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Abstract

In this paper, we relax the assumption of constant regime-specific mean growth rates in
Hamilton’s (1989) two-state Markov-switching model of the business cycle. We first present
a benchmark model, in which each regime-specific mean growth rate evolves according to
a random walk process over different episodes of booms or recessions. We then present a
model with vector error correction dynamics for the regime-specific mean growth rates, by
deriving and imposing a condition for the existence of a long-run equilibrium growth rate for
real output. In the Bayesian Markov Chain Monte Carlo (MCMC) approach developed in
this paper, the counterfactual priors, as well as the hierarchical priors for the regime-specific
parameters, play critical roles.

By applying the proposed approach to postwar U.S. real GDP growth (1947:Q4-2011:Q3),
we uncover the evolving nature of the regime-specific mean growth rates of real output in
the U.S. business cycle. An additional feature of the postwar U.S. business cycle that we
uncover is a steady decline in the long-run equilibrium output growth. The decline started in
the 1950s and ended in the 2000s. Our empirical results also provide partial, if not decisive,
evidence that the central bank may have been more successful in restoring the economy back
to its long-run equilibrium growth path after unusually severe recessions than after unusually
good booms.
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1. Introduction

Blanchard and Watson (1986) raised an interesting question of whether or not business

cycles are all alike. Their answer was “No.” To motivate this paper, we ask, “Are postwar

booms or recessions all alike?” Our answer is tentatively “No.” In a two-state Markov-

switching model of the business cycle as proposed by Hamilton (1989), the mean growth

rates of real GDP during different episodes of a specific regime (boom or recession) are

assumed to be the same. We claim that, even though this assumption may be a reasonable

approximation for a specific sample, it may be a poor approximation for the extended sample

that covers the whole postwar period. This is confirmed by Figure 1, in which the quarterly

growth rates of real GDP for the sample period 1947:Q4 to 2011:Q3 are plotted along with

the mean growth rate for each episode of NBER boom or recession. The shaded areas refer to

the NBER recession periods. In the summary statistics provided in Table 1, the mean growth

rates for the 12 historical episodes of booms range between 0.59 and 1.83 with a standard

deviation of 0.37. The mean growth rates for the 11 historical episodes of recessions range

between 0.02 and -0.69 with a standard deviation of 0.23.

In order to further motivate the use of our new methodology, we assess the performance

of Markov-switching model with constant growth rates as in Hamilton (1989) during two

different sample periods: the pre-Great Moderation period (1952:Q2-1984:Q4) and the full

sample period (1947:Q4-2011:Q3) by comparing their identifications of business cycles to the

NBER chronology. The pre-Great Moderation period was used in Hamilton (1989) although

he used real GNP data for his business cycle analysis. Figure 2 depicts posterior mean

probabilities of recessions from the benchmark Hamilton model for the pre-Great Moderation

period. As in Hamilton (1989), posterior recession probabilities are quite consistent with the

NBER recession dating. When making inferences over the full sample period including

the 1940s and the mid-1980s to the 2000s as in Figure 3, the recessions during the Great

Moderation are not clearly identified and their recession probabilities are below 0.5 although

the most recent recession so called the Great Recession is well detected with probability close

to 1. Including the Great Moderation period may give rise to inefficiency due to heterogeneity

of growth rates over different episodes within business cycle regimes and heteroscedasticity.

2



In this paper, we propose a flexible two-state Markov-switching model of the business

cycle, in which the regime-specific mean growth rates of real output may evolve over dif-

ferent episodes of booms or recessions. That is, we propose a new model of the business

cycle that consists of three features: i) specification of the Markov-switching latent variable

that determines the business cycle regimes; ii) specification of the evolving regime-specific

parameters in the form of hierarchical priors; and iii) specification of the time series within

each regime.

We first present a benchmark model, in which we assume a simple random walk hierar-

chical prior for each regime-specific mean growth rate. Within this framework, we provide

insights into how the inferences about the model can be made. One potential difficulty

is that, conditional on the current state being a recession (boom), the prior for the mean

growth rate for a boom (recession) is not defined. We propose to solve the problem by

employing ‘counterfactual priors’ that are appropriately derived from the hierarchical priors.

For example, conditional on the current state being a boom, we ask what the mean growth

rate would be if we were in a recession.

By imposing a condition for the existence of a long-run or unconditional growth rate for

real output, we then extend the benchmark model to allow for a cointegrating relationship

between the two regime-specific mean growth rates. For this purpose, we design the hier-

archical priors and the corresponding counterfactual priors in order to incorporate vector

error correction dynamics for the regime-specific mean growth rates. Note that the long-run

restriction incorporated in the extended model can result from the central bank’s successful

attempts to stabilize the economy. For example, if the economy deviates from the long-run

growth path due to a large and infrequent shock, the central bank may intervene to restore

the economy back to its long-run growth path.

For inference of the models proposed, we build on recent advances in Bayesian approaches

to change-point models that allow for flexible relationships between parameters in various

regimes and/or unknown number of structural breaks. (Koop and Potter (2007), Giordani

and Kohn (2008), Geweke and Jiang (2009), etc.) In particular, we follow Koop and Potter

(2007) and cast the models into standard Markov-switching state-space formulations with

heteroscedastic shocks to regime-specific parameters. The counterfactual priors, as well as

3



the hierarchical priors, play important roles in this step. Once the models are put into

standard state-space formulations, a Markov Chain Monte Carlo (MCMC) procedure can be

easily developed based on the existing posterior simulation method for state-space models

and that for Markov-switching models. For example, in order to generate the evolving

regime-specific parameters conditional on the Markov-switching regime indicator variable,

we can take advantage of Carter and Kohn’s (2007) and Kim et al.’s (1998) methods of

posterior simulation for linear state-space models. In order to generate the Markov-switching

regime indicator variable conditional on the evolving regime-specific parameters, we employ

a modified version of Albert and Chib’s (1993) method.

We then apply the new proposed approach to postwar U.S. real GDP growth from

1947:Q4 to 2011:Q3. In addition to evolving regime-specific growth rates, we also allow for

the possibility of change in its long-run growth rate in order to distinguish the regime-specific

variations from the long-run growth change.

We find that the proposed model considerably outperforms the Hamilton model (1989)

with constant regime-specific mean growth rates, both in identifying recessions and in making

inferences about the mean growth rates. Another interesting finding is that the decline in the

long-run output growth was not abrupt. It started in the 1950s and ended in the 2000s. This

is in sharp contrast to the literature (e.g. Perron (1989) and Zivot and Andrews (2002)),

which suggests an abrupt decline in the long-run output growth around the mid-1970s.

Furthermore, empirical results obtained from the application show that the estimate

of the error correction parameter under recession regime is greater than that under boom

regime in absolute value and it implies that the economy would return to the long run

trend faster in recession than in boom when it deviates from the long run growth path. A

possible interpretation is that the Fed’s policy may have been asymmetric so that it may

have been relatively more effective or aggressive in restoring the economy back to its long-run

growth path after unusually severe recessions than after unusually high booms. However, a

comprehensive analysis of the sources of the estimate difference is beyond this paper’s scope

and it requires further investigation.

The remainder of this paper is organized as follows. In Section 2, we briefly review recent

advances in the Bayesian approach to change-point models. Section 3 presents model specifi-
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cations. We first present a benchmark Markov-switching model, in which the regime-specific

parameters are assumed to follow random walks over different episodes of regimes. We then

extend the benchmark model to a general case, in which the regime-specific parameters are

assumed to be cointegrated. In this case, the hierarchical priors for the regime-specific pa-

rameters, combined with the counterfactual priors, form a vector error correction model.

In Section 4, we present a state-space representation of the general model, and develop the

MCMC procedure for Bayesian inference of the model. In Section 5, we apply the model to

postwar U.S. real GDP growth. Section 6 provides a summary.

2. Hierarchical Priors in Bayesian Approaches to Change-Point Models: Review

In order to provide some econometric foundation for the current paper, we begin our

discussion by considering the following simplified version of a change-point model with M−1

structural breaks or M regimes:

yt = μDt + xt, Dt = 1, 2, ...,M, (1)

φ(L)xt = et, et ∼ i.i.d.N(0, σ2
e), (2)

where all roots of φ(L) = 1 − φ1L − . . . − φrL
r = 0 lie outside the complex unit circle; Dt

specifies the regimes separated by the change points. By assuming that the latent variable

Dt is Markovian with absorbing states, Chib (1998) deals with the case of a fixed (known)

number of regimes M and independent parameters across regimes. Pesaran et al. (2006)

assume that all the μDt
′s are drawn from a common distribution. More recently, Koop and

Potter (2007) extend Chib’s (1998) model in at least two directions. First, they consider

the case of an unknown number of structural breaks or regimes by employing a flexible

Poisson hierarchical prior distribution for the durations of the regimes. Second, for given

M and conditional on Dt = τ , they allow for dependence between the pre-and post-break

parameters of the model by employing a hierarchical prior of the following form:

μτ = μτ−1 + ωτ , ωτ ∼ i.i.d.N(0, Σω), τ = 1, 2, ...,M (3)
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The strategy adopted by Koop and Potter (2007) is to put the equations in (1)-(3) into a

standard state-space model used in the unobserved-components or time-varying parameters

formulations. Then, conditional on the dates of structural breaks, the methods of posterior

simulation for state-space models are readily available, as developed by Carter and Kohn

(1994) and Kim et al. (1998).

Note that the model in equations (1)-(3) is different from the standard state-space model

in that the regime-specific parameters in equation (3) do not have the t subscripts. Condi-

tional on the dates of structural breaks, the standard state-space representation of the model

in equations (1)-(3) is given below:

yt = μ∗
t + xt, (4)

μ∗
t = μ∗

t−1 + ω∗
t , ω∗

t ∼ N(0, dtΣω), (5)

where xt is as defined in (2) and

dt =

{
1, if Dt−1 = i and Dt = j with j = i + 1 ;

0, if Dt−1 = i and Dt = j with j = i,
(6)

which suggests that μ∗
t is subject to a heteroscedastic shock. μ∗

t changes only when regime-

shift occurs and is constant otherwise.

In the next section, we adopt the above framework in specifying and making inferences

of the Markov-switching models with evolving regime-specific parameters. According to

their terminology, the mean growth rate for recession or boom undergoes a structural break

whenever we face a new episode of recession or boom.

3. Markov-Switching Models with Evolving Regime-Specific Parameters

3.1. A Benchmark Model with Random Walk Dynamics for Regime-Specific
Parameters

Let yt be real output growth, and consider the following Markov-switching model of the

business cycle:
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yt = (1 − St)μ0,τ0 + Stμ1,τ1 + xt, St = 0, 1, (7)

φ(L)xt = et, et ∼ i.i.d.N(0, σ2
e), (8)

t = 1, 2, ..., T ; τ0 = 1, 2, ..., N0; τ1 = 1, 2, ..., N1,

where μ0,τ0 is the mean growth rate during the τ0 − th episode of boom in the sample; μ1,τ1

is the mean growth rate during the τ1 − th episode of recession; N0 and N1 are the total

numbers of the episodes of booms and recessions, respectively, conditional on the states; and

the roots of φ(L) = 1 − φ1L − . . . − φrL
r = 0 lie outside the complex unit circle. Note that

N0 and N1 are random variables, and they are dependent upon the realizations of the latent

state variables S̃T = [ S1 S2 . . . ST ]′ that characterize the business cycle regime. The

latent state variable St follows a first-order Markov-switching process with the transition

probabilities:

Pr[St = 1|St−1 = 1] = p, Pr[St = 0|St−1 = 0] = q. (9)

While Hamilton (1989) assumes that μ0,τ0 = μ0 for all τ0 = 1, 2, ..., N0 and μ1,τ1 = μ1 for

all τ1 = 1, 2, ..., N1, we allow for the possibility that different episodes of booms (or recessions)

have different mean growth rates. In order to allow for dependence of mean growth rates

between current and past episodes of booms or recessions, we adopt hierarchical priors given

by the following random walk dynamics for μ0,τ0 and μ1,τ1 :

Hierarchical Priors

μ0,τ0 = μ0,τ0−1 + ω0,τ0 , ω0,τ0 ∼ i.i.d.N(0, σ2
ω,0), (10)

μ1,τ1 = μ1,τ1−1 + ω1,τ1 , ω1,τ1 ∼ i.i.d.N(0, σ2
ω,1), (11)

τ0 = 1, 2, ..., N0; τ1 = 1, 2, ..., N1,

where ω0,τ0 and ω1,τ1 are independent of each other and are not correlated with et in equation

(8). Within the context of the linear models with multiple structural breaks, Koop and Potter

(2007) employ the same hierarchical prior in order to allow for dependence in parameters
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across regimes. When σ2
ω,0 = σ2

ω,1 = 0 the above model collapses to that of Hamilton (1989).

The fundamental difference between the model proposed in this paper and that in Hamilton

(1989) is illustrated in Figure 4.

The model in equations (7)-(8) and (10)-(11) differs from a standard state-space model

in that the subscripts on the parameters of the measurement equation in (7) do not have t

subscripts but rather τ0 and τ1 subscripts, so that the regime-specific parameters μ0,τ0 or μ1,τ1

change only when we face a new episode of boom or recession. Thus, in adopting Koop and

Potter’s (2007) approach, successful inference of the model would depend upon a successful

derivation of its conventional unobserved-components representation of the following form:

Conventional Unobserved-Components Model Representation

yt = (1 − St)μ
∗
0,t + Stμ

∗
1,t + xt (12)

where the dynamics of μ0,τ0 in equation (10) should be captured by μ∗
0,t and the dynamics

of μ1,τ1 in equation (11) should be captured by μ∗
1,t. Note that in the above formulation, all

the variables have t subscripts.

However, μ0,τ0 is defined only during booms and not during recessions, resulting in dif-

ficulty in deriving the dynamics of μ∗
0,t during recessions. In the same way, μ1,τ1 is defined

only during recessions and not during booms, resulting in difficulty in deriving the dynamics

of μ∗
1,t during booms. In order to overcome this difficulty, we employ the concept of ‘counter-

factual priors’, by asking: i) Conditional on the current state being the τ0 − th boom, what

would be the mean growth of real GDP if we were in a recession? (μ1,τ0); and ii) Conditional

on the current state being the τ1− th recession, what would be the mean growth of real GDP

if we were in a boom? (μ0,τ1). These counterfactual priors, as implied by the random-walk

hierarchical priors in (10) and (11) are given by:

Counterfactual Priors

μ1,τ0 = μ1,τ ′
1
, τ0 = 1, 2, ..., N0, (13)

μ0,τ1 = μ0,τ ′
0
, τ1 = 1, 2, ..., N1, (14)
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where μ1,τ ′
1

is the mean growth rate during a recession right before the τ0 − th episode of

boom and μ0,τ ′
0

is the mean growth rate during a boom right before the τ1 − th episode of

recession.

As illustrated in Figure 5, the hierarchical priors in equations (10)-(11) and the resulting

counterfactual priors in equations (13)-(14) can be combined together. Thus the model given

by equations (7), (10)-(11), and (13)-(14) can be rewritten as:

yt = (1 − St)μ0,τ + Stμ1,τ + xt, St = 0, 1, (7′)

μ0,τ = μ0,τ−1 + ω0,τ , ω0,τ ∼ N(0, (1 − St)σ
2
ω,0), (15)

μ1,τ = μ1,τ−1 + ω1,τ , ω1,τ ∼ N(0, Stσ
2
ω,1), (16)

τ = 1, 2, ..., N0 + N1, t = 1, 2, ..., T,

where, conditional on the current state being a boom (St = 0), we have μ0,τ = μ0,τ0 (prior);

μ1,τ = μ1,τ0 (counterfactual prior); μ0,τ−1 = μ0,τ ′
1
; μ1,τ−1 = μ1,τ ′

1
; ω0,τ = ω0,τ0 ; and ω1,τ = 0.

Conditional on the current state being a recession (St = 1), we have μ0,τ = μ0,τ1 (counter-

factual prior); μ1,τ = μ1,τ1 (prior); μ0,τ−1 = μ0,τ ′
0
; μ1,τ−1 = μ1,τ ′

0
; ω0,τ = 0; and ω1,τ = ω1,τ1 .

Furthermore, note that equations (15)-(16) imply the following random walk dynamics with

heteroscedastic disturbances for μ∗
0,t and μ∗

1,t in equation (12):

μ∗
0,t = μ∗

0,t−1 + ω∗
0,t, ω∗

0,t ∼ N(0, d10,tσ
2
ω,0), (17)

μ∗
1,t = μ∗

1,t−1 + ω∗
1,t, ω∗

1,t ∼ N(0, d01,tσ
2
ω,1), (18)

t = 1, 2, ..., T,

where

dij,t =

{
1, if St−1 = i and St = j, j �= i;

0, otherwise,
(19)

and for identification of the model, we need

μ∗
0,t > μ∗

1,t, ∀ t. (20)

9



3.2. An Extended Model with a Long-Run Restriction: Vector Error Correction
Dynamics for Mean Growth Rates

One potential weakness of our benchmark model in Section 3.1 is that the long-run or

the unconditional expectation of the output growth rate does not exist. In this section, we

first derive a condition for the existence of a long-run growth rate.

By denoting the long-run growth rate as δ, we rewrite equation (7) as

yt = δ + (1 − St)μ0,τ0 + Stμ1,τ1 + xt. (21)

Assume that, at time t, we are under τj − th episode of boom (j = 0) or recession (j = 1).

Given the random walk hierarchical priors and the counterfactual priors implied by them as

in Section 3.1, we have:

E(μ0,τSt+1
|Iτj

) = μ0,τj
, j = 0, 1 (22)

E(μ1,τSt+1
|Iτj

) = μ1,τj
, j = 0, 1 (23)

where Iτj
refers to all the past and current regime-specific mean growth rates up to current

episode of boom or recession. These results lead to the following prediction of the mean

growth rate at time t + 1:

E(yt+1|Iτj
)

= δ + (1 − E(St+1|Iτj
))E(μ0,τSt+1

|Iτj
) + E(St+1|Iτj

)E(μ1,τSt+1
|Iτj

) + E(xt|Iτj
)

= δ + Pr[St+1 = 0|Iτj
]μ0,τj

+ Pr[St+1 = 1|Iτj
]μ1,τj

+ E(xt|Iτj
), j = 0, 1

(24)

By taking unconditional expectations on both sides of equation (24), we get the following

restriction for the existence of the unconditional expectation of the growth rate:

E(π0μ0,τ + π1μ1,τ ) = 0, (25)

where, conditional on St = 0, we have μ0,τ = μ0,τ0 (prior) and μ1,τ = μ1,τ0 (counterfactual

prior); conditional on St = 1, we have μ0,τ = μ0,τ1 (counterfactual prior) and μ1,τ = μ1,τ1

(prior); and πi = Pr[St+1 = i], i = 0, 1, are the unconditional probabilities of boom (i = 0)
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and recession (i = 1). Notice that this long-run restriction, combined with the random

walk assumptions for the regime-specific mean growth rates, suggests that τ0,τ and τ1,τ are

cointegrated with a cointegrating vector [π0 π1 ]′.

In this section, we impose the above long-run restriction in the benchmark model, by con-

sidering the following vector error correction dynamics for the regime-specific mean growth

rates:

Hierarchical Priors

μ0,τ0 = μ0,τ ′
1
+ θ0(π0μ0,τ ′

1
+ π1μ1,τ ′

1
) + ω0,τ0 , ω0,τ0 ∼ i.i.d.N(0, σ2

ω,0), (26)

μ1,τ1 = μ1,τ ′
0
+ θ1(π0μ0,τ ′

0
+ π1μ1,τ ′

0
) + ω1,τ1 , ω1,τ1 ∼ i.i.d.N(0, σ2

ω,1), (27)

τ0 = 1, 2, ..., N0; τ1 = 1, 2, ..., N1

where μ1,τ ′
1

is the mean growth rate during a recession right before the τ0 − th episode of

boom and μ0,τ ′
1

is the counterfactual mean growth rate of a boom during the same recession

period; μ0,τ ′
0

is the mean growth rate during a boom right before the τ1 − th episode of

recession and μ1,τ ′
0

is the counterfactual mean growth rate of a recession during the same

boom period.

It is straightforward to derive the dynamics for the counterfactual priors as implied by

the above hierarchical priors. They are given below:

Counterfactual Priors

μ1,τ0 = μ1,τ ′
1
+ θ1(π0μ0,τ ′

1
+ π1μ1,τ ′

1
), τ0 = 1, 2, ..., N0, (28)

μ0,τ1 = μ0,τ ′
0
+ θ0(π0μ0,τ ′

0
+ π1μ1,τ ′

0
), τ1 = 1, 2, ..., N1. (29)

Note that, when θ0 = θ1 = 0, the hierarchical priors and the counterfactual priors specified

in equations (26)-(29) collapse to those in equations (10)-(11) and (13)-(14).

What follows briefly describes the nature of the model with the long-run restriction.

Suppose that, during the last boom, the economy was operating at the long-run equilibrium

in the sense that π0μ0,τ0−1 + π1μ1,τ0−1 = 0. Further suppose that the following recession
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was unusually severe in the sense that π0μ0,τ ′
1

+ π1μ1,τ ′
1

< 0. Then, the central bank may

intervene to restore the economy back to long-run equilibrium growth path, resulting in a

higher growth during the τ0 − th boom than otherwise. In this case, we can predict θ0 < 0.

In the same spirit, if the central bank responds to an unusually high growth rate during a

boom (preceding the current recession) in the opposite way, we can also predict θ1 < 0.

By combining the hierarchical priors in equations (26)-(27) and the counterfactual priors

in (28)-(29), we can rewrite the model given by equations (21) and (26)-(29) as:

yt = δ + (1 − St)μ0,τ + Stμ1,τ + xt, (21′)

μ0,τ = μ0,τ−1 + θ0(π0μ0,τ−1 + π1μ1,τ−1) + ω0,τ , ω0,τ ∼ N(0, (1 − St)σ
2
ω,0), (30)

μ1,τ = μ1,τ−1 + θ1(π0μ0,τ−1 + π1μ1,τ−1) + ω1,τ , ω1,τ ∼ N(0, Stσ
2
ω,1), (31)

μ0,τ > 0 and μ1,τ < 0, ∀ τ,

τ = 1, 2, ..., N0 + N1, t = 1, 2, ..., T,

where, conditional on the current state being a boom (St = 0), we have: μ0,τ = μ0,τ0

(prior); μ1,τ = μ1,τ0 (counterfactual prior); μ0,τ−1 = μ0,τ ′
1
; μ1,τ−1 = μ1,τ ′

1
; ω0,τ = ω0,τ0 ; and

ω1,τ = 0. Conditional on the current state being a recession (St = 1), we have: μ0,τ = μ0,τ1

(counterfactual prior); μ1,τ = μ1,τ1 (prior); μ0,τ−1 = μ0,τ ′
0
; μ1,τ−1 = μ1,τ ′

0
; ω0,τ = 0; and

ω1,τ = ω1,τ1 . Then, as in the previous section and as illustrated in Figure 6, by noting that

(30)-(31) imply vector error correction dynamics with heteroscedastic shocks, we have the

following conventional unobserved-components representation of the model:

Conventional Unobserved-Components Model Representation

yt = δ + (1 − St)μ
∗
0,t + Stμ

∗
1,t + xt, (32)

μ∗
0,t = μ∗

0,t−1 + θ0(d10,t + d01,t)(π0μ
∗
0,t−1 + π1μ

∗
1,t−1) + ω∗

0,t, ω∗
0,t ∼ N(0, d10,tσ

2
ω,0), (33)

μ∗
1,t = μ∗

1,t−1 + θ1(d10,t + d01,t)(π0μ
∗
0,t−1 + π1μ

∗
1,t−1) + ω∗

1,t, ω∗
1,t ∼ N(0, d01,tσ

2
ω,1), (34)

t = 1, 2, ..., T,

where dij,t is as defined in equation (19), and for identification of the model, we need
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μ∗
0,t > 0 and μ∗

1,t < 0, ∀ t. (35)

Finally, in order to guarantee the stability of the above vector error correction model

and the existence of long-run output growth, we actually need a restriction on the θ0 and

θ1 parameters. If we cast the vector error-correction model in (30)-(31) into a state-space

form, we have:

⎡
⎢⎢⎢⎣

Δμ0,τ

Δμ1,τ

zτ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0 θ0

0 0 θ1

0 0 1 + θ0π0 + θ1π1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

Δμ0,τ−1

Δμ1,τ−1

zτ−1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

1 0

0 1

π0 π1

⎤
⎥⎥⎥⎦
[
ω0,τ

ω1,τ

]
, (36)

[
ω0,τ

ω1,τ

]
∼ N

([
0

0

]
,

[
(1 − St)σ

2
ω,0 0

0 Stσ
2
ω,1

])
, (37)

τ = 1, 2, ..., N0 + N1,

where zτ = π0μ0,τ +π1μ1,τ is the equilibrium error during period τ . As the equilibrium error

needs to be stationary, the restriction on the θ0 and θ1 parameters are given by:

−1 < 1 + θ0π0 + θ1π1 < 1 (38)

4. A Markov-Chain Monte Carlo (MCMC) Procedure

4.1. Outline for the MCMC Procedure

As in Koop and Potter (2007), we first cast the unobserved components model derived

in the previous section into a state-space model. For illustrative purposes, we assume that

xt in equation (21) or (32) follows a white noise process with φ(L) = 1.

Measurement Equation

13



yt = δ + [ (1 − St) St ]

[
μ∗

0,t

μ∗
1,t

]
+ et, et ∼ i.i.d.N(0, σ2

e), (39)

(
⇔ yt = δ + Htμ

∗
t + et, et ∼ i.i.d.N(0, σ2

e)
)

State Equation

[
μ∗

0,t

μ∗
1,t

]
=

[
1 + θ0π0(d10,t + d01,t) θ0π1(d10,t + d01,t)

θ1π0(d10,t + d01,t) 1 + θ1π1(d10,t + d01,t)

] [
μ∗

0,t−1

μ∗
1,t−1

]
+

[
ω∗

0,t

ω∗
1,t

]
(40)

(
⇔ μ∗

t = Ftμ
∗
t−1 + ωt, ωt ∼ N(0, Ωt)

)
,

where Ωt = Diag ( d10,tσ
2
ω,0, d01,tσ

2
ω,1 ) and dij,t is as defined in equation (19).

Conditional on S̃T = [ S1 S2 . . . ST ]′, the above is a linear state-space model with

heteroscedastic shocks, and a procedure for making inferences on μ∗
0,t and μ∗

1,t (the elements

of the state vector μ∗
t ) can easily be developed by modifying the procedure proposed by

Carter and Kohn (1994). Furthermore, conditional on the μ∗
0,t and μ∗

1,t terms generated

for t = 1, 2, ..., T , a procedure for generating the regime indicator variable St can be easily

derived by modifying the procedure proposed by Albert and Chib (1993). In what follows,

we provide a summary of the prior employed for Bayesian inference of the model and present

an outline for the MCMC procedure.

By defining μ̃j,Nj
= [ μj,1 μj,2 . . . μj,Nj

]′ and μ̃∗
j,T = [ μ∗

j,1 μ∗
j,2 . . . μ∗

j,T ]′, j =

0, 1, we note that the priors for μ̃∗
0,T and μ̃∗

1,T are derived from the priors for μ̃0,N0 and

μ̃1,N1 along with their implied counterfactual priors μ̃0,N1 = [ μ0,1 . . . μ0,N1 ]′ and μ̃1,N0 =

[ μ1,1 . . . μ1,N0 ]′ . By additionally defining S̃T = [ S1 S2 . . . ST ]′, the full specification

for the priors can be summarized as:

Summary of the Prior

14



p(μ̃0,N0 , μ̃1,N1 , μ̃0,N1 , μ̃1,N0 , S̃T , μ0,0, μ1,0, S0, δ, σ
2
e , σ

2
ω,0, σ

2
ω,1, θ0, θ1, p, q)

= p(μ̃∗
0,T , μ̃∗

1,T , S̃T , μ∗
0,0, μ

∗
1,0, S0, δ, σ

2
e , σ

2
ω,0, σ

2
ω,1, θ0, θ1, p, q)

= p(μ̃∗
0,T , μ̃∗

1,T |μ∗
0,0, μ

∗
1,0, S̃T , S0, δ, σ

2
e , σ

2
ω,0, σ

2
ω,1, θ0, θ1) × p(S̃T |S0, p, q)

× p(μ∗
0,0, μ

∗
1,0, S0, δ, σ

2
e , σ

2
ω,0, σ

2
ω,1, θ0, θ1, p, q)

=

[
T∏

t=1

p(μ∗
0,t, μ

∗
1,t|μ∗

0,t−1, μ
∗
1,t−1, St, St−1, σ

2
ω,0, σ

2
ω,1, θ0, θ1)

]

×
[

T∏
t=1

p(St|St−1, p, q)

]
× p(μ∗

0,0, μ
∗
1,0) × p(S0) × p(δ|σ2

e) × p(σ2
e)

× p(θ0|σ2
ω,0) × p(σ2

ω,0) × p(θ1|σ2
ω,1) × p(σ2

ω,1) × p(p, q),

(41)

where p(μ∗
0,t, μ

∗
1,t|μ∗

0,t−1, μ
∗
1,t−1, St, St−1, σ

2
ω,0, σ

2
ω,1, θ0, θ1) is given by equations (33) and (34);

p(St|St−1, p, q) is given by the transition probabilities in equation (9); p(μ∗
0,0, μ

∗
1,0) is diffuse;

p(S0) is given by the unconditional probabilities of St; p(δ|σ2
e), p(θ0|σ2

ω,0) and p(θ1|σ2
ω,1) are

independent normals; p(σ2
e), p(σ2

ω,0), and p(σ2
ω,1) are independent inverted Gamma’s; p(q, p)

are independent Beta’s.

Outline of the MCMC Procedure

Step 0:

Initialize the parameters of the model ψ̃ = [ δ σ2
e θ0 σ2

ω,0 θ1 σ2
ω,1 q p ]′ and the

states S̃T = [ S1 S2 . . . ST ]′.

Step 1:

Generate μ̃∗
0,T = [ μ∗

0,1 μ∗
0,2 . . . μ∗

0,T ]′ and μ̃∗
1,T = [ μ∗

1,1 μ∗
1,2 . . . μ∗

1,T ]′ conditional

on ψ̃, S̃T , and data ỸT = [ y1 y2 . . . yT ]′. This step is based on the state-space

representation of the model in equations (39) and (40).

Step 2:

Generate S̃T conditional on μ̃∗
0,T and μ̃∗

1,T ; parameters ψ̃; and data ỸT . This step is based

on equation (39) and the transition probabilities in equation (9).

Step 3:

Generate θ0, θ1, σ2
ω,0 and σ2

ω1
, conditional on μ̃∗

0,T , μ̃∗
1,T , and S̃T . This step is based on

equations (26)-(29), by recovering μ̃0,N0 , μ̃1,N1 , μ̃0,N1 and μ̃1,N0 from μ̃∗
0,T and μ̃∗

1,T , as

15



implied by the equivalence of equations (30)-(31) and equations (33)-(34).

Step 4:

Generate δ and σ2
e , conditional on μ̃∗

0,T , μ̃∗
1,T ,, S̃T and ỸT . This step is based on equation

(39).

Step 5: Generate q and p conditional on S̃T .

4.2. Details of the MCMC Procedure

4.2.1. Generating μ̃∗
0,T and μ̃∗

1,T conditional on S̃T , parameters ψ̃, and data ỸT .

Conditional on S̃T , equations (39)-(40) form a linear state-space model for the extended

model in Section 3.2. This allows us to employ a slightly modified version of the procedure

proposed by Carter and Kohn (1994). The conditional joint posterior distribution of μ̃∗
0,T

and μ̃∗
1,T can be decomposed as:

p(μ̃∗
0,T , μ̃∗

1,T |ỸT , S̃T , Ψ̃) = p(μ∗
0,T , μ∗

1,T |ỸT , S̃T , ψ̃)
T−1∏
t=1

p(μ∗
0,t, μ

∗
1,t|μ∗

0,t+1, μ
∗
1,t+1, Ỹt, S̃T , ψ̃), (42)

which suggests that we can sequentially generate μ∗
0,t and μ∗

1,t for t = T, T −1, . . . , 2, 1. Note

that, for identification of the model, we need to impose the restrictions, μ∗
0,t > 0 and μ∗

1,t < 0

for all t.

We run the Kalman filter for the state-space model given by equations (39)-(40) in order

to obtain and save μ∗
t|t = E(μ∗

t |Ỹt, S̃t, ψ̃) and Pt|t = Cov(μ∗
t |Ỹt, S̃t, ψ̃) for t = 1, 2, ..., T , where

Ỹt = [ y1 y2 . . . yt ]′.

For t = T , we generate μ∗
T = [ μ∗

0,T μ∗
1,T ]′ from the joint normal distribution

μ∗
T |ỸT , S̃T , ψ̃ ∼ N(μ∗

T |T , PT |T ). (43)

For t = T−1, T−2, .., 1, we generate μ∗
t = [ μ∗

0,t μ∗
1,t ]′ conditional on μ∗

t+1 = [ μ∗
0,t+1 μ∗

1,t+1 ]′.

For this purpose, we first calculate

μ∗
t|t,μ∗

t+1
= E(μ∗

t |Ỹt, μ
∗
t+1, S̃T , ψ̃) = μ∗

t|t +Pt|tF
′
t+1(Ft+1Pt|tF

′
t+1 +Ωt+1)

−1(μ∗
t+1 −Ft+1μ

∗
t|t) (44)
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and

Pt|t,μt+1 = Cov(μ∗
t |Ỹt, μ

∗
t+1, S̃T , ψ̃) = Pt|t − Pt|tF

′
t+1(Ft+1Pt|tF

′
t+1 + Ωt+1)

−1Ft+1Pt|t. (45)

Then, we can generate μ∗
0,t and μ∗

1,t in the following way:

i) If St = 0 and St+1 = 1, we set μ∗
0,t = (1,1) element of μ∗

t|t,μ∗
t+1

, and generate μ∗
1,t from

the following distribution:

μ∗
1,t|μ∗

t+1, Ỹt, S̃T , ψ̃ ∼ N(μ∗
t|t,μ∗

t+1
(2, 1), Pt|t,μ∗

t+1
(2, 2)), (46)

where μ∗
t|t,μ∗

t+1
(2, 1) and Pt|t,μ∗

t+1
(2, 2) are the (2,1) element of μ∗

t|t,μ∗
t+1

and the (2,2)

element of Pt|t,μ∗
t+1

, respectively.

ii) If St = 1 and St+1 = 0, we set μ∗
1,t = (2,1) element of μ∗

t|t,μ∗
t+1

, and generate μ∗
0,t from

the following distribution:

μ∗
0,t|μ∗

t+1, Ỹt, S̃T , ψ̃ ∼ N(μ∗
t|t,μ∗

t+1
(1, 1), Pt|t,μ∗

t+1
(1, 1)), (47)

where μ∗
t|t,μ∗

t+1
(1, 1) and Pt|t,μ∗

t+1
(1, 1) are the (1,1) element of μ∗

t|t,μ∗
t+1

and the (1,1)

element of Pt|t,μ∗
t+1

, respectively.

iii) Otherwise, we set μ∗
0,t = (1,1) element of μ∗

t|t,μ∗
t+1

and μ∗
1,t = (2,1) element of μ∗

t|t,μ∗
t+1

.

4.2.2. Generating S̃T conditional on μ̃∗
0,T , μ̃∗

1,T , parameters ψ̃, and data ỸT

We employ a modified version of Albert and Chib’s (1993) single-move Gibbs sampling

for generating St, t = 1, 2, ..., T , conditional on S̃ �=t = [ S1 . . . St−1 St+1 . . . ST ]′ and

other variates. The key is in appropriately evaluating the predictive densities of yt under two

possible alternative regimes at time t (i.e., for St = 0 and for St = 1). However, unlike in the

Hamilton model (1989) with constant mean growth rates (μ0 and μ1), the mean growth rates

during recessions or booms in our model are not always defined, as discussed in the earlier

sections. For example, conditional on St = 1 in the (j − 1) − th iteration of the MCMC

procedure, only μ1,τ1 is defined and μ0,τ1 is not. The difficulty is that, when evaluating the

predictive densities of yt under two alternative regimes at the j − th iteration of the MCMC

procedure, we need μ0,τ1 as well as μ1,τ1 . We overcome this difficulty by taking advantage

of the counterfactual priors in (28)-(29) as derived from the hierarchical priors in (26)-(27).
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Note that μ∗
0,t and μ∗

1,t in equations (33)-(34) summarize both the hierarchical priors and the

counterfactual priors for the mean growth rates under two alternative regimes, for all t.

Thus, the method for generating S̃t conditional on S̃ �=t and other variates is the same

as in Albert and Chib (1993), except that we use μ∗
0,t and μ∗

1,t as the mean growth rates

under two possible alternative regimes at each point in time. As in Albert and Chib (1993),

p(St|ỸT , S̃ �=t, μ̃
∗
0,T , μ̃∗

1,T , ψ̃) can be derived as:

p(St|ỸT , S̃ �=t, μ̃
∗
0,T , μ̃∗

1,T , ψ̃) ∝ Pr(St|St−1)Pr(St+1|St)p(yt|Ỹt−1, St, μ
∗
0,t, μ

∗
1,t, ψ̃), (48)

where

p(yt|Ỹt−1, St, μ
∗
0,t, μ

∗
1,t, ψ̃) =

1√
2πσ2

e

exp

(
− 1

2σ2
e

(yt − δ − μ∗
St,t)

2

)
. (49)

Then, St can be generated from

Pr[St = 1|ỸT , S̃ �=t, μ̃
∗
0,T , μ̃∗

1,T , ψ̃)] =
p(St = 1|ỸT , S̃ �=t, μ̃

∗
0,T , μ̃∗

1,T , ψ̃)∑1
j=0 p(St = j|ỸT , S̃ �=t, μ̃∗

0,T , μ̃∗
1,T , ψ̃)

. (50)

Note that, in Albert and Chib’s (1993) procedure for the Hamilton model, they have μ∗
St,t =

μSt , St = 0, 1.

4.2.3. Generating θ0, θ1, σ2
ω,0 and σ2

ω,1, conditional on μ̃∗
0,T , μ̃∗

1,T , and S̃T

For given S̃T , we first extract μ̃0,N0 = [ μ0,1 . . . μ0,N0 ]′and μ̃1,N1 = [ μ1,1 . . . μ1,N1 ]′,

μ̃0,N1 = [ μ0,1 . . . μ0,N1 ]′ and μ̃1,N0 = [ μ1,1 . . . μ1,N0 ]′ from μ̃∗
0,T = [ μ∗

0,1 . . . μ∗
0,T ]′

and μ̃∗
1,T = [ μ∗

1,1 . . . μ∗
1,T ]′, as implied by the equivalence of equations (30)-(31) and (33)-

(34). For example, μ̃0,N0 and μ̃1,N0 are the collections of μ∗
0,t’s and μ∗

1,t’s for which St−1 = 1

and St = 0 for t = 2, 3, ..., T ; μ̃0,N1 and μ̃1,N1 are the collections of μ∗
0,t’s and μ∗

1,t’s for which

St−1 = 0 and St = 1 for t = 2, 3, ..., T .

Then, based on equations (26)-(27), θ0 and θ1 can be generated conditional on σ2
ω,0 and

σ2
ω,1; and then σ2

ω,0 and σ2
ω,1 can be generated conditional on θ0 and θ1. The prior and

posterior distributions for generating these parameters are described below.

Prior

θj ∼ N(θj, Σθj
), j = 0, 1 (51)
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σ2
ω,j ∼ IG

(
νω,j

2
,
hω,j

2

)
, j = 0, 1, (52)

Posterior

θj | μ̃∗
0,T , μ̃∗

1,T , S̃T , σ2
ω,0, σ

2
ω,1 ∼ N(θ̄j, Σ̄θj

), j = 0, 1, (53)

σ2
ω,j | θj, μ̃

∗
0,T , μ̃∗

1,T , S̃T ∼ IG

⎛
⎝νω,j + Nj

2
,
hω,j +

∑Nj

τj=1 ω2
j,τj

2

⎞
⎠ , j = 0, 1, (54)

where

θ̄j = Σ̄θj

⎛
⎝Σ−1

θj
θj +

1

σ2
ω,j

Nj∑
τj=1

(πiμi,τ ′
i
+ πjμj,τ ′

i
)(μj,τj

− μj,τ ′
i
)

⎞
⎠ , (55)

(j, i) = (0, 1), (1, 0)

Σ̄θj
=

⎛
⎝Σ−1

θj
+

1

σ2
ω,j

Nj∑
τj=1

(πiμi,τ ′
i
+ πjμj,τ ′

i
)2

⎞
⎠

−1

, (56)

ωj,τj
= μj,τj

− μj,τ ′
i
− θj(πiμi,τ ′

i
+ πjμj,τ ′

i
), (j, i) = (0, 1), (1, 0), (57)

and μi,τ ′
i

is the mean growth rate during a regime right before the τj − th episode of boom

(j = 0) or recession (j = 1).

4.2.4. Generating δ and σ2
e , conditional on μ̃∗

0,T , μ̃∗
1,T , S̃T , and ỸT

This step is based on equation (39). Conditional on S̃T , μ̃∗
0,T , μ̃∗

1,T and ỸT , we define

y∗
t = yt − (1 − St)μ

∗
0,t − Stμ

∗
1,t, t = 1, 2, ..., T . Then, we have y∗

t = δ + et. Based on this, the

conditional posterior distributions for the δ and σ2
e parameters can be easily derived. The

prior and posterior distributions are given below:

Prior

δ ∼ N(δ, Σδ), (58)

19



σ2
e ∼ IG

(
νe

2
,
he

2

)
, j = 0, 1, (59)

Posterior

δ | μ̃∗
0,T , μ̃∗

1,T , S̃T , σ2
e , ỹT ∼ N(δ̄, Σ̄δ), (60)

σ2
e | δ, μ̃∗

0,T , μ̃∗
1,T , S̃T , ỸT ∼ IG

(
νe + T

2
,
he +

∑T
t=1(y

∗
t − δ)2

2

)
, j = 0, 1, (61)

where

Σ̄δ =

(
Σ−1

δ +
T

σ2
e

)−1

(62)

and

δ̄ = Σ̄δ

(
Σ−1

δ δ +
1

σ2
e

T∑
t=1

y∗
t

)
. (63)

4.2.5. Generating q and p conditional on S̃T

We employ the following Beta priors for q and p:

Prior

q ∼ Beta(u00, u01), (64)

p ∼ Beta(u11, u10), (65)

where uij, i, j = 0, 1, are the hyper-parameters. Then the posterior distribution can be

derived as:

Posterior

p|S̃T ∼ Beta(u11 + n11, u10 + n10), (66)

q|S̃T ∼ Beta(u00 + n00, u01 + n01), (67)

where nij refers to the total number of transitions from state i to state j.
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5. An Application to U.S. Real GDP Growth Data

We apply the proposed model and the MCMC procedure presented in Section 4 to

postwar U.S. real GDP growth data that covers the sample period from 1947:Q4 to 2011:Q3.

Our preliminary results suggest that serial correlation in the xt term is important for the

Hamilton model (1989) with constant regime-specific means. However, we find that no serial

correlation in the xt term is necessary for the proposed model with evolving regime-specific

means. We incorporate stochastic volatility for σ2
e in equation (8), to consider the Great

Moderation and the recent increase in the volatility of real GDP growth.

In order to allow for the possibility of a productivity slowdown in the 1970s following

the literature (e.g. Perron (1989) and Zivot and Andrews (2002)), we first estimate the

model by incorporating a one-time structural break in the long-run growth of real GDP

(the δ parameter in equation (21)). What follows describes the proposed model with these

features:

One-time Structural Break in Long-Run Mean Growth

yt = δDt + (1 − St)μ0,τ + Stμ1,τ + et, et ∼ N(0, σ2
e,t)

μ0,τ = μ0,τ−1 + θ0(π0μ0,τ−1 + π1μ1,τ−1) + ω0,τ , ω0,τ ∼ i.i.d.N(0, (1 − St)σ
2
ω,0)

μ1,τ = μ1,τ−1 + θ1(π0μ0,τ−1 + π1μ1,τ−1) + ω1,τ , ω1,τ ∼ i.i.d.N(0, Stσ
2
ω,1) (68)

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, Pr[St = 1|St−1 = 1] = p

Pr[Dt = 0|Dt−1 = 0] = qD, P r[Dt = 1|Dt−1 = 1] = 1

μ0,τ > 0, μ1,τ < 0, for all τ, j = 0, 1

−1 < 1 + θ0π0 + θ1π1 < 1,
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where π0 and π1 are the unconditional probabilities for business cycle regimes. Conditional

on St, if we rewrite the first three equations of the above model in the form of the standard

unobserved-components model, we have:

yt = δDt + (1 − St)μ
∗
0,t + Stμ

∗
1,t + et, et ∼ N(0, σ2

e,t) (69)

μ∗
0,t = μ∗

0,t−1 + θ0(d10,t + d01,t)(π0μ
∗
0,t−1 + π1μ

∗
1,t−1) + ω∗

0,t, ω∗
0,t ∼ N(0, d10,tσ

2
ω,0),

μ∗
1,t = μ∗

1,t−1 + θ1(d10,t + d01,t)(π0μ
∗
0,t−1 + π1μ

∗
1,t−1) + ω∗

1,t, ω∗
1,t ∼ N(0, d01,tσ

2
ω,1),

t = 1, 2, ..., T ; τ = 1, 2, ..., N0 + N1,

where N0 and N1 are the total numbers of the episodes of boom and recession, respectively,

conditional on the states; and

μ∗
0,t > 0, μ∗

1,t < 0, for all t,

dij,t =

{
1, if St−1 = i and St = j, j �= i;

0, otherwise.

All inferences are based on 50,000 Gibbs simulations after discarding 10,000 burn-ins.

Table 2 presents the prior and posterior moments of the parameters for the proposed model

with a structural break in the long-run growth. With regime-specific mean growth rates

evolving over different episodes of booms or recessions, we have a much sharper inference

on the recession probabilities except for the early 2000s recession, as depicted in Figure 7.

The posterior mean growth rates obtained from the model, as depicted in Figure 8, are also

in close agreement with the episode-specific mean growth rates for the NBER recessions or

booms. 3 Figure 9 depicts the posterior stochastic volatility with 90% credible band. As

reported in the literature, the process of the Great Moderation, i.e., the structural break in

the conditional variance, is fairly abrupt and concentrated around the mid-1980s. However,

the nature of the structural break in the equilibrium long-run output growth (δD,t) seems

to be quite different from what has been reported in the literature. While the literature

3 The posterior means of the standardized residuals obtained from the model show little
evidence of serial correlation. The same is true for the squared standardized residuals.
These indicate that the proposed model with AR(0) dynamics for the xt term passes the
usual diagnostic checks.
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suggests an abrupt decline after the first Oil Shock of the mid-1970s, the plot of the long-run

growth in Figure 10 suggests that the decline occurred steadily over a thirty-year period

between the mid-1950s and the mid-1980s. It is interesting to note that the decline in the

long-run equilibrium output growth that started in the mid-1950s ended just when the Great

Moderation began.

This gradual slowdown of the long-run growth motivates us to consider an alternative

model specification. We allow for random-walk dynamics in the long-run growth rate of

postwar U.S. real GDP as follows.

Random-Walk Long-Run Mean Growth Growth

yt = δt + (1 − St)μ0,τ + Stμ1,τ + et, et ∼ N(0, σ2
e,t)

μ0,τ = μ0,τ−1 + θ0(π0μ0,τ−1 + π1μ1,τ−1) + ω0,τ , ω0,τ ∼ i.i.d.N(0, (1 − St)σ
2
ω,0)

μ1,τ = μ1,τ−1 + θ1(π0μ0,τ−1 + π1μ1,τ−1) + ω1,τ , ω1,τ ∼ i.i.d.N(0, Stσ
2
ω,1) (70)

δt = δt−1 + εt, εt ∼ i.i.d.N(0, σ2
ε ),

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, Pr[St = 1|St−1 = 1] = p

μ0,τ > 0, μ1,τ < 0, for all τ, j = 0, 1

−1 < 1 + θ0π0 + θ1π1 < 1.

Conditional on St, if the model is written in the form of the standard unobserved-components

model, we have:

yt = δt + (1 − St)μ
∗
0,t + Stμ

∗
1,t + et, et ∼ N(0, σ2

e,t) (71)

μ∗
0,t = μ∗

0,t−1 + θ0(d10,t + d01,t)(π0μ
∗
0,t−1 + π1μ

∗
1,t−1) + ω∗

0,t, ω∗
0,t ∼ N(0, d10,tσ

2
ω,0),

μ∗
1,t = μ∗

1,t−1 + θ1(d10,t + d01,t)(π0μ
∗
0,t−1 + π1μ

∗
1,t−1) + ω∗

1,t, ω∗
1,t ∼ N(0, d01,tσ

2
ω,1),

t = 1, 2, ..., T ; τ = 1, 2, ..., N0 + N1,
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and

μ∗
0,t > 0, μ∗

1,t < 0, for all t,

dij,t =

{
1, if St−1 = i and St = j, j �= i;

0, otherwise.

Note that while the shocks to regime-specific growth rates, ω0,τ or ω1,τ , affect the dy-

namics of growth rates temporarily (i.e. the effects decay over time through error correction

specifications in (70)), the effect of the shock to the long run growth rate, εt, on the economy

is permanent.

Table 3 presents the prior and posterior distributions of the parameters for the above

alternative model. Note that we fix the variance of the shocks to the long-run mean growth

rate to be very small. 4 The posterior probabilities of recession inferred from the proposed

model with the random-walk in the long-run growth are in close agreement with the NBER

recessions as depicted in Figure 11. It also identifies the early 2000s recession clearly unlike

the model with a one-time structural break in the long-run growth. The posterior mean

growth rates obtained from the model, as depicted in Figure 12, are also in close agreement

with the episode-specific mean growth rates for the NBER recessions or booms.

The evolution of the volatility depicted in Figure 13 closely resembles that from the

model with a one-time structural break in the long-run mean growth rate. Figure 14 depicts

the long-run growth rate of real GDP with 90% credible band from the proposed model with

the random-walk in the long-run growth rate. We find that the long-run growth rate has

decreased gradually from 0.83 to 0.53 over the period of 1947 to 2010. 5 This significant

decline of the long run growth rate and its magnitude are very close to the findings presented

in Stock and Watson (2012). 6 This nature of the change in the long-run output growth

4 By fixing this variance, we determine the degree of smoothness in the long-run mean
growth rates.

5 The magnitude of decline is sensitive to the variance of the shocks to the long run mean
growth rate. Allowing for a bigger variance leads to a bigger magnitude of decline. However,
the tendency for the long run mean growth rate to decrease over time is shown regardless of
prior specifications.

6 Stock and Watson (2012) support this finding by examining various macroeconomic
variables and suggest that the declining trend growth rate is due to changes in underlying
demographic factors, especially (i) the stagnant female labor force participation rate and (ii)
the aging of the U.S. workforce.
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is quite different from what has been reported in the literature. The literature suggests an

abrupt decline after the first Oil Shock of the mid-1970s.

Posterior moments for the θ0 and θ1 parameters in Table 3 provide us information about

how successful the central bank may have been in its attempts to maintain the economy at

a long-run equilibrium growth path. Even though their posterior means are both negative

as predicted, their posterior standard deviations seem to be somewhat too high to give us

any decisive evidence. However, if we compare the prior and posterior distributions for these

parameters as depicted in Figures 15.A and 15.B, we can infer that there exists relatively

more sample evidence in favor of θ0 < 0 than that in favor of θ1 < 0. 7

Figure 16 plots the impulse-response functions for the regime-specific mean growth rates

with respect to a one standard deviation (SD) shock. 8 Of particular interest would be the

comparison of ∂Δμ1,τ+j

∂ω0,τ
and −∂Δμ0,τ+j

∂ω1,τ
depicted in the two graphs in the lower panel of Figure

16. As for the responses of the mean growth rates during recessions to a one standard-

deviation boom shock (∂Δμ1,τ+j

∂ω0,τ
), the 68% posterior bands are so wide that we find little

evidence that they are negative. However, as for the responses of the mean growth rates

during booms to a one standard-deviation recession shock (−∂Δμ0,τ+j

∂ω1,τ
), we find some evidence

that it is positive for j = 1. The results from the estimates of the θ0 and θ1 parameters

or those from the impulse response analyses suggest that the central bank may have been

relatively more effective in restoring the economy back to its long-run equilibrium growth

path after unusually severe recessions than after unusually good booms. Thus, our empirical

results provide partial, if not decisive, evidence that the central bank’s long-run policy may

have been asymmetric in response to unusually pronounced recessions and booms. 9

Also, note that although the negative values of θ0 and θ1 imply that a relatively strong

recovery would follow a severe recession a priori based on the dynamics structure of hier-

archical priors and counterfactual priors in the proposed model, an absolutely high level of

7 The results are robust with respect to alternative priors employed for the θ0 and θ1

parameters.
8 Note that this shock causes the mean growth rate during the current episode of boom

or recession to be different from that during the previous episode. The impulse response-
functions are calculated based on equations (36)-(37).

9 We assume that these unusually pronounced recessions or booms cause the economy to
deviate from their long-run equilibrium growth path.
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growth does not necessarily come after a deep recession since the growth rate in the dy-

namics is defined after subtracting the time-varying long-run growth rate. For example, the

proposed model in this paper does not preclude the possibility of the slow recovery after the

Great Recession of 2007-2009 given the fact that the long-run growth rate is significantly

lower during this period as shown in Figure 14 and also pointed out in Stock and Watson

(2012).

6. Summary

As an economy evolves over time along with evolving institutions and policies, so do the

dynamics of the business cycle. Over time, we thus may need bigger and more sophisticated

empirical models which are capable of capturing the changes in the dynamics of the business

cycle. The Great Moderation, i.e., the stabilization of the economy since the mid-1980s, is

an example of such change. However, what is sometimes overlooked in empirical models of

the business cycle is that the postwar booms and recessions are not all alike. For example,

a two-state Markov-switching model of the business cycle, as proposed by Hamilton (1989),

assumes that mean growth rates during all episodes of booms or recessions are the same.

While this assumption may be valid for particular sample periods, it may not be a realistic

one for a sample that covers the entire postwar period. This is why the Hamilton model

fails to provide sharp inferences on two distinctive business cycle regimes when the sample

period is extended beyond that employed by Hamilton (1989).

In this paper, within a two-state Markov-switching model, we assume that the mean

growth rate for recession or boom undergoes a structural break whenever we face a new

episode of recession or boom. We first consider the case in which each regime-specific mean

growth rate evolves according to a random walk process over different episodes of boom or

recession. We then derive and impose a condition for the existence of an equilibrium long-run

growth rate for real output. As a consequence of this condition, we incorporate vector error

correction dynamics for the two regime-specific mean growth rates.

When applied to the postwar real GDP growth data from 1947:Q4 to 2011:Q3, the
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proposed model considerably outperforms the Hamilton model (1989) with constant regime-

specific mean growth rates, both in identifying recessions and in making inferences about the

mean growth rates. The evolving nature of each regime-specific mean growth rate for booms

or recessions is not the only feature of the U.S. postwar business cycle that we uncover in

this paper. Another interesting finding is that the decline in the long-run equilibrium output

growth was not abrupt. It started in the 1950s and ended in the 2000s. This is in sharp

contrast to the literature, which suggests an abrupt decline in the long-run output growth

around the mid-1970s.

Furthermore, empirical results obtained from the proposed model provide partial, if not

decisive, evidence that the Fed’s monetary policy may have been asymmetric in response

to unusually pronounced recessions and booms. The Fed has been relatively more effective

or aggressive in restoring the economy back to its long-run equilibrium growth path after

unusually severe recessions than after unusually high booms. However, a comprehensive

analysis of the sources of the difference is beyond this paper’s scope and we leave it to the

future research.
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Table 1. Episode-Specific Mean Growth Rates of Real GDP During NBER
Booms and Recessions [1947:IV - 2011:III]

Boom Recession

47:Q4 ∼ 48:Q3 1.37 48:Q4 ∼ 49:Q4 -0.28

50:Q1 ∼ 53:Q2 1.83 53:Q3 ∼ 54:Q2 -0.64

54:Q3 ∼ 57:Q2 0.98 57:Q3 ∼ 58:Q2 -0.55

58:Q3 ∼ 60:Q1 1.67 60:Q2 ∼ 61:Q1 -0.25

61:Q2 ∼ 69:Q3 1.24 69:Q4 ∼ 70:Q4 -0.12

71:Q1 ∼ 73:Q3 1.30 73:Q4 ∼ 75:Q1 -0.38

75:Q2 ∼ 79:Q4 1.09 80:Q1 ∼ 80:Q3 -0.64

80:Q4 ∼ 81:Q2 1.04 81:Q3 ∼ 82:Q4 -0.24

83:Q1 ∼ 90:Q2 1.06 90:Q3 ∼ 91:Q1 -0.45

91:Q2 ∼ 00:Q4 0.91 01:Q1 ∼ 01:Q4 0.02

02:Q1 ∼ 07:Q3 0.66 07:Q4 ∼ 09:Q2 -0.69

09:Q3 ∼ 11:Q3 0.59

Mean 1.15 -0.38
Maximum 1.83 0.02
Minimum 0.59 -0.69
Standard Deviation 0.37 0.23
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Table 2. Prior and Posterior Distributions: Model with Stochastic Volatility
and a Structural Break in the Long-run Mean Growth Rate[Real GDP Growth:
1947:IV - 2011:III]

yt = δDt + (1 − St)μ0,τ + Stμ1,τ + et, et ∼ N(0, σ2
e,t)

μ0,τ = μ0,τ−1 + θ0(π0μ0,τ−1 + π1μ1,τ−1) + ω0,τ , ω0,τ ∼ i.i.d.N(0, (1 − St)σ
2
ω,0)

μ1,τ = μ1,τ−1 + θ1(π0μ0,τ−1 + π1μ1,τ−1) + ω1,τ , ω1,τ ∼ i.i.d.N(0, Stσ
2
ω,1)

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, Pr[St = 1|St−1 = 1] = p

Pr[Dt = 0|Dt−1 = 0] = qD, P r[Dt = 1|Dt−1 = 1] = 1

μ0,τ > 0, μ1,τ < 0, for all τ,

−1 < 1 + θ0π0 + θ1π1 < 1,

where π0 and π1 are the unconditional probabilities.

Prior Posterior

Mean SD Mean SD 90% Bands

θ0 -0.1000 0.5000 -0.4352 0.3414 [−1.0423, 0.0750]
θ1 -0.1000 0.5000 -0.3653 0.4519 [−1.1099, 0.3691]
σ2

ω0 0.2500 0.1450 0.1149 0.0407 [0.0660, 0.1909]
σ2

ω1 0.2500 0.1450 0.1596 0.0649 [0.0813, 0.2799]
σ2

η 0.3333 0.2352 0.0162 0.0129 [0.0063, 0.0374]
q 0.9000 0.0900 0.9072 0.0433 [0.8286, 0.9551]
p 0.8000 0.1212 0.7925 0.0603 [0.6835, 0.8826]
qD 0.9859 0.0139 0.9890 0.0085 [0.9722, 0.9982]
δ0 1.3000 0.2000 1.1941 0.1264 [0.9983, 1.4165]
δ1 0.7000 0.2000 0.5222 0.1294 [0.3163, 0.7380]
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Table 3. Prior and Posterior Distributions: Model with Stochastic Volatility
and Random Walk Long-run Mean Growth Rates [Real GDP Growth: 1947:IV
- 2011:III]

yt = δt + (1 − St)μ0,τ + Stμ1,τ + et, et ∼ N(0, σ2
e,t)

μ0,τ = μ0,τ−1 + θ0(π0μ0,τ−1 + π1μ1,τ−1) + ω0,τ , ω0,τ ∼ i.i.d.N(0, (1 − St)σ
2
ω,0)

μ1,τ = μ1,τ−1 + θ1(π0μ0,τ−1 + π1μ1,τ−1) + ω1,τ , ω1,τ ∼ i.i.d.N(0, Stσ
2
ω,1)

δt = δt−1 + εt, εt ∼ i.i.d.N(0, σ2
ε ),

ln(σ2
e,t) = ln(σ2

e,t−1) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

P r[St = 0|St−1 = 0] = q, Pr[St = 1|St−1 = 1] = p

μ0,τ > 0, μ1,τ < 0, for all τ,

−1 < 1 + θ0π0 + θ1π1 < 1,

where π0 and π1 are the unconditional probabilities.

Prior Posterior

Mean SD Mean SD 90% Bands

θ0 -0.1000 0.5000 -0.3013 0.2711 [−0.8029, 0.0808]
θ1 -0.1000 0.5000 -0.1198 0.3844 [−0.7873, 0.4738]
σ2

ω0 0.2500 0.1450 0.1172 0.0439 [0.0658, 0.2004]
σ2

ω1 0.2500 0.1450 0.1467 0.0601 [0.0772, 0.2642]
σ2

ε 0.0004 – 0.0004 – –
σ2

η 0.3333 0.2352 0.0162 0.0085 [0.0069, 0.0322]
q 0.9000 0.0900 0.9192 0.0273 [0.8684, 0.9574]
p 0.8000 0.1212 0.7856 0.0602 [0.6791, 0.8743]
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Figure 1. Real GDP Growth and Its Episode-Specific Means During
NBER Booms and Recessions [1947:IV - 2011:III]
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Figure 2. Posterior Probability of Recession [Hamilton Model (1989)]
(1952:II - 1984:IV)
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Figure 3. Posterior Probability of Recession [Hamilton Model (1989)]
(1947:IV - 2011:III)
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Figure 4. Comparison of Hamilton (1989) Model and the Proposed Model
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B. Markov-Switching Model with Evolving Regime-Specific Mean Growth Rates
(Proposed Model)
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Figure 5. Priors and Counterfactual Priors:
Random Walk for Regime-Specific Mean Growth Rates
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Figure 6. Priors and Counterfactual Priors: Vector Error
Correction Dynamics for Regime-Specific Mean Growth Rates
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Figure 7. Posterior Probability of Recession: [Proposed Model
with One Break in Long-run Growth and Stochastic Volatility]

0.0

0.2

0.4

0.6

0.8

1.0

50 55 60 65 70 75 80 85 90 95 00 05 10

Figure 8. NBER Episode-Specific Mean Growth Rates and
Posterior Mean Growths Rates: [Proposed Model
with One Break in Long-run Growth and Stochastic Volatility]
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Figure 9. Posterior Stochastic Volatility (90% Band): [Proposed Model
with One Break in Long-run Growth and Stochastic Volatility]
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Figure 10. Posterior Long-Run Growth Rate (90% Band): [Proposed Model
with One Break in Long-run Growth and Stochastic Volatility]
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Figure 11. Posterior Probability of Recession: [Proposed Model
with RW Long-run Growth and Stochastic Volatility]

Figure 12. NBER Episode-Specific Mean Growth Rates and
Posterior Mean Growths Rates: [Proposed Model
with RW Long-run Growth and Stochastic Volatility]
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Figure 13. Posterior Stochastic Volatility (90% Band): [Proposed Model
with RW Long-run Growth and Stochastic Volatility]

Figure 14. Posterior Long-Run Growth Rate (90% Band): [Proposed Model
with RW Long-run Growth and Stochastic Volatility]
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Figure 15. Prior and Posterior Distributions for Error Correction
Coefficients: [Proposed Model with RW Long-run Growth
and Stochastic Volatility]

θ

A. Error Correction Coefficient θ0

θ

B. Error Correction Coefficient θ1

Note: The solid line and the dashed line represent the posterior distribution and the
prior distribution, respectively.
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Figure 16. Impulse Response Functions for the Regime-Specific
Mean Growth Rates: [Proposed Model with RW
Long-run Growth and Stochastic Volatility]
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Note: The solid line and the dashed line represent the posterior mean and the 68%
posterior band, respectively.
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