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Soils and sediments containing iron sulfides or the products of sulfide oxidation are known as 

acid sulfate soils (ASS). These soils possess significant environmental risks due to their 

potential capacity to produce copious amounts of sulfuric acid (H2SO4) on their exposure to 

atmosphere. The accumulation of large deposits of sulfidic material has been identified in the 

past 10 to 12 years in saline-inland wetlands in Australia. Extended periods of natural as well 

as human-induced drying events in many of these wetlands have resulted in highly saline 

conditions (e.g. dominated by NaCl and sulfate containing salts) and the exposure (oxidation) 

of sulfidic material. The oxidation of sulfidic material results in the release of H2SO4 and the 

precipitation of a range of secondary iron minerals (e.g. goethite, ferrihydrite, 

schwertmannite. Under highly acidic conditions (pH < 4) found in sulfuric material of the 

ASS, dissolution of layer silicates or phyllosilicate minerals is the only realistic process that 

can provide a long-term acid neutralisation in these soils; particularly in many Australian soils 

which have small quantities of weatherable primary minerals and carbonates. It is vital to 

investigate the mineralogical composition and dissolution mechanisms of layer silicates or 

phyllosilicate minerals existing in these ASS environments to develop effective management 

strategies for these soils. 

 

The dissolution rate of illite, a common phyllosilicate mineral in Australian soil, was 

determined using flow-through reactors at 25 ± 1°C, in solutions with two different ionic 

strengths of 0.25 M and 0.01 M (maintained using NaCl), and pH ranging from 1–4.25 

(H2SO4). The results from the illite dissolution experiments showed a rapid release of cations 

at the onset of the experiments and a relatively slower release at the steady state. Close to 
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stoichiometric dissolution of illite was obtained at pH 1–4 in the higher ionic strength 

solutions and at pH 1–3 in the lower ionic strength solutions. The experiment at pH 4.25 in 

the lower ionic strength solution exhibited RAl < RSi, resulting from a possible adsorption of 

dissolved Al on the illite surface. Illite dissolution rates showed strong pH dependence, with 

decreased dissolution rates with increasing pH. The proton reaction orders obtained for 

dissolution in the higher and lower ionic strength solutions were 0.32 and 0.36, respectively. 

From the relative cation release data, it was concluded that the dissolution of illite proceeded 

with the removal of interlayer K followed by the dissolution of octahedral cations, whereas 

the dissolution of Si was the rate limiting step in the dissolution process.  

 

The dissolution rate of illite, kaolinite and montmorillonite was compared in flow-through 

reactors at 25 ± 1
°
C and at the two ionic strengths, as described earlier. Kaolinite dissolution 

rates were close to stoichiometric at pH 1 and 2 in the higher ionic strength solutions and at 

pH 1–4 in the lower ionic strength solutions. RAl values greater than RSi were obtained for 

kaolinite dissolution experiments at pH 3 and 4 in the higher ionic strength solutions. 

Kaolinite dissolution rates were strongly dependent on pH at pH � 3, whereas kaolinite rates 

showed a little pH dependence at pH 3–4.25, and the point of zero charge (PZC) of the 

mineral appears to have affected the dissolution rate at these pH values. Kaolinite dissolution 

rates at pH 1 and 2 (H2SO4) in this study were greater than the previously reported rates in 

HCl and HClO4 solutions, which was ascribed to the complexation of Al by sulfate ions in the 

solutions. For montmorillonite dissolution, RAl values greater than RSi were obtained in the 

higher ionic strength solutions at pH 1–4, whereas an opposite trend was observed in the 

lower ionic strength solutions at pH 2–4. A reduced RAl in the lower ionic strength solutions 

from montmorillonite dissolution resulted from (apparent) adsorption of dissolved Al on 
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mineral exchange sites, possibly due to the availability of more interlayer exchange sites for 

Al re-adsorption and a decreased cation (Na
+
) competition for exchange sites in these 

systems. 

 

The dissolution rate of the clay fraction of soil cores from an inland ASS at Bottle Bend (BB) 

in south-western New South Wales (NSW, Australia) was determined under similar 

experimental conditions to pure minerals described earlier. Clay dissolution experiments were 

also conducted at 35 and 45
°
C at pH 1 and 4 to determine the effect of temperature on 

dissolution rates. The clay sample comprised of smectite (40 %), illite (27 %), kaolinite (26 

%) and quartz (6 %), with a minor impurity of anatase (1 %). Clay dissolution rates decreased 

with an increasing pH and a decreasing temperature. A strong reduction in the initial Al 

release resulted from clay dissolution in the lower ionic strength solutions at pH 2 to 4, 

whereas a preferential initial Al release was obtained in the higher ionic strength solutions. A 

slight increase in the RSi values was observed at the lower ionic strength across the pH range 

investigated, whereas a significant decrease in RAl was found at pH 4 with a decrease in the 

ionic strength, at all temperatures. An apparent activation energy value of 18.3 kcal mol
–1

 was 

calculated at pH 1 that decreased to 9.0 kcal mol
–1

 at pH 4. The individual mineral dissolution 

rates estimated from bulk release rate of Al and Si showed fastest dissolution rates for 

kaolinite followed by illite and smectite. Smectite dissolution rates obtained for soil clay 

showed close similarity to pure montmorillonite rates obtained under similar conditions. The 

acid neutralisation capacity (ANC) of the clay sample was calculated from the release rates of 

cations (Al, Fe, K, Mg). The ANC values of 44.4 and 13.1 kg H2SO4/tonne of clay sample 

were estimated from the cation release over a period of 22 and 62 days at pH 1 and 4, 

respectively. An enhanced release of Al from phyllosilicate dissolution in the highly saline-
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acidic systems could possibly be a contributing factor to the ecological disturbance caused by 

increased Al concentrations in the soil and water systems. 

 

Morphology of the oxidised surface (5 cm) sediments collected from a highly saline inland 

ASS at the BB site was characterised by X-ray diffraction (XRD), transmission electron 

microscopy (TEM) and scanning transmission electron microscopy combined with energy 

dispersive X-ray spectroscopy (STEM-EDS). Halite (NaCl), gypsum (CaSO4.2H2O) and 

akaganéite (�-FeOOH) were identified as the major phases with minor amounts of K-jarosite 

in some sediment samples. Akaganéite is rarely found in the soil environments and mainly 

forms as a product of corrosion of iron in chloride-rich environment. The precipitation of 

akaganéite at the study site resulted from the natural occurrence of the unique solution 

conditions (in situ pH as low as 2 and EC as high as 216 dS/m) at the site. The chemical 

analysis of the akaganéite found in these sediments revealed an average Fe/Cl mole ratio of 

6.7 and a structural formula of Fe8O8(OH)6.8(Cl)1.2 which is consistent with the composition 

of pure akaganéite. Saline-acidic conditions with significantly higher chloride over sulfate 

levels provided the necessary conditions for akaganéite formation at the study site. The 

precipitation of akaganéite in the ASS environment necessitates detailed investigation to 

determine the competitive formation and stability of this mineral relative to stable secondary 

iron minerals commonly precipitated in ASS environments.  

 

 

*  * * 
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Fig. 4.6  A comparison of kaolinite (KGa-2) dissolution rates log RSi and log RAl between pH 1 
and 4, obtained in this study (I = 0.25) with published data (Cama et al., 2002; Huertas 
at al., 1999). The data from Cama et al. (2002) is for flow-through reactor experiments 
using Georgia kaolinite (KGa-2) with pH adjustment using HClO4, whereas the data 
from Huertas et al. (1999) is from batch dissolution experiments using Georgia 
kaolinite (KGa-1) in a background electrolyte of 1M NaCl, with pH adjustment using 
HCl.          131 

Fig. 4.7  Comparison of dissolution rate (log RAl) values for montmorillonite at pH 1–4 at the 
higher (I = 0.25) and lower (I = 0.01) ionic strengths.    133 
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Fig. 5.1  X-ray diffraction patterns of the oriented specimens of Bottle Bend clay sample (< 2 

µm). Mg air-dried (Mg-AD); Mg ethylene glycolated (Mg-EG); K heated at 550°C (K 
550° C); Li heated at 300°C (Li 300°C); Li heated at 300°C and glycerol solvated (Li-
300-Gly).         150 

Fig. 5.2  Transmission electron microscopic image of a pre-treated Bottle Bend clay sample 
showing three different mineral (particle) types. Smectite particles – irregular to a 
globular shape, thin layered structure; illite particles – platy shape; kaolinite particles 
– hexagonal shape.        151 

Fig. 5.3  Change in Al/Si ratio with time in the experiments conducted at the two ionic 
strengths (0.25 and 0.01 M) and pH 1–4. (a.c,e,g) 25°C; (b,d) 35°C; (f,h) 45°C. Al/Si 
ratio in experiments conducted at pH 4 at I = 0.01 M at all temperatures are not shown 
because of a very low Al release (< 1 µM) throughout the experimental duration. 155 

Fig. 5.4  Variation in K/Si ratio with time in the experiments conducted at the two ionic 
strengths (0.25 and 0.01 M) and pH 1–4. (a.c,e,g) 25°C; (b,d) 35°C; (f,h) 45°C. 156 

Fig. 5.5  Change in Fe/Si ratio with time in the experiments conducted at the two ionic 
strengths (0.25 and 0.01 M) and pH 1–4. (a.c,e,g) 25°C; (b,d) 35°C; (f,h) 45°C. 158 

Fig. 5.6  Change in Mg/Si ratio with time in the experiments conducted at the two ionic 
strengths (0.25 and 0.01 M) and pH 1–4. (a.c,e,g) 25°C; (b,d) 35°C; (f,h) 45°C. 159 

Fig. 5.7  Arrhenius plot illustrating the variation in steady state clay dissolution rate, log RSi 
(mol m–2s–1) against 1000 times reciprocal temperature, T (K–1) for the experiments 
performed at pH 1 and 4.  Simple linear regression equations for the plotted data (log 
rate vs. 1000/T (K–1)) is also presented: log RSi = –3.996x + 1.472 (R2 = 1), and log RSi = 
–1.959x – 6.656 (R2 = 0.99) at pH 1 and 4, respectively.    160 

Fig. 5.8  A plot of log RSi values estimated for individual minerals (kaolinite,  
illite and smectite) based on the content of each mineral in the bulk clay sample  
as a function of pH (1–4) and at I = 0.25 M in this study; and a comparison of these 
rates with log RSi values from previous studies on pure mineral samples of kaolinite, 
illite and smectite.        174 
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Fig. 6.1  X-ray diffraction patterns of five acid sulfate sediments:  (a) before washing treatment 

showing major peaks for gypsum (the dominant mineral in all samples), d-spacing 
values for gypsum peaks mentioned in angstrom (Å). For quartz (Q), K-jarosite (J), 
halite (H) and akaganéite (A), peaks are indicated by alphabets. (b) X-ray diffraction 
patterns of five samples after washing with E-pure® water, 0.01 M HCl and 0.01 M 
EDTA solutions. All washed samples contain akaganéite as the dominant phase 
(akaganéite peaks indicated by d-spacing values in angstrom), with lesser amounts of 
gypsum (G), K-jarosite (J), mica (M) and quartz (Q). Bassanite (B) was formed from 
gypsum in S2 sample after the washing treatment. All diffraction peaks on Figures 1a 
and 1b are given in Å.        196 

Fig. 6.2  Rietveld refinement plot of a washed sample (#1).    197 

Fig. 6.3  Transmission electron microscopic images of sample #1 (a) before and (b) after the 
removal of salts. The images show a spindle-shaped morphology for the akaganéite 
particles; and the treatment applied to dissolve halite and gypsum from the sediments 
did not affect the morphology of akaganéite particles.    200 

Fig. 6.4  Scanning electron micrographs of an original acid sulfate surface sample (#1) showing 
aggregates of small-sized akaganéite particles and large sized (a) gypsum and (b) 
halite crystals.         202 
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Fig. 6.5  (a & c) Bright field scanning transmission electron microscope images of akaganéite 
particles (#1) at two different locations. The arrows in the images show the section of 
the particle selected for a line scan EDS analysis; (b & d) show the quantified 
composition (atomic %) of Fe, O and Cl in akaganéite plotted against the number of 
points selected, corresponding to the arrows shown in (a) & (c).   203 

Fig. 6.6  EH-pH diagram for Fe-S-Cl-H2O system at 25°C. (a) shows the stability field of 
akaganéite, excluding: all FeIII (oxyhydr)oxide phases except Fe(OH)3, all jarosite 
minerals and schwertmannite. (b) shows the stability fields of akaganeite and K-
jarosite (excluding the same set of minerals described for (a), except K-jarosite). 
Stability diagrams calculated using Geochemical Workbench.   204 

Fig. 6.7  FTIR spectra of synthetic akaganéite and sample #1 after washing treatments to 
remove soluble salts and gypsum.      205 

Fig. 6.8  TGA curves of (a) synthetic akaganéite and (b) sample #1 after washing treatments to 
remove soluble salts and gypsum.      206 
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