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Abstract

The main original contribution of this thesis is the development of a fully

discrete inverse scattering transform (IST) method for nonlinear partial dif-

ference equations. The equations we solve are nonlinear partial difference

equations on a quad-graph, also called lattice equations, which are known

to be multidimensionally consistent in N dimensions for arbitrary N. Such

equations were discovered by Nijhoff, Quispel and Capel and Adler and

later classified by Adler, Bobenko and Suris.

The main equation solved by our IST framework is the Q3δ lattice equa-

tion. Our approach also solves all of its limiting cases, including H1, known

as the lattice potential KdV equation. Our results provide the discrete ana-

logue of the solution of the initial value problem on the real line. We pro-

vide a rigorous justification that solves the problem for wide classes of ini-

tial data given along initial paths in a multi-dimensional lattice.

Moreover, we show how soliton solutions arise from the IST method

and also utilise asymptotics of the eigenfunctions to construct infinitely

many conservation laws.
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1 Introduction

The field of nonlinear waves and integrable systems has a long and colour-

ful history. It began in the nineteenth century with the pioneering work of

Stokes [83], Boussinesq [26] and Korteweg and de Vries [54], all of whom

studied the dynamics of fluids. Many of the models that were derived

were nonlinear partial differential equations, and without computational

assistance very little could be said at the time about their solutions. In the

second half of the twentieth century some of these models were then re-

discovered by researchers such as Kruskal and Zabusky in 1965 [92], who

used a combination of mathematical analysis and computational power to

explain the Fermi-Pasta-Ulam (FPU) paradox. This was an observation of

recurring states of energy (rather than the expected dissipation) within a

one-dimensional string of connected masses with nonlinear spring inter-

actions. The equation that Kruskal and Zabusky found as a model for a

continuum limit of the FPU system was

ut + uux + δuxxx = 0, (1.1)

where δ is a parameter, which is a nonlinear partial differential equation in

two independent variables and is known as the KdV equation. This is in

fact the equation found by Korteweg and de Vries while studying shallow

water waves, which they showed admits periodic "cnoidal" solutions, and
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Introduction

was also found earlier by Boussinesq. One of the most important observa-

tions that Kruskal and Zabusky made was the existence of solitary waves in

the solutions of (1.1). These are localised waves which, unlike linear waves,

interact elastically with neighbouring waves, and have a direct relationship

between amplitude and speed. This particle-like nature led the authors to

label them as solitons. An example of a two-soliton solution is

u(x, t) = −12

(
3 + 4cosh(2x− 8t) + cosh(4x− 64t)
[
3cosh(x− 28t) + cosh(3x− 36t)

]2

)
, (1.2)

whose graph as a function of x and t is shown in Figure 1.

FIGURE 1. Two-soliton solution (1.2) of the KdV equation

The next great advancement in the field was the famous 1967 publica-

tion by the Princeton group of Gardner, Greene, Kruskal and Miura [43],

who gave a new method of finding solutions to (1.1) with decaying bound-

ary conditions. The method involved forward scattering (Sturm-Louiville)

theory, where it was shown how the solitons were related to reflection-

less potentials and the time-independent discrete eigenvalues, as well as

inverse scattering theory which had been known to quantum mechanical

physicists such as Jost and Kohn [52] and Gel’fand and Levitan [45] since

the 1950s. The Princeton group showed how the KdV equation could be

viewed as the compatibility condition for a linear system of equations, and
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Introduction

that the solution u of (1.1) could be obtained by solving a linear Volterra-

type integral equation. This effectively was a way of linearising the KdV

equation. In 1968 they also gave a transformation [61] between (1.1) and

the modified KdV equation (mKdV)

vt − 6v2vx + vxxx = 0 (1.3)

and showed how to construct an infinite number of nontrivial conservation

laws [62] to the KdV equation.

In the years that followed there were a great number of advancements

as researchers found ways of applying this new method of solution to a

number of physically important systems. One of the first applications was

in 1971 from Zakharov and Shabat [93], who used ideas of Lax [56] to solve

the initial-value problem for the nonlinear Schrödinger equation

iut = uxx + ku2u∗ k > 0 (1.4)

for solutions with decaying boundary conditions. Like the case of the KdV

equation the authors found soliton solutions and an infinite number of con-

servation laws. In 1972 Wadati [89] then solved the mKdV (1.3), and in

1973 Ablowitz, Kaup, Newell and Segur (AKNS) [3] applied this method

to solve the sine-Gordon equation

uxt = sin(u) (1.5)

for which they found soliton solutions, breather solutions and an infinite

number of conservation laws. The wide applicability of this method then

led AKNS [4] [5] to show that equations (1.1), (1.3), (1.4) and (1.5) are in fact

all related to a single matrix eigenvalue problem, from which many physi-

cally important systems are obtainable. Noting the similarity between this

method of solving partial differential equations and the method of Fourier

transform, they also labelled it the Inverse Scattering Transform (IST).
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Introduction

Another difficult problem was the periodic boundary value problem

for integrable systems. This was solved for the KdV equation in the 1970s

by the Russian school of Dubrovin, Novikov and Matveev [34] [35] [36].

This thesis however does not consider such an initial-value problem but

instead focuses on an initial-value problem given on a discrete version of

the real line.

Since these pioneering applications the IST has been used in a vast ar-

ray of applications in mathematical physics. It not only gives a method of

finding solutions to a number of nonlinear equations, but can also be used

as a tool to obtain conservation laws, recursion operators and hierarchies

of higher compatible flows (this was done for the KdV equation in [44]),

as well as knowledge of the asymptotics of solutions [9] and many other

properties of these systems. It has also been adapted to the case of the

half-line [41]. References for the applications of the IST include the books

by Ablowitz and Segur [10] and Ablowitz and Clarkson [2]. Importantly

the advent of increased computational power has also allowed mathemat-

ical physicists to obtain numerical approximations to the solutions given

by the IST. This has had much success, for example, in the areas of optics,

electromagnetism and quantum mechanics.

There were however many physically important nonlinear systems for

which the IST was not directly applicable, due to the fact that one or more

of the variables appearing in the equation were discrete. Examples of this
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include the mass and spring problem considered by FPU and the Toda lat-

tice [84]. These systems are comprised of isolated point masses, which nat-

urally give rise to discrete terms within the system, and their time depen-

dence, which was assumed to be continuous. As such the nonlinear equa-

tions governing the motion of these systems contains both discrete and con-

tinuous differential operators (called differential-difference equations), for

which application of the IST required amendment.

The first studies into the possibility of applying the IST to discrete equa-

tions date back to 1973 with Case and Kac [30] and Case [29]. These authors

looked at differential-difference equations, and considered a direct discreti-

sation of the time-independent Schrödinger equation which appears in the

IST for the KdV equation. They found that for the intial-value problem

posed along the half-line, the solution to their original nonlinear equation

was expresible in terms of the solution to a linear discrete Volterra-type

integral equation. In 1974 Flaschka [38] then showed how this procedure

could be applied to solutions of the Toda lattice, where he considered lin-

ear difference equations (coupled with continuous time evolution) in which

the coefficients depended on the Hamiltonian of the lattice. Ablowitz and

Ladik [6] [7] [8] then derived a new discrete scattering problem, which was

in fact a discrete analogue of that given by Zhakarov and Shabat, and found

this to be applicable to a number of important systems. They also showed

how to extend these idea to partial difference equations. More recent ap-

plications of the IST to differential difference equations can be seen in [72],

[75], [23], [25], [79] and [1].

Parallel to these advancements in the application of the IST to con-

tinuous and semi-continuous systems, over the past forty years there has

emerged a new area of mathematical physics which is the study of discrete

integrable systems. These are systems for which all independent variables
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are discrete, and as such are modelled by ordinary difference equations or

partial difference equations. Our interest here however is solely on inte-

grable nonlinear partial difference equations in two discrete independent

variables.

Some of the first such equations to be identified as integrable were par-

ticular discretisations of KdV-type systems, such as the lattice KdV equa-

tion

un+1,m+1 − un,m = λ

(
1

un,m+1
− 1

un+1,m

)
, (1.6)

which is attributed to Hirota [50]. This was found by discretising the bilin-

ear form of (1.1). A different method known as "direct linearization" was

advanced by the Dutch group of Capel et al. [67] [74] in the 1980s. Here the

authors started with variations of the singular integral equation obtained

in the IST for the KdV and through the application of Bäcklund transfor-

mations showed that certain quantities obeyed nonlinear partial difference

equations. An example of this is the NQC equation

1− (p+ β)sn+1,m + (p− α)sn,m
1− (q + β)sn,m+1 + (q − α)sn,m

=
1− (q + α)sn+1,m+1 + (q − β)sn+1,m

1− (p+ α)sn+1,m+1 + (p− β)sn,m+1
,

(1.7)

which is in fact a particular discretisation of the Krichever-Novikov equa-

tion [55] in the case of a degenerate curve. There were also several other

known partial difference equations of physical interest, including discrete

versions of the mKdV equation (1.3) and the sine-Gordon equation (1.5).

Further to the knowledge of the equations themselves, there also fol-

lowed significant research into the various integrability properties of these

systems. Since these were discrete versions of known continuous integrable

systems it was expected that similar integrability results should hold in the

discrete case, and this was indeed found to be true. For example, conserva-

tion laws were found by Orfanidis [70] in 1978 for the lattice sine-Gordon

equation, and by Wiersma and Capel [91] in 1987 for the lattice potential
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KdV equation

(p+ q + wn,m − wn+1,m+1)(p− q + wn,m+1 − wn+1,m) = p2 − q2. (1.8)

Lax pairs for these and other discrete systems were then found (see e.g.

[66] or [63]), and a number of integrability tests for discrete equations were

developed. These include the obeying of singularity confinement [46], the

possession of an infinite number of symmetries [58], the vanishing of alge-

braic entropy [21] and the notion of multidimensional consistency [69] [24].

This last property then formed the basis of a classification for scalar affine-

linear partial difference equations of two independent variables, which was

completed in 2003 [12] by Adler, Bobenko and Suris (ABS), and generalised

[13] in 2009.

With this early work as a foundation, in the last decade or so there

has been a great amount of research into the integrable partial difference

equations characterised by ABS, and associated systems. Researchers have

found N-soliton solutions [65] [49] [20] [64], infinite numbers of conserva-

tion laws [51] [76] [77] [78], Bäcklund transformations [80] [16] and many

other important properties such as Hamiltonian structures and Calogero-

Moser systems. It thus appears that these nonlinear discrete systems pos-

sess at least as much interesting and physically relevant structure as their

continuous counterparts, yet are by their very nature more general, since

one integrable discrete equation has an infinite number of continuum lim-

its. One could argue that these equations lie at the very core of mathemati-

cal physics, and will in due course play a large role in a number of different

fields.

An obvious gap in the overall understanding of discrete integrable sys-

tems was the existence and application of a fully discrete IST, as a method
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of finding solutions to these nonlinear equations and as a means of obtain-

ing other properties of the systems, such as conservation laws, asymptotics

and characterising special solutions. The IST for the lattice potential KdV

equation (1.8) was first considered by Levi and Petrera [57], and then in

2010 Butler and Joshi [28] put this on a rigorous footing, where they showed

how real-valued solutions of (1.8) could be obtained through the solution of

a discrete Volterra-type integral equation. In 2012 Butler [27] then showed

how this could be generalised. The IST was developed in an N-dimensional

setting for arbitrary N, and complex-valued solutions of the majority of the

ABS equations were shown to be obtainable through solving a singular in-

tegral equation. It was also shown that this integral equation is related to

the linearisation of the KdV and Painlevé II equations, found by Fokas and

Ablowitz [40] in 1981.

The aim of this thesis is to combine the ideas in [28] and [27] in or-

der to rigorously derive a fully discrete IST in a multidimensional setting

as a means of solving a large class of nonlinear integrable partial differ-

ence equations. The solutions obtained will be real-valued, depend on an

arbitrary number of independent variables and parameters, must obey a

summability condition and will be shown to be obtainable through solv-

ing a singular integral equation. While the complex case was considered

in [27], we will see that restricting to real-valued solutions significantly

relaxes the summability restriction placed on solutions. We also give an

example of one of the utilities of the discrete IST, which is its ability to be

used to generate and infinite number of conservation laws for these discrete

systems.

The outline of this thesis is as follows: In Chapter 2 we give an intro-

duction to the theory behind the IST for continuous equations, where we

consider both the linear heat equation and the nonlinear KdV equation. We

14
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state the main results of the procedure and give examples of soliton solu-

tions. In Chapter 3 we then move to lattice equations, where we look at

a variety of lattice equations including those classified by ABS. We con-

sider solutions, symmetries, initial-value problems and various integrabil-

ity properties of these systems. These two chapters then provide a basis for

the development of the discrete IST carried out in Chapter 4. The results of

this chapter are new and are the main results of the thesis. In Chapter 5 we

then look at conservation laws for lattice equations and show how these

are obtainable from the new discrete IST, and finally in the Appendix we

give some rigorous proofs of theorems stated in Chapter 4.

15



2 The Continuous Inverse

Scattering Transform

The Inverse Scattering Transform (IST) is a method of finding solutions to

linear and integrable nonlinear partial differential equations. In this chap-

ter we look at the mathematical structure of the IST in its application to

solve both the heat equation

ut = uxx (2.1)

and the KdV equation

ut + 6uux + uxxx = 0. (2.2)

This will provide an underlying framework for the development of the dis-

crete IST, used to solve partial difference equations, which will be given in

Chapter 4.

The heat equation and the KdV equation are both partial differential

equations in one spatial and one temporal dimension, however one fun-

damental difference between these two equations is that (2.1) is linear in u,

while (2.2) is not. Despite this difference they are both able to be repre-

sented as the compatibility condition for an auxiliary linear system, which

provides the basis for the IST. The IST for the heat equation is relatively

16



The Continuous IST 2.1. IST for the Heat Equation

simple, owing to the fact that the equation itself is linear. In Section 2.1

we provide a complete description of the IST for this equation, and com-

pare the solution with that obtained by separation of variables or Fourier

transform, which are standard methods for solving linear partial differen-

tial equations. In fact the IST essentially reduces to the Fourier transform

in the linear case, and can thus be thought of as a nonlinear generaliza-

tion of this technique. In Section 2.2 we then look at the more complicated

mathematical structure of the IST for the KdV equation, and we then give

examples of a one-soliton solution, and a solution obtained from an arbi-

trary reflectionless potential.

2.1 Linear Example of the Inverse Scattering

Transform

Consider the heat equation (2.1) with an initial condition u(x, 0) satis-

fying
∫ +∞

−∞
|u(x, 0)|dx <∞. (2.3)

This can be solved by separation of variables or Fourier transform to give

the general solution as

u(x, t) =
1

2π

∫ +∞

−∞
û (k)e−ikx−k

2t dk (2.4)

where û (k) is the Fourier transform of the initial condition u(x, 0). Alter-

natively one can generate [39] the Lax pair

φx − iζφ = u (2.5a)

φt + ζ2φ = ux + iζu, (2.5b)

17



The Continuous IST 2.1. IST for the Heat Equation

whose consistency gives φxt − φtx = ut − uxx. Equation (2.5a) defines the

forward scattering problem, where we solve it for φ(x, 0; ζ) along the initial-

value space t = 0. The second Lax equation (2.5b) is then used to determine

φ(x, t; ζ), from which u(x, t) may then be constructed from (2.5a).

To solve (2.5a) for φ(x, 0; ζ) we first consider the limit |x| → ∞, where

φx(x, 0; ζ)− iζφ(x, 0; ζ) = 0 ⇒ φ(x, 0; ζ) ∼ Aeiζx

for some constant A. We then define the unique Jost solutions ϕ and ψ of

(2.5a) by the boundary conditions

lim
x→−∞

∣∣∣ϕ(x, 0; ζ)e−iζx − 0
∣∣∣ = 0

lim
x→+∞

∣∣∣ψ(x, 0; ζ)e−iζx − 0
∣∣∣ = 0.

In terms of the initial condition u(x, 0) we have

ϕ(x, 0; ζ) :=

∫ x

−∞
u(s, 0)eiζ(x−s) ds (2.6a)

ψ(x, 0; ζ) := −
∫ +∞

x
u(s, 0)eiζ(x−s) ds. (2.6b)

By virtue of (2.3) these integrals will exist in the half-planes Im(ζ) ≥ 0 and

Im(ζ) ≤ 0 respectively. Furthermore since these are both solutions of (2.5a)

it follows that

ϕ(x, 0; ζ)− ψ(x, 0; ζ) = B(0; ζ)eiζx (2.7)

for some function B which is independent of x, and by (2.6) is expressible

as

B(0; ζ) =

∫ +∞

−∞
u(s, 0)e−iζs ds. (2.8)

We have now completed the direct scattering procedure, that is we have

constructed solutions to the first Lax equation (2.5a) along the initial-value

space t = 0, which are given by the integrals (2.6a) and (2.6b). These ex-

pressions however are inadequate for determining the time dependent Jost

solutions ϕ(x, t; ζ) and ψ(x, t; ζ) since this would involve the knowledge of

18



The Continuous IST 2.1. IST for the Heat Equation

u(x, t), which is the very thing we are aiming to find. A more fruitful en-

deavour is to consider the time dependence of the function B(t; ζ), defined

by

ϕ(x, t; ζ)− ψ(x, t; ζ) = B(t; ζ)eiζx. (2.9)

By substituting this equation into the second Lax equation (2.5b) and taking

the limit x→ +∞we have

Bt + ζ2B = 0 ⇒ B(t; ζ) = B(0; ζ)e−ζ
2t, (2.10)

where we have assumed that u → 0 and ux → 0 as x → +∞ for all t ≥ 0.

Now consider a summary of the mathematical objects defined thus far: The

Jost solutions ϕ and ψ are two sectionally holomorphic functions (assum-

ing that the integrals (2.6a) and (2.6b) may be differentiated) defined in the

half-planes Im(ζ) ≥ 0 and Im(ζ) ≤ 0 respectively, and are related on the

boundary Im(ζ) = 0 by the jump condition (2.9). Furthermore by integrat-

ing by parts we have

ϕ(x, t; ζ) = −u(x, t)

iζ
+

1

iζ

∫ x

−∞
us(s, t)e

iζ(x−s) ds

ψ(x, t; ζ) = −u(x, t)

iζ
− 1

iζ

∫ ∞

x
us(s, t)e

iζ(x−s) ds,

and so providing that u is bounded and that
∫ +∞

−∞
|us(s, t)|ds <∞ (2.11)

it follows that

ϕ(x, t; ζ) = O
(

1

ζ

)
as |ζ| → ∞ in Im(ζ) ≥ 0 (2.12a)

ψ(x, t; ζ) = O
(

1

ζ

)
as |ζ| → ∞ in Im(ζ) ≤ 0. (2.12b)

Note that (2.11) is a sufficient condition for the Jost solutions to be holo-

morphic. We thus have all the ingredients for a Riemann-Hilbert problem,

that is the determination of two sectionally holomorphic functions ϕ and
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ψ, with given boundary behaviour (2.12), which satisfy the jump condition

(2.9) on the common boundary of their regions of analyticity. The solution

of this problem in Im(ζ) ≥ 0 (see e.g. Gakhov [42] Section 4) is

ϕ(x, t; ζ) =
1

2πi

∫ +∞

−∞

(
B(0; k)

k − ζ

)
eikx−k

2t dk. (2.13)

Through the solution of the Riemann-Hilbert problem we have obtained

a singular integral equation for ϕ(x, t; ζ), where importantly the time de-

pendence now enters only through the known time dependence of B(t; ζ).

From the first Lax equation the solution u(x, t) of (2.1) is therefore

u(x, t) =
1

2πi

∫ +∞

−∞

(
i (k − ζ)B(0; k)

k − ζ

)
eikx−k

2t dk

=
1

2π

∫ +∞

−∞
B(0; k)eikx−k

2t dk. (2.14)

This is identical to the result (2.4), where we recognise B(0; k) as the Fourier

transform of the initial condition u(x, 0).

2.2 The Inverse Scattering Transform for the

Korteweg-de Vries Equation

The procedure for solving the KdV (2.2) via the IST is considerably

more complicated than that for the heat equation (2.1). This method was

first discovered by Gardner, Greene, Kruskal and Miura [43] [44] in the

1960s. Here we give an outline of the important mathematical features of

this procedure, and for a detailed analysis on the forward scattering prob-

lem considered here see [33], while the inverse problem is treated in [45].

A Lax pair for equation (2.2) is given by

φxx + (u+ ζ2)φ = 0 (2.15)

φt = (ux + c)φ+ (4ζ2 − 2u)φx, (2.16)
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where, provided that ct = ζt = 0, the consistency of the system forces u to

satisfy the KdV equation:

φtxx − φxxt =
(
ut + 6uux + uxxx

)
φ.

The first of these equations (2.15) defines the forward scattering problem,

while the second (2.16) defines the time evolution of the system. Assume

that there exists some real-valued initial condition u(x, 0) which satisfies
∫ +∞

−∞
|u(x, 0)|(1 + |x|)dx <∞, (2.17)

which as an acceptable integrability condition (i.e. one for which the in-

verse problem is able to be solved uniquely) on the initial condition was

first proposed by Faddeev [37]. This was later proved in [33] where de-

tailed estimates for the Schrödinger scattering problem were obtained. The

forward scattering problem is then the determining of the solution φ(x, 0; ζ)

to

φxx + (u(x, 0) + ζ2)φ = 0. (2.18)

This is a linear second-order equation for φ, which is in fact a Sturm-Louiville

equation, and as such can be solved (at worst numerically) using standard

methods. We first consider the limit |x| → ∞, in which equation (2.15)

becomes

φxx + ζ2φ = 0 ⇒ φ ∼ Aeiζx +Be−iζx,

for some constant A and B. We then define two unique pairs of linearly

independent Jost solutions by the boundary conditions

ϕ(x, 0; ζ) ∼ e−iζx

ϕ̊(x, 0; ζ) ∼ eiζx



 as x→ −∞ (2.19)

ψ(x, 0; ζ) ∼ eiζx

ψ̊(x, 0; ζ) ∼ e−iζx



 as x→ +∞. (2.20)
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Since (2.18) is invariant under the transformation ζ → −ζ, by uniqueness

of the boundary value problem it follows that ϕ(x, 0; ζ) = ϕ̊(x, 0;−ζ) and

ψ(x, 0; ζ) = ψ̊(x, 0;−ζ). Furthermore since the solution space of equation

(2.18) is two-dimensional we may write

ϕ(x, 0; ζ) = A(0; ζ) ψ̊(x, 0; ζ) + B(0; ζ)ψ(x, 0; ζ), (2.21)

where the two functions A and B are independent of x, and by considering

the Wronskian

W (ϕ, ϕ̊) := ϕϕ̊x − ϕx ϕ̊

one can also show that these functions satisfy

|A(0; ζ)|2 − |B(0; ζ)|2 = 1 (2.22)

on Im(ζ) = 0. Note that this implies that A does not vanish on Im(ζ) = 0.

We now state several results about the Jost solutions and the functions A

and B. Derivations can be seen in [33] [10] [2], and are obtained by inte-

grating (2.18) and obtaining a series representations for the Jost solutions.

We also mention that similar results hold for the discrete case considered

in Chapter 4.

Proposition 2.2.1. The Jost solutions and the spectral functions A and B have the

following analyticity properties:

- ϕ(x, 0; ζ) and ψ(x, 0; ζ) exist and are continuous in ζ in the closed half-

plane Im(ζ) ≥ 0, and are analytic in ζ in the open half-plane Im(ζ) > 0

- ϕ̊(x, 0; ζ) and ψ̊(x, 0; ζ) exist and are continuous in ζ in the closed half-

plane Im(ζ) ≤ 0, and are analytic in ζ in the open half-plane Im(ζ) < 0

- A(0; ζ) exists and is continuous in ζ in the closed half-plane Im(ζ) ≥ 0,

and is analytic in ζ in the open half-plane Im(ζ) > 0.

- B(0; ζ) exists and is continuous in ζ on Im(ζ) = 0.
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Proposition 2.2.2. The Jost solutions and the spectral functions A and B have the

following asymptotic properties:

ϕ(x, 0; ζ) = e−iζx +O
(

1
ζ

)

ψ(x, 0; ζ) = eikx +O
(

1
ζ

)



 as |ζ| → ∞ in Im(ζ) ≥ 0 (2.23)

ϕ̊(x, 0; ζ) = eiζx +O
(

1
ζ

)

ψ̊(x, 0; ζ) = e−ikx +O
(

1
ζ

)



 as |ζ| → ∞ in Im(ζ) ≤ 0 (2.24)

A(0; ζ) = 1 +O
(

1

ζ

)
as |ζ| → ∞ in Im(ζ) ≥ 0 (2.25)

B(0; ζ) = O
(

1

ζ

)
as |ζ| → ∞ on Im(ζ) = 0. (2.26)

Theorem 2.2.3. The function A(0; ζ) has a finite number of zeroes ζ1, ..., ζN in

the open half-plane Im(ζ) > 0, and does not vanish on Im(ζ) = 0. Moreover all

of these zeroes are simple and lie on the imaginary axis Re(ζk) = 0. At each ζk we

have ϕ(x, 0; ζk) = Ck(0)ψ(x, 0; ζk) for some constant Ck(0).

The N zeroes of A form a set of discrete eigenvalues, which we will

show are in fact associated with the N solitons which exist within the solu-

tion u(x, t) of the KdV equation.

This completes the forward scattering procedure, in which we have

constructed the four Jost solutions ϕ, ϕ̊, ψ and ψ̊ as well as the spectral

functions A and B. As was done in the case of the IST for the heat equation

in Section 2.1, we now determine the time-dependent spectral functions

A(t; ζ) and B(t; ζ). Since these functions are independent of x we calculate

this in the limit |x| → ∞, where we assume that u → 0 and ux → 0 for all

t > 0. Inserting the relation (2.21) in the second Lax equation (2.16) and
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taking this limit yields

∂A

∂t
= 0 ⇒ A(t; ζ) = A(0; ζ) (2.27)

∂B

∂t
= 8iζ3B ⇒ B(t; ζ) = B(0; ζ)e8iζ3t (2.28)

∂Ck
∂t

= 8iζ3Ck ⇒ Ck(t) = Ck(0)e8iζ3kt (2.29)

The inverse transform involves using A and B to reconstruct the time-

dependent solution u(x, t). As for the heat equation this is done from the

setting of a Riemann-Hilbert problem. Importantly, since the boundary

conditions for u are independent of time, the analyticity and asymptotic

results of Propositions 2.2.1 and 2.2.2 and Theorem 2.2.3 continue to hold

for all t > 0. By these results the relation

ϕ(x, t; ζ)

A(0; ζ)
− ψ̊(x, t; ζ) =

(
B(t; ζ)

A(0; ζ)

)
ψ(x, t; ζ)

defines a jump condition between the two sectionally meromorphic func-

tions
ϕ

A
and ψ̊ along the real ζ-axis, with known boundary behaviour. For

Im(ζ) > 0 the solution of this is given by the singular integral

ψ(x, t; ζ)e−iζx = 1−
N∑

k=1

(
Ck(0)ψ(x, t; ζk)

Aζ(0; ζk) (ζ + ζk)

)
eiζkx+8iζ3kt

+
1

2πi

∫ +∞

−∞

(
B(0;σ)ψ(x, t;σ)

A(0;σ) (σ + ζ)

)
eiσx+8iσ3t dσ (2.30)

where the sum is over the N simple zeroes of A in Im(ζ) > 0. This is a

closed-form singular integral equation for ψ(x, t; ζ), where all time depen-

dence is known from B(t; ζ).

One can also isolate the dependence of ψ on the spectral parameter ζ

by expressing it in the form

ψ(x, t; ζ) = eiζx +

∫ +∞

x
K(x, y, t)eiζy dy. (2.31)

That such aK exists follows from inserting this expression into (2.15), thereby

obtaining a Goursat problem forK. It can be shown that the solution of this
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Goursat problem exists and is unique. The motivation for this choice comes

from the fact that one of the boundary conditions for K gives a simple re-

lation between it and the solution u(x, t) to the KdV equation:

u(x, t) = −2
∂

∂x

[
K(x, x, t)

]
. (2.32)

In order to obtain a linear equation for K(x, y, t) we substitute equation

(2.31) into the singular integral equation for ψ. Since K is related to the

Fourier transform of ψ, by taking the inverse Fourier transform we obtain

the following Gel’fand-Levitan integral equation, valid for y ≥ x:

K(x, y, t) + L(x+ y, t) +

∫ ∞

x
K(x, s, t)L(s+ y, t) ds = 0, (2.33)

where the quantity L is given by

L(x, t) =− i
N∑

k=1

(
Ck(0)

Aζ(0; ζk)

)
eiζkx+8iζ3kt +

1

2πi

∫ +∞

−∞

(
B(0;σ)

A(0;σ)

)
eiσx+8iσ3t dσ.

(2.34)

Furthermore by considering the Wronskian W (ψ,ψζ) one can also show

that

−iCk(0)

Aζ(0; ζk)
=

(∫ +∞

−∞
ψ(x, 0; ζk)

2 dx

)−1

> 0, (2.35)

which follows from the fact that the Jost solutions are real whenever Re(ζk) =

0. Thus from the knowledge of

{
A(0; ζ), B(0; ζ), Ck(0), {ζk : k = 1, ..., N}

}

one can construct the full time-dependent solution u(x, t) through the lin-

ear Volterra-type integral equation (2.33). The quantity T :=
1

A
is known

as the transmission coefficient and R :=
B

A
is known as the reflection coef-

ficient. Initial conditions for which the relfection coefficient is identically

zero on Im(ζ) = 0 are known as reflectionless potentials.
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2.3 One-soliton Solution for the KdV Equation

Consider an arbitrary initial condition u(x, 0) which satisfies (2.17) and

gives rise to a spectral function A which has the following properties:

- A(0; ζ) has exactly one zero ζ1 in Im(ζ) > 0, which we denote by

ζ1 = ik, where k > 0,

- B(0; ζ) = 0 for all ζ on Im(ζ) = 0.

The function L appearing in the Gel’fand-Levitan equation is

L(x, t) = −i
(

C1(0)

Aζ(0; ik)

)
e−kx+8k3t =: 2kAe−kx+8k3t,

for some constant A. Assuming the natural form

K(x, y, t) = −Ψ(x)e−ky+8k3t, (2.36)

equation (2.33) becomes

Ψ(x)− 2kAe−kx + 2kAΨ(x)

∫ +∞

x
e−2ks+8k3t ds = 0,

from which we obtain the unique solution

K(x, y, t) =
−2kAe−k(x+y)+8k3t

1 +Ae−2kx+8k3t
. (2.37)

By defining A =: e2kxo , equation (2.32) gives the solution to the KdV as

u(x, t) = 2k2 sech2
[
k
(
x− 4k2t− xo

)]
, (2.38)

which is precisely the one-soliton solution. This is shown in Figure 1.

2.4 Arbitrary Reflectionless Potential

We now consider the case of an arbitrary reflectionless potential, that is

an initial condition u(x, 0) for which

- A(0; ζ) has N simple zeroes {ζ1, ..., ζN} in Im(ζ) > 0, which we de-

note by {ik1, ..., ikN}, where kj > 0 for each j,
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FIGURE 1. One-soliton solutions of the KdV equation.

k = 0.40, xo = −0.30

- B(0; ζ) = 0 for all ζ on Im(ζ) = 0.

Following the analysis given in [44], due to (2.35) we express the function

L in the form

L(x, t) = −i
N∑

k=1

(
Ck(0)

Aζ(0; ζk)

)
eiζkx+8iζ3kt =

N∑

j=1

cj(t)
2e−kjx (2.39)

where we have defined the positive time-dependent normalisation constants

cj(t) by

cj(t) :=

(−iCj(0)

Aζ(0; ζj)

) 1
2

e4k3j t > 0. (2.40)

That these normalisation constants must be positive follows from the de-

tails of the forward scattering problem [44]. The Gel’fand-Levitan equation

(2.33) becomes

K(x, y, t) +

N∑

j=1

cj(t)
2e−kj(x+y) +

N∑

j=1

cj(t)
2e−kjy

∫ ∞

x
K(x, s, t)e−kjs ds = 0.

(2.41)

To find the solution K(x, y, t) we assume the form

K(x, y, t) = −
N∑

r=1

cr(t)Ψr(x)e−kry, (2.42)

and by insering this into the Gel’fand-Levitan equation and demanding

that the coefficients of all the exponentials e−kjy vanish we obtain the N
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equations

Ψj(x) +
N∑

r=1

(
cj(t) cr(t)

kj + kr

)
Ψr(x)e−(kj+kr)x = cj(t)e

−kjx. (2.43)

Define the matrix Cmn by

Cmn(x, t) :=

[(
cm(t) cn(t)

km + kn

)
e−(km+kn)x

]

=

[(
cm(0) cn(0)

km + kn

)
e−(km+kn)x+4(k3m+k3n)t

]
, (2.44)

and let Ψ and E denote the column vectors

Ψ(x) :=




ψ1(x)

.

.

ψN (x)



, E(x, t) :=




c1(t)e−k1x

.

.

cN (t)e−kNx



. (2.45)

Equation (2.43) may then be expressed in matrix form as

[
I + C(x, t)

]
Ψ(x) = E(x, t). (2.46)

To show that I +C is invertible, it suffices to show that C (and thus I +C)

is positive definite, since then all eigenvalues are positive. Given a real

nonzero dummy vector z we have

zTCz =

N∑

m=1

N∑

n=1

(
zm zn cm(t) cn(t)

km + kn

)
e−(km+kn)x

=

∫ +∞

x

[
N∑

n=1

zn cn(t)e−kns
]2

ds

> 0

as required. Letting ∆(x, t) := det
(
I + C(x, t)

)
and Qmn(x, t) denote the

matrix of cofactors of I + C, Cramer’s rule gives

Ψn(x) =
1

∆(x, t)

N∑

m=1

cm(t)Qmn(x, t)e−knx, (2.47)
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and hence

K(x, x, t) = −
N∑

n=1

cn(t)Ψn(x)e−knx

= − 1

∆(x, t)

N∑

m=1

N∑

n=1

cm(t)cn(t)Qmn(x, t)e−(km+kn)x

=
1

∆(x, t)

∂

∂x

(
∆(x, t)

)
(2.48)

where we have used the formula for the derivative of a determinant:

∂

∂x

(
det(M)

)
= det(M)Tr

(
M−1∂M

∂x

)
. (2.49)

Thus finally we arrive at

Theorem 2.4.1. Every reflectionless potential can be expressed as

u(x, t) = −2
∂2

∂x2

[
log
(
det (I + C)

)]
, (2.50)

where the matrix Cmn(x, t) is defined by (2.44), with positive normalisation con-

stants cn(t) given by (2.40) and distinct positive constants kn.

Every solution of the KdV therefore, which is of the form (2.50), will

give rise to a reflectionless potential. Furthermore in [44] the authors show

that these solutions are in fact pure soliton solutions (i.e. solutions com-

prised only of solitons, with no radiation present). This gives a new char-

acterisation of soliton solutions - those which give rise to reflectionless po-

tentials. A three-soliton solution is shown in Figure 2. It was also shown

in [44] that pure soliton solutions can be represented in terms of the square

eigenfunctions as

u(x, t) = −4
N∑

n=1

knψ
2(x, t; ikn), (2.51)

where each term in the sum is a single soliton with discrete eigenvalue ikn.

In general however solutions to (2.2) are comprised not just of solitons,

but also of background radiation, which is expressed by transcendental
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FIGURE 2. Three-soliton solutions of the KdV equa-

tion. c1 = e−0.13, c2 = e0.20, c3 = e1.2, k1 = 0.13,

k2 = 0.20, k3 = 0.30

functions. We cannot write down such a solution explicitly, but through

the forward scattering procedure of the IST one can determine exactly how

many solitons are present within a given solution (by counting the num-

ber of discrete eigenvalues ζk) and give their amplitudes and wave speeds,

without knowing the solution itself. We also mention that given a solution to

the Schrödinger equation (2.15), it is possible [81] to define new solutions

(through a recursion relation) which solve (2.15) for a different potential u.

This new potential will either gain a discrete eigenvalue and hence gain a

soliton (the “dressing" procedure), or lose a discrete eigenvalue and hence

lose a soliton (the “undressing" procedure). Thus given a potential contain-

ing N solitons, the undressing procedure can be applied N times to obtain

a solution which is comprised solely of background radiation.

An arbitrary transcendental solution to the KdV is expressed implic-

itly through the integral equation (2.33), which is derived from a singular

integral equation for φ. As a final note we mention that this idea was gen-

eralised in 1981 by Fokas and Ablowitz [40], who showed that if φ(x, t; k)
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satisfies

φ(x, t; k) + ieikx+ik3t

∫

L

φ(x, t; l)

l + k
dλ(l) = eikx+ik3t, (2.52)

for an approriate contour L and measure λ, then a solution of (2.2) is given

by

u(x, t) = − ∂

∂x

∫

L
φ(x, t; k)dλ(k). (2.53)

The integral equation (2.52) was also proposed to study the Painlevé II re-

duction of the KdV equation and its corresponding transcendental solu-

tions. This direct method of starting with linear integral equations in order

to obtain formal solutions of nonlinear evolution equations has also been

applied to other nonlinear partial differential equations (see e.g. [68]).

This concludes our study of the continuous IST. We have looked at

its application in solving the linear heat equation and the nonlinear KdV

equation, both of which are important prevalent equations in mathemati-

cal physics. The main features of the IST discussed in this chapter will also

provide a framework for the analysis carried out in Chapter 4, where we

will rigorously develop a discrete version of the IST as a means of solving

nonlinear partial difference equations. These equations, some of which are

discrete versions of the KdV equation (2.2), will be first derived and studied

in Chapter 3, before being solved using the discrete IST in Chapter 4.
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3 Lattice Equations

This chapter is dedicated to the study of discretisations of such integrable

partial differential equations as the KdV equation, which appeared in Chap-

ter 2. We consider the problem of determining the “correct" discretisation

for a given equation, the sorts of solutions which exist, and the notion of an

initial-value problem in the discrete setting. In Section 3.4 we then move

away from partial differential equations altogether, and look at a class of

integrable nonlinear partial difference equations, which are nonlinear evo-

lution equations depending on two discrete independent variables. We

look at various properties of these equations, such as their known solu-

tions, symmetries, initial-value problems, and how to interpret the notion

of integrability in the discrete setting. This will provide a natural setting

for the development of the discrete IST in Chapter 4.

3.1 Motivation for Discretisation

A fundamental property of integrable partial differential equations is

that the solution u is dependent on continuous independent variables x and

t (which may be vectors). The Korteweg-de Vries equation

ut + 6uux + uxxx = 0 (3.1)

is such an equation. As was shown in chapter 2 this equation is solvable

with the Inverse Scattering Transform (IST), it possesses a class of special
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soliton solutions and has an infinite number of conservation laws. As such

it is known as a completely integrable system. The IST solution for (3.1) is

found by solving the Volterra-type integral equation

K(x, y, t) + L(x+ y, t) +

∫ ∞

x
K(x, s, t)L(s+ y, t)ds = 0, (3.2)

which is equation (2.33), for the function K(x, y, t). The solution of (3.1) is

then given by

u(x, t) = −2
∂

∂x

[
K(x, x, t)

]
.

The function L is a known function of the scattering data (including the

reflection coefficient) and is given by equation (2.34). In Chapter 2 it was

shown that if the reflection coefficient R is identically zero then the solu-

tion is comprised solely of N solitons. If R 6= 0 however the solution of

(3.2) will be composed of solitons as well as transcendental background ra-

diation. At present the only means of solving this equation is with some

numerical scheme, which necessarily involves discretisation of the integra-

tion variable. There are many ways of choosing this discretisation, depend-

ing on whether one is interested in rapid convergence of the solution or

the conservation of some quantity such as energy. The point is however

that to date there is no non-numerical method for solving the KdV when

radiation is present in the solution. Thus even for the most elementary

non-special solutions of the KdV, the solution obtained from the numerical

method (used on the exact integral representation of the solution) will be

discrete in the spatial variable, that is its dependence on xwill only be taken

at countably infinite isolated points.

Since the solution is discrete in x, one is tempted to ask whether there

exist versions of the KdV equation itself which depend continuously on

time, but in which the spatial variable has been discretised. Furthermore,

what if one were to demand that time were also discretised? Of course each
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time one discretises there are an infinite number of possibilities, such as

ux →
u(x+ h, t)− u(x, t)

h
, ux →

u(x+ h, t)− u(x− h, t)
2h

,

and thus an infinite number of possible “discrete versions" of the KdV. Yet

not all of these remain integrable (in some sense) in the discrete setting, for

example the equation may not define a well-posed initial-value problem,

it may not retain the same number of conservation laws, or (see e.g. [47])

certain discretisations may induce chaotic behaviour.

3.2 Bäcklund Transformations of the KdV

In order to determine what could be considered a “natural" discretisa-

tion of the KdV, we first consider whether or not there already exists any

sort of natural discrete property of this equation, from which we could base

our discretisation. Consider the Miura transformation

u = −v2 − vx +
1

4
p2, (3.3)

where the added parameter p (satisfying px = pt = 0) comes from the fact

that the KdV equation is Galilean invariant, that is it remains unchanged

under the change of variables

t′ = t, x′ = x− 3

2
p2t, u′ = u− 1

4
p2.

This maps solutions of

vt − 6v2vx + vxxx = −3

2
p2vx (3.4)

to those of the KdV equation (3.1):

ut + 6uux + uxxx = −
[
2v +

∂

∂x

] [
vt − 6v2vx + vxxx +

3

2
p2vx

]
.

Note that if p = 0 then equation (3.4) becomes the Modified KdV equation.

A trivial symmetry of equation (3.4) is its invariance under the map v →
34
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−v, however this generates a highly nontrivial transformation in the action

of the Miura transformation [31]. If u denotes the solution obtained from

(3.3), then let ũ denote the solution obtained from the same transformation,

but after the map v → −v, that is

u = −v2 − vx +
1

4
p2 (3.5a)

ũ = −v2 + vx +
1

4
p2. (3.5b)

We emphasise that u and ũ are both solutions of the KdV equation (3.1).

Adding and subtracting these yields

u+ ũ = −2v2 +
1

2
p2 (3.6a)

u− ũ = −2vx. (3.6b)

We now define the quantity

w(x, t) :=

∫
u(x, t)dx

from which it follows that w(x, t) satisfies the potential KdV equation

wt + 3w2
x + wxxx = 0. (pKdV) (3.7)

Note that in the definition of w we have chosen to set the arbitrary constant

to be zero. By integrating (3.6b) and again setting the arbitrary constant to

be zero one can combine this with (3.6a) to eliminate v and obtain

2(w + w̃ )x = p2 − (w − w̃ )2. (3.8)

This relation describes the x-dependence of a transformation between two

different solutionsw and w̃ of the same equation (3.7), which (now indirectly)

corresponds to the change v → −v in (3.4). This transformation involves

a free parameter p and is known as a Bäcklund transformation. Given one

solution w, it provides a means of iterating through the solution space of

(3.7) to obtain a new solution w̃ of the same equation.
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As an example, consider the trivial solution w ≡ 0 of (3.7), which also

corresponds to the trivial solution u ≡ 0 of the KdV equation. The Bäck-

lund transfomation (3.8) becomes

2w̃x + w̃ 2 = p2

which is a Riccati equation, and is thus linearisable by the substitution w =

2 log(ψ)x. Solving yields

w̃(x, t) = p tanh
(p

2
x+ α(t)

)
,

where the time dependence α(t) can be found by using (3.7):

α(t) = −p
2

(
p2t+ xo

)

for some constant xo. Thus the new solution of the pKdV obtained via

Bäcklund transformation is

w̃(x, t) = p tanh
(p

2

(
x− p2t− xo

))
, (3.9)

which is in fact a one-soliton solution for this equation. Differentiating in x

then gives the new solution of the KdV equation

ũ(x, t) =
p2

2
sech2

(p
2

(
x− p2t− xo

))
,

which is also the one-soliton solution for the KdV. For completeness we

also note that the corresponding solution of equation (3.4) is

v(x, t) =
p

2
tanh

(p
2

(
x− p2t− xo

))
.

Thus from the Bäcklund transformation we have transformed the zero so-

lution of the KdV equation into the one-soliton solution. This process can

be repeated [90] to obtain further new solutions, with each transformation
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corresponding to a mapping within the solution space of the KdV. For ex-

ample starting with the solution (3.9) and performing the Bäcklund trans-

formation (3.8) a second time yields a second new solution

˜̃w(x, t) =

4p

p
(
x− 3p2t− x1

)
sech2

(p
2

(
x− p2t− xo

))
+ 2tanh

(p
2

(
x− p2t− xo

))

where x1 is a second arbitrary constant. This therefore naturally defines

a discrete process associated with this equation, which is the mapping be-

tween the solutions w → w̃ → ˜̃w → ..., and with the correct insight, will

serve as a basis for obtaining a discretisation of the KdV equation itself.

3.3 The Discrete KdV Equation

Consider the Bäcklund transformation (3.8) given in Section 3.2

2(w + w̃ )x = p2 − (w − w̃ )2, (3.10)

which maps one solution w of the pKdV equation (3.7) to another solu-

tion w̃ of the same equation. Given w one can solve this equation for

w̃ = w̃ (x, t; p), which will depend on the free parameter p. We denote

the action of this transformation by

BTp

(
w
)

= w̃.

Suppose then that we define another Bäcklund transformation

2(w + ŵ )x = q2 − (w − ŵ )2, (3.11)

denoted by BTq, which maps the solution w to a different solution ŵ =

ŵ (x, t; q) of the same equation, but which now depends on the parame-

ter q rather than p. From these two Bäcklund transformations (3.10) and

(3.11) it is possible therefore to define an infinite number of new solutions

37



Lattice Equations 3.3. The Discrete KdV Equation

to the pKdV through the various permutations of superpositions of Bäck-

lund transformations, such as

̂̃̃
w = BTq

(
BTp

(
BTp

(
w
)))

,
˜̂̂
w = BTp

(
BTq

(
BTq

(
w
)))

.

With such compositions it is natural to ask whether there exists any sort

of permutability between the various superpositions, in particular whether

the diagram in Figure 1 commutes. This in fact is the case1, that is for any
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to the pKdV through the various permutations of superpositions of Bäck-

lund transformations, such as

beew = BTq

⇣
BTp

⇣
BTp

�
w
�⌘⌘

,
ebbw = BTp

⇣
BTq

⇣
BTq

�
w
�⌘⌘

.

With such compositions it is natural to ask whether there exists any sort

of permutability between the various superpositions, in particular whether

the diagram in Figure 1 commutes. Bianchi [22] showed that in fact this is

w(x, t) w̃(x, t; p)

ŵ(x, t; q)

BTq

˜̂w(x, t; q, p)

BTq

BTp

BTp ̂̃w(x, t; p, q)

?
=

FIGURE 1. Permutability of the Bäcklund Transforma-

tion for the pKdV

the case, that is for any solution w of the pKdV,

bew (x, t; p, q) = BTq

⇣
BTp

�
w
�⌘

= BTp

⇣
BTq

�
w
�⌘

= ebw (x, t; q, p).

Given w, there are two ways of calculating the quantity bew. Firstly one can

use (3.10) to calculate ew, then by applying BTq to (3.10) use this to deter-

mine bew:

2( ew + bew )x = q2 � ( ew � bew )2. (3.12)

Alternatively one can use (3.11) to find bw and then apply BTq to (3.10) to

again determine bew:

2( bw + bew )x = p2 � ( bw � bew )2. (3.13)
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FIGURE 1. Permutability of the Bäcklund Transforma-

tion for the pKdV

solution w of the pKdV, one may choose the integration constants resulting

from the Bäcklund transformations in such a way that

̂̃w (x, t; p, q) = BTq

(
BTp

(
w
))

= BTp

(
BTq

(
w
))

= ˜̂w (x, t; q, p).

Given w, there are two ways of calculating the quantity ̂̃w. Firstly one can

use (3.10) to calculate w̃, then by applying BTq to (3.10) use this to deter-

mine ̂̃w:

2( w̃ + ̂̃w )x = q2 − ( w̃ − ̂̃w )2. (3.12)

1A similar permutability property of the sine-Gordon equation was found in 1899

by Bianchi [22]
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Alternatively one can use (3.11) to find ŵ and then apply BTq to (3.10) to

again determine ̂̃w:

2( ŵ + ̂̃w )x = p2 − ( ŵ − ̂̃w )2. (3.13)

Moreover by taking the difference of equations (3.12) and (3.13) we obtain

2( ŵ − w̃ )x = p2 − q2 + 2 ̂̃w ( ŵ − w̃ ) + ( w̃ 2 − ŵ 2),

and by combining this with the difference of equations (3.10) and (3.11) it

is possible to eliminate all derivatives and obtain

(w − ̂̃w )( ŵ − w̃ ) = p2 − q2. (3.14)

This equation defines a nonlinear relationship between the four solutions

w, w̃, ŵ and ̂̃w of the pKdV. The equation is affine-linear, so that given

any three of these quantities one can solve uniquely for the fourth. For

example it was shown that the Bäcklund transformation acting on the seed

solution w ≡ 0 yielded the one-soliton solution (3.9), and thus by (3.14) a

new solution ̂̃w of the pKdV depending on the two distinct paramters p and

q is

̂̃w =
p2 − q2

p tanh
(p

2

(
x− p2t− xo

))
− q tanh

( q
2

(
x− q2t− x1

)) .

If we set p > q > 0 and −pxo → −pxo +
iπ

2
(so that the denominator

does not vanish for real x and t) with xo and x1 real, then this defines a

two-soliton solution to the pKdV:

̂̃w (x, t; p, q) =
p2 − q2

p coth
(p

2

(
x− p2t− xo

))
− q tanh

( q
2

(
x− q2t− x1

)) , (3.15)

which is shown in Figure 2. By differentiating this solution respect to x we

obtain a two-soliton solution to the KdV equation, shown in Figure 3.

An important feature of equation (3.14) is that it is does not explicitly

depend on x, t or any derivatives. The procedure of mapping between

solutions within the solution space of the pKdV can therefore be carried
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FIGURE 2. Two-soliton solution of the pKdV equation.

p = 1.16, q = 0.55, xo = −2.70, x1 = −1.90

FIGURE 3. Two-soliton solutions of the KdV equation.

p = 0.44, q = 0.28, xo = −10.0, x1 = −7.25

out purely algebraically in terms of w, w̃, ŵ, etc., independently of x and t.

Thus for equation (3.14) the quantities x and t no longer play the role of

independent variables, but rather exist as parameters within the solutions

space. The independent variables for this equation are in fact represented

by the shifts ˜ and ̂. To make this more explicit we redefine this notation:

w = wn,m, w̃ = wn+1,m, ŵ = wn,m+1, ̂̃w = wn+1,m+1.

Each shift ˜ with parameter p corresponds to a shift in the independent

variable n such that n → n + 1, while each shift ̂ with parameter q cor-

responds to m → m + 1. In this light equation (3.14) defines a nonlinear
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discrete evolution equation for w, and since it depends on two discrete in-

dependent variables n and m we call this equation a partial difference equa-

tion (P∆E). This equation exists within an infinite two-dimensional lattice

Z × Z, where the dependent variable w depends explicitly on the parame-

ters p and q, and implicitly on the parameters x and t.

In order to obtain a solution equation (3.14) we start with known so-

lutions of the pKdV equation and postulate the dependence on n and m.

Given that cox − 3c2
ot + c1 solves the pKdV for any constants co and c1,

trying a solution with linear dependence on n and m yields

wn,m = pn+ qm+
1

4
(p2 + k2)x− 3

16
(p2 + k2)2t+ C, (3.16)

where we have chosen 4co = p2 + k2, c1 = C. Performing the Bäcklund

transformation (3.10) (with new solution denoted by w) then gives

w = w − k tanh

(
−k

2

(
x− k(k + 6)t

)
+ fn,m

)
(3.17)

and by again seeking a linear function fn,m we obtain

wn,m = pn+ qm+
1

4
(p2 + k2)x− 3

16
(p2 + k2)2t+ C

− k tanh

(
µn+ νm− k

2

(
x− k(k + 6)t

)
+D

)
(3.18)

where p tanh(µ) = q tanh(ν) = k and D is constant. Let us emphasise the

dual nature of this solution. By the definition of the Bäcklund transforma-

tion, for fixed n and m this function solves the pKdV partial differential

equation (3.7) as a function of the continuous variables x and t. We have

now shown however that if instead we hold x and t fixed, this function

also solves the partial difference equation (3.14) as a function of the dis-

crete variables n and m. The P∆E (3.14) was derived as a mapping within

the solution space of the pKdV, however this duality result suggests that

perhaps there is a stronger connection between the two equations. It turns

out in fact that equation (3.14) is a particular discretisation of equation (3.7),
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and as such is called the lattice potential KdV equation (lpKdV). The pKdV is

obtained from the lpKdV by taking the following two-step limit process

[50] [91] [66]: To begin we set

q = p− δ, δm = τ, m→∞, δ → 0, (3.19)

and redefine the independent variable n to be n′ := n+m, which we keep

finite. By writing w = wn′(m) we then have

w̃ = wn′+1(m), ŵ = wn′+1(m+ 1),

and by expanding ŵ as

ŵ = wn′+1(m) + δ
∂

∂(δm)
wn′+1(m) + ... = wn+1 + δ

∂wn+1

∂τ
+ ...

(where we have dropped the m-dependence and the primes), the lpKdV

(with w replacing u) becomes

1 +
∂wn
∂τ

=
2p

2p+ wn−1 − wn+1
. (3.20)

This is a differential-difference equation for the quantityw = w(n, τ), which

is related to the Kac-van Moerbeke-Volterra equation [53]. The second con-

tinuum limit, which gives the potential KdV equation (3.7), is then per-

formed by letting

p→∞, n→∞, τ →∞, (3.21)

while labelling

x = x(n, τ) =
2n

p
+

2τ

p2
, t = t(n; τ) =

2n

3p3
+

2τ

p4
,

and keeping both of these quantities finite.

Let us now move away from the view of the lpKdV (3.14) existing as

a map within the solution space of the pKdV (3.7), and rather consider its

properties as a discrete version of this equation, with n and m representing
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discrete space and time. In this light the solution (3.18) is more conve-

niently expressed as

wn,m = pn+ qm+ C − 2k

1 + ρ(k)
(3.22)

where the plane-wave factor is defined by

ρ(k) := ρo

(
p+ k

p− k

)n(q + k

q − k

)m
, (3.23)

and the constants C and ρo (into which we have absorbed the x and t de-

pendence) have been redefined appropriately. The solution (3.22) is in fact

a one-soliton solution to (3.14). A smooth plot of the soliton kink is shown

in Figure 4, however it is understood that the solution exists only at the

vertices of the overlaid lattice.

FIGURE 4. Plot of w = 2k
1+ρ(k)

. p = 1.5, q = 1.1, ρo = k = 1

One can also construct the two-soliton solution

w = pn+ qm+ C − 2(k1 + k2) + 2k2 ρ(k1) + 2k1 ρ(k2)

1 + ρ(k1) + ρ(k2) +
(
k1−k2
k1+k2

)2
ρ(k1)ρ(k2)

(3.24)

where

ρ(ki) = ρi

(
p+ ki
p− ki

)n(q + ki
q − ki

)m

with ρi constant. This double kink is shown in Figure 5.
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FIGURE 5. Plot of wn,m − pn− qm−C with wn,m given

by (3.24). p = 1.9, q = 1.7, ρ1 = 5, ρ2 = 1, k1 = 0.75,

k2 = 0.70

It is also possible to define a well-posed initial-value problem for equa-

tion (3.14) [71] [73]. Since the equation is linear in each of the quantities w,

w̃, ŵ and ̂̃w, given any three of these values one can solve uniquely for the

fourth. Thus the initial-value space shown in Figure 6 defines a well-posed

initial-value problem, as each remaining point in the lattice can be found

uniquely using equation (3.14) on each individual lattice plaquette.

Lattice Equations 3.3. The Discrete KdV Equation

FIGURE 5. Plot of wn,m � pn� qm�C with wn,m given

by (3.18). p = 1.9, q = 1.7, ⇢1 = 5, ⇢2 = 1, k1 = 0.75,

k2 = 0.70

Thus the initial-value space shown in Figure 6 defines a well-posed initial-

value problem, as each remaining point in the lattice can be found uniquely

using equation (3.14) on each individual lattice plaquette.

FIGURE 6. Well-posed Initial-value Problem for the lpKdV

Let us now compare equation (3.14) with a more naive discretisation of

the pKdV (3.7) obtained by setting

wt = bw � w, wx = ew � w, wxxx =
eeew � 3eew + 3 ew � w.

The resulting P�E is

bw +
eeew � 3eew + 3 ew 2 � 6w ew + 3 ew + 3w2 � 2w = 0 (3.19)
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FIGURE 6. Well-posed Initial-value Problem for the lpKdV
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Let us now compare equation (3.14) with a more naive discretisation of

the pKdV (3.7) obtained by setting

wt = ŵ − w, wx = w̃ − w, wxxx =
˜̃̃
w − 3 ˜̃w + 3w̃ − w.

The resulting P∆E is

ŵ +
˜̃̃
w − 3 ˜̃w + 3w̃ 2 − 6ww̃ + 3w̃ + 3w2 − 2w = 0 (3.25)

which exists on five points of the lattice. The asymmetry of this equation

affects its ability to evolve within the lattice. For example given an initial

condition along some line of points in the ˜ direction, the evolution of this

equation is unique in the positive ̂ direction, but grossly underdetermined

in the negative ̂ direction. Furthermore given any four of the five shifts

of w appearing in this equation, due to its quadratic nature it is not always

possible to solve uniquely for the remaining term. It is for these reasons

that equation (3.14) is a “better", or more natural discretisation of the pKdV

than (3.25).

It is however possible to define an initial-value space for which equa-

tion (3.14) defines either an over-determined or under-determined initial-

value problem (see e.g. [15] or [87]). This is shown in Figure 7. The points

with filled circles are over-determined, that is based on the initial data there

are two ways of calculating these values which in general will not conin-

cide. The points with open circles are under-determined, that is there is not

sufficient initial data to determine their values uniquely.

One remaining question is whether we can use the lattice potential KdV

to obtain a discrete version of the KdV equation itself. It turns out that the

most natural way to do this is to define the variable u := w̃ − ŵ, where by

equation (3.14) the quantity u satisfies

u− ̂̃u = (p2 − q2)

(
1

û
− 1

ũ

)
. (3.26)
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which exists on five points of the lattice. The asymmetry of this equation

affects its ability to evolve within the lattice. For example given an initial

condition along some line of points in the e direction, the evolution of this

equation is unique in the positive b direction, but grossly underdetermined

in the negative b direction. Furthermore given any four of the five shifts

of w appearing in this equation, due to its quadratic nature it is not always

possible to solve uniquely for the remaining term. It is for these reasons

that equation (3.14) is a “better", or more natural discretisation of the pKdV

than (3.19).

It is however possible to define an initial-value space for which equa-

tion (3.14) defines either an over-determined or under-determined initial-

value problem. This is shown in Figure 7. The points with filled circles are

over-determined, that is based on the initial data there are two ways of cal-

culating these values which in general will not conincide. The points with

open circles are under-determined, that is there is not sufficient initial data

to determine their values uniquely.

FIGURE 7. Ill-posed Initial-value Problem for the lpKdV

One remaining question is whether we can use the lattice potential KdV

to obtain a discrete version of the KdV equation itself. It turns out that the

most natural way to do this is to define the variable u := ew � bw, where by

45

FIGURE 7. Ill-posed Initial-value Problem for the lpKdV

This is in fact a discretisation of the KdV equation [50] and is known as

the lattice KdV equation (lKdV). From (3.22) the one-soliton solution to this

equation is given by

u = (p− q)
((

1 + ρ (k)
)(

1 + ̂̃ρ (k)
)

(
1 + ρ̃(k)

)(
1 + ρ̂ (k)

)
)
, (3.27)

and is shown in Figure 8. Equation (3.24) then gives the two-soliton solu-

FIGURE 8. One-soliton solution of the lKdV. p = 1.9,

q = 1.7, ρo = 1, k = 0.75
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tion

u = (p− q)


 F

̂̃
F

F̃ F̂


 , (3.28)

where the quantity F is given by

F = 1 + ρ(k1) + ρ(k2) +

(
k1 − k2

k1 + k2

)2

ρ(k1)ρ(k2).

The solution (3.28) is shown in Figure 9.

FIGURE 9. Two-soliton solution of the lKdV. p = 1.9,

q = 1.7, ρo = 5, ρ2 = 1, k1 = 0.75, k2 = 0.70

Many other fully discrete counterparts to famous partial differential

equations were obtained in the 80’s by the Dutch group of Capel et al. who

advanced the so-called direct linearization method [67]. The group started

with variations of the singular integral equation (2.52) which linearises the

KdV and Painlevé II equations [40], and through the application of Bäck-

lund transformations showed that certain terms within the integral equa-

tion obeyed nonlinear partial difference equations [74]. These equations

were then labeled as integrable since their solutions (including classes of

special solutions such as solitons) could be found through the singular in-

tegral equations themselves. Examples of such partial difference equations
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include the NQC equation [67]

(p+ α) ̂̃s− (p− β) s̃− 1

(q + α) ̂̃s− (q − β) s̃− 1
=

(q + β) ŝ− (q − α)s− 1

(p+ β) s̃− (p− α)s− 1
, (3.29)

the lattice sine-Gordon equation [50] [70] [74]

sin
(
w + w̃ + ŵ + ̂̃w

)
= pq sin

(
w − w̃ − ŵ + ̂̃w

)
, (3.30)

as well as a a range of KdV-type lattice equations including the lattice mod-

ified KdV equation [67] [74] [66]

p
(
V V̂ − Ṽ ̂̃V

)
= q

(
V Ṽ − V̂ ̂̃V

)
, (3.31)

the lattice potential modified KdV equation [65]

̂̃
W

W
=

(
pŴ − q

)(
p− qW̃

)
(
p− qŴ

)(
pW̃ − q

) (3.32)

and the lattice Schwarzian KdV equation [66]

(
Z − Z̃

)(
Ẑ − ̂̃Z

)
(
Z − Ẑ

)(
Z̃ − ̂̃Z

) =
q2

p2
. (3.33)

As a final remark we mention an alternative approach to finding discreti-

sations of famous partial differential equations pioneered by Hirota, which

is the finding of discretisations of their bilinear forms. By redefining the

independent variable in the KdV equation (3.1) according to u = 2∂2
x log(f)

then the equation for f becomes

ffxxxx − 4fxfxxx + 3f2
xx + ffxt − fxft = 0,

which is expressed most conveniently as

Dx

(
Dt +D3

x

)
f · f = 0, (3.34)
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where the Hirota derivatives are defined by

Dn
xD

m
t f(x, t) · g(x′, t′) ≡

(
∂

∂x
− ∂

∂x′

)n( ∂

∂t
− ∂

∂t′

)m
f(x, t)g(x′, t′)

∣∣∣
x′=x,t′=t

.

The exponentiated Hirota operator is then given by

eαDx f · g = f(x+ α)g(x− α).

The lattice KdV equation (3.26) was in fact discovered by Hirota [50] through

finding corresponding differential-difference and difference-difference bi-

linear forms of (3.34).

3.4 Integrability for Lattice Equations

The lpKdV (3.14) is a nonlinear partial difference equation which is a

fully discrete counterpart to the continuous pKdV equation (3.7). Based

on the various definitions of integrability for continuous equations (Liou-

ville integrability, Painlevé property, infinite number of conservation laws

and higher symmetries, etc.), equation (3.7) is a completely integrable sys-

tem, and a natural question which arises is whether the lpKdV retains any

of these integrability characteristics in the discrete setting. Integrability

for partial difference equations however is not something that has been

to date defined precisely, and there are various inherent properties of sys-

tems which indicate some notion of integrability as it is understood for con-

tinuous equations. The properties that we consider are three-dimensional

(3D) consistency (which has no analogue in the continuous case), the exis-

tence of a Lax pair, and the existence of an infinite number of conservation

laws, though this final property will not be considered until Chapter 5.

Other present notions of integrability for partial difference equations are

the vanishing of algebraic entropy [21], the existence of an infinite number
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of symmetries [58] and the obeying of singularity confinement [46]. The

3D consistent equations presented below, which are all scalar affine-linear

partial difference equations in two independent variables, do indeed have

zero algebraic entropy and pass the singularity confinement test.

The idea of 3D consistency, also known as consistency around a cube,

goes back to [69] [24]. Consider the lpKdV equation, which we now write

as

Qpq
(
w, w̃, ŵ, ̂̃w

)
:= (w − ̂̃w )( w̃ − ŵ ) + p2 − q2 = 0. (3.35)

This equation naturally lives on an elementary lattice plaquette shown in

Figure 10.Lattice Equations 3.4. Integrability for Lattice Equations
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q

FIGURE 10. Elementary lattice plaquette

the square in Figure 10 as the base of a cube, where the third orthogonal di-

rection is denoted by w (and a new independent variable l), with associated

parameter r, as shown in Figure 11.
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FIGURE 11. 3D Consistency

Furthermore we assume that equation (3.7) is imposed on every face of

the cube, thus from the three faces touching the vertex denoted by w we
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By considering the effect of the square symmetries of this lattice pla-

quette on the functional Q defined in (3.35) we see that

Qpq
(
w, w̃, ŵ, ̂̃w

)
= Qpq

(
w̃, w, ̂̃w, ŵ

)
= −Qqp

(
w, ŵ, w̃, ̂̃w

)
,

and since the lpKdV is the equation Q = 0 it follows that this equation is

invariant under each of these symmetries. Suppose now that we consider
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Furthermore we assume that equation (3.7) is imposed on every face of

the cube, thus from the three faces touching the vertex denoted by w we

have the three equations

Qpq
(
w, w̃, ŵ, ̂̃w

)
:= (w − ̂̃w )( w̃ − ŵ ) + p2 − q2 = 0

Qqr
(
w, ŵ, w, ŵ

)
:= (w − ŵ )( ŵ − w ) + q2 − r2 = 0

Qrp
(
w,w, w̃, w̃

)
:= (w − w̃ )(w − w̃ ) + r2 − p2 = 0.

If we assume that the initial conditions w, w̃, ŵ and w are given, then these

three equations can be used to determine uniquely the values ̂̃w, w̃ and ŵ.

This however leaves three means of determining the remaining point of

the cube (antipodal to w), as there are three faces which touch it. 3D con-

sistency is the property of an equation whereby given the initial conditions

described above, the three means of calculating this final vertex of the cube

give the same result, that is

̂̃w = ˜̂w = ̂̃w.
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This can be seen for the lpKdV algebraically [90] by the symmetry of this

value on the parameters p, q and r, and their respective initial conditions

w̃, ŵ and w:

̂̃w =
p2 w̃

(
ŵ − w

)
+ q2 ŵ

(
w − w̃

)
+ r2w

(
w̃ − ŵ

)

p2
(
ŵ − w

)
+ q2

(
w − w̃

)
+ r2

(
w̃ − ŵ

) .

Interestingly for the lpKdV this quantity does not depend on the initial

condition w, a phenomenon known as the tetrahedron property.

This 3D consistency property is one of the present definitions of inte-

grability for partial difference equations. This property naturally allows

the equation to be embedded in multiple dimensions in a consistent man-

ner, which we will see is reflected in the covariance of the dependence of

their solutions on the multiple lattice variables. In terms of an initial-value

problem it also allows one to generalise the regular square lattice to an ar-

bitrary quad-graph [15]. Many examples of equations exhibiting this prop-

erty were previously known, e.g. [50] [67] [74] [32], and in 2003 Adler,

Bobenko and Suris (ABS) [12] (see also [13] where this was generalised)

classified all such affine-linear scalar partial difference equations of two in-

dependent variables of the form

Qpq
(
u, ũ, û, ̂̃u

)
= 0

which are 3D consistent, are invariant under the group of square symme-

tries

Qpq
(
u, ũ, û, ̂̃u

)
= εQpq

(
ũ, u, ̂̃u, û

)
= σQqp

(
u, û, ũ, ̂̃u

)
, σ, ε = ±1, (3.36)

and which satisfy the tetrahedron property. This led to a list of nine equa-

tions, separated into three classes (named type-Q, type-A and type-H),

which are unique up to constant (i.e. independent of the lattice variables)

Möbius transformations of the dependent variables and point transforma-

tions of the parameters. Within these nine equations there exists a natural
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hierarchy defined by a degeneration scheme. The degeneration diagram

between the type-Q equations was first given in [14] and is shown in Fig-

ure 12.

Lattice Equations 3.4. Integrability for Lattice Equations

Bobenko and Suris (ABS) [12] (see also [13] where this was generalised)

classified all such affine-linear scalar partial difference equations of two in-

dependent variables of the form

Qpq

�
u, eu, bu, beu

�
= 0

which are 3D consistent, are invariant under the group of square symme-

tries

Qpq

�
u, eu, bu, beu

�
= ✏Qpq

�
eu, u, beu, bu

�
= �Qqp

�
u, bu, eu, beu

�
, �, ✏ = ±1, (3.28)

and which satisfy the tetrahedron property. This led to a list of nine equa-

tions, separated into three classes (named type-Q, type-A and type-H),

which are unique up to Möbius transformations of the dependent variables

and point transformations of the parameters. Within these nine equations

there exists a natural hierarchy defined by a degeneration scheme. The de-

generation diagram between the type-Q equations was first given in [14]

and is shown in Figure 12.

Q4

Q3δ Q3o

Q2 Q1δ Q1o

FIGURE 12. Degeneration scheme between the type-Q

equations in the ABS list

The equation Q4 which lies at the top of this hierarchy is given by

Q4 : ṗ(u eu + bu beu ) � q̇(u bu + eu beu)

�
 

ṗQ̇ � q̇Ṗ

1 � ṗ2q̇2

!⇣
( eu bu + ubeu ) � ṗq̇(1 + u eu bu beu )

⌘
= 0, (3.29)
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The equation Q4 which lies at the top of this hierarchy is given by

Q4 : ṗ(u ũ+ û ̂̃u )− q̇(u û+ ũ ̂̃u)

−
(
ṗQ̇− q̇Ṗ
1− ṗ2q̇2

)(
( ũ û+ u ̂̃u )− ṗq̇(1 + u ũ û ̂̃u )

)
= 0, (3.37)

where Ṗ 2 = ṗ4 − γṗ2 + 1 and Q̇2 = q̇4 − γq̇2 + 1, where γ is some constant.

This particular parametrisation was first given in [48]. From this equation

one can perform various degeneration schemes (by taking limits of fixed

parameters and dependent variables) and obtain every other equation in

the ABS list. Q4 was first written down by Adler [11] who discovered it as

the permutability condition for Bäcklund transformations of the Krichever-

Novikov equation. The remaining equations of type-Q are

Q1δ : p̊(u− û )( ũ− ̂̃u )− q̊(u− ũ )( û− ̂̃u ) + δ2p̊q̊(p̊− q̊) = 0 (3.38a)

Q2 : p̊(u− û )( ũ− ̂̃u )− q̊(u− ũ )( û− ̂̃u )

+ p̊q̊(p̊− q̊)(u+ ũ+ û+ ̂̃u )− p̊q̊(p̊− q̊)(p̊2 − p̊q̊ + q̊2) = 0 (3.38b)

Q3δ : P (u û+ ũ ̂̃u )−Q(u ũ+ û ̂̃u )

− (p2 − q2)

(
( ũ û+ u ̂̃u ) +

δ2

4PQ

)
= 0, (3.38c)
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where p̊ = a2

p2−a2 , q̊ = a2

q2−a2 and the parameters p := (p, P ), q := (q,Q) lie

on the Jacobi elliptic curve {(x,X) : X2 = (x2 − a2)(x2 − b2)}. This form of

Q3δ is due to [18] and [65]. The equation Q1o is in fact the Schwarzian KdV

or cross-ratio equation (3.33), while Q3o is the NQC equation (3.29). Both

of these had been known to be integrable (in the sense of having N -soliton

solutions and Lax pairs) partial difference equations well before the ABS

classification. The next family of equations is the type-H equations, given

by

H1 : (u− ̂̃u )( ũ− û ) + p2 − q2 = 0 (3.39a)

H2 : (u− ̂̃u )( ũ− û ) + (p2 − q2)(u+ ũ+ û+ ̂̃u )− p4 + q4 = 0 (3.39b)

H3δ : Q(u ũ+ û ̂̃u )− P (u û+ ũ ̂̃u ) + δ

(
p2 − q2

PQ

)
= 0 (3.39c)

where P 2 = a2 − p2, Q2 = a2 − q2.

These three equations can all be obtained through degneration of type-Q

equations, with H1 lying at the bottom of this degeneration hierarchy. Here

H1 is the lpKdV equation, while H3o is the lattice modified KdV equation

(3.31) or Hirota equation, both of which were previously-known discreti-

sations of KdV-type integrable systems [66]. Importantly the equations

Q3δ → Q1δ as well as all type-H equations are parametrised in such a way

that the common lattice parameters p and q which appear in all equations

are unaffected by the degeneration scheme [65] between these equations.

The final family is the type-A equations

A1δ : p(u+ û )( ũ+ ũ )− q(u+ ũ )( û+ ̂̃u )− δ2pq(p− q) = 0 (3.40a)

A2 : p(1− q2)(u û+ ũ ̂̃u )− q(1− p2)(u ũ+ û ̂̃u )

+ (p2 − q2)
(

1 + u ũ û ̂̃u
)

= 0, (3.40b)
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however these are in fact related by straightforward gauge transformations

to Q1δ and Q3o and as such are not treated here as separate cases.

An important properties of the equations classified by ABS is that they

all possess a Lax pair, which is naturally inherited by the affine-linearity

and 3D consistency of the equations. The construction of the such a Lax

pair was first shown in [63] [24] and is as follows: Suppose we are given an

equation Qpq
(
u, ũ, û, ̂̃u

)
= 0 which exists on the bottom face of the cube in

Figure 11. The equation on the front face can then be expressed as

Qpr
(
u, ũ, u, ũ

)
= ao + a1u+ a2ũ+ a3u ũ = 0

where each of the coefficients ai may depend on u, ũ, p and r. As an equa-

tion in the new dependent variable u this is a discrete Riccati equation and

as such we introduce the natural decomposition u =: f/g which leads to

g̃

f̃
=

a2g + a3f

−a0g − a1f
.

Defining φ := (g, f)T this can be rewritten in matrix form as

φ̃ = κ1Lφ := κ1


 a2 a3

−a0 −a1


φ (3.41)

where κ1 is an as yet unspecified separation function. This is the first Lax

equation, where the third lattice parameter r plays the role of the spectral

parameter, and in terms of the partial derivatives of Q with respect to the

dependent variables the elements of this matrix are

ao = Q− uQu − ũQ ũ + u ũQu ũ

a1 = Qu − ũQu ũ a2 = Q ũ − uQu ũ a3 = Qu ũ.

The second is obtained in a similar manner by considering

Qqr
(
u, û, u, û

)
= bo + b1u+ b2û+ b3u û = 0
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which gives

φ̂ = κ2Mφ := κ2


 b2 b3

−b0 −b1


φ

for some other separation function κ2. The consistency of this Lax pair is

the vanishing of the difference ̂̃φ− ˜̂φ, which is equivalent to demaning that
̂̃u = ˜̂u, which will only hold if u satisfies the original 3D consistent equation.

The matrix equation which arises from this consistency condition is

κ̂1κ2L̂M = κ1κ̃2M̃L, (3.42)

and by taking the determinant of this one obtains a restriction on the func-

tions κ1 and κ2. Using the above values for the ai and the machinery de-

veloped in [12] it turns out that the determinant of the Lax matrix L is

det(L) = QQu ũ −QuQ ũ = k(p, r)H(u, ũ ; p) (3.43)

where the function k(p, r) is antisymmetric and the biquadratic H does not

depend on r. Due to the symmetry of the equation we also have

det(M) = QQu û −QuQû = k(q, r)H(u, û ; q).

If we introduce the function U by the first-order relations

H(u, ũ ; p) = UŨ, H(u, û ; q) = UÛ,

then by the consistency relations of the biquadratics H shown in [65], this

new object U is covariant in all lattice directions. U is defined uniquely up

to a factor of cσ for some constant c, where σ alternates between ±1 with

every lattice shift, and the determinant of the consistency condition (3.42)

becomes

κ̂1κ2Û = ±κ1κ̃2Ũ.
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A solution of this is κ1 = κ2 = U−1, where we have taken the arbitrary

constant factors to be unity without loss of generality. As an example the

Lax pair for H2 is given by

φ̃ =
1

U


 −ũ+ p2 − r2 1

(p2 − r2)(r2 − UŨ)− u ũ u− (p2 − r2)


φ

φ̂ =
1

U


 −û+ q2 − r2 1

(q2 − r2)(r2 − UÛ)− u û u− (q2 − r2)


φ

where

UŨ = u+ ũ− p2, UÛ = u+ û− q2, k(p, r) = 2(p2 − r2).

These relations between u and U in fact constitute Miura-type relations be-

tween H2 for u and H1 for U [16]. The consistency condition gives

˜̂
φ− ̂̃φ = Qpq(u, ũ, û, ̂̃u)×


 u− r2 1

K −u+ p2 + q2 − r2


φ,

where K = u( ũ + û ) + (ũ − p2)( û − q2) − r2(p2 + q2) + r4. As a final

note on the Lax pairs of the ABS equations, for equations Q1δ → Q3δ as

well as all type-H equations, the coefficients a3 and b3 are constant. The

second-order scalar equation for the first component of φ which exists on

the points φ→ φ̃→ ̂̃
φ and φ→ φ̂→ ̂̃

φ are then

̂̃
φ1 +

(
a1 − b̃2

Ũ

)
φ̃1 + k(p, r)φ1 = 0

̂̃
φ1 +

(
b1 − â2

Û

)
φ̂1 + k(q, r)φ1 = 0

respectively. We will see in Chapter 4 that these equations play a major role

in the direct scattering problem for these particular ABS equations.
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3.5 Multidimensional Soliton Solutions of ABS

Equations

Solutions to KdV-type integrable lattice equations in the ABS hierarchy

(i.e. Q3o, Q1o, H3o and H1) have been known since the invention of the

direct linearization approach [67] [74]. The linear singular integral equa-

tions used in this technique can be used to construct soliton solutions to

these equations, and also in principle contain solutions with background

radiation. Solutions to equations Q4, Q2, H2 and the δ-deformations of the

KdV-type equations have been found more recently. With the exception

of Q4 it was shown in [16] that there exists Bäcklund transformations be-

tween these new equations and older ones, which led to the application of

direct linearization to the ABS equations. N -soliton solutions to 3D con-

sistent equations were first explored in [19] [17] [18], and in [65] N -soliton

solutions to all ABS equations below and including Q3δ were given, where

they were found from a Cauchy matrix approach. The Q3 solutions was

found first, and then by taking limits on fixed parameters the remaining so-

lutions of all other equations were found through the degeneration scheme

depicted in Figure 13.

Lattice Equations 3.5. Multidimensional Soliton Solutions of ABS Equations

Q3δ Q2

H3δ H2 H1

Q1δ

FIGURE 13. Degeneration scheme between the type-Q

and type-H equations used in [63]

These same solutions were also found in [47] using Casorati determi-

nants and bilinear forms. The authors of [63] also found a number of Muira-

type relations between the equations which highlights an underlying rela-

tion between these equations and the various components which comprise

their solutions, which is much deeper than simply their relation via the de-

generation scheme. Elliptic N -soliton solutions, which are the result of N

Bäcklund transformations on elliptic seed solutions to the equations, were

then presented in [62].

As an example of the emergence of the Cauchy matrix structure in the

soliton solutions, the N -soliton solution to H1 (lpKdV) is given by

un,m = pn + qm + A � cT
�
I + M

��1
r

where A is constant, c = ci is a vector of nonzero constants, r = ⇢i is a

vector of plane wave factors

⇢i := ⇢o
i

✓
p + ki

p � ki

◆n✓q + ki

q � ki

◆m

(3.36)

and the Cauchy matrix M is defined by

Mij =
⇢icj

ki + kj
. (3.37)

This solution can be easily extended to an M -dimensional lattice with inde-

pendent variables ni and associated parameters pi by extending the linear

58

FIGURE 13. Degeneration scheme between the type-Q

and type-H equations used in [65]
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These same solutions were also found in [49] using Casorati determi-

nants and bilinear forms. The authors of [65] also found a number of Miura-

type relations between the equations which highlights an underlying rela-

tion between these equations and the various components which comprise

their solutions, which is much deeper than simply their relation via the de-

generation scheme. Elliptic N -soliton solutions, which are the result of N

Bäcklund transformations on elliptic seed solutions to the equations, were

then presented in [64].

As an example of the emergence of the Cauchy matrix structure in the

soliton solutions, the N -soliton solution to H1 (lpKdV) is given by

un,m = pn+ qm+A− cT
(
I + M

)−1
r

where A is constant, c = ci is a vector of nonzero constants, r = ρi is a

vector of plane wave factors

ρi := ρoi

(
p+ ki
p− ki

)n(q + ki
q − ki

)m
(3.44)

and the Cauchy matrix M is defined by

Mij =
ρicj

ki + kj
. (3.45)

This solution can be easily extended to anM -dimensional lattice with inde-

pendent variables ni and associated parameters pi by extending the linear

seed solution and plane wave factors covariantly:

pn+ qn → p1n1 + p2n2 + ...+ pMnM
(
p+ ki
p− ki

)n(q + ki
q − ki

)m
→
(
p1 + ki
p1 − ki

)n1
(
p2 + ki
p2 − ki

)n2

...

(
pM + ki
pM − ki

)nM

.

The search for soliton solutions of Q4 has been a more recent venture,

and these have been found in [20]. The solutions are obtained through a

discrete Riccati-type linearisation arising from Bäcklund transformations,

which we explain using H1 as an example. Due to their 3D consistency,
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all ABS equations define their own auto-Bäcklund transformations. Thus

given one solution, one can use the same equation with a new parameter to

generate a new solution. For the case of H1, given the linear seed solution

uo = pn+ qm+ c,

if we consider the equations Qpk
(
u, ũ, u, ũ

)
then this can be viewed as a

discrete Riccati equation for the new dependent variable v := u

(uo − ṽ )( ũo − v) + p2 − k2 = 0.

This is linearisable by making the substitution v = uo + p+ h̃/h, giving

˜̃
h+ 2ph̃+ (p2 − k2)h = 0 ⇒ v = uo + k




1−A
(
p+k
p−k

)n

1 +A
(
p+k
p−k

)n


 .

Them-dependence can then be found in a similar fashion usingQqk
(
u, û, u, û

)
,

which gives

v = pn+ qm+ c+ k




1−A
(
p+k
p−k

)n (
q+k
q−k

)m

1 +A
(
p+k
p−k

)n (
q+k
q−k

)m


 .

This solution, which is in fact a one-soliton solution, is the result of apply-

ing one Bäcklund transformation to the linear seed solution uo. In prin-

ciple this process can be repeated an arbitrary number of times with dis-

tinct parameters to obtain an N -soliton solution, however this is in general

an unwieldy task. A linearisation of this method was discovered in [20],

in which new solutions are constructed from Bäcklund transformations,

yet one is only required to solve first-order linear homogeneous equations.

Suppose in the above calculations we chose the new solution u to be sim-

ply u = uo + k. We can then likewise define another new solution
¯
u by

¯
u = uo − k. We now construct a new solution w to H1 by defining

w = ¯
u− η u
1− η .
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It then follows that the quantity η satisfies the first-order equations

η̃ = −
(
Qpk

(
uo, ũo, u, ˜̄u

)

Qpk
(
uo, ũo,

¯
u, ũ

)
)
η, η̂ = −

(
Qqk

(
uo, ûo, u, ̂̄u

)

Qqk
(
uo, ûo,

¯
u, û

)
)
η.

For H1 this reduces to

η̃ =

(
p− k
p+ k

)
η, η̂ =

(
q − k
q + k

)
η

and thus we obtain

w = ¯
u− η u
1− η =

uo − k − η (uo + k)

1− η = uo + k

(
1 + η−1

1− η−1

)

which is again the one-soliton solution. This linearisation procedure was

used in [20] to give an N -soliton solution to Q4.

We now have successfully determined a class of integrable partial dif-

ference equations, including discretisations of such famous partial differ-

ential equations as the KdV equation (3.1). We have looked at some of their

known solutions, the notion of an initial-value problem and different ways

of interpreting the notion of integrability in the discrete setting. In the fol-

lowing chapter we then extend these ideas into formulating a discrete IST

as a means of obtaining solutions to these partial difference equations.
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4 The Discrete Inverse

Scattering Transform

In this Chapter we derive a discrete inverse scattering transform as a method

of finding solutions to the Q3δ equation (3.38c), which is

P (u û+ ũ ̂̃u )−Q(u ũ+ û ̂̃u )− (p2 − q2)

(
( ũ û+ u ̂̃u ) +

δ2

4PQ

)
= 0, (4.1)

where P 2 = (p2 − a2)(p2 − b2) and Q2 = (q2 − a2)(q2 − b2), and then show

how this can be used as a tool for obtaining solutions to a number of nonlin-

ear lattice equations. As was discussed in Chapter 3 it is natural to consider

equation (4.1) existing in an N-dimensional lattice, with independent vari-

ables n1, ..., nN (all elements of Z), and parameters p1, ..., pN. The evolution

of u in each pair of lattice directions is found by imposing copies of (4.1) on

each elementary quadrilateral within the lattice. The solution that we will

obtain from the discrete IST will depend on all N lattice variables nk, all N

lattice parameters pk, as well as the additional parameters a and b. We do

however make the following assumptions:

- The solution u and all parameters a, b, p1, ..., pN are real.

- Since the equation only depends on the squares a2, b2, p2
1, ..., p

2
N, we

choose to set a > b > 0 and pk > 0 for all k = 1, ...,N.
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The Discrete IST 4.1. Linear Problem for Q3δ

Unlike in the continuous case where the initial-value space is usually given

along the line t = 0, in the discrete setting we have the freedom to gener-

alise this to a multidimensional staircase within the N-dimensional lattice.

There are some restrictions on how one can choose this staircase, which

are discussed in Section 4.2, but essentially the IST allows for this gener-

alisation without causing serious complications. The boundary conditions

that we assume for the solution are those exhibited by the known soliton

solutions, and are given in Section 4.3, where the discrete IST is rigorously

developed over the following four Sections. In Section 4.8 we then show to

obtain solutions for all lower ABS equations, derive their one-soliton solu-

tions in Section 4.9, and in Section 4.10 show how these methods apply to

some previously-known lattice equations such as the lattice KdV equation.

For convenience of the reader we have collected the notation we employ in

this chapter on pages 155-156.

4.1 Linear Problem for Q3δ

A Lax pair for equation (4.1), first obtained in [64] by the direct lin-

earization approach, is

(p2 − ζ2)
1
2 φ̃ =

1

U




P ũ− (p2 − b2)u ζ2 − b2

UŨ− δ2(p2−b2)
4P (ζ2−b2)

(p2 − b2) ũ− Pu


φ (4.2)

(q2 − ζ2)
1
2 φ̂ =

1

U




Qû− (q2 − b2)u ζ2 − b2

UÛ− δ2(q2−b2)
4Q(ζ2−b2)

(q2 − b2) û−Qu


φ, (4.3)
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The Discrete IST 4.1. Linear Problem for Q3δ

where this system is consistent (i.e. ̂̃φ =
˜̂
φ) if and only if u solves (4.1). The

dual function U is determined by solving the first-order equations

UŨ = P (u2 + ũ 2)− (2p2 − a2 − b2)u ũ+
δ2

4P
(4.4)

UÛ = Q(u2 + û 2)− (2q2 − a2 − b2)u û+
δ2

4Q
. (4.5)

The integration constants are determined by the boundary conditions that

will be imposed on u. This is the setup for solving Q3δ in the (n,m)-plane.

The equation however is multidimensionally consistent, and thus if we

choose an arbitrary direction with variable nk and parameter pk, then let
_
u denote a shift of u in this direction, that is

u = u(n1, n2, ..., nk, ..., nN ; p1, p2, ..., pk, ...pN)

_
u = u(n1, n2, ..., nk + 1, ..., nN ; p1, p2, ..., pk, ...pN).

Due to the symmetry of the equation and its multidimensional consistency,

we then have the Lax equation

(p2
k − ζ2)

1
2

_

φ =
1

U




Pk
_
u− (p2

k − b2)u ζ2 − b2

U
_

U− δ2(p2k−b2)

4Pk(ζ2−b2)
(p2
k − b2)

_
u− Pku


φ, (4.6)

and by combining this with any of the remaining N-1 similar Lax equations,

say in the nl-direction, this will form a Lax pair for Q3δ as an equation

to be solved in the (k, l)-plane. We therefore have 1
2N(N-1) Lax pairs for

Q3δ, depending on in which two lattice directions we choose to solve the

equation. The dependence of the function U on each of the N variables is

determined by solving

U
_

U = Pk(u
2 +

_
u2)− (2p2

k − a2 − b2)u
_
u+

δ2

4Pk
,

and again using the boundary conditions of u to determine the integration

constants.
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The Discrete IST 4.2. Motivation for the Forward Scattering Problem

4.2 Motivation for the Forward Scattering Problem

The Lax equations (4.6) are the basis of the forward scattering problem.

Depending on how one chooses to define the initial data, the forward scat-

tering problem is the determination of the eigenfunction φ as a function of

all N independent variables, and the spectral parameter ζ.

Suppose first that we choose to give the initial condition on a line Γo

spanned by the original variable n (and parameter p), which corresponds

to one of the N variables nk (and parameter pk). This is the usual setup for

the continuous IST for equations such as the KdV equation. Along this line

all other N-1 variables are held constant. Then from the Lax equation (4.6),

the first component of φ is found by solving the second-order equation

(p2 − ζ2)
1
2
˜̃
φ1 −

(
P ( ˜̃u− u)

Ũ

)
φ̃1 + (p2 − ζ2)

1
2 φ1 = 0,

and the second component in then constructed from

(ζ2 − b2)φ2 = (p2 − ζ2)
1
2 U φ̃1 − (P ũ− (p2 − b2)u)φ1.

This gives φ as a function of n along the line Γo, which is the direct scatter-

ing problem. The dependence of φ on the remaining N-1 lattice variables

can then be determined in the inverse problem by consider the remaining

N-1 Lax equations. These remaining lattice variables play the role of N-1

discrete “time" variables, and in the language of the continuous theory this

discrete IST can be considered as a 1+(N-1)-type scattering problem.

Contrary to the continuous case, one of the benefits of the discrete setup

is that we can easily change the one-dimensional manifold along which we

specify the initial conditions. Perhaps the most natural such manifold is

a (1,1)-staircase, that is the staircase of points encountered by successive

alternating iterations in two lattice directions. Let us consider this as an

initial-value space for the scattering problem, where this staircase Γ1 lies
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The Discrete IST 4.2. Motivation for the Forward Scattering Problem

in the original (n,m)-plane with parameters p, q. For each 3-point segment

of the staircase which iterates first in the n-direction and then in the m-

direction we have

(q2 − ζ2)
1
2
̂̃
φ1 −

(
Q ̂̃u− (q2 − p2) ũ− Pu

Ũ

)
φ̃1 + (p2 − ζ2)

1
2 φ1 = 0,

while for each 3-point segment which iterates first in the m-direction and

then in the n-direction

(p2 − ζ2)
1
2
̂̃
φ1 −

(
P ̂̃u− (p2 − q2) û−Qu

Û

)
φ̂1 + (q2 − ζ2)

1
2 φ1 = 0.

Solving these equations gives φ1, and then φ2 may be constructed from sim-

ilarly considering the first component of either (4.2) or (4.3). Since this first

Lax equation contains additional terms involving the functions u and U, the

second component φ2 contains the structure of the Q3δ solution, whereas

φ1 contains only the structure of the simpler H1 solution. This property of

the eigenfunctions is also clear from the analysis given in [64].

The result of the forward scattering problem is that we know φ as a

function along Γ1, that is in terms of some independent staircase variable

which depends on n andm. If we let this new variable be denoted by i, and

let io correspond to the point (no,mo) on Γ1, then assuming that we iterate

first in the n-direction, the change of variables from i to n,m is given by

n− no =

⌊
1

2
(i+ 1− io)

⌋
, m−mo =

⌊
1

2
(i− io)

⌋
. (4.7)

Here the brackets b c denote the floor function. Hence even though the

staircase exists in two lattice directions, it is still one-dimensional and as

such the result is that we only know φ as a function of this one staircase

variable i. We do not know φ as a function explicitly of n and m. We

will see however that by imposing sufficient asymptotic dependence of the
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The Discrete IST 4.2. Motivation for the Forward Scattering Problem

eigenfunctions on the variables n,m and the remaining N-2 lattice vari-

ables, that one can construct φ as a function of all N lattice variables. Thus

once again we have a 1+(N-1)-type scattering problem.

Since the initial condition may be given on a (1,1)-staircase, it is natural

to consider how this may be generalised. To do so we consider an arbitrary

staircase Γ which has the following properties:

- Γ is an infinite staircase which exists in I of the N lattice directions,

where 1 ≤ I ≤ N

- Every iteration along Γ corresponds to a positive iteration in one of

the lattice variables nk.

- Γ may be written as a (a1, a2, ..., aI)-staircase for some positive inte-

gers a1, a2, ...aI, i.e. it is defined through some stepping algorithm

As an upshot Γ must span each of the I lattice directions in which it exists.

We now consider Γ as an initial-value space for Q3δ. To do so it is con-

venient to introduce the staircase variable i, which will be related to the I

lattice variables by a relation similar to (4.7). To take care of the fact that the

parameters pk will also change along the staircase we introduce the stair-

case parameter p = p(i) (and P2 = (p2 − a2)(p2 − b2)), which will cycle

through the parameters pk encountered along the staircase. This new vari-

able i and parameter p(i) allow the scattering problem for φ1 along Γ to be

conveniently expressed as

(p2 − ζ2)
1
2 φ1 −

(
Pu− (p2 − p2)u− Pu

U

)
φ1 + (p2 − ζ2)

1
2 φ1 = 0, (4.8)

where

φ1 = φ1(i; ζ), φ1 = φ1(i+ 1; ζ), p = p(i), p = p(i+ 1).

The second component of the eigenfunction is then constructed from

(ζ2 − b2)φ2 = (p2 − ζ2)
1
2 Uφ1 − (Pu− (p2 − b2)u)φ1. (4.9)
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The Discrete IST 4.3. Forward Scattering of φ1

Equations (4.8) and (4.9) define the forward scattering problem, which is

summarised as follows: Given an initial condition u as a function of i, firstly

the function U is determined by solving

UU = P(u2 + u2)− (2p2 − a2 − b2)uu+
δ2

4P
, (4.10)

and setting the arbitrary constant to be unity, and then φ1 is found by solv-

ing (4.8). Given φ1, one then uses (4.9) to determine the corresponding φ2,

and thus φ is known as a function of the staircase variable i.

4.3 Forward Scattering of φ1

The forward scattering of φ1 is the solving of equation (4.8). We will

see that in fact this is the same scattering problem as for H1, and represents

the fact that the soliton solutions of Q3δ are comprised of elements of the

soliton solutions of H1. Let us consider how the function

Ω :=
Pu− (p2 − p2)u− Pu

U
(4.11)

behaves for the known soliton solutions of Q3δ [18] [65]. If we define

ρ(k) :=
N∏

r=1

(
pr + k

pr − k

)nr

, F(a, b) :=
N∏

r=1

(
(pr + a)(pr + b)

(pr − a)(pr − b)

) 1
2
nr

(4.12)

S(a, b) :=
1 +

(
(a−k)(b−k)
(a+k)(b+k)

)
ρ(k)

1 + ρ(k)
, V (a) :=

1 +
(

(a−k)
(a+k)

)
ρ(k)

1 + ρ(k)
(4.13)

then a one-soliton solution to Q3 (which depends on all N lattice variables)

is given by

u = AF(a, b)S(a, b) + BF(a,−b)S(a,−b)

+ CF(−a, b)S(−a, b) + DF(−a,−b)S(−a,−b), (4.14)

where the four constants are restrained by

AD(a+ b)2 −BC(a− b)2 = − δ2

16ab
. (4.15)

68



The Discrete IST 4.3. Forward Scattering of φ1

The corresponding dual function U is

U = (a+ b)AF(a, b)V (a)V (b) + (a− b)BF(a,−b)V (a)V (−b)

− (a− b)CF(−a, b)V (−a)V (b)− (a+ b)DF(−a,−b)V (−a)V (−b).
(4.16)

Using this as a guide, and bearing in mind the choice a > b > 0, the bound-

ary conditions that we assume on the solution u are

u ∼ CF(−a, b) + DF(−a,−b) as i→ −∞ (4.17a)

u ∼ KoAF(a, b) + K1BF(a,−b) as i→ +∞, (4.17b)

where Ko and K1 are constants and the plane-wave factors F satisfy

F(a, b) =

(
(p(i) + a)(p(i) + b)

(p(i)− a)(p(i)− b)

) 1
2

F(a, b). (4.18)

The corresponding boundary conditions for U are

U ∼ −(a− b)CF(−a, b)− (a+ b)DF(−a,−b) as i→ −∞ (4.19a)

U ∼ Ko(a+ b)AF(a, b) + K1(a− b)BF(a,−b) as i→ +∞. (4.19b)

Then at either end of the staircase (i.e. as i→ ±∞) we can explicitly calcu-

late that

Ω ∼ p + p as i→ ±∞. (4.20)

For soliton solutions all other terms decay exponentially, that is they decay

like λ−|i| for some constant λ > 1. This asymptotic result shows that the

object Ω behaves like a difference of H1-type soliton solutions as i → ±∞,

as shown in [28]. This is perhaps not surprising as in [65] and [64] Miura-

type relations between soliton solutions of H1 and Q3δ were found, which

take precisely the form of the quantity Ω. The potential term appearing in

the forward scattering problem for φ1 can therefore essentially be thought

of as this difference of H1 solutions.
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The Discrete IST 4.3. Forward Scattering of φ1

Definition 4.3.1. Given an initial condition u = u(i) along the staircase Γ, the

potential υ = υ(i) is defined to be

υ(i+ 1) ≡ υ :=Ω− p− p =

(
Pu− (p2 − p2)u− Pu

U

)
− p− p, (4.21)

where U is determined by (4.10).

Due to the boundary conditions on u the potential vanishes at either

end of the staircase Γ. Thus we rewrite the scattering problem for φ1 as

(p2 − ζ2)
1
2 φ1 −

(
p + p + υ

)
φ1 + (p2 − ζ2)

1
2 φ1 = 0. (4.22)

We now construct solutions to this equation. In doing so we assume that

all solutions and parameters are real, and that p(r) > 0 for all r ∈ I.

Definition 4.3.2. The Jost solutions ϕ, ϕ̊ are defined by the boundary conditions

ϕ(i; ζ) ∼
i−1∏

r=0

(
p(r) + ζ

p(r)− ζ

) 1
2

as i→ −∞ (4.23a)

ϕ̊(i; ζ) ∼
i−1∏

r=0

(
p(r)− ζ
p(r) + ζ

) 1
2

as i→ −∞, (4.23b)

and the Jost solutions ψ, ψ̊ to equation (4.22) are defined by the boundary condi-

tions

ψ(i; ζ) ∼
i−1∏

r=0

(
p(r)− ζ
p(r) + ζ

) 1
2

as i→ +∞ (4.23c)

ψ̊(i; ζ) ∼
i−1∏

r=0

(
p(r) + ζ

p(r)− ζ

) 1
2

as i→ +∞. (4.23d)

Since equation (4.22) is invariant under the map ζ → −ζ, it follows by

the definition of the boundary conditions for the Jost solutions and unique-

ness of the boundary value problem [59], that

ϕ̊(i; ζ) = ϕ(i;−ζ), ψ̊(i; ζ) = ψ(i;−ζ). (4.24)
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Since the general solution to (4.22) involves two linearly independent solu-

tions we may write

ψ = A ϕ̊+ Bϕ, ψ̊ = Åϕ+ B̊ ϕ̊ (4.25)

where A and B are independent of i and Å(ζ) = A(−ζ) and B̊(ζ) = B(−ζ).

Proposition 4.3.1. If ζ is purely imaginary then

|A(ζ)|2 = 1 + |B(ζ)|2. (4.26)

Proof. Firstly given any two solutions x(i) and y(i) of (4.22), by eliminating

the potential term one can show that the discrete Wronskian (or Casoratian)

W (x, y) := (p2 − ζ2)
1
2 (xy − xy) (4.27)

is independent of i. Furthermore if ζ is purely imaginary then equation

(4.22) is purely real and thus ϕ∗ and ψ∗ (the complex conjugates of ϕ and ψ)

are also solutions of this equation. By comparing the boundary conditions

for ϕ∗, ϕ̊ and ψ∗, ψ̊, by the uniqueness of the boundary value problem we

have

ϕ∗(i; ζ∗) ≡ ϕ̊(i; ζ), ψ∗(i; ζ∗) ≡ ψ̊(i; ζ).

By taking the complex conjugate of (4.25) we then have Å(ζ) ≡ A∗(ζ∗) and

B̊(ζ) ≡ B∗(ζ∗). Now due to the linearity and anti-symmetry of the Wron-

skian we have

W (ψ,ψ∗) = W (Aϕ∗ + Bϕ, A∗ϕ+ B∗ϕ∗) =
(
|A|2 − |B|2

)
W (ϕ∗, ϕ),

and since the Wronskian is independent of i, these may be evaluated at the

relevant boundaries which gives W (ψ,ψ∗) = W (ϕ∗, ϕ) = 2ζ. This proves

(4.26). �
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4.3.1 Analyticity and Asymptoticity Properties of the Jost

Solutions

We now determine asymptoticity properties of the Jost solutions as

functions of the discrete independent variabe i, and analyticity and asymp-

toticity properties of the Jost solutions as functions of the spectral parame-

ter ζ.

Definition 4.3.3. The functions Λ, Λ̊ and Υ, Υ̊ are defined by

ϕ(i; ζ) = Λ(i; ζ)
i−1∏

r=0

(
p(r) + ζ

p(r)− ζ

) 1
2

, ϕ̊(i; ζ) = Λ̊(i; ζ)

i−1∏

r=0

(
p(r)− ζ
p(r) + ζ

) 1
2

(4.28a)

ψ(i; ζ) = Υ(i; ζ)
i−1∏

r=0

(
p(r)− ζ
p(r) + ζ

) 1
2

, ψ̊(i; ζ) = Υ̊(i; ζ)
i−1∏

r=0

(
p(r) + ζ

p(r)− ζ

) 1
2

.

(4.28b)

Proposition 4.3.2. For ζ 6= 0 the functions Λ and Υ satisfy the following sum-

mation equations:

Λ(i; ζ) = 1 +
1

2ζ

i−1∑

l=−∞

[
1−

i−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)]
υ(l)Λ(l; ζ) (4.29)

Υ(i; ζ) = 1 +
1

2ζ

+∞∑

l=i+1

[
1−

l−1∏

r=i

(
p(r)− ζ
p(r) + ζ

)]
υ(l)Υ(l; ζ). (4.30)

Proof. Equation (4.22) for Λ becomes

(p + ζ)Λ− (p + p)Λ + (p− ζ)Λ = υΛ

which in terms of i may be written as

p(i+ 1)
[
Λ(i+ 2; ζ)− Λ(i+ 1; ζ)

]
− p(i)

[
Λ(i+ 1; ζ)− Λ(i; ζ)

]

+ ζ
[
Λ(i+ 2; ζ)− Λ(i; ζ)

]
= υ(i+ 1)Λ(i+ 1; ζ),
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and after summing from l = −∞ to l = i− 1, and using Λ→ 1 as i→ −∞,

we have

Λ(i+ 1; ζ)
[
p(i) + ζ

]
− Λ(i; ζ)

[
p(i)− ζ

]
= 2ζ +

i∑

l=−∞
υ(l)Λ(l; ζ).

We now multiply this equation by the summing factor s(i) :=
∏i−1
r=0

(
p(r)+ζ
p(r)−ζ

)
,

which gives

Λ(i+ 1; ζ)s(i+ 1)− Λ(i; ζ)s(i)

=
[
s(i+ 1)− s(i)

]
+

1

2ζ

[
s(i+ 1)− s(i)

] i∑

l=−∞
υ(l)Λ(l; ζ)

and then we sum from j = io ≤ i− 1 to j = i− 1, obtaining

Λ(i; ζ)s(i)− Λ(io; ζ)s(io) =
[
s(i)− s(io)

]

+
1

2ζ

i−1∑

j=io

[
s(j + 1)− s(j)

] j∑

l=−∞
υ(l)Λ(l; ζ).

We now let i0 → −∞ and assume that s(i) → 0 as i → −∞. For negative

values of i we define s(−1) = 1, s(−a) = s(a− 2)−1 for a ≥ 2. By changing

the order of summation the double sum can be rewritten as
i−1∑

j=−∞

j∑

l=−∞

[
s(j + 1)− s(j)

]
υ(l)Λ(l; ζ)

=

i−1∑

l=−∞
υ(l)Λ(l; ζ)

i−1∑

j=l

[
s(j + 1)− s(j)

]

=

i−1∑

l=−∞

[
s(i)− s(l)

]
υ(l)Λ(l; ζ)

and so the summation equation becomes

Λ(i; ζ)s(i) = s(i) +
1

2ζ

i−1∑

l=−∞

[
s(i)− s(l)

]
υ(l)Λ(l; ζ)

⇒ Λ(i; ζ) = 1 +
1

2ζ

i−1∑

l=−∞

[
1−

i−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)]
υ(l)Λ(l; ζ),
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which is equation (4.29). Equation (4.30) follows in a similar manner by

summing to i = +∞ and using Υ→ 1 as i→ +∞. �

Proposition 4.3.3. At ζ = 0 the functions Λ and Υ satisfy the following summa-

tion equations:

Λ(i; 0) = 1 +
i−1∑

l=−∞



i−1∑

j=l

1

p(j)


 υ(l)Λ(l; 0) (4.31)

Υ(i; 0) = 1 +
+∞∑

l=i+1



l−1∑

j=i

1

p(j)


 υ(l)Υ(l; 0). (4.32)

Proof. At ζ = 0, equation (4.22) for Λ becomes

p(i+ 1)
[
Λ(i+ 2; 0)− Λ(i+ 1; 0)

]
− p(i)

[
Λ(i+ 1; 0)− Λ(i; 0)

]

= υ(i+ 1)Λ(i+ 1; 0),

which after summing from l = −∞ to l = i− 1 gives

p(i)
[
Λ(i+ 1; 0)− Λ(i; 0)

]
=

i∑

l=−∞
υ(l)Λ(l; 0).

After dividing through by p(i) and summing again from j = −∞ to j =

i− 1 we obtain

Λ(i; 0) = 1 +

i−1∑

j=−∞

j∑

l=−∞

[
1

p(j)

]
υ(l)Λ(l; 0),

and by changing the order of summation we have

Λ(i; 0) = 1 +
i−1∑

l=−∞



i−1∑

j=l

1

p(j)


 υ(l)Λ(l; 0)

which is equation (4.29). The result (4.30) follows in a similar manner. �

Proposition 4.3.4. For ζ 6= 0 the summation equations (4.29) and (4.30) have

the Neumann series solutions

Λ(i; ζ) =
+∞∑

k=0

Hk(i; ζ)

ζk
, Υ(i; ζ) =

+∞∑

k=0

Jk(i; ζ)

ζk
(4.33)
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where

H0 = 1, Hk+1(i; ζ) =
1

2

i−1∑

l=−∞

[
1−

i−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)]
υ(l)Hk(l; ζ), (4.34)

J0 = 1, Jk+1(i; ζ) =
1

2

+∞∑

l=i+1

[
1−

l−1∏

r=i

(
p(r)− ζ
p(r) + ζ

)]
υ(l)Jk(l; ζ). (4.35)

Proof. Inserting this series expression for Λ into the summation equation

(4.29) gives

Λ(i; ζ) = 1 +
1

2ζ

i−1∑

l=−∞

[
1−

i−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)]
υ(l)

(
+∞∑

k=0

Hk(l; ζ)

ζk

)

= 1 +
+∞∑

k=0

1

ζk+1

(
1

2

i−1∑

l=−∞

[
1−

i−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)]
υ(l)Hk(l; ζ)

)

= 1 +
+∞∑

k=0

Hk+1(i; ζ)

ζk+1

=
+∞∑

k=0

Hk(i; ζ)

ζk

as required. The proof for Υ follows in a similar fashion. �

Proposition 4.3.5. At ζ = 0 the summation equations (4.31) and (4.32) have the

Neumann series solutions

Λ(i; 0) =
+∞∑

k=0

Ho
k(i), Υ(i; 0) =

+∞∑

k=0

Jok(i) (4.36)

where

Ho
0 = 1, Ho

k+1(i) =
i−1∑

l=−∞



i−1∑

j=l

1

p(j)


 υ(l)Ho

k(l), (4.37)

Jo0 = 1, Jok+1(i) =
+∞∑

l=i+1



l−1∑

j=i

1

p(j)


 υ(l)Jok(l). (4.38)
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Proof. Inserting this series expression for Λ into the summation equation

(4.31) gives

Λ(i; 0) = 1 +

i−1∑

l=−∞



i−1∑

j=l

1

p(j)


 υ(l)

(
+∞∑

k=0

Ho
k(l)

)

= 1 +

+∞∑

k=0




i−1∑

l=−∞



i−1∑

j=l

1

p(j)


 υ(l)Ho

k(l)




= 1 +

+∞∑

k=0

Ho
k+1(i)

=
+∞∑

k=0

Ho
k(i)

as required. The proof for Υ is similar. �

Theorem 4.3.6. Assume that
+∞∑

i=−∞
|υ(i)|(1 + |i|) <∞, (4.39)

and that p(r) > 0 for all r ∈ I. LetR+ denote the half-plane

R+ :=
{
ζ : Re(ζ) ≥ 0

}
. (4.40)

Then for ζ ∈ R+,

|Λ(i; ζ)− 1| ≤ C1 for ζ 6= 0 (4.41a)

|Λ(i; ζ)− 1| ≤ C2(1 + max{0, i}) (4.41b)

|Υ(i; ζ)− 1| ≤ C3 for ζ 6= 0 (4.41c)

|Υ(i; ζ)− 1| ≤ C4(1 + max{0,−i}) (4.41d)

where C1 → C4 are constants. For all ζ ∈ R+ the series solutions for Λ and

Υ converge absolutely in i, and uniformly if ζ 6= 0. For each i, Λ and Υ are

continuous functions of ζ inR+, and analytic functions of ζ in the interior of this

half-plane.
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Proof. The proof of this Theorem is obtained by showing absolute and uni-

form convergence of the Neumann series representation of the Jost solu-

tions. The complete details, reminiscent of the analysis given in [33] for the

continuous case, are given in Section 7.1 of the Appendix. The estimates

obtained agree with those obtained in [25] and [82] for the same spectral

problem, however those stated here are more precise. �

Theorem 4.3.7. Assume that

+∞∑

i=−∞
(1 + i2)|υ(i)| <∞, (4.42)

and that p(r) > 0 for all r ∈ I. Then for ζ ∈ R+ the ζ-derivatives of the functions

Λ and Υ satisfy

|Λ′(i; ζ)| ≤ C5(1 + |i|max{1, i}) (4.43)

|Υ′(i; ζ)| ≤ C6(1 + |i|max{1,−i}) (4.44)

for some constants C5 and C6. For each i, Λ′ and Υ′ are continuous in ζ for all

ζ ∈ R+.

Proof. This proof is obtained by first differentiating the Neumann series

representations of the Jost solutions, and then showing that these converge

absolutely and uniformly. Rigorous details are given in Section 7.2 of the

Appendix. �

Corollary 4.3.8. For ζ ∈ R+ the functions Λ and Υ have the following asymp-

totic behaviour:

Λ(i; ζ) = 1 +O
(

1

ζ

)
as |ζ| → ∞ (4.45a)

Υ(i; ζ) = 1 +O
(

1

ζ

)
as |ζ| → ∞. (4.45b)
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Proof. From the series solution of Λ we have

Λ(i; ζ) = 1 +
+∞∑

k=1

Hk(i; ζ)

ζk
.

For ζ ∈ R+, ζ 6= 0 however, from Section 7.1 of the Appendix we have that

|Hk| ≤ K for some constant K, and thus Hk = O(1) as |ζ| → ∞, for all

k ≥ 1. This proves the result, and a similar argument works for the series

solution for Υ. �

Corollary 4.3.9. Theorems 4.3.6 and 4.3.7 and Corollary 4.3.8 hold for the func-

tions Λ̊ and Υ̊ for ζ in the half-plane

R− :=
{
ζ : Re(ζ) ≤ 0

}
.

Proof. This follows from the fact that Λ̊(i; ζ) = Λ(i;−ζ) and Υ̊(i; ζ) =

Υ(i;−ζ). �

4.3.2 Analyticity and Asymptoticity Properties of A and B

We now look at analyticity and asymptoticity properties of A = A(ζ)

and B = B(ζ), which are defined by equation (4.25). These are related to the

reflection coefficient R and transmission coefficient T by

R =
B

A
, T =

1

A
.

Proposition 4.3.10. A and B have the following properties:

- A is analytic in the interior of R+ and continuous in R+, except possibly

at ζ = 0

- B is continuous on the imaginary ζ-axis, except possibly at ζ = 0.
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Proof. Taking the Wronskian of ψ = Aϕ̊+ Bϕ we have

A(ζ) =
1

2ζ
W (ψ,ϕ)

=
1

2ζ

(
(p(i) + ζ)Λ(i+ i; ζ)Υ(i; ζ)− (p(i)− ζ)Λ(i; ζ)Υ(i+ 1; ζ)

)

B(ζ) =
1

2ζ
W (ϕ̊, ϕ) =

(
p(i)− ζ

2ζ

) i−1∏

r=0

(
p(r)− ζ
p(r) + ζ

)

×
(

Λ̊(i; ζ)Υ(i+ 1; ζ)− Λ̊(i+ 1; ζ)Υ(i; ζ)
)

Since Λ and Υ are continuous in R+ and analytic in the interior of this

region, A also has this property, except possibly at ζ = 0. The expression for

B however is only valid on the intersection ofR+ andR−, i.e. the imaginary

ζ-axis. Since Λ̊ and Υ are continuous here, B also has this property, except

possibly at ζ = 0. �

Proposition 4.3.11. For ζ 6= 0 the functions A and B can be expressed as

A(ζ) = 1 +
1

2ζ

+∞∑

l=−∞
υ(l)Υ(l; ζ) (4.46)

B(ζ) =
1

2ζ

+∞∑

l=−∞

[
l−1∏

r=0

(
p(r)− ζ
p(r) + ζ

)]
υ(l)Υ(l; ζ). (4.47)

Proof. The summation equation (4.30) for Υ may be written as

Υ(i; ζ) =

(
1 +

1

2ζ

+∞∑

l=i+1

υ(l)Υ(l; ζ)

)

+

i−1∏

r=0

(
p(r)− ζ
p(r) + ζ

)(
1

2ζ

+∞∑

l=i+1

[
l−1∏

r=0

(
p(r)− ζ
p(r) + ζ

)]
υ(l)Υ(l; ζ)

)
.

(4.48)

Taking the limit i→ −∞ and comparing this with

Υ(i; ζ) ∼ A(ζ) + B(ζ)
i−1∏

r=0

(
p(r)− ζ
p(r) + ζ

)
as i→ −∞

gives the desired result. �
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Proposition 4.3.12. For ζ ∈ R+ we have

A(ζ) = 1 +O
(

1

ζ

)
as |ζ| → ∞ (4.49)

and for ζ on the imaginary axis we have

B(ζ) = O
(

1

ζ

)
as |ζ| → ∞. (4.50)

Proof. Inserting the asymptotic behaviour (4.45b) of Υ into the expression

(4.46) for A gives

A(ζ) = 1 +
1

2ζ

+∞∑

l=−∞
υ(l)

[
1 +O

(
1

ζ

)]

and since ∣∣∣∣∣
+∞∑

l=−∞
υ(l)

∣∣∣∣∣ ≤
+∞∑

l=−∞
|υ(l)| <∞

this proves (4.49). Performing the same task for the expression (4.47) for B

gives

B(ζ) =
1

2ζ

+∞∑

l=−∞

[
l−1∏

r=0

(
p(r)− ζ
p(r) + ζ

)]
υ(l)

[
1 +O

(
1

ζ

)]
,

and since for purely imaginary ζ we have
∣∣∣∣∣

+∞∑

l=−∞

[
l−1∏

r=0

(
p(r)− ζ
p(r) + ζ

)]
υ(l)

∣∣∣∣∣ ≤
+∞∑

l=−∞
|υ(l)| <∞,

this proves (4.50). �

Theorem 4.3.13. The function A has a finite number of bounded isolated zeroes
{
ζk, k = 1, ...,M

}
in the interior ofR+, and moreover every ζk is purely real and

satisfies ζk ≤ pr for all parameters pr existing along Γ. At each zero of A we have

ψ(i; ζk) = B(ζk)ϕ(i; ζk), and

+∞∑

i=−∞

(
ϕ(i; ζk)ϕ(i+ 1; ζk)

(p(i)2 − ζ2
k)

1
2

)
=

A′(ζk)
B(ζk)

, (4.51)

where A′(ζ) denotes differentiation with respect to the variable ζ.

80



The Discrete IST 4.3. Forward Scattering of φ1

Proof. Since A ∼ 1 as |ζ| → ∞ it follows that there exists some constant

Co such that |ζk| < Co for every k. Since 2ζA(ζ) = W (ψ,ϕ) it follows that

for every k, ϕ(i; ζk) and ψ(i; ζk) are linearly dependent, so we may write

ψ(i; ζk) = bkϕ(i; ζk) for some constant bk. This implies that

Υ(i; ζk) ∼ bk
i−1∏

r=0

(
p(r)− ζk
p(r) + ζk

)
as i→ −∞,

and so by equation (4.48) we have

ζk = −1

2

+∞∑

l=−∞
υ(l)Υ(l; ζk)

bk =
1

2ζk

+∞∑

l=−∞

[
l−1∏

r=0

(
p(r)− ζk
p(r) + ζk

)]
υ(l)Υ(l; ζk).

Thus bk = B(ζk) for every k. Now consider the scattering problem (4.22) for

ϕ at ζ = ζk:

(p2 − ζ2
k)

1
2 ϕ(i+ 2; ζk)−

(
p + p + υ

)
ϕ(i+ 1; ζk) + (p2 − ζ2

k)
1
2 ϕ(i; ζk) = 0.

For every ζk in the interior ofR+ we have

ϕ(i; ζk) ∼
i−1∏

r=0

(
p(r) + ζk
p(r)− ζk

) 1
2

→ 0 as i→ −∞,

ϕ(i; ζk) ∼ B(ζk)
i−1∏

r=0

(
p(r)− ζk
p(r) + ζk

) 1
2

→ 0 as i→ +∞,

and thus ϕ is summable over all i. If we multiply the scattering problem

for ϕ by ϕ∗(i+ 1; ζ∗k), sum over all i and define

s(i; ζk) := ϕ(i+ 1; ζk)ϕ
∗(i; ζ∗k) + ϕ∗(i+ 1; ζ∗k)ϕ(i; ζk) ∈ R

then we have

+∞∑

i=−∞
(p(i)2 − ζ2

k)
1
2 s(i; ζk) =

+∞∑

i=−∞

[
p(i) + p(i+ 1) + υ(i+ 1)

]
|ϕ(i+ 1; ζk)|2,
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which implies that ζk must be real and that 0 < ζk ≤ p(i) for every i. Thus

ζk must be less than every parameter pr through which p(i) cycles, which

proves the given statement.

Now A has isolated zeroes along the positive real ζ axis which are all

bounded. The only way that there could be an infinite number of these

zeroes is if they formed a limiting sequence which accumulated at ζ = 0.

We will show that this is not possible. Suppose that such a sequence {ζk}
of zeroes exists: limk→∞ ζk = 0. Then at each ζk we have

B(ζk) =
ψ(i; ζk)

ϕ(i; ζk)
,

and so

lim
k→∞

|B(ζk)− B(0)| = lim
k→∞

∣∣∣∣
ψ(i; ζk)

ϕ(i; ζk)
− ψ(i; 0)

ϕ(i; 0)

∣∣∣∣ = 0

since the Jost solutions are continuous at ζ = 0. At ζ = 0 however we have

ϕ(i; 0) = ϕ̊(i; 0) and so

A(0) + B(0) =

(
ψ(i; 0)

ϕ(i; 0)

)
= lim

k→∞

(
ψ(i; ζk)

ϕ(i; ζk)

)
= lim

k→∞
B(ζk) = B(0)

which implies that A(0) = 0, which in turn contradicts Proposition 4.3.1.

Thus A has only a finite number of zeroes inR+.

Finally to prove (4.51) we define the following two useful functions:

Wϕ(i; ζ) := W (ϕ,ϕ′), Wψ(i; ζ) := W (ψ,ψ′).

We differentiate 2ζA = W (ψ,ϕ) to obtain

2ζkA
′(ζk) = W (ψ(i; ζk), ϕ

′(i; ζk)) +W (ψ(i; ζk), ϕ
′(i; ζk))

= B(ζk)Wϕ(i; ζk)−
1

B(ζk)
Wψ(i; ζk). (4.52)

Now consider the difference of two equations: firstly the derivative of the

scattering problem (4.22) for ϕ multiplied by ϕ(i + 1; ζ), and secondly the
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(un-differentiated) scattering problem for ϕ multiplied by ϕ′(i+ 1; ζ). This

gives

Wϕ(i+ 1; ζ)−Wϕ(i; ζ) = ζ

[
ϕ(i; ζ)ϕ(i+ 1; ζ)

(p(i)2 − ζ2)
1
2

+
ϕ(i+ 1; ζ)ϕ(i+ 2; ζ)

(p(i+ 1)2 − ζ2)
1
2

]
,

which may be summed to give

Wϕ(i; ζ) = ζ
i−1∑

l=−∞

[
ϕ(l; ζ)ϕ(l + 1; ζ)

(p(l)2 − ζ2)
1
2

+
ϕ(l + 1; ζ)ϕ(l + 2; ζ)

(p(l + 1)− ζ2)
1
2

]
.

One can then perform the same task with ψ, only instead this time sum-

ming from i to +∞, to obtain

Wψ(i; ζ) = −ζ
+∞∑

l=i

[
ψ(l; ζ)ψ(l + 1; ζ)

(p(l)2 − ζ2)
1
2

+
ψ(l + 1; ζ)ψ(l + 2; ζ)

(p(l + 1)− ζ2)
1
2

]
.

Now set ζ = ζk and rewrite ψ(i; ζk) = B(ζk)ϕ(i; ζk). The expression (4.52)

then becomes

2ζkA
′(ζk) = ζkB(ζk)

+∞∑

l=−∞

[
ϕ(l; ζk)ϕ(l + 1; ζk)

(p(l)2 − ζ2
k)

1
2

+
ϕ(l + 1; ζk)ϕ(l + 2; ζk)

(p(l + 1)− ζ2
k)

1
2

]

= 2ζkB(ζk)

+∞∑

l=−∞

[
ϕ(l; ζk)ϕ(l + 1; ζk)

(p(l)2 − ζ2
k)

1
2

]
,

which gives (4.51). �

The sum in equation (4.51) is of fundamental importance to the scatter-

ing problem, and as such we make the following definition.

Definition 4.3.4. The square eigenfunction Φ is defined to be

Φ(i; ζ) :=
ϕ(i; ζ)ϕ(i+ 1; ζ)

(p(i)2 − ζ2)
1
2

, (4.53)

and we define the normalisation constants {ck, k = 1, ...,M} to be

ck :=
B(ζk)

A′(ζk)
=

[
+∞∑

i=−∞
Φ(i; ζk)

]−1

. (4.54)

From this definition it is clear that we have the following result
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Theorem 4.3.14. If the normalisation constants ck are all finite, then every zero

A inR+ is simple.

There are a number of ways of ensuring that all the normalisation con-

stants are finite. For example since

1

ck
=

+∞∑

i=−∞

(
ϕ(i; ζk)ϕ(i+ 1; ζk)

(p(i)2 − ζ2
k)

1
2

)

=
+∞∑

i=−∞

[
p(i) + p(i+ 1) + υ(i+ 1)

]
|ϕ(i; ζk)|2,

if one imposes (for example) that
[
p(i) + p(i + 1) + υ(i + 1)

]
> 0 for all i,

then every ck will be finite. This was assumed in [28], however is a rather

strong restriction. A more useful endeavour, which was shown in [27], is to

consider the perturbed scattering problem obtained by setting υ → λυ for

some real parameter λ. One can then show that the Jost solutions and A are

all differentiable functions of λ in some open interval about λ = 1. Thus if

we expand A as a Taylor series about any zero ζk:

A(ζ, λ) =
+∞∑

n=1

an(λ)(ζ − ζk(λ))

then the coefficient a1 will be a non-constant differentiable function of λ,

and thus if a1(1) = 0 then for the perturbed scattering problem (i.e. setting

λ close to but not equal to 1), a1(λ) 6= 0, i.e. the normalisation constants

become finite. We illustrate this with an example.

Example 4.3.15. Take the N=2 case with the initial staircase Γ being a line in the

n-direction with parameter p. Consider the potential

υ(n) = λ(δ0(n) + δ1(n)),

where δm(n) denotes the delta function (or Kronecker delta-symbol), which is de-

fined by δm(n) = 0 if n 6= m, and δm(m) = 1. Here λ is the perturbation

84



The Discrete IST 4.3. Forward Scattering of φ1

parameter mentioned above. Note that for the case of H1 the potential is simply

υ(n) = w(n+ 1, 0)− w(n, 0),

where we have rewritten the H1 dependent variable as u(n,m) = pn + qm +

w(n,m). Thus for this example we have chosen to set w(n, 0) = λH1(n) along

the initial-value space, where the discrete Heaviside step function is defined by

Ho(n) = 1 if n ≥ 0 and Ho(n) = 0 if n < 0. By summing the linear equation

(4.22) for Υ along the n-axis one finds firstly that Υ(n; ζ) = 1 for n ≥ 1, and then

Υ(0; ζ) = 1 +
λ

p+ ζ
, Υ(−1; ζ) = 1 +

λ

p+ ζ
+
λ(2p+ λ)

(p+ ζ)2
.

We now use equation (4.25) to find A and B. Since Λ(n; ζ) = 1 for all n ≤ 0 we

therefore have

A(ζ) + B(ζ) = 1 +
λ

p+ ζ

A(ζ) + B(ζ)

(
p− ζ
p+ ζ

)
= 1 +

λ

p+ ζ
+
λ(2p+ λ)

(p+ ζ)2

from which we obtain

A(ζ) =
ζ2 + ζ(p+ λ) + λ

(
p+ λ

2

)

ζ(p+ ζ)
.

The numerator of A is a quadratic and if we look at the discriminant ∆ of this we

have

∆ = −λ2 − 2pλ+ p2.

In particular if λ = −p(1 +
√

2) then the discriminant vanishes and moreover

A(ζ) =

(
ζ − 1√

2
p
)2

ζ(p+ ζ)
.

Thus for this particular choice of λ, A has a double zero at ζk = 1√
2
p. For all other

values of λ however, A has only simple zeroes inR+.
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As Example 4.3.15 illustrates, since a1 is a non-constant differentiable

function of λ, in the event that a multiple zero of A does occur, one can

simply perturb the system by setting υ → λυ, and then for λ in some small

interval around 1 all zeroes of A inR+ will become simple. We do not dwell

on this further, but assume henceforth that all normalisation constants are

finite. This concludes the forward scattering of φ1.

4.4 "Time" Evolution of the Scattering Data

We now consider how the spectral functions A, B and the normalisa-

tion constants ck depend on the N lattice variables. As an analogy to the

continuous theory, this is the calculation of the "time" dependence of these

functions, with respect to the arbitrary number of discrete "time" variables.

From the Lax pair the equation governing the evolution of the Jost solu-

tions in any one particular lattice direction with variable nk and parameter

pk is given by

(p2
k − ζ2)

1
2

_
_
ϕ−

(
Pk(

_
_
u− u)
_

U

)
_
ϕ+ (p2

k − ζ2)
1
2ϕ = 0 (4.55)

where _
u denotes an iteration of u in the nk-direction. From the boundary

conditions (4.17) for u, for all k = 1, ...,N we have
(
Pk(

_
_
u− u)
_

U

)
∼ 2pk as i→ ±∞. (4.56)

In other words at both ends of the staircase the dependence of the Jost so-

lutions on the lattice variable nk is governed by

(p2
k − ζ2)

1
2

_
_
ϕ− 2pk

_
ϕ+ (p2

k − ζ2)
1
2ϕ = 0. (4.57)

The boundary conditions (4.17) are assumed to hold independently of the re-

maining "non-staircase" lattice variables ns, s /∈ I. We also assume that the

boundary conditions (4.23a) (4.23c) for the Jost solutions hold independently
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of ns, s /∈ I. In other words these hold for all values of the discrete "time"

variables, which is the assumption made in the continuous IST theory for

the KdV discussed in Chapter 2.

Let us first consider the case where the nk-direction is one of the stair-

case directions, i.e. k ∈ I. Here the boundary conditions for the Jost solu-

tions are given by (4.23a) (4.23c), yet these are inconsistent1 with equation

(4.57). We illustrate this with an example. Consider a (1, 1)-staircase in the

(n,m)-plane, which was discussed in Section 4.2. Assuming that we iterate

first in the n-direction, the change of variables from i to n,m is given by

n =

⌊
1

2
(i+ 1)

⌋
, m =

⌊
1

2
i

⌋
.

Thus the plane-wave factors appearing in the boundary conditions for the

Jost solutions are proportional to

i−1∏

r=0

(
p(r) + ζ

p(r)− ζ

) 1
2

∝
(
p+ ζ

p− ζ

)n
4
(
q + ζ

q − ζ

)m
4

.

As functions of n and m these are inconsistent with equation (4.57) in the

n-direction or m-direction respectively. To deal with this we redefine the

boundary conditions for the Jost solutions as functions of nk, k ∈ I, to be

ϕ ∼
∏

r∈I

(
pr + ζ

pr − ζ

) 1
2
nr

, ϕ̊ ∼
∏

r∈I

(
pr − ζ
pr + ζ

) 1
2
nr

as i→ −∞ (4.58a)

ψ ∼
∏

r∈I

(
pr − ζ
pr + ζ

) 1
2
nr

, ψ̊ ∼
∏

r∈I

(
pr + ζ

pr − ζ

) 1
2
nr

as i→ +∞. (4.58b)

When one restricts these boundary conditions to Γ these agree with the pre-

vious boundary conditions (4.23a) (4.23c). Now however the Jost functions

are consistent with equation (4.57) for k ∈ I. Furthermore ϕ and ϕ̊ are now

linearly independent functions of equation (4.55), so the functions A and B,

and the normalisation constants c, are independent of nk for all k ∈ I.

1Unless Γ is a line, in which case (4.55) is the forward scattering problem itself
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If we now consider one of the discrete "time" directions with variable

ns-direction, s 6∈ I, then by (4.58a) (4.58b), as ns → ±∞ the Jost solutions

do not depend on ns, and are thus inconsistent with (4.57). To circumvent

this we make the following definition.

Definition 4.4.1. Let J denote the collection of lattice directions in which Γ does

not iterate, so that the union of the sets I and J gives all N lattice directions. The

N-dimensional Jost solutions ϕ(N), ϕ̊(N) and ψ(N), ψ̊(N), which are solutions to

all N equations (4.55), are defined to be

ϕ(N) := ϕ
∏

s∈J

(
ps + ζ

ps − ζ

) 1
2
ns

, ϕ̊(N) := ϕ̊
∏

s∈J

(
ps − ζ
ps + ζ

) 1
2
ns

(4.59a)

ψ(N) := ψ
∏

s∈J

(
ps − ζ
ps + ζ

) 1
2
ns

, ψ̊(N) := ψ̊
∏

s∈J

(
ps + ζ

ps − ζ

) 1
2
ns

. (4.59b)

We then have the following result about the "time" dependence of the

spectral functions A and B and the normalisation constants c. Note that

these functions were originally defined along Γ, which spans the collection

I of lattice directions. The span of these lattice directions forms a subspace

of the N-dimensional lattice, which is defined by setting ns = const. for all

s ∈ J. Thus the notation A(ζ) in fact means A evaluated at ns = const. for

all s ∈ J. We then write its "time-dependent" counterpart as A(ns; ζ), which

may depend on all discrete "times" ns, s ∈ J. Similar notation is used for B

and c.

Theorem 4.4.1.

- The function A is independent of all lattice variables nk, k = 1, ..., N :

A(ns; ζ) = A(ζ) (4.60)
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- The dependence of the functions B and c on ns, s ∈ J is given by

B(ns; ζ) = B(ζ)
∏

s∈J

(
ps + ζ

ps − ζ

)ns

(4.61)

c(ns; ζ) = c(ζ)
∏

s∈J

(
ps + ζ

ps − ζ

)ns

. (4.62)

Proof. Consider the ns-direction, where s ∈ J. The evolution equation for

the N-dimensional Jost solutions in this direction is

(p2
s − ζ2)

1
2

_
_
ϕ (N) −

(
Ps(

_
_
u− u)
_

U

)
_
ϕ (N) + (p2

s − ζ2)
1
2ϕ(N) = 0,

and by their boundary conditions the functions ϕ(N) and ϕ̊(N) are linearly

independent solutions of this equation. We may therefore write

ψ(N) = C1 ϕ̊
(N) + C2ϕ

(N),

where C1 and C2 are independent of ns, but may depend on all other lattice

variables. This is equivalent to

ψ = C1 ϕ̊+ C2ϕ
∏

s∈J

(
ps + ζ

ps − ζ

)ns

,

and by comparing this with

ψ = A ϕ̊+ Bϕ
∏

r∈I

(
pr + ζ

pr − ζ

)nr

,

it follows that A is independent of ns, while the dependence of B on ns is

through the plane-wave factor
(
ps+ζ
ps−ζ

)ns

. Repeating this argument for all

s ∈ J gives the desired results for A and B. The result for c follows from its

definition (4.54). �

Example 4.4.2. Take for example the case of N=4, with Γ being a (2, 3)-staircase

in the (n,m)-plane with respective parameters p and q, and let the remaining two

lattice directions be enumerated by the independent variables τ1 and τ2 with re-

spective parameters σ1 and σ2. Then the set I is the union of the n-lattice direction

and m-lattice direction (i.e. the (n,m)-plane), while the set J is the union of the
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τ1-lattice direction and τ2-lattice direction (another plane in the four-dimensional

space). By the results of the above Theorem, A does not depend on any of the four

lattice variables, while the quantities B(τ1, τ2; ζ) and B(τ1, τ2; ζ) are given by

B(τ1, τ2; ζ) = B(ζ)

(
σ1 + ζ

σ1 − ζ

)τ1 (σ2 + ζ

σ2 − ζ

)τ2

c(τ1, τ2; ζ) = c(ζ)

(
σ1 + ζ

σ1 − ζ

)τ1 (σ2 + ζ

σ2 − ζ

)τ2
.

4.5 Inverse Problem for φ1

We now consider the inverse problem for φ1, that is the construction of

the Jost solutions as functions of all N lattice variables. In doing so we alter

the notation of all eigenfunctions by writing

ϕ(n1, ..., nN ; ζ)→ ϕ(ζ),

and similarly for the other functions. Here ϕ(ζ) is understood to depend

on all lattice variables n1, ..., nN , however for the inverse problem it is con-

venient to suppress this dependence in the notation.

Consider the equation (4.25), which we rewrite as

Υ(ζ)

A(ζ)
− Λ̊(ζ) = R(ζ)Λ(ζ)ρ(ζ), (4.63)

where the reflection coefficient R is given by

R(ζ) =
B(ζ)

A(ζ)

and the plane-wave factors ρ are defined by

ρ(ζ) :=
∏

r∈I

(
pr + ζ

pr − ζ

)nr ∏

s∈J

(
ps + ζ

ps − ζ

)ns

=
N∏

r=1

(
pr + ζ

pr − ζ

)nr

.

This defines a jump condition between two sectionally meromorphic func-

tions along the contour Re(ζ) = 0. The functions Υ
A

and Λ̊ are analytic in

the interior of the regionsR+ andR− respectively, and both are continuous

along Re(ζ) = 0. Given the jump condition and their boundary conditions,
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The Discrete IST 4.5. Inverse Problem for φ1

the question of determining a function which is equal to these in their re-

spective half-planes is a Riemann-Hilbert problem. The method of solving

such a problem is well-known (see e.g. [42]): Consider the singular integral

1

2πi

∫ +i∞

−i∞

R(σ)Λ(σ)

σ + ζ
ρ(σ)dσ

=
1

2πi

∫ +i∞

−i∞

Υ(σ)

A(σ)(σ + ζ)
dσ − 1

2πi

∫ +i∞

−i∞

Λ̊(σ)

σ + ζ
dσ (4.64)

where ζ ∈ R+. Here the contour of integration is the imaginary σ-axis.

Since the function Υ
A

has M simple poles in R+ and has the boundary be-

haviour Υ
A
∼ 1 as |ζ| → ∞, one may use the residue theorem to calculate

1

2πi

∫ +i∞

−i∞

Υ(σ)

A(σ)(σ + ζ)
dσ =

1

2
−

M∑

k=1

Υ(ζk)

A′(ζk)(ζ + ζk)
.

By then using the fact that

Υ(ζk) = B(ζk)Λ(ζk)ρ(ζk)

this can written as

1

2πi

∫ +i∞

−i∞

Υ(σ)

A(σ)(σ + ζ)
dσ =

1

2
−

M∑

k=1

ckΛ(ζk)

(ζ + ζk)
ρ(ζk).

Now since Λ̊ is analytic inR− one can determine that

1

2πi

∫ +i∞

−i∞

Λ̊(σ)

σ + ζ
dσ = −1

2
+ Λ̊(−ζ) = −1

2
+ Λ(ζ),

and thus the singular integral equation becomes

Λ(ζ) = 1−
M∑

k=1

ckΛ(ζk)

(ζ + ζk)
ρ(ζk)−

1

2πi

∫ +i∞

−i∞

R(σ)Λ(σ)

σ + ζ
ρ(σ)dσ. (4.65)

This is the discrete version of equation (2.30) obtained in the continuous

IST for the KdV equation2. Given the ζk, the normalisation constants ck

and the reflection coefficient R, one can use equation (4.67) to determine

2If one allows the quantities R and ρ to depend on the KdV independent variables

in the correct way these two integral equations are in fact identical.
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the Jost solution Λ as a function of ζ and all N lattice variables. Remarkably all

of the dependence on the lattice variables is contained in the plane-wave

factors ρ. If instead we started with the relation

Λ(ζ) = A(ζ)Υ̊(ζ)− B(−ζ)Υ(ζ)ρ(−ζ), (4.66)

which is consistent with (4.25), then by following the same procedure as

above one finds that Υ(ζ) is determined by solving the singular integral

equation

Υ(ζ) = 1−
M∑

k=1

dkΥ(ζk)

(ζ + ζk)
ρ(−ζk) +

1

2πi

∫ +i∞

−i∞

S(σ)Υ(σ)

σ + ζ
ρ(−σ)dσ, (4.67)

where

dk :=
1

A′(ζk)B(ζk)
, S(ζ) :=

B(−ζ)

A(ζ)
. (4.68)

Note that one could, in the spirit of the continuous IST, isolate the depen-

dence of the Jost solution Λ on the spectral parameter ζ and thereby obtain

a discrete Gel’fand-Levitan integral (summation) equation. The details of

this can be seen in [28]. For the discrete setting however it is more con-

venient to use (4.67) to obtain Λ as a function of ζ, as we will see that the

solution of Q3δ and all of the other equations considered in this chapter are

simply expressible in terms of the Jost solutions evaluated at specific values

of ζ.

4.6 Inverse Problem for φ2

Now that we have constructed the first component of the eigenfunction

φ of (4.6), we use the first component of the Lax equations to determine φ2:

(ζ2 − b2)φ2(ζ) = (p2
k − ζ2)

1
2U

_

φ1(ζ)− (Pk
_
u− (p2

k − b2)u )φ1(ζ). (4.69)

Let ϕ(N)
2 and ψ

(N)
2 be the corresponding second components for the Jost

solutions ϕ(N) and ψ(N) respectively, and define the functions Λ2 and Υ2
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by

ϕ
(N)
2 = Λ2

N∏

r=1

(
pr + ζ

pr − ζ

)nr

, ψ
(N)
2 = Υ2

N∏

r=1

(
pr − ζ
pr + ζ

)nr

.

Then Λ2 is given by

(ζ2 − b2)Λ2(ζ) = (pk + ζ)U
_

Λ(ζ)− (Pk
_
u− (p2

k − b2)u )Λ(ζ), (4.70)

and Υ2 is given by

(ζ2 − b2)Υ2(ζ) = (pk − ζ)U
_

Υ(ζ)− (Pk
_
u− (p2

k − b2)u )Υ(ζ). (4.71)

We see that Λ2(ζ) and Υ2(ζ) are analytic in R+, except for a simple pole at

ζ = b. Thus Λ̊2(ζ) = Λ2(−ζ) and Υ̊2(ζ) = Υ2(−ζ), which are the second

components for the Jost solutions Λ̊ and Υ̊ respectively, are analytic in R−

except for a simple pole at ζ = −b. Furthermore all of these functions are

continuous on the imaginary ζ-axis. Now since the two eigenfunctions

ϕ(N) :=


 ϕ(N)

ϕ
(N)
2


 , ϕ̊(N) :=


 ϕ̊(N)

ϕ̊
(N)
2


 ,

are linearly independent solutions of the Lax equations (4.6), we may write

ψ(N) :=


 ψ(N)

ψ
(N)
2


 = A(ζ) ϕ̊(N) + B(ζ)ϕ(N),

whose second component may be written in terms of Λ2 and Υ2 as

Υ2(ζ)

A(ζ)
− Λ̊2(ζ) = R(ζ)Λ2(ζ)ρ(ζ). (4.72)

Note that these are the same functions A and B as those that appear in the

integral equation (4.67) for Λ(ζ). As in the inverse problem for φ1, equation

(4.72) becomes the jump condition for a Riemann-Hilbert problem, and as
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such we look at the singular integral

1

2πi

∫ +i∞

−i∞

R(σ)Λ2(σ)

σ + ζ
ρ(σ)dσ

=
1

2πi

∫ +i∞

−i∞

Υ2(σ)

A(σ)(σ + ζ)
dσ − 1

2πi

∫ +i∞

−i∞

Λ̊2(σ)

σ + ζ
dσ. (4.73)

The difference in this case is that Υ2 and Λ̊2 have simple poles at +b and−b
respectively, and both of these function are O(ζ−1 ) as |ζ| → ∞. Let us first

consider the integral involving Υ2. By using the residue theorem one has

1

2πi

∫ +i∞

−i∞

Υ2(σ)

A(σ)(σ + ζ)
dσ = −Resζ=b

[
Υ2

]

A(b)(ζ + b)
−

M∑

k=1

ckΛ2(ζk)

(ζ + ζk)
ρ(ζk). (4.74)

From the Lax equations however, by eliminating the first component φ1

one can show that at ζ = b the second-order linear equation for φ2 in the

nk-direction drastically simplifies to

(p2
k − a2)

1
2

_
_

φ2 −
(
Pk(

_
_
u− u)
_

U

)
_

φ2 + (p2
k − a2)

1
2 φ2 = 0, (4.75)

which we identify as equation (4.55) at ζ = a. Since this holds for every

lattice direction we may write

(ζ − b)ψ(N)
2 (ζ)

∣∣
ζ=b

= αϕ(N)(a) + β ψ(N)(a)

for some constants α and β. In terms of Υ and Λ this implies that

(ζ − b)Υ2(ζ)
∣∣
ζ=b

=αΛ(a)
N∏

r=1

(
(pr + a)(pr + b)

(pr − a)(pr − b)

) 1
2
nr

+ βΥ(a)
N∏

r=1

(
(pr − a)(pr + b)

(pr + a)(pr − b)

) 1
2
nr

=αΛ(a)F(a, b) + βΥ(a)F(−a, b), (4.76)

where the plane-wave factorsF are defined by (4.18). In order to determine

α and β we consider equation (4.76) in the limit i → ±∞. Firstly we have
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the asymptotic behaviour

Λ(a) ∼ A(a) + coρ(−a) as i→ +∞

Υ(a) ∼ A(a) + c1ρ(a) as i→ −∞,

for some constants co and c1. Since a > 0 both of these plane-wave factors

are exponentially small. Thus using the boundary conditions of u and U in

(4.71), as i→ −∞we have

(ζ − b)Υ2(ζ)
∣∣
ζ=b
∼ A(b)

2b

[
(pk − b)U − (Pk

_
u− (p2

k − b2)u )
]

∼ (a− b)A(b)CF(−a, b),

which implies that βA(a) = (a− b)CA(b). By then taking i→ +∞we have

(ζ − b)Υ2(ζ)
∣∣
ζ=b
∼ 1

2b

[
(pk − b)U − (Pk

_
u− (p2

k − b2)u )
]

∼ −(a+ b)KoAF(a, b),

which gives αA(a) = −(a+b)KoA. Therefore the integral in equation (4.74)

becomes

1

2πi

∫ +i∞

−i∞

Υ2(σ)

A(σ)(σ + ζ)
dσ = (a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)

(
Λ(a)

(ζ + b)

)

− (a− b)CF(−a, b)
(

Υ(a)

A(a)(ζ + b)

)
−

M∑

k=1

ckΛ2(ζk)

(ζ + ζk)
ρ(ζk).

The integral involving Λ̊ in (4.73) can be evaluated to be

1

2πi

∫ +i∞

−i∞

Λ̊2(σ)

σ + ζ
dσ = Λ2(ζ) +

1

ζ − b lim
σ→−b

[
Λ̊2(σ)(σ + b)

]
, (4.77)

and by similar reasoning and using the fact that Λ̊(−a) = Λ(a) etc., we find

lim
σ→−b

[
Λ̊2(σ)(σ + b)

]
=− (a− b)

(
K1A(b)

A(a)

)
BF(a,−b)Λ(a)

+ (a+ b)DF(−a,−b)
(

Υ(a)

A(a)

)
.
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Thus the integral (4.77) becomes

1

2πi

∫ +i∞

−i∞

Λ̊2(σ)

σ + ζ
dσ =Λ2(ζ)− (a− b)

(
K1A(b)

A(a)

)
BF(a,−b)

(
Λ(a)

ζ − b

)

+ (a+ b)DF(−a,−b)
(

Υ(a)

A(a)(ζ − b)

)
.

Using these in (4.73) then gives the following closed-form singular integral

equation for Λ2:

Λ2(ζ) =(a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)

(
Λ(a)

ζ + b

)

+(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)

(
Λ(a)

ζ − b

)

− (a− b)CF(−a, b)
(

Υ(a)

A(a)(ζ + b)

)

− (a+ b)DF(−a,−b)
(

Υ(a)

A(a)(ζ − b)

)

−
M∑

k=1

(
ckΛ2(ζk)

(ζ + ζk)

)
ρ(ζk)−

1

2πi

∫ +i∞

−i∞

(
R(σ)Λ2(σ)

σ + ζ

)
ρ(σ)dσ. (4.78)

A natural ansatz for this is

Λ2(ζ) =(a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)Λ(a)ξb(ζ)

+(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)Λ(a)ξ−b(ζ)

− (a− b)CF(−a, b)
(

Υ(a)

A(a)

)
ξb(ζ)

− (a+ b)DF(−a,−b)
(

Υ(a)

A(a)

)
ξ−b(ζ), (4.79)

where by equation (4.78) the functions ξ±b(ζ) are calculated by solving

ξ±b(ζ) =
1

ζ ± b−
M∑

k=1

(
ck ξ±b(ζk)
ζ + ζk

)
ρ(ζk)−

1

2πi

∫ +i∞

−i∞

(
R(σ)ξ±b(σ)

σ + ζ

)
ρ(σ)dσ.

(4.80)
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Note that the ingredients in these equations are the scattering data from the

forward scattering of φ1, and (4.80) differs from (4.67) only in the source

term.

Remark 4.6.1.

If we define the quantity

S(a, b) :=
1

a+ b
− ξb(a), (4.81)

then by comparing (4.80) with the integral equation considered in the direct lin-

earization approach [67] we see that this object is in fact a solution (containing

solitons and radiation) of the NQC equation (1.7) with α→ a, β → b.

4.7 Reconstruction of the Solution of Q3δ

We now show how one can recontruct the solution u as a function of all

N lattice variables.

4.7.1 Solution in terms of φ2

We consider how to construct u and U from the knowledge of the sec-

ond Lax component Λ2(ζ), obtained by solving the integral equation (4.80).

Take equation (4.70), which holds for any nk, k = 1, ..., N . By dividing

through by (pk + ζ) and taking the limit |ζ| → ∞we have

U = lim
|ζ|→∞

[
ζΛ2(ζ)

]
. (4.82)

Using equations (4.79), (4.80) and (4.82) this may be expressed as

U =(a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)Λ(a)V (b)

+(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)Λ(a)V (−b)

−(a− b)CF(−a, b)
(

Υ(a)

A(a)

)
V (b)

−(a+ b)DF(−a,−b)
(

Υ(a)

A(a)

)
V (−b), (4.83)
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where V (±b) is given by

V (±b) = 1−
M∑

k=1

ck ξ±b(ζk)ρ(ζk)−
1

2πi

∫ +i∞

−i∞
R(σ)ξ±b(σ)ρ(σ)dσ. (4.84)

Equation (4.70) could then in principle be summed to find u. There is a

way however to obtain a closed-form expression for u rather than its de-

rivative. To do this we first note that in the Lax equations (4.6), one is free

to interchange the roles of the parameters a and b. In other words the N

equations

(p2
k − ζ2)

1
2

_

φ =
1

U




Pk
_
u− (p2

k − a2)u ζ2 − a2

U
_

U− δ2(p2k−a2)

4Pk(ζ2−a2)
(p2
k − a2)

_
u− Pku


φ (4.85)

are also N Lax equations for Q3δ. Note however that we are not swapping

a and b in the functions u and U, nor in our initial condition nor bound-

ary conditions. We are simply repeating the entire IST with the new Lax

equations (4.85) in place of (4.6), which is permissible due to the symmetric

dependence of Q3δ on a and b. There are however some important remarks

to be made. Firstly the forward scattering problem (4.22) for φ1 is indepen-

dent of a and b, and thus interchanging a and b in the Lax equations will not

change the Jost solutions Λ and Υ, nor the scattering data. The second compo-

nent φ2 however will now be calculated by swapping a and b in the Lax

equations (4.70) and (4.71), and re-deriving the integral equation (4.80). To

make a clear distinction between the original quantities Λ2,Υ2 and their

new counterparts, we rewrite the original functions as

Λ2 → Λ
(b)
2 , Υ2 → Υ

(b)
2 ,

and then denote the new functions, which are obtained by swapping a and

b in (4.70) and (4.71), by Λ
(a)
2 and Υ

(a)
2 . By repeating the analysis of the
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previous section we find that

Λ
(a)
2 (ζ) =(a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)Λ(b)ξa(ζ)

+(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)

(
Υ(b)

A(b)

)
ξa(ζ)

−(a− b)CF(−a, b)Λ(b)ξ−a(ζ)

−(a+ b)DF(−a,−b)
(

Υ(b)

A(b)

)
ξ−a(ζ). (4.86)

Then finally given the quantities Λ
(b)
2 and Λ

(a)
2 one can combine the two

versions of (4.70), namely

(ζ2 − b2)Λ
(b)
2 (ζ) = (pk + ζ)U

_

Λ(ζ)− (Pk
_
u− (p2

k − b2)u )Λ(ζ)

(ζ2 − a2)Λ
(a)
2 (ζ) = (pk + ζ)U

_

Λ(ζ)− (Pk
_
u− (p2

k − a2)u )Λ(ζ)

to express the N-dimensional solution of Q3δ as

u =
(ζ2 − b2)Λ

(b)
2 (ζ)− (ζ2 − a2)Λ

(a)
2 (ζ)

(a2 − b2)Λ(ζ)
. (4.87)

Since however the solution is independent of ζ, we may take it to be large,

in which case the solution can be expressed as

u = lim
|ζ|→∞

(
ζ2
[
Λ

(b)
2 (ζ)− Λ

(a)
2 (ζ)

]

a2 − b2

)
. (4.88)

Remark 4.7.1.

For the reflectionless case B ≡ 0 the Jost solutions exist at the points ζ = −a
and ζ = −b, and we have Ko = A(a)A(b) and K1 = A(a)/A(b). Comparing the

expressions for u obtained by setting ζ = ±a and ±b in (4.87), and using the fact

that Υ(ζ) = A(ζ)Λ(−ζ) we find

u =(a+ b)AF(a, b)ξa(b) + (a− b)BF(a,−b)ξa(−b) (4.89)

−(a− b)CF(−a, b)ξ−a(b)− (a+ b)DF(−a,−b)ξ−a(−b). (4.90)

99



The Discrete IST 4.7. Reconstruction of the Solution of Q3δ

Using the NQC variable S(a, b) defined by (4.81) this becomes

u =AF(a, b)
[
1− (a+ b)S(a, b)

]
+ BF(a,−b)

[
1− (a− b)S(a,−b)

]

+CF(−a, b)
[
1 + (a− b)S(−a, b)

]
+ DF(−a,−b)

[
1 + (a+ b)S(−a,−b)

]
.

(4.91)

This is precisely the form of the N-soliton solution of Q3δ obtained in [65]. The

corresponding dual function U is given by

U =(a+ b)AF(a, b)Λ(a)Λ(b) + (a− b)BF(a,−b)Λ(a)Λ(−b)

− (a− b)CF(−a, b)Λ(−a)Λ(b)− (a+ b)DF(−a,−b)Λ(−a)Λ(−b), (4.92)

which was also obtained in [65].

4.7.2 Solution in terms of φ1

Remarkaby there is another way of expressing the quantities u and U

in terms of only the quantities Λ(a),Λ(b),Υ(a) and Υ(b), i.e. just in terms

of the first component of the Lax equations. This involves considering the

second-order linear equation for φ2 at specific values of ζ. From Section

4.6, by considering the second-order equation for φ2 at the point ζ = b and

using the boundary conditions for u and U we found that

(ζ − b)Υ(b)
2 (ζ)

∣∣
ζ=b

=− (a+ b)A(b)

(
Ko

A(a)A(b)

)
AF(a, b)Λ(a)

+ (a− b)A(b)CF(−a, b)
(

Υ(a)

A(a)

)
.

Thus from the Lax equation (4.71) we have

(pk − b)U
(_

Υ(b)

A(b)

)
− (Pk

_
u− (p2

k − b2)u )

(
Υ(b)

A(b)

)

=− 2b(a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)Λ(a) + 2b(a− b)CF(−a, b)

(
Υ(a)

A(a)

)
.

(4.93)
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In a similar manner one can show that

(ζ − b)Λ(b)
2 (ζ)

∣∣
ζ=b

=(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)Λ(a)

− (a+ b)DF(−a,−b)
(

Υ(a)

A(a)

)
,

and thus we also have

(pk + b)U
_

Λ(b)− (Pk
_
u− (p2

k − b2)u )Λ(b)

=2b(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)Λ(a)− 2b(a+ b)DF(−a,−b)

(
Υ(a)

A(a)

)
.

(4.94)

By combining equations (4.93) and (4.94) we may eliminate u, and using

the Wronksian identity for A we have

U =(a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)Λ(a)Λ(b)

+(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)Λ(a)

(
Υ(b)

A(b)

)

− (a− b)CF(−a, b)
(

Υ(a)

A(a)

)
Λ(b)

− (a+ b)DF(−a,−b)
(

Υ(a)Υ(b)

A(a)A(b)

)
. (4.95)

Remark 4.7.2.

By comparing (4.95) with (4.83) we find that

V (b) = Λ(b), V (−b) =
Υ(b)

A(b)
. (4.96)

As will be shown by equation (4.174) the function V (b) therefore satisfies the lattice

potential modified KdV equation (3.31) with slightly generalised coefficients,

(p− b)V V̂ − (p+ b)Ṽ
̂̃
V = (q − b)V Ṽ − (q + b)V̂

̂̃
V . (4.97)

The solution to this equation including radiation is given by (4.84).
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If instead we use equations (4.93) and (4.94) to eliminate U we have

Pk
_
u− (p2

k − b2)u = (p+ b)(a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)Λ(a)

_

Λ(b)

+ (p− b)(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)Λ(a)

(_

Υ(b)

A(b)

)

− (p+ b)(a− b)CF(−a, b)
(

Υ(a)

A(a)

)
_

Λ(b)

− (p− b)(a+ b)DF(−a,−b)
(

Υ(a)
_

Υ(b)

A(a)A(b)

)
. (4.98)

Now we repeat this process with Λ
(a)
2 and Υ

(a)
2 rather than Λ

(b)
2 and Υ

(b)
2 .

This gives the additional two equations

(pk − a)U

(_

Υ(a)

A(a)

)
− (Pk

_
u− (p2

k − a2)u )

(
Υ(a)

A(a)

)

= −2a(a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)Λ(b)

− 2b(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)

(
Υ(b)

A(b)

)
(4.99)

(pk + a)U
_

Λ(a)− (Pk
_
u− (p2

k − a2)u )Λ(a)

= −2a(a− b)CF(−a, b)Λ(b)− 2a(a+ b)DF(−a,−b)
(

Υ(b)

A(b)

)
, (4.100)

which can be combined to give

Pk
_
u− (p2

k − a2)u = (p+ a)(a+ b)

(
Ko

A(a)A(b)

)
AF(a, b)

_

Λ(a)Λ(b)

+ (p+ a)(a− b)
(
K1A(b)

A(a)

)
BF(a,−b)

_

Λ(a)

(
Υ(b)

A(b)

)

− (p− a)(a− b)CF(−a, b)
(_

Υ(a)

A(a)

)
Λ(b)

− (p− a)(a+ b)DF(−a,−b)
(_

Υ(a)Υ(b)

A(a)A(b)

)
. (4.101)
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Equations (4.98) and (4.101) can then be combined to give the solution u of

Q3δ as

u =

(
Ko

A(a)A(b)

)
AF(a, b)

(
(pk + a)

_

Λ(a)Λ(b)− (pk + b)Λ(a)
_

Λ(b)

(a− b)

)

+

(
K1A(b)

A(a)

)
BF(a,−b)




(pk + a)
_

Λ(a)
(

Υ(b)
A(b)

)
− (pk − b)Λ(a)

(
_
Υ(b)
A(b)

)

(a+ b)




+ CF(−a, b)




(pk + b)
(

Υ(a)
A(a)

)
_

Λ(b)− (pk − a)

(
_
Υ(a)
A(a)

)
Λ(b)

(a+ b)




+ DF(−a,−b)




(pk − b)
(

Υ(a)
_
Υ(b)

A(a)A(b)

)
− (pk − a)

(
_
Υ(a)Υ(b)
A(a)A(b)

)

(a− b)


 . (4.102)

Equation (4.102) is an explicit respresentation of the solution u of Q3δ purely

in terms of φ1. The shift _ involved (with corresponding parameter pk) can

be made in any one of the N lattice directions.

Remark 4.7.3.

The fact that equation (4.102) holds for shifts in any one of the N lattice directions

implies that the quantities Λ(a) and Λ(b) satisfy the nonlinear relation

(p+a)Λ̃(a)Λ(b)−(p+b)Λ(a)Λ̃(b) = (q+a)Λ̂(a)Λ(b)−(q+b)Λ(a)Λ̂(b) (4.103)

in the (n,m)-plane. Of course this may be extended to any pair of lattice directions

within the N-dimensional lattice.
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4.8 Discrete Inverse Scattering Transform for the

Remaining ABS Equations

We now give an IST for all lower3 ABS equations, namely Q2, Q1δ, H3δ,

H2 and H1. To do so we use the Lax pair for each equation obtained from

the multidimensional consistency, which was discussed in Chapter 3, and

impose the boundary conditions exhibited by the soliton solutions, which

are given in [65]. By considering the two eigenfunctions separately we will

derive an explicit expression for the solution u (or its derivative) of each

equation explicitly.

The method for obtaining a Lax pair for 3D consistent equations was

explained in Section 3.4 of Chapter 3. We now revisit this concept. If

we consider any of the aforementioned equations on an elementary lat-

tice quadrilateral in a plane spanned by the nk-direction (with parameter

pk) with iterations denoted by u→_
u, and some other lattice direction with

parameter ζ and iterations denoted by u → u̇, then we may express the

equation as

ao + a1u̇+ a2

_

u̇+ a3u̇
_

u̇ = 0, (4.104)

where the four coefficients ao → a3 depend on pk, ζ, u and _
u only. A Lax

equation for equation (4.104) is then

α
_

φ =
1

U


 −a2 −a3

a0 a1


φ, (4.105)

where for convenience we have redefined φ → φ(−α)nk from equation

(3.41). Here the function U is defined through the first-order equation

U
_

U = H(u,
_
u; pk)

3The two A-type equations are related by straightforward gauge transformations

to Q1δ and Q3o and are therefore not treated as distinct examples
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where we choose to set the arbitrary constant appearing in the solution to

be unity, and α is chosen such that

det


 1

αU


 −a2 −a3

a0 a1




 =

_

U

U
.

Since however by equation (3.43) we have

det


 −a2 −a3

a0 a1


 = K(pk, ζ)H(u,

_
u; pk)

where K is antisymmetric, it follows that α =
√
K(pk, ζ). Using the fact that

for all equations considered here we have a3 = const., the linear equation

which governs the evolution of the first component φ1 in the nk-direction

is
√
K(pk, ζ)

_
_

φ1 −
(
a1 −_

a2
_

U

)
_

φ1 +
√
K(pk, ζ)φ1 = 0. (4.106)

In comparison to the evolution of φ1 for Q3δ, this equation can easily be

generalised to define evolution along the staircase Γ, and importantly, for

each of the equations Q2→H1, if we impose the same boundary conditions

(at either end of the staircase, i.e. i → ±∞) as exhibited by the known

soliton solutions, equation (4.106) gives rise to exactly the same forward scat-

tering problem as for Q3δ. In other words the forward scattering problem

for φ1 for every equation Q3δ →H1 is identical. This is an extremely useful

result, as all of the results from the forward scattering of Q3δ hold for these

remaining equations.

The differences in the IST for these equations however arises when we

consider the second eigenfunction φ2. By the Lax equation (4.105) the evo-

lution of φ2 in the nk-direction is

√
K(pk, ζ)

_
_

φ2 −




_
a1 −

(
_
ao
ao

)
a2

_

U


_

φ1 +
√
K(pk, ζ)

(_
ao
ao

)
φ1 = 0, (4.107)
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which due to the fact that ao depends on nk is a much more unwieldy equa-

tion to deal with. It does however contain much more fine structure than

equation (4.106), and it is therefore worthy of attention. To do this we con-

sider the singular points of the equation, which we define to be the values

of ζ on the real positive axis for which |ao| → ∞. This sends the ratio
_
ao
ao
→ 1 which dramatically reduces the complexity of equation (4.107), for

which the solution can be expressed in terms of known functions Λ or Υ,

or perhaps even simpler exponential functions. Crucially however, at these

singular points we retain just enough information to be used in conjuction

with φ1 such that u may be determined from the Lax equation

a3φ2 = −a2φ1 −
√
K(pk, ζ)U

_

φ1. (4.108)

This equation holds for every lattice direction, which enables one to deter-

mine u and U as functions of all N lattice variables and parameters.

We also make use of the Wronskian identity for A(a):

(pk + ζ)
_

Λ(ζ)Υ(ζ)− (pk − ζ)Λ(ζ)
_

Υ(ζ) = 2ζA(ζ), (4.109)

which holds whenever ζ ∈ R+. This implies that

Λ(ζ) ∼ A(ζ) + coρ(−ζ) as i→ +∞

Υ(ζ) ∼ A(ζ) + c1ρ(ζ) as i→ −∞,

for some constants co and c1. Thus for example at ζ = a > 0 we have

Λ(a) ∼ A(a) as i→ +∞, Υ(a) ∼ A(a) as i→ −∞.

Finally we make use of the Wronskian identities resulting from eliminat-

ing the potential terms in the second-order equations for the pairs (Λ,Λ′),

(Λ′,Υ), (Λ,Υ′) and (Υ,Υ′). For example eliminating the potential term in
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the equations for Λ(a) and Λ′(a) yields the identity

(pk + a)(
_
_

Λ′(a)
_

Λ(a)−
_
_

Λ(a)
_

Λ′(a))−(pk − a)(
_

Λ′(a)Λ(a)−
_

Λ(a)Λ′(a))

+
_

Λ(a)(
_
_

Λ(a)− Λ(a)) = 0.

This is the entirety of the machinery used to obtain solutions to each

of the equations Q2→H1 through a discrete IST. For each equation we give

the elements of the Lax matrix a0 → a3, we specify the biquadratic H and

the function K(pk; ζ), and state the boundary conditions that we assume on

the solution u (from which one obtains the boundary conditions for U) at

either end of the staircase Γ. As we will see, some of the constants specified

in the boundary conditions (though which do not appear in the IST for φ1)

are free, while others must be set to specific values determined by the IST.

By following the above procedure we give an explicit expression for u and

U for each equation.

4.8.1 Q2

The Q2 equation is

p̊(u− û )( ũ− ̂̃u )− q̊(u− ũ )( û− ̂̃u ) + p̊q̊(p̊− q̊)(u+ ũ+ û+ ̂̃u )

− p̊q̊(p̊− q̊)(p̊2 − p̊q̊ + q̊2) = 0, (4.110)

where p̊ = a2

p2−a2 and q̊ = a2

q2−a2 , and by letting ζ̊ = a2

ζ2−a2 we have

H(u,
_
u; pk) =

1

p̊k

(
(u−_

u)2 − 2p̊2
k(u+

_
u) + p̊4

k

)

√
K(pk, ζ) =

[
p̊kζ̊

a

]
(p2
k − ζ2)

1
2 .
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The elements of the Lax matrix are

a0 = p̊ku
_
u+ p̊kζ̊(p̊k − ζ̊)(u+

_
u)− p̊kζ̊(p̊k − ζ̊)(p̊2

k − p̊kζ̊ + ζ̊2)

a1 = −p̊k_u+ ζ̊
(_
u− u+ p̊2

k

)
− p̊kζ̊2

a2 = −p̊ku+ ζ̊
(
u−_

u+ p̊2
k

)
− p̊kζ̊2

a3 = p̊k

and thus the Lax equations for φ1, Λ2 and Υ2 are

(p2
k−ζ2)

1
2

_
_

φ1(ζ)− a

p̊k

(_
_
u− u

_

U

)
_

φ1(ζ) + (p2
k − ζ2)

1
2φ1(ζ) = 0 (4.111)

Λ2(ζ) =

[
u+

(
p2
k − a2

ζ2 − a2

)
(
_
u− u− p̊2

k) +

(
a2

ζ2 − a2

)2
]

Λ(ζ)

− a
(
pk + ζ

ζ2 − a2

)
U

_

Λ(ζ) (4.112)

Υ2(ζ) =

[
u+

(
p2
k − a2

ζ2 − a2

)
(
_
u− u− p̊2

k) +

(
a2

ζ2 − a2

)2
]

Υ(ζ)

− a
(
pk − ζ
ζ2 − a2

)
U

_

Υ(ζ), (4.113)

and the boundary conditions that we impose on u and U at either end of

the staircase Γ are

u ∼ (µ+ µo)
2 +

1

4
+ AD +

1

2
Dρ(−a) as i→ −∞ (4.114)

u ∼ (µ+ µo)
2 −K1(µ+ µo) + K2 +

1

4
+ AD +

1

2
KoAρ(a) as i→ +∞,

(4.115)

which imply that U has the boundary behaviour

U ∼ −2(µ+ µo)−Dρ(−a) as i→ −∞

U ∼ −2(µ+ µo) + K1 + KoAρ(a) as i→ +∞.
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Here the function µ is defined by

µ :=

N∑

r=1

(
apr

a2 − p2
r

)
nr, (4.116)

Ko,A and D are free constants, while K1 and K2 are fixed. The singular

point for this equation is ζ = a, and in this limit ζ = a + ε with ε � 1 we

have
_
ao
ao

= 1 +
4(u−

_
_
u)

a2
ε2 +O

(
ε3
)
,

and thus

a

p̊kζ̊

[
_
a1 −

(_
ao
ao

)
a2

]
=

a

p̊k
(
_
_
u− u) + 4(u−

_
_
u)ε+O(ε2).

By writing

φ2 =
φε

2

2

ε2
+
φε2
ε

+O(1), (4.117)

from equations (4.112) and (4.113) we firstly have

Λε
2

2 =
a2

4
Λ(a), Υε2

2 =
a2

4
Υ(a). (4.118)

If we now look at equation (4.107) for Λ2, by taking the O(ε) terms we have

(pk + a)
_
_

Λε
2

2 (a)− a

p̊k

(_
_
u− u

_

U

)
_

Λε2(a) + (pk − a)Λε2(a)

=
a2

4
Λ(a) + a2

(
u−

_
_
u

_

U

)
_

Λ(a)− a2

4

_
_

Λ(a),

but using the equation (4.111) for Λ(a) this may be rewritten as

(pk + a)
_
_

Λε
2

2 (a)− a

p̊k

(_
_
u− u

_

U

)
_

Λε2(a) + (pk − a)Λε2(a)

=
a2

4
Λ(a)− ap̊k

(
(pk + a)

_
_

Λ(a) + (pk − a)Λ(a)
)
− a2

4

_
_

Λ(a).

Since this is an inhomogeneous form of equation (4.111) for Λ we can write

down the general solution

Λε2 = αΛ(a)+βΥ(a)

(
pk − a
pk + a

)nk

+

(
a2pknk
a2 − p2

k

)
Λ(a)−

(
3a2

4

)
Λ′(a), (4.119)
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where α and β are constants, and since this process may be carried out in

every lattice direction we have

Λε2 = αΛ(a) + βΥ(a)ρ(−a) + aµΛ(a)−
(

3a2

4

)
Λ′(a). (4.120)

From equation (4.112) however we also have

Λε2 =

[(
p2
k − a2

2a

)
(
_
u− u− p̊2

k)−
a

4

]
Λ(a)

+

(
a2

4

)
Λ′(a)−

(
pk + a

2

)
U

_

Λ(a), (4.121)

which will enable us to determine the constants α and β through using

the known boundary conditions for u and U. Firstly equating (4.120) and

(4.121) as i→ −∞ gives

α+ βc1 + βA(a)ρ(−a) + aµ ∼ a(µ+ µo) +
a

4
+ aDρ(−a)

which implies βA(a) = aD. Then by letting i→ +∞we have

αA(a) + aµA(a)− 3a2

4
A′(a)

∼ aA(a)

4
+
a2A′(a)

4
+ a(µ+ µo)A(a)− aK1A(a)

2

which gives

α =
a

4
+
a2A′(a)

A(a)
+ aµo −

aK1

2
. (4.122)

Now combining (4.120) and (4.121) gives
(
p2
k − a2

2a

)
(
_
u− u− p̊2

k)Λ(a)−
(
pk + a

2

)
U

_

Λ(a)

=

(
a

2
+
a2A′(a)

A(a)
+ a(µ+ µo)−

aK1

2

)
Λ(a)− a2Λ′(a) + aDΨ(a)ρ(−a).

(4.123)

where for convenience we have defined

Ψ(ζ) :=
Υ(ζ)

A(ζ)
. (4.124)
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We now use equation (4.113) to perform the same task with Υε
2. In terms of

Ψ this yields the second equation

(
p2
k − a2

2a

)
(
_
u− u− p̊2

k)Ψ(a)−
(
pk − a

2

)
U

_

Ψ(a)

=
(a

2
− a(µ+ µo)

)
Ψ(a)− a2Ψ′(a)

+ a

(
Ko

A(a)2

)
AΛ(a)ρ(a). (4.125)

Equations (4.123) and (4.125) can then be combined to give an explicit ex-

pression for U:

U =

(
−2(µ+ µo) +

K1

2
− aA′(a)

A(a)

)
Λ(a)Ψ(a) + a

(
Λ′(a)Ψ(a)− Λ(a)Ψ′(a)

)

+ A

(
Ko

A(a)2

)
Λ(a)2ρ(a)−DΨ(a)2ρ(−a), (4.126)

from which we obtain K1 = 2a
(
A′(a)
A(a)

)
in order that the boundary condi-

tions of U be satisfied. Inserting this gives

U =− 2(µ+ µo)Λ(a)Ψ(a) + a
(
Λ′(a)Ψ(a)− Λ(a)Ψ′(a)

)

+ A

(
Ko

A(a)2

)
Λ(a)2ρ(a)−DΨ(a)2ρ(−a). (4.127)

Alternatively one can combine (4.123) and (4.125), as well as the value for

K1, to give the explicit representation of the discrete derivative of the solu-

tion to Q2:

_
u− u =

a2p2
k

(p2
k − a2)2

−
(
a(µ+ µo)

p2
k − a2

)(
(pk + a)

_

Λ(a)Ψ(a) + (pk − a)Λ(a)
_

Ψ(a)
)

−
(

a2

p2
k − a2

)(
(pk + a)

_

Λ(a)Ψ′(a)− (pk − a)Λ′(a)
_

Ψ(a)
)

+
1

2

(
Ko

A(a)2

)
AΛ(a)

_

Λ(a)
(

_
ρ(a)− ρ(a)

)

+
1

2
DΨ(a)

_

Ψ(a)
(

_
ρ(−a)− ρ(−a)

)
. (4.128)
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Using the various Wronskian identities mentioned at the start of this Sec-

tion we can directly sum this equation to obtain

u =(µ+ µo)
2 − (µ+ µo)G(a)− a

2
X(a) +

1

4
+ AD

+
1

2

(
Ko

A(a)2

)
Aρ(a)Y(a) +

1

2
Dρ(−a)Z(a), (4.129)

where

G(a) := (pk + a)
_

Λ′(a)Ψ(a)− (pk − a)Λ′(a)
_

Ψ(a) +
_

Λ(a)Ψ(a)− 1 (4.130)

X(a) :=
(

(pk + a)
_

Λ′(a) +
_

Λ(a)
)

Ψ′(a)−
(

(pk − a)
_

Ψ′(a)−
_

Ψ(a)
)

Λ′(a)

(4.131)

Y(a) := (pk + a)
[_
Λ′(a)Λ(a)−

_

Λ(a)Λ′(a)
]

+ Λ(a)
_

Λ(a) (4.132)

Z(a) := (pk − a)
[_
Ψ′(a)Ψ(a)−

_

Ψ(a)Ψ′(a)
]

+ Ψ(a)
_

Ψ(a). (4.133)

From this we see that we must set K2 =

(
aA′(a)

A(a)

)2

.

4.8.2 Q1δ

The Q1 equation is

p̊(u− û )( ũ− ̂̃u )− q̊(u− ũ )( û− ̂̃u ) + δ2p̊q̊(p̊− q̊) = 0, (4.134)

where again p̊ = a2

p2−a2 and q̊ = a2

q2−a2 , and

H(u,
_
u; pk) =

1

p̊k

(
(u−_

u)2 − δ2p̊2
k

)

√
K(pk, ζ) =

[
p̊kζ̊

a

]
(p2
k − ζ2)

1
2 .

The elements of the Lax matrix are

a0 = p̊ku
_
u+ δ2p̊kζ̊(p̊k − ζ̊) a1 = −p̊k_u+ ζ̊(

_
u− u)

a2 = −p̊ku+ ζ̊(u−_
u) a3 = p̊k,
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and the Lax equations for φ1, Λ2 and Υ2 are

(p2
k − ζ2)

1
2

_
_

φ1(ζ)− a

p̊k

(_
_
u− u

_

U

)
_

φ1(ζ) + (p2
k − ζ2)

1
2φ1(ζ) = 0 (4.135)

Λ2(ζ) =

[
u+

(
p2
k − a2

ζ2 − a2

)
(
_
u− u)

]
Λ(ζ)− a

(
pk + ζ

ζ2 − a2

)
U

_

Λ(ζ) (4.136)

Υ2(ζ) =

[
u+

(
p2
k − a2

ζ2 − a2

)
(
_
u− u)

]
Υ(ζ)− a

(
pk − ζ
ζ2 − a2

)
U

_

Υ(ζ). (4.137)

The boundary conditions we assume for u are

u ∼ B(µ+ µo) + Dρ(−a) as i→ −∞, (4.138)

u ∼ KoAρ(a) + B(µ+ µo + K1) as i→ +∞, (4.139)

which implies that

U ∼ −B− 2Dρ(−a) as i→ −∞, (4.140)

U ∼ 2KoAρ(a)−B as i→ +∞. (4.141)

Here Ko and µo are free constants, while K1 is fixed. The remaining con-

stants are restrained by

16AD + B2 = δ2.

The singular point for this equation is ζ = a, and in this limit ζ = a+ ε with

ε� 1 we have
_
ao
ao

= 1 +O
(
ε2
)

and so by writing

φ2 =
φε2
ε

+O(1),

equation (4.107) for Λε2 becomes

(pk + a)
_
_

Λε2(a)− a

p̊k

(_
_
u− u

_

U

)
_

Λε2(a) + (pk − a)Λε2(a) = 0.

113



The Discrete IST 4.8. Discrete IST for Remaining ABS Equations

This however is just equation (4.135) for Λ, and using the fact that this holds

for every lattice direction, there exists constants α and β such that

Λε2 = αΛ(a) + βΥ(a)ρ(−a).

Equating this with (4.136) then gives

(p2
k−a2)(

_
u−u)Λ(a)−a(pk+a)U

_

Λ(a) = 2aαΛ(a)+2aβΥ(a)ρ(−a). (4.142)

By using the boundary conditions for u and U we can then determine α and

β, and thus

(p2
k − a2)(

_
u− u)Λ(a)− a(pk + a)U

_

Λ(a) = a2BΛ(a) + 4a2D

(
Υ(a)

A(a)

)
ρ(−a).

(4.143)

We may now repeat this process using equation (4.137) for Υ2. This yelds

the second equation

(p2
k−a2)(

_
u−u)Υ(a)−a(pk−a)U

_

Υ(a) = 4a2

(
Ko

A(a)

)
AΛ(a)ρ(a)−a2BΥ(a).

(4.144)

Equations (4.143) and (4.144) can then be combined to firstly give

U = 2

(
Ko

A(a)2

)
AΛ(a)2ρ(a)−B

(
Λ(a)Υ(a)

A(a)

)
−2D

(
Υ(a)

A(a)

)2

ρ(−a), (4.145)

and also

_
u− u =

(
Ko

A(a)2

)
AΛ(a)

_

Λ(a)
(

_
ρ(a)− ρ(a)

)

+
2apkB

p2
k − a2

+ aB

(
(p+ a)

_

Λ(a)Υ(a) + (p− a)Λ(a)
_

Υ(a)

2A(a)(p2
k − a2)

)

+ D

(
Υ(a)

_

Υ(a)

A(a)2

)(
_
ρ(−a)− ρ(−a)

)
. (4.146)

By now using the Wronskian identities mentioned at the start of this section

we may sum this to obtain the solution of Q1δ

u =

(
Ko

A(a)2

)
Aρ(a)Y(a) + B

{
µ+ µo −

1

2
G(a)

}
+ Dρ(−a)Z(a), (4.147)
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where Ψ(ζ) =
Υ(ζ)

A(ζ)
and G,Y and Z are given by (4.130), (4.132) and (4.133)

respectively. Here the boundary condition as i → −∞ are satisfied, how-

ever to satisfy the boundary condition as i → +∞ we must set K1 =

−aA
′(a)

A(a)
.

4.8.3 H3δ

The H3δ equation is

Q(u ũ+ û ̂̃u )− P (u û+ ũ ̂̃u ) + δ

(
p2 − q2

PQ

)
= 0 (4.148)

where P 2 = a2 − p2 and Q2 = a2 − q2, and

H(u,
_
u; pk) = u

_
u+

δ

Pk
√
K(pk, ζ) = (p2 − ζ2)

1
2 .

The elements of the Lax matrix elements are

a0 = (a2 − ζ2)
1
2u

_
u+ δ

(
p2
k − ζ2

Pk(a2 − ζ2)
1
2

)
a1 = −Pku

a2 = −Pk_u a3 = (a2 − ζ2)
1
2 ,

and the Lax equations for φ1, Λ2 and Υ2 are

(p2
k − ζ)

1
2

_
_

φ1(ζ)−
(
Pk(

_
_
u− u)
_

U

)
_

φ1(ζ) + (p2
k − ζ2)

1
2φ1(ζ) = 0 (4.149)

(a2 − ζ2)
1
2 Λ2(ζ) = Pk

_
uΛ(ζ)− (pk + ζ)U

_

Λ(ζ) (4.150)

(a2 − ζ2)
1
2 Υ2(ζ) = Pk

_
uΥ(ζ)− (pk − ζ)U

_

Υ(ζ). (4.151)

The boundary conditions for u are

u ∼
(
Cσ + D

)
Θ−1 as i→ −∞, (4.152)

u ∼ K
(
A + σB

)
Θ as i→ +∞ (4.153)
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which imply that

U ∼
(
Cσ −D

)
Θ−1 as i→ −∞, (4.154)

U ∼ K
(
A− σB

)
Θ as i→ +∞. (4.155)

The new functions Θ and σ are defined by

Θ :=
N∏

r=1

(
a+ pr
a− pr

) 1
2
nr

, σ = (−1)n1+...+nN ,

while K is a free constant, and the remaining constants are restrained by

AD−BC = − δ

4a
.

The singular point for the equation is ζ = a, and in this limit ζ = a+ ε with

ε� 1, by writing

Λ2(a) =
Λε2

ε
1
2

+O
(
ε
1
2

)
,

equation (4.107) for Λ2 reduces dramatically to

(pk + a)
_
_

Λε2(a) + (pk − a)Λε2(a) = 0,

and since this holds for all lattice directions we have

Λε2 = (α+ βσ)Θ−1 (4.156)

for some constants α and β. Equating this with equation (4.150) and using

the boundary conditions for u and U then gives the equation

Pk
_
uΛ(a)− (pk + a)U

_

Λ(a) = 2a(D− σC)Θ−1. (4.157)

If we now repeat this process using equation (4.151) for Υ2 we find

Pk
_
uΥ(a)− (pk − a)U

_

Υ(a) = 2aK(A− σB)Θ. (4.158)

Combining equations (4.157) and (4.158) then gives

U =

(
K

A(a)

)(
A− σB

)
Λ(a)Θ +

(
Cσ −D

)
Ψ(a)Θ−1 (4.159)
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where Ψ(ζ) =
Υ(ζ)

A(ζ)
. The solution of H3δ is

u =

(
K

A(a)

)(
A + σB

)
Λ(a)Θ +

(
Cσ + D

)
Ψ(a)Θ−1. (4.160)

4.8.4 H2

The H2 equation is

(u− ̂̃u )( ũ− û ) + (p2 − q2)(u+ ũ+ û+ ̂̃u )− p4 + q4 = 0, (4.161)

and

H(u,
_
u; pk) = 2(u+

_
u− p2

k)

√
K(pk, ζ) = (p2 − ζ2)

1
2 .

The elements of the Lax matrix are

a0 = u
_
u+ (p2

k − ζ2)(u+
_
u)− p4

k + ζ4 a1 = −u+ p2
k − ζ2

a2 = −_
u+ p2

k − ζ2 a3 = 1,

and the Lax equations for φ1 and Λ2 are

(p2
k − ζ2)

1
2

_
_

φ1(ζ)−
(_

_
u− u

_

U

)
_

φ1(ζ) + (p2
k − ζ2)

1
2φ1(ζ) = 0 (4.162)

Λ2(ζ) = (
_
u− p2

k + ζ2)Λ(ζ)− (pk + ζ)U
_

Λ(ζ). (4.163)

The boundary conditions for u are

u ∼ (τ + τo)
2 + 2Aσ(τ + τ1)−A2 as i→ −∞

u ∼
(
τ + τo)

2 + 2Ko(τ + τo)

+ 2Aσ(τ + τ1 + Ko) + K2
1 −A2 as i→ +∞,
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which imply that

U ∼ 2
[
τ + τo − σA

]
as i→ −∞

U ∼ 2
[
τ + τo + Ko − σA

]
as i→ −∞.

Here the function τ is defined by

τ =
N∑

r=1

prnr,

and A, τo and τ1 are all unrestrained constants while Ko and K1 are fixed.

The singular point of the equation is |ζ| → ∞, and in the limit ζ = 1
ε with

ε� 1 we have
_
ao
ao

= 1 + ε2(
_
_
u− u) +O(ε4) ⇒ _

a1 −
(_
ao
ao

)
a2 = u−

_
_
u+O(ε2)

and so by writing

Λ = 1 + εΛε + ε2Λε
2

+O(ε3) as |ζ| → ∞

Λ2 =
Λ−ε

2

2

ε2
+

Λ−ε2

ε
+O(1) as |ζ| → ∞

then by (4.163) we have Λ−ε
2

2 = 1. Equation (4.107) for Λ2 then becomes

_
_

Λ−ε2 − Λ−ε2 = −2pk −
_
_
u− u

_

U
,

but by taking this limit in equation (4.162) for Λ we find that
(_

_
u− u

_

U

)
= 2pk +

_
_

Λε − Λε

and so

Λ−ε2 = α+ β(−1)nk − 2pknk − Λε

for some constants α and β. Since this holds for all lattice directions and

using the Lax equation (4.163) we then have

Λε − U = α+ βσ − 2τ − Λε,
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and then using the boundary conditions for U we have

U = 2
(
τ + τo −Aσ + Λε

)
. (4.164)

From the biquadratic H and the definition of U we can then write

u+
_
u =p2

k +
1

2
U

_

U

=(τ + τo)
2 + (τ + τo + pk)

2 + 2(τ + τo)Λ
ε

+ 2(τ + τo + pk)
_

Λε − 2A2 − 2Aσ(pk +
_

Λε − Λε)

+ 2p(Λε −
_

Λε) + 2Λε
_

Λε. (4.165)

We can however go further: For purely imaginary ζ, by equating the equa-

tions (4.162) for Λ(ζ) and Λ(−ζ) we have

(pk + ζ)
_

Λ(ζ)Λ(−ζ)− (pk − ζ)Λ(ζ)
_

Λ(−ζ) = 2ζ,

and by taking the limit ζ = 1
ε in this equation we obtain the identity

pk(Λ
ε − Λ̃ε) + ΛεΛ̃ε = Λε

2
+ Λ̃ε

2
.

We can therefore directly sum equation (4.165) and use the boundary con-

ditions for u to give the solution of H2 as

u = (τ + τo)
2 + 2(τ + τo)Λ

ε + 2Λε
2 −A2 + 2σA(τ + τ1 + Λε). (4.166)

Writing

A(ζ) ∼ 1 +
Aε

ζ
+

Aε
2

ζ2
+ ... as |ζ| → ∞,

this result shows that we must set

Ko = lim
i→+∞

Λε = Aε, K2
1 = lim

i→+∞
2Λε

2
= 2Aε

2
.
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4.8.5 H1

The H1 equation is

(u− ̂̃u )( ũ− û ) + (p2 − q2) = 0, (4.167)

and

H(u, u; pk) = 1 ⇒ U = 1

√
K(pk, ζ) = (p2

k − ζ2)
1
2 .

The elements of the Lax matrix are

a0 = u
_
u+ p2

k − ζ2 a1 = −u a2 = −_
u a3 = 1.

The boundary conditions we assume on u are

u ∼ τ + τo as i→ −∞, (4.168)

u ∼ τ + τo + K as i→ +∞ (4.169)

where τo is a free constant and K is fixed. The Lax equation for Λ is

(pk + ζ)
_
_

Λ(ζ)−
(_
_
u− u

)
_

Λ(ζ) + (pk − ζ)Λ(ζ) = 0

and if we let |ζ| → ∞ and use the fact that this holds for every lattice

direction we obtain

_
_
u− u = 2pk +

_
_

Λε − Λε

⇒ u = τ + τo + Λε. (4.170)

From this solution we see that we must set K = Aε. Note that if uo solves

H1 then so does A(uo) + σB(uo + const.), provided that A2 − B2 = 1, so

this can be generalised to

u = A(τ + τo + Λε) + σB(τ + τ1 + Λε). (4.171)
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4.9 One-Soliton Solutions

We now construct explicit solutions to all of the above equations for

the special case where the reflection coefficientR is identically zero and the

function A has exactly one zero in R+ at ζ1 = k > 0. Since the solution

of each equation is essentially comprised of the same ingredients, the only

equation we are required to solve is the singular integral equation for Λ(ζ).

By setting c1 = 2kc where c is a constant, this integral equation (4.67) is

Λ(ζ) = 1−
(

2kcΛ(k)

ζ + k

)
ρ(k),

which has the solution

Λ(ζ) =
1 + A(ζ)ρ(k)

1 + ρ(k)
⇒ Υ(ζ) =

A(ζ) + ρ(k)

1 + ρ(k)
,

where we have absorbed the constant c into the plane-wave factor ρ, and

the function A is given by

A(ζ) =

(
ζ − k
ζ + k

)
.

By choosing boundary conditions exhibited by the known one-soliton solu-

tions [65], it is then straightforward to use the above formulae to compute

the following:
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a) Q3δ: Set Ko =
(

(a−k)(b−k)
(a+k)(b+k)

)
and K1 =

(
(a−k)(b+k)
(a+k)(b−k)

)
. Then

u = AF(a, b)




1 +
(

(a−k)(b−k)
(a+k)(b+k)

)
ρ(k)

1 + ρ(k)




+ BF(a,−b)




1 +
(

(a−k)(b+k)
(a+k)(b−k)

)
ρ(k)

1 + ρ(k)




+ CF(−a, b)




1 +
(

(a+k)(b−k)
(a−k)(b+k)

)
ρ(k)

1 + ρ(k)




+ DF(−a,−b)




1 +
(

(a+k)(b+k)
(a−k)(b−k)

)
ρ(k)

1 + ρ(k)




where AD(a+ b)2 −BC(a− b)2 = − δ2

16ab .

b) Q2: Set Ko =
(
a−k
a+k

)2
, K1 = 4ak

a2−k2 and K2 = 4a2k2

(a2−k2)2
. Then

u =(µ+ µo)
2 −

(
4ak

a2 − k2

)
(µ+ µo)

(
ρ(k)

1 + ρ(k)

)

+

(
2ak

a2 − k2

)2( ρ(k)

1 + ρ(k)

)
+

1

4
+ AD

+
1

2
Aρ(a)




1 +
(
a−k
a+k

)2
ρ(k)

1 + ρ(k)


+

1

2
Dρ(−a)




1 +
(
a+k
a−k

)2
ρ(k)

1 + ρ(k)


 .

c) Q1δ: Set Ko =
(
a−k
a+k

)2
and K1 = 2ak

k2−a2 . Then

u =Aρ(a)




1 +
(
a−k
a+k

)2
ρ(k)

1 + ρ(k)


+ Dρ(−a)




1 +
(
a+k
a−k

)2
ρ(k)

1 + ρ(k)




+ B

(
µ+ µo +

(
2ak

k2 − a2

)
ρ(k)

1 + ρ(k)

)

where 16AD + B2 = δ2.
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d) H3δ: Set K =
(
a−k
a+k

)
. Then

u =
(
A + σB

)



1 +
(
a−k
a+k

)
ρ(k)

1 + ρ(k)


Θ

+
(
Cσ + D

)



1 +
(
a+k
a−k

)
ρ(k)

1 + ρ(k)


Θ−1.

e) H2: Set Ko = −2k and K2
1 = 4k2. Then

u =(τ + τo)
2 + 2(τ + τo)

(−2kρ(k)

1 + ρ(k)

)
+

(
4k2ρ(k)

1 + ρ(k)

)

−A2 + 2σA

[
τ + τ1 +

(−2kρ(k)

1 + ρ(k)

)]
.

f) H1: Set K = −2k. Then

u = A

[
τ + τo +

(−2kρ(k)

1 + ρ(k)

)]
+ σB

[
τ + τ1 +

(−2kρ(k)

1 + ρ(k)

)]
(4.172)

For the case of an arbitrary reflectionless potential where A has exactly

N zeroes inR+, one can show that the solution of (4.67) is

Λ(ζ) = 1− cT (ζI +K)−1(I + M)−1r

where c, r and M are defined in Section 3.5 of Chapter 3 by equations (3.44)

and (3.45), and K = Kij is the diagonal matrix kiδij . By using the various

identities in [65] one can show that these solutions are exactly theN -soliton

solutions given in this paper. This was shown explicitly in [27] by utilising

the degeneration procedure between the ABS equations from [65].

4.10 Other Lattice Equations

As a final section to this chapter we give a short discussion on how

we can identify solutions of some well-known lattice equations within the

machinery of the discrete IST. These are all obtainable by considering the

first component φ1 of the Lax equations, and thus to obtain solutions to the
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following equations one must simply solve the singular integral equation

(4.67). We begin by deriving a closed-form lattice equation for the quantity

Λ(ζ). Consider the linear equation for Λ(ζ) taken along opposing sides of a

lattice element in the n- and m-directions:

(q + ζ)
̂̃
Λ(ζ)

Λ̃(ζ)
+ (p− ζ)

Λ(ζ)

Λ̃(ζ)
=
Q ̂̃u− (q2 − p2) ũ− Pu

Ũ
(4.173a)

(p+ ζ)
̂̃
Λ(ζ)

Λ̂(ζ)
+ (q − ζ)

Λ(ζ)

Λ̂(ζ)
=
P ̂̃u− (p2 − q2) û−Qu

Û
(4.173b)

One can then show that if u solves Q3δ then the quantities on the right-hand

side of these equation are in fact equal4, and thus equating these shows that

Λ(ζ) satisfies the lattice equation

(p+ ζ)
̂̃
Λ(ζ)

Λ̂(ζ)
− (p− ζ)

Λ(ζ)

Λ̃(ζ)
= (q + ζ)

̂̃
Λ(ζ)

Λ̃(ζ)
− (q − ζ)

Λ(ζ)

Λ̂(ζ)
. (4.174)

Now let αp := (p2−ζ2)
1
2 , αq := (p2−ζ2)

1
2 , then in terms of the Jost function

ϕ this becomes

αp

(
ϕ(ζ) ϕ̂(ζ)− ϕ̃(ζ) ̂̃ϕ(ζ)

)
= αq

(
ϕ(ζ) ϕ̃(ζ)− ϕ̂(ζ) ̂̃ϕ(ζ)

)
, (4.175)

that is ϕ(ζ) satisfies the lattice potential modified KdV equation [67] [74]

with parameters αp and αq. By setting W (ζ) :=
ϕ̂(ζ)

ϕ̃(ζ)
we then see that W

satisfies
̂̃
W (ζ)

W (ζ)
=

(
αpŴ (ζ)− αq

)(
αp − αqW̃ (ζ)

)
(
αpW̃ (ζ)− αq

)(
αp − αqŴ (ζ)

) , (4.176)

which is the lattice modified KdV equation [65]. Of course equivalent equa-

tions to (4.174), (4.175) and (4.176) hold in any pair of lattice directions, and

each of these equations is multidimensionally consistent. If we now break

4This is the (1,2) element of the consistency equation for the Lax pairs in the n- and

m-directions
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the covariance between the n- and m- lattice directions in (4.174) by setting

ζ = p, we have the following lattice equation for the quantity Λ(p):

2p = (p+ q)
Λ̂(p)

Λ̃(p)
+ (p− q)Λ(p)

̂̃
Λ(p)

. (4.177)

The (weaker) multidimensional consistency properties of this equation are

discussed in [65]. By setting ζ = p in (4.173a) and ζ = q in (4.173b), then

equating the right-hand sides we have ̂̃Λ(p)Λ̂(q) =
̂̃
Λ(q)Λ̃(p) which shows

that it is self-consistent to express Λ(p) in terms of the τ -function:

Λ̃(p) =
F

F̃
, Λ̂(q) =

F

F̂
.

Using this in (4.177) gives the 6-point equation

2pF F̂ = (p+ q)
˜
F̂ F̃ + (p− q)

˜
F
̂̃
F .

By supplementing this with the similar equation obtained by setting ζ = q

in (4.174), one can obtain Hirota’s discrete-time Toda equation [50]:

(p− q)2

˜̂
F
̂̃
F − (p+ q)2

˜
F̂
̂
F̃ + 4pqF 2 = 0.

We now derive two final lattice equation of KdV type. From the Q1δ equa-

tion, if one makes the degeneration

a = ε, u→ εu,

then the equation becomes

(
u− ũ

)(
û− ̂̃u

)
(
u− û

)(
ũ− ̂̃u

) =
q2

p2
, (4.178)

which is the Schwarzian KdV equation [66], also known as the cross-ratio

equation (or Q1o). By choosing the constants such that

A→ B

4
, B→ −B

2
, D→ B

4
, ξo → 1− 2εµo

125



The Discrete IST 4.10. Other Lattice Equations

with µo constant, the solution to (4.178) is then given by

u = B
(
η + ηo − T

)
, (4.179)

where

T =
p

2

(
Λ̃(0)Λ′′(0)− Λ(0)Λ̃′′(0)

)
− Λ(0)Λ̃′(0), η =

M∑

r=1

nr
pr
.

Alternatively from the solution (4.171) of H1, also known as the lattice po-

tential KdV equation [50] [67] [74], if one defines ω := ũ− û then the quan-

tity ω satisfies the lattice KdV equation [50]

ω − ̂̃ω = (p2 − q2)

(
1

ω̂
− 1

ω̃

)
, (4.180)

to which we have the solution

ω =
(
B− (−1)n+mA

)(
p− q + Λ̃ε − Λ̂ε

)
. (4.181)

Note that equation (4.180) is not multidimensionally consistent with itself,

and thus the solution depends only on the variables n and m, while all

other lattice variables are held constant. Moreover from the integral equa-

tion (4.67), for an arbitrary reflectionless potential with M discrete eigen-

values we have

Λε =
M∑

k=1

ckΛ(ζk)ρ(ζk).

Thus the general solution (4.181) is comprised of the background solution

plus the M distinct quantities

ck

(
Λ̃(ζk) ρ̃ (ζk)− Λ̂(ζk) ρ̂ (ζk )

)

which are the individual solitons within the solution. This is the corre-

sponding result to (2.51) for the KdV equation.
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4.11 Chapter Summary

In this chapter we have rigorously derived a discrete IST for the Q3δ

lattice equation. The initial-value space was given on a multidimensional

staircase and the solution obtained depends on N discrete independent

variables and N distinct lattice parameters. The assumptions made on the

solution were that it be real and that the initial profile satisfy the summa-

bility condition (4.39). The solution to Q3δ is expressed explicitly in terms

of the eigenfunctions Λ(a),Λ(b),Υ(a) and Υ(b), all of which are obtainable

by solving the singular integral equation (4.67).

After giving the solution to Q3δ we then used this machinery to give a

discrete IST to all lower ABS equations. This was possible due to the fact

that for every equation considered, the first component of the Lax equa-

tions was the same, and is essentially the H1 solution. This is reflective of

the fact that the soliton solutions to all of these equations are comprised

of the same ingredients [65]. In each case an explicit representation of the

solution was given in terms of these same eigenfunctions.

As a final exercise we showed that the solutions obtained for reflec-

tionless potentials having exactly one discrete eigenvalue are exactly the

one-soliton solutions given in [65]. We also showed how to construct some

previously known integrable lattice equations, some of which having been

studied for over 40 years.

We have found therefore that the solutions of all these lattice equa-

tions are essentially goverened by the singular integral equation (4.67). The

knowledge of solutions to this equation is equivalent to knowledge of so-

lutions to the nonlinear lattice equations. In fact this integral equation is a

discrete analogue to (2.30) of Chapter 2, which one obtains from the IST for

the KdV equation.
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In this final chapter we explore one of the many uses of the inverse scat-

tering transform, which is the the ability to generate an infinite number of

nontrivial conservation laws for nonlinear equations. We begin by looking

at the KdV equation, where discuss different methods for obtaining an in-

finite number of conservation laws. In Section 5.2 we then review some

methods of obtaining conservation laws for nonlinear partial difference

equations, and in Section 5.3 we then show how these can be generated

directly from the discrete IST developed in Chapter 4. We also mention

possible generalisations of this method.

5.1 Conservation Laws for the KdV Equation

One of the key integrability properties of the KdV equation (2.2) is that

it has an infinite number of nontrivial conservation laws [62] [44]. In gen-

eral a (local) conservation law for partial differential equations is an equa-

tion of the form

∂

∂t

[
T
]

=
∂

∂x

[
X
]
, (5.1)

where X and T are functionals of u and its various derivatives. For the

KdV equation

ut + 6uux + uxxx = 0 (5.2)
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we may assume that both X and T depend only on u, ux, uxx, ... since all

t-derivatives may be replaced with x-derivatives using the KdV equation

itself. In physics T is referred to as the density and X the flux. For example

the KdV equation itself may be written in the form

∂

∂t

[
u
]

=
∂

∂x

[
−3u2 − uxx

]
,

and thus u is a conserved density and −3u2 − uxx is the corresponding

flux. The reason for such labelling is that if we assume decaying boundary

conditions on u and its derivatives such that the integral
∫ +∞

−∞
X dx

exists, then the quantity

I :=

∫ +∞

−∞
T dx (5.3)

is a constant of motion for solutions of the KdV equation, i.e. it satisfies

It = 0. This can be seen by taking a partial time derivative of (5.3), passing

the derivative inside the integral (which we assume is possible) and using

the conservation law (5.1) and the boundary conditions of X .

We now look at one method of proving that the KdV has an infinite

number of conservation laws, which was first given in [62], and is based

around the Miura transformation

u = −vx − v2

which is the special case of p = 0 for equation (3.3) in Chapter 3. This maps

solutions of the modified KdV equation (mKdV)

vt − 6v2vx + vxxx = 0

to those of the KdV equation (5.2). Since the KdV is Galilean-invariant, it

remains unchanged through the change of variables

t′ = t, x′ = x+
6

ε2
t, u′(x′, t′) = u(x, t) +

1

ε2
,
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however if we set

v = −εw +
1

ε

then this change of variables transforms the mKdV equation into

wt +
(

6w2 − 2ε2w3 + wxx

)
x

= 0, (5.4)

where we have dropped the primes for notational clarity. Thus we see that

this particular choice for v has turned the mKdV equation into another local

conservation law (note that the mKdV is itself already a conservation law

with density v and flux 2v3 − vxx), where T = w is the local conserved

density and X = −6w2 + 2ε2w3 − wxx is the corresponding flux. In order

to turn this into a conservation law for u′, we observe that this change of

variables maps the Miura transformation to

u′ = 2w + εwx − ε2w2,

which may be solved recursively for w as a formal series in ε:

w =
u′

2
− ε
(
u′x
4

)
+
ε2

8

(
u′2 + u′xx

)
+ ... .

By then substituting this into (5.4) and imposing that this equation be sat-

isfied at every power of ε, equation (5.4) yields an infinite number of con-

servation laws. The first two conserved densities and fluxes are (dropping

the primes), up to a common multiplicative factor,

To = u, Xo = −3u2 − uxx

T1 = −ux, X1 = 6uux + uxxx

T2 = u2 + uxx, X2 = −4u3 − 5u2
x − 8uuxx − uxxxx.

By inspection however the second conservation law reads

(−ux)t = (6uux + uxxx)x
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which after using the KdV equation to replace the right-hand side, simply

states that the cross-derivatives of u are equal, which is of course true not

only for solutions of the KdV, but for a much wider class of functions. For

this reason we call such conservation laws trivial. In fact it turns out that all

odd powers of ε give rise to trivial conservation laws, but the conservation

laws for even powers of ε are all nontrivial [62].

A different means of obtaining an infinite number of conservation laws

for the KdV however is by using the inverse scattering transform. This is

just one of the many utilities of the IST as a means of obtaining information

about the solutions of the KdV equation. Other uses include the ability

to study the asymptotics of solutions [9] as well as to generate an infinite

hierarchy of compatible flows (using the so-called Lenard scheme, given

in [44]). By using a square eigenfunction expansion, the authors of [44]

showed that if one defines the quantity An through the recursion relation

∂

∂x

(
An+1

)
=

1

4
(−Anxxx + 4uAnx + 2uxAn) (5.5)

with A0 = 1, then for every n ≥ 0, An is a conserved density for the equa-

tion

ut − uux + uxxx = 0,

which is related to the KdV equation by the change of variables u → −6u.

By explicit calculation we have

A1 =
u

2
, A2 =

1

8
(3u2 − uxx),

where we have chosen the integration constants to be zero so that the densi-

ties have the required boundary conditions. The corresponding fluxes can

then be calculated from the conservation law equation (5.1) by replacing

all t-derivatives with −6uux − uxxx, calculating the required antiderivative

and setting the integration constant to be zero. For each n this yields a

nontrivial conservation law for the KdV equation.
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5.2 Conservation Laws for Lattice Equations

We now look at the existence of conservation laws for the partial dif-

ference equations considered in Chapter 4. In the discrete setting a conser-

vation law for a partial difference equation of two variables n and m is an

equation of the form

∆m

[
M
]

= ∆n

[
N
]

(5.6)

where ∆n and ∆m are discrete derivative operators

∆n

[
F (n,m)

]
= F (n+ 1,m)− F (n,m)

∆m

[
F (n,m)

]
= F (n,m+ 1)− F (n,m),

and M = M(n,m) and N = N(n,m) are the discrete equivalents of the

density and flux respectively (here we take m to be the discrete time direc-

tion). Again if we assume decaying boundary condition on the flux, then

by defining I :=
∑+∞

n=−∞M(n,m) we have

∆m

[
I
]

=
+∞∑

n=−∞
∆m

[
M(n,m)

]
=

+∞∑

n=−∞
∆n

[
N(n,m)

]
= 0,

and thus I is a constant of motion, in the sense that it is independent of the

discrete time variable. The question of the existence of conservation laws

for the nonlinear difference equations considered in Chapter 4 goes back

(to the best of the author’s knowledge) to Orfanides [70] in 1978 who found

conservations laws for the lattice sine-Gordon equation. In 1987 Wiersma

and Capel [91] then looked at conservation laws for the lattice potential

KdV equation, and its various continuum limits. More recently conserva-

tion laws for the ABS equation have been obtained in [51] [76] [77]. Here

the authors start with a conservation law for an unknown density and flux,

substitute the nonlinear partial difference equation into the conservation

law, and by using certain differential operators reduce this to a system of
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partial differential equations, which can in principle be solved to obtain the

required density and flux as functions of the dependent variable. These

have also been obtained from an algebraic approach in [60]. Conservation

laws of reductions of integrable lattice equations have also been found, see

e.g. [88] [86] [87].

Here we briefly describe the so-called "Gardner method" [78] for the

lattice potential KdV equation (H1)

(u− ̂̃u )( û− ũ ) = p2 − q2,

which is a method of obtaining an infinite number of nontrivial conserva-

tion laws for this equation, and is a discrete analogue of the above method

for the KdV equation using the Miura transformation. The multidimen-

sional consistency of the ABS equations implies that they define their own

auto-Bäcklund transformations, and these have been studied in [80] [16].

Given one solution u = un,m of H1, a new solution v = vn,m of H1 obtained

through the transformation u→ v is found by solving

(u− ṽ )( ũ− v) = r2 − p2 (5.7a)

(u− v̂ )( û− v) = r2 − q2. (5.7b)

These are discrete Riccati equations for the new quantity v. One can start by

making the substitution v = f̃f−1 in (5.7a) so as to linearise it. The solution

of this must then be used in (5.7b) to determine them-dependence, where a

similar substitution could be made on the first integration constant. There

are however two degenerate values of the Bäcklund parameter r2 for which

one of the equations (5.7) factorise, namely r2 = p2 or r2 = q2. At r2 = p2

we have the solution v = ũ or ṽ = u and at r2 − q2 we have v = û or

v̂ = u. Given these explicit solutions we look for series solutions near these

degenerate points. For example if we write r2 = p2 + ε and look for a
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solution

vn,m = un+1,m +

+∞∑

i=1

v(i)
n,mε

i, (5.8)

then the quantities v(i) must satisfy

ε =

(
+∞∑

i=1

v(i)
n,mε

i

)(
un,m − un+2,m −

+∞∑

i=1

v
(i)
n+1,mε

i

)
. (5.9)

To leading order we then have

v(1)
n,m =

1

un,m − un+2,m
,

and the higher-order terms are found by the relation

v(i)
n,m =

1

un,m − un+2,m

i−1∑

j=1

v(j)
n,mv

(i−j)
n+1,m. (5.10)

As in the continuous case the idea is to start with a single known conserva-

tion law and then expand in the parameter ε. By using equations (5.7a) and

(5.7b) one can show that if we define the density and flux by

M(n,m) = ln(vn,m − un+1,m), N(n,m) = ln(vn,m − un,m+1) (5.11)

then this indeed yields a conservation law for H1. Since the H1 equation is

independent of ε, by using the ε-expansion of v in the components M and

N of the conservation law we will obtain a new conservation law at each

power of ε. If we define

Vn :=
1

un+2,m − un,m
, W :=

1

un+1,m − un,m+1
(5.12)

then the O(ε) conserved density and flux are

M = VnVn+1, N = −WVn, (5.13)

and at O(ε2) we have

M = VnV
2
n+1Vn+2 +

1

2
V2
nV

2
n+1, N = −WV2

nVn+1 −
1

2
W2V2

n.
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The corresponding conserved quantities appear naturally along the line

m = const., however by instead expanding around r2 = q2 + ε the method

yields an infinite number of conserved quantities along the line n = const..

Furthermore by taking a particular continuum limit it was shown in [78]

that these are all indeed nontrivial.

5.3 Conservation Laws for Lattice Equations from the

Discrete Inverse Scattering Transform

We now look at how one can obtain an infinite number of conservation

laws for the partial difference equations considered in Chapter 4, all from

the machinery of the discrete IST. This method is based on that for the con-

tinuous case, where we first derive a single conservation law for a modifica-

tion of the square eigenfunction, and then expand in some small parameter

ε. Here we consider only the first component of the Lax equations, which

for all of the equations in Chapter 4 is the same. The conservation laws

derived here therefore apply not only to H1, but also to H2→Q3δ. It is un-

clear however what effect the various Miura transformations relating, for

example, the potential υ to the solution u of Q3δ, will have on the these con-

servation laws. As in Section 5.2 the conserved quantities appear naturally

along the lines m = const. or n = const., however due to the multidi-

mensional nature of the discrete IST we indicate how one could generalise

this to a higher-dimensional staircase. Finally we note that since it is likely

that similar calculations can also be performed for the second component

of the Lax equations, we do not claim that these are exhaustive. In other

words it is not clear whether the infinite sequence of conservation laws and

conserved quantities generated here is sufficient to uniquely characterise

solutions of the equations.

135



Conservation Laws 5.3. Conservation Laws from the Discrete IST

For each equation in Chapter 4, the evolution of the first component of

the Lax equations along the line m = const. is given by equation (4.55),

which is

αpφ1(n+ 2; ζ)− Vn+1φ1(n+ 1; ζ) + αpφ1(n; ζ) = 0, (5.14)

where αp := (p2 − ζ2)
1
2 and we assume that Vn → 2p as n → ±∞. It was

also shown in Section of Chapter 4 that φ1 satisfies

αp

(
φ1φ̂1 − φ̃1

̂̃
φ1

)
= αq

(
φ1φ̃1 − φ̂1

̂̃
φ1

)
(5.15)

which is the lattice modified KdV equation, where αp = (p2 − ζ2)
1
2 and

αq = (q2 − ζ2)
1
2 . In fact by rederiving this using the Jost functions ϕ and ψ

one can obtain the more convenient form

ψ̃ ̂̃ϕ− ψ ϕ̂
αq

=
ϕ̂
̂̃
ψ − ϕψ̃
αp

. (5.16)

Equation (5.16) is a conservation law with density M and flux N given by

M =
ϕψ̃

αp
− A

p+ ζ
=

ΛΥ̃− A

p+ ζ
(5.17)

N =
ψ ϕ̂

αq
− A

q − ζ =
ΥΛ̃− A

q − ζ , (5.18)

where the extra constant terms have been added so that M and N decay

to zero at the relevant boundaries. Here A = A(ζ) is the spectral function

from Chapter 4, i.e. the reciprocal of the transmission coefficient. Now in

order to generate an infinite number of conservation laws from (5.16) we

note that both M and N are analytic around the point ζ = p, and we thus

may expand each as a power series in ε := ζ−p. We now obtain a recursion

relation for the quantity

Fn :=
ϕ(n− 1; ζ)ψ(n; ζ)

αp
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as a function defined in the n-direction. Consider equation (5.14) for ψ:

αp

(
ψ(n+ 2; ζ) + ψ(n; ζ)

)
= Vn+1ψ(n+ 1; ζ). (5.19)

If we multiply this by ϕ(n+ 1) and use the identity

αpψ(n; ζ)ϕ(n+ 1; ζ) = 2ζA(ζ) + αpϕ(n; ζ)ψ(n+ 1; ζ),

then in terms of F we have

ϕ(n+ 1; ζ)ψ(n+ 1; ζ) =
α2
p(Fn+2 + Fn+1)− 2ζA(ζ)

Vn+1
. (5.20)

Now multiply equation (5.19) by ϕ to obtain

ϕ(n; ζ)ψ(n+ 2; ζ) = Vn+1Fn+1 − ϕ(n; ζ)ψ(n; ζ), (5.21)

and by then taking equation (5.19) for ϕ and multiplying it by ψ(n + 2; ζ)

and using (5.20) and (5.21), we obtain the closed-form linear expression for

F:

Fn+2 − Fn+1 =

[
α2
p(Fn+3 + Fn+2)− 2ζA(ζ)

Vn+1Vn+2

]

−
[
α2
p(Fn+1 + Fn)− 2ζA(ζ)

VnVn+1

]
. (5.22)

The general solution is first found by solving the homogeneous equation

Hn+2 − Hn+1 = α2
p

[
Hn+3 + Hn+2

Vn+1Vn+2

]
− α2

p

[
Hn+1 + Hn

VnVn+1

]
(5.23)

and then adding the particular solution

Hpn =
−2ζA(ζ)

Vn−1Vn
.

We now make a Taylor expansion around the point ζ = p by letting ζ =

p + ε, which implies α2
p = −2pε − ε2. Firstly the particular solution Hp will

become

Hpn =
−2

Vn−1Vn

(
pA(p) + (pA′(p) + A(p))ε+ ...

)
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and thus will only change by a scaling factor. By writing

Hn = H(o)
n + H(1)

n ε+ H(2)
n ε2 + ...

the homogeneous equation (5.23) gives at O(1)

H
(o)
n+2 − H

(o)
n+1 = 0 ⇒ H(o)

n = Co

for some constant Co. Thus at O(1) we have

H + Hp − A(ζ)

p+ ζ
= Co −

2pA(p)

Vn−1Vn
− A(p)

2p
,

and since the left-hand side decays to zero as n → ±∞ we have Co = A(p)
p

and so the O(εo) conserved density is

M (o) =
A(p)

2p

(
1− 4p2

Vn−1Vn

)
. (5.24)

Now by considering the O(ε) terms in equation (5.23) we have

H
(1)
n+2 − H

(1)
n+1 =

[
2A(p)

VnVn+1

]
−
[

2A(p)

Vn+1Vn+2

]

⇒ H(1)
n = C1 −

2A(p)

Vn−1Vn

for some constant C1, and so adding this to the relevant term in the ex-

pansion of Hp and using the boundary conditions of F we find firstly that

C1 = A′(p)
p + 3A(p)

4p2
and then that the O(ε) conserved density is

M (1) =
A(p)

p2
+

A′(p)
2p
− 4A(p) + 2pA′(p)

Vn−1Vn

=

[
2

p
+

A′(p)
A(p)

]
M (o)

and thus we see that the O(ε) conserved density is simply a scalar multiple

of M (o). If we now look at O(εr) we have

H
(r)
n+2 − H

(r)
n+1 =2p

[
H

(r−1)
n+1 + H

(r−1)
n

VnVn+1

]
− 2p

[
H

(r−1)
n+3 + H

(r−1)
n+2

Vn+1Vn+2

]

+

[
H

(r−2)
n+1 + H

(r−2)
n

VnVn+1

]
−
[
H

(r−2)
n+3 + H

(r−2)
n+2

Vn+1Vn+2

]
. (5.25)
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Equation (5.25) defines a recursion operator which enables one to succes-

sively determine every H(r) for r ≥ 0, which can be added to the relevant

term in the expansion of Hp to obtain theO(εr) conserved densityM (r). The

integration constant in each case is chosen such that M (r) → 0 as n→ ±∞.

This bears a great resemblance to the recursion operator (5.5) for the KdV

equation, and in both cases is a generator for conserved densities. Going to

O(ε2) we find

H
(2)
n+1 =

5A(p)

8p3
+

5A′(p)
4p2

+
A′′(p)

2p
−
(

2Co + 4pC1

VnVn+1

)

+ 4pA(p)

(
1

Vn−1V2
nVn+1

+
1

V2
nV

2
n+1

+
1

VnV
2
n+1Vn+2

)
,

which implies that

M (2) =

[
5

2p2
+

3A′(p)
pA(p)

+
A′′(p)
2A(p)

]
M (o)

+
A(p)

4p3

(
16p4

Vn−2V
2
n−1Vn

+
16p4

V2
n−1V

2
n

+
16p4

Vn−1V2
nVn+1

− 3

)
. (5.26)

Thus up to a scalar multiple the first two functionally independent con-

served densities are

M (1) =
1

VnVn+1
− 1

4p2

M (2) =
1

VnV
2
n+1Vn+2

+
1

V2
n+1V

2
n+2

+
1

Vn+1V
2
n+2Vn+3

− 3

16p4
.

For the H1 equation we have

Vn = un+2,m − un,m,

and since
+∞∑

n=−∞

(
16p4

Vn−2V
2
n−1Vn

− 1

)
=

+∞∑

n=−∞

(
16p4

Vn−1V2
nVn+1

− 1

)

the densities obtained here agree with those obtained by the Gardner method

in Section 5.2, where they were shown to be nontrivial. Of course we have

the added constant terms, which allow these conservation laws to exist for
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soliton solutions, and all solutions obtained through the discrete IST. The

corresponding fluxes can then be obtained by making a similar expansion

in N . In order to obtain conserved quantities along the line n = const. one

simply replaces equation (5.14) with

(q2 − ζ2)
1
2φ1(m+ 2; ζ)− Vm+1φ1(m+ 1; ζ) + (q2 − ζ2)

1
2φ1(m; ζ) = 0,

where the function Vm → 2q as m → ±∞, and then repeat same calcula-

tions in the m-direction.

A natural question that arises is whether one can then obtain conserved

quantities along some staircase Γ. From Chapter 4 we found that the evo-

lution of φ1 along an arbitrary staircase Γ is given by equation (4.22), which

is

(p(i+1)2−ζ2)
1
2 φ1(i+2; ζ)−Vi+1φ1(i+1; ζ)+(p(i)2−ζ2)

1
2 φ1(i; ζ) = 0, (5.27)

where i is the independent variable along the Γ, the function Vi+1 → p(i) +

p(i + 1) as i → ±∞, and p(i) are the staircase parameters, which cycle

through the lattice parameters pk following a specified stepping algorithm.

For example if N=4 and Γ is a (1, 2, 3)-staircase in the (n,m, l)-directions

with parameters p, q, r respectively, then p will cycle through

p, q, q, r, r, r, p, q, q, r, r, r, .... If we donte the remaining lattice variable and

parameter by y and s respectively, then a conservation law involving a shift

along Γ is an equation of the form

∆y

[
Y
]

= ∆i

[
I
]
, (5.28)
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where i may represent either n,m or l due to the multidimensional consis-

tency. Using the above results we may set

Y =
ϕ(i, y; ζ)ψ(i+ 1, y; ζ)

(p− ζ2)
1
2

− A

p+ ζ
(5.29)

I =
ψ(i, y + 1; ζ)ϕ(i, y + 1; ζ)

(s2 − ζ2)
1
2

− A

s− ζ . (5.30)

It then follows that

∆y

(
+∞∑

i=−∞
Y

)
= 0, (5.31)

in other words the quantity in the brackets is unchanged when iterated in

the transverse y-direction. If we now follow the above methodology by

setting ζ = pk + ε, for some staircase parameter pk, then in principle one

could use equation (5.27) to obtain a recursion relation for the density I at

every power of ε, and thus obtain an infinite number of conservation laws,

yielding an infinite number of conserved quantities along Γ. We do not go

into the specific calculations here, but rather just mention this possible gen-

eralisation of this technique.

In this chapter we have looked at conservation laws for both contin-

uous and discrete integrable nonlinear equations. In particular we have

shown how these may be obtained directly from the machinery of the dis-

crete IST. The method is based on the conservation law (5.16) obtained

from the square eigenfunctions, which naturally gives conserved quanti-

ties along the line m = const. or n = const., and these were shown to agree

with those obtained by previous methods. We also showed how one can

generalise this to obtain conserved quantities along an arbitrary staircase.
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6 Conclusions

The application of the inverse scattering transform (IST) as a method of

solving physically relevant nonlinear partial differential equations has seen

much growth and use since its discovery in the late 1960s. It provides a way

of linearising these systems, that is a means of obtaining their solutions

through the solving of linear equations. Some of the major successes of the

IST in mathematical physics have been the solving of the Korteweg-de Vries

equation and its variants, the nonlinear Schrödinger equation and the sine-

Gordon equation, all of which have great importance in the field. The IST

gives a wide class of solutions satisfying decaying boundary conditions,

which are typically the most physically relevant scenarios. It also provides

a means of obtaining other characteristic properties of these equations such

as conservation laws and asymptotics of solutions.

Many physical systems however are naturally modelled by discrete or

semi-discrete equations, and as such there was a great need for an adapta-

tion of the IST to deal with this. In the 1970s several investigations were

made, and authors such as Case, Kac, Flaschka, Ablowitz and Ladik had

success in adapting the IST to the semi-discrete setting. The systems that

were solved were often discrete versions of well-known physical systems,

and as in the continuous case this gave a method of solving such systems
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for solutions with decaying boundary conditions. Investigations into fully

discrete applications of the IST were also made by Ablowitz and Ladik.

Over the last decade or so however the field of discrete integrable sys-

tems has blossomed, and knowledge of the variety of discrete systems,

their solutions and their integrability properties has increased profoundly.

An important part of this picture was the work of Adler, Bobenko and Suris

(ABS) [12] who exhaustively classified a restricted class of multidimension-

ally consistent lattice equations. With this rapid and fruitful development

there was a great need for a rigorous formulation of a discrete IST as a tool

for solving this new class of equations, which took into account their defin-

ing inherent properties such as their multidimensional consistency. This

has been the aim of our work.

In our study we have rigorously derived a discrete IST as a tool for

solving a wide class of integrable nonlinear partial difference equations.

Our method has combined the ideas of Butler and Joshi [28] and Butler [27]

to give a new result, which is a method of solving the initial-value problem

for the majority of the ABS equations, where the initial condition is posed

on a multidimensional staircase within an N-dimensional lattice. This is

one of the benefits of the discrete setting, as such generalisations are not so

natural in the continuous setting. In each case the solution was assumed to

be real, and boundary conditions were chosen such that the potential term

appearing in the scattering problem decayed at the boundary.

The solution of each nonlinear equation was shown to be expressible

in terms of the solution to a singular integral equation, which is in fact a

discrete analogue of the linearisation of the KdV and Painlevé II equations

found by Fokas and Ablowitz [40] in 1981. Due to the multidimensional
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nature of the discrete IST, the solutions obtained depended on all N inde-

pendent variables and lattice parameters. We also found that for each equa-

tion the soliton solutions corresponded exactly to the initial conditions for

which the reflection coefficient was identically zero.

The class of solutions for which the discrete IST is applicable is deter-

mined by the reality condition and the summability condition assumed on

the potential. The summability condition that we found was the same as

that obtained in [28] for the lattice potential KdV equation, however in that

paper the generalisation to an N-dimensional lattice was not made. It is

satisfying therefore to see that this natural extension of the IST imposes

no further restrictions on the class of solutions obtained. In contrast the

summability condition assumed in [27] was significantly stronger, however

this work allowed for both a multidimensional lattice and complex-valued

solutions. It would be of great interest to determine whether the discrete

IST presented here could be generalised to allow for complex-valued solu-

tions without having to strengthen this summability condition.

Another useful application of the IST is its ability to generate an in-

finite number of conservation laws for these nonlinear equations. Here

we have shown how to do this for partial difference equations. We began

with a single conservation law obtained from the first component of the for-

ward scattering problem, and by expanding in a small parameter we found

a recursion relation which can be used to generate an infinite number of

nontrivial conservation laws. We also indicated how this method could be

generalised to give conservation laws along an arbitrary staircase. There is

however the question of whether a similar technique can be applied to the

second component of the forward scattering problem, and whether this will

yield additional conservation laws which are independent to those found

here. Furthermore as in the continuous case it is likely that the discrete IST
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can be used as a tool for obtaining qualitative and quantitative information

about other properties of these nonlinear systems, such as the long-time

asymptotics of solutions. These are important questions, which should be

answerable from the results given here.

Finally there is the question of how this discrete IST can be applied to

more general systems. The Q4 equation, which lies at the top of the ABS hi-

erarchy, does not fall within the scope of our work here. It is likely however

that the methods developed here should be applicable to this equation, af-

ter generalisation to allow for a different type of scattering problem. There

are also a great number of physically important systems which lie outside

the ABS classification, such as the lattice Boussinesq systems [85]. These

are multicomponent systems which retain many of the well-known prop-

erties of integrable systems. This suggests that an adaptation of our work

in this direction is also a possibility, and will form the basis of future inves-

tigations flowing from this thesis.
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7 Appendix

7.1 Proof of Theorem 4.3.6

We first prove (4.41a). For ζ ∈ R+, ζ 6= 0 the recursion relation (4.34)

can be upper-bounded by

|Hk+1(i; ζ)| ≤
i−1∑

l=−∞
|υ(l)||Hk(l; ζ)|. (7.1)

We then claim that

|Hk(i; ζ)| ≤ F (i)k

k!
, (7.2)

where

F (i) =
i−1∑

r=−∞
|υ(r)|.

Clearly this holds for k = 0. To prove the inductive step we use (7.1),

summation by parts and the fact that F (i+ 1) ≥ F (i):

|Hk+1(i; ζ)| ≤
i−1∑

l=−∞
|υ(l)|F (l)k

k!

=
1

k!

i−1∑

l=−∞

[
F (l + 1)− F (l)

]
F (l)k

=
F (i)k+1

k!
− 1

k!

i−1∑

l=−∞

[
F (l + 1)k − F (l)k

]
F (l + 1)
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=
F (i)k+1

k!
− 1

k!

i−1∑

l=−∞

[
F (l + 1)− F (l)

]
F (l + 1)

×
(

k−1∑

r=0

F (l + 1)k−1−rF (l)r

)

≤ F (i)k+1

k!
− k

k!

i−1∑

l=−∞

[
F (l + 1)− F (l)

]
F (l)k,

and so by examining the second and last lines we have

1

k!

i−1∑

l=−∞

[
F (l + 1)− F (l)

]
F (l)k ≤ F (i)k+1

(k + 1)!
,

which then shows that

|Hk+1(i; ζ)| ≤ F (i)k+1

(k + 1)!
.

Thus the estimate (7.2) holds. The series solution for Λ can then be upper-

bounded by

|Λ(i; ζ)− 1| ≤
+∞∑

k=1

|Hk(i; ζ)|
|ζ|k ≤

+∞∑

k=1

F (i)k

|ζ|kk!

≤
(
F (+∞)

|ζ|

)
exp

[
F (+∞)

|ζ|

]
≤ C1

since (4.39) holds. Thus (4.41a) is proved and so for any ζ 6= 0 the series

solution for Λ converges absolutely and uniformly in i. We now prove

(4.41b). To allow for ζ = 0 we give an alternative upper-bound for the
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summation equation (4.29). One can easily verify that

1−
i−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)
=

i−1∑

j=l

[
1−

(
p(j)− ζ
p(j) + ζ

)] j−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)
(7.3)

⇒ |Λ(i; ζ)| ≤ 1 +
i−1∑

l=−∞



i−1∑

j=l

1

|p(j) + ζ|

j−1∏

r=l

∣∣∣∣
p(r)− ζ
p(r) + ζ

∣∣∣∣


 |υ(l)||Λ(l; ζ)|

≤ 1 +
i−1∑

l=−∞



i−1∑

j=l

1

|p(j) + ζ|


 |υ(l)||Λ(l; ζ)|.

For ζ ∈ R+ however we have

|p(j) + ζ| ≥ |p(j)− ζ| ≥
∣∣ |p(j)| − |ζ|

∣∣ ≥ |p(j)| − |ζ| ≥ |p(j)|

and so we have

|Λ(i; ζ)| ≤ 1 + η

i−1∑

l=−∞
(i− l) |υ(l)| |Λ(l; ζ)|, (7.4)

where η = max{ |p(r)−1| : r ∈ I}. Equation (7.4) is a majorant for both the

summation equations (4.29) and (4.31), and thus may be used to estimate

Λ(i; ζ) for all ζ ∈ R+. Thus we have

|Λ(i; ζ)| ≤
+∞∑

k=0

ηkH∗k(i)

where

H∗0 = 1, H∗k+1(i) =
i−1∑

l=−∞
(i− l) |υ(l)|H∗k(l).

We claim that

|H∗k(i)| ≤ G(i, i)k

k!
(7.5)

where

G(i, j) =

j−1∑

r=−∞
(i− r) |υ(r)|.
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Clearly this holds for k = 0. To prove the inductive step we use the recur-

sion relation for H∗k , and again summation by parts and the properties of

G:

|H∗k+1(i)| ≤
i−1∑

l=−∞
(i− l) |υ(l)|

(
G(l, l)k

k!

)

≤ 1

k!

i−1∑

l=−∞

[
G(i, l + 1)−G(i, l)

]
G(i, l)k

=
1

k!
G(i, i)k+1 − 1

k!

i−1∑

l=−∞

[
G(i, l + 1)k −G(i, l)k

]
G(i, l + 1)

=
1

k!
G(i, i)k+1 − 1

k!

i−1∑

l=−∞

[
G(i, l + 1)−G(i, l)

]
G(i, l + 1)

×
(

k−1∑

r=0

G(i, l + 1)k−1−rG(i, l)r

)

≤ 1

k!
G(i, i)k+1 − k

k!

i−1∑

l=−∞

[
G(i, l + 1)−G(i, l)

]
G(i, l)k,

and again by examining the second and last lines we have

1

k!

i−1∑

l=−∞

[
G(i, l + 1)−G(i, l)

]
G(i, l)k ≤ G(i, i)k+1

(k + 1)!

which implies

|H∗k+1(i)| ≤ G(i, i)k+1

(k + 1)!

and completes the inductive step. Thus for all ζ ∈ R+

|Λ(i; ζ)− 1| ≤
+∞∑

k=1

ηkG(i, i)k

k!
≤ ηG(i, i) exp

[
ηG(i, i)

]
.
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Let us first consider i ≤ 0. In this case we have

|Λ(i; ζ)− 1| ≤ η exp
[
ηG(i, i)

] [
i

i−1∑

r=−∞
|υ(r)|+

i−1∑

r=−∞
(−r)|υ(r)|

]

≤ η exp
[
ηG(0, 0)

] [ −1∑

r=−∞
(−r)|υ(r)|

]

≤ D1,

for some constant D1, courtesy of (4.39). To examine the case i > 0 we

consider the majorant (7.4)

|Λ(i; ζ)| ≤ 1 + η
i−1∑

l=−∞
(−l) |υ(l)| |Λ(l; ζ)|+ i η

i−1∑

l=−∞
|υ(l)| |Λ(l; ζ)|

≤ 1 + η

−1∑

l=−∞
(−l) |υ(l)| |Λ(l; ζ)|+ i η

i−1∑

l=−∞
|υ(l)| |Λ(l; ζ)|

≤ D2 + i η
i−1∑

l=−∞
|υ(l)| |Λ(l; ζ)|

for some constant D2, where we have used (4.39) and the fact that Λ(i; ζ)

can be upper-bounded by a constant for i ≤ 0. Write Λ(i; ζ) = D2(1 +

i)Ξ(i; ζ), then the upper-bound for Ξ becomes

|Ξ(i; ζ)| ≤ 1 + η

(
i

1 + i

) i−1∑

l=−∞
(1 + |l|) |υ(l)| |Ξ(l; ζ)|

≤ 1 + η
i−1∑

l=−∞
(1 + |l|) |υ(l)| |Ξ(l; ζ)|.

Making similar arguments to those presented above it follows that

|Ξ(i; ζ)| ≤ exp

(
η

i−1∑

l=−∞
(1 + |l|) |υ(l)|

)

≤ exp

(
η

+∞∑

l=−∞
(1 + |l|) |υ(l)|

)
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which in turn implies that for i > 0,

|Λ(i; ζ)| ≤ C2(1 + i)

for some constant C2. Combining this with the result for i ≤ 0 proves

(4.41b). Thus for each i the series solution for Λ converges absolutely and

uniformly in ζ for ζ ∈ R+. Since the iterates Hk are continuous in this

region and analytic in its interior, Λ also has this property. The results for

Υ follow in a similar fashion.

7.2 Proof of Theorem 4.3.7

To prove (4.43) we first use (7.3) to rewrite the summation equation

(4.29) as

Λ(i; ζ) = 1 +
i−1∑

l=−∞



i−1∑

j=l

1

(p(j) + ζ)

j−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)
 υ(l)Λ(l; ζ),

which agrees with (4.31) and is therefore valid for all ζ ∈ R+. Taking a

derivative of this equation gives

Λ′(i; ζ) =
i−1∑

l=−∞



i−1∑

j=l

1

(p(j) + ζ)

j−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)
 υ(l)Λ′(l; ζ)

−
i−1∑

l=−∞

i−1∑

j=l

(
1

(p(j) + ζ)2

j−1∏

r=l

(
p(r)− ζ
p(r) + ζ

)

+
1

(p(j) + ζ)

j−1∑

s=l

2p(s)

(p(s) + ζ)2

j−1∏

r=l,r 6=s

(
p(r)− ζ
p(r) + ζ

)
 υ(l)Λ(l; ζ)

which can be upper-bounded by

|Λ′(i; ζ)| ≤ η
i−1∑

l=−∞
(i− l)υ(l)Λ′(l; ζ) + η2

i−1∑

l=−∞
(i− l)2 |υ(l)| |Λ(l; ζ)| (7.6)
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Firstly if i ≤ 0 then since |Λ(i; ζ)| can be bounded by a constant, the summa-

bility condition (4.42) implies that

η2
i−1∑

l=−∞
(i− l)2 |υ(l)| |Λ(l; ζ)| ≤ D1

for some constant D1. If on the other hand i > 0 then using (i − l)2 ≤
2(i2 + l2) we have

η2
i−1∑

l=−∞
(i− l)2 |υ(l)| |Λ(l; ζ)| ≤ 2η2

i−1∑

l=−∞
l2 |υ(l)| |Λ(l; ζ)|

+ 2η2
i−1∑

l=−∞
i2 |υ(l)| |Λ(l; ζ)|

≤ 2η2
−1∑

l=−∞
l2 |υ(l)| |Λ(l; ζ)|+ 2η2

i−1∑

l=1

l2 |υ(l)| |Λ(l; ζ)|

+ 2i2 η2
i−1∑

l=−∞
|υ(l)| |Λ(l; ζ)|

≤ D1 + 2i2 η2
i−1∑

l=1

|υ(l)| |Λ(l; ζ)|+ 2i2 η2
i−1∑

l=−∞
|υ(l)| |Λ(l; ζ)|

≤ D1 + i2D3

i−1∑

l=−∞
(1 + |l|) |υ(l)|

≤ D4(1 + i2),

for some constants D1 → D4, where we have used (4.41b) to upper-bound

Λ(i; ζ) for i > 0. Thus the upper-bound (7.6) becomes

|Λ′(i; ζ)| ≤ D5(1 + imax{0, i}) + η

i−1∑

l=−∞
(i− l) |υ(l)| |Λ′(l; ζ)|. (7.7)
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Appendix 7.2. Proof of Theorem 4.3.7

Now consider the function θ defined by Λ′(i; ζ) = D5 (1+imax{0, i})θ(i; ζ).

If i ≤ 0 then we have

|θ(i; ζ)| ≤ 1 + η
i−1∑

l=−∞
(i− l) |υ(l)| |θ(l; ζ)|

⇒ |θ(i; ζ)| ≤ exp
[
ηG(i, i)

]
≤ exp

[
ηG(0, 0)

]

whereG(i, j) is defined in the proof of Theorem 4.3.6. If i > 0 then we have

|θ(i; ζ)| ≤ 1 + η
i−1∑

l=−∞
(i− l) |υ(l)| |θ(l; ζ)|

[
1 + jmax{0, j}

1 + i2

]

= 1 + η
−1∑

l=−∞
(i− l) |υ(l)| |θ(l; ζ)|

[
1

1 + i2

]

+ η
i−1∑

l=0

(i− l) |υ(l)| |θ(l; ζ)|
[

1 + j2

1 + i2

]

≤ 1 + η
i−1∑

l=−∞
(i− l) |υ(l)| |θ(l; ζ)|

⇒ |θ(i; ζ)| ≤ exp
[
ηG(i, i)

]
.

Thus for all i we have

|Λ′(i; ζ)| ≤ D5 (1 + imax{0, i}) exp
[
ηG(i, i)

]
,

which allows us to rewrite (7.7) as

|Λ′(i; ζ)| ≤ D5(1 + imax{0, i}) + η

i−1∑

l=−∞
(−l) |υ(l)| |Λ′(l; ζ)|

+ i η
i−1∑

l=−∞
|υ(l)| |Λ′(l; ζ)|
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Appendix 7.2. Proof of Theorem 4.3.7

≤ D5(1 + imax{0, i}) + η

−1∑

l=−∞
(−l) |υ(l)| |Λ′(l; ζ)|

+ i η
i−1∑

l=−∞
|υ(l)| |Λ′(l; ζ)|

≤ D6(1 + imax{0, i}) + i η
i−1∑

l=−∞
|υ(l)| |Λ′(l; ζ)|.

Now for i ≤ 0 we have

|Λ′(i; ζ)| ≤ D6 + i η
i−1∑

l=−∞
|υ(l)| |Λ′(l; ζ)|,

so by defining Λ′(i; ζ) = D6(1 + |i|)Ξ1(i; ζ) we have

|Ξ1(i; ζ)| ≤ 1 + η

i−1∑

l=−∞
(1 + |l|) |υ(l)| |Ξ1(l; ζ)|

⇒ |Ξ1(i; ζ)| ≤ D7 ⇒ |Λ′(i; ζ)| ≤ D8(1 + |i|)

for new constants D7 and D8. If i > 0 then by defining Λ′(i; ζ) = D6(1 +

i2)Ξ2(i; ζ) we have

|Ξ2(i; ζ)| ≤ 1 + η
i−1∑

l=−∞
(1 + l2) |υ(l)| |Ξ2(l; ζ)|

⇒ |Ξ2(i; ζ)| ≤ D9 ⇒ |Λ′(i; ζ)| ≤ D10(1 + i2).

This proves (4.43), and (4.44) is proved in a similar manner. Thus one can

iterate the derivatives of the summation equations to obtain series solutions

for Λ′ and Υ′, which for any given i, converge absolutely and uniformly in

ζ for all ζ ∈ R+, and for a given ζ ∈ R+, converge absolutely in i. These

functions are therefore continuous functions of ζ inR+.
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Notation

nk discrete independent variables

pk continuous lattice parameters

a, b additional parameters independent of pk

u lattice dependent variable
_
u u shifted one unit in the nk-direction, for arbitrary k

ζ continuous spectral parameter

Γ staircase within the N-dimensional lattice

I set of lattice directions in which Γ exists

J set of lattice directions in which Γ does not exist

u u shifted one unit along Γ

i discrete independent variable along Γ

p(i) parameters along Γ

ϕ,ψ Jost solutions analytic in Re(ζ) > 0

ϕ̊, ψ̊ Jost solutions analytic in Re(ζ) < 0

Λ,Υ normalised Jost solutions analytic in Re(ζ) > 0

Λ̊, Υ̊ normalised Jost solutions analytic in Re(ζ) < 0

W (x, y) Wronskian of x and y

A, B spectral functions relating ψ to ϕ and ϕ̊

R reflection coefficient

ϕ∗ complex conjugate of ϕ
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Notation

R+ half-plane Re(ζ) ≥ 0

R− half-plane Re(ζ) ≤ 0

Φ square eigenfunction

ck normalisation constants

ϕ(N) N-dimensional Jost solution

Λ(a) normalised Jost solution obtained by swapping

a and b in the Lax equations

H biquadratic of a lattice equation

K antisymmetric function obtained from the determinant

of the Lax matrix
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