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Abstract 
The Frontiers of Science illustrated comic strip of 'science fact' ran from 1961 to 1982, 
syndicated worldwide through over 600 newspapers. The Rare Books and Special Collections 
Library at the University of Sydney in association with Sydney eScholarship, digitized all 939 
strips. We aimed to create a website that could disseminate these comic strips to scholars, 
enthusiasts and the general public. We wanted to enable users to search and browse through 
the images simply and effectively, with an intuitive and novel viewing platform. 

Time and resource constraints dictated the use of (mostly open source) code modules wherever 
possible and the integration and customisation of a range of web-based applications, code 
snippets and technologies (DSpace, eXtensible Text Framework (XTF), OmniFormat, JQuery 
Tools, Thickbox and Zoomify), stylistically pulled together using CSS. This approach allowed for 
a rapid development cycle (6 weeks) to deliver the site on time as well as provide us with a 
framework for similar projects. 

  



 

INTRODUCTION 
The Rare Books and Special Collections Library at the University of Sydney was bequeathed the 
rights to the original strips, or “pulls”, of the Frontiers of Science comic strips which were 
published in over 600 newspapers worldwide from 1961 to 1982. The series was co-written 
and produced by Professor Stuart Butler from the School of Physics at the University of Sydney 
and journalist and film-maker Bob Raymond. The early art work in the series was by Andrea 
Bresciani, continued later by David Emerson, with the aim of disseminating information about 
current topics in science in a novel and entertaining way. 

Having been given permission to digitize the original strips, Sydney eScholarship at the 
University of Sydney sought to make the Frontiers of Science strips available once again, this 
time online, for wider access by scholars and enthusiasts. Our goal was to offer simple, robust, 
flexible discovery tools including search, facetted browse and a tag cloud, combined with a 
novel display mechanism. There was an upcoming exhibition of Frontiers paraphernalia at the 
Australian Broadcasting Commission (ABC) in Ultimo, Sydney which was to coincide with 
Science Week. We wanted the Frontiers of Science website to be launched to coincide with this, 
meaning the deadline at the time was 6 weeks away. 

Many tasks needed prioritization and consideration within the short time frame. These included 
but were not limited to: importation of the digitized pulls to the institutional repository, 
metadata tagging of the items, processing of images (for thumbnails and for use with the image 
viewer), processing of metadata, indexing of image metadata for browsing and searching 
functionality, creating the browse and search front-end, tag cloud generation, deciding upon and 
implementing  an image viewer, presentation and layout design (within University style 
constraints), and developing the site, including associated historical and descriptive content and 
complying with (as far as practicable) W3C standards. To expedite the process, it was decided to 
rely heavily on technologies that we were already familiar with, or that could be quickly 
integrated into existing (open source) architecture. 

 

PREPARING THE IMAGES AND METADATA 

SCANNING OF COMIC STRIPS 
The original Frontiers of Science material was bequeathed to the Rare Books and Special 
Collections Library of the University of Sydney by Angela Raymond and Miriam Butler. Here, 
they were scanned in black and white on a Bookeye scanner (BE3-SCL-R1) at 600dpi by 
Nicholas Heath in January of 2009. Each resulting archival TIFF file was  about 400kB in size. 

CONTENT ARCHIVING 



The Sydney eScholarship Repository, the University’s institutional research repository, was 
used to archive the original scanned TIFF images.  The repository employs a customized 
instance of the DSpace open source digital library software, which provides by default a facility 
for tagging items with qualified Dublin Core metadata. Most collections in the repository are 
tagged using the Dublin Core schema, so we decided to use this metadata schema to describe the 
Frontiers images.Tagging of the comic strips within the Sydney eScholarship Repository was 
completed by Professor Peter Harrowell from the School of Chemistry, University of Sydney. 
Due to time constraints, no controlled vocabulary was applied. So the metadata was less than 
ideal for data interchange purposes, but sufficient for our requirements of browsing and 
searching. Initially, about 200 pulls (each with one week’s worth of comic strips) were tagged 
with keywords, with the aim of adding more tagged strips over time, following the launch of the 
site. 

METADATA PROCESSING 
In order to retrieve metadata from DSpace in a format useful for the search and browse system, 
the eXtensible Text Framework (XTF), a Java class was written (XTFItemExport.java) for 
DSpace, which accomplished the following: 

• Created the Dublin Core metadata XML files with the necessary metadata fields 
• Formatted the XML files for use with the default XTF metadata “prefilter” 
• Named the XML files based on dc.identifier.other 

We decided that it would be simpler and more efficient to do all three tasks in one Java class, 
rather than creating and naming the files this way and then customizing the XTF prefilter to suit 
the XML file format. 

The main writeMetadata method of this class (Code Listing 1) sets up the XML file for XTF by 
defining the root element as <dc>, the XTF default. Within the <dc> tags, we tested only for the 
following metadata elements: title, date, identifier and subject. 

// output the item's dublin core into the item directory 

    private static void writeMetadata(Context c, String schema, Item i, File destDir) 

            throws Exception 

    { 

 // id to rename file with 

 String id="";        String filename; 

        if (schema.equals(MetadataSchema.DC_SCHEMA)) { 

            filename = "dc.xml"; 

        } else { 

            filename = "metadata_" + schema + ".xml"; 

        } 

         

        File outFile = new File(destDir, filename); 



 

        System.out.println("Attempting to create file " + outFile); 

 

        if (outFile.createNewFile()) 

        { 

            BufferedOutputStream out = new BufferedOutputStream( 

                    new FileOutputStream(outFile)); 

 

            DCValue[] dcorevalues = i.getMetadata(schema, Item.ANY, Item.ANY, Item.ANY); 

 

            // XML preamble 

       byte[] utf8 = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n" 

                    .getBytes("UTF-8"); 

            out.write(utf8, 0, utf8.length); 

 

       // "dc" instead of "dublin_core" 

            String dcTag = "<dc>\n"; 

            utf8 = dcTag.getBytes("UTF-8"); 

            out.write(utf8, 0, utf8.length); 

 

            for (int j = 0; j < dcorevalues.length; j++) 

            { 

                DCValue dcv = dcorevalues[j]; 

                String qualifier = dcv.qualifier; 

  // get element 

  String element = dcv.element; 

 

  // test only for elements we want 

  if(element.equals("title")){ 

                 utf8 = ("  <title>" + Utils.addEntities(dcv.value) + 
"</title>\n").getBytes("UTF-8"); 

                 out.write(utf8, 0, utf8.length); 

  } 

  else if(element.equals("date") && qualifier.equals("issued")){ 

                 utf8 = ("  <date>" + Utils.addEntities(dcv.value) + 
"</date>\n").getBytes("UTF-8"); 

                 out.write(utf8, 0, utf8.length); 

 



  } 

  else if(element.equals("identifier") && qualifier.equals("other")){ 

                 utf8 = ("  <identifier>" + Utils.addEntities(dcv.value) + 
"</identifier>\n").getBytes("UTF-8"); 

                 out.write(utf8, 0, utf8.length); 

   id = dcv.value; 

   System.out.println("WROTE ID: " + id); 

 

  } 

  else if(element.equals("subject")){ 

                 utf8 = ("  <subject>" + Utils.addEntities(dcv.value) + 
"</subject>\n").getBytes("UTF-8"); 

                 out.write(utf8, 0, utf8.length); 

 

  } 

  else{ 

   System.out.println("NO MATCHING ELEMENT FOUND"); 

  } 

 

            } 

 

     // close "dc" tag 

            utf8 = "</dc>\n".getBytes("UTF-8"); 

            out.write(utf8, 0, utf8.length); 

 

            out.close(); 

   

     // rename file - prepend identifier 

     File idOutFile = new File(destDir, id + ".dc.xml");  

     outFile.renameTo(idOutFile); 

        } 

        else 

        { 

            throw new Exception("Cannot create dublin_core.xml in " + destDir); 

        } 

    }  

Code Listing 1. The writeMetadata method to setup XTF-ready Dublin Core files 



The output of this program was one directory for each image. Each directory contained the XTF-
formatted Dublin Core metadata file (named $dc.identifier.other.dc.xml where 
$dc.identifier.other is the issue week) and the “pull” image plus other accessory files. This 
directory structure is the standard DSpace submission information package (SIP) configuration. 
The “.dc.xml” extension is recognized by XTF as a Dublin Core metadata file. 

When loaded into DSpace, the TIFF file names were disparate. Some were simply numeric 
(“064.TIF”) and others had varying prefixes (“FoS” or “FoS_”).  To rectify this, another Java 
program was written to standardize the naming of the TIFF files in line with the metadata files 
i.e. $dc.identifier.other.tif, where $dc.identifier.other is the issue week. The main method (Code 
Listing 2) which retrieves the identifier from the Dublin Core XML file uses the Java API for XML 
Processing (JAXP) [1]. 

 

     /** 

       * Reads the Frontiers of Science identifier from an image's Dublin 

       * Core metadata file (exported from DSpace using ItemExporter) 

       *  

       * @param file - the file from which to read 

       * @return FOSID - the Frontiers of Science image ID 

       */ 

      public String readDCFileFOSIdentifierValue(File file){ 

 

       // the FOS identifier value 

       String FOSID=""; 

        

       try { 

         

        DocumentBuilderFactory domFactory = DocumentBuilderFactory.newInstance(); 

          domFactory.setNamespaceAware(true); // never forget this! 

          DocumentBuilder builder = domFactory.newDocumentBuilder(); 

          Document doc = builder.parse(file); 

 

          XPathFactory factory = XPathFactory.newInstance(); 

          XPath xpath = factory.newXPath(); 

          XPathExpression expr  

           = xpath.compile("//dcvalue[@element='identifier' and 
@qualifier='other']/text()"); 

 



          Object result = expr.evaluate(doc, XPathConstants.STRING); 

          FOSID = result.toString(); 

 

       } 

       catch (SAXParseException err) { 

          System.out.println ("** Parsing error" + ", line "  

               + err.getLineNumber () + ", uri " + err.getSystemId ()); 

          System.out.println(" " + err.getMessage ()); 

 

          }catch (SAXException e) { 

          Exception x = e.getException (); 

          ((x == null) ? e : x).printStackTrace (); 

 

          }catch (Throwable t) { 

          t.printStackTrace (); 

          } 

  return FOSID; 

      } 

Code Listing 2. Main method to retrieve identifier from Dublin Core XML files 

 

The format of a typical dc.xml file is shown below: 

<?xml version="1.0" encoding="utf-8"?> 

<dc> 

  <date>1963-03-18</date> 

  <identifier>79</identifier> 

  <subject>Physics</subject> 

  <subject>Space</subject> 

  <subject>Lunar surface</subject> 

  <subject>Tom Gold</subject> 

  <subject>powder oceans</subject> 

  <subject>Tycho crater</subject> 

  <subject>moon landing</subject> 

  <title>The surface hazard</title> 

</dc> 



This naming convention and metadata file format standardization would assist in further 
processing and dynamic rendering of the images, as well as indexing for the search and browse 
interface. 

IMAGE PROCESSING 

CREATING SCROLLABLE PREVIEW IMAGES  
 

In keeping with the format of the comic strips, we aimed to make the style of the website very 
visual and high contrast. The facetted browse interface and search results would allow users to 
scroll through preview images in an image slider. These previews were created by processing 
the images output from the DSpace export using the OmniFormat (free) document conversion 
utility. JPEGs at 200px x 400px were created for scrolling in the image slider (Figure 1) and we 
were very happy with the image quality. 

 

 

Figure 1. Scrollable preview images for browsing 

CREATING TILES FOR ZOOMIFY DESIGN 
 

Zoomify is commercial software enabling zooming and panning of high-resolution images.  The 
decision to purchase a commercial licence for ZoomifyDesign4-Win rather than code an image 



zoomer and panner in, for example, jQuery was made due to time and resource constraints. 
Technically, this worked well in terms of development time. However, due to Zoomify being 
Flash-based, it meant that the site would not work on iPads or iPhones. This was an oversight at 
the time of development and the change over to jQuery for zooming could be a possible future 
site enhancement. 

Zoomify requires the creation of image “tiles”, which were created by dragging and dropping 
images onto the Zoomify Converter.exe program icon in Windows. This processing produced 
one directory corresponding to each TIFF image (below), consisting of subdirectories of “tile 
groups”, collections of small JPEGs which are small portions of the original image. 

   1 

|-- ImageProperties.xml 

|-- TileGroup0 

|   |-- 0-0-0.jpg 

|   |-- 1-0-0.jpg 

|   |-- 1-0-1.jpg 

. 

. 

. 

|-- TileGroup1 

|   |-- 5-0-10.jpg 

|   |-- 5-0-11.jpg 

|   |-- 5-0-12.jpg 

. 

. 

. 

2 

|-- ImageProperties.xml 

|-- TileGroup0 

|   |-- 0-0-0.jpg 

|   |-- 1-0-0.jpg 

|   |-- 1-0-1.jpg 

|   |-- 2-0-0.jpg 

|   |-- 2-0-1.jpg 



These tile group directories were then ready to be presented using the Zoomify viewer, a 
Shockwave Flash file which is bundled with Zoomify Design. 

 

BUILDING THE SITE 

THE SEARCH AND BROWSE PLATFORM 
At the University of Sydney Library we have used the eXtensible Text Framework (XTF) for 
several projects over the last few years and have found it to be flexible enough to meet our 
needs for developing customized search and facetted browse functionality for a variety of 
content types and metadata schemas. Having some expertise in creating XTF sites, we decided 
to use this open source platform for the search and browse functions of the Frontiers of Science 
site.  

Given the time and resource constraints, we wanted to keep things simple, so we pared down 
the full-featured XTF advanced search engine to allow searching only on keyword or title. We 
used the term “keyword” since the subject metadata values were not controlled. Figure 2 shows 
the simple keyword/title search forms page. Clear examples of available Boolean operations 
were provided. 

 

 

Figure 2. Keyword and title search page showing sample searches 

 

XTF comes with a highly configurable text indexing facility which we used to generate a Lucene 
index from the Dublin Core files. The Lucene index is read for searching by the “crossQuery” 
servlet. This is also highly configurable through XSL files and templates. 



 

 

The search engine produces a results page which is powered by XTF but which integrates the 
use of the JQuery Tools’ Scrollable module. Figure 3 shows the salient features of this search 
results page and the scrollable module. Firstly, the search itself is displayed on the right hand 
sidebar and the number of matches is shown. The results can be sorted by title or date. Through 
XTF’s facetted browsing feature, users are able to narrow their search results further. Once 
again, we decided to keep it simple, only defining “date” and “keywords” as facetted browse 
fields.  

 

Figure 3. Main features of the search results page. 

The display of the actual results is visual, showing the JPEG files in a scrollable component 
which may be navigated either by clicking the arrows beside the component, or the circles 
above (thus, users can jump to any part of the list of results, which is particularly useful when 
there are a large number of matches). Each JPEG has a title and publication date associated with 
it. This display uses the JQuery Tools library, included in the document <head>: 

  <script src="script/jquery/jquery.tools.min.js" type="text/javascript"/> 

Also included are two CSS files for the styling of the module: 

  <link rel="stylesheet" type="text/css" href="css/default/scroll.css"/> 

  <link rel="stylesheet" type="text/css" href="css/default/scrollable-navig.css"/> 



XTF uses XSL stylesheets to control and configure the Java classes which drive it. The main 
scrollable module is defined within an XSL template in 
$XTF_HOME/style/crossQuery/resultFormatter/default/resultFormatter.xsl, which is called on 
the condition that a search returns at least one match (“docHit” in Code Listing 3). 

  <xsl:if test="docHit"> 

        <!-- scrolling images with zoomable image overlaid onclick --> 

        <xsl:call-template name="scrollable"> 

           <xsl:with-param name="browseOrSearch" select="docHit"/> 

        </xsl:call-template> 

  . 

  . 

  . 

  </xsl:if> 

Code Listing 3. The test for search term matches. 

 

The “scrollable” XTF XSL template defines container classes and ids such as “scrollable”, 
“thumbs”,  “thumb” and “meta”, the styles of which are set in the two CSS files, “scroll.css” and 
“scrollable-navig.css”.  The collection of pulls included some that had not been previously 
published and, therefore, had no publication date. A workaround was put in place for this - if the 
pull did not have a date greater than zero, instead of displaying a formatted date, the text 
"Unpublished" was displayed (see “unpublished material hack” in Code Listing 4). 

       <xsl:template name="scrollable" exclude-result-prefixes="#all"> 

     <xsl:param name="browseOrSearch"/> 

     <!-- navigator --> 

     <div class="navi"></div>         

     <!-- prev link --> 

     <a class="prevPage"></a> 

     <!-- root element --> 

     <div class="scrollable"> 

       <!-- container for items --> 

       <div id="thumbs"> 

         <!-- loop through browse/search results, add each to scroller --> 

         <xsl:for-each select="$browseOrSearch"> 

           <xsl:variable name="id" select="meta/identifier[1]"/> 

           <xsl:variable name="title" select="meta/title[1]"/> 

           <!-- unpublished material hack --> 



           <xsl:variable name="published" select="if(number(substring(meta/date[1],1,4)) > 0) 
then format-date(meta/date[1], '[D1o] [MNn,*-3],[Y]') else 'Unpublished'"/> 

           <!-- setup the scrollable "thumbnails" --> 

           <div> 

             <div id="thumb"> 

  <a class="thickbox" href="#TB_inline?height=700&amp; 
width=1000&amp;inlineId={$id}"> 

                <img src="img/jpgs/{$id}.jpg" alt="{$title}" title="{$title}" /> 

              </a> 

             </div> <!-- end thumb div --> 

             <div id="meta"> 

               <a class="thickbox" href="#TB_inline?height=700px&amp; 
width=1000&amp;inlineId={$id}"> 

                 <h4><xsl:value-of select="$title"/></h4> 

               </a> 

               <p><xsl:value-of select="$published"/></p> 

             </div> 

             <xsl:call-template name="overlay"> 

               <xsl:with-param name="id" select="$id"/> 

             </xsl:call-template> 

           </div> 

         </xsl:for-each> 

       </div><!--  end thumbs div --> 

     </div><!--  end scrollable div --> 

     <!-- next link --> 

     <a class="nextPage"></a> 

                <script type="text/javascript"> 

                // only execute scripts when DOM is ready 

                $(function() { 

 

                        // initialize scrollable 

                        $("div.scrollable").scrollable({ 

                                size: 3, 

                                items: '#thumbs', 

                                hoverClass: 'hover' 

                        }); 



                }); 

                </script> 

        </xsl:template> 

Code Listing 4. The “scrollable” XSL template 

 

Within each “thumb” and “meta” <div>, a hyperlink is setup which has a class of “thickbox” and 
passes some parameters in the URL, most notably the $id of the pull to show, as follows: 

<a class="thickbox" href="#TB_inline?height=700&amp; width=1000&amp;inlineId={$id}"> 

<img src="img/jpgs/{$id}.jpg" alt="{$title}" title="{$title}" /></a> 

 

The $id is, in all cases, standardized and represents: 

• The issue number, or publication week 
• The prefix of the *.dc.xml metadata file 
• The prefix of the *.jpg thumbnail file 
• The prefix of the Zoomify image tile directory 

Once a user wishes to view a particular pull in detail, they may click on the JPEG (or its title). An 
overlay with zoom and pan controls then allows the user to view each week’s comic strip in 
detail. 

THE VIEWING PLATFORM 
Rather than click through to a standalone page for viewing the pulls in Zoomify, we decided to 
integrate Zoomify with XTF through the use of an overlay. We chose ThickBox for creating the 
overlays, primarily for its ease of use (both from a user and developer perspective).  The 
following Javascript and CSS files were required for the thickbox component: 

             <!-- thickbox --> 

                <script type="text/javascript" src="script/thickbox/jquery.js"></script> 

                <script type="text/javascript" src="script/thickbox/thickbox.js"></script> 

                <link rel="stylesheet" href="css/default/thickbox.css" type="text/css" 
media="screen" /> 

                <link rel="stylesheet" href="css/default/overlay.css" type="text/css" 
media="screen" /> 

When the pull thumbnail or title is clicked in the scrollable component (from browse or search 
results), the XTF overlay XSL template (Code Listing 5) is called to display the zoomable and 
pannable pull.  

   <!-- =============================================================== --> 

   <!-- Overlay Template                                                --> 



   <!-- =============================================================== --> 

        <xsl:template name="overlay"> 

                <xsl:param name="id"/> 

                <div class="overlay" id="{$id}"> 

                        <p> 

                        <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" 
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,40,0
" width="1000" height="750" id="theMovie"> 

                        <!-- this works for IE --> 

                        <param name="FlashVars" 
value="zoomifyToolbarSkinXMLPath={$zoomifyToolbarSkinXMLPath}&amp;zoomifyImagePath={$zoomPath}
{$id}&amp;zoomifyNavigatorVisible=1&amp;zoomifyInitialZoom=10&amp;zoomifySplashScreen=0&amp;zo
omifyToolbarLogo=0&amp;zoomifyToolbarTooltips=1&amp;zoomifyNavigatorHeight=230&amp;zoomifyInit
ialX=0&amp;zoomifyInitialY=0&amp;zoomifyNavigatorX=870&amp;zoomifyNavigatorY=460" /> 

                        <param name="menu" value="false" /> 

                        <param name="src" value="{$zoomifyViewerPath}" /> 

                        <!-- this works for Firefox --> 

                        <embed 
FlashVars="zoomifyToolbarSkinXMLPath={$zoomifyToolbarSkinXMLPath}&amp;zoomifyImagePath={$zoomP
ath}{$id}&amp;zoomifyZoom=180&amp;zoomifyNavigatorVisible=1&amp;zoomifyInitialZoom=10&amp;zoom
ifySplashScreen=0&amp;zoomifyToolbarLogo=0&amp;zoomifyNavigatorHeight=230&amp;zoomifyInitialX=
0&amp;zoomifyInitialY=0&amp;zoomifyNavigatorX=870&amp;zoomifyNavigatorY=500" 
src="{$zoomifyViewerPath}" menu="false" 
pluginspage="http://www.macromedia.com/shockwave/download/index.cgi?P1_Prod_Version=ShockwaveF
lash"  width="1000" height="750" name="theMovie"></embed> 

                        </object> 

                        </p> 

                </div> 

        </xsl:template> 

Code Listing 5. The “overlay” XSL template 

 

Figure 4 shows the zoomed pull. The zoom and pan controls are shown at the bottom centre 
(green border), and the navigation window is shown at the bottom right of the overlay (yellow 
border).  

 

 



 

Figure 4. The Zoomify overlay showing zoom and pan controls, and the navigation window. 

 

The Zoomify window provides a convenient method of navigating through and reading the pulls 
and gives the user the opportunity to look in detail at the high resolution (tiled) images. Clicking 
on the “Close” link, using the “Esc” key or clicking anywhere outside of the overlay window 
closes the Zoomify overlay window. 

 

THE HOME PAGE 
The home page features 5 selected strips presented in a vertical tabbed format (Figure 5). 



 

Figure 5. Vertical accordion tabs on the home page.  

 

 We used JQuery Tools accordion tabs (Code Listing 6), with a “fade” effect, rather than sliding.   

 

<link rel="stylesheet" type="text/css" href="css/default/tabs-accordion.css"> 

<link rel="stylesheet" href="css/default/thickbox.css" type="text/css" media="screen"> 

<script src="script/jquery/jquery.tools.min.js" type="text/javascript"> </script> 

<script type="text/javascript" src="script/thickbox/thickbox.js"></script> 

. 

. 

. 

<script type="text/javascript"> 

$(function() { 

  $("#accordion").tabs("#accordion div.pane", { 

        tabs: 'h2', 

        effect: 'fade' 

  }); 

}); 

</script> 

Code Listing 6. JQuery Tools Accordion Tabs 



 

Clicking on a strip title fades in that particular strip’s “thumbnail”. Clicking on the thumbnail 
itself employs the same methods as the search/browse functionality to display a zoomable and 
pannable pull. 

 

THE TAG CLOUD 
As an alternative method for browsing the archive, it was suggested that a tag cloud be 
developed. I like Steven York's [3] approach to this, so I used a slightly modified version of his 
"accessible tag cloud in PHP and CSS (with MySQL)". Our "tags" were embedded in the 
$dc.identifier.other.dc.xml files, so a Java class (TagCloudFromDC.java) was written to extract 
the list of <subject> tag values from them, once again using the JAXP. The program outputs a flat 
text file with one tag per line, by traversing a directory of the dc.xml files. Steven York's PHP 
code was then modified to generate the HTML for the tag cloud from this text file (Figure 6). 

 

Figure 6. The Tag Cloud 

THE NAVIGATION MENU 
 

Highlighting the current page’s menu item was accomplished using the technique described at 
http://www.456bereastreet.com [2] among others. A unique id or class is added to the body 
element of the page. Then CSS rules are written to match each body id or class with the 
appropriate menu item anchor tag: 

http://www.456bereastreet.com/�


 

/* highlight current page’s corresponding navigation menu item */ 

body#home a#homenav, body#tagcloud a#tagcloudnav, 

body#about a#aboutnav, body#help a#helpnav, 

body#contact a#contactnav, body#search a#browseallnav, 

body#browseall a#browseallnav, body#browsetitle a#browsetitlenav, 

body#searchform a#searchnav, body#creators a#creatorsnav, 

body#permissions a#permissionsnav{ 

        font-weight: bold; 

        background: #ff3300; 

        color: #fff; 

} 

PRESENTATION AND COPY STYLES 
 

Aside from the functionality, the website needed to be attractive in a way that reflected the 
history of the strips. Hence, the fonts chosen were those that were in keeping with the style of 
the original comic strips. Images for the site headers and page background were actual cropped 
portions of the original pulls. The colors used were exciting and bright to denote the 
entertaining aspect of the content. The copy itself was also written in a fun, lighthearted, but 
informative sense to match the mood of the strips. 

The general styles and layout were loosely based on the University of Sydney stylesheets, so 
there were some constraints on the graphic design. 

 
 

SERVING THE SITE: SYSTEM ARCHITECTURE 
Part of what made it possible to do this site within a limited time was our established 
infrastructure. It has been made simple to clone a virtual server with the required components 
to run an XTF website here at the University of Sydney Library. Table 1 outlines our standard 
setup. 

Component Version Comments 
Operating System RedHat Enterprise Linux 5 

 
 

Java Sun Java 5  
Web Server Apache httpd v2.2 Handles incoming requests, 



passing them to Tomcat 
(using mod_proxy_ajp) 

Servlet container Tomcat v5.5 Serves the XTF servlets 
Proxying mod_proxy_ajp pushes port 80 requests to 

port 8080 (Tomcat) 
 

 

Table 1. University of Sydney Library IT Services standard server setup 

 

The mod_proxy_ajp setup is contained within the Apache virtual host for Frontiers: 

    ProxyPass       /       ajp://localhost:8009/ 

    ProxyPassReverse        /       ajp://localhost:8009/ 

In this manner, we can serve the home page as: 

http://frontiers.library.usyd.edu.au 

instead of: 

http://frontiers.library.usyd.edu.au:8080 

 

CONCLUSIONS 

OUTCOMES 
Referral data from Google analytics and our in-house web usage statistics indicate that there 
have been various sources of incoming traffic to the site, including: 

 
• Direct traffic (primarily as a result of the launch) 
• The Sydney University website 
• The Sydney University Library website 
• Wikipedia 
• The Sydney Morning Herald site (article) 
• The California Digital Library XTF website (featured application) 
• Google search 
• Facebook 

 
We have had a lot of qualitative positive user feedback, with comments such as: 

 

• “…the design is innovative and fresh…”, Martin Haye, California Digital Library 

http://frontiers.library.usyd.edu.au/�
http://frontiers.library.usyd.edu.au:8080/�


• “…it is beautifully done and really showcases a great way of displaying and granting 
access to such an ephemeral art form as the newspaper comic strip”, Bernard Caleo, 
comic book maker and publisher 

• “…I'm delighted to discover that Frontiers of Science is being preserved for 
posterity!”, Andrew Collier Cameron, Professor of Astronomy at the University of St 
Andrews 

 

We have also seen traffic peaks during times of media interest, such as the Frontiers of Science 
exhibition (and comic drawing competition) at the University of Sydney SciTech Library in 
February 2011. This points to the value of marketing and media used creatively in conjunction 
with the website. Of course, there are budgetary constraints on these activities. 

ISSUES 
Following the launch of the site, there were several issues that came to our attention. Firstly, to 
get the site done quickly, we used Zoomify. This worked well, but constrains the use of the site 
to Flash-compatible devices. Therefore, zooming and panning the pulls does not work on 
iPhones and iPads. Ideally, a javascript-based mechanism would be employed for the zooming 
and panning functionality. 

The site was W3C validated as far as practicable for HTML 4.01 Transitional or XHTML 1.0 
Transitional. Validating proved difficult primarily due to the embed code for Zoomify. Changing 
from a Flash-based script to javascript would circumvent these issues. 

In some cases, CSS code for the layout and styling proved difficult and was less than ideal. For 
example, aligning the search/limit results boxes with the JQuery Tools scrollable component 
could be better. Also the arrows for scrolling were not clear to some users, but changing them 
would have taken some time. 

These issues may have been avoided had the project received more funding for technical staff (I 
was the sole programmer available to work on the site, along with my other existing projects). 

 

FUTURE WORK 
One of the major enhancements planned for the site is using OCR to scan the original pulls and 
obtain full text for indexing. Full text searching would then be a possibility. Digitization and 
tagging of additional pulls is also yet to be done, to expand the current database of material 
available. 

Our standard server setup is now moving to Open JDK rather than the Sun Java JDK, so this will 
be instigated in the future. 

Pending funding, there is also the possibility of video interviews and other multimedia additions 
to the site. Social networking and blogging would also be valuable tools for the future of the site, 
allowing greater user interaction with the site and with the general and academic community. 
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