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Introduction

Khovanov and Lauda [13,12] and Rouquier [25] have introduced a remarkable new family
of algebras Z,, the quiver Hecke algebras, for each oriented quiver, and they showed that it
can categorify the positive part of the enveloping algebras of the corresponding quantum groups.
The algebras %, are naturally Z-graded. Varagnolo and Vasserot [26] proved that, under this
categorification, the canonical basis corresponds to the image of the projective indecomposable
modules of the Grothendieck rings of the quiver Hecke algebras when the Cartan matrix is
symmetric.

The algebra %, is infinite dimensional and for every highest weight vector in the corre-
sponding Kac-Moody algebra there is an associated finite dimensional ’cyclotomic quotient’
AN of #,. The cyclotomic quiver algebras #Z» were originally defined by Khovanov and
Lauda [13,12] and Rouquier [25] who conjectured that these algebras should categorify the ir-
reducible representations of the corresponding quantum group. Lauda and Vazirani [19] proved
that, up to shift, the simple %,-modules are indexed by the vertices of the corresponding crystal
graph, and Kang and Kashiwara [11] proved the full conjecture by showing that the images of
the projective irreducible modules in the Grothendieck ring Rep(%") correspond to the canon-
ical basis of the corresponding highest weight module. Prior to this work, Brundan and Strop-
ple [6] proved this conjecture in the special the case when A is a dominat weight of level 2 and
I' is the linear quiver and Brundan and Kleshchev [4] established the conjecture for all A when
I" is a quiver of type A.

Brundan and Kleshchev [3] proved that every degenerate and non-degenerate cyclotomic
Hecke algebra H® of type G(r, 1,n) over a field is isomorphic to a cyclotomic quiver Hecke
algebra Z” of type A. They did this by constructing an explicit isomorphisms between these
two algebras.

The algebras #Z” are defined by generators and relations and so these algebras are defined
over any integral domain. Let I' be the quiver of type A., for e € {0,2,3,4,...}. Hu and
Mathas [9] defined a homogeneous basis {4} of the cyclotomic quiver algebras %,’l\ (see
below), and they showed that %’,’} is Z-free whenever e = 0 or e is invertible in the
ground ring. They asked whether the algebra Z* is always Z-free. Kleshchev-Mathas-Ram [14]
defined Z-free Specht modules for the cyclotomic KLR algebras of type A (and the affine KLR
algebras of type A), but that the existence of these modules does not imply that the cyclotomic
KLR algebras are torsion free. The main result of this thesis shows that this is always the case.
More precisely, we prove the following.

0.0.1. Theorem. Let Z™(Z) be a cyclotomic Khovanov-Lauda-Rouquier algebra of type A over
Z, where A is a dominant weight of height €. Then Z™(Z) is a graded cellular algebra, with re-
spect to the dominance order, with homogeneous cellular basis {{rs; | 1 € 9;\ and s,t € Std(1)}.
In particular, ZN(Z) is Z-free of rank €"n!.

If O is any integral domain then Z(0) = #NZ) ®; O, so it follows that Z2(0) is free
over 0.

The proof of our main theorem is long and technical, requiring a delicate multistage induc-
tion. Fortunately, by [9, Theorem 5.14] we may assume that e # 2. Even though our arguments
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2 INTRODUCTION

should apply in this case, being able to assume that e # 2 dramatically simplifies our arguments
because the quiver of type A, is simply laced when e # 2.

The starting point for our arguments is the observation that the definition of Hu and Mathas’
the homogeneous elements s makes sense over any ring. Consequently, the linearly indepen-
dents elements {ys} span a Z-free submodule R,’l\ of %,IA To prove our Main Theorem it is
therefore enough to show that R? is closed multiplication by the generators of % and that the
identity element of Z” belongs to R".

The algebra Z” is generated by elements y,, ¢, and e(i), where | < r < n, 1 < s <n
and i € (Z/eZ)". These three classes of generators must all be treated separately. The cellular
basis element g is indexed by two standard A-tableaux where A is a multipartition of n; the
definitions of these terms are recalled in Chapter 1. We argue by simultaneous induction on ,
and on the lexicographic orderings on the set of multipartitions, to show that multiplication by
the KLLR generators always sends /¢ to a Z-linear combination of terms ,, which are larger in
the lexicographic order. Multiplication by y, is the hardest case, partly because once this case
is understood it can be used to understand the action of ¢, and e(i) on the ¥-basis of Z.

After we have proved [Theorem 0.0.1) we obtain a graded cellular basis of Z~. We then
extend it to obtain a graded cellular basis of %,, which indicates that %, is an affine graded
cellular algebra. Hence we can use similar argument to Graham-Lehrer [7] to give a complete
set of non-isomorphic graded irreducible %,-modules. Koenig and Xi [18] introduced the no-
tion of affine cellular algebras and they have shown that the affine Hecke algebra of type A is
affine cellular. They gave a different approach to classify the irreducible representation of affine
Hecke algebras.

Finally, we work with the Jucys-Murphy elements of cyclotomic Hecke algebras of type A
for e > 0 and p > 0 in both degenerate and non-degenerate cases. We have known that the
cyclotomic KLR algebras are isomorphic to cyclotomic Hecke algebras of type A, our first task
is to express e(i)’s in Z2 using Jucys-Murphy elements in explicit form, and then we show that
the Jucys-Murphy elements have certain periodic property, i.e. we can find n and d such that
X" = x4 and we give information about the minimal values of n and d.

In more detail, this thesis is organized as follows. In Chapter 1 we summarise the back-
ground material from the representation theory of the cyclotomic Khovanov-Lauda-Rouquier
algebras that we need, including the theory of (graded) cellular algebras and the combinatorics
of multipartitions and tableaux. In Chapter 2 considers the special case where A is a multicom-
position which has at most two rows. Once this case is understood we are able to show for an
arbitary multipartition A that Y.y, is a Z-linear combination of higher terms, where t! is the
‘initial’ A-tableau. Chapter 3 begins by proving, again by induction, that Yy, is a linear com-
bination of bigger terms in R?. By considering the Garnir tableau of two-rowed multipartition
we then show that ¥, can be written in the required form. This result is then extended to
multipartitions of arbitrary shape. Finally, we deduce that e(i) € R?, for all i € (Z/eZ)", which
completes the proof of our main result. In Chapter 4 we define a sequence of weights (A®) and
using it to extend the graded cellular basis of Z2 to %, and hence generate a graded cellular
basis for Z,. Then using similar arguments as Graham-Lehrer [7] we give a complete set of
non-isomorphic graded simple %,-modules. In Chapter 5 first we give an expression of e(i)
using Jucys-Murphy elements and then simplify the expression to an explicit form. Finally us-
ing the nilpotency properties of y,’s in Z* and our explicit form of e(i)’s we prove the periodic
property of the Jucys-Murphy elements in both degenerate and non-degenerate cases.

Finally, we remark that the calculations in Chapters 2 and 3 gives an algorithm inductively
for multiplying y, and ¥ to .
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CHAPTER 1

Khovanov-Lauda-Rouquier Algebras

In this chapter we are going to introduce the necessary background for our work. First
we will define our principal object of study — the (cyclotomic) Khovanov-Lauda-Rouquier
algebras Z». Then we give a brief introduction to (graded) cellular algebras and symmetric
groups. Finally after explaining tableaux combinatorics we describe a graded cellular basis for
the cyclotomic KLR algebra, found by Hu and Mathas [9].

1.1. The cyclotomic Khovanov-Lauda-Rouquier algebras

Fix an integer e € {0,2,3,4...} and I = Z/eZ. Let I, be the oriented quiver with vertex set
I and directed edges i — i + 1, for i € I. Thus, I', is the quiver of type A, if e = 0 and if e > 2
then it is a cyclic quiver of type AD:

2 4
3 2
5 2
00/\>01
0 1 0 . 0 |
e=5

e=2 e=3 e=4 =
Let (a; ;)i jer be the symmetric Cartan matrix associated with I',, so that
2, ifi =j,
0, ifi#j=+1,
-1, ife#2andi=j+1,
-2, ife=2andi=j+1.

To the quiver I, attach the standard Lie theoretic data of a Cartan matrix (a;;); je;, funda-
mental weights {A;|i € I}, positive weights P, = Y ;.;; NA;, positive roots Q, = @ia Nea; and
let (-, -) be the bilinear form determined by

(ai,aj) = 4aij and (Ai,aj) = 61']', for l,] el
Fix aweight A = ) ,.; a;A; € P,. Then A is a weight of level /(A) = € = },;; a;. A multicharge
for A is a sequence ko = (ki, ..., k) € I such that

AN,a)=a;=#{1<s<{|k;=i (mod e)}

foranyi e I
The following algebras were introduced by Khovanov and Lauda and Rouquier who defined
KLR algebras for arbitrary oriented quivers.

1.1.1. Definition (Khovanov and Lauda [13,12] and Rouquier [25])). Suppose O is an integral
ring and n is a positive integer. The Khovanov-Lauda-Rouquier algebra, %,(0) of type I, is
the unital associative O'-algebra with generators

Wrs U B9 UL eG) e I



1.1. THE cycLotoMic KHOVANOV-LAUDA-ROUQUIER ALGEBRAS 5

and relations

(1.1.2) e(e(y) = oye(h), Diere(i) =1,
(1.1.3) yre@) = ey, (Z’ré(i) = é(Sr‘i)fﬁr, 95 = 9shrs
(L.1.4) l&r&s = ysl/,}r’ l'fS Frr+1,
(1.1.5) lzr'j’s = l/A/le’r, l.fll"— s> 1,
N .0, + Ded), ifi, = i1,
(1.1.6) Yy Prae() = (ij[/A . v f o
yrd/re(l)a lflr F Ll
A 2 Age ArAr + l)é i)a i ir = ir ’
(1.1.7) Ve (i) = (AwAyA . ( f o
l//ryre(l)’ lflr F 141
07 l,flr = ir+17
é(i)’ l,flr * ir+l * 1’
(1.1.8) gre(i) = { a1 — 9r)ed), ife#2and i, =i + 1,
@r - j}r+1)é(i)a lfe #2and i =i, — 1,
@r+1 - yr)(j\)r - j\;r+1)é(i)a ife =2 and ir+l = ir +1
(@Hl&rlﬁrﬂ + De(), ife #2and iy =i =iy — 1,
(wr+ll//rlf//r+1 - 1)é(i), l:fe # 2 and ir+2 = ir = ir+l + 1,
(119) lﬁrlpr+1¢ré(i) = (wr+llﬁrwr+l + j}r
_zj\ir+l +yr+2)é(i)7 l:fe =2andipy =iy =iy + 1,
Ul eQ), otherwise.

fori,j € I" and all admissible r and s. Moreover, %,(0O) is naturally Z-graded with degree
function determined by

dege(i) =0, degy, =2 and degfrie(i) = —a; ; .,
forl<r<ml1<s<nandiel

Notice that the relations depend on the quiver I',. By [9, Theorem 5.14], if & is a commu-
tative integral domain and suppose either e = 0, e is non-zero prime, or that e-1, is invertible in
O, ZMO) is an O-free algebra.

Following Khovanov and Lauda [13]], we will frequently use diagrammatic analogues of
the relations of %,(€) in order to simplify our calculations. To do this we associate to each
generator of %, (0) an I-labelled decorated planar diagram on 2n points in the following way:

2 in n =1 i el in n Is—1 is s

e(i) = o Yre(d) = , and  ye(i) = :

foriel",1 <r<mnand1 < s <n. The r-th string of the diagram is the string labelled with i,.
Diagrams are considered up to isotopy, and multiplication of diagrams is given by concate-
nation, subject to the relations (I.1.2)—(1.1.9). In more detail, if D, and D, are two diagrams
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then the diagrammatic analogue of the relation e(i)e(j) = dje(i) is

That is, D; - D, = 0 unless the labels of the strings on the bottom of D match the corresponding
labels on the top of the strings in D, in which case we just concatenate the two diagrams.
Multiplication by y, simply adds a decorative dot to the r-th string, reading left to right, so
relations (I.1.3)—(1.1.5)) become self when written in terms of diagrams. Ignoring the extrane-
ous strings on the left and right, and setting i = i, and j = i,,, the diagrammatic analogue of

relations (1.1.6) and (1.1.7) is

(1.1.10) >< - >< =6, - -

Similarly, if e # 2 then relation (I.1.8]) becomes

0, ifi = j,
» ifi#j+1,
(1.1.11) =
+ F , ifj=ix1.

and if e # 2 then the diagrammatic analogue of relation (I.1.9)) is

(1.1.12) - = 0ix(0ijs1 — 0ij-1)

Using the relations in Z,(0) it is easy to verify the following identity which we record for
future use:

(1.1.13) e@FSE, b = 2,355,

for any i. Clearly it is enough to prove this relation when & = 1 when, diagrammatically, this
identity takes the form

(1.1.14) =

locally on the r and r + 1-th strings and where we seti = i, and j = i,,;.
Three more easy, and very useful, consequences of the relations are the following:
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(1.1.15)

(1.1.16) ?

Note that (I.1.16) follows by multiplicating (I.I.15) by y,.; and expanding.
In the rest of the thesis we will play around with these diagrammatic notations a lot. In order
to make the reader easy to follow our calculation we will use dotted strands to represent moving

strands and arrows to represent moving dots. If we are going to move a dot then we will also
write the strand which the dot is on dotted so the reader can see the arrow clearly. For example,

we will write
3 0 1 1 2 1 3 0 1

g

g

(1.1.17) BB ;g

12 1 3 0 1 12 1

Y

to signify the application of relation (L.1.12))

to signify the application of relation (T.1.14).
We can define a linear map *: %, — %, by swapping the diagrams of %, up-side-down.
For example,

ES
o 1 3 2 2 30 2 1 2

It is obvious that * is an anti-isomorphism and it preserves the generators of %Z,,.

Fix a weight A = 3,; a;A; with a; € N. Let NA(0) be the two-sided ideal of %, generated
by the elements with form e(i)y(lA’ai1 ', We can now define the main object of study in this thesis,
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the cyclotomic Khovanov-Lauda-Rouquier algebras, which were introduced by Khovanov and
Lauda [[13, Section 3.4].

1.1.18. Definition. The cyclotomic Khovanov-Lauda-Rougquier algebras of weight A and type
[, is the algebra ZM(0) = Z,(0O)|NMO).

Therefore, if we write e(i) = (i) + N0), y, = 9, + NNO) and ¢, = i, + NMNO), the
algebra Z(0) is the unital 0-algebra generated by

{wl’”-’wn—l} U {y1,~~-,)7n} U{e(i) | i € In}
subject to the relations (I.1.2)—(1.1.9) of %,(©) together with the additional relation

(1.1.19) ey = 0, for eachi € I".

1.2. The (graded) cellular algebras and the symmetric groups

Following Graham and Lehrer [7]], we now introduce the graded cellular algebras. Reader
may also refer to Hu-Mathas [9]. Let & be a commutative ring with 1 and let A be a unital
O-algebra.

1.2.1. Definition. A graded cell datum for A is a triple (A, T, C,deg) where A = (A,>) is a
poset, either finite or infinite, and T(A) is a finite set for each A € A, deg is a function from
L1, TQ) to Z, and
c:| [rayxTy—a
AeA

is an injective map which sends (s, 1) to a', such that:

(a) {agt |Ae A, s, t€T(A)}isan O-free basis of A;

(b) for any r € A and t € T(Q), there exists scalars c{(r) such that, for any s € T(d),

aler = Z c/(r)al, mod A™
veT ()
where A" is the O-submodule of A spanned by {dy >,y eT)};
(c) the O-linear map *:A — A which sends agt to afs, forall A € A and s,t € T(Q), is an
anti-isomorphism of A.
(d) each basis element al, is homogeneous of degree deg al, = deg(s) +deg(t), for 1 € A and
all s,t € T(A).

If a graded cell datum exists for A then A is a graded cellular algebra. Similarly, by
forgetting the grading we can define a cell datum and hence a cellular algebra.

Suppose A is a graded cellular algebra with graded cell datum (A, T, C,deg). For any 4 € A,
define A** to be the -submodule of A spanned by

(¢ uzAsteT().

Then A>* is an ideal of A>! and hence A>'/A>* is a A-module. For any s € T(1) we define
C? to be the A-submodule of A>'/A>* with basis { a, + A>* |t € T(1)}. By the cellularity of A
we have C{ = C}! for any s,t € T(Q).

1.2.2. Definition. Suppose A € P2, Define the cell module of A to be C* = C2 for any s € T(Q),
which has basis { a} | t € T(2)} and for any r € A,

A . _ r A
a;r= E cLa,

ueT ()
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where c|, are determined by
A roA >A
agr = E cug, + A7

ueT ()
We can define a bilinear map (-, -) : C* x C*— Z such that
(sl = el + 4
and letrad C* = {s € C'| (s,t) = O for all t € C*}. The rad C* is a graded A-submodule of C*.
1.2.3. Definition. Suppose 1 € P2, Let D' = C*/rad C* as a graded A-module.

Exactly as in the ungraded case [7, Theorem 3.4] or [9, Theorem 2.10], we obtain the fol-
lowing:

1.2.4. Theorem. The set { DXk)| A€ A,D* # 0,k € Z} is a complete set of pairwise non-
isomorphic graded simple A-modules.

We give an example of graded cellular algebras here, which is called the cyclotomic Hecke
algebras.

Let F, be a fixed field of characteristic p > 0 with g € F. Let e be the smallest positive
integer such that 1 + g + ... + ¢¢~! = 0 and setting e = 0 if no such integer exists. Then define
I=7/eZife>0and I =Zife=0.

For n > 0, assume that ¢ = 1. Let H, be the degenerate affine Hecke algebra, working
over F,. So H, has generators

{Xl, oo ,Xn} ) {Sl9 oo ’Sn—l}
subject to the following relations
XrXs = XsXps
SpXp1 = X5, + 1, s s =xgs, fs#Err+1
5?2 =1;
SrSre18r = Sre18rSr+1, SrSr = 818y lflr - tl > 1

Now we assume that ¢ # 1 and H, be the non-degenerate affine Hecke algebra over F,.
So H, has generators
X L XU, T}
subject to the following relations
XEIXE = xEXE XX =1;
T.X, T, = gX,41, T X, =XT, ifs#nrr+1;
T} =(q- DT, +q;
TrTr+1Tr = Tr+1TrTr+l, TrTs = TSTr lf|l" - Sl > 1.
Then for any A € P., we define

(1.2.5) HA = H,/[{I1ie/(X1 = )™y, ifq# 1,
! H,/[{I1ie/(x) = D)™y, ifg=1.

and we call H? the degenerate cyclotomic Hecke algebra if ¢ = 1 and non-degenerate cy-
clotomic Hecke algebra if ¢ # 1.

By the definitions, degenerate and non-degenerate cyclotomic Hecke algebras are similar
with some minor difference. In order to minimize their difference we define

o
(1.2.6) g=4 4=
q', ifqg#1l.
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and use x, instead of X, when we don’t have to distinguish which case we are working with.
Hence we can re-write (1.2.5)) as

(1.2.7) HY = Hy /(| |G = g™,
i€l

Murphy [24] gave a set of cellular basis for H® which shows that H? is a cellular algebra.
Brundan and Kleshchev [3]] proved the remarkable result that every H2 over F,, is isomorphic to
%’,’,‘(Pp) introduced in |Deﬁniti0n 1.1.1|, where in both algebras A and e are the same. Therefore
when H? is over a field it is a graded cellular algebra.

In the rest of the section we will introduce a special case of H2, which is also an important
object we are going to need for the rest of the thesis.

The symmetric group S, is the group of permutations on 1,2,...,n. Fori=1,2,...,n—1,
let s; be the transposition (i,i + 1). The following result is well-known; see for example, [20,
Exercise 1.1].

1.2.8. Definition. The symmetric group S, is generated by sy, s,, ..., S,_1 subject only to the
relations:
s7=1, fori=1,2,....,n—1,
5i8; = SjSi, forl1<i<j—-1<n-2
SiSiv18; = Siy18iSiv1, fori=1,2,...,n—2.

It is easy to see that H,’,\ =F,3, wheng = 1 and A = A; for some i € I. Therefore F,S, is
a graded cellular algebras as well.

Suppose w is an element of S, and w = s;,5;,...s; . If m is minimal we say that w has
length m and write [(w) = m. In this case we say s; s, ...s;, is a reduced expression of w.
In general an element of &, has more than one reduced expressions. For example, we have
w = 518581 = $2515,. Nonetheless, all the reduced expression of an element have the same
length.

In this thesis we let S, act on {1, 2,...,n} from right. For example, (i)s;s;+; = (i + 1)s;11 =
i+ 2.

The following result is well-known. See, for example, [20, Corollary 1.4].

1.2.9. Proposition. Suppose thatw € S,. Fori=1,2,...,n—1,

Iwy+1, if@w! <@+ hHw
I(siw) = cp e . _
Iw)y—=1, if()w! > @G+ Hw L.

We recall the definition of the Bruhat order < on &,. For u,w € S, define u < w if

U= Sy, Sy oo Sr, forsome 1 <a; <ap, <...<a, <m, where w = s,,5,,...5,, 1S areduced
expression for w.

1.3. Tableaux combinatorics

In this section we recall the combinatorics of (multi)partitions and (multi)tableaux that we
will need in this thesis.

Let n be a positive integer. A composition of n is an ordered sequence of nonnegative
integers A = (4;,4z,...) and || = Y, A; = n. We say A is a partition of n if 1 = (1}, 4,,...)
is a composition and 4; > A, > A3 > .... We can then identify A with a sequence (A4, ..., Ax)
whenever A; = 0 for i > k.

As we now recall, there is a natural partial ordering on the set of compositions of n. Suppose
A= (A,42,...,)and u = (uy, Uy, . .. ) are compositions of n. Then 1 dominates u, and we write
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A, if

for any k. We write A> u if A>u and A # p. The dominance ordering can be extended to a total
ordering >, called the lexicographic ordering. We write A > yu if we can find some &, such that
A; =y foralli < kand Ay > . Define A > pif A > por A = u. Then A > pimplies A > p.

A multicomposition of n of level ¢ is an ordered sequence 1 = (1V,..., 1Y) of com-
positions such that 37, |1?| = n. Similarly, a multipartition of level ¢ is multicomposition
A=Y, ..., 29) of n such that each A? is a partition. We will identify multicompositions and

multipartitions of level 1 with compositions and partitions in the obvious way.
Let ©* be the set of all multicomposition of n and 22 be the set of all multipartitions of 7.
We can extend the dominance ordering to 4 by defining A > y if

k-1 K k—1 s
i k j k
S 3502 S T
1 j=1 i=1 j=1

i=

forany 1 < k < ¢andall s > 1. Again, we write A > u if A> pu and A # u. Similarly, we extend
the lexicographic ordering A > u and A > u to €™ in the obvious way way.
The Young diagram of a multicomposition A of level ¢ is the set

A ={rcD|l<c<a? r>0and1 <1< ()

which we think of as an ordered ¢-tuple of the diagrams of the partitions AV, ..., 1), The triple
(r,c,l) € [4] is node of A in row r, column ¢ and component /. A A-tableau is any bijection
t:[1]—{1,2,...,n}. We identify a A-tableau t with a labeling of the diagram of A. That is, we
label the node (r, ¢, [) € [1] with the integer i(r, ¢, [). For example,

|

is a (4,3, 1122, 1|3)-tableaux. If t is a A-tableau then the shape of t is the multicomposition A and
we write Shape(t) = A.

Ift € Std(1) and 1 < k < n define t|; to be the subtableau of t obtained by removing all
the nodes containing an entry greater than k. We define an analogue of the dominance ordering
for standard tableaux by defining t > s if Shape(t|;) > Shape(s|y), for 1 < k < n. As with the
dominance ordering, if t > s then we write s <t and if s # t then write t > s and s < t. We also
define (s,t) > (u,v)if s> u,t>vand (s,t) # (u,v).

For any multicomposition A, define t! to be the unique A-tableau such that t* > t for all
standard A-tableau t. For example, if 4 = (4, 3, 1]22, 13) then t* is the tableau displayed above.

The symmetric group acts on the set of all A-tableaux. Let t be a A-tableau, then t-s, is
the tableau obtained by exchanging the entries r and r + 1 in t, i.e. (Pt = (r + D)(t-s,)7",
(r+ Dt™! = (N(t-s,)7!, and (k)t™! = (k)(t-s,)~" for k # r, ¥ + 1. Then for each A-tableau t let d(t)
be the permutation in S, such that t*-d(t) = t.

Recall the Bruhat order < on S, from section 1.1. The following result, which goes back to
work of Ehresmann and James, is part of the folklore for these algebras. The proof for level 1
can be found from [20, Lemma 3.7]. The higher level cases follow easily.

2[3 4|‘ 910 ||14|15|16|)
617 | 112
13

BEE

1.3.1. Lemma. Suppose 1 € Z?» and s and t are standard A-tableaux. Then s © t if and only if
d(s) < d().
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Suppose A is a multicomposition and y = (r,¢,[) € [A] and recall from Section 1.1 that
Kp = (K1,K2, - . . ,Ky) 1s a fixed multicharge of A. The residue of y associate to «, is

res(y) =r—c+«k (mod e).

If t is a standard A-tableau and the residue sequence of t is res(t) = i, = (iy,1,%3,...,10,),
where i; = res(y;) and 7y is the unique node in [A] such that t(y;) = k. In particular, we write
i = i, and resy(k) = res(yy).

Suppose that t is a A-tableau. Then t is standard if A = Shape(t) is a multipartition and if, in
each component, the entries increase along each row and down each column. More precisely,
if (r,c,l) € [A] then t(r,c,]) < t(r + 1,¢,1) whenever (r + 1,¢,l) € [A] and t(r,c,]) < t(r,c + 1,])
whenever (r,c + 1,1) € [1]. Let Std(2) be the set of all standard A-tableaux and Std(> A1) be the
set of all standard u-tableaux with u > A. We can define Std(> A) similarly. Note that if t is
standard then so is t|, for 1 <k < n.

Recall that for each standard tableau t, we can define a permutation d(t) € &, such that
t = t'-d(t). For each permutation we may have more than one reduced expression. Here we fix
a choice of the reduced expression of d(t).

For any standard A-tableau t, define t to be a standard A-tableau where t?|;, = t!|; for any
1 <k<i,andt?™'(k) = t1(k) for any i < k < n. In particular, tV) = t and t"*) = 1. Therefore
we have a series of standard A-tableau

th = D b D =t

Then define w; to be the unique permutation in &, such that t“*Pw; = t? and define
W,W,_1 ... wow; to be the standard expression of d(t). Obviously this is a reduced expression
of d(1). In the rest of this thesis, we fix d(1) to be its standard expression.

1.3.2. Remark. For each w;, if w; # 1, we can write W; = ;84415442 - - - Si—28;—1 for some
a; <i— 1. Notice that

A, itk =a,
R0 = k- DAY, ifa <k <,
(k)Dy=1, otherwise.

and I(w;) is always greater than or equal to the length of the row containing i in t+V.
Also for each i, if Shape(t?”|,_;) = A, then t?|,_; = t*.

1.3.3. Example Suppose t10 = [ 112 314[12] and 110 = [1]2]3]10 12'. Therefore we
516(7]11 41516111
819 [10]13 718[9]13
14|15 14{15

have W10 = 548556575889 such that t(“)'W]() = t(lo).
Notice that in this case, i = 10 and a;o = 4. So
(10)(t10)=1, if k =a; =4,
A" =k - DAY, if4=g <k <i=10,

()N, otherwise.
Furthermore, 'y = ; é ; 4|:t(4’3’3> and t1'0}y = 1 g 2 = 1333, >
819110 71819

1.3.4. Lemma. Suppose tis a standard A-tableau and d(t) = s,, ... s,, is the standard expres-
sion. For any 1 < k < m, define s = t's,,s,, ...s,. Then s is a standard A-tableau.
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Proof. The proof is trivial by the definition of the standard expression. O

1.3.5. Example Supposet = 11214 | 6 | 7 | Then we have d(t) = s55¢-5455-53. Then

315
tes = | 1][2]3]4]6]
517
. _ [1]2]3]4]7]
5586 5 6
tlsssess = i é 3|5|7|,
. _ [1]2]3]6]7]
855565455 NG
and the above tableaux are all standard. O

1.4. Graded cellular basis of KLR algebras over a field

Suppose &' is a field, Hu and Mathas [9, Theorem 5.8] have found a homogeneous basis of
RN 0). Here we give an equivalent definition of their basis. For any multicomposition A, recall
t! to be the unique standard A-tableau such that t* > t for all standard A-tableau t, and i, is the
residue sequence of t1. We define &, = &(iy).

Suppose 4 is a multicomposition. A node (7, ¢, [) is an addable node of A if (r,c,[) ¢ [1] and
[ U{(r, c, D)} is the Young diagram of a multipartition. Similarly, a node (r, ¢, [) is a removable
node of A if (r,c,l) € [4] and [A]\{(r, ¢, )} is the Young diagram of a multipartition. Given two
nodes @ = (r,c,[l) and B = (s,t,m) then « is below g if either / > m,or [ = m and r > s.

Suppose that s € Std(1). Let «7%(k) be the set of addable nodes of the multicomposition
Shape(s|;) which are below s~!(k) and let

AL k) = {a € (k) | res(@) = resy(k)}.
Similarly as in [9, Definition 4.12], define

. PG
ya= Vi € %n(0).
k=1
For example, if 4 = (3, 1142,2|5,1), e = 4 and A = 3A, then

t/l:( 112]3]
4

5T6]7]8 | 1617|18|19|)
o 1o[11]12] | [20]
1314

and §,; = 929s9s91091291s. Therefore,
2,9, = 2(0123012330122012303)5%9s5s1051251s.

We define a particular kind of element in %,(0). Suppose w € &, has length £ and
Si,Si, - - - 8i, is areduced expression for w in S,,. Recall that %,(€) has a unique anti-isomorphism
* which fixes all of the KLR generators. Define

l//}w = lr/;h l//}iz .o l//;ig € %n(ﬁ) and lr//}jv = lzlig':ﬂifq .. lr//}iz'j/i] € t%n(@))

Notice that i, and ¢, depend on the choice of the reduced expression of w, even though in
S, all reduced expressions of w are the same. For example, s;s,s; and s,s;5, are equal to the
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same element of S, but in general Yo, # U, in Z,(0). Define () = I(§F) = I(w)
for any standard tableau t. Similarly we can define
Vo =i, - Ui, €X,(0)  and W =i, - Uil € %,(0)

and ¢, and ¥, depends on the choice of reduced expressions of w as well.

Suppose I(d(t)) = €and d(t) = s;,5;, . . . s;, is the standard expression of d(t) where t'-d(t) = t.
Define wd(t) = l//il wiz s l/’i( and l/lrl(t) = l//iflr[/if_] N wizwh .
1.4.1. Definition. Suppose A € P,, 1 € 2 and s,t are two standard A-tableaux. We define

vg = Uis e dWaw € Zu(0),
and hence
UG =g+ N, € Z)(0).

1.4.2. Remark. Notice that Hu and Mathas [9, Definition 5.1] defined y/¢ differently. Actually
if we define e, y, and ¥, in Z2(0) as analogues of &,, $, and i}, and define v = Yys e aWam

for s, t € Std(2), it is equivalent to Definition 1.4.1| We define ¥ as in[Definition 1.4.1|because
we need to work in Z,(0) later.

1.4.3. Remark. By construction, then this ng is well defined as an element of Z* (&) for any
ring . Many of the calculations in this thesis depend heavily on the choice of &' so we write
gbg to emphasize that 1//5 is an element of 92,2\(6’ ). Most of the time, however, we will work in

A : —
Z,(Z) so for convenience we set s = Y.

1.4.4. Lemma (Hu and Mathas [9, Lemma 5.2] [10, Corollary 3.11,3.12]). Suppose O is a field
and s and t are standard A-tableaux and 1 < r < n,

2w Cutluvs ift-s, is not standard
Ysthy = or d(t)-s, is not reduced,
sy + Duvsey Coluvs  IfV = ts, standard and d(t)-s, = d(v).

for cy, € O, and cy, # 0 only if res(s) = res(u) and res(t-s,) = res(v). Similarly, we have

lﬁgyr= Z Cuvwfi/

(u,v)>(s,t)
for cyy € O, and cy, # 0 only if res(s) = res(u) and res(t) = res(v).

1.4.5. Theorem (Hu and Mathas [9, Theorem 5.14]). Suppose O is an integral domain and that
either e = 0, e is a prime or e is a non-zero non-prime integer such that e - 1, is invertible in 0.
Then

WS | s,t e Std(d) for 1 € PN}
is a graded cellular basis of ZN(0). In particular, Z#(0) is free as an O-module of rank {"n.

The main purpose of this thesis is to prove that Z(Z) is free of rank ¢'n!. To do this we
will show that {y/% | s,t € Std(2) for A € £/} is a homogeneous basis of Z2(Z).

We define some notation for future use.
1.4.6. Definition. Suppose A is a multipartition of 2. Define:
R = (Y | 8.t € Std(u) for u € PNz,
R = (Yt | .t € Std(u) and p > A for yu € Py,
R = (Yg | s,t € Std(u) and yu > A for u € PN);.
where R2* C 21 C RY C #ZM(Z)
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This section closes with an important Proposition:
Khovanov and Lauda[13]][12] have found a basis of %, (0)

(1.4.7) [e@955 ... 950, lie",we &, t,6,...,6,>0)

for any ring 0.

Consider the quiver Hecke algebra %,(Q) defined over the rational field Q. We have
%,(Q) = %,(Z) ® Q and we can define a linear map f : %,(Z) — %,(Q) by sending x € Z,(Z)
tox® 1.

1.4.8. Lemma. The linear map f: %,(Z)— %,(Q) is an injection.

Proof. By (1.4.7), { 2A*GD G ... GDPZ | w e G, €1, b, ..., £, > 0} is a basis of %,(Z)
and similarly, { 6H)2HHGDE ... GD“Ps | w € S, 1, 6, ..., 6, > 0} is abasis of Z,(Q). Be-
cause f sends the basis elements 2(1)*(H7) (55)% . .. 3D ™PZ of Zu(Z) to 6(DH2FD D . .. GOy,
the basis elements of %,(Q), it is sufficient to prove that f is an injection. m|

From the definitions, it is evident that f(N*(Z)) € N*(Q). Hence, f induces a homomor-
phism,
[ RNZ)— ZNQ); x + NNZ) - f(x) + NNQ),
which by abuse of notation we also denote by f. In particular, observe that f(y%) = wg. The

main Theorem of this thesis is equivalently to prove that f : Z(Z) — %Z(Q) is an injection.
We then introduce an important special case where we already know that f is injective.

1.4.9. Proposition. The homomorphism f : Z#NZ) — Z™(Q) restricts to an injective map from
R} to Z,;/(Q).

Proof. As we have already noted above, f(y%) = WS for all s,t € Std(1) and 1 € 2. Hence,
implies the result. O

1.4.10. Corollary. The elements {y% | s,t € Std(Q) for A € P2} are a linearly independent
subset of #N(Z).

1.4.11. Remark. Proposition is quite crucial. In this thesis we prove that Y%, € R
whenever d(t)-s, is not reduced or t-s, is not standard in %,’,‘(Z). We can only have

Z _ Z
‘r[/st'l//r - Z Cw¥uv:

uv

In Z2(Q), however, by Lemma|l.4.4, under these conditions we have
wg@br = Z c(l?v'vb(l?v
(u,v)>(s,t)

for some c% € Q, where (u,v) > (s,t)ifu>s, v>tand (u,v) # (s,1). Therefore, c?v = c& by

Proposition and we see that ¢5, # 0 only if (u,Vv) > (s, 1). In such case we have much more
information about u and v with ¢, # 0. Similar remarks apply to the products -y,



CHAPTER 2

Integral Basis Theorem I

In the next two chapters we will prove that Z? is Z-free. The essence of our argument is
that we will verify thatl the following three properties hold.

(D). el VKyLyn € R

(2). ¥sy, € R

(3). Ys, € RY.
for any 1 € &». We will define a partial ordering < on &2 = U, U, &2, Our proof proceeds
by induction on multipartitions using <. The main result of this chapter is to prove that if for
any u > A, u has above three properties, then A will have the first property. This result is crucial
for showing that e(i) € R® for any i € I".

In the rest of this thesis we write %,(Z) as %, and ZN(Z) as Z2. Fix a weight A, a multi-
charge k5 = (ki, ..., k) corresponding to A and an integer ¢ > 2. In this and the next chapter
we mainly work with the algebra Z2.

2.1. The base step of the induction

In this section we set up the notations and inductive machinery that we use in the next two
chapters to prove our main theorem. We then consider the base case of our induction which is
when A4 = (n|@) .. .|0). Finally we develop some technical Lemmas which will be useful later.

2.1.1. Definition. Suppose that A is a multipartition of n. Let A" be the multicomposition of
n+ 1 obtained by adding a node at the end of the last non-empty row of A, and A_ = A|,_ be the
multipartition of n — 1 obtained by removing the last node from A.

For example, if 1 = (4,3]3,3) then A% = (4,3]3,4) and 1_ = (4,3]3,2). Notice that in
general, A* will be a multicomposition rather than a multipartition.

For k € I and 1 € £%, define szftf = {a € “u(n) | res(a) = k}. Recall i; = res(t) and
e, = e(iy) from[section 1.4]

2.1.2. Definition. Suppose that A € &) and k € 1. Define the integer b by

2 {Iszft,’fl + 1, if At is a multipartition and i, + 1 = k,
=

|427tf|, otherwise.
Ifi=(i,i...,i,) € I"and k € [ then defineiV k = (i1, i, ..., i, k) € I"*L.

2.1.3. Lemma. Suppose that 1 € 2> and k € 1. Then for each integer b with 0 < b < b?, there
exists a multipartition v = v(b) such that e,y, = e(i, V k)yﬁyﬁ R

Proof. The definitions of A and bﬁ ensure that there are b,f addable nodes of residue k£ below
(tY~'(n). Suppose those nodes are (r,c1, 1), (r2,¢2, b)), . .., (”bg’ Cpls lbﬁ), where [} > [, > 5 >
o> lbﬁ, and if /; = [;;; then r; > r;;1. In another word, (7}, ¢;, [;) is a node below (7,1, Cis1, lis1)-

For any b with 0 < b < b, we define v to be the multipartition obtained by adding the node
(rp+1>Cps1,lps1) on to A. Then y, = y}ngrl and e, = e(iy V k) = e(i Vv k). This completes the
proof. O

16
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2.1.4. Example Suppose that 1 = (4,3|2, 1/0/0) with e = 4 and x5 = (0,0,2,1). Then e(iy) =
¢(0123301013) and y; = y1y2y3y4ye6y7ye- Then b = 1, b{ = 1, b5 = 2 and b4 = 0 and the proof
of Lemma 2.1.3] shows that:

e(01233010130)y1y2y3y4Y6Y7Y9 = €4 V>
e(01233010131)y1y2y3y4Y6Y7Y0 = €1, Vps5
e(01233010132)y1y2y3y4Y6Y7Y0 = €133
e(01233010132)y1y2y3y4Y6Y7Y0011 = €, Yps
where u; = (4,3]2,2(00), ur = (4,312, 1|10]1), u3 = (4, 3]2, 1/1]0) and ps = (4,312, 1, 1|0]0).
o

2.1.5. Definition. Let 27" = U,50 7). Define three sets 2}, P} and &, of multipartitions
by:

Pr={1e P ||A =nande(iy Vv k)y, y,," e R forallk € I},

@A (e 2" |Al =nand ey, € R whenever s,t € Std(1) and 1 < r < n},

@A (e 2| |Al =nand Y, € R whenever s,t € Std(1) and 1 < r < n}.

2.1.6. Remark. Notice that if for some s,t € Std(1) and 1 < r < n we have ¥y, € R}, then
Vst € R as well. Similar property holds for ¥suf,. Therefore we can write

BZA {1e 2™ ||A =nand Vst € R whenever s,t € Std(1) and 1 < r < n},
3%\ ={1e P"||A =nand Vabg € Rn whenever s,t € Std(1) and 1 < r < n}

as well.

By [Proposition 1.4.9|if one of e(i,)y. y", Ysty, OF Yath, belongs to R? then it can be written
in a unique way as an (integral) linear combination of the y/-basis elements. In particular, these
linear combinations must satisfy the restrictions imposed by

We note also that our main theorem is equivalent to the claim that

ﬁﬁg@fmﬂfmﬁf.

We prove this by considering each of these three sets separately, beginning with 2.
Suppose A and u are two multipartitions, not necessarily of the same integer. Define u < A
if |u| < |A], or |u| = |A] and I(u) < I(A), or |u| = |4, [(1) = [(A) and A < p.

2.1.7. Definition. Define #* = {1 e PN |ue 2N ﬂe@A/ﬂe@A whenever u € 2~ and pu < A}

Now we can state the main result of this chapter.
2.1.8. Theorem. Suppose A € 7. Then we have 1 € P},

As we mentioned before we are going to apply induction on A to prove the main Theorem.
I[Lemma 2.1.9] (Corollary 2.1.10]and [Corollary 2.1.11| give the base case of the induction. Recall
that e # 2.

A
2.1.9. Lemma. Suppose thatn > 1 and A = (n|0|...|0) € PN Then e(i, v k)y,Lka € R for
any k € 1.

Proof. As A is the maximal element of 22, R>* = {0}. Therefore the Lemma is equivalent to

A
the claim that e(iy_ V k)y,_ yZ" = (0. We prove this by induction on n.
(Aaiy)

If n = 1 then it is easy to see that bz‘ = (A, @;,). Therefore, e(i,_ Vk)y /l_yz/ = e(k)y, =0

by (LIT9).
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Suppose now that the Lemma holds for any n” < n. Notice that for any m > 1, set y =
(m|0]...]|0) then |£ft£‘| is independent to the value of m. For the rest of the proof we set a; = |s24‘_ l.

In order to simplify the notations, for the rest of the proof we will omit iy, ...i,_3 and
simply write e(i) = e(i,, i,—1,1,). We will also suppress y,, where v = A],,_3.

We consider four cases separately, depending on the value of k.

A
Case[2.1.9a: k = i,_;. Then e(i; Vv k)yﬂ_yf," = e(ily-3,k = 1k, K)yq, ¥y vy In this
case we have

e(k = 1,k, k)y, 5 y,5 v OL9 ok —1,k, KyE ey, g+ ek = 1,k )y 3 y% 5, 1y,
TED g, etk — 1k by ™2y oy,
where e(k — 1,k, k)y™ ka_J'll y»¢ = 0 by induction. Therefore,
etk — 1,k )y, 3y ok = arelk — 1k, )y, vk vi v
= ek = 1k, Ky it iy = 0

by relation (I.1.8).

. . b= . a a ap+1
Case 2.1.9&): k=i,.1+ 1. Now,e(i, VKyLy) =e(li-3.k—=2k—1,k)yy .y, 5y -
Therefore,

e(k — 2,k — 1, k)y™ 2yt yow!

LB} e(k — 2,k = 1,k)y" 2y™ "y + e(k — 2,k — 1, k)y™ 2yl ysy? |
(1.1.6)

B2 ok = 2,k = 1,y 2y Y% g ek — 2,k k = 1Dy®2y™ 3o, = 0,

where the last equality follows by induction.

A
Case[2.1.9¢: k = i,_; — 1. If n = 2 then e(i, V k)y, yot = e(k.k— 1)y%y®' Thena_; > 1.
Therefore,
ek, k — Dy®ya B9 o f— Dy yamt _ ok — 1, k)y® 'y, =0,
using relation (I.1.19) and induction. Hence, the lemma follows in this case when n = 2.
1—

If n > 2 then e(iy_ V k)y Lyzlk = e(il,-3, k. k + 1, k), v,y v, Hence,

e(k, k+ 1,k)y ,yol vk L2 Yn-oWn-1Wnne(k, k + 1,k)y™ ytlyok

- wn—lwn—an—]e(k’ k + 1, k)yzk_zyzkjllyzk
= l//n—Zl//n—l e(k + 1’ k7 k)yzl\:zlyzk_lyzk'ﬁn—z
- wn—llpn—Ze(k, k, k+ 1)yzk_2yzk_]yzk+llpn—l

=0,
where the last equality follows by induction.

Case[2.1.9d: |k — i,_(| > 1. Because i, » = i,_; — 1, we have i,_, # k. Therefore we have

ain—l Aaj

. b= . . . a;
e(ii. VYL Ly = e(l-3,in2,in-1,)Y,.Y,"5 Y"1 Vn

= lﬁn—le(iln—Sa in—2’ k, in—l))’A|n,3yzi_"§2yzk_1yzi"_l wn—l =0
by induction. This completes the proof. O
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Lemma 2.1.91has two immediate Corollaries:
2.1.10. Corollary. Suppose n > 2 and A = (n|0]...|0). Then e y,y, € R forany 1 < r < n.

2.1.11. Corollary. Suppose that n > 2 and A = (n|0|...|0). Then ey, € R*, for any
I<r<mn-1

Proof. Write y, = y!'y5 ...y and iy = (i1ia . . . iy),

. . ll I _ . . . . . [1 171 I. l. L, _
e(iy...i)y| .. ypr = ey . iroilpplyp L)Y Y VY Y =0,

by[Cemma 219 o

The results in the rest of the section will be used frequently in the later proofs.
Recall that for any multipartition A, R>* is the subspace of Z” spanned by all of the elements
Wst, where Shape(s) = Shape(t) > A.

2.1.12. Lemma. Suppose A € /. Then R>* is a two-sided ideal of #». More precisely, R," is
a two-sided ideal of Z" whenever u < A.

Proof. The Lemma follows directly from the definition of the set .72, L@y’\, 3”{2‘ and
mark 2.1.6 O

In order to simplify the notation, for each i € I define 6;: Z) — %%, to be the unique
Z-linear map which sends e(i) to e(i V i), y, to y, and ¢, to . It is easy to see that 6; respects
the relations in Z2, so 6; is a Z-algebra homomorphism.

2.1.13. Lemma. Suppose A € /" and u,v € Std(u), where u € P2 with m < n such that
w> Ay Let 0 = Ayt € P2 . Then 6;(Yy) € R27, for any i € I.

m+1°

Proof. Write 4 = (u,...,u@) and u©@ = ", ..., 1) and define y = (uV,...,uD,y®)
where

Y= ) ) ) e (0 ©
sy s Dy i =

Then vy is a multipartition of m+1 and y|,, = u. Sincem < n,if m = n—1,thenvy|,_; = u > A_,
so that y > A. On the other hand, if m < n—1then |yl =m+ 1 < n =|4|. So we always have
y < A. Therefore, y € 2} N P} N &) because A € 7.

As Yl = p, we have 0,(Y) = 0y euyulaw) = Yy ey, V DYuaw- First suppose that
b = 0. Then using the definition of &7}, we have e(i,, V i)y, € R,” C R;”. Hence, by
we have 0;(Yw) = ¥, ey, V DyWaw) € R;7.

Now supose that & > 0. By we can find a multipartition v with v|,, = u such
that e(iy, V i)y, = e,y,. Further, as v|,, = y, we can find two standard v-tableaux s and t such
that s|,, = u and t|,, = v. That is, d(s) = d(u) and d(t) = d(v). Therefore,

0i(Ww) = Wypeliy, V DYWan = Wi ryban = s € R C R

(@) © O i (0 Q)
&) _ {(/l LI ’uk—l’#k + 1)’ lf/lk_l > /’lk ’

because v > o. This completes the proof. O
Ifi=(G,...,ip)el"and 1 <m <nleti, = ({;...L0,).
2.1.14. Lemma. Suppose A € YHA, m < nand o = Al,,.. Foranyi = (i, iy,...,I,,) we have

BN(RT)VED € R
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Proof. Suppose r € R;7, we have that

r= Z Ccuwvtbuy
u,veStd(>o)

for some ¢y, € Z. Forany i € I,

)= D cwbiPn).

u,veStd(>o)

By [Lemma 2.1.13| 6;(¥,) € R, Hence 6;(r) € R;"*'. By induction we have 6(r) €
R>*. By|Lemma 2.1.12) R>* is an ideal. Therefore Z,6,(R;7)%2 C R;* which completes the
proof. O

2.2. The action of y, on two-rowed partitions

Recall that the main result of this chapter is to prove that if A € .%,, then

A
eli, V Ky vt €RA

In the inductive process we consider different types of multipartitions A and a residue k €
I. We will consider the more difficult case first, namely when A1 = (AV,..., 1) and 21 =
(/l(lf), e, /15[), 1) # O with [ > 2, /lf)l = /155) =mand k =k, — [+ m+ 1 (mod e). In this section
we assume that £ = 1 and [ = 2. We will extend the result to the general case in the next section.
Notice that in this case 4 = (m, m, 1) for some integer m and k = x; — 1 + m (mod e). Then

A

e(iy Vv k)yl_yzk = e,y, where y = (m,m + 1). It is very hard to prove that e,y, € R>* directly,
so we are going to work with y which is in a more general form.

In this section we fix A = A forsome j€ I,y = (y1,y2) and A = (y1, 7, — 1,1) with y, > 1
and y, —y; = 1 (mod e). We will prove thatif y; + 1 =y, and 1 € ./ then e,y, € R,.

Without loss of generality we can assume that A = A,. Define i = y, —2 (mod e), which is
the residue of (2,vy,, 1). Because y, = y;+1 (mod e), it is also the residue of the node (1, y, 1).
In diagrammatic notation, we have

(U i-1 i e-10 i-1 i

€yyy =

71 72

where i, = (i1,i,...,1,) and [ = Iﬂftﬁl'kl is the multiplicity of the green dot on the k-th string.
For the rest of this section, for clarity we will omit extraneous dots when they do not play an
important role in the argument.

Next we introduce an important equivalent relation =,. For y € 5”,{‘, and r;, 7, € %ﬁ, we
write 1y =, rnifri+£nr, € R . Itis clearly an equivalent relation. Moreover, by
for any r € #Z» we have ri-r =, ryr if r; =, ro. This will be helpful for us to simplify the
notations and calculations.

Recall thaty, > 1. We can write y, = k-e+1t for some nonnegative integer k and2 <t < e+1.

We will first prove
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, ifi#e—-1,

(2.2.1)

71 Y2

by induction on k, which can imply e,y, € R;* easily.
In order to clarify the meaning of the diagrams in (2.2.1)), let us give two examples below.
In these examples for convenience we fix e = 4.

2.2.2. Example Suppose y = (8,5), theny = | L1 and i = 3. Then we are trying to
prove that
O
2.2.3. Example Suppose y = (9, 10), theny = | and i = 0. We are trying to
prove that
=, [ ] ]
&

The next Proposition is the base case of the induction. When k = 0, we have 2 <y, < e+ 1.

2.2.4. Proposition. Suppose y = (y1,y2) € €» withy, > 1 and y» —y; = 1 (mod e) and
A=0Ly—1,1)¢€ 5”,1’\. Define i to be the residue of the node at position (1,y;, 1) or (2,v, 1).
When2 <y, < e+ 1, (2.2.1) holds.

Before proving [Proposition 2.2.4] we first give a useful lemma.
2.2.5. Lemma. Foranyie€ I, we have

ii+li+2 i—-1 ioi+li+2 i-1 i ii+li+2 i-1 i ioi+li+2 i-1 i ii+li+2 i-1 i
P

i
“ P
P




22 2. INTEGRAL Basis THEOREM I

Proof. The Lemma follows by directly applying braid relations on the left hand side of the
equation. O

Now we are ready to prove |Proposition 2.2.4]

Proof. We prove the Proposition by considering four different cases depending upon the value
of i. Notice that in this Proposition, we have y; >y, — 1 because 2 <y, <e+landy,—vy; =1
(mod e).

Case2.24a: i = 0,i.e.y, = 2.

0 1 -1 0e-10 0 1 -1 0 e-10 -1 0e-10
o ) H H ‘
- - = .
71
0 1 e—=10e-10 0 1 e-=10 e-10
@b _ ..;22_ ¢
0 1 e-10e-10 0 1 e-10e-10
--1- - F
— _ ® _ []
\----
Because
0 1 -1 0e-10 0 1 -1 0e-10 0 1 -1 0 0e-1 0o 1 -1 0 0e-1
A-1- - A-1- -
1
1 —_— 1
- 1
Ma = = Ma = =

and if we define v = (y;,1) = Al,,+1, thenas 4 € f{‘ and vl =1+ 1 <n=vy +vy, =14,
v € P} Moreover as by = 1,

‘ ‘ =e(i, V O)yv_yllv| €ER).

Then by [Cemma 2.1.14)

' ER.

Therefore,

0 1 e=10e-10

€Yy =y )

which gives the proposition in this case.
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Case224p: 1<i<e-3,ie.3<y,<e-1.

0 1

i-1 i e-10 i-2i-1 i 0 1 i-1 i e-10 i=2i-1 i 0 1
. L) P . . .

0 1 i-1 i e-10 i-2i-1 i 0 1
. .

0 1 i-1 i e-10 i=2i-1 i 0 1 i-1 i e-10 i-2i-1 i
. . .

0 1 0 1 i-1 i e-10 i-2i-1 i
il ‘ ‘ ‘ ‘ ‘ ‘
= 1 — .
71
For the same reason as in Case [2.2.4h,
0 1 i-1 i e-10 i-2i-1 i
>
€R),
which implies the proposition in this case.
Case2.24c: i =e—2,i.e. y, = e. By[Lemma 2.2.5]
0 1 e-3¢-2-110 e—3e-2 0 1 e=3¢e-2-10 e—3e-2 0 1 e-3¢-2-10 e-3e-2
71
0 1 e-3e-2-10 e-3e-2 0 1 e—3e-2-10 e-3e-2 0 1 e=3¢-2-10 e—3e-2
‘ ‘ + +

Setv=(y1,y2—1) =yl1. Asy; 2y, — I, wehave v € 2 . As 1 € ./ and |v| < |4, we
have v € 3”;‘ It is not hard to see that b::3 = 1. Hence

1 e—3e-2-10 e—4e-3

INTI[—

71 72-1
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Then by|[Lemma 2.1.14}

0 1 e-3e-2-10 e—-3e-2
>y
0 1 e=3e-2-10 e-3e-2 0 1 e=3e-2-10 e—3e-2
>
and for the similar method as in Case[2.2.4h, we have
0 1

e—3e-2-10 e—3e—
. P

Similarly, we have

e—3e-2-10 e—3e-2
CC]

Therefore,

)
=3

e-3e-2-10 e—3e-2

Case2.2Ad: i=¢—1,ie.y, = e + 1. By[Lemma 2.2.3]

which follows the Proposition.

0 1 e=2e—le=10 1 e—=3¢—2e—1 0 1 e=2e—le=10 1 e—3e—-2e~1
" "
‘ ‘. . ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 e=2e—1le-=1 0 1 e-3e—-2e~1 0 1 e=2e—1le-=1 0 1 e-3e—-2e—1
" " " "
" " " ‘. . ‘
(UM e=2e—le=10 1 e—3e—-2e—1 0 1 e=2e—le=10 1 e-3e—-2e—1
O

(2.2.6) + ? +
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For the first two terms of @

e—=2—1le-10 1 e—3e—-2e—1 e=2—1le-10 1 e—3e—-2e—-1 e-2e—1le-10 1 e-3e-2—1
e=2—1le-10 1 e—-3¢e—-2e~-1 e-2—1le=10 1 e—-3¢e—-2e~-1 0 e-2—1le-=10 1 e—-3e—-2e -1
Using the similar method as in Case[2.2.4p,
0 1 e=2e—1le—=1 0 1 e-3e—-2~1
>
and using the similar method in Case[2.2.4k,
0 1 e=2—1le-10 1 e-3e-2—1 0 1 e=2—1le-1 0 1 e-3e-2-1
0T T 717 T .
= - €ER.
.. > .
Hence the first two terms of (2.2.6) is in R,”. For the third term of (2.2.6)),
0 1 e-2e—1le-=1 0 1 e-3e—-2e—1
e=2e~1le-=1 0 1 e=3e-2 -1 e-2—1le-1 0 1 e-3e—2e~-1 e—2—1le=1 0 1 e-3¢e—2e~-1

LD _ ‘U : ‘m -‘ ‘ ER.

For the fourth term of (2.2.6), by (ﬂm,

0 1 e=2e—le=10 1 e=3e-2e~1 0 1 e=2e—1le-=10 1 e=3e—-2e~1 0 1 e=2e—le-=10 1 e=3e-2e~1
" " " " "
1 ' 1 1
— ® [ ]
= ! f —_ 1
Me= = o =] = == |=
0 1 e=2e—le=10 1 e—3e—-2e—1 0 1 e=2e—le=10 1 e—3e—-2e—1
HE
1
— 1 [ ] — [ ] [ ]
1
M- -
0 1 —le-10 1 e-3e—2e~1
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and for the last term of (2.2.6)),

Combine the result above, we have
0 1

2.2.7. Remark. The technique of applying [Lemma 2.1.14{in proving [Proposition 2.2.4{ will be
used many times in the rest of the thesis. Although the process is straightforward, individual
details will vary from case to case, thus in order to simplify the process we will omit details in
the future.

e-2—-1le-10 1 e—3e—-2e—1
P

=y €yYys

which completes the proof.
m]

Recall y, = k-e + ¢ where k is a nonnegative integer and 2 < f < ¢ + 1. Now we remove the
restriction on 7y, by applying the induction on k.

2.2.8. Proposition. Suppose y = (y1,v2) € €» withy, > 1 and y, —y; = 1 (mod e) and
A= (y1,y2—1,1) € SN, Define i to be the residue of the node at position (1,m, 1). Then
holds.

Proof. We prove this Proposition by induction. As we claimed before that we can write y, =
k-e + t with 2 < t < e + 1 and we will apply induction on k. [Proposition 2.2.4{ implies that
for k = 0 the Proposition holds. Assume that for k < k’ the Proposition holds. For k = k’, we
consider two different cases, whicharei = e—-2,i =e—1andi # e — 2,e — 1. Recall that i is

the residue of the node at (1,m, 1) or 2, m+ 1, 1).

CaseR228a:i#e—2,e— 1.

1

Y1
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ii+l e=2

Hence by induction and [Lemma 2.1.14

0 1 i-1 i e-1 i-1 i i+l e=2 i-1 i (U i-1 i e-1 i-1 i i+1 e=2 i-1 i
P T

=y €Yy
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Case2.2.8b: i = e - 2.

0 1 e—3e—2e—1 e—3e—2e—1 e-3e-2

by [Cemma 2.2.3

0 1 e-3e-2 (U e-3e—2—1 e—3e—-2e-1 e-3e-2
P P P P
P .. ‘ ‘- .. ‘ P

—_— 2 —_— -

"1 Y2-e e "1 Y2-e e
0 1 e-3e—2 -1 e—3e—-2e—1 e—3e-2 0 1
P . P .
P K P ‘ ‘ P
_ -z —_—
71 r2-e e
0 1 e-3e—2 -1 e—3e—-2e—1 e—3e-2

0 1 e—3e-2-1 e—-3e—2e-1 e—3e-2
(L.1.10)
(2.2.9) £ +
. L.t
71 e
0 1 e—3e—2e-1 e—3e—-2e—1 e—3e-2 0
+ ? +

-t

-— Sttt -

71 Y2—e e 71 Y2—e e

By induction and [Lemma 2.1.14] the second and the third terms of (2.2.9) are both in R,,”.

Now for the last term.

0 1
Lol
Y1
0 1 e—3e-2 -1 e—3e-2e-1 e—3e-2 0 1 e—3e-2—1 e—-3e-2e-1 e—3e-2
(2.2.10) 1L ‘ ‘
Lol Lo
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Substitute (2.2.10) to (2.2.9)), let n = y; + y,, we have

0 1 e=3e—2e~1 e=3¢-2e-1 e=3e-2 0 1 e=3¢—-2e~1 e=3e—-2e~1 e—3e-2

‘---‘

P

—_—
e

"
Y1 Y2—e e
0 1 e-3e—2e~1 e—-3e—2e~1 e-3e-2 0 1 e-3e—-2e~1 e—=3e—2e~1 e-3e-2
"
"
71 Y2-e e 71 Y2-e e
e-3e—2e~-1 e-3e—-2—1 e—3e-2
_—r s = —_—
Y2-e e Y1 y2-e e
0 1 e-3e—-2~1 e—-3e—2e~1 e—3e-2

where by

e—?e 20—1 P—'%e 2e—1 e=3e-2

(UM (._3(, -1 ‘48*76*1 e-3e-2 r‘—%— 2¢ -1 -3e-2e—1 e—3e-2
0 1 e-3e—2e~1 e—=3e—2e~1 e=3e-2 0 1 e—-3e—2e~1 e—3e-2e~1 e-3e-2
" " " " " "
_ ® + o
" " " " " "
—_— —_—
71 r2-e e 71 Y2—e e
0 1 e-3e—2e~1 e=3e—-2~1 e—3e-2 0 1 e-3¢e—2e-1 e=3e-2 -1 e—3e-2
" " " " " "
+ ® — ®
e . " " " "
—_— —_—

29
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e—3¢-2e—1 e-3e-2-1 e-3e-2 0 1 e—3¢-2e—1 e-3¢-2-1 e-3e-2
- A -
“...“‘... . ...“‘...
- fue o2
e e 71 y2-e e

e-3e—-2-1 e-3e-2e-1 e-3e-2 e-3e-2-1 e-3e-2-1 e-3e-2

0 1
...“‘...“ “ “...“‘...‘

Then by A € " and|Lemma 2.1.14} for the first term of (2.2.11),

0 1 e-3e—2—1 e—3e—2e—1 e-3e-2 0 1 e—3e—2e—1 e—3e—2e—1 e-3e-2

O +

by induction

0 1 e—3e— e-3e-2-1 e-3e-2
s s
. by @Z12)
fhe ot DD B
N
71 v2-e e
0 1 e-3e-2-1 e-3e-2-1 e-3e-2

= H‘ ‘ by[Lemma 2.1.14
\Y

71

e—3e—-2-1 e-3e-2e-1 e-3e-2

For the second term of (2.2.11)), by induction, [Lemma 2.2.5, 1 € .* and [Lemma 2.1.14]

0 1 e-3¢-2-1 e-3¢-2-1 ¢-3 e-3¢-2-1 e-3¢-2-1 e-3¢-2
o

o =L

1 e—3e-2-1 e-3e-2e-1 e-3e-2
‘ €ER.

by induction
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e-3e—2e—1 e—3e—-2e—1 e- e-3e—2e-1 e—3e— e—_‘s(—z

0 1 3e-2 0 1

Y2-¢ yp—e

0 1 e-3e—2e-1 e—3e-2e—-1 e—3e-2 e-3e—-2 -1 e-3e-2 -1 e—3e-2
P P P
= am P ‘ ‘ ‘ ‘
-
71 Y2-e e 72 e

by [Cemma 2.1.14

L'it 2e—1 e—3 - e3<2

(2.2.14) ‘ ‘ ‘ ‘ = e,y,.

yzf

Substitute the results of (2.2.13) and (2.2.14) to (2.2.11)), we have

e—3e—-2e—-1 e=3e—-2e~1 e-3e-2
CCN] "

=y €y)y-

Case[2.2.8c: i = e — 1. The method to prove this is the same as for Case[2.2.8p so it is left
as an exercise. Then by induction, this completes the proof. O

Finally, we can use (2.2.1) to prove our main result of this section.

2.2.15. Proposition. Suppose m is a positive integer, 1 = (m,m,1) € .S andy = (y,y,) =
(m,m+ 1). Recall A_ = (m,m). Writei, = (i1,i2,...,0,_1). Ifk =1,_1 + 1 € I, we have

A—
eyyy = e(ir v Kyt € R
Proof. Without loss of generally we assume A = Ag. When m = 1, theny = (1,2) and

0e-10 0e-10 0 e-10

1.1.12)
_ M g
ey, = = - - €N, CR".
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When m > 1, write i,y = (i1,0,...,in). Set o = (y; — 1,¥) = (m — 1,m). Then by
IProposition 2.2.8, we have

, ifi, #e—-1,

In both cases, the parts bounded by square are both e,y,. As |o| =n—2and 1 € .Z*, by
induction, e,y, € R,?. By the definition of o~ and [Lemma 1.4.4, it forces that e,y, € RZM”’Z.

Then by [Lemma 2.1.14] we have ey, € R>*. m

2.3. Final part of y-problem

In the last section we have proved that if A = (m,m, 1) € Yn’\, then

A
el vV Ky v € R

with k = i, + 1. In this section we will gradually remove the restrictions on A and k. First we
are going to introduce a useful homomorphism and use it to prove a few more properties of
R, and Z». After that we are going to show that if 1 € Z2, then we can extend Ato a £ + 1
multipartition by adding an ) at the end and thus the new multipartition is in @IA *Ai for any
i € I. Analogous results are also true for ,@y’\ and ,@f These will allow us to extend the result
to an arbitrary multipartition A.

For any j € I, we can define a linear map 9j K, —> R, sending e(i) to e(j V i), y, tO Y,
and ¥, to ¥,,,,. This map 9j works as embedding from %, to %,.,, followed by the projection

onto Z2, ..

2.3.1. Lemma. Forj € I", the map @j is a homomorphism.

Proof. The map is defined to be linear. Hence we only have to check the relations. Since the
relations of %, and #2,,, from Definition 1.1.1|are independent of the value of r, we can see

n+m
that 6; is a homomorphism. m|

It will be necessary to cut a multicomposition A into one multicomposition ¢ and a compo-
sition 7y for our later work. Note that in our work we will mainly set ¢ to be a multipartition and
v to be a partition, but generally we don’t have such restriction.

2.3.2. Example Fixe =4, A =2A¢+ Ay, kp = (0,1,0). Suppose 4 = (4,2|2%,1|32,2). So

)

We want to divide the last partition of A after the first row. This is called the cut row of A.
This gives us a multipartition u with Young diagram

- ([FHE I 1)
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and a partition y with diagram

We call u and y the cut part and the remaining part, respectively.

Moreover we want to preserve the following data. The value |y is called the cut of A4 which
is 14 in this case. The residue of the top left node of y as a subdiagram of A® is called the cut
residue, which in this case is 3. <

[yl =

Now we give a formal definition.

2.3.3. Definition. Suppose 1 = (AD, AP, ..., 19) € €N with 1© = (/1(5) (f)) and a is an
mteger such that 0 < a < k;. We call m a cut of A and a the cut row assoczated to m where
m = Zl: |A9] + ZF i.f). Define N = Ay, where s = k,+ 1 — (a + 1) = k; — a, the residue of
the node at position (a + 1,1,€). We call s to be cut residue associated to m and N’ to be cut
weight associated to m. We then define u = Al,, € € and y = (/151{21’ /1322, cees /11({?) e 6N and
call i and 7y to be cut part and remaining part of A associated to m, respectively.

Note we can either remove a portion of the last tableau, or cut out the whole partition.
We will start to work with 6;, which involving elements in both &%, and %,f Recall that e(i),
$r, s and Jrg are elements from %, and e(i), y,, ¥ and g are elements from Z2.

2.3.4. Lemma. Suppose A1 € .. Let m be a cut 0f/1 withm<n-1,v = /llm and N’ be the cut
weight associated to m. Consider N C Ry If@ R — R, then 0; (NN Yy, C R

n-m —

Proof. Consider r € NV, . Then by (1.4.7)),

_ rasenaNo@j))
r= E ciR;e())y, R;,
J=G15025e s Jn-m)EL™™

where R; and RJf are some elements in %,_,, and cj € Z. Therefore

fa A N raren o@D A
o, (ry, = Z cith, (RDG:, @), )6, (Ry)yy
j:(jl,jz,...,jn,m)GI”_m
ha ’ . . P O )A
cibh, (RDe(iy V ji V jaj3 -« jn- WV B (Ry)
=002 Jn-m)E™™
Z CJHlv(R )9(12 J3seeesJn— m)(e(lv v ]l)yvym+1 )GIV(R )

=002 Jn-m)EL ™™

A
Next we consider e(i, V ]1)yvym o ' e R, |-
Recall that we can write v = (/l(‘), AP, 26D YOy and vO = (V(Z) ...,vﬁt’)). Letu = Ayt
Asm<n—1lu=m+1<n=|, and/l e /M, we have u € PP Write i, = (i1, a, . . . , ).
Notice that (A’, a;,) = |#7]'|. We consider two cases.

Suppose j; =i, + 1 andv*isa multipartition By |Definition 2 1.2)we have LQ%H = by - 1.

Then by [Lemma 2.1.3| we have e(i, V jl)yvy ) =e(, vV Jl)YvymH = e,+y,+. Because mis a

m+1
cut of 1 and v = Ay, 4 = Alps1, we must have v* > u. Therefore e,+y,+ € R,*. So

@ ) >
e(lv 4 ]l)yvym+1 : Rnﬂ'
Otherwise, by [Definition 2.1.2| we have |£7;J = b’ . Then by p € ! and the definition of

PN, for any j, € 1, we have e(i, v ]1)yvy € R," because v = u_. Therefore

m+1

1

e(i, v jl)yvym+1 = e(i, v JI)YVym+1 R
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(N a;
m+1

Therefore for any j; € I we have e(i, V ji)y,y Ve R;". Hence by [Lemma 2.1.14{ and

Lemma 2.1.12}

PN , . . (N a@j)\ A
61, (RO s (€ V OVt B (R)) S R

. N L (Naja
Therefore 6;,(1yy = X jnrwjumer Cibh, RDOGo js,..jp (€ V jOWY, 0 "G [R)) € R
O

2.3.5. Definition. Suppose A is a multicomposition of m and u is a composition. If we can find
a multicomposition vy such that A and u are cut part and remaining part of vy associated m, we
write y = AV u and say vy is the concatenation of A and p.

For example, suppose 4 = (22,1|3°|2) and 4 = (4,2), theny = AV u = (22,1|3°|2,4,2).
Notice that in general y is not a multipartition.
The following Corollaries follows by the definition of A V p.

2.3.6. Corollary. Suppose A is a multipartition of n and u,y are partitions of m. Then u > vy if
andonly if ANV u> AV y.

2.3.7. Corollary. Suppose A is a multipartition of n and u is a partition of m. If y = AV py,
gh(é,uj),u)yﬂ = €y)y-

2.3.8. Corollary. Suppose A and u are multipartitions and vy is a partition such that A = uVy. If
U and v are standard y-tableaux, we can find standard A-tableaux U and v such that 6;, (@uv)yﬂ =

Y-

Proof. Suppose 4 € Z» and u € 922, By Definition 2.3.3| u is the cut part of A associated to
m. Let a be the cut row associated to m. Define U to be the standard A-tableau such that u|,, = t*,
and for any k > m, if U"'(k) = (r, c;, £;) and U (k — m) = (r», ¢, 1), then

C1 = Cy,
r=nr+a.

Define v similarly. It is trivial that @iﬂ (Waw) = Waw and éi,, (Yaw)) = Waw) Therefore by

Corollary 2.3.7]

b, (W) = 6;, (@Z(u))@i,,(éyf’y)éiﬂ Waw) = WyeyWaw = Y-

2.3.9. Lemma. Suppose 1 € SN andp € €™ withu > A. If u_ # A_, then ey, € R>*.

Proof. As u > Aand u_ # A_, we can find m < n such that ul|,, > Al,, and pl,,-1 = Al,—;. Set
v=yul, Ifve ,@,’,‘l, we have e,y, = Ypp € RZ’”’", so by [Lemma 2.1.14|we have ¢y, € R;/l.

Ifv ¢ P2, because 1 € .#" and |v| = m < n, we have v € Z*. Notice that if we write
y =00, v0,0,...,0) withv® = 0, v VD), because Vit = ot = Aoy € PD |

and v ¢ @,;}, we must have v,(le +1= v,(f). Therefore if we write i, = (i, i, ..., i,), We have

. . bxv,; > > A
ey, = e(i, Vin)y, ya" € R C R,

Then by [Lemma 2.1.14] we have ey, € R;*. This completes the proof. O

Now we are ready to start proving the main result of this chapter. We start by proving two
more specialized Propositions. After that we will introduce a Proposition which removes these
restrictions and leads to the main Theorem of this chapter.
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sqs _ 6) . © _ © 4
2.3.10. Proposition. Suppose A € S/ and A_ = (A", ..., A7) with A7 = A7,..., 47,4 #

0. Write iy = (ir,ins .- sin1). Fork € I ifk # iy + 1, ork = iy + 1and 37, > 29, we have

A
el vV Ky Ly € R
Proof. For convenience set m = /155) and i = Al,_,,—;. Therefore u = AV, ..., 21D 4O) where

o @2 a0, ifl>1,
e, if1=1.

Suppose i is the residue of node (/,1,£) in 1 and A’ = A;. Definey = (m + 1) € &V

m+1°
Notice that A= = u Vv y_. Because k # i,.;y + 1 or k = i,.; + 1 and A9 5 29 we have
b

k-1 k
b = bﬁ‘. By|Lemma 2.1.9} in Z%,, we have e(i,_ Vk)y, y " € R,”. This implies that in %1,

Y= A
&(i, V), §5, € N¥ . Thenlet d;, : %1 — Z%, byLemma 2.3.4]

. b c b A oA o b A ’
e(iy Vv k)y/l,ynk = e(lﬂ \4 1y, \ k)y/l,ynl‘ = Qiu(e(ly, \ k)yyfymH)y,u € eiH(Nr/y}+l)y/~l - RZ/I,
which completes the proof. O

2.3.11. Proposition. Suppose 1 = (AV,...,19) € %f\ with 1O = (/l((), . /lgf)l, /lg'f), 1) and
[ > 2, where /lgf)l = /15[). Write i, = (i1,12,...,1i,_1). Suppose k € [ and k = i,_; + 1 (mod e).
Then

A
e(iy v k)y/lfyzk € RZA.

Proof. For convenience set m = /lgf)l = /155), and u = Al,_om-1. Therefore u = (A, ..., 2D, 1)
where

0, if [ =2.
Suppose i is the residue of node (/ — 1,1,{) in A and A" = A;. Definey = (m,m + 1) €

f@é‘m .- Notice that A_ = u VvV y_. Because k = i,_; + 1 (mod e), we have bZ’ = bﬁ‘ and

o {u@,...,agg), ifl>2,
/J =

. bl . .
e(i,_ V k)y,_y, ., = eyy,. By Proposition 2.2.15, we have e,y, € R;”. Therefore we can write
€yYy = Duvesdo) Cuuy With o = (0, 02) where 0, > 0 and oy > ¥, = m. Therefore in %541,

o>y

we have

€Yy = § cuwthuw + 1,
u,veStd(o)
o>y

with r € N} .| and ¢,y € Z. Therefore

A

. b~ . . b~ A ale ~ Wb A A A
e(ii. VEy, y =e(i, Vi, _VEyLy), =6,e0,_ VK, I, Iv.=>6,(89)y

(23.12) = D, b Wuy+ 8,0,
u,veStd(o)
o>y

For the first term of (2.3.12), define @ = u vV o € €. Because o > v, by [Corollary 2.3.6|we
have @ = u Vv o > uVvy> A Therefore
b, W)y = 0, (W08 @ode)yubi, Daw) = 0, (W) ewvo Vv, Waw) = b, W eayabi, Daw)

Because o = (071,0%) > ¥y = (m,m + 1), we must have oy > m. Therefore - = uVvo_ #

BV Y- = /1_; TPen by [Lemma 2.3.9, e,y, € R>". B}/ |Lf:mma 2.1.12[, we have éi#(l/’}uv)yy =
ei,, (l/’ji(u))eayaei” (wd(V)) € RZ/I which yields ZU»VGS;d(O') Cuveiﬂ (wuv)yu € R;A-
o>y
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For the second term of (]2.3.12[), by |Lemma 2.3.4[, we have 9i#(r) € R>*. Therefore

A
el V Ky vt €RA
O

Suppose 1 € LA If A_ = AV, 2?,..., 2,21 with 22 # 0 by [Proposition 2.3.10
and [Proposition 2.3.11{ we have 2 € 7. In the rest of the section we are going to prove the
result is still true if ) = 0.

Suppose u = (W, ..., u9) € P and kp = (ky, ..., k), if u'© = 0, we define A = A — A,,,
ki = (Kis.... k) and @ = (u®,...,u@D) e 2N Suppose u, v are two standard u-tableaux,
define U and Vv to be standard fi-tableaux obtained by removing the () at the end of u and v
respectively. Write k = «;, for convenience. If i = (i,...,i,) € I", define

Oiyk_ Oi k ik
Yik =Y 1 y <+ Yn
2.3.13. Lemma. Suppose the notations are defined as above and i, is the residue sequence of
v, then

Y = Yawdi, ks
where Y, is an element in £ and yrgy is an element in ™.

Proof. Without loss of generality, assume u = t“. By the definition of u and f, writing i, =

.. . h _ 0iy k_ Oin Sink _
(i1, 02, ., Bp), we have y, = yay "y, o 0" = Yadi k-
Now for any residue sequence i = (iy,1,...,i,) € [" and any r, If i, # i,
o\ ik Oin ke i ox. Oip i Oippp ik i,_1k_Oi, 1k ik
€(l)y1 Yoo o Y = (e(l)yr’r r:i ’Jfr)yl . rrl yr:é e V"

_ r+]k Oiy k 614_1,k Biy\ 1.k Oip k
= ey, Yy Ly

= e(i)‘prylsr(ll)k .- 'ynn(ln)’k = e(DY,Yis, k-
If i, = i,,1, then by relation (I.1.T3), as §; x = 6, x» we have the same result.

Hence
Yy = eyuWav) = e(l,u)yﬂyl,l W)
= e )yalaw)Yi dwk = €uYaldw)Yiyk-
As e, = ez and Y4y = Yam), this completes the proof. m]

2.3.14. Proposition. Suppose u, ka, i1, and k5 are defined as above. Then ji € c_@l’\ N QZ;\ N 9%\
implies 1 € 2} N @y’\ N 3%\
Proof. We are only going to prove that g € @;‘ implies u € Z?}. The other two cases are
similar. ) _
Suppose 1 € £, Then for any s € I, by the definition of 22",
: -
e(lz V $)yay,' = Z Cavtluvs
0,v€Std(>f1)
where iy =1i; Vs =i, Vsandcuv € Z.
Also we have e(i; vV s)yﬂ_yn = O, )yn . Therefore we have
Os (Y- - )yns = Z Cavf/uy-
0,7€Std(>1)

Notice that t*- = t*-. Recall k = &, the last term of the multicharge k5. We consider two
cases, s # k and s = k in the rest of the proof.
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If 5 # k, then b~ = b"~. Hence by |[Lemma 2.3.13
h’,vl_
Hs(wt/‘- - )yn3
bp,
= Hs(wfﬂ—f#—yiﬂ,,k)yns
Hg_
= 0Pyt )yn Yiu_ .k

= g Calarli, ko

0,veStd(>f)

and as s # k, 6,4 = 0. Hence yi, x = i, vk = Yiek = Yi4- By[Lemma 2.3.T3]
. by
ey vV )y .y, = Z Can¥avYiok = Z cantluy € R,

0,veStd(>f) 0,veStd(>f)

. p-
e(i, V $)y, y,

because U,V € Std(> f1) implies u, v Std(> ).

If s = k, then ¥~ = b~ + 1. Hence by
e VS Yy = Oy
= Wy, Y Y
= 0w Vi
= Z CanlanYi,_ kYns
0,veStd(>f)

and as s = k, 6,1 = 1. Hence yi, 4V = i, vsk = Yigk = Vijk- By
. b=
ey V )y, y)' = Z Carandivk = Z canbuv € R

0,veStd(>f) 0,veStd(>f)

These implies that u € Z;. ]
Now we are ready to prove

Proof of [Theorem 2.1.8] Write u = 1. = (A1, 2@, ..., 2D 4©) 1f 4© # 0, by [Proposi|
tion 2.3.10and [Proposition 2.3.11| we have 1 € 2.

If 1@ = 0, write AC0 = (7", 4¢,.., A%D) and define y = (A7, ..., 202,51, 0) ¢
2N with y©D = Q0270 _Agjl”, Dandy = (A0, ..., A2 D) As (%) < I(A) = ¢,
by the definition of .#?, ¥ € ). Then by [Proposition 2.3.14) we have y € Z}. Since
y-=pu=Ad_andy > A, forany k € I,

A— V-
el VR = eli, Viy, ' €RY SR,
which yields that A € &7;. This completes the proof.

The following Corollary is directly implied by It will contribute to proving
the y-problem.

2.3.15. Corollary. Suppose A € ./ and i € € where i > A. Then we have ey, € R;*.

Proof. If u- # A_, using [Lemma 2.3.9| we have e,y, € R;*. Suppose then that u_ = A_.

If u € P2, then ey, = Yuw € R;'. Finally, suppose that u ¢ PN If we write p =

W, ..., u?®0,...,0) with u® = (y(l),...,/l;(fzp/lg)), we must have ,u,(fil +1 = ,u,((l). If we
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}{1_
write i, = (i1, i, ...,i,), we have ey, = e(i,_ V i,)y, y," . By
have 1 € 2. Since A_ = p_,

Theorem 2.1.8

L as 1 € .1, we

. . v . . b}L 1
ey = e, Vi)y, y," =el, Vi)yiy," €R;".



CHAPTER 3

Integral Basis Theorem II

In this chapter our main purpose is to prove that %,’l‘ = Rﬁ by proving that gy, and Yy,
are both in R®. We first define an integer m, such that if t € Std(1) and I(d(t)) < m,, we have
Uety, € R,‘l‘ and Y, € Rfl‘. Our first step is to show that m, > 0. Then we prove if /(d(1)) < m,,
we will have ¢gy, € R and Yy, € R as well. By induction we will show that for any
t € Std(Q), I(d(t)) < m,, which indicates that ¥y, € R® and ¥, € R? for any s,t € Std(A).
Finally combining the results from the last chapter, we can prove that Z» = R®,

3.1. Base case of induction
In this chapter we fix 1 € .. First we will give a proper definition of m,.

3.1.1. Definition. Define m, to be the smallest nonnegative integer such that for any standard
A-tableau t with I(d(1)) < m, we have

'J’styr = Z Cukuv’
(u,v)>(s,t)
Ysw + D Cutluvs  if W = t-s, is standard and d(u)-s, is reduced,

l/’stlr//r = {

2iuvsst) Cutluvs if u-s, is not standard or d(u)-s, is not reduced.
for some c, € Z.

We will use induction to prove that for any t € Std(A), [(d(t)) < m, in this chapter. In this
section we will prove that m, > 0, which is the base case of the induction.

3.1.2. Lemma. Suppose 1 € SN, Forany 1 <r < n, e,y,y, = Yuny, € R
Proof. If r < n, write u = A|,. As A € .%;* we have u € ;. Therefore e,y,y, € R;". By

Lemma 2.1.14] we have e,y,y, € R>*.

If r = n, write iy = (iy,1,...,1,). We can find a positive integer b such that ey, = e(i_ vV
in)yﬂ_yf’l. By the definition of bfn‘ we have b < bi‘. Ifb+1< bi‘, by |[Lemma 2.1.3|we can find
v € &2 such that

ey = el Vidy, o = ey,

and it is trivial that v > A. Therefore e,y,y, € R>*. If we have b + 1 = bf};, by |Theorem 2.1.8
we have

. . ) . b
ey = el Viy, yo = ey Vi)yLy," € R,

which completes the proof. O
3.1.3. Lemma. Suppose 1 € SN, Forany 1 < r <n, ey, = Yup, € R,

Proof. Suppose t'-s, =t is standard, we have ey, = Yy € R>*. So we consider the case that
t's, = tis not standard. If r <n —1,as 1 € .7;*, we have u = 1_ € &), Because t-s, = 1|,

which is not standard, e,y,, € R,". Then by[Lemma 2.1.14} we have ey, € R\ If r =n—1

39
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and write 1 = (A, ..., 210,0,...,0) with 2© = (A", ...,A? , A"), we must have either 1\ > 2

or A" =" = 1. Then set u = (AD,...,u®,0,...,0) with
AP 4%, if A > 2and k> 1,
0 _ 0] (0] ey (D) _ (D) _
H = (/1 ""’/lk—Z)’ lf/lk—l_/lk —landk>2,
0, otherwise.

Suppose i is the residue of node (k, 1, 1) in A or the residue of node (k—1,1,0)in A, A’ = A,,
m=A"orm=2andy =@me Py ory=(01)e2VifAd” 220" =2" =1
respectively. Therefore 1 = p V y. Because A € ¥, we have y € &, Hence because t"-s,,_;
is not standard, we have e,y,,,-1 € R, = NA'. Then by [Lemma 2.3.4

e, = e(iu \ iy)y/l'vl’r = éi,,(eyy)IWm—l)y,u € R;ﬂ,

which completes the proof. O

3.1.4. Corollary. For 1 € S, we have m, > 0.

Proof. Combining the above two Lemmas, [Lemma 1.4.4] and [Proposition 1.4.9] the Corollary
follows. =

3.2. Completion of the y-problem

In this section we are going to prove that for any t € Std(Q), if /(d(t)) < m,, then for any
1 <r<n-1andanys € Std(1), if t-s, is standard and d(t)-s, is reduced, ¥, € R>* and for
any 1 <r <n, ygy, € R

First we introduce the following Lemma.

3.2.1. Lemma. Suppose m is a positive integer such that m < m,, then

e/ly/ll//rllpm ce l//r,,, =2 Z Ct)‘thﬂv-

veStd(A)
1d(v))<m

Proof. We apply induction on m. Suppose m = 0 then there is nothing to prove. Assume for
any m’ < m the Lemma holds. Therefore e,y ¥y, ... ¥y, =1 >, uesidy) Cryisy Which yields

I(d(u))<m—1
YWl W U =1 D Conthiitly,
ueStd(1)
I(d(u))<m—1

For u € Std(1) and I/(d(u)) < m — 1 < m,, if u-s, is standard and s4)-s,, is reduced, by the
definition of m,,

Wu%m = lr//t/l,u-s, + Z nywxy =2 'ﬁtﬁ,u-sr + Z Ceviiy,
(xy)>(t4,u) veu
where [(d(u-s,)) = 1 + I(d(u)) < m and I(d(v)) < [(d(u)) < m as v > u. Hence
Yy, =a Z vy,
veStd(1)
I(d(v))<m
If u-s, is not standard or s4)-s,, 1s not reduced, we have

Y, = Z CxyWxy =2 Z iy,

(xy)>(t1,u) veu
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where [(d(v)) < I(d(u)) <m -1 <mas v > u. Hence

Vs, =2 Z iy,
veStd(1)
(d(v))<m

which completes the proof. O
Now we can start to prove that Y, € R,?A when t-s, is standard and d(t)-s, is reduced.

3.2.2. Lemma. Suppose t is a standard A-tableau with d(t) = s,,s,, ... s, where | < m,, and
d'(t) = 8,8y, ...y s another reduced decomposition of d(t), then

eyaan — ey Waw = Z cuwtuv-
(u,v)>(tt)

Proof. By [S, Proposition 2.5], we have
yiewaw = Yaeaaw = Z Curyaeaf VW,

u<d(t)

where f(y) is a polynomial in y,’s and u is a word in &,,. If f(y) # 1, by [Lemma 3.1.2] we have
ey f(y) € R4 Hence ye, f)W, € R4 If f(y) = 1, as u < d(t) then l(u) < I < m,, by

Lemma 3.2.1{we have ey, € Ri”. Henceforth

yxle/lww - y/le/ll//w’ € Riﬂ

Then by |Proposition 1.4.9/and [9, Lemma 5.7], we complete the proof. O

The following Corollary is straightforward by Lemma 3.2.2) which explains the action of
to Y from right when t-s, is standard and d(t)-s, is reduced.

3.2.3. Corollary. Suppose t is a standard A-tableau with [(d(t)) < m,, if w = t-s, is standard
and d(t)-s, is reduced,

Ysthr = Ysw + Z Cuuy-

(u,v)>(s,t)
Now we start to prove that Yy, € R>".

3.2.4. Lemma. Suppose t is a standard A-tableau with I(d(t)) < m,. For any 1 < k < n,
1 < r <n-—1and any standard A-tableau s, we have

l/’st}’kl//r € R}’Zl/l
Proof. As I(d(t)) < m,, we have

YstVk = Z cwthuw = Z Covisy + Z cuwtuy-

(u,v)>(s,t) vt u,veStd(>1)

For Shape(v) = 4, since v > t, I(d(v)) < I(d(t)) < m,. Then we have Y1, € R4
For u,v € Std(> A), ¢y € 2. As 1 € A, R>'is an ideal by [Lemma 2.1.12] Hence
Y, € RZ” and this completes the proof. O

3.2.5. Proposition. Suppose t is a standard A-tableau with I(d(t)) < m,, forany 1 < r < n and
any standard A-tableau s, we have

Ystyr = Z cuuv-

(u,v)>(s,t)
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Proof. Write d() = s,,s,,...5,,_,5, and w = t-s,, = s,,5,, ... 5,,,. We prove this Proposition by
considering different values of r.
If r ¢ {r;,r; + 1}, then y,, and y, commute. Hence

Ystyr = w;;(s)e/ly/llpd(t)yr = w:l(s)e/ly/llﬁd(w))’r‘ﬁr, = Yswyr s,

As l(d(w)) = I(d(t)) — 1 < m,, by|Lemma 3.2.4{we have gy, € R>1.

If r = r;, let j be a sequence such that e(i)Y1) = Yawe()¥,,. We separate this case further
into j,, # jy+1 and j,, = j,41. First suppose j,, # j,+1, then

Ystyr = Yauseayalawyr = YasyeaYalawYra1¥r, = Yswyri¥y.

Hence as I(d(w)) < m,, by|Lemma 3.2.4/we have ¥y, € R,f" when j,, # j,+1. Now suppose
Jr, = Jr+1, we have

Ystyr = wZ(s)eﬂyﬂwd(t)Yr = wZ(s)e/ly/lwd(w) + wZ(s)eﬂyﬂlﬁd(w)yrﬂlﬁr, = Ysw + Yswyri1¥,-
As I(d(w)) < m,, by [Lemma 3.2.4| we have Yy y,+ 1%, € RZ*. As Yy € RZ! as well, we have

Ustyr € erl/l- So for r = r;, we have Yy, € R;%/l'

If = r; + 1, the method is the same as r = ;.
Therefore in all the cases, we have Yy, € R>*. So

l//Styr = Z Cuvl//UVa

u,veStd(=2)

and by [Proposition 1.4.9|we complete the proof. O

3.3. Properties of m,

In the rest of this chapter we will prove that if t € Std(1) and I(d(t)) < m,, then for any
1 <r<n-1andanys € Std(1), we have Yy, € R>*. In this section we will give some
properties for m, which will be used in proving the above argument.

3.3.1. Lemma. Suppose A € #*. For any permutation w € S, with reduced expression w =
Sy Spy o Sp Sy, and r = min{ry, ra, . .., 1y}, if we write

e = ey Y = ), Collu

u,veStd(=1)
then cy, # 0 implies V|, >t for any k < r.
Proof. We prove the Lemma by induction. If m = 1, then r; = r.

Yy, if v = t'.s, is standard,

Z(u,v)D(tﬂ,tﬂ) Cuv‘/’uw otherwise.

ey, = {

If v = t'.s, is standard, then by the definition of v, v|; = t}|;, = t¥ for k < r. If it is the other
case, as vV > t4, then V|, > t4|; = ti*.

Assume for any m’ < m the Corollary holds. Then

€Ayﬂlﬂr1 wrz te lﬁrmfl = Z cUlVleIVl’

up,Vvi€Std(=2)
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where v, |, > tY for k < r. Then

ey, Y, Wy, = Z Cupv Yu ¥, -

up,vi€Std(=2)
Since

Yoty = Yuw + 2w vy Cun¥uv,s IV =Vy-s, is standard and d(v;)-s,, is reduced,
UiV ¥ rm .
Z(u,v)l>(u1,v|) cuwtuvs otherwise.

If v = vy-s,, is standard and d(v,)-s,, is reduced, recall v;|; > tl for k < r,as v = v, “Sps
V| = Vilx =t for k < r < r,,. For v, > vy, we have v, > vy, > tU for k < 7.
If it is of the other case, as vV > vy, V|, > V|, & Y. Therefore

ey = exywnr, - Y, = Z Cutuy

u,veStd(=1)

and ¢, # 0 implies v|; > t¥ for any k < r. This completes the proof. O

3.3.2. Lemma. Suppose A € /M N (P} 0PN PY). Then forany 1 < ri,ry,... .1 <n—1

e/ly/l‘//rl wrz cee l/’rm = Z Cowiy + Z Cuuv-

veStd(1) u,veStd(>1)
ustt
Proof. When m = 1, we have
Wiy, if v = tt.s,, is standard,
ey, = — ifv=ths i tandard
2wty Cutluy = 2uvesda) Cutbuy,  1f V = t'-s, is not standard.
ustt

which follows the Lemma.

Suppose for m’ < m the Lemma holds. Then by induction

(3'33) elly/lwrl c wrmflwrm = Z ctﬁvlwtﬂvllprm + Z Culvl"pulvlwrm'

v1€Std(2) up,vieStd(>2)
utt

For v; € Std(1), as 1 € P2,

Ui, + 2uvaettyy) CovaWuv,, 1 Vo = Vy-s, is standard

and d(v,) = d(v;)-s,, is reduced,
DU va)e vy CuavaWusvs s if v, = v;-s,, is not standard

or d(vy) = d(v,)-s,, is not reduced.

'ﬁt/‘v 1 lr//l’m =

where in both cases, we can write

(3.3.4) Vi, = D vt D Conlu
voeStd(1) Up,v2eStd(>1)
U2l>t’{

For u;, u, € Std(> 1),

Yuvs + 2w vy CuvaWupvss  1f Vo = Vy-s,. is standard
and d(v,) = d(v;)-s,, is reduced,
lr//U1V1 lr//i’m = . .
Z(uz,Vz)>(u1,vl) CuyvuWuovys if v, = vy-s,, 1s not standard
or d(v,) = d(vy)-s,, 1s not reduced.
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where since u; > t, we can always write

(335) Wulvl%m = Z CUzvzwuzvz'

Up,V2€eStd(>1)
Uyt

Therefore, substitute (3.3.4) and (3.3.5) back to (3.3.3), we have
64)’4%1 l//rz o l//r,,, = Z Ctﬂvl//t/lv + Z Cukuv’

veStd(1) u,veStd(>1)
ustt
which completes the proof. O
3.3.6. Lemma. Suppose A € %,A and ry,ra, ..., 1, are positive integers such that ry,...,r, <
n—1. Then

A
6’1)’/1%1 wrz s wrm € R,Zl .

Proof. Define u = Al,-1. As 1€ S pe L2 N (PPnPrnPy). Define i € I such that
ih=i,Vi Asry,r,...,r, <n-1,wehave

e/ly/“//rl lr//rz M wrm = Qi(elly/llr[/rl '70"2 A l//rm)’
where

ey ¥r¥r, - Y, = Z Cougtfpy + Z Cavtluy-

veStd(u) u,veStd(>u)

AS Y vestdop Cotboy € Ry = R, by|Lemma 2.1.14] 60:( X vestdop) Cartbov) € Ry
For v € Std(u) = Std(4],-1) and i, V i = 1,, define v to be the standard A-tableau with
V|,—1 = V. Hence 0;({yy) = Yay. Therefore

0i( Z CogWwy) = Z cuiny € R

VESw(w) vesw(d)
So
ey Wnr, . W, = 0i( Z Cuyy) + 0i( Z canbav) € R

veStd(u) u,veStd(>p)

3.4. Garnir tableaux

In the following sections we will prove that Y, € R,Z,’l for [(d(t)) < m,. Generally, if t-s, is
standard and d(1)-s, is reduced or I(d(1))-s, is not reduced, it is comparatively easy to prove that
Ys, € RZY. Our main difficulty is to prove that when t-s, is not standard then ¥g), € R4, In
order to prove this we consider different types of . Among these cases the hardest part is that
when t is a special kind of tableaux which is called the Garnir tableau and t-s, is not standard.
In this section we will prove that in such case ygr, € R>".

The method of proving the argument in this section is first assuming that Shape(t) is a
partition of two rows, and using the similar argument we used in the last chapter to extend the
result to general multipartitions. First we give a detailed definition of garnir tableaux.

We introduce a special kind of tableaux, the Garnir tableaux, which was first introduced by
Murphy [24]. Let (a, b, m) be a node of A such that (a+ 1, b, m) is also a node of A. The (a, b, m)-
Garnir belt of A consists of the nodes (a,c,m) for b < ¢ < Agm) and the nodes (a + 1, g,m) for
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1 < g < b. For example here is a picture of the (2, 3, 2)-Garnir belt for 1 = (3, 1|7, 6,5, 2).
[ ]

XXX |X
X[ X|X

The (a, b, m)-Garnir tableau of shape A is the unique maximal standard A-tableau with
respect to the Bruhat order () among the standard A-tableaux which agree with t* outside
the (a, b, m)-Garnir belt. For example the following is the (2,3, 2)-Garnir tableau for 1 =
(3,1(7,6,5,2).

( 1 2|3|‘ 5[6]7]8]9 0[]
12[13[16[18[19]20

14]15]17)21)22

234

Suppose A = (A1,...,20) and 2O = (A",...,2"). Let (a,b,m) = (k- 1,4, ) and t be
the (a, b, m)-Garnir tableau. Let the entry in node (a, b, m) of t be r. Then t-s, is not standard.

3.4.1. Definition. Suppose 1 € P} with A = (AV,...,A9) and 10 = A°,...,A0). Ifk > 2,
andtis the (k—1, /lg) , 0)-Garnir tableau, then we call t the last Garnir tableau of shape A, and
r=tk-1, /lgf), {) the last Garnir entry of t.

For example

( 1 2|3|‘ 5T6]7]8 91011|)
12[13{16[18[19]20
141517

is the last (2, 3, 2)-Garnir tableau, and

( 1 2|3|‘ 5T6]7]8 91011|)
12[13[16[18[19]20

1415172122

2324

is not the last one. Notice that t-s, is not standard.

Because we are going to play around with 4« a lot, we then introduce more defailed nota-
tion for these elements in the next Lemma.

3.4.2. Lemma. Suppose A = (AV,...,19). Lett be a (a, b, m)-Garnir tableau of shape A and
Am = QL /lgcm)). Suppose

t'(a, b, m) =1,
t(a, A" m) =5,
ta+1,b,m) =t.

Thenl < s <t Writet—s=c,

Yary = ¥ssia . Wi ¥s .o Wia oo oW - e Wi - Wi
where

W sser - ) = M5 .o i) = oo = Wi . Yiee) = ¢

and

Iier -« Yieen) =c— L.
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Proof. The Lemma follows by direct calculation. O

3.4.3. Example Suppose 4 = (3,1|7,6,5,2) and (a,b,m) = (2,3,2). Lett be the (2,3,2)-
Garnir tableau of shape A. Then

t:( 1 2|3|‘ 576]7]8]9 1011|),
1213{16[18[19]20

14]15[1721)22

23p4

and

tﬂz( 1 2|3|‘ 516]718]9 1011|)'
12[1314]13]16]17

1819202122

2324

Then
tY(a, b, m) =142,3,2) = 14,
tha, A" m) =14(2,6,2) =17,
tha+1,b,m) =13,3,2) =20,

and ¢ = t — s = 3. Therefore

Yawy = Yipisio e iibis-visvieirYiaps
with
[(171s19) = lWneinis) = lisyiedin) =3 =¢
and
IWa1s) =2 =c— 1.
&

3.4.4. Remark. Fora < b — 1, we will write ¢, = Yo 1¥ar2 .. Yp2¥p-1 and Y, = i in
order to simplify our notations.

Our first step is to prove that when A 1s a partition with two rows and t is a last Garnir tableau
of shape A with r as its last Garnir entry, then ¢, € R>* for any s € Std(1). We set A = (4, 42)
and without loss of generality, set A = A,. Therefore A € @2\ with n = A7 + 4,. Also we set
u =, -11), A= -1LA) and it = (44 — 1,4, — 1, 1). Furthermore, let i = res(y;),
Jj =res(y,), where y; = (1,4, 1) and y, = (2, 45, 1).

First we prove a few useful Lemmas.

3.4.5. Lemma. Suppose A, A, [, i and j are defined as above, we have

Wit - YnoWnre(iy V )y y,

“Yas1 - Ynolnre(iy V iy, ffi=e—1j#e—1,
Yaaer - Yno¥n1e(iy V Dy,

Yt Wna2Wnre(iy vV y,

=Y Ype(y Viy,, fi=j=e—1,

Yot - YnaWare(iy V iy,

Foaaet - Ynoe(iy V Dy, fi=j=e-2,
Yaaet - YnoWnre(iy V iy, otherwise.

ey W Y21 =a
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Proof. In order to make the notations and the diagrams clearer we set e = 4. For the other
choices of e one can check that the method is the same because the proof doesn’t depend on the
value of e.

By using the diagrammatic notation we have

2 A

3 i-1 i 3 0 1 2 3 0 j-lj

1

0

.

‘ 9i3

-1 Q-1

0 1 2
eV Y +1 - W21 = ‘ ‘ ‘
1

This Lemma is equivalent to move all the dots from top to bottom. In order to do this we
have to consider several cases.

Case345a: i#e—2,e— 1.
We set e = 4 so in this case we have i # 2,3. Asi # 3, d;3 = 0. Therefore there are no dots
on the strand labelled by i. And as i # 2, by relation[I.I.10] we have

eVt - YnoWn

Il
_

30 -1 3 0 1 2 3 0 Jj-lj

2
P
‘ ‘...‘

Il
_

5jn

Yaa st - Ynon_ie(iy Viy,.

Case345bp:i=e—land j#e— 1.
We set e = 4 so in this case we have i = 3 and j # 3. Then 6,3 = 1. Hence

0
P
‘---

A A

!

3 2 33 0 1 2 3 0 1 2 3 0 Jj-lj

0 1 2
ey Wiy W, = ‘ ‘ ‘

0 1 2 3 0 2 3 3 0 1 2 3 0 1 2 3 0 =1 0o 1 2 3
.

P
“‘ ...“
a1

0o 1 2

2 3 3 0 1 2 3 0 1 2 3 0 j=1j
.

3 2 3 3 0 1 2 3 0 1 2 3 0 j-lj 0
.

[Tl
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Y1 - UnoWno1€(y VDY) + Y a1 - Wnan_re(iy V D)y .

Case345c:i=j=¢—1.

We set e = 4 so in this case we have i = j = 3. Similarly as in Case[3.4.5p, we have

eyt - Yn2n

4 !

3.0

01 2 203
A
“‘ ...“
A

30 1 2 3 0 1 2 3 0 2 3 0o 1 2 3
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= _l/’/11+1 cee wn—an—le(i}l \ l)y/l - w/h ce wn—Ze(i/'l \4 l)y/l + w/llw/lﬁl e ’Jjn—ZWn—le(i/’l \ l)yxlyn

Case3.4.5d: i=e—2and j# e—2.
We set e = 4 so in this case we have i = 2 and j # 2. Similarly as we set e = 4, we set
J = 3 in this case in order to make the diagram clearer. For the other j with j # 2 the method is

similar. By [Lemma 2.1.14}

eyWaa 1 o,

A
01 2 1
-
0o 1 2

3 1

3 23 0 1 2 3 0 1 2 3 0 12 3

¢ -
AY
(CTT0) '
= 1
1
0 1 2 3 1
¢ -
—A1
0 1 2 3 1
¢ -
—A
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0 1 2 3 1 2 3 0 1 2 3 0 1 2 3 0 1
¢
(L.1.10)
0 1 2 3 1
—A
[

Case[34.5:i=j=¢-2.

=Y. Ynanre(iy vV iy,

We set e = 4 so in this case we have i = j = 2. Then by[Lemma 2.1.14]

eyt - W2

!
0o 1 2 1
.
0 2 1

3 23 0 1 2 3 0 1 2 12 3 0

¢ -
(L.1.10)
0 1 2 3 1
¢ -
=2
01 2 3 1
¢ -
=2
0 1 2 3 1
¢ -
=2
0 1 2 3 1
=2
® -
0 1 2 3 1 2 3 0 1 2 3 0 1 2 1 2 3 0 1
& .-

= YaWaet - WnoWuo1e(iy V Dy + Y,

which completes the proof.

2 o 1 2 3 12 3 0 1 2 3 0 1 2
‘---
..

o Wnpe(iy V Dy,




3.4. GARNIR TABLEAUX 51

3.4.6. Remark. If 1; > A, and t is the last Garnir tableau of A, by |Lemma 3.4.2| we have
wd(t)wr = l//a,l,nlpan,l,n—l ce war+2,r+2wa,ﬂ,r+l-

Define w to be the last Garnir tableau of shape A, we can see that Yyw) = Vo, n1 - - - Yo ss2Way, ril-
Hence e(iy V )y awr = 0:(bpy ).

3.4.7. Lemma. Suppose t and t are the last Garnir tableau of shape A and A respectively with
last Garnir entry r. Set

Yaar - Wn2¥n-1Yn =Y+t - - Yno¥n-1, ifi=e—1,j#e—1.
U=t YnoWn e —Yaer - oWt =Y Wasr . Adpa, ifi=j=e— 1
Yaa, - Yn2¥n-1, otherwise.

For any standard A-tableau v, if d(t) < my and v > 1, then

{w-e,wt;w) €R), ifi=j=e-2,
U-0:(y,) € RZY,  otherwise.
Proof. If it is not the case that i = j = ¢ — 2. By [Lemma 3.4.5| we have
Yre(iy v iy, =1 e()yaba a1 - - - Yn2ln-1-
Then we have
Y-0i(Yy) = Yre(iy V DywWaw =1 eayaba a1 - YnoWn-1¥aw)s
where as v > 1, then d(V) < d(1) and
I Yas - - Yn2¥nWaw) < I Was - Ynanar) + (dD) = 1(d(0) < my.
Then by we have -0,(Yy,) € R

Fori= j=e—2setji=@ -1 -1,1y=d1=0,4-Dandy =@ —1,10—1).
Because y, — y,. By [Lemma 343,
U0i(Wg) = Ya ey V DyWaw =1 eayalay aWacy — Yan-1€0s V Dyulan)
ey aWawy — O, n-1e(y V Dyulany)
ey Waw — 0i(Wa n-1e(y V D)ys¥aw)).

Again by [Lemma 3.4.5|, Yan-1€(y V DysWaey =y ey n-1Waw. Since y = A|,_;, by
Lemma 2.1.14]

O:(Wa, n1€(iy V DyyWawy) =i 0i(eyy, W a, n1¥aw))-
Therefore
U0:(Way) =1 exyala aac — i€y Yy n1Wac))-
Asdle SMandlyl=n-1<|q
(3.4.8) eV W n-1Wawy = Z CoyYry + Z Cxy¥xy-
yeShape(y) x,yeStd(>y)

For the first term of the left hand side of (3.4.8), because y = Al,-; and j = i = e — 2, we
have b7 = 2. By|Lemma 2.1.3[and the definition of y, 6;(¥vy) € R;". For the second term of

the left hand side of (3.4.8), as X,y € Std(> ) = Std(> Al,_1), ¥x, € R;""". By|Lemma 2.1.14}

6:(xy) € R2* C R, Therefore,
0i(eyyy W n-1Waw) € Ry
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Finally, as
a1 -« AnaWn-1Waw) < L@ Wa s - YnoWn-1) + 1dD) = (d(})) < my,

by [Lemma 3.2.1| we have ey, Waw) € R;* C R2*. Hence U6y, € R;". This completes
the proof. O

3.4.9. Lemma. Suppose 4, — A, =e—1 (mod e), i.e. i = j, and (3; — A, + D)A — 1 < m,. Let
U and v be standard A|,_,-tableaux with U > t'. Assume i = j # e — 2. Then set

l// — !///l|lyl//ll+1 . 'l//n—an—lyn - l///l|+1 . -lﬁn—ziﬁn_] - w/l]w/l]_;,] .. .l//n_z, lf‘l = ] =e — 1’
Yaa, - Yno2¥n-, ifi=j+e—1,e-2.

and we have
Y0 () € RZ.

Proof. We assume that i = j # e — 2. First we need to introduce some properties of U. Because
U is a standard A|,_;-tableau and U > t!, the only possible choice of U is the one such that
Ul,—p = t@=12=D Then define u and v to be the unique standard A-tableau with ul,_; = U

and v|,_; = V, respectively. For example, when A = (7,4) and ¢ = 3, then U = ; é . 4[5]6]10]

2|3 141 51610 From the definitions of U, v and u, v we can see that d(v) = d(V) and

819
d(U)) = A, — 1. Also notice thatif i = j # e — 2, theni, =1,, , Viandy,, , =y,

W

and U =

ld(w)) =

1
7
/

Now we consider different cases of i, j. Supposei = j # e — 1,e — 2, then
YOWw) = Yaa, - VYn2¥n-1¥aweln, , vV Dy, Vaw
= Yo - Y2 1Wawery aWaw).-

Recall thate > 3. As A, — A, = e—1 (mod ¢), we must have 4; — A, > e—1 > 2. Also
because of A, > 1,

my > (ﬂl — A+ 1)/12 —1>231-1>224, > l(lﬁ/ll’nlﬁd(u)) =24, — 1.
Hence by [Cemma 321

Yaa, . Yo Wawe Y Wawy = Ya¥a - - Yno2¥n1¥awmery aWaw)
Y, - W Wawiby € R

Suppose i = j = e — 1, then

U-0;(Yay)
= WY1 UnoWnayn = W41 - WnoWn =Y Wa i - - dn2)Wawela,, vV DY, Yaw
= YaaYnWaoiy — Ya st a¥aaWiov — Y -1 aWPiiy-

As Y4 doesn’t involve i,,_;, by |Proposition 3.2.5|and [Lemma 2.1.12}
W n¥bawiin = Y abawynibiy € R,

and because [(Ya,+1..%aw) = W n-1Waw) = A2 — 1+ — 1 =22, -2 <my, by[Lemma 3.2.1]
W1 aWuy and ¥, 1 Wa@y are both in R24. Hence ¥-0,(fyy) € R O

Now we are ready to prove that gy, € R>* when Shape(t) has only two rows.
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3.4.10. Proposition. Suppose 1 € ./ and t is the last Garnir tableau of shape A with r to be
the last Garnir entry and [(d(1)) < m,, we have

Y, = Z Cuvluv-

(u,v)>(t,1)
Proof. By|Lemma 3.4.2] as t is the last Garnir tableau of shape A, we have
Var = Yy aWa-1n-1 - - Wayre1s
where (W, 1) = {(Wa-10-1) = ... = (Y4, ,+1) = A2. We prove the Proposition by induction on
A;. Recall that we write A = (1, — 1, ), u = (A, A, — 1, Dand g = (4, = 1,4, — 1, 1).

When A; = 1, by definition of Garnir tableau, 4; = A,. Without loss of generality, we set
A =Ap. Inthiscasei =0and j = e — 1. Hence

Yo, = Yo, = e(0,e — Dy = Yrie(e — 1,0) = 0 € RZ.

So, when A; = 1 the Proposition is true.

Assume for any partition of two rows with the length of its first row less than A, the Propo-

sition holds. By we have
Yoy = eyalan¥r = exyaa aWai¥r

Yaney V Dy WawWr + Y n1e(y V Dyubaar
= l///h,ngi(lr//t;ifwr) + l///h,n—]ei(eﬂyﬂwd(i)l//r)’ ifi = j =e€— 27
U0ieyala -1t - - Warerr2¥ s re1) = Y0i(pihr),  otherwise.

where t is the last Garnir tableau with shape A= —1,2),and

(3.4.11)

Yalasr - W oWnayn —Was1 - oW, ifi=e—-1,j#e—1,
U= YW Yn = Wast - VnaWuo =Y Wi - W, ifi=j=e—1,
1/ T 1/ /A otherwise.

Now we separate the question into different cases.
Case[3.4.10p: i # j. By (3.4.11)) we have
lr//t/ltl//r = l/"ei(l/’tﬁflr//r)-

By induction, W, = Z\'/eStd()l) Cgiy + ayesta-y) Covtfuv. Therefore

vt
Y, = Z Cug-0i(Pryy) + Z calbi(Yay).
vesd() 0.veStd(>1)
>t

For U,v € Std(> A1), by [Lemma 1.4.4] res(ll) = res(t)). Because i # j, we always have

Shape(u) > A|,-;. Hence ¢, € Rt Therefore by |Lemma 2.1.14| and |Lemma 2.1.12[,
Y-0:(Yuw) € R S0 2y vesuen Contl Oi(Yuy) € R,
For v € Std(A) with vi>t, by|Lemma 3.4.7, y-6;(f1,) € R>*. Therefore 2uvestd() S 0i(Uyy) €

vt

R>'. These yield Y, € R,

Case[3.4.10p: i = j # ¢ — 2. By (3.4.11)) we have
Yy, = (r[/'ei('//tﬂiwr)-
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By induction, Y, = Yiesucy Coity T 205estd,-) Cor¥ov + 2 veshape(say,_p) Covifuy- There-
V-t (RG]
fore

Y, = Z Ccag-0i(Way) + Z col-0i(Way) + Z canl-6i(Yay).
veStd(1) u,veStd(A],-1) u,veShape(>Al,-1)
vt V)b

For U,V € Std(> Al,_1), Yoy € R, As A1 € A, by [Lemma 2.1.14 we have y-0,(Yoy) €
RZA- Hence Zu,\'/esm(mh,l) cap-0i(Yuy) € R;/l'

For u,v € Std(4],—;) with U > tﬂ, because m,; > d(t) = (4; — 4, + 1)A, — 1, by |Lemma 3.4.9
we have w-@i(lpw) € Rf/l. So Zu,\'/eStd(/l_I,,_l) Cuvlﬁ'ei(lﬁu\',) S Rf/l.

u et t
For v € Std(4) with V1, by [Lemma 3.4.7) -6:(¥y) € R>*. SO 3 vesnapecs,1) Contd-0i(Way) €

R,
Therefore we have Y, € R,

Case[3.4.10k: i = j = e — 2. By (3.4.11) we have
(3.4.12) Yoy = Yo i) + Wa n-10i(enyilairr)-
For the first term of (3.4.12)), by induction,
(3.4.13) Vanbipy) = Z Cog¥a, n0i(Wryy) + Z Covtf 3, n0i(Wav)

veStd() 0veStd(Al,-1)
Vit (et

- Z Cortl 4, (W)

u,veStd(>Al,—-1)

For v € Std(1) with V > {, by [Lemma 3.4.7, we have ¥, ,6,(f,,) € R;". Therefore

(3.4.14) D Cuthaabilt,) € R
vesStd()
v
For u, v € Std(4|,—;) with (u, v) > (tz, t), by[Lemma 1.4.4, we have res(U) = i;. So the choice
of U is unique, where d(U) = ¢, ,—1. Hence asi, =1y, , Viandy,, , =y,
(3.4.15) Y nliWa) = Yaa¥n-10,e0a,, V DY, Yawy = Yanl¥n-1.0, € W ac)-

We work with w/ll,nlpn—l,/ll eﬂyﬂ = lp/lllﬁ/lﬁl Ce lﬁn_glﬁn_llﬂn_g v lﬂ,h_'_]lﬁ,lle‘uy’u first. We define
a partition o = (4,4, — 2, 1). Then
w/ll cee wn—3$n—2wn—lwn—2'pn—3 v w/lle,uy,u
= ()[’/11 ce wn—3lr//n—]wn—2¢’n—l¢’n—3 cee w/he,uy,u - w/h ce '71’11—317[/n—3 e w/heuy,u
(3.4.16) = Y101 (Wi, - AVns¥n2¥ns .. Wa oY W1 =Wy o Wn3Wn3 ... W€
Consider the lefthand term in (3.4.16)). As A € f{\ and |o| = n—1 < |A4], we have
iy Vs s oo = L Curtlur + ). Cuth,

ueStd(o) u,veStd(>o)

where res(U) = io84, 50,41 - - - Sn-352-28n-3 - . . S1,4152, = iy by [Lemma 1.4.4] and res(v) = i,.
Since min{4,,...,n—2} = A;, by|Lemma 3.3.1} cyir # 0 implies ul,,_; > t7"-1. Then the unique

choice for uis u = t. Hence

w/ll cee %—3%—2%—3 o w/lleo'y(r =cCesYs t+ Z Cukuv-

u,veStd(>o)
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Further more if u is a standard tableau with Shape(u) > o and res(u) = i, we must have

Shape(u) > Al,—;. Hence by [Lemma 2.1.14]
Wn-10i-1( Z cwywWn-1 € RZA'

u,veStd(>o)
Therefore
Yn10i1(Wa, - sz .. W eeYoWn1 =2 CYn10im1(eayo)Wn-i
= C'Wi—leyyy =c(eaya — euyuyn—l)-
By [Proposition 3.2.5| we have e,y,y,-1 € R;*, we have
(3.4.17) Un1O0iaWay - o Y3 oWz .. Y oo Wno1 =a €€y,

For the righthand term in (3.4.16), as 2 € S/}, Aoy € S, N (PP 0 Prn @lz\). By
Lemma 3.3.2]

w/ll M wn—3wn—3 A w/lle/”nfly/llnfl :A‘nfl Z Cl:]t’{ln—l wl‘lt}ln—l *

ueStd(A],-1)

Then by [Emma 2114
Vay oo n3Wnz .o Yy, = i . sz Y ea,  Ya,,)
= D Catm W)

LIIGStd(/lln—l)
(3.4.18) = D Catatun,
ueStd(u)

where u is the unique p-tableau such that ul,-; = u.

So substitute (3.4.17) and (3.4.18) to (3.4.16)), we have
Y mWn-1.0,€uYu =2 Z Cupuw £ CYppa.

ueStd(u)

As v is a standard tableau of shape A|,_; = ul,-1, we can define v, and v, to be a standard pu-
tableau and A-tableau where v,|,-; = vs|,-1 = Vv, respectively. Henceforth d(v,) = d(v,) = d(v)

and by (ET3),
YaunliWw) = Y a¥n-ta € Wac) =a Z cuwurWaw) £ CYunaw)

ueStd(u)
= Z CurYurWan,) £ CYuaWa,)
ueStd(u)
= Z Cutﬂwuvl + C'wtﬂVZ € Ri“.
ueswd(u)
Therefore,
(3.4.19) DL cuthaabiWw) € R

0.veStd(Al,-1)
(ORI

Finally, suppose U,V € Shape(> Al,_;), by [Lemma 2.1.14] we have ¥, ,0,(Yw) € R
Therefore

(3.4.20) Z Conla, n0i(Wew) € R

u,veStd(>Al,-1)
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Substitute (3.4.14)), (3.4.19) and (3.4.20) to (3.4.13)), we have
(3.4.21) Y, n0Wuhy) € RYE.
For the second term of (3.4.12), by [Lemma 3.4.5
Yan10ieyubailr) = 0iWan-1€yan¥r) = 0i(en, Y, Y n-1¥apy¥r)
ey n-1¥awrs
where by because ¥, », Y - doesn’t involve ¢,_i,
(3.4.22) ey n-1Wailr € R
Therefore substitute (3.4.21]) and (3.4.22)) to (3.4.12]), we have
wtﬂtwr (S Riﬂ.
Then by [Proposition 1.4.9|the proof is completed.

O

3.4.23. Example We give an example of Case[3.4.10k. Suppose 1 = (7,4), e =4 and A = A,.

Therefore i = j = 3 and

t=1]2]3]7]9]10[11] pol1]2]3]4]5]6]7]
4|5]6]8 891011 ’

with d(t) = $753598105657585955S565753854558¢ and r = 7.
By[Lemma 3.4.5| we have
exyrsoio = e(01230123012)y,y1147¢ 58910
Yrsorioe(01230130122)y,y11 + Yr7psifoe(01230130122)y,
asoripe(iy V D)yq + Yasioe(iy V i)y,
Yrsowrio0i(e(iy)yy) + Yagobi(e(iy)yy),
where 1 = (6,4) and /1 = (6,3, 1). Therefore

i=11]2]3]7]9]10]
415]6]8

and d(t) = 56575889558657585458556, which indicates

Y, = ey soioersolserrsasery
= Yashoriobi(e()y )Wl rvsboselrsaseds
+asobi(e(iy)y)Wedrsbolsysdrysyases
= Yo 100i(e(i)y W awW7 + Wasoli(e(in)y )W awa

(3.4.24) = Yrn0iWph7) + ¥7.100:(e()yatb aqyPr)-
For the first term of (3.4.24),
(3425) '7[/7,1 lei(l//t){l//r) = Z Ct,'{\-,',b7,1 19,’(1/4)(,) + Z Cm‘,lﬁlllei(lﬁuv)
vestd(l) 0,V€Std( A1)
vt ORI (ER))

+ Z ca¥7.110: (W)

u,veStd(>Al,-1)

For v € Std(1) with v > 1, by we have
(3.4.26) D cutrnbi@y,) € R

veStd(1)
vt
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For u,v € Std(4],-;) with (U,v) > (tl,t), then res(U) = iy = 0123013012, and because
Shape(u) = A|,—1 = (7, 3) with residues

ol1[2[3]o]1]2]
3(0]1
and
oot =1]2]3]4[5]6]
819110
The only possible choice of u is
a=1]2]3]4][5]6]10]
819
with d(U) = §788859 = w/ll,n—l- Hence
(3.4.27) Y7.110:(aw) = Yrdsodiododsre(0123012301)ysthaw).-

Notice we have

Yasodrioposhe(01230123012)y,
= Yot 10doe(01230130212)51)7y4
= YUsio¥oi0e(01230130212)s¢7y4 — Y7pse(01230130212)517y4
= Yasiododiods7e(01230123012)y, — Yapsifsire(01230123012)y,
= YioYrsosire(01230123021)y4410 — Yrpsihsip7e(01230123012)y,
= Y1001 (Y7shorsire(0123012302)y4)10 — Yrpsisire(01230123012)y,
Y1001 (Wrdsdodsresyo Wio — Yadsdsdae, Yy

where o = (7,2, 1). Consider the left term of (3.4.28)), because || < || and A € .72, we have

(3.4.28)

n >’

Ursolisresy, = Z Curure + Z Ccuuv-

ueStd(o) u,veStd(>o)

For u € Std(o), by |Lemma 3.3.1| and ¥7¢giboifsiy; doesn’t involve ¢ with s < 6, we have
ule > 17]6. Then because res(u) = i,-5755595g57 = 0123012302, by the definition of o

o] = [ [ [ ][] with residues |01 2|3|0|1|2|,
3
- 2]
Then the only possible choice of u is t” = 213 g 3[4]5]6]7 | Hence
10

Unsolislresys = Clie + D Cuth.

u,veStd(>o0)

For u,v € Std(> o), we have res(u) = i, = 0123012302. It is impossible that Shape(u) =
-1 because iy, , = 0123012301. Hence ¥\, yesuo) Covtbon = Suvesdo, ) Covtbur € Ry So
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isiolsbresys = cier + R and hence by[Lemma 2.1.14]
Y1001 (Wrdsolsresyo o = cYiofiWaee)Wio + Y1001 (R "o
= C¢’10€(01230123021)y4¢/10 + Rn/l
=, c-e(01230123012)y,47,
= ¢e(01230123012)y4y19 — c:e(01230123012)y,y9

(3.4.29) =, ¢-e(01230123012)y4y19 = c-€,y,.
Iljor the right term of (3.4.28), because Al,_; € Z} N (P} N PN Z), by [Lemma 3.3.2
we have

Alp—
UrsUslren, Y = D CoterWater + R

GESId1)
Then by [Lemma 2.1.14}
Ubssre,y,

92 (l//7 lr/ISQ/IS '7076/””_' Yl )
Z Cuytln-1 92(1//(“,1\,,_, ) + HZ(R;/lln—l)

ueStd(A],-1)

>
Z Cl.’]t/u"*l wut[l + Rn .

ueStd(u)

Substitute (3.4.29) and (3.4.30) back to (3.4.28), we have

UrsoloWodisre(01230123012)ys = D" cupthun + c-ey + Ry
ueStd(u)

(3.4.30)

Recall v is a standard tableau of shape A|,-; = ul,-1, we can define v; € Std(u) and v, €
Std(2) such that d(v,) = d(v,) = d(V). Hence by (3.4.27),
Y11160:Ww) = Yasodioposh7e(0123012301)y440 4w

>A >
= Z CuYuy, + CYpy, + R, € Rn#’
ueStd(u)

which yields
(3.4.31) Z o1 0:(War) € R

0,veStd(Al,-1)
(CR2I(E0)

Finally, suppose U, v € Shape(> A|,-1), by [Lemma 2.1.14{we have 7 1,6,(Yw) € RZ”. There-

fore

(3.4.32) Z canl71160:(Ww) € R

u,veStd(>Al,—-1)

Substitute (3.4.26)), (3.4.31) and (3.4.32) to (3.4.23])), we have
(3.4.33) Y76 (Wpthr) € RV
For the second term of (3.4.24), by [Lemma 3.4.5

Y7100y ban¥y7) = G(Urdsioe(0123013012)y44 4447)
602(e(0123012301)y4p7¢sthot 44 7)
e(01230123012)y4¢7¢soll a7 = eyl ol ay¥r-
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Then by because ¥7 108 )Y doesn’t involve /19, we have e,y Y7 10¥ a0, €
R:*. Therefore

(3.4.34) ¥7,100:(e(i)y b an ) € Ry

Substitute (3.4.33) and (3.4.34) to (3.4.24), we have Yuw, € RZ*. Finally by
we have

Yo, = Z cutuy-
(u,v)>-(t,t)

O

Finally, we can extend the above Proposition to arbitrary multipartition using similar method
we used in the last chapter.

3.4.35. Corollary. Suppose A € /" and t is the last Garnir tableau of shape A with r the last
Garnir entry and I(d(t)) < m,. Therefore for any standard A-tableau s, Y, = 3 vy (st) Cuvtluv-

Proof. Write 1 = (A, .. /l(")) and 1© = (/1(5) ... ,/l,(f)). If A© = 0, then define 1 =
(AM, .., A As I(A) = £ - 1 < I(A), we have 1 € 2} 0 2 0 ). By [Proposition 2.3.14]
e ZPnzrn Py, and the Corollary follows.

Now suppose A0 # 0, First we assume s = t!. As t is the last Garnir tableau of shape A,
k > 2. Setting m = /l(f) + /1(5) As t is the last Garnir tableau, by the definition we can see
that t|,_,, = tY,_,, and k Z 2. Deﬁne i to be the residue of the node (k — 1,1,¢), A’ = A;, and
f to be the last Garnir tableau of shape (1" /l(f)). If we write u = (4D, ..., 24D, 4©) with

k—-1°

p@ =P, 42) andy = (42,, 2"), then

Y, = éi,, (J’tﬁ&r—(n—m))yu'
Recall that /7 and ¥, are elements of %, and 5 and ,_(,_, are elements of %
Then by |Pr0p051t10n 3.4. lOL we have Yo, (n=m) € R;”. Therefore we can write Wpif,_ (n-m) =

2 veStd(y) Couvt 2y vestd(>y) Cuvtluy and hence wtytwr (n-m) = 2u veStd(y) Cukuv"'Zu veStd(>y) Cquuv"‘
r where r € N%'. Therefore

Yy, = Z Cuvéiu(lzuv)y,u + Z Cuvéi,,(lzuv)y,u + 9i,,(r)y,u-

u,veStd(y) u,veStd(>y)
For u,v € Std(y), by |Corollary 2.3.8| we have éi,, (Yw) € R>*. Hence 2uvesidy) cu\,@iﬂ (g@uv)yﬂ €

R,
For u,v € Std(> 7), write Shape(u) = Shape(v) = o and v = u vV o. By [Corollary 2.3.6|
we have v > 4 = u VvV y. Then by |Corollary 2.3.15| and |Lemma 2.1.14[, 0, (W) € R>*. Hence

Zu,veStd(>y) Cuvéi (lzuv)y;z € R;/l;
Finally by [Lemma 2.3.4} 6; (r)y, € R>*. These yield that
Yer = O, Woilr—u-m)yu € R
Now choose any s € Std(1). Because Y, € R,f”‘, we have

Yy =g Z Crviray.

veStd(1)

Hence

Ysthr = W:J(s)wtfltl/’r =2 Z ctw;i}(s)wv = Z Cuvfsy.

veStd(1) veStd(1)

Therefore, Yqy, € R>*. By [Proposition 1.4.9|we completes the proof. |
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3.4.36. Remark. Generally it is not easy to find ¢,,. Kleshchev-Mathas-Ram [14] explicitly
describes how to compute c,, where Shape(u) = Shape(v) = A. This thesis also gives an
implicit method to compute these coeflicients.

3.5. Completion of the y/-problem

In this section we are going to prove that yq, € R>'. We have claimed in [Corollary 3.2.3|
that if t-s, is standard and d(t)-s, is reduced then the argument is true. So we will mainly consider
that t-s, is not standard or d(1)-s, is not reduced.

In the last section we have proved that when t is a Garnir-tableau then g, € R>*. In the
beginning of this section we are going to consider some other cases of t. Then we will give some
information about using d(t) to determine the type of t, and use them to prove that gy, € R4
for any s,t € Std(A).

First we introduce two more types of t and r.

3.5.1. Lemma. Supposet and s are two standard A-tableaux with d(t) = d(8)-s; for some k and
l(d)) = l(d(s)) + 1. If for some r & {k—1,k, k+ 1}, t-5, is not standard or d(1)-s, is not reduced,
then s-s, is not standard or d(S)-s, is not standard, respectively.

Proof. When t-s, is not standard, we can see that r and r + 1 in t are adjacent, either in the same
row or in the same column. Since d(t) = d(S)-sy, we have s = t-s;,. Asr ¢ {k—1,k,k+ 1}, r and
r + 1 are in the same nodes in t as in S. Hence S-s, is not standard as well.

When d(1)-s, is not reduced, we could see that d(t)(r) > d(t)(r+1). As d(t) = d(s)-s;, we have
dt)(r) = d(s)-si(r) =d(s)(r)and d(t)(r+ 1) = d(s)-si(r+1) =d(s)(r+1)asr ¢ {k—1,k, k+1}.
Hence d(s)(r) > d(s)(r + 1). Therefore d(s)-s, is not reduced. This completes the proof. O

1217 9|ands: 11217 8|.Wehave
3(51]8 31419

416110 516110

3.5.2. Example Supposet =

d(t) = 545556575856575354555654,
d(s)
Set k = 8, we have d(t) = d(s)-sg and I(d(1)) = I(d(s))+ 1. Letr =3,1ie. r¢ {k— 1,k k+ 1}

and t-s, 1s not standard. We can see that s-s, is not standard either. Similarly, let r = 6, i.e.
ré¢l{k— 1,k k+ 1} and d(t)-s, is not reduced. We can see that d(s)-s, is not reduced either.

8§7858545556575354555654.

1\

3.5.3. Definition. Suppose t is a standard A-tableau. If we can find a reduced expression
Sy Spy .8y 0fdt) and 1 < r <n—1suchthat |r —r| > 1, we say t is unlocked by s,.

3.5.4. Lemma. Suppose A € .S andt is a standard A-tableau with I(d(t)) < m,. Ift is unlocked
by s,, then Y, € R>* for any standard A-tableau s.

Proof. Suppose t-s, is standard and d(t)-s, is reduced, by |Corollary 3.2.3| Yt € R>1.
Suppose t-s, is not standard or d(1)-s, is not reduced. Since t is a standard A-tableau unlocked
by s,, by [Definition 3.5.3] we can find a reduced expression s,, s,, . .. s, of d(t) such that [r—r;| >
1. Define w = ’[ﬂ~sr1 Spy oo Srp - By w is a standard A-tableau. It is easy to see that
d(t) = d(w)-s,, and I(d(t)) = I(d(w)) + 1. Hence by [Lemma 3.5.1] w-s, is not standard or d(w)-s,
is not reduced. So Yy, =1 Dvesid) Csvsy because I(d(w)) = I(d(1)) — 1 < w,.
v>w
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Because it is obvious that d(w)-s,, is a reduced expression of d(t), say d'(t) = d(w)-s,,, by
Lemma 3.2.2| we have

Z CaWsvWr =1 sty — W:}(s)e/ly/lwd(w)wnwr =Y, — lﬁswwrlﬁrp

veStd(1)
vi>t

Because v > t, [(d(V)) < I(d(t)) < m; and hence we have Yvesuw csWsv, € R For

>t
Yswlrly, =1 Dvesd) Csvlsvly,, because v > w, we have I(d(v)) < l(\c/i(w)) < m,, which yields
VDWW
that Yo, 4, € R>. Therefore we have g, € R4 a

3.5.5. Lemma. Suppose tis a standard A-tableau and that we have a standard A-tableau W such
that d(t) = d(W)-s,5,+1 for some r and I(d(t)) = I(d(w)) + 2. Ift-s, is not standard or d(1)-s, is
not reduced, then W-s,, is not standard or d(W)-s,. is not reduced, respectively.

Similarly suppose d(t) = d(w)-s,s,_; for some r and I(d(t)) = I(d(w)) + 2. Ifts, is not
standard or d(1)-s, is not reduced, then W-s,_; is not standard or d(W)-s,_; is not reduced, re-
spectively.

Proof. Suppose d(t) = d(w)-s,s,,;. If t-s, is not standard, r and r + 1 are adjacent in t. But
r and r + 1 occupy the same positions as r + 1 and r + 2, respectively in w. So w-s,,; is not
standard. If d(t)-s, is not reduced, as d(W)~'(r + 1) = d(t)"'(r) and d(W) ' (r + 2) = d() "' (r + 1),
by [Proposition 1.2.9] d(1)-s, is not reduced implies d(W)-s,,; is not reduced. The other case is
similar.

3.5.6. Remark. In |[Lemma 3.5.1| and [Lemma 3.5.5] when we say d(t) = d(s)-s, or d(I) =
d(s)-s,s,+1, it means d(t) and d(s)-s, or d(t) and d(S)-s,s,,; are the same as permutations.

, we have

11273712] quppose s = [L[2]3]12
4]5]6]13 4]5]6][13
7[8]11 7]8[9

9[1o[14 10[11]14

d)
d(s)

3.5.7. Example Lett=

585951051151254555657585951051159510»

5859510511512545556575859510511-

So we have d(t) = d(s)s9s19 and therefore r = 9. We can see that t-s, and s-s,,; are both
non-standard.

3111

Suppose s = 112 , we have
415]16(13
718110
9112|14
d(t) = 585985108511512545556575859510511595105
d(S) = 5859851051151254555657585951059.

So we have d(t) = d(s)s;1519 and therefore » = 11. We can see that d(1)-s, and d(s)-s,_; are
both non-reduced because in t, r is below r + 1 and in S, » — 1 is below r. O

3.5.8. Definition. Suppose t is a standard A-tableau. If we can find a reduced expression
St Spy « - S Sy 0f d(t) such that ri_y = rand r = r; + 1, we say t is unlocked by s, on tails.

3.5.9. Lemma. Suppose A € .#» and tis a standard A-tableau with [(d(t)) < m,. Ift is unlocked
by s, on tails, then Yy, € RZ* for any standard A-tableau s.
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Proof. Suppose t-s, is standard and d(t)-s, is reduced. By |Corollary 3.2.3| ), € RZ1.

Suppose t-s, is not standard or d(t)-s, is not reduced. By [Definition 3.5.8] we can find a
reduced expression s, S, ...S, S, of d(t) such that r,_; = rand r = r, £ 1. Without loss
of generality we set r = r; — 1. Define w = ts,s,,...s,,. By W is a stan-
dard A-tableau. It is easy to see that d(t) = d(w)-s,s,+1 and I(d(t)) = I(d(w)) + 2. Hence by
W-s,, is not standard or d(w)-s,,; is not reduced. SO Wy, 1 =1 Zvevs;%/l) Covllisy
because [(d(w)) = I(d(})) — 2 < w;.

Because it is obvious that d(w)-s,s,,; 1s a reduced expression of d(t), say d'(t) = d(W)-5,5,+1,

by L2 we have
(3510) Z Csv'ﬁsv‘/’r =2 lr//St!//r - lﬁZ(S)e/ly/ll//d(W)wr'ﬁr-Hl//r = lyllstl//r - lfllswlﬁrwr+ll//r-

veStd(4)
vi>t

Because v > t, [(d(v)) < I(d(t)) < m, and hence we have

(3.5.11) E:Q%Me@%

veStd(1)
vi>t

For Ygw, 1 1W,, Write res(W) = iy ... i, the residue sequence of w. We have

YswlrWrit sy, i, =i =iy x1,

l/’swlﬁr'/’ml//r = {wswwrﬂwrlfl/”*’l’ otherwise.

Because Yswir+1 =1 2vesid() Csvi¥isvs
VbW

st lhrt =1 ) Cotbsthilrsr.

v>WwW
Since v-w, [(d(V)) < I(d(w)) = [(d(t))—2 < m,—2. Hence l(Y ¥ ¥r+1) = L(d(V))+2 < m,.
By|Lemma 3.2.1|we have Yo, 4,11 € R,f/l if v > w. Therefore we always have

(3.5.12) Yswibrrirer € R
in both cases. Substitute (3.5.11) and (3.5.12)) into (3.5.10), we have yqi, € R>". O

Now we will introduce some information about using d(t) to determine the type of t.

3.5.13. Lemma. Suppose t € Std(A) with d(t) = s,_1S,_2 ... S,41, and t-s, is not standard. Then
t is the last Garnir tableau with shape A.

Proof. As d(1) is the standard expression, we have w,, = §,_1, Wy—1 = Sy-2,..., W2 = §,41 and
t=t0 =@ = =), Write A = (A7,...,A0) and 1O = (110,...,29), as t® = tlw, =
t'.5,_; is standard, n — 1 and n are not adjacent in t*. This forces 4" = 1.

By Remark[I.3.2] we have

Y Hk=1), ifr+2<k<n,
t (k) = tH ' (n), ifk=r+1,
tH~1(k), otherwise.

and since t-s, is not standard, r and r+ 1 are adjacentint. Ast™'(r+1) = (tY)"(n) = (k, /l,(f), {) =
(k,1,¢), we must have t™!(r) = (k — 1,1, £). This shows that t is the last Garnir tableau with
shape A. O
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3.5.14. Example Suppose A = (4,4,1)andt = 1 3 g g . Therefore d(t) = 535756 and t-s5 is

(o)1

6
not standard. Notice that t is the last Garnir tableau of shape A. %

3.5.15. Lemma. Suppose t € Std(d) with dt) = 5,8,41 ... 8,2, and t-s,_; is not standard. Then
t is the last Garnir tableau with shape A.

Proof. As d(t) is the standard expression, we have w,, = s§,8,41...8,2 and w,,_; = ... w; = 1.
Write 2 = (A1, ..., 19) and 20 = 19, ... ,/lf)), ast = t'-w,, we have t'(n) = (k, 1\, ¢). By
Remark [I.3.2] we have
W k+1), ifr<k<n-2,
(k) = {H7 (), ifk=n-1,
tH1(k), otherwise.

As t-s,_; is not standard, n — 1 and n are adjacent in t. So in r and n are adjacent in t*. But
r < n— 2. Hence r has to be on the above of nint'. i.e. 1) '(r) =t"'(n-1) = (k- 1, /l,(f), 0).

This shows that /lf_)l = /lgf) and t is the last Garnir tableau of shape A. O

3.5.16. Example Suppose 4 = (4,3,3)and t = ; 2 g 4 | Therefore d(t) = s7s53 and t-s9 is
718110

not standard. Notice that t is the last Garnir tableau of shape A. O

3.5.17. Lemma. Supposet € Std(1) and dt) = w,w,_1...wywithw; # 1 ifi >r+2ori=r
andw; = lifi <rori=r+1,ie dit) = ww,1...w.ow, Ifts, is not standard, then
Iw) =Ilw,)+1fori>r+?2.

Proof. Write 1 = (11, ...,19) and 2© = 19, ... ,/l,(f)). Because t-s, is not standard, r and
r + 1 are adjacent in t. By Remark[1.3.2) as w; # 1 fori > r + 2
k, 27,0 = ("N ) = @) ' n- D =...= A" +2) = ¢+ D).
Notice that w,.; = 1 and w, doesn’t involve s, or s,.;, we have
kA0, 0 = A+ D) =t e+ D = )+ D).

Since w, # 1 and w,,; = 1, recall w, = S, Sq,41 ... S,25,-1, by Remark[I.3.2] we have

") (@) = (") @) = ).

Since w; = 1 fori < r, we have t”? = t. Thent™'(r + 1) = (k, /l,(f),f). Because a, <

r—1 < r+1,by|Remark 1.3.2| a, is not on the left of  + 1 in t"*? because t"*?|,; = t with
i = Shape(t"*?)|,,,). As r and r + 1 are adjacent in t and (t"*?)"!(a,) = *")"'(r) = t7(r), we

must have t™!(r) = (k - 1,/l,(f), {). Therefore by the definition of the standard expression, we
have I(w,) = A" - 1,

Since (k, 2, 0) = (™) (n) = ¢ (- 1) = ... = t"*?)"'(r + 1) and Remark|1.3.2} we
have l(w;) > A = I(w,) + 1 forall i > r + 2. O

3.5.18. Lemma. Supposet € Std(1) and dt) = w,w,—1...wy withw; £ 1 ifi >r+2ori=r
andw; =1lifi<rori=r+1. Ifllw;) =1lw,)+1foralli>r+2 ie dt) =w,w,_1...Wow,
and t-s, is not standard, then t is the last Garnir tableau of shape A.
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Proof. Write 1 = (A1, ..., 10)and 21© = 19, ... ,/l,(f)). From the proof of [Lemma 3.5.17| we

have seen that [(w;) = A\ for i > r + 2 and I(w,) = A\ — 1. Therefore if t'(k — 1,4, 0) = 1,

Wy = StSt4+1 +« - Sn—1,
Wp-1 = Si—18t -+ - Sp—-2,

Wi = St—n4r+2St—n+r+3 - - - Sr+1»

Wi = St—ntr+1St—n+r+2 + - - Sr—1,

and by direct calculation we can see that such d(1) is the last Garnir tableau of shape A. O

3.5.19. Example Suppose 4 =(7,5,3)andt = 112]3]4]5 6|7|. Then
819 |12]14/15

10{11{13

d(t) = $12513514°511512513°S10511-

So we can write d(t) = wiswiawzwi, where wis = $12513514, Wia = S11512513, Wiz = 1 and
w1z = S10811. Notice I(wis) = l(w14) = I(wyp) + 1 and t-51, is not standard, and furthermore, t is
the last Garnir tableau of shape A. &

Finally we are ready to prove the most important result of this section.

3.5.20. Proposition. Suppose A € /. For any standard A-tableau t with I(d(t)) < m,, if d(t)-s,
is not reduced or t-s, is not standard for some r,

Ysthr = Z couv-
u,v)>(s,t)

for any standard A-tableau s.

Proof. First we set s = t*. Recall that the standard expression of i, has the form

YW,y - W

with ¢, = Yo Wa+1¥a+2 ... ¥ioy for some a; < i—1ory,, = 1. Let k be the integer such that
Y, # 1buty, = 1foralli < k. So ¥ =¥, Yw, -V,

Recall that by Lemma 3.5.4]and [3.5.9] if d(t) is unlocked by s, or unlocked in tails by s,, we
have Y, € R

We separate the problem into several cases:

Case[3.5.20a: k— 1 ¢ {r—1,r,r + 1}. Then
Yawy = Y, -V = V-V Yalaert - Y21
In this case t is unlocked by s,. Therefore by Y, € RZA.

Case[3.5.20b: k — 1 = r. Define w = t-s,. Hence d(t) = d(w)-s,. Write iy = (i1is ... 1,).

0, ifi, =i,
y/llﬂd(w)e(iw) = Y, if i, — i > 1,
£ Yaawew)(Vr = Yre1)

=+ Ypuwyr = yre1), i =i £ 1.

ey aiWanls = Yalawedwy; =

By [Proposition 3.2.5| we have Y, € RZ1.

Case3.5.20c: k— 1 =r+1.
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B.5.20.1: v, = 1 for some i > k and i # n. Then we have

Yaor = YW,y - VWi Wiy - - Y Wr
wwnwwnq s wwi+2(wa,‘+1wai+1+l e wi—lwi)wwi_l s kalﬁr-

Asi>k=r+2>r+1, wehave
l/’d(t)wr = (lﬂwn¢wn_1 s wwt'+2¢’ai+1l//ai+1+1 ce l//i—lww,;l cee l/fwuﬂi)%’
which shows that t is unlocked by s,. By [Lemma 3.5.4| we have Y, € R>*.

2: ¢, = 1. In this case y,_; is not involved in Y ,u,. By |[Lemma 3.3.6| we have
Y € RY.

B.5.20c.3: y,,, # 1 for i > k and I(i},,,) > 1. Then we can see that t is unlocked on tails by
s,. By|[Lemma 3.5.9|we have Y, € RZ*.

4: ¢, # 1fori >k, and we can find k < j < n such that I(y,,) = (Yy,,,) = ... =
I(Y,)) = 1 and I(y,,;) > 1. Then we have

Wiw,1 = Sajsaj+1 ce . 8j38j028;-1"8j2 = SajSa/._,.l e 8j-3°8-18j-28j-1-
Therefore

dt) = WaWu1. Wi 84, Sa01 - 5351828 1"Wj2... Wi

= WWu-1... Wj+lsajsaj+l e 83818 2Wji2 . Wit Sj-1,

and j—1 >k =r+2>r+1,s; and 5, commute, which shows that t is unlocked by s,. By

Lemma 3.5.4, we have s, € R

B.5.20c.5: I(yy,) = l(Yw,) = ... =) = 1. Then by [Lemma 3.5.13] t is the last Garnir
tableau of shape A. Hence by |Proposition 3.4.10} Y, € R,

Case3.5.20d: k—1=r—-1.

3.5.20d.1: y,,,, # 1. Then

dit) = WaWuoi ... Wi Wi Wy

= WaWhot oo Wia2"Sap Sage+1 -+ + Sk=15k"Sap Sag+1 - - « Sk=25k-1

= WuWud oo e Wi Sa Sagg+1 -+ - Sk=18aq; Sap+1 + + + Sk=2"SkSk—15

and as r = k, we can see that t is unlocked on tails by s,. Therefore Y, € R,f* by|Lemma 3.5.9

2: k=n-landy,,,, =¥, = 1. The Yap, = Y, Wn-1 = Yo, Wa, 141 -+ - Yn2¥n1.
Then by [Lemma 3.5.15| t is the last Garnir tableau of shape 4. Hence by [Proposition 3.4.10]

A >A
t,lt'»br € Rn .

B.520d.3: k<n—-1,¢,,,, =landy,, = 1. Thenn— 1>k = r. So Yy, doesn’t involve
Yn_1. By|[Lemma 3.3.6|we have yu ), € R4
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4: k<n-1,¢,, = 1and wecan find k + 1 < j < n such that ¢,,, = 1 and
Y, # 1. In this case we have

dt) = WaWuoi .. WiaWiaWWi_y ... W

= WyWyu_1... Wj+2'saj+1saj+1+l eSS Wi .. W

(WnWnot oo e W2 Sase Sajey 41 -+ Sj1 Wjinl + - WE)"S ).

As j>k+1=r+1,y;and ¢, commute. Therefore t is unlocked by s,. By [Lemma 3.5.4}

we have ), € R

B.520d.5: k <n -1, ¢, = 1 and for any j > k + 1, ,,, # 1. Then by Lemma 3.5.17, we
have l(¥,,,) = I(Y,,) + 1 forall j > k + 2.

B.5.20d.5.1: Suppose I(Y,,,) > [(,,) + 1. So we have ay.» < ay, and therefore
Wi2Wk = SaoSago+1 « -« SkSk+1"Sa Sag+1 « - - Sk=25k-1
= Sqg+1 e Sk=15k"Sapn Sagp+1 -+ - SkSk+1-
Therefore

dit) = WaWuoi ... W3 Wiowy

= WuWu aWis3 Sap+1 -+ - Sk=15k"Say 1 Sag o +1 -+ + SkSk+1-

Then because k = r, t is unlocked by s, on tails. Therefore, by [Lemma 3.5.9| Y, € Rf’l.

.5.2: There exists j > k+ 2 such that [(,,,,,) = ((Yy,,5) = ... = 1WY,) = l(y,) + 1
and I(y,;) > l(Y,) + 1. So we have I(,,,) > I(Y,,,_,) and a; < a;_;, and therefore
wiwi;_1 = Sajsaj+1 . sj_zsj_l-saj_lsaj_lﬂ <. 5352
Saj,1+1 Cen sj—2sj—1'sajsa_,-+1 e 82851,
Therefore
d(t) = WaWy_1 .. . Wi WW;_ 1W; ...Wg

WaWpu—-1... Wj+l'saj,1+l . Sj—l'saj e Sji28i- 1 Wi . Wy

(WaWhet oo e Wit "Say 41« - Sjm17Sa - Sjo2'Wj2 oo - Wk)*S 1.

Then because j—1 > k+ 1 =r+1, s;-; and s, commutes. Hence t is unlocked by s, and

therefore, by [Lemma 3.5.4} yp, € RZ.

BBE200.5.3: [(Y,.) = (W) = ... = [, ) = [(0,) + 1. By|Cemma 3.5.18) tis the last
Garnir tableau of shape A. By [Proposition 3.4.10, we have Y, € R,

By the above cases, Yy, is always in R>*. Therefore by [Proposition 1.4.9, we have

Y, = Z cwtuw = Z vty + Z cuwtuy-

(u,v)>(t,1) vt u,veStd(>2)

Giving any standard A-tableau s, we have Y, = Yo puth,. Notice ¥y Uy = Ysy. For
any U,v € Std(> 1), Yy € 4. As 1 € S, by|Lemma 2.1.12, R>* is an ideal. Therefore
WieYuw € R;*. These arguments yield that Y, € R;". By [Proposition 1.4.9|we completes the
proof. O

The following Corollary is straightforward by |Corollary 3.2.3|and [Proposition 3.5.20]
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3.5.21. Corollary. Suppose A € .S, for any standard A-tableau t with I(d(t)) < m,, then

Vil = Yow + Zuweey Cotluvs  If W = U-s, is standard and d(U)-s, is reduced,
Wy = ) . )
S 2wt Cotluvs if u-s, is not standard or d(u)-s, is not reduced.

for any standard A-tableau s.

3.6. Integral basis Theorem
In this section we will complete the main Theorem of this thesis.

3.6.1. Theorem. Suppose A € /), we have A € P} N P} N Py,

Proof. By [Theorem 2.1.8/ we have when A € .* then 1 € 2. By [Corollary 3.1.4] we have
0 < my,ie. 1 < my. Assume [ = I(d(u) for some u € Std(1), by [Proposition 3.2.5| and
|Corollary 3.5.21] for any t € Std(2) with I(d(t)) = [, we have

Ustyr = Z Cuuvs
(u,v)>(s,t)
Wl Ysw + Dy Colbuy, i W =t-s, is standard and d(u)-s, is reduced,
t = . . .
ST 2wt Cuvtluvs if u-s, is not standard or d(u)-s, is not reduced.

which yields that [ < m,, i.e. [+ 1 < m,. So by induction, for any t € Std(1), we have
1(d(t)) < m,. Therefore A € &} N &7;}. This completes the proof. o

3.6.2. Theorem. The set { Y/~ | s,t € Std(A) for A € P2} is a graded cellular basis of Z#(Z).

Proof. It’s trivial that when n = 1 the Theorem holds. Assume for any n’ < n the Theorem
follows. Suppose we can write all multipartitions of n as Apjy, Az, - - ., Ay Where Ay > Ay >

. > Ay As Ay = ((n),0,...,0), by Lemma 2.1.9, |Corollary 2.1.11| and [2.1.10, we have
Ay € PPN Prn Py Hence Ay € . Now assume Ay € -#,", by [Theorem 3.6.1}
Ay € PP 0 PMn Pp. Hence Ay € 7. Therefore for any i, 4y € .}, Hence for any
e PP Ae PPN PN Py Recall that

RnA ={re ‘%;/Z\(Z) | r = Z CstWst, Cst € Z}.

s.4eSw(n)
pe Py

So R is an ideal.

Now for any i = (ij,is...,i,) € I", set j = (if,ia,...,i,-1) € I""'. Because e(j) €
Z" |, by assumption we have e(j) = Y, uert | Cotbuy € RY | and hence e(i) = 0, (e(j)) =

u,veStd(u)
2 ue P | cut, W)
u,veStd(u)

For any u € 2% | and u,v € Std(u), we have
6’i,,(wuv) = wj](u)e(iu \4 in)y,uwd(v)-

By |[Lemma 2.1.3| and [Theorem 2.1.8| we have e(i, V i,)y,)° € R}. Then because R is an
ideal,

e(i) = Z cwbi, Yu) € erz\'

uePh

n—-1

u,veStd(u)

Then we have R® = %(Z). By |Corollary 1.4.10] the set {/% | s,t € Std(4) for 1 € 22} is
linearly independent. This yields that {¢ | s,t € Std(1) for 2 € Z2}} is a basis of ZX(Z).
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By the definition of {¢/% | s,t € Std(1) for 1 € 922} the elements in the set are homogeneous.
The cellularity is trivial by [Theorem 1.4.5|and [Proposition 1.4.9] This completes the proof. O

The next Corollary is straightforward by

3.6.3. Corollary. For anyi € I", e(i) # 0 if and only if i is the residue sequence of a standard
tableau 1.

Proof. Suppose i is the residue sequence of a standard tableau t. By [Theorem 3.6.2| we have
Y # 0. Because Y, = yie(i), we must have e(i) # 0.
Suppose i is not the residue sequence of any standard tableau. By [Theorem 3.6.2| we can

write
z
1 = Z CStl//sta

s,t

and hence
ed) = l-e(i) = ) cswed =0,
st
which completes the proof. O



CHAPTER 4

Basis of Affine KLR Algebras

In [Theorem 3.6.2| we have shown that Z(Z) is a Z-free algebra with basis {¢ | S,t €
Std(1), A € 222}, In this chapter we will extend this result and find a graded cellular basis for
the Z,(Z). Moreover, for any weight A we can delete a few elements from the basis of %, (Z)
and form a graded cellular basis of N*. We then give a complete set of simple %,-modules by
using the graded cellular basis of %,,. Furthermore, in the previous chapters we set ¢ # 2 during
the proof. In this chapter we allow e = 2.

In this chapter, we will define a sequence of weights (A¥) with specific property and use
such sequence to extend the graded cellular basis of Z2 to %,

4.1. Infinite sequence of weights and basis of %%

In this section first we will introduce a special kind of sequence of weights (A®). Then for
i € I" we give a graded cellular basis for Z2, which will be extended to a graded cellular basis
for %,

We fix ae > 0 and e # 1, and the ring of %, to be Z and will write %, instead of %, (Z).
Suppose A = 3 ic;a;Ajand A’ = 3, a’A; are two weights in P,. We define a partial ordering
on weights and write A < A’ ifa; < a foranyi € I,and A < A"if A <A and A # A",

4.1.1. Definition. An increasing sequence of weights is a sequence (A®) of weights in P* for
k > 1 such that A© < A*D for all k > 1. The sequence (A®) is standard if lim;_,, al(.k) = oo,
foralliel

4.1.2. Example Suppose e > 0. We define a sequence (A®) where AV = A; and AP -A*D =
A; with k =i (mod e). For example, when e = 3, we have

AD = Ay,
A®? = A+ A,
AP = A+ A+ Ay,
AY = 2A;+ Ay + A,
A® = 2A; +2A; + A,
A® = 2A; +2A, +2A,,
A? = 3A; +2A; +2A,,
So in this case we have limy_,c ay‘) = oo for any i € I and (AW) is a standard sequence. O

69
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4.1.3. Example Suppose e = 0. Define (A%) where AV = Ay and A® — A®D = A; with
i=k-1D)-m-1>-m-1)=k-n>+n-1if (n—1)> < k < n?. In more details,

AD = A,

A? = A_; + Ay,

AD = A +2A,,

AP = A +2A0+ A4,

A® = AL+ AL +2A0+ Ay,

A® = AL +2A +2A0+ Ay,

AD = AL, +2A, +3A0+ A,

A® = Ay +2A_1 +3A0 + 2A,4,

A = AL +2A +3A0+2A; + Ay,

A = A+ AL +2A +3A0+2A; + Ay,
A = A3+ 2A5 +2A0 +3A0 +2A; + Ay,

(k)

So in this case we have limy_,, a;~ = oo for any i € I and (AW) is a standard sequence. &

Recall that for any weight A = Y,; a;A;, we can define an two-sided ideal in %,, N*, which
is generated by elements e(i)y‘lﬁ1 foralli = (i1, is,...,i,) € I". Then the cyclotomic KLR algebra
RN = K,/N™. In this case we can also write %, = Z» & N» as Z-modules.

Recall O, = ) ;c; Ne; is defined in Section 1.1. For @ = },.; a;a; € Q,, define |a| = ) pc; a;.
Then for any @ € Q, with |a| = n, define I to be the set of all i = (iy,,...,1,) € I" such that
ai={1<r<n|i =i}| Bythedefinitionifi,j € /* then we can find v € S, such thati = j-v.
Define &, = Y« (i) € %, and e, = Y e(i) € Z2.

The following result is trivial by the relations of %,,.

4.1.4. Lemma. Suppose a, € Q.. Then %,é, # 0 and egH#,eq = OqpFnea = OopesHon.

We then define Z, = %,8q, Z = %2 e, and N® = N2é,. We can see that Z,2(j) = 0 if

j ¢ I°. Finally, because
G =P % and %) = %L,
acQ, €0,
and by the relations %, and #2’s are subalgebras of %, and %Z», respectively. Hence we will
mainly work in %, Z2 and N” and extend the basis of Z2 to %, and hence generate a graded
cellular basis of Z,,.

By [Theorem 3.6.2|and the orthogonality of e(i)’s we can give a basis for Z2.

4.1.5. Proposition. Suppose i€ I" and A € P,. The set
{Us | A€ PP s,t e Std(D), res(t) € I}

is a graded cellular basis of Z°.

4.2. Minimum degree of N

Fix a € Q.. In the last section we introduced a standard sequence of (A®). For each k and
i € I", we define the minimum degree of N{I\(k), m(’j@ = min{deg(r) | r is a homogeneous element in N{l\}
and will prove that mé\(k) — oo with k — oo. This result is quite important in the next section
while extending the basis of Z2 to Z,,.

First we need to find a general form of the homogeneous elements of N2.
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4.2.1. Lemma. For A = Y,,;a;A; € P, and a € Q., the ideal N is spanned by

{ue@yy" FOW, | u,v € G,y FO) € ZIy1,yas- - yal i€ 17}

Proof. It is obvious that any element of N2 can be written as linear combination of elements of
the form

(4.2.2) Ve O W, -+ Vs LW i@, 8100, 82000, - - Y, &I W

where u;,v; € S, 1 € I” and fi(y), 8:(y) € Z[y1,...,y,]. Then by the view of [Lemma 3.2.2]and
[5, Proposition 2.5] it is obvious that any element in the form of (#.2.2) can be written as linear

combination of wue(i)y?1 fO),’s. Hence N2 is spanned by those elements. O

By
mg = min { deg(t//ue(i)y?”f(y)d/v) lu,ve S, f(y) € Zy1,y2,...,yul, i€ 1}.
Hence we have an expression for m” and we are ready to prove the result of this section.

4.2.3. Proposition. For any standard sequence (A®) and i € I", limy_,, m" = co.

a®

Proof. By|Lemma 4.2.1, we only need to work w1th deg(tﬁue(l)y1 fO)y,) for alli € I*. We can

(k)
write deg(e(@)y," fOW,) = deg(W,e(@)) + deg(yl" ) +deg(f(y) +deg(ye(i-v)). As u and v are
reduced expressions of permutations in S, [(u) < ) 1)” , and deg(y,e(i)) > —2 for any i. Hence

deg(¥,e(i)) > —(n— l)n For the same reason deg(:,bve(l v)) > —(n— 1)n. Then as deg(f(y)) > 0,

we have deg(t,//ue(l)yl’l f (y)(//v) > -2(n—-1Dn+ Za(k)
Define a(k) = MiNj¢je a ). We have

a®

deg(%e(l)yl fOW) = =2(n = n + 249,

for any u, v and f. Therefore m’ "> 2a(k) 2(n — Dn.
Choose j € I¢. Itis obV10us that [* = {iel"|i=jvwithve S,}. Then |[[?| < |S,| < oo.
Then a(k) — o0 as k — oo for any i € I implies a® - oo as k — oo because I is finite.

AK
Therefore m)" — oo, m]

4.2.4. Remark. The set /“ is finite is important in the proof of [Proposition 4.2.3| If I is infinite,
(k) — o0 as k — oo for all i € I is not sufficient to imply that a

— ooas k — oo.

4.3. A graded cellular basis of %,

In this section we will prove the main result of this chapter. First we will introduce a special
kind of multicharge k corresponding to a standard sequence (A¥) which contains information
for the multicharges ky® corresponding to A%, Then for any @ € Q,, we will find a graded

. (k)
cellular basis %’((,A ) of X, corresponds to «.

4.3.1. Definition. Suppose (AW) is a standard sequence. An inverse multicharge sequence for
(A®) is a infinite sequence k = (..., K3, ks, K1) such that for any k > 1, if { = I(AW), then
Kpw = (Ke,» Keo—1s - - - » K2, K1) iS @ multicharge corresponding to A®.

4.3.2. Example Suppose ¢ = 3. Using the standard sequence (A®W) introduced in Exam-
ple 4.1.2] we can define a multicharge x = (..., k3, 2,k;) Where «; = k (mod e) for k > 1.
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Therefore we can write k = (...,0,2,1,0,2,1,0,2,1,0,2, 1), we have

knn = (1),
Ko = (2,1,
ko = (0,2,1),
Kaw = (1,0,2,1),
Kno = (2,1,0,2,1),
These are all multicharges corresponding to A®. &

Fix a standard sequence (AX’) and an inverse multicharge sequence « for (A¥). An affine
multipartition of 7 is an ordered sequence A = (..., 1, 1) of partitions such that 3'°, [1?| =
n. Let 2% be the set of all affine multipartitions of n. We define young diagram [1] and
standard affine tableau § for affine multipartitions in the same way as for multipartitions. Let
Std(2) be the set of all standard affine tableaux of shape A.

We define the level of A to be I(A) = £ if A9 # 0 and A = @ for i > ¢£. For any ¢
define a mapping p,: ¥ — gzr’l\ where (k¢, k¢-1, - .., k1) 1s @ multicharge for A, sending A=
(..; A2, 20y to 2 = (219, 24D, AP, AD). In order to simplify the notation, suppose /(1) =
£, we write A = pg(;l). Then we can define a mapping ¢ : Std(21) — Std(2) in the obvious way.
It is obvious that ¢ is a bijection. Again we will write s instead of #(§) in order to simplify the
notation. Define the degree of each standard affine tableau to be deg(§) = deg(s) and the residue
sequence of the affine tableau res(§) = res(s).

We extend dominance ordering > and lexicographic ordering > to Z7%. By defining A & f1 if
I(A) > () or I(A) = () and A> g and A > if A= and A # i for A, 1 € ¢, We define > and
> in a similar way.

4.3.3. Example Suppose A = (...[0[0[0]4,3, 1|2, 1|3,3). Then A = (4,3, 1|2, 1|3, 3) and

)

S:( MOI 8 1316|‘ 2 6|| 4]5]i

)e Std(),,
7112[15 9 [14[17

and

S:t(é):( 138 1316|‘ 2 6|‘ 4T5]11 )eStd(/l).
7[12[15 7

&

Suppose A € P, and A = (19,...,AV) € 22 Then for any s,t € Std(1), in[Definition 1.4.1|
we have defined g and Yy = Yy + NN € Z2. For any standard affine tableau §, t we define
Vet = st Also we can define yf; = s

The next Lemma is straightforward by the definition of ¢ and deg($).

4.3.4. Lemma. Suppose 1 € &% and 8,1 € Std(1). Then Y are homogeneous elements of %,
and deg(fg) = deg(8) + deg(d).

4.3.5. Example Suppose x =(...,0,2,1,0,2,1,0,2,1) as in Example For

gz(...|@|@H@) f:(... ‘
5

(Z)'(Z)

),
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with
s:t(@):(|‘@) t:;(f):(||)_
6
Then Y = Yt = €(012211)y2y2ys¢s¢3 € . o

Fix @ € Q,, a standard sequence (A%)) and an inverse multicharge sequence « corresponds
to (A®). We define a set of homogeneous elements of %Z,,

BN = (g | e 28,1 Std(D), res(t) € I} .

Note that by definition Z%"” depends on the choice of k and hence (A®'). Remarkably, the
main results of this chapter are true for any inverse multicharge sequence corresponds to (A®).

4.3.6. Proposition. The set ,%’g\(k)) is a homogeneous basis of X,.

Proof. By all elements of %&A(k)) are homogeneous. So we only have to prove
that %&A(H) is a basis of %,,. First of all we show that %’((,A(k)) spans Z,.
Given any r € %,, we can write r as a linear combination of homogeneous elements, i.e.
r = Yen Cili, Where ¢; € Z, deg(r;) = i and there are only finite many i € N with ¢; # 0. It is
. . . . (A%
enough to prove that any homogeneous element r € %, is a linear combination of %, .
For any A < A/, it is obvious that NX" € N2, Moreover, N2 is a %,-ideal of N2. Hence we
can define an infinite filtration
Ry > NN > NN

2 3)

>NV > L

By |Pr0position 4.2.3[, limy_, e mé\@ = oo, s0 if r € %, is homogeneous then there exists an

integer k(r) such that mf}(k) > deg(r) whenever k > k(r). Fix k > k(r) and hence r ¢ N(’y‘(k).

By [Proposition 4.1.5} choosing a multicharge « corresponding to A, Z» = %, /N” has a ho-
mogeneous basis { Y | 4 € @,’l\, s,t € Std(1), res(t) € I* }. Fix amulticharge (k¢ , k¢, ..., K2, K1)
corresponding A®. For any homogeneous element r € Z,, we can find cg € Z with res(t) € I

such that

AK) A A AK)
r+ N(y = Z Cstwst = Z Cstwst + N(Z = Z Cstl//éf + N(x

st st st

A®
= V—ZCstlﬁgfeNa :

&t
. . . . (k)
But as r is a homogeneous element which is not in N2, we must have r — Ys;csfgg = 0,

ie. r = Ygicayg with res() = res(t) € 19 This shows that  belongs to the span of e
Hence %, is spanned by %&AU{)).
(A®)

Next we will prove that %, is linearly independent. Suppose S, is a finite subset of

%&A(k)). Write mg, = max {deg(¥g) | Y5 € S }. By [Proposition 4.2.3| we can find some & such
that m®” > mg . Hence yg ¢ N for any g € S,. This means that for any g € S,.
Ust € %(’l‘(k) is nonzero. As by the definition, { g | Y5 € S, } 1s a subset of the basis of %{I\(k).
We have 3, cs, Caist € N{l\(k) if and only if X cs, cs¥st = 0 if and only if all cg = 0. But
s ¢ Né\(k) for any Y € S, the above result yields that 3, ., csfs = 0 if and only if cg = 0.
This shows that %é’\(k)) is linearly independent. Hence @5,"“” is a basis of Z,,. O

Notice that in the definition of @((IAM), it is well-defined for any inverse multicharge sequence
k corresponds to (A®). Hence for any weight A with £ = I(A), by the definition of the standard
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sequence, we can set AD = A. Therefore, we obtain a subset of %&A(k)) :
BN = (g | 1 e 25 with 1) < £,8,1 € Std(D), res(h) € 17}

4.3.7. Corollary. Suppose A is a weight with level £ and (A®) is a standard sequence with
AW = A. Then

BNNBN = (Y| A € 25 with 1) > £ = I(A), 8,1 € Std(D), res() € I7)

. . A
is a basis of N,

Proof. By [Proposition 4.1.5, %2 has a basis {{/g | 1 € P2, s,t € Std(2), res(t) € 1*}. It is easy
to see that when AV = A,

(k))

(Wt | A€ P2 st e Std(),res(t) € [7} = (Yo = Ygg + NN | g € B ).

So for g € %’X\(M), we must have Y & N2

Now suppose g € %&A(k))\%f\/\(b). Then 8,1 € Std(1) with /(1) > ¢. By the definition it is
obvious that ¢ € N» when A"’ = A. Then N is spanned by %’,SA(M)\,%’f\A(M). %f,’\(k)) is a basis
implies the linearly independence of %&A(b)\:@f\’\@). So %éA(k»\:@f\A(k)) is a basis of N2, ]

Recall for any 8,1 € Std(1) with 1 € 2%, we define Yy = Yis- By |Pr0position 4.3.6|, * can
be defined to be a linear bijection from %, to #,. The next Corollary is straightforward by
|Corollary 4.3.7]

4.3.8. Corollary. Suppose = : %, — X, is defined as above. Then it can be restricted to a
linear bijection * : N — N2

Now we can prove the main result of this chapter.

4.3.9. Proposition. The set @ff\w) is a graded cellular basis of X%,.

Proof. Recall |Definition 1.2.1| gives the definition of graded cellular basis. [Proposition 4.3.6|

<)y . . .
shows that 2 is a homogeneous basis of %,. To prove the Theorem we need to establish

properties |1 .b) and|1.2.1(c) of ,%’ff\(k))

Suppose a is an element of %, and yg € %, ’ with §,1 € Std(1). We can write a =
>ien Cia; Where ¢; € Z and a; are homogeneous elements in %, with deg(a;) = i. Define
d, = deg(yg) and d, = max{i | ¢; # 0}. By |Proposition 4.2.3| we can find some k such that
mh > max{d,,d,,d; + d,}. This means that g, a and Y4 a are not elements of NQ( ', This

a
(k) (k) (k) (k)
means that Yy = Yg + NV, a + N} and yga + N} are nonzero elements of Z2". By

[Proposition 4.1.5|and because t is a bijection,

l/’st(a + Ncly\(k)) = (wéf + N(i\(k))(a + Né\(k)) = Z Covifsy + Z Cuvuv

veStd(1) u,veStd(u)
u>A

(A®)

A® _ A
= Yga+ N, = Z CaWiso + Z coalao + N,

eStd() 0,veSd(@)
as>A
A®
= Yga—( Z CagWso + Z cooe) €N, .
¥eStd() 0,9eStd(2)

s
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Since the left hand side of the above equation is homogeneous to d; + d, and mg(k) >d +ds,

we can see that
Yga = Z Csoso + Z Caolag-

0eStd() 0.9€Std(@)
a>A

which shows that 2" satisfies b).
k

For 1.2.1kc), choose arbitrary g, Ya € %ﬁ,“ ), Suppkose deg(¥g) = ki and deg(y¥gy) =
d,. By |Pr0p0sition 4.2.3| we can choose k such that mg() > maxiky, kp, ki + ko}. Then by
|Corollary 4.3.8]

Wetha)® = (Wi + N )Waa + N = Wahos + N2 = Waa)” + N
Yats = Wao+ N2 )Wie + NM) = gy + N2

which implies that (Vggus) ~Wsattis = N"'- Then because my ' > ki+ka, (Vi)' ~Vsatlis = 0,
1e. Wg¥a)” = 9”3\7‘/’{2' Because * is a linear bijection and BN is a basis of Z,, this shows that
%1 Ko — K, 18 an anti-isomorphism. Hence = satisfies ¢). This completes the proof. O

Combining the above two Propositions and [Corollary 4.3.7|we can get the following results.

4.3.10. Theorem. For any standard sequence (A®), the set
BN = (g | e 28,1 StdD) )
is a graded cellular basis of %,.
Proof. By definition we have BN = $H BN and %, = D,. o, Za- By the relations of

€0y @

X, we can see that Z, are subalgebras. The Theorem follows by [Proposition 4.3.9| straightfor-
ward. O

4.3.11. Corollary. Suppose A is a weight with level £ and (A®) is a standard sequence with
AV = A. Then

{Yg | A e P withI(A) > € =1(A),8,1eStd(A)}
is a basis of N».

4.4. Graded simple %,-modules

[Theorem 4.3.10] gives a graded cellular basis of %,. Graham and Lehrer [7] described a
complete set of irreducible representations of finite dimensional cellular algebra, however, their
results do not apply to %, because it is an infinite dimensional algebra. In this section we
use Graham and Lehrer’s results to construct a complete set of graded simple Z%,-modules. The
graded simple %,-modules have been desccribed by Brundan and Kleshchev [4, Theorem 5.19].
See Remark 4.4. 15| for more detials.

First we need to state some properties of the simple %,-modules. We start by showing that
the graded dimension of an simple %,-module is bounded below.

4.4.1. Lemma. Suppose r € %, is a homogeneous element. Then deg(r) > —n(n — 1).
Proof. By (1.4.7) we have the following basis of %,:
(e@3V'55 ... 9pdw i€ " we &, 6,6, 6,2 0).
Ifiel"we S,and ¢,,{,,...,¢, >0, then
deg(e(®F)'55 ... 9ydh) > deg(@®3!'55 ... 5) + deg(2(i)
2061+ b+ ..+ €,) + deg(e(i))
deg(@(i)in,)-

v

%
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Asw € &, we have I(w) < " and by definition, (i)}, > -2 for any r and i € I".
Therefore .
deg(2(@)i) > -2 x " > ) a1y,
Hence deg(é(i)jzf1 5)22 ...9"J.,) > —n(n — 1). This completes the proof. m|

Recall that for |a| = },c; a; and &, = Y0 €(1) € Z,.

4.4.2. Lemma. Suppose S is a simple %,-module. Then there exists « € Q. with || = n such
that for any B € Q. with |B| = n, égS = 6,S.

Proof. Suppose S is a simple %,-module. Because 1 = };cme(j) = Xpeo. &3, We can write
|Bl=n
S = Ppeo. &5S. Suppose &,S # 0 for some @ € Q,. Choose any nonzero element s € S and

|=n

B € Q, with # a. By[Lemma 4.1.4] &,%,éz = 0. So we must have éz-s = 0. Hence &;S = 0.
Therefore S = @Ppeg, €55 = &,S . This completes the proof. O
1Bl=n

It is well-known that the irreducible representations of the affine Hecke algebra are finite
dimensional as, by Bernstein, the affine Hecke algebra is finite dimensional over its centre.
See for example, Proposition 4.1 and Corollary 4.2 of Grojnowski [8], or Proposition 2.12 of
Khovanov-Lauda [13]. The next Proposition gives a different approach.

4.4.3. Proposition. Suppose S is a graded simple Z%,-module and @ € Q. is such that égS =
SapS for B € Q.. If A € P, withm® > n(n — 1), then S is isomorphic to a graded simple
RN -module.

Proof. By we can find @ € Q, such that &S = 6,45 for B € Q.. Then we

choose an arbitrary nonzero homogeneous element s € S and suppose deg(s) = d. Now for any
nonzero homogeneous element ¢ € S, because S is simple, we can find a homogeneous element
a € %, such that t = a-s. Therefore

deg(?) = deg(a-s) = deg(a) + deg(s) >d —n(n—1)

where by we have deg(a) > —n(n — 1). So for any homogeneous nonzero element
t€ S, we have

(4.4.4) deg(t) >d —n(n—1).

Similarly, since for any nonzero homogeneous element t € %, we can find homogeneous
element a € %, such that s = a-t, we have
(4.4.5) deg(t) <d +n(n-1).

Combining (#.4.4) and (.4.3)), we have | deg(s) — deg(?)| < n(n — 1) for any nonzero homo-
geneous element ¢ € S. Because s is chosen arbitrarily, we have
(4.4.6) | deg(s) — deg(?)| < n(n —1)

for any nonzero homogeneous elements s,7 € S.

Suppose A € P, with m® > n(n — 1). For any homogeneous element a € N2 and 7 € S, we
have a-t = 0 because deg(a-r) — deg(t) = deg(a) > n(n — 1) and {.4.6).

For any s € S, we can define a map f: %,— S by sending a to a-s. It is a homomorphism

and it is obvious that N C kerf. If B € Q, and B # a, then by [Lemma 4.4.2| we have &3-s = 0.

Therefore N/’g\ C kerf. Hence N C kerf. Therefore we can consider S as a simple %, /N*-
module, i.e. Z*-module. This completes the proof. O

4.4.7. Corollary. Suppose S is a simple graded %,-module. Then S is finite-dimensional.
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Building on Ariki’s [[1] work in the ungraded case, Hu and Mathas [9] constructed all graded
simple Z*-modules in the sense of Graham-Lehrer [7]. They proved that, up to shift, graded
simple Z*-modules are labeled by the Kleshchev multipartitions of r, which were introduced
by Ariki and Mathas [2]]. Readers may also refer to Brundan and Kleshchev [4, (3.27)] (where
they are called restricted multipartitions).

Suppose 4 = (A1, 1@, ...,19) € 22 and we consider the Young diagram [1]. Lety =
(r,c,1) be a node in the Young diagram with residue i, i.e. i = r — ¢ + x; (mod ¢). Then vy is
an addable i-node if y ¢ [1] and [1] U {y} is the Young diagram of a multipartition, and vy is a
removable i-node if y € [4] and [4]\{y} is the Young diagram of a multipartition.

For each 1 € &%, we read all addable and removable i-nodes in the following order: we
start with the first row of A, and then read rows in 4> downward. We then read the first row
of A®, and repeat the same procedure, until we finish reading all rows of 1. We write A for an
addable i-node, and R for a removable i-node. Hence we get a sequence of A and R. We then
delete RA as many as possible. For example, if we have a sequence RARARRAAARRAR, the
resulting sequence willbe - — — — — — — — AR — —R. The node corresponding to the leftmost R
is the good i-node.

The Kleshchev multipartition can then be defined recursively as follows.

4.4.8. Definition. [1, Definition 2.3] We declare that O is Kelshchev. Assume that we have
already defined the set of Kleshchev multipartitions up to size n — 1. Let A be a multipartition
of n. We say that A is a Kleshchev multipartition if there is a good node vy in [A] such that if
[u] = [A\{y} and u is a Kleshchev multipartition.

Let 2. be the set of Kleshchev multipartitions in Z22. Let S* be the cell module of Z2 (it
is called the Specht module in %), which was introduced in Section 1.2, and D* = S4/rad S*.
By Hu-Mathas [9, Corollary 5.11] we can give a set of complete non-isomorphic graded simple
Z»-modules. Brundan and Kleshchev [4, Theorem 4.11] gives the same classification.

4.4.9. Theorem. The set
{DYky| A e P keZ)
is a complete set of pairwise non-isomorphic graded simple %#"-modules.
We can consider S* and D(k) as %,-modules. The actions of &(i), $, and ¢, on S* and
DY(k) are the same as the actions of e(i), y, and y,. Therefore D*(k) is also a simple %,-module.

Hence we can define a set of graded simple %,,-modules similar as in|Theorem 4.4.9
The next Lemma is straightforward by the definition of D*.

4.4.10. Lemma. Suppose A,u € P>, Then D* = D" as #"-modules if and only if D* = D" as
Hy-modules.

Now we can classify all graded simple Z,-modules. Following the process in Section 1.2,
for each 1 € Z% we can define the cell module S of Z,(which is called the Specht module
as well), associated with a bilinear form (-, -). Then we can define rad S4 and hence a graded
simple module D' = S/rad S1.

4.4.11. Lemma. Suppose 1 € 2% and u = pi(d) for some k > I(A). Then S* = S as %,-
modules.

Proof. It is trivial by the definition of Specht modules in %, and Z2. m]
The next Corollary is straightforward by [Lemma 4.4.11

4.4.12. Corollary. Suppose 1 € P and u = pi(d) for some k > I(A). Then D* = D' as
K,-modules.
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Hence we can prove the following Lemma.
4.4.13. Lemma. Suppose A,ji € PX. Then D' = Di if and only if 1 = [u.

Proof. The if part is trivial. Now suppose D' = DA Choose k > max{l/(), [({1)} and set
v = pu(d) and o = pi(f1). Then by |Corollary 4.4.12| we have D’ = D” as %,-modules. Then
[Theorem 4.4.9| and [Lemma 4.4.10| implies v = o. Therefore by the definition of k we have
A = f1. This completes the proof. m|

Now we extend Kleshchev multipartitions to affine multipartitions. Define 1 € £% to be an
affine Kleshchev multipartition if A is a Kleshchev multipartition and 22§ as the set of all affine
Kleshchev multipartitions in Z7¢. Hence we can give a complete set of pairwise non-isomorphic
graded simple %,-modules.

4.4.14. Theorem. The set X
{(DXkY | 1 e X keZ)

is a complete set of pairwise non-isomorphic graded simple %,-modules.

Proof. By the definition of (affine) Kleshchev multipartitions, [9, Corollary 5.11] and
DY(k) = D*(ky # 0if and only if A € 2.

Suppose S is a graded simple %,-module. By [Lemma 4.4.2) we can find a € Q, such that
egS = 0455 for B € Q,. Then by |Prop051t10n 4.2. ﬂwe can choose i such that mA() >nn-—1)
and hence by LProposmon 4.4.3[, S is isomorphic to a graded simple %’,’,‘ -module. Therefore by
|Theorem 4.4. T 9| we can find some u € @,’,\m and k € Z such that § = D(k) as %A(i)—modules

and hence as Z,-modules. Suppose /(1) = €. We can choose e &% such that pg(/l) = u with
IA) <¢. By |Corollary 44. 12| we have D' = D" as Z,-modules. Therefore S = D”‘(k) So

{(DYKY | e P keZ)

is a complete set of graded simple %,-modules.
By |Lemma 4.4.13|, the set { DYk) |1 e PX keZ)} is a set of pairwise non-isomorphic
graded Z,-modules. This completes the proof. O

4.4.15. Remark. Ariki-Mathas [2] showed that the simple H,,-modules are indexed by aperiodic
multisegments. Khovanov and Lauda [13} 12] also gives a classification of all graded simple
Z,-modules of arbitrary type. Interested readers may also refer to [15], [4], [16], [19], [27], [11]
and [22]]. As far as we are aware the construction and classification in|[Theorem 4.4.14]is new.




CHAPTER 5

Idempotents and Jucys-Murphy Elements

In this chapter we will give an explicit expression for the KLR idempotent e(i) using the
generators of cyclotomic Hecke algebras H» when e > 0 and p > 0, and show the periodic
properties of Jucys-Murphy elements x, and X, in H”. The main idea is using the nilpotency of
y,’s in cyclotomic KLR algebras. Recall that H? can either be a degenerate or non-degenerate
Hecke algebra. We will work with these cases separately in this chapter.

5.1. Explicit expression of e(i)

Recall the cyclotomic Hecke algebras H” introduced in . In this section we will
introduce the detailed definition of e(i) in H2.

We can define a set of pairwise orthogonal idempotents { e(i) | i € I" } for both degenerate
and non-degenerate cases. Brundan and Kleshchev [3] defined e(i) of Z2 in H2 in the sense of
RN = H". Suppose M is a finite dimensional H”-module. By Kleshchev [17, Lemma 7.1], the
eigenvalues of each x, or X, on M belongs to I. So M = €. _,, M; of its weight space

ield
Mi:{veMl(x,—q,-r)Nv:Oforallr: 1,...,dand N > 0},

where ¢ is introduced in . Then we deduce that there is a system { e(i) | i € I" } such that
e(i)M = Mi-

Murphy [23, (1,2)] defined a complete set of primitive orthogonal idempotents in sym-
metric groups and Mahtas [21, Definition 3.1] generalized this result to the degenerate and
non-degenerate cyclotomic Hecke algebras.

Hu and Mathas [9, Lemma 4.1] proves that the idempotents e(i) in H” is equivalent to the
primitive idempotents defined by Mathas in H”. Murphy’s approach gives an explicit formula
for the idempotents e(i). Unfortunatesly, it is not very efficient for actual calculations. Recall
e and p are parameters of H defined in Section 1.2. We call p the characteristic of H* and
e the quantum characteristic of H». In this section we will give a more explicit expression
of e(i) in degenerate and non-degenerate cyclotomic Hecke algebras using x, or X, when p > 0
and e > 0.

In the rest of this chapter we fix p > 0 and e > 0. We have the following well-known facts.

5.1.1. Lemma. Suppose F, is a field with char F, = p > 0 and r,r, € H". For any non-
negative integer k we always have (r; — ry)?' = Y . rgk.

5.1.2. Remark. Notice the above Lemma is a well-known result and will be applied without
mention in this chapter.

5.1.3. Lemma. Suppose p and e are characteristic and quantum characteristic of non-degenerate
H® with e, p > 0. Then gcd(e, p) = 1. Moreover, we can find [ such that p' = 1 (mod e).

Proof. In non-degenerate case, gcd(e, p) = 1 is well-known. So by Chinese Remainder Theo-
rem we can find a,b € Z such that ap + be = 1. Now consider the sequence p, p?, p°, p*. ...
We can find ki, k such that p*' = p* (mod e). Choose k, such that k, — k; > k;. Hence write

79
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I =ky—kyand p' = s (mod e) where 0 < s < e—1. So we have p? = p’ (mod e) which implies
s> = s (mod e). So we can write s> — s = ke for some k € Z. So

s —s=ke = as(s—1)=ake = (1 -be)(s—1)=ake = s—1=(0b(s—1)+ak)e

which implies e | s—1. But because 0 < s < e—1, we have s = 1. Therefore p' = 1 (mod e¢). O

In the degenerate case we have e = p and in non-degenerate case we have gcd(e, p) = 1.
Fix a residue sequence i = (iy,#,...,1,). Forany 1 < r < n and any j € I with j # i,, choose
N> Oanddefine L; j = 1- (q” ;’) in both degenerate and non-degenerate cases.

Notice that by the deﬁnltlon of e(i) given by Brundan and Kleshchev [3], for any j € I and
1 < r <n, we have

(x,—q;)VeG) =0
for N > 0.

5.1.4. Lemma. Suppose 1 <r <nandj= (ji, jo,...,jn) €1I", for j €I and N; > 0 we have

LNJe(j) — 6(]), lf]r = lfw
! 0, ifj=

Proof. Suppose j, = i,. Because (x, — g;,)Ve(j) = (x, — ¢q;,)"e(j) = 0 for N > 0, we have

1
L, je() = By ) )e(h) = e(j) = ——— (g, — x)"e(j) = e(j).

qi, — (g, — ¢ j)N

Therefore L e(]) (J) =L, je(j) = e)).
Suppose j. = j. We have

qi, — Xr

L, = 1-(=——>)"
qi. — 4,
qi, — qi. — r
= - Z( Fat Z(
N-1

N-1
Xr — (i i — Xr i Y i,_xr
_ qi, Z(qr )k+ q qj (q
1 9 q—x
= (% —qi, + 4, —q)) Z( "r
4, —4j 4= 9 —4j

)k

)k
1 N-1

( Z(%

49 —4j = 9~

)k)( Xr — )

Therefore for N; > 0,

Ly jeli) = Z(q“ Vel =

lr J k=0 lr
because when j, = j we have (x, — g;)"V/e(j) = 0, which completes the proof. m|

Now we define L,(i) = [] Jez L;, ;. In the product, j € I\{i,}, which is a finite product since
e > 0. So L,(i) is well deﬁned We have the following Lemma.
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5.1.5. Lemma. Suppose 1 < r < n. We can choose N,(i) > 0 such that

LG = e(j).

Jel?
Jr=tr
Proof. By for any j € I with j # i, we can find N; large enough such that
| i, ifj, =iy,
Leqy = ¢ B
ired 0, if j, = J.

Now choose N,(i) > max{N; | j € I, j # i,}, which is finite since e > 0. Therefore L,(i)"? =
[1 jer Lf\r’f;'). Hence for any e(j), if j, # i,

JE
’Nr(') 1) — Nr(l) N — Nr(l) N)(l) N\ —
(5.1.6) L") = | [ L0l = (| | LY e = 0,
Jel Jel
Jir Firsjr

and if j, =i,
(5.1.7) L)V Pe(j) = e(j),

because for any j, LZ’;e(j) = e(j).
Therefore, because }jcm e(j) = 1, by (5.1.6) and (5.1.7),

LY = LAY ei) = Y L Peli) = > LY Vel = ) e(i)

jer jer jel’f jel’f
Jr=ty Jr=ty

which completes the proof. O

As the idempotents e(j)’s are pairwise orthogonal, immediately implies the
following.

5.1.8. Corollary. For anyi € I", we have

ei) = | | L.
r=1

The previous results are true in both the degenerate and non-degenerate cases. Notice that

when we define L; ; = 1 - (%)Ni and L,(i)™®, the only restriction is that N; and N,(i) are
ir J

large enough. As we now show, by choosing specific values for N; and N,(i), it is possible to
simplify the expression of L,(i)¥"® even further and give a more explicit expression of e(i). We
emphasize the simplified expressions of L,(i)M® are different for degenerate and non-degenerate
HA.

We start with the degenerate cyclotomic Hecke algebras. Recall that in this case e = p.

5.1.9. Proposition. Suppose g = 1. For any i, € I there exists s > 0 such that

) 1=x""P wheni, =0,
D e =

kp®
p—-1 x .
P = D1 T when i, # 0.
. . r
Jr=tr

Proof. By the Proposition is equivalent to claim that

p'(1-p)

] 1-x , wheni, =0,
Lr(i)Nr(l) = pi] NG ‘r
_ Zk:l zk , wheni, #0.

for s > 0.
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By the definition of L, (i), because I = Z/pZ we have

L =L, = ]_[(1—< >Nf) ﬂ(l—( ).

Jjel Jjel
J#ir J#ir

Take k > 0 and N; = p*. Hence because H. is defined over a field F, of characteristic p,
we have V7 = j. And because p is a prime, we have

] =G x) _
L= [a - (1 = [Ja-=—= =[]0 -i6-x") =1-G-x)*"".
J=1 Jj=1 j=1

Without loss of generality, choose N,(i) = p' with [ > 0. We have
Lr(i)Nr(i) =(-(@, - xr)(p_l)N_i)Nr(i) =1-(, - xr)(P—l)N_/Nr(i)_
Setting s = k+ [, we have N;N,(i) = p*! = p*. Now we consider two cases, which are i, = 0

and i, # 0.
Suppose first i, = 0. We have

(5.1.10) L,(i)N’(i) =1-(, - xr)(p—l)Ner(i) =1-= (_xr)(p—l)ps =1- xgp—Dps.
Suppose i, # 0. We have

s+1

; —1)N;N, . ol _ i, — x)P
(lr - Xr)(p DN = (lr - )Cr)pyr P = %
(l, - xr)p
. s+1 (X ps+1
— Ir = X{,’ _ 1 (,:)
- . S - X N
i = X7 1- (,_:)p

X, s X 2ps X —1)p$
1+(l_—r)l’ +(l,—’)l’ +o 4 (ED)be
r

r

_ 1+er X" N X plxs.
ir iy i k=0 iy
Hence,
Pl g Pl g
(5.1.11) L,(i)N’(i) =1-(, - xr)(P—l)Ner(i) =1-= Z x_k — _Z x_k
k=0 r P
By combining (5.1.10) and (5.1.1T)), we complete the proof. o

Finally, by combining [Corollary 5.1.8|and [Proposition 5.1.9] we have an explicit expression
of e(i) for the degenerate cyclotomic Hecke algebras.

5.1.12. Theorem. Suppose i = (i1, i,...,i,) € [" and q = 1, then

e = | [ L™
r=1
where

1- )
xf( p), when i, =0,

Yo, ! x’—k, when i, # 0.

ik

. 1 -
L™ = {

for s> 0.

We now give a similar expression for the non-degenerate cyclotomic Hecke algebras. First
we give two Lemmas which will be used later.
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5.1.13. Lemma. For any k € Z with k # 0 (mod e), we have
L+ +¢+...+4“ =0.
Proof. By the definition, we have

l+g+q*+...+¢""' =0

A+g+¢+..+¢HU =g =0
1-¢°=0
q- =1

@) =q“=(@")=1
G -1=(0++¢*+...+4“ MG -1 =0.

| | R

Because k € Z and k # 0 (mod e), we have g — 1 # 0. Therefore we must have 1 + ¢~ +
@+ gk =0. m

5.1.14. Lemma. Suppose i, € I and f(x) = [];4 (1 - ’i'_") € F,[x] with r = ¢° for some

rir—rJ

positive integer s # 0 (mod e) and q € F}. Then e! €F,and
Fo) = eI+ 2+ (22 4+ (D).
rtr rir rr

Proof. By [Lemma 5.1.3|we have gcd(e, p) = 1 and hence e™! € F,. Define g(x) = e (1 + 4+
(7{)2 +...4( r,i-,)e‘l). We prove that f(x) = g(x) by first comparing their roots. It is obvious that

the roots of f(x) are all of the form 7/ with j € I and j # i,. Then for any such 7/,
gy = e (1 + 77 4 2070 DUy — Tl R R4 DR

for k = j—i, (mod e) and k # 0. Because r = ¢* and s # 0 (mod e), we must have sk # 0
(mod e). Therefore by [Lemma 5.1.13| we have g(r/) = 0. Because f(x) and g(x) are both
polynomials of degree e — 1, they have e — 1 roots, which means that g(x) and f(x) have the
same roots. This yields that f(x) = kg(x) for some k € F,.

Now because f(r") = 1 = g(r), we have k = 1. Therefore f(x) = g(x), which completes
the proof. O

5.1.15. Proposition. Suppose q # 1. For any i, € I, there exists s > 0 such that

s

S | XI{? Xf) 2 Xi) e—1
Dlei =€+t (S + L+ (),
& q q q
jr:ir

Proof. By the Proposition is equivalent to prove that

. XfY st X’Pv

LYY =M1+ 2 + () + ..+ () h.
qP Iy qP Uy qp N7

By the definition of L,(i), because I = Z/eZ, if N;, N,(i) > 0 then we have

N i qi' - Xr : i
L0 = [ ] - =,
jel 9 -4

iy
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Suppose N; = p* and N,(i) = p’ with k,/ > 0. We have

LY = []a- (
J#ir

)” Y

lr_Xr
= (1—<%>P )
o

J
jir 4
Kt k+1
_ ‘q 14
. (1 _ qp L A— Xr )
‘ qpk+l i _ qpk+l,]
JFir
- i _ yP'
= [Ja-22%,
J#i rr—=r!
.

where s =k + land r = ¢* € F,. Notice that by Lemma 5.1. 3L we have p* £ 0 (mod e).
Now we set f(x) = [, (1 - r"r’i) € Pp[x] By|Lemma 5.1.14{ we have

f(x)=e (1+ +(—)+ +(;)H)-

Therefore
, , xroxr X7
LY = fXP)=e'l+=+ )P +...+ () h
r'r rr r
. X7 x X
= I+ —=+ (S + e+ ()T
qr q” qr
which completes the proof. O

Finally we can get an explicit expression of e(i) for the non-degenerate H* using
and the orthogonality of e(i)’s.

5.1.16. Theorem. Suppose i = (i1, iy,...,i,) € I" and g # 1, we have

P’ %

T X’ Xt X2
ey =e | [0+ 2o Tt (T
r=1

qp Iy

for s> 0.

5.2. Periodic property of x, in degenerate case

In the degenerate cyclotomic Hecke algebra, when e = p > 0 the algebra is finite. We know
that dim HY} = ¢"n!. Hence over F, the algebra has p¢"n! elements. Therefore, by choosing

k > p{'n!, for any r we must be able to find kj,k, with 1 < k; < k, < k such that x;' = xlﬁz.

Therefore for any r we can find integers d, and N such that for any N’ > N, xV' = x * We

define the period of x, to be the smallest positive integer d, such that x" = xM* for some N. In

this section we will give information on the period d, and the minimal N such that x" = xy
Recall that y, is the generator of Z*. By Brundan and Kleshchev 3} (3.21)], y, = Yiepm(x, —

i)e(i) and by [3, Lemma 2.1], y{ = 0 for s > 0.

s+1

5.2.1. Lemma. Suppose s is an integer. For any r, X' = x” ifand only if y* = 0.
Proof. For any i € I, we have

S N s+1 . s . w st N
xX=xl = D)= =D =(x, -0 —(x, - D
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Suppose ¥ = Sicm(x, — i,)""e(i) = 0. Therefore for any i, (x, — i,)""e(i) = 0. Then for any
i e " withi, =i we have
" = xe() = (x, — i) e(@) - (x, — i) e(i) = 0.
Then as )i e(i) = 1, we have
(varl _ va) _ Z(foJrl _ xfc)e(i) _ O’
iel”
. s+1 s
which shows that x; = x7 .
Suppose ¥ = Yicq(x,—i.)" e(i) # 0, we must be able to find ai € I" such that (x,—i,)" e(i) #
0. Assume
@ = X e() = (o — iy e@) - (6 — i) eli) = 0,

which means that y” " e(i) = y" e(i) # 0. Because p**! > p* and y” e(i) # 0, we can find k where

¥ (i) = 0 and yP e # 0. Buty” e = vy e() = vy e(i) = y7e(i) # 0, which

leads to contradiction. Therefore we must have (x? " —x¥ S)e(i) = (x,—i)””le(i)—(x,—i)”se(i) #0,
s+1 s

which yields that x # x¥ . O

Choose s > 0 such that y* = 0. By [Lemma 5.2.1| we have K = xfm = x/TPIP Qg the
period d, divides p°(p — 1). Thend, = p™ or p™(p — 1) withm > 0.
5.2.2. Lemma. Suppose d, is the period of x,. Then (p — 1) | d,.

Proof. When p = 2 there is nothing to prove. Hence we set p > 2 so that p is odd. Assume
that d, = p™ for some m. Consider A = (r — 1, 1"y and t = t*. Let j = (ji, jo, ..., ju) = res(t),
it is easy to see that j, = e — 1 = p — 1. Now j is a residue sequence so that e(j) # O by
Corollary 3.6.3] So we must have )] i e(i) # 0. Choose s > m. By [Proposition 5.1.9,

i,=p—-1
g 2p* (p=D)p*
Lr(j)Nr(j) = - xf - r - .. —xr
p-1 (p-1) (p— 1!
= X=X 50— =y
By assumption, because s > m, we have =3 = ... = xP"" Therefore
LGVD =xP — 32 4+ x20 — X" = —1+1-...—Dx? =0.

But by :Lemma 5.1.5| we have L,(j)P = 3, _ ,e(i) # 0, which leads to contradiction.
Therefore d, = p™(p — 1) and hence (p — 1)|d,. |

Now we know that d, = p™(p — 1) for some m. We can give a more specific value of m.
! -1
Define [ to be the integer such that y¥ = 0 and y?  # 0. First we introduce two Lemmas.

5.2.3. Lemma. Suppose f(x) € F,[x], h € HY and e(i)h # 0. Then f(x,)e(i)h = 0 only if
f(lr) =0.
Proof. We prove this Lemma by contradiction. Because F, is a field, f(i,) = O only if (x —
i) | f(x). Assume f(x,)e(i)h = 0. Suppose f(i,) # 0, we can write f(x) = (x —i,)g(x) + j with
j # 0. Set s > 0 such that (x, — i,)” e(i) = 0. Because f(x,)e(i)h = 0, we have

fP (xpe@h = (x5, = i)g(x) + ) e@h = g (x,)(x, — i) e(Dh + j-e(D)h = j-e(i)h # 0

because j # 0 and e(i)h # 0, which leads to contradiction. Therefore f(x,)e(i)h # 0 when
f(i,) # 0. This completes the proof. O
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5.2.4. Lemma. Suppose k € Z andt € Z. For any i € I with i # 0, we have
xk _ xk+pf(p—1) — f(X)(l _ x)pr
with f(x) = ka(l + prl + (4)2 + ..+ (XT’fl)p—Z)_

Proof. Suppose i € I and i # 0. We have

3 ' Xp[
Xk — - = xk(l —xP (P—l)) — xk(l _ (__)P—l)
l

P’ P’ p' p'
= FA+ s G+ G-
l l 1 l

k p p' p' . .

= SO+ C L (YA - )
l l l l
k p P P’ .

= T+ v P G-y
i i i i

= - x"

with f(x) = %(1 + x—ft + (”Tf’)2 4.+ (%)P‘Z). This completes the proof. o

5.2.5. Proposition. Suppse [ is the smallest non-negative integer such that yf[ = 0. Then the
period of x, is d, = p'(p — 1).

Proof. Suppose d, = p™(p — 1). By |[Lemma 5.2.1| we have xfm = xf[”'[(p_]) = xfl. Therefore

d. | p'(p — 1) which indicates that m < [. Now take s > 0, by we have
(2" = a0 De(i) = f(x)el@) iy - x,)"
where f(x) = 2 (14 £ (X024 ..+ (22 )72) € F,[x]. Itis easy to see that £(i,) = p—1 # 0.
By the definition of I, e(i)(i, — x,)”"" # 0. Then by we have
(" = X De(i) = f(x)e@, — x)" # 0.

Therefore x” — xfupl_l(p_l) £0,ie x¥ # xfupl_l(p_l), which yields m > [. This shows that
m=landd, = p'(p - 1). |

Now we know that the period of x, is d, = p’(p — 1), and we still need to find the smallest
non-negative integer N such that xV = x) ™.

5.2.6. Proposition. Suppose 1 < r < n and we can find a residue sequence i such that i, = 0.

If N is the smallest non-negative integer such that xY Y, _oe(d) = 0, then x¥ = x** and
xN—] ixN—Hd,
r r :

Proof. By the definition of N, we can find i with i, = 0 such that x¥~'e(i) # 0 and x"e(i) = 0.
Suppose s > 0. Because d, > 1 we have
N = ey = XV le(i) — XN re(i) = XN e(i) # 0
which indicates that xV~' # x} '+
Next we will prove that x¥ = x**_ Suppose i € I" with i, = 0, then

Y = M e(i) = (1 — x™)xNe(i) = 0

. —_

by the definition of N. Now suppose i € I" with i, # 0. By [Proposition 5.2.5| d, = p'(p — 1)
!
where y? = 0. So by [Lemma 5.2.4]

o = x (i) = (o = X0 Iel) = Fx)e@ — )" = fx)e@(=y,)" =0
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xIrV+d,. N+d,.

with f(x) € F,[x]. Therefore we have (xY — Je(i) = O for any i € I" and hence x" = x;
This completes the proof. O

Notice that in [Proposition 5.2.6| we require 1 < r < n such that we can find a residue

sequence i with i, = 0. If no such residue sequence exists we obtain a different result.

5.2.7. Proposition. Suppose 1 < r < n and for any residue sequence i we always have i, # O.
Then x;" = 1.

Proof. By |Pr0position 5.2.5[, d. = p'(p — 1) where yfl = (. And for any i € I", we have i, # 0.
Then by [Cemma 5.2.4

(1= xMe(@) = (1 = x' P Dye() = f(x)e)i, — x)" = fO)e@(y,) =0,

which shows that x;"e(i) = e(i) for any i € I". Hence x;” = 1. O

Finally we give the main Theorem of this section by combining [Proposition 5.2.5} [Proposi-|
tton 5.2.6/and [Proposition 5.2.77]

5.2.8. Theorem. In the degenerate cyclotomic Hecke algebras, suppose l is the smallest nonneg-
!

ative integer such that y! = 0 and N is the smallest nonnegative integer such that x Y, _y e(i) =

0. Then xk = XX7"""V it and only if m > l and k > N.

5.3. Periodic property of X, in non-degenerate case

In non-degenerate cyclotomic Hecke algebras, when p > 0O the algebra is finite. So by the
same reason as degenerate case, X, must have a periodic property. We define the period d, of
X, similarly as in degenerate cases. In this section we will give an analogues result for the
non-degenerate case when e > 0.

Recall by Brundan and Kleshchev [3, (3.21)], y, = Yic«(1 — g7 X,)e(i) and by [3, Lemma
2.1],y* = 0 for s > 0. It is easy to imply that (X, — ¢")*e(i) = 0 for s > 0. We will use this fact
without mention.

5.3.1. Lemma. Suppose s > 0and 1 < r < n. We have X% = 1.

Proof. By [Proposition 5.1.15} for any i, € I, we have
X, =gy Y ey = (X =" ) ei)

jel’f jelf’
Jr=lr Jr=ly

s

o A 4 X7 .
= X =g S e ()
X g
— -1 r _ APy —
- ¢ (q(e—wps-ir q"") =0,
which leads to
Xepv S S S 7
(e—:)ps.i = qp R Xfp =q7" 1
q r
because ¢¢ = 1. m|

Define d, to be the period of X,. By we have d, | ep®. Therefore d, = ep™ with
m > 0ord, = p” withm > 1. In the following Lemma we are going to give more information
about the form of d,.

5.3.2. Lemma. Suppose d, is the period of X;. We have d, = p™ if A = {A,.
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Proof. By (1.2.7) we have (X; — ¢°) = (X; — 1) = 0. Choose s such that p* > ¢, we have
(X, — 1) =X — 1 =0, which means X! = 1. Hence d; | p* and therefore d; = p™. ]

5.3.3. Remark. When we set r = 1 and A = {A, it means that e(i) = 0if i, = i; # 0. So
Lemma 5.3.2]is actually:

Suppose 1 < r <nand foranyiecl", e(i)=0ifi, #0. Thend, = p".

because the only possible r and A for such condition is giving in
5.3.4. Lemma. Suppose d., is the period of X,. We have e | d, ifr > 1 orr = 1 and A # (.

Proof. We prove the Lemma by contradiction. Assume that d, = p”. Choose i, € I with i, # 0.
Because r > 1 orr = 1 and A # Ay we must can find j € I" with j, = i, with e(j) # 0. Then
2jer e(j) # 0. Choose s > m. By|Lemma 5.1.3| gcd(e, p) = 1. Then because i, # 0, p*-i, # 0

Jr=ty
(mod e). Then by [Lemma 5.1.13|and |Proposition 5.1.15] we have

s

xroxr X?
Dlel) = e+ (S ()
T qr g qr
Jr=ir
1 1 5

e (1 +

P
qpx'ir + qux'ir REEE q(e_l)ps'ir )Xr

-1

T d @ L @ TXY =0,

which leads to contradiction. Hence d, # p™ and therefore e | d,. O

Now we know that d, = p™ when r = 1 and A = {A, and d, = ep™ otherwise. In the rest of
the section we will find the value of m. First we give the simpler case.

5.3.5. Lemma. Suppose s > 0 and A = tAy. We have Xf’x = 1 if and only ify’;x =0.

Proof. Suppose y! "= 0. Foranyie I",
Ye() = (1 - X)) ed) = e(i) — X" el)) =0 = XV e(i) = e(i).
Therefore X} =1
Suppose yfx # 0. Then we can find i € I" with yfxe(i) # 0. So
YWed) =(1-X)e()=ed) — X e 20 = XV e(i) # ei).
Therefore X7 "N i
Now we consider the case when r # 1 or r = 1 and A # £Ay.

5.3.6. Lemma. For any non-negative integer s, we can find k > s such that qf’k = ¢q” and
P =1 (mod e).

Proof. By|Lemma 5.1.3| we can find / such that p' = 1 (mod e). Because ¢¢ = 1, choose t > 0
and set k = s + 1/, we have ¢” = ¢*"" = ¢"7" = (¢"")"' = ¢”'. Moreover, p** = p'l = 1’
(mod e) = 1 (mod e). This completes the proof. O

Now we are ready to give more information of d,.

5.3.7. Lemma. We have X" = 1 for some s only if y* = 0.
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Proof. Fix s such that X = 1. By|Lemma 5.3.6| we can find k > 0 such that ¢*""* = ¢*" and

p* =1 (mod e). Therefore p** — p* = p*(p* — 1) and hence ep® | p*(p* — 1). So X" = X7
Then for any i, € I, by |Proposition 5.1.15] we have

Xp.Hk Xp.H—k Xps+k
Z e(j) = e_l(l + :+k.i +( :+Iai )2 t... +( :+k,l'_)e_1)
je[” qP r q[’ r qP 7
jr':ir
P’ p* Xp’
= '+ =+ () e ()T
qr qr qr
Therefore,
b O _ o . XU,
X =gy D el) = ' K= A+ S (S L+ ()T
jer q q q
Jr=tr
— s S. }{73 XfA XII’JS e—
= A g T (T ()T
Xepx g .
-1 r _ PNy — ool _ i —
¢ (q(e—1>ps~i,- ") =e (q<e—1>ps-ir ¢’ =0

because W = ¢”". This means that y” Yier €(§) = (1 =g "X,)"" Yjer e(j) = 0 for any
Jr=ur Jr=tr
i, € I. Hence y/ = 0. i

5.3.8. Lemma. Suppose y' = 0 for some s. Then we have X = 1.

Proof. Fix s such that yfx = 0. For any i € I", by Lemma 5.3.6/ we can choose k > s such that
qpk = g”". Then
X = XD)el®) = (XU =" = X" +¢"")eti)
= XV = g""el) - (X2 - q""")e(i)
. koo N k_l- ko . S.q s .
= X, =g e - (X, —g")ed) =q" " (=) e(d) — q" "(=y,)" e(i) = 0.
So (ka —X")e(i) = O for any i € I"". Therefore we must have ka —X”" = 0 for some k > 0.
Hence . _ S L
XV —XP=XP(XP " -1)=0 = X" =1,

which implies that d, | p* — p*. We know that d, = ep™ for some m and p* — p* = p*(p*=* - 1).
It is obvious that m < s. Hence X;” = 1. m]

The next Corollary follows straightforward by combining [Lemma 5.3.7]and [Lemma 5.3.8]
5.3.9. Corollary. Suppose s >0, r = 1 and A # (Ag. We have X = 1 if and only if y* = 0.

Finally, combining all the results above, we have the final Theorem.

5.3.10. Theorem. In non-degenerate H®, we have X = 1 with

g = p",  ifr=1and A = (A,
' ep”, otherwise.
if and only if y = 0.

Proof. The Theorem follows straightforward by [Lemma 5.3.2] [Lemma 5.3.4} [Lemma 5.3.5|and
Corollary 5.3.9 o
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