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Abstract 

 
 

This dissertation proposes an alternative measure of performance, termed doubling 

time. Doubling time is defined as the time taken for an initial investment in an asset to 

double in value. This alternative performance metric has an intuitive appeal yet has 

received little attention in the academic literature to date.  

 

This thesis provides the foundations required for the use of doubling times in finance.  

The work begins by examining the problem of computing the expected doubling time 

from a sample of doubling times. Analytical formulae and a simulation are proposed as 

alternative approaches to estimating the expected doubling time. Using these methods, 

expected doubling times are computed for the Australian equity market, using both 

price and accumulation indices. Expected doubling times are also computed for bonds.  

 

The doubling time is then modelled as a first passage time problem. It is shown that if 

returns are normally distributed then the doubling times will be inverse Gaussian 

distributed.  It is also shown that, regardless of the underlying distribution the returns 

follow, the simulated doubling time is very likely to be inverse Gaussian distributed.  

 

Following this, portfolio formation using doubling times is investigated. It is shown 

that minimising either the skewness, or the inverse shape parameter, of the doubling 

times inverse Gaussian distribution, result in points on the efficient frontier for returns 

that are identical to those obtained under the classical Markowitz framework.  In this 
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way a two parameter (mean and variance) portfolio optimisation problem is reduced to 

a one parameter problem (skewness or shape).  

 

Measurement errors can result in the ex-post performance of optimised portfolios being 

no better than naive equally weighted portfolios.   This is sometimes referred to as the 

problem of error maximisation in portfolio formation.  A doubling time transformation 

is used to reduce the problem of error maximisation, and the results indicate an 

improvement in the ex-post performance of the optimised portfolios.  
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Chapter 1: Introduction 

 

In finance the measure of performance for an investment asset is typically defined by 

its percentage return. Traditionally this performance measurement is the profit 

generated after some fixed time span relative to the investment initially made. This 

work proposes an alternative measure of performance, termed doubling time. The 

doubling time is defined as the time taken for an initial investment in an asset to double 

in value. This alternative performance metric has an intuitive appeal along with the 

strength of there being only one doubling time; irrespective of whether continuous or 

discrete returns are used and regardless of whether returns are expressed on the basis of 

simple interest or compound interest. Analysis of these doubling times may uncover 

new insights and possibly stimulate new theories which are currently unexplored in the 

finance literature.  

 

1.1 Motivation 

 

There are several possible reasons for the study of doubling times. Doubling times are 

an intuitively attractive way to express returns. This is evident from the development of 

rules of thumb for estimating doubling times, such as the rule of seventy-two
1
. Despite 

this intuitive appeal, there has been very little academic study of doubling times for 

securities. Furthermore, transforming returns into the time domain provides a different 

perspective on returns. Viewing returns from this fresh angle may stimulate new ideas 

                                                 
1
 The rule of seventy-two states that 72 divided by the interest percentage per period will approximate the 

number of periods required for the investment to double. 
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and insights that might not otherwise be obtained. Four possible uses for doubling times 

are suggested here, although it is unlikely that this is an exhaustive list. 

 

Truth in Lending: Interest rates may be expressed as simple or compound rates, 

nominal or effective rates with different compounding periods and may be discrete or 

continuous. Whichever way the interest rate is expressed, there is only one doubling 

time. Thus doubling times could supply a standard benchmark for comparing loans and 

would probably have an intuitive appeal to consumers.  

 

Performance Measurement: If doubling times are useful in truth in lending, this also 

suggests that they might provide a useful way to report performance to investors. For 

example investment funds could be asked to report how long ago one dollar would need 

to have been invested with the fund in order to have doubled in value by the current 

date. Funds could also report the doubling time based on the current period’s returns.  

 

Capital Budgeting: The payback period continues to be very popular in capital 

budgeting despite its well known deficiencies, Truong, Partington and Peat (2008). 

Doubling times might be used to replace the payback period and could be theoretically 

more defensible. The doubling time would have the intuitive appeal of payback, and 

could be set up to match the properties of decisions based on the IRR. This would 

require computation of the project’s IRR and its conversion to a doubling time. The 

doubling time computed could then be compared to a benchmark doubling time derived 

from the cost of capital for the project 
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Portfolio Theory: Doubling times are an alternative way of viewing percentage returns. 

As doubling times are viewed as the time period taken to reach a fixed return, whereas 

percentage returns are viewed as the return received for a fixed time period. Perhaps 

analysing returns in the time domain may yield new insights into forming portfolios, 

yielding results which differ from the classical Markowitz Framework. 

 

While it appears there are several potential uses for doubling times, there has been little 

academic research on this area. This dissertation hopes to lay a foundation for work 

with doubling times. This thesis will highlight the problems that can arise with 

doubling times and provide analytical and simulation methods to overcome these 

problems. The thesis also examines the distribution of doubling times and applications 

in portfolio theory as described below. 

  

 A fundamental problem in finance is what distribution percentage returns follow. 

Despite investigation for over a century the results remain inconclusive. Perhaps this 

seems like an unimportant question; however it is of considerable significance. All of 

the classical financial theories such as Black-Scholes option pricing, the Capital Asset 

Pricing Model and Markowitz portfolio theory  have the underlying assumption that 

returns are normally distributed, or alternatively for portfolio theory, that investors 

employ a quadratic form of utility. This thesis also attempts to identify the distribution 

of returns, however, not traditional percentage returns, rather the doubling times. 

Additionally, possible relationships between the parameters of the doubling time 

distribution and the moments of the equivalent percentage returns are also derived.  
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Lastly, Markowitz Portfolio Theory suffers from a problem known as error 

maximisation (Michaud, 1989). Michaud argues that mean-variance optimisation 

overweights (underweights) those assets with a large (low) estimated return to variance 

ratio, and that these are the assets likely to have large estimation errors. This dilemma 

can make practical implementation of Markowitz Portfolio Theory particularly 

difficult, often resulting in portfolio weights with substantial errors.  This work 

addresses the problem of error maximisation and a new method is suggested to reduce 

estimation error. Additionally, when using doubling times, possible new risk metrics 

for returns are derived that provide alternative methods to obtain the efficient frontier.  

 

1.2 Outline 

 

This thesis outlines the problems that can arise when taking traditional descriptive 

statistics such as the arithmetic mean and variance of doubling times. To overcome 

these problems an analytical solution and a simulation methodology are provided. 

Following this, doubling times are modelled as the first passage time or first hitting 

time of a stochastic process. Under the assumption that percentage returns are normally 

distributed, the distribution of the corresponding doubling times is derived. Also 

provided are the equations which relate the parameters for the doubling time 

distribution with the first two moments of the corresponding percentage returns 

distribution. Following this, using the simulation methodology previously suggested, 

various tests are performed to determine the possible effects of violating the underlying 

assumption that percentage returns are normally distributed. Finally, portfolio work in 

the time domain is conducted. Initially, risk metrics in the time domain which are 

equivalent to the traditional risk metric of variance is derived. Following this, a new 
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possible risk metric is suggested. This new risk metric transforms parameters in such a 

way that the efficient frontier obtained will differ from the Markowitz frontier, it is 

shown that this new frontier will result in reducing the problem of error maximisation.     

  

The rest of this thesis is organised as follows. Chapter 2 discusses the background 

literature required for this research. Chapter 3 highlights the fundamentals of doubling 

times. This shows where possible problems may arise when working with doubling 

times and solutions to overcome these problems. Chapter 4 models doubling times as a 

first passage time problem when prices follow Brownian motion. Additionally, tests are 

performed to determine any ill effects when the assumption of Brownian motion is 

relaxed. Chapter 5 investigates forming portfolios in the time domain and considers a 

new method for reducing estimation error. Finally, Chapter 6 summarises the results of 

this thesis and discusses some ideas for future work in this area. 
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Chapter 2: Background 

 

2.1 Percentage Returns 

 

The discussion about what distribution returns follow, and if in fact they follow any 

distribution at all, has been taking place for over a century. Bachelier (1900) was the 

first to address this issue and proposed that returns followed a normal distribution. 

However, Mandlebrot (1963) raised serious doubts about the validity of this proposal. 

Inspired by Mandlebrot (1963), Fama (1965) conducted a thorough investigation about 

the distribution of stock returns. Similar to Mandlebrot (1963), Fama (1965) proposed 

that prices follow Stable Paretian Distributions. The Stable Paretian Distribution may 

be defined by its characteristic function. The characteristic function is necessary as the 

explicit expressions for the density function is only known for three cases. Accordingly, 

the distribution’s character function is defined using four parameters as follows: 

 

)},()/(1{)(ln 


tttittitf       

 

Where:  ω(t,α) equals tan(πα/2) if α ≠ 1 

ω(t,α) equals (2/π)(tan│t│) if α = 1 

 

δ is referred to as the location parameter and can take on any real value. γ is the scale 

parameter satisfying γ ≥ 0, β is an index of skewness and satisfies -1 ≤ β ≤ 1. Lastly, α 
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is a measure of the height of the extreme tail areas and is referred to as the 

characteristic exponent and satisfies 0 ≤ α ≤ 2. 

 

A random variable is said to have a stable distribution if it has the property that a linear 

combination of two independent copies of the variable has the same distribution, up to 

location and scale parameters. Or mathematically, the stable distribution has the 

property that for any independent random variables X1, X2, …, Xn all having the 

distribution function Φ, there exists constants a and b such that the random variable  

X = b(X1 + X2 + … + Xn) + a  

Also has the same distribution function Φ. 

 

Following Fama (1965), there have been numerous tests to determine if returns follow 

the Stable Paretian Distribution. Notably, both Officer (1972) and Rozelle and Feilitz 

(1980) found some supporting evidence that returns followed the Stable Paretian 

Distribution, but their results were not conclusive. However, damning evidence against 

this hypothesis was provided by Akgiray and Booth (1988) and Lau, Lau and 

Wingender (1990) among others, which left little ground for the Stable Paretian 

Hypothesis to stand on.  

 

During the testing and development of the Stable Paretian Distribution Hypothesis there 

was another school of thought initiated by Press (1967). Rather than returns being 

defined by one distribution, it was suggested they were a mixture of several 

distributions. This made intuitive economic sense, where returns could be decomposed 

into “normal” and “abnormal” components. The normal returns were the day to day 

returns which followed a Gaussian distribution, whereas the abnormal components 
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reflected news or shocks to the price, which were modelled using a Poisson 

distribution. However, the implementation of this was problematical and Press (1967) 

frequently obtained negative estimates for the variance parameters. Following Press 

(1967) many different attempts have been made to fit returns to a mixture of 

distributions with varying levels of success examples include Ball and Torous (1983) 

and Kon (1984).  

 

With mounting evidence against the Stable Paretian distribution and the problems that a 

distribution jump process faced, in recent times, attempts have been made to fit returns 

to density functions with finite moments. Peiro (1994) fitted returns to the Student-t 

distribution and also rejected Stable Paretian Distributions on the evidence of 

convergence to normality when the interval of returns calculated was increased. 

McDonald and Xu (1995) proposed an Exponential Generalised Beta Distribution, 

while Theodossiou (1998) suggested the Skewed Generalised t Distribution. Using the 

Exponential Generalised Beta and the Skewed Generalised t distributions, Harris and 

Kucukozmen (2001) showed that both fit returns in emerging markets better than the 

Student t, Logistic, Normal, Power Exponential and Laplace distributions. 

 

The vast amount of literature on the distribution of returns is yet to provide any 

conclusive evidence. Despite this, most financial models such as Black-Scholes, the 

CAPM, Markowitz portfolio theory and Value at Risk all rely on some underlying 

assumption about the distribution of returns. Perhaps if returns were viewed in the time 

domain they would have a better fit to a known distribution. 
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2.2 Doubling Times 

 

The Rule of 72 

The rule of 72 is the most widely recognized rule of thumb for estimating doubling 

times. Internet sources 
2
often credit Albert Einstein for the rule of 72. However almost 

500 years earlier this rule was mentioned by Luca Pacioli (1494), but he does not derive 

or explain the rule so it is thus assumed the rule predates Pacioli
3
. The rule of 72 is for 

discrete returns and the rule of 69 has been developed for use when returns are 

continuously compounded.  

 

The rule of 69 suggests that if there is an investment receiving continuously 

compounding returns at a fixed rate then the time taken until the investment doubles 

can be easily approximated by dividing that fixed rate into 69. For example if one was 

to receive a fixed return of 10% continuously compounded it would take them 

approximately 6.9 years to double their money.  

 

While the rule of 72 can be used for returns compounded at discrete intervals, this rule 

approximates well only for low values of returns. For example if one were to receive a 

return of 100% p.a compounded annually then it would take them a year to double their 

investment, yet the rule of 72 suggests this would only take approximately three 

quarters of a year. Derivations of the rule of 72 and 69 are provided below:  

  

Future values under continuous compounding are given by: 

                                                 
2
 http://socyberty.com/issues/financial-rule-of-72/ 

3
 http://en/wikipedia.org/wiki/Rule_of_72 
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rtPVeFV   

 

where FV is the Future Value, PV is the Present Value, r is the rate of return, and t the 

time to maturity. 

 

By setting FV to 2 and PV  to 1 and solving for time, t the doubling time, τ, is 

obtained:     

 
r

2log
         (2.1) 

A result which is approximated by the rule of 69 as the natural logarithm of 2 equals 

0.6931. 

 

Similarly, future values with discrete returns are given by: 

 

 trPVFV  1  

 

Again, by setting FV to 2 and PV to 1 and solving for t the following is obtained: 

 

 
 r


1log

2log         (2.2) 

 

This equation is approximated by the rule of 72 for low values of r. This can be 

observed in Figure 2.1. Here, a plot of equation (2.2) and the rules of 72 are depicted on 
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the same axis. It is evident at low returns equation (2.2) is very well approximated by 

the rule of 72, but at high returns the two begin to deviate. 

 

Figure 2.1: Rule of 72 versus Equation 2.2 
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The Figure depicts the close approximation of equation (2.2) by the rule of 72. 

Particularly at low return values. 

 

For simple interest future values are given by: 

)1( rtPVFV   

Setting FV equal to 2 and PV equal to 1 and solving for equation (2.3) is obtained: 

r
1         (2.3) 
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One advantage of expressing returns as doubling times is there is only one doubling 

time for a given asset, so it makes no difference to the doubling time whether the assets 

returns are expressed as a simple interest rate, or as a compound rate of return. If the 

returns are compounded, it makes no difference whether the compounding is discrete or 

continuous. Provided the returns are measured exactly and the computations are done 

correctly, then the same doubling time will result.  

Although the expression of returns as doubling times has been known for over 500 

years and that doubling times have intuitive appeal and the advantage of there being 

only one doubling time, there has been little academic work on equity market doubling 

times. Indeed, there is little written on doubling times in the financial literature, other 

than descriptions of the rules of 72 and 69. A shortcoming of the rules of 72 and 69 is 

that they do no account for stochastic returns and in relation to equity markets returns, 

due to their stochastic nature, these rules may have little added value.  

While doubling time with uncertain returns has received little attention in the finance 

literature the doubling time concept has extensive use in several other fields. Doubling 

times are often applied to population growth as in Kendall (1949). Doubling times are 

also used in medicine; a common application is measuring the growth of a tumour, for 

example Hanks, D’Amico, Epstein and Schultheiss (1993) or the doubling time of cell 

growth (Zuk et al (2001)). The converse of doubling times, or half-lives, also has 

extensive use. Half lives are most commonly associated with radioactive decay, but can 

be applied to anything which decays. Possible medical applications involve nuclear 

medicine, Hendee (1979), or persistence of a drug or other substance in the body. The 

study of population extinctions also makes use of half lives for example Brooks, Pimm 

and Oyugi (1999). In the literature on doubling times/half lives which have a stochastic 
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return process, a common methodology is to model this behaviour as a first passage 

time or first hitting time problem (see Kendall (1949)).  

 

First Passage Times 

The first passage time problem originally stems from the mathematics and physics 

literature where it is best described as the time taken for a particle following some 

random walk to reach a given barrier. However, this concept is now applied to many 

fields, such as biology, engineering, medicine and even finance.  

Among the finance literature, the application to first passage times is most commonly 

found in pricing exotic options such as look-back, barrier and digital options, (see Kou 

and Wang (2003), Kou and Wang (2004)). A look-back option’s value is path 

dependent, as the payoff depends on the maximum or minimum of the underlying 

assets price over the life of the option. Similarly, a barrier options value is also path 

dependent as the right to exercise depends on the underlying asset crossing or reaching 

a given barrier level. Because the value of these options is path dependent, first-passage 

times are often suggested as a method for valuing these options. In recent years Kou 

and Wang (2003)-(2004) have largely focused on this area, and they have extended the 

assumption of Brownian motion when valuing look-back and barrier options. In 

particular they have focused on a double exponential jump diffusion model (Kou and 

Wang (2003) and Kou and Wang (2004)). First passage times are not only used to value 

traded exotic options, but also options that may arise in other contexts.  For example, 

Longstaff and Schwartz (1995) price digital credit-spread options with the logarithm of 

the credit spread assumed to follow a mean-reverting process. McDonald and Siegel 

(1986) determine the value of waiting to invest, using first passage times. Their work is 
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in regards to investment timing, and whether undertaking an irreversible project should 

be initiated now or deferred into the future.  

The majority of the financial literature which uses first-passage times is predominately 

found in the options field, one notable exception is Cho and Frees (1988). In their work 

the volatility of discrete stock prices is estimated using an estimator of how quickly a 

price changes rather than how much the price changes. 

While the foregoing financial literature has had applications for first passage time 

problems, none of this work has been closely related to doubling times. However, there 

has been some work where the focus was first passage times in returns. Simonsen, 

Jensin and Johansen (2002) estimate empirically the distribution of first passage times 

for the Dow Jones Industrial Average (DJIA) over a time period of 105 years. In their 

work barriers ranging from 1 to 20 percent above the starting point are used. Their 

results suggest that over these short return intervals the DJIA percentage returns are 

unlikely to be normally distributed. In this work, the empirical returns have had their 

trend removed using a wavelet filter. Consequently, the first passage time is no longer a 

function of the drift and volatility, but now only the volatility. When fitting these 

empirical first passage times the distribution that results has a well defined and 

pronounced maximum, followed by a long extended tail. This well defined maximum is 

referred to as the “optimal investment horizon” as it is the most likely first passage 

time. To my knowledge their work has had little follow up attention and the concepts 

they have suggested have not been further developed among the literature.  

The use of doubling times provides an alternative performance metric to percentage 

returns. However, the idea of an alternative performance metric is by no means new. 

The time taken to reach a fixed level of wealth, or the first passage time, as a 
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performance metric can be found in MacLean and Ziemba (1999), MacLean, Ziemba 

and Blazenko (1992), Ethier (1987), Dohi, Tanaka, Kaio and Osaki (1994), and Browne 

(1997). This work is generally related to analysis of the Kelly criterion and betting 

proportions, where a trade-off of wealth growth and wealth security is required. The 

mentioned literature examines the probability of reaching wealth U and falling to 

wealth level L, the mean accumulated wealth at the end of period T and the mean 

exponential growth rate over period T. While these papers do not examine doubling 

times in the same manner as this research, they do support the notion that doubling 

times as a performance metric has merit.       

 

2.3 Estimation Error 

  

All models have their pitfalls and portfolio optimisation is no exception. In fact, one of 

the problems portfolio optimisation suffers from has been assigned its own unique 

name, error maximisation (see Michaud (1989)). This occurs because parameter 

estimates for the optimisation algorithm are approximated with some error. The 

optimiser tends to overweight the assets with high returns, low variance and low 

correlations and underweight the assets with low returns, high volatility and high 

correlations. The assets with these extremes are the cases in which estimation error is 

likely to be the most pronounced, as shown in Michaud (1989). A common way for 

estimating the expected returns and covariance matrix is through the use of historical 

data. However, when using historical data to estimate these parameters there are two 

areas of concern, the previously mentioned estimation errors, which can be somewhat 

reduced by increasing the sample size. The difficulty with increasing the sample size is 

this leads to the second problem, which is non-stationarity. The means, standard 
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deviations and correlations of security returns changeover time and this is a well 

documented effect (see Boness, Chen and Jatusipitak (1974), Christie (1982), Beaver 

(1968), Patell and Wolfson (1981) and Officer (1972)).  

 

There has been a great deal of research in the area of estimation error (see Michaud 

(1989), Chopra and Ziemba (1993), Sherer (2002)) and various methods have been 

proposed to address these problems. The serious nature of estimation error was 

demonstrated in Jobson and Korkie (1981), who show that an equal weighted portfolio 

can outperform an optimal mean-variance portfolio which is computed using sample 

estimates. This result is due to errors in the estimates. Most of the error can be 

attributed to poor estimates of expected returns, rather than poor estimates of the 

standard deviations and correlations, as shown by Ceira and Stubbs (2006). They also 

point out that many portfolio managers have much more confidence in their risk 

estimates than in their expected return estimates.  

 

The notion that volatility estimates are more accurate than expected return estimates 

suggests that when attempting to reduce estimation error adjusting the assets expected 

return such that the return to variance ratio is more uniform among all assets may be a 

valid approach. One approach is to use James-Stein estimators, as outlined in Jobson 

and Korkie (1981). This line of attack adjusts the expected returns towards the average 

expected return based on its volatility and distance from the average expected return. 

An alternative method has been proposed by Jorion (1985). This adjusts the estimates 

for the expected return towards the global minimum variance portfolio.  
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Another technique proposed for reducing estimation error is a Monte-Carlo procedure 

known as portfolio re-sampling introduced by Michaud (1999). This addresses 

estimation error by forming numerous optimal portfolios. These optimal portfolios 

result from optimising the parameter inputs obtained from different samples of the 

original data set. The average of all frontiers is then taken. In Sherer (2002) an example 

using this re-sampling technique is presented. In this work it is shown that the efficient 

frontier using estimates simply taken from historical data lies above the efficient 

frontier obtained using the re-sampling methodology, a positive result. The justification 

for this being a positive result is that the historical data frontier suffers from estimation 

error and accordingly is overly optimistic. It is the belief that as the re-sampled frontier 

lies beneath the historical data frontier it is less optimistic due to a reduction in the 

estimation error. However, Sherer (2002) also highlights some of the pitfalls of this 

methodology and its somewhat heuristic nature. One final method which has been 

proposed is that of Ceira and Stubbs (2006), who use robust optimisation, a 

methodology designed to explicitly consider parameter uncertainty in optimisation 

problems.  

 

Broadie (1993) used a simulation procedure to determine the estimated frontier and the 

true efficient frontier. Where the estimated frontier was the frontier obtained using 

parameter estimates from a sample of a known distribution, while the true efficient 

frontier is the efficient frontier when the true parameters from the known distribution 

are used. From this study it is shown that the true efficient frontier lies beneath the 

estimated frontier. This highlights the fact that estimation error results in an overly 

optimistic frontier from what is really obtainable and is supportive of Sherers’ (2002) 
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results which suggest the re-sampled frontier has less estimation error than the classical 

historical data frontier.  

 

This thesis presents a new method based on doubling times for adjusting parameter 

estimates in an effort to reduce estimation error. By using a simulation method similar 

to that of Broadie (1993) it is possible to determine if the estimates from this new 

method provide an efficient frontier closer to the true efficient frontier than that 

estimated by a more traditional method. 

 

2.4 Conclusion 

 

In the first section of this chapter a review of the evolution of the various schools of 

thought regarding the distribution of returns was provided. It was revealed that in 1900 

Bachelier suggested that returns were normally distributed; this notion was accepted 

until it was challenged and disproved in 1963 by Mandlebrot, who suggested the 

alternative hypothesis that returns followed a Stable Paretian Distribution. This 

hypothesis has continued to be tested until at least 1994 by Peiro, however the results 

over the years have provided more evidence against rather than for this hypothesis. An 

alternative hypothesis to the Stable Paretian Distribution was suggested by Press in 

1967, who proposed that rather than returns being encompassed by one distribution, 

that they were a mixture of several distributions. This was an intuitive idea, but one 

which faced econometric difficulties to prove, despite this, many publications related to 

this notion can be found. Similarly, there have been many attempts to fit returns to 

various known distributions such as the Student-t,  the Exponential Generalised Beta, 
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the Skewed Generalised t, just to name a few. In spite of all this work, there is still no 

conclusive evidence as to the distribution returns’ actually follow. With no conclusive 

evidence for the distribution of percentage returns perhaps a distribution of doubling 

times can be more easily determined.  

 

Section 2 of this chapter investigated the use of doubling times among the finance 

literature. It was shown that despite the rule of 72 dating back as far as the late 1400’s 

where it is mentioned by Luca Pacioli, doubling times have received little attention in 

the modern financial literature, particularly when stochastic returns are present. 

Accordingly, an eye has been cast to other disciplines such as ecology, medicine and 

physics where doubling times with stochastic growth rates or drifts can be found. In 

these disciplines doubling times are modelled as first passage time or first hitting time 

problems. The use of first passage times among the finance literature is predominately 

found among the exotic options literature which has little relevance to the doubling 

times being investigated in this work. There is one notable exception among the 

literature, with the work by Simonsen, Jensin and Johansen (2002) stimulating some 

ideas developed in this thesis. With little literature on doubling times found among the 

finance literature, the theoretical foundations for doubling times must first be laid. 

 

In the final section of this chapter, the problem of estimation error when optimising a 

portfolio under the Markowitz framework is addressed. From the literature it is shown 

that slight deviations in the mean and covariance estimates for the optimisation process 

can yield significantly different weights, a phenomenon which highlights the fact that 

hefty error to the weights can be caused by small errors in parameter estimates. This 

observable fact is referred to as error maximisation by Michaud (1989) and its serious 
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nature is reflected in Jobson and Korkie (1981), who show that an equal weighted 

portfolio can outperform an optimal mean-variance portfolio which is computed using 

sample estimates. To overcome error maximisation several methodologies have been 

suggested. Notably, the use of James-Stein estimators found in Jobson and Korkie 

(1981), the Monte Carlo method known as portfolio re-sampling suggested by Michaud 

(1999) and robust optimisation proposed by Ceira and Stubbs (2006) are reported. It is 

anticipated that viewing returns as doubling times may yield a new insight into 

portfolio optimisation and contribute to the body of literature which attempts to reduce 

estimation error. It is shown that this is indeed the case in Chapter 6. 
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Chapter 3: Doubling Time Fundamentals 

 

3.1 Introduction 

 

The rules of 72 and 69 can easily be used to compute the time taken to double an 

investment if a constant return is given. However if returns are varying through time the 

problem is more difficult. It is a simple matter to compute doubling times period by 

period and so obtain a distribution of doubling times. However, the mean of that 

distribution (the mathematical expectation) does not give the time over which the 

investor should expect to double their money (the anticipated doubling time). 

Furthermore, the variance of this distribution will not give the variance of the time 

taken for the investor to double their money. In this chapter two approaches are 

presented to computing the expected doubling time. An analytical approach, which 

shows that harmonic means can be used in estimating doubling times. Formulae using 

the harmonic mean are given for discrete and continuously compounded rates of return 

and also for simple interest rates. Secondly, a Monte Carlo simulation method is also 

used, which has the advantage of providing a distribution of the experienced doubling 

time. 

 

The computations that underlie the results presented in this chapter were based on 

continuously compounded returns and hence doubling times were computed using 

equation (2.1). As previously noted, had the calculations used discrete returns and 
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equation (2.2) or simple interest rates and equation (2.3) identical doubling times would 

have been obtained. 

 

3.2 Data 

 

All data used for this chapter was obtained from Bloomberg where both equity and 

bond data was obtained. The equity data contained daily closing prices for the ASX 

S&P 200 Index and the ASX S&P Accumulation 200 Index. The bond data contained 

the yearly yields for the 3 year and 5 year bonds at their daily closing prices. All data 

sets ranged from the 4
th

 of January 2000 to the 15
th

 of September 2010 which gave a 

total of 2709 data points for each of the time series. The difference between the ASX 

S&P 200 Index and the ASX S&P Accumulation 200 Index is that the Accumulation 

Index assumes all dividends received have been fully reinvested whereas the ASX S&P 

200 Index assumes no dividends have been reinvested.  

 

Figure 3.1 plots the growth of capital spanning the life of the data set. Here it is evident 

that the Accumulation Index has outperformed the ASX S&P 200 Index. It is expected 

that the curves for equities will have a significantly higher endpoint than the bond 

curves. However, in this data sample it is evident that bonds perform no worse than the 

ASX S&P 200 index. This is a result of the global financial crisis causing the 

significant equity losses during 2008. To plot the capital growth of bonds is more 

difficult than an index as annual yields are recorded not index values. Using the annual 

yields the capital growth was determined by finding the daily yield, by assuming there 
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are 365 days in the year. Following this a day’s capital level is simply computed as the 

previous days capital multiplied by that day’s daily yield.   

 

Investigations into any effect observation frequency may have for the ASX Indexes is 

achieved by additionally taking observations at a weekly or monthly interval. This is 

achieved by only observing the first price recorded each week, or the first price 

recorded every month. However, careful attention has been made such that daily, 

weekly or monthly observations all start and finish on the same day, so as to ensure 

regardless of observation frequency chosen, the investor’s experience remains the 

same.    

 

Figure 3.1: Capital Growth for ASX Equities and Bonds 
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A time series plot of the capital growth over the last 10 years if it were invested in 

an index with no dividends reinvested (200 Index), with dividends reinvested (200 

Accumulation Index) or placed in three or five year bonds. The three and five year 

bonds result in very similar performance and are overlayed on each other.  
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Table 3.1 provides some descriptive statistics for the daily data sets used. Again it is 

evident that the Accumulation Index has a higher mean return than the bonds or un-

Accumulation Index. Furthermore, it is evident that the returns offered on the bond 

market are significantly less volatile than those found on the equity market.  

 

Table 3.1: Descriptive Statistics of ASX Equity and Bond Data Used 

S&P 200 S&P 200 Accum. 3 Year Bonds 5Year Bonds

mean 0.015% 0.031% 0.015% 0.015%

variance 0.011% 0.011% 0.000% 0.000%

stan Dev 1.061% 1.061% 0.002% 0.002%

min -8.704% -8.704% 0.008% 0.009%

max 5.628% 5.627% 0.019% 0.019%

median 0.039% 0.056% 0.015% 0.015%  

Descriptive statistics of the daily continuously compounded percentage returns 

used for this study. Here it is evident that the Accumulation index is offering a 

higher mean return than all other financial instruments. Additionally much less 

volatility in the bond market is evident. 

 

 

For illustrative purposes the empirical density of daily returns for the S&P 200 is 

plotted in Figure 3.2. Overlayed on this figure is the density plot of a normal 

distribution with mean and variance equal to those of the empirical returns. This figure 

highlights the commonly empirical regularity of stock returns having a higher kurtosis 

than would be the case if the returns were distributed normally. 

 

In the next section the S&P 200 is used to illustrate the computation of doubling times 

and subsequently doubling time are compared across the three series discussed above. 
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Figure 3.2: Density plot of empirical returns overlayed on a Gaussian distribution 
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A density plot of the empirical continuously compounded daily returns for the 

S&P 200 Index versus the density plot of a normal distribution with the same 

mean and variance of the Index’s returns. 
 

 

3.3 Calculating Expected Doubling Time 

 

A plot of doubling times against continuous returns was generated from equation (2.1) 

and is given in Figure 3.3. It is immediately evident from Figure 3.3 that negative 

doubling times (half lives) are a mirror image of positive doubling times. It is also 

evident that there is a discontinuity at zero. As returns approach zero, negative doubling 

times tend to minus infinity and positive doubling times tend to plus infinity.  
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Figure 3.3: A plot of equation 2.1 for returns varying from -10% to +10% 

-0.10 -0.05 0.00 0.05 0.10

-1
00

-5
0

0
50

10
0

Percentage Returns

D
ou

bl
in

g 
Ti

m
es

 

Equation (2.1) is defined as 
 

r
2log

 where τ is doubling time and r is the 

percentage return 
 

Figure 3.3 suggests that in forming the parameters of doubling time distributions there 

will be a problem in handling cases with zero returns due to infinite doubling times. 

Care is also needed in combining half lives and doubling times. For example a half life 

represented by minus five years and a doubling time represented by plus five years 

have an arithmetic average of zero years. However an investor who experiences this 

combination of half-life and doubling time will not instantly double their money despite 

the arithmetic mean of the doubling time being zero. The point is more general than 

this, even for positive doubling times the arithmetic mean is generally not the same as 

the doubling time that investors experience. Investors are naturally interested in the 

doubling times they actually experience and a description of the computation of this 

parameter is provided in the following section. 
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Histograms for the combined distribution of half lives and doubling times for the ASX 

200 Index are given in Panel A of Figure 3.4 for daily, weekly and monthly 

observations. It is clear that the great majority of doubling times and half lives are 

under ten years and it appears that a surprisingly large number of observations are close 

to zero. This observation, however, is somewhat misleading. Panel B of Figure 3.4 

gives a plot drawn from the same distributions but scaled to magnify the observations 

centred on zero. It clearly illustrates that there is a discontinuity at 0 and suggests that 

the distributions of doubling times and half-lives are not identical. Perhaps, it might be 

better to analyse them as separate distributions. 

 

Table 3.2 provides descriptive statistics based on the full data set, and for half lives and 

doubling times treated as separate distributions. Infinite doubling times are omitted in 

computing the descriptive statistics, but the number of such instances is reported as the 

number of zero returns removed. 
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Figure 3.4: Histograms of Half Lives and Doubling Times combined for S&P 200 

Index. 

 

Histogram of combined doubling times and half lives for the S&P 200 Index using 

monthly, weekly and daily returns. Panel A shows the broad histogram, while 

Panel B shows a magnified version centred around 0 to highlight the discontinuity 

found around 0. 
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The problem of computing expected doubling times using the arithmetic mean is 

reflected in Table 3.2. Since all three data sets span the same period, they should all 

report the same mean doubling times. However this result does not arise. For example, 

the mean weekly doubling time for the combined data is -0.0324 years, while the mean 

monthly doubling time for the combined data is 8.032 years; two numbers that are 

considerably different from one another. A similar result is also obtained when 

considering the doubling times and half-lives separately. This shows that the mean 

doubling time depends on the frequency of observation and it appears that little useful 

information can be obtained by taking the arithmetic average of doubling times.  

 

It is also evident that the distributions sample variances vary significantly across the 

different sampling periods chosen. For example, for the combined data, when daily data 

is used a variance of 103.02 years is computed, while monthly data has a variance of 

6214.55 years.  A noticeable feature of Table 3.2 is that the absolute values of the 

medians are rather low. This is not surprising for the cases where doubling times and 

half lives are mixed together in the combined data. However, even when the half lives 

and doubling times are considered separately the medians still appear small. It can be 

observed in the transition from daily to weekly to monthly data that the median 

doubling times increase in magnitude. The most likely explanation for this is as 

follows. In daily returns a move of one or two percent is not unusual, however a move 

of one or two percent consistently every day over a week is much less likely and even 

more improbable over a month. This is shown in the histograms depicted in Figure 3.4. 

When observing the histograms magnified around zero doubling time it is evident that 

many observations occur for the daily data, fewer for the weekly and very few are 

observed for the monthly data. 
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Investors are naturally interested in the doubling times they actually experience, yet the 

results obtained here show that simply taking the arithmetic average or variance of 

single period doubling times will not give metrics which reflect the overall experience 

of the investor, and the values reported appear to have little economic meaning.  

 

3.4 Analytical Solutions 

 

The equations provided here will give the expected time for an investment to double 

given a series of different single period doubling times. The analytical approach to 

computing the mean doubling time requires different formulae for discrete and 

continuous returns. The derivations are as follows,  

 

For discrete compounding: 

From equation (2.2): 

  21 


r     or     
 

 r


1log
2log   

Suppose the returns are (r1, r2, …., rn) for n-periods. Then the equivalent compound rate 

R satisfies 

   



n

i

i

n
rR

1

11  

So (1+R) is the geometric mean of the one period terms (1+ri). Since (1+R)

= 2 and 

2)1(  it

ir , the above equation can be rewritten as: 
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This implies that the expected doubling-time is just the harmonic mean of the 

individual single period doubling times τi. 

For continuous compounding: 

If the rate is continuously compounded at rate r, the doubling-time τ, is defined by 

2re   or   
 

r
2log

  

If the rate of return is ri for a period ti, the equivalent continuous rate R satisfies: 

nntrtrtrRT ee



...2211    where 

i

itT  

Taking the natural logarithm of both sides of the above equation leads to 

nntrtrtrRT  ......2211  

So R is the weighted arithmetic mean of the ri. Since r = log(2)/, the above equation 

can be rewritten as: 
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which simplifies to 
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In this case the expected doubling time is the time weighted harmonic mean of the 

individual doubling times τi. 

For simple interest rates: 

  21  r     or     
r

1  

Suppose the simple interest rates are ri for a period ti, then the equivalent flat rate R 

satisfies 
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which leads to: 
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As for continuous compounding the expected doubling time is the time weighted 

harmonic mean of the individual doubling times τi. 
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3.5 Simulation Method 

 

The analytical results provided in section 3.4 give the expected doubling times for a 

series of single period doubling times. In this section a simulation is used to generate 

the doubling times an investor might experience from a given set of returns. The 

simulation will provide not only the expected doubling time, but also the distribution of 

doubling times. 

 

In the simulation approach the returns are repeatedly re-sampled at random and a 

cumulative compound return computed. When this cumulative return sums to two, the 

doubling point has been reached. The number of iterations to reach this point gives the 

doubling time and many repetitions of this process give the sampling distribution for 

the mean doubling time. This method assumes that each single period return is equally 

likely and that these returns are stationary. A flow chart for the simulation is given in 

Figure 3.5 and the pseudo code is given in Figure 3.6. 
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Figure 3.5: Simulation Flowchart 

 

The flowchart shows the logic behind simulating the time taken for an investment 

to double. This simulation can be repeated many times to form a distribution of 

doubling times 

 

Figure 3.6: Pseudo code for estimating the doubling time and its distribution 

for i =1 to number of desired iterations 

 

 runningValue = 1 

 periodCounter = 0 

 

 while (runningValue < 2) 

  singlePeriodReturn = random return drawn from return series 

  runningValue = runningValue*exp(singlePeriodReturn) 

  increment periodCounter 

 end while 

 

 store periodCounter in a vector indexed by i.  

 

end for 
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For the pseudo code in Figure 3.6 once all iterations are finished then the vector storing 

the values of periodCounter will contain different estimates of the time taken to double 

the investment and is the basis for forming the doubling time distribution. 

 

3.6 Results 

 

3.6.1 The investment experience 

 

Table 3.3 provides descriptive statistics for the expected doubling time of the ASX 

S&P 200 Index consistent with an investor’s experience. The expected doubling times 

are derived from the analytical approach and the simulation using daily, weekly and 

monthly observation frequencies. As these samples all started and finished on the same 

day, the experience faced by the investor is the same and the expected doubling times 

should be identical regardless of the frequency of measurement.
 
In each case for the 

analytical calculation the expected time to double the investment
 
is18.175 years. For 

each data set the simulation process is performed over 5000 iterations, resulting in a 

sample of 5000 points to form the distribution of the doubling times. Density plots for 

these distributions are depicted in figure 3.7 for the daily, weekly and monthly data 

sets. The expected doubling time for each of these simulated distributions can be 

computed by simply taking the arithmetic average of the simulated distributions. 

Similarly the standard deviation of these distributions can also be computed.  
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Table 3.3 presents both the expected doubling times and standard deviation of these 

simulated doubling times and these are reported in both years and their respective 

measurement intervals. The simulated expected doubling times are found to be 18.463, 

18.484 and 18.471 years when using the daily, weekly and monthly data sets 

respectively. While these values appear close to the analytical value of 18.175 years it 

is desirable to verify that they are not statistically different from the analytical value.  

The traditional t-test for the mean is not appropriate, since as depicted in Figure 3.6, 

and discussed later, the sample is not normally distributed. Rather it is assumed the 

sample follows the inverse Gaussian distribution (for reasons that are presented later). 

Using the test suggested by Chhikara and Folks (1989) the following nulls are formed: 

 H0: 0   against HA: 0    

where  is the sample mean and 0 is the analytical value. 

When the shape parameter, λ, of the inverse Gaussian distribution is unknown then the 

critical region is defined as follows: 
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,  Xi is a data point and n is the sample size. 

The critical t statistic at the 5% significance level is 1.9604, The computed t-values for 

the simulated doubling times when daily, weekly and monthly data sets are used are all 

reported in Table 3.3. It is evident that the largest computed t-value is 1.2354 and thus 
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the difference between the simulated and analytical value for the doubling time is not 

statistically significant. 

 

Table 3.3: Descriptive Statistics for S&P 200 Index Doubling Times 

Daily Data Weekly Data Monthly Data

Simulated expected doubling time (Periods) 4651.17 969.81 234.07

Analytical expected doubling time (Periods) 4578.49 953.57 237.38

Simulated standard deviation (Periods) 4674.36 982.37 229.20

Simulated expected doubling time (Years) 18.46 18.48 18.47

Analytical expected doubling time (Years) 18.18 18.18 18.18

Simulated standard deviation (Years) 18.56 18.72 17.92

Critical t statistic 1.96 1.96 1.96

Computed t Statistic 1.08 1.24 1.13  

Expected doubling time and variance of doubling times are reported for the 

simulated doubling times. The analytical doubling times are also reported along 

with t-statistics to infer if the analytical doubling time differs from the expected 

simulated doubling time. These values are reported in years and also their 

respective time periods. 

 

As previously mentioned, one advantage of the simulation methodology over the 

analytical method is that a distribution of doubling times can be formed as presented in 

Figure 3.7 where the density of the S&P 200 Index’s simulated doubling times is 

depicted. The distribution is clearly non-normal and earlier in this section it was 

assumed that the distribution was inverse Gaussian. Accordingly the probability density 

function for the simulated distribution is plotted with a corresponding pp-plot for the 

inverse Gaussian distribution also depicted in Figure 3.7. The pp-plots strongly suggest 

that the simulated doubling times follows the inverse Gaussian distribution. The inverse 

Gaussian distribution describes the time a Brownian motion with positive drift takes to 

reach a fixed positive level. This is analogous to the time an investment subject to 

stochastic compounding takes to double. 
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Figure 3.7: Doubling time density plot and corresponding pp-plot. 

 
Density plots for the simulated doubling times (in years) using the S&P 200 Index 

data for daily, weekly and monthly observations. These simulated distributions 

are then compared to the inverse Gaussian distribution using a pp-plot which 

provide strong evidence these distributions are inverse Gaussian.  
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3.6.2 Doubling times across asset classes 

 

From Figure 3.1, it is reasonable to assume that the Accumulation Index will have the 

shortest doubling time and that the three year bonds and S&P 200 Index will have 

similar doubling times. This assumption is supported by Table 3.4 where the expected 

doubling time is reported for each asset class. Here it is evident that the Accumulation 

Index has a doubling time less than half that of the other two asset classes and the 

doubling times of the S&P 200 Index and three year Bonds are roughly the same.  

 

Table 3.4: Doubling time descriptive statistics for various asset classes 

Analytical Doubling Time Simulated Doubling Time Standard Deviation

S&P 200 18.18 18.17533 18.5559

S&P200 Accum 8.83 8.772387 5.94062

3 Year Bonds 18.91 18.76942 0.04045  

The expected doubling time for the S&P 200 Index, S&P 200 Accumulation Index 

and three years bonds. The values provided were computed using the analytical 

method and simulation method. Furthermore, the standard deviation of simulated 

doubling times is also provided. 

 

The S&P 200 Index and S&P 200 Accumulation are both invested in the top 200 

stocks. Assuming that dividends are a relatively constant component of returns the two 

indices would have very similar variances in returns.  This view is supported by Table 

3.1 where the standard deviation of the S&P 200 Index is reported as 1.061% while the 

standard deviation of the S&P 200 Accumulation is also reported as 1.061%. 

Interestingly, however, the standard deviation of doubling times is quite different for 

these two asset classes. As reported in Table 3.4 it can be seen that the S&P 200 Index 

has a standard deviation for doubling times approximately three times that of the 
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Accumulation Index. This was an unanticipated result and suggests that the variance of 

doubling times may provide an alternative risk metric. It appears that this risk measure 

is not just a function of the variance of returns but also the mean return.   

 

The density plots in Figure 3.8 reflect the higher variance of the price index relative to 

the accumulation index, which is seen as increased weight and length in the right tail of 

the distribution. A density plot for the simulated doubling times for three year bonds is 

depicted in Figure 3.9. This shows the very tight dispersion around the mean and 

illustrates that with the reduction in dispersion the distribution becomes more bell 

shaped. However, a pp-plot confirms that the bonds doubling times still follow an 

inverse Gaussian distribution.  

 

Figure 3.8: Density plots of the simulated doubling times for the ASX S&P 200 

Index and the ASX S&P 200 Accumulation Index 
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Figure 3.9: Density plot of the simulated doubling times for 3 year bonds plus its 

respective pp-plot with the inverse Gaussian distribution.
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3.7 Conclusion 

 

This chapter examined the properties of doubling times both theoretically and 

empirically by analysis of returns on the ASX S&P 200 and Australian bond market. 

Computing doubling times period by period is comparatively simple, but combining 

those period by period estimates to compute the expected doubling time is shown to be 

more challenging. 

Analytical formulae were presented to compute the expected doubling time for simple 

interest and for compound rates of return in the cases of discrete and continuous 

compounding. These formulae all give the same doubling time for a particular asset. 

Similarly, whether the doubling times are determined from monthly, weekly, or daily 

data makes no difference to the estimate of the expected doubling time. A Monte Carlo 
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simulation was also applied to the data and produced values consistent with the 

analytical formulae.  

The simulation had the additional benefit of providing a distribution of the expected 

doubling times. The simulated distribution was shown to follow the inverse Gaussian 

distribution. This in turn suggests that the time until an asset doubles can be 

conveniently modelled as the first passage time for Brownian motion with drift, a result 

which is fully investigated in the following Chapter. Additionally, the simulated 

distributions suggested that the variance of expected doubling times could result in a 

new risk metric that is rather different from the traditional variance of returns. 
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Chapter 4: Doubling Times as a First 

Passage Time Problem 
 

4.1 Analogy to a First Passage Time Problem 

 

4.1.1 Introduction 

 

First passage times can be described as the time taken for an object which moves in 

random directions to reach a point, or absorbing barrier. Such a process is well studied 

in Cox and Miller (1965), and variations of the process such as moving absorbing 

barriers, partially reflecting barriers, multiple barriers or different underlying processes 

that the object follows are also well documented, for example Domine (1995), Atiya 

and Metwally (2004), Gut (1974), Tuckwell and Wan (1984) and Shepp (1967). Such 

processes have applications in biology, physics, and engineering and can also be found 

in finance, with regard to pricing exotic options. 

 

The first passage time of a particle following Brownian motion with positive drift is 

known to follow the inverse Gaussian distribution (see Cox and Miller (1995)). This is 

a two-parameter distribution with probability density function given by: 
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For x > 0 , where μ > 0 is the mean and λ > 0 is the shape parameter. 
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In this chapter, the first passage time until an investment doubles in value is analysed 

assuming that the return on the asset follows Brownian motion with positive drift. A 

closed form solution to this problem is obtained, showing that the doubling time of the 

investment follows the inverse Gaussian distribution. Expressions for the two 

parameters that define the doubling time distribution, the mean and shape, are also 

derived. Violations of the Brownian motion with drift assumption will lead to 

deviations from the inverse Gaussian distribution and such deviations are examined 

using the simulation methodology defined in Section 3.5. Surprisingly, such deviations 

appear to have little effect on the doubling time distribution. A result attributed to the 

Central Limit Theorem. 

 

4.1.2 Analytical derivation 

 

The simulation process suggested in Section 3.5 is analogous to the first time a 

stochastic process with drift travels from one to two. This is referred to as the first 

passage time or hitting time of a stochastic process with an absorbing barrier. In this 

section an analytical derivation is presented for the first passage time to doubling of 

capital undergoing continuous compounding. The derivation begins by using a 

transformation documented in Lax (1966), as follows:    

 

The relationship from Lax (1966) shows that if: 
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Then the transformation  
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Which yields the random process satisfying 
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If dtdttrE ])([  and dtdttrVar 2])([  , then this can be written as a stochastic 

differential equation defining a Weiner process with drift μ.  

 

dttZdttdY )()(                    (4.4) 

        

where Z(t) is a Gaussian process with E[Z(t)] = 0 and Var[Z(t)] = 1 
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The first passage time of this commonly known process is well documented; see 

Domine (1995), where the expected time to absorption and its variance are defined as: 
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Where YB is the absorbing barrier and Y0 is the starting point for the process. This is 

also shown to be an inverse Gaussian distribution 

 

Recalling equation (4.2), it is known that )(log)( tXtY   

So if the starting point X0 = 1, and the absorbing point XB = 2, the expected doubling 

time and its corresponding variance can be computed as follows 
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Where r  and 2

r are the mean and variance of the underlying normally distributed 

percentage returns. 

 

This derivation suggests that if returns are normally distributed, then doubling times 

should follow an inverse Gaussian distribution where the first two moments are defined 

by the normal distributions moments as in equation (4.5) and equation (4.6). 

Traditionally, inverse Gaussian distributions are not defined by the mean and variance 

but by the mean and shape parameter, where the shape parameter is defined as 
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23 / DTDT           (4.7) 

 

Where DT  and 2

DT are the inverse Gaussian distributions mean and variance 

respectively.  

 

By substituting in equations (4.5) and (4.6) the shape parameter, as a function of the 

first two moments of the underlying returns, is found to be 
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The above results show that the doubling time of wealth, given that returns are 

normally distributed with a positive expected return, will be inverse Gaussian such that: 

  

 Doubling Times ~ 









2

2)2log(
,

2log

rr

IG


    (4.9) 

 

 

 

 

 

 

 



 62 

4.2 Simulation versus Analytics 

 

4.2.1 Method 

 

In this section the analytical derivation of Section 4.1 will be directly compared to 

simulated results to verify that the simulation and analytics agree. The distribution 

parameters given by equations (4.5) and (4.6) will be compared to the distribution 

parameters obtained from the simulation.  

 

To compare the simulation with the analytics it is assumed percentage returns are 

normally distributed (an assumption which was made in the analytics). Accordingly, the 

simulation daily returns are randomly drawn from the normal distribution and 

standardised to have a zero mean and standard deviation of one percent. By 

transformation, samples are then generated to have mean values varying from 0.1% to 

1% in increments of 0.1%, while holding the standard deviation constant at 1%, 

resulting in ten distributions. Such values were chosen as they are not entirely 

unreasonable and covered a broad range.  Next the mean is held constant and a 

transformation is used to generate samples with the standard deviations in the range 

from 1% to 4% in increments of 0.5%, while holding the mean constant at 0.4%. For 

each sample of returns a simulation is then performed to obtain a distribution of 

doubling times. Each of these simulations had 1000 iterations to generate simulated 

means and variances for doubling times. Kolmogorov Smirnov (K-S) tests were 

performed to determine whether the simulated distributions were significantly different 
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from the theoretical inverse Gaussian distribution derived in section 4.1
4
. The simulated 

doubling time distributions are compared with a distribution based on 1000 random 

draws from the inverse Gaussian distribution with theoretical mean and shape 

parameters given by equations (4.5) and (4.8) 

 

4.2.2 Results 

 

Figure 4.1 depicts the ten density functions of the underlying returns used for each 

simulation. This shows how the same underlying sample of returns has been used for 

each simulation; they have only had their means shifted by 0.1%. The corresponding 

distribution of simulated doubling times can be seen in Figure 4.2. Note that while the 

simulation was based on daily returns, the doubling times are expressed in years. The 

figure shows that as the underling mean returns increases the simulated doubling times 

dispersion decreases, as does its mean. This outcome is consistent with the theoretical 

results derived earlier. 

 

 

 

 

 

 

 

 

 

                                                 
4
 The K-S test is chosen as it’s a nonparametric test for the equality of continuous, one dimensional 

probability distributions. 
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Figure 4.1: Density plots of underlying percentage returns 
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Plot of the ten density functions of the underlying returns used for each simulation 

 

 

Figure 4.2: Density plot of Simulated Doubling Times in years 
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Density plots of corresponding simulated doubling times (in years) as the 

underlying distribution’s mean varies according to the distributions found in 

Figure 4.1, correspondence is matched by the colour of the lines.   
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In order to examine whether the theoretical results agree with the simulation, the mean 

of the underlying returns is plotted against the corresponding mean doubling time from 

the simulation. This can be seen in Figure 4.3, where the circles represent the plotted 

points. Overlayed on Figure 4.3, is a continuous line which corresponds to the 

theoretical relationship as given by equation (4.5). This overlay fits the simulated plot 

very well, confirming that the means for simulated doubling times match theoretical 

results. Figure 4.4 plots the mean of the underlying returns against the corresponding 

simulated doubling times standard deviation. Similar, to Figure 4.3 a continuous line is 

plotted representing an overlay of the theoretical relationship given by equation (4.6). 

Figure 4.4 verifies that the variance of the simulated doubling time changes with the 

mean return in accordance with the theoretical model. 

 

Figure 4.3: Simulated Doubling Time Mean versus Corresponding Underlying 

Mean Return     
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The mean of the underlying returns is plotted against the corresponding mean 

doubling time from the simulation represented by circles. The red line represents 

equation (4.5). 
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Figure 4.4: Simulated Doubling Time Standard Deviation versus Corresponding 

Underlying Mean Return 
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The mean of the underlying returns is plotted against the corresponding simulated 

doubling time standard deviation represented by circles. The red line represents 

equation (4.6).  

 

  

The density functions for underlying returns, created by changing the standard 

deviation, are displayed in Figure 4.5. The corresponding density function for the 

simulated doubling times are plotted in Figure 4.6. The density functions show that as 

the standard deviation of underlying returns increases so does the standard deviation of 

the doubling times, this is consistent with the analytical results. It is also noticeable that 

the skewness of simulated doubling times increases as the underlying standard 

deviation of returns increases. This is a natural consequence of doubling times being 

non-negative and hence being bounded below by zero.      
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Figure 4.5: Density plots of underlying percentage return 
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Plot of the density functions of the underlying returns each with the same mean 

but different standard deviation used for each simulation  

 

 

Figure 4.6: Density plot of Simulated Doubling Times in years 
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Density plots of corresponding simulated doubling times (in years) as the 

underlying distribution’s standard deviation varies according to the distributions 

found in Figure 4.5 
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A plot of the simulated standard deviation versus the standard deviation of underlying 

returns is represented by the circles in Figure 4.7.
5
 The continuous line represents an 

overlay of the theoretical relationship given by equation (4.6).  Clearly there is a close 

correspondence between the simulation results and the theoretical results 

 

Figure 4.7: Simulated Doubling Time Standard Deviation versus Underlying 

Returns Standard Deviation 
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The standard deviation of the underlying returns is plotted against the 

corresponding simulated doubling time standard deviation represented by circles. 

The overlayed red line represents equation (4.6).  

 

                                                 
5
 No plot is presented for the means since there is no theoretical relation between the 

mean doubling time and the variance of returns. 
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Finally Kolomologrov-Smirnov (K-S) tests are performed to determine whether the 

simulated distributions and the corresponding theoretical distributions are significantly 

different. For brevity the results of these tests can be found in Appendix A.1 but it can 

be reported that all of the tests did not reject the null hypothesis that the two samples 

came from the same distribution (at the 5% significance level.)  

 

 

4.3 What if Assumptions are Violated? 

 

4.3.1 Analytical derivation 

 

Given the results of Section 4.2, it is natural to ask how the doubling times distribution 

performs when the assumption of normality of returns is violated. To answer this 

question the Central Limit Theorem plays an important role. 

 

In the simulation process; returns are randomly drawn with replacement until the 

compound value of these returns is equal to or slightly larger than 2, or algebraically: 

 

   2).....exp( 21  nrrr  

 

By taking the natural log of both sides the following is obtained: 

 

 69.0).....( 21  nrrr       (4.10) 
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From equation (4.10) it is evident the sum of the n returns will approximately equal 

0.69 or the natural log of 2.  

 

Assume that the returns were uniformly distributed then: 

 

 ),(~},......,,{ 21 baUniformrrr n  

 

However, if the sum of each return with its adjacent value is taken, thereby reducing the 

sample size by fifty percent and creating a new set of observations, the distribution of 

this new set of values would be entirely different. It would become the convolution of 

the original distribution with itself, provided all returns are independent of each other. 

 

 )],(),,([~},......,,{ 14321 baUniformbaUniformconvrrrrrr nn    

 

In the above example the convolution of the uniform distribution with itself will form a 

triangular distribution. 

 

If the above step is repeated frequently the convolution of the same distribution with 

itself many times is created.  Here the Central Limit Theorem comes into play; if 

enough variables are added to each other the result is a close approximation to the 

normal distribution.  

 

An illustrative example of this process can be seen in Figure 4.8 below, again the 

uniform distribution has been chosen. Initially in the top left plot the density 

distribution of the returns are approximately uniformly distributed. The corresponding 
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normal qq-plot is also shown which reflects the poor fit to the normal distribution.  

When two returns are summed together the triangular distribution is generated, as 

expected. When five returns are summed it can be seen the density plot has the 

distinctive bell curve shape of the normal distribution, but the qq-plot suggests the tails 

are still not quite normally distributed. Finally, when 15 returns are summed together 

their resulting distribution appears to have a good fit to the normal distribution.  

 

Figure 4.8: Illustrative example of the Central Limit Theorem 

 

This figure is an illustration of the Central Limit Theorem. Initially a uniform 

distribution is used. Its density plot can be found in the top left plot and its 

corresponding qq-plot found in the top right panel. It is evident that as more of 

this distribution is convolved with itself then the density plot converges to the 

normal distribution as verified by each distributions qq-plot. 
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The foregoing analysis provides an explanation of why the simulation process, of 

sampling continuously compounded returns and summing them until the doubling point 

is reached, tends to normalize the returns as the doubling times are computed. Such a 

result would suggest that the doubling time distribution will be inverse Gaussian even if 

the underlying returns are not normally distributed. 

 

4.3.2 Empirical test of the Central Limit Theorem 

 

The analysis in Section 4.2 maintained the underlying assumption that returns are 

normally distributed. In this section that assumption is relaxed in order to investigate 

the robustness of the simulation results to the assumption of normality. In particular the 

investigation considers whether the simulated inverse Gaussian distribution for 

doubling times is robust to divergence from normality in the higher moments of the 

return distribution. The effect of kurtosis is investigated by assuming returns come from 

the Student t Distribution. This allows one to sample returns from a distribution with 

varying degrees of freedom, thereby creating simulated distributions with different 

levels of kurtosis. These distributions are then standardised to have the same mean 

(0.1%) and standard deviation (1%), and a simulation of the doubling time is performed 

for each of the standardised distributions. The values for the mean and standard 

deviation are chosen as they are comparable to real world values. Furthermore, the 

degrees of freedom are chosen to range from 3 to 14, by increments of one. These 

degrees of freedom are chosen to allow for a wide range of kurtosis values, as reported 

in Table 4.1.  If kurtosis does not play a role on the doubling time distribution then it 

would be expected that all the simulated doubling times would follow the inverse 

Gaussian distribution with the same parameters.  
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Table 4.1: Varying degrees of Kurtosis 

d.o.f 3 4 5 6 7 8

Kurtosis 21.34 14.59 8.12 5.1 4.84 4.42

d.o.f 9 10 11 12 13 14

Kurtosis 4.01 3.96 3.78 3.52 3.51 3.5  

This table provides the various levels of kurtosis used for the various simulations.  

 

Skewness is also investigated by performing simulations where returns are assumed to 

follow a variety of different distributions, some symmetrical such as a Uniform, 

Normal and Student t distribution, and some non-symmetrical such as the Lognormal, 

Weibull and Gamma distributions. Where the Gamma was positively skewed, the 

Weibull was negatively skewed and the Lognormal had a heavy positive skew. The 

sample skewness for each of the distributions is provided in Table 4.2. These values 

were chosen such that a range of skew is covered, from no skew (symmetric 

distributions), to mild positive skew (Gamma), mild negative skew (Weibull) and very 

large positive skew (Lognormal).  

 

Table 4.2: The sample skewness of the six distributions used 

Student t Gaussian Uniform Gamma Weibull Lognormal

Sample Skewness 0.292 0.025 -0.008 1.263 -1.405 10.183
 

 

All these distributions were standardised to have the same first two moments, but 

obviously have varying levels of skewness and kurtosis. This potentially creates a 

problem in distinguishing between the effects of skewness and kurtosis. However, the 

results suggest that simulated doubling times are robust with respect to kurtosis, and a 

proof of this notion is provided later in Section 4.3.3.  As such, deviations from the 
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inverse Gaussian distribution and its theoretical moments may reasonably be attributed 

to the effect of skewness.  

 

4.3.3 Results 

 

Sampling from the Student t distribution with different degrees of freedom, generates 

samples of returns with varying amounts of kurtosis, as depicted in Figure 4.9. It should 

be noted that these distributions have been re-scaled so they have the same sample 

mean and sample variance. The density functions for the corresponding simulated 

doubling times are depicted in Figure 4.10. Visually, all simulated doubling times 

appear similar; implying that kurtosis of the underlying returns has little or no effect on 

the doubling times distribution. This is confirmed by Kolmogorov-Smirnov tests for 

each distribution against every other distribution. There was no significant difference at 

the 5% level. (see Appendix A.2 for detailed results.). These results hold for a range of 

kurtosis values from over 20 down to that of a Gaussian distribution at 3. However, the 

above conclusion cannot be drawn for values outside this range. The conditions for 

which these results hold are provided later in Section 4.4. 
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Figure 4.9: Density plots of underlying percentage returns   
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Plot of the density functions of the underlying returns all with the same mean and 

standard deviation, but different levels of kurtosis. 

 

 

Figure 4.10: Density plot of Simulated Doubling Times in days 
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Density plots of corresponding simulated doubling times (in days) as the 

underlying distribution’s kurtosis varies according to the distributions found in 

Figure 4.8 
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If the underlying returns are drawn from various distributions and standardised so they 

have the same mean and variance, then any departure of the simulated doubling times 

from the theoretical inverse Gaussian distribution may be attributed to the underlying 

returns skewness, as kurtosis has previously been shown to have little effect, and 

sample mean and sample variance are the same across all underlying distributions.  The 

effect of skewness was examined by assuming the underlying returns come from three 

symmetric distributions, namely the Student t, Gaussian and Uniform distribution and 

also from three asymmetric distributions, namely the Gamma, Weibull and Lognormal. 

Density plots for these various underlying returns can be seen in Figure 4.11. The 

corresponding simulated doubling time distribution can be seen in Figure 4.12.On close 

inspection it appears that the simulated doubling times, whose underlying returns 

followed a Lognormal Distribution differs from the other simulated doubling times, and 

to lesser extent the same appears evident for the Gamma distribution. However, this 

claim is difficult to view visually and pp-plots and Kolmogorov-Smirnov tests can 

provide better conclusions. 
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Figure 4.11: Density plots of the various underlying distributions used 
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Density plots of the six different underlying percentage return distributions used. 

Each distribution has been rescaled to have the same mean and variance.  

 

 

Figure 4.12: Density plots of simulated doubling times 
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Density plots of corresponding simulated doubling times (in days) for each of the 

various underlying distributions. Notice the Gamma and Lognormal appear to 

diverge from the majority. 
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The simulated doubling times should all be distributed following the inverse Gaussian 

distribution with mean 


2log
 and variance

3

2 2log




. The fit of the simulated 

distributions to the theoretical one is investigated using two methods. Initially a pp-plot 

of the actual simulated doubling times against the theoretical distribution is performed, 

with the results depicted in Figure 4.13. Here the blue line represents the simulated 

distribution, while the red line represents the theoretical distribution. Visually, it 

appears that the only simulated doubling times not following the theoretical inverse 

Gaussian distribution are those whose underlying returns follow the Lognormal 

Distribution. The fit is also formally investigated by performing a Kolmogorov-

Smirnov (K-S) test of the simulated doubling times against the theoretical inverse 

Gaussian distribution. The significance of these tests is reported in Tables 4.3 below. 
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Figure 4.13: pp-plot of the six various doubling time distributions against the 

theoretical inverse Gaussian distribution  

 

 

 

Table 4.3: Results of the Kolmogorov-Smirnov Tests 

Student t Gaussian Uniform Gamma Weibull Lognormal

Test Stat 0.027 0.051 0.039 0.08 0.046 0.104

pValue 0.8592 0.1483 0.4324 0.0033* 0.241 0.000**

** < 0.001, * < 0.01  

Results of the K-S tests for each simulated doubling time against the theoretical 

inverse Gaussian distribution. It is evident that the Lognormal and Gamma 

distributions reject the null. 
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As the primary difference between the Lognormal distribution and the other 

distributions is its extremely large skew, it is arguable that the rejection of the null for 

the K-S test at the 0.1% level for the Lognormal Distribution suggests that if returns are 

extremely skewed, as is the case for the Lognormal Distribution, then the simulated 

doubling time may depart from the theoretical inverse Gaussian distribution. The K-S 

test also suggests that skew may have an effect in the case of the Gamma Distribution, 

but the result is weaker. A probable explanation is given in the next Section.  

 

 

4.4 The Berry-Esseen Theorem 

 

The Central Limit Theorem suggested that the results would be robust to violations of 

the normality assumption. However, it leaves unanswered why high levels of skewness 

appear to cause deviations from the inverse Gaussian distribution for doubling times. 

The answer is provided by the Berry-Esseen Theorem. 

 

The Berry-Esseen Theorem states the following: 

 

Let X1, X2, .. , be iid random variables with E(Xi) = 0, E(Xi
2
) = 02  , and 

   
3

1XE . With the sample mean defined as follows: 

 

n

XXX
Y n

n




.....21  
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And nF being the cdf of nYn  and   the cdf of the normal distribution, then there 

exists some constant c such that for all x and n, 

 

n

cxxFn 3
)()(


        (4.11) 

 

The constant, c has been shown by Esseen (1956) to be greater than or equal to 

0.40973, with the best current upper bound for c being 0.7056 shown in Shevtsova 

(2007). An illustration of the difference in cumulative distribution functions as given by 

the theorem can be found in Figure 4.14 below. 

 

 

Figure 4.14: Graphical Representation of Berry-Esseen Theorem 

 

Difference of the divergence in cumulative distribution functions alluded to by the 

Berry-Esseen Theorem 
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This theorem shows that the speed of convergence with normality is at least of the order 

of
n

1 , with the convergence also being related to the underlying distributions rho, .  

Rho, is closely related to the distribution’s skewness, as: 

3
skewness  

Accordingly, larger skewness will result in larger values for rho. This implies, given a 

fixed sample size, n, the deviation from the normal distribution will be larger for 

skewed distributions than symmetric distributions. Accordingly, a skewed distribution 

will need a much larger sample size than its symmetric equivalent before convergence 

to the normal distribution occurs.  

 

The following discussion illustrates these ideas showing convergence for the uniform 

distribution and incomplete convergence for the lognormal distribution.  

  

From equation (4.10) the following is known: 

 

69.0).....( 21  nrrr  

 

Accordingly, if the inverse Gaussian distribution for simulated doubling times is to be 

robust to non-normality in the return distribution, then the sum of the returns must 

converge to a normal distribution before their sum has an expected value greater than 

0.69. 
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In the case of the Uniform Distribution, if two uniform distributions are added, both 

with mean of 0.0054 and standard deviation of 0.04
6
 the new distribution formed will 

have a mean of 0.0108 and will be a Triangle Distribution. Similarly, if 10 distributions 

are added together this new distribution will have a mean of 0.0540. As explained 

above if the sum of the distributions has converged to the normal distribution before the 

mean of the summed distributions equals 0.69, then the simulated doubling time will be 

inverse Gaussian, as the assumption of the underlying distribution being normally 

distributed has been met, courtesy of the Central Limit Theorem. So in the case of the 

uniform distribution, if the sum of 127 (0.69/0.0054) Uniform Distributions has 

converged to a normal distribution then the simulated doubling time will be inverse 

Gaussian distributed. This is shown in Figure 4.15 below. Here the green line is the cdf 

of the sum of 127 uniform distributions, while the black line is the cdf of the normal 

distribution. It is clear that there is very close correspondence between the two 

distributions. The normal qq-plot for the summed distributions, also suggests a close 

correspondence to normality, except in the extreme right tail. 

                                                 
6
 This mean and standard deviation were the values used in the investigation of the effect of skewness in 

Section 4.3. 
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Figure 4.15: Cumulative Distribution Function of the Gaussian distribution and 

summed uniform distributions along with corresponding qq-plot  
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The left plot has the cdf of a normal distribution (black line) the corresponding cdf 

of the summation of 127 uniform distributions is also plotted (green line). On the 

right panel a qq-plot of the summed uniform distributions is also depicted 

highlighting the close fit to the normal distribution 

 

Now consider the case where the underlying returns are assumed to be Lognormal 

distributed. Again the expected value of the daily returns is 0.0054. So if the sum of 

127 (0.69/0.0054) Lognormal Distributions has converged to the normal distribution 

then the simulated doubling time will be inverse Gaussian distributed. 

From Figure 4.16 below it is evident that the sum of 127 lognormal distributions has a 

cdf which varies from its normal equivalent, a result verified by its corresponding 

normal qq-plot. This explains that as the sum of 127 lognormal distributions has yet to 

converge to a Gaussian distribution, then the corresponding simulated doubling time 

will not be inverse Gaussian distributed. 
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Figure 4.16: Cumulative Distribution Function of the Gaussian distribution and 

summed lognormal distributions along with corresponding qq-plot  
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The left plot has the cdf of a normal distribution (black line) the corresponding cdf 

of the summation of 127 lognormal distributions is also plotted (green line). On the 

right panel a qq-plot of the summed lognormal distributions is also depicted 

highlighting the poor fit to the normal distribution. 

 

 

 

4.5 The Probability of Doubling After a Fixed Time. 

 

This section analyses the probability of reaching a given wealth level after a fixed 

period of time, for example, the probability of doubling your wealth after two years. 

The analytical and simulated probabilities are derived and compared in the following 

subsections. 
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4.5.1 Analytical Probability 

 

From MacLean and Ziemba (1999) a suggested performance metric is the end of 

horizon wealth. This is defined as the probability of achieving a level of wealth after a 

given time period. MacLean and Ziemba provide the following equation for computing 

the probability an investors wealth is less than or equal to a give value, X, after a fixed 

time period, t: 






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0

log

)(      (4.12) 

 

Where P0 is the initial investment, μr is the mean percentage return and σr is the 

standard deviation of percentage returns. 

 

4.5.2 Simulated Probability 

 

Alternatively, using a Monte Carlo simulation methodology similar to that outlined in 

Section 3.5 a simulated probability can also be estimated. This simulation has the 

variation that the loop is not exited once the investor’s wealth has doubled, but rather 

after a fixed time period. The simulated probability that the investor’s wealth is less 

than X can be simply calculated as the total number of iterations where final wealth is 

less than X divided by the total number of iterations used. The pseudo code for this 

simulation is provided in Figure 4.17.    
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Figure 4.17: Pseudo code for estimating the probability that wealth is less than X. 

 

for i =1 to number of desired iterations 

 

 runningValue = 1 

 periodCounter = 1 

 

 while (periodCounter <= time Period To Investigate) 

  singlePeriodReturn = random return drawn from return series 

  runningValue = runningValue*exp(singlePeriodReturn) 

  increment periodCounter  

 end while 

 

 store runningValue in a vector indexed by i.  

 

end for 

 

Probabilty = (number of runningValues < X in the vector) / number of desired iterations 

 

 

4.5.3 Verification probabilities agree 

 

Verification that the probabilities obtained using equation (4.12) and the simulation 

methodology are the same was achieved using the following process The daily close 

prices for the S&P Accumulation 200 Index from the 4
th

 of January 2000 to the 15
th

 of 

September 2010 was used to form a series of daily percentage returns, which gave a 

total of 2709 data points. This data was obtained from Bloomberg. The simulation 

methodology was run with the period fixed at 500 trading days (two years)and the 

number of iterations was set to 1,000,The probability that an investor’s wealth is less 

than X was then determined from the proportion of iterations where the final wealth 

value was less than X. This probability was compared to the probability obtained using 

equation (4.12). This process was repeated for various values of X, where X was chosen 

randomly between values of 0 and 5. The simulated probability and the analytical 
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probability were plotted against each other for various values of X, as depicted in 

Figure 4.18, it is evident that the probabilities estimated using the simulation 

methodology are practically the same as those obtained from equation (4.12). Such a 

result is statistically verified by regressing the theoretical probability against the actual 

probability where no intercept term is used. The resulting slope coefficient is not 

statistically different from 1 at the 0.1% level. 

 

Figure 4.18: Theoretical Probability versus Actual Probability 
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Plot of the probability that and investors wealth is less than X after 500 trading 

days obtained using the simulation methodology (actual) versus the probability 

obtained using equation (4.12) (theoretical). These results were obtained using the 

ASX S&P Accumulation 200 Index. 

 

 

 4.6 Conclusion 

 

In this chapter doubling times were modelled as a first passage time process. 

Analytically, it was shown that when an investment’s returns are normally distributed, 

with a positive expected value, then its corresponding doubling time will be inverse 



 89 

Gaussian distributed. Furthermore, it was shown that the inverse Gaussian 

distributions’ two parameters, mean and shape, can both be derived as functions of the 

underlying return’s mean and variance. These analytical results were consistent with 

Monte-Carlo simulations.  

 

The impact on the simulated doubling time distribution of non-normality in returns was 

also investigated.  It was shown that, as a result of the Central Limit Theorem, if the 

underlying returns deviate from normality, convergence of the simulated doubling 

times distribution to the inverse Gaussian distribution is still likely. Convergence is 

shown to be slower if the underlying returns are highly skewed, a direct result of the 

Berry-Esseen Theorem. The condition required for convergence is analysed. 

  

Lastly, the probability of reaching a given wealth level after a fixed period of time, for 

example, the probability of doubling your wealth after two years was also analysed. 

This probability was shown to be a function of both the expected return and standard 

deviation of the returns. The analytical formula for the probability and a Monte Carlo 

simulation of the probability were shown to give consistent results.  
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Chapter 5: Portfolios in the Time Domain 

 

5.1 Introduction 

 

This chapter analyses portfolio construction in the time domain. Firstly, various risk 

metrics are suggested along with possible new objective functions. The portfolios 

formed using these risk metrics are compared to those obtained using the traditional 

Markowitz portfolio optimisation method.  

 

The results suggest that the same efficient frontier will arise when forming a portfolio 

in the time domain as when forming one in the traditional Markowitz framework.  

 

5.2 Possible Risk Metrics 

 

In the previous chapter it was shown that the distribution of doubling time could be 

represented by the inverse Gaussian distribution, where the expected time to double an 

investment is as follows: 

 

 

r
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


2log

          (5.1) 
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with variance defined by: 
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3

2
2 2log

r

r
DT
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
          (5.2) 

 

Where r  and 2

r are the mean and variance respectively of the underlying percentage 

returns.  

 

Portfolio optimisation in the time domain becomes an almost inverse problem of 

traditional portfolio optimisation. Instead of maximising expected returns, expected 

doubling times are now minimised, on the assumption that investors wish to amass 

wealth as quickly as possible. While minimising doubling time is clearly analogous to 

maximising returns, the choice of risk metric is less obvious. 

 

As the inverse Gaussian distribution is defined by two parameters, the mean, DT  and 

shape, DT  it is plausible as a preliminary hypothesis to suggest that the shape 

parameter may be an appropriate risk metric. This hypothesis is further supported by 

observing Figure 5.1 where the mean is held constant but the shape parameter varies. 
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Figure 5.1: Density plots as shape parameter changes with mean held constant 
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Plot of the inverse Gaussian distribution for various shape parameters, while the 

mean is held constant 

 

 

From Figure 5.1 it is evident that when the mean is held constant and the shape 

parameter increases, the dispersion of the distribution decreases. This plot suggests that 

the inverse of the shape parameter may be a possible time domain risk metric which is 

analogous to the traditional risk measure of variance.  

  

An alternative hypothesised risk metric is the skewness of the doubling time. This risk 

metric has intuitive appeal as an investor would want to minimise the long positive tails 

of the distribution as these increase the risk of long waiting periods to double the 

investment.  

 

Finally, a third hypothesised risk metric is the variance of doubling time, consistent 

with variance being the risk metric for percentage returns.  
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In the following subsections the inverse of the shape parameter, the skewness and the 

variance of doubling times will be analytically investigated as possible risk metrics. 

The relation between the first two moments of the underlying percentage returns 

distribution and the risk metrics will be explored. 

 

5.2.1 The inverse of the shape parameter 

 

From equation 4.7 the shape parameter is given by: 

 

2

DT

DT
DT




            (5.3) 

 

Substituting equations (5.1) and (5.2) into equation (5.3) the following is obtained: 
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 where c = log(2)
2
     (5.5)  

 

 

Equation (5.5) highlights that the inverse of the shape parameter is equivalent to the 

percentage returns variance, scaled by a constant. As such, when optimising a portfolio 

in doubling times, if the shape parameter, λ, is maximised then the portfolio weights 
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obtained should be equivalent to those estimated using traditional methods for the 

global minimum variance portfolio. 

 

5.2.2 The skewness 

 

An alternative hypothesised risk metric is skewness, as an investor may want to 

minimise the risk of long periods to double their investment. Skewness, γ, of the 

inverse Gaussian distribution is defined by its two parameters using equation (5.6): 
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Substituting equations (5.1) and (5.2) into equation (5.6) the following is found: 
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Accordingly, minimising skewness is the same as minimising a risk-return function in 

returns and their variance, or, equivalently, maximising a ratio of return to risk. This is 

comparable to maximising the return-to-risk ratio in a Markowitz framework which 

would result in a portfolio lying on the tangent of the origin and the efficient frontier. 
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5.2.3 The variance 

 

The final suggested risk metric is the variance of doubling times. From equation (5.2): 
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Accordingly, if the doubling time variance was minimised, then it would be equivalent 

to minimising a non-linear relationship in returns and the variance of returns. The non-

linearity arises from the cubic term for the expected percentage return. An equivalent to 

minimising the doubling time variance would be to maximise its inverse, that is 

max
  2

3

2log r

r




. For the combinations of mean return and variance commonly 

encountered in securities markets, the numerator of the foregoing ratio will be very 

much greater than the denominator. Consequently, a portfolio which minimises the 

variance of doubling times will tend to have very heavy weights in high expected return 

stocks and strongly negative weights in low expected return stocks. 

 

The above analysis has shown that optimising a portfolio in doubling times where 

either the shape or skewness is a risk metric, should result in portfolio weights 

equivalent to those of the global minimum variance portfolio and tangency portfolio 

when the Markowitz framework is used (a hypothesis which will be verified 

empirically in the following section). 
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5.3 Empirical Evidence that the Doubling Time Frontiers 

are Equivalent to the Markowitz Frontier  

 

5.3.1 Method 

 

In Section 5.2 three possible risk metrics were suggested when optimising portfolios in 

time domain. Firstly, the inverse shape parameter was suggested as a possible risk 

metric. Here it was shown that when minimised, the portfolio weights computed are 

equal to the portfolio weights for the global minimum variance portfolio when 

estimated using the Markowitz framework. The second suggested risk metric was the 

skewness. Here evidence was provided suggesting that minimising skewness should 

compute portfolio weights identical to those when maximising the return-to-risk ratio 

under the Markowitz framework. This is the tangency point which lies on the efficient 

frontier (which stems from the origin in the mean-variance dimension) and is the point 

on the frontier which has the highest return-to-risk ratio. Lastly, the doubling time 

variance was suggested as a possible risk metric. However, it was shown that when 

minimising the doubling time variance, a portfolio which gives significant positive 

weight to stocks with high expected returns and significant negative weight to low 

expected return stocks is likely to occur. This suggests that the doubling time variance 

appears to be a poor risk metric to use in the time domain.  

 

To examine the above, several numerical experiments have been formulated. Using an 

identical data set to Broadie (1993), five assets are selected with means, variances and 

correlations provided in Tables 5.1 and 5.2 below. 
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 Table 5.1: The true means and standard deviation parameters and their 

equivalent doubling time parameters  

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

Mean 0.006 0.01 0.014 0.018 0.022

Standard Deviation 0.085 0.08 0.095 0.09 0.1

Expected Doubling Time 50.17 30.10 21.50 16.72 13.68

Doubling Time Standard Deviation 100.35 43.89 31.47 20.45 16.81  

 

Table 5.2: The true correlation matrix 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

Asset 1 1 0.3 0.3 0.3 0.3

Asset 2 0.3 1 0.3 0.3 0.3

Asset 3 0.3 0.3 1 0.3 0.3

Asset 4 0.3 0.3 0.3 1 0.3

Asset 5 0.3 0.3 0.3 0.3 1  

 

Given this data, solutions to the following constrained optimisations are obtained: 

 

The Inverse Shape Parameter. 

 

 Minimise: 1        5.3.1.1 

 Subject to:  1iw   

 

The Skewness. 

 

 Minimise:         5.3.1.2 

 Subject to:  1iw   
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The Doubling Time Variance. 

 

 Minimise: 2

DT       5.3.1.3 

 Subject to:  1iw   

 

 

For these minimisation problems the objective functions will have only one local 

minimum which corresponds to the global minimum. Accordingly, the weights 

computed can be found using the Nelder-Mead method
7
.  Once the asset weightings are 

computed for each of these objective functions, their corresponding portfolio mean and 

variance can be plotted. This plot can then be overlayed on the efficient frontier 

determined using the traditional Markowitz mean-variance framework.  

 

As previously mentioned, it is expected that the minimum skewness portfolio will lie 

on the tangency point between the efficient frontier and the origin, while the portfolio 

for the minimum inverse shape parameter will lie on the global minimum variance of 

the efficient frontier. Conversely, the minimum doubling time variance portfolio is 

expected to not lie on the efficient frontier, but instead assign large weights for high 

expected return stocks and large negative weights for low expected return stocks. 

 

Once these individual portfolios have been formed the next step is to determine whether 

the whole Markowitz efficient frontier can be formed using the doubling time risk 

                                                 
7
 The Nelder-Mead is a downhill Simplex method which although not as efficient as some gradient 

methods, is more robust and less likely to be trapped by local minima. 
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metrics. The variance of the doubling time is not included in this analysis, since as 

explained above it clearly will not give Markowitz efficient portfolios, a result 

confirmed in the following section. To construct the efficient frontiers the objective 

functions of the optimisations are modified as follows: 

 

 Minimise: 1 DTDT        5.3.1.4 

 Subject to:  1iw     

 

Where   is a risk tolerance parameter and w is the weight assigned to asset i.  

 

To trace the efficient frontier the objective function can be solved for a range of risk 

tolerance parameters.  

 

To find the efficient frontier when using skewness as a risk metric, a comparable 

approach can be taken by solving the below objective function across various risk 

tolerance levels: 

 

 Minimise:    DT      5.3.1.5 

 Subject to:  1iw  

 

These two frontiers should lie on the Markowitz efficient frontier in the mean-variance 

plane, defined by the following objective function: 
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 Maximise: 2

rr        5.3.1.6 

 Subject to:  1iw  

 

It is suggested that all frontiers obtained using objective function 5.3.1.4, 5.3.1.5 and 

5.3.1.6 will be the same as it has been shown when minimising the two risk metrics 

(inverse shape and skewness), portfolios which lie on some point of the Markowitz 

frontier will be obtained. Accordingly, with the extension that accounts for doubling 

times in the objective function, any portfolios obtained will still lie on the Markowitz 

efficient frontier as doubling times are simply a function of the corresponding 

percentage returns, as demonstrated in equation (5.1).  

 

While the same efficient frontier will be obtained regardless of the risk metrics used, 

what may be of interest is that the risk tolerance parameters may all differ on any given 

point of the efficient frontier. For example, the tangency portfolio computed using 

skewness as a risk metric may have a different risk tolerance parameter for the exact 

same tangency portfolio using the shape parameter as a risk metric. Accordingly, 

analysis will be performed to determine whether the risk tolerance parameter for one 

objective function can be functionally related to the risk tolerance parameter of an 

alternate objective function.  

 

The examination of risk tolerances will be performed by firstly determining two points 

on the efficient frontier by maximising objective function 5.3.1.6 (Markowitz 

framework) for two different risk tolerance parameters, τ1 and τ2, using the Nelder-

Mead Algorithm. These will be called Portfolio1 and Portfolio2 and have known means 
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defined as μ1 and μ2.  Using the two fund theorem, any portfolio with a desired return 

can be formed using the following: 

 

21 )1(  desired       (5.9) 

 

By rearranging equation (5.9), a value for alpha can be found such that the desired 

return is achieved: 
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 desired        (5.10) 

 

Given a risk tolerance parameter of τoptim, the objective function, where inverse shape is 

the risk metric (objective function 5.3.1.4,) can be minimised using the Nelder-Mead 

algorithm. This will result in a portfolio for the given risk tolerance parameter with an 

expected return, μoptim. The two fund theorem can be used to find a portfolio which is a 

combination of Portfolio1 and Portfolio2 with a return equal to μoptim. In other words 

alpha is found using equation (5.10) and letting μdesired  = μoptim. Risk tolerance 

parameters have a linear sum similar to expected returns. Thus, the equivalent risk 

tolerance parameter for the Markowitz framework (objective function 5.3.1.6) is 

computed using the following: 

 

21 )1(  equivalent      (5.11) 

 

The Markowitz risk tolerance parameter τequivalent applied to objective function 5.3.1.6 

gives an identical portfolio to that obtained when solving objective function 5.3.1.4 for 
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risk tolerance parameter τoptim. This process can be repeated for various values of τoptim 

to trace out a relationship between the risk tolerance parameters.  

 

A similar approach is also taken when comparing risk tolerance parameter between the 

minimum skewness objective function (5.3.1.5) and the Markowitz framework 

objective function (5.3.1.6).  

   

5.3.3 Results 

 

In this Chapter, doubling time portfolios were formed with two possible risk metrics. 

The first of these was the inverse of the shape parameter for the inverse Gaussian 

distribution, while the second was the skew parameter for the inverse Gaussian 

distribution.  

 

Theoretically, it was shown that a portfolio optimised to minimise the inverse of the 

shape parameter should result in the same weight allocation as those of the global 

minimum variance portfolio when the traditional mean variance framework is used. 

Additionally, when the skewness parameter is minimised it is shown that this should 

correspond to a tangency portfolio in the traditional mean-variance framework. To 

verify this empirically, the weights for a doubling time portfolio of 5 assets which 

minimise the inverse shape parameter were calculated and the weights which minimise 

skewness were also estimated. These two estimated portfolios were then plotted on the 

efficient frontier, at their respective points, as depicted in Figure 5.2 below. 
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Figure 5.2: Efficient frontier and respective points  
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This figure depicts the efficient frontier using mean, variance and correlation 

parameters found in Tables 5.1 and 5.2. The efficient frontier was computed using 

the traditional mean-variance framework and is shown as the black line. The red 

dot represents the minimum inverse shape parameter which lies at the global 

minimum variance portfolio. The green dot is the minimum skewness portfolio 

which is shown to lie on the tangency point between the origin and the frontier (a 

grey line is superimposed across these points).  

 

Figure 5.2 highlights that, consistent with theory, the portfolio estimated in doubling 

times which minimises the inverse shape parameter corresponds to the equivalent 

global minimum variance portfolio estimated under a traditional mean-variance 

framework. Similarly, a portfolio which minimises the skewness of doubling times is 

shown to correspond to the portfolio which occurs when a tangent is drawn from the 

point where expected return and variance both equal zero. These results confirm that 

optimising portfolios in doubling times or mean-variance framework result in the same 

portfolio. The portfolio obtained when minimising the doubling times variance is not 

depicted in Figure 5.2 as the asset weightings obtained approached unbounded values, 
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as hypothesised, resulting in almost infinite expected returns, with correspondingly 

infinite variances. 

 

The objective functions given by equations 5.3.1.4 (for inverse shape) and 5.3.1.5 (for 

skew) give the utility for different levels of risk tolerance defined by τ. While both 

these objective functions result in the same efficient frontier, equivalent points on the 

frontier will not necessarily have equivalent risk tolerance parameters. Using the 

method described in section 5.3.1, the relationship between the risk tolerance 

parameters of objective function 5.3.1.4 and objective function 5.3.1.6 was found. This 

relationship is depicted in Figure 5.3 below. Figure 5.3 also depicts the relationship 

between risk tolerance parameters when the risk metric used is skewness (objective 

function 5.3.1.5) and it is referenced against the Markowitz framework (objective 

function 5.3.1.6).   

 

Figure 5.3: Equivalent risk tolerance parameters 
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Plot of the relationship between risk tolerance parameters for utility functions,  

5.3.1.4  and 5.3.1.5, which equate the same portfolio found under the Markowitz 

framework defined by utility function 5.3.1.6 
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Figure 5.3 highlights the fact that to obtain the same portfolio under the Markowitz 

framework as when using skew or the inverse shape parameter, a much higher risk 

tolerance parameter must be used. For example, using the data set chosen for these 

experiments under the Markowitz framework, if objective function 5.3.1.6 is optimised 

using 3 as the risk tolerance parameter, the portfolio obtained lies on the efficient 

frontier with an expected return of 9.4% and standard deviation of 49.2%. To obtain a 

portfolio on the efficient frontier with the same expected return and standard deviation 

by optimising objective function 5.3.1.4, where inverse shape is now the risk metric, 

then a risk tolerance parameter of 3 would no longer be used, but instead a risk 

tolerance parameter of 0.08 is required. Similarly, to again find a portfolio on the 

efficient frontier with expected return of 9.4% and standard deviation of 49.2% by 

optimising objective function 5.3.1.5, where skew is the risk metric, then a risk 

tolerance parameter of 0.25 would be needed.     

 

5.4 Conclusion 

 

Chapter 5 has analytically derived two possible risk metrics which when minimised 

will result in critical points on the efficient frontier. Firstly, when minimising the 

inverse of the shape parameter it was shown that this will result in the equivalent global 

minimum variance portfolio which would be obtained using the classical Markowitz 

framework. Secondly, it was shown that when minimising the skewness of doubling 

times that the tangency portfolio with the highest reward-to-risk ratio is obtained. The 

skewness result has particular intuitive appeal. This appeal arises as investors would 
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want to minimise any positive skew in their investment doubling times. Long waiting 

periods until their investments double would naturally be undesirable. Furthermore, this 

doubling time optimisation problem only requires one parameter (skewness) to obtain 

the tangency portfolio, yet the Markowitz framework requires two parameters (mean 

and variance), thereby resulting in a simplified yet equivalent optimisation problem. 

These results provide a new perspective from which to view portfolio theory and an 

alternative calculus for generating the efficient frontier 

 

The analytical derivation suggested that minimising the skewness, or the inverse shape, 

of the doubling time distribution would each give a portfolio that lay on the Markowitz 

efficient frontier. This was then demonstrated empirically.  

 

By optimising utility functions, while varying the risk tolerance parameter, an optimal 

set of doubling time portfolios was generated. This was done for both the skewness and 

the inverse shape measures of risk.  These optimal sets of doubling time portfolios were 

both shown to reproduce the Markowitz efficient frontier when transformed from 

doubling times to returns. Analysis was then undertaken to determine the equivalent 

risk tolerance parameters. That is the parameters for risk tolerance were such that the 

same efficient portfolios were formed using the risk metrics of skewness or inverse 

shape in the time domain, or variance in the return domain. The results showed that the 

risk tolerance parameters using inverse shape or skew as risk metrics were about an 

order of magnitude ten times less than the equivalent portfolios using the traditional 

Markowitz framework.    
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Chapter 6: Reducing Estimation Error 

 

6.1 Introduction 

 

As discussed in Section 2.3, when optimising under the Markowitz framework error 

maximisation can be a serious problem (see Michaud (1989)). The weights estimated 

from the optimisation process are sensitive to errors in the estimates of the mean and 

covariance parameters used. For example, if an expected return for an asset is 

overestimated it will get a higher weight than it otherwise should have, with the biggest 

errors receiving the highest weights. Several methods have been proposed to overcome 

this problem (see Jobson and Korkie (1981), Jorion (1985) and Michaud (1999)). This 

chapter proposes a new method which is computationally quick.  

 

6.2 Method 

 

In Chapter 5 it was shown that when a portfolio is formed in doubling times the same 

asset weighting to those obtained using the traditional Markowitz framework will arise 

for the global minimum variance portfolio, and the tangency portfolio. Thus, forming a 

portfolio in doubling times, or using traditional techniques will result in the same asset 

weighting.  Consequently it might be asked: where is the advantage of optimising a 

portfolio using doubling times over optimising the same portfolio in a mean-variance 

framework? The answer is that, one can take advantage of an interesting property of the 
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inverse Gaussian distribution, which may result in better estimation of the input 

parameters for the optimisation process. In turn this should yield better estimates for the 

asset allocation weights. The inverse Gaussian distribution has both positive and 

negative moments, and this can be utilised to transform the raw parameters and obtain 

improved estimates. The transformation arises due to Jensen’s inequality and is 

explained as follows. From Chapter 4, equation (4.5) gives: 

 

 
 

][
2log

][
E

rE    

 

Where τ is the doubling time and r is the underlying percentage return. 

What may be of interest is to instead determine  

 

 
 








2log

][ ErE trans  

 

Where rtrans is the transformed expected return. The above simplifies down to 

 

  1)2log(][  ErE trans  

 

Now  1E  is the first negative moment of the inverse Gaussian distributed doubling 

times, τ, as the expectation of τ
-1

 is taken as opposed to the expectation of τ. This is 

why the name negative moment transform has been chosen. A similar notion is also 

used for the variance. 
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An alternative transformation involving doubling times is also investigated in this 

chapter. Simonsen, Jensin and Johansen (2002) suggest that the peak of the doubling 

time distribution is the optimal investment horizon as it is the most likely time horizon 

over which an investment’s value will double. Accordingly, rather than using the 

expected doubling time in transforming returns, the most likely doubling time is used 

instead. The negative moment transform described above and the optimal investment 

horizon transform described in this paragraph are rigorously derived in the sub sections 

below. 

 

6.2.1 The negative moment transform 

 

The negative moment transform can be derived as follows: 

Using the continuous compounding returns equation: 

 

rtPVeFV          (6.1) 

 

Letting FV = 2 and PV = 1, the transformed returns can be computed as: 

 

 


2log
transr         (6.2) 

 

Where τ is the doubling time 

 

The equation used to achieve the first negative moment of an inverse Gaussian 

distribution is the following (see Seshadri (1999)):  
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

11
][ 1 XE        (6.3) 

Applying (6.2) to (6.3), the percentage return, corresponding to the expected doubling 

time, can be written in terms of doubling times as follows: 

 

     

DTDT

E


2log2log2log






      (6.4) 

 

If equation (5.1) and (5.4), for the mean and variance of doubling time in terms of the 

underlying returns first two moments, are substituted into equation (6.4) the following 

transformation is obtained: 

 

 2log

2

r
rtrans


           (6.5) 

 

This highlights the notion that the mean percentage return to double an investment (the 

transformed mean) is different to the mean of underlying percentage return distribution. 

This arises due to Jensen’s inequality as    xEx
E 11   

 

Analysis similar to that above can be used to determine the transformed returns 

variance. 

 

From Seshadri (1999) the equation for the inverse Gaussians second moment is defined 

as the following: 
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 XEXE       (6.6) 

 

 Using (6.2) to rewrite (6.6) the variance of returns can be estimated from doubling 

times as: 
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2log22log2log
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If equations (5.1) and (5.4), for the mean and shape parameter of doubling time in terms 

of underlying returns, are substituted into equation (6.7) the resulting variance 

transformation is: 
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Equations (6.5) and (6.8) give the mean and variance of percentage returns, transformed 

from doubling times, as a function of the original percentage return’s first two 

moments. 

 

Jobson and Korkie (1981) and Jorion (1985), attempted to reduce the error 

maximisation problem by transforming risk return parameters to form a stronger risk-

return relation. The negative moment transformation above achieves this objective, 

giving a stronger and more linear risk return relation, as will be empirically 

demonstrated later in the chapter.  Consider, for example, an asset which is estimated to 

have a high expected return and a low variance. It is evident that when the return 
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transformation of (6.5) is applied the increase in expected return will be relatively less 

for low variance assets relative to high variance assets. Furthermore, when the variance 

transformation of (6.8) is applied it is evident that a higher return will lead to a higher 

variance relative to assets with a low return. With the transformations applied, 

therefore, the asset is no longer a high expected return and low volatility asset relative 

to the other assets, as its mean will have had less increase relative to the other assets 

and its volatility will have had a larger increase relative to the other assets. Intuitively, 

such transformations may reduce the problem of error maximisation. A stock that, due 

to estimation error, has an extremely high expected return and a low variance relative to 

other assets is likely to get a heavy portfolio weight in the classical Markowitz 

optimisation process. After transformation however, its return is relatively smaller and 

its variance relatively higher, its portfolio weight is likely to be reduced.  

 

6.2.2 The optimal investment transform 

 

An alternative transformation comes from the work of Simonsen, Jensin and Johansen 

(2002), where the peak of the doubling time distribution is referred to as the optimal 

investment horizon. Their work motivates the use of the most likely doubling time; 

rather than the expected doubling time. The most likely doubling time is simply the 

mode of the doubling time distribution. The transformation is derived as follows.  

 

The mode of an inverse Gaussian distribution can be determined by its two parameters 

using the following (see Seshadri (1999)): 
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If equations (5.1) and (5.4) are substituted into equation (6.9), the optimal investment 

horizon (the mode) as a function of the underlying percentage returns mean and 

variance is given as: 
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The optimal investment horizon, can now be transformed into a percentage return. This 

is done by simply dividing log(2) by the mode  giving: 
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This simplifies to:  
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Equation (6.12) provides an alternative transformation for the expected returns. This 

transformation for expected returns is paired with the transformation for the variance 

given by equation (6.8). Thus, it is only the different transformation for expected 
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returns that distinguishes the negative moment transformation from the optimal 

investment horizon transformation.  As discussed in the following section, 

transformations of the variance are of lesser importance in addressing the error 

maximisation problem.  

 

6.2.3 Testing the suggested transformations  

 

The analysis commences with a graphical representation of the underlying estimated 

returns versus underlying estimated variance, as compared to the transformed returns 

versus transformed variance. This permits examination of whether the transformed 

parameters yield a more linear risk-return relationship. 

 

In Chapter 2, it was mentioned that the estimation error is most pronounced in the 

means, and less evident in the standard deviations. As such, a desirable outcome of the 

transformation is that adjustments are more pronounced in the mean rather than the 

variance.  Whether this is the case is determined by drawing several samples of returns 

and plotting the underlying sample means against the transformed means. Similarly, the 

underlying sample standard deviations are plotted against the transformed standard 

deviations.  

 

The impact of the transformation on portfolio formation is analysed by the same 

method as Broadie (1993).  This involves using simulated data, to evaluate whether the 

efficient frontier is more accurately estimated using transformed returns. This simulated 

data involves five assets, each with a known mean, known standard deviation and 
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known correlations. The parameters used are the same as those used in Broadie (1993), 

and are provided in Tables 5.1 and 5.2 in Section 5.2.  

 

Using the known parameters, returns consistent with the five distributions were 

randomly generated from a multivariate normal distribution. This allows the 

comparison of the True Efficient Frontier, computed using the known true parameters, 

with the Estimated Frontier obtained using the sample mean and covariance. Estimated 

frontiers are obtained using the raw and transformed means and variances. It is also 

possible to examine the Actual Frontier that would be obtained by using the Estimated 

Frontier’s portfolio weights applied to the true parameters. 

 

An example of the various frontiers can be seen in Figure 6.1 below, which is taken 

from Broadie (1993). Here it can be seen that due to estimation error the Estimated 

Frontier is overly optimistic lying above the True Efficient Frontier. The result that 

actually arises by using the weights obtained on the Estimated Frontier can be seen on 

the Actual Frontier, which lies below the True Efficient Frontier, reflecting the loss of 

performance due to estimation error. The closer the Actual Frontier is to the True 

Efficient Frontier, the less estimation error is a problem. 
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Figure 6.1: Broadie (1993) three different frontiers 

 

The three different frontiers discussed in Broadie (1993). The Estimated Frontier is 

the frontier obtained using parameters estimated from simulated data. The True 

Efficient Frontier is the frontier which arises using the true parameters, which are 

unknown in real life. The Actual Frontier is the frontier which arises when the 

weights obtained on the Estimated Frontier are applied to the true parameters. 

 

The Actual Frontiers to be estimated in the following sections will be formed using 

parameters from the negative moment transformation, the optimal investment horizon 

transformation and untransformed parameters.  If the transformations reduce estimation 

error, they will give an Actual Frontier that lies closer to the True Efficient Frontier 

than the Actual Frontier found using untransformed parameters. Additionally, as the 

sample size of the draw increases, it is expected that the Estimated Frontier and Actual 

Frontier will converge towards the True Efficient Frontier, because the estimation error 

is reduced as the sample size increases. 

 

The following outlines how the Actual Frontiers were determined. For the Actual 

Frontier where no transformations are made, the assets expected returns and covariance 
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matrix are estimated from the data drawn from the multivariate normal distribution. The 

expected returns are defined as μest which is a vector of length 5, as there are 5 assets 

used. Similarly, the covariance matrix will be a 5x5 matrix and will be defined as Σest. 

The weights for two efficient portfolios can be found by computing the following: 
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Where   is a vector of ones of length 5 

 

The asset weights given by w1 will be the weights for the Estimated Frontier’s global 

minimum variance portfolio, while the asset weights given by w2 will be the weights for 

a tangency portfolio on the Estimated Frontier. With these two efficient portfolios 

found, it is a simple matter now to find efficient portfolios which trace out the 

Estimated Frontier via the two fund theorem. The asset weights for any efficient 

portfolio can be determined as a combination of these two efficient portfolio such that 

 

21 )1( wwwp                      (6.15)  

 

Where wp is a vector of asset weightings for any efficient portfolio dependant on α.  
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The Actual Frontier can be computed by varying alpha (α) over a range of values with 

small increments each time. This will give estimated portfolio weights defined above as 

wp. The actual expected return and variance using these weights can be determined 

using the true parameters which are provided in Tables 5.1 and 5.2. Letting the true 

expected returns and variance be defined as the vector μtrue and matrix Σtrue 

respectively, the actual mean and variance for a given portfolio weight wp is found 

using the following two equations: 

 

truepactual w 


         (6.16) 

ptruepactual ww 12 


        (6.17) 

 

The actual means and variances are computed for many different portfolios on the 

Estimated Frontier by varying alpha across a range of values resulting in enough data 

points to plot out the Actual Frontier over a reasonable region.  

 

The only adjustments made to the above method when using the transformed 

parameters are to equations (6.13) and (6.14). Rather than μest and Σest being estimated 

from the simulated data, the suggested transformations are applied. For example, using 

the negative moment transformation μest for asset 1 will require transformations given 

by equation (6.5) and Σest will be found by using transformations suggested by equation 

(6.8). When applying these equations, μr and σr defined in equations (6.5) and (6.8), 

will be the estimated mean and standard deviation from the simulated data. Σest is 

slightly more complicated to estimate. First, correlations are estimated from the 

simulated historical data set, and second the variance for each asset is transformed 

using equation (6.8). Third covariance is computed as: 
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BAABAB     

 

Where ρAB is the correlation coefficient for assets A and B and σA is the standard 

deviation of asset. 

 

Once the covariance matrix is complete the Actual Frontier is obtained using the 

method described above. The Actual Frontiers for each method are estimated from 100 

independent simulated data sets and the averages of these Actual Frontiers are reported. 

The averages of these Actual Frontiers are then compared against the True Efficient 

Frontier. If the transformations do reduce estimation error on average, then it is 

expected that the Actual Frontier estimated using transformed parameters will plot 

closer to the True Efficient Frontier than the Actual Frontier estimated using the 

original raw sample estimates.  

 

 

6.3 Results 

 

6.3.1 Preliminary Examination 

 

The analysis first involves plotting the risk-return relationship for a raw sample, and 

also plotting the risk-return relationship for the equivalent transformed parameters. 

These plots were designed to determine if the transformed data did in fact have a 

stronger risk-return relationship than the raw data as hypothesised. For this analysis the 
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expected return and variance were simulated for 300 hypothetical assets. The expected 

returns were randomly drawn from a uniform distribution between 0 and 15%, while 

the variances were randomly drawn from a uniform distribution between 10% and 40%.  

 

Figure 6.2 depicts the risk-return relationship for the sample parameters in the mean 

variance plane. For this plot there is no expected relationship as the data has been 

randomly drawn from the uniform distribution. Figure 6.3 plots the risk-return 

relationship for the parameters depicted in Figure 6.2 after being transformed by the 

negative moment transformation method. Lastly, Figure 6.4 plots the relationship for 

the transformed parameters using the optimal investment horizon transformation. These 

results highlight the fact that the negative moment transformation process results in a 

stronger risk-return relationship than that obtained from the raw parameters. The 

transformation using the optimal investment horizon method changes the data such that 

an extremely strong linear risk-reward relationship is formed. 
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Figure 6.2: Raw Mean versus Raw Variance     
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Plot of randomly drawn data for mean ranging from 0 to 15% and variance 

ranging from 10% to 40% 

 

Figure 6.3: Negative moment transformed mean versus Transformed Variance  
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Plot of transformed mean versus transformed variance using the negative moment 

transformations given by equations (6.5) and (6.8). The raw parameters 

transformed are those depicted in Figure 6.2 
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Figure 6.4: Optimal investment horizon transformed mean versus Transformed 

Variance    
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Plot of transformed mean versus transformed variance using the optimal 

investment transformations given by equations (6.12) and (6.8). The raw 

parameters transformed are those depicted in Figure 6.2 

 

 

Figure 6.5 depicts the raw expected returns versus the corresponding transformed 

expected returns when using the negative moment method, along with the correlation 

coefficient between the raw and transformed first moments. A similar plot for 

transformed expected returns using the optimal investment horizon transformation is 

depicted in Figure 6.6. For both transformation methods the transformation to the 

standard deviation is the same as defined by equation (6.8). Figure 6.7 depicts the raw 

estimated variance plotted against the transformed variance, along with the correlation 

between the two.   
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Figure 6.5: Expected return versus negative moment transformed return  
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Plot of raw expected returns against transformed expected returns using the 

negative moments transformation defined by equation (6.5) 

 

 

Figure 6.6: Expected return versus optimal investment horizon transformed 

return 
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Plot of raw expected returns against transformed expected returns using the 

optimal investment transformation, defined by equation (6.12) 
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Figure 6.7: Variance versus negative moment transformed variance 
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Plot of raw variance against transformed variance using the negative moment 

transformation, defined by equation (6.8) 

 

 

The correlation between the raw estimated variance and its corresponding transformed 

estimate is significantly higher than the correlation between the raw estimated first 

moment and its corresponding transformed parameter for both transformation methods. 

This result suggests that more transformation is occurring to the first moment than to 

the second. This is a desired outcome, as more adjustment to the estimated expected 

returns is consistent with results of Ceira and Stubbs (2006), who show that most of the 

estimation error is due to errors in estimates of expected returns, and not in estimates of 

variance.  

 

When comparing the transformed parameters using the negative moment 

transformations, as depicted in Figure 6.5, with the transformed parameters using the 

optimal investment horizon transformations, as shown in Figure 6.6, it is observed there 
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is a correlation of around 0.4 for the negative moment method; yet the correlation is 

approximately 0.09 for the optimal investment horizon method. This suggests that the 

negative moment methods transformed expected returns still contain some of the 

structure  of the raw expected return estimates; however the optimal investment horizon 

transformed expected returns reflect much less of the structure originally contained in 

the raw parameter estimates.   

 

6.3.2 Convergence rate for sample size. 

 

Various sample sizes are used to illustrate how the effect of estimation error is reduced 

as sample size increases. The analysis shows that a large sample size is required to 

obtain an Actual Frontier close to the True Efficient Frontier. The mean absolute 

deviation (MAD) is used to measure the proximity of the Actual Frontier to the True 

Efficient Frontier. However, percentage deviations from their true parameters were 

taken rather than raw deviations in order to provide a metric which is comparable 

between the mean and variance. 

 

For this section the data used is Broadies (1993) which is presented in Tables 5.1 and 

5.2. For each sample size the Actual Frontier is based on 100 random draws from the 

multivariate return distribution defined by Broadie’s data, as described in Section 6.2.3. 

The averages for the mean absolute deviations are shown in Figures 6.8 and 6.9 below; 

where the deviation is plotted against sample size.  
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Figure 6.8: Deviation from the Mean      
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 Plot of a random draws average percentage deviation from its true mean for 

different sample sizes 

 

Figure 6.9: Deviation from the Variance 
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Plot of a random draws average percentage deviation from its true variance for 

different sample sizes 

 

 

These results are consistent with the hypothesis, that as the sample size increases, the 

estimated parameters are closer to the true parameters. Interestingly, the percentage 
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errors in the variances are an order of magnitude less than the errors in the mean
8
.  This 

is consistent with Ceira and Stubbs (2006), who show that most estimation error occurs 

in estimates of the expected returns.  

 

Using Broadie’s (1993) data, Actual Frontiers were computed using parameter 

estimates based on different sample sizes. These Actual Frontiers were compared with 

the True Efficient Frontier.  As the sample size increases, thereby reducing estimation 

error, it is expected that the Actual Frontier will converge to the True Efficient 

Frontier. The Actual Frontiers were estimated for samples of size 100, 200, 500, and 

1000 observations. The frontiers plotted were the average of 100 experiments to 

eliminate any sample bias. The results are depicted in Figure 6.10 below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
8
 This occurs regardless of whether one is using Eigenvalue decomposition or Choleski decomposition 

for the sample draw procedure. 
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Figure 6.10: Actual Frontier versus True Efficient Frontier for Different Sample 

Sizes   
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Actual Frontiers for different sample sizes are plotted against the True Efficient 

Frontier (light blue line). Note that as the sample size increases the Actual Frontier 

lies closer to the True Efficient Frontier.   

 

 

Figure 6.10 highlights how dramatically the actual portfolio can differ from the true 

portfolio when estimation errors are present. For example, a sample size of 100, or 

roughly 8 years of monthly data, results in an Actual Frontier that is a long way from 

the True Efficient Frontier. A sample of 1000 observations or 83 years of stationary 

monthly data lies close to the True Efficient Frontier, but it is not a perfect 

approximation and the divergence from the True Efficient Frontier increases as the 

expected portfolio return increases.  Thus even with estimates from a stationary set of 

data lasting 83 years, there is no guarantee of forming a set of portfolios that match the 

True Efficient Frontier. Noticeably, the global minimum variance portfolio is close to 

the True Efficient Frontier for all of the Actual Frontiers. This shows that the 
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estimation error is less pronounced in the covariance matrix, as the expected returns are 

not used for the computation of the minimum variance portfolio. Overall, however, it is 

clear that estimation error can be a substantial problem for portfolio optimisation. 

 

6.3.3 Empirical tests for the transforms 

 

The effectiveness of the transforms will be judged by the proximity of the Actual 

Frontier to the True Efficient Frontier as outlined in Section 6.2.3, using data from 

Broadie (1993). A sample size of 200 points was chosen. This equates to over 16 years 

of monthly data, but as shown in the examples above it is a sample size which still 

allows substantial errors in the Estimated Frontiers.  

 

Figure 6.11 plots the Actual Frontiers obtained when using the raw parameters and the 

transformed parameters from the negative moments and optimal investment horizon 

method. Figure 6.12 is a replication of Figure 6.11, except that a sample size of 1000 

data points is used (roughly 83 years of monthly data). This allows an investigation into 

whether these transformations are still beneficial if there is limited estimation error.  
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Figure 6.11: Actual Frontier versus True Frontier 
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Actual Frontier determined using raw parameters or parameters obtained using 

either of the suggested transformation techniques for a sample size of 200.  

 

 

Figure 6.12: Actual Frontier versus True Frontier  
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Actual Frontier determined using raw parameters or parameters obtained using 

either of the suggested transformation techniques for a sample size of 1000.  
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Figure 6.11 shows that the transformed parameters using the negative moments method 

estimates the efficient frontier better than the raw estimated parameters, and 

accordingly results in an Actual Frontier closer to the True Efficient Frontier. The 

Actual Frontier using the negative moment transformed parameters always dominates 

the Actual Frontier using the raw parameters. The Actual Frontier using the optimal 

investment horizon transformation performs the worst in the region near the global 

minimum variance portfolio. However, performance improves as expected portfolio 

returns increase such that the optimal investment horizon transformation is the best 

performer at the higher end of expected returns. 

 

In Figure 6.12, consistent with the results of Figure 6.10, the Actual Frontier using the 

raw parameters is very close to the True Efficient Frontier. This is because the 

estimation error is small due to the large sample size (1000). The Actual Frontier using 

parameters transformed by the negative moment technique is nearly identical to that 

obtained using the raw parameters. This result suggests that the negative moment 

transform is not detrimental when estimation error is small and from Figure 6.11 it 

appears to be beneficial when estimation error is larger. However, it is clear from 

Figure 6.12 that the optimal investment horizon transformation is the worst performer 

when estimation error is small.  

 

 In summary, if the negative moment transformation method is applied, then the Actual 

Frontier obtained is, on average, no worse than the Actual Frontier obtained using raw 

parameters when the estimation error is extremely small.  However, when estimation 

error becomes a more significant problem, the Actual Frontier obtained from 

transformed parameters outperforms the Actual Frontier using raw parameter estimates 
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across all regions of the frontier.  For the optimal investment horizon, when the 

estimation error is large, then the transformed parameters are only likely to dominate 

for the higher expected return areas on the frontier.  When the estimation error is small, 

the optimal investment horizon transformation appears to be detrimental and the Actual 

Frontier is likely to lie substantially below the Actual Frontier obtained using raw 

parameters. 

 

6.3.4 Empirical tests for the transforms when a strong risk-return 

relationship exists 

 

As Figures 6.3 and 6.4 show, one effect of the transformations is to strengthen the 

relation between risk and return.  The analysis that follows investigates whether the 

negative moment transformation is still beneficial
9
 when the true parameters already 

exhibit a strong risk-return relationship.  Accordingly, analysis similar to that of 

Figures 6.11 and 6.12 will be undertaken for data where there is a strong risk-return 

relation.  The means and variances of the five assets chosen are provided in Table 6.1 

and consistent with Broadie (1993), a correlation of 0.3 for each asset with all other 

assets was used (as in Table 5.2). The means were chosen to be the same as those in 

Broadie’s work. However, the standard deviations have been slightly modified so a 

strong risk-return relation is created, as is shown in Figure 6.13. 

 

 

 

 

                                                 
9
 In the interests of clarity and brevity the optimal investment horizon transformation is not considered in 

this section, given that the prior results showed that it was not always beneficial.  
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Table 6.1: The True Expected Return and Standard Deviation of 5 Assets  

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

Mean 0.006 0.01 0.014 0.018 0.022

Standard Deviation 0.053 0.080 0.100 0.115 0.123  

 

Figure 6.13: Mean return versus Standard Deviation  
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Plot of the True Means versus the True Standard Deviations from Table 6.1. 

These points show a strong risk-return relation. 

 

Figure 6.14 shows the True Efficient Frontier and the Actual Frontiers using the 

negative moment transformed parameters and the raw parameters, for a sample size of 

200. The same frontiers when a sample size of 1000 is used can be found in Figure 

6.15. 
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Figure 6.14: Actual Frontier versus True Efficient Frontier    
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Actual Frontier determined using raw parameters or parameters obtained using 

the negative moment transform for a sample size of 200. 

 

Figure 6.15: Actual Frontier versus True Frontier  
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Actual Frontier determined using raw parameters or parameters obtained using 

the negative moment transform for a sample size of 1000. 
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Figure 6.14 shows that even when a strong risk-return relationship is present in the true 

parameters, but error remains in the estimated parameters, the Actual Frontier obtained 

using the negative moment transformed parameters lies much closer to the True 

Efficient Frontier than the Actual Frontier obtained using the raw parameters.  Figure 

6.15 shows that when the estimation error is very small, the negative moment 

transformation just outperforms the raw parameters, but there is very little in it.  

 

 

6.3.5 Intuition behind the results 

 

 

Two factors are suggested as contributing to the beneficial effects of the negative 

moment transformation. A reduction in estimation error and also a reduction in the 

extent of over and under weighting.  The transformation creates a stronger risk-return 

relation in the estimated parameters, as depicted previously in Figures 6.2 and 6.3.  

Even when the true parameters have a strong risk-return relation, the estimated 

parameters have some error and that risk-return relation is thus somewhat diminished. 

When the transformation is applied, the relationship is re-strengthened thereby reducing 

estimation error. This notion is depicted in Figure 6.16 below. The true parameters for 

five assets are plotted in black in the mean-standard deviation plane. Here it is evident 

that a strong positive mean-standard deviation relationship exists. In red, the plotted 

estimated mean and standard deviation for the five assets are also depicted, where the 

estimates have been made from a draw of 200 points from a multivariate normal 

distribution. Here it is evident that estimation error is present and part of the risk-return 

relationship is lost. Lastly, in green, the five assets are plotted using transformed 
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parameters. Lines have been overlayed extending from the true assets parameters to the 

estimated assets parameters. Essentially these lines are a graphical representation of 

estimation error. For asset two it is evident that the estimation error using the raw 

parameter estimates (red line) is approximately the same as the estimation error for the 

transformed parameter estimates (green line) as both lines are roughly the same length. 

However, when observing asset three and asset five it is clear that the estimation error 

for the raw parameter estimates is substantively larger than the corresponding 

transformed parameter’s estimation error. This figure highlights how the transformation 

equations move the raw parameters estimates closer to the true parameters thereby 

reducing estimation error. It should be noted that for clarity the estimation error lines 

have only been plotted for assets two, three and five. 

     

Figure 6.16: Plot of estimated parameters versus true parameters  

 

This figure depicts the proximity of estimated assets means and standard 

deviations (coloured points) to their true means and standard deviations (black 

points). The coloured lines represent errors in the estimates. For clarity these have 

only been plotted for assets 2, 3 and 5. 
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Since the transformation strengthens the risk-return relation it will reduce the extent to 

which particular assets are given very large or very small weights. For example, from 

Figure 6.16 it is expected that when using raw parameters in the optimisation process, 

asset five will get a very heavy weighting due to its relatively high expected return for 

its given level of variance. However, when using transformed parameters, the expected 

return for asset five no longer seems as high relative to its corresponding level of 

variance. Such reweighting towards a more uniform set of weights can beneficial, even 

if there is little or no relation between mean and variance for the true parameters. This 

idea is related to the work of Jobson and Korkie (1981), who show that an equal 

weighted portfolio can outperform an optimal mean-variance portfolio that has been 

computed using sample estimates. Making the weightings more uniform reduces the 

importance of individual parameter estimates.   

 

The effect of the transformation on the portfolio weights is analysed by solving the 

following optimisation problem and comparing the dispersion in portfolio weights 

obtained when using transformed parameters versus raw parameters. 

 

Minimise:  wwt  

Subject to: wR t
 

   1wt  

 

Where w is a vector of asset weights,   is the covariance matrix, R is the vector of 

assets expected returns,   is the desired return for the portfolio and  a vector of ones. 
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The difficulty in solving the above optimisation problem for a given   for both 

transformed parameters and raw parameters is that the transformations will change the 

scale. For example, assuming RE is the vector of raw estimated returns and RT is the 

vector of transformed expected returns, then it is evident that wRwR t

E

t

T   despite 

having the same asset weighting, w. As such, comparing two portfolios with the same 

expected return,  , may be futile as the scale of the two portfolios has significantly 

changed. Accordingly, Broadies (1993) method, as outlined in Subsection 6.3.3, will be 

used. Again the Actual Frontiers will be calculated using raw parameters and 

transformed parameters. The reason for calculating the Actual Frontiers is that the 

problem of different scales can be removed. For example, assuming Rtrue is the true 

returns, then if we is the portfolio weights using raw estimated returns and wt is the 

portfolio weights estimated using transformed parameters. It is evident that if wt equals 

we then e

t

truet

t

true wRwR  and the same applies for the variance of the two portfolios. 

Thus the same portfolios have the same mean and variance. The scale problem has been 

removed as the portfolios have been rescaled back to the same dimension. 

 

To conduct this experiment the true, estimated and transformed parameters must be 

known. These are provided in Tables 6.2, 6.3 and 6.4 below, and for simplicity it will 

be assumed that the true correlation between each asset is 0.3, and that this correlation 

is estimated without error. 
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Table 6.2: True Parameters 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

Mean 0.006 0.01 0.014 0.018 0.028

Stan. Dev 0.08 0.08 0.095 0.09 0.08  

 

Table 6.3: Estimated Parameters 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

Mean 0.0024 0.0114 0.0153 0.016 0.0252

Stan. Dev 0.0811 0.0802 0.0955 0.0893 0.0951  

 

Table 6.4: Transformed Parameters 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5

Mean 0.0152 0.0192 0.027 0.0296 0.0372

Stan. Dev 0.0107 0.0123 0.0173 0.0175 0.0178  

 

Using the true parameters, nine efficient portfolios which lie on the True Efficient 

Frontier are computed. These portfolios have an expected return ranging from 1.3% to 

2.5% increasing in increments of 0.15% and are depicted as red points in Figure 6.17 

below. Furthermore, nine portfolios with the same actual expected returns as the true 

portfolios previously found are also computed using estimated parameters and are 

plotted as dark blue points in Figure 6.17. Lastly, nine portfolios with the same actual 

expected returns are estimated using transformed parameters and are depicted as light 

blue points.  Consistent with previous results, it is evident that the actual portfolios 

estimated using transformed parameters dominate the actual portfolios using estimated 

parameters. 
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Figure 6.17: Various Estimated Portfolios 
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This figure depicts the actual portfolios obtained for a specified level of expected 

return.  

 

From Figure 6.17, it is evident that for each portfolio estimated using raw parameters 

there is a corresponding portfolio with the same actual expected return which has been 

estimated using transformed parameters. By comparing these portfolios, it is possible to 

determine if the portfolios estimated using transformed parameters have more uniform 

weighting across assets than portfolios estimated using raw parameters. This is done by 

comparing the standard deviation of asset weights for a portfolio based on raw 

parameters and its corresponding portfolio based on transformed parameters. The 

results are depicted in Figure 6.18 
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Figure 6.18: Plot of dispersion of asset weightings  
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This figure depicts the dispersion of weights assigned to assets for a portfolio with 

a given expected return 

 

 

From Figure 6.18 it is evident that, with the exception of the portfolio with the 

minimum variance,
10

 all transformed parameter portfolios have less deviation among 

the asset weighting than the equivalent portfolio estimated using raw estimated 

parameters. These results are consistent with the stronger risk-return relation, created 

by the transformation, leading to a more uniform weighting and improved portfolio 

performance.   

 

 

 

                                                 
10

 This portfolio is coincident with the global minimum variance portfolio and since the expected return 

is not used to compute this portfolio, its weights are unaffected by the strengthening of the risk-return 

relation. 



 142 

6.4 Conclusion 

 

This Chapter has suggested two new transformation techniques, based on doubling 

times, as a means to reduce estimation error in the portfolio formulation process. The 

first was a method which takes advantage of the fact that doubling times are inverse 

Gaussian distributed and such a distribution contains negative moments. This 

transformation was called the negative moment transformation. The alternative 

transformation was motivated by Simonsen, Jensin and Johansen (2002) who suggest 

that the mode of a doubling time’s distribution is the optimal investment horizon. To 

test the effectiveness of both transformation techniques, a method similar to that of 

Broadie (1993) was employed. This involved comparing the True Efficient Frontier, 

based on the true parameters for mean and variance, with the Actual Frontier obtained 

by applying estimated portfolio weights to the true parameters. The estimated portfolio 

weights were obtained using raw estimates and transformed estimates for the mean and 

variance of the assets in the portfolio. The closer the Actual Frontier to the True 

Efficient Frontier, the better the performance. 

 

The results suggested that while under some conditions the optimal investment horizon 

transformation outperforms the raw parameters, the out performance is not consistent 

under all conditions. However, the results for the negative moment transformation were 

more promising. It was shown that when there is very little estimation error the 

transformation does not yield any worse results than those obtained using raw 

parameters. However, when estimation error is present the transformed parameters 

appear to substantively outperform the raw parameters. This is particularly noticeable if 

there is a strong risk-return relationship between the assets used. Two possible 
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explanations for the improved performance were analysed. First, a reduction of 

estimation error due to a stronger relation between risk and return in the transformed 

data. Second a re-weighting towards a more uniform distribution reducing the impact of 

the more heavily overweight or underweight assets. 

     

 

 

 

 

 

 



 144 

Chapter 7: Conclusion and Future Work 

 

This dissertation has investigated the notion of using doubling times as an alternative 

performance metric in finance.  

 

Initially, it was shown that taking the arithmetic mean of individual doubling times 

does not give the expected time to double an investment. Analytically, it was shown 

that the time weighted harmonic mean of individual doubling times should be used to 

find the expected doubling time.  However, no analytical formula for the variance of 

the doubling time was derived. Instead the variance of doubling times was obtained 

using a Monte Carlo simulation. This simulation enabled the estimation of the whole 

distribution of doubling times, so that traditional metrics such as variance and skewness 

could then be obtained.  

 

 Doubling times were then analytically modelled as a first passage time problem. It was 

shown that if percentage returns followed the normal distribution, then the 

corresponding doubling times were inverse Gaussian distributed.  The inverse Gaussian 

distribution is described by two parameters, mean and shape. Functions were derived to 

express the mean and shape for the doubling time distribution in terms of the 

underlying percentage return’s first two moments, mean and variance. It was then 

verified that the simulation of the doubling time distribution returned the same values 

as the analytical expression.  
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Through various simulation experiments it was shown that even if returns are not 

normally distributed the simulated doubling time can still be inverse Gaussian 

distributed, a result which is explained by the Central Limit Theorem, with a particular 

emphasis on the Berry-Esseen Theorem. Over a century of research has still yet to 

conclusively determine what distribution percentage returns follow. However, the 

distribution of doubling times has been shown to follow the inverse Gaussian 

distribution. In particular it was shown that regardless of the percentage returns 

distribution (within reason) that this result will hold.  

 The potential application of doubling times to portfolio formation was also 

investigated using various time domain risk metrics. It was proved analytically and 

verified empirically that when minimising one suggested risk metric (the inverse of the 

shape parameter), the portfolio obtained is equivalent to the global minimum variance 

portfolio found under the Markowitz framework. Similarly, when minimising the 

skewness of doubling times, it was shown that the tangency portfolio with the highest 

risk-return ratio is obtained.  This approach has particular appeal due to the natural 

intuition that investors would want to minimise long waiting periods until their 

investments double. Additionally, the optimal portfolio problem has now been reduced 

from a two parameter problem (mean and variance) under the Markowitz framework to 

a one parameter problem (skewness) in the doubling time framework. This is a refined 

way to model portfolio optimisation which appears to make intuitive sense and may 

spark a different way to think about the efficient frontier. 

 

 Finally, an investigation was undertaken into a new method for reducing the problems 

created by estimation error in the portfolio optimisation process. Two doubling time 

transformations of the expected return and variance were suggested for this purpose.  . 
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One transformation, motivated by Simonsen, Jensin and Johansen (2002) was based on 

the most likely doubling time (the mode of the doubling time distribution). The 

alternative transformation was the negative moment transform based on the expected 

doubling time and it was this transformation which yielded the most promising results. 

Through a simulation methodology similar to Broadie(1993) it was shown that, on 

average, the portfolios obtained using transformed parameters for the mean and 

variance will dominate the portfolios obtained using raw parameters. For all 

simulations completed, the negative moment transformation portfolios were, at worst, 

equivalent to the raw parameter portfolios. When the estimation error was substantive, 

as is likely in practice, portfolios formed using the negative moment transformations 

significantly outperformed portfolios formed using the raw parameters.  

 

One considerable advantage of this transformation method, when compared to 

alternatives such as portfolio re-sampling, introduced by Michaud (1999), is that it is 

far more computationally efficient. As opposed to large simulations with many iterative 

steps a simple one step transformation is applied to the parameters to be input into the 

optimisation problem.  

 

This work leaves scope for several further research topics. Continuing with the 

portfolio work, perhaps an investigation into forming portfolios with time varying 

parameters could be examined. Generally, in portfolio optimisation when the input 

parameters such as mean, variance or correlation change over time then the portfolio 

weights must be re-estimated and the portfolio rebalanced accordingly. However, by 

taking advantage of two ideas from this research perhaps a methodology which allows 

formation of a portfolio that requires no rebalancing can be developed. This can be 
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achieved by taking advantage of, firstly, the doubling time simulation methodology 

provided in Chapter 3 and, secondly, the proof that the minimum skewness portfolio is 

equivalent to Markowitz’s tangency portfolio with maximum return-risk ratio in 

Chapter 5. For example, assume expected returns and the covariance matrix for a 

number of assets are known. However, these expected returns last for only one year, 

and following that year a series of new expected returns and covariance matrix for these 

assets exists. Traditionally, a portfolio will be estimated and the weights obtained for 

year one and then the weights are re-estimated and the portfolio rebalanced as required 

in the second year. The possible alternative method involves simulating the distribution 

of a portfolio’s doubling time for a given set of portfolio weights. The trick here is that 

when using the simulation methodology, once a certain number of iterations have been 

reached, which equate to a simulated year, returns are no longer sampled using the first 

years estimates, but instead sampled from the following years estimates. Then using 

some form of optimisation process the weights are varied accordingly such that a 

portfolio is eventually formed which has the minimum doubling time skewness. Such a 

technique may prove useful when rebalancing costs are high as it eliminates the need of 

portfolio rebalancing.  

 

As previously mentioned the use of doubling times could have some application in 

capital budgeting. The payback period continues to be very popular in capital budgeting 

despite its well known deficiencies (see Truong, Partington and Peat (2008)). Doubling 

times might be used to replace the payback period and could be theoretically more 

defensible. A common argument for the use of the payback period is its easy 

interpretation. Perhaps the IRR or alternatively the true rate of return could be re-
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expressed as doubling times which would have a similarly simple interpretation as the 

payback period. 

 

Lastly, in Chapter 5 it was shown that the risk tolerance parameter for a point on the 

efficient frontier is vastly different to the risk tolerance parameter for an equivalent 

point on the efficient frontier under the Markowitz framework. While various utility 

functions have been formulated for the Markowitz framework it may be interesting to 

investigate equivalent utility functions in the time domain. 

 

These are three possible directions for future work using doubling times; however they 

are by no means collectively exhaustive. It is the author’s hope that this dissertation 

may serve as a catalyst for further creative concepts to provide a novel prism through 

which to view, evaluate and quantify our constantly evolving financial world. 
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Appendix 

A.1. Kolmogorov-Smirnov tests for Section 4.2 

Table 1: P-values for Kolmogorov-Smirnov tests that the simulated distribution is 

inverse Gaussian distributed with parameters defined by equation (4.9).  The tests are 

performed for varying the levels of the expected return for the underlying distribution, 

with a range extending from 0.001 to 0.01. Here not one test rejects the null that the 

two distributions were drawn from the same continuous distribution. This suggests the 

simulated distributions are in agreement with its theoretical distribution defined by 

equation (4.9)   

 

Underlying Percetage Mean 0.001 0.002 0.003 0.004 0.005

K-S test p value 0.71005 0.849736 0.507247 0.385711 0.666977

Underlying Percetage Mean 0.006 0.007 0.008 0.009 0.01

K-S test p value 0.620326 0.492434 0.229575 0.852519 0.961262  

 

 

Table 2: P-values for Kolmogorov-Smirnov tests that the simulated distribution is 

inverse Gaussian distributed with parameters defined by equation (4.9).  The tests are 

performed by varying the levels of variance for the underlying distribution, ranging 

from 0.01 to 0.04. Here not one test rejects the null that the two distributions were 

drawn from the same continuous distribution. This suggests the simulated distributions 

are in agreement with its theoretical distribution defined by equation (4.9)   

 

Underlying Percentage Variance 0.01 0.015 0.02 0.025 0.03 0.035 0.04

K-S test p value 0.62169 0.9234 0.98725 0.894142 0.885041 0.7245 0.43264  
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 A.2. Kolmogorov-Smirnov tests for Section 4.3 

 

Table 3: The p-values reported for numerous Kolmogorov-Smirnov tests. Each test 

involves comparing one simulated distribution with another simulated distribution. 

Each simulated distribution was formed using t-distributed underlying returns with 

mean equal to 0.0054 and standard deviation equal to 0.04 where the degrees of 

freedom used are provided in the table. This meant all simulated distributions had an 

underlying distribution with the same first two moments but a varying level of kurtosis. 

Of the 55 tests performed only one rejects the null hypothesis that the two distributions 

were drawn from the same continuous distribution. This one rejection is attributed to 

being a type 1 error. 

 
Degrees of Freedom

3 4 5 6 7 8 9 10 11 12 13 14

3 - 0.993 0.151 0.538 0.751 0.788 0.096* 0.310 0.357 0.483 0.329 0.406

4 - - 0.923 0.967 0.431 0.803 0.229 0.313 0.123 0.428 0.982 0.932

5 - - - 0.565 0.496 0.154 0.167 0.418 0.178 0.814 0.497 0.743

6 - - - - 0.772 0.463 0.986 0.897 0.485 0.642 0.700 0.767

7 - - - - - 0.790 0.489 0.366 0.410 0.963 0.798 0.655

8 - - - - - - 0.655 0.441 0.820 0.138 0.815 0.248

9 - - - - - - - 0.147 0.189 0.441 0.162 0.817

10 - - - - - - - - 0.508 0.390 0.329 0.741

11 - - - - - - - - - 0.675 0.197 0.603

12 - - - - - - - - - - 0.563 0.450

13 - - - - - - - - - - - 0.486

14 - - - - - - - - - - - -  

 

* Significance at the 10% level. 


