Integral Basis Theorem of cyclotomic Khovanov-Lauda-Rouquier Algebras of type A

Ge Li

A thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Pure Mathematics
University of Sydney

Contents

Introduction 1
Chapter 1. Khovanov-Lauda-Rouquier Algebras 4
1.1. The cyclotomic Khovanov-Lauda-Rouquier algebras 4
1.2. The (graded) cellular algebras and the symmetric groups. 8
1.3. Tableaux combinatorics 10
1.4. Graded cellular basis of KLR algebras over a field. 13
Chapter 2. Integral Basis Theorem I 16
2.1. The base step of the induction. 16
2.2. The action of y_{r} on two-rowed partitions 20
2.3. Final part of y-problem 32
Chapter 3. Integral Basis Theorem II 39
3.1. Base case of induction. 39
3.2. Completion of the y-problem. 40
3.3. Properties of m_{λ} 42
3.4. Garnir tableaux. 44
3.5. Completion of the ψ-problem 60
3.6. Integral basis Theorem 67
Chapter 4. Basis of Affine KLR Algebras 69
4.1. Infinite sequence of weights and basis of $\mathscr{R}_{\alpha}^{\Lambda}$ 69
4.2. Minimum degree of N_{α}^{Λ}. 70
4.3. A graded cellular basis of \mathscr{R}_{n} 71
4.4. Graded simple \mathscr{R}_{n}-modules. 75
Chapter 5. Idempotents and Jucys-Murphy Elements 79
5.1. Explicit expression of $e(\mathbf{i})$ 79
5.2. Periodic property of x_{r} in degenerate case 84
5.3. Periodic property of X_{r} in non-degenerate case. 87
References. 90

Introduction

Khovanov and Lauda [13, 12] and Rouquier [25] have introduced a remarkable new family of algebras \mathscr{R}_{n}, the quiver Hecke algebras, for each oriented quiver, and they showed that it can categorify the positive part of the enveloping algebras of the corresponding quantum groups. The algebras \mathscr{R}_{n} are naturally \mathbb{Z}-graded. Varagnolo and Vasserot [26] proved that, under this categorification, the canonical basis corresponds to the image of the projective indecomposable modules of the Grothendieck rings of the quiver Hecke algebras when the Cartan matrix is symmetric.

The algebra \mathscr{R}_{n} is infinite dimensional and for every highest weight vector in the corresponding Kac-Moody algebra there is an associated finite dimensional 'cyclotomic quotient' $\mathscr{R}_{n}^{\Lambda}$ of \mathscr{R}_{n}. The cyclotomic quiver algebras $\mathscr{R}_{n}^{\Lambda}$ were originally defined by Khovanov and Lauda [13, 12] and Rouquier [25] who conjectured that these algebras should categorify the irreducible representations of the corresponding quantum group. Lauda and Vazirani [19] proved that, up to shift, the simple \mathscr{R}_{n}-modules are indexed by the vertices of the corresponding crystal graph, and Kang and Kashiwara [11] proved the full conjecture by showing that the images of the projective irreducible modules in the Grothendieck ring $\operatorname{Rep}\left(\mathscr{R}_{n}^{\Lambda}\right)$ correspond to the canonical basis of the corresponding highest weight module. Prior to this work, Brundan and Stropple [6] proved this conjecture in the special the case when Λ is a dominat weight of level 2 and Γ is the linear quiver and Brundan and Kleshchev [4] established the conjecture for all Λ when Γ is a quiver of type A.

Brundan and Kleshchev [3] proved that every degenerate and non-degenerate cyclotomic Hecke algebra H_{n}^{Λ} of type $G(r, 1, n)$ over a field is isomorphic to a cyclotomic quiver Hecke algebra $\mathscr{R}_{n}^{\Lambda}$ of type A. They did this by constructing an explicit isomorphisms between these two algebras.

The algebras $\mathscr{R}_{n}^{\Lambda}$ are defined by generators and relations and so these algebras are defined over any integral domain. Let Γ be the quiver of type A_{e}, for $e \in\{0,2,3,4, \ldots\}$. Hu and Mathas [9] defined a homogeneous basis $\left\{\psi_{\text {st }}\right\}$ of the cyclotomic quiver algebras $\mathscr{R}_{n}^{\Lambda}$ (see Theorem 1.4.5 below), and they showed that $\mathscr{R}_{n}^{\Lambda}$ is \mathbb{Z}-free whenever $e=0$ or e is invertible in the ground ring. They asked whether the algebra $\mathscr{R}_{n}^{\Lambda}$ is always \mathbb{Z}-free. Kleshchev-Mathas-Ram [14] defined \mathbb{Z}-free Specht modules for the cyclotomic KLR algebras of type A (and the affine KLR algebras of type A), but that the existence of these modules does not imply that the cyclotomic KLR algebras are torsion free. The main result of this thesis shows that this is always the case. More precisely, we prove the following.
0.0.1. Theorem. Let $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ be a cyclotomic Khovanov-Lauda-Rouquier algebra of type A over \mathbb{Z}, where Λ is a dominant weight of height ℓ. Then $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ is a graded cellular algebra, with respect to the dominance order, with homogeneous cellular basis $\left\{\psi_{\mathrm{st}} \mid \lambda \in \mathscr{P}_{n}^{\Lambda}\right.$ and $\left.\mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)\right\}$. In particular, $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ is \mathbb{Z}-free of rank $\ell^{n} n$!.

If \mathscr{O} is any integral domain then $\mathscr{R}_{n}^{\Lambda}(\mathscr{O}) \cong \mathscr{R}_{n}^{\Lambda}(\mathbb{Z}) \otimes_{\mathbb{Z}} \mathscr{O}$, so it follows that $\mathscr{R}_{n}^{\Lambda}(\mathscr{O})$ is free over \mathscr{O}.

The proof of our main theorem is long and technical, requiring a delicate multistage induction. Fortunately, by [9 , Theorem 5.14] we may assume that $e \neq 2$. Even though our arguments
should apply in this case, being able to assume that $e \neq 2$ dramatically simplifies our arguments because the quiver of type A_{e} is simply laced when $e \neq 2$.

The starting point for our arguments is the observation that the definition of Hu and Mathas’ the homogeneous elements $\psi_{\text {st }}$ makes sense over any ring. Consequently, the linearly independents elements $\left\{\psi_{\text {st }}\right\}$ span a \mathbb{Z}-free submodule R_{n}^{Λ} of $\mathscr{R}_{n}^{\Lambda}$. To prove our Main Theorem it is therefore enough to show that R_{n}^{Λ} is closed multiplication by the generators of $\mathscr{R}_{n}^{\Lambda}$ and that the identity element of $\mathscr{R}_{n}^{\Lambda}$ belongs to R_{n}^{Λ}.

The algebra $\mathscr{R}_{n}^{\Lambda}$ is generated by elements y_{r}, ψ_{s} and $e(\mathbf{i})$, where $1 \leq r \leq n, 1 \leq s<n$ and $\mathbf{i} \in(Z / e \mathbb{Z})^{n}$. These three classes of generators must all be treated separately. The cellular basis element $\psi_{\text {st }}$ is indexed by two standard λ-tableaux where λ is a multipartition of n; the definitions of these terms are recalled in Chapter 1. We argue by simultaneous induction on n, and on the lexicographic orderings on the set of multipartitions, to show that multiplication by the KLR generators always sends $\psi_{\text {st }}$ to a \mathbb{Z}-linear combination of terms ψ_{uv} which are larger in the lexicographic order. Multiplication by y_{r} is the hardest case, partly because once this case is understood it can be used to understand the action of ψ_{r} and $e(\mathbf{i})$ on the ψ-basis of $\mathscr{R}_{n}^{\Lambda}$.

After we have proved Theorem 0.0.1, we obtain a graded cellular basis of $\mathscr{R}_{n}^{\Lambda}$. We then extend it to obtain a graded cellular basis of \mathscr{R}_{n}, which indicates that \mathscr{R}_{n} is an affine graded cellular algebra. Hence we can use similar argument to Graham-Lehrer [7] to give a complete set of non-isomorphic graded irreducible \mathscr{R}_{n}-modules. Koenig and Xi [18] introduced the notion of affine cellular algebras and they have shown that the affine Hecke algebra of type A is affine cellular. They gave a different approach to classify the irreducible representation of affine Hecke algebras.

Finally, we work with the Jucys-Murphy elements of cyclotomic Hecke algebras of type A for $e>0$ and $p>0$ in both degenerate and non-degenerate cases. We have known that the cyclotomic KLR algebras are isomorphic to cyclotomic Hecke algebras of type A, our first task is to express $e(\mathbf{i})$'s in $\mathscr{R}_{n}^{\Lambda}$ using Jucys-Murphy elements in explicit form, and then we show that the Jucys-Murphy elements have certain periodic property, i.e. we can find n and d such that $x_{r}^{n}=x_{r}^{n+d}$, and we give information about the minimal values of n and d.

In more detail, this thesis is organized as follows. In Chapter 1 we summarise the background material from the representation theory of the cyclotomic Khovanov-Lauda-Rouquier algebras that we need, including the theory of (graded) cellular algebras and the combinatorics of multipartitions and tableaux. In Chapter 2 considers the special case where λ is a multicomposition which has at most two rows. Once this case is understood we are able to show for an arbitary multipartition λ that $\psi_{t^{1}+\lambda} y_{r}$ is a \mathbb{Z}-linear combination of higher terms, where t^{λ} is the 'initial' λ-tableau. Chapter 3 begins by proving, again by induction, that $\psi_{\text {st }} y_{r}$ is a linear combination of bigger terms in R_{n}^{Λ}. By considering the Garnir tableau of two-rowed multipartition we then show that $\psi_{s t} \psi_{r}$ can be written in the required form. This result is then extended to multipartitions of arbitrary shape. Finally, we deduce that $e(\mathbf{i}) \in R_{n}^{\Lambda}$, for all $\mathbf{i} \in(\mathbb{Z} / e \mathbb{Z})^{n}$, which completes the proof of our main result. In Chapter 4 we define a sequence of weights ($\Lambda^{(k)}$) and using it to extend the graded cellular basis of $\mathscr{R}_{\alpha}^{\Lambda}$ to \mathscr{R}_{α} and hence generate a graded cellular basis for \mathscr{R}_{n}. Then using similar arguments as Graham-Lehrer [7] we give a complete set of non-isomorphic graded simple \mathscr{R}_{n}-modules. In Chapter 5 first we give an expression of $e(\mathbf{i})$ using Jucys-Murphy elements and then simplify the expression to an explicit form. Finally using the nilpotency properties of y_{r} 's in $\mathscr{R}_{n}^{\Lambda}$ and our explicit form of $e(\mathbf{i})$'s we prove the periodic property of the Jucys-Murphy elements in both degenerate and non-degenerate cases.

Finally, we remark that the calculations in Chapters 2 and 3 gives an algorithm inductively for multiplying y_{r} and ψ_{s} to $\psi_{\text {st }}$.

Acknowledgements. I would like to thank my supervisor Andrew Mathas for his support and proofreading my thesis. I also want to thank Matthew Gibson, who gave me advice on writing thesis in English. Further thanks go to Jun Hu, Jonathan Brundan and Alexander Kleshchev for many helpful discussions with me about cyclotomic Khovanov-Lauda-Rouquier algebras.

Declaration of originality. The work presented in this thesis is original except where stated otherwise. No part of this thesis has been submitted for the award of any other degree or diploma at this or any other university.

Chapter 1

Khovanov-Lauda-Rouquier Algebras

In this chapter we are going to introduce the necessary background for our work. First we will define our principal object of study - the (cyclotomic) Khovanov-Lauda-Rouquier algebras $\mathscr{R}_{n}^{\Lambda}$. Then we give a brief introduction to (graded) cellular algebras and symmetric groups. Finally after explaining tableaux combinatorics we describe a graded cellular basis for the cyclotomic KLR algebra, found by Hu and Mathas [9].

1.1. The cyclotomic Khovanov-Lauda-Rouquier algebras

Fix an integer $e \in\{0,2,3,4 \ldots\}$ and $I=\mathbb{Z} / e \mathbb{Z}$. Let Γ_{e} be the oriented quiver with vertex set I and directed edges $i \rightarrow i+1$, for $i \in I$. Thus, Γ_{e} is the quiver of type A_{∞} if $e=0$ and if $e \geq 2$ then it is a cyclic quiver of type $A_{e}^{(1)}$:

$e=2$

$e=3$

$e=4$

$e=5$

Let $\left(a_{i, j}\right)_{i, j \in I}$ be the symmetric Cartan matrix associated with Γ_{e}, so that

$$
a_{i, j}= \begin{cases}2, & \text { if } i=j, \\ 0, & \text { if } i \neq j \pm 1, \\ -1, & \text { if } e \neq 2 \text { and } i=j \pm 1 \\ -2, & \text { if } e=2 \text { and } i=j+1\end{cases}
$$

To the quiver Γ_{e} attach the standard Lie theoretic data of a Cartan matrix $\left(a_{i j}\right)_{i, j \in I}$, fundamental weights $\left\{\Lambda_{i} \mid i \in I\right\}$, positive weights $P_{+}=\sum_{i \in I} \mathbb{N} \Lambda_{i}$, positive roots $Q_{+}=\bigoplus_{i \in I} \mathbb{N} \alpha_{i}$ and let (\cdot, \cdot) be the bilinear form determined by

$$
\left(\alpha_{i}, \alpha_{j}\right)=a_{i j} \quad \text { and } \quad\left(\Lambda_{i}, \alpha_{j}\right)=\delta_{i j}, \quad \text { for } i, j \in I
$$

Fix a weight $\Lambda=\sum_{i \in I} a_{i} \Lambda_{i} \in P_{+}$. Then Λ is a weight of level $l(\Lambda)=\ell=\sum_{i \in I} a_{i}$. A multicharge for Λ is a sequence $\kappa_{\Lambda}=\left(\kappa_{1}, \ldots, \kappa_{\ell}\right) \in I^{\ell}$ such that

$$
\left(\Lambda, \alpha_{i}\right)=a_{i}=\#\left\{1 \leq s \leq \ell \mid \kappa_{s} \equiv i \quad(\bmod e)\right\}
$$

for any $i \in I$.
The following algebras were introduced by Khovanov and Lauda and Rouquier who defined KLR algebras for arbitrary oriented quivers.
1.1.1. Definition (Khovanov and Lauda [13, 12] and Rouquier [25]). Suppose \mathscr{O} is an integral ring and n is a positive integer. The Khovanov-Lauda-Rouquier algebra, $\mathscr{R}_{n}(\mathscr{O})$ of type Γ_{e} is the unital associative \mathscr{O}-algebra with generators

$$
\left\{\hat{\psi}_{1}, \ldots, \hat{\psi}_{n-1}\right\} \cup\left\{\hat{y}_{1}, \ldots, \hat{y}_{n}\right\} \cup\left\{\hat{e}(\mathbf{i}) \mid \mathbf{i} \in I^{n}\right\}
$$

and relations

$$
\begin{align*}
& \hat{e}(\mathbf{i}) \hat{e}(\mathbf{j})=\delta_{\mathbf{i j}} \hat{e}(\mathbf{i}), \quad \sum_{\mathbf{i} \in I I^{I} \hat{e}(\mathbf{i})=1,} \tag{1.1.2}\\
& \hat{y}_{r} \hat{e}(\mathbf{i})=\hat{e}(\mathbf{i}) y_{r}, \quad \hat{\psi}_{r} \hat{e}(\mathbf{i})=\hat{e}\left(s_{r} \cdot \mathbf{i}\right) \hat{\psi}_{r}, \quad \hat{y}_{r} \hat{y}_{s}=\hat{y}_{s} \hat{y}_{r}, \tag{1.1.3}\\
& \hat{\psi}_{r} \hat{y}_{s}=\hat{y}_{s} \hat{\psi}_{r}, \quad \text { if } s \neq r, r+1, \tag{1.1.4}\\
& \hat{\psi}_{r} \hat{\psi}_{s}=\hat{\psi}_{s} \hat{\psi}_{r}, \quad \text { if }|r-s|>1, \tag{1.1.5}\\
& \hat{\psi}_{r} \hat{y}_{r+1} \hat{e}(\mathbf{i})= \begin{cases}\left(\hat{y}_{r} \hat{\psi}_{r}+1\right) \hat{e}(\mathbf{i}), & \text { if } i_{r}=i_{r+1}, \\
\hat{y}_{r} \hat{\psi}_{r} \hat{e}(\mathbf{i}), & \text { if } i_{r} \neq i_{r+1}\end{cases} \tag{1.1.6}\\
& \hat{y}_{r+1} \hat{\psi}_{r} \hat{e}(\mathbf{i})= \begin{cases}\left(\hat{\psi}_{r} \hat{y}_{r}+1\right) \hat{e}(\mathbf{i}), & \text { if } i_{r}=i_{r+1}, \\
\hat{\psi}_{r} \hat{y}_{r} \hat{e}(\mathbf{i}), & \text { if } i_{r} \neq i_{r+1}\end{cases} \tag{1.1.7}\\
& \hat{\psi}_{r}^{2} \hat{e}(\mathbf{i})= \begin{cases}0, & \text { if } i_{r}=i_{r+1}, \\
\hat{e}(\mathbf{i}), & \text { if } i_{r} \neq i_{r+1} \pm 1, \\
\left(\hat{y}_{r+1}-\hat{y}_{r}\right) \hat{e}(\mathbf{i}), & \text { if } e \neq 2 \text { and } i_{r+1}=i_{r}+1, \\
\left(\hat{y}_{r}-\hat{y}_{r+1}\right) \hat{e}(\mathbf{i}), & \text { if } e \neq 2 \text { and } i_{r+1}=i_{r}-1, \\
\left(\hat{y}_{r+1}-\hat{y}_{r}\right)\left(\hat{y}_{r}-\hat{y}_{r+1}\right) \hat{e}(\mathbf{i}), & \text { if } e=2 \text { and } i_{r+1}=i_{r}+1\end{cases} \tag{1.1.8}\\
& \hat{\psi}_{r} \hat{\psi}_{r+1} \hat{\psi}_{r} \hat{e}(\mathbf{i})= \begin{cases}\left(\hat{\psi}_{r+1} \hat{\psi}_{r} \hat{\psi}_{r+1}+1\right) \hat{e}(\mathbf{i}), & \text { if } e \neq 2 \text { and } i_{r+2}=i_{r}=i_{r+1}-1, \\
\left(\hat{\psi}_{r+1} \hat{\psi}_{r} \hat{\psi}_{r+1}-1\right) \hat{e}(\mathbf{i}), & \text { if } e \neq 2 \text { and } i_{r+2}=i_{r}=i_{r+1}+1, \\
\left(\hat{\psi}_{r+1} \hat{\psi}_{r} \hat{\psi}_{r+1}+\hat{y}_{r}\right. & \\
\left.-2 \hat{y}_{r+1}+\hat{y}_{r+2}\right) \hat{e}(\mathbf{i}), & \text { if } e=2 \text { and } i_{r+2}=i_{r}=i_{r+1}+1, \\
\hat{\psi}_{r+1} \hat{\psi}_{r} \hat{\psi}_{r+1} \hat{e}(\mathbf{i}), & \text { otherwise. }\end{cases} \tag{1.1.9}
\end{align*}
$$

for $\mathbf{i}, \mathbf{j} \in I^{n}$ and all admissible r and s. Moreover, $\mathscr{R}_{n}(\mathscr{O})$ is naturally \mathbb{Z}-graded with degree function determined by

$$
\operatorname{deg} \hat{e}(\mathbf{i})=0, \quad \operatorname{deg} \hat{y}_{r}=2 \quad \text { and } \quad \operatorname{deg} \hat{\psi}_{s} \hat{e}(\mathbf{i})=-a_{i_{s}, i_{s+1}},
$$

for $1 \leq r \leq n, 1 \leq s<n$ and $\mathbf{i} \in I^{n}$.
Notice that the relations depend on the quiver Γ_{e}. By [9 . Theorem 5.14], if \mathscr{O} is a commutative integral domain and suppose either $e=0, e$ is non-zero prime, or that $e \cdot 1_{\mathscr{O}}$ is invertible in $\mathscr{O}, \mathscr{R}_{n}^{\Lambda}(\mathscr{O})$ is an \mathscr{O}-free algebra.

Following Khovanov and Lauda [13], we will frequently use diagrammatic analogues of the relations of $\mathscr{R}_{n}(\mathscr{O})$ in order to simplify our calculations. To do this we associate to each generator of $\mathscr{R}_{n}(\mathscr{O})$ an I-labelled decorated planar diagram on $2 n$ points in the following way:
for $\mathbf{i} \in I^{n}, 1 \leq r<n$ and $1 \leq s \leq n$. The r-th string of the diagram is the string labelled with i_{r}.
Diagrams are considered up to isotopy, and multiplication of diagrams is given by concatenation, subject to the relations (1.1.2-(1.1.9). In more detail, if D_{1} and D_{2} are two diagrams
then the diagrammatic analogue of the relation $e(\mathbf{i}) e(\mathbf{j})=\delta_{\mathbf{i j}} e(\mathbf{i})$ is

That is, $D_{1} \cdot D_{2}=0$ unless the labels of the strings on the bottom of D_{1} match the corresponding labels on the top of the strings in D_{2} in which case we just concatenate the two diagrams.

Multiplication by y_{r} simply adds a decorative dot to the r-th string, reading left to right, so relations (1.1.3-1.1.5) become self when written in terms of diagrams. Ignoring the extraneous strings on the left and right, and setting $i=i_{r}$ and $j=i_{r+1}$, the diagrammatic analogue of relations (1.1.6) and (1.1.7) is

Similarly, if $e \neq 2$ then relation (1.1.8) becomes

$$
\text { Y } \quad \begin{array}{ll}
\text { if } i=j, \tag{1.1.11}\\
\left.\right|_{ \pm} ^{0,} & \text { if } i \neq j \pm 1 \\
\left.\right|_{i} ^{j}, & \text { if } j=i \pm 1
\end{array}
$$

and if $e \neq 2$ then the diagrammatic analogue of relation 1.1.9 is

Using the relations in $\mathscr{R}_{n}(\mathscr{O})$ it is easy to verify the following identity which we record for future use:

$$
\begin{equation*}
\hat{e}(\mathbf{i}) \hat{y}_{r}^{k} \hat{y}_{r+1}^{k} \hat{\psi}_{r}=\hat{e}(\mathbf{i}) \hat{\psi}_{r} \hat{y}_{r}^{k} \hat{y}_{r+1}^{k} \tag{1.1.13}
\end{equation*}
$$

for any i. Clearly it is enough to prove this relation when $k=1$ when, diagrammatically, this identity takes the form

locally on the r and $r+1$-th strings and where we set $i=i_{r}$ and $j=i_{r+1}$.
Three more easy, and very useful, consequences of the relations are the following:

Note that (1.1.16) follows by multiplicating (1.1.15) by y_{r+1} and expanding.
In the rest of the thesis we will play around with these diagrammatic notations a lot. In order to make the reader easy to follow our calculation we will use dotted strands to represent moving strands and arrows to represent moving dots. If we are going to move a dot then we will also write the strand which the dot is on dotted so the reader can see the arrow clearly. For example, we will write

to signify the application of relation (1.1.12) and

to signify the application of relation (1.1.14).
We can define a linear map $*: \mathscr{R}_{n} \longrightarrow \mathscr{R}_{n}$ by swapping the diagrams of \mathscr{R}_{n} up-side-down. For example,

It is obvious that $*$ is an anti-isomorphism and it preserves the generators of \mathscr{R}_{n}.
Fix a weight $\Lambda=\sum_{i \in I} a_{i} \Lambda_{i}$ with $a_{i} \in \mathbb{N}$. Let $N_{n}^{\Lambda}(\mathscr{O})$ be the two-sided ideal of \mathscr{R}_{n} generated by the elements with form $e(\mathbf{i}) y_{1}^{\left(\Lambda, \alpha_{i_{1}}\right)}$. We can now define the main object of study in this thesis,
the cyclotomic Khovanov-Lauda-Rouquier algebras, which were introduced by Khovanov and Lauda [13, Section 3.4].
1.1.18. Definition. The cyclotomic Khovanov-Lauda-Rouquier algebras of weight Λ and type Γ_{e} is the algebra $\mathscr{R}_{n}^{\Lambda}(\mathscr{O})=\mathscr{R}_{n}(\mathscr{O}) / N_{n}^{\Lambda}(\mathscr{O})$.

Therefore, if we write $e(\mathbf{i})=\hat{e}(\mathbf{i})+N_{n}^{\Lambda}(\mathscr{O}), y_{r}=\hat{y}_{r}+N_{n}^{\Lambda}(\mathscr{O})$ and $\psi_{s}=\hat{\psi}_{s}+N_{n}^{\Lambda}(\mathscr{O})$, the algebra $\mathscr{R}_{n}^{\Lambda}(\mathscr{O})$ is the unital \mathscr{O}-algebra generated by

$$
\left\{\psi_{1}, \ldots, \psi_{n-1}\right\} \cup\left\{y_{1}, \ldots, y_{n}\right\} \cup\left\{e(\mathbf{i}) \mid \mathbf{i} \in I^{n}\right\}
$$

subject to the relations (1.1.2)-(1.1.9) of $\mathscr{R}_{n}(\mathscr{O})$ together with the additional relation

$$
\begin{equation*}
e(\mathbf{i}) y_{1}^{\left(\Lambda, \alpha_{i_{1}}\right)}=0, \quad \text { for each } \mathbf{i} \in I^{n} \tag{1.1.19}
\end{equation*}
$$

1.2. The (graded) cellular algebras and the symmetric groups

Following Graham and Lehrer [7], we now introduce the graded cellular algebras. Reader may also refer to Hu-Mathas [9]. Let \mathscr{O} be a commutative ring with 1 and let A be a unital \mathscr{O}-algebra.
1.2.1. Definition. A graded cell datum for A is a triple $(\Lambda, T, C, \operatorname{deg})$ where $\Lambda=(\Lambda,>)$ is a poset, either finite or infinite, and $T(\lambda)$ is a finite set for each $\lambda \in \Lambda$, deg is a function from $山_{\lambda} T(\lambda)$ to \mathbb{Z}, and

$$
C: \prod_{\lambda \in \Lambda} T(\lambda) \times T(\lambda) \longrightarrow A
$$

is an injective map which sends (s, t) to $a_{s t}^{\lambda}$ such that:
(a) $\left\{a_{\mathrm{st}}^{\lambda} \mid \lambda \in \Lambda, s, t \in T(\lambda)\right\}$ is an \mathscr{O}-free basis of A;
(b) for any $r \in A$ and $\mathrm{t} \in T(\lambda)$, there exists scalars $c_{\mathrm{t}}^{v}(r)$ such that, for any $\mathrm{s} \in T(\lambda)$,

$$
a_{\mathrm{st}}^{\lambda} \cdot r \equiv \sum_{\mathrm{v} \in T(\lambda)} c_{\mathrm{t}}^{\mathrm{v}}(r) a_{\mathrm{sv}}^{\lambda} \quad \bmod A^{>\lambda}
$$

where $A^{>\lambda}$ is the \mathscr{O}-submodule of A spanned by $\left\{a_{\mathrm{xy}}^{\mu} \mid \mu>\lambda, \mathrm{x}, \mathrm{y} \in T(\mu)\right\}$;
(c) the \mathscr{O}-linear map $*: A \longrightarrow A$ which sends $a_{\mathrm{st}}^{\lambda}$ to $a_{\mathrm{ts}}^{\lambda}$, for all $\lambda \in \Lambda$ and $\mathrm{s}, \mathrm{t} \in T(\lambda)$, is an anti-isomorphism of A.
(d) each basis element $a_{\mathrm{st}}^{\lambda}$ is homogeneous of degree $\operatorname{deg} a_{\mathrm{st}}^{\lambda}=\operatorname{deg}(\mathrm{s})+\operatorname{deg}(\mathrm{t})$, for $\lambda \in \Lambda$ and all $\mathrm{s}, \mathrm{t} \in T(\lambda)$.

If a graded cell datum exists for A then A is a graded cellular algebra. Similarly, by forgetting the grading we can define a cell datum and hence a cellular algebra.

Suppose A is a graded cellular algebra with graded cell datum ($\Lambda, T, C, \operatorname{deg})$. For any $\lambda \in \Lambda$, define $A^{\geq \lambda}$ to be the \mathscr{O}-submodule of A spanned by

$$
\left\{c_{\mathrm{st}}^{\mu} \mid \mu \geq \lambda, \mathrm{s}, \mathrm{t} \in T(\mu)\right\}
$$

Then $A^{>\lambda}$ is an ideal of $A^{\geq \lambda}$ and hence $A^{\geq \lambda} / A^{>\lambda}$ is a A-module. For any $\mathrm{s} \in T(\lambda)$ we define C_{s}^{λ} to be the A-submodule of $A^{\geq \lambda} / A^{>\lambda}$ with basis $\left\{a_{\mathrm{st}}^{\lambda}+A^{>\lambda} \mid \mathrm{t} \in T(\lambda)\right\}$. By the cellularity of A we have $C_{\mathrm{s}}^{\lambda} \cong C_{\mathrm{t}}^{\lambda}$ for any $\mathrm{s}, \mathrm{t} \in T(\lambda)$.
1.2.2. Definition. Suppose $\lambda \in \mathscr{P}_{n}^{\Lambda}$. Define the cell module of A to be $C^{\lambda}=C_{\mathrm{s}}^{\lambda}$ for any $\mathrm{s} \in T(\lambda)$, which has basis $\left\{a_{\mathrm{t}}^{\lambda} \mid \mathrm{t} \in T(\lambda)\right\}$ and for any $r \in A$,

$$
a_{\mathrm{t}}^{\lambda} \cdot r=\sum_{\mathrm{u} \in T(\lambda)} c_{\mathrm{u}}^{r} a_{\mathrm{u}}^{\lambda}
$$

where c_{u}^{r} are determined by

$$
a_{\mathrm{st}}^{\lambda} \cdot r=\sum_{\mathrm{u} \in T(\lambda)} c_{\mathrm{u}}^{r} a_{\mathrm{su}}^{\lambda}+A^{>\lambda}
$$

We can define a bilinear map $\langle\cdot, \cdot\rangle: C^{\lambda} \times C^{\lambda} \longrightarrow \mathbb{Z}$ such that

$$
\left\langle a_{\mathrm{s}}^{\lambda}, a_{\mathrm{t}}^{\lambda}\right\rangle a_{\mathrm{uv}}^{\lambda}=a_{\mathrm{us}}^{\lambda} a_{\mathrm{tv}}^{\lambda}+A^{>\lambda}
$$

and let $\operatorname{rad} C^{\lambda}=\left\{\mathrm{s} \in C^{\lambda} \mid\langle\mathrm{s}, \mathrm{t}\rangle=0\right.$ for all $\left.\mathrm{t} \in C^{\lambda}\right\}$. The $\operatorname{rad} C^{\lambda}$ is a graded A-submodule of C^{λ}.
1.2.3. Definition. Suppose $\lambda \in \mathscr{P}_{n}^{\lambda}$. Let $D^{\lambda}=C^{\lambda} / \mathrm{rad} C^{\lambda}$ as a graded A-module.

Exactly as in the ungraded case [7, Theorem 3.4] or [9, Theorem 2.10], we obtain the following:
1.2.4. Theorem. The set $\left\{D^{\lambda}\langle k\rangle \mid \lambda \in \Lambda, D^{\lambda} \neq 0, k \in \mathbb{Z}\right\}$ is a complete set of pairwise nonisomorphic graded simple A-modules.

We give an example of graded cellular algebras here, which is called the cyclotomic Hecke algebras.

Let \mathbb{F}_{p} be a fixed field of characteristic $p \geq 0$ with $q \in \mathbb{F}_{p}^{\times}$. Let e be the smallest positive integer such that $1+q+\ldots+q^{e-1}=0$ and setting $e=0$ if no such integer exists. Then define $I=\mathbb{Z} / e \mathbb{Z}$ if $e>0$ and $I=\mathbb{Z}$ if $e=0$.

For $n \geq 0$, assume that $q=1$. Let H_{n} be the degenerate affine Hecke algebra, working over \mathbb{F}_{p}. So H_{n} has generators

$$
\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{s_{1}, \ldots, s_{n-1}\right\}
$$

subject to the following relations

$$
\begin{array}{ccc}
x_{r} x_{s}=x_{s} x_{r} ; & & \\
s_{r} x_{r+1}=x_{r} s_{r}+1, & s_{r} s_{x}=x_{s} s_{r} & \text { if } s \neq r, r+1 \\
s_{r}^{2}=1 ; & & \\
s_{r} s_{r+1} s_{r}=s_{r+1} s_{r} s_{r+1}, & s_{r} s_{t}=s_{t} s_{r} & \text { if }|r-t|>1
\end{array}
$$

Now we assume that $q \neq 1$ and H_{n} be the non-degenerate affine Hecke algebra over \mathbb{F}_{p}. So H_{n} has generators

$$
\left\{X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right\} \cup\left\{T_{1}, \ldots, T_{n-1}\right\}
$$

subject to the following relations

$$
\begin{array}{cc}
X_{r}^{ \pm 1} X_{s}^{ \pm 1}=X_{s}^{ \pm 1} X_{r}^{ \pm 1}, & X_{r} X_{r}^{-1}=1 ; \\
T_{r} X_{r} T_{r}=q X_{r+1}, & T_{r} X_{s}=X_{s} T_{r} \quad \text { if } s \neq r, r+1 ; \\
T_{r}^{2}=(q-1) T_{r}+q ; & \\
T_{r} T_{r+1} T_{r}=T_{r+1} T_{r} T_{r+1}, & T_{r} T_{s}=T_{s} T_{r} \quad \text { if }|r-s|>1 .
\end{array}
$$

Then for any $\Lambda \in P_{+}$, we define

$$
H_{n}^{\Lambda}= \begin{cases}H_{n} /\left\langle\prod_{i \in I}\left(X_{1}-q^{i}\right)^{\left(\Lambda, \alpha_{i}\right)}\right\rangle, & \text { if } q \neq 1, \tag{1.2.5}\\ H_{n} /\left\langle\prod_{i \in I}\left(x_{1}-i\right)^{\left(\Lambda, \alpha_{i}\right)}\right\rangle, & \text { if } q=1 .\end{cases}
$$

and we call H_{n}^{Λ} the degenerate cyclotomic Hecke algebra if $q=1$ and non-degenerate cyclotomic Hecke algebra if $q \neq 1$.

By the definitions, degenerate and non-degenerate cyclotomic Hecke algebras are similar with some minor difference. In order to minimize their difference we define

$$
q_{i}= \begin{cases}i, & \text { if } q=1 \tag{1.2.6}\\ q^{i}, & \text { if } q \neq 1\end{cases}
$$

and use x_{r} instead of X_{r} when we don't have to distinguish which case we are working with. Hence we can re-write (1.2.5) as

$$
\begin{equation*}
H_{n}^{\Lambda}=H_{n} /\left\langle\prod_{i \in I}\left(x_{1}-q_{i}\right)^{\left(\Lambda, \alpha_{i}\right)}\right\rangle . \tag{1.2.7}
\end{equation*}
$$

Murphy [24] gave a set of cellular basis for H_{n}^{Λ} which shows that H_{n}^{Λ} is a cellular algebra. Brundan and Kleshchev [3] proved the remarkable result that every H_{n}^{Λ} over \mathbb{F}_{p} is isomorphic to $\mathscr{R}_{n}^{\Lambda}\left(\mathbb{F}_{p}\right)$ introduced in Definition 1.1.1, where in both algebras Λ and e are the same. Therefore when H_{n}^{Λ} is over a field it is a graded cellular algebra.

In the rest of the section we will introduce a special case of H_{n}^{Λ}, which is also an important object we are going to need for the rest of the thesis.

The symmetric group \mathfrak{S}_{n} is the group of permutations on $1,2, \ldots, n$. For $i=1,2, \ldots, n-1$, let s_{i} be the transposition $(i, i+1)$. The following result is well-known; see for example, [20, Exercise 1.1].
1.2.8. Definition. The symmetric group $\mathfrak{\Im}_{n}$ is generated by $s_{1}, s_{2}, \ldots, s_{n-1}$ subject only to the relations:

$$
\begin{array}{cl}
s_{i}^{2}=1, & \text { for } i=1,2, \ldots, n-1, \\
s_{i} s_{j}=s_{j} s_{i}, & \text { for } 1 \leq i<j-1 \leq n-2, \\
s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}, & \text { for } i=1,2, \ldots, n-2 .
\end{array}
$$

It is easy to see that $H_{n}^{\Lambda}=\mathbb{F}_{p} \mathbb{S}_{n}$ when $q=1$ and $\Lambda=\Lambda_{i}$ for some $i \in I$. Therefore $\mathbb{F}_{p} \mathbb{S}_{n}$ is a graded cellular algebras as well.

Suppose w is an element of \Im_{n} and $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{m}}$. If m is minimal we say that w has length m and write $l(w)=m$. In this case we say $s_{i_{1}} s_{i_{2}} \ldots s_{i_{m}}$ is a reduced expression of w. In general an element of \mathfrak{S}_{n} has more than one reduced expressions. For example, we have $w=s_{1} s_{2} s_{1}=s_{2} s_{1} s_{2}$. Nonetheless, all the reduced expression of an element have the same length.

In this thesis we let \mathfrak{S}_{n} act on $\{1,2, \ldots, n\}$ from right. For example, $(i) s_{i} s_{i+1}=(i+1) s_{i+1}=$ $i+2$.

The following result is well-known. See, for example, [20, Corollary 1.4].
1.2.9. Proposition. Suppose that $w \in \mathfrak{\Im}_{n}$. For $i=1,2, \ldots, n-1$,

$$
l\left(s_{i} w\right)= \begin{cases}l(w)+1, & \text { if }(i) w^{-1}<(i+1) w^{-1} \\ l(w)-1, & \text { if }(i) w^{-1}>(i+1) w^{-1}\end{cases}
$$

We recall the definition of the Bruhat order \leq on \mathfrak{S}_{n}. For $u, w \in \mathbb{S}_{n}$ define $u \leq w$ if $u=s_{r_{a_{1}}} s_{r_{a_{2}}} \ldots s_{r_{a_{b}}}$ for some $1 \leq a_{1}<a_{2}<\ldots<a_{b} \leq m$, where $w=s_{r_{1}} s_{r_{2}} \ldots s_{r_{m}}$ is a reduced expression for w.

1.3. Tableaux combinatorics

In this section we recall the combinatorics of (multi)partitions and (multi)tableaux that we will need in this thesis.

Let n be a positive integer. A composition of n is an ordered sequence of nonnegative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ and $|\lambda|=\sum_{i=1}^{\infty} \lambda_{i}=n$. We say λ is a partition of n if $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a composition and $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots$ We can then identify λ with a sequence $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ whenever $\lambda_{i}=0$ for $i>k$.

As we now recall, there is a natural partial ordering on the set of compositions of n. Suppose $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots,\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots\right)$ are compositions of n. Then λ dominates μ, and we write
$\lambda \unrhd \mu$, if

$$
\sum_{i=1}^{k} \lambda_{i} \geq \sum_{i=1}^{k} \mu_{i}
$$

for any k. We write $\lambda \triangleright \mu$ if $\lambda \unrhd \mu$ and $\lambda \neq \mu$. The dominance ordering can be extended to a total ordering \geq, called the lexicographic ordering. We write $\lambda>\mu$ if we can find some k, such that $\lambda_{i}=\mu_{i}$ for all $i<k$ and $\lambda_{k}>\mu_{k}$. Define $\lambda \geq \mu$ if $\lambda>\mu$ or $\lambda=\mu$. Then $\lambda \unrhd \mu$ implies $\lambda \geq \mu$.

A multicomposition of n of level ℓ is an ordered sequence $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ of compositions such that $\sum_{i=1}^{\ell}\left|\lambda^{(i)}\right|=n$. Similarly, a multipartition of level ℓ is multicomposition $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ of n such that each $\lambda^{(i)}$ is a partition. We will identify multicompositions and multipartitions of level 1 with compositions and partitions in the obvious way.

Let $\mathscr{C}_{n}^{\Lambda}$ be the set of all multicomposition of n and $\mathscr{P}_{n}^{\Lambda}$ be the set of all multipartitions of n. We can extend the dominance ordering to $\mathscr{C}_{n}^{\Lambda}$ by defining $\lambda \unrhd \mu$ if

$$
\sum_{i=1}^{k-1}\left|\lambda^{(i)}\right|+\sum_{j=1}^{s} \lambda_{j}^{(k)} \geq \sum_{i=1}^{k-1}\left|\mu^{(i)}\right|+\sum_{j=1}^{s} \mu_{j}^{(k)}
$$

for any $1 \leq k \leq \ell$ and all $s \geq 1$. Again, we write $\lambda \triangleright \mu$ if $\lambda \unrhd \mu$ and $\lambda \neq \mu$. Similarly, we extend the lexicographic ordering $\lambda>\mu$ and $\lambda \geq \mu$ to $\mathscr{C}_{n}^{\Lambda}$ in the obvious way way.

The Young diagram of a multicomposition λ of level ℓ is the set

$$
[\lambda]=\left\{(r, c, l) \mid 1 \leq c \leq \lambda_{r}^{(l)}, r \geq 0 \text { and } 1 \leq l \leq \ell\right\}
$$

which we think of as an ordered ℓ-tuple of the diagrams of the partitions $\lambda^{(1)}, \ldots, \lambda^{(\ell)}$. The triple $(r, c, l) \in[\lambda]$ is node of λ in row r, column c and component l. A λ-tableau is any bijection $\mathrm{t}:[\lambda] \longrightarrow\{1,2, \ldots, n\}$. We identify a λ-tableau t with a labeling of the diagram of λ. That is, we label the node $(r, c, l) \in[\lambda]$ with the integer $\mathrm{t}(r, c, l)$. For example,
is a $\left(4,3,1\left|2^{2}, 1\right| 3\right)$-tableaux. If t is a λ-tableau then the shape of t is the multicomposition λ and we write $\operatorname{Shape}(\mathrm{t})=\lambda$.

If $t \in \operatorname{Std}(\lambda)$ and $1 \leq k \leq n$ define $\left.\right|_{k}$ to be the subtableau of t obtained by removing all the nodes containing an entry greater than k. We define an analogue of the dominance ordering for standard tableaux by defining $\mathrm{t} \unrhd \mathrm{s}$ if $\operatorname{Shape}\left(\left.\mathrm{t}\right|_{k}\right) \unrhd \operatorname{Shape}\left(\left.\mathbf{s}\right|_{k}\right)$, for $1 \leq k \leq n$. As with the dominance ordering, if $t \unrhd s$ then we write $s \unlhd t$ and if $s \neq t$ then write $t \triangleright s$ and $s \triangleleft t$. We also define $(s, t) \triangleright(u, v)$ if $s \unrhd u, t \unrhd v$ and $(s, t) \neq(u, v)$.

For any multicomposition λ, define t^{λ} to be the unique λ-tableau such that $t^{\lambda} \unrhd t$ for all standard λ-tableau t . For example, if $\lambda=\left(4,3,1\left|2^{2}, 1\right| 3\right)$ then t^{λ} is the tableau displayed above.

The symmetric group acts on the set of all λ-tableaux. Let t be a λ-tableau, then $\mathrm{t} \cdot s_{r}$ is the tableau obtained by exchanging the entries r and $r+1$ in t , i.e. $(r) \mathrm{t}^{-1}=(r+1)\left(\mathrm{t} \cdot s_{r}\right)^{-1}$, $(r+1) \mathrm{t}^{-1}=(r)\left(\mathrm{t} \cdot s_{r}\right)^{-1}$, and $(k) \mathrm{t}^{-1}=(k)\left(\mathrm{t} \cdot s_{r}\right)^{-1}$ for $k \neq r, r+1$. Then for each λ-tableau t let $d(\mathrm{t})$ be the permutation in \Im_{n} such that $\mathrm{t}^{\lambda} \cdot d(\mathrm{t})=\mathrm{t}$.

Recall the Bruhat order \leq on \Im_{n} from section 1.1. The following result, which goes back to work of Ehresmann and James, is part of the folklore for these algebras. The proof for level 1 can be found from [20, Lemma 3.7]. The higher level cases follow easily.
1.3.1. Lemma. Suppose $\lambda \in \mathscr{P}_{n}^{\wedge}$ and s and t are standard λ-tableaux. Then $\mathrm{s} \unrhd \mathrm{t}$ if and only if $d(\mathbf{s}) \leq d(\mathrm{t})$.

Suppose λ is a multicomposition and $\gamma=(r, c, l) \in[\lambda]$ and recall from Section 1.1 that $\kappa_{\Lambda}=\left(\kappa_{1}, \kappa_{2}, \ldots, \kappa_{\ell}\right)$ is a fixed multicharge of Λ. The residue of γ associate to κ_{Λ} is

$$
\operatorname{res}(\gamma) \equiv r-c+\kappa_{l} \quad(\bmod e)
$$

If t is a standard λ-tableau and the residue sequence of t is res $(\mathrm{t})=\mathbf{i}_{t}=\left(i_{1}, i_{2}, i_{3}, \ldots, i_{n}\right)$, where $i_{k}=\operatorname{res}\left(\gamma_{k}\right)$ and γ_{k} is the unique node in $[\lambda]$ such that $\mathrm{t}\left(\gamma_{k}\right)=k$. In particular, we write $\mathbf{i}_{\mathrm{t}^{\lambda}}=\mathbf{i}_{\lambda}$ and $\operatorname{res}_{\mathrm{t}}(k)=\operatorname{res}\left(\gamma_{k}\right)$.

Suppose that t is a λ-tableau. Then t is standard if $\lambda=\operatorname{Shape}(\mathrm{t})$ is a multipartition and if, in each component, the entries increase along each row and down each column. More precisely, if $(r, c, l) \in[\lambda]$ then $\mathrm{t}(r, c, l)<\mathrm{t}(r+1, c, l)$ whenever $(r+1, c, l) \in[\lambda]$ and $\mathrm{t}(r, c, l)<\mathrm{t}(r, c+1, l)$ whenever $(r, c+1, l) \in[\lambda]$. Let $\operatorname{Std}(\lambda)$ be the set of all standard λ-tableaux and $\operatorname{Std}(>\lambda)$ be the set of all standard μ-tableaux with $\mu>\lambda$. We can define $\operatorname{Std}(\geq \lambda)$ similarly. Note that if t is standard then so is t_{k} for $1 \leq k \leq n$.

Recall that for each standard tableau t , we can define a permutation $d(\mathrm{t}) \in \mathbb{S}_{n}$ such that $\mathrm{t}=\mathrm{t}^{\lambda} \cdot d(\mathrm{t})$. For each permutation we may have more than one reduced expression. Here we fix a choice of the reduced expression of $d(\mathrm{t})$.

For any standard λ-tableau t , define $\mathrm{t}^{(i)}$ to be a standard λ-tableau where $\left.\mathrm{t}^{(i)}\right|_{k}=\left.\mathrm{t}^{\lambda}\right|_{k}$ for any $1 \leq k<i$, and $\mathrm{t}^{(i)^{-1}}(k)=\mathrm{t}^{-1}(k)$ for any $i \leq k \leq n$. In particular, $\mathrm{t}^{(1)}=\mathrm{t}$ and $\mathrm{t}^{(n+1)}=\mathrm{t}^{\lambda}$. Therefore we have a series of standard λ-tableau

$$
\mathrm{t}^{\lambda}=\mathrm{t}^{(n+1)}, \mathrm{t}^{(n)}, \mathrm{t}^{(n-1)}, \ldots, \mathrm{t}^{(2)}, \mathrm{t}^{(1)}=\mathrm{t} .
$$

Then define w_{i} to be the unique permutation in \Im_{n} such that $\mathrm{t}^{(i+1)} w_{i}=\mathrm{t}^{(i)}$ and define $w_{n} w_{n-1} \ldots w_{2} w_{1}$ to be the standard expression of $d(\mathrm{t})$. Obviously this is a reduced expression of $d(\mathrm{t})$. In the rest of this thesis, we fix $d(\mathrm{t})$ to be its standard expression.
1.3.2. Remark. For each w_{i}, if $w_{i} \neq 1$, we can write $w_{i}=s_{a_{i}} s_{a_{i}+1} s_{a_{i}+2} \ldots s_{i-2} s_{i-1}$ for some $a_{i} \leq i-1$. Notice that

$$
(k)\left(\mathrm{t}^{(i+1)}\right)^{-1}= \begin{cases}(i)\left(\mathrm{t}^{(i)}\right)^{-1}, & \text { if } k=a_{i}, \\ (k-1)\left(\mathrm{t}^{(i)}\right)^{-1}, & \text { if } a_{i}<k \leq i, \\ (k)\left(\mathrm{t}^{(i)}\right)^{-1}, & \text { otherwise. }\end{cases}
$$

and $l\left(w_{i}\right)$ is always greater than or equal to the length of the row containing i in $\mathrm{t}^{(i+1)}$.
Also for each i, if Shape $\left(\left.\mathrm{t}^{(i)}\right|_{i-1}\right)=\lambda$, then $\left.\mathrm{t}^{(i)}\right|_{i-1}=\mathrm{t}^{\lambda}$.

have $w_{10}=s_{4} s_{5} s_{6} s_{7} s_{8} s_{9}$ such that $\mathrm{t}^{(11)} \cdot w_{10}=\mathrm{t}^{(10)}$.
Notice that in this case, $i=10$ and $a_{10}=4$. So

$$
(k)\left(\mathrm{t}^{(11)}\right)^{-1}= \begin{cases}(10)\left(\mathrm{t}^{(10)}\right)^{-1}, & \text { if } k=a_{i}=4, \\ (k-1)\left(\mathrm{t}^{(10)}\right)^{-1}, & \text { if } 4=a_{i}<k \leq i=10, \\ (k)\left(\mathrm{t}^{(10)}\right)^{-1}, & \text { otherwise. }\end{cases}
$$

Furthermore, $\left.\mathfrak{t}^{(11)}\right|_{10}=$\begin{tabular}{|l|l|l|l}
\hline 1 \& 2 \& 3 \& 4

\hline 5 \& 6 \& 7

\hline 8 \& 9 \& 10

,$\quad \mathfrak{t}^{(4,3,3)}$ and $\left.\mathfrak{t}^{(10)}\right|_{9}=$

\hline 1 \& 2 \& 3

\hline 4 \& 5 \& 6

\hline 7 \& 8 \& 9

\hline
\end{tabular}$=\mathfrak{t}^{(3,3,3)}$.

1.3.4. Lemma. Suppose t is a standard λ-tableau and $d(\mathrm{t})=s_{r_{1}} \ldots s_{r_{m}}$ is the standard expression. For any $1 \leq k \leq m$, define $\mathrm{s}=\mathrm{t}^{\lambda} \cdot s_{r_{1}} s_{r_{2}} \ldots s_{r_{k}}$. Then s is a standard λ-tableau.

Proof. The proof is trivial by the definition of the standard expression.

1.3.5. Example Suppose $\mathrm{t}=$| | 2 | 4 | 6 | 7. |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 5 | | | | . Then we have $d(\mathrm{t})=s_{5} s_{6} \cdot s_{4} s_{5} \cdot s_{3}$. Then

$$
\begin{aligned}
& \mathrm{t}^{\lambda} \cdot s_{5}=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 6 \\
\hline 5 & 7 & & & \\
\hline
\end{array} \\
& \mathrm{t}^{\lambda} \cdot s_{5} s_{6}=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 7 \\
\hline 5 & 6 & & & \\
\hline
\end{array} \\
& \mathrm{t}^{\lambda} \cdot s_{5} s_{6} s_{4}=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 5 & 7 \\
\hline 4 & 6 & & & \\
\hline
\end{array} \\
& \mathrm{t}^{\lambda} \cdot s_{5} s_{6} s_{4} s_{5}=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 6 & 7 \\
\hline 4 & 5 & & & \\
\hline
\end{array}
\end{aligned}
$$

and the above tableaux are all standard.

1.4. Graded cellular basis of KLR algebras over a field

Suppose \mathscr{O} is a field, Hu and Mathas [9 . Theorem 5.8] have found a homogeneous basis of $\mathscr{R}_{n}^{\Lambda}(\mathscr{O})$. Here we give an equivalent definition of their basis. For any multicomposition λ, recall t^{λ} to be the unique standard λ-tableau such that $\mathrm{t}^{\lambda} \unrhd \mathrm{t}$ for all standard λ-tableau t , and \mathbf{i}_{λ} is the residue sequence of t^{λ}. We define $\hat{e}_{\lambda}=\hat{e}\left(\mathbf{i}_{\lambda}\right)$.

Suppose λ is a multicomposition. A node (r, c, l) is an addable node of λ if $(r, c, l) \notin[\lambda]$ and $[\lambda] \cup\{(r, c, l)\}$ is the Young diagram of a multipartition. Similarly, a node (r, c, l) is a removable node of λ if $(r, c, l) \in[\lambda]$ and $[\lambda] \backslash\{(r, c, l)\}$ is the Young diagram of a multipartition. Given two nodes $\alpha=(r, c, l)$ and $\beta=(s, t, m)$ then α is below β if either $l>m$, or $l=m$ and $r>s$.

Suppose that $s \in \operatorname{Std}(\lambda)$. Let $\mathscr{A}_{\mathrm{s}}(k)$ be the set of addable nodes of the multicomposition Shape $\left(\left.\mathbf{s}\right|_{k}\right)$ which are below $\mathbf{S}^{-1}(k)$ and let

$$
\mathscr{A}_{\mathrm{s}}^{\Lambda}(k)=\left\{\alpha \in \mathscr{A}_{\mathrm{s}}(k) \mid \operatorname{res}(\alpha)=\operatorname{res}_{\mathrm{t}}(k)\right\} .
$$

Similarly as in [9, Definition 4.12], define

For example, if $\lambda=\left(3,1\left|4^{2}, 2\right| 5,1\right), e=4$ and $\Lambda=3 \Lambda_{0}$ then

$$
\mathrm{t}^{\lambda}=\left(\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & & \left.\begin{array}{|l|l|l|l|l|}
\hline 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
\hline 13 & 14 & & \begin{array}{|l|l|l|l|}
\hline 16 & 17 & 18 & 19 \\
\hline 20 & \\
\hline
\end{array}
\end{array}\right) .
\end{array}\right.
$$

and $\hat{y}_{\lambda}=\hat{y}_{1}^{2} \hat{y}_{5} \hat{y}_{8} \hat{y}_{10} \hat{y}_{12} \hat{y}_{18}$. Therefore,

$$
\hat{e}_{\lambda} \hat{y}_{\lambda}=\hat{e}(0123012330122012303) \hat{y}_{1}^{2} \hat{y}_{5} \hat{y}_{8} \hat{y}_{10} \hat{y}_{12} \hat{y}_{18} .
$$

We define a particular kind of element in $\mathscr{R}_{n}(\mathscr{O})$. Suppose $w \in \Im_{n}$ has length ℓ and $s_{i_{1}} s_{i_{2}} \ldots s_{i_{\ell}}$ is a reduced expression for w in \Im_{n}. Recall that $\mathscr{R}_{n}(\mathscr{O})$ has a unique anti-isomorphism * which fixes all of the KLR generators. Define

$$
\hat{\psi}_{w}=\hat{\psi}_{i_{1}} \hat{\psi}_{i_{2}} \ldots \hat{\psi}_{i_{\ell}} \in \mathscr{R}_{n}(\mathscr{O}) \quad \text { and } \quad \hat{\psi}_{w}^{*}=\hat{\psi}_{i_{\ell}} \hat{\psi}_{i_{\epsilon-1}} \ldots \hat{\psi}_{i_{2}} \hat{\psi}_{i_{1}} \in \mathscr{R}_{n}(\mathscr{O}) .
$$

Notice that $\hat{\psi}_{w}$ and $\hat{\psi}_{w}^{*}$ depend on the choice of the reduced expression of w, even though in \mathfrak{S}_{n} all reduced expressions of w are the same. For example, $s_{1} s_{2} s_{1}$ and $s_{2} s_{1} s_{2}$ are equal to the
same element of \mathfrak{S}_{n}, but in general $\hat{\psi}_{1} \hat{\psi}_{2} \hat{\psi}_{1} \neq \hat{\psi}_{2} \hat{\psi}_{1} \hat{\psi}_{2}$ in $\mathscr{R}_{n}(\mathscr{O})$. Define $l\left(\hat{\psi}_{w}\right)=l\left(\hat{\psi}_{w}^{*}\right)=l(w)$ for any standard tableau t. Similarly we can define

$$
\psi_{w}=\psi_{i_{1}} \psi_{i_{2}} \ldots \psi_{i_{\ell}} \in \mathscr{R}_{n}^{\Lambda}(\mathscr{O}) \quad \text { and } \quad \psi_{w}^{*}=\psi_{i_{\ell}} \psi_{i_{\ell-1}} \ldots \psi_{i_{2}} \psi_{i_{1}} \in \mathscr{R}_{n}^{\Lambda}(\mathscr{O})
$$

and ψ_{w} and ψ_{w}^{*} depends on the choice of reduced expressions of w as well.
Suppose $l(d(\mathrm{t}))=\ell$ and $d(\mathrm{t})=s_{i_{1}} s_{i_{2}} \ldots s_{i_{\ell}}$ is the standard expression of $d(\mathrm{t})$ where $\mathrm{t}^{\lambda} \cdot d(\mathrm{t})=\mathrm{t}$. Define $\hat{\psi}_{d(\mathrm{t})}=\hat{\psi}_{i_{1}} \hat{\psi}_{i_{2}} \ldots \hat{\psi}_{i_{\ell}}$ and $\hat{\psi}_{d(\mathrm{t})}^{*}=\hat{\psi}_{i_{\ell}} \hat{\psi}_{i_{\ell-1}} \ldots \hat{\psi}_{i_{2}} \hat{\psi}_{i_{1}}$.
1.4.1. Definition. Suppose $\Lambda \in P_{+}, \lambda \in \mathscr{P}_{n}^{\Lambda}$ and s , t are two standard λ-tableaux. We define

$$
\hat{\psi}_{\mathrm{st}}^{\mathscr{O}}=\hat{\psi}_{d(\mathbf{s})}^{*} \hat{e}_{\lambda} \hat{y}_{\lambda} \hat{\psi}_{d(\mathrm{t})} \in \mathscr{R}_{n}(\mathscr{O}),
$$

and hence

$$
\psi_{\mathrm{st}}^{\mathscr{O}}=\hat{\psi}_{\mathrm{st}}^{\mathscr{O}}+N_{n}^{\Lambda} \in \mathscr{R}_{n}^{\Lambda}(\mathscr{O}) .
$$

1.4.2. Remark. Notice that Hu and Mathas [9. Definition 5.1] defined $\psi_{\text {st }}^{\mathscr{O}}$ differently. Actually if we define e_{λ}, y_{λ} and ψ_{w} in $\mathscr{R}_{n}^{\Lambda}(\mathscr{O})$ as analogues of $\hat{e}_{\lambda}, \hat{y}_{\lambda}$ and $\hat{\psi}_{w}$, and define $\psi_{\mathrm{st}}^{\mathscr{O}}=\psi_{d(\mathrm{~s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{t})}$ for $\mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)$, it is equivalent to Definition 1.4.1. We define $\psi_{\mathrm{st}}^{\mathscr{O}}$ as in Definition 1.4.1 because we need to work in $\mathscr{R}_{n}(\mathscr{O})$ later.
1.4.3. Remark. By construction, then this $\psi_{\text {st }}^{\mathscr{O}}$ is well defined as an element of $\mathscr{R}_{n}^{\Lambda}(\mathscr{O})$ for any ring \mathscr{O}. Many of the calculations in this thesis depend heavily on the choice of \mathscr{O} so we write $\psi_{\mathrm{st}}^{\mathscr{O}}$ to emphasize that $\psi_{\mathrm{st}}^{\mathscr{O}}$ is an element of $\mathscr{R}_{n}^{\Lambda}(\mathscr{O})$. Most of the time, however, we will work in $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ so for convenience we set $\psi_{\mathrm{st}}=\psi_{\mathrm{st}}^{\mathbb{Z}}$.
1.4.4. Lemma (Hu and Mathas [9, Lemma 5.2] [10, Corollary 3.11,3.12]). Suppose \mathscr{O} is a field and s and t are standard λ-tableaux and $1 \leq r \leq n$,

$$
\psi_{\mathrm{st}} \psi_{r}= \begin{cases}\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { if } \mathrm{t} \cdot s_{r} \text { is not standard } \\ & \text { or } d(\mathrm{t}) \cdot s_{r} \text { is not reduced, } \\ \psi_{\mathrm{sv}}+\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { if } \mathrm{v}=\mathrm{t} \cdot s_{r} \text { standard and } d(\mathrm{t}) \cdot s_{r}=d(\mathrm{v}) .\end{cases}
$$

for $c_{\mathrm{uv}} \in \mathscr{O}$, and $c_{\mathrm{uv}} \neq 0$ only if $\operatorname{res}(\mathrm{s})=\operatorname{res}(\mathrm{u})$ and $\operatorname{res}\left(\mathrm{t} \cdot s_{r}\right)=\operatorname{res}(\mathrm{v})$. Similarly, we have

$$
\psi_{\mathrm{st}}^{\mathscr{O}} y_{r}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}^{\mathscr{O}}
$$

for $c_{\mathrm{uv}} \in \mathscr{O}$, and $c_{\mathrm{uv}} \neq 0$ only if $\operatorname{res}(\mathrm{s})=\operatorname{res}(\mathrm{u})$ and $\operatorname{res}(\mathrm{t})=\operatorname{res}(\mathrm{v})$.
1.4.5. Theorem (Hu and Mathas [9, Theorem 5.14]). Suppose \mathscr{O} is an integral domain and that either $e=0$, e is a prime or e is a non-zero non-prime integer such that $e \cdot 1_{\mathscr{O}}$ is invertible in \mathscr{O}. Then

$$
\left\{\psi_{\mathrm{st}}^{\mathscr{O}} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda) \text { for } \lambda \in \mathscr{P}_{n}^{\Lambda}\right\}
$$

is a graded cellular basis of $\mathscr{R}_{n}^{\Lambda}(\mathscr{O})$. In particular, $\mathscr{R}_{n}^{\Lambda}(\mathscr{O})$ is free as an \mathscr{O}-module of rank $\ell^{n} n$!.
The main purpose of this thesis is to prove that $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ is free of rank $\ell^{n} n$!. To do this we will show that $\left\{\psi_{\mathrm{st}}^{Z} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)\right.$ for $\left.\lambda \in \mathscr{P}_{n}^{\Lambda}\right\}$ is a homogeneous basis of $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$.

We define some notation for future use.
1.4.6. Definition. Suppose λ is a multipartition of $\mathscr{P}_{n}^{\Lambda}$. Define:

$$
\begin{aligned}
R_{n}^{\Lambda} & \left.=\left\langle\psi_{\mathrm{st}}\right| \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\mu) \text { for } \mu \in \mathscr{P}_{n}^{\Lambda}\right\rangle_{\mathbb{Z}}, \\
R_{n}^{\geq \lambda} & \left.=\left\langle\psi_{\mathrm{st}}\right| \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\mu) \text { and } \mu \geq \lambda \text { for } \mu \in \mathscr{P}_{n}^{\Lambda}\right\rangle_{\mathbb{Z}}, \\
R_{n}^{>\lambda} & \left.=\left\langle\psi_{\mathrm{st}}\right| \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\mu) \text { and } \mu>\lambda \text { for } \mu \in \mathscr{P}_{n}^{\Lambda}\right\rangle_{\mathbb{Z}} .
\end{aligned}
$$

where $R_{n}^{>\lambda} \subseteq R_{n}^{\geq \lambda} \subseteq R_{n}^{\Lambda} \subseteq \mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$

This section closes with an important Proposition:
Khovanov and Lauda [13][12] have found a basis of $\mathscr{R}_{n}(\mathscr{O})$

$$
\begin{equation*}
\left\{\hat{e}(\mathbf{i}) \hat{y}_{1}^{\ell_{1}} \hat{y}_{2}^{\ell_{2}} \ldots \hat{y}_{n}^{\ell_{n}} \hat{\psi}_{w} \mid \mathbf{i} \in I^{n}, w \in \mathbb{S}_{n}, \ell_{1}, \ell_{2}, \ldots, \ell_{n} \geq 0\right\} \tag{1.4.7}
\end{equation*}
$$

for any ring \mathscr{O}.
Consider the quiver Hecke algebra $\mathscr{R}_{n}(\mathbb{Q})$ defined over the rational field \mathbb{Q}. We have $\mathscr{R}_{n}(\mathbb{Q}) \cong \mathscr{R}_{n}(\mathbb{Z}) \otimes \mathbb{Q}$ and we can define a linear map $f: \mathscr{R}_{n}(\mathbb{Z}) \longrightarrow \mathscr{R}_{n}(\mathbb{Q})$ by sending $x \in \mathscr{R}_{n}(\mathbb{Z})$ to $x \otimes 1$.
1.4.8. Lemma. The linear map $f: \mathscr{R}_{n}(\mathbb{Z}) \longrightarrow \mathscr{R}_{n}(\mathbb{Q})$ is an injection.

Proof. By 1.4.7), $\left\{\hat{e}(\mathbf{i})^{\mathbb{Z}}\left(\hat{y}_{1}^{\mathbb{Z}}\right)^{\ell_{1}}\left(\hat{y}_{2}^{\mathbb{Z}}\right)^{\ell_{2}} \ldots\left(\hat{y}_{n}^{\mathbb{Z}}\right)^{\ell_{n}} \hat{\psi}_{w}^{\mathbb{Z}} \mid w \in \mathbb{S}_{n}, \ell_{1}, \ell_{2}, \ldots, \ell_{n} \geq 0\right\}$ is a basis of $\mathscr{R}_{n}(\mathbb{Z})$ and similarly, $\left\{\hat{e}(\mathbf{i})^{\mathbb{Q}}\left(\hat{y}_{1}^{\mathrm{Q}}\right)^{\ell_{1}}\left(\hat{y}_{2}^{\mathrm{Q}}\right)^{\ell_{2}} \ldots\left(\hat{y}_{n}^{\mathbb{Q}}\right)^{\ell_{n}} \hat{\psi}_{w}^{\mathbb{Q}} \mid w \in \Xi_{n}, \ell_{1}, \ell_{2}, \ldots, \ell_{n} \geq 0\right\}$ is a basis of $\mathscr{R}_{n}(\mathbb{Q})$. Because f sends the basis elements $\hat{e}(\mathbf{i})^{Z}\left(\hat{y}_{1}^{Z}\right)^{\ell_{1}}\left(\hat{y}_{2}^{Z}\right)^{\ell_{2}} \ldots\left(\hat{y}_{n}^{Z}\right)^{\ell_{n}} \hat{\psi}_{w}^{Z}$ of $\mathscr{R}_{n}(\mathbb{Z})$ to $\hat{e}(\mathbf{i})^{Q}\left(\hat{y}_{1}^{Q}\right)^{\ell_{1}}\left(\hat{y}_{2}^{\mathbb{Q}}\right)^{\ell_{2}} \ldots\left(\hat{y}_{n}^{\mathbb{Q}}\right)^{\ell_{n}} \hat{\psi}_{w}^{Q}$, the basis elements of $\mathscr{R}_{n}(\mathbb{Q})$, it is sufficient to prove that f is an injection.

From the definitions, it is evident that $f\left(N_{n}^{\Lambda}(\mathbb{Z})\right) \subseteq N_{n}^{\Lambda}(\mathbb{Q})$. Hence, f induces a homomorphism,

$$
f: \mathscr{R}_{n}^{\Lambda}(\mathbb{Z}) \longrightarrow \mathscr{R}_{n}^{\Lambda}(\mathbb{Q}) ; x+N_{n}^{\Lambda}(\mathbb{Z}) \mapsto f(x)+N_{n}^{\Lambda}(\mathbb{Q})
$$

which by abuse of notation we also denote by f. In particular, observe that $f\left(\psi_{\mathrm{st}}^{\mathbb{Z}}\right)=\psi_{\mathrm{st}}^{\mathrm{Q}}$. The main Theorem of this thesis is equivalently to prove that $f: \mathscr{R}_{n}^{\Lambda}(\mathbb{Z}) \longrightarrow \mathscr{R}_{n}^{\Lambda}(\mathbb{Q})$ is an injection.

We then introduce an important special case where we already know that f is injective.
1.4.9. Proposition. The homomorphism $f: \mathscr{R}_{n}^{\Lambda}(\mathbb{Z}) \longrightarrow \mathscr{R}_{n}^{\Lambda}(\mathbb{Q})$ restricts to an injective map from R_{n}^{Λ} to $\mathscr{R}_{n}^{\Lambda}(\mathbb{Q})$.

Proof. As we have already noted above, $f\left(\psi_{\mathrm{st}}^{\mathbb{Z}}\right)=\psi_{\mathrm{st}}^{\mathbb{Q}}$ for all $\mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)$ and $\lambda \in \mathscr{P}_{n}^{\Lambda}$. Hence, Theorem 1.4.5 implies the result.
1.4.10. Corollary. The elements $\left\{\psi_{\mathrm{st}}^{\mathbb{Z}} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)\right.$ for $\left.\lambda \in \mathscr{P}_{n}^{\Lambda}\right\}$ are a linearly independent subset of $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$.
1.4.11. Remark. Proposition 1.4 .9 is quite crucial. In this thesis we prove that $\psi_{\mathrm{st}}^{Z} \cdot \psi_{r} \in R_{n}^{\Lambda}$ whenever $d(\mathrm{t}) \cdot s_{r}$ is not reduced or $\mathrm{t} \cdot s_{r}$ is not standard in $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$. We can only have

$$
\psi_{\mathrm{st}}^{\mathrm{Z}} \cdot \psi_{r}=\sum_{\mathrm{u}, \mathrm{v}} c_{\mathrm{uv}}^{\mathrm{Z}} \psi_{\mathrm{uv}}^{\mathrm{Z}}
$$

In $\mathscr{R}_{n}^{\Lambda}(\mathbb{Q})$, however, by Lemma 1.4.4, under these conditions we have

$$
\psi_{\mathrm{st}}^{\varrho} \cdot \psi_{r}=\sum_{(\mathrm{u}, \mathrm{v})\rangle(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}}^{Q} \psi_{\mathrm{uv}}^{Q}
$$

for some $c_{\mathrm{uv}}^{Q} \in \mathbb{Q}$, where $(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})$ if $\mathrm{u} \unrhd \mathrm{s}, \mathrm{v} \unrhd \mathrm{t}$ and $(\mathrm{u}, \mathrm{v}) \neq(\mathrm{s}, \mathrm{t})$. Therefore, $c_{\mathrm{uv}}^{Q}=c_{\mathrm{uv}}^{\mathrm{Z}}$ by Proposition 1.4 .9 and we see that $c_{\mathrm{uv}}^{\mathrm{Z}} \neq 0$ only if $(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})$. In such case we have much more information about u and v with $c_{\mathrm{uv}}^{\mathbb{Z}} \neq 0$. Similar remarks apply to the products $\psi_{\mathrm{st}}^{\mathbb{Z}} \cdot y_{r}$.

Chapter 2

Integral Basis Theorem I

In the next two chapters we will prove that $\mathscr{R}_{n}^{\Lambda}$ is \mathbb{Z}-free. The essence of our argument is that we will verify that the following three properties hold.
(1). $e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{-}^{\lambda_{-}}} \in R_{n}^{>\lambda}$.
(2). $\psi_{\mathrm{st}} \mathrm{y}_{r} \in R_{n}^{\Lambda}$.
(3). $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\Lambda}$.
for any $\lambda \in \mathscr{P}_{n}^{\Lambda}$. We will define a partial ordering $<$ on $\mathscr{P}=\cup_{\Lambda} \cup_{n} \mathscr{P}_{n}^{\Lambda}$. Our proof proceeds by induction on multipartitions using \prec. The main result of this chapter is to prove that if for any $\mu>\lambda, \mu$ has above three properties, then λ will have the first property. This result is crucial for showing that $e(\mathbf{i}) \in R_{n}^{\Lambda}$ for any $\mathbf{i} \in I^{n}$.

In the rest of this thesis we write $\mathscr{R}_{n}(\mathbb{Z})$ as \mathscr{R}_{n} and $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ as $\mathscr{R}_{n}^{\Lambda}$. Fix a weight Λ, a multicharge $\kappa_{\Lambda}=\left(\kappa_{1}, \ldots, \kappa_{l}\right)$ corresponding to Λ and an integer $e>2$. In this and the next chapter we mainly work with the algebra $\mathscr{R}_{n}^{\Lambda}$.

2.1. The base step of the induction

In this section we set up the notations and inductive machinery that we use in the next two chapters to prove our main theorem. We then consider the base case of our induction which is when $\lambda=(n|\emptyset| \ldots \mid \emptyset)$. Finally we develop some technical Lemmas which will be useful later.
2.1.1. Definition. Suppose that λ is a multipartition of n. Let λ^{+}be the multicomposition of $n+1$ obtained by adding a node at the end of the last non-empty row of λ, and $\lambda_{-}=\left.\lambda\right|_{n-1}$ be the multipartition of $n-1$ obtained by removing the last node from λ.

For example, if $\lambda=(4,3 \mid 3,3)$ then $\lambda^{+}=(4,3 \mid 3,4)$ and $\lambda_{-}=(4,3 \mid 3,2)$. Notice that in general, λ^{+}will be a multicomposition rather than a multipartition.

For $k \in I$ and $\lambda \in \mathscr{P}_{n}^{\Lambda}$, define $\mathscr{A}_{\mathrm{t}^{\lambda}}^{k}=\left\{\alpha \in \mathscr{A}_{\mathrm{t}^{\lambda}}(n) \mid \operatorname{res}(\alpha)=k\right\}$. Recall $\mathbf{i}_{\lambda}=\operatorname{res}\left(\mathrm{t}^{\lambda}\right)$ and $e_{\lambda}=e\left(\mathbf{i}_{\lambda}\right)$ from section 1.4.
2.1.2. Definition. Suppose that $\lambda \in \mathscr{P}_{n}^{\Lambda}$ and $k \in I$. Define the integer b_{k}^{λ} by

$$
b_{k}^{\lambda}= \begin{cases}\left|\mathscr{A}_{\mathrm{t}_{1}}^{k}\right|+1, & \text { if } \lambda^{+} \text {is a multipartition and } i_{n}+1=k, \\ \left|\mathscr{A}_{t^{k}}^{k}\right|, & \text { otherwise } .\end{cases}
$$

If $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{n}$ and $k \in I$ then define $\mathbf{i} \vee k=\left(i_{1}, i_{2}, \ldots, i_{n}, k\right) \in I^{n+1}$.
2.1.3. Lemma. Suppose that $\lambda \in \mathscr{P}_{n}^{\Lambda}$ and $k \in I$. Then for each integer b with $0 \leq b<b_{k}^{\lambda}$, there exists a multipartition $v=v(b)$ such that $e_{\nu} y_{v}=e\left(\mathbf{i}_{\lambda} \vee k\right) y_{\lambda} y_{n+1}^{b}$.
Proof. The definitions of λ and b_{k}^{λ} ensure that there are b_{k}^{λ} addable nodes of residue k below $\left(\mathrm{t}^{\lambda}\right)^{-1}(n)$. Suppose those nodes are $\left(r_{1}, c_{1}, l_{1}\right),\left(r_{2}, c_{2}, l_{2}\right), \ldots,\left(r_{b_{k}^{\lambda}}, c_{b_{k}^{\lambda}}, l_{b_{k}^{\lambda}}\right)$, where $l_{1} \geq l_{2} \geq l_{3} \geq$ $\ldots \geq l_{b_{k}^{\lambda}}$, and if $l_{i}=l_{i+1}$ then $r_{i} \geq r_{i+1}$. In another word, $\left(r_{i}, c_{i}, l_{i}\right)$ is a node below $\left(r_{i+1}, c_{i+1}, l_{i+1}\right)$.

For any b with $0 \leq b<b_{k}^{\lambda}$, we define v to be the multipartition obtained by adding the node $\left(r_{b+1}, c_{b+1}, l_{b+1}\right)$ on to λ. Then $y_{v}=y_{\lambda} y_{n+1}^{b}$ and $e_{v}=e\left(\mathbf{i}_{\lambda} \vee k\right)=e(\mathbf{i} \vee k)$. This completes the proof.
2.1.4. Example Suppose that $\lambda=(4,3|2,1| 0 \mid 0)$ with $e=4$ and $\kappa_{\Lambda}=(0,0,2,1)$. Then $e\left(\mathbf{i}_{\lambda}\right)=$ $e(0123301013)$ and $y_{\lambda}=y_{1} y_{2} y_{3} y_{4} y_{6} y_{7} y_{9}$. Then $b_{0}^{\lambda}=1, b_{1}^{\lambda}=1, b_{2}^{\lambda}=2$ and $b_{3}^{\lambda}=0$ and the proof of Lemma 2.1.3 shows that:

$$
\begin{aligned}
e(01233010130) y_{1} y_{2} y_{3} y_{4} y_{6} y_{7} y_{9} & =e_{\mu_{1}} y_{\mu_{1}}, \\
e(01233010131) y_{1} y_{2} y_{3} y_{4} y_{6} y_{7} y_{9} & =e_{\mu_{2}} y_{\mu_{2}}, \\
e(01233010132) y_{1} y_{2} y_{3} y_{4} y_{6} y_{7} y_{9} & =e_{\mu_{3}} y_{\mu_{3}}, \\
e(01233010132) y_{1} y_{2} y_{3} y_{4} y_{6} y_{7} y_{9} y_{11} & =e_{\mu_{4}} y_{\mu_{4}},
\end{aligned}
$$

where $\mu_{1}=(4,3|2,2| \emptyset \mid \emptyset), \mu_{2}=(4,3|2,1| \emptyset \mid 1), \mu_{3}=(4,3|2,1| 1 \mid \emptyset)$ and $\mu_{4}=(4,3|2,1,1| \emptyset \mid \emptyset)$.
2.1.5. Definition. Let $\mathscr{P}^{\Lambda}=\cup_{n \geq 0} \mathscr{P}_{n}^{\Lambda}$. Define three sets $\mathscr{P}_{I}^{\Lambda}, \mathscr{P}_{y}^{\Lambda}$ and $\mathscr{P}_{\psi}^{\Lambda}$ of multipartitions by:

$$
\begin{aligned}
\mathscr{P}_{I}^{\Lambda} & =\left\{\lambda \in \mathscr{P}^{\Lambda}| | \lambda \mid=n \text { and } e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda-}} \in R_{n}^{>\lambda} \text { for all } k \in I\right\}, \\
\mathscr{P}_{y}^{\Lambda} & =\left\{\lambda \in \mathscr{P}^{\Lambda}| | \lambda \mid=n \text { and } \psi_{\mathrm{st}} y_{r} \in R_{n}^{\Lambda} \text { whenever } \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda) \text { and } 1 \leq r \leq n\right\}, \\
\mathscr{P}_{\psi}^{\Lambda} & =\left\{\lambda \in \mathscr{P}^{\Lambda}| | \lambda \mid=n \text { and } \psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\Lambda} \text { whenever } \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda) \text { and } 1 \leq r<n\right\} .
\end{aligned}
$$

2.1.6. Remark. Notice that if for some $\mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)$ and $1 \leq r \leq n$ we have $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\Lambda}$, then $y_{r} \psi_{\mathrm{st}} \in R_{n}^{\Lambda}$ as well. Similar property holds for $\psi_{\mathrm{st}} \psi_{r}$. Therefore we can write

$$
\begin{aligned}
& \mathscr{P}_{y}^{\Lambda}=\left\{\lambda \in \mathscr{P}^{\Lambda}| | \lambda \mid=n \text { and } y_{r} \psi_{\mathrm{st}} \in R_{n}^{\Lambda} \text { whenever } \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda) \text { and } 1 \leq r \leq n\right\}, \\
& \mathscr{P}_{\psi}^{\Lambda}=\left\{\lambda \in \mathscr{P}^{\Lambda}| | \lambda \mid=n \text { and } \psi_{r} \psi_{\mathrm{st}} \in R_{n}^{\Lambda} \text { whenever } \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda) \text { and } 1 \leq r<n\right\}
\end{aligned}
$$

as well.
By Proposition 1.4.9 if one of $e\left(\mathbf{i}_{r}\right) y_{\lambda_{-}} y_{n}^{n}, \psi_{\mathrm{st}} y_{r}$ or $\psi_{\mathrm{st}} \psi_{r}$ belongs to R_{n}^{Λ} then it can be written in a unique way as an (integral) linear combination of the ψ-basis elements. In particular, these linear combinations must satisfy the restrictions imposed by Lemma 1.4.4.

We note also that our main theorem is equivalent to the claim that

$$
\mathscr{P}_{n}^{\Lambda} \subseteq \mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda} .
$$

We prove this by considering each of these three sets separately, beginning with $\mathscr{P}_{I}^{\Lambda}$.
Suppose λ and μ are two multipartitions, not necessarily of the same integer. Define $\mu<\lambda$ if $|\mu|<|\lambda|$, or $|\mu|=|\lambda|$ and $l(\mu)<l(\lambda)$, or $|\mu|=|\lambda|, l(\mu)=l(\lambda)$ and $\lambda<\mu$.
2.1.7. Definition. Define $\mathscr{S}_{n}^{\Lambda}=\left\{\lambda \in \mathscr{P}_{n}^{\Lambda} \mid \mu \in \mathscr{P}_{I}^{\Lambda^{\prime}} \cap \mathscr{P}_{y}^{\Lambda^{\prime}} \cap \mathscr{P}_{\psi}^{\Lambda^{\prime}}\right.$ whenever $\mu \in \mathscr{P}_{m}^{\Lambda^{\prime}}$ and $\left.\mu<\lambda\right\}$

Now we can state the main result of this chapter.
2.1.8. Theorem. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$. Then we have $\lambda \in \mathscr{P}_{I}^{\Lambda}$.

As we mentioned before we are going to apply induction on λ to prove the main Theorem. Lemma 2.1.9, Corollary 2.1.10 and Corollary 2.1.11 give the base case of the induction. Recall that $e \neq 2$.
2.1.9. Lemma. Suppose that $n \geq 1$ and $\lambda=(n|0| \ldots \mid 0) \in \mathscr{P}_{n}^{\Lambda}$. Then $e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{k}}} \in R_{n}^{>\lambda}$ for any $k \in I$.

Proof. As λ is the maximal element of $\mathscr{P}_{n}^{\Lambda}, R_{n}^{>\lambda}=\{0\}$. Therefore the Lemma is equivalent to the claim that $e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{-}^{\lambda}}=0$. We prove this by induction on n.

If $n=1$ then it is easy to see that $b_{k}^{\lambda_{-}}=\left(\Lambda, \alpha_{i_{1}}\right)$. Therefore, $e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}}=e(k) y_{1}^{\left(\Lambda, \alpha_{i_{1}}\right)}=0$ by 1.1.19.

Suppose now that the Lemma holds for any $n^{\prime}<n$. Notice that for any $m \geq 1$, set $\gamma=$ ($m|0| \ldots \mid 0$) then $\left|\mathscr{A}_{\mathrm{t}^{2}}^{k}\right|$ is independent to the value of m. For the rest of the proof we set $a_{k}=\left|\mathscr{A}_{\mathrm{t} \downarrow}^{k}\right|$.

In order to simplify the notations, for the rest of the proof we will omit $i_{1} i_{2} \ldots i_{n-3}$ and simply write $e(\mathbf{i})=e\left(i_{n-2}, i_{n-1}, i_{n}\right)$. We will also suppress y_{v}, where $v=\left.\lambda\right|_{n-3}$.

We consider four cases separately, depending on the value of k.
Case 2.1.9a: $k=i_{n-1}$. Then $e\left(\mathbf{i}_{\lambda-} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}}=e\left(\mathbf{i}_{n-3}, k-1, k, k\right) y_{\lambda_{n-3}} y_{n-2}^{a_{k-1}} y_{n-1}^{a_{k}} y_{n}^{a_{k}}$. In this case we have

$$
\begin{aligned}
& e(k-1, k, k) y_{n-2}^{a_{k-1}} y_{n-1}^{a_{k}} y_{n}^{a_{k}} \stackrel{[1.1 .6}{=}-e(k-1, k, k) y_{n-2}^{a_{k-1}} y_{n-1}^{a_{k}+1} y_{n}^{a_{k}} \psi_{n-1}+e(k-1, k, k) y_{n-2}^{a_{k-1}} y_{n-1}^{a_{k}} y_{n}^{a_{k}} \psi_{n-1} y_{n} \\
& \stackrel{[1.1 .13}{=} \psi_{n-1} e(k-1, k, k) y_{n-2}^{a_{k-1}} y_{n-1}^{a_{k}} y_{n}^{a_{k}} y_{n},
\end{aligned}
$$

where $e(k-1, k, k) y_{n-2}^{a_{k-1}} y_{n-1}^{a_{k}+1} y_{n}^{a_{k}}=0$ by induction. Therefore,

$$
\begin{aligned}
e(k-1, k, k) y_{n-2}^{a_{k-1}} y_{n-1}^{a_{k}} y_{n}^{a_{k}} & =\psi_{n-1} e(k-1, k, k) y_{n-2}^{a_{k-1}} y_{n-1}^{a_{k}} y_{n}^{a_{k}} y_{n} \\
& =\psi_{n-1}^{2} e(k-1, k, k) y_{n-2}^{a_{k-1}} y_{n-1}^{a_{k}} y_{n}^{a_{k}} y_{n}^{2}=0
\end{aligned}
$$

by relation (1.1.8).
Case 2.1.9b: $k=i_{n-1}+1$. Now, $e\left(\mathbf{i}_{\lambda-} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}}=e\left(\left.\mathbf{i}\right|_{n-3}, k-2, k-1, k\right) y_{\lambda_{n-3}} y_{n-2}^{a_{k-2}} y_{n-1}^{a_{k-1}} y_{n}^{a_{k}+1}$. Therefore,

$$
\begin{array}{ll}
& e(k-2, k-1, k) y_{n-2}^{a_{k-2}} y_{n-1}^{a_{k-1}} y_{n}^{a_{k}+1} \\
\stackrel{(1.1 .8)}{=} & e(k-2, k-1, k) y_{n-2}^{k_{k-2}} y_{n-1}^{a_{k-1}+1} y_{n}^{a_{k}}+e(k-2, k-1, k) y_{n-2}^{a_{k-2}} y_{n-1}^{a_{k-1}} y_{n}^{a_{k}} \psi_{n-1}^{2} \\
\frac{\sqrt{1.1 .6}}{=} & e(k-2, k-1, k) y_{n-2}^{a_{k-2}} y_{n-1}^{a_{k-1}+1} y_{n}^{a_{k}}+\psi_{n-1} e(k-2, k, k-1) y_{n-2}^{a_{k-2}} y_{n-1}^{a_{k}} y_{n}^{a_{k-1}} \psi_{n-1}=0,
\end{array}
$$

where the last equality follows by induction.
Case 2.1.9c: $k=i_{n-1}-1$. If $n=2$ then $e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}}=e(k, k-1) y_{1}^{a_{k}} y_{2}^{a_{k-1}}$. Then $a_{k-1} \geq 1$. Therefore,

$$
e(k, k-1) y_{1}^{a_{k}} y_{2}^{a_{k-1}} \stackrel{[1.1 .8}{=} e(k, k-1) y_{1}^{a_{k}+1} y_{2}^{a_{k-1}-1}-\psi_{1} e(k-1, k) y_{1}^{a_{k-1}-1} y_{2}^{a_{k}} \psi_{1}=0,
$$

using relation (1.1.19) and induction. Hence, the lemma follows in this case when $n=2$.
If $n>2$ then $e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}}=e\left(\left.\mathbf{i}\right|_{n-3}, k, k+1, k\right) y_{\lambda_{n-3}} y_{n-2}^{a_{k}} y_{n-1}^{a_{k+1}} y_{n}^{a_{k}}$. Hence,

$$
\begin{aligned}
e(k, k+1, k) y_{n-2}^{a_{k}} y_{n-1}^{a_{k+1}} y_{n}^{a_{k}} \stackrel{[1.1 .9)}{=} & \psi_{n-2} \psi_{n-1} \psi_{n-2} e(k, k+1, k) y_{n-2}^{a_{k}} y_{n-1}^{a_{k+1}} y_{n}^{a_{k}} \\
& \quad-\psi_{n-1} \psi_{n-2} \psi_{n-1} e(k, k+1, k) y_{n-2}^{a_{k}} y_{k-1}^{a_{k+1}} y_{n}^{a_{k}} \\
= & \psi_{n-2} \psi_{n-1} e(k+1, k, k) y_{n-2}^{a_{k+1}} y_{n-1}^{a_{k}} y_{n}^{a_{k}} \psi_{n-2} \\
& \quad-\psi_{n-1} \psi_{n-2} e(k, k, k+1) y_{n-2}^{a_{k}} y_{n-1}^{a_{k}} y_{n}^{a_{k+1}} \psi_{n-1} \\
= & 0,
\end{aligned}
$$

where the last equality follows by induction.
Case 2.1.9d: $\left|k-i_{n-1}\right|>1$. Because $i_{n-2}=i_{n-1}-1$, we have $i_{n-2} \neq k$. Therefore we have

$$
\begin{aligned}
e\left(\mathbf{i}_{\lambda-} \vee k\right) y_{\lambda-} y_{n}^{b_{k}^{\lambda-}} & =e\left(\left.\mathbf{i}\right|_{n-3}, i_{n-2}, i_{n-1}, k\right) y_{\lambda_{n-3}} y_{n-2} y_{i_{n-2}} y_{n-1}^{a_{n-1}} y_{n}^{a_{k}} \\
& \stackrel{[1.1 .8}{=} \psi_{n-1} e\left(\left.\mathbf{i}\right|_{n-3}, i_{n-2}, k, i_{n-1}\right) y_{\lambda_{n-3}} y_{n-2}^{a_{n-2}} y_{n-1}^{a_{k}} y_{n}^{a_{n-1}} \psi_{n-1}=0
\end{aligned}
$$

by induction. This completes the proof.

Lemma 2.1.9has two immediate Corollaries:
2.1.10. Corollary. Suppose $n \geq 2$ and $\lambda=(n|0| \ldots \mid 0)$. Then $e_{\lambda} y_{\lambda} y_{r} \in R_{n}^{>\lambda}$ for any $1 \leq r \leq n$.
2.1.11. Corollary. Suppose that $n \geq 2$ and $\lambda=(n|0| \ldots \mid 0)$. Then $e_{\lambda} y_{\lambda} \psi_{r} \in R_{n}^{>\lambda}$, for any $1 \leq r \leq n-1$.

Proof. Write $y_{\lambda}=y_{1}^{l_{1}} y_{2}^{l_{2}} \ldots y_{n}^{l_{n}}$ and $\mathbf{i}_{\lambda}=\left(i_{1} i_{2} \ldots i_{n}\right)$,

$$
e\left(i_{1} \ldots i_{n}\right) y_{1}^{l_{1}} \ldots y_{n}^{l_{n}} \psi_{r}=\psi_{r} e\left(i_{1} \ldots i_{r-1} i_{r+1} i_{r} \ldots i_{n}\right) y_{1}^{l_{1}} \ldots y_{r-1}^{l_{r-1}} y_{r}^{l_{r+1}} y_{r+1}^{l_{r}} \ldots y_{n}^{l_{n}}=0
$$

by Lemma 2.1.9
The results in the rest of the section will be used frequently in the later proofs.
Recall that for any multipartition $\lambda, R_{n}^{>\lambda}$ is the subspace of $\mathscr{R}_{n}^{\Lambda}$ spanned by all of the elements $\psi_{\text {st }}$, where Shape $(\mathrm{s})=\operatorname{Shape}(\mathrm{t})>\lambda$.
2.1.12. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$. Then $R_{n}^{>\lambda}$ is a two-sided ideal of $\mathscr{R}_{n}^{\Lambda}$. More precisely, $R_{n}^{>\mu}$ is a two-sided ideal of $\mathscr{R}_{n}^{\Lambda}$ whenever $\mu<\lambda$.

Proof. The Lemma follows directly from the definition of the set $\mathscr{S}_{n}^{\Lambda}, \mathscr{P}_{y}^{\Lambda}, \mathscr{P}_{\psi}^{\Lambda}$ and Remark 2.1.6.

In order to simplify the notation, for each $i \in I$ define $\theta_{i}: \mathscr{R}_{n}^{\Lambda} \longrightarrow \mathscr{R}_{n+1}^{\Lambda}$ to be the unique \mathbb{Z}-linear map which sends $e(\mathbf{i})$ to $e(\mathbf{i} \vee i), y_{r}$ to y_{r} and ψ_{r} to ψ_{r}. It is easy to see that θ_{i} respects the relations in $\mathscr{R}_{n}^{\Lambda}$, so θ_{i} is a \mathbb{Z}-algebra homomorphism.
2.1.13. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\mu)$, where $\mu \in \mathscr{P}_{m}^{\Lambda}$ with $m<n$ such that $\mu>\left.\lambda\right|_{m}$. Let $\sigma=\left.\lambda\right|_{m+1} \in \mathscr{P}_{m+1}^{\Lambda}$. Then $\theta_{i}\left(\psi_{\mathrm{uv}}\right) \in R_{n}^{>\sigma}$, for any $i \in I$.

Proof. Write $\mu=\left(\mu^{(1)}, \ldots, \mu^{(\ell)}\right)$ and $\mu^{(\ell)}=\left(\mu_{1}^{(\ell)}, \ldots, \mu_{k}^{(\ell)}\right)$ and define $\gamma=\left(\mu^{(1)}, \ldots, \mu^{(\ell-1)}, \gamma^{(\ell)}\right)$ where

$$
\gamma^{(\ell)}= \begin{cases}\left(\mu_{1}^{(\ell)}, \ldots, \mu_{k-1}^{(\ell)}, \mu_{k}^{(\ell)}+1\right), & \text { if } \mu_{k-1}^{(\ell)}>\mu_{k}^{(\ell)}, \\ \left(\mu_{1}^{(\ell)}, \ldots, \mu_{k-1}^{(\ell)}, \mu_{k}^{(\ell)}, 1\right), & \text { if } \mu_{k-1}^{(\ell)}=\mu_{k}^{(\ell)}\end{cases}
$$

Then γ is a multipartition of $m+1$ and $\left.\gamma\right|_{m}=\mu$. Since $m<n$, if $m=n-1$, then $\left.\gamma\right|_{n-1}=\mu>\lambda_{-}$, so that $\gamma>\lambda$. On the other hand, if $m<n-1$ then $|\gamma|=m+1<n=|\lambda|$. So we always have $\gamma<\lambda$. Therefore, $\gamma \in \mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}$ because $\lambda \in \mathscr{S}_{n}^{\Lambda}$.

As $\left.\gamma\right|_{m}=\mu$, we have $\theta_{i}\left(\psi_{\mathrm{uv}}\right)=\theta_{i}\left(\psi_{d(\mathrm{u})}^{*} e_{\mu} y_{\mu} \psi_{d(\mathrm{v})}\right)=\psi_{d(\mathrm{u})}^{*} e\left(\mathbf{i}_{\gamma_{\mid m}} \vee i\right) y_{\mu} \psi_{d(\mathrm{v})}$. First suppose that $b_{i}^{\mu}=0$. Then using the definition of $\mathscr{P}_{I}^{\Lambda}$, we have $e\left(\mathbf{i}_{\gamma_{l m}} \vee i\right) y_{\mu} \in R_{n}^{>\gamma} \subseteq R_{n}^{>\sigma}$. Hence, by Lemma 2.1.12, we have $\theta_{i}\left(\psi_{\mathrm{uv}}\right)=\psi_{d(u)}^{*} e\left(\mathbf{i}_{\gamma \mid m} \vee i\right) y_{\mu} \psi_{d(\mathrm{v})} \in R_{n}^{>\sigma}$.

Now supose that $b_{i}^{\mu}>0$. By Lemma 2.1.3 we can find a multipartition v with $\left.v\right|_{m}=\mu$ such that $e\left(\mathbf{i}_{\left.\gamma\right|_{m}} \vee i\right) y_{\mu}=e_{\nu} y_{v}$. Further, as $\left.v\right|_{m}=\mu$, we can find two standard v-tableaux s and t such that $\left.\mathbf{s}\right|_{m}=\mathrm{u}$ and $\left.\mathrm{t}\right|_{m}=\mathrm{v}$. That is, $d(\mathbf{s})=d(\mathrm{u})$ and $d(\mathrm{t})=d(\mathrm{v})$. Therefore,

$$
\theta_{i}\left(\psi_{\mathrm{uv}}\right)=\psi_{d(\mathrm{u})}^{*} e\left(\mathbf{i}_{\gamma \mid m} \vee i\right) y_{\mu} \psi_{d(\mathrm{v})}=\psi_{d(\mathrm{~s})}^{*} e_{\nu} y_{v} \psi_{d(\mathrm{t})}=\psi_{\mathrm{st}} \in R_{n}^{\geq v} \subseteq R_{n}^{>\sigma}
$$

because $v>\sigma$. This completes the proof.

$$
\text { If } \mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \in I^{n} \text { and } 1 \leq m \leq n \text { let } \mathbf{i}_{m}=\left(i_{1} \ldots i_{m}\right)
$$

2.1.14. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}, m \leq n$ and $\sigma=\left.\lambda\right|_{m}$. For any $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n-m}\right)$ we have $\mathscr{R}_{n}^{\Lambda} \theta_{\mathbf{i}}\left(R_{n}^{>\sigma}\right) \mathscr{R}_{n}^{\Lambda} \subseteq R_{n}^{>\lambda}$.

Proof. Suppose $r \in R_{n}^{>\sigma}$, we have that

$$
r=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\sigma)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}
$$

for some $c_{\mathrm{uv}} \in \mathbb{Z}$. For any $i \in I$,

$$
\theta_{i}(r)=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\sigma)} c_{\mathrm{uv}} \theta_{i}\left(\psi_{\mathrm{uv}}\right) .
$$

By Lemma 2.1.13, $\theta_{i}\left(\psi_{\mathrm{uv}}\right) \in R_{n}^{>\left.\lambda\right|_{m+1}}$. Hence $\theta_{i}(r) \in R_{n}^{>\left.\lambda\right|_{m+1}}$. By induction we have $\theta_{\mathbf{i}}(r) \in$ $R_{n}^{>\lambda}$. By Lemma 2.1.12, $R_{n}^{>\lambda}$ is an ideal. Therefore $\mathscr{R}_{n}^{\Lambda} \theta_{\mathbf{i}}\left(R_{n}^{>\sigma}\right) \mathscr{R}_{n}^{\Lambda} \subseteq R_{n}^{>\lambda}$ which completes the proof.

2.2. The action of y_{r} on two-rowed partitions

Recall that the main result of this chapter is to prove that if $\lambda \in \mathscr{S}_{n}$, then

$$
e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}} \in R_{n}^{>\lambda}
$$

In the inductive process we consider different types of multipartitions λ and a residue $k \in$ I. We will consider the more difficult case first, namely when $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ and $\lambda^{(\ell)}=$ $\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{l}^{(\ell)}, 1\right) \neq \emptyset$ with $l \geq 2, \lambda_{l-1}^{(\ell)}=\lambda_{l}^{(\ell)}=m$ and $k \equiv \kappa_{\ell}-l+m+1(\bmod e)$. In this section we assume that $\ell=1$ and $l=2$. We will extend the result to the general case in the next section. Notice that in this case $\lambda=(m, m, 1)$ for some integer m and $k \equiv \kappa_{1}-1+m(\bmod e)$. Then $e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{-}^{\lambda-}}=e_{\gamma} y_{\gamma}$ where $\gamma=(m, m+1)$. It is very hard to prove that $e_{\gamma} y_{\gamma} \in R_{n}^{>\lambda}$ directly, so we are going to work with γ which is in a more general form.

In this section we fix $\Lambda=\Lambda_{j}$ for some $j \in I, \gamma=\left(\gamma_{1}, \gamma_{2}\right)$ and $\lambda=\left(\gamma_{1}, \gamma_{2}-1,1\right)$ with $\gamma_{2}>1$ and $\gamma_{2}-\gamma_{1} \equiv 1(\bmod e)$. We will prove that if $\gamma_{1}+1=\gamma_{2}$ and $\lambda \in \mathscr{S}_{n}^{\Lambda}$ then $e_{\gamma} y_{\gamma} \in R_{n}^{>\gamma}$.

Without loss of generality we can assume that $\Lambda=\Lambda_{0}$. Define $i \equiv \gamma_{2}-2(\bmod e)$, which is the residue of $\left(2, \gamma_{2}, 1\right)$. Because $\gamma_{2} \equiv \gamma_{1}+1(\bmod e)$, it is also the residue of the node $\left(1, \gamma_{1}, 1\right)$. In diagrammatic notation, we have

where $\mathbf{i}_{\gamma}=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ and $l_{k}=\left|\mathscr{A}_{\mathrm{t}_{\gamma_{l}}}^{i_{k}}\right|$ is the multiplicity of the green dot on the k-th string. For the rest of this section, for clarity we will omit extraneous dots when they do not play an important role in the argument.

Next we introduce an important equivalent relation $=_{\gamma}$. For $\gamma \in \mathscr{S}_{n}^{\Lambda}$, and $r_{1}, r_{2} \in \mathscr{R}_{n}^{\Lambda}$, we write $r_{1}={ }_{\gamma} r_{2}$ if $r_{1} \pm r_{2} \in R_{n}^{>\gamma}$. It is clearly an equivalent relation. Moreover, by Lemma 2.1.12, for any $r \in \mathscr{R}_{n}^{\Lambda}$ we have $r_{1} \cdot r={ }_{\gamma} r_{2} \cdot r$ if $r_{1}={ }_{\gamma} r_{2}$. This will be helpful for us to simplify the notations and calculations.

Recall that $\gamma_{2}>1$. We can write $\gamma_{2}=k \cdot e+t$ for some nonnegative integer k and $2 \leq t \leq e+1$. We will first prove

by induction on k, which can imply $e_{\gamma} y_{\gamma} \in R_{n}^{>\lambda}$ easily.
In order to clarify the meaning of the diagrams in (2.2.1), let us give two examples below. In these examples for convenience we fix $e=4$.
2.2.2. Example Suppose $\gamma=(8,5)$, then $\gamma=\square \square \square \square \square$ and $i=3$. Then we are trying to prove that
2.2.3. Example Suppose $\gamma=(9,10)$, then $\gamma=\square \square \square \square$ and $i=0$. We are trying to prove that

The next Proposition is the base case of the induction. When $k=0$, we have $2 \leq \gamma_{2} \leq e+1$.
2.2.4. Proposition. Suppose $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in \mathscr{C}_{n}^{\Lambda}$ with $\gamma_{2}>1$ and $\gamma_{2}-\gamma_{1} \equiv 1(\bmod e)$ and $\lambda=\left(\gamma_{1}, \gamma_{2}-1,1\right) \in \mathscr{S}_{n}^{\Lambda}$. Define i to be the residue of the node at position $\left(1, \gamma_{1}, 1\right)$ or $\left(2, \gamma_{2}, 1\right)$. When $2 \leq \gamma_{2} \leq e+1$, (2.2.1) holds.

Before proving Proposition 2.2.4 we first give a useful lemma.
2.2.5. Lemma. For any $i \in I$, we have

Proof. The Lemma follows by directly applying braid relations on the left hand side of the equation.

Now we are ready to prove Proposition 2.2.4.
Proof. We prove the Proposition by considering four different cases depending upon the value of i. Notice that in this Proposition, we have $\gamma_{1} \geq \gamma_{2}-1$ because $2 \leq \gamma_{2} \leq e+1$ and $\gamma_{2}-\gamma_{1} \equiv 1$ $(\bmod e)$.

Case 2.2.4a: $i=0$, i.e. $\gamma_{2}=2$.

Because

and if we define $v=\left(\gamma_{1}, 1\right)=\left.\lambda\right|_{\gamma_{1}+1}$, then as $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $|v|=\gamma_{1}+1<n=\gamma_{1}+\gamma_{2}=|\lambda|$, $v \in \mathscr{P}_{I}^{\Lambda}$. Moreover as $b_{0}^{\nu-}=1$,

$$
\left.\left|\left.\right|_{\ldots} ^{0}\right|_{0}^{1}\right|^{e-1}=e\left(\mathbf{i}_{v_{-}} \vee 0\right) y_{v_{-}} y_{|v|}^{1} \in R_{n}^{>v} .
$$

Then by Lemma 2.1.14,

Therefore,

$$
e_{\gamma} y_{\gamma}=\left.\left.\left.{ }_{\gamma}\right|^{0}\right|_{\ldots} ^{1}\right|_{X} ^{e-1},
$$

which gives the proposition in this case.

Case 2.2.4b: $1 \leq i \leq e-3$, i.e. $3 \leq \gamma_{2} \leq e-1$.

For the same reason as in Case 2.2.4a,

which implies the proposition in this case.
Case 2.2.4c: $i=e-2$, i.e. $\gamma_{2}=e$. By Lemma 2.2.5,

Set $v=\left(\gamma_{1}, \gamma_{2}-1\right)=\left.\gamma\right|_{n-1}$. As $\gamma_{1} \geq \gamma_{2}-1$, we have $v \in \mathscr{P}_{n-1}^{\Lambda}$. As $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $|v|<|\lambda|$, we have $v \in \mathscr{P}_{I}^{\Lambda}$. It is not hard to see that $b_{e-3}^{v_{-}}=1$. Hence

Then by Lemma 2.1.14,

Similarly, we have

and for the similar method as in Case 2.2.4a, we have

Therefore,

which follows the Proposition.

Case 2.2.4d: $i=e-1$, i.e. $\gamma_{2}=e+1$. By Lemma 2.2.5,

For the first two terms of 2.2.6,

Using the similar method as in Case 2.2.4a,

and using the similar method in Case 2.2.4c,

Hence the first two terms of (2.2.6) is in $R_{n}^{>\gamma}$. For the third term of 2.2.6,

For the fourth term of (2.2.6, by 1.1.16,
and for the last term of (2.2.6),

Combine the result above, we have

which completes the proof.
2.2.7. Remark. The technique of applying Lemma 2.1.14 in proving Proposition 2.2.4 will be used many times in the rest of the thesis. Although the process is straightforward, individual details will vary from case to case, thus in order to simplify the process we will omit details in the future.

Recall $\gamma_{2}=k \cdot e+t$ where k is a nonnegative integer and $2 \leq t \leq e+1$. Now we remove the restriction on γ_{2} by applying the induction on k.
2.2.8. Proposition. Suppose $\gamma=\left(\gamma_{1}, \gamma_{2}\right) \in \mathscr{C}_{n}^{\Lambda}$ with $\gamma_{2}>1$ and $\gamma_{2}-\gamma_{1} \equiv 1(\bmod e)$ and $\lambda=\left(\gamma_{1}, \gamma_{2}-1,1\right) \in \mathscr{S}_{n}^{\Lambda}$. Define i to be the residue of the node at position $(1, m, 1)$. Then (2.2.1) holds.

Proof. We prove this Proposition by induction. As we claimed before that we can write $\gamma_{2}=$ $k \cdot e+t$ with $2 \leq t \leq e+1$ and we will apply induction on k. Proposition 2.2.4 implies that for $k=0$ the Proposition holds. Assume that for $k \leq k^{\prime}$ the Proposition holds. For $k=k^{\prime}$, we consider two different cases, which are $i=e-2, i=e-1$ and $i \neq e-2, e-1$. Recall that i is the residue of the node at $(1, m, 1)$ or $(2, m+1,1)$.

Case 2.2.8a: $i \neq e-2, e-1$.

Then by induction and Lemma 2.1.14, we have

which implies that

Hence by induction and Lemma 2.1.14

Case 2.2.8b: $i=e-2$.

(2.2.9)

By induction and Lemma 2.1.14, the second and the third terms of 2.2.9 are both in $R_{n}^{>\gamma}$. Now for the last term.

(2.2.10)

Substitute (2.2.10) to (2.2.9), let $n=\gamma_{1}+\gamma_{2}$, we have

where by Lemma 2.2.5

$$
\begin{aligned}
& \text { ||||||XI }
\end{aligned}
$$

(2.2.12)

Then by $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and Lemma 2.1.14, for the first term of 2.2.11,

(2.2.13)

For the second term of 2.2.11, by induction, Lemma 2.2.5, $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and Lemma 2.1.14,

by Lemma 2.1.14

Substitute the results of (2.2.13) and (2.2.14) to (2.2.11), we have

Case 2.2.8c: $i=e-1$. The method to prove this is the same as for Case 2.2.8 so it is left as an exercise. Then by induction, this completes the proof.

Finally, we can use (2.2.1) to prove our main result of this section.
2.2.15. Proposition. Suppose m is a positive integer, $\lambda=(m, m, 1) \in \mathscr{S}_{n}^{\Lambda}$ and $\gamma=\left(\gamma_{1}, \gamma_{2}\right)=$ $(m, m+1)$. Recall $\lambda_{-}=(m, m)$. Write $\mathbf{i}_{\lambda_{-}}=\left(i_{1}, i_{2}, \ldots, i_{n-1}\right)$. If $k=i_{n-1}+1 \in I$, we have

$$
e_{\gamma} y_{\gamma}=e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}} \in R_{n}^{>\lambda} .
$$

Proof. Without loss of generally we assume $\Lambda=\Lambda_{0}$. When $m=1$, then $\gamma=(1,2)$ and

$$
e_{\gamma} y_{\gamma}=\left.\left.\right|^{0 e-10}\right|^{\frac{(1.1 .12}{=}} \frac{\chi^{0,17}}{=}-\chi^{e-10} \in N_{3}^{\Lambda_{0}} \subseteq R_{n}^{>\lambda} .
$$

When $m>1$, write $\mathbf{i}_{\left(\gamma_{1}\right)}=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$. Set $\sigma=\left(\gamma_{1}-1, \gamma_{2}\right)=(m-1, m)$. Then by Proposition 2.2.8, we have

In both cases, the parts bounded by square are both $e_{\sigma} y_{\sigma}$. As $|\sigma|=n-2$ and $\lambda \in \mathscr{S}_{n}^{\Lambda}$, by induction, $e_{\sigma} y_{\sigma} \in R_{n}^{>\sigma}$. By the definition of σ and Lemma 1.4.4, it forces that $e_{\sigma} y_{\sigma} \in R_{n}^{>\lambda \mid l_{n-2}}$. Then by Lemma 2.1.14, we have $e_{\gamma} y_{\gamma} \in R_{n}^{>\lambda}$.

2.3. Final part of y-problem

In the last section we have proved that if $\lambda=(m, m, 1) \in \mathscr{S}_{n}^{\Lambda}$, then

$$
e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}} \in R_{n}^{>\lambda}
$$

with $k=i_{n}+1$. In this section we will gradually remove the restrictions on λ and k. First we are going to introduce a useful homomorphism and use it to prove a few more properties of \mathscr{R}_{n} and $\mathscr{R}_{n}^{\Lambda}$. After that we are going to show that if $\lambda \in \mathscr{P}_{I}^{\Lambda}$, then we can extend λ to a $\ell+1$ multipartition by adding an \emptyset at the end and thus the new multipartition is in $\mathscr{P}_{I}^{\Lambda+\Lambda_{i}}$ for any $i \in I$. Analogous results are also true for $\mathscr{P}_{y}^{\Lambda}$ and $\mathscr{P}_{\psi}^{\Lambda}$. These will allow us to extend the result to an arbitrary multipartition λ.

For any $\mathbf{j} \in I^{m}$, we can define a linear map $\hat{\theta}_{\mathbf{j}}: \mathscr{R}_{n} \longrightarrow \mathscr{R}_{n+m}^{\Lambda}$ sending $e(\mathbf{i})$ to $e(\mathbf{j} \vee \mathbf{i}), y_{r}$ to y_{r+m} and ψ_{r} to ψ_{r+m}. This map $\hat{\theta}_{\mathbf{j}}$ works as embedding from \mathscr{R}_{n} to \mathscr{R}_{n+m} followed by the projection onto $\mathscr{R}_{n+m}^{\Lambda}$.

2.3.1. Lemma. For $\mathbf{j} \in I^{m}$, the map $\hat{\theta}_{\mathbf{j}}$ is a homomorphism.

Proof. The map is defined to be linear. Hence we only have to check the relations. Since the relations of \mathscr{R}_{n} and $\mathscr{R}_{n+m}^{\Lambda}$ from Definition 1.1.1 are independent of the value of r, we can see that $\hat{\theta}_{\mathbf{j}}$ is a homomorphism.

It will be necessary to cut a multicomposition λ into one multicomposition μ and a composition γ for our later work. Note that in our work we will mainly set μ to be a multipartition and γ to be a partition, but generally we don't have such restriction.
2.3.2. Example Fix $e=4, \Lambda=2 \Lambda_{0}+\Lambda_{1}, \kappa_{\Lambda}=(0,1,0)$. Suppose $\lambda=\left(4,2\left|2^{2}, 1\right| 3^{2}, 2\right)$. So

We want to divide the last partition of λ after the first row. This is called the cut row of λ. This gives us a multipartition μ with Young diagram

and a partition γ with diagram

We call μ and γ the cut part and the remaining part, respectively.
Moreover we want to preserve the following data. The value $|\mu|$ is called the cut of λ which is 14 in this case. The residue of the top left node of γ as a subdiagram of $\lambda^{(3)}$ is called the cut residue, which in this case is 3 .

Now we give a formal definition.
2.3.3. Definition. Suppose $\lambda=\left(\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(\ell)}\right) \in \mathscr{C}_{n}^{\Lambda}$ with $\lambda^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{k_{\ell}}^{(\ell)}\right)$ and a is an integer such that $0 \leq a<k_{\ell}$. We call m a cut of λ and a the cut row associated to m where $m=\sum_{i=1}^{\ell-1}\left|\lambda^{(i)}\right|+\sum_{j=1}^{a} \lambda_{j}^{(\ell)}$. Define $\Lambda^{\prime}=\Lambda_{s}$, where $s=\kappa_{\ell}+1-(a+1)=\kappa_{\ell}-a$, the residue of the node at position $(a+1,1, \ell)$. We call s to be cut residue associated to m and Λ^{\prime} to be cut weight associated to m. We then define $\mu=\left.\lambda\right|_{m} \in \mathscr{C}_{m}^{\Lambda}$ and $\gamma=\left(\lambda_{a+1}^{(\ell)}, \lambda_{a+2}^{(\ell)}, \ldots, \lambda_{k_{\ell}}^{(\ell)}\right) \in \mathscr{C}_{n-m}^{\Lambda^{\prime}}$ and call μ and γ to be cut part and remaining part of λ associated to m, respectively.

Note we can either remove a portion of the last tableau, or cut out the whole partition.
We will start to work with $\hat{\theta}_{\mathbf{i}}$, which involving elements in both \mathscr{R}_{n} and $\mathscr{R}_{n}^{\Lambda}$. Recall that $\hat{e}(\mathbf{i})$, $\hat{y}_{r}, \hat{\psi}_{s}$ and $\hat{\psi}_{\text {st }}$ are elements from \mathscr{R}_{n} and $e(\mathbf{i}), y_{r}, \psi_{s}$ and $\psi_{\text {st }}$ are elements from $\mathscr{R}_{n}^{\Lambda}$.
2.3.4. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$. Let m be a cut of λ with $m<n-1, v=\left.\lambda\right|_{m}$ and Λ^{\prime} be the cut weight associated to m. Consider $N_{n-m}^{\Lambda^{\prime}} \subseteq \mathscr{R}_{n-m}$. If $\hat{\theta}_{\mathbf{i}_{v}}: \mathscr{R}_{n-m} \longrightarrow \mathscr{R}_{n}^{\Lambda}$, then $\hat{\theta}_{\mathbf{i}_{v}}\left(N_{n-m}^{\Lambda^{\prime}}\right) y_{v} \subseteq R_{n}^{>\lambda}$.
Proof. Consider $r \in N_{n-m}^{\Lambda^{\prime}}$. Then by 1.4.7, ,

$$
r=\sum_{\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{n-m}\right) \in I^{n-m}} c_{\mathbf{j}} R_{\mathbf{j}}^{\prime} \hat{e}(\mathbf{j}) \hat{y}_{1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)} R_{\mathbf{j}}
$$

where $R_{\mathbf{j}}$ and $R_{\mathbf{j}}^{\prime}$ are some elements in \mathscr{R}_{n-m} and $c_{\mathrm{j}} \in \mathbb{Z}$. Therefore

$$
\begin{aligned}
\hat{\theta}_{\mathbf{i}_{v}}(r) y_{v} & =\sum_{\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{n-m}\right) \in I^{n-m}} c_{\mathbf{j}} \hat{\boldsymbol{\theta}}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}^{\prime}\right) \hat{\theta}_{\mathbf{i}_{v}}\left(\hat{e}(\mathbf{j}) \hat{y}_{1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)}\right) \hat{\theta}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}\right) y_{v} \\
& =\sum_{\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{n-m}\right) \in I^{n-m}} c_{\mathbf{j}} \hat{\boldsymbol{\theta}}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}^{\prime}\right) e\left(\mathbf{i}_{v} \vee j_{1} \vee j_{2} j_{3} \ldots j_{n-m}\right) y_{v} y_{m+1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)} \hat{\theta}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}\right) \\
& =\sum_{\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{n-m}\right) \in I^{n-m}} c_{\mathbf{j}} \hat{\theta}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}^{\prime}\right) \theta_{\left(j_{2}, j_{3}, \ldots, j_{n-m}\right)}\left(e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)}\right) \hat{\theta}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}\right) .
\end{aligned}
$$

Next we consider $e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)} \in \mathscr{R}_{m+1}^{\Lambda}$.
Recall that we can write $v=\left(\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(\ell-1)}, v^{(\ell)}\right)$ and $v^{(\ell)}=\left(v_{1}^{(\ell)}, \ldots, v_{l}^{(\ell)}\right)$. Let $\mu=\left.\lambda\right|_{m+1}$. As $m<n-1,|\mu|=m+1<n=|\lambda|$, and $\lambda \in \mathscr{S}_{n}^{\Lambda}$, we have $\mu \in \mathscr{P}_{I}^{\Lambda}$. Write $\mathbf{i}_{v}=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$. Notice that $\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)=\left|\mathscr{A}_{\mathrm{t}^{v}}^{j_{1}}\right|$. We consider two cases.

Suppose $j_{1}=i_{m}+1$ and v^{+}is a multipartition. By Definition 2.1.2 we have $\left|\mathscr{A}_{\mathrm{t}^{\nu}}^{j_{1}}\right|=b_{j_{1}}^{v}-1$. Then by Lemma 2.1.3 we have $e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)}=e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{b_{j_{1}}^{j_{1}-1}}=e_{\nu^{+}} y_{\nu^{+}}$. Because m is a cut of λ and $v=\left.\lambda\right|_{m}, \mu=\left.\lambda\right|_{m+1}$, we must have $v^{+}>\mu$. Therefore $e_{\nu^{+}} y_{v^{+}} \in R_{n}^{>\mu}$. So

$$
e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)} \in R_{n}^{>\mu}
$$

Otherwise, by Definition 2.1.2 we have $\left|\mathscr{A}_{\mathrm{t}^{v}}^{j_{1}}\right|=b_{j_{1}}^{v}$. Then by $\mu \in \mathscr{P}_{I}^{\Lambda}$ and the definition of $\mathscr{P}_{I}^{\Lambda}$, for any $j_{1} \in I$, we have $e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{b_{j_{1}}^{\nu}} \in R_{n}^{>\mu}$ because $v=\mu_{-}$. Therefore

$$
e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)}=e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{b_{j_{1}}^{\nu}} \in R_{n}^{>\mu}
$$

Therefore for any $j_{1} \in I$ we have $e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{\left(\Lambda^{\prime}, j_{j_{1}}\right)} \in R_{n}^{>\mu}$. Hence by Lemma 2.1.14 and Lemma 2.1.12,

$$
\hat{\theta}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}^{\prime}\right) \theta_{\left(j_{2}, j_{3}, \ldots, j_{n-m}\right)}\left(e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)}\right) \hat{\theta}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}\right) \subseteq R_{n}^{>\lambda}
$$

Therefore $\hat{\theta}_{\mathbf{i}_{v}}(r) y_{v}=\sum_{\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{n-m}\right) \in I^{n-m}} c_{\mathbf{j}} \hat{\theta}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}^{\prime}\right) \theta_{\left(j_{2}, j_{3}, \ldots, j_{n-m}\right)}\left(e\left(\mathbf{i}_{v} \vee j_{1}\right) y_{v} y_{m+1}^{\left(\Lambda^{\prime}, \alpha_{j_{1}}\right)}\right) \hat{\theta}_{\mathbf{i}_{v}}\left(R_{\mathbf{j}}\right) \subseteq R_{n}^{>\lambda}$.
2.3.5. Definition. Suppose λ is a multicomposition of m and μ is a composition. If we can find a multicomposition γ such that λ and μ are cut part and remaining part of γ associated m, we write $\gamma=\lambda \vee \mu$ and say γ is the concatenation of λ and μ.

For example, suppose $\lambda=\left(2^{2}, 1\left|3^{3}\right| 2\right)$ and $\mu=(4,2)$, then $\gamma=\lambda \vee \mu=\left(2^{2}, 1\left|3^{3}\right| 2,4,2\right)$. Notice that in general γ is not a multipartition.

The following Corollaries follows by the definition of $\lambda \vee \mu$.
2.3.6. Corollary. Suppose λ is a multipartition of n and μ, γ are partitions of m. Then $\mu>\gamma$ if and only if $\lambda \vee \mu>\lambda \vee \gamma$.
2.3.7. Corollary. Suppose λ is a multipartition of n and μ is a partition of m. If $\gamma=\lambda \vee \mu$, $\hat{\theta}_{\mathbf{i}_{\lambda}}\left(\hat{e}_{\mu} \hat{y}_{\mu}\right) y_{\lambda}=e_{\gamma} y_{\gamma}$.
2.3.8. Corollary. Suppose λ and μ are multipartitions and γ is a partition such that $\lambda=\mu \vee \gamma$. If u and v are standard γ-tableaux, we can find standard λ-tableaux $\dot{\mathrm{u}}$ and $\dot{\mathrm{v}}$ such that $\hat{\theta}_{\mathrm{i}_{\mu}}\left(\hat{\psi}_{\mathrm{uv}}\right) y_{\mu}=$ $\psi_{u \text { ù }}$.

Proof. Suppose $\lambda \in \mathscr{P}_{n}^{\Lambda}$ and $\mu \in \mathscr{P}_{m}^{\Lambda}$. By Definition 2.3.3, μ is the cut part of λ associated to m. Let a be the cut row associated to m. Define ú to be the standard λ-tableau such that $\left.\dot{u}\right|_{m}=t^{\mu}$, and for any $k>m$, if $\dot{u}^{-1}(k)=\left(r_{1}, c_{1}, \ell_{1}\right)$ and $\mathrm{u}^{-1}(k-m)=\left(r_{2}, c_{2}, 1\right)$, then

$$
\begin{aligned}
& c_{1}=c_{2} \\
& r_{1}=r_{2}+a
\end{aligned}
$$

Define $\dot{\mathrm{v}}$ similarly. It is trivial that $\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{u})}\right)=\psi_{d(\dot{\mathrm{u}})}$ and $\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{v})}\right)=\psi_{d(\mathrm{v})}$. Therefore by Corollary 2.3.7,

$$
\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{\mathrm{uv}}\right)=\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{u})}^{*}\right) \hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{e}_{\gamma} \hat{y}_{\gamma}\right) \hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{v})}\right)=\psi_{d(\dot{\mathrm{u})}}^{*} e_{\lambda} y_{\lambda} \psi_{d(\hat{\mathrm{v}})}=\psi_{\mathrm{uv}} .
$$

2.3.9. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $\mu \in \mathscr{C}_{n}^{\Lambda}$ with $\mu>\lambda$. If $\mu_{-} \neq \lambda_{-}$, then $e_{\mu} y_{\mu} \in R_{n}^{>\lambda}$.

Proof. As $\mu>\lambda$ and $\mu_{-} \neq \lambda_{-}$, we can find $m<n$ such that $\left.\mu\right|_{m}>\left.\lambda\right|_{m}$ and $\left.\mu\right|_{m-1}=\left.\lambda\right|_{m-1}$. Set $v=\left.\mu\right|_{m}$. If $v \in \mathscr{P}_{m}^{\Lambda}$, we have $e_{\nu} y_{\nu}=\psi_{\mathrm{t}^{\prime v^{\nu}}} \in R_{n}^{>\left.\lambda\right|_{m}}$, so by Lemma 2.1.14 we have $e_{\mu} y_{\mu} \in R_{n}^{>\lambda}$.

If $v \notin \mathscr{P}_{m}^{\Lambda}$, because $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $|v|=m<n$, we have $v \in \mathscr{P}_{I}^{\Lambda}$. Notice that if we write $v=\left(v^{(1)}, \ldots, v^{(l)}, \emptyset, \ldots, \emptyset\right)$ with $v^{(l)}=\left(v_{1}^{(l)}, \ldots, v_{k-1}^{(l)}, v_{k}^{(l)}\right)$, because $\left.v\right|_{m-1}=\left.\mu\right|_{m-1}=\left.\lambda\right|_{m-1} \in \mathscr{P}_{m-1}^{\Lambda}$ and $v \notin \mathscr{P}_{m}^{\Lambda}$, we must have $v_{k-1}^{(l)}+1=v_{k}^{(l)}$. Therefore if we write $\mathbf{i}_{v}=\left(i_{1}, i_{2}, \ldots, i_{m}\right)$, we have

$$
e_{\nu} y_{v}=e\left(\mathbf{i}_{v-} \vee i_{m}\right) y_{v_{-}} y_{m}^{b_{i m}^{b_{i m}^{-}}} \in R_{n}^{>v} \subseteq R_{n}^{>\left.\lambda\right|_{m}} .
$$

Then by Lemma 2.1.14, we have $e_{\mu} y_{\mu} \in R_{n}^{>\lambda}$. This completes the proof.
Now we are ready to start proving the main result of this chapter. We start by proving two more specialized Propositions. After that we will introduce a Proposition which removes these restrictions and leads to the main Theorem of this chapter.
2.3.10. Proposition. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $\lambda_{-}=\left(\lambda^{(1)}, \ldots, \lambda_{-}^{(\ell)}\right)$ with $\lambda_{-}^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{l-1}^{(\ell)}, \lambda_{l}^{(\ell)}\right) \neq$ Ø. Write $\mathbf{i}_{\lambda_{-}}=\left(i_{1}, i_{2}, \ldots, i_{n-1}\right)$. For $k \in I$, if $k \neq i_{n-1}+1$, or $k=i_{n-1}+1$ and $\lambda_{l-1}^{(\ell)}>\lambda_{l}^{(\ell)}$, we have

$$
e\left(\mathbf{i}_{\lambda-} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}} \in R_{n}^{>\lambda} .
$$

Proof. For convenience set $m=\lambda_{l}^{(\ell)}$ and $\mu=\left.\lambda\right|_{n-m-1}$. Therefore $\mu=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell-1)}, \mu^{(\ell)}\right)$ where

$$
\mu^{(\ell)}= \begin{cases}\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{l-1}^{(\ell)}\right), & \text { if } l>1, \\ \emptyset, & \text { if } l=1 .\end{cases}
$$

Suppose i is the residue of node $(l, 1, \ell)$ in λ and $\Lambda^{\prime}=\Lambda_{i}$. Define $\gamma=(m+1) \in \mathscr{P}_{m+1}^{\Lambda^{\prime}}$. Notice that $\lambda_{-}=\mu \vee \gamma_{-}$. Because $k \neq i_{n-1}+1$ or $k=i_{n-1}+1$ and $\lambda_{k-1}^{(\ell)}>\lambda_{k}^{(\ell)}$, we have $b_{k}^{\gamma_{-}}=b_{k}^{\lambda_{-}}$. By Lemma 2.1.9. in $\mathscr{R}_{m+1}^{\Lambda^{\prime}}$ we have $e\left(\mathbf{i}_{\gamma_{-}} \vee k\right) y_{\gamma_{-}} y_{m+1}^{b_{k}^{\gamma_{-}}} \in R_{n}^{>\gamma}$. This implies that in \mathscr{R}_{m+1}, $\hat{e}\left(\mathbf{i}_{\gamma_{-}} \vee k\right) \hat{y}_{\gamma_{-}} \hat{y}_{m+1}^{b_{k}^{\nu_{-}^{\prime}}} \in N_{m+1}^{\Lambda^{\prime}}$. Then let $\hat{\theta}_{\mathbf{i}_{\mu}}: \mathscr{R}_{m+1} \longrightarrow \mathscr{R}_{n}^{\Lambda}$, by Lemma 2.3.4.

$$
e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}}=e\left(\mathbf{i}_{\mu} \vee \mathbf{i}_{\gamma_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{-}^{\gamma_{-}}}=\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{e}\left(\mathbf{i}_{\gamma_{-}} \vee k\right) \hat{y}_{\gamma_{-}} \hat{y}_{m+1}^{b_{-}^{\gamma_{-}}}\right) y_{\mu} \in \hat{\theta}_{\mathbf{i}_{\mu}}\left(N_{m+1}^{\Lambda^{\prime}}\right) y_{\mu} \subseteq R_{n}^{>\lambda},
$$

which completes the proof.
2.3.11. Proposition. Suppose $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right) \in \mathscr{S}_{n}^{\Lambda}$ with $\lambda^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{l-1}^{(\ell)}, \lambda_{l}^{(\ell)}, 1\right)$ and $l \geq 2$, where $\lambda_{l-1}^{(\ell)}=\lambda_{l}^{(\ell)}$. Write $\mathbf{i}_{\lambda_{-}}=\left(i_{1}, i_{2}, \ldots, i_{n-1}\right)$. Suppose $k \in I$ and $k \equiv i_{n-1}+1(\bmod e)$. Then

$$
e\left(\mathbf{i}_{\lambda-} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}} \in R_{n}^{>\lambda} .
$$

Proof. For convenience set $m=\lambda_{l-1}^{(\ell)}=\lambda_{l}^{(\ell)}$, and $\mu=\left.\lambda\right|_{n-2 m-1}$. Therefore $\mu=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell-1)}, \mu^{(\ell)}\right)$ where

$$
\mu^{(\ell)}= \begin{cases}\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{l-2}^{(\ell)}\right), & \text { if } l>2 \\ \emptyset, & \text { if } l=2\end{cases}
$$

Suppose i is the residue of node $(l-1,1, \ell)$ in λ and $\Lambda^{\prime}=\Lambda_{i}$. Define $\gamma=(m, m+1) \in$ $\mathscr{P}_{2 m+1}^{\Lambda^{\prime}}$. Notice that $\lambda_{-}=\mu \vee \gamma_{-}$. Because $k \equiv i_{n-1}+1(\bmod e)$, we have $b_{k}^{\gamma_{-}}=b_{k}^{\lambda_{-}}$and $e\left(\mathbf{i}_{\gamma_{-}} \vee k\right) y_{\gamma_{-}} y_{2 m+1}^{b_{-}^{\gamma_{-}}}=e_{\gamma} y_{\gamma}$. By Proposition 2.2.15, we have $e_{\gamma} y_{\gamma} \in R_{n}^{>\gamma}$. Therefore we can write $\left.e_{\gamma} y_{\gamma}=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\sigma)}^{\sigma>\gamma} \mathrm{u}\right) c_{\mathrm{uv}} \psi_{\mathrm{uv}}$ with $\sigma=\left(\sigma_{1}, \sigma_{2}\right)$ where $\sigma_{2} \geq 0$ and $\sigma_{1}>\gamma_{1}=m$. Therefore in $\mathscr{R}_{2 m+1}$, we have

$$
\hat{e}_{\gamma} \hat{y}_{\gamma}=\sum_{\substack{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\sigma) \\ \sigma>\gamma}} c_{\mathrm{uv}} \hat{\psi}_{\mathrm{uv}}+r
$$

with $r \in N_{2 m+1}^{\Lambda^{\prime}}$ and $c_{\mathrm{uv}} \in \mathbb{Z}$. Therefore

$$
\begin{align*}
e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}} & =e\left(\mathbf{i}_{\mu} \vee \mathbf{i}_{\gamma_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\gamma_{-}}}=\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{e}\left(\mathbf{i}_{\gamma_{-}} \vee k\right) \hat{y}_{\gamma_{-}} \hat{y}_{2 m+1}^{b_{k}^{k_{-}}}\right) y_{\mu}=\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{e}_{\gamma} \hat{y}_{\gamma}\right) y_{\mu} \\
& =\sum_{\substack{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\sigma) \\
\sigma \gamma \gamma}} c_{\mathrm{uv}} \hat{\mathbf{i}}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{\mathrm{uv}}\right) y_{\mu}+\hat{\theta}_{\mathbf{i}_{\mu}}(r) . \tag{2.3.12}
\end{align*}
$$

For the first term of 2.3.12, define $\alpha=\mu \vee \sigma \in \mathscr{C}_{n}^{\Lambda}$. Because $\sigma>\gamma$, by Corollary 2.3.6 we have $\alpha=\mu \vee \sigma>\mu \vee \gamma>\lambda$. Therefore $\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{\mathrm{uv}}\right) y_{\mu}=\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{u})}^{*}\right) \hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{e}_{\sigma} \hat{y}_{\sigma}\right) y_{\mu} \hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{v})}\right)=\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{u})}^{*}\right) e_{\mu \vee \sigma} y_{\mu \mathrm{V} \sigma} \hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{v})}\right)=\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{u})}^{*}\right) e_{\alpha} y_{\alpha} \hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{v})}\right)$

Because $\sigma=\left(\sigma_{1}, \sigma_{2}\right)>\gamma=(m, m+1)$, we must have $\sigma_{1}>m$. Therefore $\alpha_{-}=\mu \vee \sigma_{-} \neq$ $\mu \vee \gamma_{-}=\lambda_{-}$. Then by Lemma 2.3.9, $e_{\alpha} y_{\alpha} \in R_{n}^{>\lambda}$. By Lemma 2.1.12, we have $\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{\mathrm{uv}}\right) y_{\mu}=$ $\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{u})}^{*}\right) e_{\alpha} y_{\alpha} \hat{\mathrm{i}}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{d(\mathrm{v})}\right) \in R_{n}^{>\lambda}$ which yields $\sum_{\substack{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\sigma) \\ \sigma \gamma \gamma}} c_{\mathrm{uv}} \hat{\theta}_{\mathrm{i}_{\mu}}\left(\hat{\psi}_{\mathrm{uv}}\right) y_{\mu} \in R_{n}^{>\lambda}$.

For the second term of 2.3 .12 , by Lemma 2.3.4, we have $\hat{\theta}_{\mathbf{i}_{\mu}}(r) \in R_{n}^{>\lambda}$. Therefore

$$
e\left(\mathbf{i}_{\lambda-} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda-}} \in R_{n}^{>\lambda} .
$$

Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$. If $\lambda_{-}=\left(\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(\ell-1)}, \lambda_{-}^{(\ell)}\right.$) with $\lambda_{-}^{(\ell)} \neq \emptyset$ by Proposition 2.3.10 and Proposition 2.3.11 we have $\lambda \in \mathscr{P}_{I}^{\Lambda}$. In the rest of the section we are going to prove the result is still true if $\lambda_{-}^{(t)}=\emptyset$.

Suppose $\mu=\left(\mu^{(1)}, \ldots, \mu^{(\ell)}\right) \in \mathscr{P}_{n}^{\Lambda}$ and $\kappa_{\Lambda}=\left(\kappa_{1}, \ldots, \kappa_{\ell}\right)$, if $\mu^{(\ell)}=\emptyset$, we define $\bar{\Lambda}=\Lambda-\Lambda_{\kappa \ell}$, $\kappa_{\bar{\Lambda}}=\left(\kappa_{1}, \ldots, \kappa_{\ell-1}\right)$ and $\bar{\mu}=\left(\mu^{(1)}, \ldots, \mu^{(\ell-1)}\right) \in \mathscr{P}_{n}^{\bar{\Lambda}}$. Suppose u, v are two standard μ-tableaux, define \bar{u} and \bar{v} to be standard $\bar{\mu}$-tableaux obtained by removing the \emptyset at the end of u and v respectively. Write $k=\kappa_{\ell}$ for convenience. If $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \in I^{n}$, define

$$
y_{\mathbf{i}, k}=y_{1}^{\delta_{1}, k} y_{2}^{\delta_{2}, k} \ldots y_{n}^{\delta_{i n}, k} .
$$

2.3.13. Lemma. Suppose the notations are defined as above and \mathbf{i}_{v} is the residue sequence of v , then

$$
\psi_{\mathrm{uv}}=\psi_{\overline{\mathrm{u}} \mathbf{v}} y_{\mathrm{i}_{\mathrm{i}}, k},
$$

where ψ_{uv} is an element in $\mathscr{R}_{n}^{\Lambda}$ and $\psi_{\overline{\mathrm{u}}}$ is an element in $\mathscr{R}_{n}^{\bar{\Lambda}}$.
Proof. Without loss of generality, assume $u=t^{\mu}$. By the definition of μ and $\bar{\mu}$, writing $\mathbf{i}_{\mu}=$ $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, we have $y_{\mu}=y_{\bar{\mu}} y_{1}^{\delta_{i_{1}}, k} y_{2}^{\delta_{2}, k} \ldots y_{n}^{\delta_{n, k}}=y_{\bar{\mu}} y_{i_{\mu}, k}$.

Now for any residue sequence $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{n}$ and any r, If $i_{r} \neq i_{r+1}$

$$
\begin{aligned}
& e(\mathbf{i}) y_{1}^{\delta_{i, k}} y_{2}^{\delta_{i, k}} \ldots y_{n}^{\delta_{i n}, k} \psi_{r}=\left(e(\mathbf{i}) y_{r}^{\delta_{i_{r, k}, k}} y_{r+1}^{\delta_{i_{r+1}, k}} \psi_{r}\right) y_{1}^{\delta_{i, k}} \ldots y_{r-1} \delta_{\delta_{r-1}, k} y_{r+2}^{\delta_{r+1}, k} \ldots y_{n}^{\delta_{i_{n, k}, k}} \\
& =e(\mathbf{i}) \psi_{r} y_{r}^{\delta_{i_{r+1}}, k} y_{r+1}^{\delta_{i, k}, k} y_{1}^{\delta_{i_{1}, k}} \ldots y_{r-1}^{\delta_{i_{r-1}, k}} y_{r+2}^{\delta_{i_{+1}, k}} \ldots y_{n}^{\delta_{i n, k}} \\
& =e(\mathbf{i}) \psi_{r} y_{1}^{\delta_{s r}\left(i_{1}\right), k} \ldots y_{n}^{\delta_{s r}\left(i_{n}\right), k}=e(\mathbf{i}) \psi_{r} y_{\mathbf{i} \cdot s_{r}, k} .
\end{aligned}
$$

If $i_{r}=i_{r+1}$, then by relation (1.1.13), as $\delta_{i_{r}, k}=\delta_{i_{r+1}, k}$, we have the same result.
Hence

$$
\begin{aligned}
& \psi_{t^{\mu v}}=e_{\mu} y_{\mu} \psi_{d(\mathrm{v})}=e\left(\mathbf{i}_{\mu}\right) y_{\bar{\mu}} y_{\mathbf{i}_{\mu}, k} \psi_{d(\mathrm{v})} \\
&=e\left(\mathbf{i}_{\mu}\right) y_{\bar{\mu}} \psi_{d(v)} y_{\mathbf{i}_{\mu}} \cdot d(\mathrm{v}), k \\
&=e_{\mu} y_{\bar{\mu}} \psi_{d(v)} y_{\mathbf{i}_{\mathrm{i}}, k} .
\end{aligned}
$$

As $e_{\mu}=e_{\bar{\mu}}$ and $\psi_{d(\mathrm{v})}=\psi_{d(\overline{\mathrm{~V}}}$, this completes the proof.
2.3.14. Proposition. Suppose $\mu, \kappa_{\Lambda}, \bar{\mu}$, and $\kappa_{\bar{\Lambda}}$ are defined as above. Then $\bar{\mu} \in \mathscr{P}_{I}^{\bar{\Lambda}} \cap \mathscr{P}_{y}^{\bar{\Lambda}} \cap \mathscr{P}_{\psi}^{\bar{\Lambda}}$ implies $\mu \in \mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\wedge} \cap \mathscr{P}_{\psi}^{\Lambda}$.

Proof. We are only going to prove that $\bar{\mu} \in \mathscr{P}_{I}^{\bar{\Lambda}}$ implies $\mu \in \mathscr{P}_{I}^{\Lambda}$. The other two cases are similar.

Suppose $\bar{\mu} \in \mathscr{P}_{I}^{\bar{\Lambda}}$. Then for any $s \in I$, by the definition of $\mathscr{P}_{I}^{\bar{\Lambda}}$,

$$
e\left(\mathbf{i}_{\bar{\mu}_{-}} \vee s\right) y_{\bar{\mu}_{-}} y_{n}^{b_{\overline{-}}^{\bar{L}_{-}}}=\sum_{\overline{\mathrm{u}}, \overline{\mathrm{v} \in \operatorname{Std}(>\bar{\mu})}} c_{\overline{\mathrm{u} \overline{\mathrm{~V}}}} \psi_{\overline{\mathrm{V}} \overline{\mathrm{~V}}},
$$

where $\mathbf{i}_{\overline{\mathrm{v}}}=\mathbf{i}_{\bar{\mu}_{-}} \vee s=\mathbf{i}_{\mu_{-}} \vee s$ and $c_{\overline{\mathrm{u}} \overline{\mathrm{v}}} \in \mathbb{Z}$.
Also we have $e\left(\mathbf{i}_{\bar{\mu}_{-}} \vee s\right) y_{\bar{\mu}_{-}} y_{n}^{b_{s}^{\bar{u}_{-}}}=\theta_{s}\left(\psi_{\psi_{\bar{\mu}_{-}-\bar{\mu}_{-}}}\right) y_{n}^{b_{s}^{\bar{\mu}_{-}}}$. Therefore we have

$$
\theta_{s}\left(\psi_{t^{\bar{\mu}}-\bar{\mu}_{-}-}\right) y_{n}^{b_{s}^{\bar{\mu}_{-}}}=\sum_{\bar{u}, \overline{\bar{v}} \in \operatorname{Std}(>\bar{\mu})} c_{\overline{\mathrm{u}} \overline{\mathrm{v}}} \psi_{\overline{\mathrm{u}} \bar{v}} .
$$

Notice that $\dagger^{\overline{\mu_{-}}}=\overline{\dagger^{\mu_{-}}}$. Recall $k=\kappa_{\ell}$, the last term of the multicharge κ_{Λ}. We consider two cases, $s \neq k$ and $s=k$ in the rest of the proof.

If $s \neq k$, then $b_{s}^{\mu_{-}}=b_{s}^{\bar{\mu}_{-}}$. Hence by Lemma 2.3.13

$$
\begin{aligned}
& e\left(\mathbf{i}_{\mu_{-}} \vee s\right) y_{\mu_{-}} y_{n}^{\mu_{s}^{-}}=\theta_{s}\left(\psi_{t^{\mu_{-} \mu_{-}}}\right) y_{n}^{b_{s}^{\mu_{-}}} \\
& =\theta_{s}\left(\psi_{\tilde{t}^{\mu-}-\tilde{\mu}^{-}} y_{\mathbf{i}_{\mu_{-}}, k}\right) y_{n}^{b_{s}^{i_{-}}} \\
& =\theta_{s}\left(\psi_{t^{\bar{\mu}}-}-\bar{u}_{-}\right) y_{n}^{b_{s}^{\bar{L}_{-}}} y_{\mathbf{i}_{--}, k} \\
& =\sum_{\bar{u}, \bar{v} \in \operatorname{Std}(>\bar{\mu})} c_{\overline{\bar{u}} \overline{\bar{u}}} \psi_{\overline{\mathrm{u}}} y_{\mathrm{i}_{\mu-}, k},
\end{aligned}
$$

and as $s \neq k, \delta_{s, k}=0$. Hence $y_{\mathbf{i}_{\mu-}, k}=y_{\mathbf{i}_{\mu} \vee \vee, k}=y_{\mathbf{i}_{,}, k}=y_{\mathbf{i}_{,}, k}$. By Lemma 2.3.13,

$$
e\left(\mathbf{i}_{\mu_{-}} \vee s\right) y_{\mu_{-}} b_{n}^{b_{s}^{-}}=\sum_{\bar{u}, \bar{v} \in \operatorname{Std}(>\bar{\mu})} c_{\overline{\mathrm{u}} \bar{\nu}} \psi_{\overline{\mathrm{u}} \overline{\mathrm{v}}} y_{\mathrm{i}_{\mathrm{v}}, k}=\sum_{\overline{\mathrm{u}}, \overline{\mathrm{v}} \in \operatorname{Std}(>\bar{\mu})} c_{\overline{\mathrm{u}} \overline{\mathrm{v}}} \psi_{\mathrm{uv}} \in R_{n}^{>\lambda},
$$

because $\bar{u}, \bar{v} \in \operatorname{Std}(>\bar{\mu})$ implies $u, v \operatorname{Std}(>\mu)$.
If $s=k$, then $b_{s}^{\mu_{-}}=b_{s}^{\bar{\mu}_{-}}+1$. Hence by Lemma 2.3.13

$$
\begin{aligned}
& e\left(\mathbf{i}_{\mu_{-}} \vee s\right) y_{\mu_{-}} y_{n}^{b_{s}^{-}}=\theta_{s}\left(\psi_{t^{\mu_{-}} \mu_{-}}\right) y_{n}^{b_{s}^{\mu_{-}}} \\
& =\theta_{s}\left(\psi_{\hat{\mu}^{\mu_{-}-\psi_{-}}} y_{\mathbf{i}_{-}, k}\right) y_{n}^{b_{s}^{\mu_{-}}} y_{n} \\
& =\theta_{s}\left(\psi_{t_{\bar{\mu}-}-\bar{\mu}_{-}}\right) y_{n}^{b_{n}^{\bar{\mu}_{-}}} y_{i_{\mu_{-}}, k} y_{n} \\
& =\sum_{\overline{\mathrm{u}}, \overline{\mathrm{v}} \in \operatorname{Std}(>\bar{\mu})} c_{\overline{\mathrm{u}} \overline{\mathrm{~V}}} \psi_{\overline{\mathrm{u}}} y_{\mathrm{i}_{\mu_{-}}, k} y_{n},
\end{aligned}
$$

and as $s=k, \delta_{s, k}=1$. Hence $y_{i_{\mu_{-}}, k} y_{n}=y_{\mathbf{i}_{-} \vee s, k}=y_{\mathbf{i}_{\bar{\imath}}, k}=y_{\mathbf{i}_{\mathrm{v}}, k}$. By Lemma 2.3.13

$$
e\left(\mathbf{i}_{\mu_{-}} \vee s\right) y_{\mu_{-}} b_{n}^{b_{s}^{\mu_{-}}}=\sum_{\bar{u}, \bar{v} \in \operatorname{Std}(>\bar{\mu})} c_{\overline{\mathrm{u}} \bar{\psi}} \psi_{\overline{\mathrm{u}} \overline{\mathrm{v}}} y_{\mathrm{iv}^{\prime}, k}=\sum_{\overline{\mathrm{u}}, \overline{\mathrm{v} \in \operatorname{Std}(>\bar{\mu})}} c_{\overline{\mathrm{u} \overline{\mathrm{~V}}}} \psi_{\mathrm{uv}} \in R_{n}^{>\lambda} .
$$

These implies that $\mu \in \mathscr{P}_{I}$.
Now we are ready to prove Theorem 2.1.8.
Proof of Theorem 2.1.8, Write $\mu=\lambda_{-}=\left(\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(\ell-1)}, \mu^{(\ell)}\right)$. If $\mu^{(\ell)} \neq \emptyset$, by Proposition 2.3.10 and Proposition 2.3.11, we have $\lambda \in \mathscr{P}_{I}^{\Lambda}$.

If $\mu^{(\ell)}=\emptyset$, write $\lambda^{(\ell-1)}=\left(\lambda_{1}^{(\ell-1)}, \lambda_{2}^{(\ell-1)}, \ldots, \lambda_{k_{\ell-1}}^{(\ell-1)}\right)$ and define $\gamma=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell-2)}, \gamma^{(\ell-1)}, \emptyset\right) \in$ $\mathscr{P}_{n}^{\Lambda}$ with $\gamma^{(\ell-1)}=\left(\lambda_{1}^{(\ell-1)}, \lambda_{2}^{(\ell-1)}, \ldots, \lambda_{k_{\ell-1}}^{(\ell-1)}, 1\right)$ and $\bar{\gamma}=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell-2)}, \gamma^{(\ell-1)}\right)$. As $l(\bar{\gamma})<l(\lambda)=\ell$, by the definition of $\mathscr{S}_{n}^{\Lambda}, \bar{\gamma} \in \mathscr{P}_{I}^{\bar{\Lambda}}$. Then by Proposition 2.3.14 we have $\gamma \in \mathscr{P}_{I}^{\Lambda}$. Since $\gamma_{-}=\mu=\lambda_{-}$and $\gamma>\lambda$, for any $k \in I$,

$$
e\left(\mathbf{i}_{\lambda_{-}} \vee k\right) y_{\lambda_{-}} y_{n}^{b_{k}^{\lambda_{-}}}=e\left(\mathbf{i}_{\gamma_{-}} \vee k\right) y_{\gamma_{-}} y_{n}^{b_{k}^{\gamma_{-}}} \in R_{n}^{>\gamma} \subseteq R_{n}^{>\lambda},
$$

which yields that $\lambda \in \mathscr{P}_{I}$. This completes the proof.
The following Corollary is directly implied by Theorem 2.1.8. It will contribute to proving the ψ-problem.
2.3.15. Corollary. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $\mu \in \mathscr{C}_{n}^{\Lambda}$ where $\mu>\lambda$. Then we have $e_{\mu} y_{\mu} \in R_{n}^{>\lambda}$.

Proof. If $\mu_{-} \neq \lambda_{-}$, using Lemma 2.3.9 we have $e_{\mu} y_{\mu} \in R_{n}^{>\lambda}$. Suppose then that $\mu_{-}=\lambda_{-}$. If $\mu \in \mathscr{P}_{n}^{\Lambda}$, then $e_{\mu} y_{\mu}=\psi_{t^{\mu} \mu^{\mu}} \in R_{n}^{>\lambda}$. Finally, suppose that $\mu \notin \mathscr{P}_{n}^{\Lambda}$. If we write $\mu=$ $\left(\mu^{(1)}, \ldots, \mu^{(l)}, \emptyset, \ldots, \emptyset\right)$ with $\mu^{(l)}=\left(\mu_{1}^{(l)}, \ldots, \mu_{k-1}^{(l)}, \mu_{k}^{(l)}\right)$, we must have $\mu_{k-1}^{(l)}+1=\mu_{k}^{(l)}$. If we
write $\mathbf{i}_{\mu}=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$, we have $e_{\mu} y_{\mu}=e\left(\mathbf{i}_{\mu_{-}} \vee i_{n}\right) y_{\mu_{-}} y_{n}^{b_{i n}^{\mu_{-}}}$. By Theorem 2.1.8, as $\lambda \in \mathscr{S}_{n}^{\Lambda}$, we have $\lambda \in \mathscr{P}_{I}^{\Lambda}$. Since $\lambda_{-}=\mu_{-}$,

$$
e_{\mu} y_{\mu}=e\left(\mathbf{i}_{\mu_{-}} \vee i_{n}\right) y_{\mu_{-}} y_{n}^{b_{i_{n}}^{\mu_{n}}}=e\left(\mathbf{i}_{\lambda_{-}} \vee i_{n}\right) y_{\lambda_{-}} y_{n}^{b_{i_{n}}^{\lambda_{-}}} \in R_{n}^{>\lambda}
$$

Chapter 3

Integral Basis Theorem II

In this chapter our main purpose is to prove that $\mathscr{R}_{n}^{\Lambda}=R_{n}^{\Lambda}$ by proving that $\psi_{\mathrm{st}} y_{r}$ and $\psi_{\mathrm{st}} \psi_{r}$ are both in R_{n}^{Λ}. We first define an integer m_{λ} such that if $\mathrm{t} \in \operatorname{Std}(\lambda)$ and $l(d(\mathrm{t}))<m_{\lambda}$, we have $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\Lambda}$ and $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\Lambda}$. Our first step is to show that $m_{\lambda}>0$. Then we prove if $l(d(\mathrm{t})) \leq m_{\lambda}$, we will have $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\Lambda}$ and $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\Lambda}$ as well. By induction we will show that for any $\mathrm{t} \in \operatorname{Std}(\lambda), l(d(\mathrm{t}))<m_{\lambda}$, which indicates that $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\Lambda}$ and $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\Lambda}$ for any $\mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)$. Finally combining the results from the last chapter, we can prove that $\mathscr{R}_{n}^{\Lambda}=R_{n}^{\Lambda}$.

3.1. Base case of induction

In this chapter we fix $\lambda \in \mathscr{S}_{n}^{\Lambda}$. First we will give a proper definition of m_{λ}.
3.1.1. Definition. Define m_{λ} to be the smallest nonnegative integer such that for any standard λ-tableau t with $l(d(\mathrm{t}))<m_{\lambda}$ we have

$$
\begin{aligned}
& \psi_{\mathrm{st}} y_{r}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, \\
& \psi_{\mathrm{st}} \psi_{r}= \begin{cases}\psi_{\mathrm{sw}}+\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { if } \mathrm{w}=\mathrm{t} \cdot s_{r} \text { is standard and } d(\mathrm{u}) \cdot s_{r} \text { is reduced, } \\
\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { if } \mathrm{u} \cdot s_{r} \text { is not standard or } d(\mathrm{u}) \cdot s_{r} \text { is not reduced. } .\end{cases}
\end{aligned}
$$

for some $c_{\mathrm{uv}} \in \mathbb{Z}$.
We will use induction to prove that for any $\mathrm{t} \in \operatorname{Std}(\lambda), l(d(\mathrm{t}))<m_{\lambda}$ in this chapter. In this section we will prove that $m_{\lambda}>0$, which is the base case of the induction.
3.1.2. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$. For any $1 \leq r \leq n, e_{\lambda} y_{\lambda} y_{r}=\psi_{t^{1+1}} y_{r} \in R_{n}^{>\lambda}$.

Proof. If $r<n$, write $\mu=\left.\lambda\right|_{r}$. As $\lambda \in \mathscr{S}_{n}^{\Lambda}$ we have $\mu \in \mathscr{P}_{y}^{\Lambda}$. Therefore $e_{\mu} y_{\mu} y_{r} \in R_{n}^{>\mu}$. By Lemma 2.1.14, we have $e_{\lambda} y_{\lambda} y_{r} \in R_{n}^{>\lambda}$.

If $r=n$, write $\mathbf{i}_{\lambda}=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$. We can find a positive integer b such that $e_{\lambda} y_{\lambda}=e\left(\mathbf{i}_{\lambda-} \vee\right.$ $\left.i_{n}\right) y_{\lambda_{-}} y_{n}^{b}$. By the definition of $b_{i_{n}}^{\lambda_{-}}$we have $b<b_{i_{n}}^{\lambda_{-}}$. If $b+1<b_{i_{n}}^{\lambda_{-}}$, by Lemma 2.1.3 we can find $v \in \mathscr{P}_{n}^{\Lambda}$ such that

$$
e_{\lambda} y_{\lambda} y_{n}=e\left(\mathbf{i}_{\lambda-} \vee i_{n}\right) y_{\lambda_{-}} y_{n}^{b+1}=e_{\nu} y_{v},
$$

and it is trivial that $v>\lambda$. Therefore $e_{\lambda} y_{\lambda} y_{n} \in R_{n}^{>\lambda}$. If we have $b+1=b_{i_{n}}^{\lambda-}$, by Theorem 2.1.8 we have

$$
e_{\lambda} y_{\lambda} y_{n}=e\left(\mathbf{i}_{\lambda_{-}} \vee i_{n}\right) y_{\lambda_{-}} y_{n}^{b+1}=e\left(\mathbf{i}_{\lambda_{-}} \vee i_{n}\right) y_{\lambda_{-}} y_{n}^{b_{i_{n}}^{\lambda_{-}}} \in R_{n}^{>\lambda}
$$

which completes the proof.
3.1.3. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$. For any $1 \leq r<n, e_{\lambda} y_{\lambda} \psi_{r}=\psi_{t^{2}+1} \psi_{r} \in R_{n}^{\geq \lambda}$.

Proof. Suppose $\mathrm{t}^{\lambda} \cdot s_{r}=\mathrm{t}$ is standard, we have $e_{\lambda} y_{\lambda} \psi_{r}=\psi_{\mathrm{t}^{\lambda_{\mathrm{t}}}} \in R_{n}^{\geq \lambda}$. So we consider the case that $\mathrm{t}^{\lambda} \cdot s_{r}=\mathrm{t}$ is not standard. If $r<n-1$, as $\lambda \in \mathscr{S}_{n}^{\Lambda}$, we have $\mu=\lambda_{-} \in \mathscr{P}_{\psi}^{\Lambda}$. Because $\mathrm{t}^{\mu} \cdot s_{r}=\left.\mathrm{t}\right|_{n-1}$ which is not standard, $e_{\mu} y_{\mu} \psi_{r} \in R_{n}^{>\mu}$. Then by Lemma 2.1.14, we have $e_{\lambda} y_{\lambda} \psi_{r} \in R_{n}^{>\lambda}$. If $r=n-1$
and write $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(l)}, \emptyset, \ldots, \emptyset\right)$ with $\lambda^{(l)}=\left(\lambda_{1}^{(l)}, \ldots, \lambda_{k-1}^{(l)}, \lambda_{k}^{(l)}\right)$, we must have either $\lambda_{k}^{(l)} \geq 2$ or $\lambda_{k-1}^{(l)}=\lambda_{k}^{(l)}=1$. Then set $\mu=\left(\lambda^{(1)}, \ldots, \mu^{(l)}, \emptyset, \ldots, \emptyset\right)$ with

$$
\mu^{(l)}= \begin{cases}\left(\lambda_{1}^{(l)}, \ldots, \lambda_{k-1}^{(l)}\right), & \text { if } \lambda_{k}^{(l)} \geq 2 \text { and } k>1, \\ \left(\lambda_{1}^{(l)}, \ldots, \lambda_{k-2}^{(l)}\right), & \text { if } \lambda_{k-1}^{(l)}=\lambda_{k}^{(l)}=1 \text { and } k>2, \\ \emptyset, & \text { otherwise }\end{cases}
$$

Suppose i is the residue of node $(k, 1, l)$ in λ or the residue of node $(k-1,1, l)$ in $\lambda, \Lambda^{\prime}=\Lambda_{i}$, $m=\lambda_{k}^{(l)}$ or $m=2$ and $\gamma=(m) \in \mathscr{P}_{m}^{\Lambda^{\prime}}$ or $\gamma=(1,1) \in \mathscr{P}_{m}^{\Lambda^{\prime}}$ if $\lambda_{k}^{(l)} \geq 2$ or $\lambda_{k-1}^{(l)}=\lambda_{k}^{(l)}=1$ respectively. Therefore $\lambda=\mu \vee \gamma$. Because $\lambda \in \mathscr{S}_{n}^{\Lambda}$, we have $\gamma \in \mathscr{P}_{\psi}^{\Lambda}$. Hence because ${ }^{\gamma} \cdot s_{m-1}$ is not standard, we have $e_{\gamma} y_{\gamma} \psi_{m-1} \in R_{n}^{>\gamma}=N_{m}^{\Lambda^{\prime}}$. Then by Lemma 2.3.4,

$$
e_{\lambda} y_{\lambda} \psi_{r}=e\left(\mathbf{i}_{\mu} \vee \mathbf{i}_{\gamma}\right) y_{\lambda} \psi_{r}=\hat{\theta}_{\mathbf{i}_{\mu}}\left(e_{\gamma} y_{\gamma} \psi_{m-1}\right) y_{\mu} \in R_{n}^{>\lambda},
$$

which completes the proof.
3.1.4. Corollary. For $\lambda \in \mathscr{S}_{n}^{\Lambda}$, we have $m_{\lambda}>0$.

Proof. Combining the above two Lemmas, Lemma 1.4.4 and Proposition 1.4.9, the Corollary follows.

3.2. Completion of the y-problem

In this section we are going to prove that for any $\mathrm{t} \in \operatorname{Std}(\lambda)$, if $l(d(\mathrm{t})) \leq m_{\lambda}$, then for any $1 \leq r \leq n-1$ and any $\mathrm{s} \in \operatorname{Std}(\lambda)$, if $\mathrm{t} \cdot s_{r}$ is standard and $d(\mathrm{t}) \cdot s_{r}$ is reduced, $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$ and for any $1 \leq r \leq n, \psi_{\mathrm{st}} y_{r} \in R_{n}^{\geq \lambda}$.

First we introduce the following Lemma.
3.2.1. Lemma. Suppose m is a positive integer such that $m \leq m_{\lambda}$, then

$$
e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}}=\lambda \sum_{\substack{v \in S t d(\lambda) \\ l(d(v)) \leq m}} c_{\mathrm{t}^{\lambda} v} \psi_{t^{\prime} v} .
$$

Proof. We apply induction on m. Suppose $m=0$ then there is nothing to prove. Assume for any $m^{\prime}<m$ the Lemma holds. Therefore $e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m-1}}=\sum_{\substack{\mathrm{u} \\ l(d(\mathrm{Std}) \leq(\lambda) \leq-1}} c_{\mathrm{t}^{\lambda} \mathrm{u}} \psi_{t^{\lambda} \mathrm{u}}$ which yields

$$
e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m-1}} \psi_{r_{m}}=\lambda \sum_{\substack{\mathrm{u} \in \operatorname{Std}(\lambda) \\ l(d(\mathrm{u})) \leq m-1}} c_{\mathrm{t}^{\lambda} u} \psi_{t^{\lambda} \mathrm{u}} \psi_{r_{m}} .
$$

For $\mathrm{u} \in \operatorname{Std}(\lambda)$ and $l(d(\mathrm{u})) \leq m-1<m_{\lambda}$, if $\mathrm{u} \cdot s_{r}$ is standard and $s_{d(\mathrm{v})} \cdot s_{r_{m}}$ is reduced, by the definition of m_{λ},

$$
\psi_{\mathrm{t}^{\lambda} \mathrm{u}} \psi_{r_{m}}=\psi_{\mathrm{t}^{\lambda}, \mathrm{u} \cdot s_{r}}+\sum_{(\mathrm{x}, \mathrm{y}) \triangleright\left(\mathrm{t}^{\lambda}, \mathrm{u}\right)} c_{\mathrm{xy}} \psi_{\mathrm{xy}}=\lambda_{\lambda} \psi_{\mathrm{t}^{\lambda}, \mathrm{u} \cdot s_{r}}+\sum_{\mathrm{v} \triangleright \mathrm{u}} c_{\mathrm{t}^{\imath} \mathrm{v}} \psi_{\mathrm{t}^{\lambda} \mathrm{v}},
$$

where $l\left(d\left(\mathrm{u} \cdot s_{r}\right)\right)=1+l(d(\mathrm{u})) \leq m$ and $l(d(\mathrm{v}))<l(d(\mathrm{u}))<m$ as $\mathrm{v} \triangleright \mathrm{u}$. Hence

$$
\psi_{\mathrm{t}^{\lambda} \mathrm{u}} \psi_{r_{m}}=\lambda \sum_{\substack{\mathrm{v} \in \mathrm{Std}(\lambda) \\ l(d(\mathrm{v}) \leq m}} c_{\mathrm{v}} \psi_{t^{\lambda} \mathrm{v}} .
$$

If $\mathrm{u} \cdot s_{r}$ is not standard or $s_{d(\mathrm{v})} \cdot s_{r_{m}}$ is not reduced, we have

$$
\psi_{\mathrm{t}^{\lambda} \mathrm{u}} \psi_{r_{m}}=\sum_{(\mathrm{x}, \mathrm{y}) \triangleright\left(\mathrm{t}^{\lambda}, \mathrm{u}\right)} c_{\mathrm{xy}} \psi_{\mathrm{xy}}=\lambda \sum_{\mathrm{v} \mathrm{u}} c_{\mathrm{t}^{\lambda} \mathrm{v}} \psi_{\mathrm{t}^{\lambda} \mathrm{v}}
$$

where $l(d(\mathrm{v}))<l(d(\mathrm{u})) \leq m-1<m$ as $\mathrm{v} \triangleright \mathrm{u}$. Hence

$$
\psi_{\mathrm{t}^{\lambda} u} \psi_{r_{m}}=\lambda \sum_{\substack{v \in \operatorname{Std}(\lambda) \\ l(d(v)) \leq m}} c_{\mathrm{t}^{\imath} \mathrm{v}} \psi_{t^{\lambda} \mathrm{v}},
$$

which completes the proof.
Now we can start to prove that $\psi_{s t} \psi_{r} \in R_{n}^{\geq \lambda}$ when $\mathrm{t} \cdot s_{r}$ is standard and $d(\mathrm{t}) \cdot s_{r}$ is reduced.
3.2.2. Lemma. Suppose t is a standard λ-tableau with $d(\mathrm{t})=s_{r_{1}} s_{r_{2}} \ldots s_{r_{l}}$ where $l \leq m_{\lambda}$, and $d^{\prime}(t)=s_{t_{1}} s_{t_{2}} \ldots s_{t_{1}}$ is another reduced decomposition of $d(\mathrm{t})$, then

$$
e_{\lambda} y_{\lambda} \psi_{d(\mathrm{t})}-e_{\lambda} y_{\lambda} \psi_{d^{\prime}(\mathrm{t})}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright\left(\mathrm{t}^{\mathrm{t} \mathrm{t}}\right)} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

Proof. By [5, Proposition 2.5], we have

$$
y_{\lambda} e_{\lambda} \psi_{d(\mathrm{t})}-y_{\lambda} e_{\lambda} \psi_{d^{\prime}(\mathrm{t})}=\sum_{u<d(\mathrm{t})} c_{u, f} y_{\lambda} e_{\lambda} f(y) \psi_{u},
$$

where $f(y)$ is a polynomial in y_{r} 's and u is a word in \Im_{n}. If $f(y) \neq 1$, by Lemma 3.1.2 we have $e_{\lambda} y_{\lambda} f(y) \in R_{n}^{>\lambda}$. Hence $y_{\lambda} e_{\lambda} f(y) \psi_{u} \in R_{n}^{>\lambda}$. If $f(y)=1$, as $u<d(\mathrm{t})$ then $l(u)<l \leq m_{\lambda}$, by Lemma 3.2.1 we have $e_{\lambda} y_{\lambda} \psi_{u} \in R_{n}^{\geq \lambda}$. Henceforth

$$
y_{\lambda} e_{\lambda} \psi_{w}-y_{\lambda} e_{\lambda} \psi_{w^{\prime}} \in R_{n}^{\geq \lambda}
$$

Then by Proposition 1.4.9 and [9, Lemma 5.7], we complete the proof.
The following Corollary is straightforward by Lemma 3.2.2 which explains the action of ψ_{r} to ψ_{st} from right when $\mathrm{t} \cdot s_{r}$ is standard and $d(\mathrm{t}) \cdot s_{r}$ is reduced.
3.2.3. Corollary. Suppose t is a standard λ-tableau with $l(d(\mathrm{t})) \leq m_{\lambda}$, if $\mathrm{w}=\mathrm{t} \cdot s_{r}$ is standard and $d(\mathrm{t}) \cdot s_{r}$ is reduced,

$$
\psi_{\mathrm{st}} \psi_{r}=\psi_{\mathrm{sw}}+\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

Now we start to prove that $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\geq \lambda}$.
3.2.4. Lemma. Suppose t is a standard λ-tableau with $l(d(\mathrm{t}))<m_{\lambda}$. For any $1 \leq k \leq n$, $1 \leq r \leq n-1$ and any standard λ-tableau s , we have

$$
\psi_{\mathrm{st}} y_{k} \psi_{r} \in R_{n}^{\geq \lambda} .
$$

Proof. As $l(d(\mathrm{t}))<m_{\lambda}$, we have

$$
\psi_{\mathrm{st}} y_{k}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}=\sum_{\mathrm{v} \triangleright \mathrm{t}} c_{\mathrm{sv}} \psi_{\mathrm{sv}}+\sum_{\mathrm{u}, \mathrm{v} \in \mathrm{Std}(>\lambda)} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

For Shape $(\mathrm{v})=\lambda$, since $\mathrm{v} \triangleright \mathrm{t}, l(d(\mathrm{v}))<l(d(\mathrm{t}))<m_{\lambda}$. Then we have $\psi_{\mathrm{sv}} \psi_{r} \in R_{n}^{\geq \lambda}$.
For $\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\lambda), \psi_{\mathrm{uv}} \in R_{n}^{>\lambda}$. As $\lambda \in \mathscr{S}_{n}^{\Lambda}, R_{n}^{>\lambda}$ is an ideal by Lemma 2.1.12. Hence $\psi_{\mathrm{uv}} \psi_{r_{l}} \in R_{n}^{>\lambda}$ and this completes the proof.
3.2.5. Proposition. Suppose t is a standard λ-tableau with $l(d(\mathrm{t})) \leq m_{\lambda}$, for any $1 \leq r \leq n$ and any standard λ-tableau s , we have

$$
\psi_{\mathrm{st}} y_{r}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

Proof. Write $d(\mathrm{t})=s_{r_{1}} s_{r_{2}} \ldots s_{r_{l-1}} s_{r_{l}}$ and $\mathrm{w}=\mathrm{t} \cdot s_{r_{l}}=s_{r_{1}} s_{r_{2}} \ldots s_{r_{l-1}}$. We prove this Proposition by considering different values of r.

If $r \notin\left\{r_{l}, r_{l}+1\right\}$, then $\psi_{r_{l}}$ and y_{r} commute. Hence

$$
\psi_{\mathrm{st}} y_{r}=\psi_{d(\mathbf{s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{t})} y_{r}=\psi_{d(\mathbf{s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathbf{w})} y_{r} \psi_{r_{l}}=\psi_{\mathrm{sw}} y_{r} \psi_{r_{l}}
$$

As $l(d(\mathrm{w}))=l(d(\mathrm{t}))-1<m_{\lambda}$, by Lemma 3.2.4 we have $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\geq \lambda}$.
If $r=r_{l}$, let \mathbf{j} be a sequence such that $e\left(\mathbf{i}_{\lambda}\right) \psi_{d(\mathrm{t})}=\psi_{d(\mathbf{w})} e(\mathbf{j}) \psi_{r_{l}}$. We separate this case further into $j_{r_{l}} \neq j_{r_{l}+1}$ and $j_{r_{l}}=j_{r_{l}+1}$. First suppose $j_{r_{l}} \neq j_{r_{l}+1}$, then

$$
\psi_{\mathrm{st}} y_{r}=\psi_{d(\mathrm{~s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{t})} y_{r}=\psi_{d(\mathrm{~s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{w})} y_{r+1} \psi_{r_{l}}=\psi_{\mathrm{sw}} y_{r+1} \psi_{r_{l}} .
$$

Hence as $l(d(\mathrm{w}))<m_{\lambda}$, by Lemma 3.2.4 we have $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\geq \lambda}$ when $j_{r_{l}} \neq j_{r_{l}+1}$. Now suppose $j_{r_{l}}=j_{r_{l}+1}$, we have

$$
\psi_{\mathrm{st}} y_{r}=\psi_{d(\mathrm{~s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{t})} y_{r}=\psi_{d(\mathrm{~s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{w})}+\psi_{d(\mathrm{~s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{w})} y_{r+1} \psi_{r_{l}}=\psi_{\mathrm{sw}}+\psi_{\mathrm{sw}} y_{r+1} \psi_{r_{l}}
$$

As $l(d(\mathrm{w}))<m_{\lambda}$, by Lemma 3.2.4 we have $\psi_{\mathrm{sw}} y_{r+1} \psi_{r_{l}} \in R_{n}^{\geq \lambda}$. As $\psi_{\mathrm{sw}} \in R_{n}^{\geq \lambda}$ as well, we have $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\geq \lambda}$. So for $r=r_{l}$, we have $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\geq \lambda}$.

If $r=r_{l}+1$, the method is the same as $r=r_{l}$.
Therefore in all the cases, we have $\psi_{\mathrm{st}} y_{r} \in R_{n}^{\geq \lambda}$. So

$$
\psi_{\mathrm{st}} y_{r}=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\geq \lambda)} c_{\mathrm{uv}} \psi_{\mathrm{uv}},
$$

and by Proposition 1.4.9 we complete the proof.

3.3. Properties of m_{λ}

In the rest of this chapter we will prove that if $\mathrm{t} \in \operatorname{Std}(\lambda)$ and $l(d(\mathrm{t})) \leq m_{\lambda}$, then for any $1 \leq r \leq n-1$ and any $\mathrm{s} \in \operatorname{Std}(\lambda)$, we have $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$. In this section we will give some properties for m_{λ} which will be used in proving the above argument.
3.3.1. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$. For any permutation $w \in \Im_{n}$ with reduced expression $w=$ $s_{r_{1}} s_{r_{2}} \ldots s_{r_{m-1}} s_{r_{m}}$ and $r=\min \left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$, if we write

$$
e_{\lambda} y_{\lambda} \psi_{w}=e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}}=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\geq \lambda)} c_{\mathrm{uv}} \psi_{\mathrm{uv}},
$$

then $c_{\mathrm{uv}} \neq 0$ implies $\mathrm{v}_{k} \unrhd \mathrm{t}^{\lambda \lambda_{k}}$ for any $k<r$.
Proof. We prove the Lemma by induction. If $m=1$, then $r_{1}=r$.

$$
e_{\lambda} y_{\lambda} \psi_{r}= \begin{cases}\psi_{\mathrm{t}^{\lambda} \mathrm{v}}, & \text { if } \mathrm{v}=\mathrm{t}^{\lambda} \cdot s_{r} \text { is standard, } \\ \sum_{(\mathrm{u}, \mathrm{v}) \triangleright\left(\mathrm{t}^{\lambda}, \mathrm{t}^{\lambda}\right)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { otherwise. }\end{cases}
$$

If $\mathrm{v}=\mathrm{t}^{\lambda} \cdot s_{r}$ is standard, then by the definition of $\mathrm{v},\left.\mathrm{v}\right|_{k}=\left.\mathrm{t}^{\lambda}\right|_{k}=\mathrm{t}^{\left.\lambda\right|_{k}}$ for $k<r$. If it is the other case, as $v \triangleright t^{\lambda}$, then $\left.\left.v\right|_{k} \unrhd t^{\lambda}\right|_{k}=t^{\lambda l_{k}}$.

Assume for any $m^{\prime}<m$ the Corollary holds. Then

$$
e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m-1}}=\sum_{u_{1}, v_{1} \in \operatorname{Std}(\geq \lambda)} c_{\mathrm{u}_{1} \mathrm{v}_{1}} \psi_{\mathrm{u}_{1} \mathrm{v}_{1}},
$$

where $\left.\mathrm{v}_{1}\right|_{k} \unrhd \mathrm{t}^{\lambda^{\lambda_{k}}}$ for $k<r$. Then

$$
e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m-1}} \psi_{r_{m}}=\sum_{u_{1}, \mathrm{v}_{1} \in \operatorname{Std}(\geq \lambda)} c_{\mathrm{u}_{1} v_{1}} \psi_{\mathrm{u}_{1} v_{1}} \psi_{r_{m}}
$$

Since
$\psi_{\mathrm{u}_{1} \mathrm{v}_{1}} \psi_{r_{m}}= \begin{cases}\psi_{\mathrm{u}_{1} \mathrm{v}}+\sum_{\left(\mathrm{u}, \mathrm{v}_{2}\right) \triangleright\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)} c_{\mathrm{uv}_{2}} \psi_{\mathrm{uv}_{2}}, & \text { if } \mathrm{v}=\mathrm{v}_{1} \cdot s_{r_{m}} \text { is standard and } d\left(\mathrm{v}_{1}\right) \cdot s_{r_{m}} \text { is reduced, } \\ \sum_{(\mathrm{u}, \mathrm{v}) \triangleright\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { otherwise. }\end{cases}$
If $\mathrm{v}=\mathrm{v}_{1} \cdot s_{r_{m}}$ is standard and $d\left(\mathrm{v}_{1}\right) \cdot s_{r_{m}}$ is reduced, recall $\left.\mathrm{v}_{1}\right|_{k} \unrhd \mathrm{t}^{\lambda l_{k}}$ for $k<r$, as $\mathrm{v}=\mathrm{v}_{1} \cdot s_{r_{m}}$, $\left.\mathrm{v}\right|_{k}=\left.\mathrm{v}_{1}\right|_{k} \unrhd \mathrm{t}^{\lambda \lambda_{k}}$ for $k<r \leq r_{m}$. For $\mathrm{v}_{2} \triangleright \mathrm{v}_{1}$, we have $\left.\left.\mathrm{v}_{2}\right|_{k} \triangleright \mathrm{v}_{1}\right|_{k} \unrhd \mathrm{t}^{\left.\lambda\right|_{k}}$ for $k<r$.

If it is of the other case, as $v \triangleright v_{1},\left.\left.v\right|_{k} \triangleright v_{1}\right|_{k} \unrhd t^{\left.\lambda\right|_{k}}$. Therefore

$$
e_{\lambda} y_{\lambda} \psi_{w}=e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}}=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\geq \lambda)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}
$$

and $c_{\mathrm{uv}} \neq 0$ implies $\left.\mathrm{v}\right|_{k} \unrhd \mathrm{t}^{\lambda \lambda_{k}}$ for any $k<r$. This completes the proof.
3.3.2. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda} \cap\left(\mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}\right)$. Then for any $1 \leq r_{1}, r_{2}, \ldots, r_{m} \leq n-1$

$$
e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}}=\sum_{\mathrm{v} \in \operatorname{Std}(\lambda)} c_{\mathrm{t}^{\imath} \mathrm{v}} \psi_{\mathrm{t}^{\lambda} \mathrm{v}}+\sum_{\substack{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\lambda \lambda) \\ \mathrm{u} \downarrow \mathrm{t}^{\lambda}}} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

Proof. When $m=1$, we have

$$
e_{\lambda} y_{\lambda} \psi_{r_{1}}= \begin{cases}\psi_{\mathrm{t}^{\lambda} \mathrm{v}}, & \text { if } \mathrm{v}=\mathrm{t}^{\lambda} \cdot s_{r_{1}} \text { is standard } \\ \sum_{(\mathrm{u}, \mathrm{v}) \triangleright\left(\mathrm{t}^{\lambda}, \mathrm{t}^{\lambda}\right)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\lambda)}^{\mathrm{u} \mathrm{t}^{\lambda}} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { if } \mathrm{v}=\mathrm{t}^{\lambda} \cdot s_{r_{1}} \text { is not standard. }\end{cases}
$$

which follows the Lemma.
Suppose for $m^{\prime}<m$ the Lemma holds. Then by induction

$$
\begin{equation*}
e_{\lambda} y_{\lambda} \psi_{r_{1}} \ldots \psi_{r_{m-1}} \psi_{r_{m}}=\sum_{v_{1} \in \operatorname{Std}(\lambda)} c_{\mathrm{t}^{2} v_{1}} \psi_{\mathrm{t}^{2} v_{1}} \psi_{r_{m}}+\sum_{\substack{u_{1}, v_{1} \in \operatorname{Std}(\lambda \lambda) \\ u_{1} \triangleright \mathrm{t}^{2}}} c_{\mathrm{u}_{1} v_{1}} \psi_{\mathrm{u}_{1} v_{1}} \psi_{r_{m}} . \tag{3.3.3}
\end{equation*}
$$

For $\mathrm{v}_{1} \in \operatorname{Std}(\lambda)$, as $\lambda \in \mathscr{P}_{\psi}^{\Lambda}$,

$$
\psi_{\mathrm{t}^{2} \mathrm{v}_{1}} \psi_{r_{m}}=\left\{\begin{array}{lc}
\psi_{\mathrm{t}^{\lambda} \mathrm{v}_{2}}+\sum_{\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \triangleright\left(\mathrm{t}^{\lambda}, \mathrm{v}_{1}\right)} c_{\mathrm{u}_{2} \mathrm{v}_{2}} \psi_{\mathrm{u}_{2} \mathrm{v}_{2}}, & \text { if } \mathrm{v}_{2}=\mathrm{v}_{1} \cdot s_{r_{m}} \text { is standard } \\
\sum_{\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \triangleright\left(\mathrm{t}^{\lambda}, \mathrm{v}_{1}\right)} c_{\mathrm{u}_{2} \mathrm{v}_{2}} \psi_{\mathrm{u}_{2} \mathrm{v}_{2}}, & \text { and } d\left(\mathrm{v}_{2}\right)=d\left(\mathrm{v}_{1}\right) \cdot s_{r_{m}} \text { is reduced } \\
\mathrm{v}_{2}=\mathrm{v}_{1} \cdot s_{r_{m}} \text { is not standard } \\
\text { or } d\left(\mathrm{v}_{2}\right)=d\left(\mathrm{v}_{1}\right) \cdot s_{r_{m}} \text { is not reduced. }
\end{array}\right.
$$

where in both cases, we can write

$$
\begin{equation*}
\psi_{\mathrm{t}^{2} v_{1}} \psi_{r_{m}}=\sum_{\mathrm{v}_{2} \in \operatorname{Std}(\lambda)} c_{\mathrm{t}^{\lambda} v_{2}} \psi_{\mathrm{t}^{\lambda_{\mathrm{v}}}}+\sum_{\substack{\mathrm{u}_{2}, \mathrm{v}_{2} \in \operatorname{Std}(>\lambda) \\ \mathrm{u}_{2} \triangleright^{\lambda}}} c_{\mathrm{u}_{2} \mathrm{v}_{2}} \psi_{\mathrm{u}_{2} \mathrm{v}_{2}} . \tag{3.3.4}
\end{equation*}
$$

For $u_{1}, u_{2} \in \operatorname{Std}(>\lambda)$,

$$
\psi_{\mathrm{u}_{1} \mathrm{v}_{1}} \psi_{r_{m}}=\left\{\begin{array}{lc}
\psi_{\mathrm{u}_{1} \mathrm{v}_{2}}+\sum_{\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \triangleright\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)} c_{\mathrm{u}_{2} \mathrm{v}_{2}} \psi_{\mathrm{u}_{2} \mathrm{v}_{2}}, & \text { if } \mathrm{v}_{2}=\mathrm{v}_{1} \cdot s_{r_{m}} \text { is standard } \\
\sum_{\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \triangleright\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)} c_{\mathrm{u}_{2} \mathrm{v}_{2}} \psi_{\mathrm{u}_{2} \mathrm{v}_{2}}, & \text { ifd } d\left(\mathrm{v}_{2}\right)=d\left(\mathrm{v}_{1}\right) \cdot s_{r_{m}} \text { is reduced }, \\
& \text { if } \mathrm{v}_{2} \cdot s_{r_{m}} \text { is not standard } \\
\text { or } d\left(\mathrm{v}_{2}\right)=d\left(\mathrm{v}_{1}\right) \cdot s_{r_{m}} \text { is not reduced. }
\end{array}\right.
$$

where since $u_{1} \triangleright t^{\lambda}$, we can always write

$$
\begin{equation*}
\psi_{\mathrm{u}_{1} v_{1}} \psi_{r_{m}}=\sum_{\substack{\mathrm{u}_{2}, \mathrm{v}_{2} \in \operatorname{Std}(>\lambda) \\ \mathrm{u}_{2} \triangleright \mathrm{t}^{\top}}} c_{\mathrm{u}_{2} v_{2}} \psi_{\mathrm{u}_{2} \mathrm{v}_{2}} \tag{3.3.5}
\end{equation*}
$$

Therefore, substitute (3.3.4) and (3.3.5) back to (3.3.3), we have

$$
e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}}=\sum_{\mathrm{v} \in \operatorname{Std}(\lambda)} c_{\mathrm{t}^{\imath} \mathrm{v}} \psi_{\mathrm{t}^{\lambda} \mathrm{v}}+\sum_{\substack{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\lambda \lambda) \\ \mathrm{u} \triangleright \mathrm{t}^{\lambda}}} c_{\mathrm{uv}} \psi_{\mathrm{uv}},
$$

which completes the proof.
3.3.6. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $r_{1}, r_{2}, \ldots, r_{m}$ are positive integers such that $r_{1}, \ldots, r_{m}<$ $n-1$. Then

$$
e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}} \in R_{n}^{\geq \lambda}
$$

Proof. Define $\mu=\left.\lambda\right|_{n-1}$. As $\lambda \in \mathscr{S}_{n}^{\Lambda}, \mu \in \mathscr{S}_{n-1}^{\Lambda} \cap\left(\mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}\right)$. Define $i \in I$ such that $\mathbf{i}_{\lambda}=\mathbf{i}_{\mu} \vee i$. As $r_{1}, r_{2}, \ldots, r_{m}<n-1$, we have

$$
e_{\lambda} y_{\lambda} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}}=\theta_{i}\left(e_{\mu} y_{\mu} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}}\right),
$$

where

$$
e_{\mu} y_{\mu} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}}=\sum_{\dot{v} \in \operatorname{Std}(\mu)} c_{\psi^{\mu} \dot{v}} \psi_{\psi^{\mu} \dot{v}}+\sum_{\dot{u}, \dot{v} \in \operatorname{Std}(>\mu)} c_{\dot{\mathrm{u}} \dot{\nu}} \psi_{\dot{\mathrm{u}} \dot{\mathrm{v}}} .
$$

As $\sum_{\dot{u}, \dot{v} \in \operatorname{Std}(>\mu)} c_{\dot{\mathrm{u} v}} \psi_{\dot{\mathrm{u}}} \in R_{n}^{>\mu}=R_{n}^{>\left.\lambda\right|_{n-1}}$, by Lemma 2.1.14, $\theta_{i}\left(\sum_{\dot{\mathrm{u}}, \dot{\mathrm{v}} \in \mathrm{Std}(>\mu)} c_{\dot{\mathrm{u}} \mathrm{v}} \psi_{\dot{\mathrm{u}}}\right) \in R_{n}^{>\lambda}$.
For $\dot{v} \in \operatorname{Std}(\mu)=\operatorname{Std}\left(\left.\lambda\right|_{n-1}\right)$ and $\mathbf{i}_{\mu} \vee \dot{i}=\mathbf{i}_{\lambda}$, define v to be the standard λ-tableau with $\left.\mathrm{v}\right|_{n-1}=\dot{\mathrm{v}}$. Hence $\theta_{i}\left(\psi_{\mathrm{t}^{\mu} \dot{\mathrm{v}}}\right)=\psi_{\mathrm{t}^{i} \mathrm{v}}$. Therefore

$$
\theta_{i}\left(\sum_{\dot{v} \in \operatorname{Std}(\mu)} c_{\psi^{\mu}{ }_{v}} \psi_{\mu^{\mu} v_{\mathrm{v}}}\right)=\sum_{\mathrm{v} \in \operatorname{Std}(\lambda)} c_{\psi^{\mu} \mathrm{v}} \psi_{\mathrm{t}^{\lambda^{v}}} \in R_{n}^{\geq \lambda} .
$$

So

$$
e_{\mu} y_{\mu} \psi_{r_{1}} \psi_{r_{2}} \ldots \psi_{r_{m}}=\theta_{i}\left(\sum_{\dot{\mathrm{v}} \in \operatorname{Std}(\mu)} c_{\psi^{\dot{v}}} \psi_{\psi^{\mu} \dot{\mathrm{v}}}\right)+\theta_{i}\left(\sum_{\dot{\mathrm{u}}, \dot{\mathrm{v}} \in \operatorname{Std}(>\mu)} c_{\dot{\mathrm{u} v}} \psi_{\dot{\mathrm{uv}}}\right) \in R_{n}^{\geq \lambda} .
$$

3.4. Garnir tableaux

In the following sections we will prove that $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$ for $l(d(\mathrm{t})) \leq m_{\lambda}$. Generally, if $\mathrm{t} \cdot s_{r}$ is standard and $d(\mathrm{t}) \cdot s_{r}$ is reduced or $l(d(\mathrm{t})) \cdot s_{r}$ is not reduced, it is comparatively easy to prove that $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$. Our main difficulty is to prove that when $\mathrm{t} \cdot s_{r}$ is not standard then $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$. In order to prove this we consider different types of t . Among these cases the hardest part is that when t is a special kind of tableaux which is called the Garnir tableau and $\mathrm{t} \cdot s_{r}$ is not standard. In this section we will prove that in such case $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$.

The method of proving the argument in this section is first assuming that Shape(t) is a partition of two rows, and using the similar argument we used in the last chapter to extend the result to general multipartitions. First we give a detailed definition of garnir tableaux.

We introduce a special kind of tableaux, the Garnir tableaux, which was first introduced by Murphy [24]. Let (a, b, m) be a node of λ such that $(a+1, b, m)$ is also a node of λ. The (a, b, m) Garnir belt of λ consists of the nodes (a, c, m) for $b \leq c \leq \lambda_{a}^{(m)}$ and the nodes $(a+1, g, m)$ for
$1 \leq g \leq b$. For example here is a picture of the (2,3,2)-Garnir belt for $\lambda=(3,1 \mid 7,6,5,2)$.

The (a, b, m)-Garnir tableau of shape λ is the unique maximal standard λ-tableau with respect to the Bruhat order (\triangleright) among the standard λ-tableaux which agree with t^{λ} outside the (a, b, m)-Garnir belt. For example the following is the $(2,3,2)$-Garnir tableau for $\lambda=$ (3, 1|7,6,5,2).

$$
\left(\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & &
\end{array}\right)
$$

Suppose $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ and $\lambda^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{k}^{(\ell)}\right)$. Let $(a, b, m)=\left(k-1, \lambda_{k}^{(\ell)}, \ell\right)$ and t be the (a, b, m)-Garnir tableau. Let the entry in node (a, b, m) of t be r. Then $\mathrm{t} \cdot s_{r}$ is not standard.
3.4.1. Definition. Suppose $\lambda \in \mathscr{P}_{n}^{\Lambda}$ with $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ and $\lambda^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{k}^{(\ell)}\right)$. If $k \geq 2$, and t is the $\left(k-1, \lambda_{k}^{(\ell)}, \ell\right)$-Garnir tableau, then we call t the last Garnir tableau of shape λ, and $r=\mathrm{t}\left(k-1, \lambda_{k}^{(\ell)}, \ell\right)$ the last Garnir entry of t .

For example

$$
\left(\right)
$$

is the last $(2,3,2)$-Garnir tableau, and

$$
\left(\right)
$$

is not the last one. Notice that $\mathrm{t} \cdot s_{r}$ is not standard.
Because we are going to play around with $\psi_{d(\mathrm{t})}$ a lot, we then introduce more defailed notation for these elements in the next Lemma.
3.4.2. Lemma. Suppose $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\theta)}\right)$. Let t be a (a, b, m)-Garnir tableau of shape λ and $\lambda^{(m)}=\left(\lambda_{1}^{(m)}, \ldots, \lambda_{k}^{(m)}\right)$. Suppose

$$
\begin{cases}\mathrm{t}^{\lambda}(a, b, m) & =l, \\ \mathrm{t}^{\lambda}\left(a, \lambda_{a}^{(m)}, m\right) & =s, \\ \mathrm{t}^{\lambda}(a+1, b, m) & =t\end{cases}
$$

Then $l \leq s<t$. Write $t-s=c$,

$$
\psi_{d(\mathrm{t})}=\psi_{s} \psi_{s+2} \ldots \psi_{t-1} \cdot \psi_{s-1} \psi_{s} \ldots \psi_{t-2} \cdot \ldots \cdot \psi_{l+1} \psi_{l+2} \ldots \psi_{l+c} \cdot \psi_{l} \psi_{l+1} \ldots \psi_{l+c-2}
$$

where

$$
l\left(\psi_{s} \psi_{s+1} \ldots \psi_{t-1}\right)=l\left(\psi_{s-1} \psi_{s} \ldots \psi_{t-2}\right)=\ldots=l\left(\psi_{l+1} \psi_{l+2} \ldots \psi_{l+c}\right)=c
$$

and

$$
l\left(\psi_{l} \psi_{l+1} \ldots \psi_{l+c-2}\right)=c-1
$$

Proof. The Lemma follows by direct calculation.
3.4.3. Example Suppose $\lambda=(3,1 \mid 7,6,5,2)$ and $(a, b, m)=(2,3,2)$. Let t be the $(2,3,2)$ Garnir tableau of shape λ. Then
and

$$
\mathrm{t}^{\lambda}=\left(\right) .
$$

Then

$$
\begin{array}{lll}
\mathrm{t}^{\lambda}(a, b, m) & =\mathrm{t}^{\lambda}(2,3,2)=14, \\
\mathrm{t}^{\lambda}\left(a, \lambda_{a}^{(m)}, m\right) & =\mathrm{t}^{\lambda}(2,6,2)=17, \\
\mathrm{t}^{\lambda}(a+1, b, m) & =\mathrm{t}^{\lambda}(3,3,2)=20,
\end{array}
$$

and $c=t-s=3$. Therefore

$$
\psi_{d(\mathrm{t})}=\psi_{17} \psi_{18} \psi_{19} \cdot \psi_{16} \psi_{17} \psi_{18} \cdot \psi_{15} \psi_{16} \psi_{17} \cdot \psi_{14} \psi_{15}
$$

with

$$
l\left(\psi_{17} \psi_{18} \psi_{19}\right)=l\left(\psi_{16} \psi_{17} \psi_{18}\right)=l\left(\psi_{15} \psi_{16} \psi_{17}\right)=3=c
$$

and

$$
l\left(\psi_{14} \psi_{15}\right)=2=c-1 .
$$

3.4.4. Remark. For $a \leq b-1$, we will write $\psi_{a, b}=\psi_{a} \psi_{a+1} \psi_{a+2} \ldots \psi_{b-2} \psi_{b-1}$ and $\psi_{b, a}=\psi_{a, b}^{*}$ in order to simplify our notations.

Our first step is to prove that when λ is a partition with two rows and t is a last Garnir tableau of shape λ with r as its last Garnir entry, then $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$ for any $\mathrm{s} \in \operatorname{Std}(\lambda)$. We set $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ and without loss of generality, set $\Lambda=\Lambda_{0}$. Therefore $\lambda \in \mathscr{P}_{n}^{\Lambda}$ with $n=\lambda_{1}+\lambda_{2}$. Also we set $\mu=\left(\lambda_{1}, \lambda_{2}-1,1\right), \dot{\lambda}=\left(\lambda_{1}-1, \lambda_{2}\right)$ and $\dot{\mu}=\left(\lambda_{1}-1, \lambda_{2}-1,1\right)$. Furthermore, let $i=\operatorname{res}\left(\gamma_{1}\right)$, $j=\operatorname{res}\left(\gamma_{2}\right)$, where $\gamma_{1}=\left(1, \lambda_{1}, 1\right)$ and $\gamma_{2}=\left(2, \lambda_{2}, 1\right)$.

First we prove a few useful Lemmas.
3.4.5. Lemma. Suppose $\lambda, \dot{\lambda}, \dot{\mu}, i$ and j are defined as above, we have

$$
e_{\lambda} y_{\lambda} \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}=\lambda\left\{\begin{aligned}
& \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda} y_{n} \\
&-\psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda}, \text { if } i=e-1, j \neq e-1, \\
& \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda} y_{n} \\
&-\psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda} \\
&-\psi_{\lambda_{1}} \ldots \psi_{n-2} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda}, \\
& \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda} \\
&+\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} e\left(\mathbf{i}_{\mu} \vee i\right) y_{\mu}, \text { if } i=j=e-2, \\
& \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda}, \text { otherwise. } .
\end{aligned}\right.
$$

Proof. In order to make the notations and the diagrams clearer we set $e=4$. For the other choices of e one can check that the method is the same because the proof doesn't depend on the value of e.

By using the diagrammatic notation we have

This Lemma is equivalent to move all the dots from top to bottom. In order to do this we have to consider several cases.

Case 3.4.5 $\mathrm{a}: i \neq e-2, e-1$.
We set $e=4$ so in this case we have $i \neq 2,3$. As $i \neq 3, \delta_{i, 3}=0$. Therefore there are no dots on the strand labelled by i. And as $i \neq 2$, by relation 1.1.10, we have

$$
e_{\lambda} y_{\lambda} \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}
$$

$$
=\left.\left.\left.\left.\left.\left.\left.\left.\left.\right|^{0}\right|^{2}\right|_{0} ^{3}\right|_{\ldots} ^{0}\right|^{n}\right|_{\mid} ^{i-1}\right|_{\mid} ^{3}\right|_{0} ^{0}\right|_{\delta_{j, 2}} ^{2}
$$

$$
=\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda}
$$

Case 3.4.5b: $i=e-1$ and $j \neq e-1$.
We set $e=4$ so in this case we have $i=3$ and $j \neq 3$. Then $\delta_{i, 3}=1$. Hence

Case 3.4.5c: $i=j=e-1$.
We set $e=4$ so in this case we have $i=j=3$. Similarly as in Case 3.4.5b, we have $e_{\lambda} y_{\lambda} \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}$

$=-\psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda}-\psi_{\lambda_{1}} \ldots \psi_{n-2} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda}+\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda} y_{n}$.

Case 3.4.5d: $i=e-2$ and $j \neq e-2$.
We set $e=4$ so in this case we have $i=2$ and $j \neq 2$. Similarly as we set $e=4$, we set $j=3$ in this case in order to make the diagram clearer. For the other j with $j \neq 2$ the method is similar. By Lemma 2.1.14,

$$
\begin{aligned}
& e_{\lambda} y_{\lambda} \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}
\end{aligned}
$$

Case 3.4.5e: $i=j=e-2$.
We set $e=4$ so in this case we have $i=j=2$. Then by Lemma 2.1.14,
$e_{\lambda} y_{\lambda} \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}$

$=\lambda$

$=\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\dot{\lambda}}+\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} e\left(\mathbf{i}_{\dot{\mu}} \vee i\right) y_{\dot{\mu}}$,
which completes the proof.
3.4.6. Remark. If $\lambda_{1}>\lambda_{2}$ and t is the last Garnir tableau of λ, by Lemma 3.4.2 we have

$$
\psi_{d(\mathrm{t})} \psi_{r}=\psi_{a_{n}, n} \psi_{a_{n-1}, n-1} \ldots \psi_{a_{r+2}, r+2} \psi_{a_{r+1}, r+1} .
$$

Define w to be the last Garnir tableau of shape $\dot{\lambda}$, we can see that $\psi_{d(\mathbf{w})}=\psi_{a_{n-1}, n-1} \ldots \psi_{a_{r+2}, r+2} \psi_{a_{r+1}, r+1}$. Hence $e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda} \psi_{d(\mathbf{w})} \psi_{r}=\theta_{i}\left(\psi_{t^{i} w} \psi_{r}\right)$.
3.4.7. Lemma. Suppose t and $\dot{\mathrm{t}}$ are the last Garnir tableau of shape λ and $\dot{\lambda}$ respectively with last Garnir entry r. Set

$$
\psi= \begin{cases}\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} y_{n}-\psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}, & \text { if } i=e-1, j \neq e-1 . \\ \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} y_{n}-\psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}-\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \lambda_{n-2}, & \text { if } i=j=e-1 . \\ \psi_{\lambda_{1}} \psi_{\lambda_{2}} \ldots \psi_{n-2} \psi_{n-1}, & \text { otherwise. }\end{cases}
$$

For any standard $\dot{\lambda}$-tableau $\dot{\mathrm{v}}$, if $d(\mathrm{t}) \leq m_{\lambda}$ and $\dot{\mathrm{v}} \triangleright \dot{\mathrm{t}}$, then

$$
\begin{cases}\psi \cdot \theta_{i}\left(\psi_{\mathrm{t}^{2} \mathrm{v}}\right) \in R_{n}^{\geq \mu}, & \text { if } i=j=e-2, \\ \psi \cdot \theta_{i}\left(\psi_{\mathrm{t}^{i} \grave{v}_{\mathrm{v}}}\right) \in R_{n}^{\geq \lambda}, & \text { otherwise. }\end{cases}
$$

Proof. If it is not the case that $i=j=e-2$. By Lemma 3.4.5 we have

$$
\psi \cdot e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda}={ }_{\lambda} e\left(\mathbf{i}_{\lambda}\right) y_{\lambda} \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} .
$$

Then we have

$$
\psi \cdot \theta_{i}\left(\psi_{t^{i} \dot{v}^{\prime}}\right)=\psi \cdot e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda} \psi_{d(v)}={ }_{\lambda} e_{\lambda} y_{\lambda} \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} \psi_{d(\overline{\mathrm{v}})}
$$

where as $\dot{\mathrm{V}} \triangleright \dot{\mathrm{t}}$, then $d(\dot{\mathrm{~V}})<d(\mathfrak{t})$ and

$$
l\left(\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} \psi_{d(\hat{v})}\right)<l\left(\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}\right)+l(d(\dot{\mathbf{t}}))=l(d(t)) \leq m_{\lambda}
$$

Then by Lemma 3.2.1 we have $\psi \cdot \theta_{i}\left(\psi_{\mathrm{t}^{i} \mathrm{v}}\right) \in R_{n}^{\geq \lambda}$.
For $i=j=e-2$, set $\dot{\mu}=\left(\lambda_{1}-1, \lambda_{2}-1,1\right), \gamma=\left.\lambda\right|_{n-1}=\left(\lambda_{1}, \lambda_{2}-1\right)$ and $\dot{\gamma}=\left(\lambda_{1}-1, \lambda_{2}-1\right)$. Because $y_{\dot{\gamma}}=y_{\mu}$. By Lemma 3.4.5.

$$
\begin{aligned}
& \psi \cdot \theta_{i}\left(\psi_{\mathrm{t}^{\prime} \mathfrak{v}}\right)=\psi_{\lambda_{1}, n} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda} \psi_{d(\mathfrak{v})}={ }_{\lambda} e_{\lambda} y_{\lambda} \psi_{\lambda_{1}, n} \psi_{d(\mathfrak{v})}-\psi_{\lambda_{1}, n-1} e\left(\mathbf{i}_{\mu} \vee i\right) y_{\mu} \psi_{d(\dot{\mathbf{v}})} \\
& =e_{\lambda} y_{\lambda} \psi_{\lambda_{1}, n} \psi_{d(\mathrm{v})}-\theta_{i}\left(\psi_{\lambda_{1}, n-1} e\left(\mathbf{i}_{\dot{\gamma}} \vee i\right) y_{\mu} \psi_{d(\mathrm{v})}\right) \\
& =e_{\lambda} y_{\lambda} \psi_{\lambda_{1}, n} \psi_{d(\dot{v})}-\theta_{i}\left(\psi_{\lambda_{1}, n-1} e\left(\mathbf{i}_{\dot{\gamma}} \vee i\right) y_{j} \psi_{d(\dot{v})}\right) .
\end{aligned}
$$

Again by Lemma 3.4.5, $\psi_{\lambda_{1}, n-1} e\left(\mathbf{i}_{\dot{\gamma}} \vee i\right) y_{\dot{\gamma}} \psi_{d(\mathfrak{v})}={ }_{\gamma} e_{\gamma} y_{\gamma} \psi_{\lambda_{1}, n-1} \psi_{d(\hat{v})}$. Since $\gamma=\left.\lambda\right|_{n-1}$, by Lemma 2.1.14,

$$
\theta_{i}\left(\psi_{\lambda_{1}, n-1} e\left(\mathbf{i}_{\dot{\gamma}} \vee i\right) y_{\dot{\gamma}} \psi_{d(\dot{v})}\right)={ }_{\lambda} \theta_{i}\left(e_{\gamma} y_{\gamma} \psi_{\lambda_{1}, n-1} \psi_{d(\dot{v})}\right)
$$

Therefore

$$
\psi \cdot \theta_{i}\left(\psi_{\mathrm{t}^{\prime} \mathrm{v}}\right)={ }_{\lambda} e_{\lambda} y_{\lambda} \psi_{\lambda_{1}, n} \psi_{d(\hat{\mathrm{v}})}-\theta_{i}\left(e_{\gamma} y_{\gamma} \psi_{\lambda_{1}, n-1} \psi_{d(\hat{\mathrm{v}})}\right) .
$$

As $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $|\gamma|=n-1<|\lambda|$

$$
\begin{equation*}
e_{\gamma} y_{\gamma} \psi_{\lambda_{1}, n-1} \psi_{d(v)}=\sum_{y \in \operatorname{Shape}(\gamma)} c_{t^{r} y} \psi_{t^{\prime} y}+\sum_{x, y \in \operatorname{Std}(>\gamma)} c_{\mathrm{xy}} \psi_{\mathrm{xy}} . \tag{3.4.8}
\end{equation*}
$$

For the first term of the left hand side of (3.4.8), because $\gamma=\left.\lambda\right|_{n-1}$ and $j=i=e-2$, we have $b_{i}^{\gamma}=2$. By Lemma 2.1.3 and the definition of $\gamma, \theta_{i}\left(\psi_{t^{\gamma y}}\right) \in R_{n}^{\geq \mu}$. For the second term of the left hand side of (3.4.8), as $\mathrm{x}, \mathrm{y} \in \operatorname{Std}(>\gamma)=\operatorname{Std}\left(>\left.\lambda\right|_{n-1}\right), \psi_{\mathrm{xy}} \in R_{n}^{>\left.\lambda\right|_{n-1}}$. By Lemma 2.1.14, $\theta_{i}\left(\psi_{\mathrm{xy}}\right) \in R_{n}^{>\lambda} \subseteq R_{n}^{\geq \mu}$. Therefore,

$$
\theta_{i}\left(e_{\gamma} y_{\gamma} \psi_{\lambda_{1}, n-1} \psi_{d(\hat{v})}\right) \in R_{n}^{\geq \mu}
$$

Finally, as

$$
l\left(\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} \psi_{d(\hat{v})}\right)<l\left(\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}\right)+l(d(\mathrm{t}))=l(d(\mathrm{t})) \leq m_{\lambda},
$$

by Lemma 3.2.1 we have $e_{\lambda} y_{\lambda} \psi_{\lambda_{1}, n} \psi_{d(\mathcal{v})} \in R_{n}^{>\lambda} \subseteq R_{n}^{\geq \mu}$. Hence $\psi \cdot \theta_{i}\left(\psi_{t^{\prime} \dot{v}}\right) \in R_{n}^{\geq \mu}$. This completes the proof.
3.4.9. Lemma. Suppose $\lambda_{1}-\lambda_{2} \equiv e-1(\bmod e)$, i.e. $i=j$, and $\left(\lambda_{1}-\lambda_{2}+1\right) \lambda_{2}-1 \leq m_{\lambda}$. Let $\dot{\mathrm{u}}$ and $\dot{\mathrm{v}}$ be standard $\left.\lambda\right|_{n-1}$-tableaux with $\dot{\mathrm{u}} \triangleright \mathrm{t}^{\lambda}$. Assume $i=j \neq e-2$. Then set

$$
\psi= \begin{cases}\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} y_{n}-\psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}-\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2}, & \text { if } i=j=e-1, \\ \psi_{\lambda_{1}} \psi_{\lambda_{2}} \ldots \psi_{n-2} \psi_{n-1}, & \text { if } i=j \neq e-1, e-2 .\end{cases}
$$

and we have

$$
\psi \cdot \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) \in R_{n}^{\geq \lambda} .
$$

Proof. We assume that $i=j \neq e-2$. First we need to introduce some properties of ù. Because \dot{u} is a standard $\left.\lambda\right|_{n-1}$-tableau and $\dot{u} \triangleright t^{\lambda}$, the only possible choice of \dot{u} is the one such that $\left.\dot{\mathrm{u}}\right|_{n-2}=\mathrm{t}^{\left(\lambda_{1}-1, \lambda_{2}-1\right)}$. Then define u and v to be the unique standard λ-tableau with $\left.\mathrm{u}\right|_{n-1}=\dot{\mathrm{u}}$

 and $\mathrm{u}=$| 1 | 2 | 3 | 4 | 5 | 610 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 8 | 9 | 11 | | | . From the definitions of \dot{u}, \dot{v} and u , v we can see that $d(\mathrm{v})=d(\dot{\mathrm{v}})$ and $l(d(\mathrm{u}))=l(d(\dot{\mathrm{u}}))=\lambda_{2}-1$. Also notice that if $i=j \neq e-2$, then $\mathbf{i}_{\lambda}=\mathbf{i}_{\lambda_{\left.\right|_{n-1}}} \vee i$ and $y_{\lambda_{n-1}}=y_{\lambda}$.

Now we consider different cases of i, j. Suppose $i=j \neq e-1, e-2$, then

$$
\begin{aligned}
\psi \cdot \theta_{i}\left(\psi_{\mathrm{u} \dot{\mathrm{v}}}\right) & =\psi_{\lambda_{1}} \psi_{\lambda_{2}} \ldots \psi_{n-2} \psi_{n-1} \psi_{d(\dot{\mathrm{u}}} e\left(\mathbf{i}_{\lambda_{l_{n-1}}} \vee i\right) y_{\lambda_{n-1}} \psi_{d(\dot{\mathrm{v})}} \\
& =\psi_{\lambda_{1}} \psi_{\lambda_{2}} \ldots \psi_{n-2} \psi_{n-1} \psi_{d(\dot{\mathrm{u}})} e_{\lambda} y_{\lambda} \psi_{d(\hat{\mathrm{v}})} .
\end{aligned}
$$

Recall that $e \geq 3$. As $\lambda_{1}-\lambda_{2} \equiv e-1(\bmod e)$, we must have $\lambda_{1}-\lambda_{2} \geq e-1 \geq 2$. Also because of $\lambda_{2} \geq 1$,

$$
m_{\lambda} \geq\left(\lambda_{1}-\lambda_{2}+1\right) \lambda_{2}-1 \geq 3 \lambda_{2}-1 \geq 2 \lambda_{2}>l\left(\psi_{\lambda_{1}, n} \psi_{d(\dot{\mathrm{u}})}\right)=2 \lambda_{2}-1 .
$$

Hence by Lemma 3.2.1

$$
\begin{aligned}
\psi_{\lambda_{1}} \psi_{\lambda_{2}} \ldots \psi_{n-2} \psi_{n-1} \psi_{d(\dot{u})} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{v})} & =\psi_{\lambda_{1}} \psi_{\lambda_{2}} \ldots \psi_{n-2} \psi_{n-1} \psi_{d(\dot{u})} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{v})} \\
& =\psi_{\lambda_{1}} \psi_{\lambda_{2}} \ldots \psi_{n-2} \psi_{n-1} \psi_{d(\dot{u})} \psi_{\mathrm{t}^{\imath} \mathrm{v}} \in R_{n}^{\geq \lambda} .
\end{aligned}
$$

Suppose $i=j=e-1$, then

$$
\begin{aligned}
& \psi \cdot \theta_{i}\left(\psi_{\mathrm{u} \dot{\mathrm{v}}}\right) \\
= & \left(\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} y_{n}-\psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}-\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \lambda_{n-2}\right) \psi_{d(\dot{\mathrm{u}})} e\left(\mathbf{i}_{\lambda_{\mid n-1}} \vee i\right) y_{\lambda_{n-1}} \psi_{d(\dot{\mathrm{v}})} \\
= & \psi_{\lambda_{1}, n} y_{n} \psi_{d(\dot{\mathrm{u}})} \psi_{\mathrm{t}^{\mathrm{l}} \mathrm{v}}-\psi_{\lambda_{1}+1, n} \psi_{d(\dot{\mathrm{u}})} \psi_{\mathrm{t}^{\imath} \mathrm{v}}-\psi_{\lambda_{1}, n-1} \psi_{d(\dot{\mathrm{u}})} \psi_{\mathrm{t}^{\mathrm{l}} \mathrm{v}} .
\end{aligned}
$$

As $\psi_{d(\mathrm{u})}$ doesn't involve ψ_{n-1}, by Proposition 3.2.5 and Lemma 2.1.12,

$$
\psi_{\lambda_{1}, n} y_{n} \psi_{d(\hat{u})} \psi_{\mathrm{t}^{\lambda} v}=\psi_{\lambda_{1}, n} \psi_{d(\hat{u})} y_{n} \psi_{\mathrm{t}^{\imath} \mathrm{v}} \in R_{n}^{>\lambda},
$$

and because $l\left(\psi_{\lambda_{1}+1, n} \psi_{d(\dot{\mathrm{u}})}\right)=l\left(\psi_{\lambda_{1}, n-1} \psi_{d(\mathrm{u})}\right)=\lambda_{2}-1+\lambda_{2}-1=2 \lambda_{2}-2<m_{\lambda}$, by Lemma 3.2.1, $\psi_{\lambda_{1}+1, n} \psi_{d(\dot{u})} \psi_{\mathrm{t}^{\imath} \mathrm{v}}$ and $\psi_{\lambda_{1}, n-1} \psi_{d(\dot{u})} \psi_{\mathrm{t}^{\imath} v}$ are both in $R_{n}^{\geq \lambda}$. Hence $\psi \cdot \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) \in R_{n}^{\geq \lambda}$.

Now we are ready to prove that $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$ when Shape(t) has only two rows.
3.4.10. Proposition. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and t is the last Garnir tableau of shape λ with r to be the last Garnir entry and $l(d(\mathrm{t})) \leq m_{\lambda}$, we have

$$
\psi_{\mathrm{t}^{1} \mathrm{t}} \psi_{r}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright\left(\mathrm{t}^{n}, \mathrm{t}\right)} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

Proof. By Lemma 3.4.2, as t is the last Garnir tableau of shape λ, we have

$$
\psi_{d(t)} \psi_{r}=\psi_{\lambda_{1}, n} \psi_{\lambda_{1}-1, n-1} \ldots \psi_{\lambda_{2}, r+1},
$$

where $l\left(\psi_{\lambda_{1}, n}\right)=l\left(\psi_{\lambda_{1}-1, n-1}\right)=\ldots=l\left(\psi_{\lambda_{2}, r+1}\right)=\lambda_{2}$. We prove the Proposition by induction on λ_{1}. Recall that we write $\dot{\lambda}=\left(\lambda_{1}-1, \lambda_{2}\right), \mu=\left(\lambda_{1}, \lambda_{2}-1,1\right)$ and $\dot{\mu}=\left(\lambda_{1}-1, \lambda_{2}-1,1\right)$.

When $\lambda_{1}=1$, by definition of Garnir tableau, $\lambda_{1}=\lambda_{2}$. Without loss of generality, we set $\Lambda=\Lambda_{0}$. In this case $i=0$ and $j=e-1$. Hence

$$
\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}=\psi_{\mathrm{t}^{1}+\lambda} \psi_{r}=e(0, e-1) \psi_{1}=\psi_{1} e(e-1,0)=0 \in R_{n}^{\geq \lambda} .
$$

So, when $\lambda_{1}=1$ the Proposition is true.
Assume for any partition of two rows with the length of its first row less than λ_{1} the Proposition holds. By Lemma 3.4.5, we have

$$
\begin{align*}
& \psi_{\mathrm{t}^{2} t} \psi_{r}=e_{\lambda} y_{\lambda} \psi_{d(t)} \psi_{r}=e_{\lambda} y_{\lambda} \psi_{\lambda_{1}, n} \psi_{d(\mathrm{t})} \psi_{r} \\
& =\left\{\begin{array}{cl}
\psi_{\lambda_{1}, n} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda} \psi_{d(\mathrm{t})} \psi_{r}+\psi_{\lambda_{1}, n-1} e\left(\mathbf{i}_{\mu} \vee i\right) y_{\mu} \psi_{d(\mathrm{t})} \psi_{r} & \\
=\psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\mathrm{t}^{2} \mathrm{i}} \psi_{r}\right)+\psi_{\lambda_{1}, n-1} \theta_{i}\left(e_{\mu} y_{j} \psi_{d(\mathrm{t})} \psi_{r}\right), & \text { if } i=j=e-2, \\
\psi \cdot \theta_{i}\left(e_{\lambda} y_{\lambda} \psi_{\lambda_{1}-1, n-1} \ldots \psi_{\lambda_{2}+1, r+2} \psi_{\lambda_{2}, r+1}\right)=\psi \cdot \theta_{i}\left(\psi_{\mathrm{t}^{2} \mathrm{i}} \psi_{r}\right), & \text { otherwise. }
\end{array}\right. \tag{3.4.11}
\end{align*}
$$

where \dot{t} is the last Garnir tableau with shape $\dot{\lambda}=\left(\lambda_{1}-1, \lambda_{2}\right)$, and

$$
\psi= \begin{cases}\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} y_{n}-\psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}, & \text { if } i=e-1, j \neq e-1, \\ \psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} y_{n}-\psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1}-\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2}, & \text { if } i=j=e-1, \\ \psi_{\lambda_{1}} \psi_{\lambda_{2}} \ldots \psi_{n-2} \psi_{n-1}, & \text { otherwise. }\end{cases}
$$

Now we separate the question into different cases.
Case 3.4.10a: $i \neq j$. By (3.4.11) we have

$$
\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}=\psi \cdot \theta_{i}\left(\psi_{\mathrm{t}_{\mathrm{i}}{ }^{2}} \psi_{r}\right) .
$$

By induction, $\psi_{\mathrm{t}^{i} \dot{\mathrm{t}}} \psi_{r}=\sum_{\substack{\dot{\mathrm{v}} \in \operatorname{Std}(\lambda) \\ \dot{v} \Delta \mathrm{t}}} c_{\mathrm{t}^{i} \dot{\mathrm{j}}} \psi_{\mathrm{t}^{\mathrm{t}} \dot{\mathrm{v}}}+\sum_{\dot{u}, \dot{\mathrm{u}} \in \operatorname{Std}(>\lambda)} c_{\dot{\mathrm{u}} \mathrm{v}} \psi_{\dot{\mathrm{u}}}$. Therefore

For $\dot{u}, \dot{v} \in \operatorname{Std}(>\dot{\lambda})$, by Lemma 1.4.4, $\operatorname{res}(\dot{u})=\operatorname{res}\left(\mathrm{t}^{\dot{\lambda}}\right)$. Because $i \neq j$, we always have Shape $(\dot{\mathrm{u}})>\left.\lambda\right|_{n-1}$. Hence $\psi_{\dot{\mathrm{u} \dot{v}}} \in R_{n}^{>\lambda l_{n-1}}$. Therefore by Lemma 2.1.14 and Lemma 2.1.12, $\psi \cdot \theta_{i}\left(\psi_{\mathrm{u} \dot{\mathrm{u}}}\right) \in R_{n}^{>\lambda}$. So $\sum_{\dot{\mathrm{u}}, \dot{\mathrm{v}} \in \mathrm{Std}(>\lambda)} c_{\dot{\mathrm{uv}}} \psi \cdot \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) \in R_{n}^{>\lambda}$.

For $\dot{v} \in \operatorname{Std}(\dot{\lambda})$ with $\dot{v} \unrhd \dot{t}$, by Lemma 3.4.7, $\psi \cdot \theta_{i}\left(\psi_{t^{i} \dot{v}}\right) \in R_{n}^{\geq \lambda}$. Therefore $\sum_{\substack{\dot{v} \in \operatorname{Std}(\dot{\lambda}) \\ \dot{v} \Delta \mathrm{t}}} c_{\mathrm{t}^{i} \dot{v}} \psi \cdot \theta_{i}\left(\psi_{\mathrm{t}^{\lambda} \dot{\mathrm{v}}}\right) \in$ $R_{n}^{\geq \lambda}$. These yield $\psi_{\mathrm{t}^{\prime} t} \psi_{r} \in R_{n}^{\geq \lambda}$.

Case 3.4.10b: $i=j \neq e-2$. By (3.4.11) we have

$$
\psi_{\mathrm{t}^{1} \mathrm{t}} \psi_{r}=\psi \cdot \theta_{i}\left(\psi_{\mathrm{t}^{\prime}{ }_{\mathrm{t}}} \psi_{r}\right) .
$$

 fore

For ù, $\dot{\mathrm{v}} \in \operatorname{Std}\left(>\left.\lambda\right|_{n-1}\right), \psi_{\dot{\mathrm{u} \dot{v}}} \in R_{n}^{>\lambda| |_{n-1}}$. As $\lambda \in \mathscr{S}_{n}^{\Lambda}$, by Lemma 2.1.14 we have $\psi \cdot \theta_{i}\left(\psi_{\mathrm{uiv}}\right) \in$ $R_{n}^{>\lambda}$. Hence $\sum_{\dot{u}, \dot{v} \in \operatorname{Std}\left(>\left.\lambda\right|_{n-1}\right)} c_{\dot{\mathrm{u}} \dot{\mathrm{v}}} \psi \cdot \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) \in R_{n}^{>\lambda}$.

For ú, $\dot{\mathrm{v}} \in \operatorname{Std}\left(\left.\lambda\right|_{n-1}\right)$ with $\dot{u} \triangleright \mathrm{t}^{\lambda}$, because $m_{\lambda} \geq d(\mathrm{t})=\left(\lambda_{1}-\lambda_{2}+1\right) \lambda_{2}-1$, by Lemma 3.4.9 we have $\psi \cdot \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) \in R_{n}^{\geq \lambda}$. So $\sum_{\dot{\mathrm{u}}, \dot{\mathrm{v}} \in \mathrm{Std}\left(\lambda \|_{n-1}\right)} \varepsilon_{\dot{\mathrm{u}} \dot{\mathrm{v}}} \psi \cdot \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) \in R_{n}^{\geq \lambda}$.
(u,v) $\triangleright\left(t^{\lambda}, t\right)$
For $\dot{v} \in \operatorname{Std}(\dot{\lambda})$ with $\dot{\mathrm{v}} \triangleright \dot{\mathrm{t}}$, by Lemma 3.4.7, $\psi \cdot \theta_{i}\left(\psi_{\mathrm{t}^{i} \dot{\mathrm{v}}}\right) \in R_{n}^{\geq \lambda}$. So $\sum_{\dot{u}, \dot{\mathrm{v}} \in \operatorname{Shape}\left(>\left.\lambda\right|_{n-1}\right)} c_{\dot{\mathrm{u}} \boldsymbol{v}} \psi \cdot \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) \in$ $R_{n}^{\geq \lambda}$.

Therefore we have $\psi_{\mathrm{t}^{2} t} \psi_{r} \in R_{n}^{\geq \lambda}$.
Case 3.4.10c: $i=j=e-2$. By (3.4.11) we have

$$
\begin{equation*}
\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}=\psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}\right)+\psi_{\lambda_{1}, n-1} \theta_{i}\left(e_{\mu} y_{j} \psi_{d(\mathrm{t})} \psi_{r}\right) . \tag{3.4.12}
\end{equation*}
$$

For the first term of (3.4.12), by induction,

$$
\begin{aligned}
& +\sum_{\dot{u}, \dot{\mathrm{v}} \in \mathrm{Std}\left(\left.\lambda\right|_{n-1}\right)} c_{\dot{\mathrm{u}} \dot{\mathrm{v}}} \psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) .
\end{aligned}
$$

For $\dot{\mathrm{v}} \in \operatorname{Std}(\dot{\lambda})$ with $\dot{\mathrm{v}} \triangleright \dot{\mathrm{t}}$, by Lemma 3.4.7, we have $\psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\mathrm{t}^{\prime} \dot{\mathrm{v}}}\right) \in R_{n}^{\geq \mu}$. Therefore

For $\dot{u}, \dot{\mathrm{v}} \in \operatorname{Std}\left(\left.\lambda\right|_{n-1}\right)$ with $(\dot{u}, \dot{\mathrm{v}}) \triangleright\left(\mathrm{t}^{\dot{\lambda}}, \dot{\mathrm{t}}\right)$, by Lemma 1.4.4, we have res $(\dot{\mathrm{u}})=\mathbf{i}_{\lambda}$. So the choice of \dot{u} is unique, where $d(\dot{\mathrm{u}})=\psi_{\lambda_{1}, n-1}$. Hence as $\mathbf{i}_{\mu}=\mathbf{i}_{\lambda_{n-1}} \vee i$ and $y_{\lambda_{\left.\right|_{n-1}}}=y_{\mu}$

$$
\begin{equation*}
\psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\dot{\mathrm{uv}}}\right)=\psi_{\lambda_{1}, n} \psi_{n-1, \lambda_{1}} e\left(\mathbf{i}_{\lambda_{n-1}-1} \vee i\right) y_{\lambda_{n-1}} \psi_{d(\dot{\mathrm{v}})}=\psi_{\lambda_{1}, n} \psi_{n-1, \lambda_{1}} e_{\mu} y_{\mu} \psi_{d(\hat{\mathrm{v})}} . \tag{3.4.15}
\end{equation*}
$$

We work with $\psi_{\lambda_{1}, n} \psi_{n-1, \lambda_{1}} e_{\mu} y_{\mu}=\psi_{\lambda_{1}} \psi_{\lambda_{1}+1} \ldots \psi_{n-2} \psi_{n-1} \psi_{n-2} \ldots \psi_{\lambda_{1}+1} \psi_{\lambda_{1}} e_{\mu} y_{\mu}$ first. We define a partition $\sigma=\left(\lambda_{1}, \lambda_{2}-2,1\right)$. Then

$$
\begin{aligned}
& \psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-2} \psi_{n-1} \psi_{n-2} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\mu} y_{\mu} \\
= & \psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-1} \psi_{n-2} \psi_{n-1} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\mu} y_{\mu}-\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\mu} y_{\mu} \\
\text { (3.4.16) }= & \psi_{n-1} \theta_{i-1}\left(\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-2} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\sigma} y_{\sigma}\right) \psi_{n-1}-\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\mu} y_{\mu} .
\end{aligned}
$$

Consider the lefthand term in (3.4.16). As $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and $|\sigma|=n-1<|\lambda|$, we have

$$
\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-2} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\sigma} y_{\sigma}=\sum_{\mathrm{u} \in \operatorname{Std}(\sigma)} c_{\mathrm{ut}^{\sigma}} \psi_{\mathrm{ut}}{ }^{\sigma}+\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\sigma)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}
$$

where $\operatorname{res}(\mathrm{u})=\mathbf{i}_{\sigma} \cdot s_{\lambda_{1}} s_{\lambda_{1}+1} \ldots s_{n-3} s_{n-2} s_{n-3} \ldots s_{\lambda_{1}+1} s_{\lambda_{1}}=\mathbf{i}_{\sigma}$ by Lemma 1.4.4, and res $(\mathrm{v})=\mathbf{i}_{\sigma}$. Since $\min \left\{\lambda_{1}, \ldots, n-2\right\}=\lambda_{1}$, by Lemma 3.3.1, $c_{\mathrm{ut}^{\sigma}} \neq 0$ implies $\left.u\right|_{\lambda_{1}-1} \unrhd \mathrm{t}^{\sigma \sigma \lambda_{1}-1}$. Then the unique choice for u is $u=t^{\sigma}$. Hence

$$
\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-2} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\sigma} y_{\sigma}=c \cdot e_{\sigma} y_{\sigma}+\sum_{u, v \in \operatorname{Std}(>\sigma)} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

Further more if u is a standard tableau with $\operatorname{Shape}(\mathrm{u})>\sigma$ and $\operatorname{res}(\mathrm{u})=\mathbf{i}_{\sigma}$, we must have Shape $(u)>\left.\lambda\right|_{n-1}$. Hence by Lemma 2.1.14,

$$
\psi_{n-1} \theta_{i-1}\left(\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\sigma)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}\right) \psi_{n-1} \in R_{n}^{>\lambda} .
$$

Therefore

$$
\begin{aligned}
\psi_{n-1} \theta_{i-1}\left(\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-2} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\sigma} y_{\sigma}\right) \psi_{n-1} & =\lambda \quad c \cdot \psi_{n-1} \theta_{i-1}\left(e_{\sigma} y_{\sigma}\right) \psi_{n-1} \\
& =c \cdot \psi_{n-1}^{2} e_{\mu} y_{\mu}=c \cdot\left(e_{\lambda} y_{\lambda}-e_{\mu} y_{\mu} y_{n-1}\right) .
\end{aligned}
$$

By Proposition 3.2.5 we have $e_{\mu} y_{\mu} y_{n-1} \in R_{n}^{>\lambda}$, we have

$$
\begin{equation*}
\psi_{n-1} \theta_{i-1}\left(\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-2} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\sigma} y_{\sigma}\right) \psi_{n-1}={ }_{\lambda} c \cdot e_{\lambda} y_{\lambda} . \tag{3.4.17}
\end{equation*}
$$

For the righthand term in 3.4.16), as $\lambda \in \mathscr{S}_{n}^{\Lambda},\left.\lambda\right|_{n-1} \in \mathscr{S}_{n-1}^{\Lambda} \cap\left(\mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}\right)$. By Lemma 3.3.2,

$$
\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\lambda_{n-1}} y_{\lambda_{n-1}}=\lambda_{\left.\right|_{n-1}} \sum_{\dot{u} \in \operatorname{Std}\left(\left.\lambda\right|_{n-1}\right)} c_{\text {ut }^{+1} n_{n-1}} \psi_{\text {utt }^{\lambda} n_{n-1}} .
$$

Then by Lemma 2.1.14,

$$
\begin{align*}
\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\mu} y_{\mu} & =\theta_{i}\left(\psi_{\lambda_{1}} \ldots \psi_{n-3} \psi_{n-3} \ldots \psi_{\lambda_{1}} e_{\lambda_{n-1}} y_{\lambda_{n-1}}\right) \\
& =\lambda \sum_{\dot{\mathrm{u}} \in \operatorname{Std}\left(\lambda_{n-1}\right)} c_{\mathrm{ut}^{\lambda_{n-1}}} \theta_{i}\left(\psi_{\dot{\mathrm{ut}}}{ }^{\lambda_{n-1}}\right) \\
& =\sum_{\mathrm{u} \in \operatorname{Std}(\mu)} c_{\mathrm{ut}^{\mu_{n-1}}} \psi_{\mathrm{ut}^{\mu}}, \tag{3.4.18}
\end{align*}
$$

where u is the unique μ-tableau such that $\left.\mathrm{u}\right|_{n-1}=\dot{\mathrm{u}}$.
So substitute (3.4.17) and (3.4.18) to (3.4.16), we have

$$
\psi_{\lambda_{1}, n} \psi_{n-1, \lambda_{1}} e_{\mu} y_{\mu}=\lambda \sum_{\mathrm{u} \in \operatorname{Std}(\mu)} c_{\mathrm{u}^{\mu} \mu} \psi_{\mathrm{u}^{\mu}} \pm c \cdot \psi_{\mathrm{t}^{1} \mathrm{t}^{\lambda}} .
$$

As \dot{v} is a standard tableau of shape $\left.\lambda\right|_{n-1}=\left.\mu\right|_{n-1}$, we can define v_{1} and v_{2} to be a standard μ tableau and λ-tableau where $\left.\mathrm{v}_{1}\right|_{n-1}=\left.\mathrm{v}_{2}\right|_{n-1}=\dot{\mathrm{v}}$, respectively. Henceforth $d\left(\mathrm{v}_{1}\right)=d\left(\mathrm{v}_{2}\right)=d(\dot{\mathrm{v}})$ and by (3.4.15),

$$
\begin{aligned}
\psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\mathrm{ui}}\right) & =\psi_{\lambda_{1}, n} \psi_{n-1, \lambda_{1}} e_{\mu} y_{\mu} \psi_{d(\mathrm{v})}=\lambda \sum_{\mathrm{u} \in \operatorname{Std}(\mu)} c_{\mathrm{u}^{\mu} \mu} \psi_{\mathrm{u}^{\mu} \mu} \psi_{d(\mathrm{v})} \pm c \cdot \psi_{\mathrm{t}^{1} \mathrm{t}^{2}} \psi_{d(\mathrm{v})} \\
& =\sum_{\mathrm{u} \in \operatorname{Std}(\mu)} c_{\mathrm{u}^{\mu} \mu} \psi_{\mathrm{u}^{\mu} \mu} \psi_{d\left(\mathrm{v}_{1}\right)} \pm c \cdot \psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{d\left(\mathrm{v}_{2}\right)} \\
& =\sum_{\mathrm{u} \in \operatorname{Std}(\mu)} c_{\mathrm{u}^{\mu} \mu} \psi_{\mathrm{uv}_{1}} \pm c \cdot \psi_{\mathrm{t}^{2} v_{2}} \in R_{n}^{\geq \mu} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\sum_{\substack{\dot{u}, \dot{v} \in \operatorname{Std}\left(\lambda \lambda_{n-1}\right) \\(\dot{u}, \dot{\mathrm{v}}) \triangleright\left(\mathrm{t}^{\imath}, \dot{\mathrm{u}}\right)}} c_{\dot{\mathrm{v}}} \psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\dot{\mathrm{u}})}\right) \in R_{n}^{\geq \mu} . \tag{3.4.19}
\end{equation*}
$$

Finally, suppose $\dot{u}, \dot{v} \in \operatorname{Shape}\left(>\left.\lambda\right|_{n-1}\right)$, by Lemma 2.1.14, we have $\psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) \in R_{n}^{>\lambda}$. Therefore

$$
\begin{equation*}
\sum_{\dot{u}, \dot{v} \in \operatorname{Std}\left(>\left.\lambda\right|_{n-1}\right)} c_{\dot{\mathrm{uv}}} \psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\dot{\mathrm{uv}}}\right) \in R_{n}^{>\lambda} . \tag{3.4.20}
\end{equation*}
$$

Substitute (3.4.14), (3.4.19) and (3.4.20) to (3.4.13), we have

$$
\begin{equation*}
\psi_{\lambda_{1}, n} \theta_{i}\left(\psi_{\mathrm{t}^{\mathrm{t} \mathrm{t}}} \psi_{r}\right) \in R_{n}^{\geq \mu} . \tag{3.4.21}
\end{equation*}
$$

For the second term of 3.4.12), by Lemma 3.4.5

$$
\begin{aligned}
\psi_{\lambda_{1}, n-1} \theta_{i}\left(e_{\dot{\mu}} y_{\mu} \psi_{d(\mathrm{t})} \psi_{r}\right) & =\theta_{i}\left(\psi_{\lambda_{1}, n-1} e_{\dot{\mu}} y_{\mu} \psi_{d(\mathrm{t})} \psi_{r}\right)=\theta_{i}\left(e_{\lambda_{n-1}} y_{\lambda_{n-1}} \psi_{\lambda_{1}, n-1} \psi_{d(\mathrm{t})} \psi_{r}\right) \\
& =e_{\mu} y_{\mu} \psi_{\lambda_{1}, n-1} \psi_{d(\mathrm{t})} \psi_{r},
\end{aligned}
$$

where by Lemma 3.3.6, because $\psi_{\lambda_{1}, n_{1}} \psi_{d(t)} \psi_{r}$ doesn't involve ψ_{n-1},

$$
\begin{equation*}
e_{\mu} y_{\mu} \psi_{\lambda_{1}, n-1} \psi_{d(\mathrm{t})} \psi_{r} \in R_{n}^{\geq \mu} \tag{3.4.22}
\end{equation*}
$$

Therefore substitute (3.4.21) and (3.4.22) to (3.4.12), we have

$$
\psi_{\mathrm{t}^{2}{ }_{\mathrm{t}}} \psi_{r} \in R_{n}^{\geq \mu} .
$$

Then by Proposition 1.4.9 the proof is completed.
3.4.23. Example We give an example of Case 3.4.10 . Suppose $\lambda=(7,4), e=4$ and $\Lambda=\Lambda_{0}$. Therefore $i=j=3$ and

$$
\mathrm{t}=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 7 & 9 & 10 & 11 \\
\hline 4 & 5 & 6 & 8 & &
\end{array} \quad \mathrm{t}^{\lambda}=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 8 & 9 & 10 & 11 & & \\
\hline
\end{array},
$$

with $d(\mathrm{t})=s_{7} s_{8} s_{9} s_{10} s_{6} s_{7} s_{8} s_{9} s_{5} s_{6} s_{7} s_{8} s_{4} s_{5} s_{6}$ and $r=7$.
By Lemma 3.4.5 we have

$$
\begin{aligned}
e_{\lambda} y_{\lambda} \psi_{7} \psi_{8} \psi_{9} \psi_{10} & =e(01230123012) y_{4} y_{11} \psi_{7} \psi_{8} \psi_{9} \psi_{10} \\
& =\psi_{7} \psi_{8} \psi_{9} \psi_{10} e(01230130122) y_{4} y_{11}+\psi_{7} \psi_{8} \psi_{9} e(01230130122) y_{4} \\
& =\psi_{7} \psi_{8} \psi_{9} \psi_{10} e\left(\mathbf{i}_{\lambda} \vee i\right) y_{\lambda}+\psi_{7} \psi_{8} \psi_{9} e\left(\mathbf{i}_{\mu} \vee i\right) y_{\mu} \\
& =\psi_{7} \psi_{8} \psi_{9} \psi_{10} \theta_{i}\left(e\left(\mathbf{i}_{\lambda}\right) y_{\lambda}\right)+\psi_{7} \psi_{8} \psi_{9} \theta_{i}\left(e\left(\mathbf{i}_{\mu}\right) y_{\dot{\mu}}\right),
\end{aligned}
$$

where $\dot{\lambda}=(6,4)$ and $\dot{\mu}=(6,3,1)$. Therefore

$$
\dot{\mathfrak{t}}=
$$

and $d(\dot{t})=s_{6} s_{7} s_{8} s_{9} s_{5} s_{6} s_{7} s_{8} s_{4} s_{5} s_{6}$, which indicates

$$
\begin{aligned}
& \psi_{\mathrm{t}^{\mathrm{t}} \mathrm{t}} \psi_{r}=e_{\lambda} y_{\lambda} \psi_{7} \psi_{8} \psi_{9} \psi_{10} \psi_{6} \psi_{7} \psi_{8} \psi_{9} \psi_{5} \psi_{6} \psi_{7} \psi_{8} \psi_{4} \psi_{5} \psi_{6} \psi_{7} \\
= & \psi_{7} \psi_{8} \psi_{9} \psi_{10} \theta_{i}\left(e\left(\mathbf{i}_{\lambda}\right) y_{\lambda}\right) \psi_{6} \psi_{7} \psi_{8} \psi_{9} \psi_{5} \psi_{6} \psi_{7} \psi_{8} \psi_{4} \psi_{5} \psi_{6} \psi_{7} \\
& +\psi_{7} \psi_{8} \psi_{9} \theta_{i}\left(e\left(\mathbf{i}_{j}\right) y_{j}\right) \psi_{6} \psi_{7} \psi_{8} \psi_{9} \psi_{5} \psi_{6} \psi_{7} \psi_{8} \psi_{4} \psi_{5} \psi_{6} \psi_{7} \\
= & \psi_{7} \psi_{8} \psi_{9} \psi_{10} \theta_{i}\left(e\left(\mathbf{i}_{\lambda}\right) y_{\lambda}\right) \psi_{d(\mathrm{t})} \psi_{7}+\psi_{7} \psi_{8} \psi_{9} \theta_{i}\left(e\left(\mathbf{i}_{\dot{\mu}}\right) y_{\mu}\right) \psi_{d(\mathrm{t})} \psi_{7} \\
= & \psi_{7,11} \theta_{i}\left(\psi_{\mathrm{t}^{\lambda} \mathrm{t}} \psi_{7}\right)+\psi_{7,10} \theta_{i}\left(e\left(\mathbf{i}_{j}\right) y_{\dot{\mu}} \psi_{d(\mathrm{t})} \psi_{7}\right) .
\end{aligned}
$$

For the first term of (3.4.24),

$$
\begin{aligned}
& +\sum_{\dot{u}, \dot{\mathrm{v}} \in \mathrm{Std}\left(\left.\lambda\right|_{n-1}\right)} c_{\dot{\mathrm{u}} \dot{\mathrm{v}}} \psi_{7,11} \theta_{i}\left(\psi_{\dot{\mathrm{u}} \dot{\mathrm{u}}}\right) .
\end{aligned}
$$

For $\dot{v} \in \operatorname{Std}(\dot{\lambda})$ with $\dot{v} \triangleright \dot{t}$, by Lemma 3.4.7 we have

$$
\begin{equation*}
\sum_{\substack{\dot{\mathrm{v}} \in \operatorname{Std}(\hat{\lambda}) \\ \dot{v} \triangleright \mathrm{t}}} c_{\mathrm{t}_{\dot{v}}} \psi_{7,11} \theta_{i}\left(\psi_{\mathrm{t}^{\lambda_{v}}}\right) \in R_{n}^{\geq \mu} . \tag{3.4.26}
\end{equation*}
$$

For $\dot{u}, \dot{v} \in \operatorname{Std}\left(\left.\lambda\right|_{n-1}\right)$ with $(\dot{u}, \dot{\mathrm{v}}) \triangleright\left(\mathrm{t}^{\lambda}, \mathrm{t}\right)$, then $\operatorname{res}(\dot{\mathrm{u}})=\mathbf{i}_{\lambda}=0123013012$, and because Shape $(\dot{u})=\left.\lambda\right|_{n-1}=(7,3)$ with residues

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 3 & 0 & 1 & & & & \\
\hline
\end{array}
$$

and

$$
\dot{u} \triangleright \mathrm{t}^{\lambda}=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\hline 7 & 8 & 9 & 10 & & \\
\hline
\end{array} .
$$

The only possible choice of $u \dot{u}$ is

$$
\dot{u}=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 10 \\
\hline 7 & 8 & 9 & & & & \\
\hline
\end{array}
$$

with $d(\dot{u})=s_{7} s_{8} s_{9}=\psi_{\lambda_{1}, n-1}$. Hence

$$
\begin{equation*}
\psi_{7,11} \theta_{i}\left(\psi_{\dot{\mathrm{u}} \mathrm{v}}\right)=\psi_{7} \psi_{8} \psi_{9} \psi_{10} \psi_{9} \psi_{8} \psi_{7} e(0123012301) y_{4} \psi_{d(\dot{\mathrm{v})}} . \tag{3.4.27}
\end{equation*}
$$

Notice we have

$$
\begin{aligned}
& \psi_{7} \psi_{8} \psi_{9} \psi_{10} \psi_{9} \psi_{8} \psi_{7} e(01230123012) y_{4} \\
&= \psi_{7} \psi_{8} \psi_{9} \psi_{10} \psi_{9} e(01230130212) \psi_{8} \psi_{7} y_{4} \\
&= \psi_{7} \psi_{8} \psi_{10} \psi_{9} \psi_{10} e(01230130212) \psi_{8} \psi_{7} y_{4}-\psi_{7} \psi_{8} e(01230130212) \psi_{8} \psi_{7} y_{4} \\
&= \psi_{7} \psi_{8} \psi_{10} \psi_{9} \psi_{10} \psi_{8} \psi_{7} e(01230123012) y_{4}-\psi_{7} \psi_{8} \psi_{8} \psi_{7} e(01230123012) y_{4} \\
&= \psi_{10} \psi_{7} \psi_{8} \psi_{9} \psi_{8} \psi_{7} e(01230123021) y_{4} \psi_{10}-\psi_{7} \psi_{8} \psi_{8} \psi_{7} e(01230123012) y_{4} \\
&= \psi_{10} \theta_{1}\left(\psi_{7} \psi_{8} \psi_{9} \psi_{8} \psi_{7} e(0123012302) y_{4}\right) \psi_{10}-\psi_{7} \psi_{8} \psi_{8} \psi_{7} e(01230123012) y_{4} \\
&(3.4 .28)= \\
& \psi_{10} \theta_{1}\left(\psi_{7} \psi_{8} \psi_{9} \psi_{8} \psi_{7} e_{\sigma} y_{\sigma}\right) \psi_{10}-\psi_{7} \psi_{8} \psi_{8} \psi_{7} e_{\mu} y_{\mu},
\end{aligned}
$$

where $\sigma=(7,2,1)$. Consider the left term of 3.4.28, because $|\sigma|<|\lambda|$ and $\lambda \in \mathscr{S}_{n}^{\Lambda}$, we have

$$
\psi_{7} \psi_{8} \psi_{9} \psi_{8} \psi_{7} e_{\sigma} y_{\sigma}=\sum_{\mathrm{u} \in \operatorname{Std}(\sigma)} c_{\mathrm{ut}{ }^{\tau}} \psi_{\mathrm{ut}^{\tau}}+\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\sigma)} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

For $u \in \operatorname{Std}(\sigma)$, by Lemma 3.3.1 and $\psi_{7} \psi_{8} \psi_{9} \psi_{8} \psi_{7}$ doesn't involve ψ_{s} with $s \leq 6$, we have $\left.\left.u\right|_{6} \triangleright \mathrm{t}^{\sigma}\right|_{6}$. Then because res(u) $=\mathbf{i}_{\sigma} \cdot s_{7} s_{8} s_{9} s_{8} s_{7}=0123012302$, by the definition of σ

Then the only possible choice of u is $t^{\sigma}=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 9 | | | | | |
| 10 | | | | | | |

$$
\psi_{7} \psi_{8} \psi_{9} \psi_{8} \psi_{7} e_{\sigma} y_{\sigma}=c \cdot \psi_{\mathrm{t}^{\sigma} \mathrm{t}^{\sigma}}+\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\sigma)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}
$$

For $\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\sigma)$, we have $\operatorname{res}(\mathrm{u})=\mathbf{i}_{\sigma}=0123012302$. It is impossible that Shape $(\mathrm{u})=$ $\left.\lambda\right|_{n-1}$ because $\mathbf{i}_{\lambda_{n-1}}=0123012301$. Hence $\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Sdd}(>\sigma)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}\left(>\left.\lambda\right|_{n-1}\right)} c_{\mathrm{uv}} \psi_{\mathrm{uv}} \in R_{n}^{>\left.\lambda\right|_{n-1}}$. So
$\psi_{7} \psi_{8} \psi_{9} \psi_{8} \psi_{7} e_{\sigma} y_{\sigma}=c \cdot \psi_{t^{\sigma} 7^{\sigma}}+R_{n}^{>\lambda n_{n-1}}$ and hence by Lemma 2.1.14

$$
\begin{align*}
\psi_{10} \theta_{1}\left(\psi_{7} \psi_{8} \psi_{9} \psi_{8} \psi_{7} e_{\sigma} y_{\sigma}\right) \psi_{10} & =c \cdot \psi_{10} \theta_{1}\left(\psi_{t^{\sigma+\sigma}}\right) \psi_{10}+\psi_{10} \theta_{1}\left(R_{n}^{>\lambda l_{n-1}}\right) \psi_{10} \\
& =c \cdot \psi_{10} e(01230123021) y_{4} \psi_{10}+R_{n}^{>\lambda} \\
& ={ }_{\lambda} c \cdot e(01230123012) y_{4} \psi_{10}^{2} \\
& =c \cdot e(01230123012) y_{4} y_{10}-c \cdot e(01230123012) y_{4} y_{9} \\
& =\lambda_{\lambda} c \cdot e(01230123012) y_{4} y_{10}=c \cdot e_{\lambda} y_{\lambda} . \tag{3.4.29}
\end{align*}
$$

For the right term of (3.4.28), because $\left.\lambda\right|_{n-1} \in \mathscr{S}_{n-1}^{\Lambda} \cap\left(\mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}\right)$, by Lemma 3.3.2 we have

$$
\psi_{7} \psi_{8} \psi_{8} \psi_{7} e_{\lambda \mid n-1} y_{\left.\lambda\right|_{n-1}}=\sum_{\dot{u} \in \operatorname{Std}\left(\left.\lambda\right|_{n-1}\right)} c_{\dot{\mathrm{ut}}{ }^{\lambda_{n-1}}} \psi_{\dot{\mathrm{ut}}{ }^{l_{n-1}}}+R_{n}^{>\left.\lambda\right|_{n-1}}
$$

Then by Lemma 2.1.14,

$$
\begin{align*}
\psi_{7} \psi_{8} \psi_{8} \psi_{7} e_{\mu} y_{\mu} & =\theta_{2}\left(\psi_{7} \psi_{8} \psi_{8} \psi_{7} e_{\lambda_{n-1}} y_{\lambda_{n-1}}\right) \\
& =\sum_{\dot{\mathrm{u}} \in \operatorname{Std}\left(\left.\lambda\right|_{n-1}\right)} c_{\mathrm{ut}^{+1} n_{n-1}} \theta_{2}\left(\psi_{\mathrm{ut}^{\mu} n_{n-1}}\right)+\theta_{2}\left(R_{n}^{>\left.\lambda\right|_{n-1}}\right) \\
& =\sum_{\mathrm{u} \in \operatorname{Std}(\mu)} c_{\dot{\mathrm{ut}}{ }^{n_{n-1}}} \psi_{\mathrm{u}^{\mu} \mu}+R_{n}^{>\lambda} . \tag{3.4.30}
\end{align*}
$$

Substitute (3.4.29) and (3.4.30) back to (3.4.28), we have

$$
\psi_{7} \psi_{8} \psi_{9} \psi_{10} \psi_{9} \psi_{8} \psi_{7} e(01230123012) y_{4}=\sum_{\mathrm{u} \in \operatorname{Std}(\mu)} c_{\mathrm{u}^{\mu}} \psi_{\mathrm{ut}^{\mu}}+c \cdot e_{\lambda} y_{\lambda}+R_{n}^{>\lambda}
$$

Recall \dot{v} is a standard tableau of shape $\left.\lambda\right|_{n-1}=\left.\mu\right|_{n-1}$, we can define $\mathrm{v}_{1} \in \operatorname{Std}(\mu)$ and $\mathrm{v}_{2} \in$ $\operatorname{Std}(\lambda)$ such that $d\left(\mathrm{v}_{1}\right)=d\left(\mathrm{v}_{2}\right)=d(\dot{\mathrm{v}})$. Hence by (3.4.27),

$$
\begin{aligned}
\psi_{7,11} \theta_{i}\left(\psi_{\mathrm{uv}}\right) & =\psi_{7} \psi_{8} \psi_{9} \psi_{10} \psi_{9} \psi_{8} \psi_{7} e(0123012301) y_{4} \psi_{d(\mathrm{v})} \\
& =\sum_{\mathrm{u} \in \operatorname{Std}(\mu)} c_{\mathrm{uv}_{1}} \psi_{\mathrm{uv}_{1}}+c \cdot \psi_{\mathrm{t}^{l} \mathrm{v}_{2}}+R_{n}^{>\lambda} \in R_{n}^{\geq \mu},
\end{aligned}
$$

which yields

$$
\begin{equation*}
\sum_{\substack{\dot{u}, \dot{v} \in \operatorname{Std}\left(\lambda l_{n-1}\right) \\(\dot{u}, \dot{\mathrm{v}}) \triangleright\left(\mathrm{t}^{l}, \mathrm{t}\right)}} c_{\dot{\mathrm{u}},} \psi_{7,11} \theta_{i}\left(\psi_{\mathrm{u} \dot{\mathrm{v}}}\right) \in R_{n}^{\geq \mu} . \tag{3.4.31}
\end{equation*}
$$

Finally, suppose $\dot{u}, \dot{v} \in \operatorname{Shape}\left(>\left.\lambda\right|_{n-1}\right)$, by Lemma 2.1.14 we have $\psi_{7,11} \theta_{i}\left(\psi_{\dot{\mathrm{u}}}\right) \in R_{n}^{>\lambda}$. Therefore

$$
\begin{equation*}
\sum_{\dot{u}, \dot{\mathrm{v}} \in \mathrm{Std}\left(\left.\lambda \lambda\right|_{n-1}\right)} c_{\mathrm{u} \dot{\mathrm{u}}} \psi_{7,11} \theta_{i}\left(\psi_{\mathrm{u} \dot{\mathrm{u}}}\right) \in R_{n}^{>\lambda} . \tag{3.4.32}
\end{equation*}
$$

Substitute (3.4.26), (3.4.31) and (3.4.32) to (3.4.25), we have

$$
\begin{equation*}
\psi_{7,11} \theta_{i}\left(\psi_{\mathrm{t}^{\mathrm{i} \ell}} \psi_{r}\right) \in R_{n}^{\geq \mu} . \tag{3.4.33}
\end{equation*}
$$

For the second term of (3.4.24), by Lemma 3.4.5

$$
\begin{aligned}
\psi_{7,10} \theta_{i}\left(e\left(\mathbf{i}_{\mu}\right) y_{\mu} \psi_{d(\mathrm{t})} \psi_{7}\right) & =\theta_{2}\left(\psi_{7} \psi_{8} \psi_{9} e(0123013012) y_{4} \psi_{d(\mathrm{t})} \psi_{7}\right) \\
& =\theta_{2}\left(e(0123012301) y_{4} \psi_{7} \psi_{8} \psi_{9} \psi_{d(\mathrm{t})} \psi_{7}\right) \\
& =e(01230123012) y_{4} \psi_{7} \psi_{8} \psi_{9} \psi_{d(\mathrm{t})} \psi_{7}=e_{\mu} y_{\mu} \psi_{7,10} \psi_{d(\mathrm{t})} \psi_{r} .
\end{aligned}
$$

Then by Lemma 3.3.6, because $\psi_{7,10} \psi_{d(t)} \psi_{r}$ doesn't involve ψ_{10}, we have $e_{\mu} y_{\mu} \psi_{7,10} \psi_{d(t)} \psi_{r} \in$ $R_{n}^{\geq \mu}$. Therefore

$$
\begin{equation*}
\psi_{7,10} \theta_{i}\left(e\left(\mathbf{i}_{\mu}\right) y_{\mu} \psi_{d(\mathrm{t})} \psi_{7}\right) \in R_{n}^{\geq \mu} . \tag{3.4.34}
\end{equation*}
$$

Substitute (3.4.33) and 3.4.34 to (3.4.24), we have $\psi_{\mathrm{t}^{1} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \mu}$. Finally by Proposition 1.4.9, we have

$$
\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright\left(\mathrm{t}^{2}, \mathrm{t}\right)} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

Finally, we can extend the above Proposition to arbitrary multipartition using similar method we used in the last chapter.
3.4.35. Corollary. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and t is the last Garnir tableau of shape λ with r the last Garnir entry and $l(d(\mathrm{t})) \leq m_{\lambda}$. Therefore for any standard λ-tableau $\mathrm{s}, \psi_{\mathrm{st}} \psi_{r}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}$. Proof. Write $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ and $\lambda^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{k}^{(\ell)}\right)$. If $\lambda^{(\ell)}=\emptyset$, then define $\bar{\lambda}=$ $\left(\lambda^{(1)}, \ldots, \lambda^{(\ell-1)}\right)$. As $l(\bar{\lambda})=\ell-1<l(\lambda)$, we have $\bar{\lambda} \in \mathscr{P}_{I}^{\bar{\Lambda}} \cap \mathscr{P}_{y}^{\bar{\Lambda}} \cap \mathscr{P}_{\psi}^{\bar{\Lambda}}$. By Proposition 2.3.14. $\lambda \in \mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}$, and the Corollary follows.

Now suppose $\lambda^{(\ell)} \neq \emptyset$, First we assume $s=t^{\lambda}$. As t is the last Garnir tableau of shape λ, $k \geq 2$. Setting $m=\lambda_{k-1}^{(\ell)}+\lambda_{k}^{(\ell)}$. As t is the last Garnir tableau, by the definition we can see that $\left.\mathrm{t}\right|_{n-m}=\left.\mathrm{t}^{\lambda}\right|_{n-m}$ and $k \geq 2$. Define i to be the residue of the node $(k-1,1, \ell), \Lambda^{\prime}=\Lambda_{i}$, and $\tilde{\mathrm{t}}$ to be the last Garnir tableau of shape $\left(\lambda_{k-1}^{(\ell)}, \lambda_{k}^{(\ell)}\right)$. If we write $\mu=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell-1)}, \mu^{(\ell)}\right)$ with $\mu^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{k-2}^{(\ell)}\right)$ and $\gamma=\left(\lambda_{k-1}^{(\ell)}, \lambda_{k}^{(\ell)}\right)$, then

$$
\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}=\hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{\mathrm{t} \gamma \mathrm{t} \hat{\mathrm{t}}} \hat{\psi}_{r-(n-m)}\right) y_{\mu} .
$$

Recall that $\hat{\psi}_{\mathrm{trj} \boldsymbol{\tau}}$ and $\hat{\psi}_{r-(n-m)}$ are elements of \mathscr{R}_{m} and ψ_{trj} and $\psi_{r-(n-m)}$ are elements of $\mathscr{R}_{m}^{\Lambda^{\prime}}$. Then by Proposition 3.4.10, we have $\psi_{\mathrm{trj} \boldsymbol{\tau}} \psi_{r-(n-m)} \in R_{n}^{\geq \gamma}$. Therefore we can write $\psi_{\mathrm{t} \gamma \mathrm{\tau}} \psi_{r-(n-m)}=$ $\sum_{\mathrm{u}, \mathrm{v} \in \mathrm{Std}(\gamma)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}+\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\gamma))} c_{\mathrm{uv}} \psi_{\mathrm{uv}}$ and hence $\hat{\psi}_{\mathrm{v} \gamma \mathrm{T}} \hat{\psi}_{r-(n-m)}=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\gamma)} c_{\mathrm{uv}} \hat{\psi}_{\mathrm{uv}}+\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\gamma)} c_{\mathrm{uv}} \hat{\mathrm{u}}_{\mathrm{uv}}+$ r where $r \in N_{m}^{\Lambda^{\prime}}$. Therefore

$$
\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}=\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\gamma)} c_{\mathrm{uv}} \hat{\mathrm{i}}_{\mu}\left(\hat{\psi}_{\mathrm{uv}}\right) y_{\mu}+\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\gamma \gamma)} c_{\mathrm{uv}} \hat{\mathbf{i}}_{\mu}\left(\hat{\psi}_{\mathrm{uv}}\right) y_{\mu}+\hat{\theta}_{\mathbf{i}_{\mu}}(r) y_{\mu} .
$$

For $\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\gamma)$, by Corollary 2.3.8 we have $\hat{\theta}_{\mathrm{i}_{\mu}}\left(\psi_{\mathrm{uv}}\right) \in R_{n}^{\geq \lambda}$. Hence $\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\gamma)} c_{\mathrm{uv}} \hat{\theta}_{\mathbf{i}_{\mu}}\left(\hat{\psi}_{\mathrm{uv}}\right) y_{\mu} \in$ $R_{n}^{\geq \lambda}$.

For $u, v \in \operatorname{Std}(>\gamma)$, write $\operatorname{Shape}(u)=\operatorname{Shape}(\mathrm{v})=\sigma$ and $v=\mu \vee \sigma$. By Corollary 2.3.6 we have $v>\lambda=\mu \vee \gamma$. Then by Corollary 2.3.15 and Lemma 2.1.14, $\hat{\mathrm{i}}_{\mathrm{i}_{\mu}}\left(\psi_{\mathrm{uv}}\right) \in R_{n}^{>\lambda}$. Hence $\sum_{\mathrm{u}, \mathrm{v} \in \mathrm{Std}(>\gamma)} c_{\mathrm{uv}} \hat{\theta}_{\mathrm{i}_{\mu}}\left(\hat{\psi}_{\mathrm{uv}}\right) y_{\mu} \in R_{n}^{>\lambda}$.

Finally by Lemma 2.3.4, $\hat{\theta}_{\mathbf{i}_{\mu}}(r) y_{\mu} \in R_{n}^{>\lambda}$. These yield that

$$
\psi_{\mathrm{t}^{2} t} \psi_{r}=\hat{\theta}_{\mathbf{i}_{\mu}}\left(\psi_{\mathrm{t}_{\mathrm{r}}} \psi_{r-(n-m)}\right) y_{\mu} \in R_{n}^{\geq \lambda} .
$$

Now choose any $\mathrm{s} \in \operatorname{Std}(\lambda)$. Because $\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$, we have

$$
\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}=\lambda \sum_{\mathrm{v} \in \operatorname{Std}(\lambda)} c_{\mathrm{t}^{\imath} \mathrm{v}} \psi_{\mathrm{t}^{\lambda} \mathrm{v}}
$$

Hence

$$
\psi_{\mathrm{st}} \psi_{r}=\psi_{d(\mathrm{~s})}^{*} \psi_{\mathrm{t}^{\imath} \mathrm{t}} \psi_{r}=\lambda \sum_{\mathrm{v} \in \operatorname{Std}(\lambda)} c_{\mathrm{t}^{\imath} \mathrm{v}} \psi_{d(\mathrm{~s})}^{*} \psi_{\mathrm{t}^{\imath} \mathrm{v}}=\sum_{\mathrm{v} \in \operatorname{Std}(\lambda)} c_{\mathrm{t}^{\imath} \mathrm{v}} \psi_{\mathrm{sv}} .
$$

Therefore, $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$. By Proposition 1.4.9 we completes the proof.
3.4.36. Remark. Generally it is not easy to find c_{uv}. Kleshchev-Mathas-Ram [14] explicitly describes how to compute c_{uv} where $\operatorname{Shape}(\mathrm{u})=\operatorname{Shape}(\mathrm{v})=\lambda$. This thesis also gives an implicit method to compute these coefficients.

3.5. Completion of the ψ-problem

In this section we are going to prove that $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$. We have claimed in Corollary 3.2.3 that if $\mathrm{t} \cdot s_{r}$ is standard and $d(\mathrm{t}) \cdot s_{r}$ is reduced then the argument is true. So we will mainly consider that $\mathrm{t} \cdot s_{r}$ is not standard or $d(\mathrm{t}) \cdot s_{r}$ is not reduced.

In the last section we have proved that when t is a Garnir-tableau then $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$. In the beginning of this section we are going to consider some other cases of t. Then we will give some information about using $d(\mathrm{t})$ to determine the type of t , and use them to prove that $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$ for any $s, t \in \operatorname{Std}(\lambda)$.

First we introduce two more types of t and r.
3.5.1. Lemma. Suppose t and s are two standard λ-tableaux with $d(\mathrm{t})=d(\mathrm{~s}) \cdot s_{k}$ for some k and $l(d(\mathrm{t}))=l(d(\mathrm{~s}))+1$. Iffor some $r \notin\{k-1, k, k+1\}, \mathrm{t} \cdot s_{r}$ is not standard or $d(\mathrm{t}) \cdot s_{r}$ is not reduced, then $\mathrm{s} \cdot s_{r}$ is not standard or $d(\mathrm{~s}) \cdot s_{r}$ is not standard, respectively.

Proof. When $\mathrm{t} \cdot s_{r}$ is not standard, we can see that r and $r+1$ in t are adjacent, either in the same row or in the same column. Since $d(\mathrm{t})=d(\mathrm{~s}) \cdot s_{k}$, we have $\mathrm{s}=\mathrm{t} \cdot s_{k}$. As $r \notin\{k-1, k, k+1\}, r$ and $r+1$ are in the same nodes in t as in s . Hence $\mathrm{s} \cdot s_{r}$ is not standard as well.

When $d(\mathrm{t}) \cdot s_{r}$ is not reduced, we could see that $d(\mathrm{t})(r)>d(\mathrm{t})(r+1)$. As $d(\mathrm{t})=d(\mathrm{~s}) \cdot s_{k}$ we have $d(\mathrm{t})(r)=d(\mathbf{s}) \cdot s_{k}(r)=d(\mathbf{s})(r)$ and $d(\mathrm{t})(r+1)=d(\mathbf{s}) \cdot s_{k}(r+1)=d(\mathbf{s})(r+1)$ as $r \notin\{k-1, k, k+1\}$. Hence $d(\mathrm{~s})(r)>d(\mathrm{~s})(r+1)$. Therefore $d(\mathrm{~s}) \cdot s_{r}$ is not reduced. This completes the proof.

3.5.2. Example Suppose $t=$\begin{tabular}{|l|l|l|l}
\hline 1 \& 2 \& 7 \& 9

\hline 3 \& 5 \& 8

\hline 4 \& 6 \& 10

 and $s=$

\hline 1 \& 2 \& 7 \& 8

\hline 3 \& 4 \& 9 \&

\hline 5 \& 6 \& 10
\end{tabular} . We have

$$
\begin{aligned}
d(\mathrm{t}) & =s_{4} s_{5} s_{6} s_{7} s_{8} s_{6} s_{7} s_{3} s_{4} s_{5} s_{6} s_{4}, \\
d(\mathrm{~s}) & =s_{7} s_{8} s_{4} s_{5} s_{6} s_{7} s_{3} s_{4} s_{5} s_{6} s_{4} .
\end{aligned}
$$

Set $k=8$, we have $d(\mathrm{t})=d(\mathrm{~s}) \cdot s_{8}$ and $l(d(\mathrm{t}))=l(d(\mathrm{~s}))+1$. Let $r=3$, i.e. $r \notin\{k-1, k, k+1\}$ and $\mathrm{t} \cdot s_{r}$ is not standard. We can see that $\mathrm{s} \cdot s_{r}$ is not standard either. Similarly, let $r=6$, i.e. $r \notin\{k-1, k, k+1\}$ and $d(\mathrm{t}) \cdot s_{r}$ is not reduced. We can see that $d(\mathrm{~s}) \cdot s_{r}$ is not reduced either.
3.5.3. Definition. Suppose t is a standard λ-tableau. If we can find a reduced expression $s_{r_{1}} s_{r_{2}} \ldots s_{r_{1}}$ of $d(\mathrm{t})$ and $1 \leq r \leq n-1$ such that $\left|r-r_{l}\right|>1$, we say t is unlocked by s_{r}.
3.5.4. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and t is a standard λ-tableau with $l(d(\mathrm{t})) \leq m_{\lambda}$. If t is unlocked by s_{r}, then $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$ for any standard λ-tableau s .

Proof. Suppose $\mathrm{t} \cdot s_{r}$ is standard and $d(\mathrm{t}) \cdot s_{r}$ is reduced, by Corollary 3.2.3, $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$.
Suppose $\mathrm{t} \cdot s_{r}$ is not standard or $d(\mathrm{t}) \cdot s_{r}$ is not reduced. Since t is a standard λ-tableau unlocked by s_{r}, by Definition 3.5.3, we can find a reduced expression $s_{r_{1}} s_{r_{2}} \ldots s_{r_{l}}$ of $d(\mathrm{t})$ such that $\left|r-r_{l}\right|>$ 1. Define $\mathrm{w}=\mathrm{t}^{\lambda} \cdot s_{r_{1}} s_{r_{2}} \ldots s_{r_{l-1}}$. By Lemma 1.3.4, w is a standard λ-tableau. It is easy to see that $d(\mathrm{t})=d(\mathrm{w}) \cdot s_{r_{l}}$ and $l(d(\mathrm{t}))=l(d(\mathrm{w}))+1$. Hence by Lemma 3.5.1, $\mathrm{w} \cdot s_{r}$ is not standard or $d(\mathrm{w}) \cdot s_{r}$ is not reduced. So $\psi_{\mathrm{sw}} \psi_{r}={ }_{\lambda} \sum_{\substack{\mathrm{v} \in \operatorname{Std}(\lambda) \\ \mathrm{V} \triangleright \mathrm{w}}} c_{\mathrm{sv}} \psi_{\mathrm{sv}}$ because $l(d(\mathrm{w}))=l(d(\mathrm{t}))-1<w_{\lambda}$.

Because it is obvious that $d(\mathrm{w}) \cdot s_{r_{l}}$ is a reduced expression of $d(\mathrm{t})$, say $d^{\prime}(\mathrm{t})=d(\mathrm{w}) \cdot s_{r_{l}}$, by Lemma 3.2.2, we have

$$
\sum_{\substack{\mathrm{v} \in \mathrm{Std}(\lambda) \\ \mathrm{v} \mathrm{t}}} c_{\mathrm{sv}} \psi_{\mathrm{sv}} \psi_{r}={ }_{\lambda} \psi_{\mathrm{st}} \psi_{r}-\psi_{d(\mathrm{~s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{w})} \psi_{r_{l}} \psi_{r}=\psi_{\mathrm{st}} \psi_{r}-\psi_{\mathrm{sw}} \psi_{r} \psi_{r_{l}}
$$

Because $\mathrm{v} \triangleright \mathrm{t}, l(d(\mathrm{v}))<l(d(\mathrm{t})) \leq m_{\lambda}$ and hence we have $\sum_{\substack{\mathrm{v} \in \mathrm{Std}(\lambda) \\ \mathrm{v} \triangleright \mathrm{t}}} c_{\mathrm{sv}} \psi_{\mathrm{sv}} \psi_{r} \in R_{n}^{\geq \lambda}$. For $\psi_{\mathrm{sw}} \psi_{r} \psi_{r_{l}}={ }_{\lambda} \sum_{\substack{\mathrm{v} \in \operatorname{Sdd}(\lambda) \\ \mathrm{v} \triangleright \mathrm{w})}} c_{\mathrm{sv}} \psi_{\mathrm{sv}} \psi_{r_{l}}$, because $\mathrm{v} \triangleright \mathrm{w}$, we have $l(d(\mathrm{v}))<l(d(\mathrm{w}))<m_{\lambda}$, which yields that $\psi_{\mathrm{sw}} \psi_{r} \psi_{r_{l}} \in R_{n}^{\geq \mathcal{D}}$. Therefore we have $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.5. Lemma. Suppose t is a standard λ-tableau and that we have a standard λ-tableau w such that $d(\mathrm{t})=d(\mathrm{w}) \cdot s_{r} s_{r+1}$ for some r and $l(d(\mathrm{t}))=l(d(\mathrm{w}))+2$. If $\mathrm{t} \cdot s_{r}$ is not standard or $d(\mathrm{t}) \cdot s_{r}$ is not reduced, then $\mathrm{W} \cdot s_{r+1}$ is not standard or $d(\mathrm{w}) \cdot s_{r+1}$ is not reduced, respectively.

Similarly suppose $d(\mathrm{t})=d(\mathrm{w}) \cdot s_{r} s_{r-1}$ for some r and $l(d(\mathrm{t}))=l(d(\mathrm{w}))+2$. If $\mathrm{t} \cdot s_{r}$ is not standard or $d(\mathrm{t}) \cdot s_{r}$ is not reduced, then $\mathrm{w} \cdot s_{r-1}$ is not standard or $d(\mathrm{w}) \cdot s_{r-1}$ is not reduced, respectively.

Proof. Suppose $d(\mathrm{t})=d(\mathrm{w}) \cdot s_{r} s_{r+1}$. If $\mathrm{t} \cdot s_{r}$ is not standard, r and $r+1$ are adjacent in t . But r and $r+1$ occupy the same positions as $r+1$ and $r+2$, respectively in \mathbf{W}. So $\mathbf{w} \cdot s_{r+1}$ is not standard. If $d(\mathrm{t}) \cdot s_{r}$ is not reduced, as $d(\mathrm{w})^{-1}(r+1)=d(\mathrm{t})^{-1}(r)$ and $d(\mathrm{w})^{-1}(r+2)=d(\mathrm{t})^{-1}(r+1)$, by Proposition 1.2.9, $d(\mathrm{t}) \cdot s_{r}$ is not reduced implies $d(\mathrm{w}) \cdot s_{r+1}$ is not reduced. The other case is similar.
3.5.6. Remark. In Lemma 3.5.1 and Lemma 3.5.5, when we say $d(\mathrm{t})=d(\mathrm{~s}) \cdot s_{r}$ or $d(\mathrm{t})=$ $d(\mathrm{~s}) \cdot s_{r} s_{r+1}$, it means $d(\mathrm{t})$ and $d(\mathrm{~s}) \cdot s_{r}$ or $d(\mathrm{t})$ and $d(\mathrm{~s}) \cdot s_{r} s_{r+1}$ are the same as permutations.

3.5.7. Example Let $t=$\begin{tabular}{|l|l|l|l}
\hline 1 \& 2 \& 3 \& 12

\hline 4 \& 5 \& 6 \& 13

\hline 7 \& 8 \& 11

\hline 9 \& 10 \& 14

\hline

. . Suppose $s=$

\hline 1 \& 2 \& 3 \& 12

\hline 4 \& 5 \& 6 \& 13

\hline 7 \& 8 \& 9 \&

\hline 10 \& 11 \& 14

\hline
\end{tabular}

$$
\begin{aligned}
d(\mathrm{t}) & =s_{8} s_{9} s_{10} s_{11} s_{12} s_{4} s_{5} s_{6} s_{7} s_{8} s_{9} s_{10} s_{11} s_{9} s_{10}, \\
d(\mathrm{~s}) & =s_{8} S_{9} s_{10} s_{11} s_{12} s_{4} s_{5} s_{6} s_{7} s_{8} s_{9} s_{10} s_{11} .
\end{aligned}
$$

So we have $d(\mathrm{t})=d(\mathrm{~s}) s_{9} s_{10}$ and therefore $r=9$. We can see that $\mathrm{t} \cdot s_{r}$ and $\mathrm{s} \cdot s_{r+1}$ are both non-standard.

Suppose $s=$| | 2 | 2 | 3 |
| :--- | :--- | :--- | :--- | 11, , we have

$$
\begin{aligned}
d(\mathrm{t}) & =s_{8} s_{9} s_{10} s_{11} s_{12} s_{4} s_{5} s_{6} s_{7} s_{8} s_{9} s_{10} s_{11} s_{9} s_{10}, \\
d(\mathrm{~s}) & =s_{8} s_{9} s_{10} s_{11} s_{12} s_{4} s_{5} s_{6} s_{7} s_{8} s_{9} s_{10} s_{9} .
\end{aligned}
$$

So we have $d(\mathrm{t})=d(\mathbf{s}) s_{11} s_{10}$ and therefore $r=11$. We can see that $d(\mathrm{t}) \cdot s_{r}$ and $d(\mathbf{s}) \cdot s_{r-1}$ are both non-reduced because in t, r is below $r+1$ and in $\mathrm{s}, r-1$ is below r.
3.5.8. Definition. Suppose t is a standard λ-tableau. If we can find a reduced expression $s_{r_{1}} s_{r_{2}} \ldots s_{r_{l-1}} s_{r_{l}}$ of $d(\mathrm{t})$ such that $r_{l-1}=r$ and $r=r_{l} \pm 1$, we say t is unlocked by s_{r} on tails.
3.5.9. Lemma. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$ and t is a standard λ-tableau with $l(d(\mathrm{t})) \leq m_{\lambda}$. If t is unlocked by s_{r} on tails, then $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$ for any standard λ-tableau s .

Proof. Suppose $\mathrm{t} \cdot s_{r}$ is standard and $d(\mathrm{t}) \cdot s_{r}$ is reduced. By Corollary 3.2.3, $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$.
Suppose $\mathrm{t} \cdot s_{r}$ is not standard or $d(\mathrm{t}) \cdot s_{r}$ is not reduced. By Definition 3.5.8, we can find a reduced expression $s_{r_{1}} s_{r_{2}} \ldots s_{r_{l-1}} s_{r_{l}}$ of $d(\mathrm{t})$ such that $r_{l-1}=r$ and $r=r_{l} \pm 1$. Without loss of generality we set $r=r_{l}-1$. Define $\mathrm{w}=\mathrm{t}^{\lambda} s_{r_{1}} s_{r_{2}} \ldots s_{r_{l-2}}$. By Lemma 1.3.4, w is a standard λ-tableau. It is easy to see that $d(\mathrm{t})=d(\mathrm{w}) \cdot s_{r} s_{r+1}$ and $l(d(\mathrm{t}))=l(d(\mathrm{w}))+2$. Hence by Lemma 3.5.5, $\mathrm{w} \cdot s_{r+1}$ is not standard or $d(\mathrm{w}) \cdot s_{r+1}$ is not reduced. So $\psi_{\mathrm{sw}} \psi_{r+1}=\lambda \sum_{\substack{\mathrm{v} \in \operatorname{Std}(\lambda) \\ \mathrm{v} \triangleright \mathrm{w}}} c_{\mathrm{sv}} \psi_{\mathrm{sv}}$ because $l(d(\mathrm{w}))=l(d(\mathrm{t}))-2<w_{\lambda}$.

Because it is obvious that $d(\mathrm{w}) \cdot s_{r} s_{r+1}$ is a reduced expression of $d(\mathrm{t})$, say $d^{\prime}(\mathrm{t})=d(\mathrm{w}) \cdot s_{r} s_{r+1}$, by Lemma 3.2.2, we have

$$
\begin{equation*}
\sum_{\substack{\mathrm{v} \in \mathrm{Std}(\lambda) \\ \mathrm{v} \mathrm{t}}} c_{\mathrm{sv}} \psi_{\mathrm{sv}} \psi_{r}={ }_{\lambda} \psi_{\mathrm{st}} \psi_{r}-\psi_{d(\mathrm{~s})}^{*} e_{\lambda} y_{\lambda} \psi_{d(\mathrm{w})} \psi_{r} \psi_{r+1} \psi_{r}=\psi_{\mathrm{st}} \psi_{r}-\psi_{\mathrm{sw}} \psi_{r} \psi_{r+1} \psi_{r} \tag{3.5.10}
\end{equation*}
$$

Because $\vee \triangleright \mathrm{t}, l(d(\mathrm{v}))<l(d(\mathrm{t})) \leq m_{\lambda}$ and hence we have

$$
\begin{equation*}
\sum_{\substack{\mathrm{v} \in \operatorname{Std}(\lambda) \\ \mathrm{v} \mathrm{t}}} c_{\mathrm{sv}} \psi_{\mathrm{sv}} \psi_{r} \in R_{n}^{\geq \lambda} \tag{3.5.11}
\end{equation*}
$$

For $\psi_{\mathrm{sw}} \psi_{r} \psi_{r+1} \psi_{r}$, write $\operatorname{res}(\mathrm{w})=i_{1} i_{2} \ldots i_{n}$, the residue sequence of w . We have

$$
\psi_{\mathrm{sw}} \psi_{r} \psi_{r+1} \psi_{r}= \begin{cases}\psi_{\mathrm{sw}} \psi_{r+1} \psi_{r} \psi_{r+1} \pm \psi_{\mathrm{sw}}, & \text { if } i_{r}=i_{r+2}=i_{r+1} \pm 1 \\ \psi_{\mathrm{sw}} \psi_{r+1} \psi_{r} \psi_{r+1}, & \text { otherwise } .\end{cases}
$$

Because $\psi_{\mathrm{sw}} \psi_{r+1}=\lambda \sum_{\substack{\mathrm{v} \in \operatorname{Std}(\lambda) \\ \mathrm{v} \mathrm{w}}} c_{\mathrm{sv}} \psi_{\mathrm{sv}}$,

$$
\psi_{\mathrm{sw}} \psi_{r+1} \psi_{r} \psi_{r+1}=\lambda \sum_{\mathrm{v} \triangleright \mathrm{w}} c_{\mathrm{sv}} \psi_{\mathrm{sv}} \psi_{r} \psi_{r+1} .
$$

Since $\mathrm{V} \triangleright \mathrm{w}, l(d(\mathrm{v}))<l(d(\mathrm{w}))=l(d(\mathrm{t}))-2 \leq m_{\lambda}-2$. Hence $l\left(\psi_{d(\mathrm{v})} \psi_{r} \psi_{r+1}\right)=l(d(\mathrm{v}))+2<m_{\lambda}$. By Lemma 3.2.1 we have $\psi_{\mathrm{sv}} \psi_{r} \psi_{r+1} \in R_{n}^{\geq \lambda}$ if $\mathrm{v} \triangleright \mathrm{w}$. Therefore we always have

$$
\begin{equation*}
\psi_{\mathrm{sw}} \psi_{r+1} \psi_{r} \psi_{r+1} \in R_{n}^{\geq \lambda} \tag{3.5.12}
\end{equation*}
$$

in both cases. Substitute (3.5.11) and (3.5.12 into 3.5 .10 , we have $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$.
Now we will introduce some information about using $d(\mathrm{t})$ to determine the type of t .
3.5.13. Lemma. Suppose $\mathrm{t} \in \operatorname{Std}(\lambda)$ with $d(\mathrm{t})=s_{n-1} s_{n-2} \ldots s_{r+1}$, and $\mathrm{t} \cdot s_{r}$ is not standard. Then t is the last Garnir tableau with shape λ.

Proof. As $d(\mathrm{t})$ is the standard expression, we have $w_{n}=s_{n-1}, w_{n-1}=s_{n-2}, \ldots, w_{r+2}=s_{r+1}$ and $\mathrm{t}=\mathrm{t}^{(1)}=\mathrm{t}^{(2)}=\ldots=\mathrm{t}^{(r+1)}$. Write $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ and $\lambda^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{k}^{(\ell)}\right)$, as $\mathrm{t}^{(n)}=\mathrm{t}^{\lambda} \cdot w_{n}=$ $\mathrm{t}^{\lambda} \cdot s_{n-1}$ is standard, $n-1$ and n are not adjacent in t^{λ}. This forces $\lambda_{k}^{(\ell)}=1$.

By Remark 1.3.2 we have

$$
\mathrm{t}^{-1}(k)= \begin{cases}\left(\mathrm{t}^{\lambda}\right)^{-1}(k-1), & \text { if } r+2 \leq k \leq n, \\ \left(\mathrm{t}^{\lambda}\right)^{-1}(n), & \text { if } k=r+1, \\ \left(\mathrm{t}^{\lambda}\right)^{-1}(k), & \text { otherwise. }\end{cases}
$$

and since $\mathrm{t} \cdot \mathrm{s}_{r}$ is not standard, r and $r+1$ are adjacent in t . $\mathrm{As}^{\mathrm{t}^{-1}(r+1)=\left(\mathrm{t}^{\lambda}\right)^{-1}(n)=\left(k, \lambda_{k}^{(\ell)}, \ell\right)=, ~=~=~}$ $(k, 1, \ell)$, we must have $\mathrm{t}^{-1}(r)=(k-1,1, \ell)$. This shows that t is the last Garnir tableau with shape λ.

3.5.14. Example Suppose $\lambda=(4,4,1)$ and $\mathrm{t}=$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 5 | 7 | 8 | 9 |
| 6 | | | | . Therefore $d(\mathrm{t})=s_{8} s_{7} s_{6}$ and $\mathrm{t} \cdot s_{5}$ is not standard. Notice that t is the last Garnir tableau of shape λ.

3.5.15. Lemma. Suppose $\mathrm{t} \in \operatorname{Std}(\lambda)$ with $d(\mathrm{t})=s_{r} s_{r+1} \ldots s_{n-2}$, and $\mathrm{t} \cdot s_{n-1}$ is not standard. Then t is the last Garnir tableau with shape λ.

Proof. As $d(\mathrm{t})$ is the standard expression, we have $w_{n}=s_{r} s_{r+1} \ldots s_{n-2}$ and $w_{n-1}=\ldots w_{1}=1$. Write $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ and $\lambda^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{k}^{(\ell)}\right)$, as $\mathrm{t}=\mathrm{t}^{\lambda} \cdot w_{n}$, we have $\mathrm{t}^{-1}(n)=\left(k, \lambda_{k}^{(\ell)}, \ell\right)$. By Remark 1.3.2 we have

$$
\mathrm{t}^{-1}(k)= \begin{cases}\left(\mathrm{t}^{\lambda}\right)^{-1}(k+1), & \text { if } r \leq k \leq n-2, \\ \left(\mathrm{t}^{\lambda}\right)^{-1}(r), & \text { if } k=n-1, \\ \left(\mathrm{t}^{\lambda}\right)^{-1}(k), & \text { otherwise. }\end{cases}
$$

As $\mathrm{t} \cdot s_{n-1}$ is not standard, $n-1$ and n are adjacent in t . So in r and n are adjacent in t^{λ}. But $r \leq n-2$. Hence r has to be on the above of n in t^{λ}. i.e. $\left(\mathrm{t}^{\lambda}\right)^{-1}(r)=\mathrm{t}^{-1}(n-1)=\left(k-1, \lambda_{k}^{(\ell)}, \ell\right)$. This shows that $\lambda_{k-1}^{(\ell)}=\lambda_{k}^{(\ell)}$ and t is the last Garnir tableau of shape λ.

3.5.16. Example Suppose $\lambda=(4,3,3)$ and $\mathrm{t}=$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 5 | 6 | 9 | |
| 7 | 8 | 10 | | . Therefore $d(\mathrm{t})=s_{7} s_{8}$ and $\mathrm{t} \cdot s_{9}$ is not standard. Notice that t is the last Garnir tableau of shape λ.

3.5.17. Lemma. Suppose $\mathrm{t} \in \operatorname{Std}(\lambda)$ and $d(\mathrm{t})=w_{n} w_{n-1} \ldots w_{1}$ with $w_{i} \neq 1$ if $i \geq r+2$ or $i=r$ and $w_{i}=1$ if $i<r$ or $i=r+1$, i.e. $d(\mathrm{t})=w_{n} w_{n-1} \ldots w_{r+2} w_{r}$. If $\mathrm{t} \cdot s_{r}$ is not standard, then $l\left(w_{i}\right) \geq l\left(w_{r}\right)+1$ for $i \geq r+2$.

Proof. Write $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ and $\lambda^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{k}^{(\ell)}\right)$. Because $\mathrm{t} \cdot s_{r}$ is not standard, r and $r+1$ are adjacent in t. By Remark 1.3.2, as $w_{i} \neq 1$ for $i \geq r+2$

$$
\left(k, \lambda_{k}^{(\ell)}, \ell\right)=\left(\mathrm{t}^{(n+1)}\right)^{-1}(n)=\left(\mathrm{t}^{(n)}\right)^{-1}(n-1)=\ldots=\left(\mathrm{t}^{(r+3)}\right)^{-1}(r+2)=\left(\mathrm{t}^{(r+2)}\right)^{-1}(r+1) .
$$

Notice that $w_{r+1}=1$ and w_{r} doesn't involve s_{r} or s_{r+1}, we have

$$
\left(k, \lambda_{k}^{(\ell)}, \ell\right)=\left(\mathrm{t}^{(r+2)}\right)^{-1}(r+1)=\left(\mathrm{t}^{(r+1)}\right)^{-1}(r+1)=\left(\mathrm{t}^{(r)}\right)^{-1}(r+1) .
$$

Since $w_{r} \neq 1$ and $w_{r+1}=1$, recall $w_{r}=s_{a_{r}} s_{a_{r}+1} \ldots s_{r-2} s_{r-1}$, by Remark 1.3.2 we have

$$
\left(\mathrm{t}^{(r+2)}\right)^{-1}\left(a_{r}\right)=\left(\mathrm{t}^{(r+1)}\right)^{-1}\left(a_{r}\right)=\left(\mathrm{t}^{(r)}\right)^{-1}(r) .
$$

Since $w_{i}=1$ for $i<r$, we have $\mathrm{t}^{(r)}=\mathrm{t}$. Then $\mathrm{t}^{-1}(r+1)=\left(k, \lambda_{k}^{(\ell)}, \ell\right)$. Because $a_{r} \leq$ $r-1<r+1$, by Remark 1.3.2, a_{r} is not on the left of $r+1$ in $\mathrm{t}^{(r+2)}$ because $\left.\mathrm{t}^{(r+2)}\right|_{r+1}=\mathrm{t}^{\mu}$ with $\mu=\operatorname{Shape}\left(\left.\mathrm{t}^{(r+2)}\right|_{r+1}\right)$. As r and $r+1$ are adjacent in t and $\left(\mathrm{t}^{(r+2)}\right)^{-1}\left(a_{r}\right)=\left(\mathrm{t}^{(r)}\right)^{-1}(r)=\mathrm{t}^{-1}(r)$, we must have $\mathrm{t}^{-1}(r)=\left(k-1, \lambda_{k}^{(\ell)}, \ell\right)$. Therefore by the definition of the standard expression, we have $l\left(w_{r}\right)=\lambda_{k}^{(\ell)}-1$.

Since $\left(k, \lambda_{k}^{(\ell)}, \ell\right)=\left(\mathrm{t}^{(n+1)}\right)^{-1}(n)=\left(\mathrm{t}^{(n)}\right)^{-1}(n-1)=\ldots=\left(\mathrm{t}^{(r+2)}\right)^{-1}(r+1)$ and Remark 1.3.2, we have $l\left(w_{i}\right) \geq \lambda_{k}^{(\ell)}=l\left(w_{r}\right)+1$ for all $i \geq r+2$.
3.5.18. Lemma. Suppose $\mathrm{t} \in \operatorname{Std}(\lambda)$ and $d(\mathrm{t})=w_{n} w_{n-1} \ldots w_{1}$ with $w_{i} \neq 1$ if $i>r+2$ or $i=r$ and $w_{i}=1$ if $i<r$ or $i=r+1$. If $l\left(w_{i}\right)=l\left(w_{r}\right)+1$ for all $i \geq r+2$, i.e. $d(\mathrm{t})=w_{n} w_{n-1} \ldots w_{r+2} w_{r}$, and $\mathrm{t} \cdot s_{r}$ is not standard, then t is the last Garnir tableau of shape λ.

Proof. Write $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(\ell)}\right)$ and $\lambda^{(\ell)}=\left(\lambda_{1}^{(\ell)}, \ldots, \lambda_{k}^{(\ell)}\right)$. From the proof of Lemma 3.5.17 we have seen that $l\left(w_{i}\right)=\lambda_{k}^{(\ell)}$ for $i \geq r+2$ and $l\left(w_{r}\right)=\lambda_{k}^{(\ell)}-1$. Therefore if $\mathrm{t}^{\lambda}\left(k-1, \lambda_{k-1}^{(\ell)}, \ell\right)=t$,

$$
\left\{\begin{array}{l}
w_{n}=s_{t} s_{t+1} \ldots s_{n-1}, \\
w_{n-1}=s_{t-1} s_{t} \ldots s_{n-2}, \\
\ldots \ldots . \\
w_{r+2}=s_{t-n+r+2} s_{t-n+r+3} \ldots s_{r+1}, \\
w_{r}=s_{t-n+r+1} s_{t-n+r+2} \ldots s_{r-1},
\end{array}\right.
$$

and by direct calculation we can see that such $d(\mathrm{t})$ is the last Garnir tableau of shape λ.

3.5.19. Example Suppose $\lambda=(7,5,3)$ and $t=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 9 | 12 | 14 | 15 | | |
| 10 | 11 | 13 | | | . Then | |

$$
d(\mathrm{t})=s_{12} s_{13} s_{14} \cdot s_{11} s_{12} s_{13} \cdot s_{10} s_{11} .
$$

So we can write $d(\mathrm{t})=w_{15} w_{14} w_{13} w_{12}$ where $w_{15}=s_{12} s_{13} s_{14}, w_{14}=s_{11} s_{12} s_{13}, w_{13}=1$ and $w_{12}=s_{10} s_{11}$. Notice $l\left(w_{15}\right)=l\left(w_{14}\right)=l\left(w_{12}\right)+1$ and $\mathrm{t} \cdot s_{12}$ is not standard, and furthermore, t is the last Garnir tableau of shape λ.

Finally we are ready to prove the most important result of this section.
3.5.20. Proposition. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$. For any standard λ-tableau t with $l(d(\mathrm{t})) \leq m_{\lambda}$, if $d(\mathrm{t}) \cdot s_{r}$ is not reduced or $t \cdot s_{r}$ is not standard for some r,

$$
\psi_{\mathrm{st}} \psi_{r}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

for any standard λ-tableau s .
Proof. First we set $\mathbf{s}=\mathrm{t}^{\lambda}$. Recall that the standard expression of $\psi_{d(t)}$ has the form

$$
\psi_{w_{n}} \psi_{w_{n-1}} \ldots \psi_{w_{2}},
$$

with $\psi_{w_{i}}=\psi_{a_{i}} \psi_{a_{i}+1} \psi_{a_{i}+2 \ldots \psi_{i-1}}$ for some $a_{i} \leq i-1$ or $\psi_{w_{i}}=1$. Let k be the integer such that $\psi_{w_{k}} \neq 1$ but $\psi_{w_{i}}=1$ for all $i<k$. So $\psi_{d(\mathrm{t})}=\psi_{w_{n}} \psi_{w_{n-1}} \ldots \psi_{w_{k}}$.

Recall that by Lemma 3.5.4 and 3.5.9, if $d(\mathrm{t})$ is unlocked by s_{r} or unlocked in tails by s_{r}, we have $\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.

We separate the problem into several cases:
Case 3.5.20a: $k-1 \notin\{r-1, r, r+1\}$. Then

$$
\psi_{d(\mathrm{t})}=\psi_{w_{n}} \ldots \psi_{w_{k}}=\psi_{w_{n}} \ldots \psi_{w_{k+1}} \psi_{a_{k}} \psi_{a_{k}+1} \ldots \psi_{k-2} \psi_{k-1} .
$$

In this case t is unlocked by s_{r}. Therefore by Lemma 3.5.4, $\psi_{\mathrm{t}^{t} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.
Case 3.5.20b: $k-1=r$. Define $\mathrm{w}=\mathrm{t} \cdot s_{r}$. Hence $d(\mathrm{t})=d(\mathrm{w}) \cdot s_{r}$. Write $\mathbf{i}_{\mathrm{w}}=\left(i_{1} i_{2} \ldots i_{n}\right)$.

$$
e_{\lambda} y_{\lambda} \psi_{d(t)} \psi_{r}=y_{\lambda} \psi_{d(\mathbf{w})} e\left(\mathbf{i}_{\mathbf{w}}\right) \psi_{r}^{2}= \begin{cases}0, & \text { if } i_{r}=i_{r+1}, \\ y_{\lambda} \psi_{d(\mathbf{w})} e\left(\mathbf{i}_{\mathrm{w}}\right)=\psi_{\mathrm{t}^{2} \mathrm{w}}, & \text { if }\left|i_{r}-i_{r+1}\right|>1, \\ \pm y_{\lambda} \psi_{d(\mathbf{w})} e\left(\mathbf{i}_{\mathbf{w}}\right)\left(y_{r}-y_{r+1}\right) & \\ = \pm \psi_{\mathrm{t}^{\imath} \mathrm{w}}\left(y_{r}-y_{r+1}\right), & \text { if } i_{r}=i_{r+1} \pm 1 .\end{cases}
$$

By Proposition 3.2.5 we have $\psi_{\mathrm{t}^{2} t} \psi_{r} \in R_{n}^{\geq \lambda}$.
Case 3.5.20c: $k-1=r+1$.
3.5.20 $.1: \psi_{w_{i}}=1$ for some $i>k$ and $i \neq n$. Then we have

$$
\begin{aligned}
\psi_{d(t)} \psi_{r} & =\psi_{w_{n}} \psi_{w_{n-1}} \ldots \psi_{w_{i+2}} \psi_{w_{i+1}} \psi_{w_{i-1}} \ldots \psi_{w_{k}} \psi_{r} \\
& =\psi_{w_{n}} \psi_{w_{n-1}} \ldots \psi_{w_{i+2}}\left(\psi_{a_{i+1}} \psi_{a_{i+1}+1} \ldots \psi_{i-1} \psi_{i}\right) \psi_{w_{i-1}} \ldots \psi_{w_{k}} \psi_{r} .
\end{aligned}
$$

As $i>k=r+2>r+1$, we have

$$
\psi_{d(t)} \psi_{r}=\left(\psi_{w_{n}} \psi_{w_{n-1}} \ldots \psi_{w_{i+2}} \psi_{a_{i+1}} \psi_{a_{i+1}+1} \ldots \psi_{i-1} \psi_{w_{i-1}} \ldots \psi_{w_{k}} \psi_{i}\right) \psi_{r}
$$

which shows that t is unlocked by s_{r}. By Lemma 3.5.4 we have $\psi_{\mathrm{t}^{\mathrm{t}} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.20c.2: $\psi_{w_{n}}=1$. In this case ψ_{n-1} is not involved in $\psi_{d(t)} \psi_{r}$. By Lemma 3.3.6 we have $\psi_{\mathrm{t}^{\prime}{ }^{2}} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.20c.3: $\psi_{w_{i}} \neq 1$ for $i>k$ and $l\left(\psi_{w_{k}}\right)>1$. Then we can see that t is unlocked on tails by s_{r}. By Lemma 3.5.9 we have $\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.20c.4: $\psi_{w_{i}} \neq 1$ for $i>k$, and we can find $k<j<n$ such that $l\left(\psi_{w_{k}}\right)=l\left(\psi_{w_{k+1}}\right)=\ldots=$ $l\left(\psi_{w_{j-1}}\right)=1$ and $l\left(\psi_{w_{j}}\right)>1$. Then we have

$$
w_{j} \cdot w_{j-1}=s_{a_{j}} s_{a_{j}+1} \ldots s_{j-3} s_{j-2} s_{j-1} \cdot s_{j-2}=s_{a_{j}} s_{a_{j}+1} \ldots s_{j-3} \cdot s_{j-1} s_{j-2} s_{j-1} .
$$

Therefore

$$
\begin{aligned}
d(\mathrm{t}) & =w_{n} w_{n-1} \ldots w_{j+1} \cdot s_{a_{j}} s_{a_{j}+1} \ldots s_{j-3} \cdot s_{j-1} s_{j-2} s_{j-1} \cdot w_{j-2} \ldots w_{k} \\
& =w_{n} w_{n-1} \ldots w_{j+1} s_{a_{j}} s_{a_{j}+1} \ldots s_{j-3} \cdot s_{j-1} s_{j-2} w_{j-2} \ldots w_{k} \cdot s_{j-1},
\end{aligned}
$$

and $j-1 \geq k=r+2>r+1, s_{j-1}$ and s_{r} commute, which shows that t is unlocked by s_{r}. By Lemma 3.5.4, we have $\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.20c.5: $l\left(\psi_{w_{k}}\right)=l\left(\psi_{w_{k+1}}\right)=\ldots=l\left(\psi_{w_{n}}\right)=1$. Then by Lemma 3.5.13, t is the last Garnir tableau of shape λ. Hence by Proposition 3.4.10, $\psi_{t^{1} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.

Case 3.5.20d: $k-1=r-1$.
3.5.20d.1: $\psi_{w_{k+1}} \neq 1$. Then

$$
\begin{aligned}
d(\mathrm{t}) & =w_{n} w_{n-1} \ldots w_{k+2} \cdot w_{k+1} w_{k} \\
& =w_{n} w_{n-1} \ldots w_{k+2} \cdot s_{a_{k+1}} s_{a_{k+1}+1} \ldots s_{k-1} s_{k} \cdot s_{a_{k}} s_{a_{k}+1} \ldots s_{k-2} s_{k-1} \\
& =w_{n} w_{n-1} \ldots w_{k+2} s_{a_{k+1}} a_{a_{k+1}+1} \ldots s_{k-1} s_{a_{k}} s_{a_{k}+1} \ldots s_{k-2} \cdot s_{k} s_{k-1},
\end{aligned}
$$

3.5.20d.2: $k=n-1$ and $\psi_{w_{k+1}}=\psi_{w_{n}}=1$. The $\psi_{d(t)} \psi_{r}=\psi_{w_{n-1}} \psi_{n-1}=\psi_{a_{n-1}} \psi_{a_{n-1}+1 \ldots \psi_{n-2} \psi_{n-1} \text {. } . ~ . ~ . ~}^{\text {. }}$ Then by Lemma 3.5.15, t is the last Garnir tableau of shape λ. Hence by Proposition 3.4.10, $\psi_{\mathrm{t}^{2} \mathrm{t}}^{\lambda} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.20d.3: $k<n-1, \psi_{w_{k+1}}=1$ and $\psi_{w_{n}}=1$. Then $n-1>k=r$. So $\psi_{d(t)} \psi_{r}$ doesn't involve ψ_{n-1}. By Lemma 3.3.6 we have $\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.20d.4: $k<n-1, \psi_{w_{k+1}}=1$ and we can find $k+1<j<n$ such that $\psi_{w_{j}}=1$ and $\psi_{w_{j+1}} \neq 1$. In this case we have

$$
\begin{aligned}
d(\mathrm{t}) & =w_{n} w_{n-1} \ldots w_{j+2} w_{j+1} w_{j} w_{j-1} \ldots w_{k} \\
& =w_{n} w_{n-1} \ldots w_{j+2} \cdot s_{a_{j+1}} s_{a_{j+1}+1} \ldots s_{j-1} s_{j} \cdot w_{j-1} \ldots w_{k} \\
& =\left(w_{n} w_{n-1} \ldots w_{j+2} \cdot s_{a_{j+1}} a_{a_{j+1}+1} \ldots s_{j-1} \cdot w_{j-1} \ldots w_{k}\right) \cdot s_{j} .
\end{aligned}
$$

As $j>k+1=r+1, \psi_{j}$ and ψ_{r} commute. Therefore t is unlocked by s_{r}. By Lemma 3.5.4. we have $\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.20 d.5: $k<n-1, \psi_{w_{k+1}}=1$ and for any $j>k+1, \psi_{w_{j}} \neq 1$. Then by Lemma 3.5.17, we have $l\left(\psi_{w_{j}}\right) \geq l\left(\psi_{w_{k}}\right)+1$ for all $j \geq k+2$.
3.5.20d.5.1: Suppose $l\left(\psi_{w_{k+2}}\right)>l\left(\psi_{w_{k}}\right)+1$. So we have $a_{k+2} \leq a_{k}$, and therefore

$$
\begin{aligned}
w_{k+2} w_{k} & =s_{a_{k+2}} s_{a_{k+2}+1} \ldots s_{k} s_{k+1} \cdot s_{a_{k}} s_{a_{k}+1} \ldots s_{k-2} s_{k-1} \\
& =s_{a_{k}+1} \ldots s_{k-1} s_{k} \cdot s_{a_{k+2}} s_{a_{k+2}+1} \ldots s_{k} s_{k+1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
d(\mathrm{t}) & =w_{n} w_{n-1} \ldots w_{k+3} \cdot w_{k+2} w_{k} \\
& =w_{n} w_{n-1} w_{k+3} \cdot s_{a_{k}+1} \ldots s_{k-1} s_{k} \cdot s_{a_{k+2}} s_{a_{k+2}+1} \ldots s_{k} s_{k+1} .
\end{aligned}
$$

Then because $k=r$, t is unlocked by s_{r} on tails. Therefore, by Lemma 3.5.9, $\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.20d.5.2: There exists $j>k+2$ such that $l\left(\psi_{w_{k+2}}\right)=l\left(\psi_{w_{k+3}}\right)=\ldots=l\left(\psi_{w_{j-1}}\right)=l\left(\psi_{w_{k}}\right)+1$ and $l\left(\psi_{w_{j}}\right)>l\left(\psi_{w_{k}}\right)+1$. So we have $l\left(\psi_{w_{j}}\right)>l\left(\psi_{w_{j-1}}\right)$ and $a_{j} \leq a_{j-1}$, and therefore

$$
\begin{aligned}
w_{j} w_{j-1} & =s_{a_{j}} s_{a_{j}+1} \ldots s_{j-2} s_{j-1} \cdot s_{a_{j-1}} s_{a_{j-1}+1} \ldots s_{j-3} s_{j-2} \\
& =s_{a_{j-1}+1} \ldots s_{j-2} s_{j-1} \cdot s_{a_{j}} s_{a_{j}+1} \ldots s_{j-2} s_{j-1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
d(\mathrm{t}) & =w_{n} w_{n-1} \ldots w_{j+1} w_{j} w_{j-1} w_{j-2} \ldots w_{k} \\
& =w_{n} w_{n-1} \ldots w_{j+1} \cdot s_{a_{j-1}+1} \ldots s_{j-1} \cdot s_{a_{j}} \ldots s_{j-2} s_{j-1} \cdot w_{j-2} \ldots w_{k} \\
& =\left(w_{n} w_{n-1} \ldots w_{j+1} \cdot s_{a_{j-1}+1} \ldots s_{j-1} \cdot s_{a_{j}} \ldots s_{j-2} \cdot w_{j-2} \ldots w_{k}\right) \cdot s_{j-1} .
\end{aligned}
$$

Then because $j-1>k+1=r+1, s_{j-1}$ and s_{r} commutes. Hence t is unlocked by s_{r} and therefore, by Lemma 3.5.4, $\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r} \in R_{n}^{\geq \lambda}$.
3.5.20 d.5.3: $l\left(\psi_{w_{k+2}}\right)=l\left(\psi_{w_{k+3}}\right)=\ldots=l\left(\psi_{w_{n-1}}\right)=l\left(\psi_{w_{k}}\right)+1$. By Lemma 3.5.18, t is the last Garnir tableau of shape λ. By Proposition 3.4.10, we have $\psi_{t^{2} t} \psi_{r} \in R_{n}^{\geq \lambda}$.

By the above cases, $\psi_{t^{\lambda} t} \psi_{r}$ is always in $R_{n}^{\geq \lambda}$. Therefore by Proposition 1.4.9, we have

$$
\psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}=\sum_{(\mathrm{u}, \mathrm{v}) \triangleright\left(\mathrm{t}^{\lambda}, \mathrm{t}\right)} c_{\mathrm{uv}} \psi_{\mathrm{uv}}=\sum_{\mathrm{v} \triangleright t} c_{\mathrm{t}^{\imath} \mathrm{v}} \psi_{\mathrm{t}^{\lambda} \mathrm{v}}+\sum_{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\lambda)} c_{\mathrm{uv}} \psi_{\mathrm{uv}} .
$$

Giving any standard λ-tableau s, we have $\psi_{\mathrm{st}} \psi_{r}=\psi_{d(\mathrm{~s})}^{*} \psi_{\mathrm{t}^{2} \mathrm{t}} \psi_{r}$. Notice $\psi_{d(\mathrm{~s})}^{*} \psi_{\mathrm{t}^{\mathrm{l} v}}=\psi_{\mathrm{sv}}$. For any $\mathrm{u}, \mathrm{v} \in \operatorname{Std}(>\lambda), \psi_{\mathrm{uv}} \in R_{n}^{>\lambda}$. As $\lambda \in \mathscr{S}_{n}^{\Lambda}$, by Lemma 2.1.12, $R_{n}^{>\lambda}$ is an ideal. Therefore $\psi_{d(\mathrm{~s})}^{*} \psi_{\mathrm{uv}} \in R_{n}^{>\lambda}$. These arguments yield that $\psi_{\mathrm{st}} \psi_{r} \in R_{n}^{\geq \lambda}$. By Proposition 1.4.9 we completes the proof.

The following Corollary is straightforward by Corollary 3.2.3 and Proposition 3.5.20.
3.5.21. Corollary. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$, for any standard λ-tableau t with $l(d(\mathrm{t})) \leq m_{\lambda}$, then

$$
\psi_{\mathrm{st}} \psi_{r}= \begin{cases}\psi_{\mathrm{t}^{l} \mathrm{w}}+\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { if } \mathrm{w}=\mathrm{u} \cdot s_{r} \text { is standard and } d(\mathrm{u}) \cdot s_{r} \text { is reduced } \\ \sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { if } \mathrm{u} \cdot s_{r} \text { is not standard or } d(\mathrm{u}) \cdot s_{r} \text { is not reduced. }\end{cases}
$$

for any standard λ-tableau s .

3.6. Integral basis Theorem

In this section we will complete the main Theorem of this thesis.
3.6.1. Theorem. Suppose $\lambda \in \mathscr{S}_{n}^{\Lambda}$, we have $\lambda \in \mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}$.

Proof. By Theorem 2.1.8 we have when $\lambda \in \mathscr{S}_{n}^{\Lambda}$ then $\lambda \in \mathscr{P}_{I}^{\Lambda}$. By Corollary 3.1.4, we have $0<m_{\lambda}$, i.e. $1 \leq m_{\lambda}$. Assume $l=l(d(\mathrm{u})$ for some $\mathrm{u} \in \operatorname{Std}(\lambda)$, by Proposition 3.2.5 and Corollary 3.5.21, for any $\mathrm{t} \in \operatorname{Std}(\lambda)$ with $l(d(\mathrm{t}))=l$, we have

$$
\begin{aligned}
\psi_{\mathrm{st}} y_{r} & =\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, \\
\psi_{\mathrm{st}} \psi_{r} & = \begin{cases}\psi_{\mathrm{sw}}+\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { if } \mathrm{w}=\mathrm{t} \cdot s_{r} \text { is standard and } d(\mathrm{u}) \cdot s_{r} \text { is reduced, } \\
\sum_{(\mathrm{u}, \mathrm{v}) \triangleright(\mathrm{s}, \mathrm{t})} c_{\mathrm{uv}} \psi_{\mathrm{uv}}, & \text { if } \mathrm{u} \cdot s_{r} \text { is not standard or } d(\mathrm{u}) \cdot s_{r} \text { is not reduced. }\end{cases}
\end{aligned}
$$

which yields that $l<m_{\lambda}$, i.e. $l+1 \leq m_{\lambda}$. So by induction, for any $\mathrm{t} \in \operatorname{Std}(\lambda)$, we have $l(d(\mathrm{t}))<m_{\lambda}$. Therefore $\lambda \in \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}$. This completes the proof.
3.6.2. Theorem. The set $\left\{\psi_{s t}^{\mathbb{Z}} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)\right.$ for $\left.\lambda \in \mathscr{P}_{n}^{\Lambda}\right\}$ is a graded cellular basis of $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$.

Proof. It's trivial that when $n=1$ the Theorem holds. Assume for any $n^{\prime}<n$ the Theorem follows. Suppose we can write all multipartitions of n as $\lambda_{[1]}, \lambda_{[2]}, \ldots, \lambda_{[k]}$ where $\lambda_{[1]}>\lambda_{[2]}>$ $\ldots>\lambda_{[k] \cdot}$. As $\lambda_{[1]}=((n), \emptyset, \ldots, \emptyset)$, by Lemma 2.1.9, Corollary 2.1.11 and 2.1.10, we have $\lambda_{[1]} \in \mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}$. Hence $\lambda_{[2]} \in \mathscr{S}_{n}^{\Lambda}$. Now assume $\lambda_{[i]} \in \mathscr{S}_{n}^{\Lambda}$, by Theorem 3.6.1, $\lambda_{[i]} \in \mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}$. Hence $\lambda_{[i+1]} \in \mathscr{S}_{n}^{\Lambda}$. Therefore for any $i, \lambda_{[i]} \in \mathscr{S}_{n}^{\Lambda}$. Hence for any $\lambda \in \mathscr{P}_{n}^{\Lambda}, \lambda \in \mathscr{P}_{I}^{\Lambda} \cap \mathscr{P}_{y}^{\Lambda} \cap \mathscr{P}_{\psi}^{\Lambda}$. Recall that

$$
R_{n}^{\Lambda}=\left\{r \in \mathscr{R}_{n}^{\Lambda}(\mathbb{Z}) \mid r=\sum_{\substack{\mathrm{s}, \mathrm{t} \in \operatorname{Stt}(\mu) \\ \mu \in \mathscr{P}_{n}^{\Lambda}}} c_{\mathrm{st}} \psi_{\mathrm{st}}, c_{\mathrm{st}} \in \mathbb{Z}\right\}
$$

So R_{n}^{Λ} is an ideal.
Now for any $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{n}$, set $\mathbf{j}=\left(i_{1}, i_{2}, \ldots, i_{n-1}\right) \in I^{n-1}$. Because $e(\mathbf{j}) \in$ $\mathscr{R}_{n-1}^{\Lambda}$, by assumption we have $e(\mathbf{j})=\sum_{\substack{\mu \in \mathscr{P}^{n-1} \\ \mathrm{u}, \mathrm{v} \in \operatorname{Std}(\mu)}} c_{\mathrm{uv}} \psi_{\mathrm{uv}} \in R_{n-1}^{\Lambda}$ and hence $e(\mathbf{i})=\theta_{i_{n}}(e(\mathbf{j}))=$ $\sum_{\substack{\mu \in \mathscr{P} \\ \mathrm{u}, \mathrm{v} \in \operatorname{St}(\mathrm{td}(\mu)}}^{\wedge} c_{\mathrm{uv}} \theta_{i_{n}}\left(\psi_{\mathrm{uv}}\right)$.

For any $\mu \in \mathscr{P}_{n-1}^{\Lambda}$ and $\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\mu)$, we have

$$
\theta_{i_{n}}\left(\psi_{\mathrm{uv}}\right)=\psi_{d(\mathrm{u})}^{*} e\left(\mathbf{i}_{\mu} \vee i_{n}\right) y_{\mu} \psi_{d(\mathrm{v})} .
$$

By Lemma 2.1.3 and Theorem 2.1.8, we have $e\left(\mathbf{i}_{\mu} \vee i_{n}\right) y_{\mu} y_{n}^{0} \in R_{n}^{\Lambda}$. Then because R_{n}^{Λ} is an ideal,

$$
e(\mathbf{i})=\sum_{\substack{\mu \in \mathscr{O}_{n}^{\Lambda-1} \\ \mathrm{u}, \mathrm{v} \in \operatorname{Std}(\mu)}} c_{\mathrm{uv}} \theta_{i_{n}}\left(\psi_{\mathrm{uv}}\right) \in R_{n}^{\Lambda} .
$$

Then we have $R_{n}^{\Lambda}=\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$. By Corollary 1.4.10, the set $\left\{\psi_{s t}^{\mathbb{Z}} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)\right.$ for $\left.\lambda \in \mathscr{P}_{n}^{\Lambda}\right\}$ is linearly independent. This yields that $\left\{\psi_{s t}^{\mathbb{Z}} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)\right.$ for $\left.\lambda \in \mathscr{P}_{n}^{\Lambda}\right\}$ is a basis of $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$.

By the definition of $\left\{\psi_{s t}^{Z} \mid \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)\right.$ for $\left.\lambda \in \mathscr{P}_{n}^{\Lambda}\right\}$ the elements in the set are homogeneous. The cellularity is trivial by Theorem 1.4.5 and Proposition 1.4.9. This completes the proof.

The next Corollary is straightforward by Theorem 3.6.2.
3.6.3. Corollary. For any $\mathbf{i} \in I^{n}, e(\mathbf{i}) \neq 0$ if and only if \mathbf{i} is the residue sequence of a standard tableau t .

Proof. Suppose \mathbf{i} is the residue sequence of a standard tableau t. By Theorem 3.6.2 we have $\psi_{\mathrm{tt}}^{\mathbb{Z}} \neq 0$. Because $\psi_{\mathrm{tt}}^{\mathbb{Z}}=\psi_{\mathrm{tt}}^{\mathbb{Z}} e(\mathbf{i})$, we must have $e(\mathbf{i}) \neq 0$.

Suppose \mathbf{i} is not the residue sequence of any standard tableau. By Theorem 3.6.2 we can write

$$
1=\sum_{\mathrm{s}, \mathrm{t}} c_{\mathrm{st}} \psi_{\mathrm{st}}^{\mathrm{Z}},
$$

and hence

$$
e(\mathbf{i})=1 \cdot e(\mathbf{i})=\sum_{\mathrm{s}, \mathrm{t}} c_{\mathrm{st}} \psi_{\mathrm{st}}^{\mathbb{Z}} e(\mathbf{i})=0
$$

which completes the proof.

Chapter 4

Basis of Affine KLR Algebras

In Theorem 3.6.2 we have shown that $\mathscr{R}_{n}^{\Lambda}(\mathbb{Z})$ is a \mathbb{Z}-free algebra with basis $\left\{\psi_{\text {st }} \mid \mathrm{s}, \mathrm{t} \in\right.$ $\left.\operatorname{Std}(\lambda), \lambda \in \mathscr{P}_{n}^{\Lambda}\right\}$. In this chapter we will extend this result and find a graded cellular basis for the $\mathscr{R}_{n}(\mathbb{Z})$. Moreover, for any weight Λ we can delete a few elements from the basis of $\mathscr{R}_{n}(\mathbb{Z})$ and form a graded cellular basis of N_{n}^{Λ}. We then give a complete set of simple \mathscr{R}_{n}-modules by using the graded cellular basis of \mathscr{R}_{n}. Furthermore, in the previous chapters we set $e \neq 2$ during the proof. In this chapter we allow $e=2$.

In this chapter, we will define a sequence of weights $\left(\Lambda^{(k)}\right)$ with specific property and use such sequence to extend the graded cellular basis of $\mathscr{R}_{n}^{\Lambda}$ to \mathscr{R}_{n}.

4.1. Infinite sequence of weights and basis of $\mathscr{R}_{\alpha}^{\Lambda}$

In this section first we will introduce a special kind of sequence of weights ($\Lambda^{(k)}$). Then for $\mathbf{i} \in I^{n}$ we give a graded cellular basis for $\mathscr{R}_{\alpha}^{\Lambda}$, which will be extended to a graded cellular basis for \mathscr{R}_{α}.

We fix a $e \geq 0$ and $e \neq 1$, and the ring of \mathscr{R}_{n} to be \mathbb{Z} and will write \mathscr{R}_{n} instead of $\mathscr{R}_{n}(\mathbb{Z})$. Suppose $\Lambda=\sum_{i \in I} a_{i} \Lambda_{i}$ and $\Lambda^{\prime}=\sum_{i \in I} a_{i}^{\prime} \Lambda_{i}$ are two weights in P_{+}. We define a partial ordering on weights and write $\Lambda \leq \Lambda^{\prime}$ if $a_{i} \leq a_{i}^{\prime}$ for any $i \in I$, and $\Lambda<\Lambda^{\prime}$ if $\Lambda \leq \Lambda^{\prime}$ and $\Lambda \neq \Lambda^{\prime}$.
4.1.1. Definition. An increasing sequence of weights is a sequence $\left(\Lambda^{(k)}\right)$ of weights in P^{+}for $k \geq 1$ such that $\Lambda^{(k)}<\Lambda^{(k+1)}$ for all $k \geq 1$. The sequence $\left(\Lambda^{(k)}\right)$ is standard if $\lim _{k \rightarrow \infty} a_{i}^{(k)}=\infty$, for all $i \in I$.
4.1.2. Example Suppose $e>0$. We define a sequence ($\Lambda^{(k)}$) where $\Lambda^{(1)}=\Lambda_{1}$ and $\Lambda^{(k)}-\Lambda^{(k-1)}=$ Λ_{i} with $k \equiv i(\bmod e)$. For example, when $e=3$, we have

$$
\begin{aligned}
\Lambda^{(1)} & =\Lambda_{1}, \\
\Lambda^{(2)} & =\Lambda_{1}+\Lambda_{2}, \\
\Lambda^{(3)} & =\Lambda_{1}+\Lambda_{2}+\Lambda_{0}, \\
\Lambda^{(4)} & =2 \Lambda_{1}+\Lambda_{2}+\Lambda_{0}, \\
\Lambda^{(5)} & =2 \Lambda_{1}+2 \Lambda_{2}+\Lambda_{0}, \\
\Lambda^{(6)} & =2 \Lambda_{1}+2 \Lambda_{2}+2 \Lambda_{0}, \\
\Lambda^{(7)} & =3 \Lambda_{1}+2 \Lambda_{2}+2 \Lambda_{0},
\end{aligned}
$$

So in this case we have $\lim _{k \rightarrow \infty} a_{i}^{(k)}=\infty$ for any $i \in I$ and $\left(\Lambda^{(k)}\right)$ is a standard sequence.
4.1.3. Example Suppose $e=0$. Define $\left(\Lambda^{(k)}\right)$ where $\Lambda^{(1)}=\Lambda_{0}$ and $\Lambda^{(k)}-\Lambda^{(k-1)}=\Lambda_{i}$ with $i=(k-1)-(n-1)^{2}-(n-1)=k-n^{2}+n-1$ if $(n-1)^{2}<k \leq n^{2}$. In more details,

$$
\begin{aligned}
\Lambda^{(1)} & =\Lambda_{0} \\
\Lambda^{(2)} & =\Lambda_{-1}+\Lambda_{0} \\
\Lambda^{(3)} & =\Lambda_{-1}+2 \Lambda_{0} \\
\Lambda^{(4)} & =\Lambda_{-1}+2 \Lambda_{0}+\Lambda_{1} \\
\Lambda^{(5)} & =\Lambda_{-2}+\Lambda_{-1}+2 \Lambda_{0}+\Lambda_{1} \\
\Lambda^{(6)} & =\Lambda_{-2}+2 \Lambda_{-1}+2 \Lambda_{0}+\Lambda_{1} \\
\Lambda^{(7)} & =\Lambda_{-2}+2 \Lambda_{-1}+3 \Lambda_{0}+\Lambda_{1} \\
\Lambda^{(8)} & =\Lambda_{-2}+2 \Lambda_{-1}+3 \Lambda_{0}+2 \Lambda_{1} \\
\Lambda^{(9)} & =\Lambda_{-2}+2 \Lambda_{-1}+3 \Lambda_{0}+2 \Lambda_{1}+\Lambda_{2} \\
\Lambda^{(10)} & =\Lambda_{-3}+\Lambda_{-2}+2 \Lambda_{-1}+3 \Lambda_{0}+2 \Lambda_{1}+\Lambda_{2} \\
\Lambda^{(11)} & =\Lambda_{-3}+2 \Lambda_{-2}+2 \Lambda_{-1}+3 \Lambda_{0}+2 \Lambda_{1}+\Lambda_{2}
\end{aligned}
$$

So in this case we have $\lim _{k \rightarrow \infty} a_{i}^{(k)}=\infty$ for any $i \in I$ and $\left(\Lambda^{(k)}\right)$ is a standard sequence.
Recall that for any weight $\Lambda=\sum_{i \in I} a_{i} \Lambda_{i}$, we can define an two-sided ideal in $\mathscr{R}_{n}, N_{n}^{\Lambda}$, which is generated by elements $e(\mathbf{i}) y_{1}^{a_{i_{1}}}$ for all $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{n}$. Then the cyclotomic KLR algebra $\mathscr{R}_{n}^{\Lambda} \cong \mathscr{R}_{n} / N_{n}^{\Lambda}$. In this case we can also write $\mathscr{R}_{n} \cong \mathscr{R}_{n}^{\Lambda} \oplus N_{n}^{\Lambda}$ as \mathbb{Z}-modules.

Recall $Q_{+}=\sum_{i \in I} \mathbb{N} \alpha_{i}$ is defined in Section 1.1. For $\alpha=\sum_{i \in I} a_{i} \alpha_{i} \in Q_{+}$, define $|\alpha|=\sum_{\beta \in I} a_{i}$. Then for any $\alpha \in Q_{+}$with $|\alpha|=n$, define I^{α} to be the set of all $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{n}$ such that $a_{i}=\left|\left\{1 \leq r \leq n \mid i_{r}=i\right\}\right|$. By the definition if $\mathbf{i}, \mathbf{j} \in I^{\alpha}$ then we can find $v \in \Im_{n}$ such that $\mathbf{i}=\mathbf{j} \cdot v$. Define $\hat{e}_{\alpha}=\sum_{\mathbf{i} \in I^{\alpha}} \hat{e}(\mathbf{i}) \in \mathscr{R}_{n}$ and $e_{\alpha}=\sum_{\mathbf{i} \in I^{\alpha}} e(\mathbf{i}) \in \mathscr{R}_{n}^{\Lambda}$.

The following result is trivial by the relations of \mathscr{R}_{n}.
4.1.4. Lemma. Suppose $\alpha, \beta \in Q_{+}$. Then $\mathscr{R}_{n} \hat{e}_{\alpha} \neq 0$ and $\hat{e}_{\beta} \mathscr{R}_{n} \hat{e}_{\alpha}=\delta_{\alpha \beta} \mathscr{R}_{n} e_{\alpha}=\delta_{\alpha \beta} \hat{e}_{\beta} \mathscr{R}_{n}$.

We then define $\mathscr{R}_{\alpha}=\mathscr{R}_{n} \hat{e}_{\alpha}, \mathscr{R}_{\alpha}^{\Lambda}=\mathscr{R}_{n}^{\Lambda} e_{\alpha}$ and $N_{\alpha}^{\Lambda}=N_{n}^{\Lambda} \hat{e}_{\alpha}$. We can see that $\mathscr{R}_{\alpha} \hat{e}(\mathbf{j})=0$ if $\mathbf{j} \notin I^{\alpha}$. Finally, because

$$
\mathscr{R}_{n}=\bigoplus_{\alpha \in Q_{+}} \mathscr{R}_{\alpha} \quad \text { and } \quad \mathscr{R}_{n}^{\Lambda}=\bigoplus_{\alpha \in Q_{+}} \mathscr{R}_{\alpha}^{\Lambda},
$$

and by the relations \mathscr{R}_{α} and $\mathscr{R}_{\alpha}^{\Lambda}$'s are subalgebras of \mathscr{R}_{n} and $\mathscr{R}_{n}^{\Lambda}$, respectively. Hence we will mainly work in $\mathscr{R}_{\alpha}, \mathscr{R}_{\alpha}^{\Lambda}$ and N_{α}^{Λ} and extend the basis of $\mathscr{R}_{\alpha}^{\Lambda}$ to \mathscr{R}_{α} and hence generate a graded cellular basis of \mathscr{R}_{n}.

By Theorem 3.6.2 and the orthogonality of $e(\mathbf{i})$'s we can give a basis for $\mathscr{R}_{\alpha}^{\Lambda}$.
4.1.5. Proposition. Suppose $\mathbf{i} \in I^{n}$ and $\Lambda \in P_{+}$. The set

$$
\left\{\psi_{\mathrm{st}} \mid \lambda \in \mathscr{P}_{n}^{\Lambda}, \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda), \operatorname{res}(\mathrm{t}) \in I^{\alpha}\right\}
$$

is a graded cellular basis of $\mathscr{R}_{\alpha}^{\Lambda}$.

4.2. Minimum degree of N_{α}^{Λ}

Fix $\alpha \in Q_{+}$. In the last section we introduced a standard sequence of $\left(\Lambda^{(k)}\right)$. For each k and $\mathbf{i} \in I^{n}$, we define the minimum degree of $N_{\alpha}^{\Lambda^{(k)}}, m_{\alpha}^{\Lambda^{(k)}}=\min \left\{\operatorname{deg}(r) \mid r\right.$ is a homogeneous element in $\left.N_{\alpha}^{\Lambda}\right\}$ and will prove that $m_{\alpha}^{\Lambda^{(k)}} \rightarrow \infty$ with $k \rightarrow \infty$. This result is quite important in the next section while extending the basis of $\mathscr{R}_{\alpha}^{\Lambda}$ to \mathscr{R}_{α}.

First we need to find a general form of the homogeneous elements of N_{α}^{Λ}.
4.2.1. Lemma. For $\Lambda=\sum_{i \in I} a_{i} \Lambda_{i} \in P_{+}$and $\alpha \in Q_{+}$, the ideal N_{α}^{Λ} is spanned by

$$
\left\{\psi_{u} e(\mathbf{i}) y_{1}^{a_{i 1}} f(y) \psi_{v} \mid u, v \in \mathbb{S}_{n}, f(y) \in \mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{n}\right], \mathbf{i} \in I^{\alpha}\right\}
$$

Proof. It is obvious that any element of N_{α}^{Λ} can be written as linear combination of elements of the form

$$
\begin{equation*}
\psi_{u_{k}} f_{k}(y) \psi_{u_{k-1}} \ldots \psi_{u_{2}} f_{2}(y) \psi_{u_{1}} f_{1}(y) e(\mathbf{i}) y_{1}^{a_{11}} g_{1}(y) \psi_{v_{1}} g_{2}(y) \psi_{v_{2}} \ldots \psi_{v_{l-1}} g_{l}(y) \psi_{v_{l}}, \tag{4.2.2}
\end{equation*}
$$

where $u_{i}, v_{i} \in \mathbb{S}_{n}, \mathbf{i} \in I^{\alpha}$ and $f_{i}(y), g_{i}(y) \in \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$. Then by the view of Lemma 3.2.2 and [5, Proposition 2.5] it is obvious that any element in the form of 4.2.2) can be written as linear combination of $\psi_{u} e(\mathbf{i}) y_{1}^{a_{i 1}} f(y) \psi_{v}$'s. Hence N_{α}^{Λ} is spanned by those elements.

By Lemma 4.2.1,

$$
m_{\alpha}^{\Lambda}=\min \left\{\operatorname{deg}\left(\psi_{u} e(\mathbf{i}) y_{1}^{a_{i 1}} f(y) \psi_{v}\right) \mid u, v \in \mathbb{S}_{n}, f(y) \in \mathbb{Z}\left[y_{1}, y_{2}, \ldots, y_{n}\right], \mathbf{i} \in I^{\alpha}\right\}
$$

Hence we have an expression for m_{α}^{Λ} and we are ready to prove the result of this section.
4.2.3. Proposition. For any standard sequence $\left(\Lambda^{(k)}\right)$ and $\mathbf{i} \in I^{n}, \lim _{k \rightarrow \infty} m_{\alpha}^{\Lambda^{(k)}}=\infty$.

Proof. By Lemma 4.2.1. we only need to work with $\operatorname{deg}\left(\psi_{u} e(\mathbf{i}) y_{1}^{a_{i_{1}}^{(k)}} f(y) \psi_{v}\right)$ for all $\mathbf{i} \in I^{\alpha}$. We can write $\operatorname{deg}\left(\psi_{u} e(\mathbf{i}) y_{1}^{i_{11}^{(k)}} f(y) \psi_{v}\right)=\operatorname{deg}\left(\psi_{u} e(\mathbf{i})\right)+\operatorname{deg}\left(y_{1}^{a_{i_{1}}^{(k)}}\right)+\operatorname{deg}(f(y))+\operatorname{deg}\left(\psi_{v} e(\mathbf{i} \cdot v)\right)$. As u and v are reduced expressions of permutations in $\mathfrak{\Im}_{n}, l(u) \leq \frac{(n-1) n}{2}$, and $\operatorname{deg}\left(\psi_{r} e(\mathbf{i})\right) \geq-2$ for any \mathbf{i}. Hence $\operatorname{deg}\left(\psi_{u} e(\mathbf{i})\right) \geq-(n-1) n$. For the same reason $\operatorname{deg}\left(\psi_{v} e(\mathbf{i} \cdot v)\right) \geq-(n-1) n$. Then as $\operatorname{deg}(f(y)) \geq 0$, we have $\operatorname{deg}\left(\psi_{u} e(\mathbf{i}) y_{1}^{a_{i_{1}}^{(k)}} f(y) \psi_{v}\right) \geq-2(n-1) n+2 a_{i_{1}}^{(k)}$.

Define $a_{\alpha}^{(k)}=\min _{\mathrm{i} \in I^{\alpha}} a_{i_{1}}^{(k)}$. We have

$$
\operatorname{deg}\left(\psi_{u} e(\mathbf{i}) y_{1}^{a_{i_{1}}^{(k)}} f(y) \psi_{v}\right) \geq-2(n-1) n+2 a_{\alpha}^{(k)},
$$

for any u, v and f. Therefore $m_{\alpha}^{\Lambda^{(k)}} \geq 2 a_{\alpha}^{(k)}-2(n-1) n$.
Choose $\mathbf{j} \in I^{\alpha}$. It is obvious that $I^{\alpha}=\left\{\mathbf{i} \in I^{n} \mid \mathbf{i}=\mathbf{j} \cdot v\right.$ with $\left.v \in \Im_{n}\right\}$. Then $\left|I^{\alpha}\right| \leq\left|\Im_{n}\right|<\infty$. Then $a_{i_{1}}^{(k)} \rightarrow \infty$ as $k \rightarrow \infty$ for any $\mathbf{i} \in I^{\alpha}$ implies $a_{\alpha}^{(k)} \rightarrow \infty$ as $k \rightarrow \infty$ because I^{α} is finite. Therefore $m_{\alpha}^{\Lambda^{(k)}} \rightarrow \infty$.
4.2.4. Remark. The set I^{α} is finite is important in the proof of Proposition 4.2.3. If I^{α} is infinite, $a_{i_{1}}^{(k)} \rightarrow \infty$ as $k \rightarrow \infty$ for all $\mathbf{i} \in I^{\alpha}$ is not sufficient to imply that $a_{\alpha}^{(k)} \rightarrow \infty$ as $k \rightarrow \infty$.

4.3. A graded cellular basis of \mathscr{R}_{n}

In this section we will prove the main result of this chapter. First we will introduce a special kind of multicharge κ corresponding to a standard sequence $\left(\Lambda^{(k)}\right)$ which contains information for the multicharges $\kappa_{\Lambda^{(k)}}$ corresponding to $\Lambda^{(k)}$. Then for any $\alpha \in Q_{+}$, we will find a graded cellular basis $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ of \mathscr{R}_{α} corresponds to κ.
4.3.1. Definition. Suppose $\left(\Lambda^{(k)}\right)$ is a standard sequence. An inverse multicharge sequence for $\left(\Lambda^{(k)}\right)$ is a infinite sequence $\kappa=\left(\ldots, \kappa_{3}, \kappa_{2}, \kappa_{1}\right)$ such that for any $k \geq 1$, if $\ell_{k}=l\left(\Lambda^{(k)}\right)$, then $\kappa_{\Lambda^{(k)}}=\left(\kappa_{\ell_{k}}, \kappa_{\ell_{k}-1}, \ldots, \kappa_{2}, \kappa_{1}\right)$ is a multicharge corresponding to $\Lambda^{(k)}$.
4.3.2. Example Suppose $e=3$. Using the standard sequence ($\Lambda^{(k)}$) introduced in Example 4.1.2, we can define a multicharge $\kappa=\left(\ldots, \kappa_{3}, \kappa_{2}, \kappa_{1}\right)$ where $\kappa_{k} \equiv k(\bmod e)$ for $k \geq 1$.

Therefore we can write $\kappa=(\ldots, 0,2,1,0,2,1,0,2,1,0,2,1)$, we have

$$
\begin{aligned}
& \kappa_{\Lambda^{(1)}}=(1), \\
& \kappa_{\Lambda^{(2)}}=(2,1), \\
& \kappa_{\Lambda^{(3)}}=(0,2,1), \\
& \kappa_{\Lambda^{(4)}}=(1,0,2,1), \\
& \kappa_{\Lambda^{(5)}}=(2,1,0,2,1),
\end{aligned}
$$

These are all multicharges corresponding to $\Lambda^{(k)}$.
Fix a standard sequence $\left(\Lambda^{(k)}\right)$ and an inverse multicharge sequence κ for $\left(\Lambda^{(k)}\right)$. An affine multipartition of n is an ordered sequence $\hat{\lambda}=\left(\ldots, \lambda^{(2)}, \lambda^{(1)}\right)$ of partitions such that $\sum_{i=1}^{\infty}\left|\lambda^{(i)}\right|=$ n. Let \mathscr{P}_{n}^{κ} be the set of all affine multipartitions of n. We define young diagram $[\hat{\lambda}]$ and standard affine tableau ŝ for affine multipartitions in the same way as for multipartitions. Let $\operatorname{Std}(\hat{\lambda})$ be the set of all standard affine tableaux of shape $\hat{\lambda}$.

We define the level of $\hat{\lambda}$ to be $l(\hat{\lambda})=\ell$ if $\lambda^{(\ell)} \neq \emptyset$ and $\lambda^{(i)}=\emptyset$ for $i>\ell$. For any ℓ define a mapping $p_{\ell}: \mathscr{P}_{n}^{\kappa} \longrightarrow \mathscr{P}_{n}^{\Lambda}$, where $\left(\kappa_{\ell}, \kappa_{\ell-1}, \ldots, \kappa_{1}\right)$ is a multicharge for Λ, sending $\hat{\lambda}=$ $\left(\ldots, \lambda^{(2)}, \lambda^{(1)}\right)$ to $\lambda=\left(\lambda^{(\ell)}, \lambda^{(\ell-1)}, \ldots, \lambda^{(2)}, \lambda^{(1)}\right)$. In order to simplify the notation, suppose $l(\hat{\lambda})=$ ℓ, we write $\lambda=p_{\ell}(\hat{\lambda})$. Then we can define a mapping $t: \operatorname{Std}(\hat{\lambda}) \longrightarrow \operatorname{Std}(\lambda)$ in the obvious way. It is obvious that t is a bijection. Again we will write s instead of $t(\hat{\mathbf{s}})$ in order to simplify the notation. Define the degree of each standard affine tableau to be $\operatorname{deg}(\hat{\mathbf{s}})=\operatorname{deg}(\mathbf{s})$ and the residue sequence of the affine tableau res($\hat{\mathbf{s}})=$ res(s).

We extend dominance ordering \unrhd and lexicographic ordering \geq to \mathscr{P}_{n}^{κ}. By defining $\hat{\lambda} \unrhd \hat{\mu}$ if $l(\hat{\lambda})>l(\hat{\mu})$ or $l(\hat{\lambda})=l(\hat{\mu})$ and $\lambda \unrhd \mu$ and $\hat{\lambda} \triangleright \hat{\mu}$ if $\hat{\lambda} \unrhd \hat{\mu}$ and $\hat{\lambda} \neq \hat{\mu}$ for $\hat{\lambda}, \hat{\mu} \in \mathscr{P}_{n}^{\kappa}$. We define \geq and $>$ in a similar way.
4.3.3. Example Suppose $\hat{\lambda}=(\ldots|0| 0|0| 4,3,1|2,1| 3,3)$. Then $\lambda=(4,3,1|2,1| 3,3)$ and
and

$$
\mathbf{s}=t(\hat{\mathbf{s}})=\left(\begin{array}{|c|c|c|c|c|c|c|c|}
\hline 1 & 8 & 13 & 16 \\
\hline 7 & 12 & 15 & \\
\hline 10 & & \begin{array}{|l|l|l|l|}
\hline 2 & 6 \\
\hline 3 & 5 & 11 \\
\hline 9 & 14 & 17 \\
\hline
\end{array}
\end{array}\right) \in \operatorname{Std}(\lambda) .
$$

Suppose $\Lambda \in P_{+}$and $\lambda=\left(\lambda^{(t)}, \ldots, \lambda^{(1)}\right) \in \mathscr{P}_{n}^{\Lambda}$. Then for any $\mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)$, in Definition 1.4.1 we have defined $\hat{\psi}_{\text {st }}$ and $\psi_{\text {st }}=\hat{\psi}_{\text {st }}+N_{n}^{\Lambda} \in \mathscr{R}_{n}^{\Lambda}$. For any standard affine tableau $\hat{\mathrm{s}}, \hat{\mathrm{t}}$ we define $\psi_{\hat{\mathrm{s} t}}=\hat{\psi}_{\mathrm{st}}$. Also we can define $\psi_{\hat{\mathrm{s} t}}^{*}=\psi_{\hat{\mathrm{t}},}$.

The next Lemma is straightforward by the definition of $\psi_{\hat{\mathrm{s} t}}$ and $\operatorname{deg}(\hat{\mathbf{s}})$.
4.3.4. Lemma. Suppose $\hat{\lambda} \in \mathscr{P}_{n}^{\kappa}$ and $\hat{\mathrm{s}}, \hat{\mathrm{t}} \in \operatorname{Std}(\hat{\lambda})$. Then $\psi_{\hat{\mathrm{s} \hat{t}}}$ are homogeneous elements of \mathscr{R}_{n} and $\operatorname{deg}\left(\psi_{\hat{\mathrm{s}} \mathrm{t}}\right)=\operatorname{deg}(\hat{\mathbf{s}})+\operatorname{deg}(\hat{\mathrm{t}})$.
4.3.5. Example Suppose $\kappa=(\ldots, 0,2,1,0,2,1,0,2,1)$ as in Example 4.3.2. For
with

Then $\psi_{\hat{\mathrm{s} \hat{t}}}=\hat{\psi}_{\mathrm{st}}=e(012211) y_{2} y_{3}^{2} y_{5} \psi_{5} \psi_{3} \in \mathscr{R}_{n}$.
Fix $\alpha \in Q_{+}$, a standard sequence $\left(\Lambda^{(k)}\right)$ and an inverse multicharge sequence κ corresponds to ($\Lambda^{(k)}$). We define a set of homogeneous elements of \mathscr{R}_{α},

$$
\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}=\left\{\psi_{\hat{\mathrm{s}} \hat{\mathrm{t}}} \mid \hat{\lambda} \in \mathscr{P}_{n}^{\kappa}, \hat{\mathrm{s}}, \hat{\mathrm{t}} \in \operatorname{Std}(\hat{\lambda}), \operatorname{res}(\hat{\mathrm{t}}) \in I^{\alpha}\right\} .
$$

Note that by definition $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ depends on the choice of κ and hence $\left(\Lambda^{(k)}\right)$. Remarkably, the main results of this chapter are true for any inverse multicharge sequence corresponds to $\left(\Lambda^{(k)}\right)$.
4.3.6. Proposition. The set $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ is a homogeneous basis of \mathscr{R}_{α}.

Proof. By Lemma 4.3.4, all elements of $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ are homogeneous. So we only have to prove that $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ is a basis of \mathscr{R}_{α}. First of all we show that $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ spans \mathscr{R}_{α}.

Given any $r \in \mathscr{R}_{\alpha}$, we can write r as a linear combination of homogeneous elements, i.e. $r=\sum_{i \in \mathbb{N}} c_{i} r_{i}$, where $c_{i} \in \mathbb{Z}, \operatorname{deg}\left(r_{i}\right)=i$ and there are only finite many $i \in \mathbb{N}$ with $c_{i} \neq 0$. It is enough to prove that any homogeneous element $r \in \mathscr{R}_{\alpha}$ is a linear combination of $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$.

For any $\Lambda<\Lambda^{\prime}$, it is obvious that $N_{\alpha}^{\Lambda^{\prime}} \subseteq N_{\alpha}^{\Lambda}$. Moreover, $N_{\alpha}^{\Lambda^{\prime}}$ is a \mathscr{R}_{α}-ideal of N_{α}^{Λ}. Hence we can define an infinite filtration

$$
\mathscr{R}_{\alpha}>N_{\alpha}^{\Lambda^{\Lambda^{(1)}}}>N_{\alpha}^{\Lambda^{(2)}}>N_{\alpha}^{\Lambda^{(3)}}>\ldots .
$$

By Proposition 4.2.3. $\lim _{k \rightarrow \infty} m_{\alpha}^{\Lambda^{(k)}}=\infty$, so if $r \in \mathscr{R}_{\alpha}$ is homogeneous then there exists an integer $k(r)$ such that $m_{\alpha}^{\Lambda^{k}}>\operatorname{deg}(r)$ whenever $k>k(r)$. Fix $k>k(r)$ and hence $r \notin N_{\alpha}^{\Lambda^{(k)}}$.

By Proposition 4.1.5, choosing a multicharge κ corresponding to $\Lambda, \mathscr{R}_{\alpha}^{\Lambda} \cong \mathscr{R}_{\alpha} / N_{\alpha}^{\Lambda}$ has a homogeneous basis $\left\{\psi_{\mathrm{st}} \mid \lambda \in \mathscr{P}_{n}^{\Lambda}, \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)\right.$, $\left.\operatorname{res}(\mathrm{t}) \in I^{\alpha}\right\}$. Fix a multicharge ($\kappa_{\ell_{k}}, \kappa_{\ell_{k-1}}, \ldots, \kappa_{2}, \kappa_{1}$) corresponding $\Lambda^{(k)}$. For any homogeneous element $r \in \mathscr{R}_{\alpha}$, we can find $c_{\mathrm{st}} \in \mathbb{Z}$ with res(t) $\in I^{\alpha}$ such that

$$
\begin{aligned}
& r+N_{\alpha}^{\Lambda^{(k)}}=\sum_{\mathrm{s}, \mathrm{t}} c_{\mathrm{st}} \psi_{\mathrm{st}}=\sum_{\mathrm{s}, \mathrm{t}} c_{\mathrm{st}} \hat{\psi}_{\mathrm{st}}+N_{\alpha}^{\Lambda^{(k)}}=\sum_{\hat{\mathrm{s}}, \mathrm{t}} c_{\mathrm{st}} \psi_{\hat{\mathrm{s} t}}+N_{\alpha}^{\Lambda^{(k)}} \\
\Rightarrow & r-\sum_{\hat{\mathrm{s}}, \hat{\mathrm{t}}} c_{\mathrm{st}} \psi_{\hat{\mathrm{s} t} \hat{t}} \in N_{\alpha}^{\Lambda^{(k)}} .
\end{aligned}
$$

But as r is a homogeneous element which is not in $N_{\alpha}^{\Lambda^{(k)}}$, we must have $r-\sum_{\hat{\mathrm{s}}, \hat{\mathrm{t}}} c_{\mathrm{st}} \psi_{\hat{\mathrm{s} t}}=0$, i.e. $r=\sum_{\hat{\hat{s}} \hat{\mathrm{t}}} c_{\mathrm{st}} \psi_{\hat{\mathrm{s} t}}$ with res $(\hat{\mathrm{t}})=\operatorname{res}(\mathrm{t}) \in I^{\alpha}$. This shows that r belongs to the span of $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$. Hence \mathscr{R}_{α} is spanned by $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$.

Next we will prove that $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ is linearly independent. Suppose S_{α} is a finite subset of $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$. Write $m_{S_{\alpha}}=\max \left\{\operatorname{deg}\left(\psi_{\hat{\mathrm{s} t} \hat{t}} \mid \psi_{\hat{\mathrm{s} t}} \in S_{\alpha}\right\}\right.$. By Proposition 4.2.3 we can find some k such that $m_{\alpha}^{\Lambda^{(k)}}>m_{S_{\alpha}}$. Hence $\psi_{\hat{\mathrm{s} t}} \notin N_{\alpha}^{\Lambda^{(k)}}$ for any $\psi_{\hat{\mathrm{s} \hat{t}}} \in S_{\alpha}$. This means that for any $\psi_{\hat{\mathrm{s} t}} \in S_{\alpha}$, $\psi_{\mathrm{st}} \in \mathscr{R}_{\alpha}^{\Lambda^{(k)}}$ is nonzero. As by the definition, $\left\{\psi_{\mathrm{st}} \mid \psi_{\hat{\mathrm{s} t}} \in S_{\alpha}\right\}$ is a subset of the basis of $\mathscr{R}_{\alpha}^{\Lambda^{(k)}}$. We have $\sum_{\psi_{\mathrm{st}} \in S_{\alpha}} c_{\hat{\mathrm{s} t}} \psi_{\hat{\mathrm{s} t} \mathrm{t}} \in N_{\alpha}^{\Lambda^{(k)}}$ if and only if $\sum_{\psi_{\mathrm{st}} \in S_{\alpha}} c_{\hat{\mathrm{s} t}} \psi_{\mathrm{st}}=0$ if and only if all $c_{\hat{\mathrm{s} t} \mathrm{t}}=0$. But $\psi_{\hat{\mathrm{s} \hat{t}}} \notin N_{\alpha}^{\Lambda^{(k)}}$ for any $\psi_{\hat{\mathrm{s} \hat{t}}} \in S_{\alpha}$, the above result yields that $\sum_{\psi_{\mathrm{s} \hat{t}} \in S_{\alpha}} c_{\hat{\mathrm{s} \hat{t}}} \psi_{\hat{\mathrm{s} \hat{t}}}=0$ if and only if $c_{\hat{\mathrm{s} \hat{t}}}=0$. This shows that $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ is linearly independent. Hence $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ is a basis of \mathscr{R}_{α}.

Notice that in the definition of $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$, it is well-defined for any inverse multicharge sequence κ corresponds to $\left(\Lambda^{(k)}\right)$. Hence for any weight Λ with $\ell=l(\Lambda)$, by the definition of the standard
sequence, we can set $\Lambda^{(1)}=\Lambda$. Therefore, we obtain a subset of $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$:

$$
\mathscr{B}_{\Lambda}^{\left(\Lambda^{(k)}\right)}=\left\{\psi_{\hat{\mathrm{s}} \hat{\imath}} \mid \hat{\lambda} \in \mathscr{P}_{n}^{\kappa} \text { with } l(\hat{\lambda}) \leq \ell, \hat{\mathrm{s}}, \hat{\mathrm{t}} \in \operatorname{Std}(\hat{\lambda}), \operatorname{res}(\hat{\mathrm{t}}) \in I^{\alpha}\right\} .
$$

4.3.7. Corollary. Suppose Λ is a weight with level ℓ and $\left(\Lambda^{(k)}\right)$ is a standard sequence with $\Lambda^{(1)}=\Lambda$. Then

$$
\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)} \backslash \mathscr{B}_{\Lambda}^{\left(\Lambda^{(k)}\right)}=\left\{\psi_{\hat{\mathrm{s}} \hat{t}} \mid \hat{\lambda} \in \mathscr{P}_{n}^{\kappa} \text { with } l(\hat{\lambda})>\ell=l(\Lambda), \hat{\mathrm{s}}, \hat{\mathrm{t}} \in \operatorname{Std}(\hat{\lambda}), \operatorname{res}(\hat{\mathrm{t}}) \in I^{\alpha}\right\}
$$

is a basis of N_{α}^{Λ}.
Proof. By Proposition 4.1.5, $\mathscr{R}_{\alpha}^{\Lambda}$ has a basis $\left\{\psi_{\mathrm{st}} \mid \lambda \in \mathscr{P}_{n}^{\Lambda}, \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda)\right.$, $\left.\operatorname{res}(\mathrm{t}) \in I^{\alpha}\right\}$. It is easy to see that when $\Lambda^{(1)}=\Lambda$,

$$
\left\{\psi_{\mathrm{st}} \mid \lambda \in \mathscr{P}_{n}^{\Lambda}, \mathrm{s}, \mathrm{t} \in \operatorname{Std}(\lambda), \operatorname{res}(\mathrm{t}) \in I^{\alpha}\right\}=\left\{\psi_{\mathrm{st}}=\psi_{\hat{\mathrm{s} t}}+N_{n}^{\Lambda} \mid \psi_{\hat{\mathrm{s} t}} \in \mathscr{B}_{\Lambda}^{\left(\Lambda^{(k)}\right)}\right\}
$$

So for $\psi_{\hat{\mathrm{s} t}} \in \mathscr{B}_{\Lambda}^{\left(\Lambda^{(k)}\right)}$, we must have $\psi_{\hat{\mathrm{s}} \hat{\mathrm{t}}} \notin N_{\alpha}^{\Lambda}$.
Now suppose $\psi_{\hat{\mathrm{s} t}} \in \mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)} \backslash \mathscr{B}_{\Lambda}^{\left(\Lambda^{(k)}\right)}$. Then $\hat{\mathrm{s}}, \hat{\mathrm{t}} \in \operatorname{Std}(\hat{\lambda})$ with $l(\hat{\lambda})>\ell$. By the definition it is obvious that $\psi_{\hat{\mathrm{s} t} \mathrm{t}} \in N_{\alpha}^{\Lambda}$ when $\Lambda^{(1)}=\Lambda$. Then N_{α}^{Λ} is spanned by $\mathscr{B}_{n}^{\left(\Lambda^{(k)}\right)} \backslash \mathscr{B}_{\Lambda}^{\left(\Lambda^{(k)}\right)} . \mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ is a basis implies the linearly independence of $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)} \backslash \mathscr{B}_{\Lambda}^{\left(\Lambda^{(k)}\right)}$. So $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)} \backslash \mathscr{B}_{\Lambda}^{\left(\Lambda^{(k)}\right)}$ is a basis of N_{α}^{Λ}.

Recall for any $\hat{\mathrm{s}}, \hat{\mathrm{t}} \in \operatorname{Std}(\hat{\lambda})$ with $\hat{\lambda} \in \mathscr{P}_{n}^{\kappa}$, we define $\psi_{\hat{\mathrm{s} t}}^{*}=\psi_{\hat{\mathrm{t}}}$. By Proposition 4.3.6, * can be defined to be a linear bijection from \mathscr{R}_{α} to \mathscr{R}_{α}. The next Corollary is straightforward by Corollary 4.3.7.
4.3.8. Corollary. Suppose $*: \mathscr{R}_{\alpha} \longrightarrow \mathscr{R}_{\alpha}$ is defined as above. Then it can be restricted to a linear bijection $*: N_{\alpha}^{\Lambda} \longrightarrow N_{\alpha}^{\Lambda}$.

Now we can prove the main result of this chapter.
4.3.9. Proposition. The set $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ is a graded cellular basis of \mathscr{R}_{α}.

Proof. Recall Definition 1.2.1 gives the definition of graded cellular basis. Proposition 4.3.6 shows that $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ is a homogeneous basis of \mathscr{R}_{α}. To prove the Theorem we need to establish properties 1.2.1 (b) and 1.2.1 (c) of $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$.

Suppose a is an element of \mathscr{R}_{α} and $\psi_{\hat{\text { st }} \mathfrak{t}} \in \mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ with $\hat{\mathbf{s}}, \hat{\mathrm{t}} \in \operatorname{Std}(\hat{\lambda})$. We can write $a=$ $\sum_{i \in \mathbb{N}} c_{i} a_{i}$ where $c_{i} \in \mathbb{Z}$ and a_{i} are homogeneous elements in \mathscr{R}_{α} with $\operatorname{deg}\left(a_{i}\right)=i$. Define $d_{1}=\operatorname{deg}\left(\psi_{\hat{\mathrm{s} t}}\right)$ and $d_{2}=\max \left\{i \mid c_{i} \neq 0\right\}$. By Proposition 4.2.3 we can find some k such that $m_{\alpha}^{\Lambda^{(k)}}>\max \left\{d_{1}, d_{2}, d_{1}+d_{2}\right\}$. This means that $\psi_{\hat{\mathrm{s} \hat{\mathrm{t}}},}, a$ and $\psi_{\hat{\mathrm{s}} \hat{\mathrm{t}}} a$ are not elements of $N_{\alpha}^{\Lambda^{(k)}}$. This means that $\psi_{\mathrm{st}}=\psi_{\hat{\mathrm{s} t}}+N_{\alpha}^{\Lambda^{(k)}}, a+N_{\alpha}^{\Lambda^{(k)}}$ and $\psi_{\hat{\mathrm{s}} \mathrm{t}} a+N_{\alpha}^{\Lambda^{(k)}}$ are nonzero elements of $\mathscr{R}_{\alpha}^{\Lambda^{(k)}}$. By Proposition 4.1.5 and because t is a bijection,

$$
\begin{aligned}
& \psi_{\mathrm{st}}\left(a+N_{\alpha}^{\Lambda^{(k)}}\right)=\left(\psi_{\hat{\mathrm{st}}}+N_{\alpha}^{\Lambda^{(k)}}\right)\left(a+N_{\alpha}^{\Lambda^{(k)}}\right)=\sum_{\mathrm{v} \in \operatorname{Std}(\lambda)} c_{\mathrm{sv}} \psi_{\mathrm{sv}}+\sum_{\substack{\mathrm{u}, \mathrm{v} \in \operatorname{Std}(\mu) \\
\mu \mathrm{\lambda}}} c_{\mathrm{uv}} \psi_{\mathrm{uv}} \\
& \Rightarrow \psi_{\hat{\mathrm{s}} \hat{\mathrm{t}}} a+N_{\alpha}^{\Lambda^{(k)}}=\sum_{\hat{\mathrm{v}} \in \operatorname{Std}(\hat{\lambda})} c_{\hat{\mathrm{v}} \hat{\mathrm{v}}} \psi_{\hat{\mathrm{s}} \hat{\mathrm{v}}}+\sum_{\substack{\hat{u}, \hat{v} \operatorname{Std}(\hat{\mu}) \\
\hat{\mu} \triangleright \hat{\mathrm{u}}}} c_{\hat{\mathrm{u}} \hat{\mathrm{v}}} \psi_{\hat{\mathrm{u}} \hat{v}}+N_{\alpha}^{\Lambda^{(k)}} \\
& \Rightarrow \psi_{\hat{\mathrm{s}} \hat{\mathrm{t}}} a-\left(\sum_{\hat{\mathrm{v}} \in \operatorname{Std}(\hat{\lambda})} c_{\hat{\mathrm{s}} \hat{\mathrm{v}}} \psi_{\hat{\mathrm{s}} \hat{v}}+\sum_{\substack{\hat{\mathrm{u}}, \hat{\hat{v}} \in \operatorname{Std}(\hat{\mu}) \\
\hat{\mu} \triangleright \hat{\lambda}}} c_{\hat{\mathrm{a}} \hat{\mathrm{v}}} \psi_{\hat{\mathrm{u}}}\right) \in N_{\alpha}^{\Lambda^{(k)}} .
\end{aligned}
$$

Since the left hand side of the above equation is homogeneous to $d_{1}+d_{2}$ and $m_{\alpha}^{\Lambda^{(k)}}>d_{1}+d_{2}$, we can see that

$$
\psi_{\hat{\mathrm{s}} \hat{l}} a=\sum_{\hat{\mathrm{v}} \in \operatorname{Std}(\hat{\lambda})} c_{\hat{\mathrm{s}} \hat{\mathrm{v}} \hat{\mathrm{~s}}} \psi_{\hat{\mathrm{s}} \hat{\mathrm{v}}}+\sum_{\substack{\hat{u}, \hat{\hat{v}} \in \operatorname{Stt}(\hat{\mu}) \\ \hat{\mu} \triangleright \lambda \hat{\mathrm{u}}}} c_{\hat{\mathrm{v}}} \psi_{\hat{\mathrm{u}} \hat{\mathrm{v}}} .
$$

which shows that $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ satisfies 1.2 .1 (b).
For 1.2 .1 (c), choose arbitrary $\psi_{\hat{\mathrm{s} \hat{\mathrm{t}}},}, \psi_{\hat{\mathrm{v}}} \in \mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$. Suppose $\operatorname{deg}\left(\psi_{\hat{\mathrm{s} t}}\right)=k_{1}$ and $\operatorname{deg}\left(\psi_{\hat{\mathrm{a}}}\right)=$ d_{2}. By Proposition 4.2.3 we can choose k such that $m_{\alpha}^{\Lambda^{(k)}}>\max \left\{k_{1}, k_{2}, k_{1}+k_{2}\right\}$. Then by Corollary 4.3.8,

$$
\begin{aligned}
\left(\psi_{\mathrm{st}} \psi_{\mathrm{uv}}\right)^{*} & =\left(\left(\psi_{\hat{\mathrm{t}} \hat{\mathrm{t}}}+N_{\alpha}^{\Lambda^{(k)}}\right)\left(\psi_{\hat{\mathrm{u}} \hat{\mathrm{v}}}+N_{\alpha}^{\Lambda^{(k)}}\right)\right)^{*}=\left(\psi_{\hat{\mathrm{t}} \hat{}} \psi_{\hat{\mathrm{u}} \hat{\mathrm{v}}}+N_{\alpha}^{\Lambda^{(k)}}\right)^{*}=\left(\psi_{\hat{\mathrm{s} \hat{t}}} \psi_{\hat{\mathrm{u}}}\right)^{*}+N_{\alpha}^{\Lambda^{(k)}}, \\
\psi_{\mathrm{vu}} \psi_{\mathrm{ts}} & =\left(\psi_{\hat{\mathrm{v}} \hat{\mathrm{u}}}+N_{\alpha}^{\Lambda^{(k)}}\right)\left(\psi_{\hat{\mathrm{t}}}+N_{\alpha}^{\Lambda^{(k)}}\right)=\psi_{\hat{\mathrm{v}} \hat{\mathrm{u}}} \psi_{\hat{\mathrm{t}} \hat{\mathrm{~s}}}+N_{\alpha}^{\Lambda^{k}},
\end{aligned}
$$

which implies that $\left(\psi_{\hat{\mathrm{s}} \mathrm{t}} \psi_{\hat{\mathrm{v}} \hat{\mathrm{v}}}\right)^{*}-\psi_{\hat{\mathrm{v}} \hat{\mathrm{u}}} \psi_{\hat{\mathrm{t}}}=N_{\alpha}^{\Lambda^{(k)}}$. Then because $m_{\alpha}^{\Lambda^{(k)}}>k_{1}+k_{2},\left(\psi_{\hat{\mathrm{s}} \hat{\mathrm{t}}} \psi_{\hat{\mathrm{u}}}\right)^{*}-\psi_{\hat{\mathrm{v}}} \psi_{\hat{\mathrm{t}} \hat{\mathrm{s}}}=0$, i.e. $\left(\psi_{\hat{\mathrm{s} \hat{t}}} \psi_{\hat{\mathrm{u}}}\right)^{*}=\psi_{\hat{\mathrm{a}},}^{*} \psi_{\hat{\mathrm{s}} \hat{},}^{*}$. Because $*$ is a linear bijection and $\mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ is a basis of \mathscr{R}_{α}, this shows that $*: \mathscr{R}_{\alpha} \longrightarrow \mathscr{R}_{\alpha}$ is an anti-isomorphism. Hence $*$ satisfies 1.2.1(c). This completes the proof.

Combining the above two Propositions and Corollary 4.3.7 we can get the following results.
4.3.10. Theorem. For any standard sequence $\left(\Lambda^{(k)}\right)$, the set

$$
\mathscr{B}_{n}^{\left(\Lambda^{(k)}\right)}=\left\{\psi_{\hat{\mathrm{s} t}} \mid \hat{\lambda} \in \mathscr{P}_{n}^{\kappa}, \hat{\mathrm{s}}, \hat{\mathrm{t}} \in \operatorname{Std}(\hat{\lambda})\right\}
$$

is a graded cellular basis of \mathscr{R}_{n}.
Proof. By definition we have $\mathscr{B}_{n}^{\left(\Lambda^{(k)}\right)}=\bigoplus_{\alpha \in Q_{+}} \mathscr{B}_{\alpha}^{\left(\Lambda^{(k)}\right)}$ and $\mathscr{R}_{n}=\bigoplus_{\alpha \in Q_{+}} \mathscr{R}_{\alpha}$. By the relations of \mathscr{R}_{n} we can see that \mathscr{R}_{α} are subalgebras. The Theorem follows by Proposition 4.3.9 straightforward.
4.3.11. Corollary. Suppose Λ is a weight with level ℓ and $\left(\Lambda^{(k)}\right)$ is a standard sequence with $\Lambda^{(1)}=\Lambda$. Then

$$
\left\{\psi_{\hat{\mathrm{s} t}} \mid \hat{\lambda} \in \mathscr{P}_{n}^{\kappa} \text { with } l(\hat{\lambda})>\ell=l(\Lambda), \hat{\mathrm{s}}, \hat{\mathrm{t}} \in \operatorname{Std}(\hat{\lambda})\right\}
$$

is a basis of N_{n}^{Λ}.

4.4. Graded simple \mathscr{R}_{n}-modules

Theorem 4.3.10 gives a graded cellular basis of \mathscr{R}_{n}. Graham and Lehrer [7] described a complete set of irreducible representations of finite dimensional cellular algebra, however, their results do not apply to \mathscr{R}_{n} because it is an infinite dimensional algebra. In this section we use Graham and Lehrer's results to construct a complete set of graded simple \mathscr{R}_{n}-modules. The graded simple \mathscr{R}_{n}-modules have been desccribed by Brundan and Kleshchev [4, Theorem 5.19]. See Remark 4.4.15 for more detials.

First we need to state some properties of the simple \mathscr{R}_{n}-modules. We start by showing that the graded dimension of an simple \mathscr{R}_{n}-module is bounded below.
4.4.1. Lemma. Suppose $r \in \mathscr{R}_{n}$ is a homogeneous element. Then $\operatorname{deg}(r) \geq-n(n-1)$.

Proof. By 1.4.7 we have the following basis of \mathscr{R}_{n} :

$$
\left\{\hat{e}(\mathbf{i}) \hat{y}_{1}^{\ell_{1}} \hat{y}_{2}^{\ell_{2}} \ldots \hat{y}_{n}^{\ell_{n}} \hat{\psi}_{w} \mid \mathbf{i} \in I^{n}, w \in \Im_{n}, \ell_{1}, \ell_{2}, \ldots, \ell_{n} \geq 0\right\}
$$

If $\mathbf{i} \in I^{n}, w \in \mathbb{S}_{n}$ and $\ell_{1}, \ell_{2}, \ldots, \ell_{n} \geq 0$, then

$$
\begin{aligned}
\operatorname{deg}\left(\hat{e}(\mathbf{i}) \hat{y}_{1}^{\ell_{1}} \hat{y}_{2}^{\ell_{2}} \ldots \hat{y}_{n}^{\ell_{n}} \hat{\psi}_{w}\right) & \geq \operatorname{deg}\left(\hat{e}(\mathbf{i}) \hat{y}_{1}^{\ell_{1}} \hat{y}_{2}^{\ell_{2}} \ldots \hat{y}_{n}^{\ell_{n}}\right)+\operatorname{deg}\left(\hat{e}(\mathbf{i}) \hat{\psi}_{w}\right) \\
& =2\left(\ell_{1}+\ell_{2}+\ldots+\ell_{n}\right)+\operatorname{deg}\left(\hat{e}(\mathbf{i}) \hat{\psi}_{w}\right) \\
& \geq \operatorname{deg}\left(\hat{e}(\mathbf{i}) \hat{\psi}_{w}\right) .
\end{aligned}
$$

As $w \in \mathfrak{S}_{n}$, we have $l(w) \leq \frac{n(n-1)}{2}$ and by definition, $\hat{e}(\mathbf{i}) \hat{\psi}_{r} \geq-2$ for any r and $\mathbf{i} \in I^{n}$. Therefore

$$
\operatorname{deg}\left(\hat{e}(\mathbf{i}) \hat{\psi}_{w}\right) \geq-2 \times \frac{n(n-1)}{2}=-n(n-1) .
$$

Hence $\operatorname{deg}\left(\hat{e}(\mathbf{i}) \hat{y}_{1}^{\ell_{1}} \hat{y}_{2}^{\ell_{2}} \ldots \hat{y}_{n}^{\ell_{n}} \hat{\psi}_{w}\right) \geq-n(n-1)$. This completes the proof.
Recall that for $|\alpha|=\sum_{i \in I} a_{i}$ and $\hat{e}_{\alpha}=\sum_{\mathbf{i} \in I^{\alpha}} \hat{e}(\mathbf{i}) \in \mathscr{R}_{n}$.
4.4.2. Lemma. Suppose S is a simple \mathscr{R}_{n}-module. Then there exists $\alpha \in Q_{+}$with $|\alpha|=n$ such that for any $\beta \in Q_{+}$with $|\beta|=n, \hat{e}_{\beta} S=\delta_{\alpha \beta} S$.

Proof. Suppose S is a simple \mathscr{R}_{n}-module. Because $1=\sum_{\mathbf{j} \in I^{n}} \hat{e}(\mathbf{j})=\sum_{\substack{\beta \in Q_{+} \\|\beta|=n}} \hat{e}_{\beta}$, we can write $S=\bigoplus_{\substack{\beta \in Q_{+} \\|\beta|=n}} \hat{e}_{\beta} S$. Suppose $\hat{e}_{\alpha} S \neq 0$ for some $\alpha \in Q_{+}$. Choose any nonzero element $s \in S$ and $\beta \in Q_{+}$with $\beta \neq \alpha$. By Lemma 4.1.4, $\hat{e}_{\alpha} \mathscr{R}_{n} \hat{e}_{\beta}=0$. So we must have $\hat{e}_{\beta} \cdot s=0$. Hence $\hat{e}_{\beta} S=0$. Therefore $S=\bigoplus_{\substack{\beta \in Q_{+} \\|\beta|=n}} \hat{e}_{\beta} S=\hat{e}_{\alpha} S$. This completes the proof.

It is well-known that the irreducible representations of the affine Hecke algebra are finite dimensional as, by Bernstein, the affine Hecke algebra is finite dimensional over its centre. See for example, Proposition 4.1 and Corollary 4.2 of Grojnowski [$\mathbf{8}]$, or Proposition 2.12 of Khovanov-Lauda [13]. The next Proposition gives a different approach.
4.4.3. Proposition. Suppose S is a graded simple \mathscr{R}_{n}-module and $\alpha \in Q_{+}$is such that $\hat{e}_{\beta} S=$ $\delta_{\alpha \beta} S$ for $\beta \in Q_{+}$. If $\Lambda \in P_{+}$with $m_{\alpha}^{\Lambda}>n(n-1)$, then S is isomorphic to a graded simple $\mathscr{R}_{n}^{\Lambda}$-module.
Proof. By Lemma 4.4.2 we can find $\alpha \in Q_{+}$such that $\hat{e}_{\beta} S=\delta_{\alpha \beta} S$ for $\beta \in Q_{+}$. Then we choose an arbitrary nonzero homogeneous element $s \in S$ and suppose $\operatorname{deg}(s)=d$. Now for any nonzero homogeneous element $t \in S$, because S is simple, we can find a homogeneous element $a \in \mathscr{R}_{\alpha}$ such that $t=a \cdot s$. Therefore

$$
\operatorname{deg}(t)=\operatorname{deg}(a \cdot s)=\operatorname{deg}(a)+\operatorname{deg}(s) \geq d-n(n-1)
$$

where by Lemma 4.4.1 we have $\operatorname{deg}(a) \geq-n(n-1)$. So for any homogeneous nonzero element $t \in S$, we have

$$
\begin{equation*}
\operatorname{deg}(t) \geq d-n(n-1) \tag{4.4.4}
\end{equation*}
$$

Similarly, since for any nonzero homogeneous element $t \in \mathscr{R}_{n}$ we can find homogeneous element $a \in \mathscr{R}_{\alpha}$ such that $s=a \cdot t$, we have

$$
\begin{equation*}
\operatorname{deg}(t) \leq d+n(n-1) \tag{4.4.5}
\end{equation*}
$$

Combining (4.4.4) and (4.4.5), we have $|\operatorname{deg}(s)-\operatorname{deg}(t)| \leq n(n-1)$ for any nonzero homogeneous element $t \in S$. Because s is chosen arbitrarily, we have

$$
\begin{equation*}
|\operatorname{deg}(s)-\operatorname{deg}(t)| \leq n(n-1) \tag{4.4.6}
\end{equation*}
$$

for any nonzero homogeneous elements $s, t \in S$.
Suppose $\Lambda \in P_{+}$with $m_{\alpha}^{\Lambda}>n(n-1)$. For any homogeneous element $a \in N_{\alpha}^{\Lambda}$ and $t \in S$, we have $a \cdot t=0$ because $\operatorname{deg}(a \cdot t)-\operatorname{deg}(t)=\operatorname{deg}(a)>n(n-1)$ and (4.4.6).

For any $s \in S$, we can define a map $f: \mathscr{R}_{n} \longrightarrow S$ by sending a to $a \cdot s$. It is a homomorphism and it is obvious that $N_{\alpha}^{\Lambda} \subseteq \operatorname{ker} f$. If $\beta \in Q_{+}$and $\beta \neq \alpha$, then by Lemma 4.4.2 we have $\hat{e}_{\beta} \cdot s=0$. Therefore $N_{\beta}^{\Lambda} \subseteq \operatorname{ker} f$. Hence $N_{n}^{\Lambda} \subseteq \operatorname{ker} f$. Therefore we can consider S as a simple $\mathscr{R}_{n} / N_{n}^{\Lambda}$ module, i.e. $\mathscr{R}_{n}^{\Lambda}$-module. This completes the proof.
4.4.7. Corollary. Suppose S is a simple graded \mathscr{R}_{n}-module. Then S is finite-dimensional.

Building on Ariki's [1] work in the ungraded case, Hu and Mathas [9] constructed all graded simple $\mathscr{R}_{n}^{\Lambda}$-modules in the sense of Graham-Lehrer [7]. They proved that, up to shift, graded simple $\mathscr{R}_{n}^{\Lambda}$-modules are labeled by the Kleshchev multipartitions of n, which were introduced by Ariki and Mathas [2]. Readers may also refer to Brundan and Kleshchev [4] (3.27)] (where they are called restricted multipartitions).

Suppose $\lambda=\left(\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(\ell)}\right) \in \mathscr{P}_{n}^{\Lambda}$ and we consider the Young diagram [λ]. Let $\gamma=$ (r, c, l) be a node in the Young diagram with residue i, i.e. $i \equiv r-c+\kappa_{l}(\bmod e)$. Then γ is an addable i-node if $\gamma \notin[\lambda]$ and $[\lambda] \cup\{\gamma\}$ is the Young diagram of a multipartition, and γ is a removable i-node if $\gamma \in[\lambda]$ and $[\lambda] \backslash\{\gamma\}$ is the Young diagram of a multipartition.

For each $\lambda \in \mathscr{P}_{n}^{\Lambda}$, we read all addable and removable i-nodes in the following order: we start with the first row of $\lambda^{(1)}$, and then read rows in $\lambda^{(1)}$ downward. We then read the first row of $\lambda^{(2)}$, and repeat the same procedure, until we finish reading all rows of λ. We write A for an addable i-node, and R for a removable i-node. Hence we get a sequence of A and R. We then delete $R A$ as many as possible. For example, if we have a sequence $\operatorname{RARARRAAARRAR}$, the resulting sequence will be $--------A R--R$. The node corresponding to the leftmost R is the good i-node.

The Kleshchev multipartition can then be defined recursively as follows.
4.4.8. Definition. [1, Definition 2.3] We declare that \emptyset is Kelshchev. Assume that we have already defined the set of Kleshchev multipartitions up to size $n-1$. Let λ be a multipartition of n. We say that λ is a Kleshchev multipartition if there is a good node γ in $[\lambda]$ such that if $[\mu]=[\lambda] \backslash\{\gamma\}$ and μ is a Kleshchev multipartition.

Let $\mathscr{P}_{0}^{\Lambda}$ be the set of Kleshchev multipartitions in $\mathscr{P}_{n}^{\Lambda}$. Let S^{λ} be the cell module of $\mathscr{R}_{n}^{\Lambda}$ (it is called the Specht module in $\mathscr{R}_{n}^{\lambda}$), which was introduced in Section 1.2, and $D^{\lambda}=S^{\lambda} / \mathrm{rad} S^{\lambda}$. By Hu-Mathas [9 , Corollary 5.11] we can give a set of complete non-isomorphic graded simple $\mathscr{R}_{n}^{\Lambda}$-modules. Brundan and Kleshchev [4, Theorem 4.11] gives the same classification.

4.4.9. Theorem. The set

$$
\left\{D^{\lambda}\langle k\rangle \mid \lambda \in \mathscr{P}_{0}^{\Lambda}, k \in \mathbb{Z}\right\}
$$

is a complete set of pairwise non-isomorphic graded simple $\mathscr{R}_{n}^{\Lambda}$-modules.
We can consider S^{λ} and $D^{\lambda}\langle k\rangle$ as \mathscr{R}_{n}-modules. The actions of $\hat{e}(\mathbf{i}), \hat{y}_{r}$ and $\hat{\psi}_{s}$ on S^{λ} and $D^{\lambda}\langle k\rangle$ are the same as the actions of $e(\mathbf{i}), y_{r}$ and ψ_{s}. Therefore $D^{\lambda}\langle k\rangle$ is also a simple \mathscr{R}_{n}-module. Hence we can define a set of graded simple \mathscr{R}_{n}-modules similar as in Theorem 4.4.9.

The next Lemma is straightforward by the definition of D^{λ}.
4.4.10. Lemma. Suppose $\lambda, \mu \in \mathscr{P}_{n}^{\Lambda}$. Then $D^{\lambda} \cong D^{\mu}$ as $\mathscr{R}_{n}^{\Lambda}$-modules if and only if $D^{\lambda} \cong D^{\mu}$ as \mathscr{R}_{n}-modules.

Now we can classify all graded simple \mathscr{R}_{n}-modules. Following the process in Section 1.2, for each $\hat{\lambda} \in \mathscr{P}_{n}^{\kappa}$ we can define the cell module $S^{\hat{\lambda}}$ of \mathscr{R}_{n} (which is called the Specht module as well), associated with a bilinear form $\langle\cdot, \cdot\rangle$. Then we can define $\operatorname{rad} S^{\hat{\lambda}}$ and hence a graded simple module $D^{\hat{\lambda}}=S^{\hat{\lambda}} / \mathrm{rad} S^{\hat{\lambda}}$.
4.4.11. Lemma. Suppose $\hat{\lambda} \in \mathscr{P}_{n}^{\kappa}$ and $\mu=p_{k}(\hat{\lambda})$ for some $k \geq l(\hat{\lambda})$. Then $S^{\mu} \cong S^{\hat{\lambda}}$ as \mathscr{R}_{n} modules.

Proof. It is trivial by the definition of Specht modules in \mathscr{R}_{n} and $\mathscr{R}_{n}^{\Lambda}$.
The next Corollary is straightforward by Lemma 4.4.11.
4.4.12. Corollary. Suppose $\hat{\lambda} \in \mathscr{P}_{n}^{\kappa}$ and $\mu=p_{k}(\hat{\lambda})$ for some $k \geq l(\hat{\lambda})$. Then $D^{\mu} \cong D^{\hat{\lambda}}$ as \mathscr{R}_{n}-modules.

Hence we can prove the following Lemma.
4.4.13. Lemma. Suppose $\hat{\lambda}, \hat{\mu} \in \mathscr{P}_{n}^{\kappa}$. Then $D^{\hat{\lambda}} \cong D^{\hat{\mu}}$ if and only if $\hat{\lambda}=\hat{\mu}$.

Proof. The if part is trivial. Now suppose $D^{\hat{\lambda}} \cong D^{\hat{\mu}}$. Choose $k>\max \{l(\hat{\lambda}), l(\hat{\mu})\}$ and set $v=p_{k}(\hat{\lambda})$ and $\sigma=p_{k}(\hat{\mu})$. Then by Corollary 4.4.12 we have $D^{v} \cong D^{\sigma}$ as \mathscr{R}_{n}-modules. Then Theorem 4.4.9 and Lemma 4.4.10 implies $v=\sigma$. Therefore by the definition of k we have $\hat{\lambda}=\hat{\mu}$. This completes the proof.

Now we extend Kleshchev multipartitions to affine multipartitions. Define $\hat{\lambda} \in \mathscr{P}_{n}^{\kappa}$ to be an affine Kleshchev multipartition if λ is a Kleshchev multipartition and \mathscr{P}_{0}^{κ} as the set of all affine Kleshchev multipartitions in \mathscr{P}_{n}^{κ}. Hence we can give a complete set of pairwise non-isomorphic graded simple \mathscr{R}_{n}-modules.
4.4.14. Theorem. The set

$$
\left\{D^{\hat{\lambda}}\langle k\rangle \mid \hat{\lambda} \in \mathscr{P}_{0}^{\kappa}, k \in \mathbb{Z}\right\}
$$

is a complete set of pairwise non-isomorphic graded simple \mathscr{R}_{n}-modules.
Proof. By the definition of (affine) Kleshchev multipartitions, [9, Corollary 5.11] and Corollary 4.4.12, $D^{\hat{\lambda}}\langle k\rangle \cong D^{\lambda}\langle k\rangle \neq 0$ if and only if $\hat{\lambda} \in \mathscr{P}_{0}^{\kappa}$.

Suppose S is a graded simple \mathscr{R}_{n}-module. By Lemma 4.4.2 we can find $\alpha \in Q_{+}$such that $\hat{e}_{\beta} S=\delta_{\alpha \beta} S$ for $\beta \in Q_{+}$. Then by Proposition 4.2.3 we can choose i such that $m_{\alpha}^{\Lambda^{(i)}}>n(n-1)$ and hence by Proposition 4.4.3, S is isomorphic to a graded simple $\mathscr{R}_{n}^{\Lambda^{(i)}}$-module. Therefore by Theorem 4.4.9 we can find some $\mu \in \mathscr{P}_{n}^{\Lambda^{(i)}}$ and $k \in \mathbb{Z}$ such that $S \cong D^{\mu}\langle k\rangle$ as $\mathscr{R}_{n}^{\Lambda^{(i)}}$-modules, and hence as \mathscr{R}_{n}-modules. Suppose $l(\mu)=\ell$. We can choose $\hat{\lambda} \in \mathscr{P}_{n}^{\kappa}$ such that $p_{\ell}(\hat{\lambda})=\mu$ with $l(\hat{\lambda}) \leq \ell$. By Corollary 4.4.12 we have $D^{\hat{\lambda}} \cong D^{\mu}$ as \mathscr{R}_{n}-modules. Therefore $S \cong D^{\hat{\lambda}}\langle k\rangle$. So

$$
\left\{D^{\hat{\lambda}}\langle k\rangle \mid \hat{\lambda} \in \mathscr{P}_{0}^{\kappa}, k \in \mathbb{Z}\right\}
$$

is a complete set of graded simple \mathscr{R}_{n}-modules.
By Lemma 4.4.13, the set $\left\{D^{\hat{\lambda}}\langle k\rangle \mid \hat{\lambda} \in \mathscr{P}_{0}^{\kappa}, k \in \mathbb{Z}\right\}$ is a set of pairwise non-isomorphic graded \mathscr{R}_{n}-modules. This completes the proof.
4.4.15. Remark. Ariki-Mathas [2] showed that the simple H_{n}-modules are indexed by aperiodic multisegments. Khovanov and Lauda [13, 12] also gives a classification of all graded simple \mathscr{R}_{n}-modules of arbitrary type. Interested readers may also refer to [15], [4], [16], [19], [27], [11] and [22]. As far as we are aware the construction and classification in Theorem 4.4.14 is new.

Chapter 5

Idempotents and Jucys-Murphy Elements

In this chapter we will give an explicit expression for the KLR idempotent $e(\mathbf{i})$ using the generators of cyclotomic Hecke algebras H_{n}^{Λ} when $e>0$ and $p>0$, and show the periodic properties of Jucys-Murphy elements x_{r} and X_{r} in H_{n}^{Λ}. The main idea is using the nilpotency of y_{r} 's in cyclotomic KLR algebras. Recall that H_{n}^{Λ} can either be a degenerate or non-degenerate Hecke algebra. We will work with these cases separately in this chapter.

5.1. Explicit expression of $e(\mathbf{i})$

Recall the cyclotomic Hecke algebras H_{n}^{Λ} introduced in 1.2.7). In this section we will introduce the detailed definition of $e(\mathbf{i})$ in H_{n}^{Λ}.

We can define a set of pairwise orthogonal idempotents $\left\{e(\mathbf{i}) \mid \mathbf{i} \in I^{n}\right\}$ for both degenerate and non-degenerate cases. Brundan and Kleshchev [3] defined $e(\mathbf{i})$ of $\mathscr{R}_{n}^{\Lambda}$ in H_{n}^{Λ} in the sense of $\mathscr{R}_{n}^{\Lambda} \cong H_{n}^{\Lambda}$. Suppose M is a finite dimensional H_{n}^{Λ}-module. By Kleshchev [17, Lemma 7.1], the eigenvalues of each x_{r} or X_{r} on M belongs to I. So $M=\bigoplus_{\mathbf{i} \in I^{d}} M_{\mathbf{i}}$ of its weight space

$$
M_{\mathbf{i}}=\left\{v \in M \mid\left(x_{r}-q_{i_{r}}\right)^{N} v=0 \text { for all } r=1, \ldots, d \text { and } N \gg 0\right\},
$$

where $q_{i_{r}}$ is introduced in 1.2 .6 . Then we deduce that there is a system $\left\{e(\mathbf{i}) \mid \mathbf{i} \in I^{n}\right\}$ such that $e(\mathbf{i}) M=M_{\mathbf{i}}$.

Murphy [23, (1,2)] defined a complete set of primitive orthogonal idempotents in symmetric groups and Mahtas [21, Definition 3.1] generalized this result to the degenerate and non-degenerate cyclotomic Hecke algebras.

Hu and Mathas [9, Lemma 4.1] proves that the idempotents $e(\mathbf{i})$ in H_{n}^{Λ} is equivalent to the primitive idempotents defined by Mathas in H_{n}^{Λ}. Murphy's approach gives an explicit formula for the idempotents $e(\mathbf{i})$. Unfortunatesly, it is not very efficient for actual calculations. Recall e and p are parameters of H_{n}^{Λ} defined in Section 1.2. We call p the characteristic of H_{n}^{Λ} and e the quantum characteristic of H_{n}^{Λ}. In this section we will give a more explicit expression of $e(\mathbf{i})$ in degenerate and non-degenerate cyclotomic Hecke algebras using x_{r} or X_{r} when $p>0$ and $e>0$.

In the rest of this chapter we fix $p>0$ and $e>0$. We have the following well-known facts.
5.1.1. Lemma. Suppose \mathbb{F}_{p} is a field with char $\mathbb{F}_{p}=p>0$ and $r_{1}, r_{2} \in H_{n}^{\Lambda}$. For any nonnegative integer k we always have $\left(r_{1}-r_{2}\right)^{p^{k}}=r_{1}^{p^{k}}-r_{2}^{p^{k}}$.
5.1.2. Remark. Notice the above Lemma is a well-known result and will be applied without mention in this chapter.
5.1.3. Lemma. Suppose p and e are characteristic and quantum characteristic of non-degenerate H_{n}^{Λ} with $e, p>0$. Then $\operatorname{gcd}(e, p)=1$. Moreover, we can find l such that $p^{l} \equiv 1(\bmod e)$.

Proof. In non-degenerate case, $\operatorname{gcd}(e, p)=1$ is well-known. So by Chinese Remainder Theorem we can find $a, b \in \mathbb{Z}$ such that $a p+b e=1$. Now consider the sequence $p, p^{2}, p^{3}, p^{4} \ldots$. We can find k_{1}, k_{2} such that $p^{k_{1}} \equiv p^{k_{2}}(\bmod e)$. Choose k_{2} such that $k_{2}-k_{1}>k_{1}$. Hence write
$l=k_{2}-k_{1}$ and $p^{l} \equiv s(\bmod e)$ where $0 \leq s \leq e-1$. So we have $p^{2 l} \equiv p^{l}(\bmod e)$ which implies $s^{2} \equiv s(\bmod e)$. So we can write $s^{2}-s=k e$ for some $k \in \mathbb{Z}$. So

$$
s^{2}-s=k e \quad \Rightarrow \quad a s(s-1)=a k e \quad \Rightarrow \quad(1-b e)(s-1)=a k e \quad \Rightarrow \quad s-1=(b(s-1)+a k) e
$$

which implies $e \mid s-1$. But because $0 \leq s \leq e-1$, we have $s=1$. Therefore $p^{l} \equiv 1(\bmod e)$.
In the degenerate case we have $e=p$ and in non-degenerate case we have $\operatorname{gcd}(e, p)=1$. Fix a residue sequence $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$. For any $1 \leq r \leq n$ and any $j \in I$ with $j \neq i_{r}$, choose $N \gg 0$ and define $L_{i_{r}, j}=1-\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{N}$ in both degenerate and non-degenerate cases.

Notice that by the definition of $e(\mathbf{i})$ given by Brundan and Kleshchev [3], for any $\mathbf{j} \in I$ and $1 \leq r \leq n$, we have

$$
\left(x_{r}-q_{j_{r}}\right)^{N} e(\mathbf{j})=0
$$

for $N \gg 0$.
5.1.4. Lemma. Suppose $1 \leq r \leq n$ and $\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{n}\right) \in I^{n}$, for $j \in I$ and $N_{j} \gg 0$ we have

$$
L_{i_{r}, j}^{N_{j}} e(\mathbf{j})= \begin{cases}e(\mathbf{j}), & \text { if } j_{r}=i_{r}, \\ 0, & \text { if } j_{r}=j .\end{cases}
$$

Proof. Suppose $j_{r}=i_{r}$. Because $\left(x_{r}-q_{i_{r}}\right)^{N} e(\mathbf{j})=\left(x_{r}-q_{j_{r}}\right)^{N} e(\mathbf{j})=0$ for $N \gg 0$, we have

$$
L_{i_{r}, j} e(\mathbf{j})=\left(1-\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{N}\right) e(\mathbf{j})=e(\mathbf{j})-\frac{1}{\left(q_{i_{r}}-q_{j}\right)^{N}}\left(q_{i_{r}}-x_{r}\right)^{N} e(\mathbf{j})=e(\mathbf{j}) .
$$

Therefore $L_{i_{r}, j}^{N_{j}} e(\mathbf{j})=L_{i_{r}, j}^{N_{j}-1} e(\mathbf{j})=\ldots=L_{i_{r}, j} e(\mathbf{j})=e(\mathbf{j})$.
Suppose $j_{r}=j$. We have

$$
\begin{aligned}
L_{i_{r}, j} & =1-\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{N} \\
& =-\sum_{k=1}^{N}\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{k}+\sum_{k=0}^{N-1}\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{k} \\
& =\frac{x_{r}-q_{i_{r}}}{q_{i_{r}}-q_{j}} \sum_{k=0}^{N-1}\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{k}+\frac{q_{i_{r}}-q_{j}}{q_{i_{r}}-q_{j}} \sum_{k=0}^{N-1}\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{k} \\
& =\left(x_{r}-q_{i_{r}}+q_{i_{r}}-q_{j}\right) \frac{1}{q_{i_{r}}-q_{j}} \sum_{k=0}^{N-1}\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{k} \\
& =\left(\frac{1}{q_{i_{r}}-q_{j}} \sum_{k=0}^{N-1}\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{k}\right)\left(x_{r}-q_{j}\right) .
\end{aligned}
$$

Therefore for $N_{j} \gg 0$,

$$
L_{i_{r}, j}^{N_{j}} e(\mathbf{j})=\left(\frac{1}{q_{i_{r}}-q_{j}} \sum_{k=0}^{N-1}\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{k}\right)^{N_{j}}\left(x_{r}-q_{j}\right)^{N_{j}} e(\mathbf{j})=0
$$

because when $j_{r}=j$ we have $\left(x_{r}-q_{j}\right)^{N_{j}} e(\mathbf{j})=0$, which completes the proof.
Now we define $L_{r}(\mathbf{i})=\prod_{\substack{j \in I \\ j \neq i_{r}}} L_{i_{r}, j}$. In the product, $j \in I \backslash\left\{i_{r}\right\}$, which is a finite product since $e>0$. So $L_{r}(\mathbf{i})$ is well defined. We have the following Lemma.
5.1.5. Lemma. Suppose $1 \leq r \leq n$. We can choose $N_{r}(\mathbf{i}) \gg 0$ such that

$$
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}=\sum_{\substack{\mathbf{j} \in I^{n} \\ j_{r} i_{r}}} e(\mathbf{j}) .
$$

Proof. By Lemma 5.1.4, for any $j \in I$ with $j \neq i_{r}$ we can find N_{j} large enough such that

$$
L_{i_{r}, j}^{N_{j}} e(\mathbf{j})= \begin{cases}e(\mathbf{j}), & \text { if } j_{r}=i_{r} \\ 0, & \text { if } j_{r}=j\end{cases}
$$

Now choose $N_{r}(\mathbf{i}) \geq \max \left\{N_{j} \mid j \in I, j \neq i_{r}\right\}$, which is finite since $e>0$. Therefore $L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}=$ $\prod_{\substack{j \in I \\ j \neq i_{r}}} L_{i_{r}, j}^{N_{r}(\mathbf{i})}$. Hence for any $e(\mathbf{j})$, if $j_{r} \neq i_{r}$,

$$
\begin{equation*}
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})} e(\mathbf{j})=\prod_{\substack{j \in I \\ j \neq i_{r}}} L_{i_{r}, j}^{N_{r}(\mathbf{i})} e(\mathbf{j})=\left(\prod_{\substack{j \in I \\ j \neq i_{r}, j_{r}}} L_{i_{r}, j}^{N_{r}(\mathbf{i})}\right) L_{r, j_{r}}^{N_{r}(\mathbf{i})} e(\mathbf{j})=0, \tag{5.1.6}
\end{equation*}
$$

and if $j_{r}=i_{r}$,

$$
\begin{equation*}
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})} e(\mathbf{j})=e(\mathbf{j}), \tag{5.1.7}
\end{equation*}
$$

because for any $j, L_{i_{r}, j}^{N_{j}} e(\mathbf{j})=e(\mathbf{j})$.
Therefore, because $\sum_{\mathbf{j} \in I^{n}} e(\mathbf{j})=1$, by 5.1.6) and (5.1.7),

$$
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}=L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}\left(\sum_{\mathbf{j} \in I^{n}} e(\mathbf{j})\right)=\sum_{\mathbf{j} \in I^{n}} L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})} e(\mathbf{j})=\sum_{\substack{\mathbf{j} \in I^{n} \\ j_{r}=i_{r}}} L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})} e(\mathbf{j})=\sum_{\substack{\mathbf{j} \in I^{n} \\ j_{r}=i_{r}}} e(\mathbf{j})
$$

which completes the proof.
As the idempotents $e(\mathbf{j})$'s are pairwise orthogonal, Lemma 5.1.5 immediately implies the following.
5.1.8. Corollary. For any $\mathbf{i} \in I^{n}$, we have

$$
e(\mathbf{i})=\prod_{r=1}^{n} L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})} .
$$

The previous results are true in both the degenerate and non-degenerate cases. Notice that when we define $L_{i_{r}, j}=1-\left(\frac{q_{i_{r}}-x_{r}}{q_{i_{r}}-q_{j}}\right)^{N_{j}}$ and $L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}$, the only restriction is that N_{j} and $N_{r}(\mathbf{i})$ are large enough. As we now show, by choosing specific values for N_{j} and $N_{r}(\mathbf{i})$, it is possible to simplify the expression of $L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}$ even further and give a more explicit expression of $e(\mathbf{i})$. We emphasize the simplified expressions of $L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}$ are different for degenerate and non-degenerate H_{n}^{Λ}.

We start with the degenerate cyclotomic Hecke algebras. Recall that in this case $e=p$.
5.1.9. Proposition. Suppose $q=1$. For any $i_{r} \in I$ there exists $s \gg 0$ such that

$$
\sum_{\substack{\mathbf{j} \in I^{n} \\ j_{r}=i_{r}}} e(\mathbf{j})= \begin{cases}1-x_{r}^{p^{s}(1-p)}, & \text { when } i_{r}=0 \\ -\sum_{k=1}^{p-1} \frac{x_{r}^{k k_{r}^{s}}}{i_{r}^{k}}, & \text { when } i_{r} \neq 0 .\end{cases}
$$

Proof. By Lemma 5.1.5 the Proposition is equivalent to claim that

$$
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}= \begin{cases}1-x_{r}^{p_{r}^{s}(1-p)}, & \text { when } i_{r}=0, \\ -\sum_{k=1}^{p-1} \frac{x_{r}^{k_{p}}}{i_{r}^{k}}, & \text { when } i_{r} \neq 0 .\end{cases}
$$

for $s \gg 0$.

By the definition of $L_{r}(\mathbf{i})$, because $I=\mathbb{Z} / p \mathbb{Z}$ we have

$$
L_{r}(\mathbf{i})=\prod_{\substack{j \in I \\ j \neq i_{r}}} L_{i_{r}, j}=\prod_{\substack{j \in I \\ j \neq i_{r}}}\left(1-\left(\frac{i_{r}-x_{r}}{i_{r}-j}\right)^{N_{j}}\right)=\prod_{j=1}^{p-1}\left(1-\left(\frac{i_{r}-x_{r}}{j}\right)^{N_{j}}\right) .
$$

Take $k \gg 0$ and $N_{j}=p^{k}$. Hence because H_{n}^{Λ} is defined over a field \mathbb{F}_{p} of characteristic p, we have $j^{N_{j}}=j$. And because p is a prime, we have

$$
L_{r}(\mathbf{i})=\prod_{j=1}^{p-1}\left(1-\left(\frac{i_{r}-x_{r}}{j}\right)^{N_{j}}\right)=\prod_{j=1}^{p-1}\left(1-\frac{\left(i_{r}-x_{r}\right)^{N_{j}}}{j}\right)=\prod_{j=1}^{p-1}\left(1-j \cdot\left(i_{r}-x_{r}\right)^{N_{j}}\right)=1-\left(i_{r}-x_{r}\right)^{(p-1) N_{j}} .
$$

Without loss of generality, choose $N_{r}(\mathbf{i})=p^{l}$ with $l \gg 0$. We have

$$
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}=\left(1-\left(i_{r}-x_{r}\right)^{(p-1) N_{j}}\right)^{N_{r}(\mathbf{i})}=1-\left(i_{r}-x_{r}\right)^{(p-1) N_{j} N_{r}(\mathbf{i})} .
$$

Setting $s=k+l$, we have $N_{j} N_{r}(\mathbf{i})=p^{k+l}=p^{s}$. Now we consider two cases, which are $i_{r}=0$ and $i_{r} \neq 0$.

Suppose first $i_{r}=0$. We have

$$
\begin{equation*}
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}=1-\left(i_{r}-x_{r}\right)^{(p-1) N_{j} N_{r}(\mathbf{i})}=1-\left(-x_{r}\right)^{(p-1) p^{s}}=1-x_{r}^{(p-1) p^{s}} . \tag{5.1.10}
\end{equation*}
$$

Suppose $i_{r} \neq 0$. We have

$$
\begin{aligned}
\left(i_{r}-x_{r}\right)^{(p-1) N_{j} N_{r}(\mathbf{i})} & =\left(i_{r}-x_{r}\right)^{p^{s+1}-p^{s}}=\frac{\left(i_{r}-x_{r}\right)^{p^{s+1}}}{\left(i_{r}-x_{r}\right)^{p^{s}}} \\
& =\frac{i_{r}-x_{r}^{p^{s+1}}}{i_{r}-x_{r}^{p^{s}}}=\frac{1-\left(\frac{x_{r}}{i_{r}} p^{p^{s+1}}\right.}{1-\left(\frac{x_{r}}{i_{r}}\right)^{s}} \\
& =1+\left(\frac{x_{r}}{i_{r}}\right)^{p^{s}}+\left(\frac{x_{r}}{i_{r}}\right)^{2 p^{s}}+\ldots+\left(\frac{x_{r}}{i_{r}}\right)^{(p-1) p^{s}} \\
& =1+\frac{x_{r}^{p^{s}}}{i_{r}}+\frac{x_{r}^{2 p^{s}}}{i_{r}^{2}}+\ldots+\frac{x_{r}^{(p-1) p^{s}}}{i_{r}^{p-1}}=\sum_{k=0}^{p-1} \frac{x^{k p^{s}}}{i_{r}^{k}} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}=1-\left(i_{r}-x_{r}\right)^{(p-1) N_{j} N_{r}(\mathbf{i})}=1-\sum_{k=0}^{p-1} \frac{x^{k p^{s}}}{i_{r}^{k}}=-\sum_{k=1}^{p-1} \frac{x^{k p^{s}}}{i_{r}^{k}} . \tag{5.1.11}
\end{equation*}
$$

By combining (5.1.10) and (5.1.11), we complete the proof.
Finally, by combining Corollary 5.1.8 and Proposition 5.1.9, we have an explicit expression of $e(\mathbf{i})$ for the degenerate cyclotomic Hecke algebras.
5.1.12. Theorem. Suppose $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{n}$ and $q=1$, then

$$
e(\mathbf{i})=\prod_{r=1}^{n} L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}
$$

where

$$
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}= \begin{cases}1-x_{r}^{p_{r}^{s}(1-p)}, & \text { when } i_{r}=0, \\ -\sum_{k=1}^{p-1} \frac{x_{r}^{k_{p}^{p}}}{i_{r}^{k}}, & \text { when } i_{r} \neq 0 .\end{cases}
$$

for $s \gg 0$.
We now give a similar expression for the non-degenerate cyclotomic Hecke algebras. First we give two Lemmas which will be used later.
5.1.13. Lemma. For any $k \in \mathbb{Z}$ with $k \not \equiv 0(\bmod e)$, we have

$$
1+q^{k}+q^{2 k}+\ldots+q^{(e-1) k}=0
$$

Proof. By the definition, we have

$$
\begin{aligned}
& 1+q+q^{2}+\ldots+q^{e-1}=0 \\
\Rightarrow & \left(1+q+q^{2}+\ldots+q^{e-1}\right)(1-q)=0 \\
\Rightarrow & 1-q^{e}=0 \\
\Rightarrow & q^{e}=1 \\
\Rightarrow & \left(q^{e}\right)^{k}=q^{k e}=\left(q^{k}\right)^{e}=1 \\
\Rightarrow & \left(q^{k}\right)^{e}-1=\left(1+q^{k}+q^{2 k}+\ldots+q^{(e-1) k}\right)\left(q^{k}-1\right)=0 .
\end{aligned}
$$

Because $k \in \mathbb{Z}$ and $k \not \equiv 0(\bmod e)$, we have $q^{k}-1 \neq 0$. Therefore we must have $1+q^{k}+$ $q^{2 k}+\ldots+q^{(e-1) k}=0$.
5.1.14. Lemma. Suppose $i_{r} \in I$ and $f(x)=\prod_{j \neq i_{r}}\left(1-\frac{r^{i r}-x}{r^{i r-r} r^{j}}\right) \in \mathbb{F}_{p}[x]$ with $r=q^{s}$ for some positive integer $s \not \equiv 0(\bmod e)$ and $q \in \mathbb{F}_{p}^{\times}$. Then $e^{-1} \in \mathbb{F}_{p}$ and

$$
f(x)=e^{-1}\left(1+\frac{x}{r^{i_{r}}}+\left(\frac{x}{r^{i_{r}}}\right)^{2}+\ldots+\left(\frac{x}{r^{i_{r}}}\right)^{e-1}\right) .
$$

Proof. By Lemma 5.1.3 we have $\operatorname{gcd}(e, p)=1$ and hence $e^{-1} \in \mathbb{F}_{p}$. Define $g(x)=e^{-1}\left(1+\frac{x}{r^{i r}}+\right.$ $\left.\left(\frac{x}{r^{i r}}\right)^{2}+\ldots+\left(\frac{x}{r^{i r}}\right)^{e-1}\right)$. We prove that $f(x)=g(x)$ by first comparing their roots. It is obvious that the roots of $f(x)$ are all of the form r^{j} with $j \in I$ and $j \neq i_{r}$. Then for any such r^{j},

$$
g\left(r^{j}\right)=e^{-1}\left(1+r^{j-i_{r}}+r^{2\left(j-i_{r}\right)}+\ldots+r^{(e-1)\left(j-i_{r}\right)}\right)=e^{-1}\left(1+r^{k}+r^{2 k}+\ldots+r^{(e-1) k}\right)
$$

for $k \equiv j-i_{r}(\bmod e)$ and $k \neq 0$. Because $r=q^{s}$ and $s \not \equiv 0(\bmod e)$, we must have $s k \not \equiv 0$ $(\bmod e)$. Therefore by Lemma 5.1.13 we have $g\left(r^{j}\right)=0$. Because $f(x)$ and $g(x)$ are both polynomials of degree $e-1$, they have $e-1$ roots, which means that $g(x)$ and $f(x)$ have the same roots. This yields that $f(x)=k g(x)$ for some $k \in \mathbb{F}_{p}$.

Now because $f\left(r^{i_{r}}\right)=1=g\left(r^{i_{r}}\right)$, we have $k=1$. Therefore $f(x)=g(x)$, which completes the proof.
5.1.15. Proposition. Suppose $q \neq 1$. For any $i_{r} \in I$, there exists $s \gg 0$ such that

$$
\sum_{\substack{\mathbf{j} \in I^{n} \\ j \\ j_{r}=i_{r}}} e(\mathbf{j})=e^{-1}\left(1+\frac{X_{r}^{p^{s}}}{q^{p^{s} \cdot i_{r}}}+\left(\frac{X_{r}^{p^{s}}}{q^{p^{s, i_{r}}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s}}}{q^{p^{s, i_{r}}}}\right)^{e-1}\right)
$$

Proof. By Lemma 5.1.5 the Proposition is equivalent to prove that

$$
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}=e^{-1}\left(1+\frac{X_{r}^{p^{s}}}{q^{p^{s} i_{r}}}+\left(\frac{X_{r}^{p^{s}}}{q^{p^{s} i_{r}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s}}}{q^{p^{s} i_{r}}}\right)^{e-1}\right) .
$$

By the definition of $L_{r}(\mathbf{i})$, because $I=\mathbb{Z} / e \mathbb{Z}$, if $N_{j}, N_{r}(\mathbf{i}) \gg 0$ then we have

$$
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})}=\prod_{\substack{j \in I \\ j \neq i_{r}}}\left(1-\left(\frac{q^{i_{r}}-X_{r}}{q^{i_{r}}-q^{j}}\right)^{N_{j}}\right)^{N_{r}(\mathbf{i})} .
$$

Suppose $N_{j}=p^{k}$ and $N_{r}(\mathbf{i})=p^{l}$ with $k, l \gg 0$. We have

$$
\begin{aligned}
L_{r}(\mathbf{i})^{N_{r}(\mathbf{i})} & =\prod_{j \neq i_{r}}\left(1-\left(\frac{q^{i_{r}}-X_{r}}{q^{i_{r}}-q^{j}}\right)^{p^{k}}\right)^{p^{l}} \\
& =\prod_{j \neq i_{r}}\left(1-\left(\frac{q^{i_{r}}-X_{r}}{q^{i_{r}}-q^{j}}\right)^{p^{k+l}}\right) \\
& =\prod_{j \neq i_{r}}\left(1-\frac{q^{p^{k+1} \cdot i_{r}}-X_{r}^{p^{k+l}}}{q^{p^{k+l_{i}}}-q^{p^{k+l_{j}}}}\right) \\
& =\prod_{j \neq i_{r}}\left(1-\frac{r^{i_{r}}-X_{r}^{p^{s}}}{r^{i_{r}}-r^{j}}\right),
\end{aligned}
$$

where $s=k+l$ and $r=q^{p^{s}} \in \mathbb{F}_{p}$. Notice that by Lemma 5.1.3, we have $p^{s} \not \equiv 0(\bmod e)$.
Now we set $f(x)=\prod_{j \neq i_{r}}\left(1-\frac{r^{\prime \prime}-x}{r^{i}-r^{j}}\right) \in \mathbb{F}_{p}[x]$. By Lemma 5.1.14 we have

$$
f(x)=e^{-1}\left(1+\frac{x}{r^{i_{r}}}+\left(\frac{x}{r^{i_{r}}}\right)^{2}+\ldots+\left(\frac{x}{r^{i_{r}}}\right)^{e-1}\right) .
$$

Therefore

$$
\begin{aligned}
L_{r}(\mathbf{i})^{N^{\prime}} & =f\left(X_{r}^{p^{s}}\right)=e^{-1}\left(1+\frac{X_{r}^{p^{s}}}{r^{i_{r}}}+\left(\frac{X_{r}^{p^{s}}}{r^{i_{r}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s}}}{r^{i_{r}}}\right)^{e-1}\right) \\
& =e^{-1}\left(1+\frac{X_{r}^{p^{s}}}{q^{p^{s, i_{r}}}}+\left(\frac{X_{r}^{p^{s}}}{q^{p^{s, i_{r}}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s}}}{q^{p^{s, i_{r}}}}\right)^{e-1}\right)
\end{aligned}
$$

which completes the proof.
Finally we can get an explicit expression of $e(\mathbf{i})$ for the non-degenerate H_{n}^{Λ} using Proposition 5.1.15 and the orthogonality of $e(\mathbf{i})$'s.
5.1.16. Theorem. Suppose $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in I^{n}$ and $q \neq 1$, we have

$$
e(\mathbf{i})=e^{-n} \prod_{r=1}^{n}\left(1+\frac{X_{r}^{p^{s}}}{q^{p^{s} \cdot i_{r}}}+\left(\frac{X_{r}^{p^{s}}}{q^{s^{s, i_{r}}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s}}}{q^{s \cdot i_{r}}}\right)^{e-1}\right)
$$

for $s \gg 0$.

5.2. Periodic property of x_{r} in degenerate case

In the degenerate cyclotomic Hecke algebra, when $e=p>0$ the algebra is finite. We know that $\operatorname{dim} H_{n}^{\Lambda}=\ell^{n} n$!. Hence over \mathbb{F}_{p} the algebra has $p \ell^{n} n$! elements. Therefore, by choosing $k>p \ell^{n} n$!, for any r we must be able to find k_{1}, k_{2} with $1 \leq k_{1}<k_{2} \leq k$ such that $x_{r}^{k_{1}}=x_{r}^{k_{2}}$. Therefore for any r we can find integers d_{r} and N such that for any $N^{\prime} \geq N, x_{r}^{N^{\prime}}=x_{r}^{N^{\prime}+d_{r}}$. We define the period of x_{r} to be the smallest positive integer d_{r} such that $x_{r}^{N}=x_{r}^{N+d_{r}}$ for some N. In this section we will give information on the period d_{r} and the minimal N such that $x_{r}^{N}=x_{r}^{N+d_{r}}$.

Recall that y_{r} is the generator of $\mathscr{R}_{n}^{\Lambda}$. By Brundan and Kleshchev [3, (3.21)], $y_{r}=\sum_{\mathbf{i} \in I^{n}}\left(x_{r}-\right.$ $\left.i_{r}\right) e(\mathbf{i})$ and by [3, Lemma 2.1], $y_{r}^{s}=0$ for $s \gg 0$.
5.2.1. Lemma. Suppose s is an integer. For any $r, x_{r}^{p^{s+1}}=x_{r}^{p^{s}}$ if and only if $y_{r}^{p^{s}}=0$.

Proof. For any $i \in I$, we have

$$
x_{r}^{p^{p+1}}-x_{r}^{p^{s}}=\left(x_{r}^{p^{s+1}}-i\right)-\left(x_{r}^{p^{s}}-i\right)=\left(x_{r}-i\right)^{p^{s+1}}-\left(x_{r}-i\right)^{p^{s}} .
$$

Suppose $y_{r}^{p^{s}}=\sum_{\mathbf{i} \in I^{n}}\left(x_{r}-i_{r}\right)^{p^{s}} e(\mathbf{i})=0$. Therefore for any $\mathbf{i},\left(x_{r}-i_{r}\right)^{p^{s}} e(\mathbf{i})=0$. Then for any $\mathbf{i} \in I^{n}$ with $i_{r}=i$ we have

$$
\left(x_{r}^{p^{s+1}}-x_{r}^{p^{s}}\right) e(\mathbf{i})=\left(x_{r}-i\right)^{p^{s+1}} e(\mathbf{i})-\left(x_{r}-i\right)^{p^{s}} e(\mathbf{i})=0
$$

Then as $\sum_{\mathbf{i} \in I^{n}} e(\mathbf{i})=1$, we have

$$
\left(x_{r}^{p^{s+1}}-x_{r}^{p^{s}}\right)=\sum_{\mathbf{i} \in I^{n}}\left(x_{r}^{p^{s+1}}-x_{r}^{p^{s}}\right) e(\mathbf{i})=0
$$

which shows that $x_{r}^{p^{p+1}}=x_{r}^{p^{s}}$.
Suppose $y_{r}^{p^{s}}=\sum_{\mathbf{i} \in I^{n}}\left(x_{r}-i_{r}\right)^{p^{s}} e(\mathbf{i}) \neq 0$, we must be able to find $\mathrm{a} \mathbf{i} \in I^{n}$ such that $\left(x_{r}-i_{r}\right)^{p^{s}} e(\mathbf{i}) \neq$ 0. Assume

$$
\left(x_{r}^{p^{s+1}}-x_{r}^{p^{s}}\right) e(\mathbf{i})=\left(x_{r}-i\right)^{p^{s+1}} e(\mathbf{i})-\left(x_{r}-i\right)^{p^{s}} e(\mathbf{i})=0
$$

which means that $y_{r}^{p^{s+1}} e(\mathbf{i})=y_{r}^{p^{s}} e(\mathbf{i}) \neq 0$. Because $p^{s+1}>p^{s}$ and $y_{r}^{p^{s}} e(\mathbf{i}) \neq 0$, we can find k where $y_{r}^{p^{s+1}+k} e(\mathbf{i})=0$ and $y_{r}^{p^{s}+k} e(\mathbf{i}) \neq 0$. But $y_{r}^{p^{s+1}+k} e(\mathbf{i})=y_{r}^{k} y_{r}^{p+1} e(\mathbf{i})=y_{r}^{k} y_{r}^{p^{s}} e(\mathbf{i})=y_{r}^{p^{s}+k} e(\mathbf{i}) \neq 0$, which leads to contradiction. Therefore we must have $\left(x_{r}^{p^{s+1}}-x_{r}^{p^{s}}\right) e(\mathbf{i})=\left(x_{r}-i\right)^{p^{s+1}} e(\mathbf{i})-\left(x_{r}-i\right)^{p^{s}} e(\mathbf{i}) \neq 0$, which yields that $x_{r}^{p^{s+1}} \neq x_{r}^{p^{s}}$.

Choose $s \gg 0$ such that $y_{r}^{s}=0$. By Lemma 5.2.1 we have $x_{r}^{p^{s}}=x_{r}^{p^{s+1}}=x_{r}^{p^{s+(p-1)} p^{s}}$. So the period d_{r} divides $p^{s}(p-1)$. Then $d_{r}=p^{m}$ or $p^{m}(p-1)$ with $m \geq 0$.
5.2.2. Lemma. Suppose d_{r} is the period of x_{r}. Then $(p-1) \mid d_{r}$.

Proof. When $p=2$ there is nothing to prove. Hence we set $p>2$ so that p is odd. Assume that $d_{r}=p^{m}$ for some m. Consider $\lambda=\left(r-1,1^{n-r+1}\right)$ and $\mathrm{t}=\mathrm{t}^{\lambda}$. Let $\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{n}\right)=\operatorname{res}(\mathrm{t})$, it is easy to see that $j_{r}=e-1=p-1$. Now \mathbf{j} is a residue sequence so that $e(\mathbf{j}) \neq 0$ by Corollary 3.6.3. So we must have $\sum_{\substack{i \in I^{n} \\ i_{r}=p-1}} e(\mathbf{i}) \neq 0$. Choose $s \gg m$. By Proposition 5.1.9,

$$
\begin{aligned}
L_{r}(\mathbf{j})^{N_{r}(\mathbf{j})} & =-\frac{x_{r}^{p^{s}}}{p-1}-\frac{x_{r}^{2 p^{s}}}{(p-1)^{2}}-\ldots-\frac{x_{r}^{(p-1) p^{s}}}{(p-1)^{p-1}} \\
& =x_{r}^{p^{s}}-x_{r}^{2 p^{s}}+x_{r}^{3 p^{s}}-\ldots-x_{r}^{(p-1) p^{s}}
\end{aligned}
$$

By assumption, because $s \gg m$, we have $x_{r}^{p^{s}}=x_{r}^{2 p^{s}}=\ldots=x_{r}^{(p-1) p^{s}}$. Therefore

$$
L_{r}(\mathbf{j})^{N_{r}(\mathbf{j})}=x_{r}^{p^{s}}-x_{r}^{2 p^{s}}+x_{r}^{3 p^{s}}-\ldots-x_{r}^{(p-1) p^{s}}=(1-1+1-\ldots-1) x_{r}^{p^{s}}=0 .
$$

But by Lemma 5.1.5 we have $L_{r}(\mathbf{j})^{N_{r}(\mathbf{j})}=\sum_{i_{r}=p-1} e(\mathbf{i}) \neq 0$, which leads to contradiction. Therefore $d_{r}=p^{m}(p-1)$ and hence $(p-1) \mid d_{r}$.

Now we know that $d_{r}=p^{m}(p-1)$ for some m. We can give a more specific value of m. Define l to be the integer such that $y_{r}^{p^{l}}=0$ and $y_{r}^{p^{l-1}} \neq 0$. First we introduce two Lemmas.
5.2.3. Lemma. Suppose $f(x) \in \mathbb{F}_{p}[x], h \in H_{n}^{\Lambda}$ and $e(\mathbf{i}) h \neq 0$. Then $f\left(x_{r}\right) e(\mathbf{i}) h=0$ only if $f\left(i_{r}\right)=0$.

Proof. We prove this Lemma by contradiction. Because \mathbb{F}_{p} is a field, $f\left(i_{r}\right)=0$ only if ($x-$ $\left.i_{r}\right) \mid f(x)$. Assume $f\left(x_{r}\right) e(\mathbf{i}) h=0$. Suppose $f\left(i_{r}\right) \neq 0$, we can write $f(x)=\left(x-i_{r}\right) g(x)+j$ with $j \neq 0$. Set $s \gg 0$ such that $\left(x_{r}-i_{r}\right)^{p^{s}} e(\mathbf{i})=0$. Because $f\left(x_{r}\right) e(\mathbf{i}) h=0$, we have

$$
f^{p^{s}}\left(x_{r}\right) e(\mathbf{i}) h=\left(\left(x_{r}-i_{r}\right) g\left(x_{r}\right)+j\right)^{p^{s}} e(\mathbf{i}) h=g^{p^{s}}\left(x_{r}\right)\left(x_{r}-i_{r}\right)^{p^{s}} e(\mathbf{i}) h+j \cdot e(\mathbf{i}) h=j \cdot e(\mathbf{i}) h \neq 0
$$

because $j \neq 0$ and $e(\mathbf{i}) h \neq 0$, which leads to contradiction. Therefore $f\left(x_{r}\right) e(\mathbf{i}) h \neq 0$ when $f\left(i_{r}\right) \neq 0$. This completes the proof.
5.2.4. Lemma. Suppose $k \in \mathbb{Z}$ and $t \in \mathbb{Z}$. For any $i \in I$ with $i \neq 0$, we have

$$
x^{k}-x^{k+p^{t}(p-1)}=f(x)(i-x)^{p^{t}}
$$

with $f(x)=\frac{x^{k}}{i}\left(1+\frac{x^{p^{p}}}{i}+\left(\frac{x^{p^{t}}}{i}\right)^{2}+\ldots+\left(\frac{x^{p^{t}}}{i}\right)^{p-2}\right)$.
Proof. Suppose $i \in I$ and $i \neq 0$. We have

$$
\begin{aligned}
x^{k}-x^{k+p^{t}(p-1)} & =x^{k}\left(1-x^{p^{t}(p-1)}\right)=x^{k}\left(1-\left(\frac{x^{p^{t}}}{i}\right)^{p-1}\right) \\
& =x^{k}\left(1+\frac{x^{p^{t}}}{i}+\left(\frac{x^{p^{t}}}{i}\right)^{2}+\ldots+\left(\frac{x^{p^{t}}}{i}\right)^{p-2}\right)\left(1-\frac{x^{p^{t}}}{i}\right) \\
& =\frac{x^{k}}{i}\left(1+\frac{x^{p^{t}}}{i}+\left(\frac{x^{p^{t}}}{i}\right)^{2}+\ldots+\left(\frac{x^{p^{t}}}{i}\right)^{p-2}\right)\left(i^{p^{t}}-x^{p^{t}}\right) \\
& =\frac{x^{k}}{i}\left(1+\frac{x^{p^{t}}}{i}+\left(\frac{x^{p^{t}}}{i}\right)^{2}+\ldots+\left(\frac{x^{p^{t}}}{i}\right)^{p-2}\right)(i-x)^{p^{t}} \\
& =f(x)(i-x)^{p^{t}}
\end{aligned}
$$

with $f(x)=\frac{x^{k}}{i}\left(1+\frac{x^{p^{t}}}{i}+\left(\frac{x^{p^{t}}}{i}\right)^{2}+\ldots+\left(\frac{x^{p^{t}}}{i}\right)^{p-2}\right)$. This completes the proof.
5.2.5. Proposition. Suppse l is the smallest non-negative integer such that $y_{r}^{p^{l}}=0$. Then the period of x_{r} is $d_{r}=p^{l}(p-1)$.
Proof. Suppose $d_{r}=p^{m}(p-1)$. By Lemma 5.2.1 we have $x_{r}^{p^{t+1}}=x_{r}^{p^{p}+p^{l}(p-1)}=x_{r}^{p^{l}}$. Therefore $d_{r} \mid p^{l}(p-1)$ which indicates that $m \leq l$. Now take $s \gg 0$, by Lemma 5.2.4 we have

$$
\left(x_{r}^{p^{s}}-x_{r}^{p^{s}+p^{l-1}(p-1)}\right) e(\mathbf{i})=f\left(x_{r}\right) e(\mathbf{i})\left(i_{r}-x_{r}\right)^{p-1}
$$

where $f(x)=\frac{\chi^{p^{s}}}{i_{r}}\left(1+\frac{\chi^{p^{l-1}}}{i_{r}}+\left(\frac{x^{p^{l-1}}}{i_{r}}\right)^{2}+\ldots+\left(\frac{x^{p^{l-1}}}{i_{r}}\right)^{p-2}\right) \in \mathbb{F}_{p}[x]$. It is easy to see that $f\left(i_{r}\right)=p-1 \neq 0$. By the definition of $l, e(\mathbf{i})\left(i_{r}-x_{r}\right)^{p-1} \neq 0$. Then by Lemma 5.2.3 we have

$$
\left(x_{r}^{p^{s}}-x_{r}^{p^{s}+p^{l-1}(p-1)}\right) e(\mathbf{i})=f\left(x_{r}\right) e(\mathbf{i})\left(i_{r}-x_{r}\right)^{p^{l-1}} \neq 0 .
$$

Therefore $x_{r}^{p^{s}}-x_{r}^{p^{s}+p^{l-1}(p-1)} \neq 0$, i.e. $x_{r}^{p^{s}} \neq x_{r}^{p^{s}+p^{l-1}(p-1)}$, which yields $m \geq l$. This shows that $m=l$ and $d_{r}=p^{l}(p-1)$.

Now we know that the period of x_{r} is $d_{r}=p^{l}(p-1)$, and we still need to find the smallest non-negative integer N such that $x_{r}^{N}=x_{r}^{N+d_{r}}$.
5.2.6. Proposition. Suppose $1 \leq r \leq n$ and we can find a residue sequence \mathbf{i} such that $i_{r}=0$. If N is the smallest non-negative integer such that $x_{r}^{N} \sum_{i_{r}=0} e(\mathbf{i})=0$, then $x_{r}^{N}=x_{r}^{N+d_{r}}$ and $x_{r}^{N-1} \neq x_{r}^{N-1+d_{r}}$.

Proof. By the definition of N, we can find \mathbf{i} with $i_{r}=0$ such that $x_{r}^{N-1} e(\mathbf{i}) \neq 0$ and $x_{r}^{N} e(\mathbf{i})=0$. Suppose $s \gg 0$. Because $d_{r} \geq 1$ we have

$$
\left(x_{r}^{N-1}-x_{r}^{N-1+d_{r}}\right) e(\mathbf{i})=x_{r}^{N-1} e(\mathbf{i})-x_{r}^{N-1+d_{r}} e(\mathbf{i})=x_{r}^{N-1} e(\mathbf{i}) \neq 0
$$

which indicates that $x_{r}^{N-1} \neq x_{r}^{N-1+d_{r}}$.
Next we will prove that $x_{r}^{N}=x_{r}^{N+d_{r}}$. Suppose $\mathbf{i} \in I^{n}$ with $i_{r}=0$, then

$$
\left(x_{r}^{N}-x_{r}^{N+d_{r}}\right) e(\mathbf{i})=\left(1-x_{r}^{d_{r}}\right) x_{r}^{N} e(\mathbf{i})=0
$$

by the definition of N. Now suppose $\mathbf{i} \in I^{n}$ with $i_{r} \neq 0$. By Proposition 5.2.5, $d_{r}=p^{l}(p-1)$ where $y_{r}^{p^{p}}=0$. So by Lemma 5.2.4.

$$
\left(x_{r}^{N}-x_{r}^{N+d_{r}}\right) e(\mathbf{i})=\left(x_{r}^{N}-x_{r}^{N+(p-1) p^{l}}\right) e(\mathbf{i})=f\left(x_{r}\right) e(\mathbf{i})\left(i_{r}-x_{r}\right)^{p^{l}}=f\left(x_{r}\right) e(\mathbf{i})\left(-y_{r}\right)^{p^{l}}=0
$$

with $f(x) \in \mathbb{F}_{p}[x]$. Therefore we have $\left(x_{r}^{N}-x_{r}^{N+d_{r}}\right) e(\mathbf{i})=0$ for any $\mathbf{i} \in I^{n}$ and hence $x_{r}^{N}=x_{r}^{N+d_{r}}$. This completes the proof.

Notice that in Proposition 5.2.6 we require $1 \leq r \leq n$ such that we can find a residue sequence \mathbf{i} with $i_{r}=0$. If no such residue sequence exists we obtain a different result.
5.2.7. Proposition. Suppose $1 \leq r \leq n$ and for any residue sequence \mathbf{i} we always have $i_{r} \neq 0$. Then $x_{r}^{d_{r}}=1$.

Proof. By Proposition 5.2.5, $d_{r}=p^{l}(p-1)$ where $y_{r}^{p^{l}}=0$. And for any $\mathbf{i} \in I^{n}$, we have $i_{r} \neq 0$. Then by Lemma 5.2.4,

$$
\left(1-x_{r}^{d_{r}}\right) e(\mathbf{i})=\left(1-x_{r}^{p^{\prime}(p-1)}\right) e(\mathbf{i})=f\left(x_{r}\right) e(\mathbf{i})\left(i_{r}-x_{r}\right)^{p^{l}}=f\left(x_{r}\right) e(\mathbf{i})\left(-y_{r}\right)^{p^{l}}=0,
$$

which shows that $x_{r}^{d_{r}} e(\mathbf{i})=e(\mathbf{i})$ for any $\mathbf{i} \in I^{n}$. Hence $x_{r}^{d_{r}}=1$.
Finally we give the main Theorem of this section by combining Proposition 5.2.5, Proposition 5.2.6 and Proposition 5.2.7.
5.2.8. Theorem. In the degenerate cyclotomic Hecke algebras, suppose lis the smallest nonnegative integer such that $y_{r}^{p^{L}}=0$ and N is the smallest nonnegative integer such that $x_{r}^{N} \sum_{i_{r}=0} e(\mathbf{i})=$ 0 . Then $x_{r}^{k}=x_{r}^{k+p^{m}(p-1)}$ if and only if $m \geq l$ and $k \geq N$.

5.3. Periodic property of X_{r} in non-degenerate case

In non-degenerate cyclotomic Hecke algebras, when $p>0$ the algebra is finite. So by the same reason as degenerate case, X_{r} must have a periodic property. We define the period d_{r} of X_{r} similarly as in degenerate cases. In this section we will give an analogues result for the non-degenerate case when $e>0$.

Recall by Brundan and Kleshchev [3, (3.21)], $y_{r}=\sum_{\mathbf{i} \in I^{n}}\left(1-q^{-i_{r}} X_{r}\right) e(\mathbf{i})$ and by [3, Lemma 2.1], $y_{r}^{s}=0$ for $s \gg 0$. It is easy to imply that $\left(X_{r}-q^{i_{r}}\right)^{s} e(\mathbf{i})=0$ for $s \gg 0$. We will use this fact without mention.
5.3.1. Lemma. Suppose $s \gg 0$ and $1 \leq r \leq n$. We have $X_{r}^{e p^{s}}=1$.

Proof. By Proposition 5.1.15, for any $i_{r} \in I$, we have

$$
\begin{aligned}
& \left(X_{r}-q^{i_{r}}\right)^{p^{s}} \sum_{\substack{\mathbf{j} \mid l^{n} \\
j_{r}=i_{r}}} e(\mathbf{j})=\left(X_{r}^{p^{s}}-q^{s^{s} \cdot i_{r}}\right) \sum_{\substack{\mathbf{j} \in I^{n} \\
j_{r}=i_{r}}} e(\mathbf{j}) \\
= & e^{-1}\left(X_{r}^{p^{s}}-q^{p^{s} \cdot i_{r}}\right)\left(1+\frac{X_{r}^{p^{s}}}{q^{p^{s} i_{r}}}+\left(\frac{X_{r}^{p^{s}}}{q^{s, i_{r}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s}}}{q^{s, i_{r}}}\right)^{e-1}\right) \\
= & e^{-1}\left(\frac{X_{r}^{e p^{s}}}{q^{(e-1) p^{s} \cdot i_{r}}}-q^{p^{s} \cdot i_{r}}\right)=0,
\end{aligned}
$$

which leads to

$$
\frac{X_{r}^{e p^{s}}}{q^{(e-1) p^{s} \cdot i_{r}}}=q^{p^{s} \cdot i_{r}} \Rightarrow X_{r}^{e e^{s}}=q^{e p^{s} \cdot i_{r}}=1
$$

because $q^{e}=1$.
Define d_{r} to be the period of X_{r}. By Lemma 5.3.1 we have $d_{r} \mid e p^{s}$. Therefore $d_{r}=e p^{m}$ with $m \geq 0$ or $d_{r}=p^{m}$ with $m \geq 1$. In the following Lemma we are going to give more information about the form of d_{r}.
5.3.2. Lemma. Suppose d_{1} is the period of X_{1}. We have $d_{1}=p^{m}$ if $\Lambda=\ell \Lambda_{0}$.

Proof. By (1.2.7) we have $\left(X_{1}-q^{0}\right)^{\ell}=\left(X_{1}-1\right)^{\ell}=0$. Choose s such that $p^{s} \geq \ell$, we have $\left(X_{1}-1\right)^{p^{s}}=X_{1}^{p^{s}}-1=0$, which means $X_{1}^{p^{s}}=1$. Hence $d_{1} \mid p^{s}$ and therefore $d_{1}=p^{m}$.
5.3.3. Remark. When we set $r=1$ and $\Lambda=\ell \Lambda_{0}$, it means that $e(\mathbf{i})=0$ if $i_{r}=i_{1} \neq 0$. So Lemma 5.3.2 is actually:

Suppose $1 \leq r \leq n$ and for any $\mathbf{i} \in I^{n}, e(\mathbf{i})=0$ if $i_{r} \neq 0$. Then $d_{r}=p^{m}$.
because the only possible r and Λ for such condition is giving in Lemma 5.3.2.
5.3.4. Lemma. Suppose d_{r} is the period of X_{r}. We have e $\mid d_{r}$ if $r>1$ or $r=1$ and $\Lambda \neq \ell \Lambda_{0}$.

Proof. We prove the Lemma by contradiction. Assume that $d_{r}=p^{m}$. Choose $i_{r} \in I$ with $i_{r} \neq 0$. Because $r>1$ or $r=1$ and $\Lambda \neq \ell \Lambda_{0}$ we must can find $\mathbf{j} \in I^{n}$ with $j_{r}=i_{r}$ with $e(\mathbf{j}) \neq 0$. Then $\sum_{\substack{\mathbf{j} \in I^{n} \\ j_{r} i_{r}}} e(\mathbf{j}) \neq 0$. Choose $s \gg m$. By Lemma 5.1.3. $\operatorname{gcd}(e, p)=1$. Then because $i_{r} \neq 0, p^{s} \cdot i_{r} \neq 0$ $(\bmod e)$. Then by Lemma 5.1.13 and Proposition 5.1.15, we have

$$
\begin{aligned}
\sum_{\substack{\mathbf{j} \mid I^{n} \\
j_{r} i_{r}}} e(\mathbf{j}) & =e^{-1}\left(1+\frac{X_{r}^{p^{s}}}{q^{p^{s} \cdot i_{r}}}+\left(\frac{X_{r}^{p^{s}}}{q^{p^{s} \cdot i_{r}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s}}}{q^{p^{s} \cdot i_{r}}}\right)^{e-1}\right) \\
& =e^{-1}\left(1+\frac{1}{q^{s \cdot i_{r}}}+\frac{1}{q^{2 p^{s} \cdot i_{r}}}+\ldots+\frac{1}{q^{(e-1) p^{s} \cdot i_{r}}}\right) X_{r}^{p^{s}} \\
& =\frac{e^{-1}}{q^{(e-1) p^{s, i_{r}}}}\left(1+q^{p^{s} \cdot i_{r}}+\left(q^{p^{s} \cdot i_{r}}\right)^{2}+\ldots+\left(q^{p^{s} \cdot i_{r}}\right)^{e-1}\right) X_{r}^{p^{s}}=0,
\end{aligned}
$$

which leads to contradiction. Hence $d_{r} \neq p^{m}$ and therefore $e \mid d_{r}$.
Now we know that $d_{r}=p^{m}$ when $r=1$ and $\Lambda=\ell \Lambda_{0}$ and $d_{r}=e p^{m}$ otherwise. In the rest of the section we will find the value of m. First we give the simpler case.
5.3.5. Lemma. Suppose $s \geq 0$ and $\Lambda=\ell \Lambda_{0}$. We have $X_{1}^{p^{s}}=1$ if and only if $y_{1}^{p^{s}}=0$.

Proof. Suppose $y_{1}^{p^{s}}=0$. For any $\mathbf{i} \in I^{n}$,

$$
y_{1}^{p^{s}} e(\mathbf{i})=\left(1-X_{1}\right)^{p^{s}} e(\mathbf{i})=e(\mathbf{i})-X_{1}^{p^{s}} e(\mathbf{i})=0 \quad \Rightarrow \quad X_{1}^{p^{s}} e(\mathbf{i})=e(\mathbf{i}) .
$$

Therefore $X_{1}^{p^{s}}=1$.
Suppose $y_{1}^{p^{s}} \neq 0$. Then we can find $\mathbf{i} \in I^{n}$ with $y_{1}^{p^{s}} e(\mathbf{i}) \neq 0$. So

$$
y_{1}^{p^{s}} e(\mathbf{i})=\left(1-X_{1}\right)^{p^{s}} e(\mathbf{i})=e(\mathbf{i})-X_{1}^{p^{s}} e(\mathbf{i}) \neq 0 \quad \Rightarrow \quad X_{1}^{p^{s}} e(\mathbf{i}) \neq e(\mathbf{i}) .
$$

Therefore $X_{1}^{p^{s}} \neq 1$.
Now we consider the case when $r \neq 1$ or $r=1$ and $\Lambda \neq \ell \Lambda_{0}$.
5.3.6. Lemma. For any non-negative integer s, we can find $k \gg s$ such that $q^{p^{k}}=q^{p^{s}}$ and $p^{k-s} \equiv 1(\bmod e)$.

Proof. By Lemma 5.1.3, we can find l such that $p^{l} \equiv 1(\bmod e)$. Because $q^{e}=1$, choose $t \gg 0$ and set $k=s+t l$, we have $q^{p^{k}}=q^{p^{s+l}}=q^{p^{s} p^{t}}=\left(q^{p^{t}}\right)^{p^{s}}=q^{p^{s}}$. Moreover, $p^{k-s}=p^{t l} \equiv 1^{t}$ $(\bmod e) \equiv 1(\bmod e)$. This completes the proof.

Now we are ready to give more information of d_{r}.
5.3.7. Lemma. We have $X_{r}^{e p^{s}}=1$ for some s only if $y_{r}^{p^{s}}=0$.

Proof. Fix s such that $X_{r}^{e p^{s}}=1$. By Lemma 5.3.6, we can find $k \gg 0$ such that $q^{p^{s+k}}=q^{p^{s}}$ and $p^{k} \equiv 1(\bmod e)$. Therefore $p^{s+k}-p^{s}=p^{s}\left(p^{k}-1\right)$ and hence $e p^{s} \mid p^{s}\left(p^{k}-1\right)$. So $X_{r}^{p^{s+k}}=X_{r}^{p^{s}}$.

Then for any $i_{r} \in I$, by Proposition 5.1.15, we have

$$
\begin{aligned}
\sum_{\mathbf{j} \in I^{n}}^{j_{r}=i_{r}}
\end{aligned} e(\mathbf{j})=e^{-1}\left(1+\frac{X_{r}^{p^{s+k}}}{q^{p^{s+k \cdot i_{r}}}}+\left(\frac{X_{r}^{p^{s+k}}}{q^{p^{s+k} i_{i}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s+k}}}{q^{p^{s+k} i_{i}}}\right)^{e-1}\right) .
$$

Therefore,

$$
\begin{aligned}
\left(X_{r}-q^{i_{r}}\right)^{p^{s}} \sum_{\substack{\mathbf{j} \in I^{n} \\
j_{r} i_{r}}} e(\mathbf{j}) & =e^{-1}\left(X_{r}-q^{i_{r}}\right)^{p^{s}}\left(1+\frac{X_{r}^{p^{s}}}{q^{p^{s} \cdot i_{r}}}+\left(\frac{X_{r}^{p^{s}}}{q^{s \cdot i_{r}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s}}}{q^{p^{s} \cdot i_{r}}}\right)^{e-1}\right) \\
& =e^{-1}\left(X_{r}^{p^{s}}-q^{p^{s} \cdot i_{r}}\right)\left(1+\frac{X_{r}^{p^{s}}}{q^{p^{s} \cdot i_{r}}}+\left(\frac{X_{r}^{p^{s}}}{q^{s \cdot i_{r}}}\right)^{2}+\ldots+\left(\frac{X_{r}^{p^{s}}}{q^{s \cdot i_{r}}}\right)^{e-1}\right) \\
& =e^{-1}\left(\frac{X_{r}^{e p^{s}}}{q^{(e-1))^{s \cdot i_{r}}}}-q^{p^{s} \cdot i_{r}}\right)=e^{-1}\left(\frac{1}{q^{(e-1))^{s \cdot i_{r}}}}-q^{p^{s} \cdot i_{r}}\right)=0
\end{aligned}
$$

because $\frac{1}{q^{(e-1) p^{s, i t}}}=q^{p^{s} \cdot i_{r}}$. This means that $y_{r}^{p^{s}} \sum_{\substack{\mathbf{j} \in I^{n} \\ j_{r}=i_{r}}} e(\mathbf{j})=\left(1-q^{-i_{r}} X_{r}\right)^{p^{s}} \sum_{\substack{\mathbf{j} \in I^{n} \\ j_{r}=i_{r}}} e(\mathbf{j})=0$ for any $i_{r} \in I$. Hence $y_{r}^{p^{s}}=0$.
5.3.8. Lemma. Suppose $y_{r}^{p^{s}}=0$ for some s. Then we have $X_{r}^{e p^{s}}=1$.

Proof. Fix s such that $y_{r}^{p^{s}}=0$. For any $\mathbf{i} \in I^{n}$, by Lemma 5.3.6 we can choose $k \gg s$ such that $q^{p^{k}}=q^{p^{s}}$. Then

$$
\begin{aligned}
\left(X_{r}^{p^{k}}-X_{r}^{p^{s}}\right) e(\mathbf{i}) & =\left(X_{r}^{p^{k}}-q^{p^{s} \cdot i_{r}}-X_{r}^{p^{s}}+q^{p^{s} \cdot i_{r}}\right) e(\mathbf{i}) \\
& =\left(X_{r}^{p^{k}}-q^{p^{k^{k} \cdot i_{r}}}\right) e(\mathbf{i})-\left(X_{r}^{p^{s}}-q^{s^{s} \cdot i_{r}}\right) e(\mathbf{i}) \\
& =\left(X_{r}-q^{i_{r}}\right)^{p^{k}} e(\mathbf{i})-\left(X_{r}-q^{i_{r}}\right)^{p^{s}} e(\mathbf{i})=q^{p^{k} \cdot i_{r}}\left(-y_{r}\right)^{p^{k}} e(\mathbf{i})-q^{p^{s} \cdot i_{r}}\left(-y_{r}\right)^{p^{s}} e(\mathbf{i})=0 .
\end{aligned}
$$

So $\left(X_{r}^{p^{k}}-X_{r}^{p^{s}}\right) e(\mathbf{i})=0$ for any $\mathbf{i} \in I^{m}$. Therefore we must have $X_{r}^{p^{k}}-X_{r}^{p^{s}}=0$ for some $k \gg 0$. Hence

$$
X_{r}^{p^{k}}-X_{r}^{p^{s}}=X_{r}^{p^{s}}\left(X_{r}^{p^{k}-p^{s}}-1\right)=0 \quad \Rightarrow \quad X_{r}^{p^{k}-p^{s}}=1,
$$

which implies that $d_{r} \mid p^{k}-p^{s}$. We know that $d_{r}=e p^{m}$ for some m and $p^{k}-p^{s}=p^{s}\left(p^{k-s}-1\right)$. It is obvious that $m \leq s$. Hence $X_{r}^{e p^{s}}=1$.

The next Corollary follows straightforward by combining Lemma 5.3.7 and Lemma 5.3.8
5.3.9. Corollary. Suppose $s \geq 0, r=1$ and $\Lambda \neq \ell \Lambda_{0}$. We have $X_{r}^{e p^{s}}=1$ if and only if $y_{r}^{p^{s}}=0$.

Finally, combining all the results above, we have the final Theorem.
5.3.10. Theorem. In non-degenerate H_{n}^{Λ}, we have $X_{r}^{d_{r}}=1$ with

$$
d_{r}= \begin{cases}p^{m}, & \text { if } r=1 \text { and } \Lambda=\ell \Lambda_{0} \\ e p^{m}, & \text { otherwise } .\end{cases}
$$

if and only if $y_{r}^{p^{m}}=0$.
Proof. The Theorem follows straightforward by Lemma 5.3.2, Lemma 5.3.4, Lemma 5.3.5 and Corollary 5.3.9.

References

[1] S. Ariki, On the classification of simple modules for cyclotomic Hecke algebras of type $G(m, 1, n)$ and Kleshchev multipartitions, Osaka J. Math., 38 (2001), 827-837.
[2] S. Ariki and A. Mathas, The number of simple modules of the Hecke algebras of type $G(r, 1, n)$, Math. Zeit., 233 (2000), 601-623.
[3] J. Brundan and A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math., 178 (2009), 451-484.
[4] _, Graded decomposition numbers for cyclotomic Hecke algebras, Adv. Math., 222 (2009), 1883-1942.
[5] J. Brundan, A. Kleshchev, and W. Wang, Graded Specht modules, J. Reine Angew. Math., 655 (2011), 61-87. arXiv:math.RT/0901.0218.
[6] J. Brundan and C. Stroppel, Highest weight categories arising from Khovanov's diagram algebra III: category \mathscr{O}, Represent. Theory, 15 (2011), 170-243. arXiv.RT/arXiv:0812.1090.
[7] J. J. Graham and G. I. Lehrer, Cellular algebras, Invent. Math., 123 (1996), 1-34.
[8] I. Groonowski, Affine $\widehat{s l}_{p}$ controls the modular representation theory of the symmetric group and related algebras. Math.RT/9907129, 1999.
[9] J. Hu and A. Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A, Adv. Math., 225 (2010), 598-642.
[10] _ , Graded induction for Specht modules, IMRN, 2012 (2012), 1230-1263. Doi: 10.1093/imrn/rnr058, arXiv:1008.1462.
[11] S.-J. Kang and M. Kashiwara, Categorification of highest weight modules via khovanov-lauda-rouquier algebras, arxiv: 1102.4677.
[12] M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups II, Trans. Amer. Math. Soc., 363 (2008), 2685-2700. arXiv:0804.2080.
[13] _, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory, 13 (2009), 309-347.
[14] A. Kleshchev, A. Mathas, and A. Ram, Universal Specht modules for cyclotomic Hecke algebras, preprint. arXiv:1102.3519.
[15] A. Kleshchev and A. Ram, Homogeneous representations of Khovanov-Lauda algebras, J. Eur. Math. Soc. (JEMS), 12 (2010), 1293-1306.
[16] _ Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words, Math. Ann., 349 (2011), 943-975.
[17] A. S. Kleshchev, Linear and projective representations of symmetric groups, CUP, 2005.
[18] S. König and C. Xi, Affine cellular algebras, Adv. Math., no. 1 (2012), 139-182.
[19] A. D. Lauda and M. Vazirani, Crystals from categorified quantum groups, Adv. Math., 2 (2011), 803-861.
[20] A. Mathas, Hecke algebras and Schur algebras of the symmetric group, Univ. Lecture Notes, 15, Amer. Math. Soc., 1999.
[21] __, Seminormal forms and Gram determinants for cellular algebras, J. Reine Angew. Math., 619 (2008), 141-173. With an appendix by M. Soriano.
[22] P. J. McNamara, Finite dimensional representations of khovanov-lauda-rouquier algebras i: Finite type, arxiv: 1207.5860.
[23] G. E. Murphy, The idempotents of the symmetric group and Nakayama's conjecture, J. Algebra, 81 (1983), 258-265.
[24] __, The representations of Hecke algebras of type $\mathbf{A}_{\mathbf{n}}$, J. Algebra, 173 (1995), 97-121.
[25] R. Rouquier, 2-Kac-Moody algebras, preprint 2008. arXiv:0812.5023.
[26] M. Varagnolo and E. Vasserot, Canonical bases and Khovanov-Lauda algebras, preprint 2009. arXiv:0901.399.
[27] B. Webster, Knot invariants and higher representation theory i: diagrammatic and geometric categorification of tensor products, preprint. arXiv:math.RT/1001.2020.

