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Abstract

This thesis inquires into a range of issues in return predictability and

its implications. First, the thesis investigates estimation bias in pre-

dictive regressions. This research stresses the importance of account-

ing for the bias when studying predictability. To tackle the problem of

biased estimation, a general and convenient method based on the jack-

knife technique is proposed. The proposed method reduces the bias

for both single- and multiple-regressor models and for both short- and

long-horizon regressions. Compared with the existing bias-reduction

methods in the literature, the proposed method is more stable, ro-

bust and flexible. More importantly, it can successfully reduce the

estimation bias in long-horizon regressions, whereas the existing bias-

reduction methods in the literature cease to work. The effectiveness

of the proposed method is demonstrated by simulations and empir-

ical estimates of common predictive models in finance. Empirical

results show that the significant predictive variables under ordinary

least squares become insignificant after adjusting for the finite-sample

bias. These results cast doubt on conclusions drawn in earlier studies

on the return predictability by these variables.

Next, this thesis examines the predictability of return distributions.

It provides detailed insights into predictability of the entire stock and



bond return distributions in a quantile regression framework. The

difficulty experienced in establishing predictability of the conditional

mean through lagged predictor variables does not imply that other

parts of the return distribution cannot be predicted. Indeed, many

variables are found to have significant but heterogenous effects on the

return distributions of stocks and bonds. The thesis establishes a

quantile-copula framework for modelling conditional joint return dis-

tributions. This framework hinges on quantile regression for marginal

return distributions and a copula for the return dependence structure.

The framework is shown to be flexible and general enough to model a

joint distribution while, at the same time, capturing any non-Gaussian

characteristics in both marginal and joint returns.

The thesis then explores the implications of return distribution pre-

dictability for portfolio selection. A distribution-based framework

for portfolio selection is developed which consists of the joint return

distribution modelled by the quantile-copula approach and an ob-

jective function accommodating higher-order moments. Threshold-

accepting optimisation technique is used for obtaining optimal alloca-

tion weights. This proposed framework extends traditional moment-

based portfolio selection in order to utilise the whole predicted return

distribution.

The last part of the thesis studies nonlinear dynamics of cross-sectional

stock returns using classification and regression trees (CART). The

CART models are demonstrated to be a valuable alternative to linear



regression analysis in identifying primary drivers of the stock returns.

Moreover, a novel hybrid approach combining CART and logistic re-

gression is proposed. This hybrid approach takes advantage of the

strengths in both CART and linear parametric models. An empiri-

cal application to cross-sectional stock return prediction shows that

the hybrid approach captures return dynamics better than either a

standalone CART or a logistic model.
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Chapter 1

Introduction

1.1 Background and Motivation

Return predictability is of profound importance in many fields of finance including

asset pricing, portfolio management and risk management and, hence, has been

one of the most researched areas in finance for decades. Academia and practition-

ers have done a huge amount of theoretic and empirical work over the past few

decades. Despite the vast literature on return predictability, John Cochrane, the

president of the American Finance Association, devoted his recent presidential

address to return prediction (Cochrane, 2011). Cochrane claims the journey to

understand returns is only beginning at both the time-series and cross-sectional

levels. Return prediction, or more generally understanding returns, is an ever-

green research area in finance.

The research in this thesis aims to contribute to understanding returns. It

explores a range of research issues, including estimation bias in predictive regres-

sions, return distribution predictability and its implications for portfolio selection
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and the use of nonlinear approaches for return prediction. The selected topics

reflect my research interests developed over the past three years. This chapter in-

troduces the background and motivation of these problems. It also reviews some

important literature in these areas.

1.1.1 Predictive regressions and estimation bias

Based on lagged predictor variables, stock returns are assumed to be predictable

in the current conditional asset pricing literature. The economic method em-

ployed in a typical study is a predictive regression which is an ordinary least

squares (OLS) regression of the stock return, rt, on lagged predictor variables.

Early studies reviewed by Fama (1970) used such models to examine market ef-

ficiency. In the past few decades, numerous other studies have used predictive

regressions to investigate predictability of returns.

Many variables have been found to predict returns. The most prominent

ones are financial ratios such as the dividend yield (Campbell, 1987; Fama and

French, 1988; Hodrick, 1992; Ang and Bekaert, 2007; Cochrane, 2008; Lettau and

Van Nieuwerburgh, 2008; Binsbergen and Koijen, 2010), the earnings-price ratio

(Rozeff, 1984; Campbell and Shiller, 1988; Lamont, 1998), the book-to-market

ratio (Kothari and Shanken, 1997; Pontiff and Schall, 1998) and accruals (Sloan,

1996; Fama and French, 2008). But other variables have also been found to be

powerful predictors, such as short-term interest rates (Fama and Schwert, 1977;

Campbell, 1987; Breen et al., 1989; Ang and Bekaert, 2007), inflation (Fama, 1981;

Fama and Schwert, 1977; Campbell and Vuolteenaho, 2004), consumption-to-

wealth ratio (Lettau and Ludvigson, 2001, 2005) and net stock issues (Ikenberry
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et al., 1995; Loughran and Ritter, 1995; Daniel and Titman, 2006; Pontiff and

Woodgate, 2008).

Moreover, academia claim that the predictive component is stronger over long

horizons than over short horizons. Fama and French (1988) find that return fore-

cast t-statistics rise with horizon, suggesting that long-horizon return regressions

offer greater statistical evidence for return predictability. Cochrane (1999) calls

the long-horizon predictability one of the three most important facts in finance.

This fact is emphasised repeatedly in other studies, including Fama (1998), Camp-

bell (2001) and Barberis and Thaler (2003), among others. The conventional wis-

dom in the literature is that long-run regressions produce more accurate results

by strengthening the signal coming from the data while eliminating the noise.

These conclusions, at both short and long horizons, however, have been sub-

ject to great statistical scrutiny on the grounds that the persistence of the pre-

dictor variables, and the correlation of the innovations of the regressors with

those of returns, might bias the regression coefficients and affect t-statistics (Nel-

son and Kim, 1993; Stambaugh, 1999; Torous et al., 2004; Campbell and Yogo,

2006). Many of the predictor variables used in predictive regressions are highly

persistent. For example, at a monthly frequency, all four common regressors, the

dividend yield, the earnings-price ratio, the book-to-market ratio and the short-

term rate, have a first-order auto-regression structure with an auto-regression

coefficient near one (See, for example, Campbell and Yogo, 2006). This leaves

the unit root problem wide open. In such situations, the OLS estimators of the

coefficients exhibit finite-sample bias which can greatly contaminate statistical

inference. A further problem is the possibility of data mining. Ferson et al.

(2003) and Ferson et al. (2008) study the combined effects of data mining and
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spurious regression in the context of predictive regressions. They find that the

effects of data mining and spurious regression interact and reinforce each other,

leading to large regression bias.

Nelson and Kim (1993) stress that “the estimated biases are large enough

to affect inference in practice, and should be accounted for when studying pre-

dictability”. To be concrete, Elliott and Stock (1994) provide Monte Carlo evi-

dence which suggests a 20% size distortion in t-tests caused by estimation bias

for plausible parameter values and sample sizes in a one-period regression of re-

turns on the dividend yield. Stambaugh (1999) derives the exact finite-sample

bias expression for one-period single-regressor regressions. He reports the bias

equals one-third of the OLS estimate when NYSE returns are regressed on the

dividend yield over the period 1927 to 1996. Other studies, including Goyal and

Welch (2003), Amihud and Hurvich (2004), Lewellen (2004), Campbell and Yogo

(2006) and Ang and Bekaert (2007), conclude that the statistical evidence of

predictability is weaker or even disappears once tests are adjusted for estimation

bias.

Spurious regression bias is also an issue for long-horizon regressions. As

pointed out by Valkanov (2003), regressing a long-run variable on a short-run

variable yields inconsistent estimates, and spurious regression relations may be

found between two independent variables. Lanne (2002) declares that evidence

of predictability over both short and long horizons is spurious and follows from a

neglected near unit root problem. Torous et al. (2004) find that evidence of pre-

dictability is reliable at shorter horizons but non-existent at long horizons after

accounting for finite-sample biases. Boudoukh et al. (2008) show that both OLS

coefficient estimates and R2 are proportional to the horizon even under the null
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hypothesis of no predictability.

The predictability of stock returns is therefore still an open question. A diffi-

culty with understanding the rather large body of literature on predictability is

the muddle caused by estimation bias in predictive regressions. When facing the

problem of biased estimation in predictive regressions, most of the attention in the

finance literature has been directed at constructing valid tests of significance (see,

for example, Nelson and Kim, 1993; Valkanov, 2003; Lewellen, 2004; Campbell

and Yogo, 2006). Much less attention has been given to the problem of obtain-

ing better estimators. Whereas scaling the critical value in t-test upwards to

get conservative confidence intervals can help defend somewhat against spurious

regression, obtaining bias-reduced estimates is a more direct way to address the

problem. In addition, accurate estimates have important economic and practical

value in out-of-sample forecasts, which is often the ultimate purpose of predic-

tive regressions in practice. Therefore, there is an urgent need for alternative

econometric methods for correcting the bias and conducing valid inference.

1.1.2 Return distribution predictability and its implica-

tion for portfolio selection

Because predictive regressions can offer only a conditional mean relationship be-

tween returns and predictor variables, analysis of return predictability with pre-

dictive regressions limits inquiries to the conditional mean only. Historically,

the return predictability literature had an almost exclusive focus on the condi-

tional mean of returns. Over the past two decades, much literature has emerged

which explores the predictability of stock return volatility. For example, Poon
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and Granger (2003) review the practice of forecasting volatility in financial mar-

kets. This extends the predictability inquiries to the second moment. Return

predictability, however, should investigate more than the first two moments.

First, there is considerable evidence, both theoretical and empirical, that re-

turn distributions are in general not normal and, hence, cannot be adequately

characterised by the first two moments alone. Merton (1982) shows that if in-

stantaneous returns are normal, then the price process is lognormal and, unless

the measurement interval is very small, the simple returns are not normal. Nu-

merous studies, including Fama (1965), Harvey and Zhou (1993), Chen et al.

(2001), Cont (2001), Hueng and McDonald (2005), Chiang and Li (2007) and

Post et al. (2008) have found significant asymmetries in empirical asset returns.

Apparently, the first two moments do not reveal a comprehensive picture of re-

turns.

Second, in many areas of financial economics, knowledge is required of ei-

ther the entire return distribution or other parts of the distribution than the

conditional mean. In asset pricing, higher-order moments such as skewness and

kurtosis have proven useful to explain variation in stock returns. For example,

studies have investigated the skewness preference in investor investment deci-

sions and its impacts on asset pricing through the work of Harvey and Siddique

(2000), Brunnermeier et al. (2007), Mitton and Vorkink (2007), Barberis and

Huang (2008), Boyer et al. (2010) and others. Studies on kurtosis preference in-

clude Fang and Lai (1997), Dittmar (2002), Guidolin and Timmermann (2008),

among others. In risk management, focus is usually on the lower tails of the re-

turn distribution; however, in portfolio management, investors generally require

an estimate of the entire distribution of future returns. Hence, understanding
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return predictability in more detail has great economic importance in many areas

of financial economics.

A natural tool to investigate whether a return distribution is predictable using

lagged predictor variables is quantile regression. Quantile regression has been

introduced by Koenker and Bassett Jr (1978, 1982). The basic ideas, though,

go back to the earliest work on regression by Boscovich in the mid-18th century

and to Edgeworth at the end of the 19th century (Edgeworth, 1888, see also the

introduction on the history of quantile regression by Koenker, 2005). Generalising

the common linear regression framework by shifting the focus from the conditional

mean to conditional quantiles allows quantile regression to provide a conditional

distribution view instead of a mere conditional mean. Quantile regression has

gradually become a complementary approach to the traditional mean regression

methods.

Recently, both practitioners and academia have started to use quantile re-

gression to investigate return distribution predictability. Cenesizoglu and Tim-

mermann (2008) study whether the distribution of the S&P 500 monthly re-

turns is predictable using lagged economic variables. By employing a quantile

regression framework, they find the significant predictability, both in sample and

out-of-sample, of the entire stock return distribution. Ma and Pohlman (2008)

demonstrate that under some strict assumptions and a symmetric loss function,

the use of quantile regression leads to better return forecasts. Investment prac-

titioners Gowlland et al. (2009) show that factor effects are not constant across

return distributions using cross-sectional stock data. They advocate to use quan-

tile regression as a tool in quantitative investing for better understanding and

controlling factor risks. Pedersen (2010) uses quantile regression to examine the
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predictability of the S&P 500 monthly returns and monthly returns of the US

5-year Treasury bonds. He reports strong empirical evidence of distribution pre-

dictability of both stock and bond returns.

Return predictability is especially pertinent to portfolio selection. For an

individual investor with a given utility, portfolio selection is essentially a com-

parison of the future investment return distributions. However, the difficulty in

obtaining joint return distributions often leads to approximate distributions with

a few individual moments. This has resulted in a large body of literature fo-

cusing on moment-based analysis of portfolio selection. For example, the classic

mean-variance framework by Markowitz (1952) uses the first two moments of the

distribution of returns. Portfolio selection with a few higher moments has also

been considered in the literature, such as three-moments, mean-variance-skewness

portfolio selection (see, for example, de Athayde and Flôres, 2004; Briec et al.,

2007; Menćıa and Sentana, 2009), and four-moments, mean-variance-skewness-

kurtosis portfolio selection (see, for example, Jurczenko et al., 2006; Guidolin

and Timmermann, 2008).

Despite the tractability and economic appeal of such moment-based models,

Brockett and Kahane (1992) point out that investors do not, in general, have

preferences that can be translated into a function of the first N moments of the

return distribution. Further, the use of individual moments for portfolio selection

ignores the fact that portfolio characteristics are jointly defined by all higher-order

moments instead of a few individual moments. Statistically, it is also extremely

difficult to establish that an effect is caused by, say, the third moment as opposed

to all moments of order three or higher. This strongly suggests that any portfolio

selection approach based on a few individual moments is myopic.
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The research on return distribution predictability is in its infancy. Finan-

cial theory and empirical studies need to be expanded. The resulting conditional

probability distributions would be useful in many applications, especially in port-

folio management. Exploration of return distribution predictability on portfolio

management is, therefore, of great interest.

1.1.3 Nonlinear return prediction and CART

The vast majority of the literature examines stock return predictability in a lin-

ear regression framework. The standard asset pricing models such as the Capital

Asset Pricing Model (CAPM) (Sharpe, 1964; Lintner, 1965; Mossin, 1966), the

Arbitrage Pricing Theory (APT) (Ross, 1976), the Fama-French three-factor-

model (Fama and French, 1993) and the Carhart four-factor model (Carhart,

1997) all assume a linear relationship between the mean returns and the factor

loadings. However, there is no priori reason to believe that asset returns respond

in a linear fashion to risk factors. Indeed, there is increasing evidence that as-

set returns may be better characterised by a model which allows for nonlinear

behaviour. Hsieh (1991) finds strong evidence of nonlinearity in stock returns.

Bansal and Viswanathan (1993) and Bansal et al. (1993) propose a nonlinear

arbitrage-pricing model which relaxes the linearity restriction of the APT. They

find that this nonlinear APT model is more adequate in explaining the returns.

Hiemstra and Jones (1994) find evidence of nonlinear causality from volume to

returns. Based on their findings, they advocate future research should consider

nonlinear theoretical mechanisms and empirical regularities when devising and

evaluating models of the joint dynamics of stock prices and trading volume.
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Dittmar (2002) reports substantial benefits in modelling the pricing kernel as

a nonlinear function of the market return.

The frequency of large moves in stock markets during the Global Financial

Crisis between 2007 and 2009 is much greater than would be expected under

a normal distribution. This again reveals the inadequacy of a linear regression

framework for return analysis. After the Global Financial Crisis, interest in

nonlinear dynamics has increased in both the financial press and the academic

literature. The motivation behind financial practitioners’ interest in nonlinear

dynamics, though, is slightly different from that of academia; it is more from the

model risk diversification point of view as explained below.

Historically, linear factor models have been widely accepted and used by finan-

cial practitioners. According to a series of surveys of modelling techniques among

large asset managers in the United States and Europe by the Chartered Finan-

cial Analyst (CFA) Institute 1, linear regression remains the primary workhorse

for financial modelling, being used by the vast majority of the firms surveyed.

Given the widespread use of linear factor models and similar data sources by

many firms, there was a high degree of commonality in the trading strategies

used by quantitative investors prior to the “quant-shock” of July-August 2007

(Ang, 2008; Khandani and Lo, 2011). The poor relative returns experienced by

the vast majority of quantitatively orientated asset managers between 2007 and

2009 has exposed the risk introduced by common forecasting tools.

As nonlinear modelling techniques are not at present widely used within the

investment community, they are appealing in the context of offering a high degree

1The survey results can be found in the monographs by Fabozzi et al. (2006) and Fabozzi
et al. (2008).
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of model diversification. Because linear factors are relatively easily determined,

the same factors will tend to be used by a large number of managers, eliminating

the profit from using them. Thus, unexploited profit opportunities are most likely

to be found in the nonlinearities of the market.

Many types of nonlinear modelling techniques have been applied to or have

potential to be applied to the problem of predicting returns. Among them, a

decision tree technique called classification and regression trees (CART) con-

tains certain properties which make it suitable for return prediction. Proposed

by Breiman et al. (1984), CART is a nonlinear and non-parametric modelling

technique that does not impose the stringent assumptions required by classical

regression analysis. It is robust, flexible and distribution-free. Instead of taking a

“black box” approach, CART models are intuitive and straightforward and allow

for economic interpretation. More importantly, CART models are well suited to

identifying any complex interactions in the data.

Although the approach is not widely utilised within the investment commu-

nity, the applications of CART to financial markets nevertheless include the clas-

sification of financially distressed firms by Frydman et al. (1985), asset allocation

by Sorensen et al. (1998), equity style timing by Kao and Shumaker (1999) and

stock selection by Sorensen et al. (2000).

One of the challenges facing both academia and practitioners in cross-sectional

stock return analysis is, as pointed out by Cochrane (2011), how to identify the

primary drivers of stock returns within a plethora of new variables. Cochrane

(2011) claims that methods other than the Fama-French style of regression should

be used. The statistical properties of CART make it suitable for cross-sectional re-

turn prediction. A systematic evaluation of tree-based models for cross-sectional
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stock return forecasting is, therefore, of interest to both academics and practi-

tioners.

1.2 Objectives of Thesis

Building on the background and motivation in the previous section, this thesis

has four main objectives.

First, motivated by the importance of correcting the finite-sample bias in pre-

dictive regressions, the thesis aims to contribute to an active recent literature on

alternative econometric methods for reducing the bias. Specifically, this thesis

proposes a general and convenient method based on the jackknife technique for

bias reduction. The method works for both single- and multiple-regressor models

and for both short- and long-horizon regressions. As the existing methods do not

work in long-horizon regressions, the research fills the gap in the literature by sug-

gesting better estimators for long-horizon regressions. This part of the research

also aims to provide a comprehensive evaluation of all the available bias-reduction

methods in the literature, as well as to re-examine some popular empirical ev-

idence used to support the claim of return predictability in the literature after

accounting for the finite-sample bias.

Second, motivated by the limitation in the current practice of return pre-

dictability, this thesis goes beyond predictability of the conditional mean and

variance and examines whether stock and bond return distributions are more

generally predictable. For this purpose, a quantile regression framework is em-

ployed and a wide range of lagged economic state variables are considered in order

to predict different quantiles of stock and bond return distributions. The thesis
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contributes to the literature by providing new empirical evidence of distribution

predictability using monthly returns of two broad-based indices, the Russell 1000

Index and the US Aggregate Bond Index. Compared to the S&P 500 Index and

the 5-year Treasury bonds studied by Cenesizoglu and Timmermann (2008) and

Pedersen (2010), these two broad-based indices are more comprehensive and unbi-

ased barometers for the US stock and bond markets. Given their wide recognition

in investment communities, predictability of these indices has academic value as

well as significant economic value to investors.

Additionally, the thesis proposes a quantile-copula framework to model a joint

distribution of asset returns, with the quantile approach to extract systematic

information in marginal distributions and copulas to capture the dependence

structure.

Third, motivated by the limitation of moment-based portfolio selection and

the empirical evidence of return distribution predictability, the thesis develops

a distribution-based framework for portfolio selection by incorporating predicted

return distributions. More specifically, this distribution-based portfolio selection

framework includes a joint return distribution modelled by the quantile-copula

approach and an objective function which is a generalisation of the Omega mea-

sure introduced by Shadwick and Keating (2002). The solutions can be obtained

by a heuristic optimisation technique. This distribution-based portfolio selection

overcomes some limitation of moment-based portfolio selection approaches.

Last, motivated by limitation of linear regression based approaches for asset

pricing, this thesis investigates the use of a nonlinear model, CART, to analyse

cross-sectional stock returns. As a joint work with the Quantitative Equity Prod-
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uct Team at Schroder Investment Management 1, this part of the research is more

practitioner-oriented. The research aims to provide a comprehensive analysis of

the strengths and weaknesses of CART for stock return prediction over the lin-

ear regression based approaches. Further, to take advantage of the strengths in

both the CART and linear parametric models, a novel hybrid approach combin-

ing CART and logistic regression is also proposed and tested for cross-sectional

return prediction.

1.3 Structure of Thesis

The organisation of this thesis is as follows. Chapter 2 analyses the finite-sample

bias in predictive regressions. The existing bias-reducing methods in the literature

are reviewed and their pros and cons are discussed. A new bias-reduction method

based on the jackknife technique is proposed for obtaining bias-reduced estimates.

A systematic comparison of the performance of the proposed estimator with the

existing ones is carried out by simulations. An empirical application to equity

premium prediction using the dividend yield and the short rate highlights the

differences between the results derived from the standard approach and those from

the bias-reduced estimator. The significant predictive variables under ordinary

least squares become insignificant after adjusting for the finite-sample bias. These

results cast doubt on conclusions drawn in earlier studies about the significance

of these two variables.

Chapter 3 introduces quantile regression and uses it as a tool to investigate

predictability of the return distributions of both stocks and bonds. The difficulty

1http://www.schroders.com/qep/home/
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experienced in establishing predictability of the conditional mean through eco-

nomic state variables does not imply that other parts of the return distribution

cannot be predicted. Indeed, many variables in the range of considered economic

state variables are found to have significant but heterogenous effects on the re-

turn distributions of stocks and bonds. For a sufficiently fine grid of quantiles,

an entire marginal distribution of asset returns can be traced out.

Extending the work in Chapter 3, Chapter 4 develops a quantile-copula frame-

work to model a joint return distribution. Further, Chapter 4 generalises the

Omega measure introduced by Shadwick and Keating (2002) based on the prospect

theory. This generalised Omega measure is then used as an objective function

for asset allocation. A heuristic optimisation technique called threshold accept-

ing algorithm is also introduced in Chapter 4. The joint distribution modelled

by the quantile-copula framework, along with the proposed objective function

and threshold accepting algorithm, makes possible distribution-based portfolio

selection that utilises all of the underlying return distribution information. The

proposed portfolio selection framework is illustrated by an empirical application

to asset allocation between stocks and bonds.

Chapter 5 introduces the CART modelling technique. Both theoretical and

empirical comparisons of CART with linear regression based approaches for stock

return analysis are given. CART is demonstrated to be a valuable alternative to

linear regression analysis in identifying the primary drivers of the stock returns.

Chapter 6 discusses limitations of the CART model for return prediction and

proposes a novel hybrid approach to combining CART and logistic regression.

This hybrid approach takes advantage of the strengths in both CART and linear

parametric models, and results in enhanced predictions of cross-sectional stock
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returns. An empirical application to US stock data demonstrates that, in compar-

ison with tree-based models and logistic regression, the proposed hybrid approach

enhances portfolio returns over time without introducing significant risks.

Finally, Chapter 7 summarises the key findings and suggests directions for

future research.
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Chapter 2

Predictive Regression for Return

Prediction and Bias Reduction

2.1 Predictive Regressions

Predictive regressions for stock returns have long been a staple of financial eco-

nomics. The simplest predictive regression is single-regressor and one-period re-

gression which is to regress the stock return, rt, on a lagged predictor variable,

xt−1,

rt = α + βxt−1 + ut,

where ut is an error term. As reviewed in Section 1.1.1, examples of lagged

predictor variables include the dividend yield, the earnings-price ratio, the book-

to-market ratio, and various measures of the interest rate. Many of these variables

behave as highly persistent time series and their disturbance terms are contempo-

raneously correlated with those of returns. These characteristics can be captured
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mathematically by a class of predictive regressions specified as follows

rt = α + βxt−1 + ut, (2.1)

where xt−1 is a first-order autoregressive process,

xt = φ+ ρxt−1 + vt. (2.2)

The bivariate error terms (ut, vt) follows a joint normal distribution with mean 0

and a covariance matrix  σ2
u σuv

σuv σ2
v

 . (2.3)

A number of scholars have studied the statistical properties of this class of pre-

dictive regressions, including Stambaugh (1999), Amihud and Hurvich (2004),

Campbell and Yogo (2006), among others.

Another popular predictive model is a long-horizon prediction regression which

regresses future p-period returns onto a one-period predictor variable, captured

by models of the form

rt+p = αp + βpxt−1 + ut+p, (2.4)

where rt+p =
∑p−1

i=0 rt+i, a moving summation. When p = 1, it is the one-period

predictive regression (2.1). As reviewed in Section 1.1.1, though it is not without

controversy, the strongest evidence of the return predictability cited so far comes

from long-horizon predictive regressions.
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2.2 Biases in Predictive Regressions

In the one-period predictive regression specified by 2.1 to 2.3, the OLS coefficient

estimates are subject to finite-sample biases as illustrated below.

The relationship between ut and vt can also be written as ut = ξvt + εt, where

ξ = σuv/σ
2
v and εt are independently and identically distributed (i.i.d.) errors,

which are independent of vt, i.e., E(εt|v1, v2, ...vT ) = 0. In this setup, the marginal

mean is E(xt) = φ/(1− ρ), and the marginal variance is var(xt) = σ2
v/(1− ρ2).

Let X be the design matrix whose t-th row is (1, xt−1), and R = (r1, r2, ..., rT )
′
.

The OLS estimator of the regression coefficients in (2.1) is

(
α̂

β̂

)
= (X

′
X)−1X

′
R

with the variance given by

σ2
ols = (X

′
X)−1X

′
σ2
u. (2.5)

Denoting x̄ =
∑T

t=1 xt−1/T and making use of the fact that rt = α+βxt−1+ut,

the bias in β̂ is

β̂ − β =

∑T
t=1(xt−1 − x̄)ut∑T
t=1(xt−1 − x̄)2

.

Using E(ut|vt) = ξvt and vt = xt − φ− ρxt−1, the finite-sample bias in β̂ is

E(β̂)− β = ξE

{∑T
t=1(xt−1 − x̄)E(xt|vt)∑T

t=1(x2
t−1 − x̄2)

− ρ

}
. (2.6)
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Let ρ̂ be the OLS estimator of ρ,

ρ̂ =

∑T
t=1(xt−1 − x̄)xt∑T
t=1(x2

t−1 − x̄2)
,

and the bias in β̂ can be written as

E(β̂)− β = ξ{E(ρ̂)− ρ}.

According to Marriott and Pope (1954) and Kendall (1954), under the assump-

tions of normality and AR(1) for xt, the bias in ρ̂ can be expressed as

E(ρ̂)− ρ = −(1 + 3ρ)/T +O(1/T 2), (2.7)

and it follows that

E(β̂)− β = −(1 + 3ρ)

T
ξ +O

(
1

T 2

)
. (2.8)

The result in (2.8) appears in Stambaugh’s paper (Stambaugh, 1999). As

we can see, the bias is proportional to ξ and the autoregressive coefficient ρ but

inversely proportional to sample size T .

The problem of estimation bias is more severe in long-horizon predictive re-

gressions than in one-period predictive regressions. As demonstrated by Boudoukh

et al. (2008), the bias is increasing with the horizon even under the null hypoth-

esis of no predictability. Not only the magnitude of the bias is larger, the bias

mechanism is much more complex in long-horizon regressions due to the fact that

the returns rt+p become more persistent as p increases. In this application, apart
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from the finite-sample bias that arises due to lagged stochastic regressors, there

is also the spurious regression bias related to the classic studies of Yule (1926)

and Granger and Newbold (1974). This additional bias is caused by autocor-

related errors induced by a highly persistent dependent variable series. These

two types of biases reinforce each other in the regression and makes long-horizon

regressions even more troublesome when it comes to parameter estimation and

statistical inference.

2.3 Existing Methods for Bias Reduction

This section reviews the existing methods in the finance literature for bias re-

duction in predictive regressions before introducing a new approach in the next

section.

The plug-in method by Stambaugh (1999) and the augmented regression

method by Amihud and Hurvich (2004) are two existing and fundamental ap-

proaches in the literature for obtaining bias-reduced coefficient estimates. Many

other methods and tests essentially use one or the other to reduce bias. For exam-

ple, the Q-statistic of Campbell and Yogo (2006) uses the plug-in method in the

numerator to adjust the OLS estimator for the bias. The hypothesis testing in a

multiple-regressor regression setup by Amihud et al. (2009) uses the augmented

regression method to reduce bias. Both methods are developed under the con-

ditions of one-period predictive regressions, and their suitability for long-horizon

regressions is not clear. The details of these two methods are given below.
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2.3.1 Plug-in method

Motivated by the finite-sample theory of Stambaugh (1999), researchers usually

solve the bias problem by a plug-in method. This involves directly estimating

the bias using Stambaugh’s bias expression (2.8) and then adjusting the OLS

estimator for the bias. Denote β̂ and ρ̂ the OLS estimators of β and ρ, respectively.

The bias-reduced estimator by the plug-in method is

β̂Plug−in = β̂ +
(1 + 3ρ̂)

T
ξ̂, (2.9)

where ξ̂ =
∑
ûtv̂t/

∑
v̂2
t , and ût, v̂t are the residuals from OLS regressions in

(2.1) and (2.2), respectively.

The plug-in method, however, suffers from a severe drawback because it relies

on availability of explicit bias expressions. As Stambaugh’s bias expression is only

for single-regressor regressions, there is no plug-in version available for multiple-

regressor models.

2.3.2 Augmented regression

Another proposed method for bias reduction in the finance literature is the aug-

mented regression by Amihud and Hurvich (2004). This method consists of two

steps: in the first step, the first-order autoregressive coefficients of the predictor

variables are estimated and the corresponding residual errors are then calculated;

in the second step, the dependent variable is regressed on the predictor variables

and their corresponding residual errors from the previous step.

More specifically, the procedure of the augmented method is:

i) Estimate model (2.2) and obtain the OLS estimators of the coefficients,
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ρ̂ and φ̂. Based on the bias expression in Kendall (1954), construct the bias-

corrected estimators of the coefficients ρ and φ as ρ̂c = ρ̂+(1+3ρ̂)/T+3(1+3ρ̂)/T 2

and φ̂ct = (1− ρ̂c)
∑T

t=1 xt/T . Obtain the residuals v̂ct as v̂ct = xt − (φ̂ct + ρ̂cxt−1).

ii) Obtain β̂Augmented as the coefficient of xt−1 in an OLS regression of yt on

xt−1 and v̂ct , with intercept, yt = α + βxt−1 + κvct + et.

Amihud and Hurvich (2004) show that the OLS estimator β̂Augmented is bias-

reduced, and the method works for both single- and multiple-regressor models1.

However, this regression-based bias-reduction method in practice is heavily de-

pendent on correct model specification or, otherwise, spurious results may be

obtained.

2.4 Jackknife for Bias Reduction

2.4.1 Ordinary jackknife estimator

The jackknife technique was originally proposed by Quenouille (1949, 1956) for

bias reduction. One of the crucial assumptions required by the jackknife is that

samples are i.i.d.. We now briefly explain why the jackknife technique works

under an i.i.d. assumption, but does not work in predictive regressions.

Suppose we have a sample S = (S1, · · · , ST ) and an estimator θ̂ = f(S).

Schucany et al. (1971) show that for many common statistics, including most

1For multi-regressor cases, the estimation procedure is more complicated when there are
linear interdependencies among multiple regressors. It involve an iterative estimation procedure
in the first step to obtain ρ̂c and v̂ct . For more details, refer to Amihud and Hurvich (2004) and
Amihud et al. (2009).
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maximum likelihood estimates, the bias of θ̂ is of the form

E(θ̂)− θ =
a

T
+

b

T 2
+ · · · , (2.10)

where θ is the true underlying value. Under the assumption that S1 to ST are

i.i.d. random variables, a and b do not depend upon T , i.e., constants.

A jackknife estimator has the property that it removes the order 1/T term

from the bias form (2.10). This is achieved by focusing on the sub-samples that

leave out one observation at a time, i.e.,

S(−t) = (S1, S2, · · · , St−1, St+1, · · · , ST ),

for t = 1, · · · , T . Let θ̂(−t) = f(S(−t)), the estimator of the same functional form

as θ̂ but computed from the sub-sample S(−t), and define

θ̂t = T θ̂ − (T − 1)θ̂(−t).

It is easy to see that θ̂t is an estimate of θ with the bias term O(1/T ) being

removed, because

Eθ̂t = T

(
θ +

a

T
+

b

T 2
+ · · ·

)
− (T − 1)

(
θ +

a

T − 1
+

b

(T − 1)2
+ · · ·

)
= θ +O

(
1

T 2

)
.
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The jackknife estimator is the mean of the θ̂t, t = 1, · · · , T ,

θ̂JK =
T∑
t=1

θ̂t/T = T θ̂ − (T − 1)
T∑
t=1

θ̂(−t)/T. (2.11)

Clearly, θ̂JK has the similar bias expression as θ̂t, that is, reducing the OLS bias

by a factor of O(1/T ), but with a smaller variance.

Under the predictive regression setup specified by (2.1) to (2.3), however, the

observations are correlated. Deleting observations from the middle of the time

series certainly violates the correlation structure of the data. As a consequence,

instead of being constants, the values of a and b in the bias form (2.10) depend

on which observation is removed. Hence, the ordinary jackknife estimator (2.11)

can no longer reduce bias. This claim is given by the following theorem.

Theorem 2.4.1. Suppose θ̂JK is the estimator of β obtained from jackknifing the

predictive regression specified by (2.1) to (2.3), we have E(β̂JK − β) = O(T−1).

Proof. See the Appendix A.

2.4.2 Moving-block jackknife (MBJK) estimator

To preserve the correlation structure of the data, an alternative is to use a moving

block of length l. Let the block shift by one observation each time, resulting in a

set of k = T − l + 1 sub-samples of the form,

Si = {(ri, xi−1), · · · , (ri+l, xi+l−1)},

for i = 1, · · · , k. All these sub-samples preserve the autocorrelation structure in

the regressors and the cross-correlation structure between the regressors and the
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returns.

Let β̂ = f(S) and β̂(i) = f(Si), the OLS estimates of the slope coefficient by

the full sample and the i-th block sample Si, respectively. Define

β̂i =
1

T − l
(T β̂ − lβ̂(i)),

for i = 1, · · · , k. Under the condition l = O(T ) (i.e., the block size l cannot be

too small), each β̂i is a bias-reduced estimate of β as

Eβ̂i =
1

T − l

{
T

(
β +

a

T
+

b

T 2
+ · · ·

)
− l
(
β +

a

l
+
b

l2
+ · · ·

)}
= β − b

T l
+ · · ·

= β +O

(
1

T 2

)
.

The MBJK estimate is the mean of the β̂i,

β̂MBJK =
k∑
i=1

β̂i/k =
T

k − 1
β̂ − l

k − 1

k∑
i=1

β̂(i)/k, (2.12)

which removes the order 1/T bias term from the OLS bias of the form (2.8).

Akin to any non-parametric bias-reduction technique, there is a bias-variance

trade-off in the MBJK estimator controlled by the block size l. A heuristic argu-

ment is that β̂i based on a large l is more accurate than that based on a small l,

and hence β̂MBJK , the average of β̂is, is more accurate based on a large l. The

large block size l, however, results in a small k. Note that the variance of β̂MBJK

is inverse to k, var(β̂MBJK) = var(β̂i)/k. Therefore, the variability of β̂MBJK

increases with l. These heuristics are supported by the simulation results below.
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Figure 2.1: Bias-variance trade-off controlled by block size l in the MBJK es-
timator. Data generated from the models (2.1) to (2.3). Parameter values are
T = 60, ρ = 0.99, and δ = −0.95. Nine block sizes l = 6, 12, 18, · · · , 54 are
considered. For each block size, two statistics – the bias and standard error (s.e.)
of the MBJK estimator – are reported based on 10,000 samples.

We generate data from the model specified by (2.1) to (2.3). The correlation

between ut and vt, δ, takes -0.9. The autoregressive coefficient ρ is set to 0.99,

27



and all other coefficients (α, β and φ) are 0. The experiment is run for a sample

size T = 60, and nine block sizes l = 6, 12, 18, · · · , 54, varying from one-tenth to

nine-tenths of T . For each l, 10,000 samples are generated to calculate the bias

and standard error of the MBJK estimator.

Figure 2.4.2 depicts the relation between the block size and the bias and

standard error of the MBJK estimate of the slope coefficient. As l increases, the

bias of the MBJK estimator decreases, but its variability increases. Whereas the

bias diminishes at a decreasing rate, the variability increases at an accelerating

rate. The bias-variance trade-off in the MBJK estimator controlled by l is obvious.

Instead of disadvantaging the method, this trade-off brings it great flexibility in

tackling various problems. For example, in short-horizon (i.e., one period ahead)

return predicting, the use of l = 0.3T , as revealed in the simulation results, has

a satisfactory performance in bias reduction without a substantial increase in

estimation variance 1. In the cases where the magnitude of the finite-sample bias

is severe, such as in long-horizon regressions, a large l can be used to achieve a

good bias reduction at the cost of increasing variability. In summary, depending

on the severity of the bias, the length l can be chosen in a discretionary sense in

practice.

2.5 Comparison of Estimators

This section carries out simulations to systematically study the finite-sample per-

formance of the OLS estimator and the three bias-reduction estimators for pre-

dictive regressions, that is, the BMJK estimator proposed in this chapter and the

1Similar simulation results are produced for T = 120 and are not reported here.
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two existing ones in the literature, the plug-in estimator as well as the augmented

regression estimator.

The predictive regression with one predictor variable is by far the most stud-

ied and commonly used in the literature and, hence, is the focus of the simulation

studies. Results on bivariate regressions are also presented. For the MBJK esti-

mator, the block size l is fixed at 0.3T in most of the simulation studies below,

unless otherwise specified.

2.5.1 Single-factor predictive models

The model specified by (2.1) to (2.3) is used to generate data for the single-

regressor case. The correlation between ut and vt, δ = σuv/(σuσv), takes three

different values: -0.8, -0.9, and -0.95. This negative value assumption is without

loss of generality because the sign of the β is unrestricted. The autoregressive

coefficient ρ is set to either 0.95, 0.99, or 0.999. These values for δ and ρ are

realistic according to Stambaugh (1999) and Campbell and Yogo (2006). The

sample size, T , is equal to 60, 120, or 360. The innovation terms ut and vt are of

unit variances. The true parameter values for α, β, and φ are all set to 0 in all

simulations.

For each combination of the parameter values listed above, 10,000 samples

are generated. From each set of generated returns and regressor values, four

slope estimates by the four approaches — the OLS, the augmented regression,

the plug-in method, and the MBJK method — are calculated. The average bias

and the root mean squared error (RMSE) are then calculated across the 10,000

samples for each estimator.
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Table 2.1 provides an overview of the finite-sample properties of the four

estimating methods. For each combination of the parameter values, both bias

and RMSE are reported, with the latter given in parentheses. Although finite-

sample biases of the OLS estimator tend to be substantial, they become moderate

or even negligible for all three bias-reduced estimators. The two parametric bias-

reduced methods — the augmented method and the plug-in method — perform

similarly in terms of both bias and RMSE. The non-parametric method, the

jackknife procedure, is consistently and substantially better than its parametric

counterparts in reducing bias, especially in the cases where T = 60 and T = 120.

The MBJK method also reduces RMSE of the OLS estimator.

However, the MBJK method has slightly larger RMSEs than its parametric

counterparts. The evaluation of the accuracy of an estimator of some parame-

ter using RMSE, or equivalently mean squared error (MSE), is common in the

literature. The MSE decomposes into a sum of squared bias and variance of the

estimator (MSE = Bias2 + Var), both quantities are important when evaluating

an estimator. However, the MSE imposes an arbitrary judgment as to the rela-

tive importance of bias and variance (e.g., Rosenberg and Guy, 1995). As pointed

out by Simonoff (1993), a more useful way is to evaluate bias and variance based

on their use which may vary in different applications. For example, bias can be

much more critical than variance in pricing continuous time contingent claims

such as bond options. This is because a small bias in the mean reversion param-

eter using least squares or maximum likelihood can translate into pricing biases

which are economically too significant to ignore (Phillips and Yu, 2009; Yu, 2012).

Rosenberg and Guy (1995) discuss prediction criteria for asset beta and conclude

that bias is more a relevant criterion for stock selection purpose while valuing
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convertible assets cares more about variance.

2.5.2 Robustness assessment

Given the noisy nature of financial data sets, robustness is an important ad-

vantage for any financial econometric model. We are particularly interested in

assessing the impact of outliers, heteroscedasticity, and model misspecification on

the bias and RMSE of the estimators.

First, we investigate the performance of the estimators in the presence of

either outliers or heteroscedasticity, the two most common issues for financial

data. For tractability, the parameter values of ρ and δ are fixed at 0.99 and -0.9,

respectively.

The outlier scenario we consider is as follows. The return innovation ut follows

a standard normal N(0, 1), which is contaminated by random shocks from N(0, 4)

distribution. In the simulations, different contamination rates are considered,

namely, ϕ = 1%, 5%, 10%, 20%, and 30%. For each contamination rate, 10,000

samples are generated and the corresponding bias and RMSE are computed.

Two cases of heteroscedasticity are considered in the simulations. In the first

case (Scenario 1), the conditional volatility of rt+1 given xt, σut , changes over

time. We let σut take three different values: 0.5 for the first one-third, 1 for the

second one-third, and 1.5 for the last one-third. In the second case (Scenario 2),

the value of σut changes through xt. In our simulations, we use

σut = max(0.5, (min(0.4|xt|, 1.5))).

That is, the volatility changes with xt but is constrained within the interval
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[0.5, 1.5]. Again, 10,000 samples are generated for each case to compute the

corresponding bias and RMSE.

Second, we look into the issue of model misspecification. Financial time series

show complex properties, and obtaining a good model to describe a series is

generally a very challenging task. Up to now, we had assumed that the regressor

is an AR(1) process. However, there is no compelling theoretical reason to believe

it should always be the case. Indeed, De Santis (2007) used AR(2) to model

the dynamics of the dividend yield, consumption growth, and dividend growth.

Therefore, a model misspecification can occur when an AR(1) process is used

to model a true underlying AR(2) process. We examine to what extent this

type of model misspecification affects the bias and RMSE of the estimators. In

the simulations, the correlation between two innovation processes δ takes the

value -0.9. We generate the regressor samples using two AR(2) processes, xt =

0.5xt−1 + 0.4xt−2 + vt (Scenario 1) and xt = 0.2xt−1 + 0.6xt−2 + vt (Scenario 2),

but use an AR(1) model to fit the data. We generate 10,000 samples for each

scenario and compute the corresponding bias and RMSE.

Table 2.2 summarizes the results. For all four estimators, the finite-sample

biases do not seem to increase with the contamination rate. However, the RMSE

increases as the contamination rate increases. In both outlier and heteroscedas-

ticity cases, the performance of the two parametric estimators is similar except

that the plug-in estimator seems to have slightly larger biases in the small sample

size (T = 60). But the difference is no longer distinct as the sample size increases.

In these cases, all three bias-reduction methods remove the bias well, with the

jackknife procedure delivering the least biased estimates but higher RMSE than

the other two.
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In the scenarios of model misspecification, the augmented and the plug-in

methods perform much worse than in the other robust scenarios, reducing less

biases. Especially in the case where the the second lag has a bigger impact

on the current value of the regressor than the first lag (i.e., Scenario 2), the

two parametric estimators do not seem to significantly correct the OLS biases.

Furthermore, the two methods also lose their advantage in RMSE and no longer

produce the lowest RMSEs. The jackknife estimator, on the contrary, behaves

quite well. It shows great robustness to the model misspecification, not only

consistently reducing bias significantly but also producing the lowest estimation

uncertainty.

2.5.3 Long-horizon predictive models

We study the effectiveness of the three bias-reduction methods in long-horizon

regression as specified by (2.4) through simulations. For the jackknife proce-

dure, apart from the MBJK estimator with l = 0.3T , the MBJK estimator with

l = 0.5T is also considered because of the large magnitude of the bias in this

application.

To keep things tractable, the parameters ρ and δ are fixed at 0.99 and -0.9,

respectively. The horizon p takes three different values of 3, 6, and 12, which

captures the common applications of long-horizon forecasting. Although some of

the scenarios, such as forecasting returns for the next 12 periods using 60 samples,

are unlikely to be encountered in reality, they provide extreme conditions to test

the model performance. We generate samples from the model specified by (2.1)

to (2.3). In order to get T pairs of (rt+p, xt), T +p−1 samples are generated, and
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the moving sums of length p are calculated and re-matched with the predictor

variable.

Table 2.3 presents the results based on 10,000 repetitions for each scenario.

One of the most striking features is that the finite-sample biases are much more

severe compared with short-horizon regressions, i.e., p = 1. Even when T = 360,

the bias of the OLS when p = 12 is more than ten times as large as that in the

short-horizon forecasting. The bias decreases with the sample size but increases

with the horizon once the sample size is fixed. As pointed out by Valkanov

(2003), long-horizon regressions produce inconsistent estimates and tend to give

“significant” results, regardless of whether there is a structural relation between

the underlying variables. Again, the simulation results highlight the danger of

interpreting the OLS results naively in long-horizon regressions.

Again, the augmented method and the plug-in method perform similarly.

However, to our disappointment, they do not reduce much of the bias. On the

contrary, the MBJK method does a much better job in reducing bias, especially

with l = 0.5T . Although the RMSE of the MBJK estimator with l = 0.5T is

larger than that with l = 0.3T , it is still smaller than that in the other three

methods. To make the comparison more transparent, Table 2.4 lists the percent-

age reduction over the OLS bias for each of the three bias-reduction methods.

The augmented method and the plug-in method can reduce only 4% to 26% of

the OLS bias across all combinations. The MBJK estimator slashes the bias from

25% up to 92% with l = 0.3T and from 39% to 97% with l = 0.5T . If excluding

the extreme scenarios that are unrealistic in practice, such as the combinations

(T = 60, p = 6), (T = 60, p = 12), and (T = 120, p = 12), the MBJK estimator

with l = 0.5T does a decent job reducing 76% to 97% of the bias.
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Table 2.3: Finite-sample performance in long-horizon regressions. The table re-
ports the mean bias and root mean squared error (RMSE) of slope estimates
from the four estimating approaches; the OLS, augmented regression, plug-in
method, and MBJK. The RMSE is in parentheses. The MBJK estimators with
two different block sizes, 0.3T and 0.5T , are considered. The horizon p takes
three different values; 3, 6, and 12. The sample size, T , is equal to 60, 120, or
360. The parameter values of ρ and δ are fixed at 0.99 and -0.9, respectively. All
results are based on 10,000 simulations.

OLS Augmented Plug-in
MBJK

l = 0.3T l = 0.5T

T = 60

p = 3
0.219 0.163 0.164 0.079 0.053

(0.276) (0.248) (0.246) (0.219) (0.241)

p = 6
0.370 0.330 0.328 0.206 0.149

(0.467) (0.446) (0.442) (0.400) (0.420)

p = 12
0.599 0.574 0.570 0.451 0.365

(0.726) (0.716) (0.711) (0.692) (0.700)

T = 120

p = 3
0.115 0.088 0.087 0.027 0.018

(0.153) (0.137) (0.136) (0.122) (0.135)

p = 6
0.214 0.189 0.188 0.075 0.050

(0.278) (0.263) (0.262) (0.221) (0.250)

p = 12
0.368 0.348 0.347 0.203 0.146

(0.470) (0.460) (0.459) (0.401) (0.456)

T = 360

p = 3
0.038 0.028 0.028 0.003 0.001

(0.055) (0.050) (0.050) (0.046) (0.051)

p = 6
0.076 0.065 0.065 0.008 0.005

(0.107) (0.102) (0.101) (0.089) (0.101)

p = 12
0.138 0.130 0.129 0.031 0.018

(0.199) (0.194) (0.193) (0.168) (0.191)

37



Table 2.4: Bias reduction in long-horizon regressions. The table lists the per-
centage reduction over the OLS bias for each of the three bias-reduction methods
considered. Results are computed based on Table 2.3.

Augmented Plug-in
MBJK

l = 0.3T l = 0.5T

T = 60
p = 3 26% 25% 64% 76%
p = 6 11% 11% 44% 60%
p = 12 4% 5% 25% 39%

T = 120
p = 3 23% 24% 77% 84%
p = 6 12% 12% 65% 77%
p = 12 5% 6% 45% 60%

T = 360
p = 3 26% 26% 92% 97%
p = 6 14% 14% 89% 93%
p = 12 6% 7% 78% 87%

2.5.4 Multi-factor predictive models

We now consider bias reduction in multi-factor predictive models. Although

less studied than single-factor regressions, multi-factor predictive regressions are

vastly popular among practitioners. There is no plug-in version available in multi-

factor regressions due to the unavailability of explicit bias forms in this setup.

We consider a two-factor predictive model specified as

rt = α + β1xt−1 + β2zt−1 + ut,

xt = φ1 + ρ1xt−1 + v1t, (2.13)

zt = φ2 + ρ2zt−1 + v2t.

The trivariate error terms (ut, v1t, v2t) follow a joint normal distribution with
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mean 0 and a covariance matrix

Σ =


1 δ1 δ2

δ1 1 ψ

δ2 ψ 1

 . (2.14)

In the simulations, the parameters α, β1, β2, φ1 and φ2 all take the value 0. We

consider three representative cases. In the first case, we set (ρ1, ρ2) = (0.99, 0.99)

and (δ1, δ2, ψ) = (−0.9,−0.9, 0.8). That is, two regressors are highly persistent,

highly endogenous, and highly correlated. This setup corresponds to the case

of using two financial ratios, such as the dividend yield and the earnings ratio,

in a bivariate regression. Apparently, collinearity is an issue here. Although not

favored by academics, this type of regression is very common among practitioners.

In the second case, we let (ρ1, ρ2) = (0.99, 0.99) and (δ1, δ2, ψ) = (−0.9, 0, 0.4).

That is, the two regressors are highly persistent, but the first one is highly en-

dogenous, whereas the second one is exogenous, and the two are of moderate

correlation. This setup corresponds to a regression favoured by Ang and Bekaert

(2007), using the dividend yield and the short rate as predictor variables. They

argue that the predictability of the dividend yield is considerably enhanced when

jointly used with the short rate.

In the third case, we assume (ρ1, ρ2) = (0.99, 0.1) and (δ1, δ2, ψ) = (−0.9, 0.4, 0).

That is, the first regressor is highly persistent and is of high negative correlation

with the returns, whereas the second regressor is not very persistent and is of

positive correlation with the returns. In addition, the two regressors are indepen-

dent. This setup corresponds to the case of predicting individual stock returns

using the dividend yield of the stock and a lagged market return.
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Table 2.5: Finite-sample performance on multivariate regressions. The table
reports the mean bias and root mean squared error (RMSE) of slope coeffi-
cients from the three estimating approaches; the OLS, augmented regression,
and MBJK. The RMSE is in parentheses. Samples are generated from the models
(2.13) and (2.14). The top row specifies the correlations between the innovations
to the two regressors and those to the returns. The second row gives the cor-
relation of the two innovation processes of the two regressors. The third row is
the values of the autoregressive roots ρ1 and ρ2. Columns 2-3, 4-5, and 6-7 are
for the three cases discussed in Section 2.5.4, respectively. The sample size, T , is
equal to 60, 120, or 360. All results are based on 10,000 samples.

δ1 = −0.9, δ2 = −0.9 δ1 = −0.9, δ2 = 0 δ1 = −0.9, δ2 = 0.4
ψ = 0.8 ψ = 0.4 ψ = 0

ρ1 = 0.99, ρ2 = 0.99 ρ1 = 0.99, ρ2 = 0.99 ρ1 = 0.99, ρ2 = 0.1
β1 β2 β1 β2 β1 β2

T = 60
OLS 0.106 0.005 -0.213 -0.236 -0.038 -0.024

(0.218) (0.192) (0.286) (0.302) (0.075) (0.139)
Augmented 0.022 0.003 -0.044 -0.047 -0.046 -0.005

(0.107) (0.091) (0.166) (0.180) (0.169) (0.262)
MBJK 0.015 0.000 -0.024 -0.028 0.000 -0.001

(0.207) (0.198) (0.220) (0.221) (0.075) (0.140)
T = 120

OLS 0.054 0.003 -0.108 -0.120 -0.019 -0.014
(0.114) (0.101) (0.140) (0.149) (0.039) (0.095)

Augmented 0.011 0.001 -0.022 -0.025 -0.026 -0.002
(0.053) (0.036) (0.087) (0.095) (0.088) (0.178)

MBJK 0.004 0.000 -0.002 -0.004 -0.001 0.002
(0.108) (0.107) (0.113) (0.114) (0.038) (0.096)

T = 360
OLS 0.017 0.001 -0.034 -0.038 -0.006 -0.005

(0.040) (0.038) (0.050) (0.053) (0.014) (0.054)
Augmented 0.003 0.000 -0.006 -0.006 -0.007 0.000

(0.019) (0.013) (0.033) (0.033) (0.032) (0.101)
MBJK 0.000 0.000 0.000 0.001 0.000 0.000

(0.039) (0.037) (0.042) (0.043) (0.014) (0.054)
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For each case, 10,000 samples are generated to compute the bias and RMSE.

The results are reported in Table 2.5, with columns 2-3 for the first case, columns

4-5 for the second case, and columns 6-7 for the third case. Interestingly, when

there is high collinearity (i.e., the first case), the OLS estimator has significant

finite-sample biases for the first regressor but negligible biases for the second

regressor. The performance of the augmented approach is mixed in the three

cases considered. It performs well in the first case, eliminating biases significantly

and delivering very low RMSEs. However, it performs badly in the third case.

In this case, compared with the OLS estimator, the augmented approach not

only increases the biases of the first regressor but also doubles the estimating

uncertainty for both regressors. In sharp contrast, the jackknife procedure is

stable across all three scenarios, consistently delivering the least biased estimates

with RMSEs of the same scale as, or much less than those of the OLS estimator.

2.5.5 Comparison summary

We conclude this section with a summary of the simulation findings. The simula-

tions reveal the substantial finite-sample biases of the OLS estimator. This bias

issue is especially severe in long-horizon regressions as the magnitude of the bias

increases rapidly with the horizon. This supports the claim by Nelson and Kim

(1993) that “the estimated biases are large enough to affect inference in practice,

and should be accounted for when studying predictability”. The simulations also

show that the proposed jackknife estimator offers substantial improvements over

the OLS estimator and enables reductions in both bias and RMSE.

Of the three bias-reduction approaches considered, the MBJK method almost

41



always produces the least biased estimates. Furthermore, the MBJK method

possesses several statistical properties which distinguish it to its parametric coun-

terparts.

First and foremost, the MBJK method is the only method which can reduce

bias in long-horizon regressions. This is a major advantage over its alternatives.

Because of the complex bias mechanism in long-horizon regressions, it is difficult

to tackle the problem of biased estimation and so far there are no exiting remedies

in the literature for this application. Indeed, the augmented and the plug-in

approaches cease to work in this application. However, the proposed jackknife

procedure can provide an effective solution to address the estimation problem in

these cases (Table 2.3).

Second, as a non-parametric method, the MBJK method possesses great ro-

bustness. Both the augmented regression and the plug-in method require cer-

tain parametric assumptions to be able to provide satisfactory performance. As

demonstrated by the simulations, the MBJK method works well in the model

misspecification cases and outperforms the augmented regression and the plug-in

method. In multi-regressor regressions, the plug-in method does not apply, while

the augmented regression can produce results even worse than the OLS estimator

(in terms of both bias and RMSE) in certain cases. The MBJK method, how-

ever, is stable and consistent. This robustness is an attractive feature and offers

advantages over the standard methods given the noise nature of financial data

sets.

Third, the MBJK method is simple and computationally easy to implement.

It involves only a linear combination of a series of the OLS estimators using

various subsets of the data. This computational advantage is more evident in
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multi-regressor models as the augmented regression requires a complex iterative

estimation procedure to obtain the solution.

Although the MBJK method is more superior in reducing bias, we also notice

that it often has slightly larger RMSEs than its two counterparts except for the

long-horizon regressions. However, this drawback does not undermine the value

of adopting the MBJK approach given its various advantages listed above. Fur-

thermore, as mentioned in Section 2.5.1, the relevance of RMSE can be critically

dependent on the application context. Maybe a more appropriate way to evaluate

an estimator is to incorporate a relative importance of bias and variance into the

MSE criterion through the weighting as suggested by Lin and Tu (1995).

2.6 Empirical Illustration

We illustrate the proposed jackknifing procedure using some common predictive

models in finance, namely, predicting the equity premiums by either the lagged

dividend yield, or the short rate, or both. The dividend yield and the short rate

receive great attention in the stock return prediction literature. For example,

Lewellen (2004) reported strong evidence for predictive power of the dividend

yield, whereas Campbell and Yogo (2006) found evidence that the short rate

predicts returns. Ang and Bekaert (2007) also found the short rate robust in

predicting returns. Furthermore, they argued that the dividend yield works bet-

ter together with the short rate. We illustrate the proposed method on these

predictive models and highlight the differences between the OLS estimates and

the bias-adjusted estimates.
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2.6.1 Data

As pointed out by Ang and Bekaert (2007), interest rate data are hard to in-

terpret before the 1951 Treasury Accord, as the Federal Reserve pegged interest

rates during the 1930s and the 1940s. Second, a number of studies have identi-

fied parameter instability during the 1990s. For example, Paye and Timmermann

(2006) identified a significant structural break in the coefficient of the dividend

yield around the 1990s. Goyal and Welch (2003) found that predictability by the

dividend yield is not robust with the inclusion of the 1990s. Ang and Bekaert

(2007) documented the coefficient for the dividend yield is twice as large if es-

timated from a sample that excludes the 1990s than if it was estimated from

a sample inclusive of the 1990s. Hence, we focus on the post-Accord period,

starting from January, 1952 up to December, 1989 for the analysis.

The data used in this section are the monthly return series of the S&P 500

Index. We briefly introduce the data and their sources below 1.

Stock returns (Rt): Monthly S&P 500 index returns from 1952 to 1989 are

from the Center for Research in Security Prices (CRSP). They are continuously

compounded returns on the index, including dividends.

Risk-free rate rf : The risk-free rate from 1952 to 1989 is the T-bill rate.

Dividend yield dy: Dividends are 12-month moving sums of dividends paid on

the S&P 500 Index. The original data are from Robert Shiller’s website 2. The

dividend yield is the dividends divided by the index level.

Short-term rate tbl: The short rate is the secondary market rates of 3-month

T-bills from the economic research database at the Federal Reserve Bank at St.

1For a detailed data description, refer to Welch and Goyal (2008)
2 http://aida.econ.yale.edu/ shiller/data.htm.
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Table 2.6: Summary statistics, 01/1952 – 12/1989 (456 months). The table
reports summary statistics of the equity premiums, dividend yields (dy), and
short rates (tbl). The column Kurt reports excess kurtosis. The last column CI
is the 95% confidence interval for the estimated autoregressive coefficient ρ̂.

Mean Median Std Dev Skew Kurt ρ̂ CI
r 5.66% 7.09% 14.54% -0.58 2.96 0.06 (-0.04, 0.15)
dy 3.92% 3.65% 0.92% 0.74 -0.57 0.98 (0.97, 1.00)
tbl 5.48% 5.08% 3.11% 0.93 0.82 0.99 (0.97, 1.00)

Louis 1.

Following the usual convention, the equity premium is computed as

rt = log(1 +Rt)− log(1 + rf ).

Summary statistics of the series are presented in Table 2.6. The return num-

bers reported in the table are annualised. The returns are the most variable,

whereas the volatility of the dividend yield is the lowest. The return series is

also characterised by fat tails as evidenced by the large excess kurtosis. There

is no strong evidence of autocorrelation in the equity premiums as indicated by

the insignificant ρ̂. On the other hand, the instruments, both the dividends and

short rates exhibit high persistence, with the 95% confidence interval of the au-

toregressive coefficient being [0.97, 1].

2.6.2 Empirical results

We fit the two univariate regressions and the bivariate regression by the OLS

and the jackknife procedure. Both short-horizon (at the one-month horizon) and

1http://research.stlouisfed.org/fred2/categories/22
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long-horizon predictability (horizons of 3, 6, and 12 months) are examined. To

reduce the bias, the MBJK estimator with the block length l = 0.3T is used for

the short-horizon regressions, whereas the MBJK estimator with l = 0.5T is used

for the long-horizon regressions. Table 2.7 overviews the regression results. For

each horizon, it lists the OLS estimates and the MBJK estimates of the predictor

variable coefficients. The t-statistics are computed using Newey-West (Newey

and West, 1987) standard errors with p+ 1 lags.

The OLS results reveal that (i) the OLS coefficient estimates are proportional

to the horizon and (ii) the predictive ability of the dividend yield is considerably

enhanced when coupled with the short rate in the regression. These results are

consistent with the findings by Boudoukh et al. (2008) and Ang and Bekaert

(2007). The OLS results also convey a well-celebrated message – strong return

predictability. Except for an insignificant short rate coefficient at p = 12 in

a univariate regression, all other coefficient estimates are significant at the 5%

level, with many of them being significant even at the 1% level. The predictability

is especially pronounced for the bivariate regression in long horizons. This strong

statistical evidence of predictability, however, vanishes completely after removing

finite-sample biases, as shown in the last three columns of Table 2.7. It indicates

that the finite-sample bias explains the bulk of apparent predictability. These

empirical results cast doubt on the conclusions drawn in earlier studies regarding

the predictive power of the dividend yield and the short rate.
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Table 2.7: Regression results for the period 01/1952 – 12/1989 (456 months).
The univariate regressions regress the equity premiums on the dividend yields
(dy) or short rates (tbl). The bivariate regression uses two regressors, dy and tbl.
For the results, ‘OLS’ reports the standard OLS estimates, and ‘MBJK’ reports
the bias-adjusted estimates. The MBJK estimator with l = 0.3T is used for the
short-horizon regressions (p = 1), whereas the MBJK estimator with l = 0.5T
is used for the long-horizon regressions (p > 1). The t-statistics are computed
using Newey-West standard errors.

OLS MBJK
Coefficient t-stat p-value Coefficient t-stat p-value

p = 1

Univariate Regression
dy 0.489 2.251 0.025 0.244 1.125 0.261
tbl -0.164 -2.842 0.005 -0.025 -0.436 0.663

Bivariate Regression
dy 0.739 3.162 0.002 0.314 1.345 0.179
tbl -0.233 -3.771 0.000 -0.028 -0.447 0.657

p = 3

Univariate Regression
dy 1.524 2.602 0.010 0.785 1.341 0.181
tbl -0.419 -2.628 0.009 -0.040 -0.251 0.802

Bivariate Regression
dy 2.193 3.381 0.001 0.235 0.362 0.718
tbl -0.626 -3.707 0.000 0.208 1.230 0.219

p = 6

Univariate Regression
dy 3.295 3.000 0.003 1.390 1.265 0.206
tbl -0.706 -1.988 0.047 -0.119 -0.334 0.738

Bivariate Regression
dy 4.504 3.504 0.001 0.480 0.373 0.709
tbl -1.130 -3.113 0.002 0.300 0.827 0.409

p = 12

Univariate Regression
dy 6.628 3.302 0.001 3.165 1.577 0.115
tbl -1.066 -1.523 0.128 -0.360 -0.515 0.607

Bivariate Regression
dy 8.638 3.456 0.001 2.155 0.862 0.389
tbl -1.879 -2.675 0.008 0.051 0.072 0.943
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2.7 Summary

In the class of predictive regressions studied in this Chapter, a rate of return

is regressed on a lagged stochastic regressor, which is autoregressive with errors

that are correlated with the errors of the regression model. The OLS estimator

exhibits the finite-sample bias, which potentially leads to an incorrect conclusion

that the lagged variable has predictive power while in fact it does not. This

chapter provides a non-parametric method based on the jackknife technique to

reduce estimation bias. Simulations show that the method is highly effective in

a broad range of model specifications. It reduces the bias for both single- and

multiple-regressor models and for both short- and long-horizon regressions. It

offers substantial improvements over the OLS estimator and enables reductions

in both bias and mean square error, so the gains from bias reduction are not lost

in variance increases. Compared with the other available counterparts in the lit-

erature, the proposed method is more general and stable. It is particularly useful

in long-horizon regressions for which the alternative bias-reduction methods do

not work. It also performs well in the situations with outliers, heteroscedasticity,

and model misspecification.

The usefulness of the method is also illustrated in the empirical estimates of

the common predictive models in finance which examine the predictive power of

the dividend yield and the short rate. The significant predictive variables under

the OLS become insignificant after adjusting for the bias in both univariate and

bivariate regressions, for both short and long horizons. These discrepancies are

large and suggest that bias reduction in predictive regressions is important in

practical applications.
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Chapter 3

Quantile Regression for Return

Prediction

3.1 Modelling the Return Distribution

3.1.1 Quantile models

The predictive regression (2.1) can also be written as

rt = α + βxt−1 + σuεt, (3.1)

where σu is a conditional volatility and εt is a return innovation which follows a

standard normal distribution. To emphasise the time-series aspect of the data,

we allow σu to be time varying and denote it by σt hereafter.

Let Ft−1 be the information available at time t − 1 and Φ be the standard

normal distribution. Then the implied τ -th conditional quantile of rt by model
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(3.1) is

Qτ (rt|Ft−1) = α + βxt−1 + σtΦ
−1(τ) ≡ ατ + βxt−1, τ ∈ (0, 1),

where Φ−1(τ) is the τ -th quantile of the standard normal distribution. Across

the distribution of rt, the only parameter varying with τ is the location ατ which

is determined solely by a mean effect α and the conditional volatility σt. There-

fore, despite the linear regression model (3.1) being designed only to capture the

conditional mean effect, in an ideal Gaussian world it provides a complete view

of the future return.

In real life, however, a single mean curve and the associated conditional volatil-

ity are rarely adequate summaries of the relationship between returns and covari-

ates. As reviewed in Section 1.1.2, the asset returns are commonly observed to

exhibit non-Gaussian features, and the investors’ interest goes well beyond mean

and variance. By replacing the Gaussian distribution assumption with a general

distribution Fε for the return innovation εt, even in the simplest case in which

the covariate effect is constant across all quantiles, the τ -th conditional quantile

of rt,

Qτ (rt|Ft−1) = α + σtF
−1
ε (τ) + βxt−1,

is no longer determined solely by the mean effect and σt. Instead it involves

estimation of the distribution Fε.

Furthermore, there is no compelling theoretical reason to believe that β should

be constant across quantiles. If some of the slope coefficients change with the

quantile τ , then this is indicative of some form of heteroscedasticity. This can

occur when economic state variables not only affect the conditional mean, but are
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also linked to the conditional variance (as is often the case in finance applications).

An example is given below.

rt = α + βxt−1 + σtεt,

σt = γ0 + γ1xt−1,

where γ1 measures the effect of xt−1 on the volatility σt. This specification implies

that the τ -th quantile takes the following form,

Qτ (rt|Ft−1) = α + γ0F
−1
ε (τ) + (β + γ1F

−1
ε (τ))xt−1 ≡ ατ + βτxt−1.

Therefore, if a variable correlates positively with the volatility (γ1 > 0), the slope

coefficient increases as τ increases from 0 to 1. A reverse pattern should arise for

variables correlating negatively with the volatility (γ1 < 0).

The model

Qτ (rt) = ατ + βτxt−1 + ut, τ ∈ (0, 1) (3.2)

is the so-called quantile regression introduced by Koenker and Bassett Jr (1978,

1982). A comprehensive introduction to quantile regression is presented in Koenker

(2005). Proposed as an alternative to the ordinary least squares approach, quan-

tile regression enjoys certain advantages over traditional approaches. It does not

need to specify an error distribution, which can be difficult in some cases. Com-

pared with the predictive regression model (3.1), the quantile regression (3.2) is

less stringent and general, with the only assumption on ut being Fu(0) = τ . It

provides a “distributional” perspective rather than merely a conditional mean

view. By varying τ from 0 to 1, a complete picture of covariate effect on return
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distribution is obtained.

Quantile regression has not been employed in finance until quite recently.

Most applications of quantile regression in finance are on value at risk (VaR)

modelling (see, for example, Taylor, 1999; Chernozhukov and Umantsev, 2001;

Engle and Manganelli, 2004; Giacomini and White, 2006; Adrian and Brunner-

meier, 2011). Using quantile regression to explore return predictability is a rel-

atively new approach in the return prediction literature. Section 1.1.2 provides

a review of the literature in this area. Strong empirical evidence of distribution

predictability of the monthly returns of both the S&P 500 index and the US

5-year Treasury bonds is documented in the literature.

3.1.2 Estimation

For convenience, we denote βτ = (ατ , β1,τ )
T , the regression parameter. For the

return observation rt, Xt−1 = (1, xt−1)T is the associated covariate vector. The

quantile regression model (3.2) can be written as

Qτ (rt) = XT
t−1βτ + εt.

Following the seminal work of Koenker and Bassett Jr (1978, 1982), the es-

timator of the parameter βτ , β̂τ is obtained by minimizing the following loss

function,

L(βτ ) = T−1

T∑
t=1

ρ(rt −Qτ (rt|βτ )), (3.3)
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where

ρ(u) =

 (1− τ)|u| if u ≤ 0

τ |u| if u > 0
, (3.4)

is the so-called tick loss function. The parameters are estimated using linear

programming as proposed by Koenker and d’Orey (1987).

Parameter estimation uncertainty is required in order to perform statistical

inference, such as in-sample predictability tests. One way to estimate the stan-

dard errors of β̂τ is to use the score function for βτ and the delta method (see,

for example, White, 1982; Koenker, 2005).

The estimating function or the score function for βτ is U(βτ ) = L′(βτ ), the

derivative of the loss function (3.3). As the derivative of the tick loss function

ρ(u) is ψ(u) = τ − I(u < 0) for any u 6= 0, the score function for βτ is

U(βτ ) = T−1

T∑
t=1

Xt−1{τ − I(rt −Qτ (rt|βτ ))}.

Suppose that ft(·) is the density function of εt and ft(0) > 0. In this case, we

have

B = cov{U(βτ )} = τ(1− τ)T−2

T∑
t=1

Xt−1X
T
t−1, (3.5)

and

A = ∂E{U(βτ )}/∂β = T−1

T∑
t=1

Xt−1X
T
t−1ft(0). (3.6)

The asymptotic covariance of β̂τ by the delta method is given by

Λ = A−1B(A−1)T .
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In order to obtain Λ, we need to estimate both A and B. However, it is not

easy to obtain an estimator for A as it involves the density functions of εt. If

U is smooth, we can estimate A by Â = ∂U(βτ )/∂βτ evaluated at β̂τ . If U is

not smooth (as in quantile regression) and, as such, a derivative does not exist

at certain points, the evaluation of A will depend on the unknown underlying

density function. This makes it difficult to obtain an estimate for the covariance

matrix of β̂τ .

The “unsmoothness” function is, in general, a “curse” in statistical inference.

This may partially explain why the quantile approach is not so widely used.

For the purpose of statistical inference, we use a method introduced by Wang

et al. (2009) for obtaining the standard errors of the regression coefficients. This

method eliminates unsmoothness in quantile estimation functions, and is more ro-

bust and less computationally intensive than the widely used bootstrap methods.

The details of the method are given in Appendix B.

3.2 Data Description

We examine predictability of the entire stock and bond return distribution through

the use of quantile regression (3.2). This section presents the data sets for this

purpose. Two broad-based indices are chosen to represent stock and bond returns.

They are the Russell 1000 Index, which is constructed and maintained by Rus-

sell Investments; and the US Aggregate Bond Index, which has been constructed

by the now-defunct Lehman Brothers and is currently maintained by Barclays

Capital. Compared to the commonly used stock index, the S&P 500 Index, the

Russell 1000 Index offers a more comprehensive representation of the US stock
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market, while the US Aggregate Bond Index is a well-recognized barometer for

investment-grade bonds being traded in the US. The details of the data sets are

listed below.

3.2.1 Stock data

Monthly stock returns are the simple returns on the Russell 1000 Index, includ-

ing dividends, from 1979:01 to 2011:02, where the starting date is dictated by

data availability. Eleven economic state variables are considered as potential

candidates to predict the return distribution. These variables fall into two broad

categories.

• Index characteristic variables

– Cross-sectional volatility (cv), 1996:07 to 2011:02. It measures the

cross-sectional return dispersion of the components in the Russell 1000

Index.

– Dividend yield (dy), available at quarterly frequency from 1979:03 to

1986:12 and monthly frequency from 1987:01 to 2011:02. It is calcu-

lated as the 12-month moving sum of dividends paid on the Russell

1000 Index divided by the index level.

– Price-to-book ratio (p/b), 1986:12 to 2011:02. It is calculated as the

cap-weighted sum of the index components’ price-to-book ratios.

– Price-to-earnings ratio (p/e), 1986:12 to 2011:02. It is calculated as the

cap-weighted sum of the index components’ price-to-earnings ratios.

Negative earnings are excluded from the calculation.
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– Earnings-per-share growth forecast (epsgf), 1986:12 to 2011:02. It is

calculated as the cap-weighted sum of the index components’ I/B/E/S

consensus earnings-per-share growth rates in the long term (typically

five years).

• Broad market variables

– Market volatility (vix), 1990:01 to 2011:02. It measures the market’s

expectation of stock market volatility over the next 30-day period. The

index is calculated and disseminated by the Chicago Board Options

Exchange.

– Three-month T-Bill rate (tbl3m), 1979:01 to 2011:02. It is from the

economic research database at the Federal Reserve Bank at St. Louis

(FRED). The 3-month T-Bill secondary market rate serves as a proxy

for expectations of future economic activity.

– Inflation (infl), 1979:01 to 2011:02. It is the last 12-month rate change

on the Consumer Price Index. The Consumer Price Index (All Urban

Consumers) is from the Bureau of Labor Statistics. Because inflation

is released in the following month, there is a one-month lag before

using it in the monthly regressions.

– Default yield spread (dfy), 1979:01 to 2011:02. It is the difference

between BAA- and AAA-rated corporate bond yields. The corporate

bond yields are from FRED. The default yield spread captures the

effect of default premium, which tracks the long-term business cycle

conditions, higher during recessions and lower during expansions.
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– Term spread (tms), 1979:01 to 2011:02. It is approximated by the

difference between the yields on 10-year Treasuries and 3-month Trea-

suries. The yields on 10-year Treasuries again are from FRED.

– Consumer sentiment index (cs), 1979:01 to 2011:02. It is from Data-

stream. The index is constructed by the University of Michigan.

3.2.2 Bond data

The monthly bond returns are the simple returns on the US Aggregate Bond Index

from 1976:01 to 2011:02, where the starting date is dictated by data availability.

As for the predictor variables, five of the broad market variables described above,

tbl3m, infl, dfy, tms and cs, are also used to predict bond returns. To match

with the bond data, the time series of the these state variables are from 1976:01

to 2011:02 for tbl3m, infl, dfy and tms, and from 1978:01 to 2011:02 for cs due

to data availability. Researchers have also identified exchange rate change as a

risk factor in bond returns (see, for example, Chow et al., 1997). Following their

insights, a trade-weighted exchange rate is also considered for predicting the bond

returns.

• Trade-weighted exchange index (twex), 1976:01 to 2011:02. It is from

FRED. This index is a weighted average of the price of various currencies

relative to the dollar, which accurately reflects the strength of the dollar

relative to other world currencies.

Table 3.1 reports descriptive statistics for the stock and bond returns as well

as the predictor variables. The stock and bond returns possess typical features
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of asset returns. Mean (annualised) returns are 12.42% for stocks and 8.15%

for bonds, both series exhibit leptokurtosis; moreover stocks have negative skew-

ness while bonds display positive skewness. Annualised volatilities are 15.69% for

stocks and 5.67% for bonds. The Jarque-Bera statistic strongly rejects the hy-

pothesis of normal distribution for both asset returns, as well as all the economic

state variables considered.

3.3 Univariate Quantile Regression Results

Following the convention, the mean effects of the state variables are first examined

using the predictive regression (3.1) on the full sample. Table 3.2 reports the

estimated slope coefficients by the OLS for both the stocks and bonds. Then

the distribution predictability is investigated using the quantile regression (3.2),

also on the full sample. Table 3.3 presents the coefficient estimates of the state

variables at the eleven chosen quantiles ranging from 0.05 to 0.95.

For stock returns, most of the state variables considered appear to have little

ability to predict the mean according to the OLS estimation results. However,

according to the quantile regression, six out of the eleven variables, namely, cv,

dy, p/e, epsg, dfy and vix, show non-negligible effects on various parts of the

return distribution. To gain some intuition, Figure 3.1 shows the effects of these

six variables at finer quantile grids. Each plot in the figure depicts one variable

coefficient in the quantile regression model. The solid line with filled dots repre-

sents the point estimates, β̂1j,τ : τ = 0.05, 0.1, 0.15, · · · , 0.95 for the j-th variable,

j = 1, · · · , 6. The shaded gray area depicts 90% pointwise confidence bands.

Superimposed on the plot is a dashed line representing the OLS estimate of the
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Table 3.2: This table reports the mean effects of the economic state variables
considered using predictive regression. The coefficient estimates of cs, cv, p/b,
p/e, vix and twex have been multiplied by 100.

Stock Bond
Variable Estimate Variable Estimate

tbl3m 0.0364 tbl3m 0.0677∗∗∗

infl -0.0192 infl 0.0051
dfy 0.1654 dfy 0.3637∗∗

tms 0.0473 tms 0.1039∗

cs -0.0081 cs -0.0027
cv −0.2363∗ twex 0.0209∗∗∗

dy 0.6001∗

p/b -0.3807
p/e −0.1204∗

epsgf −0.2375∗

vix -0.0043

∗ indicates significance at the 10% level
∗∗ indicates significance at the 5% level
∗ ∗ ∗ indicates significance at the 1% level

mean effect of the variable, with two dotted lines again representing a 90% con-

fidence interval for this coefficient. The solid horizontal line is the zero line. The

horizontal axis lists quantiles running from 0.05 through 0.95.

If assumptions for the standard linear regression model hold, the quantile

slope estimates should fluctuate randomly around a constant level, with only the

intercept parameter systematically increasing with τ . However, none of the slope

estimates of the six variables can be described as random fluctuations here. In

fact, the quantile slope estimates of the variables such as cv, dfy and vix follow a

systematic pattern with negative values in the left tail and positive values in the

right tail. These three variables are significant in the tail parts of the distribution,

but have little impact in the middle. It seems that large positive and negative
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impacts of the variables in the tails cancel each other out, which leads to barely

significant results from the conditional mean estimates as indicated by the OLS

estimates. The variable dy appears to have a significant positive effect in the lower

tail, which implies the worst-case scenarios of the stock returns can be somewhat

mitigated as dividend yield increases. Two earnings-related variables, p/e and

epsgf, show overall negative effects and affect the middle parts of the distribution

significantly.

As for the bonds, the conditional mean seems to be more predictable than

that of the stocks as more variables come out significant in the linear regression

analysis. Moreover, all six variables considered contribute to predicting the dis-

tribution. Figure 3.2 presents an intuitive summary of the quantile regression

results for the bond data.

The OLS estimates, again, are far from an adequate summary of the variable

effects on the bond returns. The slope estimates of the variables, tbl3m, infl, dfy

and twex, all systematically increase with τ . While both the OLS and quantile

results indicate that an increase in the value of tms is likely to increase the bond

returns, the quantile analysis tells a more detailed story of how this variable

affects the bond returns. The variable tms affects the lower to middle quantiles

significantly, but not the upper part of the distribution. The effect of consumer

sentiment (cs) is mainly in the left tail.

In summary, for both the stocks and bonds, the heterogeneous effects of the

state variables on the returns are self-evident. It does not matter whether the

heterogeneity arises from the volatility channel, as discussed in Section 3.1.1, or

from more complicated channels, the quantile regression analysis provides a much

richer picture than the conditional mean approach.
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Figure 3.1: This figure plots the slope coefficient estimates for the stock data.
The solid line with the filled dots gives the coefficients of state variables estimated
from the quantile regression, with the shaded grey area depicting a 90% confidence
interval. The dashed line gives the OLS estimate of mean effect, with two dotted
lines again representing a 90% confidence interval for this coefficient. The solid
horizontal line is the zero effect line. The coefficient estimates and corresponding
confidence bands of cv, p/e and vix have been multiplied by 100.
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Figure 3.2: This figure plots the slope coefficient estimates for the bond data. The
solid line with the filled dots gives the coefficients of state variables estimated from
the quantile regression, with the shaded grey area depicting a 90% confidence
interval. The dashed line gives the OLS estimate of mean effect, with two dotted
lines again representing a 90% confidence interval for this coefficient. The solid
horizontal line is the zero effect line. The coefficient estimates of cs and twex have
been multiplied by 100.

64



3.4 Marginal Distributions by Model Combina-

tion

Two sets of variables are identified in the univariate analysis above to be useful

in predicting return distribution: cv, dy, p/e, epsg, dfy and vix for the stock

return and tbl3m, infl, dfy, tms, cs and twex for the bond return. To get a good

return distribution forecast using the information available at the end of February

2011, an equal-weighted combination of the forecasts from each of the univariate

quantile models is used,

Q∗τ =
1

n

n∑
i=1

Qi
τ , i = 1, 2, · · · , 6, (3.7)

where Qi
τ is the conditional τ -th quantile associated with the univariate model

i. This equal-weighted combination is applied to both the stocks and the bonds.

The use of the forecast combination is based on the following two reasons. Firstly,

a multiple regression model that incorporates many predictor variables does not

seem to work well in practice. Gains from using more variables in regression

are likely to be outweighed by increasing parameter uncertainty. Indeed, Rapach

et al. (2010) find that multi-factor regression model performs worse than single-

factor predictive regression models in the case of forecasting equity premium.

Secondly, the forecasting literature often shows that a simple average is difficult

to outperform in a variety of settings in economics and finance (see, for example,

Timmermann, 2006).

In order to get a distribution forecast for the returns in March 2011, a suf-

ficiently fine grid of quantiles needs to be estimated. For this purpose, we use

65



−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

0
2

4
6

8
10

12

Stock Return Distribution

Return

Figure 3.3: Conditional distribution of stock returns forecasted at the end of
February 2011. The mean and standard error of the distribution are 1.073%
and 0.0403. Superimposed on the plot is a dashed line representing the normal
distribution with the same mean and standard error.

a software package developed by Koenker 1 to automatically find all τ values at

1A quanitle regression package in R is available at
http://www.econ.uiuc.edu/ roger/research/rq/rq.html.
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Figure 3.4: Conditional distribution of bond returns forecasted at the end of
February 2011. The mean and standard error of the distribution are 0.374%
and 0.0103. Superimposed on the plot is a dashed line representing the normal
distribution with the same mean and standard error.

which the parameter estimates change. With these estimated quantile functions,

the inverse cumulative distribution functions for both the stock and bond returns
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can be constructed. In order to get empirical return distributions, we generate

100,000 random returns for both the stocks and bonds. This is achieved by inverse

transform sampling. First, we generate a random number u from the standard

uniform distribution in the interval [0, 1]. Then, we find the closest quantile τ

to u at which we have a solution, and compute the corresponding return. This

return can be regarded as the random number drawn from the distribution de-

scribed by the quantile functions. For both the stocks and bonds, we repeat the

process 100,000 times to get 100,000 random returns.

The conditional stock return distribution at the end of February 2011 based

on the 100,000 samples has mean 0.011, standard error 0.040, skewness -0.644 and

excess kurtosis 1.178. Compared with the unconditional distribution summarised

in Table 3.1, the conditional return is of higher mean, lower volatility, slightly

lower downside risk and smaller excess kurtosis. Figure 3.3 depicts the condi-

tional distribution of the stock returns (the solid line). The superimposed dash

line is a normal distribution with the same mean and standard error as the stock

returns. Using the normal distribution to approximate the conditional stock re-

turn distribution will result in underestimating downside risk and overestimating

upside potential.

The conditional bond return distribution at the end of February 2011 based

on the 100,000 samples has mean 0.004, standard error 0.010, skewness -0.477

and excess kurtosis 2.729. Compared with the unconditional bond distribution

summarised in Table 3.1, the conditional return is of lower mean, lower volatility

but larger downside risk and smaller excess kurtosis. Figure 3.4 depicts the

conditional distribution of the bond returns (the solid line). Again the dash line

is a normal distribution with the same mean and standard error as the bond
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returns. Compared with the normal distribution, the conditional distribution of

the bond returns has fatter tails and more concentrated mass in the middle of

the distribution.

3.5 Out-of-sample Predictability

The above empirical studies report strong in-sample evidence of predictability of

the full return distributions. It is not clear how much weight should be placed

on out-of-sample statistics in judging the predictability of returns. Several au-

thors have argued that poor out-of-sample performance is not evidence against

predictability per se but is only evidence of the difficulty in exploiting predictabil-

ity with trading strategies (see, for example, Inoue and Kilian, 2005; Cochrane,

2008). Nevertheless, we address the out-of-sample predictability of the full return

distribution in this section. However, given the short return time series for both

the stocks and bonds (a little more than 30 years) and even shorter time series for

a number of predictor variables, the main purpose here is more of demonstrating

how to assess out-of-sample predictability of a return distribution forecast than

drawing concrete conclusions on out-of-sample predictability.

We use prevailing quantile to represent “no predictability”. A prevailing quan-

tile model is the quantile model (3.2) with no predictor variable,

Qτ (rt|Ft−1) = β0,τ + ut. (3.8)

A prevailing quantile model is calculated using historical return series only. It is

the quantile equivalent to the prevailing mean used by Goyal and Welch (2003)
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and Welch and Goyal (2008) for assessing out-of-sample mean return predictabil-

ity.

To examine the out-of-sample predictability, we use data up to 1999:12 as the

initial estimation sample and retain the period from 2000:01 to 2011:02 as the

out-of-sample evaluation period. This out-of-sample period includes the burst of

the dot-com bubble in 2000-2001 and the Global Financial Crisis in 2007-2009,

and therefore can be considered a challenging period. One-step-ahead forecasts

are generated for returns in 2000:01. In the following month (January 2000),

the data window expands to include 2000:01, the parameters of the quantile

regression models are re-estimated and then used to predict returns for 2000:02,

and so forth, up to the end of the sample. This process generates a set of 133

out-of-sample forecasts for each quantile τ .

We assess three quantile forecasting models for both the stocks and the bonds,

namely (i) six univariate quantile regression models (3.2) using the factors iden-

tified in Section 3.3; (ii) an equal-weighted combination of the forecasts from

univariate quantile regression models as described in Section 3.4; (iii) a prevail-

ing quantile model with no predictor variable (3.8).

We consider quantiles τ = 0.05, 0.1, 0.3, 0.5, 0.7, 0.9 and 0.95. Similar to Cene-

sizoglu and Timmermann (2008), we use two statistics to measure model fit. The

first one is out-of-sample coverage ratio, i.e., the percentage of times that actual

returns fall below the predicted τ -quantile. If a model is correctly specified, this

coverage ratio should be equal to τ . The second measure is out-of-sample tick

loss. The tick loss is based on the tick objective function (3.4) and is computed
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Table 3.4: This table reports out-of-sample coverage probability which is the
proportion of actual stock/bond returns in the out-of-sample period (2000:01 –
2011:02) that fall below the predicted quantile. For both the stocks and bonds,
the first six rows report results for the univariate quantile regressions using the
predictor variables listed in each row. The row “Combined” reports results for
the equal-weighted combination of the six univariate quantile forecasts. The row
“Prevailing” reports results for the prevailing quantile forecasts. The parameters
of the forecasting models are estimated recursively using an expanding window
of data.

Quantile
0.05 0.1 0.3 0.5 0.7 0.9 0.95

Stock

cv 0.083 0.143 0.316 0.549 0.774 0.910 0.932
dy 0.113 0.158 0.301 0.496 0.737 0.902 0.940
p/e 0.120 0.165 0.353 0.526 0.744 0.887 0.932
epsgf 0.103 0.138 0.353 0.571 0.744 0.872 0.940
dfy 0.098 0.165 0.368 0.556 0.724 0.910 0.970
vix 0.083 0.135 0.353 0.571 0.744 0.932 0.960

Combined 0.088 0.133 0.331 0.541 0.739 0.902 0.959
Prevailing 0.128 0.165 0.361 0.556 0.752 0.910 0.920

Bond

tbl3m 0.068 0.120 0.308 0.489 0.624 0.850 0.887
infl 0.053 0.105 0.338 0.541 0.782 0.940 0.970
dfy 0.015 0.045 0.286 0.526 0.812 0.977 1.000
tms 0.030 0.068 0.293 0.549 0.805 0.977 0.985
cs 0.015 0.030 0.278 0.504 0.812 0.970 0.992
twex 0.038 0.068 0.248 0.466 0.722 0.910 0.970

Combined 0.043 0.070 0.286 0.496 0.744 0.947 0.960
Prevailing 0.023 0.060 0.293 0.519 0.820 0.977 0.985
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Table 3.5: This table reports out-of-sample loss which is computed under the
tick loss function over the out-of-sample period (2000:01 – 2011:02). For both
the stocks and bonds, the first six rows report results for the univariate quantile
regressions using the predictor variables listed in each row. The row “Combined”
reports results for the equal-weighted combination of the six univariate quantile
forecasts. The row “Prevailing” reports results for the prevailing quantile fore-
casts. The parameters of the forecasting models are estimated recursively using
an expanding window of data.

Quantile
0.05 0.1 0.3 0.5 0.7 0.9 0.95

Stock

cv 0.705 1.167 2.263 2.525 2.203 0.997 0.563
dy 0.893 1.405 2.282 2.417 2.090 1.037 0.583
p/e 0.892 1.422 2.246 2.365 2.068 1.034 0.588
epsgf 0.877 1.396 2.243 2.398 2.121 1.051 0.600
dfy 0.851 1.345 2.316 2.422 2.062 0.994 0.574
vix 0.718 1.225 2.314 2.506 2.018 0.871 0.491

Combined 0.765 1.263 2.254 2.420 2.084 0.982 0.534
Prevailing 0.883 1.409 2.305 2.425 2.085 1.031 0.579

Bond

tbl3m 0.195 0.289 0.506 0.551 0.468 0.278 0.194
infl 0.181 0.278 0.508 0.544 0.469 0.241 0.161
dfy 0.188 0.287 0.506 0.559 0.488 0.269 0.176
tms 0.193 0.299 0.509 0.554 0.483 0.279 0.187
cs 0.197 0.291 0.504 0.551 0.492 0.286 0.195
twex 0.185 0.285 0.509 0.534 0.449 0.250 0.158

Combined 0.182 0.281 0.502 0.541 0.459 0.241 0.153
Prevailing 0.188 0.285 0.504 0.545 0.476 0.276 0.186
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as follows,

Lτ =
∑
t

(τ − I{rt −Qτ (rt) < 0})(rt −Qτ (rt)).

Leitch and Tanner (1991) find that compared with conventional measures such

as mean squared errors, this tick loss is more closely related to the possibility of

making economic profits from return forecasts.

Table 3.4 reports the out-of-sample coverage ratio for all the models consid-

ered. Firstly, we notice that the coverage ratios are not so close to their corre-

sponding τ values, especially in the tails. This inaccuracy can be due to the fact

that we have short time series and only 133 out-of-sample forecasts. For uni-

variate models, there is a certain degree of variation in the results across models

and quantiles. By using the absolute deviation between the coverage ratio and

the corresponding τ value as the measure of closeness, we find that no single

univariate model is consistently better than the simple prevailing quantile model

which assumes no predictability. On the other hand, although the equal-weighted

quantile combination is not the best for all the quantiles considered, it is very

robust and delivers a satisfactory performance. It consistently outperforms the

prevailing quantile model for almost all the quantiles for the stock and bond data.

The only exception is at τ = 0.3 for the bond data, where the equal-weighted

quantile combination slightly underperforms the prevailing quantile model.

Table 3.5 lists the out-of-sample loss under the tick loss function. Again, none

of the single univariate quantile models can consistently outperform the prevailing

quantile model. But the equal-weighted quantile combination consistently out-

performs the prevailing quantile for all the quantiles and for both the stocks and

bonds. Especially in the tails, it outperforms by large margins, which indicates
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the relatively good predictive ability in the tails of the distributions.

The out-of-sample results show that the simple equal-weighted model combi-

nation adds value and improves upon the individual univariate quantile models.

The out-of-sample analysis also suggests that the return distributions in general

are predictable by economic state variables through the simple equal-weighted

model combination with the tails of the distributions being especially predictable.

3.6 Summary

The traditional focus on return predictability is the conditional mean, which is

insufficient and does not reveal a complete picture of the returns. This chap-

ter investigates the predictability of return distributions in a quantile regression

framework. The use of quantile regression allows us to examine the predictabil-

ity of any specific part of the return distributions. For a sufficiently fine grid of

quantiles, the entire distribution can be traced out.

We carry out empirical studies to investigate the return distribution pre-

dictability of the Russell 1000 Index and the US Aggregate Bond Index. These

studies report strong empirical evidence of the predictability of different parts

of the distribution other than mean both in-sample and out-of-sample. In the

in-sample study, a number of economic state variables show significant but het-

erogenous effects on various parts of return distributions, which are especially

pronounced for the bond returns. In the out-of-sample study, the distributions

are predictable by economic state variables through the simple equal-weighted

model combination. For both the in-sample and the out-of-sample studies, the

evidence of predictability is strongest in the tails of the distributions.
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This chapter complements the literature on return distribution predictabil-

ity by providing further empirical evidence using the two broad-based indices.

Given the wide recognition of these two indices in investment communities, pre-

dictability of their returns has academic value as well as a significant economic

value to investors. The empirical analysis also demonstrates that quantile re-

gression for predicting distributions is flexible and general enough to capture any

non-Gaussian characteristics in asset returns.
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Chapter 4

Joint Return Distribution

Modelling and Distribution-based

Portfolio Selection

4.1 Modelling Joint Return Distribution

4.1.1 Copulas for return dependence

Chapter 3 provides strong empirical evidence of predictability of return distribu-

tions. It shows the distribution in general is more predictable than the conditional

mean of stock and bond returns. The marginal return distribution of an asset

can be obtained using the proposed quantile regression model (3.2) and choosing

a sufficiently fine grid of quantiles. For many applications in economics and fi-

nance, however, marginal distributions are not enough. This is the case especially

for portfolio management as almost all investment decisions involve more than
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one asset. It is therefore of great importance to investigate joint return distri-

butions. To model a joint return distribution, we first consider modelling return

dependence using copulas.

A copula is a multivariate function with one-dimensional margins being uni-

form on [0, 1]. The term copula was introduced by Sklar (1959). However, the

idea of copula dates back to Hoeffding (1940, 1941), who established the best

possible bounds for these functions and studied measures of dependence that

are invariant under strictly increasing transformations. Nelsen (2006) provides a

comprehensive introduction to the copula theory.

The fundamental theorem in copula theory is established by Sklar (1959).

Theorem 4.1.1. (Sklar’s Theorem, 1959): Let F be a distribution function on

Rk with one-dimensional distribution F1, · · · , Fk. Then there is a copula C such

that

F (x1, · · · , xk) = C(F1(x1), · · · , Fk(xk)). (4.1)

If F is continuous, then C in (4.1) is unique and is given by

C(u1, · · · , uk) = H(F−1
1 (u1), · · · , F−1

k (uk))

for u = (u1, · · · , uk) ∈ Rk, where F−1
i (ui) = inf{x : Fi(x) ≥ ui}, i = 1, · · · , k.

Conversely, if C is a copula on [0, 1]k and F1, · · · , Fk are distribution functions

on R, then the distribution function defined in (4.1) is a distribution function on

Rk with one-dimensional margin F1, · · · , Fk.

Although the theory of copulas was established in 1959, it was not until the

1970s that copulas were used in the modelling of data. Since the pioneering
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work of Embrechts et al. in 1999, copula models have enjoyed steadily increas-

ing popularity in finance. For example, Li (2000) studies the problem of default

correlation in credit risk models using copulas, while Bouyé et al. (2000) and

Cherubini et al. (2004) discuss various applications of the copula theory to finan-

cial problems. Patton (2006) further proposes extensions of the copula theory to

allow for conditioning variables and employs it to construct flexible models of the

conditional dependence structure of exchange rates. Ammann and Süss (2009)

apply the skewed Student’s t copula to generate meta-skewed Student’s t distri-

butions. They find that the asymmetry property of the copula helped to improve

description of the dependence structure between equities returns. Fischer et al.

(2009) consider constructing high-dimensional copulas to sufficiently capture the

characteristics of financial returns.

Compared with measures such as correlation, which can only capture linear

dependence, a copula is a more sophisticated and complete description of the

dependence structure of asset returns. The most frequently used copula families

are elliptical copulas and Archimedean copulas. The copulas in the elliptical

family include the Gaussian copula and Student’s t copula. The copulas in the

Archimedean family include the Clayton, Frank, Gumbel and Ali-Mikhail-Haq

(AMH) copulas. Their detailed functional forms are given below. Details and

properties of these copulas are given in Nelsen (2006).

Gaussian copula The Gaussian copula takes the form

C(u, v; ρ) = Φρ(Φ
−1(u),Φ−1(v))

=

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ
exp

{
−(x2 − 2ρxy + y2)

2(1− ρ2)

}
dxdy,
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where Φρ denotes the standard bivariate normal cumulative distribution function

with correlation ρ, and Φ is the standard normal cumulative distribution function.

The normal copula is flexible in that it allows for equal degrees of positive and

negative dependence.

Student’s t copula The bivariate t-copula has two dependence parameters,

degrees of freedom ν and correlation ρ,

C(u, v; ρ, ν) = tρ,ν(t
−1
ν (u), t−1

ν (v))

=

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

Γ(ν+2
2

)

νπΓ(ν
2
)
√

1− ρ2

(
1 +

x2 + y2 − 2ρxy

ν(1− ρ2)

)
dxdy,

ρ ∈ (−1, 1), ν > 2,

where tν is the probability density function of a student’s t distribution with

degree of freedom ν, and t−1
ν is the inverse cumulative distribution function of a

student’s t distribution. The parameter ν controls the heaviness of the tails. For

ν < 3, the variance does not exist, and for ν < 5, the fourth moment does not

exist. As ν →∞, C(u, v; ρ, ν)→ C(u, v; ρ).

Clayton copula The Clayton copula takes the form

C(u, v; θ) = (u−θ + v−θ − 1)−1/θ, θ ∈ [−1,∞) \ {0}.

The Clayton copula cannot account for negative dependence. It exhibits strong

left-tail dependence and relatively weak right-tail dependence.

Gumbel copula The Gumbel copula takes the form

C(u, v; θ) = exp
{
−
[
(− lnu)θ + (− ln v)θ

]1/θ}
, θ ∈ [1,∞).
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Similar to the Clayton copula, Gumbel does not allow negative dependence, but,

in contrast to the Clayton, the Gumbel exhibits strong right-tail dependence and

relatively weak left-tail dependence.

Frank copula The Frank copula takes the form

C(u, v; θ) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
.

θ ∈ (−∞,∞) \ {0}.

The Frank copula permits negative dependence between marginals. Similar to

the Gaussian and Student’s t copulas, dependence is symmetric in both tails for

this copula.

Ali-Mikhail-Haq (AMH) copula The AMH copula takes the form

C(u, v; θ) =
uv

1− θ(1− u)(1− v)
, θ ∈ [−1, 1].

The AMH copula allows both negative and positive dependence.

4.1.2 Quantile-copula approach for joint returns

Sklar’s theorem states that a joint distribution can be expressed in terms of its

respective marginal distributions and a dependence function C that binds them

together. In other words, copulas can be used to piece together joint distribu-

tions when only marginal distributions can be specified. Therefore, combining

non-parametric marginal distributions modelled by quantile regressions and a de-

pendence structure modelled by a copula, a joint return distribution can be easily

obtained.
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This quantile-copula approach for joint return modelling is general and flexi-

ble. It allows rich non-Gaussian joint distribution families to be generated. The

conventional way of modelling joint asset returns in the literature is through the

use of multivariate elliptical distributions. For example, Ang and Bekaert (2002),

Guidolin and Timmermann (2007) and Menćıa and Sentana (2009) use mixtures

of multivariate normal distributions; while Harvey et al. (2010) consider a multi-

variate skewed normal distribution. Jondeau and Rockinger (2006) and Adcock

(2010) employ a skewed Student’s t distribution to allow for more dispersion.

Despite limited choice of multivariate elliptical distributions, these joint distribu-

tions also suffer from various parametric constraints. For example, the skewness

of both the multivariate Student’s t and normal distribution is a function of the

first two moments, not a separate parameter. Our quantile-copula approach for

joint distributions does not have such constraints and is, therefore, more flexible.

The quantile-copula approach for joint return distribution modelling is com-

putationally cheap to implement. Pedersen (2010) proposes modelling the joint

asset returns through the use of multivariate quantile regression, i.e., a single

regression model with more than one response variable. Although the multivari-

ate quantile regression can yield some insights into the joint asset returns, it has

disadvantages. The parameter estimation for multivariate quantile regression is

challenging, especially computationally as the estimates are often unstable and

not unique. On top of that, constructing a joint distribution using multivari-

ate quantile regression is not a straightforward task. It involves estimation of

sufficiently fine grid of multidimensional quantiles, where the computational in-

tensity increases exponentially with the number of dimensions. In contrast, the

well-developed copula theory is a more convenient vehicle than the less-developed
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multivariate quantile regression approach.

The implications of return distribution foreseeability reach throughout finance

but are yet to be explored. Return distribution predictability is especially per-

tinent to portfolio selection. As reviewed in Section 1.1.2, instead of using full

distributions, a majority of the finance literature on portfolio selection reduces

to approximate distributions with a few individual moments. Now, given that

joint return distributions can be modelled in the quantile-copula framework, we

seek to extend moment-based portfolio selection to a distribution-based exercise.

For this purpose, we need to have an objective function which utilises the full

underlying distribution information, as well as a proper optimisation algorithm

for obtaining a solution.

4.2 Portfolio Selection: Objective Function

4.2.1 Omega measure

Let r be return of a portfolio over a period. The return r can be decomposed as

r = L+ max(r − L, 0)−max(L− r, 0), (4.2)

where L is a benchmark return or a reference point so that a return above L is

considered as a gain and a return below L as a loss. Therefore, max(r − L, 0)

and max(L − r, 0) can be viewed as upside potential and downside risk of the

portfolio, respectively. Adjusting the upside potential and downside risk by their
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corresponding probabilities, we get

E[max(r − L, 0)] =

∫ ∞
L

(r − L)f(r)dr,

and

E[max(L− r, 0)] =

∫ L

−∞
(L− r)f(r)dr,

which are the upper partial moment (UPM) of order 1 and the lower partial

moment (LPM) of order 1, respectively. The ratio of the UPM and LPM of order

1 is the so-called “Omega” by Shadwick and Keating (2002),

Ω(L) =
E[max(r − L, 0)]

E[max(L− r, 0)]
=
UPM1(L)

LPM1(L)
. (4.3)

The Omega measure is the ratio of the expected upside of the asset over the

benchmark (over-performance) and its expected downside. The Omega can also

be viewed as the ratio of the payout of a “virtual” call option E[max(r − L, 0)]

over the payout of a “virtual” put option E[max(L−r, 0)]. Shadwick and Keating

(2002) describe the Omega measure as a probability adjusted ratio of gains to

losses and state that, for a benchmark L, the simple rule of preferring more to

less implies that an asset with a high value of Omega is a better investment than

one with a lower value.

The Omega measure provides a succinct summary of financial performance/risk

of a portfolio. Instead of using only a few individual moments to represent a re-

turn distribution, as the quadratic utility does, it incorporates all the higher-order

moments of a return distribution. In addition, the Omega also takes into account

the benchmark return against which a given outcome will be viewed as a gain or
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a loss. Even in the case in which returns are normally distributed, this provides

additional information which mean and variance alone do not encode. This can

lead to significantly different portfolio optimisations than are produced by the

classical mean-variance portfolio analysis.

In the following section, we show the connection between the Omega mea-

sure and prospect theory and propose a general version of the Omega measure

according to the prospect theory to incorporate asymmetric preference for gains

and losses.

4.2.2 Prospect theory and generalised Omega measure

Darsinos and Satchell (2004) establish the connection between prospect theory

and the Omega measure which we summarise in this section.

Prospect theory is developed by Kahneman and Tversky (1979) as a psycho-

logically more accurate description of preferences compared to expected utility

theory. It describes how people choose between probabilistic alternatives and

evaluate potential losses and gains. In short, people evaluate outcomes relative

to a reference point L which is variable and often dependent on initial wealth

v0. Then people make decision by maximizing the gains based on the potential

outcomes and their respective probabilities.

In prospect theory, a full description of decision making involves specifying

the utility function relative to a reference point L(v0), which is usually initial

wealth (v0) dependent. Letting U(·) be utility, with v being final wealth, it is
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usual to write the prospect utility function as:

U(v) = U1(v − L(v0)), if v > L(v0)

= −U2(L(v0)− v), if v ≤ L(v0), (4.4)

where U1(·) and U2(·) are increasing functions. Denoting r = v/v0 and L =

L(v0)/v0 and letting v0 = 1 without loss of generality, the prospect utility function

(4.4) can be written as

U(r) = U1(r − L), if r > L

= −U2(L− r), if r ≤ L. (4.5)

As suggested by prospect theory, investors more often have an asymmetric pref-

erence for gains and losses. Thus, we include an extra parameter into equation

(4.5):

U(r) = U1(r − L), if r > L

= −λU2(L− r), if r ≤ L, (4.6)

where λ > 0. Such a specification is called a loss aversion utility function.

If we set

U1(r − L) = E(r − L|r > L)pr(r > L) = E[max(r − L, 0)],

U2(L− r) = E(L− r|r ≤ L)pr(r ≤ L) = E[max(L− r, 0)],

the Omega measure is the ratio of U1 over U2 with a symmetric preference for gains
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and losses, i.e., λ = 1. Of course, other performance measures can be generated

by specifying different increasing functions for U1 and U2 and combining them

differently, such as taking minus instead of taking ratios.

One way to generalise the Omega measure to take account of investors’ loss

attitude is

Ω1(L, λ) = E[max(r − L, 0)]− λE[max(L− r, 0)].

It is actually the regret-reward measure studied by Dembo and his colleagues (see,

for example, Dembo and Rosen, 1999; Dembo and Mausser, 2000). However, this

measure suffers a critical drawback. Taking the expectations of the equation

(4.2), we have

E(r) = L+ E[max(r − L, 0)]− E[max(L− r, 0)].

By setting L = µ, the mean of the return, we get

µ = µ+ E[max(r − µ, 0)]− E[max(µ− r, 0)],

or

E[max(r − µ, 0)]− E[max(µ− r, 0)] = 0.

Therefore, the regret measure fails to rank return performances when λ = 1 and

L = µ because it is 0 for any return distribution under these conditions.

An appropriate generalisation of the Omega function (4.3) to incorporate loss

aversion can be

GΩ(L, λ) = log(E[max(r − L, 0)])− λlog(E[max(L− r, 0)]), λ > 0. (4.7)

86



The loss aversion parameter λ < 1 corresponds to risk seekers, who tend to be

lured by a large potential gain and place a relatively small weight on potential

losses. And λ > 1 applies to a conservative investor, who views losses more

seriously and are willing to trade some of their average returns for a decreased

chance that they will experience a large loss. When λ = 1, GΩ is the log-version

of the Omega, and maximizing it is equivalent to maximizing the Omega. This

proposed measure GΩ does not break down when λ = 1 and L = µ as the regret-

reward measure does.

4.3 Portfolio Selection: Optimisation Technique

We consider a one-period portfolio optimisation problem. There are J assets, and

an investor holds them from time t = 0 until time t = T . Let W be a vector of

length J which stores the weights of assets in the investor’s portfolio, and let R be

a vector of length J which stores the returns of assets from t = 0 to t = T . The

investor’s return will then be given by rT = W′R. Our objective is to maximize

GΩ, or alternatively, minimize −GΩ,

minW(−GΩ(rT |L, λ))

s.t.
J∑
j=1

wj = 1, and

winfj ≤ wj ≤ wsupj , j ∈ J,

where wj is the j-th element of the weight vector W, and winfj and wsupj are

the minimum and maximum holding sizes for the j-th asset. We do not include
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a return constraint here because the objective function, −GΩ(rT |L, λ), already

includes a measure of reward.

At first sight, minimizing −GΩ(rT |L, λ) is a difficult task, as the resulting

optimisation problem is not convex. This means optimisation performed on the

generalised Omega may lead to a rough and even discontinuous objective surface

which can no longer be handled by linear or quadratic programming. In the opti-

misation literature, heuristic optimisation techniques are proposed as a way out

of this problem. Several authors have investigated the application of heuristic

optimisation techniques to portfolio selection, including but not limited to Dueck

and Winker (1992), Chang et al. (2000), Beasley et al. (2003), Maringer (2005),

Gilli et al. (2006) and Gilli and Schumann (2010). Amongst all heuristic optimi-

sation techniques, the threshold-accepting algorithm is one of the most popular

procedures. We briefly introduce the threshold-accepting algorithm here. Gilli

et al. (2006) and Gilli and Schumann (2010) provide a more general and detailed

exposition.

Belonging to the class of local search algorithms, the threshold-accepting algo-

rithm starts with a random feasible solution and then explores its neighborhood

in the solution space by moving from its current position, accepting a new solution

if and only if it improves the objective function according to a certain threshold.

The implementation of the algorithm requires the definition of the search space,

the objective function, the neighborhood and the threshold sequence.

We illustrate the algorithm in an allocation problem of two assets with no

short-selling constraint. The search space is all the bivariate combination W =

(w1, w2) subject to w1 ≥ 0 and w1 ≥ 0 and w1 +w2 = 1. The objective function is

f(w;L, λ) = −GΩ(w;L, λ). The neighborhood of a solution wc, N(wc) is defined
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using ε-spheres:

N(wc) = {xn|xn ∈W, ‖ xn − xc ‖< ε}.

The threshold-accepting algorithm comprises two main procedures.

1. Generate the threshold sequence ψ which is of length nr, in a descending

order and decreases toward 0. The procedure is as follows:

Randomly choose weights wc ∈W

for i = 1 : nd do

compute wn ∈ N(wc) and δi = |f(wn)− f(wc)|

wc = wn

end for

compute empirical distribution F of δ based on δi, i = 1, 2, · · · , nd

compute threshold sequence ψk = F−1(nr−k
nr

), k = 1, 2, · · · , nr

2. Search for the best solution by iterating through all values of ψ.

Randomly generate current solution wc ∈W

for i = 1 : nr do

for j = 1 : ns do

Generate wn and compute δ = f(wn)− f(wc)

if δ < ψi, then wc = wn

end for

end for

wopt = wc

89



In order to explore the search space more efficiently, the algorithm may be

restarted m times by repeating the above two procedures using different starting

values, wc. The final solution is then taken to be the best solution amongst all

restarts.

A classic local search stops at the first local minimum that it finds, which

may not be the global optimal. The threshold-accepting search overcomes this

problem by allowing uphill moves through the greater than 0 thresholds in ψ,

hence it also accepts new solutions which lead to a deterioration in the objective

function. This allows the algorithm to walk away from local minima.

4.4 Empirical Illustration

We use the stock and bond data as described in Chapter 3 to illustrate the effec-

tiveness of the proposed quantile-copula approach for joint distribution modelling

and the portfolio selection under the generalised Omega measure.

4.4.1 Joint return distribution of stocks and bonds

Chapter 3 obtains the marginal return distributions of the Russell 1000 Index

and the US Aggregated Bond Index using the quantile regression. In order to get

the joint return distribution, we use copulas to model the dependence structure

of the stock and bond returns.

The Spearman correlation of the stock and bond returns for the period from

1979:01 to 2011:02 is 0.230. Any further anticipation of independence of the two

series can be erased by a simple linear regression. By regressing the monthly

stock return at time t on the corresponding bond returns at time t, a highly
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significant slope coefficient 0.608 with standard error 0.133 is obtained. This

strongly suggests that two returns are not independent.

Table 4.1: This table reports copula fitting results using maximum likelihood.

Parameter
Copula Likelihood Estimate Std.err p-value

Gaussian 12.0665 0.2469 0.0443 0
Student’s t 13.5789 0.2457 0.0525 0
Gumbel 13.9588 1.1809 0.0449 0
Clayton 6.6609 0.2312 0.0657 0.0004
Frank 10.8405 1.4694 0.3053 0
AMH 9.6284 0.5414 0.0959 0

All the copulas listed in Section 4.1.1 are considered for modelling the depen-

dence of the stock and bond returns. In the case of uniform marginal, the copula

is equivalent to the joint cumulative distribution function. The model parameters

can thus be estimated using the maximum likelihood method. Table 4.1 reports

the copula fitting results, including log-likelihood values and parameter estimates.

The degree of freedom of the Student’s t copula is estimated to be 10.6. It can be

seen that the Gumbel copula attained the greatest log-likelihood value amongst

all copulas considered. Hence the Gumbel copula is used to model the depen-

dence of the two return series. The implication of the Gumbel copula is that the

stock and bond returns exhibit strong right-tail dependence and relatively weak

left-tail dependence.

Using the Gumbel copula dependence structure coupled with the marginal dis-

tribution modelled through the equal-weighted quantile model combination (3.7),

the joint return distribution of the stocks and bonds can be obtained empirically.
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4.4.2 Optimal asset allocation

The asset allocation between the stocks and bonds are carried out using the joint

distribution modelled by the quantile-copula approach, the GΩ measure and the

threshold-accepting optimisation technique. The parameters in the threshold-

accepting algorithm take the values nr = 10, nd = 5000 and ns = 2000. For

the optimisation problem considered in this section, the solutions are of little

difference amongst restarts, hence m is taken to be 1. However, a large value

of m, eg. m = 60, is preferred for optimisation problems with rough and non-

continuous surfaces, for example, portfolio selection with Value-at-Risk (VaR)

(see, for example, Gilli et al., 2006; Gilli and Schumann, 2010).

Four values of the loss aversion parameter are considered, namely λ = 1, 1.2, 1.4

and 1.6, corresponding to an increasing loss aversion toward portfolio selection.

Firstly, n = 100, 000 independent paired random numbers are generated from

the estimated Gumbel copula and denoted as (ui, vi), i = 1, 2, · · · , n. Denote the

cumulative distribution functions of the stocks and bonds as Fs and Fb, respec-

tively, which are obtained using the quantile model combination (3.7). Then n

pairs of returns for the stocks and bonds can be generated by rs,i = F−1
s (ui) and

rb,i = F−1
b (vi), for i = 1, 2, · · · , n. These generated paired returns are believed

to be a good representation of the joint distribution. It follows that portfolio se-

lection by maximizing GΩ with the no short-selling constraint can be performed

using the 100,000 samples. 1

Figure 4.1 shows how the stock weights in the optimal portfolios change with

an investor’s benchmark return. The benchmark returns span from 0 to 1.2%,

1Several more sets of 100,000 joint return samples are also generated, on which the optimal
weights differ only after the fourth digital. Therefore the sample size of 100,000 is big enough
to obtain reliable optimisation results.
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Figure 4.1: This figure plots the stock weight from maximizing GΩ. The x axis is
benchmark return L which spans from 0 to 1.2%. At the end of February 2011,
the risk-free rate is 0.011%, the mean forecasted stock return is 1.073% and the
mean forecasted bond return is 0.374%. Different types of lines correspond to
different levels of risk aversion which increases from left to right, namely λ =
1, 1.2, 1.4, and 1.6.
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covering a few important numbers, including the risk-free rate at the end of Febru-

ary 2011 (0.011%), the expected future stock return (1.073%) and the expected

future bond return (0.374%). The first pronounced feature is that the optimal

weight in stocks increases with the investor’s benchmark return. It is hardly sur-

prising. As the required return level increases, it leaves no option but to hold

more and more assets which can offer more upside potential, in this case, stocks.

Besides the required return, the investor’s attitude toward loss also plays a big

role in allocating the assets. For a given benchmark return, the more loss-averse

the investor is, the less inclined he is to hold risky asset stocks. For example, for

the benchmark return L = 0, the stock weights decline from 13.09% to 9.29% as

λ increases from 1 to 1.6.

4.5 Summary

This chapter develops a general and flexible framework for modelling joint return

distributions. The building blocks of the framework are quantile regressions and

copulas. Under the copula theory, a joint distribution can be decomposed into

two separate parts, marginal distributions and a dependence structure. Quan-

tile regressions are used to model marginal distributions of asset returns, while

copulas are employed to capture dependence structure across asset returns. The

proposed framework is very flexible in reproducing statistical features of returns.

It also remains tractable even when several assets are considered.

This chapter also develops a distribution-based portfolio selection framework

to make use of the predicted joint return distributions. The proposed frame-

work for portfolio selection can be viewed as an improved version of the classical

94



mean-variance portfolio analysis, with marginal return distributions modelled by

quantile regressions replacing mean of returns, dependence structure modelled by

copulas replacing covariance matrix of returns, the generalised Omega replacing

quadratic preference and the threshold-accepting optimisation algorithm replac-

ing quadratic programming. The portfolio selection is intuitively appealing and

empirically implementable.
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Chapter 5

Decision Trees for Return

Prediction

5.1 An Introduction to CART

Classification and regression trees (CART) are non-parametric modelling tech-

niques that essentially use recursive partitioning techniques to separate observa-

tions in a binary and sequential fashion. There are two varieties: (1) classification

trees when the dependent variable is categorical and (2) regression trees when the

dependent variable is continuous. We begin by introducing the standard tree ter-

minology. The root is the top node which includes all observations in the learning

sample. The splitting condition at each node is expressed as an “if-then-else”

rule that is determined by a specific splitting criterion. The splitting node is also

called parent and the two descendant sub-nodes are called children. A node keeps

splitting until a terminal node or leaf is reached.

The fundamental idea behind CART is to recursively partition the space until
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all the sub-spaces are sufficiently homogenous to apply simple models to them.

This is in contrast to linear regressions which are global models where a single

predictive formula is imposed over the entire data space. When the data set has

multiple features which interact in complicated and nonlinear ways, as is often

the case with financial data, a single global model may not adequately capture

the underlying relations.

There are two major steps in the CART analysis: (1) build a tree using a

recursive splitting of nodes and (2) prune the tree in order to obtain the optimal

tree size so as to prevent over-fitting. Each of these two steps will be discussed

in more details below. Breiman et al. (1984) provide a detailed overview of the

theory and methodology of CART, including a number of examples from many

disciplinary areas. There are also many software packages that implement the

CART algorithm. Popular ones include R packages such as rpart and tree and

the Matlab function classregtree.

5.1.1 Binary recursive partitioning

Let L be a learning sample, L = (x1, y1), · · · , (xn, yn), where xi is a vector of

attributes, yi is the response which can be categorical or continuous, and n is

the number of observations. The attribute vector xi belongs to X, the attribute

space. The tree building algorithm involves repeatedly splitting subsets of L into

two descendant subsets, beginning with L itself. For a continuous variable xi, the

allowed splits are of the form xi < c versus xi ≥ c. For categorical variables the

levels are divided into two classes. Therefore, for a categorical variable with K

levels, there are 2K−1− 1 possible splits disallowing the empty split and ignoring
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Figure 5.1: A split generates two children of the node t, denoted by tL and tR. A
proportion pL of the initial data go into the left child and a proportion of pR go
into the right child.

the order.

In choosing the best splitting rule, CART seeks to maximize the average

purity of the two child nodes. Hence some criterion measuring data homogeneity

or, alternatively, impurity should be introduced. These impurity measures are

loosely classed splitting criteria. Let us introduce, for any node t, a measure i(t)

that signifies the impurity of the node. Suppose that a candidate split s divides

the node into tL and tR such that a proportion pL of the cases in t go into tL

and a proportion pR go into tR (see Figure 5.1). Then the goodness of the split

is defined to be the decrease of impurity

∆i(s, t) = i(t)− pLi(tL)− pRi(tR).

For an arbitrary node t and a set of splitting candidates S, the optimal split is
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chosen to be the one

s∗ = maxs⊂S∆i(s, t).

In other words, the optimal split is the one that reduces impurity by the greatest

amount.

The idea for classification and regression trees is quite similar in terms of

partitioning methods. Both are based on impurity reducing. However, they use

different measures of impurity to decode the split.

In a classification problem, suppose that we want to classify data into K

classes. At each node t of a classification tree we have a probability distribution

ptk, k = 1, · · · , K, over all K categories. The probabilities are conventionally

estimated from the node proportions, such that ptk = ntk/nt, where ntk is the

number of observations in the k-th class, and nt is the sample size at node t.

The two most common measures of impurity for classification trees are the

Gini index

i(t) =
∑
j 6=k

ptjptk = 1−
∑
k

p2
tk,

and entropy or information

i(t) = −
∑
k

ptk log(ptk),

where 0 log(0) = 0.

For regression trees, the most popular impurity measure is

i(t) =
nt∑
j=1

(ytj − µt)2,
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where the constant µt for node t is estimated by average value of the training

data falling into node t.

5.1.2 Tree pruning

However, the use of partitioning rules alone cannot guarantee a useful tree model.

If reducing impurity is the only goal in tree induction, we will eventually end up

with a maximal tree which has one observation or one class in each leaf, whichever

reaches first. This kind of tree adapts too well to the features of the learning

sample and has a very high risk of being over-fitted. Tree pruning is a way to

improve the robustness of the model by trading off in-sample fitting against out-

of-sample accuracy. This is particularly important if the model is being used to

make predictions.

The best-known procedure for tree pruning is the cost-complexity pruning

proposed by Breiman et al. (1984). Let T be a tree and its size be the number

of terminal nodes. The optimal tree is the one which minimizes the following

cost-complexity measure

Rα(T ) = R(T ) + α size(T ),

where α is a complexity parameter to penalize tree size, and R is the cost which is

commonly taken as misclassification errors in classification cases and deviance in

regression cases. For a given value of the complexity parameter α, an optimal tree

can be determined. In general, finding the optimal value for α would require an

independent set of data, i.e., a testing sample. This requirement is often avoided

in practice by using a cross validation procedure.
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5.2 CART versus Linear Weighting Approaches

Influenced by classical asset pricing theories such as the Capital Asset Pricing

Model (CAPM)) (Sharpe, 1964; Lintner, 1965) and the Arbitrage Pricing The-

ory (APT) (Ross, 1976), the relationship between stock returns and various risk

factors are conventionally taken to be linear. The weaknesses of such a linear

weighting approach of mapping returns to risk factors include:

• The classical regression model operates under the assumption that the data

follows a Gaussian distribution. However, it is now widely recognised that

stock returns are not always normally distributed, particularly over shorter-

term time horizons, and can display both fat tails and skewness (see Section

1.1.2);

• It is assumed that stock returns respond in a linear fashion to a change

in a predictor variable. There is actually no compelling theoretical reason

to believe this is the case, and empirical observation suggests that this

assumption is often violated in reality (see Section 1.1.3);

• Such models can be distorted by multicollinearity, outliers and missing val-

ues in the data, typical issues for financial data sets. Furthermore, the

linear framework is not particularly efficient at identifying the interaction

between important predictors, particularly when the data set is noisy.

Compared to the various linear weighting type of approaches, CART offers a

number of benefits in data exploration. In particular, it has a very high degree

of interpretability. CART efficiently compresses a large volume of data into an

easy to understand graphical form which identifies the essential characteristics.
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Being non-parametric CART does not require any assumptions to be made

about the underlying distribution of the variables being modelled. It is well suited

to identifying any nonlinearities and complex interactions in the data. In contrast

to parametric models, CART is computationally fast at selecting predictors and

particularly efficient at capturing their interactions. It is less affected by missing

values and multicollinearity. Furthermore, CART is quite robust in the presence

of outliers and well suited to noisy data sets, both of which tend to be features

of financial data.

The CART approach also departs from traditional modelling methods by

determining a hierarchy of input variables which may be closer to the human

decision-making processes. Indeed, a key strength of CART over the classical

modelling methods is that it allows one to represent various types of interac-

tions between variables, particularly conditional relevance (see, for example, Van

Der Smagt and Lucardie, 1991). Conditional relevance occurs if a factor is rele-

vant only when it is conditioned upon some other factor. For example, only if a

certain condition is met by the first high-level attribute is a second attribute taken

into consideration. The same holds for the next attribute in the tree hierarchy,

and so on.

The weaknesses of the CART modelling technique will be discussed in Chapter

6 together with a remedy. Using the North American stock data, the rest of the

chapter aims to provide an evaluation of CART for cross-sectional stock return

forecasting and compares it with the linear regression approaches.
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5.3 Data Description

We use monthly stock data from 1986:12 to 2010:08 for the North American

stock markets including US and Canada but excluding financial stocks as defined

by the Global Industry Classification Standard (GICS) 1. In order to avoid the

over representation of potentially less liquid companies, to be included in the

universe each stock must have also had a market capitalisation in excess of $1bn

in 2010 and its equivalent historically. The data are constructed from a variety

of vendors including Exshare, Worldscope and the Institutional Brokers Estimate

System (I/B/E/S). Using cross-sectional data stacked monthly, the number of

total observations in the panel data set amounts to 279,188 (or 980 stocks per

month on average).

At the end of each month, forward total stock returns including dividends are

calculated. Using the median return of all sample companies in the same period

as a benchmark return, the excess returns are then computed as the total returns

minus the benchmark returns.

In deciding which stock characteristics to include as possible determinants of

future returns, attention is given to those variables that accord with investment

intuition and have been found to be important in prior studies. We focus on stock

characteristics from the following broad categories:

• Value factors: These factors are measures of firm value, such as dividends,

earnings, book value and cash flows. A long list of academic literature

documents the value phenomenon. Chapter 2 has listed some references

1Financial stocks are excluded due to their different accounting structure which makes com-
parisons with non-financials troublesome, although similarly structured stock selection models
can also be applied within the sector.
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to prior studies which claim ratios such as dividends-to-price, earnings-to-

price and book-to-price may be associated with systematic variation in stock

returns. Lakonishok et al. (1994) find that firms’ cash flow streams may

also be associated with systematic variation in stock returns.

• Profitability factors: This group of factors include ratios such as return-

on-assets, return-on-equity, cash return-on-equity, pre-tax margins and as-

set turnover ratio. Literature documenting predicting power of profitability

factors in subsequent stock returns includes Dechow et al. (2001), Campbell

and Thompson (2008) and Chen et al. (2011).

• Financial strength factors: These factors measure debt attainability of

a firm. They include measures on a firm’s level of debt, such as debt-

to-equity ratio and debt-to-market capitalization ratio, and measures on a

firm’s ability to service its debt, such as interest cover and free cash flow-

to-debt ratio. There are many empirical studies focusing on firm financial

strength and stock performance, such as Bhandari (1988), Barbee Jr et al.

(1996) and Campbell et al. (2008).

• Momentum factors: Momentum factors refer to stocks’s past return per-

formance. The momentum effects are well documented in the finance liter-

ature. As early as in 1980s, De Bondt and Thaler (1985, 1987) demonstrate

that stock returns over three to five years have explanatory power over fu-

ture returns. Later, Jegadeesh and Titman (1993, 2001) find that returns

over three to twelve months also have predictive power over future returns.

In the industry, momentum strategy enjoys vast popularity.
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• Analyst forecast factors: These factors are constructed from the I/B/E/S

database. This group of factors include consensus forecasts of analysts and

revisions in the analyst forecasts. Analyst forecasts have been studies in the

finance and accounting literature and have found to relate to stock returns

(see, for example, Trueman, 1994). Analyst forecasts revisions, especially

earnings revisions have drawn considerable attention in the literature. Stud-

ies carried out by scholars such as Givoly and Lakonishok (1980) and Lys

and Sohn (1990) show that an investor who acts upon analysts’ earnings re-

visions can consistently outperform a buy-and-hold policy after transaction

costs.

A broad spectrum of stock characteristics from the categories above are se-

lected, as reported in Table 5.1. Instead of using raw values, we use rank orders

in order to improve the robustness of the analysis. At each month, the rank order

for each variable are computed by firstly ranking all n stocks available that month

according to the corresponding variable value. Then the resulting rank is divided

by n to scale it between 0 and 1. It is well known that a lot of the financial

ratios are highly correlated which makes data analysis and statistical inference a

challenge. In order to overcome the high correlation in financial variables, nine

composite factors are promoted as potential explanatory variables which are con-

structed as an equally weighted average of the underlying variables. Details of

the composite factor construction are also described in Table 5.1.

Table 5.2 illustrates the spearman rank correlation matrix for the composite

factors over the whole sample period. It is clear that the correlations among the

composites are quite low with most of the correlations between -0.2 to 0.2 and the

largest value being 0.41 (HIST.GROWTH and PROF). Table 5.2 also highlights
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Table 5.1: This table lists the composite factors for return prediction. The left
column displays the composite factors with their abbreviations given in paren-
theses. The right column reports the method and the variables used to form
composite factors.

Composite
factor

Description

Value (VAL) An equally weighted average of dividends-to-price
ratio, cash flows-to-price ratio, sales-to-price and
book-to-price ratios.

Profitability
(PROF)

An equally weighted average of return-on-assets
ratio, return-on-equity ratio, cash return-on-equity
ratio, pre-tax margins and asset turnover.

Leverage
(LEVERAGE)

An equally weighted average of debt-to-equity ra-
tio and debt-to-market capitalization ratio.

Debt Service
(DEBT.SERVICE)

An equally weighted average of interest cover and
free cash flows-to-debt ratio.

Momentum
(MOM)

An equally weighted average of 6-month return
momentum and 12-month return momentum.

Stabilitya (STAB) An equally weighted average of earnings, sales and
cash flows stability over the previous 5 years.

Historic Growthb

(HIST.GROWTH)
An equally weighted average of 3 year historic
growth in earnings, sales and cash flows.

Forward Growthc

(FWD.GROWTH)
An equally weighted average of I/B/E/S fore-
casted earnings growth expectation for FY1 and
FY2.

Earnings Revisionsd

(EREV)

An equally weighted average of the 3 month change
in I/B/E/S forecasted earnings expectations for
FY1 and FY2.

a Sales, earnings and cash flows stabilities are measured by the t-statistic of the
slope coefficient of a regression of previous five historic sales, earnings and cash
flows on the same month on the number of years. Therefore, stability measures
the strength of the linear trend in the underlying time-series.
b Historic growth in sales, earnings or cash flows is measured by the percentage
change of current sales, earnings or cash flows over that of three years before.
c Forward growth is the percentage change of the IBES consensus earnings expec-
tation (either for Financial Year1 or Financial Year 2) over the current earnings.
d Earnings Revisions (EREV) is defined as the number of analysts in IBES adjust-
ing earnings forecast up minus the number of analysts adjusting earnings forecast
down scaled by the total number of analysts following a firm in IBES.
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Table 5.3: Univariate analysis over the period December 1986 to August 2010. “t-
stat” is the t-statistic of the slope coefficient of a univariate regression of monthly
returns on a lagged composite factor. Annualised portfolio returns are reported
over the whole period. Portfolios are re-balanced monthly and transaction costs
are not taken into account.

Composite
t-stat

Annualised Return (%)

factor High Medium Low Hi-Lo

VAL 12.73 16.09 13.64 9.77 5.93
PROF 8.09 14.62 13.47 11.23 3.47
EREV 7.36 15.92 11.98 11.71 4.52
MOM 5.53 12.95 14.63 11.53 1.75
LEVERAGE 4.85 14.82 12.86 11.82 2.56
STAB 1.95 13.52 12.38 13.75 0.76
FWD.GROWTH -0.12 13.41 12.17 13.97 -0.59
HIST.GROWTH -0.49 13.79 12.40 12.60 -0.25
DEBT.SERVICE -1.38 12.49 13.59 13.55 -0.62

some key cross-sectional relationships. Cheap companies, as determined by the

Value composite, tend to be characterised by some evidence of distress. For

example, they are positively correlated with leverage and also tend to suffer from

poor sentiment (negative price momentum and earnings revisions) as well as low

historic growth. This is in line with the rationalist approach of Fama and French

(1996) who suggest the value premium is a reward for taking on additional risk

(i.e., they are more leveraged). However, it is not inconsistent with the more

behaviourally focused suggestion posited by Lakonishok et al. (1994) that the

premium is instead an artefact of systematic misvaluation caused by investors

extrapolating recent news flow.

To gain an insight into the performance of the individual composite factor,

we employ univariate analysis. More specifically, we regress one month forward
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excess returns on each individual composite factor respectively and report the

t-statistic of the slope coefficient. We also partition the composite factors into

three equally sized portfolios of stocks, thereby forming a “high”, “medium” and

a “low” portfolio each month. The ordering is such that the “high” portfolio is

typically associated a priori with a positive outcome (e.g., cheap, strong positive

revisions, high stability, strong growth, high debt service etc) although for the

leverage composite factor, a “high” value actually implies poor financial strength

(e.g., high leverage).

Table 5.3 shows the univariate t-statistic and the annualised returns to each

of the three portfolios over the entire period, as well as the High-Low portfolio re-

turn. The univariate data analysis suggests that Value, Profitability and Earnings

Revisions are the most significant determinants of forward returns followed by the

historic momentum and leverage. Whilst they are not statistically significant, one

interpretation of the modest negative returns to high historic and forward growth

is that investors tend to overpay for growth and are subsequently disappointed on

average when high growth rates prove unsustainable Haugen (2009). We would

also highlight the positive return to leverage which suggests that, historically,

the more highly leveraged companies have actually outperformed. This is not a

disguised banking effect as financial stocks are excluded from this data set.

5.4 Results: Linear Weighting Approaches

Our purpose is to promote the benefits of the decision tree methodology compared

to more traditional modelling approaches. As such, we initially build two versions

of a linear combination of composite factors in order to provide benchmarks
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against which to compare the CART model with. These models are built over

a subset of the full historical period available (December 1986 to April 2007)

in order to provide a reasonable period for out-of-sample testing. The end-date

is also chosen deliberately as we are particularly interested in monitoring the

performance of the competing models during the quant shock of mid-2007 and

the subsequent Global Financial Crisis.

The first set of linear weights is derived from a multi-factor regression of

monthly excess returns on the lagged composite factors. The coefficients from

this regression are then converted into a weight vector which is used to rank all

stocks considered. As shown in the first column of Table 5.4 and consistent with

the univariate analysis results (Table 5.3), the regression based weighting scheme

favours Value, Profitability, Earnings Revisions, Momentum and Leverage, whilst

it penalises companies with high stability or high historic growth.

The second version of the linear combination of factors takes into account the

historic return and volatility of each composite factor by using standard mean-

variance analysis to create an optimal weighting scheme. Table 5.4 reports the

results. As with the linear regression model above, this approach also favours

the high return factors (Value, Earnings Revisions and Momentum) but places a

greater emphasis on Stability at the expense of Profitability as the latter has his-

torically been more volatile. As Momentum has historically been lowly correlated

with Value, its weight in the mean-variance framework is also boosted.

Whilst the precise choice of factors and optimal weighting schemes vary con-

siderably in practice, the dominant emphasis upon both the Valuation and Mo-

mentum signals in the two linear weighting stock selection models is consistent

with the traditional focus of many quantitative managers. In essence, it is rela-
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Table 5.4: This table reports factor weights from two linear weighting schemes
using the data from December 1986 to April 2007.

Composite factor
Regression Mean-Variance

Based Weights Optimised Weights
VAL 26.6% 47.0%
PROF 24.1% 10.7%
EREV 21.7% 28.1%
MOM 16.3% 37.5%
LEVERAGE 14.2% -8.0%
DEBT.SERVICE 1.4% -13.6%
STAB -2.8% 12.8%
FWD.GROWTH 4.7% -6.3%
HIST.GROWTH -6.2% -8.2%

tively easy to generate a Value and Momentum themed stock selection model in

practice.

5.5 Results: CART Model

Using exactly the same inputs as the linear models above, we then build a classifi-

cation tree with the purpose of predicting subsequent stock performance. Stocks

are sorted into two groups, “outperformers” for those with positive excess returns

and “underperformers” for the remainder. The induced categorical variable is

then used as the dependant variable in the subsequent modelling process. One

of the benefits of working with categorical responses instead of raw returns lies

in the fact that it alleviates the impact of extreme returns that may have. As

with the linear alternatives, the tree model is built with data up to and including

April 2007 whilst the data between May 2007 and August 2010 are reserved for

out-of-sample testing. By way of example, Figure 5.2 graphically illustrates the
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hierarchical structure of a stock selection tree built at April 2007.

The first observation to note is that the primary split is on Value and, more

specifically, the distinction between those stocks that are relatively expensive

(the right hand branch) and the not-expensive stocks. One of the most attractive

nodes splits again on high Value and therefore identifies cheap stocks as having

a 59.2% probability of outperforming the benchmark (Node 1). In contrast, the

worst performing stocks are characterised by being expensive and exhibiting low

profitability (Node 14). Companies with these attributes only have a 42% chance

of outperforming. Similarly, Node 13 suggests that poor stability is also a reason

to penalise expensive stocks even if their profitability is not particularly weak.

Technology stocks make up almost a third of this node.

As a benefit of identifying conditional relevance, the tree is able to distinguish

the exception to the rule. For example, whilst both of the linear weighting ap-

proaches indicate that Value is the most important driver of stock returns, the

tree model suggests that stocks which are not cheap still have a good chance

of outperforming the benchmark providing that they are blessed with profitabil-

ity, stability in earnings, strong momentum and are also associated with strong

earnings revisions (Node 10).

The decision tree framework also highlights the nonlinear behavior of the

stock returns to the underlying predictor variables. For example, stocks in Nodes

3 and 5 have similar outperforming probabilities but are of opposite preference

with regard to leverage. Conditional on above-average debt cover, Node 3 actually

prefers some degree of leverage and more significantly penalizes overly conserva-

tive firms (with too low leverage). Recovery stocks within the most cyclical area

of the market such as consumer discretionary, industries and material comprise
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Table 5.5: This table reports the Spearman rank correlation of model outputs
out-of-sample (May 2007 - August 2010).

Regression Mean-Var CART
Regression 1 0.83 0.56
Mean-Var 0.83 1 0.57
CART 0.56 0.57 1

almost half of Node 3. In contrast, leverage is a characteristic to be avoided

amongst firms that cannot service their debts (Node 5).

5.6 Results: Model Comparison

The effectiveness of the three alternate approaches in terms of their stock selec-

tion abilities is then assessed out-of-sample. Specifically, we rank all stocks each

month based upon the fitted values implied by the three models from May 2007

until August 2010, thereby deliberately covering a historical period that has been

associated with relatively poor performance for most quantitative managers. Ta-

ble 5.5 reports the rank correlation of the model predictions during this period.

The rank correlation between the two linear weighting approaches is relatively

high at 0.83. In contrast, the predictions generated by the tree model offer clear

diversification benefits, exhibiting a much lower rank correlation of 0.56 and 0.57

with the two linear weighting approaches.

Next, we use portfolio strategy to compare the models out-of-sample. This is

assessed by forming two portfolios by splitting the stocks equally on the predicted

outperformance probabilities each month: a “long” portfolio (those expected to

outperform) and a “short” portfolio (those expected to underperform). We report

114



the following performance measures.

• Time series hit rate: It is computed as T+

T
, where T+ is the number of

months with above benchmark returns in the out-of-sample period, and T

is the number of months in the out-of-sample period. Time series hit rate is

the proportion of months that the portfolio outperformed the benchmark.

• Excess return: It refers to annualised portfolio excess return over the

benchmark,

re =
[
(ΠT

t=1(1 + rpt)− ΠT
t=1(1 + rbt))

1/T
]12/freq

,

where rpt and rbt are the returns of a portfolio and the benchmark at time

t, and ΠT
t=1(1 + rpt) and ΠT

t=1)(1 + rbt) are the cumulative returns over T

periods for the portfolio and the benchmark, respectively. The power term

12/freq is to annualise return, where freq is the frequency in the month

that returns are recorded. In our case, return is in monthly frequency,

therefore, freq = 1. In the case of quarterly return, we have freq = 3, and

so on.

• Tracking error: It is annualised and computed as

σ =

√
12

freq
sd(rpt − rbt),

where, sd is the standard deviation and, again, freq is the frequency in the

month that returns are recorded.

• information ratio: It is the annualised mean of the return difference
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between a portfolio and the benchmark divided by the annualised tracking

error as defined above,

IR =
12/freq

∑T
t=1(rpt − rbt)√

12
freq

sd(rpt − rbt)
=

√
12

freq

∑T
t=1(rpt − rbt)
sd(rpt − rbt)

.

• Stock holding period: Stock holding period is a measure of portfolio

turnover. The longer the holding period is, the lower are the portfolio

turnover and the transaction costs. A stock’s holding period in a portfolio is

defined as the average holding periods in the backtest. For example, stock

A stays in a portfolio for three consecutive periods, and then drops out.

Later it comes back into the portfolio for another two consecutive periods.

The holding period for stock A in the portfolio is taken to be h = 2.5,

the average of its holding periods in the portfolio. For any portfolio, let

n be the number of stocks ever entered into that portfolio at backtest,

and h1, h2, · · · , hn be the corresponding holding period series. We report

the mean and median of the holding period based on the portfolio holding

period series.

Table 5.6 reports the annualised excess return (the benchmark chosen as the

median return of all stocks considered), the tracking error, the information ratio,

time series hit rate (TS hit rate) and portfolio holding period information of the

various strategies. Both of the “long” linear weighting schemes outperform the

benchmark slightly in the out-of-sample period before transaction costs, albeit

modestly (0.9% and 1.1%) whilst the long portfolios derived from the tree model

actually perform relatively well, outperforming by 2.6% with similar relative risk.
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Table 5.6: This table reports performance of three stock ranking models in the
out-of-sample period (May 2007 – August 2010). At each month, two portfo-
lios are formed by splitting the stocks equally based on the model outputs: a
“long” portfolio (those expected to outperform) and a “short” portfolio (those
expected to underperform). Portfolio performance measures reported are annu-
alised excess returns, tracking errors, the information ratios (IR), time series hit
rate (TS hit rate) and stock holding period. Portfolios are re-balanced monthly
and transaction costs are not taken into account.

Portfolio Model
Excess Tracking

IR
TS Holding Period

Return(%) Error (%) hit rate Mean Median

Long Regression 0.9 2.3 0.40 0.46 9.1 6.7
Mean-Var 1.1 3.1 0.37 0.46 9.6 5.0
CART 2.6 2.9 0.89 0.57 10.1 6.0

Short Regression -0.9 2.5 -0.38 0.53 5.1 5.7
Mean-Var -1.2 3.1 -0.37 0.54 6.6 5.0
CART -2.8 3.4 -0.82 0.43 7.5 4.5

The same outcome is also identified when comparing the performance of the short

portfolios.

The tree model is slightly more consistent in its outperformance with a time

series hit rate of 57% whilst the success rates of the linear weighting approaches

are both less than 50% suggesting positive but erratic returns. Furthermore,

the holding periods of the portfolios derived from the tree model are no shorter

than those of the portfolios by the multi-factor regression and the mean-variance

analysis. This suggests the good performance of the tree model is not achieved

though higher turnover.

A closer inspection of the difference between the tree-based portfolios and the

stock selection implied by the two linear weighting approaches suggests that the

improved performance of the tree model arises from the capture of the nonlinear
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relationship between debt sustainability and leverage during the Global Financial

Crisis. The multi-factor predictive regression extrapolates the historic relation-

ship prior to 2007 between higher leverage and stock outperformance whilst the

mean-variance optimised weights simply penalised companies that are more ca-

pable of servicing their debt. In contrast, the tree model is more specific in

identifying the nonlinear interaction between leverage and debt service. Specifi-

cally, leveraged companies are preferred only if the firm has a sufficient level of

profitability that it is capable of servicing its debt, but if this is not the case then

leveraged companies are specifically avoided.

Although we have only focused upon a particular and a rather unusual pe-

riod of history, the out-of-sample performance for the tree model since 2007 is

encouraging compared to the linear weighting approaches and suggests that there

is a role for non-traditional stock selection models, if only to help diversify model

risk. Our research using sector specific models suggests that the tree models are

not unambiguously superior in every period to a linear alternative. However,

in all cases they offer a high degree of diversification from standard modelling

approaches.

5.7 Summary

The identification of the common factors in stock performance has historically

been the domain of linear modelling approaches despite a growing awareness of

the nonlinearities in market returns. The non-parametric and nonlinear modelling

approach CART provides a convenient way to explore nonlinear dynamics of the

stock returns. We have observed that when applied to the North American stock

118



data, CART approach can generate a very different model from the traditional

approaches. It identifies nonlinear structural relationships which are intuitive.

For asset management in the real world, the widespread use of linear mod-

elling methodologies among quantitative asset managers, taken together with the

similarity in data sources and risk models may in turn have contributed towards

model risk in financial markets. This leads to a high degree of commonality in

investment decisions. As a less used technique, CART is appealing in the context

of potentially offering a degree of model diversification.
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Chapter 6

A Hybrid Approach for Return

Prediction

6.1 Motivations

This chapter continues the investigation of the use of CART for cross-sectional

stock return prediction from the previous chapter. In this chapter, we discuss

the major weaknesses of CART and propose a hybrid model to combining CART

with a linear model, logistic regression, for improving model performance.

Chapter 5 demonstrates the effectiveness of CART for stock return prediction.

This nonlinear and non-parametric model enjoys various benefits over the tradi-

tional linear weighting approaches. However, the use of CART is not without

critics.

The major criticism against CART lies in the recursive nature of the tree

building process. Local optimisation at each step in the sequential node-splitting

process does not guarantee global optimisation of the overall tree structure. In

120



Loss 
Maker
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65.1%
Node 4

Yes No
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Und
41.5%
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38.2%
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Und
32.5%
Node 2

Out
59.8%
Node 1

Figure 6.1: A hypothetical example of a classification tree for stocks in health
care sector. OutPerf stands for outperforming and UndPerf underperforming.
B/P is the book-to-price ratio.

other words, when determining the hierarchy of rules that form the tree, the

algorithm is not aware of the nature of branches further down the tree, including

the terminal nodes. The resulting tree structure therefore does not guarantee

global optimisation. Several alternatives to CART have developed to address

these problems, such as random forests (Breiman, 2001).

Discretization of continuous variables may be another possible problem in

CART solutions. We illustrate this point using a hypothetic stock prediction

example. As shown in Figure 6.1, the chance of a stock generating a return

over and above a relevant benchmark in a specific period (e.g., three months

from now) is determined by the joint effects of whether the company is currently

making negative earnings (Loss Maker), whether it is a biotechnology company

(Biotech), and the value of its book-to-price ratio (B/P). The majority vote is
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endorsed as the final predicted class, as listed in the terminal nodes. Displayed

with the predicted classes are the proportions of outperformers in each terminal

node. This proportions are used as a proxy for probability of outperforming.

In this example, B/P is the only continuous input variable and all others are

categorical. CART discretizes the continuous variable B/P according to two dif-

ferent thresholds (0.4 and 0.3) at two splitting nodes. Two consequences follow.

First, the responses are not sensitive to B/P changes within a node, as all mem-

bers in a node share the same outperforming probability regardless of variation

in B/P. This leads to a noticeable characteristic of the tree model which is the

discontinuous resultant probabilities. The five-node tree can only produce five

different probabilities. Second, it causes over-sensitiveness of responses to a con-

tinuous variable close to a boundary. In our example, it means a small change

in the value of B/P can lead to a unproportionately large change in response.

For example, conditional on the company not being a loss maker, when the value

of B/P changes from 0.301 to 0.3, the probability of a stock outperforming the

benchmark falls from 0.65 to 0.41 and leads to a downgrade from out-performer

to under-performer. While dicretization of continuous variables and assigning

the same output to all members in a node is parsimonious; on the other hand,

it could oversimplify the complexity of the real data. The resulting abrupt shift

from one node to the other may not always be realistic.

The parametric linear counterpart of CART is logistic regression. Belonging

to the generalised linear model family, logistic regression has been used exten-

sively in economics and finance, most commonly when forecasting a specific event

such as bankruptcy or the probability of default (see, for example, Ohlson, 1980).

In contrast to CART, the logistic regression is highly effective at capturing any
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global features of a data set. It also allows a continuous variable to influence out-

comes continuously and, therefore, produces a smooth response surface. A small

change in a predictor variable yields a small change in the predicted probability.

However, being a linear technique, logistic regression shares the usual weakness

of the classical modelling approach. Specifically, it requires a valid mean func-

tion assumption, is affected by multicollinearity and is sensitive to outliers and

missing data.

While CART and logistic regression are traditionally regarded as competitors

for modelling data, they are essentially complementary to each other after noting

the strengths and weaknesses associated with these two models. It is natural to

combine these two approaches in order to better serve the purpose of predicting

future stock returns. A desirable modelling outcome would, therefore, be to

uncover the nonlinearities in the data set whilst still producing a relatively smooth

probability surface in a globally optimal model. Accordingly, a hybrid approach

to combining CART and logistic regression introduced in the following section

can be a way to achieve the goal.

6.2 The Hybrid Approach: Combining CART

and Logistic Regression

The first step is to apply CART to uncover the high-order interactions in data.

Suppose that there are n stocks that require classification. Let X be the matrix of

continuous attributes of the stocks which is of dimension n×m1. The j-th column

X.j, a vector of length n, is the j-th continuous attribute of all the stocks, such as
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book to price ratio (B/P), and the i-th row Xi., a vector of length m1, records all

the continuous attributes for the i-th stock. Let Dj be the corresponding discrete

representation of X.j, where j = 1, 2, · · · ,m1. The collection of all variables,

denoted as D, consists of m1 members which are discretized continuous variables,

and m2 members which are discrete by nature, such as industry membership.

Assume that the optimal tree built on D is of K terminal nodes with nk stocks in

the k-th terminal node, k = 1, 2, · · · , K. Let sk be the number of outperformers

in the node k. The relative frequency of outperformers, pk = sk/nk, is assigned to

all nk members in the k-th node as their probability to outperform a benchmark.

The probability pk can be regarded as a consensus belief which is voted by all

nk members in the node. For the i-th stock in the k-th node, a more realistic

probability model is to incorporate a perturbation into the consensus probability,

pki = pk + εki, i = 1, 2, · · · , nk,

where εki is a stock-specific effect acknowledging the difference within members.

The above discussion naturally leads to the second step, fine-tunning pk for

each individual stock to get pki. We model εki through logistic regression. In this

step, only the continuous attributes are used. In the scale of the logit transfor-

mation, we have

logit(pki) = logit(pk) +Xk
(i.)β, (6.1)

where Xk
i. denotes the i-th row in Xk, the matrix of continuous attributes of the

nk stocks in the k-th terminal node, and β is a vector of coefficients with length

m1. In the case that Xk
i.β is negligible, meaning that finer scales do not provide

more information than that is captured by pk, the adjusted probability remains
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as pk – the initial probability by CART. There are two possible ways to proceed

from here.

• Fit a terminal-node specific logistic model. In this case, β in the logistic

regression (6.1) is actually βk as it is specific to the terminal node in ques-

tion. The approach requires a large volume of data in order to cope with

the segmentation but is more appropriate when working with data that

incorporates structural breaks.

• Fit one universal logistic model using all the data whilst imposing the tree

model from the first step. Compared with the first approach, this one may

compromise terminal node-specific features with globally dominant ones but

is likely to be more robust as a result.

In the remainder of this chapter, we illustrate the hybrid approach using

the second method above to ensure that any global features in the data set not

captured by the initial CART model have an opportunity to be incorporated.

Computationally, the parameter β in the logistic regression (6.1) is estimated

by including the logit transformation of pk, logit(pk), as an offset in a logistic

regression, meaning that the coefficient of logit(pk) in the regression is constrained

to unity.

6.3 Data Description

We test the proposed method using the stock data for the North American mar-

kets. The details of the data construction and the input variables have already

been described in Section 5.3. In order to enable an extensive backtest, we con-
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sider the defensive stocks in the North American markets. The defensive stocks

comprise four GICS sectors, namely consumer staples, health care, telecommuni-

cation services and utilities. To further reduce the sample size to a manageable

level, we use quarterly instead of monthly stock data. The quarterly data are

from 1986:12 to 2010:06, and three-month-forward stock returns including divi-

dends are calculated for each stock in the data set at the end of March, June,

September and December of each year. The sample consists of an average of 295

companies per quarter and 27,994 observations in total.

For each period, the quarterly stock returns are compared with the median

return of all sample companies in that period to classify the stocks into two

groups, “outperformers” for those with returns above the median return and

“underperformers” for the rest. This induced categorical variable is then used

as the dependant variable in the subsequent modelling process. Essentially, the

model is forecasting the probability of a stock outperforming its peer group in

the subsequent three month period. As mentioned in Chapter 5, working with

a categorical dependent variable rather than raw returns alleviaters impacts of

outliers and, therefore, improves model robustness.

6.4 Backtest Setup

We use data from 1986:12 to 2000:09 as the initial estimation sample, and retain

the period from 2000:12 to 2010:06 for the out-of-sample evaluation. We use recur-

sive estimation starting with the data from 1986:12 up to the time of the forecast

in order to generate a series of one-quarter-ahead forecasts. We then build sev-

eral portfolios based on these forecasts and track their performance relative to the
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benchmark. Specifically, three portfolios are formed such that the first portfolio

(P1) contains the third of stocks with the lowest outperforming probabilities (i.e.,

the underperforming portfolio), the second portfolio (P2) contains the next third

(i.e., the market portfolio) and the final portfolio (P3) contains the remaining

third of stocks with the highest probability of outperforming as derived from the

model. We use an equal weighting scheme for portfolio construction. Portfolios

are re-balanced quarterly and profits are reinvested. For simplicity, transaction

costs and taxes are not considered for portfolio performance evaluation.

The first and the third portfolios (P1 and P3) are natural choices for short

and long portfolios, respectively, and are therefore of special interest to us. We

examine the risk-adjusted excess returns of these portfolios. We use two sets

of risk factors: the Fama-French (FF) three factors (Fama and French, 1993)

which are factors related to market (MKT), value (HML) and size (SMB), and

Carhart’s four factors, which are the FF factors plus an additional momentum

factor (MOM, Carhart, 1997). The data for the risk factors are sourced from

Kenneth French’s website 1. More specifically, we carry out linear regression

analysis of portfolio returns on the risk factors

rp − rB = α +
L∑

m=1

λmβm,

where rp is the portfolio return, rB is the benchmark return, βm is the loading of

portfolio p on factor m, λm is the risk premium associated with factor m, and L

takes value either three or four depending on the risk model used. The intercept,

α, from the risk analysis is the risk-adjusted return. A significant α indicates

1 http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html.
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skills in portfolio construction.

As it is of particular interest as to whether the CART-Logistic hybrid approach

is superior to either a standalone CART or a logistic regression when estimated

separately, we also compare the out-of-sample performance of the proposed hy-

brid approach to these simpler alternatives that nevertheless form the building

blocks to the hybrid model. Furthermore, we also incorporate a second tree-based

technique known as random forest which is an ensemble approach proposed by

Breiman (2001) that overcomes the weaknesses of CART listed in Section 6.1.

Instead of using one decision tree, the random forest approach grows a collection

of trees (the forest) and the final output is derived from averaging across the

output of the individual trees. The details of the random forest approach is given

in Appendix C.

To facilitate the model comparison, using the same principle as the formation

of portfolios on the hybrid model outputs, three portfolios are also formed for

each competing model at each out-of-sample period. We then compare portfolio

performance by different models. All the portfolio performance measures listed

in Section 5.6 are used, which are the annualised excess returns of the portfolios,

cross-sectional and time series hit rates, information ratio as well as the holding

period. However, the value for freq takes 3 instead of 1 as we use quarterly data

here. In addition, we also report the panel hit rate:

• Panel hit rate: It is a time series average of cross-sectional hit rate, defined

as

1

T

T∑
t=1

N+
t

Nt

,

where Nt is the number of stock in a portfolio at quarter t, N+
t is the number
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of outperforming stocks in that portfolio, and T is the number of quarters

in the out-of-sample period.

6.5 Results: Hybrid Model

At the end of each quarter, the nine composite factors are bucketed into three

equally sized bins. A CART model is built using the data from 1986:12 to 2000:09

and subsequent models are built at the end of each quarter up to 2010 using an

expanding window of data. Missing values in the CART models are handled

using surrogate splitting 1. We then use a logistic regression to fine-tune the

CART based probabilities. Unlike CART, the logistic regression is not as adept

at dropping insignificant factors, so an AIC-variable selection procedure is used to

select the important variables. The stocks with missing information are assigned

with CART predicted probabilities.

As an example of the trees in the backtest, Figure 6.5 illustrates the last tree

grown at the end of June, 2010. As it is shown, the chance of a stock generating

a return above the benchmark, i.e., an equally weighted defensive stock returns,

is primarily determined by the joint effects of Profitability, Value and Stability

although other factors are relevant further down the decision hierarchy. Indeed,

the first observation to note is that the primary split is on Profitability and,

more specifically, the distinction between those stocks that are profitable (the left

hand branch) and the not so profitable stocks. Overall, the tree model prefers

profitable and cheap stocks (Node 1) and attaches them with a 56.3% probability

1Surrogate splitters are back-up rules that closely mimic the action of primary splitting rules
in the cases of missing primary splitters. The use of surrogate splitting effectively minimizes
the ad-hoc handling of missing values.
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of outperforming the overall universe. On top of exhibiting low profitability, the

underperforming stocks also have characteristics such as low stability (Node 9)

and poor debt service (Node 8).

Table 6.1: This table reports the estimated coefficients from the logistic regression
at June 2010. A stepwise AIC-variable selection procedure is used to select the
important variables and the final model has three composite factors. P-values
are in parentheses.

Variable Coefficient P-value

EREV 0.086 0.004∗∗∗

VAL 0.057 0.014∗∗

PROF -0.091 0.001∗∗∗

∗ indicates significance at the 10% level
∗∗ indicates significance at the 5% level
∗ ∗ ∗ indicates significance at the 1% level

There are also exceptions to the general rule which is one of the benefits of tree-

based methods. For example, attractively priced stocks with high stability and

adequate debt service also outperform, particularly if they have strong earnings

revisions (Node 4) or high momentum (Node 5) even if their profitability is weak.

Furthermore, the composite factor Value has occurred at two different splitting

nodes with different splitting values. The interactions between Value and the

other composites are neatly captured by the hierarchical structure of the tree.

The second step of the hybrid approach is to use a logistic regression to adjust

the probabilities produced by the CART model. This step has the ability to

incorporate linear factor effects as well as any global influences that the tree

model may have missed, as well as produce somewhat smoother response surface.

Following the AIC-variable selection procedure, three composite factors, Earn-

ings Revisions, Value and Profitability, are identified in this step as being signif-
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icant in adjusting the tree-predicted probabilities. Table 6.1 lists the estimated

coefficients from the logistic regression at June 2010. On top of the tree-predicted

probabilities, the logistic regression adjusts downwards the weights on Profitabil-

ity (i.e., it has a negative coefficient) while it increases the emphasis upon Earn-

ings Revisions and Value. This suggests that the CART model is overly influenced

by Profitability which is the primary splitting rule but does not adequately cap-

ture the linear effects arising from analyst sentiment in particular.

Table 6.2: This table reports risk analysis results using the FF three factors and
Carhart four factors for the portfolios P1 and P3. The risk-adjusted return α
and the coefficients for the corresponding risk factors are listed with p-values in
parentheses.

Risk analysis using the Risk analysis using the
FF three factors Carhart four factors

P1 P3 P1 P3

α
-0.011 0.009 -0.008 0.007

(0.009)∗∗∗ (0.003)∗∗∗ (0.042)∗∗ (0.016)∗∗

MKT
0.133 -0.072 0.082 -0.042

(0.004)∗∗∗ (0.034)∗∗ (0.064)∗ (0.229)

SMB
0.087 -0.060 0.013 -0.017

(0.267) (0.312) (0.857) (0.775)

HML
-0.227 0.103 -0.318 0.156

(0.000)∗∗∗ (0.012)∗∗ (0.000)∗∗∗ (0.001)∗∗∗

MOM — —
-0.137 0.080

(0.006)∗∗∗ (0.036)∗∗

∗ indicates significance at the 10% level
∗∗ indicates significance at the 5% level
∗ ∗ ∗ indicates significance at the 1% level

The risk analysis results for the portfolios P1 and P3 are summarized in Table

6.2. At the 5% significance level, the risk-adjusted returns (α) of the long and

short portfolios are statistically significant for both sets of the risk factors. Figure
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6.3 diagrammatically depicts the wealth curves associated with the portfolios

formed by the hybrid approach compared to the benchmark during the out-of-

sample period. It is encouraging that the forecasts derived from the hybrid model

generate relatively consistent performance during a period that is characterised

by significant swings in market sentiment, including the Global Financial Crisis

and the subsequent recovery.

6.6 Results: Model Comparison

Whilst the application of the hybrid approach on defensive stocks is encourag-

ing, we now compare its performance with a number of alternatives, including

separately estimated CART and logistic models as well as the random forest ap-

proach. As logistic regression and the random forest approach are potentially

troublesome in the presence of missing values, such observations are replaced

with the corresponding quarterly medians for these two models. An AIC-variable

selection procedure is once again used to select the important variables in the

logistic regression analysis.

Table 6.3 summaries the out-of-sample panel hit rates, time series hit rates,

excess returns, information ratios and holding period information for the port-

folios formed using the four different approaches. We can see that whilst the

standalone CART model outperforms both a simple logistic and the random for-

est approach, the performance of the long and short portfolios formed by the

hybrid method is superior in this particular sample period. This is true regard-

less of the performance diagnostic used but it is particularly encouraging that the

improved returns of the hybrid model are also associated with a high degree of
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Table 6.3: This table reports the backtest results for the four different models. RF
stands for random forest. The performance metrics reported here are panel hit
rate, time-series hit rates (TS Hit Rate), annualized excess returns, information
ratio (IR) and mean and median of stock holding periods. The details of these
portfolio performance measures are given in Section 5.6 and Section 6.4.

Model
Port- Panel Hit TS Excess

IR
Holding Period

folio Rate Hit Rate Return (%) Mean Median

RF
P1 0.495 0.513 -0.64 -0.14 1.64 1.50
P2 0.495 0.436 -0.73 -0.29 1.46 1.38
P3 0.506 0.577 1.26 0.38 1.73 1.50

Logistic
P1 0.477 0.384 -3.46 -0.48 3.67 2.92
P2 0.513 0.614 1.46 0.44 2.72 2.18
P3 0.508 0.538 1.98 0.37 3.61 3.01

CART
P1 0.464 0.385 -4.05 -0.52 2.10 1.70
P2 0.516 0.564 1.37 0.46 2.04 1.80
P3 0.510 0.667 2.15 0.50 4.13 2.75

Hybrid
P1 0.414 0.317 -4.86 -0.87 3.26 2.78
P2 0.524 0.549 1.13 0.27 2.17 2.05
P3 0.565 0.692 3.71 0.93 3.96 2.95

consistency as measured by the time series hit rate.

In terms of stock holding period, stocks in P1 and P3 tend to be traded

less often than stocks in P2. Overall, the portfolios based on the random forest

method display the highest turnover (i.e., they have the shortest holding period).

As measured by the median stock holding period, the logistic regression has the

lowest turnover out of the four approaches, which is attributed to the smooth

and slower changing probability surface it produces. The hybrid approach has

a similar length of holding period as the logistic regression. Therefore, the en-

hanced performance of the portfolios formed by the hybrid approach is not lost

in transaction costs relative to the alternative approaches.
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6.7 Summary

This chapter proposes a hybrid approach for stock ranking that combines the

benefits of the CART and logistic regression. We apply the hybrid model to

the task of building a stock selection model for the North American defensive

companies over the past decade with some success. Moreover, it offers enhanced

performance compared to either a standalone CART or a logistic regression model

and also compares favourably with the random forest method.

The primary advantages of the proposed approach are listed below.

Firstly, the hybrid approach overcomes the less sensitive response of CART

to continuous variables whilst it can easily explore both linear and non-linear

patterns in stock data. The CART model is used to capture nonlinearities and

high-order interactions among stock characteristics whilst the logistic regression

procedure can be regarded as a further refinement to capture and approximate

the remaining linear effects.

Secondly, the hybrid model provides an interpretable explanation. The clear

visualization of various components of the model is the key to a good understand-

ing of the model.

Thirdly, it minimizes the ad-hoc nature of handing missing data values which

is relatively common in financial data. Traditional parametric models usually

provide challenges in dealing with missing information. The hybrid approach

overcomes it by using surrogate splitting in the CART algorithm.

Whilst further empirical testing is warranted in a wider array of data sets, we

believe that the hybrid approach has the potential to offer the best of both worlds

and therefore potentially a useful addition to the range of techniques available.
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Chapter 7

Conclusion and Discussion

7.1 Summary

Focusing on return predictability and its implications, the research in this the-

sis inquires into a range of issues: (i) it investigates the estimation bias issue in

predictive regressions and also proposes new methodology for bias removal; (ii) it

examines predictability of return distributions; (iii) it explores the implications of

return distribution predictability for portfolio selection and (vi) it evaluates non-

linear dynamics of cross-sectional stock returns using CART. More specifically,

the key contributions and findings of the thesis are listed below.

• The thesis provides insightful explanations to the estimation bias issues

in predictive regressions and also develops a jackknife-based approach for

bias reduction. Extensive simulations show that, compared with existing

bias-reduction methods in the literature, the proposed approach is more

stable, robust and flexible. More importantly, the proposed approach can

successfully reduce the estimation bias in long-horizon regressions, whereas
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traditional bias-reduction methods do not work efficiently.

• The research stresses the importance of bias reduction in predictive re-

gressions in practical applications through both simulations and empirical

applications. Along with other studies in the literature (see, for example,

Stambaugh, 1999; Goyal and Welch, 2003; Amihud and Hurvich, 2004), the

research identifies the difficulties in establishing the predictability of the

mean of the stock market returns after accounting for finite-sample biases.

• The thesis concludes that it is insufficient to use predictive regressions to

investigate return predictability. Instead, it promotes the use of quantile re-

gression to incorporate “tail” information in return prediction. The empiri-

cal studies in the thesis report strong evidence of distribution predictability

for both stock and bond returns. It is also demonstrated that a wide range

of economic state factors have significant and heterogenous effects on dif-

ferent return quantiles.

• The thesis establishes a quantile-copula framework for modelling conditional

joint return distributions. This framework hinges on quantile regression

for marginal return distributions and a copula for the return dependence

structure. The framework is shown to be flexible and general enough to

model a joint distribution while, at the same time, capturing any non-

Gaussian characteristics in both marginal and joint returns.

• To exploit predicted return distributions, the thesis develops a distribution-

based portfolio selection framework which uses the generalised Omega as

the objective function and the threshold accepting optimisation for obtain-
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ing solutions. An empirical application to asset allocation between stocks

and bonds demonstrates the efficiency of the proposed portfolio selection

approach.

• The thesis evaluates the use of CART for cross-sectional return prediction.

It finds that CART offers an alternative means of analysing complex stock

data as it sidesteps many of the known issues associated with traditional

linear regression based approaches. CART is more flexible, robust and

capable of capturing nonlinear return dynamics. In practice, it also provides

a high degree of diversification to the risk of using similar models in the

investment community.

• To overcome weaknesses of CART, such as local optimum, solution insta-

bility and insensitivity to continuous variables, and in the meanwhile main-

taining its flexibility, the thesis proposes a novel hybrid approach combining

CART and logistic regression. An empirical application to cross-sectional

stock return prediction shows that the hybrid approach offers enhanced

performance compared to either a standalone CART or a logistic model. It

also compares favourably with the random forest method.

7.2 Limitations and Future Research

While this thesis has investigated a number of fundamental issues of return pre-

dictability and has provided some new frameworks that are shown to improve

prediction, there are a number of issues that need further research.

For predictive regressions, the thesis focuses on the finite-sample bias in the
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class of predictive regressions as analysed by Stambaugh (1999). It would be

interesting to investigate other frameworks. In particular, Ferson et al. (2003) and

Ferson et al. (2008) study another class of predictive regressions which involves

a latent variable. They assume that the returns are driven by a latent variable.

However, an instrumental variable which may or may not correlate with the latent

variable is used to predict the returns. In their setup, Ferson et al. (2003) find

substantial spurious regression bias under certain conditions. The literature on

bias issues under the setup of Ferson et al. (2003) and Ferson et al. (2008) is sparse.

Given their setup is more general and closely mimics what an econometrician faces

in forecasting returns, it would be of great interest to evaluate the effectiveness

of the proposed jackknife procedure or develop new appropriate methodology for

bias reduction within their setup.

Furthermore, predictive regressions can be generalised to allow for time-varying

coefficients. Time-variation in coefficients (i.e., parameter instability) is well

studied in the literature (see for example, Lettau and Ludvigson, 2001; Goyal

and Welch, 2003; Paye and Timmermann, 2006; Ang and Bekaert, 2007; Dangl

and Halling, 2008). However, estimation bias, coupled with parameter instabil-

ity, imposes substantial challenges in finance modelling and predictability testing.

The generalised framework established in this thesis offers great opportunities for

future research in this direction.

The study of return distribution predictability reports strong empirical evi-

dence of predictability in-sample. It is not clear whether, and to what extent,

quantile regression estimation is affected by finite-sample biases when using highly

persistent predictor variables. Given the fact that model assumptions on quantile

regression are less stringent than those of predictive regressions, the problem of
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the finite-sample bias may not be as severe as it is for the OLS estimator. This

is also an interesting question worth future research.

The examination of the out-of-sample predicability of the full return distri-

bution in this thesis is based on short time series. When longer time series are

available, more accurate evaluation of the out-of-sample predicability should be

carried out.

Regarding implications of return distribution predictability for portfolio se-

lection, this thesis has developed a framework for distribution-based portfolio

selection which uses a generalised version of the Omega measure as the objective

function. It also generates several interesting directions for future research: (i) an

investigation of other utility functions which can also capture the higher-order mo-

ments for portfolio selection; (ii) an assessment of ex-post portfolio performance

using the proposed framework and a comparison with traditional moment-based

methods (i.e., the mean-variance analysis) and (iii) as only two assets are consid-

ered in the study, a natural extension, therefore, is to allocate resources among

three or more assets using the proposed framework. Although modelling joint

return distribution of multiple assets and carrying out the corresponding asset

allocation are theoretically feasible within the framework proposed, the computa-

tional issues that arise from high dimensionality would be much more challenging.

Lastly, the research in the thesis represents only a preliminary study of cap-

turing the nonlinear dynamics in the cross-sectional stock returns. Nonlinear

dynamics of returns are not well understood in the literature and are not the

focus of mainstream research in finance. The implications of the probabilistic

return prediction by CART and other similar approaches would be worth further

exploration.
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Appendix A: Proof of Theorem

This appendix provides the proof of Theorem 2.4.1 in Chapter 2.

Theorem 2.4.1. Suppose θ̂JK is the estimator of β obtained from jackknifing the

predictive regression specified by (2.1) to (2.3), we have E(β̂JK − β) = O(T−1).

Proof. By denoting β̄−1 =
∑T

i=1 β̂(−i)/T , the ordinary delete-one jackknife esti-

mator is β̂JK = T β̂ − (T − 1)β̄−1. Its expectation can be written as

E(β̂JK − β) = E{T β̂ − (T − 1)β̄−1} − β̂) + E(β̂ − β)

= (T − 1){E(β̂ − β̄−1)}+ E(β̂ − β). (A.1)

From (2.6), the expectation E(β̂ − β̄−1) can be written as

E(β̂ − β̄−1) = ξE

{∑T
t=1(xt−1 − x̄)xt∑T
t=1(xt−1 − x̄)2

−
T∑
i=1

∑T
t=1,t6=i(xt−1 − x̄−i)xt

T
∑T

t=1,t6=i(xt−1 − x̄−i)2

}
.

The right-hand side of the above expression can be decomposed as the sum of

the following four differences:

h1 =

∑T
t=1(xt−1 − x̄)xt∑T
t=1(xt−1 − x̄)2

− 1

T − 1

T∑
i=1

{∑T
t=1,t 6=i(xt−1 − x̄)xt∑T
t=1(xt−1 − x̄)2

}
,
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h2 =
1

T − 1

T∑
i=1

{∑T
t=1,t6=i(xt−1 − x̄)xt∑T
t=1(xt−1 − x̄)2

}
− 1

T

T∑
i=1

{∑T
t=1,t6=i(xt−1 − x̄)xt∑T
t=1,t6=i(xt−1 − x̄)2

}
,

h3 =
1

T

T∑
i=1

{∑T
t=1,t6=i(xt−1 − x̄)xt∑T
t=1,t6=i(xt−1 − x̄)2

−
∑T

t=1,t6=i(xt−1 − x̄−i)xt∑T
t=1,t 6=i(xt−1 − x̄)2

}
,

h4 =
1

T

T∑
i=1

{∑T
t=1,t6=i(xt−1 − x̄−i)xt∑T
t=1,t6=i(xt−1 − x̄)2

−
∑T

t=1,t 6=i(xt−1 − x̄−i)xt∑T
t=1,t 6=i(xt−1 − x̄−i)2

}
.

The theorem can be proved by showing
∑4

k=1 E(hk) = O(T−3). For this

purpose, the geometric series formula is used in the proof,

1

1− a
=
∞∑
n=0

an, for |a| < 1.

Define the following notations: di = (xi−1 − x̄)2, D =
∑T

i=1 di, δi = D −

(xi−1− x̄)2, S0 =
∑T

t=1 xt−1, S1 =
∑T

t=1 xt and ωi =
∑T

t=1,t6=i(x̄−i− x̄)xt. Without

loss of generality, let φ = 0, i.e., x series is centralised. Note that vi = xi− ρxi−1

and for any j ≥ 0, k ≥ 0 and l ≥ 0,

E(xixi+jxi+j+kxi+j+k+l) =
ρj+l(1 + 2ρ2k)

(1− ρ2)2
σ4
v = ρj+l(1 + 2ρ2k)σ4

x.

According to Marriott and Pope (1956), we have

var(x̄) =
σ2
v

T 2
{T + (T − 1)ρ+ (T − 2)ρ2 + ...+ ρT−1}

E(D) = T

{
1

1− ρ2
− 1

T (1− ρ)2
+O

(
1

T 2

)}
σ2
v

= T

{
1− 1− ρ2

T (1− ρ)2
+O

(
1

T 2

)}
σ2
x

E(D2) = T 2

{
1

(1− ρ2)2
+

2(1 + ρ)2

T (1− ρ2)3
+O

(
1

T 2

)}
σ4
v
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= T 2

{
1 +

2(1 + ρ)2

T (1− ρ2)
+O

(
1

T 2

)}
σ4
x

E(δi) = (T − 1)

{
1

1− ρ2
− 1

T (1− ρ)2
+O

(
1

T 2

)}
σ2
v .

Furthermore, the following equations hold,

E
S2

0

T
= O(1), E

S0S1

T
= O(1), E

S2
0

∑T
i=1 xixi−1

T 2
= O(1),

E
S1S

3
0

T 2
= O(1), E

S2
0

∑T
i=1 xixi−1

T 2
= O(1), E

∑T
i=1 xix

3
i−1

T
= O(1)

E
1

D2
= O

(
1

T 2

)
, E

1

D
= O

(
1

T

)
, E

S0S1

D
= O(1), E

S2
0

D
= O(1).

Now we move on to compute the expectations of h1 to h4.

For h1, we have

h1 =

∑T
t=1(xt−1 − x̄)xt∑T
t=1(xt−1 − x̄)2

−
∑T

i=1

∑T
t=1,t6=i(xt−1 − x̄)xt

(T − 1)
∑T

t=1(xt−1 − x̄)2

=

∑T
t=1(xt−1 − x̄)xt∑T
t=1(xt−1 − x̄)2

−

{
T
∑T

t=1(xt−1 − x̄)xt −
∑T

i=1(xi−1 − x̄)xi

(T − 1)
∑T

t=1(xt−1 − x̄)2

}

=

∑T
t=1(xt−1 − x̄)xt∑T
t=1(xt−1 − x̄)2

−
∑T

t=1(xt−1 − x̄)xt∑T
t=1(xt−1 − x̄)2

= 0.

Hence the expectation of h1 is

E(h1) = 0. (A.2)

For h2, we have

h2 =
1

T − 1

T∑
i=1

{∑T
t=1,t6=i(xt−1 − x̄)xt

D

}
− 1

T

T∑
i=1

{∑T
t=1,t6=i(xt−1 − x̄)xt

δi

}
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=
1

T

T∑
i=1

{
T∑

t=1,t6=i

(xt−1 − x̄)xt

}{
T

(T − 1)D
− 1

D − (xi−1 − x̄)2

}

=
1

T

T∑
i=1

{
T∑

t=1,t6=i

(xt−1 − x̄)xt

}{
T

(T − 1)D
− 1

D
− (xi−1 − x̄)2

D2
− (xi−1 − x̄)4

D3
− ...

}

=
1

T

T∑
i=1

{
T∑
t=1

(xt−1 − x̄)xt

}{
1

(T − 1)D
− (xi−1 − x̄)2

D2
− (xi−1 − x̄)4

D3
− ...

}

− 1

T

T∑
i=1

(xi−1 − x̄)xi

{
1

(T − 1)D
− (xi−1 − x̄)2

D2
− ...

}
x̄)4

T∑
t=1

(xt−1 − x̄)xt.

Taking expectation of h2 gives,

E(h2) =
1

T

T∑
i=1

E

[{
T∑
t=1

(xt−1 − x̄)xt

}{
1

(T − 1)D
− (xi−1 − x̄)2

D2
− (xi−1 − x̄)4

D3

}]

− 1

T

T∑
i=1

E

[
(xi−1 − x̄)xi

{
1

(T − 1)D
− (xi−1 − x̄)2

D2

}]
+O

(
1

T 3

)

=
1

T
E

{∑T
i=1 xi(xi−1 − x̄)3

D2

}

− 1

T
E

{∑T
i=1(xi−1 − x̄)4

∑T
t=1(xt−1 − x̄)xt

D3

}
+O

(
1

T 3

)

=
1

T
E

{∑T
i=1 xix

3
i−1

D2

}
− 3

T 2
E

{
3S0

∑T
i=1 xix

2
i−1

D2

}
+

3

T 3
E

{
S2

0

∑T
i=1 xixi−1

D2

}

− 1

T
E

{∑T
i=1(xi−1 − x̄)4

D2

∑T
t=1(xt−1 − x̄)xt

D

}
+O

(
1

T 3

)

=
1

T
E

{∑T
i=1 xix

3
i−1

D2

}
− 3ρ

T 2
+O

(
1

T 3

)
=

1

T

∑T
i=1 3ρ

T 2
− 3ρ

T 2
+O

(
1

T 3

)
= O

(
1

T 3

)
. (A.3)
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For h3, note that

ωi =
T∑

t=1,t6=i

(x̄−i − x̄)xt

=
T∑

t=1,t6=i

(
T x̄− xi−1

T − 1
− x̄
)
xt

=
x̄− xi−1

T − 1

T∑
t=1,t 6=i

xt

=
1

T (T − 1)
(S0 − Txi−1)(S1 − xi),

and

T∑
i=1

ωi =
1

T (T − 1)

T∑
i=1

{(S0 − Txi−1)(S1 − xi)}

=
1

(T − 1)

{
T∑
i=1

xixi−1 −
S0S1

T

}
.

Recall that δi = D − (xi−1 − x̄)2 and di = (xi−1 − x̄)2. Then

h3 =
1

T

T∑
i=1

ωi
δi

=
1

T

T∑
i=1

ωi
D − (xi−1 − x̄)2

=
1

T

T∑
i=1

ωi
D

(
1 +

(xi−1 − x̄)2

D
+

(xi−1 − x̄)4

D2
+ ...

)
.

Upon taking expectation, we have

E(h3) = E

{
1

T

T∑
i=1

ωi
D

(
1 +

(xi−1 − x̄)2

D
+

(xi−1 − x̄)4

D2
+ ...

)}
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= E

{
1

T

T∑
i=1

ωi
D

(
1 +

(xi−1 − x̄)2

D

)}
+O

(
1

T 3

)

= E

{
1

TD

T∑
i=1

ωi +
1

TD2

T∑
i=1

ωi(xi−1 − x̄)2

}
+O

(
1

T 3

)

= E

{
1

T (T − 1)D

(
T∑
i=1

xixi−1 −
S0S1

T

)}

+E

{
1

T 2(T − 1)D2

T∑
i=1

(S0 − Txi−1)(S1 − xi)di

}
+O

(
1

T 3

)

=
1

T (T − 1)

{
E

(∑T
i=1 xixi−1

D

)}
+

1

T 2(T − 1)

{
3E

(
S0S1

∑T
i=1 x

2
i−1

D2

)

−2T + 1

T 2
E

(
S3

0S1

D2

)
− 3E

(
S0

∑T
i=1 xix

2
i−1

D2

)
+ 3E

(
S2

0

∑T
i=1 xixi−1

TD2

)

−TE

(
S1

∑T
i=1 x

3
i−1

D2

)
+ TE

(∑T
i=1 xix

3
i−1

D2

)}
+O

(
1

T 3

)

=
1

T (T − 1)

{
E

(∑T
i=1 xixi−1

D

)}
+

1

T 2(T − 1)

{
O(1)−O

(
1

T

)
−O(1)

+O

(
1

T

)
−O(1) +O(1)

}
+O

(
1

T 3

)
=

1

T (T − 1)
E

(∑T
i=1 xixi−1

D

)
+O

(
1

T 3

)
. (A.4)

Before moving to h4, it is useful to write

T∑
t=1,t6=i

(xt−1 − x̄−i)2 =
T∑

t=1,t6=i

(xt−1 − x̄)2 − (T − 1)(x̄− x̄−i)2

x̄−i = (S0 − xi−1)/(T − 1)

and

(x̄− x̄−i) = xi−1/(T − 1)− S0/{T (T − 1)}.
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For h4, we have

h4 =
1

T

T∑
i=1

{∑T
t=1,t6=i(xt−1 − x̄−i)xt∑T
t=1,t6=i(xt−1 − x̄)2

−
∑T

t=1,t 6=i(xt−1 − x̄−i)xt∑T
t=1,t 6=i(xt−1 − x̄−i)2

}

=
1

T

T∑
i=1

{
T∑

t=1,t6=i

(xt−1 − x̄−i)xt

}{
1

D − (xi−1 − x̄)2

− 1

D − (xi−1 − x̄)2 − (T − 1)(x̄− x̄−i)2

}
=

1

T

T∑
i=1

{
T∑

t=1,t6=i

(xt−1 − x̄−i)xt

}[
1

D

{
1 +

(xi−1 − x̄)2

D
+ ...

}
−
{

1 +
(xi−1 − x̄)2 + (T − 1)(x̄− x̄−i)2

D
+ ...

}]
,

Taking expectation of h4 gives

E(h4) =
1

T

T∑
i=1

E

({
T∑

t=1,t6=i

(xt−1 − x̄−i)xt

}[
1

D

{
1 +

(xi−1 − x̄)2

D

}
−
{

1 +
(xi−1 − x̄)2 + (T − 1)(x̄− x̄−i)2

D

}])
+O

(
1

T 3

)
= E

[
−T − 1

TD2

T∑
i=1

(x̄− x̄−i)2

T∑
t=1,t 6=i

(xt−1 − x̄−i)xt

]
+O

(
1

T 3

)

= E

[
− 1

TD2

T∑
i=1

(x̄− x̄−i)2

{
(T − 1)

T∑
t=1

xtxt−1 − S0S1

+S1xi−1 − S0xi + Txixi−1

}]
+O

(
1

T 3

)
= E

[
− 1

T (T − 1)2D2

T∑
i=1

(
xi−1 −

S0

T

)2

{
(T − 1)

T∑
t=1

xtxt−1 − S0S1 + S1xi−1 − S0xi + Txixi−1

}]
+O

(
1

T 3

)
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= E

[
− 1

T (T − 1)2D2

{
(T − 1)D

T∑
t=1

xtxt−1 − S0S1D

+S1

T∑
i=1

xi−1di − S0

T∑
i=1

xidi + T

T∑
i=1

xixi−1di

}]
+O

(
1

T 3

)

= − 1

T (T − 1)
E

(∑T
i=1 xt−1xt
D

)
+O

(
1

T 3

)
. (A.5)

Note that
∑T

i=1

(
xi−1 − S0

T

)2
= D. It follows from (A.2) to (A.5) that

4∑
k=1

E(hk) =
1

T (T − 1)
E

(∑T
i=1 xt−1xt
D

)
− 1

T (T − 1)
E

(∑T
i=1 xt−1xt
D

)
+O

(
1

T 3

)
= O

(
1

T 3

)
,

and hence

E(β̂ − β̄−1) = ξ
4∑

k=1

E(hk) = O

(
1

T 3

)
. (A.6)

From (A.1) and (A.6), the bias expression for the ordinary jackknife estimator

is

E(β̂JK − β) = (T − 1){E(β̂ − β̄−1)}+ E(β̂ − β)

= −(1 + 3ρ)

T
ξ +O

(
1

T 2

)
= O

(
1

T

)
.

149



Appendix B: Standard Errors of

Quantile Estimator

This appendix provides details on the method introduced by Wang et al. (2009)

for obtaining the standard errors of the quantile regression coefficients in Chapter

3.

To overcome the problems due to the unsmoothness in the estimating function

(3.2), we first express β̂τ as β∗τ+Λ1/2Z, where β∗τ is the true value of the parameter

βτ and Z follows the multivariate standard normal distribution N(0, I). The

smoothed objective function can be naturally defined as L̃(βτ ) = EZ{L(βτ +

Λ1/2Z)}, where expectation is over Z. However, Λ is unknown and hence this

expectation cannot be evaluated. To this end, we nominate a known matrix Γ for

Λ, and then update Γ as an estimator for Λ. The interpretation is also simple,

Γ1/2Z can be regarded as a perturbation to βτ .

Let σ2
t = XT

t ΓXt, at = rt+1 −XT
t βτ and bt = at/σt. We have

L̃(βτ ) = EZL(βτ + Γ1/2Z) = T−1

T∑
t=1

EZρ{rt+1 −XT
t (βτ + Γ1/2Z)}

= T−1

T∑
t=1

(1− τ)

∫ ∞
bt

(σtz − at)φ(z)dz + τ

∫ bt

−∞
(at − σtz)φ(z)dz
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= T−1

T∑
t=1

[at{Φ(bt)− 1 + τ}+ σtφ(bt)] , (B.1)

where Φ(·) and φ(·) are the distribution and density functions of the standard

normal variable, respectively. Note that the score function of L(βτ ) is U(βτ ) =

∂L(βτ )/∂βτ . We have the smoothed version of U(βτ ) as

Ũ(βτ ) = ∂L̃(βτ )/∂βτ = EZ{U(βτ + Γ1/2Z)}

= T−1

T∑
t=1

Xt{Φ(bt) + τ − 1}, (B.2)

which is a smooth function of βτ . As a result, we can easily calculate ∂Ũ(βτ )/∂βτ

and use it as a smoothing estimator of A, that is,

Ã = T−1

T∑
t=1

φ(bt)

σt
XtX

T
t , (B.3)

for given values of βτ and Γ.

The smoothed estimator β̃τ for βτ can be obtained from the smoothed score

function E{U(βτ + Γ1/2Z)} = 0. It is easy to show that L̃(βτ ) is a strictly

convex function of βτ , and hence there is a unique minimizer of βτ for each

given positive definite matrix Γ. Furthermore, the characteristics of the resulting

estimator β̃τ are not changed much by such a smoothing method but the function

Ũ is smoother than U in the cases of interest to us.

The covariance matrix of β̃τ can be estimated by

Λ̃ = Ã−1cov{Ũ(βτ )}(Ã−1)T . (B.4)
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In general, iteration is needed to find the final estimates β̃τ and the correspond-

ing asymptotic covariance matrix Λ̃. The iteration is executed by alternately

updating estimates of Γ and βτ . Note that there is no need to update B be-

cause it is free from βτ and Λ values (see (3.5)). The iteration procedure to find

the smoothed estimates β̃τ and Λ̃ can be summarized by the following stepwise

procedure.

(i) The initial value for Γ is taken as Γ(0) = T−1Ip, where p is the number of

the regression parameters.

(ii) In the jth iteration (j = 1, 2, · · · ), we update β(j)
τ by minimizing L̃(β)τ or

solving the smoothed estimating function, Ũ(βτ ) = 0, as given by (B.2).

(iii) We use β(j)
τ and Γ(j−1) to update Ã (see eqn (B.3)), and then obtain an

updated Γ as

Γ(j) = TÃ−1B(Ã−1)T .

(iv) Repeat the above iteration steps (ii) and (iii) until a selected stopping cri-

terion is reached, e.g., max |Γ(j+1) − Γ(j)| < 10−4.

The final values of β(j)
τ and Γ(j) will be taken as the smoothed estimate of βτ

and the covariance matrix Λ. As we have shown that the smoothed Ũ after the

first iteration is already very close to the original U , and the smoothed version

can easily provide updated A and Λ matrices. Any further iteration (although not

necessary from asymptotic viewpoint) is therefore to fine-tuning these quantities.
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Appendix C: Random Forests

This appendix provides details on the random forest approach proposed by Breiman

(2001). This approach is employed for cross-sectional stock return prediction in

Chapter 6.

Random forest is an ensemble classifier that consists of many decision trees

and outputs the class that is the mode of the classes output by individual trees. It

is proposed to overcome the local optimum and instability of a single decision tree

solution. Suppose that there are N training samples and M potential predictor

variables. Random forest is constructed using the following algorithm:

• Draw k bootstrap samples with replacement from the training data.

• For each of the bootstrap samples, grow an unpruned decision tree, with the

following modification: at each node, rather than choosing the best split

among all predictors, randomly sample m predictors (m should be much

less than M) and choose the best split from among those variables.

• Predict new data by aggregating the predictions of the trees, i.e., majority

votes for classification, average for regression.

Intuitively, the above process can be graphically illustrated as in Figure C.1.
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Figure C.1: A graphic illustration of random forest.

An estimate of the error rate can be obtained, based on the training data, by

the following:

• At each bootstrap iteration, predict the data using the sample outside the

bootstrap sample (what Breiman calls out-of-bag data) using the tree grown

with the bootstrap sample.

• Aggregate the OOB predictions and calculate the error rate, the so-called

out-of-bag estimate of error rate.

Considered as one of the best off-the-shelf classifiers currently available (Sat-

ten et al., 2004), random forest is fast becoming the starting point for modern

tree-based analysis. However, the random forest approach also has a number of

disadvantages. Firstly, the improved stability in random forests is at the cost
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of interpretability of the model output. Secondly, random forests are prone to

over fitting for some data sets. This is even more pronounced in noisy classifi-

cation/regression tasks (Segal, 2003). Thirdly, the OOB estimate of error rate

can bias upward Bylander (2002) which leads to problematic statistical inference.

Finally, random forests cannot handle large numbers of irrelevant features as well

as ensembles of entropy-reducing decision trees (Gashler et al., 2008).
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