose µ, κΛ, µ̄, and κΛ̄ are defined as above. Then µ̄ ∈P Λ̄
I ∩P Λ̄

y ∩P Λ̄
ψ

implies µ ∈PΛ
I ∩PΛ

y ∩PΛ
ψ .

Proof. We are only going to prove that µ̄ ∈ P Λ̄
I implies µ ∈ PΛ

I . The other two cases are
similar.

Suppose µ̄ ∈P Λ̄
I . Then for any s ∈ I, by the definition of P Λ̄

I ,

e(iµ̄− ∨ s)yµ̄−y
bµ̄−s
n =

∑
ū,v̄∈Std(>µ̄)

cūv̄ψūv̄,

where iv̄ = iµ̄− ∨ s = iµ− ∨ s and cūv̄ ∈ Z.
Also we have e(iµ̄− ∨ s)yµ̄−y

bµ̄−s
n = θs(ψtµ̄− tµ̄− )ybµ̄−s

n . Therefore we have

θs(ψtµ̄− tµ̄− )ybµ̄−s
n =

∑
ū,v̄∈Std(>µ̄)

cūv̄ψūv̄.

Notice that tµ̄− = tµ− . Recall k = κ`, the last term of the multicharge κΛ. We consider two
cases, s , k and s = k in the rest of the proof.



2.3. Final part of y-problem 37

If s , k, then bµ−s = bµ̄−s . Hence by Lemma 2.3.13

e(iµ− ∨ s)yµ−y
bµ−s
n = θs(ψtµ− tµ− )ybµ−s

n

= θs(ψt̄µ− t̄µ−yiµ− ,k)y
bµ̄−s
n

= θs(ψtµ̄− tµ̄− )ybµ̄−s
n yiµ− ,k

=
∑

ū,v̄∈Std(>µ̄)

cūv̄ψūv̄yiµ− ,k,

and as s , k, δs,k = 0. Hence yiµ− ,k = yiµ−∨s,k = yiv̄,k = yiv,k. By Lemma 2.3.13,

e(iµ− ∨ s)yµ−y
bµ−s
n =

∑
ū,v̄∈Std(>µ̄)

cūv̄ψūv̄yiv,k =
∑

ū,v̄∈Std(>µ̄)

cūv̄ψuv ∈ R>λ
n ,

because ū, v̄ ∈ Std(> µ̄) implies u, v Std(> µ).

If s = k, then bµ−s = bµ̄−s + 1. Hence by Lemma 2.3.13

e(iµ− ∨ s)yµ−y
bµ−s
n = θs(ψtµ− tµ− )ybµ−s

n

= θs(ψt̄µ− t̄µ−yiµ− ,k)y
bµ̄−s
n yn

= θs(ψtµ̄− tµ̄− )ybµ̄−s
n yiµ− ,kyn

=
∑

ū,v̄∈Std(>µ̄)

cūv̄ψūv̄yiµ− ,kyn,

and as s = k, δs,k = 1. Hence yiµ− ,kyn = yiµ−∨s,k = yiv̄,k = yiv,k. By Lemma 2.3.13

e(iµ− ∨ s)yµ−y
bµ−s
n =

∑
ū,v̄∈Std(>µ̄)

cūv̄ψūv̄yiv,k =
∑

ū,v̄∈Std(>µ̄)

cūv̄ψuv ∈ R>λ
n .

These implies that µ ∈PI . �

Now we are ready to prove Theorem 2.1.8.

Proof of Theorem 2.1.8. Write µ = λ− = (λ(1), λ(2), . . . , λ(`−1), µ(`)). If µ(`) , ∅, by Proposi-
tion 2.3.10 and Proposition 2.3.11, we have λ ∈PΛ

I .
If µ(`) = ∅, write λ(`−1) = (λ(`−1)

1 , λ(`−1)
2 , . . . , λ(`−1)

k`−1
) and define γ = (λ(1), . . . , λ(`−2), γ(`−1), ∅) ∈

PΛ
n with γ(`−1) = (λ(`−1)

1 , λ(`−1)
2 , . . . , λ(`−1)

k`−1
, 1) and γ̄ = (λ(1), . . . , λ(`−2), γ(`−1)). As l(γ̄) < l(λ) = `,

by the definition of S Λ
n , γ̄ ∈ P Λ̄

I . Then by Proposition 2.3.14 we have γ ∈ PΛ
I . Since

γ− = µ = λ− and γ > λ, for any k ∈ I,

e(iλ− ∨ k)yλ−y
bλ−k
n = e(iγ− ∨ k)yγ−y

bγ−k
n ∈ R>γ

n ⊆ R>λ
n ,

which yields that λ ∈PI . This completes the proof.

The following Corollary is directly implied by Theorem 2.1.8. It will contribute to proving
the ψ-problem.

2.3.15. Corollary. Suppose λ ∈ S Λ
n and µ ∈ C Λ

n where µ > λ. Then we have eµyµ ∈ R>λ
n .

Proof. If µ− , λ−, using Lemma 2.3.9 we have eµyµ ∈ R>λ
n . Suppose then that µ− = λ−.

If µ ∈ PΛ
n , then eµyµ = ψtµtµ ∈ R>λ

n . Finally, suppose that µ < PΛ
n . If we write µ =

(µ(1), . . . , µ(l), ∅, . . . , ∅) with µ(l) = (µ(l)
1 , . . . , µ

(l)
k−1, µ

(l)
k ), we must have µ(l)

k−1 + 1 = µ(l)
k . If we
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write iµ = (i1, i2, . . . , in), we have eµyµ = e(iµ− ∨ in)yµ−y
bµ−in
n . By Theorem 2.1.8, as λ ∈ S Λ

n , we
have λ ∈PΛ

I . Since λ− = µ−,

eµyµ = e(iµ− ∨ in)yµ−y
bµ−in
n = e(iλ− ∨ in)yλ−y

bλ−in
n ∈ R>λ

n .

�



Chapter 3

Integral Basis Theorem II

In this chapter our main purpose is to prove that RΛ
n = RΛ

n by proving that ψstyr and ψstψr

are both in RΛ
n . We first define an integer mλ such that if t ∈ Std(λ) and l(d(t)) < mλ, we have

ψstyr ∈ RΛ
n and ψstψr ∈ RΛ

n . Our first step is to show that mλ > 0. Then we prove if l(d(t)) ≤ mλ,
we will have ψstyr ∈ RΛ

n and ψstψr ∈ RΛ
n as well. By induction we will show that for any

t ∈ Std(λ), l(d(t)) < mλ, which indicates that ψstyr ∈ RΛ
n and ψstψr ∈ RΛ

n for any s, t ∈ Std(λ).
Finally combining the results from the last chapter, we can prove that RΛ

n = RΛ
n .

3.1. Base case of induction

In this chapter we fix λ ∈ S Λ
n . First we will give a proper definition of mλ.

3.1.1. Definition. Define mλ to be the smallest nonnegative integer such that for any standard
λ-tableau t with l(d(t)) < mλ we have

ψstyr =
∑

(u,v)B(s,t)

cuvψuv,

ψstψr =

ψsw +
∑

(u,v)B(s,t) cuvψuv, if w = t·sr is standard and d(u)·sr is reduced,∑
(u,v)B(s,t) cuvψuv, if u·sr is not standard or d(u)·sr is not reduced.

for some cuv ∈ Z.

We will use induction to prove that for any t ∈ Std(λ), l(d(t)) < mλ in this chapter. In this
section we will prove that mλ > 0, which is the base case of the induction.

3.1.2. Lemma. Suppose λ ∈ S Λ
n . For any 1 ≤ r ≤ n, eλyλyr = ψtλtλyr ∈ R>λ

n .

Proof. If r < n, write µ = λ|r. As λ ∈ S Λ
n we have µ ∈ PΛ

y . Therefore eµyµyr ∈ R>µ
n . By

Lemma 2.1.14, we have eλyλyr ∈ R>λ
n .

If r = n, write iλ = (i1, i2, . . . , in). We can find a positive integer b such that eλyλ = e(iλ− ∨
in)yλ−y

b
n. By the definition of bλ−in

we have b < bλ−in
. If b + 1 < bλ−in

, by Lemma 2.1.3 we can find
ν ∈PΛ

n such that
eλyλyn = e(iλ− ∨ in)yλ−y

b+1
n = eνyν,

and it is trivial that ν > λ. Therefore eλyλyn ∈ R>λ
n . If we have b + 1 = bλ−in

, by Theorem 2.1.8
we have

eλyλyn = e(iλ− ∨ in)yλ−y
b+1
n = e(iλ− ∨ in)yλ−y

bλ−in
n ∈ R>λ

n ,

which completes the proof. �

3.1.3. Lemma. Suppose λ ∈ S Λ
n . For any 1 ≤ r < n, eλyλψr = ψtλtλψr ∈ R≥λn .

Proof. Suppose tλ·sr = t is standard, we have eλyλψr = ψtλt ∈ R≥λn . So we consider the case that
tλ·sr = t is not standard. If r < n − 1, as λ ∈ S Λ

n , we have µ = λ− ∈ PΛ
ψ . Because tµ·sr = t|n−1

which is not standard, eµyµψr ∈ R>µ
n . Then by Lemma 2.1.14, we have eλyλψr ∈ R>λ

n . If r = n−1
39
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and write λ = (λ(1), . . . , λ(l), ∅, . . . , ∅) with λ(l) = (λ(l)
1 , . . . , λ

(l)
k−1, λ

(l)
k ), we must have either λ(l)

k ≥ 2
or λ(l)

k−1 = λ(l)
k = 1. Then set µ = (λ(1), . . . , µ(l), ∅, . . . , ∅) with

µ(l) =


(λ(l)

1 , . . . , λ
(l)
k−1), if λ(l)

k ≥ 2 and k > 1,
(λ(l)

1 , . . . , λ
(l)
k−2), if λ(l)

k−1 = λ(l)
k = 1 and k > 2,

∅, otherwise.

Suppose i is the residue of node (k, 1, l) in λ or the residue of node (k − 1, 1, l) in λ, Λ′ = Λi,
m = λ(l)

k or m = 2 and γ = (m) ∈ PΛ′

m or γ = (1, 1) ∈ PΛ′

m if λ(l)
k ≥ 2 or λ(l)

k−1 = λ(l)
k = 1

respectively. Therefore λ = µ ∨ γ. Because λ ∈ S Λ
n , we have γ ∈ PΛ

ψ . Hence because tγ·sm−1

is not standard, we have eγyγψm−1 ∈ R>γ
n = NΛ′

m . Then by Lemma 2.3.4,

eλyλψr = e(iµ ∨ iγ)yλψr = θ̂iµ(eγyγψm−1)yµ ∈ R>λ
n ,

which completes the proof. �

3.1.4. Corollary. For λ ∈ S Λ
n , we have mλ > 0.

Proof. Combining the above two Lemmas, Lemma 1.4.4 and Proposition 1.4.9, the Corollary
follows. �

3.2. Completion of the y-problem

In this section we are going to prove that for any t ∈ Std(λ), if l(d(t)) ≤ mλ, then for any
1 ≤ r ≤ n − 1 and any s ∈ Std(λ), if t·sr is standard and d(t)·sr is reduced, ψstψr ∈ R≥λn and for
any 1 ≤ r ≤ n, ψstyr ∈ R≥λn .

First we introduce the following Lemma.

3.2.1. Lemma. Suppose m is a positive integer such that m ≤ mλ, then

eλyλψr1ψr2 . . . ψrm =λ

∑
v∈Std(λ)
l(d(v))≤m

ctλvψtλv.

Proof. We apply induction on m. Suppose m = 0 then there is nothing to prove. Assume for
any m′ < m the Lemma holds. Therefore eλyλψr1ψr2 . . . ψrm−1 =λ

∑
u∈Std(λ)

l(d(u))≤m−1
ctλuψtλu which yields

eλyλψr1ψr2 . . . ψrm−1ψrm =λ

∑
u∈Std(λ)

l(d(u))≤m−1

ctλuψtλuψrm .

For u ∈ Std(λ) and l(d(u)) ≤ m − 1 < mλ, if u·sr is standard and sd(v)·srm is reduced, by the
definition of mλ,

ψtλuψrm = ψtλ,u·sr +
∑

(x,y)B(tλ,u)

cxyψxy =λ ψtλ,u·sr +
∑
vBu

ctλvψtλv,

where l(d(u·sr)) = 1 + l(d(u)) ≤ m and l(d(v)) < l(d(u)) < m as v B u. Hence

ψtλuψrm =λ

∑
v∈Std(λ)
l(d(v))≤m

cvψtλv.

If u·sr is not standard or sd(v)·srm is not reduced, we have

ψtλuψrm =
∑

(x,y)B(tλ,u)

cxyψxy =λ

∑
vBu

ctλvψtλv,
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where l(d(v)) < l(d(u)) ≤ m − 1 < m as v B u. Hence

ψtλuψrm =λ

∑
v∈Std(λ)
l(d(v))≤m

ctλvψtλv,

which completes the proof. �

Now we can start to prove that ψstψr ∈ R≥λn when t·sr is standard and d(t)·sr is reduced.

3.2.2. Lemma. Suppose t is a standard λ-tableau with d(t) = sr1 sr2 . . . srl where l ≤ mλ, and
d′(t) = st1 st2 . . . stl is another reduced decomposition of d(t), then

eλyλψd(t) − eλyλψd′(t) =
∑

(u,v)B(tλt)

cuvψuv.

Proof. By [5, Proposition 2.5], we have

yλeλψd(t) − yλeλψd′(t) =
∑

u<d(t)

cu, f yλeλ f (y)ψu,

where f (y) is a polynomial in yr’s and u is a word in Sn. If f (y) , 1, by Lemma 3.1.2 we have
eλyλ f (y) ∈ R>λ

n . Hence yλeλ f (y)ψu ∈ R>λ
n . If f (y) = 1, as u < d(t) then l(u) < l ≤ mλ, by

Lemma 3.2.1 we have eλyλψu ∈ R≥λn . Henceforth

yλeλψw − yλeλψw′ ∈ R≥λn .

Then by Proposition 1.4.9 and [9, Lemma 5.7], we complete the proof. �

The following Corollary is straightforward by Lemma 3.2.2 which explains the action of ψr

to ψst from right when t·sr is standard and d(t)·sr is reduced.

3.2.3. Corollary. Suppose t is a standard λ-tableau with l(d(t)) ≤ mλ, if w = t·sr is standard
and d(t)·sr is reduced,

ψstψr = ψsw +
∑

(u,v)B(s,t)

cuvψuv.

Now we start to prove that ψstyr ∈ R≥λn .

3.2.4. Lemma. Suppose t is a standard λ-tableau with l(d(t)) < mλ. For any 1 ≤ k ≤ n,
1 ≤ r ≤ n − 1 and any standard λ-tableau s, we have

ψstykψr ∈ R≥λn .

Proof. As l(d(t)) < mλ, we have

ψstyk =
∑

(u,v)B(s,t)

cuvψuv =
∑
vBt

csvψsv +
∑

u,v∈Std(>λ)

cuvψuv.

For Shape(v) = λ, since v B t, l(d(v)) < l(d(t)) < mλ. Then we have ψsvψr ∈ R≥λn .
For u, v ∈ Std(> λ), ψuv ∈ R>λ

n . As λ ∈ S Λ
n , R>λ

n is an ideal by Lemma 2.1.12. Hence
ψuvψrl ∈ R>λ

n and this completes the proof. �

3.2.5. Proposition. Suppose t is a standard λ-tableau with l(d(t)) ≤ mλ, for any 1 ≤ r ≤ n and
any standard λ-tableau s, we have

ψstyr =
∑

(u,v)B(s,t)

cuvψuv.
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Proof. Write d(t) = sr1 sr2 . . . srl−1 srl and w = t·srl = sr1 sr2 . . . srl−1 . We prove this Proposition by
considering different values of r.

If r < {rl, rl + 1}, then ψrl and yr commute. Hence

ψstyr = ψ∗d(s)eλyλψd(t)yr = ψ∗d(s)eλyλψd(w)yrψrl = ψswyrψrl .

As l(d(w)) = l(d(t)) − 1 < mλ, by Lemma 3.2.4 we have ψstyr ∈ R≥λn .

If r = rl, let j be a sequence such that e(iλ)ψd(t) = ψd(w)e(j)ψrl . We separate this case further
into jrl , jrl+1 and jrl = jrl+1. First suppose jrl , jrl+1, then

ψstyr = ψ∗d(s)eλyλψd(t)yr = ψ∗d(s)eλyλψd(w)yr+1ψrl = ψswyr+1ψrl .

Hence as l(d(w)) < mλ, by Lemma 3.2.4 we have ψstyr ∈ R≥λn when jrl , jrl+1. Now suppose
jrl = jrl+1, we have

ψstyr = ψ∗d(s)eλyλψd(t)yr = ψ∗d(s)eλyλψd(w) + ψ∗d(s)eλyλψd(w)yr+1ψrl = ψsw + ψswyr+1ψrl .

As l(d(w)) < mλ, by Lemma 3.2.4 we have ψswyr+1ψrl ∈ R≥λn . As ψsw ∈ R≥λn as well, we have
ψstyr ∈ R≥λn . So for r = rl, we have ψstyr ∈ R≥λn .

If r = rl + 1, the method is the same as r = rl.
Therefore in all the cases, we have ψstyr ∈ R≥λn . So

ψstyr =
∑

u,v∈Std(≥λ)

cuvψuv,

and by Proposition 1.4.9 we complete the proof. �

3.3. Properties of mλ

In the rest of this chapter we will prove that if t ∈ Std(λ) and l(d(t)) ≤ mλ, then for any
1 ≤ r ≤ n − 1 and any s ∈ Std(λ), we have ψstψr ∈ R≥λn . In this section we will give some
properties for mλ which will be used in proving the above argument.

3.3.1. Lemma. Suppose λ ∈ S Λ
n . For any permutation w ∈ Sn with reduced expression w =

sr1 sr2 . . . srm−1 srm and r = min{r1, r2, . . . , rm}, if we write

eλyλψw = eλyλψr1ψr2 . . . ψrm =
∑

u,v∈Std(≥λ)

cuvψuv,

then cuv , 0 implies v|k D tλ|k for any k < r.

Proof. We prove the Lemma by induction. If m = 1, then r1 = r.

eλyλψr =

ψtλv, if v = tλ·sr is standard,∑
(u,v)B(tλ,tλ) cuvψuv, otherwise.

If v = tλ·sr is standard, then by the definition of v, v|k = tλ|k = tλ|k for k < r. If it is the other
case, as v B tλ, then v|k D tλ|k = tλ|k .

Assume for any m′ < m the Corollary holds. Then

eλyλψr1ψr2 . . . ψrm−1 =
∑

u1,v1∈Std(≥λ)

cu1v1ψu1v1 ,
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where v1|k D tλ|k for k < r. Then

eλyλψr1ψr2 . . . ψrm−1ψrm =
∑

u1,v1∈Std(≥λ)

cu1v1ψu1v1ψrm .

Since

ψu1v1ψrm =

ψu1v +
∑

(u,v2)B(u1,v1) cuv2ψuv2 , if v = v1·srm is standard and d(v1)·srm is reduced,∑
(u,v)B(u1,v1) cuvψuv, otherwise.

If v = v1·srm is standard and d(v1)·srm is reduced, recall v1|k D tλ|k for k < r, as v = v1·srm ,
v|k = v1|k D tλ|k for k < r ≤ rm. For v2 B v1, we have v2|k B v1|k D tλ|k for k < r.

If it is of the other case, as v B v1, v|k B v1|k D tλ|k . Therefore

eλyλψw = eλyλψr1ψr2 . . . ψrm =
∑

u,v∈Std(≥λ)

cuvψuv,

and cuv , 0 implies v|k D tλ|k for any k < r. This completes the proof. �

3.3.2. Lemma. Suppose λ ∈ S Λ
n ∩ (PΛ

I ∩PΛ
y ∩PΛ

ψ ). Then for any 1 ≤ r1, r2, . . . , rm ≤ n − 1

eλyλψr1ψr2 . . . ψrm =
∑

v∈Std(λ)

ctλvψtλv +
∑

u,v∈Std(>λ)
uBtλ

cuvψuv.

Proof. When m = 1, we have

eλyλψr1 =

ψtλv, if v = tλ·sr1 is standard,∑
(u,v)B(tλ,tλ) cuvψuv =

∑
u,v∈Std(>λ)

uBtλ
cuvψuv, if v = tλ·sr1 is not standard.

which follows the Lemma.

Suppose for m′ < m the Lemma holds. Then by induction

(3.3.3) eλyλψr1 . . . ψrm−1ψrm =
∑

v1∈Std(λ)

ctλv1ψtλv1ψrm +
∑

u1,v1∈Std(>λ)
u1Btλ

cu1v1ψu1v1ψrm .

For v1 ∈ Std(λ), as λ ∈PΛ
ψ ,

ψtλv1ψrm =


ψtλv2 +

∑
(u2,v2)B(tλ,v1) cu2v2ψu2v2 , if v2 = v1·srm is standard

and d(v2) = d(v1)·srm is reduced,∑
(u2,v2)B(tλ,v1) cu2v2ψu2v2 , if v2 = v1·srm is not standard

or d(v2) = d(v1)·srm is not reduced.

where in both cases, we can write

(3.3.4) ψtλv1ψrm =
∑

v2∈Std(λ)

ctλv2ψtλv +
∑

u2,v2∈Std(>λ)
u2Btλ

cu2v2ψu2v2 .

For u1, u2 ∈ Std(> λ),

ψu1v1ψrm =


ψu1v2 +

∑
(u2,v2)B(u1,v1) cu2v2ψu2v2 , if v2 = v1·srm is standard

and d(v2) = d(v1)·srm is reduced,∑
(u2,v2)B(u1,v1) cu2v2ψu2v2 , if v2 = v1·srm is not standard

or d(v2) = d(v1)·srm is not reduced.
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where since u1 B tλ, we can always write

(3.3.5) ψu1v1ψrm =
∑

u2,v2∈Std(>λ)
u2Btλ

cu2v2ψu2v2 .

Therefore, substitute (3.3.4) and (3.3.5) back to (3.3.3), we have

eλyλψr1ψr2 . . . ψrm =
∑

v∈Std(λ)

ctλvψtλv +
∑

u,v∈Std(>λ)
uBtλ

cuvψuv,

which completes the proof. �

3.3.6. Lemma. Suppose λ ∈ S Λ
n and r1, r2, . . . , rm are positive integers such that r1, . . . , rm <

n − 1. Then
eλyλψr1ψr2 . . . ψrm ∈ R≥λn .

Proof. Define µ = λ|n−1. As λ ∈ S Λ
n , µ ∈ S Λ

n−1 ∩ (PΛ
I ∩PΛ

y ∩PΛ
ψ ). Define i ∈ I such that

iλ = iµ ∨ i. As r1, r2, . . . , rm < n − 1, we have

eλyλψr1ψr2 . . . ψrm = θi(eµyµψr1ψr2 . . . ψrm),

where
eµyµψr1ψr2 . . . ψrm =

∑
v̇∈Std(µ)

ctµv̇ψtµv̇ +
∑

u̇,v̇∈Std(>µ)

cu̇v̇ψu̇v̇.

As
∑

u̇,v̇∈Std(>µ) cu̇v̇ψu̇v̇ ∈ R>µ
n = R>λ|n−1

n , by Lemma 2.1.14, θi(
∑

u̇,v̇∈Std(>µ) cu̇v̇ψu̇v̇) ∈ R>λ
n .

For v̇ ∈ Std(µ) = Std(λ|n−1) and iµ ∨ i = iλ, define v to be the standard λ-tableau with
v|n−1 = v̇. Hence θi(ψtµv̇) = ψtλv. Therefore

θi(
∑

v̇∈Std(µ)

ctµv̇ψtµv̇) =
∑

v∈Std(λ)

ctµv̇ψtλv ∈ R≥λn .

So
eµyµψr1ψr2 . . . ψrm = θi(

∑
v̇∈Std(µ)

ctµv̇ψtµv̇) + θi(
∑

u̇,v̇∈Std(>µ)

cu̇v̇ψu̇v̇) ∈ R≥λn .

�

3.4. Garnir tableaux

In the following sections we will prove that ψstψr ∈ R≥λn for l(d(t)) ≤ mλ. Generally, if t·sr is
standard and d(t)·sr is reduced or l(d(t))·sr is not reduced, it is comparatively easy to prove that
ψstψr ∈ R≥λn . Our main difficulty is to prove that when t·sr is not standard then ψstψr ∈ R≥λn . In
order to prove this we consider different types of t. Among these cases the hardest part is that
when t is a special kind of tableaux which is called the Garnir tableau and t·sr is not standard.
In this section we will prove that in such case ψstψr ∈ R≥λn .

The method of proving the argument in this section is first assuming that Shape(t) is a
partition of two rows, and using the similar argument we used in the last chapter to extend the
result to general multipartitions. First we give a detailed definition of garnir tableaux.

We introduce a special kind of tableaux, the Garnir tableaux, which was first introduced by
Murphy [24]. Let (a, b,m) be a node of λ such that (a+1, b,m) is also a node of λ. The (a, b,m)-
Garnir belt of λ consists of the nodes (a, c,m) for b ≤ c ≤ λ(m)

a and the nodes (a + 1, g,m) for
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1 ≤ g ≤ b. For example here is a picture of the (2, 3, 2)-Garnir belt for λ = (3, 1|7, 6, 5, 2).

× × × ×

× × ×

The (a, b,m)-Garnir tableau of shape λ is the unique maximal standard λ-tableau with
respect to the Bruhat order (B) among the standard λ-tableaux which agree with tλ outside
the (a, b,m)-Garnir belt. For example the following is the (2, 3, 2)-Garnir tableau for λ =

(3, 1|7, 6, 5, 2). (
1 2 3
4

∣∣∣∣∣∣ 5 6 7 8 9 10 11
12 13 16 18 19 20
14 15 17 21 22
23 24

)

Suppose λ = (λ(1), . . . , λ(`)) and λ(`) = (λ(`)
1 , . . . , λ

(`)
k ). Let (a, b,m) = (k − 1, λ(`)

k , `) and t be
the (a, b,m)-Garnir tableau. Let the entry in node (a, b,m) of t be r. Then t·sr is not standard.

3.4.1. Definition. Suppose λ ∈ PΛ
n with λ = (λ(1), . . . , λ(`)) and λ(`) = (λ(`)

1 , . . . , λ
(`)
k ). If k ≥ 2,

and t is the (k − 1, λ(`)
k , `)-Garnir tableau, then we call t the last Garnir tableau of shape λ, and

r = t(k − 1, λ(`)
k , `) the last Garnir entry of t.

For example (
1 2 3
4

∣∣∣∣∣∣ 5 6 7 8 9 10 11
12 13 16 18 19 20
14 15 17

)

is the last (2, 3, 2)-Garnir tableau, and(
1 2 3
4

∣∣∣∣∣∣ 5 6 7 8 9 10 11
12 13 16 18 19 20
14 15 17 21 22
23 24

)

is not the last one. Notice that t·sr is not standard.

Because we are going to play around with ψd(t) a lot, we then introduce more defailed nota-
tion for these elements in the next Lemma.

3.4.2. Lemma. Suppose λ = (λ(1), . . . , λ(`)). Let t be a (a, b,m)-Garnir tableau of shape λ and
λ(m) = (λ(m)

1 , . . . , λ(m)
k ). Suppose 

tλ(a, b,m) = l,
tλ(a, λ(m)

a ,m) = s,
tλ(a + 1, b,m) = t.

Then l ≤ s < t. Write t − s = c,

ψd(t) = ψsψs+2 . . . ψt−1·ψs−1ψs . . . ψt−2· . . . ·ψl+1ψl+2 . . . ψl+c·ψlψl+1 . . . ψl+c−2

where
l(ψsψs+1 . . . ψt−1) = l(ψs−1ψs . . . ψt−2) = . . . = l(ψl+1ψl+2 . . . ψl+c) = c

and
l(ψlψl+1 . . . ψl+c−2) = c − 1.
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Proof. The Lemma follows by direct calculation. �

3.4.3. Example Suppose λ = (3, 1|7, 6, 5, 2) and (a, b,m) = (2, 3, 2). Let t be the (2, 3, 2)-
Garnir tableau of shape λ. Then

t =

(
1 2 3
4

∣∣∣∣∣∣ 5 6 7 8 9 10 11
12 13 16 18 19 20
14 15 17 21 22
23 24

)
,

and

tλ =

(
1 2 3
4

∣∣∣∣∣∣ 5 6 7 8 9 10 11
12 13 14 15 16 17
18 19 20 21 22
23 24

)
.

Then
tλ(a, b,m) = tλ(2, 3, 2) = 14,
tλ(a, λ(m)

a ,m) = tλ(2, 6, 2) = 17,
tλ(a + 1, b,m) = tλ(3, 3, 2) = 20,

and c = t − s = 3. Therefore

ψd(t) = ψ17ψ18ψ19·ψ16ψ17ψ18·ψ15ψ16ψ17·ψ14ψ15

with
l(ψ17ψ18ψ19) = l(ψ16ψ17ψ18) = l(ψ15ψ16ψ17) = 3 = c

and
l(ψ14ψ15) = 2 = c − 1.

^

3.4.4. Remark. For a ≤ b − 1, we will write ψa,b = ψaψa+1ψa+2 . . . ψb−2ψb−1 and ψb,a = ψ∗a,b in
order to simplify our notations.

Our first step is to prove that when λ is a partition with two rows and t is a last Garnir tableau
of shape λ with r as its last Garnir entry, then ψstψr ∈ R≥λn for any s ∈ Std(λ). We set λ = (λ1, λ2)
and without loss of generality, set Λ = Λ0. Therefore λ ∈ PΛ

n with n = λ1 + λ2. Also we set
µ = (λ1, λ2 − 1, 1), λ̇ = (λ1 − 1, λ2) and µ̇ = (λ1 − 1, λ2 − 1, 1). Furthermore, let i = res(γ1),
j = res(γ2), where γ1 = (1, λ1, 1) and γ2 = (2, λ2, 1).

First we prove a few useful Lemmas.

3.4.5. Lemma. Suppose λ, λ̇, µ̇, i and j are defined as above, we have

eλyλψλ1ψλ1+1 . . . ψn−2ψn−1 =λ



ψλ1ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇yn

−ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇, if i = e − 1, j , e − 1,
ψλ1ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇yn

−ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇
−ψλ1 . . . ψn−2e(iλ̇ ∨ i)yλ̇, if i = j = e − 1,

ψλ1ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇
+ψλ1ψλ1+1 . . . ψn−2e(iµ̇ ∨ i)yµ̇, if i = j = e − 2,

ψλ1ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇, otherwise.
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Proof. In order to make the notations and the diagrams clearer we set e = 4. For the other
choices of e one can check that the method is the same because the proof doesn’t depend on the
value of e.

By using the diagrammatic notation we have

eλyλψλ1ψλ1+1 . . . ψn−2ψn−1 =

︸                                       ︷︷                                       ︸
λ1−1

︸                                             ︷︷                                             ︸
λ2−1

λ1︷                                             ︸︸                                             ︷ λ2︷                                                     ︸︸                                                     ︷
0 1 2 3 0 i − 1 i 3 0 1 2 3 0 j − 1 j

δi,3 δ j,2

.

This Lemma is equivalent to move all the dots from top to bottom. In order to do this we
have to consider several cases.

Case 3.4.5a: i , e − 2, e − 1.
We set e = 4 so in this case we have i , 2, 3. As i , 3, δi,3 = 0. Therefore there are no dots

on the strand labelled by i. And as i , 2, by relation 1.1.10, we have

eλyλψλ1ψλ1+1 . . . ψn−2ψn−1

=

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 i − 1 i 3 0 1 2 3 0 j − 1 j

δ j,2

=

0 1 2 3 0 i − 1 i 3 0 1 2 3 0 j − 1 j

δ j,2

= ψλ1ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇.

Case 3.4.5b: i = e − 1 and j , e − 1.
We set e = 4 so in this case we have i = 3 and j , 3. Then δi,3 = 1. Hence

eλyλψλ1ψλ1+1 . . . ψn−2ψn−1 =

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

(1.1.10)
= −

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 33 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

−

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 33 0 1 23 0 1 2 3 0 j − 1 j

δ j,2

−

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 33 0 1 2 3 0 1 23 0 j − 1 j

δ j,2

− . . . +

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2
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(1.1.17)
= −

0 1 2 3 0 2 33 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

+

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

+

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

+ . . . . . . . . . . . . by Lemma 2.1.14

+

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

=λ −

0 1 2 3 0 2 33 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

+

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

(1.1.10)
= −

0 1 2 3 0 2 33 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

+

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 j − 1 j

δ j,2

= −ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇ + ψλ1ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇yn.

Case 3.4.5c: i = j = e − 1.
We set e = 4 so in this case we have i = j = 3. Similarly as in Case 3.4.5b, we have

eλyλψλ1ψλ1+1 . . . ψn−2ψn−1

= −

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 33 0 1 2 3 0 1 2 3 0 2 3

−

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 2 3

−

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 2 3

+ . . . . . . . . . . . . by Lemma 2.1.14

−

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 2 3

+

λ1︷                                             ︸︸                                             ︷
0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 2 3
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=λ −

0 1 2 3 0 2 33 0 1 2 3 0 1 2 3 0 2 3

−

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 2 3

+

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 2 3

= −

0 1 2 3 0 2 33 0 1 2 3 0 1 2 3 0 2 3

−

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 2 3

+

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 2 3

= −ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇ − ψλ1 . . . ψn−2e(iλ̇ ∨ i)yλ̇ + ψλ1ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇yn.

Case 3.4.5d: i = e − 2 and j , e − 2.
We set e = 4 so in this case we have i = 2 and j , 2. Similarly as we set e = 4, we set

j = 3 in this case in order to make the diagram clearer. For the other j with j , 2 the method is
similar. By Lemma 2.1.14,

eλyλψλ1ψλ1+1 . . . ψn−2ψn−1

=

λ1︷                                       ︸︸                                       ︷
0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(1.1.10)
=

0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

+

0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

=λ

0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

= . . . . . . . . . . . .

=λ

0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
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(1.1.10)
=

0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

+

0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

=λ

0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

= ψλ1ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇.

Case 3.4.5e: i = j = e − 2.
We set e = 4 so in this case we have i = j = 2. Then by Lemma 2.1.14,

eλyλψλ1ψλ1+1 . . . ψn−2ψn−1

=

λ1︷                                       ︸︸                                       ︷
0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

(1.1.10)
=

0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

+

0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

=λ

0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

= . . . . . . . . . . . .

=λ

0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

(1.1.10)
=λ

0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

+

0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

=λ

0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

(1.1.10)
=

0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

+

0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1 2

= ψλ1ψλ1+1 . . . ψn−2ψn−1e(iλ̇ ∨ i)yλ̇ + ψλ1ψλ1+1 . . . ψn−2e(iµ̇ ∨ i)yµ̇,

which completes the proof. �
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3.4.6. Remark. If λ1 > λ2 and t is the last Garnir tableau of λ, by Lemma 3.4.2 we have

ψd(t)ψr = ψan,nψan−1,n−1 . . . ψar+2,r+2ψar+1,r+1.

Define w to be the last Garnir tableau of shape λ̇, we can see that ψd(w) = ψan−1,n−1 . . . ψar+2,r+2ψar+1,r+1.
Hence e(iλ̇ ∨ i)yλ̇ψd(w)ψr = θi(ψtλ̇wψr).

3.4.7. Lemma. Suppose t and ṫ are the last Garnir tableau of shape λ and λ̇ respectively with
last Garnir entry r. Set

ψ =


ψλ1ψλ1+1 . . . ψn−2ψn−1yn − ψλ1+1 . . . ψn−2ψn−1, if i = e − 1, j , e − 1.
ψλ1ψλ1+1 . . . ψn−2ψn−1yn − ψλ1+1 . . . ψn−2ψn−1 − ψλ1ψλ1+1 . . . λn−2, if i = j = e − 1.
ψλ1ψλ2 . . . ψn−2ψn−1, otherwise.

For any standard λ̇-tableau v̇, if d(t) ≤ mλ and v̇ B ṫ, thenψ·θi(ψtλ̇v̇) ∈ R≥µn , if i = j = e − 2,
ψ·θi(ψtλ̇v̇) ∈ R≥λn , otherwise.

Proof. If it is not the case that i = j = e − 2. By Lemma 3.4.5 we have

ψ·e(iλ̇ ∨ i)yλ̇ =λ e(iλ)yλψλ1ψλ1+1 . . . ψn−2ψn−1.

Then we have

ψ·θi(ψtλ̇v̇) = ψ·e(iλ̇ ∨ i)yλ̇ψd(v̇) =λ eλyλψλ1ψλ1+1 . . . ψn−2ψn−1ψd(v̇),

where as v̇ B ṫ, then d(v̇) < d(ṫ) and

l(ψλ1ψλ1+1 . . . ψn−2ψn−1ψd(v̇)) < l(ψλ1ψλ1+1 . . . ψn−2ψn−1) + l(d(ṫ)) = l(d(t)) ≤ mλ.

Then by Lemma 3.2.1 we have ψ·θi(ψtλ̇v̇) ∈ R≥λn .

For i = j = e − 2, set µ̇ = (λ1 − 1, λ2 − 1, 1),γ = λ|n−1 = (λ1, λ2 − 1) and γ̇ = (λ1 − 1, λ2 − 1).
Because yγ̇ = yµ̇. By Lemma 3.4.5,

ψ·θi(ψtλ̇v̇) = ψλ1,ne(iλ̇ ∨ i)yλ̇ψd(v̇) =λ eλyλψλ1,nψd(v̇) − ψλ1,n−1e(iµ̇ ∨ i)yµ̇ψd(v̇)

= eλyλψλ1,nψd(v̇) − θi(ψλ1,n−1e(iγ̇ ∨ i)yµ̇ψd(v̇))
= eλyλψλ1,nψd(v̇) − θi(ψλ1,n−1e(iγ̇ ∨ i)yγ̇ψd(v̇)).

Again by Lemma 3.4.5, ψλ1,n−1e(iγ̇ ∨ i)yγ̇ψd(v̇) =γ eγyγψλ1,n−1ψd(v̇). Since γ = λ|n−1, by
Lemma 2.1.14,

θi(ψλ1,n−1e(iγ̇ ∨ i)yγ̇ψd(v̇)) =λ θi(eγyγψλ1,n−1ψd(v̇)).
Therefore

ψ·θi(ψtλ̇v̇) =λ eλyλψλ1,nψd(v̇) − θi(eγyγψλ1,n−1ψd(v̇)).

As λ ∈ S Λ
n and |γ| = n − 1 < |λ|

(3.4.8) eγyγψλ1,n−1ψd(v̇) =
∑

y∈Shape(γ)

ctγyψtγy +
∑

x,y∈Std(>γ)

cxyψxy.

For the first term of the left hand side of (3.4.8), because γ = λ|n−1 and j = i = e − 2, we
have bγi = 2. By Lemma 2.1.3 and the definition of γ, θi(ψtγy) ∈ R≥µn . For the second term of
the left hand side of (3.4.8), as x, y ∈ Std(> γ) = Std(> λ|n−1), ψxy ∈ R>λ|n−1

n . By Lemma 2.1.14,
θi(ψxy) ∈ R>λ

n ⊆ R≥µn . Therefore,

θi(eγyγψλ1,n−1ψd(v̇)) ∈ R≥µn .
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Finally, as

l(ψλ1ψλ1+1 . . . ψn−2ψn−1ψd(v̇)) < l(ψλ1ψλ1+1 . . . ψn−2ψn−1) + l(d(ṫ)) = l(d(t)) ≤ mλ,

by Lemma 3.2.1 we have eλyλψλ1,nψd(v̇) ∈ R>λ
n ⊆ R≥µn . Hence ψ·θi(ψtλ̇v̇) ∈ R≥µn . This completes

the proof. �

3.4.9. Lemma. Suppose λ1 − λ2 ≡ e − 1 (mod e), i.e. i = j, and (λ1 − λ2 + 1)λ2 − 1 ≤ mλ. Let
u̇ and v̇ be standard λ|n−1-tableaux with u̇ B tλ̇. Assume i = j , e − 2. Then set

ψ =

ψλ1ψλ1+1 . . . ψn−2ψn−1yn − ψλ1+1 . . . ψn−2ψn−1 − ψλ1ψλ1+1 . . . ψn−2, if i = j = e − 1,
ψλ1ψλ2 . . . ψn−2ψn−1, if i = j , e − 1, e − 2.

and we have
ψ·θi(ψu̇v̇) ∈ R≥λn .

Proof. We assume that i = j , e − 2. First we need to introduce some properties of u̇. Because
u̇ is a standard λ|n−1-tableau and u̇ B tλ̇, the only possible choice of u̇ is the one such that
u̇|n−2 = t(λ1−1,λ2−1). Then define u and v to be the unique standard λ-tableau with u|n−1 = u̇
and v|n−1 = v̇, respectively. For example, when λ = (7, 4) and e = 3, then u̇ = 1 2 3 4 5 6 10

7 8 9

and u = 1 2 3 4 5 6 10
7 8 9 11

. From the definitions of u̇, v̇ and u, v we can see that d(v) = d(v̇) and
l(d(u)) = l(d(u̇)) = λ2 − 1. Also notice that if i = j , e − 2, then iλ = iλ|n−1 ∨ i and yλ|n−1 = yλ.

Now we consider different cases of i, j. Suppose i = j , e − 1, e − 2, then

ψ·θi(ψu̇v̇) = ψλ1ψλ2 . . . ψn−2ψn−1ψd(u̇)e(iλ|n−1 ∨ i)yλ|n−1ψd(v̇)

= ψλ1ψλ2 . . . ψn−2ψn−1ψd(u̇)eλyλψd(v̇).

Recall that e ≥ 3. As λ1 − λ2 ≡ e − 1 (mod e), we must have λ1 − λ2 ≥ e − 1 ≥ 2. Also
because of λ2 ≥ 1,

mλ ≥ (λ1 − λ2 + 1)λ2 − 1 ≥ 3λ2 − 1 ≥ 2λ2 > l(ψλ1,nψd(u̇)) = 2λ2 − 1.

Hence by Lemma 3.2.1

ψλ1ψλ2 . . . ψn−2ψn−1ψd(u̇)eλyλψd(v̇) = ψλ1ψλ2 . . . ψn−2ψn−1ψd(u̇)eλyλψd(v)

= ψλ1ψλ2 . . . ψn−2ψn−1ψd(u̇)ψtλv ∈ R≥λn .

Suppose i = j = e − 1, then

ψ·θi(ψu̇v̇)
= (ψλ1ψλ1+1 . . . ψn−2ψn−1yn − ψλ1+1 . . . ψn−2ψn−1 − ψλ1ψλ1+1 . . . λn−2)ψd(u̇)e(iλ|n−1 ∨ i)yλ|n−1ψd(v̇)

= ψλ1,nynψd(u̇)ψtλv − ψλ1+1,nψd(u̇)ψtλv − ψλ1,n−1ψd(u̇)ψtλv.

As ψd(u̇) doesn’t involve ψn−1, by Proposition 3.2.5 and Lemma 2.1.12,

ψλ1,nynψd(u̇)ψtλv = ψλ1,nψd(u̇)ynψtλv ∈ R>λ
n ,

and because l(ψλ1+1,nψd(u̇)) = l(ψλ1,n−1ψd(u̇)) = λ2 − 1 + λ2 − 1 = 2λ2 − 2 < mλ, by Lemma 3.2.1,
ψλ1+1,nψd(u̇)ψtλv and ψλ1,n−1ψd(u̇)ψtλv are both in R≥λn . Hence ψ·θi(ψu̇v̇) ∈ R≥λn . �

Now we are ready to prove that ψstψr ∈ R≥λn when Shape(t) has only two rows.
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3.4.10. Proposition. Suppose λ ∈ S Λ
n and t is the last Garnir tableau of shape λ with r to be

the last Garnir entry and l(d(t)) ≤ mλ, we have

ψtλtψr =
∑

(u,v)B(tλ,t)

cuvψuv.

Proof. By Lemma 3.4.2, as t is the last Garnir tableau of shape λ, we have

ψd(t)ψr = ψλ1,nψλ1−1,n−1 . . . ψλ2,r+1,

where l(ψλ1,n) = l(ψλ1−1,n−1) = . . . = l(ψλ2,r+1) = λ2. We prove the Proposition by induction on
λ1. Recall that we write λ̇ = (λ1 − 1, λ2), µ = (λ1, λ2 − 1, 1) and µ̇ = (λ1 − 1, λ2 − 1, 1).

When λ1 = 1, by definition of Garnir tableau, λ1 = λ2. Without loss of generality, we set
Λ = Λ0. In this case i = 0 and j = e − 1. Hence

ψtλtψr = ψtλtλψr = e(0, e − 1)ψ1 = ψ1e(e − 1, 0) = 0 ∈ R≥λn .

So, when λ1 = 1 the Proposition is true.

Assume for any partition of two rows with the length of its first row less than λ1 the Propo-
sition holds. By Lemma 3.4.5, we have

ψtλtψr = eλyλψd(t)ψr = eλyλψλ1,nψd(ṫ)ψr

=


ψλ1,ne(iλ̇ ∨ i)yλ̇ψd(ṫ)ψr + ψλ1,n−1e(iµ̇ ∨ i)yµ̇ψd(ṫ)ψr

= ψλ1,nθi(ψtλ̇ ṫψr) + ψλ1,n−1θi(eµ̇yµ̇ψd(ṫ)ψr), if i = j = e − 2,
ψ·θi(eλ̇yλ̇ψλ1−1,n−1 . . . ψλ2+1,r+2ψλ2,r+1) = ψ·θi(ψtλ̇ ṫψr), otherwise.

(3.4.11)

where ṫ is the last Garnir tableau with shape λ̇ = (λ1 − 1, λ2), and

ψ =


ψλ1ψλ1+1 . . . ψn−2ψn−1yn − ψλ1+1 . . . ψn−2ψn−1, if i = e − 1, j , e − 1,
ψλ1ψλ1+1 . . . ψn−2ψn−1yn − ψλ1+1 . . . ψn−2ψn−1 − ψλ1ψλ1+1 . . . ψn−2, if i = j = e − 1,
ψλ1ψλ2 . . . ψn−2ψn−1, otherwise.

Now we separate the question into different cases.
Case 3.4.10a: i , j. By (3.4.11) we have

ψtλtψr = ψ·θi(ψtλ̇ ṫψr).

By induction, ψtλ̇ ṫψr =
∑

v̇∈Std(λ̇)
v̇Bṫ

ctλ̇v̇ψtλ̇v̇ +
∑

u̇,v̇∈Std(>λ̇) cu̇v̇ψu̇v̇. Therefore

ψtλtψr =
∑

v̇∈Std(λ̇)
v̇Bṫ

ctλ̇v̇ψ·θi(ψtλ̇v̇) +
∑

u̇,v̇∈Std(>λ̇)

cu̇v̇ψ·θi(ψu̇v̇).

For u̇, v̇ ∈ Std(> λ̇), by Lemma 1.4.4, res(u̇) = res(tλ̇). Because i , j, we always have
Shape(u̇) > λ|n−1. Hence ψu̇v̇ ∈ R>λ|n−1

n . Therefore by Lemma 2.1.14 and Lemma 2.1.12,
ψ·θi(ψu̇v̇) ∈ R>λ

n . So
∑

u̇,v̇∈Std(>λ̇) cu̇v̇ψ·θi(ψu̇v̇) ∈ R>λ
n .

For v̇ ∈ Std(λ̇) with v̇Dṫ, by Lemma 3.4.7, ψ·θi(ψtλ̇v̇) ∈ R≥λn . Therefore
∑

v̇∈Std(λ̇)
v̇Bṫ

ctλ̇v̇ψ·θi(ψtλ̇v̇) ∈

R≥λn . These yield ψtλtψr ∈ R≥λn .

Case 3.4.10b: i = j , e − 2. By (3.4.11) we have

ψtλtψr = ψ·θi(ψtλ̇ ṫψr).
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By induction, ψtλ̇ ṫψr =
∑

v̇∈Std(λ̇)
v̇Bṫ

ctλ̇v̇ψtλ̇v̇ +
∑

u̇,v̇∈Std(λ|n−1)
(u̇,v̇)B(tλ̇,t)

cu̇v̇ψu̇v̇ +
∑

u̇,v̇∈Shape(>λ|n−1) cu̇v̇ψu̇v̇. There-

fore

ψtλtψr =
∑

v̇∈Std(λ̇)
v̇Bṫ

ctλ̇v̇ψ·θi(ψtλ̇v̇) +
∑

u̇,v̇∈Std(λ|n−1)
(u̇,v̇)B(tλ̇,t)

cu̇v̇ψ·θi(ψu̇v̇) +
∑

u̇,v̇∈Shape(>λ|n−1)

cu̇v̇ψ·θi(ψu̇v̇).

For u̇, v̇ ∈ Std(> λ|n−1), ψu̇v̇ ∈ R>λ|n−1
n . As λ ∈ S Λ

n , by Lemma 2.1.14 we have ψ·θi(ψu̇v̇) ∈
R>λ

n . Hence
∑

u̇,v̇∈Std(>λ|n−1) cu̇v̇ψ·θi(ψu̇v̇) ∈ R>λ
n .

For u̇, v̇ ∈ Std(λ|n−1) with u̇ B tλ̇, because mλ ≥ d(t) = (λ1 − λ2 + 1)λ2 − 1, by Lemma 3.4.9
we have ψ·θi(ψu̇v̇) ∈ R≥λn . So

∑
u̇,v̇∈Std(λ|n−1)

(u̇,v̇)B(tλ̇,t)
cu̇v̇ψ·θi(ψu̇v̇) ∈ R≥λn .

For v̇ ∈ Std(λ̇) with v̇B ṫ, by Lemma 3.4.7, ψ·θi(ψtλ̇v̇) ∈ R≥λn . So
∑

u̇,v̇∈Shape(>λ|n−1) cu̇v̇ψ·θi(ψu̇v̇) ∈
R≥λn .

Therefore we have ψtλtψr ∈ R≥λn .

Case 3.4.10c: i = j = e − 2. By (3.4.11) we have

(3.4.12) ψtλtψr = ψλ1,nθi(ψtλ̇ ṫψr) + ψλ1,n−1θi(eµ̇yµ̇ψd(ṫ)ψr).

For the first term of (3.4.12), by induction,

ψλ1,nθi(ψtλ̇ ṫψr) =
∑

v̇∈Std(λ̇)
v̇Bṫ

ctλ̇v̇ψλ1,nθi(ψtλ̇v̇) +
∑

u̇,v̇∈Std(λ|n−1)
(u̇,v̇)B(tλ̇,ṫ)

cu̇v̇ψλ1,nθi(ψu̇v̇)(3.4.13)

+
∑

u̇,v̇∈Std(>λ|n−1)

cu̇v̇ψλ1,nθi(ψu̇v̇).

For v̇ ∈ Std(λ̇) with v̇ B ṫ, by Lemma 3.4.7, we have ψλ1,nθi(ψtλ̇v̇) ∈ R≥µn . Therefore

(3.4.14)
∑

v̇∈Std(λ̇)
v̇Bṫ

ctλ̇v̇ψλ1,nθi(ψtλ̇v̇) ∈ R≥µn .

For u̇, v̇ ∈ Std(λ|n−1) with (u̇, v̇)B (tλ̇, ṫ), by Lemma 1.4.4, we have res(u̇) = iλ̇. So the choice
of u̇ is unique, where d(u̇) = ψλ1,n−1. Hence as iµ = iλ|n−1 ∨ i and yλ|n−1 = yµ
(3.4.15) ψλ1,nθi(ψu̇v̇) = ψλ1,nψn−1,λ1e(iλ|n−1 ∨ i)yλ|n−1ψd(v̇) = ψλ1,nψn−1,λ1eµyµψd(v̇).

We work with ψλ1,nψn−1,λ1eµyµ = ψλ1ψλ1+1 . . . ψn−2ψn−1ψn−2 . . . ψλ1+1ψλ1eµyµ first. We define
a partition σ = (λ1, λ2 − 2, 1). Then

ψλ1 . . . ψn−3ψn−2ψn−1ψn−2ψn−3 . . . ψλ1eµyµ
= ψλ1 . . . ψn−3ψn−1ψn−2ψn−1ψn−3 . . . ψλ1eµyµ − ψλ1 . . . ψn−3ψn−3 . . . ψλ1eµyµ
= ψn−1θi−1(ψλ1 . . . ψn−3ψn−2ψn−3 . . . ψλ1eσyσ)ψn−1 − ψλ1 . . . ψn−3ψn−3 . . . ψλ1eµyµ.(3.4.16)

Consider the lefthand term in (3.4.16). As λ ∈ S Λ
n and |σ| = n − 1 < |λ|, we have

ψλ1 . . . ψn−3ψn−2ψn−3 . . . ψλ1eσyσ =
∑

u∈Std(σ)

cutσψutσ +
∑

u,v∈Std(>σ)

cuvψuv,

where res(u) = iσ·sλ1 sλ1+1 . . . sn−3sn−2sn−3 . . . sλ1+1sλ1 = iσ by Lemma 1.4.4, and res(v) = iσ.
Since min{λ1, . . . , n− 2} = λ1, by Lemma 3.3.1, cutσ , 0 implies u|λ1−1 D tσ|λ1−1 . Then the unique
choice for u is u = tσ. Hence

ψλ1 . . . ψn−3ψn−2ψn−3 . . . ψλ1eσyσ = c·eσyσ +
∑

u,v∈Std(>σ)

cuvψuv.
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Further more if u is a standard tableau with Shape(u) > σ and res(u) = iσ, we must have
Shape(u) > λ|n−1. Hence by Lemma 2.1.14,

ψn−1θi−1(
∑

u,v∈Std(>σ)

cuvψuv)ψn−1 ∈ R>λ
n .

Therefore

ψn−1θi−1(ψλ1 . . . ψn−3ψn−2ψn−3 . . . ψλ1eσyσ)ψn−1 =λ c·ψn−1θi−1(eσyσ)ψn−1

= c·ψ2
n−1eµyµ = c·(eλyλ − eµyµyn−1).

By Proposition 3.2.5 we have eµyµyn−1 ∈ R>λ
n , we have

(3.4.17) ψn−1θi−1(ψλ1 . . . ψn−3ψn−2ψn−3 . . . ψλ1eσyσ)ψn−1 =λ c·eλyλ.

For the righthand term in (3.4.16), as λ ∈ S Λ
n , λ|n−1 ∈ S Λ

n−1 ∩ (PΛ
I ∩PΛ

y ∩PΛ
ψ ). By

Lemma 3.3.2,

ψλ1 . . . ψn−3ψn−3 . . . ψλ1eλ|n−1yλ|n−1 =λ|n−1

∑
u̇∈Std(λ|n−1)

cu̇tλ|n−1ψu̇tλ|n−1 .

Then by Lemma 2.1.14,

ψλ1 . . . ψn−3ψn−3 . . . ψλ1eµyµ = θi(ψλ1 . . . ψn−3ψn−3 . . . ψλ1eλ|n−1yλ|n−1)

=λ

∑
u̇∈Std(λ|n−1)

cu̇tλ|n−1θi(ψu̇tλ|n−1 )

=
∑

u∈Std(µ)

cu̇tλ|n−1ψutµ ,(3.4.18)

where u is the unique µ-tableau such that u|n−1 = u̇.
So substitute (3.4.17) and (3.4.18) to (3.4.16), we have

ψλ1,nψn−1,λ1eµyµ =λ

∑
u∈Std(µ)

cutµψutµ ± c·ψtλtλ .

As v̇ is a standard tableau of shape λ|n−1 = µ|n−1, we can define v1 and v2 to be a standard µ-
tableau and λ-tableau where v1|n−1 = v2|n−1 = v̇, respectively. Henceforth d(v1) = d(v2) = d(v̇)
and by (3.4.15),

ψλ1,nθi(ψu̇v̇) = ψλ1,nψn−1,λ1eµyµψd(v̇) =λ

∑
u∈Std(µ)

cutµψutµψd(v̇) ± c·ψtλtλψd(v̇)

=
∑

u∈Std(µ)

cutµψutµψd(v1) ± c·ψtλtλψd(v2)

=
∑

u∈Std(µ)

cutµψuv1 ± c·ψtλv2 ∈ R≥µn .

Therefore,

(3.4.19)
∑

u̇,v̇∈Std(λ|n−1)
(u̇,v̇)B(tλ̇,ṫ)

cu̇v̇ψλ1,nθi(ψu̇v̇) ∈ R≥µn .

Finally, suppose u̇, v̇ ∈ Shape(> λ|n−1), by Lemma 2.1.14, we have ψλ1,nθi(ψu̇v̇) ∈ R>λ
n .

Therefore

(3.4.20)
∑

u̇,v̇∈Std(>λ|n−1)

cu̇v̇ψλ1,nθi(ψu̇v̇) ∈ R>λ
n .
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Substitute (3.4.14), (3.4.19) and (3.4.20) to (3.4.13), we have

(3.4.21) ψλ1,nθi(ψtλ̇ ṫψr) ∈ R≥µn .

For the second term of (3.4.12), by Lemma 3.4.5

ψλ1,n−1θi(eµ̇yµ̇ψd(ṫ)ψr) = θi(ψλ1,n−1eµ̇yµ̇ψd(ṫ)ψr) = θi(eλ|n−1yλ|n−1ψλ1,n−1ψd(ṫ)ψr)
= eµyµψλ1,n−1ψd(ṫ)ψr,

where by Lemma 3.3.6, because ψλ1,n1ψd(ṫ)ψr doesn’t involve ψn−1,

(3.4.22) eµyµψλ1,n−1ψd(ṫ)ψr ∈ R≥µn .

Therefore substitute (3.4.21) and (3.4.22) to (3.4.12), we have

ψtλtψr ∈ R≥µn .

Then by Proposition 1.4.9 the proof is completed. �

3.4.23. Example We give an example of Case 3.4.10c. Suppose λ = (7, 4), e = 4 and Λ = Λ0.
Therefore i = j = 3 and

t = 1 2 3 7 9 10 11
4 5 6 8

tλ = 1 2 3 4 5 6 7
8 9 10 11

,

with d(t) = s7s8s9s10s6s7s8s9s5s6s7s8s4s5s6 and r = 7.
By Lemma 3.4.5 we have

eλyλψ7ψ8ψ9ψ10 = e(01230123012)y4y11ψ7ψ8ψ9ψ10

= ψ7ψ8ψ9ψ10e(01230130122)y4y11 + ψ7ψ8ψ9e(01230130122)y4

= ψ7ψ8ψ9ψ10e(iλ̇ ∨ i)yλ̇ + ψ7ψ8ψ9e(iµ̇ ∨ i)yµ̇
= ψ7ψ8ψ9ψ10θi(e(iλ̇)yλ̇) + ψ7ψ8ψ9θi(e(iµ̇)yµ̇),

where λ̇ = (6, 4) and µ̇ = (6, 3, 1). Therefore

ṫ = 1 2 3 7 9 10
4 5 6 8

and d(ṫ) = s6s7s8s9s5s6s7s8s4s5s6, which indicates

ψtλtψr = eλyλψ7ψ8ψ9ψ10ψ6ψ7ψ8ψ9ψ5ψ6ψ7ψ8ψ4ψ5ψ6ψ7

= ψ7ψ8ψ9ψ10θi(e(iλ̇)yλ̇)ψ6ψ7ψ8ψ9ψ5ψ6ψ7ψ8ψ4ψ5ψ6ψ7

+ψ7ψ8ψ9θi(e(iµ̇)yµ̇)ψ6ψ7ψ8ψ9ψ5ψ6ψ7ψ8ψ4ψ5ψ6ψ7

= ψ7ψ8ψ9ψ10θi(e(iλ̇)yλ̇)ψd(ṫ)ψ7 + ψ7ψ8ψ9θi(e(iµ̇)yµ̇)ψd(ṫ)ψ7

= ψ7,11θi(ψtλ̇ ṫψ7) + ψ7,10θi(e(iµ̇)yµ̇ψd(ṫ)ψ7).(3.4.24)

For the first term of (3.4.24),

ψ7,11θi(ψtλ̇ ṫψr) =
∑

v̇∈Std(λ̇)
v̇Bṫ

ctλ̇v̇ψ7,11θi(ψtλ̇v̇) +
∑

u̇,v̇∈Std(λ|n−1)
(u̇,v̇)B(tλ̇,ṫ)

cu̇v̇ψ7,11θi(ψu̇v̇)(3.4.25)

+
∑

u̇,v̇∈Std(>λ|n−1)

cu̇v̇ψ7,11θi(ψu̇v̇).

For v̇ ∈ Std(λ̇) with v̇ B ṫ, by Lemma 3.4.7 we have

(3.4.26)
∑

v̇∈Std(λ̇)
v̇Bṫ

ctλ̇v̇ψ7,11θi(ψtλ̇v̇) ∈ R≥µn .
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For u̇, v̇ ∈ Std(λ|n−1) with (u̇, v̇) B (tλ̇, t), then res(u̇) = iλ̇ = 0123013012, and because
Shape(u̇) = λ|n−1 = (7, 3) with residues

0 1 2 3 0 1 2
3 0 1

and

u̇ B tλ̇ = 1 2 3 4 5 6
7 8 9 10

.

The only possible choice of u̇ is

u̇ = 1 2 3 4 5 6 10
7 8 9

,

with d(u̇) = s7s8s9 = ψλ1,n−1. Hence

(3.4.27) ψ7,11θi(ψu̇v̇) = ψ7ψ8ψ9ψ10ψ9ψ8ψ7e(0123012301)y4ψd(v̇).

Notice we have

ψ7ψ8ψ9ψ10ψ9ψ8ψ7e(01230123012)y4

= ψ7ψ8ψ9ψ10ψ9e(01230130212)ψ8ψ7y4

= ψ7ψ8ψ10ψ9ψ10e(01230130212)ψ8ψ7y4 − ψ7ψ8e(01230130212)ψ8ψ7y4

= ψ7ψ8ψ10ψ9ψ10ψ8ψ7e(01230123012)y4 − ψ7ψ8ψ8ψ7e(01230123012)y4

= ψ10ψ7ψ8ψ9ψ8ψ7e(01230123021)y4ψ10 − ψ7ψ8ψ8ψ7e(01230123012)y4

= ψ10θ1(ψ7ψ8ψ9ψ8ψ7e(0123012302)y4)ψ10 − ψ7ψ8ψ8ψ7e(01230123012)y4

= ψ10θ1(ψ7ψ8ψ9ψ8ψ7eσyσ)ψ10 − ψ7ψ8ψ8ψ7eµyµ,(3.4.28)

where σ = (7, 2, 1). Consider the left term of (3.4.28), because |σ| < |λ| and λ ∈ S Λ
n , we have

ψ7ψ8ψ9ψ8ψ7eσyσ =
∑

u∈Std(σ)

cutσψutσ +
∑

u,v∈Std(>σ)

cuvψuv.

For u ∈ Std(σ), by Lemma 3.3.1 and ψ7ψ8ψ9ψ8ψ7 doesn’t involve ψs with s ≤ 6, we have
u|6 B tσ|6. Then because res(u) = iσ·s7s8s9s8s7 = 0123012302, by the definition of σ

[σ] = with residues 0 1 2 3 0 1 2
3 0
2

.

Then the only possible choice of u is tσ = 1 2 3 4 5 6 7
8 9

10

. Hence

ψ7ψ8ψ9ψ8ψ7eσyσ = c·ψtσtσ +
∑

u,v∈Std(>σ)

cuvψuv.

For u, v ∈ Std(> σ), we have res(u) = iσ = 0123012302. It is impossible that Shape(u) =

λ|n−1 because iλ|n−1 = 0123012301. Hence
∑

u,v∈Std(>σ) cuvψuv =
∑

u,v∈Std(>λ|n−1) cuvψuv ∈ R>λ|n−1
n . So
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ψ7ψ8ψ9ψ8ψ7eσyσ = c·ψtσtσ + R>λ|n−1
n and hence by Lemma 2.1.14,

ψ10θ1(ψ7ψ8ψ9ψ8ψ7eσyσ)ψ10 = c·ψ10θ1(ψtσtσ)ψ10 + ψ10θ1(R>λ|n−1
n )ψ10

= c·ψ10e(01230123021)y4ψ10 + R>λ
n

=λ c·e(01230123012)y4ψ
2
10

= c·e(01230123012)y4y10 − c·e(01230123012)y4y9

=λ c·e(01230123012)y4y10 = c·eλyλ.(3.4.29)

For the right term of (3.4.28), because λ|n−1 ∈ S Λ
n−1 ∩ (PΛ

I ∩PΛ
y ∩PΛ

ψ ), by Lemma 3.3.2
we have

ψ7ψ8ψ8ψ7eλ|n−1yλ|n−1 =
∑

u̇∈Std(λ|n−1)

cu̇tλ|n−1ψu̇tλ|n−1 + R>λ|n−1
n .

Then by Lemma 2.1.14,

ψ7ψ8ψ8ψ7eµyµ = θ2(ψ7ψ8ψ8ψ7eλ|n−1yλ|n−1)

=
∑

u̇∈Std(λ|n−1)

cu̇tλ|n−1θ2(ψu̇tλ|n−1 ) + θ2(R>λ|n−1
n )

=
∑

u∈Std(µ)

cu̇tλ|n−1ψutµ + R>λ
n .(3.4.30)

Substitute (3.4.29) and (3.4.30) back to (3.4.28), we have

ψ7ψ8ψ9ψ10ψ9ψ8ψ7e(01230123012)y4 =
∑

u∈Std(µ)

cutµψutµ + c·eλyλ + R>λ
n .

Recall v̇ is a standard tableau of shape λ|n−1 = µ|n−1, we can define v1 ∈ Std(µ) and v2 ∈

Std(λ) such that d(v1) = d(v2) = d(v̇). Hence by (3.4.27),

ψ7,11θi(ψu̇v̇) = ψ7ψ8ψ9ψ10ψ9ψ8ψ7e(0123012301)y4ψd(v̇)

=
∑

u∈Std(µ)

cuv1ψuv1 + c·ψtλv2 + R>λ
n ∈ R≥µn ,

which yields

(3.4.31)
∑

u̇,v̇∈Std(λ|n−1)
(u̇,v̇)B(tλ̇,ṫ)

cu̇v̇ψ7,11θi(ψu̇v̇) ∈ R≥µn .

Finally, suppose u̇, v̇ ∈ Shape(> λ|n−1), by Lemma 2.1.14 we have ψ7,11θi(ψu̇v̇) ∈ R>λ
n . There-

fore

(3.4.32)
∑

u̇,v̇∈Std(>λ|n−1)

cu̇v̇ψ7,11θi(ψu̇v̇) ∈ R>λ
n .

Substitute (3.4.26), (3.4.31) and (3.4.32) to (3.4.25), we have

(3.4.33) ψ7,11θi(ψtλ̇ ṫψr) ∈ R≥µn .

For the second term of (3.4.24), by Lemma 3.4.5

ψ7,10θi(e(iµ̇)yµ̇ψd(ṫ)ψ7) = θ2(ψ7ψ8ψ9e(0123013012)y4ψd(ṫ)ψ7)
= θ2(e(0123012301)y4ψ7ψ8ψ9ψd(ṫ)ψ7)
= e(01230123012)y4ψ7ψ8ψ9ψd(ṫ)ψ7 = eµyµψ7,10ψd(ṫ)ψr.
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Then by Lemma 3.3.6, because ψ7,10ψd(ṫ)ψr doesn’t involve ψ10, we have eµyµψ7,10ψd(ṫ)ψr ∈

R≥µn . Therefore

(3.4.34) ψ7,10θi(e(iµ̇)yµ̇ψd(ṫ)ψ7) ∈ R≥µn .

Substitute (3.4.33) and (3.4.34) to (3.4.24), we have ψtλtψr ∈ R≥µn . Finally by Proposi-
tion 1.4.9, we have

ψtλtψr =
∑

(u,v)B(tλ,t)

cuvψuv.

^

Finally, we can extend the above Proposition to arbitrary multipartition using similar method
we used in the last chapter.

3.4.35. Corollary. Suppose λ ∈ S Λ
n and t is the last Garnir tableau of shape λ with r the last

Garnir entry and l(d(t)) ≤ mλ. Therefore for any standard λ-tableau s, ψstψr =
∑

(u,v)B(s,t) cuvψuv.

Proof. Write λ = (λ(1), . . . , λ(`)) and λ(`) = (λ(`)
1 , . . . , λ

(`)
k ). If λ(`) = ∅, then define λ̄ =

(λ(1), . . . , λ(`−1)). As l(λ̄) = ` − 1 < l(λ), we have λ̄ ∈P Λ̄
I ∩P Λ̄

y ∩P Λ̄
ψ . By Proposition 2.3.14,

λ ∈PΛ
I ∩PΛ

y ∩PΛ
ψ , and the Corollary follows.

Now suppose λ(`) , ∅, First we assume s = tλ. As t is the last Garnir tableau of shape λ,
k ≥ 2. Setting m = λ(`)

k−1 + λ(`)
k . As t is the last Garnir tableau, by the definition we can see

that t|n−m = tλ|n−m and k ≥ 2. Define i to be the residue of the node (k − 1, 1, `), Λ′ = Λi, and
t̃ to be the last Garnir tableau of shape (λ(`)

k−1, λ
(`)
k ). If we write µ = (λ(1), . . . , λ(`−1), µ(`)) with

µ(`) = (λ(`)
1 , . . . , λ

(`)
k−2) and γ = (λ(`)

k−1, λ
(`)
k ), then

ψtλtψr = θ̂iµ(ψ̂tγ t̃ψ̂r−(n−m))yµ.

Recall that ψ̂tγ t̃ and ψ̂r−(n−m) are elements of Rm and ψtγ t̃ and ψr−(n−m) are elements of RΛ′

m .
Then by Proposition 3.4.10, we have ψtγ t̃ψr−(n−m) ∈ R≥γn . Therefore we can write ψtγ t̃ψr−(n−m) =∑

u,v∈Std(γ) cuvψuv+
∑

u,v∈Std(>γ) cuvψuv and hence ψ̂tγ t̃ψ̂r−(n−m) =
∑

u,v∈Std(γ) cuvψ̂uv+
∑

u,v∈Std(>γ) cuvψ̂uv+

r where r ∈ NΛ′

m . Therefore

ψtλtψr =
∑

u,v∈Std(γ)

cuvθ̂iµ(ψ̂uv)yµ +
∑

u,v∈Std(>γ)

cuvθ̂iµ(ψ̂uv)yµ + θ̂iµ(r)yµ.

For u, v ∈ Std(γ), by Corollary 2.3.8 we have θ̂iµ(ψuv) ∈ R≥λn . Hence
∑

u,v∈Std(γ) cuvθ̂iµ(ψ̂uv)yµ ∈
R≥λn .

For u, v ∈ Std(> γ), write Shape(u) = Shape(v) = σ and ν = µ ∨ σ. By Corollary 2.3.6
we have ν > λ = µ ∨ γ. Then by Corollary 2.3.15 and Lemma 2.1.14, θ̂iµ(ψuv) ∈ R>λ

n . Hence∑
u,v∈Std(>γ) cuvθ̂iµ(ψ̂uv)yµ ∈ R>λ

n .
Finally by Lemma 2.3.4, θ̂iµ(r)yµ ∈ R>λ

n . These yield that

ψtλtψr = θ̂iµ(ψtγ t̃ψr−(n−m))yµ ∈ R≥λn .

Now choose any s ∈ Std(λ). Because ψtλtψr ∈ R≥λn , we have

ψtλtψr =λ

∑
v∈Std(λ)

ctλvψtλv.

Hence
ψstψr = ψ∗d(s)ψtλtψr =λ

∑
v∈Std(λ)

ctλvψ
∗
d(s)ψtλv =

∑
v∈Std(λ)

ctλvψsv.

Therefore, ψstψr ∈ R≥λn . By Proposition 1.4.9 we completes the proof. �
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3.4.36. Remark. Generally it is not easy to find cuv. Kleshchev-Mathas-Ram [14] explicitly
describes how to compute cuv where Shape(u) = Shape(v) = λ. This thesis also gives an
implicit method to compute these coefficients.

3.5. Completion of the ψ-problem

In this section we are going to prove that ψstψr ∈ R≥λn . We have claimed in Corollary 3.2.3
that if t·sr is standard and d(t)·sr is reduced then the argument is true. So we will mainly consider
that t·sr is not standard or d(t)·sr is not reduced.

In the last section we have proved that when t is a Garnir-tableau then ψstψr ∈ R≥λn . In the
beginning of this section we are going to consider some other cases of t. Then we will give some
information about using d(t) to determine the type of t, and use them to prove that ψstψr ∈ R≥λn
for any s, t ∈ Std(λ).

First we introduce two more types of t and r.

3.5.1. Lemma. Suppose t and s are two standard λ-tableaux with d(t) = d(s)·sk for some k and
l(d(t)) = l(d(s)) + 1. If for some r < {k− 1, k, k + 1}, t·sr is not standard or d(t)·sr is not reduced,
then s·sr is not standard or d(s)·sr is not standard, respectively.

Proof. When t·sr is not standard, we can see that r and r + 1 in t are adjacent, either in the same
row or in the same column. Since d(t) = d(s)·sk, we have s = t·sk. As r < {k − 1, k, k + 1}, r and
r + 1 are in the same nodes in t as in s. Hence s·sr is not standard as well.

When d(t)·sr is not reduced, we could see that d(t)(r) > d(t)(r+1). As d(t) = d(s)·sk we have
d(t)(r) = d(s)·sk(r) = d(s)(r) and d(t)(r + 1) = d(s)·sk(r + 1) = d(s)(r + 1) as r < {k− 1, k, k + 1}.
Hence d(s)(r) > d(s)(r + 1). Therefore d(s)·sr is not reduced. This completes the proof. �

3.5.2. Example Suppose t = 1 2 7 9
3 5 8
4 6 10

and s = 1 2 7 8
3 4 9
5 6 10

. We have

d(t) = s4s5s6s7s8s6s7s3s4s5s6s4,

d(s) = s7s8s4s5s6s7s3s4s5s6s4.

Set k = 8, we have d(t) = d(s)·s8 and l(d(t)) = l(d(s)) + 1. Let r = 3, i.e. r < {k − 1, k, k + 1}
and t·sr is not standard. We can see that s·sr is not standard either. Similarly, let r = 6, i.e.
r < {k − 1, k, k + 1} and d(t)·sr is not reduced. We can see that d(s)·sr is not reduced either.

^

3.5.3. Definition. Suppose t is a standard λ-tableau. If we can find a reduced expression
sr1 sr2 . . . srl of d(t) and 1 ≤ r ≤ n − 1 such that |r − rl| > 1, we say t is unlocked by sr.

3.5.4. Lemma. Suppose λ ∈ S Λ
n and t is a standard λ-tableau with l(d(t)) ≤ mλ. If t is unlocked

by sr, then ψstψr ∈ R≥λn for any standard λ-tableau s.

Proof. Suppose t·sr is standard and d(t)·sr is reduced, by Corollary 3.2.3, ψstψr ∈ R≥λn .
Suppose t·sr is not standard or d(t)·sr is not reduced. Since t is a standard λ-tableau unlocked

by sr, by Definition 3.5.3, we can find a reduced expression sr1 sr2 . . . srl of d(t) such that |r−rl| >
1. Define w = tλ·sr1 sr2 . . . srl−1 . By Lemma 1.3.4, w is a standard λ-tableau. It is easy to see that
d(t) = d(w)·srl and l(d(t)) = l(d(w)) + 1. Hence by Lemma 3.5.1, w·sr is not standard or d(w)·sr

is not reduced. So ψswψr =λ

∑
v∈Std(λ)

vBw
csvψsv because l(d(w)) = l(d(t)) − 1 < wλ.
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Because it is obvious that d(w)·srl is a reduced expression of d(t), say d′(t) = d(w)·srl , by
Lemma 3.2.2, we have∑

v∈Std(λ)
vBt

csvψsvψr =λ ψstψr − ψ
∗
d(s)eλyλψd(w)ψrlψr = ψstψr − ψswψrψrl .

Because v B t, l(d(v)) < l(d(t)) ≤ mλ and hence we have
∑

v∈Std(λ)
vBt

csvψsvψr ∈ R≥λn . For

ψswψrψrl =λ

∑
v∈Std(λ)

vBw
csvψsvψrl , because v B w, we have l(d(v)) < l(d(w)) < mλ, which yields

that ψswψrψrl ∈ R≥λn . Therefore we have ψstψr ∈ R≥λn . �

3.5.5. Lemma. Suppose t is a standard λ-tableau and that we have a standard λ-tableau w such
that d(t) = d(w)·sr sr+1 for some r and l(d(t)) = l(d(w)) + 2. If t·sr is not standard or d(t)·sr is
not reduced, then w·sr+1 is not standard or d(w)·sr+1 is not reduced, respectively.

Similarly suppose d(t) = d(w)·sr sr−1 for some r and l(d(t)) = l(d(w)) + 2. If t·sr is not
standard or d(t)·sr is not reduced, then w·sr−1 is not standard or d(w)·sr−1 is not reduced, re-
spectively.

Proof. Suppose d(t) = d(w)·sr sr+1. If t·sr is not standard, r and r + 1 are adjacent in t. But
r and r + 1 occupy the same positions as r + 1 and r + 2, respectively in w. So w·sr+1 is not
standard. If d(t)·sr is not reduced, as d(w)−1(r + 1) = d(t)−1(r) and d(w)−1(r + 2) = d(t)−1(r + 1),
by Proposition 1.2.9, d(t)·sr is not reduced implies d(w)·sr+1 is not reduced. The other case is
similar.

3.5.6. Remark. In Lemma 3.5.1 and Lemma 3.5.5, when we say d(t) = d(s)·sr or d(t) =

d(s)·sr sr+1, it means d(t) and d(s)·sr or d(t) and d(s)·sr sr+1 are the same as permutations.

3.5.7. Example Let t = 1 2 3 12
4 5 6 13
7 8 11
9 10 14

. Suppose s = 1 2 3 12
4 5 6 13
7 8 9

10 11 14

, we have

d(t) = s8s9s10s11s12s4s5s6s7s8s9s10s11s9s10,

d(s) = s8s9s10s11s12s4s5s6s7s8s9s10s11.

So we have d(t) = d(s)s9s10 and therefore r = 9. We can see that t·sr and s·sr+1 are both
non-standard.

Suppose s = 1 2 3 11
4 5 6 13
7 8 10
9 12 14

, we have

d(t) = s8s9s10s11s12s4s5s6s7s8s9s10s11s9s10,

d(s) = s8s9s10s11s12s4s5s6s7s8s9s10s9.

So we have d(t) = d(s)s11s10 and therefore r = 11. We can see that d(t)·sr and d(s)·sr−1 are
both non-reduced because in t, r is below r + 1 and in s, r − 1 is below r. ^

3.5.8. Definition. Suppose t is a standard λ-tableau. If we can find a reduced expression
sr1 sr2 . . . srl−1 srl of d(t) such that rl−1 = r and r = rl ± 1, we say t is unlocked by sr on tails.

3.5.9. Lemma. Suppose λ ∈ S Λ
n and t is a standard λ-tableau with l(d(t)) ≤ mλ. If t is unlocked

by sr on tails, then ψstψr ∈ R≥λn for any standard λ-tableau s.
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Proof. Suppose t·sr is standard and d(t)·sr is reduced. By Corollary 3.2.3, ψstψr ∈ R≥λn .
Suppose t·sr is not standard or d(t)·sr is not reduced. By Definition 3.5.8, we can find a

reduced expression sr1 sr2 . . . srl−1 srl of d(t) such that rl−1 = r and r = rl ± 1. Without loss
of generality we set r = rl − 1. Define w = tλsr1 sr2 . . . srl−2 . By Lemma 1.3.4, w is a stan-
dard λ-tableau. It is easy to see that d(t) = d(w)·sr sr+1 and l(d(t)) = l(d(w)) + 2. Hence by
Lemma 3.5.5, w·sr+1 is not standard or d(w)·sr+1 is not reduced. So ψswψr+1 =λ

∑
v∈Std(λ)

vBw
csvψsv

because l(d(w)) = l(d(t)) − 2 < wλ.
Because it is obvious that d(w)·sr sr+1 is a reduced expression of d(t), say d′(t) = d(w)·sr sr+1,

by Lemma 3.2.2, we have

(3.5.10)
∑

v∈Std(λ)
vBt

csvψsvψr =λ ψstψr − ψ
∗
d(s)eλyλψd(w)ψrψr+1ψr = ψstψr − ψswψrψr+1ψr.

Because v B t, l(d(v)) < l(d(t)) ≤ mλ and hence we have

(3.5.11)
∑

v∈Std(λ)
vBt

csvψsvψr ∈ R≥λn .

For ψswψrψr+1ψr, write res(w) = i1i2 . . . in, the residue sequence of w. We have

ψswψrψr+1ψr =

ψswψr+1ψrψr+1 ± ψsw, if ir = ir+2 = ir+1 ± 1,
ψswψr+1ψrψr+1, otherwise.

Because ψswψr+1 =λ

∑
v∈Std(λ)

vBw
csvψsv,

ψswψr+1ψrψr+1 =λ

∑
vBw

csvψsvψrψr+1.

Since vBw, l(d(v)) < l(d(w)) = l(d(t))−2 ≤ mλ−2. Hence l(ψd(v)ψrψr+1) = l(d(v))+2 < mλ.
By Lemma 3.2.1 we have ψsvψrψr+1 ∈ R≥λn if v B w. Therefore we always have

(3.5.12) ψswψr+1ψrψr+1 ∈ R≥λn

in both cases. Substitute (3.5.11) and (3.5.12) into (3.5.10), we have ψstψr ∈ R≥λn . �

Now we will introduce some information about using d(t) to determine the type of t.

3.5.13. Lemma. Suppose t ∈ Std(λ) with d(t) = sn−1sn−2 . . . sr+1, and t·sr is not standard. Then
t is the last Garnir tableau with shape λ.

Proof. As d(t) is the standard expression, we have wn = sn−1, wn−1 = sn−2, . . . ,wr+2 = sr+1 and
t = t(1) = t(2) = . . . = t(r+1). Write λ = (λ(1), . . . , λ(`)) and λ(`) = (λ(`)

1 , . . . , λ
(`)
k ), as t(n) = tλ·wn =

tλ·sn−1 is standard, n − 1 and n are not adjacent in tλ. This forces λ(`)
k = 1.

By Remark 1.3.2 we have

t−1(k) =


(tλ)−1(k − 1), if r + 2 ≤ k ≤ n,
(tλ)−1(n), if k = r + 1,
(tλ)−1(k), otherwise.

and since t·sr is not standard, r and r +1 are adjacent in t. As t−1(r +1) = (tλ)−1(n) = (k, λ(`)
k , `) =

(k, 1, `), we must have t−1(r) = (k − 1, 1, `). This shows that t is the last Garnir tableau with
shape λ. �
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3.5.14. Example Suppose λ = (4, 4, 1) and t = 1 2 3 4
5 7 8 9
6

. Therefore d(t) = s8s7s6 and t·s5 is

not standard. Notice that t is the last Garnir tableau of shape λ. ^

3.5.15. Lemma. Suppose t ∈ Std(λ) with d(t) = sr sr+1 . . . sn−2, and t·sn−1 is not standard. Then
t is the last Garnir tableau with shape λ.

Proof. As d(t) is the standard expression, we have wn = sr sr+1 . . . sn−2 and wn−1 = . . .w1 = 1.
Write λ = (λ(1), . . . , λ(`)) and λ(`) = (λ(`)

1 , . . . , λ
(`)
k ), as t = tλ·wn, we have t−1(n) = (k, λ(`)

k , `). By
Remark 1.3.2 we have

t−1(k) =


(tλ)−1(k + 1), if r ≤ k ≤ n − 2,
(tλ)−1(r), if k = n − 1,
(tλ)−1(k), otherwise.

As t·sn−1 is not standard, n − 1 and n are adjacent in t. So in r and n are adjacent in tλ. But
r ≤ n − 2. Hence r has to be on the above of n in tλ. i.e. (tλ)−1(r) = t−1(n − 1) = (k − 1, λ(`)

k , `).
This shows that λ(`)

k−1 = λ(`)
k and t is the last Garnir tableau of shape λ. �

3.5.16. Example Suppose λ = (4, 3, 3) and t = 1 2 3 4
5 6 9
7 8 10

. Therefore d(t) = s7s8 and t·s9 is

not standard. Notice that t is the last Garnir tableau of shape λ. ^

3.5.17. Lemma. Suppose t ∈ Std(λ) and d(t) = wnwn−1 . . .w1 with wi , 1 if i ≥ r + 2 or i = r
and wi = 1 if i < r or i = r + 1, i.e. d(t) = wnwn−1 . . .wr+2wr. If t·sr is not standard, then
l(wi) ≥ l(wr) + 1 for i ≥ r + 2.

Proof. Write λ = (λ(1), . . . , λ(`)) and λ(`) = (λ(`)
1 , . . . , λ

(`)
k ). Because t·sr is not standard, r and

r + 1 are adjacent in t. By Remark 1.3.2, as wi , 1 for i ≥ r + 2

(k, λ(`)
k , `) = (t(n+1))−1(n) = (t(n))−1(n − 1) = . . . = (t(r+3))−1(r + 2) = (t(r+2))−1(r + 1).

Notice that wr+1 = 1 and wr doesn’t involve sr or sr+1, we have

(k, λ(`)
k , `) = (t(r+2))−1(r + 1) = (t(r+1))−1(r + 1) = (t(r))−1(r + 1).

Since wr , 1 and wr+1 = 1, recall wr = sar sar+1 . . . sr−2sr−1, by Remark 1.3.2 we have

(t(r+2))−1(ar) = (t(r+1))−1(ar) = (t(r))−1(r).

Since wi = 1 for i < r, we have t(r) = t. Then t−1(r + 1) = (k, λ(`)
k , `). Because ar ≤

r − 1 < r + 1, by Remark 1.3.2, ar is not on the left of r + 1 in t(r+2) because t(r+2)|r+1 = tµ with
µ = Shape(t(r+2)|r+1). As r and r + 1 are adjacent in t and (t(r+2))−1(ar) = (t(r))−1(r) = t−1(r), we
must have t−1(r) = (k − 1, λ(`)

k , `). Therefore by the definition of the standard expression, we
have l(wr) = λ(`)

k − 1.
Since (k, λ(`)

k , `) = (t(n+1))−1(n) = (t(n))−1(n− 1) = . . . = (t(r+2))−1(r + 1) and Remark 1.3.2, we
have l(wi) ≥ λ

(`)
k = l(wr) + 1 for all i ≥ r + 2. �

3.5.18. Lemma. Suppose t ∈ Std(λ) and d(t) = wnwn−1 . . .w1 with wi , 1 if i > r + 2 or i = r
and wi = 1 if i < r or i = r + 1. If l(wi) = l(wr) + 1 for all i ≥ r + 2, i.e. d(t) = wnwn−1 . . .wr+2wr,
and t·sr is not standard, then t is the last Garnir tableau of shape λ.



64 3. Integral Basis Theorem II

Proof. Write λ = (λ(1), . . . , λ(`)) and λ(`) = (λ(`)
1 , . . . , λ

(`)
k ). From the proof of Lemma 3.5.17 we

have seen that l(wi) = λ(`)
k for i ≥ r + 2 and l(wr) = λ(`)

k − 1. Therefore if tλ(k − 1, λ(`)
k−1, `) = t,

wn = stst+1 . . . sn−1,

wn−1 = st−1st . . . sn−2,

. . . . . . . . .

wr+2 = st−n+r+2st−n+r+3 . . . sr+1,

wr = st−n+r+1st−n+r+2 . . . sr−1,

and by direct calculation we can see that such d(t) is the last Garnir tableau of shape λ. �

3.5.19. Example Suppose λ = (7, 5, 3) and t = 1 2 3 4 5 6 7
8 9 12 14 15

10 11 13

. Then

d(t) = s12s13s14·s11s12s13·s10s11.

So we can write d(t) = w15w14w13w12 where w15 = s12s13s14, w14 = s11s12s13, w13 = 1 and
w12 = s10s11. Notice l(w15) = l(w14) = l(w12) + 1 and t·s12 is not standard, and furthermore, t is
the last Garnir tableau of shape λ. ^

Finally we are ready to prove the most important result of this section.

3.5.20. Proposition. Suppose λ ∈ S Λ
n . For any standard λ-tableau t with l(d(t)) ≤ mλ, if d(t)·sr

is not reduced or t·sr is not standard for some r,

ψstψr =
∑

(u,v)B(s,t)

cuvψuv.

for any standard λ-tableau s.

Proof. First we set s = tλ. Recall that the standard expression of ψd(t) has the form

ψwnψwn−1 . . . ψw2 ,

with ψwi = ψaiψai+1ψai+2 . . . ψi−1 for some ai ≤ i − 1 or ψwi = 1. Let k be the integer such that
ψwk , 1 but ψwi = 1 for all i < k. So ψd(t) = ψwnψwn−1 . . . ψwk .

Recall that by Lemma 3.5.4 and 3.5.9, if d(t) is unlocked by sr or unlocked in tails by sr, we
have ψtλtψr ∈ R≥λn .

We separate the problem into several cases:
Case 3.5.20a: k − 1 < {r − 1, r, r + 1}. Then

ψd(t) = ψwn . . . ψwk = ψwn . . . ψwk+1ψakψak+1 . . . ψk−2ψk−1.

In this case t is unlocked by sr. Therefore by Lemma 3.5.4, ψtλtψr ∈ R≥λn .

Case 3.5.20b: k − 1 = r. Define w = t·sr. Hence d(t) = d(w)·sr. Write iw = (i1i2 . . . in).

eλyλψd(t)ψr = yλψd(w)e(iw)ψ2
r =


0, if ir = ir+1,
yλψd(w)e(iw) = ψtλw, if |ir − ir+1| > 1,
± yλψd(w)e(iw)(yr − yr+1)

= ± ψtλw(yr − yr+1), if ir = ir+1 ± 1.

By Proposition 3.2.5 we have ψtλtψr ∈ R≥λn .

Case 3.5.20c: k − 1 = r + 1.
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3.5.20c.1: ψwi = 1 for some i > k and i , n. Then we have

ψd(t)ψr = ψwnψwn−1 . . . ψwi+2ψwi+1ψwi−1 . . . ψwkψr

= ψwnψwn−1 . . . ψwi+2(ψai+1ψai+1+1 . . . ψi−1ψi)ψwi−1 . . . ψwkψr.

As i > k = r + 2 > r + 1, we have

ψd(t)ψr = (ψwnψwn−1 . . . ψwi+2ψai+1ψai+1+1 . . . ψi−1ψwi−1 . . . ψwkψi)ψr,

which shows that t is unlocked by sr. By Lemma 3.5.4 we have ψtλtψr ∈ R≥λn .

3.5.20c.2: ψwn = 1. In this case ψn−1 is not involved in ψd(t)ψr. By Lemma 3.3.6 we have
ψtλtψr ∈ R≥λn .

3.5.20c.3: ψwi , 1 for i > k and l(ψwk) > 1. Then we can see that t is unlocked on tails by
sr. By Lemma 3.5.9 we have ψtλtψr ∈ R≥λn .

3.5.20c.4: ψwi , 1 for i > k, and we can find k < j < n such that l(ψwk) = l(ψwk+1) = . . . =

l(ψw j−1) = 1 and l(ψw j) > 1. Then we have

w j·w j−1 = sa j sa j+1 . . . s j−3s j−2s j−1·s j−2 = sa j sa j+1 . . . s j−3·s j−1s j−2s j−1.

Therefore

d(t) = wnwn−1 . . .w j+1·sa j sa j+1 . . . s j−3·s j−1s j−2s j−1·w j−2 . . .wk

= wnwn−1 . . .w j+1sa j sa j+1 . . . s j−3·s j−1s j−2w j−2 . . .wk·s j−1,

and j − 1 ≥ k = r + 2 > r + 1, s j−1 and sr commute, which shows that t is unlocked by sr. By
Lemma 3.5.4, we have ψtλtψr ∈ R≥λn .

3.5.20c.5: l(ψwk) = l(ψwk+1) = . . . = l(ψwn) = 1. Then by Lemma 3.5.13, t is the last Garnir
tableau of shape λ. Hence by Proposition 3.4.10, ψtλtψr ∈ R≥λn .

Case 3.5.20d: k − 1 = r − 1.
3.5.20d.1: ψwk+1 , 1. Then

d(t) = wnwn−1 . . .wk+2·wk+1wk

= wnwn−1 . . .wk+2·sak+1 sak+1+1 . . . sk−1sk·sak sak+1 . . . sk−2sk−1

= wnwn−1 . . .wk+2sak+1 sak+1+1 . . . sk−1sak sak+1 . . . sk−2·sksk−1,

and as r = k, we can see that t is unlocked on tails by sr. Therefore ψtλtψr ∈ R≥λn by Lemma 3.5.9.

3.5.20d.2: k = n−1 and ψwk+1 = ψwn = 1. The ψd(t)ψr = ψwn−1ψn−1 = ψan−1ψan−1+1 . . . ψn−2ψn−1.
Then by Lemma 3.5.15, t is the last Garnir tableau of shape λ. Hence by Proposition 3.4.10,
ψλtλtψr ∈ R≥λn .

3.5.20d.3: k < n − 1, ψwk+1 = 1 and ψwn = 1. Then n − 1 > k = r. So ψd(t)ψr doesn’t involve
ψn−1. By Lemma 3.3.6 we have ψtλtψr ∈ R≥λn .
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3.5.20d.4: k < n − 1, ψwk+1 = 1 and we can find k + 1 < j < n such that ψw j = 1 and
ψw j+1 , 1. In this case we have

d(t) = wnwn−1 . . .w j+2w j+1w jw j−1 . . .wk

= wnwn−1 . . .w j+2·sa j+1 sa j+1+1 . . . s j−1s j·w j−1 . . .wk

= (wnwn−1 . . .w j+2·sa j+1 sa j+1+1 . . . s j−1·w j−1 . . .wk)·s j.

As j > k + 1 = r + 1, ψ j and ψr commute. Therefore t is unlocked by sr. By Lemma 3.5.4,
we have ψtλtψr ∈ R≥λn .

3.5.20d.5: k < n − 1, ψwk+1 = 1 and for any j > k + 1, ψw j , 1. Then by Lemma 3.5.17, we
have l(ψw j) ≥ l(ψwk) + 1 for all j ≥ k + 2.

3.5.20d.5.1: Suppose l(ψwk+2) > l(ψwk) + 1. So we have ak+2 ≤ ak, and therefore

wk+2wk = sak+2 sak+2+1 . . . sksk+1·sak sak+1 . . . sk−2sk−1

= sak+1 . . . sk−1sk·sak+2 sak+2+1 . . . sksk+1.

Therefore

d(t) = wnwn−1 . . .wk+3·wk+2wk

= wnwn−1wk+3·sak+1 . . . sk−1sk·sak+2 sak+2+1 . . . sksk+1.

Then because k = r, t is unlocked by sr on tails. Therefore, by Lemma 3.5.9, ψtλtψr ∈ R≥λn .

3.5.20d.5.2: There exists j > k + 2 such that l(ψwk+2) = l(ψwk+3) = . . . = l(ψw j−1) = l(ψwk) + 1
and l(ψw j) > l(ψwk) + 1. So we have l(ψw j) > l(ψw j−1) and a j ≤ a j−1, and therefore

w jw j−1 = sa j sa j+1 . . . s j−2s j−1·sa j−1 sa j−1+1 . . . s j−3s j−2

= sa j−1+1 . . . s j−2s j−1·sa j sa j+1 . . . s j−2s j−1.

Therefore

d(t) = wnwn−1 . . .w j+1w jw j−1w j−2 . . .wk

= wnwn−1 . . .w j+1·sa j−1+1 . . . s j−1·sa j . . . s j−2s j−1·w j−2 . . .wk

= (wnwn−1 . . .w j+1·sa j−1+1 . . . s j−1·sa j . . . s j−2·w j−2 . . .wk)·s j−1.

Then because j − 1 > k + 1 = r + 1, s j−1 and sr commutes. Hence t is unlocked by sr and
therefore, by Lemma 3.5.4, ψtλtψr ∈ R≥λn .

3.5.20d.5.3: l(ψwk+2) = l(ψwk+3) = . . . = l(ψwn−1) = l(ψwk) + 1. By Lemma 3.5.18, t is the last
Garnir tableau of shape λ. By Proposition 3.4.10, we have ψtλtψr ∈ R≥λn .

By the above cases, ψtλtψr is always in R≥λn . Therefore by Proposition 1.4.9, we have

ψtλtψr =
∑

(u,v)B(tλ,t)

cuvψuv =
∑
vBt

ctλvψtλv +
∑

u,v∈Std(>λ)

cuvψuv.

Giving any standard λ-tableau s, we have ψstψr = ψ∗d(s)ψtλtψr. Notice ψ∗d(s)ψtλv = ψsv. For
any u, v ∈ Std(> λ), ψuv ∈ R>λ

n . As λ ∈ S Λ
n , by Lemma 2.1.12, R>λ

n is an ideal. Therefore
ψ∗d(s)ψuv ∈ R>λ

n . These arguments yield that ψstψr ∈ R≥λn . By Proposition 1.4.9 we completes the
proof. �

The following Corollary is straightforward by Corollary 3.2.3 and Proposition 3.5.20.
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3.5.21. Corollary. Suppose λ ∈ S Λ
n , for any standard λ-tableau t with l(d(t)) ≤ mλ, then

ψstψr =

ψtλw +
∑

(u,v)B(s,t) cuvψuv, if w = u·sr is standard and d(u)·sr is reduced,∑
(u,v)B(s,t) cuvψuv, if u·sr is not standard or d(u)·sr is not reduced.

for any standard λ-tableau s.

3.6. Integral basis Theorem

In this section we will complete the main Theorem of this thesis.

3.6.1. Theorem. Suppose λ ∈ S Λ
n , we have λ ∈PΛ

I ∩PΛ
y ∩PΛ

ψ .

Proof. By Theorem 2.1.8 we have when λ ∈ S Λ
n then λ ∈ PΛ

I . By Corollary 3.1.4, we have
0 < mλ, i.e. 1 ≤ mλ. Assume l = l(d(u) for some u ∈ Std(λ), by Proposition 3.2.5 and
Corollary 3.5.21, for any t ∈ Std(λ) with l(d(t)) = l, we have

ψstyr =
∑

(u,v)B(s,t)

cuvψuv,

ψstψr =

ψsw +
∑

(u,v)B(s,t) cuvψuv, if w = t·sr is standard and d(u)·sr is reduced,∑
(u,v)B(s,t) cuvψuv, if u·sr is not standard or d(u)·sr is not reduced.

which yields that l < mλ, i.e. l + 1 ≤ mλ. So by induction, for any t ∈ Std(λ), we have
l(d(t)) < mλ. Therefore λ ∈PΛ

y ∩PΛ
ψ . This completes the proof. �

3.6.2. Theorem. The set {ψZst | s, t ∈ Std(λ) for λ ∈PΛ
n } is a graded cellular basis of RΛ

n (Z).

Proof. It’s trivial that when n = 1 the Theorem holds. Assume for any n′ < n the Theorem
follows. Suppose we can write all multipartitions of n as λ[1], λ[2], . . . , λ[k] where λ[1] > λ[2] >
. . . > λ[k]. As λ[1] = ((n), ∅, . . . , ∅), by Lemma 2.1.9, Corollary 2.1.11 and 2.1.10, we have
λ[1] ∈ PΛ

I ∩ PΛ
y ∩ PΛ

ψ . Hence λ[2] ∈ S Λ
n . Now assume λ[i] ∈ S Λ

n , by Theorem 3.6.1,
λ[i] ∈ PΛ

I ∩PΛ
y ∩PΛ

ψ . Hence λ[i+1] ∈ S Λ
n . Therefore for any i, λ[i] ∈ S Λ

n . Hence for any
λ ∈PΛ

n , λ ∈PΛ
I ∩PΛ

y ∩PΛ
ψ . Recall that

RΛ
n = {r ∈ RΛ

n (Z) | r =
∑

s,t∈Std(µ)
µ∈PΛ

n

cstψst, cst ∈ Z}.

So RΛ
n is an ideal.

Now for any i = (i1, i2, . . . , in) ∈ In, set j = (i1, i2, . . . , in−1) ∈ In−1. Because e(j) ∈
RΛ

n−1, by assumption we have e(j) =
∑

µ∈PΛ
n−1

u,v∈Std(µ)

cuvψuv ∈ RΛ
n−1 and hence e(i) = θin(e(j)) =∑

µ∈PΛ
n−1

u,v∈Std(µ)

cuvθin(ψuv).

For any µ ∈PΛ
n−1 and u, v ∈ Std(µ), we have

θin(ψuv) = ψ∗d(u)e(iµ ∨ in)yµψd(v).

By Lemma 2.1.3 and Theorem 2.1.8, we have e(iµ ∨ in)yµy0
n ∈ RΛ

n . Then because RΛ
n is an

ideal,
e(i) =

∑
µ∈PΛ

n−1
u,v∈Std(µ)

cuvθin(ψuv) ∈ RΛ
n .

Then we have RΛ
n = RΛ

n (Z). By Corollary 1.4.10, the set {ψZst | s, t ∈ Std(λ) for λ ∈PΛ
n } is

linearly independent. This yields that {ψZst | s, t ∈ Std(λ) for λ ∈PΛ
n } is a basis of RΛ

n (Z).
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By the definition of {ψZst | s, t ∈ Std(λ) for λ ∈PΛ
n } the elements in the set are homogeneous.

The cellularity is trivial by Theorem 1.4.5 and Proposition 1.4.9. This completes the proof. �

The next Corollary is straightforward by Theorem 3.6.2.

3.6.3. Corollary. For any i ∈ In, e(i) , 0 if and only if i is the residue sequence of a standard
tableau t.

Proof. Suppose i is the residue sequence of a standard tableau t. By Theorem 3.6.2 we have
ψZtt , 0. Because ψZtt = ψZtte(i), we must have e(i) , 0.

Suppose i is not the residue sequence of any standard tableau. By Theorem 3.6.2 we can
write

1 =
∑
s,t

cstψ
Z
st,

and hence
e(i) = 1·e(i) =

∑
s,t

cstψ
Z
ste(i) = 0,

which completes the proof. �



Chapter 4

Basis of Affine KLR Algebras

In Theorem 3.6.2 we have shown that RΛ
n (Z) is a Z-free algebra with basis {ψst | s, t ∈

Std(λ), λ ∈ PΛ
n }. In this chapter we will extend this result and find a graded cellular basis for

the Rn(Z). Moreover, for any weight Λ we can delete a few elements from the basis of Rn(Z)
and form a graded cellular basis of NΛ

n . We then give a complete set of simple Rn-modules by
using the graded cellular basis of Rn. Furthermore, in the previous chapters we set e , 2 during
the proof. In this chapter we allow e = 2.

In this chapter, we will define a sequence of weights (Λ(k)) with specific property and use
such sequence to extend the graded cellular basis of RΛ

n to Rn.

4.1. Infinite sequence of weights and basis of RΛ
α

In this section first we will introduce a special kind of sequence of weights (Λ(k)). Then for
i ∈ In we give a graded cellular basis for RΛ

α , which will be extended to a graded cellular basis
for Rα.

We fix a e ≥ 0 and e , 1, and the ring of Rn to be Z and will write Rn instead of Rn(Z).
Suppose Λ =

∑
i∈I aiΛi and Λ′ =

∑
i∈I a′iΛi are two weights in P+. We define a partial ordering

on weights and write Λ ≤ Λ′ if ai ≤ a′i for any i ∈ I, and Λ < Λ′ if Λ ≤ Λ′ and Λ , Λ′.

4.1.1. Definition. An increasing sequence of weights is a sequence (Λ(k)) of weights in P+ for
k ≥ 1 such that Λ(k) < Λ(k+1) for all k ≥ 1. The sequence (Λ(k)) is standard if limk→∞ a(k)

i = ∞,
for all i ∈ I.

4.1.2. Example Suppose e > 0. We define a sequence (Λ(k)) where Λ(1) = Λ1 and Λ(k)−Λ(k−1) =

Λi with k ≡ i (mod e). For example, when e = 3, we have

Λ(1) = Λ1,

Λ(2) = Λ1 + Λ2,

Λ(3) = Λ1 + Λ2 + Λ0,

Λ(4) = 2Λ1 + Λ2 + Λ0,

Λ(5) = 2Λ1 + 2Λ2 + Λ0,

Λ(6) = 2Λ1 + 2Λ2 + 2Λ0,

Λ(7) = 3Λ1 + 2Λ2 + 2Λ0,

. . . . . . . . . . . . . . . . . .

So in this case we have limk→∞ a(k)
i = ∞ for any i ∈ I and (Λ(k)) is a standard sequence. ^

69
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4.1.3. Example Suppose e = 0. Define (Λ(k)) where Λ(1) = Λ0 and Λ(k) − Λ(k−1) = Λi with
i = (k − 1) − (n − 1)2 − (n − 1) = k − n2 + n − 1 if (n − 1)2 < k ≤ n2. In more details,

Λ(1) = Λ0,

Λ(2) = Λ−1 + Λ0,

Λ(3) = Λ−1 + 2Λ0,

Λ(4) = Λ−1 + 2Λ0 + Λ1,

Λ(5) = Λ−2 + Λ−1 + 2Λ0 + Λ1,

Λ(6) = Λ−2 + 2Λ−1 + 2Λ0 + Λ1,

Λ(7) = Λ−2 + 2Λ−1 + 3Λ0 + Λ1,

Λ(8) = Λ−2 + 2Λ−1 + 3Λ0 + 2Λ1,

Λ(9) = Λ−2 + 2Λ−1 + 3Λ0 + 2Λ1 + Λ2,

Λ(10) = Λ−3 + Λ−2 + 2Λ−1 + 3Λ0 + 2Λ1 + Λ2,

Λ(11) = Λ−3 + 2Λ−2 + 2Λ−1 + 3Λ0 + 2Λ1 + Λ2,

. . . . . . . . . . . . . . . . . .

So in this case we have limk→∞ a(k)
i = ∞ for any i ∈ I and (Λ(k)) is a standard sequence. ^

Recall that for any weight Λ =
∑

i∈I aiΛi, we can define an two-sided ideal in Rn, NΛ
n , which

is generated by elements e(i)yai1
1 for all i = (i1, i2, . . . , in) ∈ In. Then the cyclotomic KLR algebra

RΛ
n � Rn/NΛ

n . In this case we can also write Rn � RΛ
n ⊕ NΛ

n as Z-modules.
Recall Q+ =

∑
i∈I Nαi is defined in Section 1.1. For α =

∑
i∈I aiαi ∈ Q+, define |α| =

∑
ß∈I ai.

Then for any α ∈ Q+ with |α| = n, define Iα to be the set of all i = (i1, i2, . . . , in) ∈ In such that
ai = | { 1 ≤ r ≤ n | ir = i } |. By the definition if i, j ∈ Iα then we can find v ∈ Sn such that i = j·v.
Define êα =

∑
i∈Iα ê(i) ∈ Rn and eα =

∑
i∈Iα e(i) ∈ RΛ

n .
The following result is trivial by the relations of Rn.

4.1.4. Lemma. Suppose α, β ∈ Q+. Then Rnêα , 0 and êβRnêα = δαβRneα = δαβêβRn.

We then define Rα = Rnêα, RΛ
α = RΛ

n eα and NΛ
α = NΛ

n êα. We can see that Rαê(j) = 0 if
j < Iα. Finally, because

Rn =
⊕
α∈Q+

Rα and RΛ
n =

⊕
α∈Q+

RΛ
α ,

and by the relations Rα and RΛ
α ’s are subalgebras of Rn and RΛ

n , respectively. Hence we will
mainly work in Rα, RΛ

α and NΛ
α and extend the basis of RΛ

α to Rα and hence generate a graded
cellular basis of Rn.

By Theorem 3.6.2 and the orthogonality of e(i)’s we can give a basis for RΛ
α .

4.1.5. Proposition. Suppose i ∈ In and Λ ∈ P+. The set

{ψst | λ ∈PΛ
n , s, t ∈ Std(λ), res(t) ∈ Iα }

is a graded cellular basis of RΛ
α .

4.2. Minimum degree of NΛ
α

Fix α ∈ Q+. In the last section we introduced a standard sequence of (Λ(k)). For each k and
i ∈ In, we define the minimum degree of NΛ(k)

α , mΛ(k)

α = min{deg(r) | r is a homogeneous element in NΛ
α }

and will prove that mΛ(k)

α → ∞ with k → ∞. This result is quite important in the next section
while extending the basis of RΛ

α to Rα.
First we need to find a general form of the homogeneous elements of NΛ

α .
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4.2.1. Lemma. For Λ =
∑

i∈I aiΛi ∈ P+ and α ∈ Q+, the ideal NΛ
α is spanned by

{ψue(i)yai1
1 f (y)ψv | u, v ∈ Sn, f (y) ∈ Z[y1, y2, . . . , yn], i ∈ Iα } .

Proof. It is obvious that any element of NΛ
α can be written as linear combination of elements of

the form

(4.2.2) ψuk fk(y)ψuk−1 . . . ψu2 f2(y)ψu1 f1(y)e(i)yai1
1 g1(y)ψv1g2(y)ψv2 . . . ψvl−1gl(y)ψvl ,

where ui, vi ∈ Sn, i ∈ Iα and fi(y), gi(y) ∈ Z[y1, . . . , yn]. Then by the view of Lemma 3.2.2 and
[5, Proposition 2.5] it is obvious that any element in the form of (4.2.2) can be written as linear
combination of ψue(i)yai1

1 f (y)ψv’s. Hence NΛ
α is spanned by those elements. �

By Lemma 4.2.1,

mΛ
α = min { deg(ψue(i)yai1

1 f (y)ψv) | u, v ∈ Sn, f (y) ∈ Z[y1, y2, . . . , yn], i ∈ Iα } .

Hence we have an expression for mΛ
α and we are ready to prove the result of this section.

4.2.3. Proposition. For any standard sequence (Λ(k)) and i ∈ In, limk→∞mΛ(k)

α = ∞.

Proof. By Lemma 4.2.1, we only need to work with deg(ψue(i)y
a(k)

i1
1 f (y)ψv) for all i ∈ Iα. We can

write deg(ψue(i)y
a(k)

i1
1 f (y)ψv) = deg(ψue(i)) + deg(y

a(k)
i1

1 ) + deg( f (y)) + deg(ψve(i·v)). As u and v are
reduced expressions of permutations in Sn, l(u) ≤ (n−1)n

2 , and deg(ψre(i)) ≥ −2 for any i. Hence
deg(ψue(i)) ≥ −(n− 1)n. For the same reason deg(ψve(i·v)) ≥ −(n− 1)n. Then as deg( f (y)) ≥ 0,

we have deg(ψue(i)y
a(k)

i1
1 f (y)ψv) ≥ −2(n − 1)n + 2a(k)

i1
.

Define a(k)
α = mini∈Iα a(k)

i1
. We have

deg(ψue(i)y
a(k)

i1
1 f (y)ψv) ≥ −2(n − 1)n + 2a(k)

α ,

for any u, v and f . Therefore mΛ(k)

α ≥ 2a(k)
α − 2(n − 1)n.

Choose j ∈ Iα. It is obvious that Iα = { i ∈ In | i = j·v with v ∈ Sn }. Then |Iα| ≤ |Sn| < ∞.
Then a(k)

i1
→ ∞ as k → ∞ for any i ∈ Iα implies a(k)

α → ∞ as k → ∞ because Iα is finite.
Therefore mΛ(k)

α → ∞. �

4.2.4. Remark. The set Iα is finite is important in the proof of Proposition 4.2.3. If Iα is infinite,
a(k)

i1
→ ∞ as k → ∞ for all i ∈ Iα is not sufficient to imply that a(k)

α → ∞ as k → ∞.

4.3. A graded cellular basis of Rn

In this section we will prove the main result of this chapter. First we will introduce a special
kind of multicharge κ corresponding to a standard sequence (Λ(k)) which contains information
for the multicharges κΛ(k) corresponding to Λ(k). Then for any α ∈ Q+, we will find a graded
cellular basis B(Λ(k))

α of Rα corresponds to κ.

4.3.1. Definition. Suppose (Λ(k)) is a standard sequence. An inverse multicharge sequence for
(Λ(k)) is a infinite sequence κ = (. . . , κ3, κ2, κ1) such that for any k ≥ 1, if `k = l(Λ(k)), then
κΛ(k) = (κ`k , κ`k−1, . . . , κ2, κ1) is a multicharge corresponding to Λ(k).

4.3.2. Example Suppose e = 3. Using the standard sequence (Λ(k)) introduced in Exam-
ple 4.1.2, we can define a multicharge κ = (. . . , κ3, κ2, κ1) where κk ≡ k (mod e) for k ≥ 1.
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Therefore we can write κ = (. . . , 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1), we have

κΛ(1) = (1),
κΛ(2) = (2, 1),
κΛ(3) = (0, 2, 1),
κΛ(4) = (1, 0, 2, 1),
κΛ(5) = (2, 1, 0, 2, 1),

. . . . . . . . . . . . . . . . . .

These are all multicharges corresponding to Λ(k). ^

Fix a standard sequence (Λ(k)) and an inverse multicharge sequence κ for (Λ(k)). An affine
multipartition of n is an ordered sequence λ̂ = (. . . , λ(2), λ(1)) of partitions such that

∑∞
i=1 |λ

(i)| =

n. Let Pκ
n be the set of all affine multipartitions of n. We define young diagram [λ̂] and

standard affine tableau ŝ for affine multipartitions in the same way as for multipartitions. Let
Std(λ̂) be the set of all standard affine tableaux of shape λ̂.

We define the level of λ̂ to be l(λ̂) = ` if λ(`) , ∅ and λ(i) = ∅ for i > `. For any `
define a mapping p` : Pκ

n −→PΛ
n , where (κ`, κ`−1, . . . , κ1) is a multicharge for Λ, sending λ̂ =

(. . . , λ(2), λ(1)) to λ = (λ(`), λ(`−1), . . . , λ(2), λ(1)). In order to simplify the notation, suppose l(λ̂) =

`, we write λ = p`(λ̂). Then we can define a mapping t : Std(λ̂)−→Std(λ) in the obvious way.
It is obvious that t is a bijection. Again we will write s instead of t(ŝ) in order to simplify the
notation. Define the degree of each standard affine tableau to be deg(ŝ) = deg(s) and the residue
sequence of the affine tableau res(ŝ) = res(s).

We extend dominance ordering D and lexicographic ordering ≥ to Pκ
n . By defining λ̂ D µ̂ if

l(λ̂) > l(µ̂) or l(λ̂) = l(µ̂) and λ D µ and λ̂ B µ̂ if λ̂ D µ̂ and λ̂ , µ̂ for λ̂, µ̂ ∈Pκ
n . We define ≥ and

> in a similar way.

4.3.3. Example Suppose λ̂ = (. . . |0|0|0|4, 3, 1|2, 1|3, 3). Then λ = (4, 3, 1|2, 1|3, 3) and

ŝ =

(
. . .

∣∣∣∣∣∣ ∅
∣∣∣∣∣∣ ∅

∣∣∣∣∣∣ 1 8 13 16
7 12 15

10

∣∣∣∣∣∣ 2 6
3

∣∣∣∣∣∣ 4 5 11
9 14 17

)
∈ Std(λ̂), ,

and

s = t(ŝ) =

(
1 8 13 16
7 12 15

10

∣∣∣∣∣∣ 2 6
3

∣∣∣∣∣∣ 4 5 11
9 14 17

)
∈ Std(λ).

^

Suppose Λ ∈ P+ and λ = (λ(`), . . . , λ(1)) ∈PΛ
n . Then for any s, t ∈ Std(λ), in Definition 1.4.1

we have defined ψ̂st and ψst = ψ̂st + NΛ
n ∈ RΛ

n . For any standard affine tableau ŝ, t̂ we define
ψŝt̂ = ψ̂st. Also we can define ψ∗

ŝt̂
= ψt̂ŝ.

The next Lemma is straightforward by the definition of ψŝt̂ and deg(ŝ).

4.3.4. Lemma. Suppose λ̂ ∈ Pκ
n and ŝ, t̂ ∈ Std(λ̂). Then ψŝt̂ are homogeneous elements of Rn

and deg(ψŝt̂) = deg(ŝ) + deg(t̂).

4.3.5. Example Suppose κ = (. . . , 0, 2, 1, 0, 2, 1, 0, 2, 1) as in Example 4.3.2. For

ŝ =

(
. . .

∣∣∣∣∣∣ ∅
∣∣∣∣∣∣ ∅

∣∣∣∣∣∣ 1 2 3
∣∣∣∣∣∣ 4

5

∣∣∣∣∣∣ 6
)

t̂ =

(
. . .

∣∣∣∣∣∣ ∅
∣∣∣∣∣∣ ∅

∣∣∣∣∣∣ 1 2 4
∣∣∣∣∣∣ 3

6

∣∣∣∣∣∣ 5
)
,
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with

s = t(ŝ) =

(
1 2 3

∣∣∣∣∣∣ 4
5

∣∣∣∣∣∣ 6
)

t = t(t̂) =

(
1 2 4

∣∣∣∣∣∣ 3
6

∣∣∣∣∣∣ 5
)
.

Then ψŝt̂ = ψ̂st = e(012211)y2y2
3y5ψ5ψ3 ∈ Rn. ^

Fix α ∈ Q+, a standard sequence (Λ(k)) and an inverse multicharge sequence κ corresponds
to (Λ(k)). We define a set of homogeneous elements of Rα,

B(Λ(k))
α = {ψŝt̂ | λ̂ ∈Pκ

n , ŝ, t̂ ∈ Std(λ̂), res(t̂) ∈ Iα } .

Note that by definition B(Λ(k))
α depends on the choice of κ and hence (Λ(k)). Remarkably, the

main results of this chapter are true for any inverse multicharge sequence corresponds to (Λ(k)).

4.3.6. Proposition. The set B(Λ(k))
α is a homogeneous basis of Rα.

Proof. By Lemma 4.3.4, all elements of B(Λ(k))
α are homogeneous. So we only have to prove

that B(Λ(k))
α is a basis of Rα. First of all we show that B(Λ(k))

α spans Rα.
Given any r ∈ Rα, we can write r as a linear combination of homogeneous elements, i.e.

r =
∑

i∈N ciri, where ci ∈ Z, deg(ri) = i and there are only finite many i ∈ N with ci , 0. It is
enough to prove that any homogeneous element r ∈ Rα is a linear combination of B(Λ(k))

α .
For any Λ < Λ′, it is obvious that NΛ′

α ⊆ NΛ
α . Moreover, NΛ′

α is a Rα-ideal of NΛ
α . Hence we

can define an infinite filtration

Rα > NΛ(1)

α > NΛ(2)

α > NΛ(3)

α > . . . .

By Proposition 4.2.3, limk→∞mΛ(k)

α = ∞, so if r ∈ Rα is homogeneous then there exists an
integer k(r) such that mΛ(k)

α > deg(r) whenever k > k(r). Fix k > k(r) and hence r < NΛ(k)

α .
By Proposition 4.1.5, choosing a multicharge κ corresponding to Λ, RΛ

α � Rα/NΛ
α has a ho-

mogeneous basis {ψst | λ ∈PΛ
n , s, t ∈ Std(λ), res(t) ∈ Iα }. Fix a multicharge (κ`k , κ`k−1 , . . . , κ2, κ1)

corresponding Λ(k). For any homogeneous element r ∈ Rα, we can find cst ∈ Z with res(t) ∈ Iα

such that

r + NΛ(k)

α =
∑
s,t

cstψst =
∑
s,t

cstψ̂st + NΛ(k)

α =
∑
ŝ,t̂

cstψŝt̂ + NΛ(k)

α

⇒ r −
∑
ŝ,t̂

cstψŝt̂ ∈ NΛ(k)

α .

But as r is a homogeneous element which is not in NΛ(k)

α , we must have r −
∑

ŝ,t̂ cstψŝt̂ = 0,
i.e. r =

∑
ŝ,t̂ cstψŝt̂ with res(t̂) = res(t) ∈ Iα. This shows that r belongs to the span of B(Λ(k))

α .
Hence Rα is spanned by B(Λ(k))

α .
Next we will prove that B(Λ(k))

α is linearly independent. Suppose S α is a finite subset of
B(Λ(k))

α . Write mS α
= max { deg(ψŝt̂) | ψŝt̂ ∈ S α }. By Proposition 4.2.3 we can find some k such

that mΛ(k)

α > mS α
. Hence ψŝt̂ < NΛ(k)

α for any ψŝt̂ ∈ S α. This means that for any ψŝt̂ ∈ S α,
ψst ∈ RΛ(k)

α is nonzero. As by the definition, {ψst | ψŝt̂ ∈ S α } is a subset of the basis of RΛ(k)

α .
We have

∑
ψŝt̂∈S α

cŝt̂ψŝt̂ ∈ NΛ(k)

α if and only if
∑
ψŝt̂∈S α

cŝt̂ψst = 0 if and only if all cŝt̂ = 0. But
ψŝt̂ < NΛ(k)

α for any ψŝt̂ ∈ S α, the above result yields that
∑
ψŝt̂∈S α

cŝt̂ψŝt̂ = 0 if and only if cŝt̂ = 0.

This shows that B(Λ(k))
α is linearly independent. Hence B(Λ(k))

α is a basis of Rα. �

Notice that in the definition of B(Λ(k))
α , it is well-defined for any inverse multicharge sequence

κ corresponds to (Λ(k)). Hence for any weight Λ with ` = l(Λ), by the definition of the standard
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sequence, we can set Λ(1) = Λ. Therefore, we obtain a subset of B(Λ(k))
α :

B(Λ(k))
Λ

= {ψŝt̂ | λ̂ ∈Pκ
n with l(λ̂) ≤ `, ŝ, t̂ ∈ Std(λ̂), res(t̂) ∈ Iα } .

4.3.7. Corollary. Suppose Λ is a weight with level ` and (Λ(k)) is a standard sequence with
Λ(1) = Λ. Then

B(Λ(k))
α \B(Λ(k))

Λ
= {ψŝt̂ | λ̂ ∈Pκ

n with l(λ̂) > ` = l(Λ), ŝ, t̂ ∈ Std(λ̂), res(t̂) ∈ Iα }

is a basis of NΛ
α .

Proof. By Proposition 4.1.5, RΛ
α has a basis {ψst | λ ∈PΛ

n , s, t ∈ Std(λ), res(t) ∈ Iα }. It is easy
to see that when Λ(1) = Λ,

{ψst | λ ∈PΛ
n , s, t ∈ Std(λ), res(t) ∈ Iα } = {ψst = ψŝt̂ + NΛ

n | ψŝt̂ ∈ B(Λ(k))
Λ
} .

So for ψŝt̂ ∈ B(Λ(k))
Λ

, we must have ψŝt̂ < NΛ
α .

Now suppose ψŝt̂ ∈ B(Λ(k))
α \B(Λ(k))

Λ
. Then ŝ, t̂ ∈ Std(λ̂) with l(λ̂) > `. By the definition it is

obvious that ψŝt̂ ∈ NΛ
α when Λ(1) = Λ. Then NΛ

α is spanned by B(Λ(k))
n \B(Λ(k))

Λ
. B(Λ(k))

α is a basis
implies the linearly independence of B(Λ(k))

α \B(Λ(k))
Λ

. So B(Λ(k))
α \B(Λ(k))

Λ
is a basis of NΛ

α . �

Recall for any ŝ, t̂ ∈ Std(λ̂) with λ̂ ∈ Pκ
n , we define ψ∗

ŝt̂
= ψt̂ŝ. By Proposition 4.3.6, ∗ can

be defined to be a linear bijection from Rα to Rα. The next Corollary is straightforward by
Corollary 4.3.7.

4.3.8. Corollary. Suppose ∗ : Rα −→ Rα is defined as above. Then it can be restricted to a
linear bijection ∗ : NΛ

α −→NΛ
α .

Now we can prove the main result of this chapter.

4.3.9. Proposition. The set B(Λ(k))
α is a graded cellular basis of Rα.

Proof. Recall Definition 1.2.1 gives the definition of graded cellular basis. Proposition 4.3.6
shows that B(Λ(k))

α is a homogeneous basis of Rα. To prove the Theorem we need to establish
properties 1.2.1(b) and 1.2.1(c) of B(Λ(k))

α .
Suppose a is an element of Rα and ψŝt̂ ∈ B(Λ(k))

α with ŝ, t̂ ∈ Std(λ̂). We can write a =∑
i∈N ciai where ci ∈ Z and ai are homogeneous elements in Rα with deg(ai) = i. Define

d1 = deg(ψŝt̂) and d2 = max{i | ci , 0}. By Proposition 4.2.3 we can find some k such that
mΛ(k)

α > max{d1, d2, d1 + d2}. This means that ψŝt̂, a and ψŝt̂a are not elements of NΛ(k)

α . This
means that ψst = ψŝt̂ + NΛ(k)

α , a + NΛ(k)

α and ψŝt̂a + NΛ(k)

α are nonzero elements of RΛ(k)

α . By
Proposition 4.1.5 and because t is a bijection,

ψst(a + NΛ(k)

α ) = (ψŝt̂ + NΛ(k)

α )(a + NΛ(k)

α ) =
∑

v∈Std(λ)

csvψsv +
∑

u,v∈Std(µ)
µBλ

cuvψuv

⇒ ψŝt̂a + NΛ(k)

α =
∑

v̂∈Std(λ̂)

cŝv̂ψŝv̂ +
∑

û,v̂∈Std(µ̂)
µ̂Bλ̂

cûv̂ψûv̂ + NΛ(k)

α

⇒ ψŝt̂a − (
∑

v̂∈Std(λ̂)

cŝv̂ψŝv̂ +
∑

û,v̂∈Std(µ̂)
µ̂Bλ̂

cûv̂ψûv̂) ∈ NΛ(k)

α .
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Since the left hand side of the above equation is homogeneous to d1 + d2 and mΛ(k)

α > d1 + d2,
we can see that

ψŝt̂a =
∑

v̂∈Std(λ̂)

cŝv̂ψŝv̂ +
∑

û,v̂∈Std(µ̂)
µ̂Bλ̂

cûv̂ψûv̂.

which shows that B(Λ(k))
α satisfies 1.2.1(b).

For 1.2.1(c), choose arbitrary ψŝt̂, ψûv̂ ∈ B(Λ(k))
α . Suppose deg(ψŝt̂) = k1 and deg(ψûv̂) =

d2. By Proposition 4.2.3 we can choose k such that mΛ(k)

α > max{k1, k2, k1 + k2}. Then by
Corollary 4.3.8,

(ψstψuv)∗ = ((ψŝt̂ + NΛ(k)

α )(ψûv̂ + NΛ(k)

α ))∗ = (ψŝt̂ψûv̂ + NΛ(k)

α )∗ = (ψŝt̂ψûv̂)∗ + NΛ(k)

α ,

ψvuψts = (ψv̂û + NΛ(k)

α )(ψt̂ŝ + NΛ(k)

α ) = ψv̂ûψt̂ŝ + NΛ(k)

α ,

which implies that (ψŝt̂ψûv̂)∗−ψv̂ûψt̂ŝ = NΛ(k)

α . Then because mΛ(k)

α > k1+k2, (ψŝt̂ψûv̂)∗−ψv̂ûψt̂ŝ = 0,
i.e. (ψŝt̂ψûv̂)∗ = ψ∗ûv̂ψ

∗

t̂ŝ
. Because ∗ is a linear bijection and B(Λ(k))

α is a basis of Rα, this shows that
∗ : Rα−→Rα is an anti-isomorphism. Hence ∗ satisfies 1.2.1(c). This completes the proof. �

Combining the above two Propositions and Corollary 4.3.7 we can get the following results.

4.3.10. Theorem. For any standard sequence (Λ(k)), the set

B(Λ(k))
n = {ψŝt̂ | λ̂ ∈Pκ

n , ŝ, t̂ ∈ Std(λ̂) }

is a graded cellular basis of Rn.

Proof. By definition we have B(Λ(k))
n =

⊕
α∈Q+

B(Λ(k))
α and Rn =

⊕
α∈Q+

Rα. By the relations of
Rn we can see that Rα are subalgebras. The Theorem follows by Proposition 4.3.9 straightfor-
ward. �

4.3.11. Corollary. Suppose Λ is a weight with level ` and (Λ(k)) is a standard sequence with
Λ(1) = Λ. Then

{ψŝt̂ | λ̂ ∈Pκ
n with l(λ̂) > ` = l(Λ), ŝ, t̂ ∈ Std(λ̂) }

is a basis of NΛ
n .

4.4. Graded simple Rn-modules

Theorem 4.3.10 gives a graded cellular basis of Rn. Graham and Lehrer [7] described a
complete set of irreducible representations of finite dimensional cellular algebra, however, their
results do not apply to Rn because it is an infinite dimensional algebra. In this section we
use Graham and Lehrer’s results to construct a complete set of graded simple Rn-modules. The
graded simple Rn-modules have been desccribed by Brundan and Kleshchev [4, Theorem 5.19].
See Remark 4.4.15 for more detials.

First we need to state some properties of the simple Rn-modules. We start by showing that
the graded dimension of an simple Rn-module is bounded below.

4.4.1. Lemma. Suppose r ∈ Rn is a homogeneous element. Then deg(r) ≥ −n(n − 1).

Proof. By (1.4.7) we have the following basis of Rn:

{ ê(i)ŷ`1
1 ŷ`2

2 . . . ŷ
`n
n ψ̂w | i ∈ In,w ∈ Sn, `1, `2, . . . , `n ≥ 0 } .

If i ∈ In, w ∈ Sn and `1, `2, . . . , `n ≥ 0, then

deg(ê(i)ŷ`1
1 ŷ`2

2 . . . ŷ
`n
n ψ̂w) ≥ deg(ê(i)ŷ`1

1 ŷ`2
2 . . . ŷ

`n
n ) + deg(ê(i)ψ̂w)

= 2(`1 + `2 + . . . + `n) + deg(ê(i)ψ̂w)
≥ deg(ê(i)ψ̂w).
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As w ∈ Sn, we have l(w) ≤ n(n−1)
2 and by definition, ê(i)ψ̂r ≥ −2 for any r and i ∈ In.

Therefore
deg(ê(i)ψ̂w) ≥ −2 ×

n(n − 1)
2

= −n(n − 1).

Hence deg(ê(i)ŷ`1
1 ŷ`2

2 . . . ŷ
`n
n ψ̂w) ≥ −n(n − 1). This completes the proof. �

Recall that for |α| =
∑

i∈I ai and êα =
∑

i∈Iα ê(i) ∈ Rn.

4.4.2. Lemma. Suppose S is a simple Rn-module. Then there exists α ∈ Q+ with |α| = n such
that for any β ∈ Q+ with |β| = n, êβS = δαβS .

Proof. Suppose S is a simple Rn-module. Because 1 =
∑

j∈In ê(j) =
∑
β∈Q+

|β|=n
êβ, we can write

S =
⊕

β∈Q+

|β|=n
êβS . Suppose êαS , 0 for some α ∈ Q+. Choose any nonzero element s ∈ S and

β ∈ Q+ with β , α. By Lemma 4.1.4, êαRnêβ = 0. So we must have êβ·s = 0. Hence êβS = 0.
Therefore S =

⊕
β∈Q+

|β|=n
êβS = êαS . This completes the proof. �

It is well-known that the irreducible representations of the affine Hecke algebra are finite
dimensional as, by Bernstein, the affine Hecke algebra is finite dimensional over its centre.
See for example, Proposition 4.1 and Corollary 4.2 of Grojnowski [8], or Proposition 2.12 of
Khovanov-Lauda [13]. The next Proposition gives a different approach.

4.4.3. Proposition. Suppose S is a graded simple Rn-module and α ∈ Q+ is such that êβS =

δαβS for β ∈ Q+. If Λ ∈ P+ with mΛ
α > n(n − 1), then S is isomorphic to a graded simple

RΛ
n -module.

Proof. By Lemma 4.4.2 we can find α ∈ Q+ such that êβS = δαβS for β ∈ Q+. Then we
choose an arbitrary nonzero homogeneous element s ∈ S and suppose deg(s) = d. Now for any
nonzero homogeneous element t ∈ S , because S is simple, we can find a homogeneous element
a ∈ Rα such that t = a·s. Therefore

deg(t) = deg(a·s) = deg(a) + deg(s) ≥ d − n(n − 1)

where by Lemma 4.4.1 we have deg(a) ≥ −n(n − 1). So for any homogeneous nonzero element
t ∈ S , we have

(4.4.4) deg(t) ≥ d − n(n − 1).

Similarly, since for any nonzero homogeneous element t ∈ Rn we can find homogeneous
element a ∈ Rα such that s = a·t, we have

(4.4.5) deg(t) ≤ d + n(n − 1).

Combining (4.4.4) and (4.4.5), we have | deg(s) − deg(t)| ≤ n(n − 1) for any nonzero homo-
geneous element t ∈ S . Because s is chosen arbitrarily, we have

(4.4.6) | deg(s) − deg(t)| ≤ n(n − 1)

for any nonzero homogeneous elements s, t ∈ S .
Suppose Λ ∈ P+ with mΛ

α > n(n − 1). For any homogeneous element a ∈ NΛ
α and t ∈ S , we

have a·t = 0 because deg(a·t) − deg(t) = deg(a) > n(n − 1) and (4.4.6).
For any s ∈ S , we can define a map f : Rn−→S by sending a to a·s. It is a homomorphism

and it is obvious that NΛ
α ⊆ ker f . If β ∈ Q+ and β , α, then by Lemma 4.4.2 we have êβ·s = 0.

Therefore NΛ
β ⊆ ker f . Hence NΛ

n ⊆ ker f . Therefore we can consider S as a simple Rn/NΛ
n -

module, i.e. RΛ
n -module. This completes the proof. �

4.4.7. Corollary. Suppose S is a simple graded Rn-module. Then S is finite-dimensional.
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Building on Ariki’s [1] work in the ungraded case, Hu and Mathas [9] constructed all graded
simple RΛ

n -modules in the sense of Graham-Lehrer [7]. They proved that, up to shift, graded
simple RΛ

n -modules are labeled by the Kleshchev multipartitions of n, which were introduced
by Ariki and Mathas [2]. Readers may also refer to Brundan and Kleshchev [4, (3.27)] (where
they are called restricted multipartitions).

Suppose λ = (λ(1), λ(2), . . . , λ(`)) ∈ PΛ
n and we consider the Young diagram [λ]. Let γ =

(r, c, l) be a node in the Young diagram with residue i, i.e. i ≡ r − c + κl (mod e). Then γ is
an addable i-node if γ < [λ] and [λ] ∪ {γ} is the Young diagram of a multipartition, and γ is a
removable i-node if γ ∈ [λ] and [λ]\{γ} is the Young diagram of a multipartition.

For each λ ∈ PΛ
n , we read all addable and removable i-nodes in the following order: we

start with the first row of λ(1), and then read rows in λ(1) downward. We then read the first row
of λ(2), and repeat the same procedure, until we finish reading all rows of λ. We write A for an
addable i-node, and R for a removable i-node. Hence we get a sequence of A and R. We then
delete RA as many as possible. For example, if we have a sequence RARARRAAARRAR, the
resulting sequence will be − − − − − − − − AR − −R. The node corresponding to the leftmost R
is the good i-node.

The Kleshchev multipartition can then be defined recursively as follows.

4.4.8. Definition. [1, Definition 2.3] We declare that ∅ is Kelshchev. Assume that we have
already defined the set of Kleshchev multipartitions up to size n − 1. Let λ be a multipartition
of n. We say that λ is a Kleshchev multipartition if there is a good node γ in [λ] such that if
[µ] = [λ]\{γ} and µ is a Kleshchev multipartition.

Let PΛ
0 be the set of Kleshchev multipartitions in PΛ

n . Let S λ be the cell module of RΛ
n (it

is called the Specht module in RΛ
n ), which was introduced in Section 1.2, and Dλ = S λ/rad S λ.

By Hu-Mathas [9, Corollary 5.11] we can give a set of complete non-isomorphic graded simple
RΛ

n -modules. Brundan and Kleshchev [4, Theorem 4.11] gives the same classification.

4.4.9. Theorem. The set
{Dλ〈k〉 | λ ∈PΛ

0 , k ∈ Z }
is a complete set of pairwise non-isomorphic graded simple RΛ

n -modules.

We can consider S λ and Dλ〈k〉 as Rn-modules. The actions of ê(i), ŷr and ψ̂s on S λ and
Dλ〈k〉 are the same as the actions of e(i), yr and ψs. Therefore Dλ〈k〉 is also a simple Rn-module.
Hence we can define a set of graded simple Rn-modules similar as in Theorem 4.4.9.

The next Lemma is straightforward by the definition of Dλ.

4.4.10. Lemma. Suppose λ, µ ∈PΛ
n . Then Dλ � Dµ as RΛ

n -modules if and only if Dλ � Dµ as
Rn-modules.

Now we can classify all graded simple Rn-modules. Following the process in Section 1.2,
for each λ̂ ∈ Pκ

n we can define the cell module S λ̂ of Rn(which is called the Specht module
as well), associated with a bilinear form 〈·, ·〉. Then we can define rad S λ̂ and hence a graded
simple module Dλ̂ = S λ̂/rad S λ̂.

4.4.11. Lemma. Suppose λ̂ ∈ Pκ
n and µ = pk(λ̂) for some k ≥ l(λ̂). Then S µ � S λ̂ as Rn-

modules.

Proof. It is trivial by the definition of Specht modules in Rn and RΛ
n . �

The next Corollary is straightforward by Lemma 4.4.11.

4.4.12. Corollary. Suppose λ̂ ∈ Pκ
n and µ = pk(λ̂) for some k ≥ l(λ̂). Then Dµ � Dλ̂ as

Rn-modules.
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Hence we can prove the following Lemma.

4.4.13. Lemma. Suppose λ̂, µ̂ ∈Pκ
n . Then Dλ̂ � Dµ̂ if and only if λ̂ = µ̂.

Proof. The if part is trivial. Now suppose Dλ̂ � Dµ̂. Choose k > max{l(λ̂), l(µ̂)} and set
ν = pk(λ̂) and σ = pk(µ̂). Then by Corollary 4.4.12 we have Dν � Dσ as Rn-modules. Then
Theorem 4.4.9 and Lemma 4.4.10 implies ν = σ. Therefore by the definition of k we have
λ̂ = µ̂. This completes the proof. �

Now we extend Kleshchev multipartitions to affine multipartitions. Define λ̂ ∈Pκ
n to be an

affine Kleshchev multipartition if λ is a Kleshchev multipartition and Pκ
0 as the set of all affine

Kleshchev multipartitions in Pκ
n . Hence we can give a complete set of pairwise non-isomorphic

graded simple Rn-modules.

4.4.14. Theorem. The set
{Dλ̂〈k〉 | λ̂ ∈Pκ

0 , k ∈ Z }
is a complete set of pairwise non-isomorphic graded simple Rn-modules.

Proof. By the definition of (affine) Kleshchev multipartitions, [9, Corollary 5.11] and Corol-
lary 4.4.12, Dλ̂〈k〉 � Dλ〈k〉 , 0 if and only if λ̂ ∈Pκ

0 .
Suppose S is a graded simple Rn-module. By Lemma 4.4.2 we can find α ∈ Q+ such that

êβS = δαβS for β ∈ Q+. Then by Proposition 4.2.3 we can choose i such that mΛ(i)

α > n(n − 1)
and hence by Proposition 4.4.3, S is isomorphic to a graded simple RΛ(i)

n -module. Therefore by
Theorem 4.4.9 we can find some µ ∈ PΛ(i)

n and k ∈ Z such that S � Dµ〈k〉 as RΛ(i)

n -modules,
and hence as Rn-modules. Suppose l(µ) = `. We can choose λ̂ ∈ Pκ

n such that p`(λ̂) = µ with
l(λ̂) ≤ `. By Corollary 4.4.12 we have Dλ̂ � Dµ as Rn-modules. Therefore S � Dλ̂〈k〉. So

{Dλ̂〈k〉 | λ̂ ∈Pκ
0 , k ∈ Z }

is a complete set of graded simple Rn-modules.
By Lemma 4.4.13, the set {Dλ̂〈k〉 | λ̂ ∈Pκ

0 , k ∈ Z } is a set of pairwise non-isomorphic
graded Rn-modules. This completes the proof. �

4.4.15. Remark. Ariki-Mathas [2] showed that the simple Hn-modules are indexed by aperiodic
multisegments. Khovanov and Lauda [13, 12] also gives a classification of all graded simple
Rn-modules of arbitrary type. Interested readers may also refer to [15], [4], [16], [19], [27], [11]
and [22]. As far as we are aware the construction and classification in Theorem 4.4.14 is new.



Chapter 5

Idempotents and Jucys-Murphy Elements

In this chapter we will give an explicit expression for the KLR idempotent e(i) using the
generators of cyclotomic Hecke algebras HΛ

n when e > 0 and p > 0, and show the periodic
properties of Jucys-Murphy elements xr and Xr in HΛ

n . The main idea is using the nilpotency of
yr’s in cyclotomic KLR algebras. Recall that HΛ

n can either be a degenerate or non-degenerate
Hecke algebra. We will work with these cases separately in this chapter.

5.1. Explicit expression of e(i)

Recall the cyclotomic Hecke algebras HΛ
n introduced in (1.2.7). In this section we will

introduce the detailed definition of e(i) in HΛ
n .

We can define a set of pairwise orthogonal idempotents { e(i) | i ∈ In } for both degenerate
and non-degenerate cases. Brundan and Kleshchev [3] defined e(i) of RΛ

n in HΛ
n in the sense of

RΛ
n � HΛ

n . Suppose M is a finite dimensional HΛ
n -module. By Kleshchev [17, Lemma 7.1], the

eigenvalues of each xr or Xr on M belongs to I. So M =
⊕

i∈Id Mi of its weight space

Mi = {v ∈ M | (xr − qir )
Nv = 0 for all r = 1, . . . , d and N � 0},

where qir is introduced in (1.2.6). Then we deduce that there is a system { e(i) | i ∈ In } such that
e(i)M = Mi.

Murphy [23, (1,2)] defined a complete set of primitive orthogonal idempotents in sym-
metric groups and Mahtas [21, Definition 3.1] generalized this result to the degenerate and
non-degenerate cyclotomic Hecke algebras.

Hu and Mathas [9, Lemma 4.1] proves that the idempotents e(i) in HΛ
n is equivalent to the

primitive idempotents defined by Mathas in HΛ
n . Murphy’s approach gives an explicit formula

for the idempotents e(i). Unfortunatesly, it is not very efficient for actual calculations. Recall
e and p are parameters of HΛ

n defined in Section 1.2. We call p the characteristic of HΛ
n and

e the quantum characteristic of HΛ
n . In this section we will give a more explicit expression

of e(i) in degenerate and non-degenerate cyclotomic Hecke algebras using xr or Xr when p > 0
and e > 0.

In the rest of this chapter we fix p > 0 and e > 0. We have the following well-known facts.

5.1.1. Lemma. Suppose Fp is a field with char Fp = p > 0 and r1, r2 ∈ HΛ
n . For any non-

negative integer k we always have (r1 − r2)pk
= rpk

1 − rpk

2 .

5.1.2. Remark. Notice the above Lemma is a well-known result and will be applied without
mention in this chapter.

5.1.3. Lemma. Suppose p and e are characteristic and quantum characteristic of non-degenerate
HΛ

n with e, p > 0. Then gcd(e, p) = 1. Moreover, we can find l such that pl ≡ 1 (mod e).

Proof. In non-degenerate case, gcd(e, p) = 1 is well-known. So by Chinese Remainder Theo-
rem we can find a, b ∈ Z such that ap + be = 1. Now consider the sequence p, p2, p3, p4 . . ..
We can find k1, k2 such that pk1 ≡ pk2 (mod e). Choose k2 such that k2 − k1 > k1. Hence write

79
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l = k2−k1 and pl ≡ s (mod e) where 0 ≤ s ≤ e−1. So we have p2l ≡ pl (mod e) which implies
s2 ≡ s (mod e). So we can write s2 − s = ke for some k ∈ Z. So

s2 − s = ke ⇒ as(s − 1) = ake ⇒ (1 − be)(s − 1) = ake ⇒ s − 1 = (b(s − 1) + ak)e

which implies e | s−1. But because 0 ≤ s ≤ e−1, we have s = 1. Therefore pl ≡ 1 (mod e). �

In the degenerate case we have e = p and in non-degenerate case we have gcd(e, p) = 1.
Fix a residue sequence i = (i1, i2, . . . , in). For any 1 ≤ r ≤ n and any j ∈ I with j , ir, choose
N � 0 and define Lir , j = 1 − ( qir−xr

qir−q j
)N in both degenerate and non-degenerate cases.

Notice that by the definition of e(i) given by Brundan and Kleshchev [3], for any j ∈ I and
1 ≤ r ≤ n, we have

(xr − q jr )
Ne(j) = 0

for N � 0.

5.1.4. Lemma. Suppose 1 ≤ r ≤ n and j = ( j1, j2, . . . , jn) ∈ In, for j ∈ I and N j � 0 we have

LN j

ir , j
e(j) =

e(j), if jr = ir,

0, if jr = j.

Proof. Suppose jr = ir. Because (xr − qir )
Ne(j) = (xr − q jr )

Ne(j) = 0 for N � 0, we have

Lir , je(j) = (1 − (
qir − xr

qir − q j
)N)e(j) = e(j) −

1
(qir − q j)N (qir − xr)Ne(j) = e(j).

Therefore LN j

ir , j
e(j) = LN j−1

ir , j
e(j) = . . . = Lir , je(j) = e(j).

Suppose jr = j. We have

Lir , j = 1 − (
qir − xr

qir − q j
)N

= −

N∑
k=1

(
qir − xr

qir − q j
)k +

N−1∑
k=0

(
qir − xr

qir − q j
)k

=
xr − qir

qir − q j

N−1∑
k=0

(
qir − xr

qir − q j
)k +

qir − q j

qir − q j

N−1∑
k=0

(
qir − xr

qir − q j
)k

= (xr − qir + qir − q j)
1

qir − q j

N−1∑
k=0

(
qir − xr

qir − q j
)k

= (
1

qir − q j

N−1∑
k=0

(
qir − xr

qir − q j
)k)(xr − q j).

Therefore for N j � 0,

LN j

ir , j
e(j) = (

1
qir − q j

N−1∑
k=0

(
qir − xr

qir − q j
)k)N j(xr − q j)N je(j) = 0

because when jr = j we have (xr − q j)N je(j) = 0, which completes the proof. �

Now we define Lr(i) =
∏

j∈I
j,ir

Lir , j. In the product, j ∈ I\{ir}, which is a finite product since

e > 0. So Lr(i) is well defined. We have the following Lemma.
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5.1.5. Lemma. Suppose 1 ≤ r ≤ n. We can choose Nr(i) � 0 such that

Lr(i)Nr(i) =
∑
j∈In

jr=ir

e(j).

Proof. By Lemma 5.1.4, for any j ∈ I with j , ir we can find N j large enough such that

LN j

ir , j
e(j) =

e(j), if jr = ir,

0, if jr = j.

Now choose Nr(i) ≥ max{N j | j ∈ I, j , ir}, which is finite since e > 0. Therefore Lr(i)Nr(i) =∏
j∈I
j,ir

LNr(i)
ir , j

. Hence for any e(j), if jr , ir,

(5.1.6) Lr(i)Nr(i)e(j) =
∏
j∈I
j,ir

LNr(i)
ir , j

e(j) = (
∏
j∈I

j,ir , jr

LNr(i)
ir , j

)LNr(i)
r, jr

e(j) = 0,

and if jr = ir,

(5.1.7) Lr(i)Nr(i)e(j) = e(j),

because for any j, LN j

ir , j
e(j) = e(j).

Therefore, because
∑

j∈In e(j) = 1, by (5.1.6) and (5.1.7),

Lr(i)Nr(i) = Lr(i)Nr(i)(
∑
j∈In

e(j)) =
∑
j∈In

Lr(i)Nr(i)e(j) =
∑
j∈In

jr=ir

Lr(i)Nr(i)e(j) =
∑
j∈In

jr=ir

e(j)

which completes the proof. �

As the idempotents e(j)’s are pairwise orthogonal, Lemma 5.1.5 immediately implies the
following.

5.1.8. Corollary. For any i ∈ In, we have

e(i) =

n∏
r=1

Lr(i)Nr(i).

The previous results are true in both the degenerate and non-degenerate cases. Notice that
when we define Lir , j = 1 − ( qir−xr

qir−q j
)N j and Lr(i)Nr(i), the only restriction is that N j and Nr(i) are

large enough. As we now show, by choosing specific values for N j and Nr(i), it is possible to
simplify the expression of Lr(i)Nr(i) even further and give a more explicit expression of e(i). We
emphasize the simplified expressions of Lr(i)Nr(i) are different for degenerate and non-degenerate
HΛ

n .
We start with the degenerate cyclotomic Hecke algebras. Recall that in this case e = p.

5.1.9. Proposition. Suppose q = 1. For any ir ∈ I there exists s � 0 such that∑
j∈In

jr=ir

e(j) =

1 − xps(1−p)
r , when ir = 0,

−
∑p−1

k=1
xkps

r
ikr
, when ir , 0.

Proof. By Lemma 5.1.5 the Proposition is equivalent to claim that

Lr(i)Nr(i) =

1 − xps(1−p)
r , when ir = 0,

−
∑p−1

k=1
xkps

r
ikr
, when ir , 0.

for s � 0.
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By the definition of Lr(i), because I = Z/pZ we have

Lr(i) =
∏
j∈I
j,ir

Lir , j =
∏
j∈I
j,ir

(1 − (
ir − xr

ir − j
)N j) =

p−1∏
j=1

(1 − (
ir − xr

j
)N j).

Take k � 0 and N j = pk. Hence because HΛ
n is defined over a field Fp of characteristic p,

we have jN j = j. And because p is a prime, we have

Lr(i) =

p−1∏
j=1

(1 − (
ir − xr

j
)N j) =

p−1∏
j=1

(1 −
(ir − xr)N j

j
) =

p−1∏
j=1

(1 − j·(ir − xr)N j) = 1 − (ir − xr)(p−1)N j .

Without loss of generality, choose Nr(i) = pl with l � 0. We have

Lr(i)Nr(i) = (1 − (ir − xr)(p−1)N j)Nr(i) = 1 − (ir − xr)(p−1)N jNr(i).

Setting s = k + l, we have N jNr(i) = pk+l = ps. Now we consider two cases, which are ir = 0
and ir , 0.

Suppose first ir = 0. We have

(5.1.10) Lr(i)Nr(i) = 1 − (ir − xr)(p−1)N jNr(i) = 1 − (−xr)(p−1)ps
= 1 − x(p−1)ps

r .

Suppose ir , 0. We have

(ir − xr)(p−1)N jNr(i) = (ir − xr)ps+1−ps
=

(ir − xr)ps+1

(ir − xr)ps

=
ir − xps+1

r

ir − xps

r

=
1 − ( xr

ir
)ps+1

1 − ( xr
ir

)ps

= 1 + (
xr

ir
)ps

+ (
xr

ir
)2ps

+ . . . + (
xr

ir
)(p−1)ps

= 1 +
xps

r

ir
+

x2ps

r

i2
r

+ . . . +
x(p−1)ps

r

ip−1
r

=

p−1∑
k=0

xkps

ik
r
.

Hence,

(5.1.11) Lr(i)Nr(i) = 1 − (ir − xr)(p−1)N jNr(i) = 1 −
p−1∑
k=0

xkps

ik
r

= −

p−1∑
k=1

xkps

ik
r
.

By combining (5.1.10) and (5.1.11), we complete the proof. �

Finally, by combining Corollary 5.1.8 and Proposition 5.1.9, we have an explicit expression
of e(i) for the degenerate cyclotomic Hecke algebras.

5.1.12. Theorem. Suppose i = (i1, i2, . . . , in) ∈ In and q = 1, then

e(i) =

n∏
r=1

Lr(i)Nr(i)

where

Lr(i)Nr(i) =

1 − xps(1−p)
r , when ir = 0,

−
∑p−1

k=1
xkps

r
ikr
, when ir , 0.

for s � 0.

We now give a similar expression for the non-degenerate cyclotomic Hecke algebras. First
we give two Lemmas which will be used later.
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5.1.13. Lemma. For any k ∈ Z with k . 0 (mod e), we have

1 + qk + q2k + . . . + q(e−1)k = 0.

Proof. By the definition, we have

1 + q + q2 + . . . + qe−1 = 0
⇒ (1 + q + q2 + . . . + qe−1)(1 − q) = 0
⇒ 1 − qe = 0
⇒ qe = 1
⇒ (qe)k = qke = (qk)e = 1
⇒ (qk)e − 1 = (1 + qk + q2k + . . . + q(e−1)k)(qk − 1) = 0.

Because k ∈ Z and k . 0 (mod e), we have qk − 1 , 0. Therefore we must have 1 + qk +

q2k + . . . + q(e−1)k = 0. �

5.1.14. Lemma. Suppose ir ∈ I and f (x) =
∏

j,ir (1 −
rir−x
rir−r j ) ∈ Fp[x] with r = qs for some

positive integer s . 0 (mod e) and q ∈ F×p . Then e−1 ∈ Fp and

f (x) = e−1(1 +
x
rir

+ (
x
rir

)2 + . . . + (
x
rir

)e−1).

Proof. By Lemma 5.1.3 we have gcd(e, p) = 1 and hence e−1 ∈ Fp. Define g(x) = e−1(1 + x
rir +

( x
rir )2 + . . .+ ( x

rir )e−1). We prove that f (x) = g(x) by first comparing their roots. It is obvious that
the roots of f (x) are all of the form r j with j ∈ I and j , ir. Then for any such r j,

g(r j) = e−1(1 + r j−ir + r2( j−ir) + . . . + r(e−1)( j−ir)) = e−1(1 + rk + r2k + . . . + r(e−1)k)

for k ≡ j − ir (mod e) and k , 0. Because r = qs and s . 0 (mod e), we must have sk . 0
(mod e). Therefore by Lemma 5.1.13 we have g(r j) = 0. Because f (x) and g(x) are both
polynomials of degree e − 1, they have e − 1 roots, which means that g(x) and f (x) have the
same roots. This yields that f (x) = kg(x) for some k ∈ Fp.

Now because f (rir ) = 1 = g(rir ), we have k = 1. Therefore f (x) = g(x), which completes
the proof. �

5.1.15. Proposition. Suppose q , 1. For any ir ∈ I, there exists s � 0 such that∑
j∈In

jr=ir

e(j) = e−1(1 +
Xps

r

qps·ir
+ (

Xps

r

qps·ir
)2 + . . . + (

Xps

r

qps·ir
)e−1).

Proof. By Lemma 5.1.5 the Proposition is equivalent to prove that

Lr(i)Nr(i) = e−1(1 +
Xps

r

qps·ir
+ (

Xps

r

qps·ir
)2 + . . . + (

Xps

r

qps·ir
)e−1).

By the definition of Lr(i), because I = Z/eZ, if N j,Nr(i) � 0 then we have

Lr(i)Nr(i) =
∏
j∈I
j,ir

(1 − (
qir − Xr

qir − q j )N j)Nr(i).



84 5. Idempotents and Jucys-Murphy Elements

Suppose N j = pk and Nr(i) = pl with k, l � 0. We have

Lr(i)Nr(i) =
∏
j,ir

(1 − (
qir − Xr

qir − q j )pk
)pl

=
∏
j,ir

(1 − (
qir − Xr

qir − q j )pk+l
)

=
∏
j,ir

(1 −
qpk+l·ir − Xpk+l

r

qpk+l·ir − qpk+l· j
)

=
∏
j,ir

(1 −
rir − Xps

r

rir − r j ),

where s = k + l and r = qps
∈ Fp. Notice that by Lemma 5.1.3, we have ps . 0 (mod e).

Now we set f (x) =
∏

j,ir (1 −
rir−x
rir−r j ) ∈ Fp[x]. By Lemma 5.1.14 we have

f (x) = e−1(1 +
x
rir

+ (
x
rir

)2 + . . . + (
x
rir

)e−1).

Therefore

Lr(i)N′ = f (Xps

r ) = e−1(1 +
Xps

r

rir
+ (

Xps

r

rir
)2 + . . . + (

Xps

r

rir
)e−1)

= e−1(1 +
Xps

r

qps·ir
+ (

Xps

r

qps·ir
)2 + . . . + (

Xps

r

qps·ir
)e−1)

which completes the proof. �

Finally we can get an explicit expression of e(i) for the non-degenerate HΛ
n using Proposi-

tion 5.1.15 and the orthogonality of e(i)’s.

5.1.16. Theorem. Suppose i = (i1, i2, . . . , in) ∈ In and q , 1, we have

e(i) = e−n
n∏

r=1

(1 +
Xps

r

qps·ir
+ (

Xps

r

qps·ir
)2 + . . . + (

Xps

r

qps·ir
)e−1)

for s � 0.

5.2. Periodic property of xr in degenerate case

In the degenerate cyclotomic Hecke algebra, when e = p > 0 the algebra is finite. We know
that dim HΛ

n = `nn!. Hence over Fp the algebra has p`nn! elements. Therefore, by choosing
k > p`nn!, for any r we must be able to find k1, k2 with 1 ≤ k1 < k2 ≤ k such that xk1

r = xk2
r .

Therefore for any r we can find integers dr and N such that for any N′ ≥ N, xN′
r = xN′+dr

r . We
define the period of xr to be the smallest positive integer dr such that xN

r = xN+dr
r for some N. In

this section we will give information on the period dr and the minimal N such that xN
r = xN+dr

r .
Recall that yr is the generator of RΛ

n . By Brundan and Kleshchev [3, (3.21)], yr =
∑

i∈In(xr −

ir)e(i) and by [3, Lemma 2.1], ys
r = 0 for s � 0.

5.2.1. Lemma. Suppose s is an integer. For any r, xps+1

r = xps

r if and only if yps

r = 0.

Proof. For any i ∈ I, we have

xps+1

r − xps

r = (xps+1

r − i) − (xps

r − i) = (xr − i)ps+1
− (xr − i)ps

.
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Suppose yps

r =
∑

i∈In(xr − ir)ps
e(i) = 0. Therefore for any i, (xr − ir)ps

e(i) = 0. Then for any
i ∈ In with ir = i we have

(xps+1

r − xps

r )e(i) = (xr − i)ps+1
e(i) − (xr − i)ps

e(i) = 0.

Then as
∑

i∈In e(i) = 1, we have

(xps+1

r − xps

r ) =
∑
i∈In

(xps+1

r − xps

r )e(i) = 0,

which shows that xps+1

r = xps

r .
Suppose yps

r =
∑

i∈In(xr−ir)ps
e(i) , 0, we must be able to find a i ∈ In such that (xr−ir)ps

e(i) ,
0. Assume

(xps+1

r − xps

r )e(i) = (xr − i)ps+1
e(i) − (xr − i)ps

e(i) = 0,

which means that yps+1

r e(i) = yps

r e(i) , 0. Because ps+1 > ps and yps

r e(i) , 0, we can find k where
yps+1+k

r e(i) = 0 and yps+k
r e(i) , 0. But yps+1+k

r e(i) = yk
ry

ps+1

r e(i) = yk
ry

ps

r e(i) = yps+k
r e(i) , 0, which

leads to contradiction. Therefore we must have (xps+1

r −xps

r )e(i) = (xr−i)ps+1
e(i)−(xr−i)ps

e(i) , 0,
which yields that xps+1

r , xps

r . �

Choose s � 0 such that ys
r = 0. By Lemma 5.2.1 we have xps

r = xps+1

r = xps+(p−1)ps

r . So the
period dr divides ps(p − 1). Then dr = pm or pm(p − 1) with m ≥ 0.

5.2.2. Lemma. Suppose dr is the period of xr. Then (p − 1) | dr.

Proof. When p = 2 there is nothing to prove. Hence we set p > 2 so that p is odd. Assume
that dr = pm for some m. Consider λ = (r − 1, 1n−r+1) and t = tλ. Let j = ( j1, j2, . . . , jn) = res(t),
it is easy to see that jr = e − 1 = p − 1. Now j is a residue sequence so that e(j) , 0 by
Corollary 3.6.3. So we must have

∑
i∈In

ir=p−1
e(i) , 0. Choose s � m. By Proposition 5.1.9,

Lr(j)Nr(j) = −
xps

r

p − 1
−

x2ps

r

(p − 1)2 − . . . −
x(p−1)ps

r

(p − 1)p−1

= xps

r − x2ps

r + x3ps

r − . . . − x(p−1)ps

r .

By assumption, because s � m, we have xps

r = x2ps

r = . . . = x(p−1)ps

r . Therefore

Lr(j)Nr(j) = xps

r − x2ps

r + x3ps

r − . . . − x(p−1)ps

r = (1 − 1 + 1 − . . . − 1)xps

r = 0.

But by Lemma 5.1.5 we have Lr(j)Nr(j) =
∑

ir=p−1 e(i) , 0, which leads to contradiction.
Therefore dr = pm(p − 1) and hence (p − 1)|dr. �

Now we know that dr = pm(p − 1) for some m. We can give a more specific value of m.
Define l to be the integer such that ypl

r = 0 and ypl−1

r , 0. First we introduce two Lemmas.

5.2.3. Lemma. Suppose f (x) ∈ Fp[x], h ∈ HΛ
n and e(i)h , 0. Then f (xr)e(i)h = 0 only if

f (ir) = 0.

Proof. We prove this Lemma by contradiction. Because Fp is a field, f (ir) = 0 only if (x −
ir) | f (x). Assume f (xr)e(i)h = 0. Suppose f (ir) , 0, we can write f (x) = (x − ir)g(x) + j with
j , 0. Set s � 0 such that (xr − ir)ps

e(i) = 0. Because f (xr)e(i)h = 0, we have

f ps
(xr)e(i)h = ((xr − ir)g(xr) + j)ps

e(i)h = gps
(xr)(xr − ir)ps

e(i)h + j·e(i)h = j·e(i)h , 0

because j , 0 and e(i)h , 0, which leads to contradiction. Therefore f (xr)e(i)h , 0 when
f (ir) , 0. This completes the proof. �
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5.2.4. Lemma. Suppose k ∈ Z and t ∈ Z. For any i ∈ I with i , 0, we have

xk − xk+pt(p−1) = f (x)(i − x)pt

with f (x) = xk

i (1 + xpt

i + ( xpt

i )2 + . . . + ( xpt

i )p−2).

Proof. Suppose i ∈ I and i , 0. We have

xk − xk+pt(p−1) = xk(1 − xpt(p−1)) = xk(1 − (
xpt

i
)p−1)

= xk(1 +
xpt

i
+ (

xpt

i
)2 + . . . + (

xpt

i
)p−2)(1 −

xpt

i
)

=
xk

i
(1 +

xpt

i
+ (

xpt

i
)2 + . . . + (

xpt

i
)p−2)(ipt

− xpt
)

=
xk

i
(1 +

xpt

i
+ (

xpt

i
)2 + . . . + (

xpt

i
)p−2)(i − x)pt

= f (x)(i − x)pt

with f (x) = xk

i (1 + xpt

i + ( xpt

i )2 + . . . + ( xpt

i )p−2). This completes the proof. �

5.2.5. Proposition. Suppse l is the smallest non-negative integer such that ypl

r = 0. Then the
period of xr is dr = pl(p − 1).

Proof. Suppose dr = pm(p − 1). By Lemma 5.2.1 we have xpl+1

r = xpl+pl(p−1)
r = xpl

r . Therefore
dr | pl(p − 1) which indicates that m ≤ l. Now take s � 0, by Lemma 5.2.4 we have

(xps

r − xps+pl−1(p−1)
r )e(i) = f (xr)e(i)(ir − xr)pl−1

where f (x) = xps

ir
(1+ xpl−1

ir
+( xpl−1

ir
)2+. . .+( xpl−1

ir
)p−2) ∈ Fp[x]. It is easy to see that f (ir) = p−1 , 0.

By the definition of l, e(i)(ir − xr)pl−1
, 0. Then by Lemma 5.2.3 we have

(xps

r − xps+pl−1(p−1)
r )e(i) = f (xr)e(i)(ir − xr)pl−1

, 0.

Therefore xps

r − xps+pl−1(p−1)
r , 0, i.e. xps

r , xps+pl−1(p−1)
r , which yields m ≥ l. This shows that

m = l and dr = pl(p − 1). �

Now we know that the period of xr is dr = pl(p − 1), and we still need to find the smallest
non-negative integer N such that xN

r = xN+dr
r .

5.2.6. Proposition. Suppose 1 ≤ r ≤ n and we can find a residue sequence i such that ir = 0.
If N is the smallest non-negative integer such that xN

r
∑

ir=0 e(i) = 0, then xN
r = xN+dr

r and
xN−1

r , xN−1+dr
r .

Proof. By the definition of N, we can find i with ir = 0 such that xN−1
r e(i) , 0 and xN

r e(i) = 0.
Suppose s � 0. Because dr ≥ 1 we have

(xN−1
r − xN−1+dr

r )e(i) = xN−1
r e(i) − xN−1+dr

r e(i) = xN−1
r e(i) , 0

which indicates that xN−1
r , xN−1+dr

r .
Next we will prove that xN

r = xN+dr
r . Suppose i ∈ In with ir = 0, then

(xN
r − xN+dr

r )e(i) = (1 − xdr
r )xN

r e(i) = 0

by the definition of N. Now suppose i ∈ In with ir , 0. By Proposition 5.2.5, dr = pl(p − 1)
where ypl

r = 0. So by Lemma 5.2.4,

(xN
r − xN+dr

r )e(i) = (xN
r − xN+(p−1)pl

r )e(i) = f (xr)e(i)(ir − xr)pl
= f (xr)e(i)(−yr)pl

= 0
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with f (x) ∈ Fp[x]. Therefore we have (xN
r − xN+dr

r )e(i) = 0 for any i ∈ In and hence xN
r = xN+dr

r .
This completes the proof. �

Notice that in Proposition 5.2.6 we require 1 ≤ r ≤ n such that we can find a residue
sequence i with ir = 0. If no such residue sequence exists we obtain a different result.

5.2.7. Proposition. Suppose 1 ≤ r ≤ n and for any residue sequence i we always have ir , 0.
Then xdr

r = 1.

Proof. By Proposition 5.2.5, dr = pl(p − 1) where ypl

r = 0. And for any i ∈ In, we have ir , 0.
Then by Lemma 5.2.4,

(1 − xdr
r )e(i) = (1 − xpl(p−1)

r )e(i) = f (xr)e(i)(ir − xr)pl
= f (xr)e(i)(−yr)pl

= 0,

which shows that xdr
r e(i) = e(i) for any i ∈ In. Hence xdr

r = 1. �

Finally we give the main Theorem of this section by combining Proposition 5.2.5, Proposi-
tion 5.2.6 and Proposition 5.2.7.

5.2.8. Theorem. In the degenerate cyclotomic Hecke algebras, suppose l is the smallest nonneg-
ative integer such that ypl

r = 0 and N is the smallest nonnegative integer such that xN
r
∑

ir=0 e(i) =

0. Then xk
r = xk+pm(p−1)

r if and only if m ≥ l and k ≥ N.

5.3. Periodic property of Xr in non-degenerate case

In non-degenerate cyclotomic Hecke algebras, when p > 0 the algebra is finite. So by the
same reason as degenerate case, Xr must have a periodic property. We define the period dr of
Xr similarly as in degenerate cases. In this section we will give an analogues result for the
non-degenerate case when e > 0.

Recall by Brundan and Kleshchev [3, (3.21)], yr =
∑

i∈In(1 − q−ir Xr)e(i) and by [3, Lemma
2.1], ys

r = 0 for s � 0. It is easy to imply that (Xr − qir )se(i) = 0 for s � 0. We will use this fact
without mention.

5.3.1. Lemma. Suppose s � 0 and 1 ≤ r ≤ n. We have Xeps

r = 1.

Proof. By Proposition 5.1.15, for any ir ∈ I, we have

(Xr − qir )ps
∑
j∈In

jr=ir

e(j) = (Xps

r − qps·ir )
∑
j∈In

jr=ir

e(j)

= e−1(Xps

r − qps·ir )(1 +
Xps

r

qps·ir
+ (

Xps

r

qps·ir
)2 + . . . + (

Xps

r

qps·ir
)e−1)

= e−1(
Xeps

r

q(e−1)ps·ir
− qps·ir ) = 0,

which leads to
Xeps

r

q(e−1)ps·ir
= qps·ir ⇒ Xeps

r = qeps·ir = 1

because qe = 1. �

Define dr to be the period of Xr. By Lemma 5.3.1 we have dr | eps. Therefore dr = epm with
m ≥ 0 or dr = pm with m ≥ 1. In the following Lemma we are going to give more information
about the form of dr.

5.3.2. Lemma. Suppose d1 is the period of X1. We have d1 = pm if Λ = `Λ0.
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Proof. By (1.2.7) we have (X1 − q0)` = (X1 − 1)` = 0. Choose s such that ps ≥ `, we have
(X1 − 1)ps

= Xps

1 − 1 = 0, which means Xps

1 = 1. Hence d1 | ps and therefore d1 = pm. �

5.3.3. Remark. When we set r = 1 and Λ = `Λ0, it means that e(i) = 0 if ir = i1 , 0. So
Lemma 5.3.2 is actually:

Suppose 1 ≤ r ≤ n and for any i ∈ In, e(i) = 0 if ir , 0. Then dr = pm.

because the only possible r and Λ for such condition is giving in Lemma 5.3.2.

5.3.4. Lemma. Suppose dr is the period of Xr. We have e | dr if r > 1 or r = 1 and Λ , `Λ0.

Proof. We prove the Lemma by contradiction. Assume that dr = pm. Choose ir ∈ I with ir , 0.
Because r > 1 or r = 1 and Λ , `Λ0 we must can find j ∈ In with jr = ir with e(j) , 0. Then∑

j∈In

jr=ir
e(j) , 0. Choose s � m. By Lemma 5.1.3, gcd(e, p) = 1. Then because ir , 0, ps·ir . 0

(mod e). Then by Lemma 5.1.13 and Proposition 5.1.15, we have∑
j∈In

jr=ir

e(j) = e−1(1 +
Xps

r

qps·ir
+ (

Xps

r

qps·ir
)2 + . . . + (

Xps

r

qps·ir
)e−1)

= e−1(1 +
1

qps·ir
+

1
q2ps·ir

+ . . . +
1

q(e−1)ps·ir
)Xps

r

=
e−1

q(e−1)ps·ir
(1 + qps·ir + (qps·ir )2 + . . . + (qps·ir )e−1)Xps

r = 0,

which leads to contradiction. Hence dr , pm and therefore e | dr. �

Now we know that dr = pm when r = 1 and Λ = `Λ0 and dr = epm otherwise. In the rest of
the section we will find the value of m. First we give the simpler case.

5.3.5. Lemma. Suppose s ≥ 0 and Λ = `Λ0. We have Xps

1 = 1 if and only if yps

1 = 0.

Proof. Suppose yps

1 = 0. For any i ∈ In,

yps

1 e(i) = (1 − X1)ps
e(i) = e(i) − Xps

1 e(i) = 0 ⇒ Xps

1 e(i) = e(i).

Therefore Xps

1 = 1.
Suppose yps

1 , 0. Then we can find i ∈ In with yps

1 e(i) , 0. So

yps

1 e(i) = (1 − X1)ps
e(i) = e(i) − Xps

1 e(i) , 0 ⇒ Xps

1 e(i) , e(i).

Therefore Xps

1 , 1. �

Now we consider the case when r , 1 or r = 1 and Λ , `Λ0.

5.3.6. Lemma. For any non-negative integer s, we can find k � s such that qpk
= qps

and
pk−s ≡ 1 (mod e) .

Proof. By Lemma 5.1.3, we can find l such that pl ≡ 1 (mod e). Because qe = 1, choose t � 0
and set k = s + tl, we have qpk

= qps+tl
= qps ptl

= (qptl
)ps

= qps
. Moreover, pk−s = ptl ≡ 1t

(mod e) ≡ 1 (mod e). This completes the proof. �

Now we are ready to give more information of dr.

5.3.7. Lemma. We have Xeps

r = 1 for some s only if yps

r = 0.
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Proof. Fix s such that Xeps

r = 1. By Lemma 5.3.6, we can find k � 0 such that qps+k
= qps

and
pk ≡ 1 (mod e). Therefore ps+k − ps = ps(pk − 1) and hence eps | ps(pk − 1). So Xps+k

r = Xps

r .
Then for any ir ∈ I, by Proposition 5.1.15, we have∑

j∈In

jr=ir

e(j) = e−1(1 +
Xps+k

r

qps+k ·ir
+ (

Xps+k

r

qps+k ·ir
)2 + . . . + (

Xps+k

r

qps+k ·ir
)e−1)

= e−1(1 +
Xps

r

qps·ir
+ (

Xps

r

qps·ir
)2 + . . . + (

Xps

r

qps·ir
)e−1).

Therefore,

(Xr − qir )ps
∑
j∈In

jr=ir

e(j) = e−1(Xr − qir )ps
(1 +

Xps

r

qps·ir
+ (

Xps

r

qps·ir
)2 + . . . + (

Xps

r

qps·ir
)e−1)

= e−1(Xps

r − qps·ir )(1 +
Xps

r

qps·ir
+ (

Xps

r

qps·ir
)2 + . . . + (

Xps

r

qps·ir
)e−1)

= e−1(
Xeps

r

q(e−1)ps·ir
− qps·ir ) = e−1(

1
q(e−1)ps·ir

− qps·ir ) = 0

because 1
q(e−1)ps ·ir = qps·ir . This means that yps

r
∑

j∈In

jr=ir
e(j) = (1 − q−ir Xr)ps ∑

j∈In

jr=ir
e(j) = 0 for any

ir ∈ I. Hence yps

r = 0. �

5.3.8. Lemma. Suppose yps

r = 0 for some s. Then we have Xeps

r = 1.

Proof. Fix s such that yps

r = 0. For any i ∈ In, by Lemma 5.3.6 we can choose k � s such that
qpk

= qps
. Then

(Xpk

r − Xps

r )e(i) = (Xpk

r − qps·ir − Xps

r + qps·ir )e(i)
= (Xpk

r − qpk ·ir )e(i) − (Xps

r − qps·ir )e(i)
= (Xr − qir )pk

e(i) − (Xr − qir )ps
e(i) = qpk ·ir (−yr)pk

e(i) − qps·ir (−yr)ps
e(i) = 0.

So (Xpk

r −Xps

r )e(i) = 0 for any i ∈ Im. Therefore we must have Xpk

r −Xps

r = 0 for some k � 0.
Hence

Xpk

r − Xps

r = Xps

r (Xpk−ps

r − 1) = 0 ⇒ Xpk−ps

r = 1,
which implies that dr | pk − ps. We know that dr = epm for some m and pk − ps = ps(pk−s − 1).
It is obvious that m ≤ s. Hence Xeps

r = 1. �

The next Corollary follows straightforward by combining Lemma 5.3.7 and Lemma 5.3.8.

5.3.9. Corollary. Suppose s ≥ 0, r = 1 and Λ , `Λ0. We have Xeps

r = 1 if and only if yps

r = 0.

Finally, combining all the results above, we have the final Theorem.

5.3.10. Theorem. In non-degenerate HΛ
n , we have Xdr

r = 1 with

dr =

pm, if r = 1 and Λ = `Λ0,
epm, otherwise.

if and only if ypm

r = 0.

Proof. The Theorem follows straightforward by Lemma 5.3.2, Lemma 5.3.4, Lemma 5.3.5 and
Corollary 5.3.9. �
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