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Abstract
We present a rigorous definition of a wave impedance for 2D rectangular and
triangular lattice photonic crystals (PCs), in the form of a matrix. Reflection
and transmission at an interface between PCs can be represented by matrices
that relate the Bloch mode (eigenmode) amplitudes in the two PCs; we show
that these matrices, which are multi-mode generalisations of reflection and
transmission coefficients, may be calculated from the PCs’ impedances that
we define.

Given the impedances and Bloch factors (propagation constants) of a
collection of PCs, the reflection and transmission properties of arbitrary
stacks of these PCs may be calculated efficiently using a few matrix opera-
tions. Therefore our definition enables PC-based antireflection coatings to
be designed efficiently: some computationally expensive simulations are re-
quired in an initial step to find a range of PCs’ impedances, but then the
reflectances of every coating that consists of a stack of these PCs can be
calculated without any further simulations.

We first define the PC impedance from the transfer matrix of a single
PC layer (i.e., a grating). Since transfer matrix methods are not especially
widespread, we also present a method and associated source code to extract a
PC’s propagating and evanescent Bloch modes from a scattering calculation
that can be performed by any off-the-shelf field solver, and to calculate
impedances from the extracted modal fields.

Finally, we put our method to use. We apply it to design antireflection
coatings, nearly eliminating reflection at a single frequency for one or both
polarisations, or lowering it across a larger bandwidth. We use it to find
surface modes at interfaces between PCs and air, and their projected band
structures. We use the impedance to define effective parameters for PC
homogenisation, and we briefly describe how our definition has been used to
dispersion engineer a PC waveguide.
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Chapter 1

Introduction

This thesis is about photonic crystal impedance: how it is defined, how
impedances may be calculated, and what they can be used to do. The
topic is inspired by conventional treatments of thin film stacks: knowing
the impedance Z (or equivalently the refractive index n) and thickness d
of each layer in a stack allows the efficient calculation of the reflective and
transmissive properties of the stack. If it is easy enough to calculate the
properties of individual stacks, then it becomes possible to design stacks with
particular properties: for example, coatings may be designed that control or
eliminate reflection at an interface between dielectrics.

Coupling into bulk photonic crystals (PCs) has traditionally been prob-
lematic due to interface reflections, particularly near the photonic crystal
band edge where much of the interesting physics occurs. This problem could
be solved by thin-film-style antireflection coatings, but practical design of
such coatings requires quantification of the propagative, reflective and trans-
missive quantities of PCs. The propagative properties of a PC are encap-
sulated by its modes’ Bloch factors; this is an established result. A PC’s
propensity to reflect or transmit light at an interface with any other PC,
however, has not previously been quantified in a convenient, efficient and
reliable fashion, and achieving this is the most important outcome of this
thesis.

This chapter starts by giving an overview of the problem of coupling into
PCs and some proposed solutions to do so more efficiently, and evaluating
the potential of these solutions (Sec. 1.1). We then recap in Sec. 1.2 how this
problem has been solved for uniform media—how reflection can be eliminated
inside, for example, camera lenses, over a broad range of frequencies. We
introduce this theory in terms of wave impedances rather than by using the
standard refractive index Fresnel equations; the impedance method is more
general: it does not assume that the permeability of each material µ = 1,
and it is more easily generalised to apply to PCs, as we do in Chapter 2.

Antireflection coatings have not only been used in thin films—they are
also common in microwave networks and at junctions between microwave
waveguides and transmission lines. Such structures, like PCs, can be multi-
moded. This adds considerable complexity to any useful model, and there-
fore a quite general formalism has been developed to describe reflection and
transmission between components. We briefly discuss this formalism of scat-
tering and transfer matrices in Sec. 1.3.

We then turn our attention toward modelling photonic crystals. A pho-
tonic crystal may be modelled as an infinite stack of gratings; its properties
may be found from those of the gratings that comprise it. Therefore some
fundamental and useful properties of gratings are discussed in Sec. 1.4. We
directly consider photonic crystals in Sec. 1.5, discussing their eigenstates
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and how to model light propagation and reflection in a way similar to the
thin-film framework. The discussion is brought to a head in Sec. 1.6 with
an overview of attempts to characterise coupling between PCs in terms of
impedance, and the success (or otherwise) of applying such methods to cal-
culate the properties of PC stacks. We conclude in Sec. 1.7 with a reca-
pitulation of how the thin-film framework, including impedances, may be
generalised to PC stacks.

1.1 Introducing photonic crystals

The defining feature of a photonic crystal is that its refractive index varies
periodically. A typical example of a photonic crystal is a thin layer of silicon
with a regular patterning of tiny cylindrical holes drilled through it—a PC
slab. The photonic crystals considered herein are periodic in two dimensions
but not in the third, the z–direction, like the Battenberg cake and lattice
biscuit in Fig. 1.1. The diameters of the holes are typically smaller than the
wavelengths at which the PC operates, and are usually arranged in a rect-
angular or triangular lattice, with lattice constant similar to the operating
wavelength in the material.

When light travels along the inside of the PC slab, unusual effects can
occur. Depending on the size and arrangement of the holes, and the incident
light’s properties, the holes might scatter the light such that the backward
reflections interfere constructively, and the PC totally reflects the incident
light. Or an incident beammight be refracted by an angle strongly dependent
on its frequency; or it may be collimated and travel through the PC slab
without angular dispersion; or it might just scatter. There is no general
way to know a priori how incident light will interact with the PC, and its
behaviour is obtained numerically by solving Maxwell’s equations.

The PCs discussed herein are taken to be devices fabricated from dielec-
tric materials. Each PC has either a rectangular or triangular lattice, but
does not necessarily extend infinitely in all directions. The theory developed
is for 2D PCs, which are invariant in the z–direction (an infinitely tall version
of Fig. 1.1’s Battenberg cake), with the aim of approximating the properties
of PC slabs (the lattice biscuit in Fig. 1.1). When simulating 2D PCs, light
is confined to the plane by mathematical decree; in PC slabs it is confined
in the z–direction by total internal reflection.

1.1.1 Properties and applications

The property that initially propelled photonic crystals into the spotlight is
the photonic crystal band gap, frequencies at which light cannot propagate
inside the PC. At such frequencies, the back-scattered light off each hole
interferes sufficiently constructively with the light from every other hole such
that all light is reflected. Yablonovitch proposed that this property could be
used to “tame” spontaneous emission, increasing the lifetime of an excited
state embedded inside a PC when the emission frequency lies inside the
PC’s band gap: in order to decay, the atom or quantum dot needs to emit a
photon, but due to the band gap it cannot [9].

Another application of the photonic band gap, one that drives much
of the research today, is for guiding waves. Unlike any metallic mirror, a
dielectric PC in band gap has no intrinsic loss upon reflection, and unlike a
structure for total internal reflection, it reflects light from all angles in the
plane: thus PCs are excellent at confining light. Meade et al. [10] proposed
removing a row of holes from a PC slab and sending light down the line
defect, i.e., the empty row. In the PC’s band gap, the light is confined
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Figure 1.1: Molding the flow of sugar. . . With apologies to Joannopoulos et
al. [18]. Each colour/material represents a medium with a different refractive
index. An infinite stack of liquorice allsorts is periodic in one dimension;
each allsort is a unit cell. The Battenberg cake represents 9 unit cells of a 2D
photonic crystal—an ideal 2D PC is infinitely tall. 2D PCs are commonly
used to model slab PCs (the lattice biscuit), which are also perodic in two
dimensions but of finite extent in the third. Because slab PCs are inherently
three dimensional objects, it is more difficult to compute their properties
those of truly 2D PCs. Finally, the choc-pile lattice is a 3D photonic crystal,
periodic in three dimensions.

on either side of the line defect by the PC, and it is confined between the
top and bottom faces of the slab by total internal reflection. Such photonic
crystal waveguides (PCWs) confine light in a width comparable to the optical
wavelength. PC waveguides can have sharp bends with low loss [11–13],
can efficiently split light at junctions [14–16], and exhibit a number of other
desirable characteristics for a platform for the integration of photonic devices
onto a chip, such as CMOS fabrication compatibility [17].

PCWs have a wide range of parameters that may be tuned in order to
tailor their dispersion: by adjusting the width of the line defect [19] or the
radii and position of holes near the line defect, it is possible to design PCWs
with small group velocities and low dispersion [20, 21]. These slow light
PCWs are desirable for nonlinear processes, which need the high intensity of
light that accompanies the slowdown [20].

Bragg reflection is the process that is responsible for the photonic crystal
band gap. It is most easily explained by analogy to a 1D PC that consists
of periodically alternating slabs of dielectric materials, like the liquorice all-
sorts in Fig. 1.1. At each of the interfaces in the 1D PC, an incident plane
wave is partially reflected and partially transmitted, in a ratio quantified
by the Fresnel equations (1.9). It is possible to calculate the reflection and
transmission properties of the PC’s unit cell, using the standard thin film
stack techniques discussed in Sec. 1.2.2. If the reflections off each unit cell
interfere sufficiently constructively, then the reflectance of the 1D PC is close
to unity, and the light is in the PC’s band gap. If the reflectance is unity for
all incident angles at a particular frequency and polarisation, then the PC
is said to have a complete band gap at this frequency.

2D PCs are more complicated, and their band gaps generally may not be
found analytically. However the basic physics remains: the backwards scat-
tering off each row of holes interferes constructively giving a net reflectance
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of close to unity. Numerical methods that can be used to calculate the band
gaps and other properties of 2D PCs are outlined in Sec. 1.5.

Other useful applications of PCs do not rely on the PC band gap, and
we now outline a few of these. Krauss [22] and Busch et al. [23] give good
overviews of these applications.

Superprisms

The characteristics of a PC can vary strongly depending on the properties
of the incident light. A superprism is a PC that “refracts” light in differ-
ent directions depending on the light’s frequency—clearly this takes place
outside the PC’s band gap. The term “superprism” was coined in 1998 by
Kosaka et al. and initially referred to “extraordinary angle-sensitive light
propagation” [24], i.e. strong angular dispersion, but the definition was soon
modified in a followup paper [25] to refer to strong (chromatic) dispersion,
i.e. frequency-sensitive light propagation. Having strong chromatic disper-
sion gives superprisms obvious potential applications as frequency demul-
tiplexers and spectrometers [26], which split an input signal into separate
physical channels based on frequency.

In 1999 Kosaka et al. experimentally demonstrated a superprism that
deflects a beam of light with wavelength λ = 0.99µm by ∆θ = 50◦ with
respect to the deflection of a beam with λ = 1.0µm [25, 27]. This effect is
500 times stronger than that of a regular prism [27]. Since then, many other
superprisms have been demonstrated experimentally, e.g. [28–30].

There have also been a number of other reported PCs with strong angular
dispersion, which are superprisms by the original definition [24, 26, 31, 32].
A beam of light incident on such a PC may be refracted in strongly varying
directions depending on only small changes in the angle of incidence.

Whether or not a PC has strong chromatic or angular dispersion, it can
be somewhat simplistic to refer to PCs as “refracting” light [33], since refrac-
tion is a property of uniform media and there are more complicated effects
at play in PCs. Nevertheless, the observed effect of a superprism is that
light emerges from the PC at positions that vary strongly with frequency or
incident angle, which is important for splitting light based on these proper-
ties.

Self-collimation

Self-collimation is an effect where a bulk PC guides light in a collimated
beam [34]. As the beam propagates it remains collimated, despite the lack
of a line defect or another feature to guide it. It does this because of un-
usual angular dispersion properties. For self-collimated light, in the PC the
wavevector component ky in the direction of propagation depends weakly
on the incident angle. Since an incident beam consists of a superposition of
plane waves with slightly different incident angles, if all components share
the same propagation constant ky inside the PC then all components of the
beam acquire phase at the same rate through the PC and the beam remains
collimated and does not disperse [35, 36].

Lijun Wu et al. [29] demonstrated a PC that self-collimates at some
frequencies, and is a superprism at others. Tang et al. [37] presented a
self-collimator, which they used to collimate light exiting a PC waveguide.
Prather et al. [38] presented a square lattice PC that supports self-collimated
beams propagating in the direction of either lattice vector. They went on to
exploit this PC to build waveguides without a physical channel, optical inter-
connects, beam splitters, Mach-Zender interferometers, a two-bit all-optical
analog-to-digital converter and more [39]—all these devices consist only of
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the self-collimating PC and some mirrors constructed by locally modifying
hole radii. Over time, more sophisticated examples have been proposed and
demonstrated: very recently, Z. H. Wu et al. proposed a PC for which ky
is nearly independent of kx over the entire Brillouin zone, leading to self-
collimation for a very broad range of incident angles [40].

1.1.2 Fabrication

Photonic crystal slabs are typically fabricated from semiconductor wafers,
most commonly silicon, GaAs or InP, using e-beam lithography [23]. The
process has been developed over the past decade to give excellent accuracy
for hole placement and good control over hole radius [41]. It is also possi-
ble, but not easy, to fabricate non-circular holes with unusual shapes and
sharp corners (Fig. 1.6, [30]). In this way, any number of PCs, waveguides,
and/or other devices may be written onto a silicon wafer, and elaborate
multi-component devices may be created [30, 39].

A typical fabrication process (e.g. that described in Ref. [41]) begins
by covering a silicon on insulator wafer with an electron beam resist. An
electron beam is used to remove the resist from the desired hole locations,
and then the resist is chemically developed to fix it. The structure is then
etched into the silicon by a process such as reactive ion etching, which drills
through any silicon not covered by the masking layer of resist. The resist is
then chemically removed, and the insulator layer underneath the silicon can
optionally be removed by a chemical underetching process.

Photonic crystals may also be fabricated from materials that are not
semiconductors—for example, chalcogenide glasses, which have highly non-
linear properties, may also be patterned by e-beam lithography [42]. Another
(somewhat unusual) platform for photonic crystals is moulded silk [43], which
is biocompatible.

1.1.3 Coupling to PCs

In order to send light through a PC or PC waveguide (PCW), light must first
be coupled into it. Usually there is some sort of reflection loss associated
with this coupling, which is essentially due to an impedance mismatch. Such
losses occur not only when coupling into a slab, but also at the front and back
of each PC within the slab, in the case of a multiple PC structure. Near the
band edge, where much interesting physics takes place, this reflection loss
is inherently high. A small coupling loss may be overcome by boosting the
input power, but if many PCs are integrated into a single device, then the
interface losses quickly dominate. Not only do these coupling losses decrease
the intensity of signals passing through PCs, but the reflections become stray
light, replacing signal by noise. Reflections off the back and front interfaces
can cause each PC in the system to exhibit Fabry-Pérot resonances.

Similar effects would occur inside multi-component optical and microwave
systems, such as camera lenses and radar systems, had methods not been de-
veloped to eliminate these reflections. Impedance has been a critical element
in these design methods, as we see in Secs. 1.2.2.

PC interface reflections could also almost be eliminated by the use of
antireflection coatings, which sit between the two PCs, efficiently coupling
light from one into the other. Herein we discuss PC-PC or PCW-PCW
interfaces for generality: dielectric-PC and strip waveguide-PCW interfaces
are special cases of these. We now explore some schemes that have been
developed to reduce coupling loss between PCs.
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Matching modes for low reflection

In some cases, light is transmitted into a PC with little or no reflection, even
without an antireflection coating. This phenomenon is desirable for obvious
reasons. It occurs when the incident and transmitted modes have similar
transverse fields with similar ratios between the E‖ and H‖ field compo-
nents in the interface plane. This is because the transverse components of
the overall field must be continuous across the interface, and any difference
between two modes’ field profiles must be made up by reflected modes and
other transmitted modes.

Frequently, a mode’s group velocity has been used to describe its reflec-
tive character: the conventional wisdom is that modes with similar group
velocities usually couple with little reflection, whereas it is harder to couple
from a fast mode to a slow mode or vice-versa [44]. Following this logic,
which is further discussed in Sec. 1.6.1, choosing one’s PCs to have modes
with similar transverse fields and group velocities can help ensure low cou-
pling losses. For some purposes this approach is totally inapplicable: group
velocity matching is useless for coupling into slow light modes due to the
inherent difference in vg between the slow light PC waveguide and the input
and output waveguides.

Matching the incident and transmitted modes’ vg or even their transverse
field is not a necessary condition for efficient direct coupling. White et
al. [45] showed this by demonstrating a slow light waveguide which has
intrinsically low reflection at an interface with a regular PC waveguide. In
this system, the propagating modes in each waveguide have quite different
field profiles, and this difference is made up by reflected and transmitted
evanescent waveguide modes, which rapidly decay away from the interface.
For the field to be continuous across this interface, no contribution is required
from the backward propagating mode in the incident medium, and so there
is no net reflection.

But ultimately, mode matching is not an especially practical solution to
the coupling problem, because it places restrictions on the modes and PCs
that may be used. This exhausts some of the degrees of freedom that would
otherwise be available for optimising the PC’s features, and thus it increases
the complexity of finding a PC with the other desired properties.

Adiabatic coupling regions

The most straightforward way to reduce reflection involves replacing the
sharp interface with a long adiabatic transition region between the two PCs.
These structures are analogous to the bells and horns of wind and brass
instruments, which match the acoustic modes of a narrow tube to those of
free space. In a PC adiabatic transition region, the parameters that differ
between the PCs, such as hole radius/shape, or lattice constant, slowly vary
over many periods. Johnson et al. [46] proved that if the transition be-
tween two PC waveguides is gentle enough, then broadband coupling may
be achieved. Adiabatic taper couplers for PC waveguides have been exten-
sively studied numerically both in PC waveguides [47–49] and for bulk PCs
[44, 50], and are frequently used experimentally [51–54].

The disadvantage of adiabatic coupling regions is their length: in order
to be effective, they must be gentle (read: long), and thus they are hostile to
miniaturisation. Ifm photonic crystals are to be integrated onto a chip, then
there are at leastm+1 interfaces, each of which potentially needs a coating—
if adiabatic transition regions were the chosen solution to coupling losses,
then much of the space on the chip would be devoted to these transition
regions.
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Sanchis et al. [55] enhanced the performance of a short (2–4 period) PC
waveguide taper for a rod type PC1 by including a defect in the taper. The
defect consists of one or two rods with small radius, positioned along the
centre of the taper. The position, the radii and the number of rods was var-
ied until numerical simulations showed the structure to have low reflection;
each candidate defect was evaluated by a computationally expensive FDTD
(finite difference time domain) simulation. The technique was demonstrated
experimentally [56], and later refined by Håkansson et al. [57], who employed
genetic algorithms to perform the search of parameter space, before a semi-
analytic method [58] was developed to make the evaluation of each set of
defects more efficient. In the semi-analytic method [58], numerics are used
to calculate Bloch mode transmission and reflection matrices representing
the properties of each interface (between input waveguide and taper, and
taper and PC waveguide); these quantities are then used in an analytic ex-
pression to calculate the reflection of the structure as a whole. As we see in
Sec. 1.6, this kind of method can be far more efficient than methods such as
FDTD, but an even greater computational advantage may be obtained by
calculating such matrices from impedances.

Antireflection coatings

Most antireflection coatings are much shorter than adiabatic transition re-
gions, and typically rely on resonant effects. The principle behind most
antireflection coatings is to replace the interface between the PCs with a
series of two or more interfaces. If the coating is designed properly, then the
reflections off each of these interfaces interfere destructively, leaving little
or no net reflection. In Sec. 1.2.2 we discuss how antireflection coatings for
dielectric media have conventionally been designed using thin films, but here
we consider a look at some coatings that have been designed for PCs.

The most common type of PC antireflection coating is obtained by mod-
ifying the radius and/or position of one or more rows of holes at the front
of the PC. These coatings work in a way roughly analogous to thin film
antireflection coatings. For example, the spirit of the quarter-wave plate2 is
captured by the design process described by Lee et al. [59]. The reflection co-
efficient of the bare interface is calculated, and a grating is found which has
the same reflectance when embedded in the incident medium. This grating
is placed in front of the PC (Fig. 1.2) and the phase properties of the coating
are varied by moving the holes until the reflections cancel out and there is
no net reflection [59]. The design procedure consists of two one-dimensional

darc Air 2Rarc

Figure 1.2: Lee et al.’s antireflection coating, which consists of a grating
placed at a variable distance from the front of the PC [59].

1i.e., a PC that consists of high index rods in air
2Quarter-wave plates are described in Sec. 1.2.2. They consist of a film with refractive

index n =
√
n1n2 of thickness λ/4n between two uniform dielectrics with refractive indices

n1 and n2; the film’s refractive index is such that the reflectances of its two interfaces are
equal, so it acts as an on-resonance Fabry-Pérot interferometer, and therefore has zero
reflectance.
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searches: first they run repeated FDTD simulations to find a grating with the
desired reflectance, then they run further computationally expensive FDTD
simulations to calculate the separation between PC and grating that gives
the lowest net reflection. This type of coating has been demonstrated both
theoretically [59] and experimentally [60], but the authors acknowledge that
their method works only at relatively low frequencies where only one mode is
involved at the interface. By separating a two-dimensional parameter search
into two one-dimensional searches, the design problem becomes feasible de-
spite the inefficiency of the simulations. Most sets of parameters cannot
be decoupled in this way, so this approach does not scale to more powerful
coatings that demand additional degrees of freedom.

Another coating inspired by the quarter-wave plate was proposed by
de Sterke et al., in the context of coupling between PC waveguides with
different widths [61]. Using transfer-matrix based methods, they found an
intermediate waveguide that had equal reflectance into the input and target
waveguides. They then varied the intermediate waveguide’s length until the
overall structure had low reflection (R ' 0.002 instead of R = 0.59 for the
uncoated interface). Since the intermediate waveguide is a PC, they do not
have continuous control over its thickness: if they truncate the PC part way
through a unit cell, then its reflection properties change. Their intermediate
waveguide was also relatively long: 8 periods. In order to design a perfect and
compact antireflection coating, another continuous degree of freedom needs
to be introduced; this brings with it another parameter space to explore.

Another design technique for a thin film-style coating was proposed by
Miri et al. [62]. Their coating consists of two additional rows of holes in
front of the target bulk PC. The radius of the holes in each row can be a
variable, as is the position of each row (Fig. 1.3). Each of the rows of holes

Figure 1.3: Miri et al.’s antireflection coating consisting of two, one-period-
thick PC layers. The hole radii and layer thicknesses are variables [62].

is thought of as a one-period layer of a bulk PC, and a large number of
candidate bulk PCs are auditioned for a role as a coating layer. Using only
one numerically expensive simulation per candidate PC, Miri et al. calculate
impedances and propagation constants for the candidate PCs by analogy to
transmission lines—this part of their method is discussed in more detail in
Sec. 1.5.3. Having thus characterised the candidate PCs’ properties, they
calculate the reflection of the structures with each combination of PCs in the
coating. They harness the transmission line framework developed in Sec. 1.3
to exhaustively search this parameter space efficiently, analytically calculat-
ing each stack’s reflection coefficient from the constituent PCs’ impedances
and propagation constants. The combination of PCs in the stack with the
lowest reflectance becomes their coating. Their method, published after ours
[1, 2], has no rigorous underpinning but nevertheless it gives correct answers
at low frequencies, where only one mode is excited in each PC.

Hugonin et al. propose a similar style of coating for an interface be-
tween two PC waveguides, one supporting a fast mode, the other with a
slow mode [63]. By exhaustively scanning a small two-dimensional param-
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eter space of hole positions in two layers (Fig. 1.4), they reduce R = 0.22
to R = 0.003. They calculate the reflection coefficient of each coating stack

Figure 1.4: Hugonin et al.’s PCW antireflection coating consisting of two
layers with modified lattice constant [63].

using a scattering-matrix-based mode-matching method [64], similar to that
on which our method is based.

Rather than using a PC layer as a thin-film coating, Li et al. proposed a
somewhat literal thin film antireflection coating for a square lattice photonic
crystal [65]. That is, they designed a two-layer V-coating3 for the PC that
consists of a layer of n =

√
12 dielectric (the PC’s background material) and

an air slot (Fig. 1.5). They design their coating by calculating the PC’s im-

Figure 1.5: Li et al.’s antireflection coating, which consists of a layer of
uniform dielectric and an air slot, each of variable width [65].

pedance (the manner in which they do this is described in Sec. 1.6.3), which
they use in the theoretical framework for calculating reflectances of thin-
film stacks, which we describe in Sec. 1.2.2. Their design method requires
only one lengthy simulation to find the PC’s impedance; they can then use
Eq. (1.9) and the two-layer equivalent to Eq. (1.10) to efficiently calculate
each candidate coating’s reflection and transmission without further simula-
tions. An inherent downside of using air slots is that light is confined in the
PC slab in the vertical direction by total internal reflection, but in the air
slot there is nothing to confine the light, so it can escape. The purpose of
an antireflection coating is to reduce loss and stray light; an inherently lossy
antireflection coating therefore is not desirable.

Matsumoto and others from the Baba group experimentally demonstrated
a PC superprism with an elaborate antireflection coating consisting of a layer
of teardrop-shaped projected holes [30] (Fig. 1.6). Previous numerical stud-
ies [66] of a similar coating showed that it can reduce coupling loss across
the structure from R > 0.9 to R < 0.2, for a range of incident angles. The
design process for this coating is quite involved, requiring lengthy FDTD
simulations to evaluate each point in the two-dimensional parameter space

3V-coatings, discussed in Sec. 1.2.2, are a stack of two thin films that eliminate reflec-
tion at a single frequency, incident angle and polarisation. The materials may be chosen
arbitrarily, and zero reflection is obtained by adjusting the layers’ thicknesses.
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Figure 1.6: The Baba group’s antireflection coating for a superprism, con-
sisting of one layer of teardrop-shaped projected holes [30, 66].

of coatings, consisting of the projection length and angle [66, 67]. Another
downside inherent to teardrop-shaped holes is that sharp corners are difficult
to fabricate with e-beam lithography.

A number of researchers have found that reflections may be reduced by
carefully choosing the plane in which the PC is truncated [68–74] (Fig. 1.7).
Conceptually, such techniques may be considered either as mode matching

Figure 1.7: A truncated row of holes at the edge of a PC [72].

or as an antireflection coating. From the latter perspective, a row of partial
holes is appended to the front of the PC, and forms an antireflection coat-
ing. From the former perspective, there is no coating—the bulk PC itself is
modified: the hole moves across the edge of the unit cell such that the PC’s
truncated edge is the edge of a unit cell. In either case, only one degree of
freedom is available—the position of the structure’s edge with respect to the
hole centre—and this is not always enough to eliminate reflections [74].

Truncation techniques are usually applied when coupling from a conven-
tional dielectric waveguide (such as a strip waveguide) into a PC waveguide—
cases where some choice of truncation must naturally be made. For interfaces
between bulk PCs, it is not natural to drill “half a hole” in the middle of a sil-
icon slab, and so there have been fewer reports on such methods of reducing
coupling. One such structure was proposed by Zhang and Li [75], in which
the holes are truncated, and additional degrees of freedom are obtained by
drilling slots between the truncated holes. Given the delicacy of the re-
sulting structure (Fig. 1.8), this method, which relied on repeated FDTD
simulations to explore the parameter space, is unlikely to be demonstrated
experimentally.

Śmigaj et al. do not use a truncated row of holes to eliminate reflection—
instead they place a grating at the interface of a bulk PC and air [74, 76,
77]. Their design is extremely compact, while supporting up to four de-
grees of freedom (Fig. 1.9). Their design process relies on assigning a scalar
impedance to the photonic crystal (calculated from the specular reflection
coefficient from air onto the PC), and calculating the required quarter-wave
plate to eliminate reflection at the interface. This λ/4n layer is then replaced
by a simple grating analytically calculated to have effective properties that
are equivalent to the λ/4n layer. In the final step, the properties of this
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Figure 1.9: Śmigaj et al.’s antireflection grating [74].

layer are numerically optimised to find the best coating, a step that requires
repeated numerical simulations. They present one such coating that lowers
the reflectance off a PC from R > 0.29 for all incident angles, to an average
reflectance across all angles of R = 0.028 [74].

Finally, Witzens et al. demonstrated an elegant method to match slab
modes to bulk PC modes using multiple cascading gratings [78]. They present
a case where their method reduces reflectance from R = 0.91 to R = 0.16,
but this requires 19 layers of holes, which is as impractical for miniaturisation
as an adiabatic transition. They also demonstrated a short, 3 layer structure
which reduced reflectance to R = 0.42, which is still a worthy achievement
given that they work at frequencies higher than most of the other coatings
in this section; they must suppress diffraction into two modes composed of
three diffraction orders.

In order to design antireflection coatings, some of the above methods
require a vast amount of computationally expensive numerical simulations
to explore the multidimensional parameter space of potential coatings. This
includes the methods of the Baba group [30, 66, 67], Hugonin et al. [63],
and of Zhang and Li [75]. Other methods manage to decouple the numerical
search and only require exploration of one dimension at a time, such as
the methods of Lee et al. [59] and de Sterke et al. [61]. Miri et al. [62]
take this one step further, and only need to explore one or two dimensions
in computationally-intensive numerical simulations: having thus evaluated
many candidate PCs, the multidimensional search for a coating can be done
without recourse to further numerical simulation. The method of Lee et
al. [59] and the initial stage of Śmigaj et al.’s method [74, 76] are most
efficient of all: they only require one numerical simulation of the PC, then
coatings may be designed without further simulations (although the efficient
part of Śmigaj et al.’s method only provides a good starting point for a
computationally intensive numerical search). The efficiency of these last
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two methods does come at a cost: they cannot take advantage of the many
degrees of freedom that PC-like coatings offer. Our coating design process
is most similar to that of Miri et al. [62]: we require only one dimension of
parameters to be explored in a computationally intensive fashion.

Of the above methods for bulk PCs, only those of the Baba group [30,
66, 67] and Witzens et al. [78] have been demonstrated at frequencies where
multiple diffraction orders propagate in the input medium and/or any coat-
ing layers. The other methods simply do not work at many frequencies of
interest—as discussed in Sec. 1.6, these methods do not work at frequencies
above the first Wood anomaly. The first Wood anomaly, a grating phe-
nomenon discussed in Sec. 1.4, occurs at λ = ndx, where dx is the lattice
periodicity in the interface direction, and n is the PC background’s refractive
index. At non-normal incidence, the anomaly occurs at even lower frequen-
cies. For rod-type PCs in air, this frequency can be relatively high in the
band structure, but for standard PCs that consist of air holes in semicon-
ductor, at oblique incidence the first Wood anomaly often coincides with the
first band gap.

It would be better for a method to exploit the framework of thin film
optics like Miri et al.’s method [62], but to do so in a rigorous fashion that
supports high frequencies and multiple diffraction orders. To begin to de-
velop such a method, which we present in Chapter 2, we start by revisiting
the framework of thin film optics.

1.2 Uniform media

The properties of light interacting with stacks of uniform media (whether di-
electrics or metals) is well understood, and is treated by a range of textbooks,
such as Refs. [79–84]. A powerful framework has been developed to calculate
light’s propagation or decay through uniform media, and its behaviour at
interfaces. The framework, which we seek to emulate for photonic crystals,
can easily handle a wide range of problems, including analytically modelling
thin film antireflection coatings (Sec. 1.2.2), surface plasmons (Sec. 1.2.3),
and slab waveguides (Sec. 1.2.4). The link between these structures is that
they all consist of one or more parallel planar interfaces with uniform media
on both sides (Figs. 1.11–1.14); the structures are modelled by representing
the field in each medium as a superposition of its eigenmodes (plane waves),
and relating the relative amplitudes of the plane waves in each medium by
reflection and transmission coefficients.

If this framework could be adapted to PCs, then many complicated PC
structures could be modelled semi-analytically. To take the same examples as
above, if we could encapsulate the propagative qualities of PCs, and calculate
the reflection and transmission at the interface between any pair of PCs, then
the reflection and transmission of a stack of the PCs may be calculated in a
way analogous to calculating those of a thin film stack, enabling the design of
antireflection coatings (Ch. 2). The method for calculating the properties of
surface plasmons at a metal-dielectric interface may similarly be adapted to
a PC-PC interface, and the dispersion relation and modes of a PC waveguide
or array of waveguides may be calculated based on the separate properties
of the waveguide and of the mirror (Ch. 5).

Much of the material in this section will be familiar to the reader. Here we
outline the thin-film framework with an eye on developing a PC framework:
we introduce many of this thesis’ recurring themes, techniques, quantities
and notations in familiar territory before using them in the wild. The least
familiar quantity here is likely the (wave) impedance Z (Eq. (1.4)), which
depends on the direction of propagation. We use this quantity extensively: it
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relates plane wave amplitudes to fields, and we rewrite the Fresnel equations
Eq. (1.9) in terms of it. Of the many quantities described as impedances, our
definition of PC impedance is most closely related to the wave impedance.

1.2.1 Propagation and reflection

In a linear uniform medium, continuous-wave light is well represented as a
superposition of plane waves that either propagate or decay exponentially.
Suppressing the factor exp (−iωt), we may write the fields as

E(r) =
∑

s

Es exp(ik(s) · r), (1.1a)

H(r) =
∑

s

Hs exp(ik(s) · r), (1.1b)

where Es and Hs are the amplitudes of plane wave s, and k(s) is its wavevec-
tor. At a planar interface between two such media, incoming waves are par-
tially transmitted and partially reflected. The properties of a planar interface
between isotropic uniform dielectrics are often calculated using the Fresnel
equations and Snell’s law; we describe a different but similar approach that
is more easily generalised to a method suitable for PCs. The method we
describe is based on wave impedances [83] and traditional thin-film tech-
niques. It has three steps. First, we show that we can decouple the problem
into a set of independent problems, each involving only one forward and one
backward plane wave in each medium. Next, we find the directions or decay
rates of these waves in each medium from the wavevector of the incident
wave. Finally, we use the two media’s impedances to calculate reflection and
transmission coefficients r and t, which relate the waves’ amplitudes.

Decoupling

Across an interface between uniform media, the E‖ and H‖ field components
parallel to the interface plane are continuous. We split each wavevector k
into components k‖ parallel to the interface, and the component k⊥ = β
normal to the interface. Herein we assume that the elements of k‖ are real,
namely that the wave does not decay in the interface plane. The continuity
of E‖ and H‖ at every point on the interface implies that k‖ is conserved
across the interface, i.e. it is the same for the incident, transmitted and
reflected waves. Therefore we can consider one value of k‖ at a time, and
ignore all plane waves in the system with other k‖. Similarly we separate the
plane waves into two polarisation components: one with with polarisation
E = E‖ and another with H = H‖. We choose our axes such that E‖ and
H‖ may be represented by scalars E‖ and H‖.

Thus we can separate the terms of the summation in Eq. (1.1) into pairs
of forward and backward plane waves with equal k‖ and polarisation: upon
reflection at a planar interface this basis is complete as long as the surround-
ing media are also isotropic and uniform and all interfaces in the problem
are planar and parallel. This constraint is satisfied by thin film structures.
The requirement of completeness, i.e. that these plane waves are sufficient
to represent any fields that arise in the problem, is a theme that recurs
in Secs. 1.4 and 1.5—here it allows us to break up a complicated problem
involving many plane waves per medium into many independent problems,
each of which is easy to solve.
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Figure 1.10: Forward and backward plane wave amplitudes defined at two
phase origins separated by d.

Modes and propagation

Having shown that we can decompose a thin-film problem into a pair of waves
per medium, we now find the direction of these waves from the wavevector
of the incident plane wave. We know that k‖ is conserved across the system.
The other wavevector component, the propagation constant β = k⊥, is dif-
ferent in each medium and may be calculated from k‖ and the wavenumber
k = |k| = nk0, which depends on the refractive index n of the medium:

β = ±
√

(nk0)2 − k‖ · k‖. (1.2)

The sign of β indicates the direction of propagation or decay. For evanescent
waves, the propagation constant β is imaginary and determines the decay
length 1/Im(β). For propagating waves, the wavevector k points in the
direction of (phase) propagation.

We may write the E‖ and H‖ fields in the structure in terms of the am-
plitudes f+ and f− of the forward and backward waves. But in order to
write both fields in terms of one set of wave amplitudes, we must quantify
the relationship between the fields. For any plane wave, the ratio between
the electric and magnetic field amplitudes is given by the characteristic im-
pedance of the medium,

Zc = |E|/|H| =
√
µ/ε. (1.3)

A more useful quantity for us is the ratio

Z =
E‖
H‖

, (1.4)

which is the wave impedance [83] and depends on the direction of the wave
relative to the interface. Equivalently, the wave admittance Y = 1/Z may
be used instead. For light polarised with the E field parallel to the interface,
the wave impedance is Z = Zck/k⊥. It is important to note that the E and
H fields in Eqs. (1.3) and (1.4) are those due to a single plane wave, rather
than an arbitrary superposition of forward and backward plane waves—some
attempts to calculate PC impedances do not make this distinction.

Using the wave impedance we can write the field at any point in each
medium in terms of amplitudes f+ and f− of the forward and backward
plane waves, the conserved wavevector components k‖, and the propagation
constants ±β:

E‖(r) = (f+eiβr⊥ + f−e−iβr⊥) eik‖·r
√
Z, (1.5a)

H‖(r) = (f+eiβr⊥ − f−e−iβr⊥) eik‖·r/
√
Z. (1.5b)

In particular, we can relate the amplitudes on opposite sides of a slab of
uniform media (Fig. (1.10)) with thickness d:

f ′+ = exp(+iβd)f+, (1.6a)

f ′− = exp(−iβd)f−. (1.6b)
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Figure 1.11: Incoming (f+
1 and f−2 ) and scattered (f+

2 and f−1 ) plane wave
amplitudes at the interface between two isotropic uniform media.

We now investigate how to find f+ and f− for each slab in a stack of uniform
media.

Reflection & transmission

At a planar interface between uniform dielectrics (Fig. 1.11), the amplitudes
f+

2 and f−1 of the outgoing plane waves are related to the amplitudes f+
1

and f−2 of the incoming waves:

f−1 = r12f
+
1 + t21f

−
2 (1.7a)

f+
2 = t12f

+
1 + r21f

−
2 . (1.7b)

The transmission and reflection coefficients may be calculated by imposing
the continuity of E‖ and H‖ across the interface plane. Specifically, using
Eqs. (1.5), field continuity may be enforced for all r in the interface plane
(r⊥ = 0) by setting

(f+
1 + f−1 )

√
Z1 =E‖ = (f+

2 + f−2 )
√
Z2, (1.8a)

(f+
1 − f−1 )/

√
Z1 =H‖ = (f+

2 − f−2 )/
√
Z2. (1.8b)

For uniform dielectrics, this condition is rarely used directly to calculate r
and t: from it, the Fresnel equations have been derived, which relate r and
t to the incident angle and the media’s refractive indices.

The transmission and reflection coefficients may also be calculated from
the media’s wave impedances [83]—in fact this method is more general than
the Fresnel equations: it does not assume the relative permeability of each
medium to be µr = 1, and so also applies to metals [85, 86]. The resulting
expressions for r and t, which are valid in both polarisations and include the
effect of incident angle, are

r12 =
Z2 − Z1

Z2 + Z1
(1.9a)

t12 =
2
√
Z1Z2

Z2 + Z1
. (1.9b)

Note that in Eq. (1.5), we normalise the field amplitudes f± with a fac-
tor
√
Z; if we did not do this, and let f+ and f− be electric field ampli-

tudes, as is commonly done, then the transmission coefficient t12 given by
Eq. (1.9b) would have the denominator 2Z2, which perhaps is a more famil-
iar result. Wave impedances encapsulate all the information about the wave
and medium that is necessary to calculate the reflection and transmission at
interfaces; it is therefore the tool of choice to calculate reflection and trans-
mission, and in Chapter 2 we generalise the concept to PCs. Herein we refer
to the wave impedance simply as the impedance.
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Figure 1.12: A one layer coating consisting of a slab of material 2 with
thickness d inserted between semi-infinite media 1 and 3.

1.2.2 Thin films and antireflection coatings
The reflective and transmissive properties of a stack of uniform media may be
calculated from the reflection and transmission coefficients of each interface,
which are encapsulated by the materials’ impedances Z, and the propagation
qualities of each layer, which are encapsulated by the propagation constant
β in each layer. Consider a system consisting of an incident medium 1, a
thin film 2, and a semi-infinite target medium 3 (Fig. 1.12).

For light of a given frequency, incident angle and polarisation, the outgo-
ing waves at each interface are related to the incoming waves by Eq. (1.7),
and the amplitudes on either side of material 2 are related by Eq. (1.6).
Fixing f−3 = 0, the system of equations may be solved for rnet and tnet by
finding f−1 and f+

3 in terms of f+
1 :

rnet =
r12 + r23 exp(2iβd)

1 + r12r23 exp(2iβd)
, (1.10a)

tnet =
t12t23 exp(iβd)

1 + r12r23 exp(2iβd)
, (1.10b)

where we have used the results rij = −rji and r2
ij + tijtji = 1 [79].

More complicated systems consisting of several layers can be solved recur-
sively, using Rouard’s method [79, 87]. Other methods of calculating stack
reflectances include the transfer matrix method discussed in Sec. 1.3.2, and
an approximate but elegant geometric method of adding reflection vectors,
which ignores resonance inside the layers [79].

A thin-film antireflection coating is a thin film stack with a reflectance
much lower than that at a direct interface between the input and output
materials. If we can efficiently evaluate the reflectances of many thin film
stacks involving a given pair of input and output media, then we can sift
through these to find an antireflection coating.

The simplest antireflection coating is the single-layer quarter-wave plate,
which is a one layer coating (Fig. 1.12). Inspecting Eq. (1.10a), we see
that rnet = 0 when r12 = r23 and βd = π/2. At normal incidence, this
corresponds to n2 =

√
n1n3, and d = λ/4n2, hence the name. Generally a

material with an exact refractive index of
√
n1n3 would not be available; a

suitable material with a refractive index that is near-enough may be chosen
from a catalogue of material properties such as Ref. [88]. If the coating layer’s
refractive index is not exactly

√
n1n3, then the coating does not entirely

eliminate reflection.
Ultimately, an antireflection coating needs to match the phase and am-

plitude of the reflected waves to cancel, and therefore two continuous degrees
of freedom are required for successful design of a coating. One way to get
two degrees of freedom and eliminate reflection entirely at the target fre-
quency is to use two layers. A common two-layer antireflection coating is
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the V-coating [89]. The dielectrics in the coating may be chosen somewhat
arbitrarily—the only restriction being that the reflectance at each interface
is sufficiently large. Once the materials have been chosen, the thicknesses
of the two coating layers are adjusted to give zero reflection; the thicknesses
for rnet = 0 may be analytically calculated by solving a two-layer version
of Eq. (1.10a) [89]. The PC antireflection coatings presented later in this
thesis take inspiration from V-coatings in that the length of each layer is
fixed “somewhat arbitrarily”, and the PC comprising the layer is varied.

More complicated coatings with additional layers also exist, and equiva-
lents to Eq. (1.10) may be derived for them. Simple antireflection coatings
such as those so far described are fully effective only at a single frequency,
incident angle, and polarisation. More complicated coatings, such as those
inside camera lenses, may involve many layers in order to be broadband,
multi-angle and polarisation insensitive. These may be designed method-
ically by approximate methods [79], some of which are quite elegant [90],
or more commonly by numerical optimisers or brute force computation: by
computing reflectances off many structures and choosing the one with the
best reflection properties.

Using the above methods to calculate the reflectance off a thin film stack,
it is efficient and relatively straightforward to find antireflection coatings.
If the thin-film framework were generalised to PCs, then it would become
feasible to adapt the above antireflection coating design techniques to PCs.

1.2.3 Surface plasmons

A thin-film like formalism for photonic crystals would enable modelling pho-
tonic crystal surface modes, in analogy to the well-studied phenomenon of
surface plasmons. Surface plasmons are confined to a metal/dielectric in-
terface, along which they propagate. They decay exponentially in both di-
rections away from the interface plane. In the metal, the field of a surface
plasmon decays because the real part of the metal’s permittivity is negative.
On the dielectric side of the interface, they decay due to an effect similar
to total internal refraction: the in-plane components k‖ of the wavevector
k are so large that the out of plane component k⊥ must be imaginary to
satisfy nk0 = |k| for the fixed free space wavenumber k0.

The dispersion relation for a surface mode may be derived using the thin-
film framework introduced in Sec. 1.2.1. In Eq. (1.7), the amplitudes of the
outgoing plane waves are written in terms of the incoming plane waves. As
before, the reflection and transmission coefficients rij and tij may be calcu-
lated analytically using the impedance equations (1.9). A surface plasmon
exists when the outgoing amplitudes f−1 and f+

2 are non-zero, without any
incoming waves; i.e., a surface plasmon’s existence requires rij and/or tij to
diverge. By fixing frequency and solving for the kx at which these quantities

f1
+

f1
–

f2
+

f2
–

dielectric metal

=0

=0

Figure 1.13: A dielectric-metal interface supporting a surface mode. Only
the outgoing waves have non-zero amplitude (cf. Fig. 1.11).
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diverge, it is possible to build up the dispersion relation for surface plasmons
at a particular interface.

Surface modes have been observed on photonic crystals, both experi-
mentally [91–94] and theoretically [95–97]. Here, the metal is replaced by a
dielectric-based band gap PC, but the effect is similar: light is confined to
the PC’s surface, and decays exponentially away from the interface plane.
An important difference between surface plasmons and PC surface modes
is that surface plasmons require metals for the negative permittivity, and
metals are lossy. PCs may be constructed entirely from dielectric materials,
which in principle have much lower loss.

With a reflection and transmission framework for photonic crystals, it
is possible to calculate the dispersion relation for PC surface modes semi-
analytically in a way analogous to that explained above—based on poles in
the reflection or transmission operators. This is done in Chapter 5.

1.2.4 Slab Waveguides

Using the same framework, it is possible to derive the dispersion relation and
modes of a slab waveguide, a 2D object that confines light in one dimension.
It consists of a slab of dielectric material, sandwiched between two semi-
infinite dielectric media with lower refractive index (Fig. 1.14). Due to total
internal reflection, the outer materials act like dielectric mirrors. Like a
surface plasmon, the condition for a guided mode is

f+
1 = f−3 = 0, (1.11)

or equivalently, that light reflected off both mirrors interferes constructively,

f+
2 = r21 exp(iβd) r21 exp(iβd) f+

2 = ±f ′−2 . (1.12)

f1
+

f1
–

f2
+

f2
–

n1 n2

=0 f2
+

f2
–

n1

f3
+

f3
–=0

'

'

Figure 1.14: A slab waveguide, if n2 > n1. Like a surface plasmon (Fig. 1.13),
the waveguide mode exists if there are outgoing waves in the absence of
incident waves normal to the interface.

Much of the interest in photonic crystals involves photonic crystal wave-
guides, which guide light in a dielectric region that sits between two bandgap
PCs. With the ability to mathematically represent the reflection off PCs, it
is easy to extend the theory for dielectric slab modes to find the dispersion
relations and modes of PC slab waveguides. As we discuss in Sec. 5.2, this
allows efficient dispersion engineering of PC slab waveguides.

1.3 Equivalent circuits
Electrical engineers have developed a number of techniques analogous to the
thin-film techniques described above [83, 98]. Some of these techniques have
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been adapted to model doubly-periodic grids [99, 100], which have the same
class of periodicity as 2D PCs. However, in microwave engineering, a number
of structures of interest are multi-moded, necessitating the development of
more powerful techniques than required for thin-film optics [101]. As we
see in Chapter 2, the ability to model multiple modes in each material is
critical for an accurate description of photonic crystal properties, even in
some cases where the PC has only one propagating mode. A number of
engineering techniques have been adapted to describe stacks of PCs and PC
waveguides.

We start in Sec. 1.3.1 by describing the methods for modelling trans-
mission line junctions. These methods are directly analogous to thin film
techniques—in fact, thin films may be modelled as transmission lines. In
Sec. 1.3.2 we show another way to represent the properties of an interface
between transmission lines—as a two-port network. These networks can be
generalised to N -port networks, which are sufficiently powerful to model
interfaces between multimoded waveguides, or, potentially, PCs.

1.3.1 Transmission lines
Most transmission lines consist of two conductors: a standard example of a
transmission line is a coaxial cable. An AC signal (a voltage wave) propa-
gates down the line at a particular frequency, and may be characterised by
its propagation constant4 β and its characteristic impedance Zc. With a
similar form to Eq. (1.5), the voltage V and current I along the line due to
a pair of forward and backward waves are

V (y) = (f+eiβy + f−e−iβy)
√
Zc (1.13a)

I(y) = (f+eiβy − f−e−iβy)/
√
Zc (1.13b)

where as usual we have omitted the factor exp(−iωt). β plays the same role
as in optical systems. The transmission line’s characteristic impedance Zc
is defined as the ratio of voltage V and current I for any wave on the line:

Zc =
V

I
. (1.14)

When comparing this definition to Eq. (1.4) for uniform media, recall that

V =

∫

A

E · dl, (1.15a)

I =

∮

C

H · dl, (1.15b)

where A is any path between the conductors, and the C is a closed path
around one of the conductors.

At the interface between a pair of transmission lines, or between a trans-
mission line and a circuit element, an incident wave is partially reflected and
partially transmitted, in ratios given by

r12 =
Zc2 − Zc1
Zc2 + Zc1

, (1.16a)

t12 =
2
√
Zc1Zc2

Zc2 + Zc1
, (1.16b)

4In this section we do not always follow standard engineering notation—for consistency
with the rest of the thesis we use optics-style notation wherever possible. So here, a
wave with propagation constant β travels along an infinite transmission line as V (y) =
V0 exp(iβy), and decay is given by Im(β).
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which is the same as Eq. (1.9) for an interface between uniform media [83,
98]. Thus the characteristic impedance of a transmission line plays the same
role as the wave impedance of a uniform medium.

A number of methods have been developed to eliminate the reflection
due to the impedance mismatch at a junction between a pair of transmission
lines. Several of these techniques may easily be adapted to the design of
thin film coatings, and potentially also photonic crystal AR coatings. For
example the quarter wave transformer is directly analogous to the quarter
wave plate discussed in Sec. 1.2.2: an intermediate transmission line with
Zc =

√
Zc1Zc2 is introduced between transmission lines 1 and 2 [98]. Design

techniques have also been developed for broadband impedance matching. For
example, Chebyshev multisection matching transformers can achieve low but
non-uniform reflection over a wide bandwidth [98].

In fact, the analogy between transmission lines and dielectric slab wave-
guides may be formalised [83], as may an analogy between transmission
lines and thin films. An effective voltage and current can be ascribed to
the medium, and transmission line techniques may be used. Multimoded
reciprocal media, such as photonic crystals, cannot be modelled by a sin-
gle transmission line, but may be modelled by multiconductor transmission
lines. But rather than representing dielectrics by transmission lines, or vice
versa, it is easier to write them in a common language, using the powerful
formalism of network analysis.

1.3.2 Multi-port networks
In network analysis, the circuit under consideration may be divided into
a number of N -port networks. An N -port network has N input modes
and N output modes, which are related in some linear way. The most
common structure considered is a two-port network, which might consist
of the junction between two transmission lines, each of which supports an
incoming and an outgoing mode. The interface between two multimode
waveguides may be modelled as an (M1 + M2)-port network, where M1

and M2 are the number of propagating and evanescent modes considered in
waveguides 1 and 2 respectively [101].

This formalism is very general, and many structures may be modelled in
this way: a length of transmission line; junctions between transmission lines;
lumped circuit elements; interfaces between metallic microwave waveguides;
interfaces between uniform media, slabs of uniform media, and stacks of
uniform media; and even doubly-periodic grids [99]. In each case, as long as
the media are reciprocal and linear, the structure can be represented by an
intersection betweenN transmission lines, each of which represents a mode of
the structure’s input or output medium. In Sec. 1.5.2, we describe modelling
a PC as a semi-infinite stack of identical N -port networks representing a
single layer of the PC, and use network analysis techniques to find the N -
port networks that represent finite stacks of arbitrary length.

The properties of a N -port network are characterised by any one of five
related matrices:

• By its scattering matrix S, which relates the incoming amplitudes to
the outgoing amplitudes,

• By its transmission/chain/ABCD matrix, which relates the (gener-
alised) voltage and current across/through some ports to the (gener-
alised) voltage and current across/through the others,

• By its transfer matrix T , which relates the incoming and outgoing
amplitudes in some ports to the incoming and outgoing amplitudes in
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the other ports,

• By its impedance matrix (known as the R–matrix [102] in the gratings
community). . .

• . . . or admittance matrix, which relate the (generalised) voltage across
each port to the (generalised) current through every other.

Any one of these five matrices may be found from any of the others, and
so each matrix fully characterises the reflection and transmission properties
of the network at a given frequency (and incident angle and polarisation, if
applicable to the system). Scattering matrix, R–matrix and transfer matrix
approaches are also commonly used to model PCs, as described in Sec. 1.5.
The impedance and admittance matrices mentioned above are not defined
with respect to PC eigenmodes, and may not be used directly in a thin-film-
like framework to describe PC propagation. They are unrelated to those we
define in Chapter 2 and use throughout this thesis.

For those with an optics background, the scattering matrix is perhaps the
most intuitive of these matrices. For an interface between two single-moded
media (e.g. Fig. 1.11), (

f+
2

f−1

)
= S

(
f+

1

f−2

)
, (1.17)

where
S =

(
t12 r21

r12 t21

)
(1.18)

is the scattering matrix. For multimoded systems, where f± are vectors,
the r and t coefficients are replaced by matrices R and T. Rouard’s method
[79, 87] may straightforwardly be generalised and applied to determine the
characteristics of a network of several such components.

But there is a more direct way to calculate the properties of a network of
N -port components from the properties of the individual components. The
transfer matrix T is ideally suited to concatenating components and finding
the properties of the resultant stack. The transfer matrix is defined such
that (

f+
2

f−2

)
= T

(
f+

1

f−1

)
, (1.19)

and [103]

T =

(
T12 −R21T

−1
21 R12 R21T

−1
21

−T−1
21 R12 T−1

21

)
, (1.20)

where in the two-port case the matrices R and T reduce to scalars r and
t. Given the transfer matrices T1, T2, . . . of N -port networks in series, the
transfer matrix of the total structure is the product,

Tnet = . . . T2 T1. (1.21)

The ABCD matrix fulfils the same role as T , but relates V = (f+ +
f−)
√
Zc and I = (f+ − f−)/

√
Zc between two sets of ports [98]:

(
V2

I2

)
= [ABCD]

(
V1

I1

)
. (1.22)

It is related to T by the similarity transformation

[ABCD] =
[(

Z1/2
c 0

0 Z−1/2
c

)
I
]
T
[(

Z1/2
c 0

0 Z−1/2
c

)
I
]−1

, (1.23)

where Zc = diag(Zc), I = 1/
√

2
(
I I
I −I

)
and I is the identity matrix.
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Figure 1.15: (a) A square unit cell, (b) A grating constructed from this
unit cell, (c) a square-lattice PC constructed from this grating, and (d) A
triangular lattice PC constructed from a parallelogram unit cell.

We can model each layer in a stack of PCs by a transfer matrix if we
define a common basis of input and output modes. In fact, a number of
methods exist to do this, as discussed in Sec. 1.5.2. But such methods are
not as physically enlightening as a method that gives the amplitudes of each
PC’s eigenmodes, and reflection coefficients/matrices in the style of the thin-
film framework. Using such an approach, the modes in each N -port network
would be the eigenstates of the relevant PC, and we would calculate transfer
or scattering matrices for propagation through each PC section, and transfer
or scattering matrices for crossing the interface between each pair of PCs.
This is the technique described in Chapter 2.

1.4 Gratings

A photonic crystal may be thought of as a stack of gratings. This provides
a convenient way to model a PC: the properties of an individual grating
can be found numerically and summarised as a transfer matrix, written in
a basis we define shortly. Knowing the transfer matrix of an individual
grating, we can raise it to integer powers (applying Eq. (1.21)) to calculate
the transfer matrix of a stack of the gratings, i.e., the PC. This is the basis
of a number of efficient and highly accurate numerical methods to model
PCs [33, 103–108], including the method upon which ours is based, and we
describe this approach in Sec. 1.5. But before we consider stacked gratings,
it is important to consider the properties of individual gratings. Grating
theory is quite mature, and can not only help us numerically model PCs,
but also shed insights into some of their properties.

Introducing gratings

The gratings we consider are 2D objects, periodic in one direction and finitely
thick in the other (Fig. 1.15(b)). We only consider gratings that consist of a
periodic row of inclusions embedded in a background dielectric, i.e. we ignore
reflection gratings such as periodic grooves on a metal surface. The unit cell
of the PC we want to model can be used to define the grating (Fig. 1.15).
The unit cell may be thought of as the “atom”, and is reproduced infinitely
along a line to form the grating, the “molecule”. The grating may then
be reproduced in another direction, to form the photonic crystal, the “bulk
material”.
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The key property of a grating is that it diffracts an incident plane wave
into a countably infinite set of diffracted waves. A few of the diffracted orders
are propagating plane waves; the rest decay evanescently. The directions and
decay rates of the diffracted orders are determined by the grating equation:
for each diffraction order s = 0,±1,±2, . . . , the wavevector component k(s)

x

(along the grating) is

k(s)
x = kx +

2πs

dx
, (1.24)

where kx is the incident wave’s wavevector component and dx is the grating’s
period [80, 109]. Eq. (1.24) and Eq. (1.2) fully determine the wavevectors
of the reflected and the transmitted diffraction orders: k(s)

y may be derived
from k

(s)
x and the wavenumber k = nk0:

k(s)
y = ±

√
k2 − k(s)

x

2
, (1.25)

where the sign depends on whether the diffracted order is reflected or trans-
mitted. A diffracted order s propagates if its propagation constant k(s)

y is
real, and decays if it is imaginary.

Simulating gratings

Thus the directions and decay rates of all diffracted grating orders are deter-
mined by the k and kx of the incident wave (just like at an interface between
uniform media) and the grating period—the contents of the unit cell are
irrelevant so far. The difficult part of a grating problem is calculating the
amplitudes of each of the diffracted orders; these amplitudes depend strongly
on the contents of the unit cell. These scattering amplitudes can be found
numerically in a number of ways, as briefly discussed by Gralak et al. [106],
and earlier by Petit [109]. The two that we use are the finite element method
(FEM) and a combination of the multipole method and lattice sums.

FEM is a general tool that may be used to solve continuous wave scat-
tering problems under various boundary conditions. By setting periodic
boundary conditions on two sides of the grating’s unit cell, the infinite grat-
ing may be simulated using a finite computation domain. In some FEM
implementations, including the in-house code [110] used in Chapter 2 and
the commercial package COMSOL used in Chapter 3, it is possible to set
the other boundaries to be transparent to specified grating orders (so that
the grating is effectively surrounded by an infinite uniform dielectric), and
calculate the scattering into these from the incident grating order.

Alternatively, for the common case of a unit cell consisting of a central
circular inclusion in a uniform background, the amplitudes of the diffracted
orders can be calculated in a highly efficient and accurate manner by using
multipole techniques to find the properties of a single unit cell, combined
with lattice sums to find the properties of the array [111].

We can write the amplitude of each diffracted order into a vector to quan-
tify how the grating diffracts the incident wave. If the incident wave is set to
unit amplitude, then the grating’s reflectance is the sum of the squared mod-
uli of the propagating reflected orders’ amplitudes, and its transmittance is
the sum of the squared moduli of the amplitudes of the propagating trans-
mitted waves. Diffraction into evanescent orders does not directly affect the
grating’s reflectance and transmittance, because the evanescent orders do
not carry energy, except by “tunnelling” through a thin layer into a propa-
gating wave. However, the number of propagating orders is not a continuous
function of kx and k: as frequency increases, previously evanescent orders
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become propagating. This can cause discontinuities in the slope of the re-
flectance spectrum of the grating and of a photonic crystal constructed from
the grating, so we now briefly discuss the phenomenon.

Wood anomalies

Using Eqs. (1.24) and (1.25), there is a change in the number of propagating
orders at the values of kx and k that satisfy

k = kx +
2πs

dx
(1.26)

for some integer s. Such points are Wood anomalies, first observed by
R.W. Wood in 1902 [112]. They were explained as above by Lord Rayleigh in
1907 [113], and so such wavelengths are also known as Rayleigh wavelengths
[114]. Note that k in Eq. (1.26) is that in the medium in which the grating
is embedded: it is the refractive indices of the incident and final media that
dictate the number of supported propagating grating orders.

Even more important than the discontinuity in the slope of the grating’s
reflectance, crossing a Wood anomaly demands a change in the way that the
field is represented far from the grating. At a large enough distance from the
grating, the amplitudes of the scattered evanescent orders decay to be neg-
ligible compared to the amplitudes of the propagating orders. Therefore the
field away from the grating can be accurately represented as a superposition
of only the propagating diffraction orders, and only these need to be included
in an N -port representation of the grating5. At frequencies below the first
Wood anomaly, the light scattered by a grating or stack of gratings can be
represented accurately as a single reflected and a single transmitted plane
wave, i.e. only the specular order needs to be considered. The first Wood
anomaly is the frequency at which any such treatment becomes manifestly
incorrect.

Modelling gratings

So the grating’s reflectance and transmittance do not tell the whole story—
it is usually useful to know into which orders the incident light has been
diffracted, so that the field at any position outside the grating may be de-
termined. As mentioned above, diffracted light from a single incident plane
wave can be written as an infinitely long vector, which includes the ampli-
tudes of all excited diffraction orders. If the grating is represented as an
N -port network, where each port is a forward or backward diffraction order,
then this vector is a column of the grating’s scattering matrix S.

Before we can usefully define this scattering matrix, we must note two
important facts. The first is that the basis of diffraction orders is complete.
This property follows simply from the grating equation (1.24): every one
of the diffracted orders, if reflected back onto the original grating, diffracts
only into the same set of diffraction orders. The basis of diffraction orders
is complete for the modelling of stacks of parallel gratings with the same
period dx, and so it is complete for modelling of PCs and stacks of PCs.
The second point, which we elaborate on in the following paragraphs, is that
the scattering matrix can be truncated. Combined, these facts mean that
it is possible to set each of these orders incident onto the grating, calculate
the scattering amplitudes from the grating, and build up a scattering matrix
S. As noted in Sec. 1.3.2, the scattering matrix encapsulates the grating’s

5This assumes that the terminal planes/phase origins are not close to the grating’s
surface, i.e. that enough space for the evanescent orders to decay has been included in
the network. A choice of smooth grating profile, as here, helps the assumption.
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reflection and transmission properties, and may be used to calculate the
transfer matrix for the grating.

The set of diffraction orders excited by an incident plane wave is of count-
ably infinite length, so to be complete, a grating’s scattering matrix should be
of infinite dimension. It is not feasible to compute the scattering amplitudes
into an infinite number of plane waves, so in practice this set is truncated
to the propagating and weakly evanescent orders, by ignoring those with
|k(s)
x | � k and large |Im(k

(s)
y )|∆y, where ∆y is the distance between the

grating’s surface and the reference point/phase origin. The justification for
this is that even a short distance away from the grating’s surface, all but
the weakest evanescent orders have decayed to a negligible field strength,
and so their contribution to the superposition of fields is dwarfed by the
propagating and weakly evanescent orders. An inspection of Eqs. (1.24) and
(1.25) shows that in most situations the inclusion of a few evanescent modes
is sufficient to describe scattering accurately. Indeed, for the gratings that
constitute the photonic crystals in this thesis, 5 forward and 5 backward
diffracted orders are sufficient to give accurate results.

The diffraction orders are also orthogonal, satisfying

Aδss′ =

∫ dx/2

−dx/2
Es(x)E∗s′(x) dx, (1.27)

where Es(x) is any non-zero component of the E field of grating order s on
the edge of the grating, A is the product of the two orders’ amplitudes (i.e.
an arbitrary non-zero real constant), and δss′ is the Kronecker delta.

Therefore a truncated basis that consists of the propagating grating or-
ders and a few weakly evanescent orders is suitable for modelling the scat-
tering from an ideal grating. A scattering matrix may be calculated as
described above, and from it the transfer matrix may be calculated. From
the transfer matrix, it is easy to calculate the properties of stacks of gratings
using Eq. (1.21), and this class of structures includes finite thicknesses of
photonic crystals.

Although we are on the cusp of describing the techniques we use to model
PCs, we will pause here and approach the problem from one more direction
before we go into detail about PC modelling techniques.

1.5 Photonic crystals

In Secs. 1.2 and 1.4 we went to lengths to write the electric and magnetic
field as a superposition of a few plane waves, instead of representing the
fields directly. Even in Sec. 1.3.1 we wrote the voltage and current in terms
of a superposition of travelling waves. Writing the field in this way allows us
to write down analytic expressions for E(r) and H(r), rather than having to
solve Maxwell’s equations numerically to compute the fields over a discretised
domain of many r values. Instead of having to calculate and store the field
throughout the structure, by representing the field using a small basis we
need only store a handful of plane wave amplitudes, which can be related to
each other analytically to solve for the properties of stacks (Sec. 1.2.1).

The most common method of simulating PC scattering is to define a
structure, e.g. a finite thickness of PC embedded in a uniform dielectric, and
numerically solve Maxwell’s equations to find E(r) and H(r) throughout the
structure. Several numerical methods exist to do this, including FDTD and
FEM. Producing such data is computationally expensive, and the results are
opaque and single purpose: these methods find the field in a particular (and
finite) length of PC, or a particular stack of PCs, and this data is not easily
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adapted to give information about other related stacks of PCs. Furthermore,
such methods offer limited physical insight into why the field is as it is.

Many PC scattering problems of practical significance, including the de-
sign of PC antireflection coatings, require the evaluation of large numbers
of PC structures. Specifically, the parameter space to be explored when
designing a p-layer PC antireflection coating, considering m candidate PCs
for each layer, contains mp possible coatings. Exhaustively searching this
parameter space by directly using FDTD or FEM simulations requires one
computationally-expensive simulation for each of the mp structures—even
for two-layer coatings this process can be prohibitively slow. More sophisti-
cated search algorithms can reduce the number of required simulations, but
since the evaluation of each coating is so computationally expensive, and the
parameter space necessarily so large, the design process is still very slow. If
the thin-film methods from Sec. 1.2 were adapted to PCs, then the scat-
tering properties of the mp coatings could be analytically calculated from
the propagation constants of the m PCs and the reflection and transmission
coefficients of the

(
m
2

)
∼ m2 interfaces. That is, in principle O(m2) computa-

tionally expensive simulations would be needed to calculate the propagation
constants of each PC and the reflection and transmission coefficients of each
interface, followed by mp very fast analytical calculations to explore the pa-
rameter space fully—this process scales much better than a search that uses
FDTD or FEM simulations directly.

A further efficiency gain is possible if the reflection and transmission
coefficients are calculated analytically using numerically-determined PC im-
pedances: if each PC’s impedance and propagation constant are calculated
from one computationally intensive simulation, then fully exploring the pa-
rameter space of coatings requires m slow simulations, followed by mp fast
analytic calculations. This further efficiency is the subject of Sec. 1.6 and
leads to the definition of PC impedance in Chapter 2. However, all of these
efficiencies require the adaptation of the thin film framework to PCs, and
throughout this section we begin to do this, by defining a basis for PC modes
and exploring how to quantify propagation, reflection and transmission.

We started our description of thin film framework of Sec. 1.2 by defining
a basis of eigenmodes: the plane waves that propagate/decay through the
medium unchanged but for a phase/decay factor, the eigenvalue eik·r. We
saw that this basis was determined by the frequency and direction of the
incident plane wave, and the refractive index of each medium. In order to
make sense of light propagation through photonic crystals, it would be wise
to start by writing the field in each PC as the superposition of a handful of
eigenmodes.

The PC’s eigenmodes are Bloch modes, and satisfy Bloch’s theorem,

Ψm,k(r) = um,k(r) eik·r, (1.28)

where um,k(r) is a periodic function that shares the lattice periodicity, i.e.
um,k(r) = um,k(r + R) for any lattice vector R [115, 116]. Each Bloch
mode Ψm,k(r) may be identified by its wavevector k and an integer index
m that distinguishes modes of different frequency. In a 2D band structure
(Fig. 1.16), each line represents a mode with a different m.

In Eq. (1.28) k only appears in the exponential term; for a given m, the
wavevector k is only a unique label for the mode up to a reciprocal lattice
vector.6 By convention k is taken to be in the first Brillouin zone (BZ). It
may be real or complex; in Sec. 1.5.1 we consider only modes with real k,
and in Sec. 1.5.2 we broaden our view and consider modes with complex k.

6Note that the wavevectors of a set of grating orders differ by reciprocal lattice
vectors—therefore they may be expected to be related to Bloch modes in some way.
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For photonic crystals, Ψm,k(r) describes the electric and/or magnetic
field. If we restrict our attention to points separated by any lattice vector R,
then the Bloch mode propagates like a plane wave in a uniform medium, i.e.
as eik·R. This insight has led to a number of attempts to represent PCs by
an effective uniform medium; we discuss the viability of such homogenisation
approaches in Chapter 4.
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Figure 1.16: Part of a PC band structure, which relates normalised frequency
d/λ to the propagation constant ky. This band structure is for a triangular
lattice PC with air holes of radius r = 0.3 in an n = 3 background dielectric,
for normally incident light (i.e. along Γ−M in the BZ). This band structure
was generated using the multipole method with lattice sums [111] and the
transfer matrix method [108]

.

1.5.1 Basis of propagating Bloch modes

In a PC of infinite extent, only propagating Bloch modes exist, since evanes-
cent modes would diverge in one direction. Therefore many treatments of
in-band PCs or solid state crystals (e.g. [18, 115]) only consider propagating
modes, which have real k and carry energy through an infinite PC.

Propagating Bloch modes are typically found numerically by the plane
wave expansion method, in which k is specified and an eigenvalue equation
is solved for the frequencies ω at which modes exist. The solutions Ψm,k(r)
are enumerated by the index m. In this way a band structure or dispersion
relation may be calculated, which relates the ω and k at which propagating
Bloch modes exist for the studied PC (Fig. 1.16). The band structure gives
insight into the propagative qualities of modes, including their phase and
group velocities. It also maps the location of band gaps.

The basis of propagating Bloch modes for dielectric PCs is complete: just
as an arbitrary field distribution in a uniform medium may be represented by
a superposition of propagating plane waves using a Fourier transform, a field
in a PC may be represented by a superposition of propagating Bloch modes
[116]. But in the thin film framework of Sec. 1.2, we did not use a basis of
all propagating plane waves to model thin films: there, we used Snell’s law
(conservation of k‖) and frequency conservation to define a minimal basis.
Sometimes this basis had to include evanescent waves (Secs. 1.2.3 and 1.2.4).
We now generalise this minimal basis to PCs.
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1.5.2 Basis of propagating and evanescent Bloch modes

We are finally in a position to start developing a thin-film-like framework
for PCs. Much of the work has already been done in the literature: in this
section, which runs parallel to the development of the thin-film framework in
Sec. 1.2.1, we describe the relevant basis of Bloch modes and briefly explain
how it may be calculated. This basis includes evanescent Bloch modes, which
have been studied less than propagating Bloch modes but nevertheless are a
well-established concept [117–119]. We now see the form that a framework
for PC stacks should take, and this helps us to evaluate the potential of each
proposed PC impedance definition in Sec. 1.6.

Decoupling

As in Sec. 1.2.1, the first step is to decouple general scattering problems into
smaller ones that depend on different sets of Bloch modes. Like thin film
stacks, frequency, polarisation and k‖ are conserved across parallel inter-
faces between PCs—but with the catch that for each Bloch mode k‖ is only
determined up to a reciprocal lattice vector. This is because in thin films,
the structure is invariant under a translation by any vector in the interface
plane, whereas in one direction a PC interface is only invariant under trans-
lation by a lattice vector in the interface plane. This proviso means that
the minimal basis of Bloch modes is larger than just one forward and one
backward mode per PC: in principle scattering occurs between a countably
infinite set of Bloch modes. Like the infinite set of grating diffraction or-
ders (in which k‖ is also fixed modulo a reciprocal lattice vector), the set of
Bloch modes may be truncated to the propagating modes and a handful of
evanescent modes. The degree of truncation, i.e. the number of evanescent
modes required for accurate modelling of the system, is a point to which we
repeatedly return throughout this thesis.

Modes and propagation

It is clumsy to compute this basis of Bloch modes using plane wave expansion
techniques, which fix k and solve for ω. Although doing so is possible [120],
it is more natural to use a method that uses the boundary conditions that
define our basis, ω and k‖. The grating methods of Sec. 1.4 use exactly these
boundary conditions, and in that section we saw that the set of grating orders
is closed under scattering by all gratings with a given period. The grating
orders of course are not usually Bloch modes, but since this set is closed
under repeated grating scatterings, it is sufficient to describe PC scattering
and therefore it is a sufficient basis to describe Bloch modes between the
grating layers.7 We can use the set of grating orders and how they scatter
to construct a set of Bloch modes—a popular procedure, [33, 103, 106, 108,
121] which we now briefly outline.

The defining characteristic of a PC’s Bloch modes is that they travel
through the PC unchanged except for multiplication by a Bloch factor; they
are the PC’s eigenstates. Scattering across one layer of PC is represented
in the basis of grating orders by multiplying a vector of plane wave ampli-
tudes on one side of the PC by a transfer matrix T . Scattering across many

7Alternatively, the basis for representing the field at a unit cell edge may be arrived
at by another argument: due to the PC’s periodicity, at fixed ω and k‖ the field in the
neighbourhood of a line parallel to the interface may be represented by a Fourier series.
Each plane wave s in this series has k(s)‖ = k‖ + 2πs/d‖; i.e. they are the grating orders
(cf. (1.24)). This approach is useful when simulating PCs that are not naturally described
as a stack of gratings—such as when the unit cell edge cuts through an inclusion, the case
for many triangular lattice PC waveguide supercells.
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(`) layers of PC, i.e. multiplying the vector of grating order amplitudes by
T `, is most efficiently done by diagonalising T to find its eigenvectors. By
definition, the eigenvectors of T are unchanged when multiplying by T (i.e.
travelling across a layer), except for multiplication by an eigenvalue. The
PC’s Bloch modes may be represented by the eigenvectors of the transfer ma-
trix T , and the Bloch factors are its eigenvalues. Each eigenvector contains
the grating order amplitudes at the edge of the grating’s unit cell that are
associated with the Bloch mode—the actual field of the Bloch mode Ψn,k(r)
inside the unit cell may be calculated numerically by setting the grating
orders incident upon the grating with amplitudes given by the eigenvector.

The eigensystem of the transfer matrix is

T = FLF−1, (1.29)

where L is a diagonal matrix of Bloch factors/eigenvalues eik·e2 , with e2

the PC lattice vector that does not run along the grating. F is a matrix
of eigenvectors that each represent a Bloch mode in terms of the grating
orders. If F is square and has an inverse, the completeness of the Bloch
mode basis follows from the completeness of the grating orders. Columns of
F may be removed, projecting the field onto a smaller basis of Bloch modes.
Mode orthogonality relations may be derived from energy conservation or
from reciprocity [108].

The unknown component of the wavevector, k⊥, describes how the mode
propagates or decays and may be calculated from the mode’s Bloch fac-
tor. For evanescent modes, k⊥ is complex, and to represent the dispersion
properties of these modes, the band structure (Fig. 1.16) is generalised to a
three-dimensional complex band structure (Fig. 1.17).

Therefore we can represent the field in each PC in a way amenable to
providing physical insight: as a few Bloch mode amplitudes in a vector c.
Calculating propagation through ` periods of PC is as simple as multiply-
ing c by L`. The mode amplitudes c can be partitioned into vectors c+

and c− which respectively contain the amplitudes of forward and backward
propagating/decaying modes [108]. Likewise, L may be partitioned into two
diagonal matrices Λ+ and Λ′−. Similarly to Eqs. (1.6), amplitude vectors
at positions separated by ` e2 (Fig. 1.18) are related by

c′+ = Λ+c+, (1.30a)

c′− = Λ′−c−. (1.30b)

Reflection & transmission

The remaining pillar of the thin-film framework is a quantification of reflec-
tion and transmission at interfaces. Since the field in the PC is represented
as vectors c± of amplitudes rather than scalar amplitudes f±, reflections
and transmissions generally must be represented by matrices. Since matri-
ces do not commute, the PC equivalents to the expressions from Sec. 1.2 are
often substantially more complicated, but nevertheless many may be gen-
eralised to PCs. The eigensystem (1.29) contains most of the information
needed to calculate reflection and transmission matrices. We use it to do so
in Chapter 2, which is the key result of this thesis and enables a range of
thin-film techniques to be applied to PC stacks, including efficient design of
antireflection coatings.

Discussion

This method requires few Bloch modes to represent a scattering problem,
and due to the restrictions on ω and k‖ imposed by the grating equation,
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Figure 1.17: Two representations of a PC’s complex band structure, which
encapsulates how its Bloch modes propagate or decay. The band structure is
for the same PC and normally incident light as in Fig. 1.16, and is calculated
by the same technique. (a) and (b) respectively show the real and imaginary
parts of the wavevector component ky, relative to normalised frequency d/λ.
(c) shows the complex band structure in one figure. The colour of each point
is somewhat arbitrary; the only purpose of using multiple colours is to link
the value of Re(ky) in (a) to Im(ky) in (b) at each frequency. For clarity,
the magenta and cyan ky values are not shown in (a) or (c). The two black
lines in (b) mark Wood anomalies.
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Figure 1.18: Forward and backward Bloch mode amplitude vectors defined
at two phase origins separated by ` e2. Here, ` = 5.

these are precisely the Bloch modes that the incident wave scatters into.
Typically, a bulk PC can be modelled in this way using only the propagating
grating orders and a few evanescent orders—however many are necessary to
describe grating scattering at the unit cell’s edge. Many of the calculations
in later chapters use 5 forward and 5 backward plane waves; a convergence
table is provided in Chapter 5.

Importantly, if too few modes or grating orders are used, then inaccurate
results are obtained. In our experience, the minimum number of Bloch modes
for reasonable results is the number of propagating grating orders, therefore
at frequencies above the first Wood anomaly it is essential to consider mul-
tiple Bloch modes. At these frequencies, a N -port network is required to
describe the PC, generally with N > 2. As we see in Chapter 2, failure
to represent enough modes leads to manifestly incorrect results. I stress
this point because many of the methods highlighted in the remainder of this
chapter approximate the field by a single pair of modes and therefore are
only valid at low frequency.

1.5.3 Extracting modal information from field solvers

If the PC framework of Sec. 1.5.2 were complete and included a way to cal-
culate reflection and transmission matrices from PC impedances, then the
problem discussed at the start of this section, evaluating the mp coatings,
would require O(m) slow numerical simulations followed by mp fast ma-
trix calculations. However the framework as developed depends on transfer-
matrix methods, which are not as widely available as other numerical meth-
ods. In this section we briefly point out various methods to calculate reflec-
tion, transmission and/or propagation quantities from field scattering data
produced by other numerical methods. The definition of impedance for sum-
marising the reflection and transmission properties is a theme central to this
thesis and is discussed separately in Sec. 1.6.

A number of attempts have been made to measure PC propagation con-
stants and reflection and transmission coefficients at dielectric-PC interfaces.
The majority of these are Nicholson-Ross-Weir (NRW) extraction techniques
[122], which implicitly or explicitly assume that only one forward and one
backward mode are present in the structure and its surrounds. They work by
simulating a finite thickness of PC surrounded by the incident dielectric—
such methods are incapable of directly simulating a PC structure with a
single interface, because it would require an infinite computational domain.8
The PC layer’s reflection and transmission coefficients rnet and tnet are mea-
sured, then Eq. (1.10) (rnet and tnet for a one-layer thin film) is inverted to

8For uniform media, perfectly matched layers (PMLs) have been developed; these act
like a matched terminating load on a transmission line. PMLs absorb plane waves from a
uniform dielectric without reflection; thus the PML makes the uniform dielectric appear
to be infinite. Since each unit cell of a PC scatters light, Bloch modes have forward and
backward plane wave components, so a PML for PCs would need to emit light back into
the PC as well as absorb the incoming light; due to these difficulties a PML for PCs is yet
to be developed, although Fallahi and Hafner [123] present a related boundary condition.
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find the reflection and transmission coefficients r and t of the dielectric-PC
interface and the propagation constant k⊥ for the PC. The procedure may
equivalently be done either in the language of thin films, or using an equiv-
alent circuit model. Crucially, this method may not be directly applied to
calculate reflection at PC-PC interfaces, which would require the simulation
of semi-infinite PCs. In Sec. 1.6.3 we list some authors who have applied
this method to PCs and who have gone on to extract “PC impedances” from
the reflection coefficients.

NRW techniques only work when a single pair of forward and back-
ward Bloch modes is involved, i.e. at low frequency, below the first Wood
anomaly.9 With multiple modes, Eq. (1.10) must be replaced by a matrix
equation and the inversion procedure becomes quite difficult. To my knowl-
edge no-one has presented such a matrix version; all have assumed that only
one pair of modes is important.

Another way that r has been calculated for a uniform-medium/PC inter-
face is using FDTD with an incident pulse [65, 124]. The idea here is that
the reflection coefficient is calculated after the back end of the pulse has
reached the front surface of the PC, but before it has had time to reflect off
the back surface of the PC. This method does not allow calculation of t, the
propagation constant, or the modal field, but it was successfully applied to
design the air-slot antireflection coating described in Sec. 1.1.3 [65].

Śmigaj et al. show that r and t between the modes of two media may be
calculated from overlap integrals between their modal fields [125]. However,
this approach assumes that the PCs are geometrically similar and that one
pair of forward/backward Bloch modes per PC dominates.

Ha et al. presented a method of extracting multiple Bloch modes and
their propagation constants from the scattered field inside a PC [126–128];
Fan et al. did this earlier but only for a single Bloch mode [129]. Ha et al.
applied their method to PC waveguides, using numerically generated field
data [126, 127], and also fields measured experimentally in a SNOM [128].
Briefly, they numerically fit a superposition of Bloch modes to the scattered
field, using numerical optimisers and least squares techniques. They impose
a symmetry relationship between the Bloch factors of forward and backward
modes, and in a later paper they include in their fit the dispersion relation
at multiple frequencies, to gain numerical stability [128]. Their method can
find any propagating or evanescent mode that is present with sufficient am-
plitude in the field data, and calculate the PC’s complex band structure. In
Chapter 3 we extend Ha et al.’s method to find PC impedances and improve
its stability and accuracy by imposing additional symmetry relationships.

Any method that relies on using scattered field data from a PC stack
suffers a number of disadvantages compared to the transfer matrix methods
outlined in Sec. 1.5.2, the biggest of which are inefficiency and inaccuracy.
Transfer matrix methods need only analyse a single unit cell in order to ob-
tain the results needed to model the PC; using most techniques described
above, the computational domain must be larger. If periodic boundary con-
ditions are enforced in the FEM or FDTD simulations, then only one period
is needed in the transverse direction; otherwise the simulated PC needs to
be sufficiently wide as to avoid edge effects, which drastically increases the
computational domain. In the other direction, the entire structure must be
simulated, i.e. every row of holes in the structure of interest must be included
in the computational domain. Therefore, for such problems, transfer-matrix
methods are usually to be preferred over other methods.

9Indeed, these techniques are mainly used for metamaterials, which by definition lie
well below the first Wood anomaly, since a periodic structure is only a metamaterial if
the periodicity d� λ/n. Photonic crystals are often used at higher frequencies, near and
above the first Wood anomaly, so this extraction technique is of less use.
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1.6 Characterising reflection: PC impedance
Calculating reflection and transmission at PC interfaces using any of the
above methods is computationally expensive. When designing a p layer an-
tireflection coating from m candidate PCs, there are mp potential coatings
to evaluate. As discussed at the start of Sec. 1.5, a thin-film-like framework
can be used to evaluate these coatings using only O(m2) lengthy simulations,
to characterise the

(
m
2

)
interfaces. If the reflection and transmission coeffi-

cients are calculated from impedances using an equation like (1.4), then one
could run O(m) slow simulations to find the impedance and propagation con-
stants of each PC, before calculating the mp stacks’ properties analytically
and efficiently.

Because of this, there has been considerable interest in encapsulating the
reflection and transmission properties of each individual PC into a single
quantity, an impedance. Ideally, only one computation would be required per
PC to find its impedance and propagation constants, and then the reflection
and transmission between pairs of PCs could be calculated directly from the
two PCs’ impedances. Many definitions of impedance for PCs have been
offered, but most are ad hoc. Few have been demonstrated to have any
predictive power. We now consider the most significant of these proposed
impedance definitions.

1.6.1 Group velocity as impedance
A qualitative connection was made between reflection and group velocity
mismatch by a number of authors, including Refs. [12, 46, 50, 69, 130].
Momeni and Adibi went further [44], claiming that if the field profile in both
media is similar, then the inverse of the group velocity (i.e. the group index
ng = c/vg) in each medium can be used in place of the materials’ impedances
in Eq. (1.9). While this definition is simple, easy to calculate and intuitively
desirable because of analogies with uniform media, more often than not it
gives incorrect results, e.g. [45, 63].

1.6.2 Field-based definitions
The next common class of impedance definitions attempt to define each PC’s
impedance in terms of E‖ and H‖, the electric and magnetic field compo-
nents parallel to the interface, which are used to define the wave impedance
for uniform media (1.4). As for uniform media, it is important that these
fields are due to a single mode, rather than a superposition of forward and
backward modes, which restricts the choice of numerical method. A critical
difference between PCs and uniform media is that for PCs the ratio E‖/H‖
is not uniform—it varies throughout the unit cell and along its edge. If the
photonic crystal is periodic in the x−y plane, then this ratio is a function of
x and y. Our convention is that all interfaces lie parallel to the x− z plane
(Fig. 1.15). For clarity, in the following discussion we have modified other
authors’ notations to fit our choice of axes.

Boscolo et al. [130] took a weighted average of E‖/H‖ along the unit cell
edge of the PC’s dominant Bloch mode. They define a quantity that we will
refer to as the local impedance,

η(x, y) = E‖(x, y)/H‖(x, y). (1.31)

They average η along the unit cell edge, y = 0, weighted by the real part of
the y component of the Poynting vector at these points, Re(P⊥(x, 0)):

ZBoscolo =

∫
η(x, 0) Re(P⊥(x, 0)) dx∫

Re(P⊥(x, 0)) dx
. (1.32)
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The choice of the weighting factor Re(P⊥(x, 0)) makes sense—one would
expect regions with high field intensity to be more important in a field-
matching calculation—but the specific choice of factor is only justified em-
pirically. They write that “Compared to all of the alternatives we could think
of, this one gave the results that best match those for well known periodic
devices for microwave frequencies”.

Ushida et al. [69] show that η(x, y) is real for symmetric values of y, such
as at the edge or centre of an up-down symmetric unit cell. When proposing
a method to design a quarter-wave-type one-layer antireflection coating for
normal incidence, they use the local impedance at the centre of the unit cell
edge,

YUshida = 1/ZUshida = 1/η(0, 0). (1.33)

Their method does not appear to be particularly accurate: they describe it
as “qualitative” and do not apply it to design antireflection coatings or even
present any reflection or transmission coefficients calculated by it.

Lu and Prather take a slightly different approach to Boscolo’s—rather
than calculating η(x, 0) = E‖(x, 0)/H‖(x, 0) at each point and taking a
weighted spatial average of the results, they instead take separate spatial
averages of E‖(x, 0) and H‖(x, 0) along a unit cell edge, and define imped-
ance in terms of these quantities [131]. Working with light polarised such
that E = (0, 0, Ez) (Ez polarisation), they define

ZLu = −
∫
Ez(x, 0) dx∫
Hx(x, 0) dx

, (1.34)

where the integration is along the unit cell edge. Again, this definition is
empirical, and no theoretical justification is given as to why ZLu may be
used in Eq. (1.9) to give reflection and transmission coefficients. However,
the theoretical justification was later provided, along with the necessary
assumptions, by Śmigaj and Gralak [132]—we discuss this below.

Also for light in Ez polarisation, Biswas et al. [133] multiply the numer-
ator and denominator of η = Ez/Hx by E∗z ,

η =
|Ez|2
E∗zHx

, (1.35)

and note that the numerator is associated with an energy density and the
denominator with a flux. Inspired by this, they define

ZBiswas =

∫∫
|E‖|2 dxdz∫∫

E∗‖ ×H‖ dx dz
=

∫∫
|Ez|2 + |Ex|2 dxdz∫∫
E∗zHx − E∗xHz dxdz

=
U

S
, (1.36)

where εU is the field energy and S is the complex conjugate of the y compo-
nent of the energy flux vector.10 This definition is physically desirable, as the
energy flux divided by the energy density is the group velocity [134], which
links ZBiswas to Sec. 1.6.1. Although this definition is still ad hoc, Biswas
et al. demonstrate that it can accurately calculate reflection coefficients in
2D: between air and a rod-type bulk square lattice PC, and at the exit of a
rod-type square lattice waveguide.

Momeni et al. [72, 135] propose a definition similar to ZBiswas. By
“analogy with homogeneous bulk media”, they define

ZMomeni =
|〈E‖〉|2

2P⊥
, (1.37)

10In Ref. [133], the complex conjugate symbol * was missing from E∗‖ in the denominator
but included on E∗z and E∗x.
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where the numerator is the square modulus of the spatially averaged E field
components parallel to the interface, where the averaging takes place along
the interface. The denominator 2P⊥ = Re(E ×H∗)⊥ is the component of
the Poynting vector that is perpendicular to the interface, calculated using
Bloch modal amplitudes instead of spatially varying fields. They offer an
alternative form of Eq. (1.37) using P⊥ = WEvg⊥, in terms of the average
energy densityWE and the group velocity perpendicular to the interface vg⊥,
which also harks back to the connection between group velocity mismatches
and impedance mismatches (Sec. 1.6.1). Momeni et al. numerically demon-
strate that their method can accurately calculate reflection coefficients at
frequencies below the Wood anomaly, and that it fails at higher frequencies
where multiple diffracting orders propagate.

The main difference between the definitions of Biswas et al. and Momeni
et al. is that the former use 〈|E‖|2〉, a quantity related to the field energy,
while the latter use |〈E‖〉|2. Across the interface, E‖ is continuous in both
its amplitude and phase, which is presumably why Momeni et al. do not use
the field energy and instead take the average of the electric field itself.

In the single mode approximation, it is also possible to take the field in
a metamaterial and calculate the effective power, voltage and current of its
equivalent transmission line model. Caloz and Itoh [136] use pairs of these
quantities to define three different expressions for the impedance in analogy
to the voltage-current, power-voltage, and power-current definitions of the
equivalent transmission lines [137].

Simovski and Tretyakov [138] defined an impedance based on field aver-
aging across the entire unit cell, before acknowledging that it is not related
to the reflection at interfaces [139]. In the latter paper Simovski offers an
alternate definition, equivalent to Lu and Prather’s [131], (Eq. (1.34)), where
the field is averaged across the interface plane only. Unlike Lu and Prather,
Simovski mathematically relates this impedance to the reflection at an in-
terface, although to do so they approximate each Bloch mode to a pair of
forward and backward plane waves.

Śmigaj and Gralak [132] agree that the definition (1.34) of Lu and Prather
[131] is rigorously correct, explicitly making the same single-mode, single-
plane-wave assumptions. Paul et al. extend this work to consider interfaces
between homogeneous dielectrics and metamaterials [140].

All the other field-based definitions of impedance presented above em-
pirically associate the define impedance with reflection coefficients, and are
theoretically justified only by analogy to uniform media or transmission lines.
Furthermore, all are fundamentally rooted in the idea of each PC supporting
only one Bloch mode, an assumption that is incorrect at frequencies above
the first Wood anomaly. Therefore there appears no clear path to extend
such definitions to work at the higher frequencies of interest.

1.6.3 Scattering-based definitions

In Sec. 1.5.3 we discussed methods to calculate reflection coefficients between
PCs and uniform dielectrics. One of these, the NRW method, involves calcu-
lating the reflection coefficient from the reflection and transmission through
a finite slab of PC in free space, either by inverting Eq. (1.10) or using the
transmission line scattering/transfer matrix framework. Since the vacuum
impedance Z0 is a known quantity, it is possible to use the resulting single-
interface air/PC reflection coefficient r in the impedance mismatch equation
(1.9) to define an impedance for the PC,

ZNRW = Z0
1 + r

1− r . (1.38)
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Simovski et al. [122] give a good overview of this method, which is followed
by many authors to define and calculate impedances for PCs [62, 65, 141,
142], and for metamaterials [138, 139, 143–146].

If a well-defined PC impedance can exist, satisfy Eq. (1.9) and reduce to
the standard definition (1.4) for uniform dielectrics, then this “reverse engi-
neering” process calculates it correctly. By finding the impedance, reflection
coefficients can easily be calculated for other interfaces involving the PC.
If no consistent impedance exists with these conditions, then the calculated
impedance (trivially) gives the correct results at the interface from which it
was calculated, but may give incorrect results for interfaces between the PC
and other media.

Many of the above authors go one step further than finding ZNRW: they
calculate effective n, ε and/or µ of a homogeneous medium with equivalent
reflection/transmission and propagation properties to the metamaterial. In
Chapter 4 we discuss such methods and their appropriateness to PCs.

Of the authors cited above, only Miri et al. use their method “in anger”,
demonstrating that it is accurate and powerful enough to use for practical
purposes, at frequencies below the Wood anomaly [62]. Miri et al. applied
their method to design a PC antireflection coating, searching a similar pa-
rameter space and designing a similar coating to that found in one of my
papers [1]. This coating was designed at a frequency below the first Wood
anomaly, where scalar impedances can give good results.

Most authors acknowledge that impedances “reverse-engineered” from re-
flection and transmission coefficients only work in the single-mode, single-
plane-wave approximation, i.e. at frequencies below the first Wood anomaly.
While this is an appropriate assumption for metamaterials, which by defi-
nition have lattice constants much smaller than the operating wavelength,
many PC applications are at frequencies above the Wood anomaly and so
these definitions are not sufficiently powerful. An example for which such
definitions must fail, even with PCs supporting only one propagating mode,
is given in Chapter 2.

1.6.4 Multiconductor transmission line definition
Only Fallahi and Hafner [123] present an impedance method general enough
to work beyond the single-mode approximation, but they present it as a
boundary condition and not as part of a thin-film-like framework. They
first represent one layer of a PC using the multiconductor transmission line
framework, using the Fourier Modal Method to calculate the R matrix of
the layer, which relates the voltage V (or E‖ field [102, 123]), to the current
I (or H‖), on both sides (1 and 2) of the PC layer:

(
V2(0)
V1(0)

)
= R

(
I2(0)
I1(0)

)
, (1.39)

where V`(0) and I`(0) are related to the wave amplitudes f±` by Eq. (1.13).
The matrix ZFallahi that Fallahi and Hafner call their impedance matrix

has half the dimensions of R. It is defined such that

V1(0) = ZFallahiI1(0), (1.40)

for V and I (i.e. vectors of E‖ and H‖ grating order amplitudes) due to
only forward modes in a semi-infinite PC. It is argued that the same matrix
ZFallahi may be used to relate V`(0) and I`(0) at arbitrary numbers of layers
` into the semi-infinite PC. This matrix ZFallahi is calculated from the afore-
mentioned R matrix for a PC layer, so once it is calculated it can be used
to define boundary conditions that allow the simulation of a semi-infinite
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PC. The matrix dimension is the number of basis functions; in the given ex-
amples it is as high as 50 without demonstrating convergence at frequencies
near the second Wood anomaly [123]. We further discuss their impedance
definition, and how it relates to our own, after Paper 2.1.

1.7 Thesis outline

Directly evaluating the scattering properties of PC stacks is computation-
ally expensive, so it is not practical to directly compute the properties of a
large parameter space of PC stacks. This makes it slow and computationally-
intensive to design thin-film antireflection coatings, or to dispersion-engineer
waveguides. It would be good to have a thin-film like framework for analysing
transmission and reflection properties of PC stacks, which would allow ef-
ficient design of antireflection coatings and dispersion engineering of PC
surface modes and waveguide modes.

To develop such a framework, a basis must be chosen and propagation
and reflection/transmission at PC interfaces must be quantified. The prop-
agating and evanescent Bloch modes at fixed ω,k‖ are the natural basis, as
these quantities are conserved in PC scattering. A PC’s propagative proper-
ties are summarised by its complex band structure, which may be calculated
in a number of ways.

Transmission and reflection between Bloch modes can be represented by
scalar coefficients only at low frequency, below the first Wood anomaly: at
many frequencies of interest they must take the form of matrices. Reflection
and transmission matrices for each interface may be calculated by transfer-
matrix methods, but it would be good to have an efficient way to store each
PC’s reflective properties concisely, as an impedance independent of the
other PC at the interface—this would allow m small matrices to be stored
instead of

(
m
2

)
reflection and

(
m
2

)
transmission matrices, or m large transfer

matrices. Ideally there would also be a way to calculate these matrices that
did not require transfer-matrix methods, which are less widespread than
other numerical techniques.

Many definitions of impedance have been proposed for PCs. Not all of
them have been proven to be related to reflection or transmission coeffi-
cients. Of the definitions that may be used rigorously to calculate reflection
and transmission coefficients, the vast majority are scalars and so do not
work at many frequencies of interest, including the operating frequencies of
the majority of PC waveguides, or superprisms like the one described by
Matsumoto et al. [30]. Of the impedance definitions, only the definition of
Fallahi and Hafner [123] is capable of modelling PCs at frequencies above the
first Wood anomaly, but their impedance matrices are large, thus computa-
tionally intensive, and they report that their results converge slowly even as
further modes are added.

Propagation through stacks of PCs can be efficiently modelled by transfer-
matrices in the basis of grating diffraction orders. But for many physicists,
the thin-film framework of Sec. 1.2.2 is more familiar and intuitive than the
transfer matrix methods of Sec. 1.3—physical insight may be gained by rep-
resenting fields in terms of Bloch mode amplitudes instead of the transfer
matrix’s basis of diffraction orders. Furthermore, transfer matrices become
ill-conditioned when strongly evanescent modes are included. Scattering ma-
trices are usually more stable [108], but the scattering matrix of a surface
plasmon interface diverges, so it may not be feasible to model PC surface
modes using such an approach.

Of those canvassed, the best solution would be to calculate a small im-
pedance matrix for each PC, as well as its Bloch factors. Given a pair of
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PC’s impedances at the given frequency, incident angle and polarisation, we
would be able to calculate the Bloch mode reflection and transmission ma-
trices between them. To design a coating or dispersion engineer a waveguide
with m candidate PCs, we would calculate the impedances and propaga-
tion constants/Bloch factors of the PCs in m computationally expensive
simulations. Then the reflection and transmission properties of arbitrary
stacks of the PCs could be calculated efficiently and accurately from these
quantities, with no need for further computationally expensive processes.
We present such a method in Chapter 2, with impedances calculated from
transfer-matrix simulations.

In Chapter 3 we calculate the same impedance matrices without the need
for a specialised field solver. Using widely available software, we simulate
the field scattered in a length of PC, and present a technique to extract the
Bloch modes and the PC’s impedance from the scattering data.

At low frequencies, the field in each PC may be represented by a single
pair of Bloch modes, and the impedance matrix may be truncated to a scalar.
This opens a door to physical intuition: scalars are easier to represent than
matrices, and so in Chapter 4 we inspect some PC impedances and Bloch
factors. We also discuss the possibility and the relevance of homogenising
PCs, representing them by a homogenous effective medium.

In Chapters 2 and 3 we prove the worth of our method by applying
it to design antireflection coatings. We explore some other applications of
our method in Chapter 5. We show that impedances can be used to find
surface modes of PCs, which are analogous to surface plasmons but are not
intrinsically lossy. Finally, we briefly describe how the PC framework is
very useful for dispersion engineering PC waveguides, as it allows efficient
calculation of the modes of different PC waveguides on an industrial scale.

We conclude in Chapter 6 with a brief discussion of the key results of
this thesis, and the scope for future work.
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Chapter 2

Impedance and
antireflection coatings

In Chapter 1 we sketched the desired qualities of a framework for describing
transmission and reflection through PC stacks. This framework, modelled
on the thin film framework (Sec. 1.2), describes the field in each PC by the
amplitudes of the PC’s eigenmodes. Mode amplitudes in different unit cells
of one PC are related by any of three equivalent quantities: propagation
constants, eigenvalues, or Bloch factors; and at interfaces the amplitudes
are related by reflection and transmission quantities.

In Sec. 1.5.2 we saw that Bloch modes scatter into one another at PC
interfaces, so to represent the field in a PC we generally need to consider
multiple Bloch modes, sometimes including evanescent modes. Therefore
the forward and backward plane wave amplitudes f+

i and f−i that represent
the field in layer i of a thin film stack (Fig. 1.12) must be replaced in the
PC framework by vectors c+

i and c−i of forward and backward Bloch mode
amplitudes (Fig. 1.18).

Since the Bloch modes are PC eigenstates, propagation through the PC is
represented by multiplying c+

i and c−i by diagonal matrices of Bloch factors
(Eqs. (1.30)). Each PC’s Bloch factors can be found by diagonalising its
transfer matrix, as discussed briefly in Sec. 1.5.2. The Bloch factors provide
a compact and efficient quantification of a PC’s propagation properties.

But can we also efficiently quantify a PC’s interface scattering proper-
ties? Reflection and transmission at an interface between PCs, or between
a uniform medium and a PC, are most intuitively represented by matrices
in the Bloch bases of the two media. The following Letter 2.1 shows that
we can calculate these matrices efficiently, for square lattice PCs, from one
impedance matrix per PC. In the Letter, the formulation of the impedance
definition is somewhat abbreviated—a fuller treatment is given in Paper
2.3, which follows the Letter. PC impedances are defined with respect to a
reference medium, which throughout this thesis is chosen to be vacuum.

Reflection and transmission matrices at an interface between PCs 1 and
2 are defined to satisfy

c−1 = R12c
+
1 + T21c

−
2 (2.1a)

c+
2 = T12c

+
1 + R21c

−
2 , (2.1b)

which is a vector version of Eqs. (1.7), in a fundamentally different basis.
The matrices R12, T12, R21 and T21 can be calculated by enforcing field
continuity across the interface (à la Eqs. (1.8)), which is done in the basis
of grating diffraction orders. Briefly, each grating order has a distinct k‖, so
if the field is written in the basis of grating orders then field continuity can
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1 , c−1 c+

2 , c−2

E1,H1
E2,H2

E1(c
+
1 + c−1 )
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+
1 − c−1 ) H2(c

+
2 − c−2 )

E2(c
+
2 + c−2 )

Figure 2.1: The E and H matrix for each PC maps the vectors of for-
ward/backward Bloch mode amplitudes c± to vectors that may be equated
across a PC/PC interface, as long as the PCs share a periodicity.

be decoupled into a set of independent linear equations as in Sec. 1.2.1—
simultaneously applying Eqs. (1.8) to each grating order—this derivation is
detailed in the discussion following Paper 2.1.1 We seek to be able to write
each of R12, T12, R21 and T21 in terms of one matrix that depends only
on PC 1, and another that depends only on PC 2. These two matrices are
what we call the PC’s impedances.

In our method, impedance matrices are defined in terms of matrices E
and H for each PC. A detailed definition of E and H is provided in Pa-
per 2.3, and analytic expressions are given in Appendix A for uniform di-
electrics; here we briefly describe their function and their ingredients. E and
H map Bloch mode amplitude vectors c± to vectors of the field quantities
that are continuous across the interface: the E‖ and H‖ field amplitudes
appearing in Eqs. (1.8) that are associated with superpositions of forward
and backward plane waves in each grating order (Fig. 2.1). These field vec-
tors may be equated across the interface, doing so is equivalent to applying
Eqs. (1.8) to all grating orders simultaneously. E and H are defined in
terms of two quantities: the matrix F that diagonalises the PC’s transfer
matrix T (Eq. (1.29)), and the background dielectric’s wave impedance Z
or admittance Y .

In Letter 2.1 only, ζ denotes the PC impedance. In the remainder of this
thesis, the PC impedance is denoted Z.

1Many PC interfaces do not involve a change in the background dielectric. In such
cases, there is no Fresnel reflection, so field continuity can be enforced in any common
basis, not just the basis of grating diffraction orders. Use of a basis other than diffraction
orders may be more convenient when the Bloch modes are very different to plane waves;
for example, to calculate reflections between PC waveguides it might be more efficient to
equate fields in the basis of a reference PC waveguide.
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We show that no consistent scalar definition of impedance is generally possible for photonic
crystals. Instead, we present a rigorous semianalytic matrix definition of impedance for square
lattice photonic crystals, defined in terms of Bloch modes. We then apply our definition to design a
range of multilayer photonic crystal antireflection coatings efficiently. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2992066�

Photonic crystals �PCs� are useful in two regimes: band
gap applications, such as waveguides and Bragg reflectors,
and in-band applications such as supercollimation and super-
prisms. In-band applications require light to be coupled into
the PC, and therefore suffer insertion losses that lead to
noise. At frequencies near band gaps, where the most inter-
esting effects occur, coupling losses are especially high.
These can be alleviated by long mode matching structures1,2

or by shorter and thus more practical antireflection coatings.
Currently not enough is known about coupling losses to

design PC antireflection coatings efficiently—any design
process is limited to trial and error, each trial involving its
own numerical simulation.3,4 However, if we know the
impedances of the PCs concerned, each trial is reduced to a
few straightforward calculations. The problem becomes of
similar difficulty to designing thin film coatings. We present
a rigorous semianalytic definition of impedance for square
lattice PCs and apply it to design antireflection coatings for
square lattices at different frequencies and incident angles.

In many fields, impedance is a long-established concept
and a useful engineering tool. Impedance is an intrinsic prop-
erty of a substance, and given the impedances of two adja-
cent materials, the reflection and transmission coefficients at
their interface can be easily calculated. The use of impedance
dramatically simplifies the study of reflections as finding all
� p

2
�= �p2− p� /2 reflection coefficients between p materials re-

quires only p impedances.
In uniform dielectrics, the �wave� impedance Z, which

generally depends on incident angle and polarization, is

Z = E�/H� , �1�

where E� and H� are electric and magnetic fields components
parallel to the reflection interface. The reflection at the inter-
face between two dielectrics is then

r12 =
Z2/Z1 − 1

Z2/Z1 + 1
, �2�

where Z1,2 are the impedances of media 1 and 2, respectively.
Equation �2� appears in many fields of physics, such as trans-
mission lines, electronics, and acoustics. At normal incidence
in nonmagnetic dielectric media, Z is inversely proportional

to its refractive index n. The constant of proportionality is
the vacuum impedance Z0.

The extension of the concept of impedance to PCs is
difficult. Bulk PCs naturally scatter light in multiple direc-
tions, and it is hard to separate interface reflections from
internal scattering so as to derive Eq. �2�. Another approach
to impedance is required. A few ad hoc impedance
definitions5–9 have been proposed to satisfy Eq. �2�, but all
such “impedances” are scalar, and below we show that, in
general, no consistent scalar impedance can be defined.

To be useful in the design of thin-film-like coatings, any
impedance should be:

�1� uniquely defined for each PC at any frequency, incident
angle and polarization,

�2� sufficient to find the reflection and transmission between
two PCs,

�3� economical.

The first two points, satisfied for uniform media by Eqs. �1�
and �2�, respectively, express the fundamental impedance
functionality that is required to design complicated thin film
coatings. The third criterion prescribes practicality—we use
impedance to simplify problems, so an unwieldy impedance
is less useful.

In our treatment of PCs, at each frequency the field in-
side each PC is represented as a superposition of propagating
and evanescent Bloch modes, its quasiperiodic eigenmodes.
This is the natural basis in the sense that a PC’s Bloch mode
travels through the PC’s interior without reflection. Consid-
ering each PC as a stack of gratings, its Bloch modes are
represented as a superposition of propagating and evanescent
plane wave solutions to the grating equation, sin �s−sin �0
=s� /d, where �0 is the incident angle and integer s is the
plane wave order. The Bloch basis is countably infinite, so to
make calculations manageable, we project the field onto a
truncated but sufficiently complete set of 2m propagating and
slowly evanescent Bloch modes—a least square approxima-
tion that balances satisfaction of the first two criteria against
the third. We partition this set into m forward traveling/
decaying modes and m backward modes. Interface reflection
and transmission coefficients thus become m�m matrices
mapping between truncated Bloch sets, as must the imped-
ances. The plane wave basis is also truncated, but it need nota�Electronic mail: felix@physics.usyd.edu.au.
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be truncated as strongly as it does not affect the dimension of
impedances. Larger m gives more accurate results, but in this
letter, we find that square lattice PC interface reflectances are
predicted accurately as long as m� p, where p is the number
of propagating plane wave solutions to the grating equation.

To define impedance, we first take the procedure for cal-
culating the reflection at an interface between uniform di-
electrics, and generalize it to work with Bloch modes. We
map the Bloch modes in each PC to plane wave field ampli-
tudes and use these to compare fields across the interface and
find the reflection. The matrix that maps PC i’s forward
Bloch modes to plane wave field strength coefficients, found
numerically via the transfer matrix,10 is denoted Ei or Hi for
the E or H field components, respectively.11 The columns of
E and H are the sums and differences of forward and back-
ward plane wave expansions of Bloch modes. As we con-
sider many more orders of plane waves than Bloch modes,
these matrices are not square in practice, and we cannot find
their inverses directly. Instead it can be shown by reciprocity
that the transfer matrix is symplectic, from which the or-
thogonality relation Ei

THi=I follows. For the interface be-
tween PC1 and PC2, we can equate the plane wave field
strength coefficients in a least squares sense and project onto
the Bloch bases to derive

R12 = �A12A12
T + I�−1�A12A12

T − I� , �3a�

T12 = T21
T = 2A12

T �A12A12
T + I�−1, �3b�

R21 = �I + A12
T A12�−1�I − A12

T A12� , �3c�

where A12=H1
TE2 maps PC2’s Bloch modes to PC1’s via

plane wave field strength coefficients, and the reflection and
transmission matrices Rij and Tij operate in the relevant
Bloch bases. Comparing Eqs. �3� to �2�, A12 plays the role of
�Z2 /Z1. If we could separate A12 into a �1 and a �2, then
these �i would satisfy criterion 2. To satisfy criterion 1, �1
and �2 must be independent of PC2 and PC1 respectively. We
now define such �i.

When projecting onto a complete basis of Bloch modes,
inverses exist and A01

−1A02=A12 exactly. For a truncated ba-
sis, this is an approximation equivalent to calculating R12
and T12 from R10, R01, T10, T01, R02, and T02 by assuming
there was an infinitesimally thin sliver of PC0 between PC1
and PC2. The relation means that we can define the imped-
ance of each medium i as �i=A0i, where 0 is a suitable ref-
erence medium, e.g. free space. This satisfies criterion 1. As
dim ���=m, criterion 3 is satisfied by using a truncated Bloch
basis.

Figure 1 shows the reflection of light from free space off
a square lattice PC, calculated using impedances of various

dimension m. The PC, with lattice constant d, consists of
cylindrical rods of n=3.4 and radius r=0.18 d on a free
space background. The light is polarized with E parallel to
the cylinder axes and is incident from �0=25�. Figure 1
shows that at low frequencies, m=1 is sufficient to calculate
reflectances accurately, however, especially above d /�
=0.703, where p=2 �the grating equation has a second
propagating solution�, m=2 is required for accurate calcula-
tion, and there is no discernible difference between results
using m�5.

Having defined impedance for PCs, we now apply our
definition by designing two antireflection coatings for a
square lattice PC: one at normal incidence and low frequency
and one at higher frequency and non-normal incidence. De-
signing an antireflection coating is a thorough test of any
impedance definition. If the impedances are wrong, then the
coating does not work.

Antireflection coatings, commonplace in thin-film op-
tics, consist of one or more thin layers placed in front of the
bulk material �Fig. 2 inset�. The layer materials and widths
must be carefully chosen so that all interface reflections
cancel—since a PC’s width cannot be varied continuously, a
perfect antireflection coating needs two layers in general.
The net reflection is easily derived from the interface reflec-
tions and the phase changes across the layers, for example, in
the scalar case m=1, appropriate for low frequencies, a two
layer coating has net reflection coefficient12

� =
R12 + �2

2R23 + �2
2�3

2R34 + �3
2R12R23R34

1 + �2
2R12R23 + �2

2�3
2R12R34 + �3

2R23R34
, �4�

where the phase change across a layer is �i=�i
di, with �i the

layer’s Bloch factor and di its width in periods. Equation �4�
can easily be generalized for coatings with larger m and/or
more layers.

Finding a two-layer antireflection coating is equivalent
to solving Eq. �4� for �=0. For PCs, there is no simple link
between Bloch factor � and impedance �, so we solve the
equation by numerical search—we try many different PCs as
the coating layers until we find a combination for which
���2�0. This requires calculating all Rij between the PCs
considered. For a set of n PCs, doing this directly takes n2

−n simulations, which is impractical as n is large. However,
it takes only n simulations to find all PC impedances, from
which we can easily calculate the Rij using Eqs. �3a�–�3c�.

Our first coating is for the PC of Fig. 1, for normally
incident light of frequency d /�=0.25. Without a coating, the
bulk PC has reflectance R=0.36. The reflectances at sur-
rounding frequencies are shown in Fig. 2. We aim to design
a two-layer coating where the layers, PCs 1 and 2, differ

FIG. 1. �Color online� Reflections from free space at �0=25� off the bulk
PC, as calculated by impedances of dimension m.

FIG. 2. �Color online� Reflectances for �0=0� off the uncoated �solid� and
coated �dashed� PCs. Inset: Schematic of a coated PC.
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from the bulk PC only in their rod radii r1 and r2. At this low
frequency, p=1 so we choose m=1 to reduce �, R, T, and �
to scalars.

To design a coating, we first generate a database of ��r�
and ��r� at this frequency and incident angle, analogous to
the tables of refractive indices used in the design of thin film
coatings. This is the most computationally intensive step of
the coating design, involving finite element transfer matrix
analysis of each PC to find its Bloch modes and E. We then
use ��r� and ��r� in Eq. �4� to find R�r1 ,r2�= ���r1 ,r2��2 nu-
merically, assuming each layer is one period thick.

We find that R�0 when r1=0.137 d and r2=0.156 d. A
more rigorous calculation with larger m confirms that R
�10−6—we have indeed designed an antireflection coating.
Figure 2 shows that the coating has a wide bandwidth. This
unintentional but desirable result may be enhanced by ex-
plicitly designing a broadband coating with more layers.

So far, a scalar impedance has yielded results sufficiently
accurate to design coatings. We now develop a coating for
the same bulk PC under circumstances in which p=2, where
matrix impedances are required. We choose d /�=0.83 and
�0=25�. At this frequency and incident angle, there is only
one propagating Bloch mode in the bulk PC. The part of the
beam reflected off the PC is scattered into two propagating
plane waves. We take R to be the sum of the two plane wave
reflectances, shown for a range of frequencies in Fig. 3. At
the target frequency, R=0.897.

As p=2, we choose m=dim���=2, and again we gener-
ate a database of ��r� and ��r�. Using a matrix generalization
of Eq. �4�, we find a two-layer coating for which
R=0.023—the layers have widths d1=1 and d2=2, and rod
radii r1=0.102 and r2=0.217. Accurate reflectances �m=5� at
other d /� are shown in Fig. 3. Note that the minimum R does
not quite occur at the target frequency—this indicates that
we have insufficient degrees of freedom to suppress both of
the reflected plane waves simultaneously. To design a coating
with R=0, we would need to add more degrees of freedom,
e.g., by using more layers or rectangular lattices.

We saw in Fig. 1 that scalar versions of our impedance
do not work in general. In fact, any scalar impedance or
treatment of reflections is doomed to inconsistency if there
are multiple propagating plane waves, i.e., if p�2. To show
this, we consider as an example reflections between PC1,
PC2 and PC3 with radii 0.08 d, 0.12 d, and 0.18 d, respec-
tively. At �0=25� and d /�=0.83, p=2, and each of these PCs
has one propagating Bloch mode. We first rigorously calcu-
late rij and tij for each pair of PCs. These are the mappings
between propagating modes that any correct scalar imped-
ance method must predict. We note that �r23�2=0.8053. We
now recalculate �r23�2 indirectly, using r12, r21, t12, t21, r13,
and t13 and considering there to be an infinitesimal sliver of
PC1 between PC2 and PC3 �cf. derivation of A01

−1A02=A12�.
If we were willing to assume that rij =−rji, we could have
derived an equivalent expression for �r23�2 from Eq. �2�, in-
dependent of the definition of Z. We find that �r23�2=0.1886,
nowhere near the correct value. Repeating this calculation
with larger Rij and Tij matrices, we find �r23�2=0.8067 for
m=2 and �r23�2=0.8054 for m=3, much closer to the correct
result. Therefore scalars are not powerful enough to repre-
sent reflection fully, and no consistent scalar Z can be defined
for these PCs.

We have rigorously defined an impedance-like matrix �
that can be used for accurate calculation of coupling losses in
up-down symmetric PCs and have presented a least square
approximation to control its dimension. Furthermore, we
have demonstrated the utility of this impedance by applying
it to design antireflection coatings for a PC. Our definition of
PC impedance should also enable the design of other simple
coatings inspired by thin film optics.

This work was produced with the assistance of the
Australian Research Council �ARC�. CUDOS �the Centre for
Ultrahigh-bandwidth Devices for Optical Systems� is an
ARC Centre of Excellence.
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One of the key results of Letter 2.1 is that for certain frequencies and
PCs, no scalar impedance that satisfies Eq. (2) (Eq. (1.9) in the main text
of this thesis) can be defined. The three PCs used to demonstrate this each
support only one pair of propagating modes at the operating frequency.
The three interfaces presented are each between semi-infinite media, so the
evanescent modes do not carry energy here. Nevertheless they clearly play
enough of a role in the coupling between propagating modes that they may
not be neglected. For this example, which was not hard to find, none of the
impedance definitions from Secs. 1.6.1–1.6.3 could give correct answers in all
three cases.

Our impedances ζ1 and ζ2 are defined such that

R12 = (Z12 + I)−1(Z12 − I), (2.2)

where
Z12 = (ζ−1

1 ζ2)(ζ−1
1 ζ2)T = HT

1 E2E
T
2 H1. (2.3)

R12 is in the Bloch basis: from a vector c+
1 of incident Bloch mode ampli-

tudes it gives the reflected Bloch mode amplitudes c−1 . For square lattices,
Z12 was initially derived by setting c−2 = 0 and manipulating the resulting
equations into the form

c+
1 + c−1 = Z12(c+

1 − c−1 ). (2.4)

Using the mode orthogonality relation for square lattice PCs, i.e.

ETH = HTE = I, (2.5)

if all matrices are square and have inverses then we can rewrite Eq. (2.3) as

Z12 = E1
−1E2H2

−1H1. (2.6)

As we discuss in Sec. IV. of Paper 2.3, this has the same form as a ratio of
wave impedances

Z12 = Z2/Z1 = E2/H2 H1/E1, (2.7)

the obvious difference being that Eq. (2.6) is a matrix equation, while Eq. (2.7)
is a scalar equation. The order of factors is fixed in Eq. (2.6) because matri-
ces do not commute—they may not be rearranged to separate Z12 into one
matrix that depends on PC 1 and another for PC 2. To escape this entan-
glement, we separate Z12 into two factors, writing each factor as the product
of two impedance matrices ζ−1

1 and ζ2 (Eq. (2.3)), each of which are defined
with respect to a common reference medium (vacuum, in all examples in this
thesis). These impedance matrices can be used to calculate R12 as we have
just shown, as well as T12, R21 and T21, all of which work in the relevant
bases of Bloch modes.

Comparison to ZFallahi

It is interesting to compare our impedance matrix to that of Fallahi and
Hafner [123], discussed in Sec. 1.6.4. In contrast to ours, Fallahi and Hafner’s
definition is not related to the Bloch modes of either PC: its domain is a
common basis. In their paper they use the basis of grating orders (Eq. (9)
in Ref. [123]), making comparison with our work easy. Considering only the
field from a superposition of forward Bloch modes, they define

(
Ẽz

Ẽx

)
= ZFallahi

(
H̃x

−H̃z

)
, (2.8)
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where Ẽz is a vector of the Ez amplitudes of the grating diffraction orders,
the E‖(0) from Eq. (1.5) in the Ez polarisation; the other field amplitude
vectors are similarly defined. We have relabelled the axes to be consistent
with our treatment. In our method, the two polarisations are treated sepa-
rately, so for the purpose of comparison we restrict our attention to the Ez
polarisation, offering a simplified version of Fallahi and Hafner’s definition,

Ẽz = ZFH̃x. (2.9)

The fields Ẽz and H̃x are some arbitrary superposition of only forward Bloch
modes. For any superposition of modes c+, we can write these fields using
the quantities from our framework,

Ẽz = E c+ (2.10a)

H̃z = H c+. (2.10b)

Inserting Eqs. (2.10) into (2.9), multiplying by HT and applying the mode
orthogonality relation Eq. (2.14), we see that for any c+,

c+ = HTZFH c+. (2.11)

By the mode orthogonality relation, this equality always holds when

ZF = EET . (2.12)

Comparing this to our impedance matrix ζ, we find

ζζT = HT
0 ZFH0. (2.13)

2.2 Triangular lattice PCs
In the Letter we do not explicitly derive its Eqs. (3), the expressions for R
and T in terms of impedances. We do so in the next paper, and extend the
impedance definition to triangular lattice PCs, in which the lattice vectors
are not orthogonal. This fact complicates the up-down symmetry used to
relate forward and backward modes. For square and rectangular lattice PCs
with up-down symmetric unit cells, the matrix E may be applied to vectors
c+ of forward Bloch modes as well as to vectors c− of backward modes, to
find the field amplitude E‖ in each grating order.

For triangular lattices, in which each grating is displaced by dx/2 from
the prior, the matrices QE and QH must instead be used for backward
modes c−. The matrix Q is diagonal, consisting of alternating ±1 entries—
it represents the relative phase change between grating diffraction orders
associated with shifting the phase origin by dx/2.

This change complicates many things, including the mode orthogonality
relations Eq. (2.5), which for triangular lattices become

ETH + HTE = I (2.14a)

ETQH−HTQE = 0. (2.14b)

Note that relations for square or rectangular lattices may be retrieved from
Eqs. 2.14 by setting Q = I, although the implied normalisation of E and
H has changed by a factor 1/

√
2 each. We use this new normalisation in

Paper 2.3 and the remainder of this thesis, so that the orthogonality relations
for square and triangular lattices have similar forms.

As for the square case, the impedance is defined by semi-analytically cal-
culating the reflection and transmission at a PC-PC interface, then writing
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the resulting equation in terms of one matrix per PC, which is the PC’s
impedance. These two steps each pose challenges. The first step is not
entirely new—a method was presented for square lattice PCs that share a
background refractive index by Botten et al. [108]. In Sec. II B of the next
paper we present both steps but focus on the second, using a compact no-
tation that abstracts away some of the physics of the first step. Therefore
we now present a less abbreviated version of the first step, finding R and T
matrices.

2.2.1 Derivation of R12 and T12

The reflection and transmission at an interface between PCs, i.e. the re-
latationship between incoming and outgoing Bloch modes in the two PCs,
can be found directly by equating the tangential field components across the
interface. The interface between PCs is slightly nebulous: if the PCs share
a background medium then there is no physical interface, only an imaginary
line across which it makes more sense to represent the field by the other PC’s
Bloch modes. If the PCs do not share a background medium, then there is
also a dielectric interface. It is convenient to enforce field continuity across
the interface in the basis of grating orders: once in this basis the problem
may be decoupled into a set of problems that each only involve the forward
and backward plane waves associated with one diffraction order (Sec. 1.2.1).

We consider two adjacent PCs, with light incident from PC 1, i.e., we fix
c−2 = 0. Enforcing field continuity across the interface, we obtain

E1c
+
1 + QE1c

−
1 = E2c

+
2 (2.15a)

H1c
+
1 −QH1c

−
1 = H2c

+
2 . (2.15b)

From these equations we can find R12 and T12. First we find c+
2 in terms

of c+
1 , by calculating E1

T (2.15b)+H1
T (2.15a), then applying the orthogo-

nality relations (2.14) to obtain

c+
1 = (H1

TE2 + E1
TH2)c+

2 . (2.16)

Therefore,
T12 = (H1

TE2 + E1
TH2)−1. (2.17)

Similarly, to find R12 we seek an expression for c−1 in terms of c+
1 , by

calculating E2
TQ(2.15b)−H2

TQ(2.15a):

(H2
TQE1 −E2

TQH1)c+
1 + (H2

TE1 + E2
TH1)c−1 = 0. (2.18)

Rearranging, we see that

R12 = (H2
TE1 + E2

TH1)−1(H2
TQE1 −E2

TQH1). (2.19)

Here we derived expressions for R12 and T12 that require two matrices
per PC: E and H. Each of these matrices is half the original dimension of the
transfer matrix, so we have gained some efficiency by enforcing symmetry
between forward and backward modes. The framework is also more amenable
to physical insight than transfer or scattering matrices, as the amplitude of
each Bloch mode in the system is readily apparent and it is easy to enforce
conditions such as c−2 = 0. But in order to obtain an impedance, we must
find a single matrix per PC to do this job. We do this in Paper 2.3, which
follows.

A point of notational difference between this paper and the remainder of
the thesis is that for consistency with [108], in this paper we use α ≡ kx = k‖
and χ ≡ ky = k⊥.
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We give a rigorous semianalytical definition of impedance for square and triangular �hexagonal� lattice
two-dimensional photonic crystals �PCs�. Our impedance is a small matrix, derived from transfer matrices,
which stores the information required to calculate the reflection and the transmission between PCs. We apply
our definition to design PC antireflection coatings efficiently. This task is O�n� with the number of candidate
PCs as only one simulation per PC is required to find the impedances; the reflection and the transmission
properties of a large number of coatings may then be evaluated quickly using the impedances in a simple
matrix equation, in a way similar to the design of thin-film coatings. This is much faster than directly finding
the reflections and the transmissions between pairs of candidate PCs, which requires one simulation per pair, a
task that is O�n2�.

DOI: 10.1103/PhysRevA.80.023826 PACS number�s�: 42.70.Qs, 42.79.Wc

I. INTRODUCTION

Bulk two-dimensional photonic crystals �PCs� have sev-
eral in-band applications, including the use as superprisms
�1� and supercollimators �2�. In the photonic band gap, where
no light can propagate, bulk PCs are used as mirrors for solar
cells �3�. Unfortunately the interesting in-band properties of
bulk PCs often occur close to a band edge, and so are
plagued by large insertion loss. This not only degrades the
signal but also leads to stray light, thwarting the integration
of several such components into a device. The losses can be
reduced by adiabatic mode matching structures, which by
nature must be long, and therefore are unfriendly to minia-
turization. Alternatively the insertion loss may be reduced by
shorter �and thus more practical� antireflection coatings �Fig.
1�. These coatings work by introducing additional PC-PC
interfaces, carefully chosen to create additional reflections
that interfere destructively with the other reflections, leaving
zero or low net reflectance. In this paper we provide the tools
to find such coatings and demonstrate their utility by design-
ing three antireflection coatings.

If we aim to find a two-layer PC antireflection coating like
Fig. 1, considering m candidate PCs for each layer, then
there are m2 possible such coatings. Therefore, it is important
to be able to find the reflection and the transmission at
PC-PC interfaces quickly and efficiently. For uniform dielec-
trics, thin-film antireflection coatings are commonplace and
the essential tool in their design is impedance, or more spe-
cifically wave impedance, defined to be

Zw = E�/H� , �1�

where E� and H� are the field components tangential to the
interface. For isotropic nonmagnetic materials, Zw is in-
versely proportional to the refractive index n at normal inci-
dence; for the incident angle � it is proportional to either
n cos��� or n /cos��� depending on polarization, with the

vacuum impedance Z0 as the constant of proportionality. Im-
pedance is also defined for transmission lines and acoustics,
and in all these fields the reflection at an interface between
two media, traveling from medium 1 toward medium 2, is

r12 =
Z2/Z1 − 1

Z2/Z1 + 1
, �2�

where Zi is the wave impedance of medium i. Equation �2� is
equivalent to the Fresnel reflection coefficient.

An equivalent definition of impedance for photonic crys-
tals has not been forthcoming. There is one rigorous defini-
tion of scalar PC impedance �4�, but it is valid only at low
frequencies. In our previous work �5� we gave a rigorous
semianalytical matrix definition of impedance that is valid at
all frequencies and incident angles, but only for square lat-
tices. Here, we elaborate on our method and extend it to treat
triangular lattices and 45° rotated square lattices.

Previously �5� we set down three criteria for a useful
impedance—a PC’s impedance must:

�i� incorporate sufficient information about the PC to
yield the reflection and the transmission between it and any
other PC;

�ii� be uniquely defined for a PC at a given frequency,
incident angle, and polarization; and

*felix@physics.usyd.edu.au

FIG. 1. A PC with a two-layer coating. Light, represented by the
arrow, is incident from free space �FS� on the left. The first layer’s
PC is derived from the bulk PC by compressing its unit cell in the
y direction; the second layer’s PC is derived by stretching the unit
cell.
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�iii� be as compact as possible, i.e., easy to store.
When considering propagation in PCs, the Bloch �eigen-

mode� basis is the natural choice. Since each PC has a dif-
ferent set of propagating and evanescent Bloch modes, and
each mode in one PC may couple to several modes in an-
other PC, we need to consider several Bloch modes simulta-
neously for each PC. Therefore, transmission coefficients
must be replaced with transmission matrices mapping the
incident PC’s Bloch basis to the receiving PC’s basis, and
reflection coefficients should also be replaced with reflection
matrices, which change the basis from forward to backward
propagation or vice versa. As reflections and transmissions
are best represented by matrices, it is sensible to look for
matrix representations of the impedance.

Section II of this paper presents our definition of imped-
ance. In Sec. II A we define E, a matrix that maps Bloch
mode amplitudes to electric and magnetic field amplitudes in
the plane-wave basis and give reciprocity-based mode or-
thogonality relations for E. We derive impedance matrices in
Sec. II B by considering a PC-PC interface and deriving ex-
pressions for the reflection and the transmission matrices in
either direction, using the PCs’ E matrices to enforce field
continuity. From these expressions we eventually obtain im-
pedance matrices for each PC. In Sec. III we apply our defi-
nition to design antireflection coatings for two PCs. We de-
sign single-frequency V coatings that reduce near-unit
reflectance to 10−3, as well as multifrequency antireflection
coatings that reduce reflections over a chosen frequency
range. We conclude in Sec. IV by interpreting our impedance
and discussing its similarities and differences to conventional
wave impedance.

II. THEORY

Our approach is a semianalytical least-squares based
method. The basis change matrix between each PC’s Bloch
basis and the plane-wave basis, found numerically using a
transfer-matrix method �6�, is used analytically to solve for
reflections and transmissions and find an impedance. In prac-
tice we work with a truncated set of modes and a less
strongly truncated set of plane waves, so the basis change
matrix is actually a projection and our results are least-
squares approximations that exploit the orthogonality of
modes.

Our conventions are that the z axis points out of the plane
in which dielectric constant varies with position, and the x
axis is parallel to the interface between PCs �Fig. 1�. In each
instance we consider incident light propagating at a given
frequency and incident angle �to the y axis� and polarized
with either the E or the H field pointing out of the lattice
plane.

We consider the photonic crystal to be a stack of gratings,
each of which scatters light into a countably infinite set of
plane-wave diffraction orders s, which are given by the grat-
ing equation

�s = �0 +
2�s

d
, s = 0, � 1, � 2, . . . , �3�

where d is the period along the grating and �s= �ks�x
=k sin �s with k as the wave number in the background me-

dium and �s as the diffraction angle �when real�. Note that,
for incident angle �i, the zeroth diffracted order has �0
=k sin �i.

To find the quantities needed for the impedance definition,
we use a numerical transfer-matrix method �7�. The transfer
matrix T encapsulates the scattering properties of a
grating—a one-period layer of the PC. It maps a vector of
incident and outgoing plane-wave coefficients on one side of
a PC’s unit cell to the corresponding vector on the other side
of the unit cell. The plane waves represented in this vector
are the propagating and the evanescent grating diffraction
orders. For perfect accuracy, dim�T� must be infinite; how-
ever, in practice we truncate T to consider only the propagat-
ing and slowly evanescent plane waves—we ignore any that
decay across the unit cell by more than a factor of 105. The
transfer matrix T is diagonalized to give a diagonal matrix of
Bloch factors and a matrix of eigenvectors F in which each
column represents a Bloch mode and each row represents a
plane wave. In Secs. II A and II B, the impedance matrix Z
is defined from F. We may optionally make a second trun-
cation, removing the columns of F that correspond to the
most strongly evanescent modes—this approximation re-
duces the dimension of the impedance matrix Z, which is a
square matrix with dimension equal to half the number of
columns in F. We now explain this procedure more fully.

A. Nomenclature and orthogonality

We expand the field in each PC in terms of its propagating
and evanescent Bloch modes. Following Botten et al. �6�, we
partition the modes into forward and backward sets by the
direction of energy transport �for propagating modes� or de-
cay �for evanescent modes�. At any given frequency, incident
angle, and polarization, there is a countable infinity of
modes, but in most circumstances only a handful propagate.
We truncate the set of Bloch modes to the propagating and
most slowly evanescent modes, as the strongly evanescent
modes are not important.

Each Bloch mode can be expanded in the plane-wave ba-
sis of grating diffraction orders s. In the Ez polarization
where the E field is out of plane, the field Ez about the
interface due to a given mode m is

Ezm�r� = �
s=−�

�

Ys
−1/2�fm,s

+ ei�sy + fm,s
− e−i�sy�ei�sx, �4�

where fm,s
+ and fm,s

− are the coefficients of the plane waves of
diffraction order s, respectively, in the +y and the −y direc-
tions; �s= �ks�y =�k2−�s

2; and Ys=�s / ���0� is the wave ad-
mittance for plane-wave order s, i.e., Ys=�	 /�0 cos��s�,
where the possibly complex �s is found from �s, determined
by the grating equation �3�. For propagating diffraction or-
ders, Ys is the ratio of field components in the grating plane,
H� /E�. The coefficient Ys

−1/2 was chosen so that for the propa-
gating orders, fm,s

� are normalized to unit flux with a compa-
rable normalization for the contrapropagating evanescent
modes �7�.

From Maxwell’s equations we can derive
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Hxm�r� = �
s=−�

�

Ys
+1/2�fm,s

+ ei�sy − fm,s
− e−i�sy�ei�sx, �5�

where we use the relation �s / ���0�=Ys. For the other polar-
ization Hz, an expression for Hzm�r� may be obtained from
the right-hand side �RHS� of Eq. �4� by replacing Ys with the
wave impedance Zs=��0 /	 cos��s�, and Exm�r� can be found
from the RHS of Eq. �5� by replacing Ys

+1/2 with −Zs
+1/2.

For the forward modes, we write down F+, the matrix of
coefficients fm,s

+ that maps forward Bloch mode amplitudes to
forward plane-wave amplitudes. Similarly, to map forward
Bloch mode amplitudes to backward plane-wave amplitudes,
we write down F− from fm,s

− . We denote the corresponding
matrices for backward modes with a prime: F+� and F−�. Com-
bining these into the matrix

F = �F+ F+�

F− F−�
	 , �6�

we have the matrix of eigenvectors for the transfer matrix T
of a single grating layer, i.e., T=FLF−1, where L is a diag-
onal matrix of Bloch factors �7�. In practice F is found by
diagonalizing the transfer matrix T using standard eigenvalue
methods.

For a square or a triangular lattice photonic crystal with a
180° rotationally symmetric unit cell, the backward modes
are related to the forward modes as follows:

F = �F+ QF−

F− QF+
	 , �7�

where Q is a diagonal matrix of plane-wave phase factors
that encapsulates the deviation from a rectangular lattice. For
a square or a rectangular lattice Q=I, and for triangular and
45° rotated square lattices, or indeed any case in which every
grating is displaced by half a period from the preceding grat-
ing, Q=diag�eis��. The mode orthogonality relations that we
use here are based on reciprocity, which manifests itself in
the symplectic nature of the transfer matrix �7�. The orthogo-
nality relations yield

FTKQF = KI, �8�

where KQ= � 0 Q
−Q 0 � and KI= � 0 I

−I 0 �. One can also derive or-
thogonality relations based on energy conservation that in-
volve Hermitian transposes, but we use reciprocity-based re-
lations because they are more general, i.e., applicable to both
lossy and lossless media.

To map Bloch mode amplitudes to plane-wave field com-
ponents, we introduce a matrix inspired by Eqs. �4� and �5� at
y=0 �the interface between layers�, with the x factor left out
and the terms in the sum for Bloch mode m separated into a
vector. These vectors for the various Bloch modes are as-
sembled into a matrix that maps Bloch modes to plane
waves, which for the Ez polarization takes the form

Ei = �Ei QEi

Hi − QHi
	 = �Y−1/2 0

0 Y+1/2 	IF , �9�

where I=1 /�2� I I
I −I � and Y=diag�Ys�. Ei and Hi, respec-

tively, map PC i’s forward Bloch mode amplitudes to vectors

of Ez and Hx field components, where each element of the
vector is a field component for a different diffraction order.
These tangential field components are continuous across PC
interfaces: Ei maps PC i’s forward and backward Bloch mode
amplitudes to the plane-wave diffraction order field compo-
nents that we equate when calculating reflections and trans-
missions.

For Hz polarization, where impedances Z=diag�Zs� re-
place admittances Y, we similarly define

Ei = � Hi QHi

− Ei QEi
	 = �Z−1/2 0

0 Z+1/2 	IF . �10�

In either polarization, the Bloch mode orthogonality relations
�8� can be rewritten as

KIETKQE = I . �11�

As the set of Bloch modes is truncated to a greater extent
than the set of plane waves, E is generally not square, so Eq.
�11� provides a left inverse for E.

To find an approximate right inverse for E, we invert the
full rank EF= �E 
ED�, where ED are columns corresponding to
the modes dropped from the truncated set. Using Eq. �11� it
can be shown that

EKIETKQ = I − EDKIED
T KQ. �12�

Our impedance definition neglects terms involving the
dropped modes ED; we include them here, so that we can
check the validity of this approximation in Sec. III. We are
now suitably equipped to calculate interface reflections and
search for an impedance.

B. Impedance derivation

We specify the field in each PC as vectors of Bloch mode

amplitudes, e.g., c1= �
c1

+

c1
− �, in which c1

+ and c1
−, respectively,

contain the forward and the backward Bloch mode ampli-
tudes in PC 1. The reflection and the transmission matrices at
an interface between PC 1 and PC 2, for light incident from
PC 1, are R12 and T12, respectively. Note that R12�R21;
indeed, these matrices are not even comparable as they op-
erate on different Bloch bases. By definition of Rij and Tij,

c1
− = R12c1

+ + T21c2
−, �13a�

c2
+ = R21c2

− + T12c1
+. �13b�

We want to find expressions for R12 and T12 in terms of
separate “impedance” matrices for the general PC 1 and PC
2. We start by equating the tangential field components,
which are continuous across the interface, to find the outgo-
ing modes c1

− and c1
+ from the incident modes c1

+ and c2
−.

Formally, we set

E1c1 = E2c2, �14�

where E for each region was defined in Eqs. �9� and �10� for
the Ez and the Hz polarizations, respectively. Since Eq. �14�
is exact only at full rank, we proceed in a least-squares sense,
projecting Eq. �14� onto the basis of modes for either PC 1 or
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2. Using the orthogonality relations �11�, we may isolate Ic1
and Ic2 that contain symmetrized and antisymmetrized
forms

Ic1 = IKIE1
TKQE2c2 = �A12 0

0 B12
	Ic2, �15a�

Ic2 = IKIE2
TKQE1c1 = �A21 0

0 B21
	Ic1. �15b�

Respectively, these may be written as

c1
+ + c1

− = A12�c2
+ + c2

−� , �16a�

c1
+ − c1

− = B12�c2
+ − c2

−� , �16b�

and

c2
+ + c2

− = A21�c1
+ + c1

−� �17a�

c2
+ − c2

− = B21�c1
+ − c1

−� , �17b�

where in Ez polarization

Aij = Hi
T�I + Q�E j + Ei

T�I − Q�H j , �18a�

Bij = Hi
T�I − Q�E j + Ei

T�I + Q�H j . �18b�

For Hz polarization the definitions of Aij and Bij are swapped
and of opposite sign. A quick inspection yields the useful
relation

Aij = B ji
T , �19�

which allows us to rewrite Eqs. �17a� and �16b� in terms of
B12

T and A12
T , respectively.

At full rank, Eqs. �15� hold simultaneously. Substituting
Eq. �15b� into Eq. �15a� and using Eq. �19�, we see that
A12B12

T =I. However, when the mode bases have been trun-
cated, generally at most two of Eqs. �16� and �17� may hold
simultaneously. To find the impedance in terms of A12, we
adopt a hybrid scheme, which analytically preserves energy
conservation, and use Eqs. �16a� and �17b�.

Substituting Eqs. �13� into Eqs. �16a� and �17b� and rear-
ranging, we find the reflection and the transmission matrices
as

T12 = 2A12
T �A12A12

T + I�−1, �20a�

R12 = �A12A12
T − I��A12A12

T + I�−1. �20b�

Similar expressions involving B12 may be found using Eqs.
�16b� and �17a�:

T12 = 2B12
T �I + B12B12

T �−1, �21a�

R12 = �I − B12B12
T ��I + B12B12

T �−1. �21b�

Looking at our expressions for R12 and comparing them
to Eq. �2�, we would like to write A12A12

T =Z1Z2
−1 or

B12B12
T =Z2Z1

−1 for some impedance matrices Z1 and Z2.
However, by inspection of the structures of A12 and B12 it is
clear that this is generally not possible because the matrices

from PC 1 and PC 2 are entangled, i.e., they do not com-
mute. This is further discussed in Sec. IV.

Instead, we separate A12 into a Z1 and a Z2 by deriving a
transitivity property and choosing a reference PC. Consider
the interface between some PC j and the reference PC 0. If
we imagine there to be a null sliver of another PC, PC i, at
this interface, then like Eq. �14� we may equate E0c0=Eici
and Eici=E jc j and write, in analog to Eq. �16a�,

c0
+ + c0

− = A0i�ci
+ + ci

−� , �22a�

ci
+ + ci

− = Aij�c j
+ + c j

−� . �22b�

Substituting Eq. �22b� into Eq. �22a� and comparing the re-
sult to Eq. �16a�, we hypothesize that A0j =A0iAij. This rela-
tion may be shown more rigorously by considering the ma-
trix

�A0iAij 0

0 B0iBij
	 = I�KIE0

TKQEi��KIEi
TKQE j�I . �23�

Applying Eq. �12�, we see that the RHS of Eq. �23� collapses
to

I�KIE0
TKQE j�I = �A0j 0

0 B0j
	 �24�

when E0
TKQEDiKIEDi

T KQE j =0, i.e., at the full rank. For trun-
cated mode sets, this error term is small when the modes of
PC 0 and/or PC j are well represented by the modes of PC i.
In practice E0

TKQEDi�0 is an easily calculated sufficient con-
dition for Eq. �24� to hold. We conclude by equating Eqs.
�23� and �24� and rearranging to define

Aij ª A0i
−1A0j , �25a�

Bij ª B0i
−1B0j . �25b�

As A0i is independent of PC j and depends only on the
fixed reference PC 0, we may rigorously define the imped-
ance of PC i to be Zi=A0i and its admittance to be Yi=B0i,
i.e.,

Zi = H0
T�I + Q�Ei + E0

T�I − Q�Hi, �26a�

Yi = H0
T�I − Q�Ei + E0

T�I + Q�Hi. �26b�

Using Eqs. �20a�, �20b�, and �25a� we find that when light
is incident from some PC i onto some PC j the reflection and
the transmission matrices in terms of impedance are

Tij = 2�Zi
−1Z j�T��Zi

−1Z j��Zi
−1Z j�T + I�−1, �27a�

Rij = ��Zi
−1Z j��Zi

−1Z j�T − I���Zi
−1Z j��Zi

−1Z j�T + I�−1.

�27b�

Similar equations in terms of admittances are also easy to
derive from Eqs. �20a� and �20b� using the Bij version. We
have found no reason, theoretical or numerical, to prefer the
use of Z over Y or vice versa.

The impedance Zi is sufficient to find reflection and trans-
mission. For fixed PC 0 it is defined uniquely, and its dimen-
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sion is equal to the size of the truncated Bloch basis, which
�for the PC structures considered here� is usually less than
five modes in each direction, so it is also compact. Therefore,
this definition fulfills all three criteria to be a useful imped-
ance.

III. APPLICATION

To show the utility of our definition, we use it to design
antireflection coatings for PCs. This is a practical test for the
impedance definition; if the impedance definition was incor-
rect, then the coatings designed using this formulation would
not work. Any incorrectly calculated reflection coefficient
invalidates the net reflection off the coated structure. We use
our impedance definition to design a coating consisting of
two thin PC layers such that the overall structure �Fig. 1� has
near-zero net reflectance at a target frequency, incident angle,
and polarization. We aim to emulate a two-layer thin-film V
coating. Such a coating is usually found by fixing the layers’
refractive indices and continuously varying their thicknesses
until the reflections off each interface cancel, leaving zero
net reflection over a narrow frequency range. Two degrees of
freedom �i.e., two layers� are required as both the phases and
the amplitudes of the reflections must be controlled. For thin
films, the reflection off a dielectric with an arbitrary two-
layer coating is


 =
r12 + �2

2r23 + �2
2�3

2r34 + �3
2r12r23r34

1 + �2
2r12r23 + �2

2�3
2r12r34 + �3

2r23r34
, �28�

where rij is the reflection in layer i off layer j; and �i=ei�i,
where �i is the phase change across layer i �8�. For fixed rij,
i.e., fixed ni, a V coating may be found analytically by solv-
ing 
=0 for �1 and �2. The layer thicknesses may easily be
found from �i.

Equation �28� does not generally apply to PCs as they
have multiple modes, so require matrix rather than scalar
representations of reflection and transmission quantities. A
matrix equation analogous to Eq. �28� may be derived for
PCs, and we use it to find antireflection coatings, i.e., coat-
ings that have low reflection into propagating plane waves. A
PC layer’s thickness may not be varied continuously without
changing the PC’s impedance; any PC must be an integer
number of unit cells thick. Therefore we cannot solve the
equation solely by manipulating phase factors as is done for
thin films. So, instead of fixing the layer materials and solv-
ing for the thicknesses, we set the layers to be a fixed number
of unit cells thick �e.g., both layers in Fig. 1 are one unit cell
thick� and solve for the PC in each layer.

There are many useful continuous degrees of freedom for
the PC: the radius, the shape, or the refractive index of the
inclusion or the thickness of the unit cell. We choose the last
option: leaving the shape of the inclusions unchanged, we
vary one lattice vector while holding the transverse lattice
vector constant. This degree of freedom was chosen because,
experimentally, the hole position is easier to control than the
hole size or shape.

Both Rij and �i depend on the choice of PC i, so it is hard
to solve for zero reflection analytically. Any attempt would

involve solving a transcendental matrix equation to find the
required impedances, followed by the inverse problem of
finding PCs that have the required impedances. Instead we
use our method’s advantage: once we know each PC’s im-
pedance, it is easy to find the reflection and the transmission
matrices. We therefore generate a database of impedances
and Bloch factors for many PCs, which we use to do an
exhaustive search over all coatings made from PCs in the
database and choose the coating with the lowest reflection.

Without the impedance database, at best we would have to
calculate the reflection between each pair of PCs individually
before starting the search—with m PCs, this requires m�m
−1� simulations so it is a computationally intensive task.
Generating the database however takes only m simulations,
one per PC. Once we have the database, we can calculate the
m�m−1� reflection and transmission matrices using Eqs.
�27�, which are almost instantaneous compared to a simula-
tion. Using the database, these equations, and the matrix ver-
sion of Eq. �28�, a search over a large number of possible
coatings for low reflection is easily performed.

A. V coating

The first PC that we coat is a triangular lattice of cylin-
drical air holes, with the interface in the -K direction. Its
background index is 2.86 and it has a hole radius of 0.25d,
where d is the lattice constant. We coat it for Ez polarized
light with frequency d /�=0.38, incident from free space
�FS� with angle 30°. Under these conditions the uncoated
reflectance is R=0.94. We consider unit cells up to 1.8 times
as thick as the regular lattice.

Before generating a database of PC impedances, it re-
mains to choose the impedance matrix dimension. In the
PC’s background material there are two propagating plane-
wave solutions to the grating equation, both of which are
generally involved in propagating Bloch modes, so scalar
impedances are grossly insufficient. Indeed, for scalar im-
pedances the error term ED0

T KQEt �where t denotes the target
PC� has an element of unit magnitude, so this level of ap-
proximation is likely unacceptable. For 2�2 impedance ma-
trices, an element of ED0

T KQEt has a magnitude of 0.27,
which is also too large. Instead, we use Z matrices of dimen-
sion 3, for which the largest element in ED0

T KQEt is less than
0.03.

We perform an exhaustive search over 15 129 different
two-layer coatings with both coating layers arbitrarily chosen
to be one unit cell wide �like Fig. 1�. This search took less
than 1 min on a desktop computer, including database com-
putation. We find that for a coating with layer cell thick-
nesses d1=1.52��3 /2�d and d2=0.67��3 /2�d �the regular tri-
angular lattice cell thickness is ��3 /2�d�, the net reflection at
the target frequency is virtually eliminated: R�10−3. Fields
in the structure for the target wavelength are given in Fig. 2,
and the coating’s antireflection property is confirmed by cal-
culations at full rank �Fig. 3�.

If we try this with scalar impedances, ignoring the large
error term ED0

T KQEt, then we obtain manifestly incorrect re-
flection coefficients and no valid coating is found due to
inaccuracies arising from dropped modes. With 2�2 Z ma-
trices we find a useful but imperfect coating.
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B. Multifrequency coating

Next, we coat the PC from Sec. III A to have low reflec-
tance across the range of frequencies d /�� �0.37,0.39�. Our
algorithm is simple: we choose m candidate PCs and con-
sider a large number of coatings at multiple frequencies
across the desired range. We choose the coating that most
consistently minimizes the net reflection at each frequency,
i.e., the coating that has the lowest maximum reflectance at
the frequencies considered.

We consider m=72 candidate layer PCs, which are the
same as the bulk PC except for the length of one lattice
vector, as in Sec. III A. Each PC layer is chosen to be one
unit cell wide. We work at 11 different frequencies, evenly
spaced across the range d /�� �0.37,0.39�. As designing a
broadband coating is harder than designing a coating for a
single frequency, in order to get satisfactory results we use
an extra degree of freedom: a third coating layer. This in-
creases the number of possible coatings by a factor m to a
total of 11m3=4 105 728 reflectance calculations. With this
many calculations, our fast impedance method for calculat-
ing coating reflectances is essential.

First, we generate a database of the 11m=792 imped-
ances. We could build on the impedance database of Sec.
III A if we wished, but generating this database from scratch
takes about 1 min on a desktop computer. Calculating all the
reflectances takes a considerably longer time, 4.6 h �4.1 ms
per coating per frequency�, and we find that the optimal coat-
ing for our above criterion has cell thicknesses d1

=1.09��3 /2�d, d2=0.62��3 /2�d, and d3=0.81��3 /2�d. The
maximum reflectance among the 11 frequencies is 0.12. The
coating’s reflection spectrum calculated at full rank �Fig. 4�
confirms that we have found a broadband antireflection coat-
ing.

C. Superprism V coating 1

Our next coating is for a superprism presented by Matsu-
moto et al. �1�, which consists of air holes in a square lattice
rotated by 45°. Considering this lattice as a stack of gratings,
every second grating is shifted by d /2, so Q=diag�eis�� as
for a triangular lattice. The background index is 2.963, and
the hole radius is 0.312d. The light is incident in Hz polar-
ization from the background material at an incident angle of
10° to the normal. The PC acts as a superprism for frequen-
cies d /�� �0.295,0.315�, and we choose d /�=0.31 as our
target. At this frequency there are three propagating modes in
the incident dielectric and one in the superprism itself. It is
noted in the original paper that without an antireflection
structure virtually no light couples into the PC—we find that
for the uncoated structure R=0.93.

Following the same procedure as above, again choosing
dim�Z�=3, we search over 48 841 two-layer coatings with
each layer one unit cell wide, taking 2.5 min on a desktop
computer. The lowest reflectance we find in this set of coat-
ings is R=0.43; the phase change across each layer is not
enough to control the net reflection adequately. Instead, we
search for a coating with an outer layer two unit cells wide
and an inner layer one unit cell wide. Naturally this step does
not require us to recalculate our database of impedances. We
find a coating with R=0.05 at the target frequency �Fig. 5�.
The coating has cell thicknesses d1= �2.65 /�2�d and d2
= �3.04 /�2�d, compared to the regular lattice with �1 /�2�d.
The feature around d /�=0.31 is due to a Fabry-Perot-like
resonance inside the coating.

D. Superprism V coating 2

The coating in Sec. III C is not as successful as that in
Sec. III A. This is because there are three propagating dif-

FIG. 2. �Color online� Re�Ez� for PC with antireflection coating.
Ez polarized light at d /�=0.38 is incident at �i=30° from FS onto
the structure. The flat wave fronts in free space indicate low
reflectance.

FIG. 3. �Color online� Reflection spectrum of a PC with �solid
line� and without �dashed line� a two-layer coating designed for
d /�=0.38 and �i=30°.

FIG. 4. �Color online� Reflection spectrum of a PC with �solid
line� and without �dashed line� a three-layer coating designed to
minimize the maximum reflectance over the frequency range d /�
� �0.37,0.39� with �i=30°.
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fraction orders in the incident medium at d /�=0.31 and �i
=10°, and an antireflection coating must suppress the reflec-
tions into each of these channels. Individually, each order
requires two degrees of freedom for reflections to be elimi-
nated. To show that there is nothing intrinsically difficult
about coating the superprism itself for a single frequency, we
now find a coating for an incident medium with n=1, which
only has a single propagating diffraction order. We set �i
=30.97 to keep �0, the quantity conserved by Snell’s law, the
same as in Sec. III C. We may use the impedance database
generated in Sec. III C; the only new impedance we must
calculate is that of free space, the new incident medium—an
easy task.

Searching for a two-layer coating with layers a single unit
cell thick and dim�Z�=3, we find that for a coating with cell
thicknesses d1= �1.43 /�2�d and d2= �1.83 /�2�d the reflectiv-
ity drops from R=0.996 �compared to R=0.93 in Sec. III C
for the same PC incident from a n=2.963 dielectric� to R
=0.001. Figure 6, generated at full rank, confirms that this
coating not only provides a deeper reflection minimum than
that in Sec. III C, but also one with a larger bandwidth.

E. Superprism multifrequency coating

Now we design a three-layer multifrequency coating the
PC from Secs. III C and III D for light incident from free
space. We follow the procedure from Sec. III B, minimizing
the reflectance at 15 evenly spaced frequencies in d /�
� �0.295,0.315�, the range in which the PC acts as a super-
prism �1�.

After 2 min to generate the impedance database, and a
further 2 h to evaluate all 125 000 coatings at the 15 frequen-
cies �3.7 ms per coating per frequency�, we find a coating
that reduces the reflection to a maximum of R=0.194 at the
frequencies sampled. This coating has d1= �1.62 /�2�d, d2
= �1.32 /�2�d, and d3= �2.07 /�2�d, and its reflection spec-
trum calculated at full rank is plotted in Fig. 7. The
dim�Z�=3 results deviate slightly from the full rank results,
so potentially one might find a marginally better coating us-
ing larger impedance matrices; but in the interests of compu-
tational efficiency, dim�Z�=3 impedances are adequate.

F. Confirmation of results

Our impedance is rigorously defined using quantities
found by a Bloch mode transfer-matrix method �7� that has
previously been shown to be accurate �9�. It is also of interest
to be able to compare its results with those from a purely
numerical and general purpose commercial package, such as
COMSOL MULTIPHYSICS. It is difficult to simulate semi-
infinite PCs in COMSOL, since a perfectly matched layer for a
PC must emit backward-scattered plane waves in order to
absorb the forward traveling Bloch modes without reflection.
Therefore, we simulate a different structure based on that in
Sec. III D.

We consider a thick �14 period� layer of the superprism in
Sec. III D, surrounded by FS, and design antireflection coat-
ings at d /�=0.31 for the front and the back interfaces. For
the front FS-PC interface, we use the coating from Sec. III D,
which has d1= �1.43 /�2�d and d2= �1.83 /�2�d. For the
PC-FS interface, the optimal coating is found to have d1
= �1.83 /�2�d and d2= �1.43 /�2�d, which is the reverse of the
FS-PC coating. This symmetry follows from reciprocity in

FIG. 5. �Color online� Reflection spectrum of the Matsumoto
superprism �1� with �solid line� and without �dashed line� a two
layer coating, incident from n=2.963 dielectric. R is reduced from
0.90 to 0.05 at d /�=0.31.

FIG. 6. �Color online� Reflection spectrum of the Matsumoto
superprism �1� with �solid line� and without �dashed line� a two
layer coating for d /�=0.31, incident from n=1 dielectric. R is re-
duced from 0.996 to 0.001.

FIG. 7. �Color online� Reflection spectrum of the Matsumoto
superprism �1� with �solid line� and without �dashed line� a three
layer coating, incident from n=1 dielectric. R is minimized over the
range d /�� �0.295,0.315�.
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cases such as this, where the PC only supports one propagat-
ing mode. Note that the coatings are independent of the
thickness of the superprism layer.

Since both interfaces have antireflection coatings for
d /�=0.31, we expect the overall structure to have near-zero
reflectance at this frequency. The reflectance spectrum of the
structure, as calculated using our transfer-matrix method and
also by the commercial package COMSOL MULTIPHYSICS, is
presented in Fig. 8. The COMSOL results are less accurate,
being generated by a method not specifically developed for
structures like those considered here. Nevertheless they agree
well with the Bloch method, and in particular both methods
show near-zero reflectance at d /�=0.31, demonstrating that
the antireflection coatings work, and that both computational
methods are functioning to a good accuracy.

IV. DISCUSSION AND CONCLUSION

In Sec. III we successfully used our impedance to design
antireflection coatings. Impedance may also be used to de-
sign coatings with other reflective properties—instead of se-
lecting the coating with lowest reflection, if we wanted to we
could select the coating that best reflects or transmits into a
particular mode, or the coating that acts most like a beam
splitter. With additional degrees of freedom, we could not
only design broadband antireflection coatings, but also polar-
ization filters. We could also design a coating for a PC mirror
in a solar cell �3�, so that it reflects the majority of light into
the most effectively absorbed modes. The impedance defini-
tion’s great benefit is that it allows a fast calculation of re-
flection and transmission matrices for large numbers of PC
coatings—this collection of coating properties can then be
searched for whatever behavior is desired.

The coatings in Secs. III D and III E, where light was
incident from free space, were more successful at coating the
superprism than the coating in Sec. III C, in which light was
incident from a high index dielectric. In Sec. III D we at-
tribute this difference in coating quality to the number of
propagating modes in the incident medium �one in free space

and three in the high index background� and note that, when-
ever practicable, the incident medium should be chosen to
have as few propagating modes as possible at the operating
frequency. This does not preclude the presence of a high
index dielectric layer in front of the coating �although if this
layer were thick it might limit the coating’s bandwidth�, but
crucially this high index region must be considered to be part
of the coating, not the input medium.

Our impedance definition makes two restrictions on PC
properties. First, it applies only to PCs with a lattice that can
be considered a stack of gratings with each grating either
unshifted or shifted by half a period with respect to its pre-
decessor. Such lattices have the property that Q2=I, which is
necessary to derive the impedance in a relatively simple
form. In Sec. III we applied the definition to coating PCs that
were distortions of the regular triangular lattice, but main-
tained the half-period grating shift.

The second restriction is that the PC’s unit cell must be
symmetric under 180° rotation, so that the backward modes
are related to the forward modes, i.e., F+�=QF− and F−�
=QF+. In Sec. III we only considered circular inclusions, but
the definition is valid for unit cells with any pattern or shape
of inclusions as long as the symmetry condition is met. Us-
ing supercells, PC waveguides would satisfy both restric-
tions.

Defining each PC’s impedance with respect to a fixed PC
0 may seem awkward, but it parallels how a dielectric’s re-
fractive index n is defined as the ratio of the admittances of
the dielectric and free space. However, using such relative
impedances does introduce another approximation when the
mode set is truncated, because an extra set of projections
needs to be made. The modes of free space are simply plane
waves, so when free space is our reference medium we
project each PC’s modes onto a truncated set of plane waves,
which effectively limits the number of plane waves in the
calculation to the size of the truncated Bloch set. This sug-
gests that free space or a uniform dielectric might not be a
practical reference medium for problems where there are few
propagating Bloch modes but the modes consist of many
plane-wave orders—in these cases one of the candidate PCs
for the coating might be a more suitable reference.

The key difference between our matrix impedance and the
conventional scalar impedance comes from noncommutativ-
ity: for square lattices, in which Q=I and Zi simplifies to
2H0

TEi, one can use the mode orthogonality relations �11� to
show that, at full rank, Zi=E0

−1Ei, Yi=H0
−1Hi, and

�Zi
−1Z j��Zi

−1Z j�T = �Ei
−1E j��H j

−1Hi� . �29�

Due to noncommutativity, this matrix product from Eqs. �27�
cannot be written as a simple product of two impedances like
its scalar counterpart Zj /Zi from Eq. �2�. This noncommuta-
tivity is understandable because Rij maps PC i’s Bloch
modes to themselves, whereas Rji operates on PC j’s modes.
Written in terms of fields, the scalar counterpart of Eq. �29�
is

Zj/Zi = �Ej/Hj��Hi/Ei� , �30�

where the � subscripts are omitted for clarity. Comparing
Eqs. �29� and �30� suggests that the ratios Ei /Ej and Hi /Hj,

FIG. 8. �Color online� Reflectance of a 14-period layer of Mat-
sumoto superprism �1�, incident from and transmitting into n=1
dielectric, and coated on both sides to minimize R for d /�=0.31.
There is a good agreement between our method’s results and those
from COMSOL MULTIPHYSICS.
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both dimensionless quantities, are more general than the tra-
ditional impedances Zi=Ei /Hi; for dielectrics we can only
define the dimensional impedance Zi because the field scalars
in Eq. �29� commute to give Eq. �30�.

The Bloch modes of uniform dielectrics are simply plane
waves, so F+ is a permutation of the identity matrix and F−
=0. In this case, Ei and Hi may be written as diagonal ma-
trices of square roots and reciprocal square roots of wave
impedances. These diagonal matrices commute, which ex-
plains why such matrix impedances are not required for uni-
form dielectrics.

In conclusion we have rigorously defined both an imped-
ance Z and an admittance Y for square and triangular lattice
photonic crystals. This matrix impedance plays the same role
as a conventional scalar wave impedance, in that it may be

used to calculate the reflection at an impedance mismatch. It
even plays this role in an analogous way to the scalar
impedance—the impedance mismatch equation �27b� is
similar to the scalar impedance mismatch equation �2�. We
successfully applied our definition to design antireflection
coatings for photonic crystals efficiently, which demonstrates
the utility of our definition.
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In Letter 2.1 and Paper 2.3 we not only show that our impedance method
can calculate reflection and transmission matrices, but we also demonstrate
a practical application for the method: the design of antireflection coatings.
The impedance method accurately and efficiently calculates the reflectance
of the coated structures, which can include one-period-thick PC layers and
semi-infinite PCs. One of the designed coatings was verified by an indepen-
dent method using commercial software. The only other PC impedance that
has been used “in anger” without a separate optimisation step is that of Miri
et al. [62], who also verified one of our coatings to within round-off of our
parameter space. However, their method only works at frequencies below
the first Wood anomaly.

Since the publication of Letter 2.1 and Paper 2.3, we noticed that at
normal incidence, Bloch modes consisting of odd superpositions of grating
orders are weakly coupled to. These modes are uncoupled -to for symmetry
reasons: given a normally incident plane wave the entire system is symmetric
about the y axis. This is not a new observation [147–149], but is a useful one:
uncoupled modes may be truncated from E and H, reducing the dimension
of the impedance matrix with minimal penalty to accuracy.2

In Letter 2.1, the degree of freedom used in both coatings was the hole
radius r. In Paper 2.3, we turned our attention to hole shifting, modifying
the lattice vector e2 to build our cast of candidate PCs, and we ran separate
multipole simulations for each candidate PC to find its Bloch factors and
impedance. We later realised that it is unnecessary to run separate simula-
tions for coating layers that differ only in their lattice vector e2: instead, we
can simulate only the PC with the shortest e2, place lengths of uniform di-
electric between the PC layers, and vary the dielectric’s length, which can be
done analytically—a trick discussed in Paper 3.1. In this way, a coating may
be designed that only requires one computationally expensive simulation to
evaluate all the coating PCs. There is a choice between two concepts here:
the layers in a coating can be thought of as one-period layers of different
candidate PCs, or they can be thought of as identical gratings separated by
different thicknesses of dielectric, a multilayer generalisation of the coating
design of Lee et al. [59] (Fig. 1.2). If the first paradigm is preferred, then it
would also be possible to calculate the impedances of each of the candidate
PCs from the transfer matrix T of one grating, by analytically adding phase
to either side of the grating before diagonalising T to find F , E, H, the
impedance Z and the Bloch factors.

In Sec. III C of Paper 2.3, we attempted to design an antireflection coat-
ing at a frequency above the first Wood anomaly in the incident medium,
where light was reflected into three grating orders. We found a narrow-
band coating that reduced reflection but did not eliminate it, and instead
set ourselves the easier task in Sec. III D of designing a coating for the same
PC, incident from air, where there is only one reflected order. At this fre-
quency, it is easier to design an effective coating when incident from air,
because fewer reflections need to be suppressed. Because multiple grating
orders propagate inside the PC, the problem still requires impedance ma-
trices rather than scalars. Our impedance method is capable of designing
antireflection coatings that suppress reflection into more than one diffraction
order—although such coatings require more degrees of freedom. We present
such a coating in Sec. IV C of Paper 3.1, which we now introduce.

2A note of caution: the E0 and H0 matrices of the reference medium must also be
truncated, removing the odd modes. If the reference medium is free space, then this
requires writing E0 and H0 not as diagonal matrices of grating orders, but as matrices of
odd and even superpositions of the degenerate grating orders, as discussed in Appendix A.
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Chapter 3

Impedance extraction from
field scattering data

So far, we have defined impedance in terms of the transfer matrix T of
a grating. We have calculated T using in-house code that is not publi-
cally available: either by finite element methods [110] or using the multipole
method and lattice sums [111]. Implementing such methods requires a sub-
stantial investment of time and expertise, which presents a significant barrier
to adoption of PC impedances. Indeed, since publication of Papers 2.1 and
2.3, a number of scalar impedance definitions and coating design techniques
have been proposed or applied that are less powerful than ours, but that are
easier to calculate with generic tools [62, 150].

Therefore, I developed a method to calculate PC impedances from the
scattered field in a finite length of PC. As noted in Paper 3.1, this field
data can be produced by widely available FDTD or FEM software, or even
measured experimentally with a SNOM. We embrace and extend a method
developed by Ha et al. [126], whereby the scattered field is represented as a
superposition of several unknown forward and backward Bloch modes, and
the modes and their Bloch factors are extracted from the field data using
numerical optimisers and least squares techniques. In the second part of the
method, we extract the E and H matrices from the modal fields, and use
these to calculate the PC impedances.

To encourage adoption of our impedance method, we have released our
source code freely on the internet, in the hope that other researchers might
find it useful to design antireflection coatings, or explore some of the other
applications of PC impedances. It may be downloaded from https://
launchpad.net/blochcode.
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We present a flexible method that can calculate Bloch modes, complex band structures, and
impedances of two-dimensional photonic crystals from scattering data produced by widely available
numerical tools. The method generalizes previous work which relied on specialized multipole and
finite element method (FEM) techniques underpinning transfer matrix methods. We describe the
numerical technique for mode extraction, and apply it to calculate a complex band structure and to
design two photonic crystal antireflection coatings. We do this for frequencies at which other methods
fail, but which nevertheless are of significant practical interest.VC 2012 American Institute of Physics.
[doi:10.1063/1.3674281]

I. INTRODUCTION

When modeling photonic crystals (PCs), it is important
to consider all the relevant Bloch modes. Light at a fixed fre-
quency, polarization, and incident angle exists in a PC as a
superposition of a set of propagating and evanescent Bloch
modes, the PC’s eigenstates. At low frequencies, only one
mode generally needs to be considered. For light at frequen-
cies above the first Wood anomaly,1 each row of holes in the
PC diffracts light into several propagating orders, so the PC
may support multiple propagating Bloch modes. At the PC’s
front and back interfaces, some of its modes couple via reflec-
tion, affecting the overall reflection and transmission through
the PC, so it is important to model all relevant modes.

It is often important to include evanescent modes.2 If
the PC is not long—for example, if it is a layer in a thin anti-
reflection coating—then evanescent modes can play a role in
energy transport.3 Evanescent modes can also play a role in
field matching across an interface between PCs4 or PC wave-
guides.5 The propagative qualities of an evanescent mode
are well-represented by its complex band structure,6 which
augments the traditional band structure, conveying informa-
tion about the rate at which the mode accumulates phase to-
gether with information about the mode’s decay rate.

There have been a number of studies seeking to derive
impedance-like quantities to characterize reflection at PC
interfaces by a scalar.7,8 Furthermore, a number of studies
have adapted metamaterial parameter extraction techniques9

to photonic crystals, and used them to design antireflection
coatings.10,11 However, since these techniques characterize
reflection and transmission by a single complex number
each, they cannot handle problems involving multiple
modes, where every mode reflects into every other mode.
Scalar-based methods generally give manifestly incorrect
results for light at frequencies above the first Wood anomaly,
which ranges from ax/k¼ 1/n for normally incident light to

ax/k¼ 1/2n for light at the Brillouin-zone edge, where ax is
the length of the lattice vector parallel to the interface, k is
the free space wavelength and n is the PC’s background
index. Above this frequency, generally several Bloch modes
must be simultaneously considered in each PC, regardless of
whether these modes are propagating or evanescent. Reflec-
tion at a PC/PC interface is well-described by a matrix that
maps incident modes to reflected modes, as we have shown
previously.4,12 In our experience, the minimum acceptable
dimension of this reflection matrix, as argued in Sec. II A, is
usually

Mmin ¼
ax
nk

ð1þ sin hiÞ
j k

þ ax
nk

ð1% sin hiÞ
j k

þ 1; (1)

where hi is the incident angle from a uniform dielectric with
the PC’s background index, and xb c denotes the floor of x.
We have previously achieved accurate results modeling PC
stacks using impedance matrices of this dimension and
higher.4,12,13

A number of methods for finding multiple Bloch modes
and complex band structures have been demonstrated. Trans-
fer-matrix14 and scattering-matrix15 based methods were
developed to derive a PC’s Bloch modes from the properties
of a single grating layer. The plane wave expansion method
has also been extended to include evanescent modes.16

Finally, Ha et al. presented a method for extracting Bloch
modes from the output of an electromagnetic field (EM)
solver,17 or even near-field measurements.18,19 We improve
the accuracy, stability, and efficiency of Ha et al.’s method
and extend it to calculate PC impedances for two-dimensional
(2D) PCs, which can be used to calculate reflection and trans-
mission at interfaces.4,12 These PC impedances and the reflec-
tion and transmission operators are represented by matrices;
our method supports the presence and interaction of multiple
Bloch modes and so it can work well both above and below
the first Wood anomaly.

We have made software available that uses the method
described in this paper to calculate PCs’ Bloch modes,a)Electronic mail: felix@physics.usyd.edu.au.
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complex band structures, and impedances. The software,
called BlochCode, can then use these complex band struc-
tures and impedances to calculate reflection and transmission
matrices and coefficients for arbitrary stacks of PCs. Bloch-
Code is open-source and is available on the Internet.20

In Sec. II, we present our method for finding Bloch
modes from the electric field E and the magnetic field H in a
PC structure. Section II A recaps some useful results from
our previous work12 and provides some background theory.
Section II B details our improvements to Ha et al.’s method17

of finding Bloch factors and modal fields, and Sec. III out-
lines our procedure for successfully applying this method to
minimize the residual derived in Sec. II B. Section II C
explains how we calculate PC impedance matrices from the
modal fields. In Sec. IV, we apply our method to demonstrate
its utility. In Sec. IV A, we calculate the complex band struc-
ture for light normally incident on a triangular lattice PC. In
Sec. IV B, we reproduce the design process of a known anti-
reflection coating for a PC, at a frequency and incident angle
for which it is critical to include at least two Bloch modes in
the calculations. Finally, in Sec. IV C, we use our method to
design an all-polarization antireflection coating for a square
lattice self-collimating PC, at a high frequency where a scalar
method cannot find a coating for the PC.21

II. THEORY

Our method uses a two-step process to extract a PC’s
modes and impedance from the field in a finite length of the
PC. The PC is assumed to be two-dimensional, lossless, and
to have relative permeability lr¼ 1. Like Ha et al.’s
method,17 we could use data generated by finite element
method (FEM) or finite difference time domain (FDTD) sim-
ulations, or even experimentally measured by a near-field
probe such as a scanning near-field optical microscopy
(SNOM),19 although the impedance part of our method is not
valid for SNOM data, which is derived from a 3D object.
First, the Bloch factors and the Bloch modal fields are found
(Sec. II B), then these modes are analyzed to calculate the
PC’s impedance (Sec. II C).

A. Background theory

Two-dimensional PCs in the x-y plane may be described
as a stack of gratings parallel to the x axis,22 each of which
diffracts incident light into an infinite set of grating orders.
At the edge of each unit cell, the PC’s Bloch modes may be
written as a superposition of the underlying grating orders.15

Their directions are given by the grating equation

kðpÞx ¼ kx þ
2pp
ax

¼ k sin hi þ
2pp
ax

; (2)

where kx is the x component of the incident plane wave’s

wavevector, kðpÞx is that of the pth diffraction order, and ax is
the length of the lattice vector parallel to the x axis. The
wavevector component in the direction perpendicular to the

grating is kðpÞy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 % kðpÞ

2

x

q
where k is the wavenumber in

the medium. Evanescent grating orders have imaginary ky
(p),

so for a given k and kðpÞx , the number of propagating grating
orders is the number of solutions to Eq. (2) with real ky

(p), or
Mmin in Eq. (1). In our experience, Mmin also provides an
upper bound on the number of propagating Bloch modes,
and at non-normal incidence is a lower bound on the number
of Bloch modes required to model a PC accurately. At nor-
mal incidence, symmetry allows odd modes to be ignored, so
in this case good results may be obtained with fewer than
Mmin modes—see Sec. IV C. Using Bloch modes found from
accurate multipole and FEM transfer matrix methods,23,24

we have consistently had success modeling PCs with no
more thanMminþ 2 Bloch modes.

Bloch’s theorem relates the electric and magnetic fields
associated with each mode at equivalent points in different
unit cells of a PC. The ratio of each mode’s field at points
separated by the lattice vector e1¼ (ax, 0) is eikxax . For the
PC’s other lattice vector e2, this ratio is different for each
mode and is the mode’s Bloch factor, denoted by l. Calculat-
ing l for each mode is the goal of Sec. II B. For square and
rectangular lattices, e2¼ (0, ay) and l¼eikyay , where ky is the
y component of the mode’s wavevector. For triangular latti-
ces, the lattice vector e2 is (ax/2, ay) and so the Bloch factor
may be written l¼eiðkxax=2þkyayÞ.

Bloch modes come in forward/backward pairs. Popov
et al. provide a useful discussion of symmetry properties.25

We assume mirror symmetry in each unit cell, which means
that each backward mode’s field profile in a unit cell is the
reflection on the x axis of its forward partner’s. The Bloch
factors of a pair are related because of this: for square and
rectangular lattices, lb¼ 1/lf, where lf and lb are, respec-
tively, the Bloch factors of the forward and backward modes.
For triangular-like lattices, the symmetry is more compli-
cated since the reflection of e2 is not %e2, the translation cor-
responding to the field ratio 1/lf, but (ax/2, %ay); these
vectors differ by %e1. Accounting for this discrepancy, we
find lb¼e%ikxax=lf for triangular lattices.

A PC’s impedance is defined in terms of two matrices,
E and H.12 For E¼Ez polarized light, each matrix maps a
vector of forward Bloch mode amplitudes cþ to a vector of
the Ez or Hx fields associated with each grating diffraction
order. Specifically, Ep,m, the (p,m)th element of E, is the Ez

field of normalized mode m due to forward and backward
plane waves in grating order p, at the center (x¼ 0) of a unit
cell’s edge. Thus, for a set of forward propagating/decaying
Bloch modes cþ, the field components along the edge of the
unit cell, i.e., the quantities that are continuous across an
interface between PCs or dielectrics, are

EzðxÞ ¼
X

p

Epcþe
ikðpÞx x; HxðxÞ ¼

X

p

Hpcþe
ikðpÞx x; (3)

where Ep andHp are the rows of E andH corresponding to gra-
ting order p. In the H¼Hz polarization, E and Hmap to Ex and
Hz fields, and these quantities replace Ez and Hx in Eq. (3).

Previously,12 we defined PC impedances in terms of these
matrices. For Ez polarized light, the impedance of a PC is

Z ¼ HT
0 ðIþQÞEþ ET

0 ðI%QÞH; (4)

and for Hz polarized light it is
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Z ¼ % HT
0 ðI%QÞEþ ET

0 ðIþQÞH
" #

; (5)

where E and H are calculated for the PC, and E0 and H0 are
calculated for a reference material, usually free space. Q is a
diagonal matrix that takes into account the half-period shift
of gratings in triangular lattice PCs: for square lattices Q¼ I,
and for triangular lattices Q¼ diag [(%1)p], where p is the
grating order.

Given impedances Z1 and Z2 for two PCs, it is simple
to calculate the reflection and transmission matrices across
their interface12

T12 ¼ ðAT
12A12 þ IÞ%12AT

12; (6a)

R12 ¼ ðA12A
T
12 þ IÞ%1ðA12A

T
12 % IÞ; (6b)

where A12¼Z%1
1 Z2.

B. Finding modes

Our method of finding the Bloch modes and Bloch fac-
tors is based on the method presented by Ha et al.,17 although
our method offers some significant improvements in accuracy
and efficiency. We take field data for several unit cells of a
PC, and try to write it as a superposition of Bloch modes,
thus finding the modal fields and Bloch factors. The final
steps of our mode-finding method impose symmetry relation-
ships between forward and backward modal fields, increasing
accuracy by almost halving the number of unknowns in the
problem. We now outline our method.

In an EM solver, we simulate a section of 2D PC with
Bloch-Floquet periodic boundary conditions on two bounda-
ries, and uniform dielectric on the others (Fig. 1). We sample
the Ez or Ex (depending on polarization) field component at
many (Np) points in unit cell ‘¼ 0, and then at the equivalent
points in each of the other unit cells. If desired, Ey, Hx, Hy, or
Hz may be used in place of or in addition to Ez and Ex. For
triangular lattice PCs, we use the field in the simulated unit

cells (dashed edges in Fig. 1) to calculate the field in the unit
cells separated by a lattice vector (solid edges): we apply
Bloch’s theorem with integer multiples of the lattice vector
(ax, 0).

We seek to write these electric field components as a
superposition of forward and backward Bloch modes. So we
want to express every U‘(r), i.e., the Ez or Ex field compo-
nent for sampled point r in unit cell ‘, as

U‘ðrÞ ¼
X

m

l‘mAmðrÞ þ
X

m0

ð1=lL%1%‘
m0 ÞAm0ðrÞ þ wð‘; rÞ;

(7)

where Am(r) and lm are, respectively, the modal field and the
Bloch factor of forward mode m; m0 denotes backward modes,
and wð‘; rÞ is the residual error. More specifically, for forward
modes, Am(r) is the field component of mode m at point r of
the first unit cell, ‘ ¼ 0. The Bloch factor lm is the ratio of the
field in cells ‘þ 1 and ‘, so l‘mAmðrÞ is the field component
of forward mode m at point r of unit cell ‘. To avoid ill-
conditioning, the field Am0(r) at point r of each backward
mode m0 is defined in the last unit cell, ‘ ¼ L% 1. This means
that the coefficients of Am(r) and Am0(r) in Eq. (7) have mod-
uli no greater than 1. As noted in Sec. II A, the Bloch factor
lm0 of each backward mode is related to that of its forward
partner; we enforce this relationship in practice, thereby halv-
ing the number of Bloch factors that must be found.

Equation (7) for all ‘ and all sampled r may be written
in matrix form as

U ¼ CAþW; (8)

where U contains the Ez or Ex field components from the EM
solver, A is a matrix of modal fields, C is a matrix con-
structed from Bloch factors, and W is a matrix of residuals
wð‘; rÞ that must be minimized. U is a L&Np matrix: the
field in its ‘th row and rth column is U‘;r ¼ U‘ðrÞ, the field
component at point r in unit cell ‘. Similarly, A is a M&Np

matrix; the field in its mth row and rth column is
Am,r¼Am(r), the field of mode m at point r in cell ‘ ¼ 0 for
forward modes, or cell ‘ ¼ L% 1 for backward modes. C is
a L&M matrix. For a forward mode m, the ð‘;mÞth element
of C is l‘m, and for a backward mode m0, the ð‘;m0Þth ele-
ment is 1=lL%1%‘

m0 . If multiple field components (e.g., Ez, Hx,
and Hy) are to be used to find the modes, then the additional
data can be added as extra columns in U.

We start the optimization process knowing U, and with
information about the structure of C, and no direct informa-
tion about A. In our method, we first find the Bloch factors
that determine C, a relatively difficult problem. Once C is
known, solving Eq. (8) for the modal fields A becomes a
pure least-squares problem that can be solved accurately and
efficiently using standard techniques.

To find the modes, we seek to minimize the difference
between the observed field U and the superposition of Bloch
mode fields CA. That is, we seek to minimize Wk k2F in Eq.
(8), the sum of squared moduli of the elements of W. Con-
straining the problem by dividing by the squared Frobenius
norm Uk k2F of U, the quantity we minimize is

FIG. 1. Schematic of L¼ 5 PC structures for a square and a triangular PC
lattice. The squares with solid edges are the unit cells used by our method.
For the triangular lattice PC, the field in the solid-edge unit cells are calcu-
lated from the unit cells of the simulated structure (dashed edges) using
Bloch’s theorem, with the ratio eikxax between adjacent cells’ fields.
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w2 ¼ jjU% CAjj2F
jjUjj2F

; (9)

where w2 ¼ Wk k2F= Uk k2F. First we eliminate A from Eq. (9)
in order to find C with a numerical minimizer. We use
an alternative representation of the Frobenius norm,

jjUjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðUHUÞ

q
, to write

w2 ¼
tr ðUH % AHCHÞðU% CAÞ
$ %

jjUjj2F
: (10)

Finding A for arbitrary C is a standard least-squares prob-
lem; the optimal A satisfies CHCA¼CHU. We expand Eq.
(10), twice apply this relation, and rearrange to get

w2 ¼ 1% trðUHCCþUÞ
jjUjj2F

; (11)

where Cþ¼ (CHC)%1CH is the Moore-Penrose pseudo-
inverse of C.

Using Eq. (11) and a numerical minimizer, the Bloch
factors that determine C may often be found to a useful level
of accuracy (see Sec. III for implementation details). In order
to improve the accuracy and reliability of the results, we
impose further physical constraints.

The PC impedance method4,12 assumes the unit cell to
be up-down symmetric, which causes the forward and back-
ward modes to be related. So far, we have only imposed a
relationship between the forward and backward Bloch fac-
tors, not the modal fields within each unit cell. We can halve
the number of unknowns in A and strongly improve the qual-
ity of our results by enforcing this relationship in the minimi-
zation process.

We commence by partitioning the forward (f) and back-
ward (b) modes, and the points in the left (L; y ' ay/2) and
right (R; y ( ay/2) halves of the unit cell:

U ¼ UL;URð Þ; C ¼ Cf ;Cb

& '
; (12a)

A ¼ AL;f AR;f

AL;b AR;b

( )
: (12b)

After normalization, the field of a backward mode is the field
of its forward partner reflected about the x axis, thus

AL;b;AR;b

& '
¼ cAR;fP; cAL;fP

%1
& '

; (13)

where P is the permutation matrix that maps points (x, ay%y)
to (x, y), and c is a normalizing diagonal matrix whose ele-
ments are the ratios of backward and forward mode ampli-
tudes. The columns of AR,f and AR,b, corresponding to points
in the right half of the unit cell, can easily be ordered so that
P¼ I; from now on we assume this ordering. Equation (8)
can now be written with roughly half as many unknowns,

UL;URð Þ ¼ Cf ;Cbc
& ' AL; f AR; f

AR; f AL; f

( )
þW: (14)

Cbc represents each backward mode’s amplitude in each cell,
relative to that of the corresponding forward mode in cell 0.

The constraints on A [Eq. (13)] mean that Eq. (14) does
not have a least-squares form, so may not be immediately
simplified in the way that Eq. (9) led to Eq. (11). To trans-
form Eq. (14) into a more useful form, we block-diagonalize

A and right-multiply by the matrix I I
I%I

& '
, to show

ðUþ;U%Þ ¼ ðCþAþ;C%A%Þ þW0: (15)

Here we have introduced the symmetric and antisymmetric
forms U6¼UL6UR, C6¼Cf6Cbc, and A6¼AL,f6AR,f.

Equation (15) takes the form of two independent least-
squares equations, each with half the dimension of Eq. (14).
The two equations must be satisfied simultaneously, so to
find the Bloch factors we can minimize

w2 ¼ jjUþ % CþAþjj2F þ jjU% % C%A%jj2F
jjUþjj2F þ jjU%jj2F

; (16)

or equivalently

w2 ¼ 1%
trðUH

þCþC
þ
þUþÞ þ trðUH

%C%C
þ
%U%Þ

jjUþjj2F þ jjU%jj2F
: (17)

Again, this quantity may be minimized by a numerical opti-
mizer. The residual w2 for any solution to Eq. (17) is equal
to the residual obtained by inserting the solution into Eq.
(11): the two equations differ only in the symmetry con-
straint on backward modal fields [Eq. (13)]. Compared to
Eq. (11), we have removed NpM unknowns from A (where
Np)M is the number of sampled points in each unit cell),
halving its dimension at the cost of adding M unknowns to
C6 as c. These new unknowns must be found simultaneously
with the Bloch factors using a numerical minimizer, so it is
important to supply a good starting estimate; our method for
doing so is detailed in Sec. III.

C. Calculating impedance

Once the Bloch factors and c are known, the modal
fields can be reconstructed and analyzed to determine the
PC’s impedance. The essential quantities for this calculation
are the E and H field components in the plane of the PC
interface (i.e., Ez and Hx, or Ex and Hz, depending on polar-
ization) of each Bloch mode m along the left edge (y¼ 0) of
a unit cell (see Fig. 1). These quantities, Em(x) and Hm(x),
may be found from Eq. (15) using the known values for Cþ
and C% and inserting the appropriate E or H fields into Uþ
and U%.

To calculate the impedance, we find the E and H matri-
ces for the PC, as defined in Sec. II A. Inserting multiples of
unit vectors cþ into Eq. (3), we can show that

EmðxÞ ¼ Am

X

p

Ep;me
ikðpÞx x; (18a)

HmðxÞ ¼ Am

X

p

Hp;me
ikðpÞx x; (18b)
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where Am is the amplitude of the normalized mode m, and
Ep,m and Hp,m are the elements of E and H. It is straightfor-
ward to exploit the orthogonality of the plane wave grating
diffraction orders to show that

AmEp;m ¼ 1=ax

ðax=2

%ax=2
EmðxÞe%ikðpÞx xdx; (19a)

AmHp;m ¼ 1=ax

ðax=2

%ax=2
HmðxÞe%ikðpÞx xdx: (19b)

Equations (19) let us calculate each element of the E and H
matrices, up to a normalization constant Am per column. We
remove the constants by calculating the PC’s impedance
[Eq. (4) or (5)] with the PC itself as the reference material:
by reciprocity-derived Bloch mode orthogonality relations,12

this quantity should be the identity matrix. The diagonal
entries of this matrix are the A2

m; the off-diagonal terms,
which should be zero, provide an error estimate. After nor-
malizing the E and H matrices for the PC, we calculate its
impedance matrix Z from Eq. (4) or (5) using a reference
medium such as free space.

III. NUMERICAL PROCEDURE

Having outlined the theoretical basis of our method for
finding the Bloch factors and impedance of a PC at a given
frequency, incident angle, and polarization, we now provide
some practical detail about our implementation of the
method. We outline the procedure for M¼ 3 pairs of Bloch
modes.

In COMSOL Multiphysics 4.2, we simulate a 1& 8 unit
cell sample of PC, embedded in its background dielectric,
with Bloch-Floquet periodic boundary conditions along the
two long boundaries (Fig. 1 shows a 1& 5 structure). Equa-
tion (15) is a set of LNp equations, with 2M and MNp

unknowns in C6 and A6, respectively. To be overspecified,
the method requires LNp>MNpþ 2M; thus L¼ 8 periods and
a large Np is sufficient to find M¼ 3 modes. A deeper struc-
ture with more unit cells does not necessarily provide useful
information about additional evanescent modes, as their am-
plitude deep inside the structure may be negligible. From
COMSOL we export the relevant E and H field components
in the L¼ 8 unit cells, sampled over a 101& (50Lþ 1) grid.

In order to compute a mode, it must be present in the
structure with sufficient amplitude to be detected. Light at
normal incidence often fails to excite odd Bloch modes; these
uncoupled modes26 consequently cannot be found by an opti-
mization, which loses accuracy in searching for modes that
are not present. At frequencies above the first Wood anomaly,
the frequencies at which the higher order modes are most im-
portant, this problem may be avoided by exciting the PC slab
not with a normally incident plane wave, but with the first
grating diffraction order. This technique is used in Secs. IV A
and IV C. If the uncoupled mode is not relevant to a particu-
lar problem, it may instead be ignored.

If we seek to find M¼ 3 Bloch modes, then finding a
global minimum of Eq. (17) involves searching for 2M¼ 6
complex numbers. This is a hard problem if attacked directly,

but we use an algorithm that gives more consistent success by
providing a good starting estimate. We start by minimizing
the residual w2 in Eq. (11), which forces a relationship
between forward and backward Bloch factors but not the
modal fields. This involves finding only M complex numbers.
As a starting estimate for the forward Bloch factors, we either
take the result of a neighboring simulation, or the analytically
calculated Bloch factors for the dielectric background of the
PC. At every step of the minimization, evanescent modes are
sorted into forward and backward decaying modes, based on
the moduli of their Bloch factors. The minimization can be
done by any standard numerical minimizer, such as SciPy’s27

fmin, which is a modified Nelder-Mead optimization.28 At
this point, the results are equivalent to those from the method
of Ha et al.,17 except that we have lessened the likelihood of
C being ill-conditioned by renormalizing the backward Bloch
factors lm0 in Eq. (7) and setting their phase origin to the end
of the PC.

Occasionally, we encounter an instability in which a
pair of modes have very large equal and opposite field ampli-
tudes and very small Bloch factors. When this occurs, we
follow a Gram-Schmidt-like process: we subtract the field of
non-problematic modes (i.e., modes with jlj > 10%3) from U
and repeatedly minimize Eq. (11) to find each of the remain-
ing modes individually.

Using the solution to Eq. (11) as our estimate for the
Bloch factors, the modal fields may be found with a least-
squares optimization. The average field ratio of each pair of
backward and forward modes gives us an estimate for c. We
now have a plausible estimate for c and the Bloch factors,
which we can use as a starting estimate to minimize Eq. (17).

To further refine the estimates, we repeatedly iterate
through the modes, fixing all but one l and the correspond-
ing element of c, minimizing Eq. (17) to find the two varia-
bles. After this process, we finally minimize Eq. (17) across
all 6 complex dimensions simultaneously to obtain the cor-
rect Bloch factors and modal fields from which we calculate
impedances. Forward and backward propagating modes are
sorted based on their flux,15 before impedances are calcu-
lated as outlined in Sec. II C.

IV. APPLICATIONS

We now apply our method to a range of typical prob-
lems. Each of these problems involves frequencies above the
first or second Wood anomaly—frequencies at which scalar
methods fail and multiple modes are required to describe the
system. BlochCode, software that implements our method in
Python, using SciPy27 and Sage,29 is freely available on the
Internet;20 we use it here.

A. Complex band structure

The first application of our method is to calculate the
complex band structure of a PC. The PC is a triangular lattice
of circular air holes with radius r¼ 0.3 a and lattice constant
ax¼ a in a dielectric background with n¼ 3. We calculate
the band structure for light polarized with the H field out of
the PC plane (Hz polarization) at frequencies a=k 2 ð0; 0:5Þ
in the C%M direction, i.e., at normal incidence. Using
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COMSOL, we calculate the field in an 8 period slab of the
PC, and we apply our method to find the largest three Bloch
factors. w2 varies: it is less than 10%8 at low frequencies and
less than 10%4 at high frequencies.

Figure 2 summarizes the propagation properties of the
two/three most dominant modes. The moduli of the Bloch
factors jlj, which quantify how the modes’ amplitudes vary
with propagation, are shown in Figs. 2(a) and 2(b). Below
the Wood anomaly, an inspection of A and c shows that the
third mode is barely excited by the normally incident plane
wave, and this reduces the accuracy of the results [Fig. 2(a)].
Ignoring the uncoupled mode at low frequencies (where the
p¼ 1 grating order is evanescent and so may not be used to
excite the structure, as mentioned in Sec. III) increases the
accuracy of the other two modes [Fig. 2(b)]. The complex
arguments of the Bloch factors, which quantify how phase is
acquired through propagation, are shown in Fig. 2(c), and
the information about amplitude and phase is summarized in
a single plot in Fig. 2(d). Aside from slight errors in the
phase of strongly evanescent modes in Fig. 2(c), there is
good agreement between Fig. 2 and Bloch factors calculated
by highly accurate multipole techniques.

Figure 2 shows that at frequencies below the Wood
anomaly there is at most one propagating Bloch mode, which
becomes evanescent in the first bandgap with a decay factor
jlj of no less than 0.5; it still decays far more slowly than the
other evanescent Bloch modes at that frequency. Figure 2(c)
shows that for the evanescent modes, either 0 or p phase is
acquired across each unit cell.

B. Antireflection coating

Our next application is to reproduce the design of an
antireflection coating we presented previously,12 found using
PC impedances calculated with a specialized transfer-matrix
method.24 As in this previous paper, our design strategy is to
try out a very large number of potential coatings, and choose
the coating that gives the lowest reflectance off the coated
structure. The use of PC impedances makes this a feasible

problem, as the evaluation of each coating is quick, involv-
ing a few operations on M&M (here 3& 3) matrices.

The target PC is a triangular lattice with lattice constant
ax¼ a, consisting of air holes in a dielectric background with
n¼ 2.86. The holes are cylinders with radius r¼ 0.25 a. We
seek to coat the PC to minimize reflection for light with fre-
quency a/k¼ 0.38, incident from air at an angle of 30* in the
Ez polarization. At this frequency and incident angle,
Mmin¼ 2; we consider a total of 3 modes to ensure accuracy.
As in our previous work,12 we seek a two-layer coating,
where the degree of freedom is ay, the lattice vector compo-
nent perpendicular to the air/PC interface. For a regular tri-
angular lattice, ay ¼ ð

ffiffiffi
3

p
=2Þa.

We choose 121 candidate PCs with ay 2 ½0:6; 1:8,
ð

ffiffiffi
3

p
=2aÞ and simulate 8 periods of each in COMSOL. We

apply our method to the resulting data, using the Bloch fac-
tors of the previous PC as the starting estimate for the next.
BlochCode processes the 121 PCs in approximately 13 mins
on a 3.06GHz Intel Core 2 Duo desktop computer. An
equivalent approach that only requires one PC to be eval-
uated is detailed in Sec. IV C; we do not use it here since the
purpose of this section is to demonstrate the reliability and
consistency of the optimization procedure.

We then calculate the reflectances off the 1212¼ 14 641
coated stacks (Fig. 3), which takes 34 s on a single core of
the desktop computer. The optimal coating is found to have
thicknesses ay1 ¼ 1:53ð

ffiffiffi
3

p
=2Þa and ay2 ¼ 0:65ð

ffiffiffi
3

p
=2Þa, and

reduces the reflectance of the structure from R¼ 0.945 to
R¼ 1.96& 10%4. The results in Fig. 3 agree well with data
calculated by a highly accurate multipole scattering matrix
method: the RMS difference is 3.4& 10%3, and the only no-
ticeable differences occur on the two sharp resonant features
near the lower edge of the figure. Specifically, the multipole-
based calculations show that the coating reduces the PC’s re-
flectance from R¼ 0.943 to R¼ 4.29& 10%4.

C. All-polarization antireflection coating

Finally, we apply our methods to find an all-polarization
antireflection coating for a silicon-based self-collimating

FIG. 2. (Color online) Complex band structure for the PC. The Wood anom-
aly (a/k¼ 0.333) is marked. The modes are sorted into colors by jlj; where
two modes are propagating (i.e., have jlj¼ 1), they are sorted by jarg(l)j. (a)
Magnitude of Bloch factors jlj, with three Bloch modes found at all frequen-
cies. (b) jlj with two Bloch modes found below the Wood anomaly, three
above. (c) Argument of Bloch factors. (d) Complex band structure in 3D.

FIG. 3. (Color online) Reflectance of the coated PC as a function of ay1 and
ay2, the relative thicknesses of the two coating layers, calculated using PC
impedances from BlochCode. The minimum reflectance is marked.
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square-lattice photonic crystal presented by Park et al.21 They
investigated this class of structures using a scalar treatment of
reflections, and were able to design an all-polarization coating
at a/k¼ 0.28, below the first Wood anomaly. Since their sca-
lar treatment does not support multiple propagating or evanes-
cent Bloch modes, it generally does not work above the Wood
anomaly. Our method does not have this limitation and we
demonstrate this by designing an antireflection coating for
both polarizations at a frequency well above the Wood anom-
aly, using more than one Bloch mode.

Park et al.21 showed that at a/k¼ 0.368, a 2D silicon
(n¼ 3.518) PC with r¼ 0.45 a is self-collimating for both
polarizations at normal incidence. The large radius is an
extreme case that is challenging to simulate accurately. At
this frequency Mmin¼ 3, so for Ez polarized light we include
M¼ 3 modes in our calculations, with light incident from the
p¼ 1 grating order so that the otherwise uncoupled mode is
excited. For Hz light, this procedure does not yield accurate
results—Bloch factors are calculated accurately, but the cal-
culated reflection coefficients differ from those calculated
directly in COMSOL. The calculated impedances prove suffi-
ciently accurate to design an effective antireflection coating,
but the inaccuracies mean that the coating is not optimal.

To avoid these inaccuracies in Hz polarization, we
exploit the symmetry that causes the uncoupled mode. The
physical structure and normally incident field are both sym-
metric about the y-axis, and so modes without even symme-
try are not coupled to. Therefore, we formally ignore the
uncoupled odd mode, in each PC and in the reference me-
dium, setting M¼ 2. In our Hz COMSOL simulations for this
structure, light is normally incident.

In Fig. 2 of Park et al.’s paper,21 they state that
R ’ 0:28 for Ez polarized light, and R ’ 0:35 for Hz light.
We calculate with BlochCode that a semi-infinite slab of the
PC has R¼ 0.284 for Ez, and R¼ 0.354 for Hz polarized light
at this frequency, when incident from silicon. Specialized
FEM-based transfer-matrix calculations agree, showing
R¼ 0.284 for Ez polarization, and R¼ 0.357 for Hz

polarization.
At a/k¼ 0.368, normally incident light is reflected by the

PC into three propagating diffraction orders. Due to the sym-
metries of the problem, the 61 orders are only excited in an
even superposition, so light is reflected into two modes. A
successful coating needs to suppress reflection into both these
modes simultaneously, and so must balance two modes’
amplitudes and two modes’ phases simultaneously for each
polarization. Thus the design of a perfect all-polarization
coating requires eight continuous degrees of freedom. Rather
than trying to search an 8-dimensional parameter space,
which is computationally expensive even when the evaluation
of each point is efficient, we consider coatings with four
degrees of freedom and accept that we are unlikely to find an
all-polarization coating with zero reflectance.

Nevertheless, this is a particularly difficult problem: not
only do we need many degrees of freedom to find a satisfac-
tory coating, but if either of the Bloch factors in a PC is
incorrect or any element of the PC’s impedance matrix is
wrong, then the calculated net reflection off the structure is
incorrect as well.

To limit the coating’s thickness, we embed the four
degrees of freedom into two rows of holes by varying both
the hole radii, r1 and r2, and the space after the layers, d1 and
d2 (Fig. 4). Increasing d1 and d2 is similar to increasing ay, as
in Sec. IV B, but because the candidate PCs are independent
of d, only one PC per radius needs to be simulated in COM-
SOL. Furthermore, the properties of the layers of silicon
with thickness di may be calculated analytically. We con-
sider 36 possible hole radii in the range ri 2 ½0:10; 0:45,a
and 99 values of di 2 ð0; 1Þa. To allow a thin coating, we set
ay¼ 2rþ 0.1a for each PC. If necessary, additional degrees
of freedom could be added to find a coating with even lower
reflectances.

On a single core of a 16& 2.4GHz Intel Xeon-Quad
workstation, it took a total of 15 mins to find the modes of
the 36 PCs in the two polarizations. For Ez polarization,
w2 ’ 10%5 for most radii, and for Hz polarization w2 ranged
roughly from 3& 10%3 for thin unit cells to 10%7 for the
thicker cells with larger radius. Due to the large number of
candidate coatings (-1.3& 107), the embarrassingly parallel
problem was split over 16 cores of the workstation, taking
approximately 80 mins per polarization.

The best Ez coating reduces R from 0.284 to
9.56& 10%5, and the best Hz coating reduces R from 0.354 to
3.33& 10%4. The best all-round coating is taken to be the
one with the lowest total reflection in the two polarizations.
This coating has r1¼ 0.13 a, d1¼ 0.89 a, r2¼ 0.17 a, and
d2¼ 0.90 a (Fig. 4). In Ez it reduces R to 0.0141, and in Hz it
reduces R to 0.0197. Calculations from a specialized transfer
matrix method24 agree with these results, giving R¼ 0.0142
in Ez polarization and R¼ 0.0211 in Hz.

To verify these results without the aid of our specialized
methods, implementations of which are not publicly avail-
able, we simulate the structure using COMSOL Multiphy-
sics. Since COMSOL cannot directly calculate reflection
coefficients off semi-infinite PCs, we simulate a 20-period
section of the uncoated PC surrounded by the background
dielectric, and compare the results to a simulation with the
antireflection coating on both sides of the PC section. Bloch-
Code calculates the reflectance of the uncoated and coated
structures to be 0.407 and 0.0124, respectively, in the Ez

polarization, and 0.574 and 0.0074 in the Hz polarization.
The COMSOL simulations agree with these results, showing
that the coating reduces R from 0.407 to 0.0129 in the Ez

polarization, and from 0.585 to 0.0055 in the Hz polarization.

FIG. 4. Schematic of the all-polarization antireflection coating. r1 and r2 are
the radii of the holes in the first two layers, and d1 and d2 are the thicknesses
of the extra silicon background layers between the first few rows of holes.
For this coating, r1¼ 0.13 a, d1¼ 0.89 a, r2¼ 0.17 a, and d2¼ 0.9 a.
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V. DISCUSSION AND CONCLUSION

We have detailed a method for calculating the complex
band structure and impedance of PCs. The method takes
into account structural symmetries in the PC, and enforces
relationships between the fields of forward and backward
modes, thus improving the method’s accuracy by eliminat-
ing ill-conditioning and constraining modal fields. We have
applied the method to three cases, and have demonstrated
that it works for a variety of square and triangular lattice 2D
photonic crystals, for light in both polarizations and at dif-
ferent incident angles. We have demonstrated that our
method works at frequencies both above and below the first
Wood anomaly, the frequency above which scalar methods
cannot adequately describe light propagation and reflection
in PCs.

The stronger the excitation of a Bloch mode, the more
accurately our method calculates its properties. Thus, the
method is well-suited to calculating reflection and transmis-
sion through arbitrary PC stacks, where the most important
modes are those that are strongly excited. Since PC impedan-
ces make it so easy to calculate the reflection and transmis-
sion properties of many combinations of PCs in a stack, it is
feasible to search large parameter spaces of PC stacks for
particular reflective properties over a range of frequencies,
incident angles and polarizations. The method can be used to
design not only all-polarization antireflection coatings, but
also broadband antireflection coatings,12 polarization filters,
angular filters, and other devices.

Ha et al. have applied their method to slab PC wave-
guides.19 We have not yet applied our method to any 3D
structure. As long as the x-z plane mirror symmetry is pres-
ent, our method for finding the complex band structure
remains valid. The field of a slab waveguide might be
sampled only over the PC’s surface (as in a SNOM experi-
ment19) or throughout the entire volume of the structure (as
in a simulation); either case provides sufficient information
to determine the modal fields within the sampled region and
the associated complex band structure. However, the imped-
ance formalism is yet to be developed for 3D structures.

Our method is also valid for finding modes of PC wave-
guides, using supercells. Calculation of reflection and trans-
mission matrices between PC waveguides is yet to be
demonstrated using impedances, but they have previously
been calculated directly from the supercell’s E and H
matrices.5

Bloch mode analysis is a valuable tool in understanding
light’s interactions with PCs. Using an EM solver and our
method, for which source code is available,20 it is straight-
forward to find a PC’s complex band structure and its imped-
ance. Respectively, these quantities dictate how the Bloch
modes travel through the PC, and which modes they couple

with at a PC interface. If these quantities are known for a set
of PCs, then it is fast and efficient to calculate how light trav-
els through arbitrary stacks of the PCs.
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In Paper 3.1 we develop methods to use a widely available commercial
field solver to calculate PC impedances, Bloch factors, and antireflection
coatings, in place of our specialised in-house code. The process described
is slower and less reliable than the specialised multipole and FEM codes,
but if the specialised code is not available, then the described method is
certainly faster than directly designing an antireflection coating by indepen-
dently evaluating each member of the combinatorial explosion of coatings
with the commercial field solver.

The design of an antireflection coating has two steps: calculating imped-
ances and Bloch factors, and calculating stack reflectances. Both of these
tasks are embarrassingly parallel : both consist of many small problems, each
one totally independent of the others. In principle, these small problems
could be divided among the available cores of the computer: using this ap-
proach, a workstation with 16 cores can finish a step containing many of
these problems in almost 1/16th of the time a non-parallel computation
would take.

In practice, it is not possible to parallelise the first step: and not for any
worthwhile reason. Using the method described in Paper 3.1, each of the
small problems in this step requires a separate instance of the commercial
field solver. If this field solver is Comsol Multiphysics, as in Paper 3.1,
then each instance requires a separate licence—which costs several thousand
Australian dollars. Even our in-house code may not be run in parallel: part
of it is written in Mathematica, which also requires a separate licence per
process. Thus, parallelising this step is not feasible purely due to the revenue
models of the software providers. Thankfully, the PC impedance formalism
drastically cuts the number of expensive (computationally and otherwise)
numerical simulations required to design a coating.

The second step of a coating design, exploring the coating parameter
space, involves many calculations with 3× 3 or 5× 5 matrices. As this step
is also embarrassingly parallel—each stack’s reflectance can be calculated
independently of the others—and does not require commercial software, it
may easily be parallelised. In fact, using the free and open source Sage
software, which is based on NumPy and Python, parallelising my algorithm
required only four additional lines of code. In the example given in Paper 3.1,
this reduced the time taken to explore the parameter space by a factor of
16, to 80 minutes per polarisation.

3.2 Impedance matrices as overlap integrals

So far, we have defined PC impedance using the matrices E and H, which
map Bloch mode amplitudes to plane wave field amplitudes. The matrices E
and H are new, so it might be helpful to provide an equivalent definition for
the impedance in terms of quantities with which most readers are already
familiar: the modal fields themselves. In this section, we show that each
element of a PC’s impedance matrix is essentially an overlap integral between
a PC Bloch mode and a mode of the reference material, before discussing
the significance of this result. We now derive this relation explicitly.

For simplicity, we work with square lattice PCs, which in Ez polarisation
have impedance Z = 2HT

0 E. The i, jth element of this matrix is

Zi,j = 2
∑

p

H
(0)
p,i Ep,j , (3.1)

where H
(0)
p,i is the p, ith element of H0 in reference medium 0, and Ep,j is the

p, jth element of the E matrix in the PC that Z represents. The summation
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occurs over the grating orders p. We seek to write each impedance matrix
element Zi,j directly in terms of the fields of Bloch modes in the PC and the
reference medium.

Our reciprocity-based orthogonality and normalisation relation for the
Bloch modes of a square or rectangular lattice PC is 2 HTE = I. It can be
written in overlap integral form as

δij =
1

ax

∫ ax/2

−ax/2
Ei(x)H ′j(x) +Hj(x)E′i(x) dx =

2

ax

∫ ax/2

−ax/2
Hj(x)E′i(x) dx,

(3.2)
where in the Ez polarisation E and H refer to the Ez and Hx field compo-
nents of modes i and j with wavevector x–component kx, and E′ andH ′ refer
to the field of the reciprocal Bloch modes with wavevector x–component−kx.
If the unit cell is up-down symmetric, then along the unit cell edge y = 0
each reciprocal mode is related to its regular equivalent by E′i(x) = Ei(−x)
and H ′i(x) = Hi(−x). Using this property, we can rewrite Eq. (3.2) as

δij =
2

ax

∫ ax/2

−ax/2
Hj(x)Ei(−x) dx. (3.3)

Eq. (3.3) can be used to normalise Bloch modes, as well as to orthogonalise
pairs of degenerate Bloch modes. This orthogonality relation is based on
mode reciprocity, and so it applies to lossless media as well as lossy media.

If the modes are normalised using Eq. (3.3), then from Eqs. (18) in Pa-
per 3.1 the field of Bloch mode m along the front edge of a PC unit cell may
be written as a superposition of grating orders with amplitudes given by the
elements of E and H,

Em(x) =
∑

p

Ep,m e
ik(p)x x, (3.4a)

Hm(x) =
∑

p

Hp,m e
ik(p)x x. (3.4b)

The Bloch modes of another PC have the same form (provided the lattice
constant ax and wavevector k(0)

x are the same), differing only in the values
of Ep,m and Hp,m, i.e. for different PCs, the E and H matrices are different
but the underlying bases of grating orders are the same.

Given the fields of Bloch modes i and j of PC 1 and 2 respectively, we
calculate

2/ax

∫ ax/2

−ax/2
H

(1)
i (x)E

(2)
j (−x) dx. (3.5)

Using Eqs. (3.4), this is equal to

2

ax

∫ ax/2

−ax/2

[∑

p

H
(1)
p,i e

ik(p)x x

][∑

p

E
(2)
p,j e

−ik(p)x x

]
dx. (3.6)

Now, the grating equation (1.24) states that the various wavevector compo-
nents k(p)

x differ by integer multiples of 2π/ax, and hence

1

ax

∫ ax/2

−ax/2
eik

(p)
x xe−ik

(q)
x x dx = δpq, (3.7)

where δpq is the Kronecker delta—this is a restatement of grating orthogo-
nality (Eq. (1.27)). This relation means that the cross terms of the product
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in Eq. (3.6) vanish under integration, and so we may rewrite (3.6) as a single
summation,

2

ax

∫ ax/2

−ax/2

[∑

p

H
(1)
p,i e

ik(p)x xE
(2)
p,j e

−ik(p)x x

]
dx = 2

∑

p

H
(1)
p,i E

(2)
p,j , (3.8)

which is the i, jth element of A12 = 2HT
1 E2.

If the modes are normalised using Eq. (3.3), then the i, jth element of a
PC’s impedance matrix Z is

Zi,j =
2

ax

∫ ax/2

−ax/2
H

(0)
i (x)Ej(−x) dx, (3.9a)

Zi,j = − 2

ax

∫ ax/2

−ax/2
E

(0)
i (x)Hj(−x) dx, (3.9b)

where Eq. (3.9a) is for Ez polarised light, Eq. (3.9b) is for Hz polarised light,
Ej(x) is the jth Bloch mode of the PC, and H(0)

i is the ith Bloch mode of
the reference medium 0.

Even for the element Z1,1, Eqs. (3.9) have a rather different form to any
field-based impedance definition discussed in Sec. 1.6.2, as they use the field
of a PC’s Bloch mode as well as the mode of a reference medium. Eqs. (3.9)
also rely on the fields being normalised in a particular way (Eq. (3.3)).

In the derivation of (3.9), we expand the modal fields in the basis of
grating orders, but we never truncate the set of grating orders. This contrasts
with the matrix-based impedance definition (Eq. (26a) in Paper 2.3), where
this set must be truncated so that E, H and Q are of finite dimension.
Therefore, in principle, Eqs. (3.9) can give more accurate results than a
matrix-based method to calculate impedance, if truncation is an issue and
the modes are not calculated using transfer-matrix methods that represent
the modes by a truncated set of P diffraction orders.

3.3 Outlook for PC waveguide impedances
In the work presented in this thesis, truncation is not an issue: P = 5
grating orders are sufficient for accuracy, as demonstrated in the Erratum
to Paper 5.1. But beyond this thesis’s direct purview, there exist related
problems for which a large number of grating orders must be considered.

One such problem is the simulation of PC waveguides using a supercell
approach. In supercell methods, a structure that is not periodic in the x–
direction is approximated by one that is. The simulation’s accuracy scales
with the chosen size of the supercell in the x–direction: if the supercell is too
small then adjacent supercells couple, distorting the results. Unfortunately,
if a larger supercell period is taken, the feature to be studied (the waveguid-
ing region) is smaller with respect to the supercell period, and so the number
of supercell grating orders Pmin required to resolve the waveguiding region
scales with the supercell size. Therefore such problems require consideration
of many grating orders, even if the number of physically important Bloch
modes Mmin (which should not scale with supercell size) is small: for such
problems, Pmin �Mmin. Thus the E and H matrices for such PC supercells,
which have dimension P ×M , are potentially large and unwieldy. Therefore
it would be advantageous to calculate the smaller M ×M impedance matrix
Z directly using Eqs. (3.9) and PC waveguide Bloch modes calculated by
the methods of Paper 3.1.

However, a subtlety arises: the reference material should be chosen
carefully—using vacuum as a reference material (as we do successfully in
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all examples given in this thesis, and is discussed in Appendix B) implicitly
truncates the set of grating orders to the number of Bloch modes considered
(see Appendix A), and so using a P such that P > M is meaningless; to
obtain accurate results with such a reference material, M must be as large
as Pmin, which scales with the supercell size. Another problem with using
a uniform medium as a reference PC for supercell calculations is that the
front and back supercell edges often cut across the cylindrical holes of the
PC; the plane wave diffraction orders of a uniform dielectric are ill-suited to
describing the field across a dielectric discontinuity. An impedance matrix
Z consists of overlap integrals between the Bloch modes of a PC and the ref-
erence medium; if the modes of the reference medium cannot represent the
PC’s modes then information is lost. By Bloch’s theorem, it is always pos-
sible to describe fields of such structures by the Fourier series corresponding
to grating orders, but there is no guarantee that Pmin is not very large.

These two problems, which might frustrate the practical implementation
of PC impedance methods for PC waveguide supercells, perhaps might be
overcome by carefully choosing a reference medium that has modes similar
to those of all structures to be simulated. Ideally the set of Bloch modes
of this reference medium could accurately represent all the relevant Bloch
modes of every simulated structure; if such a reference medium is found then
accurate results might be obtained using a small Mmin ×Mmin impedance
matrix Z.

If I were to tackle such a problem, my first candidate for a reference
material would be one of the PCs in the problem, such as the target PC
waveguide. If it turns out that a heavily truncated (i.e. small M) set of this
PC’s Bloch modes is insufficient to represent the important modes of the
other PCs, then I would hold little hope that any reference material could
represent the modes of all PCs in the problem with such a value of M .
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Chapter 4

Characterisation by effective
parameters

In recent years there has been much debate regarding the homogenisation of
metamaterials, and to a lesser extent, the homogenisation of PCs. Homogeni-
sation entails calculating effective parameters that characterise a metama-
terial or PC—most commonly, an effective relative permittivity ε and an
effective relative permeability µ.1 Simovski et al. [122] give a good overview
of the state of homogenisation techniques. Typically, effective ε and µ are
calculated from a PC or metamaterial’s propagation constant k⊥ = ky (or
equivalently its effective refractive index neff), together with its wave imped-
ance Z. Ideally, the PC or metamaterial can then be replaced in calculations
by a homogenous medium with relative permittivity ε and relative perme-
ability µ. The general consensus is that such approaches for 2D materials are
strictly valid only in the long wavelength limit (nλ > 100 d), are potentially
useful but somewhat dubious at frequencies below the first Wood anomaly
(nλ > d) where the single-mode approximation holds, and are manifestly in-
correct at frequencies above the Wood anomaly, where we saw in Paper 2.1
that matrices are required [122]. Most recent interest is focussed on the mid-
dle wavelength range 100 d > nλ > d, where devices can be fabricated for
optical wavelengths.

The most common homogenisation method, the NRW method, is largely
described in Sec. 1.6.3, and comprises two steps. First, a finite length of
PC or metamaterial is either simulated or experimentally measured to find
that length of PC’s reflection and transmission coefficients; from these two
complex quantities the bulk PC’s propagation constant and wave impedance
(which Simovski et al. call the surface impedance) are found. The propaga-
tion constant ky may be related to an effective refractive index neff , and the
wave impedance Z is related to the characteristic impedance by Eq. (1.3)
(at normal incidence, Z = Zc). In the second step, effective parameters ε
and µ are calculated by asserting that the usual relations between n, Zc, ε
and µ apply, as for homogenous media. There are issues with both steps of
this approach; we detail these in the next paragraphs.

In the first step of the NRW method, a branch ambiguity arises: the
propagation constant ky is calculated from the total phase accumuluated
across the length of PC, which is only known modulo 2π. Hence ky is only
determined modulo 2π/(`dy), where `dy is the length of the simulated PC or
metamaterial, an integer ` multiple of the unit cell length dy [151, 152]. This
ambiguity can play havoc with the effective parameters derived from ky. It

1Nomenclature: in this chapter alone, µ represents a PC’s effective relative permeabil-
ity, not its Bloch factor, which is instead represented by η.
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can be lessened by varying the integer ` and calculating the reflection and
transmission coefficients of several different lengths of the PC. We find the
PC’s propagation constant as the phase accumulated across a single unit cell
(` = 1), so it is known modulo 2π/dy, i.e. up to a reciprocal lattice vector,
which is the best the lattice allows.

Potential ambiguities regarding the reflection at a single interface can
be eliminated by directly simulating a semi-infinite structure [153], of which
our method is also capable. In fact, by applying the single-mode approxima-
tion and truncating our impedance matrix to a scalar, we can calculate the
wave impedance directly rather than from a reflection coefficient.2 Doing
so sidesteps another problem of the NRW method, highlighted by Simovski
et al. [122]: that changing the media either side of the length of PC can
change its impedance (the same phenomenon as the example in Paper 2.1
that demonstrates that scalar impedances fail above the Wood anomaly). A
key feature of our impedance method is that the impedance Z depends only
on the PC and a reference material, and not on the other media in the stack:
when the single-mode approximation holds, the impedance is well-defined.

The problem with the second step of standard homogenisation processes
is a more fundamental one: away from the long wavelength limit no theo-
retical link has been established for the values of the propagation constants,
impedances, or other related quantities as they vary with frequency, incident
angle or polarisation. That is, not all quantities in a homogenisation proce-
dure can be assumed to vary in a predictable way with frequency, incident
angle or polarisation. Thus ε and µ, which are derived from these parameters,
cannot be expected to represent PC properties for light at any frequency,
polarisation or incident angle other than that for which the parameters were
calculated. Even at a single frequency, PCs’ properties generally may not
be summarised by one pair of ε and µ tensors. For this reason Simovski
et al. [122] stress that in most cases, homogenisation procedures do not re-
sult in characteristic material parameters, they only give effective material
parameters, valid in the circumstance for which they were calculated.

Use of the NRW method to derive effective material parameters has been
less common for photonic crystals, and seems mostly restricted to attempts
to derive impedances as discussed in Sec. 1.6.3, although there are excep-
tions, such as Refs. [132, 142, 145, 152], which explicitly derive ε and µ
parameters. For photonic crystals, more attention has been paid to char-
acterising propagative qualities by inspecting band surfaces, either as band
structures (Figs. 1.16 and 1.17) or as a set of equifrequency contours. The
isotropy (or otherwise) of a PC may be determined by inspecting its equifre-
quency contours, which show the relationship between kx and ky for modes
at fixed frequencies. At any given frequency, an isotropic medium has con-
stant k2

x + k2
y = nk0, and so circular equifrequency contours need to be used

to ascribe an effective refractive index n, which summarises its propagation
properties across all angles at that frequency. Crucially, this refractive index
is not an impedance and does not generally predict reflection coefficients
via the Fresnel equations [154]. If a Bloch mode’s equifrequency contour is
elliptical or hyperbolic, then diagonal ε and µ tensors can describe it at the
fixed frequency [132]. But if the equifrequency contour is not elliptical or
hyperbolic, then the PC cannot be characterised at that frequency even by a
uniaxial optical crystal [155]. Generally, kx and ky are only related at a given
frequency by lattice symmetries. For square lattices and regular triangular
lattices, these symmetries eliminate the possibility of elliptical equifrequency

2From the definition of the impedance matrix Z, if the reference medium is a uni-
form dielectric then the single mode approximation implicitly involves representing the
field at the interface by a single grating order: it is therefore also a single plane wave
approximation.
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contours, so such PCs either have circular equifrequency contours and are
homogenisable to an isotropic medium with an effective index n, or they
cannot be represented for all propagation directions by diagonal ε and µ
tensors.

In this chapter we show how our impedance framework may be adapted to
homogenise PCs, discuss where homogenised effective parameters are valid,
give a few examples, and ask whether anything is gained by doing so. We
show how our impedance formalism can be used to describe PCs using two
complex numbers: a propagation constant and an impedance, which may be
transformed to effective ε and µ parameters that are valid only at one fre-
quency, incident angle and polarisation. In Paper 4.1 we discuss the domain
of applicability of these parameters, showing how they fail at frequencies
above the first Wood anomaly, as well as showing an exception to this rule.
To gain intuition, we plot the effective parameters for a square lattice PC
(Paper 4.1) and a triangular lattice PC (Sec. 4.2) over a range of frequencies
and kx; in Sec. 4.2 we give a more detailed discussion of our homogenisation
procedure. The figures presented in these sections contain the information
required to generate equifrequency contours: in Sec. 4.3 we apply our method
from Chapter 3 and a commercial field solver to calculate an equifrequency
contour for a self-collimating PC presented by Tang et al. [37]. We conclude
in Sec. 4.4 by assessing what might be gained by homogenising PCs.
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Abstract Summary

We propose a method for photonic crystal (PC) homogenisation 
based on the PC’s Bloch modes. The resulting quantities may be used 
in Snell’s  law; to calculate reflections, transmissions, and 
propagation; and to locate surface modes.

Photonic crystals; homogenisation; impedance

I. INTRODUCTION

Light propagation in 2D photonic crystals (PCs) is 
complicated, and resists analytic treatment. Therefore many 
researchers are interested in the homogenisation of PCs and 
metamaterials [1–3],  where a PC or metamaterial may be 
approximated by a uniform medium with some effective 
properties. Such effective properties may include refractive 
index, impedance, permittivity, and permeability. If the 
homogenisation is valid,  then these quantities may be used in 
standard equations, for example the effective index may be 
used in the Fresnel equations to calculate reflection 
coefficients.

In the long wavelength limit,  where λ ≫ d, effective 
parameters for PCs may be derived analytically [4].  However, 
most interesting properties of PCs occur in or close to PC band 
gaps, which occur at higher frequencies far from this limit. At 
such frequencies effective parameters may only be found 
empirically from simulation or experiment, and there is no 
guarantee that the resulting quantities are useful or consistent. 
For example, the effective index calculated from reflections at 
a PC-air interface may differ from that calculated from 
reflections at a PC-glass interface, or from the effective index 
calculated by applying Snell’s law.

When considering light propagation in PCs, the natural 
basis to consider is the set of the PC’s Bloch modes (its 
eigenstates).  The complication is that at an interface, each 
Bloch mode reflects and transmits into many other Bloch 
modes. Therefore the problem is akin to that of multiconductor 
transmission lines [5]: in general several modes must be 
considered simultaneously, and reflections and transmissions 
are described by matrices rather than scalar coefficients. We 
previously derived a Bloch-mode based method for calculating 
reflection and transmission matrices for PC interfaces, from an 

impedance-like matrix [6, 7].  The dimension of the matrices is 
the number of Bloch modes in the calculation. When 
considering all Bloch modes (a countably infinite set) the 
method is exact, but in practice strongly evanescent modes are 
neglected as they do not affect energy flow.

Our homogenisation procedure therefore consists of 
calculating the PC impedance using only one Bloch mode, 
either a propagating mode (in band) or the most slowly 
evanescent mode (in gap). With the field projected onto a basis 
of one mode, the reflection and transmission and impedance-
like matrices become scalars. Scalars commute, and the 
impedance matrix equations [7] for the reflection and 
transmission at the interface between PC 1 and PC 2 may be 
rearranged to the familiar expressions

 Z = E�/H�,

   
r12 =

Z2/Z1 − 1

Z2/Z1 + 1
,
  and  

t12 =
2
�

Z2/Z1

Z2/Z1 + 1
,
 (1)

where E∥ and H∥ are the field components parallel to the plane 
of the interface, as measured at the phase origin (the centre of 
the PC unit cell’s front edge). The transverse or wave 
impedance Z is related to the PC impedance-like matrix Zi  by
Z2

i = Zi/Z0 , with Z0 the wave impedance in free space [7]. 
The PC’s propagative properties are given by the mode’s Bloch 
factor η, which is the phase or decay factor across one period 
of the PC; for free space,  if the interface lies in the x−z plane, 
η = eikyd0 where d0 is some arbitrary period and ky is the wave 
vector component perpendicular to the interface.

In Sec. II, we discuss where this single mode approximat-
ion yields acceptable results, and in Sec. III we use PC imped-
ance and Bloch factor to derive common effective quantities.

II. WHERE IS HOMOGENISATION POSSIBLE?
Since our homogenisation approximation consists of 

discarding all Bloch modes bar one from a calculation, the 
approximation only works in circumstances dominated by a 
single Bloch mode—other homogenisation procedures are also 
limited to this regime [1]. When multiple propagating Bloch 
modes are involved, an effective index generally compatible 
with the Fresnel equations cannot be consistently defined [6].

This work was produced with the assistance of the Australian Research Council (ARC). CUDOS (the Centre for Ultrahigh-
bandwidth Devices for Optical Systems) is an ARC Centre of Excellence.

74



For a given frequency, incident angle and polarisation, one 
can roughly see whether a Bloch mode is important by looking 
at the modulus of its Bloch factor |η|. The moduli of the largest 
two Bloch factors are shown in Fig. 1 for the E out of plane 
polarisation of a square lattice PC with air holes of radius 
0.35 d in a n = 3.5 dielectric background.

Roughly speaking, the second mode becomes non- 
negligible above the first Wood anomaly [8] (dashed line in 
Fig. 1); a PC can be seen as a stack of gratings, and for a given 
incident angle or kx (wave vector component along the grating), 
the first Wood anomaly occurs at the frequency

 d/λ = |(kxd/2 − 1)/n| ,  (2)
the lowest frequency at which the grating diffracts an incident 
plane wave into a second propagating order.

At frequencies well below the Wood anomaly, one Bloch 
mode dominates and our homogenised calculations yield 
accurate reflection coefficients.  We now investigate the 
accuracy of these calculations near the Wood anomaly. 
Reflection coefficients are shown in Fig. 2(a) and 2(b) for a 
three layer section of the PC from Fig. 1, embedded in 
background dielectrics of n = 2.5 and n = 3.5,  for frequencies 
and incident angles given by the red curve in Fig. 1.

Even below the Wood anomaly, the reflection coefficient 
calculated by the homogenised treatment starts to deviate from 
the correct result.  In Fig.  2(b),  the discontinuity in slope at the 
Wood anomaly of the accurate reflectance occurs because 
above that frequency the PC reflects light into two propagating 
plane wave orders.

In some situations, the homogenised treatment can give 
accurate results well above the Wood anomaly.  PC surface 
modes, electromagnetic states that decay in both directions 
away from an air/PC or PC/PC interface, may be found from 
poles of the reflection matrix [9], in a manner similar to how 
surface plasmons may be found from poles of the reflection 
coefficient. Fig. 3 shows a surface mode for which the 
homogenised treatment (red) agrees with the accurate treatment 
(blue) both below and above the first Wood anomaly (dashed 
line).

Above the Wood anomaly, the dispersion relations start to 
diverge slightly,  but still substantially agree.  In this surface 
mode the field is concentrated in the most slowly evanescent 
Bloch mode, which has an amplitude at the interface over 20 
times larger than that of the next most important Bloch mode. 
The other surface mode, in the higher frequency partial band 
gap, is not found by the homogenised treatment, as it is 
essentially a superposition of two Bloch modes and so cannot 
be meaningfully represented by a homogenised method.

III. DERIVATION OF EFFECTIVE QUANTITIES

Having proposed a homogenisation method that provides 
an impedance Z  that determines reflections and a Bloch factor 
η that determines propagation, and having explored the 
circumstances under which this approximation provides good 
results, we now consider the calculation of other effective 
parameters from Z and η.  This procedure offers no new infor- 
mation about the PC but serves to highlight some 

FIG. 1: Modulus of (a) η1, the largest Bloch factor and (b) η2 the 
second largest Bloch factor. Our homogenised treatment considers 
only the mode with the largest Bloch factor and ignores all others.

FIG. 2: Reflectances for a 3d thick layer of PC embedded in a 
background dielectric of (a) n = 2.5 and (b) n = 3.5, calculated 
accurately using five Bloch modes (blue) and with a homogenised 
treatment (red). Note that kx is varied with d/λ so as to follow the 
red curve in Fig. 3.

FIG. 3: Projected band structure of surface modes at an air/PC 
interface, below the light line (solid) and around the first Wood 
anomaly (dashed line). The red (lighter) points are surface modes 
found from homogenised impedances, and the blue (darker) 
points, many of which are obscured by the red points, are surface 
modes found with an accurate method [9].

(a)

(b)

(a) (b)
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counterintuitive results that raise questions about the physical 
relevance of such effective parameters.

First we calculate an effective ky from the Bloch factor η. 
Approximating the Bloch mode by a plane wave we write
ηl = eikyld. By Bloch’s theorem, this approximation is valid at 
positions y that are integer multiples l of the lattice constant d 
(N.B.  for a non-square lattice this d may differ from that in 
(2)).  ky and Z are shown in Fig. 4 for the PC from Sec. II.

From ky and the transverse impedance Z we can calculate 
the PC’s effective ε and µ, using equations valid for plane 
waves in the |E|  = Ez polarisation: µ = Zky/ω and ε = |k|2/kyZω. 
Then we can calculate the PC’s effective characteristic 
impedance Zc =

√
µ/

√
� and effective index n =

√
�
√

µ . 
These quantities are shown in Fig. 5.

Note that all quantities vary strongly with both frequency 
and kx; the PC is highly isotropic.  The PC has a varying µ 
despite consisting of dielectrics.  There is a small negative 
index region, however as this is near the Wood anomaly the 
validity of the single mode approximation is unclear.

Otherwise, they behave as expected: in the single mode 
approximation n may be used in Snell’s law to find the 
relationship between kx and ky, but may not be used in the 
Fresnel equations since µ ≠ 1 generally.  Reflection coefficients 
can be found using Z  in (1), and ky describes propagation at 
points differing from the phase origin by integer multiples of 
lattice vectors.  These effective quantities are no more powerful 
than the Z and η from which they were derived, but are more 
widely used and understood.

IV. CONCLUSION

We have explored the approximation of our PC impedance 
method [6, 7] where only one Bloch mode is considered. This 
approximation is usually valid beneath the first Wood 
anomally.  Under this approximation PC impedance matrices 
are reduced to scalars, which introduces commutativity, 
allowing simplification of equations.  We investigate the regime 
in which this approximation is valid, finding that in certain 
circumstances the approximation can predict surface modes 
even at frequencies too high for it to calculate reflectances.  
Our homogenised quantities may be applied to Snell’s law, 
used to calculate reflection and transmission coefficients, and 
used to find surface modes.
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FIG. 4: Real and imaginary parts of wave vector component ky ((a) 
and (b)), and transverse impedance Z ((c) and (d)). In band, ky and 
Z are both real; in the band gap Z is imaginary and ky has a real 
component of 0 or π.

FIG. 5: Real and imaginary parts of effective permeability µ ((a) 
and (b)); permittivity ε, ((c) and (d)); and refractive index n ((e) 
and (f)).  All quantities vary with both frequency and kx: an 
effective index is valid only at one incident angle. µ2 and ε2 are 
always real.

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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4.2 Homogenisation of triangular lattice PCs

In Paper 4.1 we only consider a square-lattice PC. Here, we extend the
technique to triangular lattice PCs and then apply it. But first we examine
the quantities from which we calculate our effective parameters.

In this section we consider a triangular lattice PC that consists of air
holes with radius r = 0.35 d in a background dielectric with n = 3.5. As re-
quired by our method, the PC’s unit cell is up-down symmetric. We consider
light incident in the Hz polarisation with a range of 50 kx d ∈ [0.01, π] (cor-
responding to different incident angles) and 50 frequencies d/λ ∈ [0.01, 0.36].
Multipole simulations are performed to find the Bloch factors and impedan-
ces for each frequency and kx.

The magnitudes of the largest two Bloch factors, |η1| and |η2|, are shown
in Fig. 4.1. |η| = 1 for a propagating mode. Figure 4.1a shows that the PC
has a complete bandgap that includes the frequency d/λ = 1/3.5 ' 0.29,
which is the first (and second) Wood anomaly at normal incidence. As ex-
pected, no modes propagate below the light line of the PC’s background
material. There is a partial bandgap just above the light line—this indi-
cates that the first band of the PC may not be coupled into at near-grazing
incidence from the background dielectric. At all frequencies below the first
Wood anomaly, the second mode is strongly evanescent. In the large kx, high
frequency corner of the bandgap, which is well above the Wood anomaly,
|η1| = |η2| and so this PC is likely to exhibit the braiding effects noted by
Brownless et al. [5]. In the braided region the modes come as a pair, so
homogenisation attempts are especially unlikely to succeed as they require
one of the modes to be neglected. If we truncate and consider only two
modes, then Z is a 2× 2 matrix. The moduli of its four elements are shown
in Fig. 4.2. If only one mode were to be considered in the PC, then Z11

(Fig. 4.2a) would be unchanged but would be the only element of Z: this
element of the 2×2 matrix encapsulates the PC’s reflective properties in the
single-mode approximation. Below the Wood anomaly, the varying magni-
tude of Z11 in Fig. 4.2a shows the existence of a “Brewster’s angle” for this
PC: where Z2

11 = 1 there is no reflection when coupling into the PC from
the reference material (air).

Triangular lattices have non-orthogonal lattice vectors, so the Bloch fac-
tor

η = eik·e2 = ei(kxd/2+kydy) (4.1)

contains a kx factor, which must removed in order to find the propagation
constant ky. The incident angle determines kx, so Eq. (4.1) can be rear-
ranged to find the propagation constant ky, modulo 2π/dy. The ambiguity
associated with choosing a branch can play havoc with effective parameters
derived from ky—but finding it modulo 2π/dy is less ambiguous than finding
it modulo 2π/(`dy) as in the NRW method, and probably is the best that
can be done given the PC’s periodicity.

In the single-mode, single-plane wave approximation, there is no differ-
ence between impedance definitions for square and triangular lattices. In
the definition of impedance, Eqs. (26) in Paper 2.3, Q = I for square lattices
and Q = diag(eisπ) for triangular lattices. When truncating the plane wave
basis to a single grating order, these matrices become scalars. The specular
grating order is s = 0, and so for both square and triangular lattices, Q = 1,
and the PC impedance product ZZT simplifies to

ZZT = (E/H)/(E0/H0). (4.2)

From this quantity, the wave impedance of the PC Z = E/H may easily be
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Figure 4.1: Moduli of the largest two Bloch factors for forward modes of the
triangular lattice PC.
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Figure 4.2: Moduli of each element of Z when two Bloch modes are consid-
ered.
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Figure 4.3: The two critical quantities, the propagation constant ky and the
wave impedance Z, that are needed to describe propagation and reflection
through a homogenised PC.

calculated:
Z = Z2Zw0, (4.3)

as in Paper 4.1. Zw0 is the wave impedance of the reference medium, free
space.

By Bloch’s theorem, the wavevector components kx and ky determine
the Bloch mode’s propagation through the lattice. kx and ky determine the
phase and amplitude difference between points separated by lattice vectors,
exactly as if the mode was a plane wave. In the single mode approximation,
the wave impedances Z of two PCs determine the reflection and transmission
coefficients between the two PCs’ Bloch modes. Where the single mode
approximation is valid, our modal parameters ky and Z encapsulate the
propagation and reflective properties of the Bloch modes in the system. The
homogenisation step then entails representing the Bloch modes by plane
waves: this may be done exactly for one point in each unit cell, due to the
quasiperiodicity of Bloch modes.

Figure 4.3 shows the real and imaginary parts of the propagation constant
ky and the wave impedance Z for the PC. As expected, ky is real in band,
increases with frequency, decreases with kx, and is imaginary below the light
line. It is also imaginary in the low frequency partial band gap just above
the light line. In most of the complete band gap, Re(ky) = π/dy, indicating
that the mode amplitude swaps sign across each PC period. The exception
is in this band gap’s braided region, where there is another mode with equal
|η| [5].
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The wave impedance Z is well-behaved below the Wood anomaly in
Fig. 4.3. In band, it is purely real, and out of band and below the light
line it is purely imaginary, ensuring a reflectance of unity. Approaching the
band’s edge, Z either approaches 0 or diverges, leading to a reflectance that
approaches unity. In the braided region of the band gap, Re(Z) 6= 0, but the
scalar Z is not sufficient to describe the properties of this region, where it is
critical to include both modes: Z is based on only one element of Z, which
must be at least 2× 2 to describe the PC.

The quantities η and Z, or equivalently the more commonly-used quan-
tities ky and Z, are sufficient to characterise the propagation and reflection
properties of a PC at a single frequency, incident angle, and polarisation.
These quantities can either be used with the thin film framework or an
equivalent transmission line model in order to calculate the reflection and
transmission coefficients for a length of the PC, no matter what materials
are either side of it. Uniform media are more commonly characterised by re-
fractive index n and characteristic impedance Zc, or by relative permittivity
ε and relative permeability µ. For isotropic media these latter quantities are
independent of kx and vary weakly with frequency. As such, fewer numbers
are required to characterise each medium: this is compounded by the fact
that for lossless dielectrics Im(ε) = 0 and µ = 1, so for lossless isotropic
dielectrics only one real number is required to characterise the medium at
each frequency.

These simplifications generally do not apply to PCs—even the PCs com-
posed of lossless dielectrics that we consider. From ky and Z it is possible
to define effective parameters n, Zc, ε and µ for a PC, using relations valid
for isotropic media. For Hz polarised light, these relations take the form

n = k/(2πd/λ) (4.4a)
Zc = Z k/ky (4.4b)
ε = n/Zc (4.4c)
µ = nZc, (4.4d)

where
k =

√
k2
x + k2

y (4.5)

is the effective wavenumber in the medium. Where k is imaginary, we take
the root with Im(k) > 0, as Im(ky) < 0 corresponds to evanescent growth
(i.e. the backward wave, which decays in the opposite direction to the for-
ward wave). There is some possible ambiguity in the definition of these
parameters, which we discuss shortly.

Effective parameters calculated for the PC using Eqs. (4.4) are shown
in Fig. 4.4. In the PC band below the Wood anomaly, the refractive index
n is nearly independent of kx, varying with frequency between n = 2.35
to n = 2.6 (Fig. 4.4a). Therefore the PC may be considered to be nearly
isotropic in this regime, from a propagation perspective—its equifrequency
contours are nearly circular.

However, the PC’s reflective properties do not permit angle-independent
characterisation: Zc, which is kx–invariant for all isotropic media, depends
on kx at most in-band frequencies (Fig. 4.4c). Therefore both ε and µ vary
with kx (Figs. 4.4e–4.4h), and the PC may not be characterised by a ho-
mogenous isotropic dispersive medium.

Below the complete band gap, ε and µ are real. This suggests that the
partial band gap next to the light line is not a true band gap effect, but is
more akin to total internal reflection. The PC’s behaviour in this region is
qualitatively consistent with that of a dispersive homogenous medium with
n(ω) varying between 2.3 and 2.5: light cannot propagate in this medium
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Figure 4.4: Effective parameters for the homogenised PC.
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below its light line. This hypothesis is corroborated by the behaviour of Zc,
which does not diverge or vanish at this band edge (Fig. 4.4c).

Plausible variations on Eqs. (4.4) give effective parameters with entirely
different properties. For example, it could be argued that the k and ky in
Eq. (4.4b) should be k and ky in the PC’s background material rather than
the effective k and ky for the PC—because the wave impedance is defined on
the surface of the unit cell, which is surrounded by the background material.
If this alternative definition is used, then the resulting Zc vanishes at the
edge of the partial band gap and becomes imaginary inside it. Additionally,
ε is imaginary in the partial band gap and at some points below the light
line, and µ is complex at these points. We prefer the original definition
because it treats the PC as a self-contained material rather than needing
extra information about the PC’s background dielectric; additionally the
obtained homogenised parameters are better behaved, in our opinion.

Well below the light line, where plane waves do not propagate in the
PC’s background dielectric, Im(n) and Im(Zc) significantly increase in mag-
nitude. This is because at low frequencies in this PC, Im(ky) increases
faster than kx (Fig. 4.3b). This would seem to violate the principle that
PCs are homogenisable and isotropic in the long wavelength limit. How-
ever, this only happens with evanescent waves, which are known to be able
to resolve features smaller than their wavelength; in this example Im(ky)
starts to increase faster than kx when the 1/e decay length of the evanes-
cent wave becomes shorter than the unit cell length dy. For larger kx, and
therefore even shorter decay lengths, the rapidly decaying evanescent wave
only has appreciable field amplitude in a fraction of the unit cell and so it
is unsurprising that the PC’s effective parameters vary with kx.

The pairs of derived parameters (n,Zc) and (ε, µ) may each be used to
calculate ky and Z and through them the PC’s propagative and reflective
properties at the frequency, incident angle and polarisation. But as such,
they carry no more information than the parameters ky and Z from which
they were derived. In the absence of kx or frequency invariance, there is little
point in working with the derived parameters, as they must be converted
back to ky and Z in order to use them. The sole practical advantage of the
so-called material parameters is that ε and µ are real below the complete
band gap, requiring half as much information to be stored.

4.3 Calculation of an equifrequency countour

Figure 4.3a shows the relationship between Re(ky) and kx at each frequency
d/λ, for a particular PC’s least-evanescent mode. For propagating modes,
this information is more commonly represented as a set of equifrequency
contours, which give information about the direction that an incident wave
is “refracted” [18]. We now demonstrate that our method—in particular, the
freely-available method of Chapter 3—may be applied to find an equifre-
quency contour, and that the results are consistent with others’.

In Fig. 4.5a we plot the d/λ = 0.5765 equifrequency contour for a self-
collimating PC presented by Tang et al. [37]. This square lattice PC consists
of n = 2.9 dielectric cylinders with radius r = 0.15 d in an air background,
and light is incident in the Ez polarisation. The data was generated using
my freely available BlochCode software, with field scattering data produced
by Comsol Multiphysics. The equifrequency contour in Fig. 4.5a agrees
well with that in Ref. [37]: crucially, it shares the distinctive flat sides that
indicate that ky is invariant over a domain of kx, and therefore that the PC
self-collimates light. Given that the equifrequency contour is not circular, an
angle-independent set of effective parameters may not be obtained for this
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Figure 4.5: (a) Equifrequency contour and (b) PC impedance scalar at fixed
frequency for a self-collimating square lattice PC. The black points in (a)
are directly obtained; the grey points are obtained from the black points by
exploiting lattice symmetries.

PC. Furthermore at this frequency the second Wood anomaly lies at approx-
imately kxd/2π = 0.42; at least two Bloch modes need to be considered for
modelling the PC with larger kx.

Figure 4.5b shows the PC impedance scalar Z at this frequency. No mode
propagates between 0.22 < kxd/2π < 0.33, which can be seen by the fact
that Im(Z) 6= 0 at these kx. The relatively flat Z curve for |kxd/2π| < 0.2
implies that most beam components with |kxd/2π| < 0.2 couple into the PC
with similar efficiency. If this were not the case, then the beam would be
distorted by the resultant filtering of its spatial components—a multi-angle
antireflection coating might then be necessary to rectify this.

4.4 To what end?

It is all very well to ascribe effective parameters to a PC, but does it serve
any practical purpose? In the metamaterials community, a number of work-
ing devices have been designed using transformation optics, which relies on
homogenising metamaterials, or rather, the inverse problem of finding meta-
materials with a particular set of characteristic parameters. Metamaterial
devices based on negative index materials, such as cloaking devices [156]
and superlenses [157], as well as devices not requiring negative indices, such
as carpet cloaks [158, 159] and nanolenses [160] are all typically designed
by calculating a required spatial distribution of effective ε(r,k) and µ(r,k),
then finding a distribution of metamaterials that give ε(r,k) and µ(r,k).
Rigourous or not, metamaterial homogenisation is a part of a process that
has sucessfully been used to design devices, and without this process re-
searchers would struggle to explore the vast parameter spaces to discover
such devices.

In the photonic crystals community, equifrequency contours have long
been put to work in the design of superprisms and supercollimators [25, 32],
strongly dispersive devices which are inherently inhospitable to isotropic
homogenisation. Some metamaterial techniques and applications are now
spreading to the photonic crystals community [152]. Ergin et al. [161] used
transformation optics to design a 3D carpet cloak, based on a set of 3D wood-
pile PCs that have spherical equifrequency contours and therefore isotropic
effective indices n. Urzhumov and Smith [162] also applied transformation
optics with the goal of designing a PC cloak; they needed spatially disper-
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sive media so represented each PC by a spatially dispersive effective index
n(k). While the performance of their cloak is not perfect, it still demon-
strates that PC effective parameters can be used with transformation optics
to locate a region in parameter space with the desired properties. Both
groups opted not to calculate effective impedances and tailor the reflective
properties of their devices. Liang and Li [163] applied transformation optics
to bend a square lattice PC into a horseshoe shape along with its guidance
properties—this did not involve a homogenisation step, instead they scaled
each unit cell’s geometry and permittivity using transformation optics the-
ory. I am unaware of effective ε and µ parameters (as opposed to effective
n) for PCs being applied to design a device.

Ultimately, PCs are inherently discrete periodic media, and homogenisa-
tion methods hide this. For example, the reflection of a PC often depends
on the position within the unit cell of the interface plane, but this is not
represented by a homogenous effective medium. In my opinion, outside the
long-wavelength limit it is safer not to calculate effective parameters such
as n: instead light should always be modelled as a set of Bloch modes with
ky(ω, kx) and Z(kx). While the two methods give identical results (if the ho-
mogenisation procedure in Sec. 4.2 is followed), when the PC’s Bloch modes
are used explicitly then the PC’s discreteness is less likely to be forgotten
and the parameters are less likely to be used invalidly.3 The single mode
approximation, which is necessary for all the above homogenisation meth-
ods, remains a powerful approximation because it allows PC properties to
be encapsulated by scalars, which commute.

3Note that the PC impedance framework discussed in this thesis only applies to stacks
of PCs, which are periodic in one dimension. Non-spatially-uniform devices, such as
2D cloaks, vary in two directions: e.g., the period might vary radially [162]. The PC
impedance framework does not support such structures, as the modes of such structures
are not the Bloch modes we calculate. Speculatively, if adjacent unit cells are sufficiently
similar, then perhaps the structure may be considered “locally periodic”: the field in each
unit cell of the mosaic would be represented by the Bloch mode of a PC generated by that
unit cell, and the amplitudes of the modes in a pair of adjacent cells would be related by
the average of their (similar) wavevectors.
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Chapter 5

Surface modes and other
applications

To this point, the only application of PC impedance that we have demon-
strated is the design of single frequency and broadband antireflection coat-
ings. Other types coatings should also be possible, such as polarisation filters
and band pass filters: if a PC stack with the desired properties exists, then
our method can efficiently sort through the possible PC stacks to find it.
But in this chapter we step away from such problems and turn our attention
to some other applications of our PC impedance framework.

The first of these applications is to find the surface modes at a PC/air
interface. As discussed in Sec. 1.2.3, the thin-film framework can be used to
derive a condition for the existence of surface plasmons, and calculate their
propagation constants and field distribution on either side of the interface.
In Paper 5.1 we ape this thin-film-style treatment of surface plasmons with
a matrix version for PC surface modes based on PC impedances. Surface
plasmons exist where the reflection coefficients r12 and r21 diverge; we show
that PC surface modes exist when the inverses of the reflection matrices R−1

12

and R−1
21 each have a zero eigenvalue. We provide an equivalent condition

for this in terms of the PC impedances, which does not require numerical
inversion of ill-conditioned matrices. The Bloch mode amplitudes of the
surface modes are given by the matrices’ null vectors.

In Section IV. of Paper 5.1 we explore the phenomenon of double interface
surface modes. The studied configuration, shown in Fig. 7(c) of Paper 5.1,
is the inverse of a conventional PC waveguide: the mirrors, normally PCs
in bandgap, are replaced by air, and the dielectric waveguiding region is
replaced by a PC. In the PC’s bandgap, surface modes exist on the PC’s
two interfaces and they couple. In band, more conventional waveguiding
occurs, with the modes propagating along the PC strip.

In the remainder of this chapter, we briefly discuss the related work of
students whom I have co-supervised. In Section 5.2 we discuss a paper in
which our impedances are applied to calculate the dispersion relations of
conventional PC waveguides in an efficient manner, and to find PC wave-
guides with slow light and little dispersion. Finally, in Sec. 5.3 we discuss
work where our impedances are used to find the dispersion relations of a large
array of coupled PC waveguides, and model the resulting discrete diffraction.

Throughout this chapter, the propagation constants ky of the Bloch
modes in bulk PCs are de-emphasised, as we focus on the propagation con-
stants kx of the surface and waveguide modes, which propagate along the e1

lattice vector.
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We present a method for finding surface modes at interfaces between two-dimensional photonic crystals
(PCs), in which the surface modes are represented as superpositions of the PCs’ propagating and evanescent
Bloch modes. We derive an existence condition for surface modes at an air-PC interface in terms of numerically
calculated PC impedance matrices, and use the condition to find surface modes in the partial band gap of a PC.
We also derive a condition for modes of a three-layer structure with two interfaces, and find both coupled surface
modes and waveguide modes. We show that some waveguide modes cross the band edge and become coupled
surface modes.
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I. INTRODUCTION

Electromagnetic surface modes have long been studied for
their rich and interesting physics [1]. They are confined to an
interface, in the sense that the field decays exponentially away
from the interface in both directions. The most widely studied
example is the surface plasmon or surface plasmon polariton,
which arises at the interface between a metal and a dielectric,
but these have very short propagation lengths due to loss in the
metal. They have been experimentally demonstrated [2], and
may even be seen with the naked eye if elastically scattered on
the surface of a diffraction grating [3].

Surface states may also arise at the boundaries of two-
dimensional photonic crystals (PCs), which are defined as
having a periodic variation in refractive index [4]. In this paper
“surface mode” refers to this variety of PC surface state, while
“surface plasmon” refers exclusively to a state at the interface
between a metal and a dielectric. For a surface mode at an
interface between air and a PC, the field decays into the PC
because of the PC’s band gap, and it decays on the air side of
the interface due to an effect related to total internal reflection.
Since the entire structure may be made from lossless materials,
surface modes can have much longer propagation lengths than
surface plasmons.

PC surface modes have been experimentally demonstrated
[5–8], and have been found by two general numerical
approaches. The most common technique is to use a supercell
[4] and directly compute the modes. With the supercell
approach, the PC cannot be infinitely thick and so, in principle,
there is always some coupling between surface modes on the
front and back of the PC. The other widely used technique
involves separately finding the modes of the two materials
and calculating the surface modes from these by matching
them at the interface [9–11]. This allows surface modes to
be calculated for interfaces between semi-infinite structures.
We take the latter approach, expressing it in terms of PC
impedances [12], and generalize it to work also with structures
that have a material of finite thickness sandwiched between two
semi-infinite media.

*felix@physics.usyd.edu.au

Surface plasmons may be found from the poles of the
transmission coefficient or of the reflection coefficient

r12 = Z2/Z1 − 1

Z2/Z1 + 1
, (1)

where Z = E‖/H‖ is the wave impedance, with E‖ and
H‖ the field components parallel to the interface. So the
condition for a surface mode to exist is that the denominator of
Eq. (1) vanishes. For transverse magnetic (TM) polarization
(H = H‖τ̂ with τ̂ parallel to the interface), for which surface
plasmons may exist at an air-metal interface Zi = −k⊥i/ωεi

and so by this condition surface plasmons exist when

k⊥1

ε1
= −k⊥2

ε2
, (2)

where k⊥ is the component of the wave vector perpendicular
to the interface.

In this paper we generalize the procedure for finding surface
plasmons to apply to dielectric PCs and their impedances. The
procedure involves finding poles of the PC analog of Eq. (1),
which uses semi-analytically defined PC impedances that are
generally matrices [13]. This allows us to find a condition for
the existence of a PC surface mode. Section II defines our
nomenclature and introduces the quantities needed to describe
PCs, before the surface mode existence condition is derived in
Sec. III. This is then applied to give the dispersion relation of
a PC surface mode. In Sec. IV we derive a condition and give
examples for the case with three media and two interfaces (e.g.,
a strip of PC surrounded by air on either side). We conclude in
Sec. V by commenting on the usefulness of our method. The
Appendix presents a convergence analysis in a typical case,
illustrating the accuracy and reliability of our technique.

II. BACKGROUND THEORY AND NOMENCLATURE

We write the field in each PC in its basis of Bloch modes
(including propagating and evanescent modes); this is the
natural basis in which to consider transmission and reflection
since each Bloch mode travels independently through its PC
without scattering into other modes. Our method for finding
Bloch modes is based on the semi-analytical least-squares-
based method of Botten et al. [14] and is briefly outlined

1050-2947/2010/82(5)/053840(8) 053840-1 ©2010 The American Physical Society

86

http://dx.doi.org/10.1103/PhysRevA.82.053840


LAWRENCE, BOTTEN, DOSSOU, MCPHEDRAN, AND DE STERKE PHYSICAL REVIEW A 82, 053840 (2010)

in the following. In its present form, the method applies to
two-dimensional (2D) square or triangular lattice PCs with unit
cells that are up-down symmetric, which precludes the study
of PCs with arbitrarily truncated unit cells. For generality we
treat all media as PCs (see Fig. 1): for homogeneous dielectrics
such as air, a periodicity is imposed and the material’s Bloch
modes are simply plane waves.

Our axes are chosen such that all PC interfaces are parallel
to the x-z plane, and each PC’s refractive index varies
periodically in the x-y plane. We assume that both the PC
structure and the electromagnetic (EM) field are invariant in the
z direction; this is thus a 2D problem. In any single simulation
we consider one polarization, one frequency, and one Bloch
vector component kx , the component parallel to the interface.
Since the EM field components parallel to a dielectric interface
are continuous across it, fixing kx across all media ensures
that we have a closed set of Bloch modes under reflection
and transmission at all PC interfaces. A surface mode with
propagation constant kx may therefore be represented in each
medium as a superposition of these Bloch modes.

We find the Bloch modes of each PC by diagonalizing
the plane-wave transfer matrix [14], which, in turn, is
found using the multipole method [15]. The transfer matrix
may alternatively be found with the finite element method
(FEM) [16]. The dimension of the plane-wave transfer matrix
is made sufficiently large that it includes all relevant plane
waves, which are the grating diffraction orders excited by the
rows of holes comprising the PC. In this paper’s examples, five
plane-wave orders were considered in each direction in each
medium; this means that the calculations typically include
all relevant plane waves that decay in amplitude across a
PC’s unit cell by a factor of 106 or less. In the Appendix
we give criteria illustrating how the required number of plane
waves is determined and show that for our calculations five
plane-wave orders are sufficient to determine surface modes
accurately.

We partition the Bloch modes of each PC into modes that
propagate or decay in the forward (+y) direction and those
that propagate or decay in the backward (−y) direction. The
field in a PC i is represented by a vector of forward Bloch
mode amplitudes c+

i and a vector of backward Bloch mode
amplitudes c−

i (Fig. 1).
At an interface between two PCs, each incident Bloch mode

may be reflected and transmitted into many modes. Reflection
and transmission coefficients must therefore become nondi-
agonal reflection and transmission matrices. In our previous
work [12] we showed that these may be written in terms of

c−
1

c+
1 c+

2

PC 1 PC 2

c−
2

y

x

FIG. 1. Schematic of a two PC interface, with incoming and
outgoing Bloch vectors.

the impedance-like matrices Z1 and Z2 of PC 1 and PC 2 [cf.
Eq. (1)]

T12 = (
AT

12A12 + I
)−1

2AT
12, (3a)

R12 = (
A12AT

12 + I
)−1(

A12AT
12 − I

)
, (3b)

T21 = (
A12AT

12 + I
)−1

2A12, (3c)

R21 = (
AT

12A12 + I
)−1(

I − AT
12A12

)
, (3d)

where A12 = Z−1
1 Z2. These equations are exact at full rank,

when all relevant plane waves and Bloch modes are considered,
and are otherwise least-squares-style approximations. In the
Appendix we show that, for the cases in this paper, five Bloch
modes and five plane waves are sufficient to obtain highly
accurate results.

The impedance-like matrix Z is the crucial quantity that
we use throughout the remainder of this paper to describe how
light behaves in the PC. It is defined in terms of the PC’s
numerically found Bloch modes, but once the Bloch modes
are known, Eq. (3) holds rigorously at full rank and becomes
a least-squares approximation when the set of plane waves or
Bloch modes is truncated [12].

III. SINGLE INTERFACE SURFACE MODES

We derive a necessary and sufficient condition for the
existence of a PC surface mode in a similar way to how
the surface plasmon condition Eq. (2) may be derived: we
look for poles of the reflection matrices. We work in the PCs’
Bloch bases, with notation as in Fig. 1. Poles of matrices
imply infinite eigenvalues; to avoid the ensuing numerical
instabilities, we instead calculate the inverse of these matrices
and look for zero eigenvalues. The condition for a surface
mode, in this form, is then the pair of homogenous equations

R−1
12 c−

1 = c+
1 = 0, (4a)

R−1
21 c+

2 = c−
2 = 0. (4b)

Equation (4) constitutes a necessary condition because a
surface mode has zero incoming field (i.e., c+

1 = 0 and c−
2 = 0)

and nonzero outgoing field (i.e., c−
1 �= 0 and c+

2 �= 0), so R−1
12

and R−1
21 must be singular. Possible issues of degeneracy are

resolved by studying the null space, for which the singular
value decomposition is a useful tool. They also constitute a
sufficient condition because the null vectors of R−1

12 and R−1
21

are valid outgoing fields without incoming fields, which is the
definition of a surface mode.

To find the source of the singularity, consider the expres-
sions for R12 and R21 in Eqs. (3b) and (3d). The impedance
ratio A12AT

12 does not have an infinite eigenvalue since that
would imply that one of the Bloch modes could not be
normalized and had zero or an infinite field associated with
it. Therefore to satisfy Eqs. (4a) and (4b), (A12AT

12 + I) and
(AT

12A12 + I) must have a zero eigenvalue. Looking again at
Eq. (3), this implies that surface modes are tied to poles of the
reflection and transmission matrices in both directions. This is
consistent with the condition used by Enoch et al. [10], that of a
pole in the scattering matrix determinant; and the condition of
Che and Li [11], that det(S11) = 0, where S11 is the submatrix
of the scattering matrix that maps c+

2 to c+
1 .
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FIG. 2. (Color online) Projected band structure of surface modes
at an air-PC interface. Only the region below the light line is
considered.

So to find the surface modes of a structure, we scan
frequency and vary kx in search of cases where (A12AT

12 + I)
has a zero eigenvalue. Thus by searching frequency-kx space
we construct the projected band structure of the interface. The
eigenvector associated with each zero eigenvalue is c−

1 for
the surface mode, as may be seen from Eq. (4a). And from
Eq. (4b) we see that the amplitudes of PC 2’s Bloch modes,
c+

2 , is the eigenvector corresponding to the zero eigenvalue of
(AT

12A12 + I). Knowing the Bloch mode amplitudes c−
1 and c+

2
lets us find and plot the surface mode’s field.

We now apply this method to find the surface modes at
the interface between air and a semi-infinite PC. The PC has
a triangular lattice of air holes of radius 0.25d, with lattice
constant d, in a dielectric background with n = 2.86. We
look for surface modes in the E = Ezẑ polarization; surface
plasmons do not exist in this polarization since this would
require a medium with negative permeability.

Surface modes only occur where there are no propagating
modes in either material; since one of the media is air, we only
look for surface modes below the light line [4]. We scan over
frequency and kx for eigenvalues of (AT

12A12 + I) that have
magnitudes below our accuracy goal of 10−12 and find two
surface modes in a partial band gap. The resulting projected
band structure is plotted in Fig. 2.

The real and imaginary parts of the smallest eigenvalue ψ of
(AT

12A12 + I) are plotted in Fig. 3 for d/λ = 0.3. The surface
mode is found where the real part crosses the x axis; within the
band gap Im(ψ) is essentially zero. This eigenvalue appears
to have no physical significance other than indicating whether
(AT

12A12 + I) is singular. This result was obtained considering
five Bloch modes and five plane waves; a convergence analysis
presented in the Appendix shows that this approximation is
highly accurate.

The field in the PC (shown in Fig. 4) is essentially a
superposition of the two most slowly decaying Bloch modes;
for d/λ = 0.3, the moduli of the Bloch amplitudes c+

2 are
0.43, 0.90, 4.4 × 10−3, 7.7 × 10−3, and 1.4 × 10−4, where
the corresponding Bloch factors (eigenvalues of the transfer
matrix) have moduli 0.65, 0.64, 1.0 × 10−3, 7.9 × 10−4, and
2.7 × 10−6, respectively. Close to the interface, the second
Bloch mode dominates, but deep in the PC the first Bloch mode
becomes responsible for most of the field because it decays

FIG. 3. (Color online) Real and imaginary parts of the smallest
eigenvalue of (AT

12A12 + I), for d/λ = 0.3. Surface modes occur
when this eigenvalue is exactly zero. The discontinuities in slope
occur where two or more eigenvalues have equal moduli.

slightly more slowly. Similarly, on the air side of the interface
most of the field is due to the two most slowly decaying plane
waves; the transition region where the two plane waves are of
comparable amplitude and so interference is clearly visible in
Fig. 4(b). The slowest decaying plane wave has a decay length
(to a factor 1/e amplitude) of 0.23

√
3/2d.

Since the field on both sides of the interface is a super-
position of two modes with different decay factors, the field
does not exponentially decay away from the interface, and

(a)

(b)

FIG. 4. (Color online) Modulus of the E field for the surface mode
at d/λ = 0.3 and kx = 0.959π/d; air is on the left of the vertical line,
PC is on the right. Two horizontal cuts through (a) are shown in (b);
the x = 0 cut is along the lower edge of (a), and the x = 0.5d cut
bisects one of the three PC holes nearest the interface. The x = 0 cut
shows two exponential decay regimes in air, which is evidence that
one evanescent plane wave dominates near the interface and another
dominates away from it.
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so the surface mode may not faithfully be approximated by a
surface plasmon. In other words, this PC’s behavior may not be
reproduced by any uniform medium; no effective permittivity
or permeability that may be ascribed to the PC could predict
this surface mode.

IV. DOUBLE INTERFACE SURFACE MODES

Another much-studied configuration in the surface plasmon
literature is that of thin metallic slabs in air (or another
dielectric). Such structures can support surface plasmons on
both faces of the metallic slab, which couple [17]. These
surface states are long-range or short-range surface plasmons,
depending on their symmetry. In this section we explore
nonmetallic PC analogs to long- and short-range surface
plasmons; we consider structures with three media and two
interfaces, either of which may or may not be capable of
supporting a surface mode.

Such structures have previously been studied by Enoch et al.
[10], who investigated a dielectric-PC-dielectric structure anal-
ogous to the dielectric-metal-dielectric structures on which
long- and short-range surface plasmons have been observed.
Their PC region is fixed at 18 periods thick, so the coupling
between interfaces is minimal. Choi et al. [18] investigated a
PC-air-PC structure. In our examples we consider an air-PC-air
structure, but the theory developed is general and also applies
to other structures, including PC waveguides.

The three media, which for generality we consider to
be PCs, are arranged as in Fig. 5. �+ = diag(µs

f,i) and
�− = diag(µ−s

b,i ), where µf,i and µb,i are, respectively,
PC 2’s forward and backward Bloch factors (eigenvalues) and
s is PC 2’s width.

To find the condition for a surface mode, we set the
incoming field vectors c+

1 and c−
3 to zero and derive

c+
2 = R21�−c′−

2 , (5a)

c′−
2 = R23�+c+

2 , (5b)

which leads to

(R21�−R23�+ − I)c+
2 = 0. (6)

This expression is closely related to the familiar waveguide
phase condition; it is satisfied by conventional waveguide
modes. However, it is also satisfied by surface modes, which
decay inside PC 2 away from the interfaces. For surface
modes, the entries of the diagonal matrices �+ and �− all
have magnitude less than unity; this is balanced by reflection
matrices that increase field amplitude upon reflection.

c−
1

c+
1 c+

2 c+
3

c−
3c

−
2Λ−c

−
2

Λ+c+
2

PC 1 PC 2 PC 3

FIG. 5. Schematic of a three PC (double interface) structure, with
Bloch vectors c.

In deriving Eq. (6), we neglected terms due to the incoming
field vectors c+

1 and c−
3 , which both vanish for a surface

mode. The more general form of Eq. (5a) is c+
2 = R21�−c′−

2 +
T12c+

1 . In Sec. III, we found surface modes occurring at poles
of the reflection and transmission matrices (i.e., modes where
T12c+

1 was nonzero even when c+
1 = 0). We now consider

whether the possibility of a pole in the transmission matrix
can invalidate Eq. (5a).

(a)

(b)

(c)

FIG. 6. (Color online) Projected band structure of surface modes
(dark blue and midtone red) of an air-PC-air structure with (a) three,
(b) five, and (c) six periods of PC. The projected band structure of
the surface modes at the corresponding air-PC interface is shown for
reference in light blue.
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(a) (b)

(c) (d)

FIG. 7. (Color online) Field strength |E| for an even mode of an air-PC-air structure with five periods of PC [see Fig. 6(b)]: (a) and (b) at
d/λ = 0.318, kx = 0.715π/d , in the PC’s band; (c) and (d) at d/λ = 0.299, kx = 0.927π/d , in the PC band gap.

As we saw in Sec. III, poles occur when c−
1 lies in the null

space of (A12AT
12 + I). Considering the field at the PC 1-PC 2

interface, we may write
(
A12AT

12 + I
)
c−

1 = (
A12AT

12 − I
)
c+

1 + 2A12�−c′−
2 , (7)

and see that if c−
1 is in the null space of (A12AT

12 + I), the
necessary condition for a pole, then (A12AT

12 + I)c−
1 = 0.

Furthermore c+
1 = 0 for a surface mode, resulting in

2A12�−c′−
2 = 0. This implies that no field from the PC 2-PC 3

interface reaches the PC 1-PC 2 interface, which is not
physical. Therefore there can be no double interface surface
modes when there are poles in the transmission matrices and
Eq. (6) is both a sufficient and necessary condition for a double
interface surface mode.

Of particular interest is the symmetric case, where PC 1
and PC 3 are the same material. Then R21 = R23 and we can
factorize Eq. (6). We use the relation �− = eiπkxsd�+, where
s is the number of rows of holes in PC 2, to write

(R21�+eiπkxsd/2 − I)(R21�+eiπkxsd/2 + I)c+
2 = 0. (8)

Comparing this to Eq. (5), two solutions are apparent: an
even solution, where c′−

2 = e−iπkxsd/2c+
2 and an odd solution

for which c′−
2 = −e−iπkxsd/2c+

2 . Note that this phase shift of
±e−iπkxsd/2 is measured between points separated by s lattice
vectors, so for triangular lattices these points have different x

values since that lattice vector is not parallel to the y axis.
We now apply this method to find the modes of a structure

in which PC 1 and PC 3 are vacuum and PC 2 is the PC studied
in Sec. III. We search for eigenvectors of R21�+eiπkxsd/2 that
have an eigenvalue ψ within an accuracy range 10−6 of ±1,
for E = Ezẑ polarized light. The modes found when PC 2 is
three, five, and six rows of holes thick are shown in Fig. 6.

The striking difference between the single interface surface
modes of Sec. III and the double interface modes in Fig. 6
is that the double interface modes cross the PC’s band edge,
as reported for the thick PC limit by Enoch et al. [10]. As
previously discussed, single interface surface modes cannot
exist in band, as energy is inevitably radiated away [4]. When
a second interface is present, in-band waveguide solutions
arise for Eq. (6), in addition to band-gap surface mode
solutions.

The character of a mode changes across the band edge:
in the band gap, the field envelope must decay toward the
center of the PC slab since all its constituent Bloch modes are
evanescent. In band, this restriction does not apply. Figure 7
shows two cuts through the field of an even mode of the air-5
period PC-air structure of Fig. 6(b). The difference between the
in-band waveguide mode [Figs. 7(a) and 7(b)] and the band-
gap surface mode [Figs. 7(c) and 7(d)] is readily apparent;
the surface mode’s field unambiguously decays toward the
center of the PC region, whereas the waveguide mode has
a large field along the middle of the PC. There is a smooth
transition between these two kinds of mode: near the band
edge, the waveguide mode adopts the shape of the surface
mode. The moduli of the elements of c+

2 for each mode vary
continuously, even across the band edge, and likewise there
is no sudden change in the field profile as the band edge is
crossed.

The introduction of a second interface splits the single
interface surface mode into an even mode and an odd mode.
As the thickness of PC 2 is increased, we see from Fig. 6
that these modes’ dispersion relations converge, approaching
that of the single interface surface mode. This behavior
makes physical sense, as the interfaces become increasingly
decoupled as PC 2’s thickness increases. Furthermore as
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FIG. 8. (Color online) Real and imaginary parts of the smallest
eigenvalue ψ of R21�+eiπkx sd/2 ± I at d/λ = 0.305 for the air-PC-air
structure used in Fig. 6(b). The condition for a surface mode or
waveguide mode is ψ = 0. Discontinuities occur where two or more
eigenvalues have equal moduli.

PC 2’s thickness increases, the magnitude of the entries of
�+ decrease exponentially. Since R−1

21 c+
2 = ±eiπkxsd/2�+c+

2 ,
as PC 2’s thickness becomes infinite, �+ → 0. Therefore R−1

21
must become singular, which is precisely the condition for a
single interface surface mode.

Unlike the PC-air-PC structure studied by Choi et al. [18],
Fig. 6 shows that, in our case, the lower-frequency mode does
not always have even parity. For our configuration, when the
PC is an even number of periods thick the lowest-frequency
surface mode is odd, and vice versa; we have checked this
for PCs from four to eight periods thick. This behavior
is equivalent to that previously observed in coupled PC
waveguides [19]. For thinner structures, in which the interfaces
are strongly coupled, the lower air-PC mode does not split into
two surface modes.

Numerically finding solutions to Eq. (8) is sometimes more
difficult than the single-mode case, because the eigenvalue ψ

that must be minimized can vary strongly with frequency and
kx . For example, ψ(kx) is shown in Fig. 8 at d/λ = 0.305
for the 5 period thick PC of Fig. 6(b). This function has
several discontinuities and is less well behaved than the
equivalent function for the single interface, shown in Fig. 3.
The discontinuities occur where the two smallest eigenvalues
have equal magnitude. Discontinuities close to a zero can
cause a root-finder to miss valid solutions; this manifests
as a gap in the dispersion relation and can be avoided by
instead searching for a zero determinant. This measure was
necessary to obtain certain points on the even mode dispersion
relations in Fig. 6(c). Furthermore in Fig. 8 there are cusps near
kx = 0.76π/d and kx = 0.82π/d, where the number of prop-
agating Bloch modes changes. These anomalies are extremely
localized—for the kx � 0.76π/d anomaly, |ψ | < 10−5 over
a domain of size �kx < 10−10π/d—so the anomalies are
of no practical importance and are therefore ignored in
Fig. 6.

The numerical issues in finding modes arise because to
find a kx for a given frequency (or vice versa) that supports
a mode, a numerical search must be performed to find a kx

such that |ψ | = 0. To find a projected band structure like those
in Fig. 6, we must scan over frequency and kx , a 2D search.
Our approach is to do a coarse search over the entire parameter

space, then to use a root finder to check local minima for zeros.
The information calculated for each PC (i.e., its impedance
and Bloch factor) in the coarse search is independent of the
overall PC 1-PC 2-PC 3 structure. This means that the hard
work in generating Figs. 6(a), 6(b), and 6(c) only needs to
be done once: with the PCs’ impedances known, the coarse
search becomes simply a matter of manipulating known 3 × 3
or 5 × 5 matrices.

Supercell methods [4] require only a one-dimensional (1D)
search because for each frequency, all appropriate kx may be
found directly from a single FEM (or other) computation.
The main downside to supercell methods is that coupling
occurs between supercells; the supercell must be made large
to minimize this, which adds computation time. The minimal
supercell size depends on the decay rates in the outermost
media, which depend on kx and may not be known in advance.
Our impedance method does not suffer from this problem:
the outer media are truly semi-infinite and the computational
domain is small since we compute each PC’s Bloch modes
using a single unit cell. Our Bloch mode method also provides
additional insight into the field structure that supercell methods
do not provide.

V. DISCUSSION AND CONCLUSION

In Sec. IV we generalize the principles from Sec. III to
investigate modes that propagate along a three-layer structure.
The results given in Sec. IV are for an air-PC-air structure,
which was chosen so that in the partial band gap the
surface modes are analogous to long-range surface plasmons.
However, the derived equations are quite general: Eq. (6) may
be used to find the modes of any three-layer structure and
Eq. (8) may be applied to any structure of the form PC 1-PC 2-
PC 1, which includes many PC waveguides. Unlike supercell
methods, our approach allows the field of a waveguide mode
to be expressed as a superposition of Bloch modes in each
of the structure’s constituent PCs. This allows a deeper
understanding of the waveguide mode and how it decays in
the confining media.

The method developed in Sec. IV may be extended to treat
structures with more than three media; this simply requires
further use of the transfer matrix method used in deriving
Eqs. (5) and (6). Such an approach could be used to find the
modes of coupled PC waveguides, or of more complicated
PC waveguide structures where the rows of holes nearest the
central guiding region have been modified.

In conclusion, we have developed a method of finding sur-
face modes on two- and three-layer structures. The condition
for surface modes on a single interface is that the Bloch mode
reflection matrix has an infinite eigenvalue, which is analogous
to the condition for a surface plasmon on an air-metal interface,
and we provide an equivalent condition in terms of PC
impedances. Our PC impedance condition is more numerically
suitable than the reflection matrix formulation, since we isolate
the matrix responsible for the zero eigenvalues that correspond
to physically significant solutions. The analysis of an example
shows that a single surface mode may involve two Bloch modes
with different decay rates, on both sides of the interface.

The condition for surface and waveguide modes on a
three-layer structure [Eq. (6)] is similar to that for a dielectric
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TABLE I. kx for a surface mode is repeatedly calculated, varying
the number of Bloch modes (vertical axis) and plane waves (horizontal
axis) used in the calculation. The table shows the difference of these
calculated kx from 0.957 765 360 815 104π/d , the kx for the surface
mode calculated with 11 forward and 11 backward Bloch modes and
plane waves.

Number of plane waves

3 5 7 9 11

2 3.2 × 10−5 1.1 × 10−4 8.0 × 10−5 1.1 × 10−4 8.0 × 10−5

3 6.1 × 10−5 1.4 × 10−4 1.3 × 10−5 1.4 × 10−4 1.3 × 10−5

4 1.1 × 10−7 3.6 × 10−8 1.8 × 10−7 3.4 × 10−8

5 4.4 × 10−8 1.8 × 10−7 2.4 × 10−7 1.8 × 10−7

6 8.7 × 10−10 2.8 × 10−10 7.6 × 10−10

7 4.8 × 10−10 9.5 × 10−10 1.3 × 10−9

8 4.2 × 10−12 4.8 × 10−12

9 4.8 × 10−12 3.0 × 10−12

10 1.0 × 10−14

waveguide. We find that some of the waveguide modes of an
air-PC-air structure cross the band edge and continue into the
partial band gap, becoming surface modes with mode profiles
that decay toward the center of the PC region.
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APPENDIX: COMPLETENESS AND CONVERGENCE

In Sec. II we noted that for the calculations in this paper
we represent the field by five forward and five backward
propagating and decaying plane-wave diffraction orders. We
now explore the validity of this truncation by presenting a
convergence analysis for one data point of our results.

As our method is based on that of Botten et al. [14], there are
two fundamental approximations made in representing field
in the PC: the countably infinite set of plane-wave grating
diffraction orders is truncated to a finite size, and the set of
Bloch modes found by diagonalizing the plane-wave transfer
matrix is also truncated. The total set of Bloch modes is
complete [20], so without such truncations arbitrary fields
in the PC could be exactly represented as superpositions of
Bloch modes. We have shown in previous work [13] that
there is a minimum number of Bloch modes necessary to
provide realistic results for PC reflection coefficients, and that
beyond this, convergence with increasing mode number is
very rapid. This feature carries over to the study of surface

TABLE II. kx for a surface mode is repeatedly calculated, varying
the number of Bloch modes and plane waves, as in Table I. The
eigenvalue of (AT

12A12 + I), which should be zero for a surface mode,
is then calculated for each kx using 11 Bloch modes and 11 plane
waves.

Number of plane waves

3 5 7 9 11

2 2.4 × 10−4 8.2 × 10−4 6.0 × 10−4 8.2 × 10−4 6.0 × 10−4

3 4.6 × 10−4 1.1 × 10−3 9.8 × 10−5 1.1 × 10−3 9.8 × 10−5

4 8.1 × 10−7 2.7 × 10−7 1.3 × 10−6 2.6 × 10−7

5 3.3 × 10−7 1.4 × 10−6 1.8 × 10−6 1.4 × 10−6

6 6.6 × 10−9 2.1 × 10−9 5.8 × 10−9

7 3.6 × 10−9 7.2 × 10−9 1.0 × 10−8

8 3.2 × 10−11 3.7 × 10−11

9 3.7 × 10−11 2.2 × 10−11

10 8.1 × 10−14

11 9.8 × 10−15

modes, given their close connection to reflection matrices.
In this Appendix we further investigate the effect of these
truncations on our results for the kx of a surface mode on
an air-PC interface found at a particular frequency. There are
further numerical inaccuracies arising from the calculation of
plane-wave scattering, but these are comprehensively treated
elsewhere [21].

As mentioned in Sec. III, we consider the interface between
air and a triangular lattice PC with air holes of radius 0.25d,
where d is the lattice constant, and the background refractive
index is n = 2.86. The air-PC interface is in the y-z plane.
Light is polarized with E = Ezẑ and has the frequency
d/λ = 0.3.

We repeatedly apply a root finder to determine the kx for a
surface mode, varying the number of plane-wave orders and
the number of Bloch modes. Table I shows how the calculated
kx varies with these parameters. The results converge quickly
as the size of the Bloch basis increases. There is negligible
difference (4.4 × 10−8) between the five plane wave and Bloch
mode calculation (the approximation used throughout this
paper) and the 11 plane wave and Bloch mode calculation.
Since the Bloch modes are orthogonal and represented in terms
of plane-wave orders, every calculation has more plane-wave
orders than Bloch modes. When using a single Bloch mode,
the surface mode is not found.

In Sec. III it was established that surface modes occur
when (AT

12A12 + I) has a zero eigenvalue. Table II gives the
magnitude of the smallest eigenvalue associated with each
kx in Table I, as calculated with 11 Bloch modes and plane
waves. It shows good convergence thereby demonstrating that
our work has a solid foundation.
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(1978).

[21] R. C. McPhedran, N. A. Nicorovici, L. C. Botten, and K. A.
Grubits, J. Math. Phys. 41, 7808 (2000).

053840-8

93

http://dx.doi.org/10.1364/OL.29.002175
http://dx.doi.org/10.1364/OL.29.002175
http://dx.doi.org/10.1103/PhysRevB.74.195104
http://dx.doi.org/10.1038/nature08190
http://dx.doi.org/10.1038/nature08190
http://dx.doi.org/10.1103/PhysRevB.54.1711
http://dx.doi.org/10.1103/PhysRevB.72.155101
http://dx.doi.org/10.1103/PhysRevB.72.155101
http://dx.doi.org/10.1364/JOSAA.25.002177
http://dx.doi.org/10.1103/PhysRevA.80.023826
http://dx.doi.org/10.1063/1.2992066
http://dx.doi.org/10.1103/PhysRevE.70.056606
http://dx.doi.org/10.1364/JOSAA.17.002165
http://dx.doi.org/10.1364/JOSAA.17.002165
http://dx.doi.org/10.1016/j.jcp.2006.03.029
http://dx.doi.org/10.1016/j.jcp.2006.03.029
http://dx.doi.org/10.1103/PhysRevB.44.5855
http://dx.doi.org/10.1103/PhysRevB.44.5855
http://dx.doi.org/10.1063/1.2401282
http://dx.doi.org/10.1063/1.2401282
http://dx.doi.org/10.1364/OL.29.001384
http://dx.doi.org/10.1007/BF02790171
http://dx.doi.org/10.1007/BF02790171
http://dx.doi.org/10.1063/1.1310361


PHYSICAL REVIEW A 83, 029907(E) (2011)

Erratum: Photonic-crystal surface modes found from impedances [Phys. Rev. A 82, 053840 (2010)]
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DOI: 10.1103/PhysRevA.83.029907 PACS number(s): 42.70.Qs, 73.20.At, 42.79.Gn, 41.20.Jb, 99.10.Cd

We report an error in the appendix of the original article. The numbers quoted were for a different physical structure than that
which was specified. The corrected versions of Tables I and II are given here and show that good convergence is also obtained for
the specified physical structure. Specifically, there remains negligible difference (4.7 × 10−8) between the approximation used
throughout the paper and the 11 plane-wave and Bloch mode calculation. The conclusions of the appendix are unchanged.

TABLE I. kx for a surface mode is repeatedly calculated, varying the number of Bloch modes (vertical
axis) and plane waves (horizontal axis) used in the calculation. The table shows the difference of these
calculated kx from 0.959 110 616 739 566 π/d , the kx for the surface mode calculated with 11 forward and
11 backward Bloch modes and plane waves.

Number of plane waves

3 5 7 9 11

2 9.6 × 10−5 1.1 ×10−4 1.1 × 10−4 1.1 × 10−4 1.1 ×10−4

3 6.2 × 10−5 1.5 ×10−4 1.5 × 10−4 1.5 × 10−4 1.5 ×10−4

4 1.1 × 10−7 1.8 ×10−7 1.8 × 10−7 1.8 ×10−7

5 4.7 × 10−8 2.5 ×10−7 2.5 × 10−7 2.5 ×10−7

6 1.5 ×10−10 2.8 ×10−10 2.8 ×10−10

7 4.8 ×10−10 9.8 ×10−10 1.0 ×10−9

8 4.0 × 10−12 6.9 ×10−12

9 4.7 × 10−12 7.7 ×10−12

10 3.2 ×10−15

TABLE II. kx for a surface mode is repeatedly calculated, varying the number of Bloch modes and plane
waves, as in Table I. The eigenvalue of (AT

12A12 + I), which should be zero for a surface mode, is then
calculated for each kx using 11 Bloch modes and 11 plane waves.

Number of plane waves

3 5 7 9 11

2 7.2 × 10−4 8.5 × 10−4 8.4 × 10−4 8.4 × 10−4 8.4 × 10−4

3 4.7 × 10−4 1.1 × 10−3 1.1 × 10−3 1.1 × 10−3 1.1 × 10−3

4 8.5 × 10−7 1.4 × 10−6 1.4 × 10−6 1.4 × 10−6

5 3.5 × 10−7 1.9 × 10−6 1.9 × 10−6 1.9 × 10−6

6 1.2 × 10−9 2.1 × 10−9 2.1 × 10−9

7 3.6 × 10−9 7.4 × 10−9 7.8 × 10−9

8 3.0 × 10−11 5.2 × 10−11

9 3.6 × 10−11 5.8 × 10−11

10 4.5 × 10−15

11 2.9 × 10−14
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The Appendix to Paper 5.1 was added to demonstrate the accuracy of
the numerical technique with which we calculate the impedance matrices—
in this case, the multipole method—and of the ensuing procedure to find
surface modes. In the original paper, the impedance matrices for air were
not calculated analytically—they were calculated using the same multipole
implementation as the PCs. However this implementation of the multipole
method does not support the trivial case of uniform media, and so air was
approximated by a PC with a background of n = 1 and tiny cylinders with
a different refractive index. While this approximation is sufficient for the
results quoted in the main text of the paper, it affects the results of the
Appendix where numbers are quoted to 15 decimal places in order to enable
a convergence study. Therefore we published the Erratum, which gives the
correct results, obtained with analytically calculated impedance matrices for
air.

5.2 PC waveguides

In Paper 5.1, we give Eq. (6), which is the condition for a coupled surface
mode. As noted in the paper, it is also the condition for a waveguide mode,
and is directly analogous to Eq. (1.12). This method can also be used to
calculate the dispersion relations of conventional PC waveguides, which typi-
cally consist of two bandgap PCs that act as mirrors, either side of a uniform
dielectric channel. If the matrix R gives not the reflection off a single PC,
but the reflection off a stack of PCs, then the modes of more complicated
structures can be found, e.g. the modes of a PC waveguide where the in-
nermost rows of holes have been shifted transversely. Such structures are
commonly employed to obtain slow light with low dispersion, which is useful
for enhancing nonlinear effects.

There are many other ways to calculate the dispersion relations of PC
waveguides. Most of these require a computational domain that includes the
waveguiding region and several periods of the barrier PC in the x–direction.

Our impedance-based method instead only requires simulation of one
unit cell of each PC in the problem: the PCs that comprise the barrier, and
the PC in the waveguiding region (in the rare case that the waveguiding
region is not just a uniform dielectric [5, 8]). However, our impedance-based
method has a critical disadvantage in efficiency compared to other methods,
which scan over frequency, and the propagation constant kx of the waveguide
mode is found directly from each simulation (e.g. transfer matrix supercell
methods [108])—or vice versa (e.g. the frequency-domain methods used by
the popular MIT Photonic-Bands package). Using our impedance method,
we must scan both over frequency and kx, running separate simulations
to determine whether a mode exists at each point: we must scan a 2D
parameter space to obtain the dispersion relation, whereas other methods
need only scan a 1D parameter space.

However, Blown et al. [7] showed that this extra dimension of scanned
parameters need not be wasted. Having calculated the PC mirror’s reflec-
tion matrix at a particular frequency and kx, it is possible to solve a simple
transcendental equation (Eq. (5) in Ref. [7]) for a waveguide thickness that
supports a mode. Another equation (Eq. (6) in Ref. [7]) gives the wave-
guide’s group velocity in terms of the mirror’s reflection matrix and the
waveguide’s thickness. Therefore, when scanning the 2D parameter space,
rather than asking at each frequency and kx “is there a mode here?”, we can
ask “what waveguide thickness would support a mode here?”, at minimal
additional computational expense. This insight allows efficient calculation
of dispersion relations for many PC waveguides simultaneously: when dis-
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Figure 5.1: Group velocities and thicknesses of PC waveguides based around
three different PC mirrors. The PC mirror in (c) was obtained by modifying
the radii of the first and second rows of holes. The black line is the light line,
and the blue line is the first Wood anomaly. For full details, see Ref. [7],
from which this figure was taken.

persion engineering, the waveguide width becomes a parameter that costs
almost nothing to explore. The contours in Fig. 5.1 are individual wave-
guides’ dispersion relations found in this way. Using this method it was not
difficult to find a PC waveguide with a quartic point on its dispersion rela-
tion that has zero group velocity and zero first and second order dispersion
(Fig. 5.1). Note that almost all points of interest lie above the first Wood
anomaly, and so reflection matrices, not coefficients, are required.

Dispersion engineering can be done by modifying hole radius, as in Ref. [7],
or by modifying hole position; typically the latter degree of freedom is pre-
ferred for ease of accurate fabrication. If dispersion engineering is performed
only by shifting rows of holes in the transverse direction and by changing
the waveguide thickness, then the dispersion engineering could be done ex-
tremely efficiently using the methods described in Ref. [7], combined with
the trick mentioned at the end of Chapter 2. That is, rows of holes could be
transversely shifted by inserting dielectric padding layers—which does not
require further simulations. Doing this would mean that at each frequency
and kx only one PC unit cell would need to be simulated: using this PC’s
impedance and Bloch factors the entire parameter space could be mapped
out analytically and extremely efficiently.

5.3 Coupled PC waveguide arrays
A similar approach, albeit one in which waveguide thickness was not varied,
has been used to calculate dispersion relations and supermodes of coupled PC
waveguides [5, 164] and of large arrays of coupled PC waveguides [8]. In the
former references, reflection matrices in the plane wave basis are calculated
using the work of Botten et al. [108], which underpins the impedance method.
In Ref. [8], which poses the problem in terms of Bloch mode amplitudes,
impedance matrices are used to calculate the reflection and transmission
matrices.

Figure 5.2, taken from Ref. [8], shows the dispersion relation of an array
of 31 PC waveguides. Although such a system is not especially difficult
to fabricate, simulating it with most methods would require a prohibitively
large computational domain. Propagation through the array, which involves
discrete diffraction, is easily modelled using this dispersion relation and the
supermode profiles.1 Figure 5.3 shows how light propagates through many

1In the tight-binding approximation, the supermode profiles may analytically be writ-
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Figure 5.2: Dispersion relation of an array of 31 coupled PC waveguides [8].
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Figure 5.3: Light incident from one waveguide into an array of 31 coupled
PC waveguides [8].

periods of the 31 PC waveguide array, diffracting outwards until it reaches
the edge waveguides, then reflecting back in.

Using impedances to calculate the waveguide modes and the coupling
between waveguides allows efficient dispersion engineering of PC waveguide
arrays. Furthermore, the method described in Sec. 5.3 and Ref. [7] could be
employed to perform this search even more efficiently, enabling the discovery
of PC waveguide arrays with unusual discrete diffraction properties. This is
a current area of investigation.

ten in terms of the individual waveguide modes [8, 81]
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Chapter 6

Concluding remarks

In the preceding chapters I described a framework that can be used to calcu-
late reflection and transmission properties of PC stacks in terms of the PCs’
Bloch modes, accurately and efficiently. The propagative characteristics of
each PC’s modes are encapsulated in Bloch factors: by Bloch’s theorem these
govern how a mode propagates or decays. The reflective properties of each
PC are encapsulated in a new quantity, the PC impedance matrix, defined
in Chapter 2. We presented two ways to calculate Bloch factors and PC im-
pedances: either by transfer matrix methods based on specialised FEM or
multipole methods (Chapter 2), or by using generic field solvers with a mode
extraction algorithm (Chapter 3). We inspected some PC impedance matrix
elements and Bloch factors in Chapter 4, and explored their behaviour in
a few cases, as well as their possible relation at low frequency to familiar
effective material parameters such as n and Zc—albeit parameters that vary
strongly with frequency, incident angle and polarisation.

We applied this PC impedance framework to a number of problems.
In Chapters 2 and 3 we used it to design antireflection coatings for PCs
in an efficient manner: in Paper 3.1 we give an example where, once the
PCs’ impedances were calculated, 13 million coatings were evaluated on a
16 core workstation, taking 80 minutes per polarisation. Other applications
of the PC impedance framework were demonstrated in Chapter 5: single and
double interface PC surface modes were modelled, and we briefly described
work that applies PC impedances to engineer PC waveguides’ dispersion
efficiently, and to analyse large arrays of coupled PC waveguides.

6.1 Context

We developed the PC impedance framework to describe coupling between
bulk PCs, and its first application was to design antireflection coatings that
aid coupling into bulk PCs. In Sec. 1.1.1 we described the most prominent
applications of bulk PCs: superprisms, and self-collimation. In the last few
years these applications have not garnered a great deal of attention: photonic
crystal research has mostly focussed on PC waveguides and cavities; and as
a whole, photonic crystals have been pushed somewhat out of the limelight
by metamaterials. Partially this is due to the maturing of photonic crystals
as a research field—they have largely moved out of the exploration stage into
the application stage and are now studied less for their intrinsic properties
and more for what can be done with them.

For example, PC waveguides receive attention for their slow light modes;
as light slows down its intensity increases, along with the associated nonlinear
effects. There is strong demand for waveguide modes with low group velocity
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and dispersion, and this continues to drive research into PC waveguides. PC
cavities have also received sustained interest as they can achieve large quality
factors, which is useful for all-optical switching or modifying spontaneous
emission rates (cavity quantum electrodynamics). In both cases, the research
into PCs is now being driven by its applications.

In Sec. 1.1.1, we stated that superprisms could have applications as fre-
quency demultiplexers and spectrometers. Superprism-based spectrometers
have received waning levels of attention; for example Momeni et al. in 2010
abandoned these in favour of grating spectrometers, citing superprism-based
spectrometers’ large insertion losses [165]. Several superprism-based demul-
tiplexers have been demonstrated, e.g. by Momeni et al. [166] in 2006 and
Matsumoto et al. [30], with others recently proposed by Khorshidahmad and
Kirk [167, 168]. It has long been known that the superprism effect is usually
masked by broadening of the incident beam due to diffraction [169]. Efforts
have been made to overcome this by using a superlens [30] or a very long pre-
conditioning region [166]. Some authors also cite coupling loss as a limiting
factor for their devices [30, 168].

Even with the countermeasures used in these papers, the demonstrated
performance of superprisms is not spectacular. The superprism in Ref. [166]
is designed for the C band, 1525–1565 nm. This band is relatively narrow;
wavelength demultiplexers working in the C band need high spectral reso-
lution to be able to separate many narrowly-spaced channels. The demul-
tiplexer demonstrated by Momeni et al. [166] supports only four channels
with a spacing of 8 nm. Including the preconditioning region, their device
has a footprint of about 90µm×1150µm. The 80µm×100µm demultiplexer
demonstrated by Matsumoto et al. [30] has a larger bandwidth, supporting
light between 1.50–1.63µm, but only six channels were demonstrated, and
the spacings were uneven due to their superprism’s dispersion properties. By
comparison, almost ten years earlier, a C band grating-based WDM demul-
tiplexer in a slab waveguide was demonstrated with 120 channels separated
by 0.29 nm [170], although this demultiplexer is considerably larger, fitting
on a 10 mm× 34 mm chip.

It appears that this uncompetitive performance is due to two related
problems: coupling loss at the PC interfaces, and the excitation of several
outgoing plane waves. The first problem can be solved by an antireflection
coating: indeed, Matsumoto et al. [30] did exactly this. In principle, the
second problem might also be solved by blazing, designing a coating that
at each frequency couples the superprism’s propagating Bloch mode to only
one plane wave in the output dielectric, thus avoiding the diffractive effects
that Matsumoto et al. [30] tried to counteract using a superlens. The design
of such a coating (albeit one where each layer has up-down symmetry) is
inherently suited to methods such as ours that represent transmission by a
matrix in the Bloch mode basis—in fact we did this for a single frequency
in Sec. IVC of Paper 3.1. However it is unclear whether there would exist
such a coating that is simultaneously effective at all superprism/multiplexing
frequencies.

Research into self-collimation has also reached an awkward position—it
is no longer particularly novel to present a self-collimating PC as an end in
itself, yet the most advanced demonstration of self-collimating devices was
presented in 2007 by Prather et al. [39]. This tour de force, experimentally
demonstrating a range of exciting devices and proposing several more, might
have been expected to mark the field’s coming of age. Since this paper, there
have been a few more demonstrations of Mach-Zender interferometers in self-
collimating PCs, and some proposals of PCs that support self-collimation in
both polarisations simultaneously. But sadly there has not been the ex-
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pected flurry of engineering papers boasting designs with ever-larger figures
of merit; indeed the “currently in progress” experimental validation of the
reconfigurable optical switch that was promised in Ref. [39] seems never to
have been published.

Perhaps the reason for the loss of interest in self-collimation is that, as
a light-guiding mechanism, it competes with PC waveguides. While it is
exciting to see light guided by a structure that does not appear to contain
a waveguide, the advantages of guiding light in this way are few—Prather
et al. [39] cite ease of alignment, and the possibility of propagating perpen-
dicular beams across one another without crosstalk. PC waveguides, on the
other hand, can be substituted for self-collimating PCs in most of the cited
applications. Furthermore, PC waveguides support a range of parameters
that may be tuned to engineer the group velocity of the guided light. Fi-
nally, in a self-collimating PC, much of the field’s intensity is in the air-holes,
where it is not confined in the out-of-plane direction. Therefore the loss of
such devices could be expected to be higher, and the fabrication tolerances
more stringent, than for similar devices designed with PC waveguides.

As the in-band applications of PCs fade in popularity, we have consid-
ered how our work on PC impedance may be applied to PC waveguides;
this resulted in the efficient method for dispersion-engineering described in
Sec. 5.2. Further steps that could be taken in this direction are discussed in
the next section.

6.2 Future directions

Slab PC impedance

So far, we have only developed the PC impedance framework for 2D photonic
crystals. 2D photonic crystals are most often idealised structures used to
model slab PCs: the background index of the 2D PC is chosen to be the
effective index of the background slab, which depends on the slab’s refractive
index and its thickness. In this way, efficient 2D calculations can model PC
slabs with some success; however, direct 3D simulations of PC slabs remain
the gold standard, albeit a gold standard that is significantly slower and
more memory intensive and thus is typically run with coarser resolution.

Therefore, a logical next step would be to extend the impedance frame-
work to treat slab PCs and their modes in 3D. This would require the in-
clusion of all field components, since, unlike in 2D, the problem cannot be
exactly decoupled into Ez and Hz polarisations. It would also require a new
reference medium and a basis to go with it. An obvious choice for the ref-
erence medium would be an unpatterned dielectric slab of equal thickness
to the PC. In the thin-film framework (Sec. 1.2.1), the basis was a pair of
forward and backward plane waves in each medium: this basis was complete
under reflection and transmission at parallel interfaces. In the 2D PC frame-
work (Sec. 1.5.2), we again used plane waves as a basis, but had to include
the infinite set of grating diffraction orders, which is closed under grating
scattering—we then truncated this set to a more manageable handful of or-
ders. For slab PCs, the obvious way to extend the 2D method is to use slab
modes instead of plane waves—specifically, to use the slab modes diffracted
from a grating embedded in the slab. By the grating equation, which also
applies to slab modes, this set is closed under scattering by other gratings
with the same period, and thus is complete enough to model PC scattering.
I anticipate that the mode finding algorithm described in Chapter 3 would
require few changes to find the Bloch modes of slab PCs.

The main challenge therefore lies in defining slab PC impedances in terms
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of the modal fields. Our impedance definition heavily relies on a rigorous set
of Bloch mode orthogonality relations (Eqs. (2.14)). To apply our method
to slab PCs, we would need to use 3D orthogonality relations, such as those
given by Lecamp et al. [64] or Dossou et al. [171]. An impedance formal-
ism could then be built up rigorously around these orthogonality relations.
While waiting for the formalism to be rigorously developed, it may be pos-
sible simply to recast the overlap integrals in Sec. 3.2 in terms of these
new orthogonality relations and use them to calculate “impedance matrices”.
Doing so has no rigour and is essentially guessing the outcome of a rigorous
derivation, but it would be easy to check the results numerically, and if such
matrices are successful then this could inform the derivation.

PC waveguide impedance

It would also be of interest to define impedance for PC waveguides, which are
more widely used than bulk PCs (as discussed in Sec. 6.1). While we have
applied the PC impedance framework to find the propagating modes of PC
waveguides, and to tailor their dispersion, we neither found the impedances
of these waveguides nor calculated the reflection and transmission at an
interface between them. Our numerical methods require that kx be real, and
therefore we cannot find evanescent waveguide modes using the techniques of
Sec. 5.2. As we have seen, evanescent modes play a critical role in reflection
and transmission between bulk PCs and so need to be represented in the
impedance matrix—they also play an important role in coupling between
PC waveguides [172].

I see three approaches for calculating PC waveguide impedance matri-
ces. The first is to simulate the PC waveguide using a supercell transfer
matrix method: Bloch mode reflection and transmission matrices for PC
waveguides have previously been obtained in this way [49], and it should
be straightforward to apply the impedance definition for square lattice PCs
to these supercells. The second way is to find the important propagating
and evanescent modes of the PC waveguide by a Chapter 3–style mode ex-
traction. The third is an improved version of the Sec. 5.2 method that also
finds evanescent modes, which would require a numerical method that finds
transfer matrices across half-gratings when kx is complex, which is a difficult,
perhaps insoluble problem.

Regardless of how the impedance matrices are found, as discussed in
Sec. 3.3 some thought needs to go into the representation of the modes and
the choice of reference medium—air may well prove to be a less suitable ref-
erence medium for PC waveguides than it does for the bulk PCs we studied.
In related work [49], the modes of a PC waveguide were represented along
the supercell edge by supercell grating orders, and the number of these that
had to be included in the calculation scaled with the supercell’s size. The
supercell’s grating orders are also the modes of air, and so if air is the ref-
erence medium then the number of reference modes needed to represent the
waveguide modes, and thus the dimension of the PC impedance matrix, also
scales with the supercell size. This is undesireable. In principle, the number
of modes required to characterise a PC waveguide should not scale with the
size of the supercell used to simulate it. Perhaps a wisely chosen reference
PC would allow each PC waveguide’s important modes to be characterised
by a smaller subset of modes in the reference PC, allowing a smaller im-
pedance matrix. Speculatively, the input or output PC waveguide might
be a good reference medium for coating applications, since its modes are
inherently related to the problem.
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More-efficient dispersion engineering

At the end of Sec. 5.2 we discussed how a single set of simulations of a single
PC unit cell, over a range of frequencies and kx, can be used to dispersion
engineer a PC waveguide extremely efficiently. Using no further numerical
simulations, it is possible to apply the PC impedance framework to find the
reflectance of many PC mirrors, by shifting the rows of holes towards or away
from the mirror’s surface. The key to this is that the PC impedance and
Bloch factors of a uniform dielectric can be calculated analytically, which
leads to a number of extra degrees of freedom being made available for
dispersion engineering, with little associated computational expense.

This could be taken one step further: rows of holes could also be shifted
parallel to the mirror’s surface, also without further simulations. This would
be done by converting into the plane wave basis (e.g. by using impedance
matrices to calculate the transmission into an infinitesimal layer of uniform
dielectric) and applying a method presented by White et al. [173] to trans-
form the reflection and transmission matrices across this interface to account
for the shift. The opposite shift would occur on the other side of the row
of holes, to restore the lattice to its original origin. Doing so, three con-
tinuous degrees of freedom per row of holes are available for dispersion en-
gineering: longitudinal shifts, transverse shifts, and hole radius; using the
proposed method, only the last of these must be explored using numerical
simulations—the impedances and Bloch factors for each radius would be
stored and repeatedly reused for each mirror configuration.

6.3 Strengths and weaknesses of our method

The key strength of our method is that it allows reuse of computationally
expensive simulations, by characterising each PC. Therefore it is most suited
to applications requiring simulation of many PC stacks constructed from a
smaller pool of PCs. The PC impedance framework is thus particularly
suited to designing antireflection coatings and dispersion engineering.

The impedance framework that we describe only applies to a subset of
possible PCs (albeit a subset that includes the most commonly-applied 2D
PCs). The PC lattice must be rectangular or triangular, that is, each row
of holes must either be in line with the last or shifted by half a period,1
and its unit cell must be up-down symmetric. These two restrictions, which
rule out the treatment of arbitrary 2D lattices and arbitrary unit cells, allow
the forward and backward Bloch modes to be related (Eq. (6) vs. Eq. (7)
in Paper 2.3), and the impedance matrix to be defined. If Eq. (6) is not
simplified to Eq. (7), then it might be possible to derive two impedance
matrices, one for forward modes and one for backward modes, that (together)
characterise a non-symmetric PC’s reflection and transmission properties.

We have not yet applied our impedance method to unit cells that cut
across inclusions. Rectangular-lattice supercells for triangular lattice PC
waveguides with hole radii r > a/4 cannot be defined without supercell edges
cutting through some holes. As long as the unit cells are up-down symmetric,
our method should be valid for these structures—indeed, the method upon
which ours is based has been successfully applied to such structures [110].

Our method applies both to lossless and lossy PCs, because we use mode
orthogonality relations based on reciprocity (Eqs. (2.14)) instead of the more
common form based on energy conservation. However, we have not yet

1The shifts described in the previous section do not fall foul of this restriction because
they are applied at the interfaces of a PC layer, rather than after every row in a semi-
infinite bulk PC.
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applied the method to lossy PCs. For the above reason, our method does
not apply to PCs containing non-reciprocal media, such as that proposed
by Wang et al. [174]; for such PCs, impedance matrices might be derived in
a similar way using energy conservation mode orthogonality relations [108].
Such PCs are unlikely to have up-down symmetry.

The above weaknesses mainly restrict the domain of applicability of our
method; therefore for a given problem they either preclude our method’s use,
or do not apply and are not weaknesses. To provide a more nuanced view,
we now directly compare our method to alternative methods of simulating
structures to which our method may be applied.

vs. Field scattering calculations

Our impedance method is particularly effective for simulating many PC
stacks composed from a smaller set of PCs. Methods such as FEM and
FDTD may be used to simulate each PC stack directly, but this requires
one slow simulation per stack. The larger the ratio between the number of
stacks and number of PCs, the greater the intrinsic advantage of our imped-
ance method over these methods. For problems where each PC is used only
once at a given frequency, incident angle and polarisation, our method has
no intrinsic advantage over field scattering methods other than that it gives
reflection and transmission matrices rather than coefficients.

vs. Transfer/scattering matrix methods

Even when applied to a suitable problem, is our impedance framework better
than the scattering and transfer matrix methods upon which it is based?
The most efficient form of our method, described in Chapter 2, works by
first calculating the transfer matrix, which is the most computationally-
intensive step in calculating a PC impedance. The transfer matrix, or the
scattering matrix that may be derived from it to avoid instabilities [106],
could be stored in place of an impedance, giving rise to similar efficiencies.
These matrices too can calculate plane wave scattering through a stack of
PCs, and at interfaces with semi-infinite PCs [108]: does the impedance
framework have any advantages over such methods?

In my opinion, the PC impedance method does not have a large com-
putational advantage over scattering matrix methods, but it requires little
additional effort and is conceptually preferable. The main computational
advantage of the PC impedance method is that the stored quantities, the
impedance and Bloch factors, are smaller than the transfer matrix T and
the scattering matrix S. If as many Bloch modes as plane waves are used (a
full rank calculation, of equal accuracy to a scattering matrix calculation),
then the impedance matrix has one quarter as many elements as the transfer
or scattering matrices; if fewer Bloch modes are used, then this fraction is
even smaller. Half this efficiency is gained by relating forward and backward
modes (Eq. (7) in Paper 2.3), the other half is intrinsic to the concept of
impedance. Therefore, impedance matrices consume at most one quarter the
RAM of a transfer matrix, and a database of impedance matrices needs one
quarter the storage size of a transfer matrix database. But usually neither
matrix contains particularly many elements, computer memory is cheap, and
the cost of operations with these 5×5 impedance matrices or 10×10 transfer
matrices is minimal in comparison to other numerical methods.

The more significant difference is the conceptual one. Transfer and scat-
tering matrix methods work in one fixed reference basis across all PC layers,
e.g. the plane wave grating orders in free space. Using the impedance frame-
work, one works only with each PC’s Bloch modes, which provide more phys-
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ical insight—the amplitude vectors are for modes that do not couple upon
propagation, and reflection and transmission matrices relate the eigenmodes
in the adjacent PCs. I found this physical insight useful to analyse uncoupled
modes, potential for homogenisation, and surface modes, and it informed the
design of antireflection coatings. For example, an antireflection coating could
be designed specifically to couple one superprism Bloch mode to one plane
wave, and vice-versa. Bloch mode amplitudes and reflection/transmission
matrices can be obtained from scattering matrix methods using extra steps
[108], but it is arguably simpler to do so using impedances, just as it is sim-
pler to use the Fresnel equations instead of calculating reflection coefficients
from first principles each time.

Microwave engineers analysing a two-port network can represent its prop-
erties by any of the five 2×2 matrices discussed in Sec. 1.3.2: the scattering,
ABCD, or transfer matrices, or what they define as impedance and admit-
tance matrices. However, when a signal is only incident from one of the
ports, frequently the other port and everything behind it is described by an
input impedance—one number—as opposed to a matrix that contains four;
when describing such a system our impedance matrix reduces to a scalar.

It is not clear whether much value would be generated by generalising
our PC impedance matrices to calculate properties of N–port networks such
as junctions between multiconductor transmission lines and metallic wave-
guides. The PC impedance framework was developed to calculate reflection
and transmission matrices for the interface between two PCs, where each
PC has N/2 modes. The N–port network formalism is more general than
this—it characterises a junction between N ports, and does not distinguish
between input ports and output ports, tying half the ports to one object
and the other half to another. For a given frequency, incident angle, and
kx, a PC has a fixed set of Bloch modes: this set may be truncated but one
Bloch mode cannot be somehow removed and replaced by another PC’s. The
PC’s impedance matrix is defined for this fixed set of modes. At a junction
between N transmission lines, however, the transmission lines are not inher-
ently separable into two bound halves—typically one line could be replaced
independently of the others—and so the value of characterising that half of
the lines by one matrix is lost.

6.4 Concluding remarks
PCs are more complicated than uniform dielectrics because many PC modes
couple at each interface, requiring the field to be represented by the ampli-
tudes of a set of propagating and evanescent modes instead of one forward
wave and one backward wave. This means that vectors and matrices must
be used instead of scalar amplitudes and reflection coefficients. We have
shown that in bulk PCs, wave impedances may be generalised to matrices
which can be used to calculate the reflection and transmission matrices be-
tween the Bloch modes of adjacent PCs. By including a sufficient (but still
small) number of Bloch modes, even single-period PC layers can be mod-
elled accurately, enabling the efficient design of antireflection coatings, and
efficient dispersion engineering. The fact that impedance often needs to be
represented as a matrix rather than a scalar indicates that the physics is
richer, and raises the possibility of counter-intuitive effects (such as efficient
direct coupling between modes with very different field profiles [45]) that one
would not expect to be possible were the impedance able to be represented
by a scalar. While PC impedance is unlikely to enjoy the ubiquity enjoyed
by electrical impedances, the PC impedance framework is a useful, efficient,
accurate and conceptually satisfying method to simulate stacks of bulk PCs.
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Appendix A

E and H matrices for
uniform media

The E and H matrices are defined in Paper 2.3, by Eq. (9) for light with Ez
polarisation, and by Eq. (10) for light with Hz polarisation. The relevant
Bloch modes/eigenstates of uniform media are the grating orders, so it is
easy to write down the matrix

F =

(
F+ QF−
F− QF+

)
(A.1)

that maps the Bloch modes to (propagating and evanescent) plane waves,
and arrive at an analytic expression for such media’s E and H matrices. We
do so in this Appendix, then remark on some consequences of this close link
between Bloch modes and the grating orders.

Since the Bloch modes of uniform media are grating orders, one could
simply choose the matrix F to be the identity matrix I (with sign adjust-
ments Q for backward odd grating orders for triangular lattice PCs). How-
ever, there exists a sensible and unique way to enumerate the grating orders,
namely sorting by each wave’s order s. This is different to the sorting of
Bloch modes, which are typically ordered for ease of truncation: the propa-
gating modes first, then the evanescent modes from least to fastest-decaying.
Therefore, in practice we choose F+ to be in most cases a permutation of I.
Since forward grating orders have no backward component, F− = 0.

For positive incident angles θ > 0, with 5 forward plane waves and 5
forward Bloch modes, a sensible choice of F+ is

F+ =




0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1



, (A.2)

because it can be shown from the grating equation Eq. (1.24) and Eq. (1.25)
that an evanescent plane wave with positive diffraction order s decays faster
than its counterpart with order −s (the vector of plane wave amplitudes is
ordered from most negative s to most positive s). At normal incidence, the
grating orders ±s are degenerate, so it is useful to write them in even and
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odd superpositions:

F+ =




0 0 0 1/
√

2 1/
√

2

0 1/
√

2 1/
√

2 0 0
1 0 0 0 0

0 1/
√

2 −1/
√

2 0 0

0 0 0 1/
√

2 −1/
√

2



. (A.3)

Thus for uniform media, Eq. (9) of Paper 2.3 yields for Ez polarisation

E = Y−1/2F+, (A.4a)

H = Y+1/2F+, (A.4b)

where
Y = diag(

√
ε/µ k

(s)
⊥ /k) (A.5)

is a diagonal matrix of wave admittances. For Hz polarisation, Eq. (10) from
the same paper yields

E = −Z+1/2F+, (A.6a)

H = Z−1/2F+, (A.6b)

where
Z = diag(

√
µ/ε k

(s)
⊥ /k) (A.7)

is the corresponding matrix of wave impedances. The − sign in Eq. (A.6a)
occurs because of how the plane wave amplitudes f± are defined in Paper 2.3,
in a way consistent with Eq. (3) of Ref. [108].

Truncating the set of Bloch modes involves removing columns of E and
H, and reduces the dimension of the (always square) impedance matrix Z.
At non-normal incidence, by inspecting Eq. (A.2) we see that removing a
column always removes the only nonzero entry from a row of E and H; in
other words by truncating the set of Bloch modes, perhaps unsurprisingly we
are also implicitly truncating the set of grating diffraction orders. This means
that if the reference medium 0 against which impedances are calculated
(using Eq. (26a) of Paper 2.3) is a uniform medium, then there is no point
in using rectangular E and H matrices and having a larger set of diffraction
orders than of Bloch modes. At normal incidence, if symmetry allows it is
sometimes possible to discard the modes corresponding to odd superpositions
of grating orders, leading to smaller impedance matrices that give results
equivalent to those found with larger matrices, as long as all incident fields
are evenly symmetric. This technique is applied in Secs. IVA and IVC of
Paper 3.1.
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Appendix B

Effect of choice of reference
medium

PC impedance (Eq. (26a) in Paper 2.3) is defined with respect to a reference
material, which throughout this thesis we have taken to be vacuum. Aside
from a speculative discussion about PC waveguides at the end of Sec. 3.2,
which is recapitulated in the concluding Chapter 6, we did not consider in
detail the choice of this reference medium, which might be a PC instead of
free space. In this Appendix we consider a few example problems and de-
termine whether additional accuracy may be gained by choosing a reference
material other than free space.

The E0 and H0 matrices of the reference medium are the quantities used
to calculate a given PC’s impedance. If these E0 and H0 matrices have dele-
terious properties, such as zero rows, then when calculating the impedance
we miss some information that is present in the PC’s E and H matrices.
Therefore the choice of reference medium might affect the calculated re-
flection and transmission matrices at an interface. There are three classes
of potential reference medium; increasing in generality they are: vacuum,
another dielectric, or a PC.

As noted in Appendix A, E and H for uniform media have zero rows
when the matrices are rectangular, i.e., when the set of Bloch modes is more
strongly truncated than the set of grating orders (although as noted the
story is slightly more complicated at normal incidence, due to degeneracies).

Appendix A gives analytic expressions for the E and H matrices of uni-
form media, in terms of the medium’s refractive index and the light’s fre-
quency, polarisation and angle of incidence. From these equations A.4 and
A.6, we see that the matrices representing different uniform media are inti-
mately related. In fact, for square lattices, by inserting Eqs. A.4 or A.6 into
Eq. (26a) in Paper 2.3, and substituting this equation into the expressions for
the transmission and reflection matrices (Eqs. (27) in Paper 2.3), it can be
shown that if the reference medium is uniform then any calculated reflection
and transmission matrices are independent of the reference medium’s refrac-
tive index. A numerical experiment for a triangular lattice PC shows that
every element in the calculated reflection matrix between it and vacuum is
also essentially independent of whether the reference medium’s refractive in-
dex is 1 or 3: each element of the reflection matrix differs from its equivalent
by less than 1 × 10−15, comparable to machine precision. Since the calcu-
lated quantities are not affected, I can see no reason to prefer any uniform
dielectric over vacuum as the reference PC.

We now investigate whether using a PC as the reference can improve
accuracy beyond that obtained with vacuum as a reference. While any PC
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may be chosen as the reference, the most obvious candidates are the PCs
involved in the simulations. I see no convincing mathematical reason to
select one of these PCs over any other PC, other than that no additional
simulation is required to calculate E0 and H0 since the PC is already going
to be simulated, and that perhaps some of the mathematics might simplify
because the impedance matrix Z0 of the reference PC is by definition Z0 = I.
So, in the absence of any other obvious candidate PCs, in this Appendix we
compare the use of vacuum as a reference material to the use of one of the
PCs already involved in the problem.

For our first example, we consider the reflectance at a vacuum-PC in-
terface. The photonic crystal has a triangular lattice with lattice constant
a of vacuum holes with radius 0.35 a in a background with refractive index
n = 3. Light is normally incident polarised with E out of plane, in the PC’s
second band, at frequencies a/λ ∈ [0.26, 0.39]. We calculate Evacuum and
Hvacuum analytically and EPC and HPC with the multipole method for each
frequency, considering 9 plane wave orders and 9 Bloch modes. We use the
resulting 9× 9 impedance matrices (with vacuum as the reference medium)
to calculate the reflectances at the interface; we take these reflectances to
be our standard against which we measure the others. Then, truncating the
set of Bloch modes to 1, 3, 5 and 7 modes, we calculate vacuum’s and the
PC’s impedance matrices first using vacuum as a reference medium, then
using the PC. From these impedance matrices we calculate the interface’s
reflectance, and we compare these to those found directly from the 9 × 9
matrices.

0.26 0.28 0.30 0.32 0.34 0.36 0.38
a/λ
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Figure B.1: Absolute difference between reflectances R0 calculated by an
accurate calculation with dim(Z) = 9, and reflectances R calculated with
vacuum or a PC as the reference medium and smaller dim(Z). All re-
flectances are calculated for an air-PC interface at various frequencies a/λ.

In Fig. B.1 we plot the absolute value of the difference between each
of the truncated reflectances and the standard value. The most apparent
feature is that impedance matrices of larger dimension (which thus contain
information about more modes) give more accurate results, exactly as ex-
pected. In this example, for 1× 1 impedance matrices, the PC is a slightly
better reference medium in most cases—but the results are inaccurate for
both references at frequencies above the Wood anomaly at d/λ = 1/3. For
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dim(Z) = 3, air is slightly better for the examined frequencies a/λ < 0.35,
and the PC is slightly better at higher frequencies. For dim(Z) = 5 im-
pedance matrices, the PC is a better reference material at all simulated
frequencies. For dim(Z) = 7, air is a better reference material at all simu-
lated frequencies. For 9× 9 impedance matrices, the E and H matrices are
not truncated and identical results are obtained regardless of the reference
medium. These results do not consistently indicate that either vacuum or
PC is better as a reference material.

If we denote vacuum by 1, and PC by 2, then when vacuum is the refer-
ence medium, the impedance matrix of vacuum Zref=1

1 = I and the imped-
ance matrix of the PC is Zref=1

2 = A12, where A12 is defined in Eq. (28a)
of Paper 2.3. If the PC is taken to be the reference material, then instead
Zref=2

2 = I, and Zref=2
1 = A21. By Eqs. (23) and (24) in Paper 2.3, at full

rank A21A12 = A22 = I, so A21 = Zref=2
1 and A12 = Zref=1

2 are inverses
of each other. Inspecting Eqs. (27) in Paper 2.3, this means that the same
R and T are calculated with Zi = I and Zj = Zref=1

2 , as with Zi = Zref=2
1

and Zj = I. Therefore at full rank the choice of reference medium is ir-
relevant, and Fig. B.1 is essentially a measure of how well the transitivity
approximation Eq. (25a) in Paper 2.3 holds.

In the above example, both trialled reference media are present at the
interface simulated. It might be thought that vacuum may be a less-effective
reference for calculating reflectances at interfaces that do not involve vac-
uum. Therefore we now investigate a set of PC-PC interfaces, where the first
PC is fixed and the second is varied, and calculate reflectances using either
vacuum or the first PC as a reference medium. The input PC is a triangular
lattice of r = 0.3 a air holes in an n = 3 background dielectric. The 30 target
PCs differ from the input PC in that one of their lattice vectors is stretched
in the direction of propagation y; the y components of their lattice vectors
are ay ∈ (1, 1.6]

√
3/2. We simulate these interfaces for normally incident

light polarised with H out of plane, for light at the frequency a/λ = 0.35.
Again, we vary the reference medium and the dimension of Z, and compare
the calculated reflectances with those calculated using 9 plane wave orders
and 9 Bloch modes.

The absolute error in the calculated reflectances are shown in Fig. B.2.
For ay ∈ [1.26, 1.34]

√
3/2, the target PC has no propagating modes and so

all light is reflected; thus all simulations are able to give accurate values for
the reflectance. Again, there is a broad trend that the results become more
accurate with larger dim(Z), although here dim(Z) = 3 and dim(Z) = 5
are of comparable accuracy. With dim(Z) = 1 and dim(Z) = 3, the PC
reference gives slightly better results in most of the simulations, although
the results for both simulations with dim(Z) = 1 are insufficiently accurate
to be useful in most circumstances. For dim(Z) = 5 and dim(Z) = 7, there
is no appreciable difference in accuracy between the two reference media.
Again it can be concluded that for these bulk PCs, it does not matter much
whether vacuum or the input PC is the reference medium.

For simplicity, the above discussion concerns only the reflectance, not the
whole reflection matrix, which also includes phase information, or the trans-
mission matrix. I have directly inspected a handful of reflection matrices
involved in the above simulations, and their accuracy seems to broadly align
with that of the reflectances.

The two examples presented here fall far short of the randomised statis-
tical study (considering many PCs, types of light and reference materials)
that would be required to definitively say whether there is a general advan-
tage to be gained by using a PC (and which PC) as a reference medium
instead of air. However, in these two cases there appears to be little or no
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Figure B.2: Same as Fig. B.1, but for PC-PC interfaces at a single frequency.
The x axis here gives ay, the spacing between rows of holes in the second
(target) photonic crystal.

consistent difference in accuracy due to the choice of reference medium. If
a trend existed that were strong enough to lead to a useful rule of thumb, I
would expect this trend to manifest itself in the above results, which it has
not. Therefore, when studying bulk PCs such as those used in this thesis, I
would not bother varying the reference medium in search of accuracy unless I
noticed that results converged unacceptably slowly when increasing dim(Z).
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