

SPATIAL CHORUS WITH FRACTAL MODULATION
 LAB REPORT 1

Robert W Taylor 311123392 (SID)

Digital Audio Systems, DESC9115, Semester 1 2012
Graduate Program in Audio and Acoustics

Faculty of Architecture, Design and Planning, The University of Sydney

INTRODUCTION

Chorus is a member of the family of ‘delay based effects’. Like
flanging and vibrato the resultant effect is based on the
principals of comb filtering and pitch variance due to dynamic
modulation. In this lab report I will be discussing the processes
undertaken to achieve a chorus effect using a fractal modulator,
within the MatLab environment.

1. THE CONSTRUCTION OF THE CHORUS EFFECT
IN MATLAB

1.1. FIR comb filter

This spatial chorus function was developed originally from a
vibrato algorithm sourced from the DAFx text [1]. In this case a
signal was periodically modulated in time to produce variance
in pitch.

 Figure 1. Vibrato

What disseminates a chorus and flange effect from vibrato is the
inclusion of a direct signal and a delayed version creating an
FIR comb filter.

In the next stage of the function construction, a feed forward
signal was implemented to the vibrato, which essentially creates
a FIR comb filter, hence the flange effect. Gain control was also
added to both the delay line and feed forward to control the
relative amplitude of the delayed and original signal. [2]

Figure 2. A FIR comb filter. A vibrato with
feed forward will create a basic flange effect.

The difference equation and transfer function are given by: [3]
Eq.1

! ! = ! ! + !" ! − ℳ

!"#ℎ ! = ! ∕ ℱ!

ℋ ! = 1 + !!!!

‘For positive values of g, the filter amplifies all frequencies that
are multiples of 1/! and attenuates all frequencies that lie in
between. The transfer function of such a filter shows a series of
spikes and it looks like a comb. For negative values of g, the
filter attenuates frequencies that are multiples of 1/! and
amplifies those that lie in between. The gain varies between 1 +
g and 1 – g.’[4] (Figure 3)

Figure 3. Magnitude response of a 3ms delay
line/1kHz tone. An example of FIR comb filtering,
and as you can see it creates a ‘comb’ like response.

1.2. Interpolation

Interpolation is necessary to process non-integer values of the
sampling frequency due to variable delay times. 3 algorithms
were included in the original DAFx vibrato function, which
were allocated to ‘cases’ in a switch. Linear, Spline and All-
pass.

‘The choice of algorithm depends on the specific application’
[5] and in this situation a spline interpolation was chosen
primarily due to the audible quality of the output signal. This
was an arbitrary decision, however the immediate concerns of
the level of distortion and overall quality led to this selection.
Further investigation will be required.

Spline interpolation:
Eq. 2

! ! = !(! − ! + 1 ∙
!"#$!

6

+ ! ! −! ∙
(1 + !"#$)! − 4 ∙ !"#$!

6

+ ! ! − ! − 1 ∙
(2 − !"#$)! − 4(1 − !"#$)!

6

+ ! ! − ! − 2 ∙
(1 − !"#$)!

6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sydney eScholarship

https://core.ac.uk/display/41236158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1.3. Modulation signal

Vibrato and flange both use smooth sinusoidal modulation of
the delay time to create their respective effects. Chorus on the
other hand uses a random modulation via white noise as the
modulating signal. One of the main aims of this exercise was to
experiment using a fractal noise algorithm. A separate function
to create this fractal modulation signal was developed by Assoc.
Professor William Martens for this project. [frand64.m] [Figure
4] [6]

With the use of a ‘switch’, both a fractal and white noise
modulator [randsig.m] could be selected giving an opportunity
to compare the results.

Figure 4. An example of an 8 sample
fractal algorithm when each entry is a
random number.

To control the correlation between the left and right modulators,
a simple mixing system was implemented as shown below
[pcor_sigs.m]. This is an important spatial component
considering that when de-correlated it will enhance the ‘stereo
width’ effect associated with ITD (Inter-aural time delay).
[y.wav] When a mono modulated signal is fed to both left and
right, this effect is reduced. [y1.wav]

Figure 5. Mixing algorithm to control
correlation between left and right
modulators.

A lowpass filter was then added to the modulation signal to
control sub-audio modulation rates. A second order filter was
created in a separate function and implemented into the main
chorus function. [M_fq2coef.m] [7]

Finally, the modulating signal is normalized as the signal can go
up to high levels due to the filtering. This makes sure that the
depth actually makes sense as the multiplier of the signal and
the percentage of the maximum deviation from the base delay.
The following standard normalizing code is used:

resampled_noiseL = resampled_noiseL./max(abs(resampled_noiseL));
resampled_noiseR = resampled_noiseR./max(abs(resampled_noiseR));

1.4. Memory allocation

It was important to allocate adequate memory for the output
vectors of the delay. Calculations are made for any possible
length of delay line when the parameters are at extremes, and
zeros created using the following code;

L = ceil(6 + DELAYMAX + (DELAYMAX*WidthMax));
% length of the entire delay
DelaylineL=zeros(L,1);
DelaylineR=zeros(L,1);
% memory allocation for delay
yL=zeros(length(x),1);
yR=zeros(length(x),1);
% memory allocation for output vector

1.5. Gain structure and output

It is typical of an effects system to provide a function to mix the
‘dry’ and ‘wet’ signals at the output stage. A simple additive
algorithm was included to combine the original signal and
effected signal. In this case parameters were set to provide
choices between, -1 (100% dry), 0 (50/50), 1 (100% wet). It was
implemented using the following code:

mixnorm = mix + 1;
mixnorm = mixnorm./2;
drylevel = 1 - mixnorm;
wetlevel = mixnorm;
x_gain_corrected = x .* drylevel;
yL = yL .* wetlevel;
yR = yR .* wetlevel;

Finally, a two-channel matrix for output and the mixed output
signal normalized, including a gain control to provide the final
output amplitude between 0 and 1.

y = [yL yR];
y = (y./max(max(abs(y)))).*output_level;

2. FUNCTION PARAMETERS

function y=Spatial_chorus(x,SAMPLERATE, WidthL,
WidthR, DelayL, DelayR, ModRate, ModCorr,
ModType, ModFilterF, ModFilterQ, Interpolation,
mix, fx_shift, output_level); [Spatial_chorus.m]

• ‘x’ – wave input

• ‘SAMPLERATE’ – Sample rate of sound source in
Hz.

• ‘WidthL, WidthR’ – Peak deviation from base delay.

Value between 0 (less width) and 1 (more width).
[y3.wav] [y4.wav]

• ‘DelayL, DelayR’ – Delay of delay line in

milliseconds. [y5.wav] [y7.wav]

• ‘ModRate’ – Control rate of modulation signal in
samples/sec. [y7.wav]

• ‘ModCorr’ – Correlation of left and right modulation

signals. Value between 0 (no correlation) and 1
(correlation). [y.wav] [y1.wav]

• ‘ModType’ – To select the type of modulation signal,

either fractal based or white noise. Value either 1
(fractal), or 0 (white noise). [y.wav] [y2.wav]

• ‘MofFilterF’ – Modulation signal filter frequency
selection in Hz

• ‘ModFilterQ’ – Modulation signal filter bandwidth in

Hz.

• ‘Interpolation’ – selection of interpolation algorithm.
Value either 1 (spline) or 2 (all-pass).

• ‘Mix’ – mix level between dry/wet signals. Values

between -1 (100% dry), 0 (50/50), 1 (100% wet).

• ‘fx_shift’ – Delay of the modulated channel path in
milliseconds.

• ‘output_level’ – Overall level of final output signal

3. RESULTS

Figure 6. A diagram of the finished ‘Spatial chorus
with fractal modulation’.

The resulting digital audio effect is a working ‘Spatial chorus
with fractal modulator’. [Spatial_chorus.m] The parameters
included are designed to give the operator maximum control
over all aspects of this chorus effect, more than would be
available in a commercial product. Due to the experimental
nature of the design, it is necessary at this stage to provide such
parameters until conclusions can be made to their effectiveness.

It must be considered that some parameters could be set to a
default setting or in fact not included at all. An example of these
would be the parameter for selection of ‘interpolation’, which
after evaluation only the one considered most appropriate would
be included.

The fractal noise created for this function, although does
provide a usable alternative to white noise as a random
modulation signal, requires further evaluation and subject
testing before any further conclusions can be made. There is a
obvious slight audible differentiation between the fractal and
white noise modulation to the outcome, so in my opinion further
evaluation is warranted.

4. ADDITIONAL FILES

MatLab Files:

[Spatial_chorus_script_LabReport1.m] – The MatLab
operational script to run the effect.

[Spatial_chorus.m] – The main MatLab function of the effect.

[frand64.m] – The MatLab function containing the fractal
modulator signal.

[randsig.m] – The MatLab function containing the white noise
modulator signal.

[pcor_sigs.m] – The MatLab function containing the mixing
system of the left/right modulator signals.

[M_fq2coef.m] – The MatLab function containing the second
order filter of the modulator signal.

Sound files:

• [x.wav] – original file

• [y.wav] – reference parameters (as listed below)

% Reference parameters:
if nargin < 15, output_level = 0.999; end
if nargin < 14, fx_shift = 0; end
if nargin < 13, mix = 0; end
if nargin < 12, Interpolation = 1; end
if nargin < 11, ModFilterQ = 2; end
if nargin < 10, ModFilterF = 8; end
if nargin < 9, ModType = 1; end
if nargin < 8, ModCorr = 0; end
if nargin < 7, ModRate = 10; end
if nargin < 6, DelayR = 10; end
if nargin < 5, DelayL = 8; end
if nargin < 4, WidthR = 0.09; end
if nargin < 3, WidthL = 0.05; end
if nargin < 2, SAMPLERATE = 44100; end

The following files include the reference parameters as base
settings plus the parameters listed.

• [y1.wav] - Maximum correlation between left and

right modulators.

• [y2.wav] – white noise modulator signal.

• [y3.wav] – WidthL 0.04, WidthR 0.02.

• [y4.wav] – WidthL 0.6, WidthR 0.4

• [y5.wav] – DelayL 15ms, DelayR 20ms

• [y6.wav] - DelayL 25ms, DelayR 30ms

• [y7.wav] – ModRate 40Hz, ModFilterF 25Hz.

• [y8.wav] - ModRate 40Hz, ModFilterF 25Hz and
white noise modulation signal

5. REFERENCES

[1] Digital Audio Effects, Edited by Udo Zölzer, John Wiley
& Sons, 1st edition 2002, ISBN: 0-471-49078-4. (Chap 3,
Page 69).

[2] Op. cit. (Chap 3, Page 69).
[3] Ibid (Chap 3, Page 65).
[4] Ibid (Chap 3, page 64).
[5] Ibid (Chap 3, page 68).
[6] Evangelista, Gianpaolo. “Fractal modulation effects”.

Proc. of the 9th Int. Conference on Digital Audio Effects
(DAFx-06), Montreal, Canada, 2006 (Page 106)

[7] Zölzer, Udo. “Digital Audio Signal Processing”. John
Wiley and Sons, 2nd edition, 2008, ISBN 978-0-470-
99785-7. (Chap. 5, Page 130).

