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Abstract

As shown in [Rudd and Schroeder, 1982], the problem of margining option port-
folios where option spreads with two legs are used for offsetting can be solved in
polynomial time by network flow algorithms. However, spreads with only two legs
do not provide sufficient accuracy in measuring risk. Therefore, margining practice
also employs spreads with three and four legs. A polynomial time solution to the
extension of the problem where option spreads with three and four legs are also
used for offsetting is not known. In this paper we propose a heuristic network flow
algorithm for this extension and present a computational study that proves high
efficiency of this algorithm in margining practice.

1 Introduction

In brokerage business, a margin is a collateral that the holder of a margin account
has to deposit to cover the credit risk of his\her broker. Since the margin has to stay
above a regulatory minimum, the margining, i.e., the calculation of minimum margin
requirements for margin accounts is a critical intra-day and end-of-day risk management
operation for any brokerage firm.

There exist two approaches to margining portfolios, strategy-based and risk-based.
Recently, Coffman et al. [2010b] have published an experimental analysis of the two
approaches to margining. Their results suggest that the risk-based approach, recently
adopted in the US, has serious shortcomings. Specifically, it significantly undermargins
stock option portfolios and does not provide any exit strategy. Coffman et al. conclude
that strategy-based approach to margining is more appropriate for portfolios of stock
options, although it is computationally and analytically more challenging and lacks in
depth academic research. These conclusions call for a more detailed and comprehensive
analysis of the strategy-based approach which we offer in this paper.

The margining of accounts in accordance with the strategy-based approach [Curley,
2008; Coffman et al., 2010a] is a computationally complex problem because bullish and
bearish positions in the account can be combined in numerous ways to offset each other
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and hence reduce the margin requirement. This brings a nontrivial combinatorial com-
ponent to the calculation. The problem is not well studied even for option portfolios,
i.e., when a margin account consists of only positions in options on the same underlying
instrument.

Despite the fact that margin regulations have a 75-year history dating from Reg-
ulation T in the Securities Act of 1934, the literature on margin calculations is sur-
prisingly small. We can point to only two books [Geelan and Rittereiser, 1998; Curley,
2008], three papers [Rudd and Schroeder, 1982; Fiterman and Timkovsky, 2001; Coff-
man et al., 2010b] devoted to margining algorithms and two papers [Fortune, 2000,
2003] devoted to margining practice. Literature on studying the influence of margin
requirements on the market, such as for example [Moore, 1966; Luckett, 1982], is more
representative; see the related survey in [Kupiec, 1998]. The vast majority of publica-
tions on margining consists primarily of regulatory circulares and manuals written by
security market lawyers.

Rudd and Schroeder [Rudd and Schroeder, 1982] discovered that the problem of
margining option portfolios by offsets based on two-leg1 option spreads, such as bull
and bear spreads, can be solved in polynomial time. They have shown that this prob-
lem reduces to the minimum-cost-flow network problem [Ford and Fulkerson, 1962]
that has fast polynomial algorithms [Goldberg, 1997; Heineman et al., 2008]. Offsets
based on three- and four-leg option spreads, such as butterfly spreads, condor spreads
and box spreads represent substantially more efficient hedging mechanisms for margin
reductions. However, the complexity status of the problem with offsets based on op-
tion spreads with more than two legs remains unknown. Therefore, existing margin
calculation technology, faced with the combinatorial complexity of margining option
portfolios, failed to take advantage of three- and four-leg option spreads.

In this paper we show that if the set of two-leg option spreads is already chosen, by
using for example the reduction of Rudd and Schroeder, then the problem of margining
option portfolios by offsets based on three- and four-leg option spreads can be solved in
polynomial time. The solution follows from a reduction similar to that found by Rudd
and Schroeder. In addition, if the spreads are margined by the maximum-loss margin
rule, then there exist a reduction to a simpler problem, the maximum-flow network
problem [Ford and Fulkerson, 1962], that has faster polynomial algorithms [Cherkassky
and Goldberg, 1997; Heineman et al., 2008].

The main result of this paper thus implies the following two-step method of margin-
ing option portfolios: (1) margin a given portfolio of options by the reduction of Rudd
and Schroeder and create the related subportfolio of two-leg option spreads; (2) margin
the subportfolio by the reduction proposed in this paper.

Although this method does not guarantee the exact minimum margin for all option
portfolios, it presents a reasonable and handy heuristic that uses only well developed
minimum-cost-flow and maximum-flow network algorithms, usually available in one
software package. Besides, our method finds an exact solution in the case when the

1A leg of an option spread or an offset based on this spread is a position in options with the same
exercise price and expiry date.
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option portfolio is preliminary structured into basic two-leg option spreads. This pre-
liminary structure is usually available because the vast majority of option portfolios in
customer margin accounts are formed as a result of trading two-leg option spreads.

The rest of the paper is organized as follows. In Section 2 we give a motivational
example showing what advantage an additional leg in option spreads can give. Section 3
presents different types of margin requirements and explains that only the market risk
component of margin requirements can be minimized. Section 4 describes a vector
model of option spreads. A minimum-cost-flow network model of margining a portfolio
of basic two-leg option spreads by offsets involving three- and four-leg spreads is con-
sidered in Sections 5. Section 6 presents a simplified model, a maximum-flow network
model, for the case of the maximum-loss margin rule. A computational study that
proves that the two-step method is highly efficient in practice is presented in Section 7.
Section 8 gives conclusions and directions for future research.

2 Why Legs Matter

In this section, we show that the advantage of using even three-leg spreads over two-leg
spreads in margin calculations can be significant.

Let us consider a margin account which consists of a long position in one call
option A, a long position in one call option B and a short position in two call options C.
The options’ exercise prices and market prices are, respectively,

Ae = $70.00, Ap = $55.90,
Be = $90.00, Bp = $40.90,
Ce = $80.00, Cp = $50.60.

Each of the options expires by the end of day, January 15, 2010, and has the contract
size of 100 shares. The market price of the underlying stock2 is Up = $123.62.

In what follows, it will be convenient to denote a long or short position in an option,
say, C, as +C or −C, respectively; so, a set of positions then can be written as a formal
sum of the positions. Following the definitions form NYSE Rule 431(f)(2)(C), we can
conclude that, since Ae < Ce < Be and Ce− Ae = Be− Ce, the account represents a
long butterfly spread A + B− 2C whose components are spreads A− C and B− C.

Next, we show that the regulatory minimum initial and maintenance margin re-
quirements for this account are $1000 less if considered as the long butterfly spread,
which has three legs, in comparison with the case where it is considered as a consoli-
dation of the two two-leg spreads.

Indeed, in accordance with NYSE Rule 431(f)(2)(G)(v)(1), the initial margin re-
quirement for A + B− 2C is the total market price of A and B, i.e.,

100 · (Ap + Bp) = 100 · ($55.90 + $40.90) = $9680.

2The data is taken from http://finance.yahoo.com as of the end of day, May 21, 2008, at NYSE
for the symbol IBM.
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NYSE Rule 431(f)(2)(G)(i) states that the initial margin requirement for a two-leg
spread is the market value of the option in the long position plus the lesser of the
initial margin requirement for the option in the short position and the spread out-of-
the-money amount.

Since Ae < Ce, the spread A− C is in-the-money, therefore its out-of-the-money
amount is zero, and hence the initial margin requirement for A− C is 100 · Ap = $5590.

Since Be > Ce, the spread B− C is out-of-the-money, and its out-of-the-money
amount, 100 · (Be− Ce), is $1000. In accordance with NYSE Rule 431(f)(2)(D)(i), the
initial margin requirement for −C is 100 · (Cp + Cm) = 100 · ($50.60 + $24.724), where

Cm = max{0.2 · Up− Co, 0.1 · Up}
= max{0.2 · $123.62− $0.00, 0.1 · $123.62} = $24.724,

Co = max{Ce− Up, 0}
= max{$80.00− $123.62, 0} = $0.00.

Note that Co here is the out-of-the-money amount of the call option C. Thus, the initial
margin requirement for B− C is 100 · Bp + $1000 = $5090. Therefore, if the account is
considered as a consolidation of the two two-leg spreads, the initial margin requirement
for it is $5590 + $5090 = $10680, which is $1000 more.

Deducting the total market value of the options in the long positions A and B in
both cases, we obtain the maintenance margin requirements, i.e., $0 for A + B− 2C
and $1000 for the consolidation of A− C and B− C. Thus, we have the advantage of
$1000 in the maintenance margin requirement as well.

We have demonstrated the advantage of using spreads with three legs over two
legs for offsetting for margining a simple account with three positions. It is clear,
however, that the more legs such option spreads have and the larger the account the
more advantage we can obtain on margin.

3 Types of Margin Requirements

In the above example we calculated regulatory minimum initial and maintenance margin
requirements, which are based on the estimation of the current loss, i.e, the loss that
the account holder would experience if the account was liquidated at the moment of
the calculation. Such a calculation uses current market prices. Any margin charge
below this minimum is illegal. In margining practice, however, brokers and brokerage
houses are allowed to use so called house margin rules with more stringent margin
requirements. Although these rules may vary, more stringent margin requirements for
option spreads are usually based on the estimation of the maximum loss.

To explain the difference between current loss and maximum loss margin require-
ments for option spreads, let us recall that the current loss initial margin requirement
for B− C, see Section 2, is 100 · (Bp + Rm), where

Rm = min{Cm,max{Be− Ce, 0}.
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This margin consists of the following two components: 100 · Bp, the premium margin
requirement, and 100 · Rm, the market risk margin requirement. Note that the latter
remains the same in the calculation of maintenance margin requirements.

It is clear that we obtain a more stringent margin requirement if we replace the
market risk component by the spread out-of-the-money amount

Rmax = max{Be− Ce, 0}

since Rmax ≥ Rm. The new market risk component, i.e., 100 · Rmax, ignores the fact
that, if the current market price of the underlying stock falls, the current loss on the
option in the short position can be less than the spread out-of-the-money amount and
associates the market risk only with the worst case scenario in which the spread is out
of the money and exercised. Note that the current loss on the spread B− C in Section 2
is also the maximum loss because Rm < Cm, and hence Rm = Rmax.

Regardless of what margin requirement we are interested in, initial or maintenance,
current loss or maximum loss, for a portfolio of option spreads, its premium component
remains invariant to offsetting spreads in the portfolio. It is either the total market
value of the options in long positions if we consider the initial margin requirement,
or zero if we consider the maintenance margin requirement. Only the market risk
component can be reduced by offsetting.

Therefore, in what follows, we will be dealing with only the market risk margin
requirements. So, any margin formula for margining option spreads or portfolios of
option spreads we obtain will represent either the maintenance margin requirement
or the market risk component of the initial margin requirement. The initial margin
requirement can be easily obtained from its market risk component by adding the total
market value of all options in the long positions of the portfolio. We will also call a
market risk margin requirement simply market risk to be short.

4 Vector Model of Option Spreads

The model presented in this section follows the regulatory definitions related to option
spreads from NYSE Rule 431(f)(2) that can be found at http://rules.nyse.com/nyse/.

Option spreads of dimension h can be formally defined as integer vectors

v = ( c1 c2 . . . ch p1 p2 . . . ph )

whose components are associated with positions in options in a margin account as
follows. cj , 1 ≤ j ≤ h, is the number of option contracts in the jth call option series,
with the exercise price ej . Similarly, pj is the number of option contracts in the jth put
option series, with the same exercise price ej . A positive, negative or zero component
means that the related leg is long, short or absent, respectively. A zero spread is a
spread without legs.

The exercise prices are assumed to be all different and placed in the increasing
order, i.e., e1 < e2 < . . . < eh. The set {e1, e2, . . . , eh} is called an exercise domain. If
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Table 1: Basic spreads

spread spread name calls puts legs net

a 1st bull call 1 -1 2 dr

b 2nd bull call 1 -1 2 dr

c 3rd bull call 1 -1 2 dr

e 1st bull put 1 -1 2 cr

f 2nd bull put 1 -1 2 cr

g 3rd bull put 1 -1 2 cr

-a 1st bear call -1 1 2 cr

-b 2nd bear call -1 1 2 cr

-c 3rd bear call -1 1 2 cr

-e 1st bear put -1 1 2 dr

-f 2nd bear put -1 1 2 dr

-g 3rd bear put -1 1 2 dr

the exercise prices are separated by the same price interval, then its length is

e2 − e1 = e3 − e2 = . . . = eh − eh−1 = D = an exercise differential,

and the exercise domain is called uniform. Not all spreads within the uniform exercise
domaine are uniform. We will only refer to a spread v as uniform if the exercise
differential between its consecutive legs is either D or 0.

Specifically, consider a uniform domain and let v1, v2, . . . , vk be the sequence of
legs of v such that ev1 ≤ ev2 ≤ . . . ≤ evk and k > 1. If evj+1 − evj = D or 0 for all
j = 1, 2, . . . , k − 1, then v is a uniform spread with the exercise differential D. Note
that only uniform spreads are permitted for margining purposes [SEC, 2005], therefore
we will consider further only uniform spreads. Simplest uniform spreads are basic and
main spreads that can be defined as follows:

Definition 1 A basic spread is a vector with two non-zero components, 1 and −1 such
that (i) both non-zero components are on the same side, call or put; and (ii) non-zero
components are consecutive.

Definition 2 A basic spread is a basic call spread if all non-zero components are on
the call side, otherwise it is a basic put spread.

Definition 3 A basic spread is a basic bull spread if the first non-zero component is 1;
otherwise it is a basic bear spread.

Table 1 presents all basic spreads of a uniform domain of dimension 4. The ab-
breviations “dr” and “cr” mark debit spreads and credit spreads. They are called so
because the net positions in these spreads are the results of net debit, respectively
credit, trades, i.e. where the cost of the long options is more, respectively less, than the
cost of the short options. Treating spreads as vectors we can add them, multiply by an
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integer scalar, cyclicly shift their components and take their transpositions, i.e., create
the spreads v̄, where the components ci and pi are transposed for all i = 1, 2, . . . , h.

Let a be a positive integer and a > 1. Then av is a multiple of v and a is a divisor
of av. A spread without divisors is prime.

Definition 4 Let u and v be a bull spread and a bear spread respectively, and let u+v
be a uniform spread. Then u + v is a three- or four-leg main spread.

In what follows, we consider only main spreads and their multiples. Although our
attention will be focused on the case of dimension four, all further results are valid
for any dimension more than four. The set of all main spreads of dimension four is
presented in Table 2. Note that the four is the minimum dimension that is required to
model four-leg spreads.

All main spreads are well known except for call iron condors. In fact, the litera-
ture on the topic uses the term iron condor to denote a put iron condor (cf. [Cohen,
2005]) and does not mention call iron condors. Hence our model helps to discover two
previously unknown spreads: long and short call iron condors. A long, respectively
short, call iron condor is a combination of a bull, respectively bear, call spread and
a higher exercise price bear, respectively bull put spread. The long call iron condor
is a debit spread since it is a combination of two debit spreads. Similarly, the short
call iron condor is a credit spread since it is a combination of two credit spreads. The
maximum loss on a long call iron condor is the net debit; the maximum reward is two
exercise differentials less the net debit. The maximum loss on a short call iron condor is
two exercise differentials less net credit; the maximum reward is the net credit. Thus,
call iron condors can be margined in the same way as known debit and credit spreads;
cf. NYSE Rule 431.

It is not hard to verify that with the exception of the box spreads, three- and four-
leg main spreads are long or short depending only on whether their leg with the lowest
exercise price is long or short, respectively. The box spreads have both a long and a
short leg with the lowest exercise price, therefore they cannot be classified in this way.
We will say that the box spread is long if its call leg with the lowest exercise price is
long and short otherwise.

Analogously, with the exception of the box spreads, three- and four-leg main spreads
are call or put spreads depending only on whether their leg with the lowest exercise
price is a call or a put leg, respectively. The box spreads have both a call and a put leg
with the lowest exercise price, therefore they are call and put spreads simultaneously.

The described classification of main spreads has the following properties:

−short call [name] spread = long put [name] spread

−long call [name] spread = short put [name] spread

−short put [name] spread = long call [name] spread

−long put [name] spread = short call [name] spread

debit/credit spread = credit/debit spread
−debit/credit spread = credit/debit spread
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Table 2: Main spreads

spread spread name calls puts legs net

a 1st bull call 1 -1 2 dr

b 2nd bull call 1 -1 2 dr

c 3rd bull call 1 -1 2 dr

e 1st bull put 1 -1 2 cr

f 2nd bull put 1 -1 2 cr

g 3rd bull put 1 -1 2 cr

-a 1st bear call -1 1 2 cr

-b 2nd bear call -1 1 2 cr

-c 3rd bear call -1 1 2 cr

-e 1st bear put -1 1 2 dr

-f 2nd bear put -1 1 2 dr

-g 3rd bear put -1 1 2 dr

a− b 1st long call butterfly 1 -2 1 3 dr

b− a 1st short call butterfly -1 2 -1 3 cr

b− c 2nd long call butterfly 1 -2 1 3 dr

c− b 2nd short call butterfly -1 2 -1 3 cr

e− f 1st long put butterfly 1 -2 1 3 cr

f − e 1st short put butterfly -1 2 -1 3 dr

f − g 2nd long put butterfly 1 -2 1 3 cr

g − f 2nd short put butterfly -1 2 -1 3 dr

a− c long call condor 1 -1 -1 1 4 dr

c− a short call condor -1 1 1 -1 4 cr

e− g long put condor 1 -1 -1 1 4 dr

g − e short put condor -1 1 1 -1 4 cr

a− f 1st long call iron butterfly 1 -1 -1 1 4 dr

f − a 1st short call iron butterfly -1 1 1 -1 4 cr

b− g 2nd long call iron butterfly 1 -1 -1 1 4 dr

g − b 2nd short call iron butterfly -1 1 1 -1 4 cr

e− b 1st long put iron butterfly -1 1 1 -1 4 cr

b− e 1st short put iron butterfly 1 -1 -1 1 4 dr

f − c 2nd long put iron butterfly -1 1 1 -1 4 cr

c− f 2nd short put iron butterfly 1 -1 -1 1 4 dr

a− e 1st long box 1 -1 -1 1 4 dr

e− a 1st short box -1 1 1 -1 4 cr

b− f 2nd long box 1 -1 -1 1 4 dr

f − b 2nd short box -1 1 1 -1 4 cr

c− g 3rd long box 1 -1 -1 1 4 dr

g − c 3rd short box -1 1 1 -1 4 cr

e− c long put iron condor -1 1 1 -1 4 cr

c− e short put iron condor 1 -1 -1 1 4 dr

a− g long call iron condor 1 -1 -1 1 4 dr

g − a short call iron condor -1 1 1 -1 4 cr
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Looking at Table 2 it is not hard to verify that the table of main spreads of dimension
h ≥ 4 contains 22h−46 spreads: 4h−4 basic spreads, 4h−8 butterfly spreads, 4h−12
condor spreads, 4h − 8 iron butterfly spreads, 2h − 2 box spreads and 4h − 12 iron
condor spreads. Thus, the number of main spreads of dimension five is 64.

The set of main spreads generates a bipartite graph on 4h − 4 vertices with the
vertex set A ∪B and the edge set

A + B = {u + v : u ∈ A, v ∈ B,u + v is a uniform spread},

where the parts A and B consist of the bear spreads and the bull spreads, respectively.
Since |A| = |B| = h− 1, the bipartite graph is balanced. In the case of dimension four,
i.e., where h = 4, we use the notation

A = {−a,−b,−c,−e,−f ,−g} and B = {a,b, c, e, f ,g}.

It is easy to verify that if h = 4, then u + v is a uniform spread if and only if u 6= −v.
Therefore, if h = 4, then the bipartite graph of main spreads is a crown graph C6 on
12 vertices; see Fig. 1.

A B

-a1st bear call spread a 1st bull call spread

-b2nd bear call spread b 2nd bull call spread

-c3rd bear call spread c 3rd bull call spread

-e1st bear put spread e 1st bull put spread

-f2nd bear put spread f 2nd bull put spread

-g3rd bear put spread g 3rd bull put spread

Figure 1: The crown graph C6 of main spreads

5 Margining Portfolios of Basic Spreads

A position in a spread x is the pair [x, q(x)], where q(x) is a nonnegative integer
indicating how many spreads x are involved in the position. Thus, q(x) is the largest
divisor of the spread q(x)x. A portfolio of basic spreads is a set of positions in basic
spreads with the same underlying instrument and exercise differential.

To calculate a margin requirement for a portfolio of basic spreads we can find the
total margin requirement for all the basic spreads in it. However, it will not be the
minimum requirement because basic spreads in the portfolio offset each other in many
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ways providing different margin reductions. Thus, we have the problem of minimizing
the margin requirement for a portfolio of basic spreads. Note that some of the basic
spreads in the portfolio can have zero quantities. The crown graph on Fig. 1 whose
vertices are marked by nonnegative integers is a graph model of the portfolio.

Let us calculate the margin requirements m(v) for all basic spreads v ∈ A∪B, then
M =

∑
v∈A∪B m(v)q(v) will be a regulatory margin requirement for the portfolio.

However, the requirement M can be reduced by offsetting x(u1 + v1) units taken
from a position in a bear spread u1 and the same number of units taken from a position
in a bull spread v1 such that u1 +v1 ∈ A+B and 0 ≤ x(u1 +v1) ≤ min{q(u1), q(v1)}.
The result of this operation is an offset O(u1+v1), i.e., a position in the spread u1+v1

with quantity x(u1+v1). If m(u1)+m(v1) ≥ m(u1+v1), the offset O(u1+v1) reduces
M by the amount [m(u1) + m(v1)−m(u1 + v1)] · x(u1 + v1).

Deducting quantity x(u1+v1) from q(u1) and q(v1) we can apply the same operation
to the residual portfolio and create an offset O(u2 +v2), etc. It is clear that there exist
an integer k ≥ 1 such that after the creation of an offset O(uk + vk) the residual
portfolio will not contain offsets because the uncovered position quantities, i.e., not
covered by the crated k offsets, remain on only one side, bullish or bearish.

Since we allow zero quantities of the offsets, then we can assume that the spreads
u1 + v1,u2 + v2, . . . ,uk + vk are all spreads in A + B. Therefore, the problem of
minimizing the margin requirement for a portfolio of basic spreads is equivalent to
finding nonnegative integer quantities x(u + v) of spreads u + v in A+B to maximize
the total margin reduction provided by the offsets with these quantities. This problem
can be efficiently solved by a reduction to the following minimum-cost-flow network
problem.

Definition 5 (the Hitchcock problem [Hitchcock, 1941; Ford and Fulkerson, 1962])
Given a bipartite network with the demand part D and the supply part S, the set of
edges E connecting D and S, demands d(u) for all demand nodes u ∈ D, supplies s(v)
for all supply nodes v ∈ S such that

∑
u∈D d(u) =

∑
v∈S s(v) (balance condition), and

costs c(u, v) of running a unit of flow through the edges (u, v), find a minimum-cost
flow through the edges to satisfy the demands by the available supplies.

To show the reduction, we create the following network N : Introduce a dummy bear
spread −d and a dummy bull spread d with margin requirements and quantities

m(−d) = m(d) = 0, q(−d) =
∑
v∈B

q(v), q(d) =
∑
u∈A

q(u),

respectively, set D = A ∪ {−d}, S = B ∪ {d}, E = D + S, see Fig. 2, and set

c(u,v) = m(u,v) for all u + v ∈ A + B,
d(u) = q(u), c(u,d) = m(u) for all u ∈ D,
s(v) = q(v), c(−d,v) = m(v) for all v ∈ S.

It is easy to verify that the balance condition is observed. Note that the edges (u,d)
for all u ∈ D and the edges (−d,v) for all v ∈ S present the dummy spreads u + d
and v − d, respectively. The edge (−d,d) presents a dummy zero spread.
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D S

-a a

-b b

-c c

-e e

-f f

-g g

-ddummy bear spread d dummy bull spread

Figure 2: The network N of main spreads with two dummy spreads.

Feasible integer flows in the network N model offsets as follows. Let u + v ∈ A+B.
Then the flow quantities through the edges (u,v) present the quantities x(u + v) of
the offsets O(u + v); the flow quantities through the edges (u,d) and (−d,v) present
the uncovered quantities of the bear spreads u and the bull spreads v, respectively; the
flow quantity through the edge (−d,d) presents the total offset quantity.

The cost of running a flow is exactly the margin requirement for the portfolio, hence
the minimum margin requirement and related offsets can be found as a minimum cost
flow in the network N . It is well know that a minimum cost flow is integer if all supplies
and demands are integer[Ford and Fulkerson, 1962].

Note that the described reduction will turn into a modification of the reduction
in [Rudd and Schroeder, 1982] if we interpret A as a set of bear positions in options
(short calls and long puts), B as a set of bull positions in options (long calls and short
puts), and A + B as the the related set of two-leg option spreads.

The Goldberg-Tarjan algorithm [Goldberg and Tarjan, 1990] is one of the most ef-
ficient algorithms for solving the minimum-cost-flow network problem [Bünnagel et al.,
1998]. For a network with n nodes and m edges, its theoretical time complexity is
O(nm log(n2/m)). Since the network N has O(h) nodes and O(h) edges, the algorithm
margins a portfolio of basic spreads in time O(h2 log h).

6 Margining by the Maximum-Loss Margin Rule

It is important to observe that the reduction described in Section 5 solves the problem
of margining portfolios of basic spreads for any margin rules for main spreads because
the reduction works for any given margin requirements for main spreads. In this section
we show that the problem can be solved more efficiently if main spreads are margined by
the maximum-loss margin rule. This improvement becomes possible because this rule
assigns the same margin requirement for all credit spreads that are useful for margin
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reductions. As before, the term “market risk” will mean the maximum-loss market risk
margin requirement; see Section 3.

It is well known, cf. [McMillan, 2002], that debit spreads are free of market risk,
i.e., they have no loss associated with underlying instrument price changes. Credit
spreads, in contrast, are not free of market risk. The maximum loss on a credit spread
associated with underlying instrument price changes is the exercise differential D in all
cases except for a short call iron butterfly and a short call iron condor for which the
maximum loss is 2D. Therefore, the market risk m(x) for an option spread x is

m(x) =


0 if x is a debit spread,

2D if x is a short call iron butterfly or
a short call iron condor spread,

D otherwise.

(1)

Note that a short call iron butterfly spread and a short call iron condor spread
do not give any advantage in the market risk in comparison with the pairs of their
basic components, and as such they are not used as trading strategies. Their “put”
counterparts, however, are commonly used as trading strategies, and the word “put”
in their names is usually omitted; see e.g. [Cohen, 2005].

In this section we use the following modification of the offsetting concept. An
option spread an offset if its market risk is strictly lower than the total market risk of
its components. Thus, a main spread u+v is an offset only if m(u)+m(v) > m(u+v).
Among main spreads only offsets are advantageous for margin reductions.

As we mentioned in Section 4, a short call iron butterfly and a short call iron condor
are not offsets because m(u + v) = 2D while m(u) = D and m(v) = D. The following
lemma generalizes this result.

Lemma 1 Among main spreads only long butterfly, long condor, short box, long put
iron butterfly and long put iron condor are offsets that reduce the market risk by D.
The rest of the main spreads are not offsets.

Proof Formula (1) and Table 2 imply that m(u) + m(v)−m(u + v) = D if u + v is a
long butterfly, long condor, short box, long put iron butterfly or long put iron condor
spread; and 0 if u + v is another main spread. �

Figure 3 depicts the offset graph in the case of dimension four, i.e., the subgraph of
C6 with only those edges that represent offsets. Note that it does not contain the 3rd
bull call spread c and the 1st bear put spread −e because they are not components of
offsets, therefore they can be margined separately.

Let A′ ⊂ A, respectively B′ ⊂ B, be the set of basic bear, respectively bull, spreads
that can be used as components of offsets, O be the set of offsets, and let us calculate
the total market risk of the spreads x ∈ A′ ∪B′, i.e.,

M =
∑

x∈A′∪B′

q(x)m(x).

12
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Figure 3: The offset graph.
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Figure 4: The offset network.

Note that A′ = A \ {−e} and B′ = B \ {c} in the case of dimension four.
It is clear that only credit spreads x with positive quantities q(x) contribute to this

sum because market risk of debit spreads is zero. The total market risk M overestimates
the portfolio market risk if the portfolio has a bear spread u and a bull spread v such
that u + v is an offset. By Lemma 1, an offset reduces market risk by D. Therefore, if
the portfolio has an offset u + v its market risk is at most M− D.

Decreasing q(u) and q(v) by one we can apply the described above offsetting opera-
tion to the residual portfolio, choose the next offset, and show that the portfolio market
risk is at most M− 2D, etc. It is clear that on a certain step the residual portfolio will
not contain any offsets because the uncovered quantities of the positions, i.e., not cov-
ered by the created offsets, remain only on one side, bullish or bearish. Let us define
the total offset quantity to be the number of offsets created during this procedure.

Theorem 1 Let x be the total offset quantity for a portfolio of basic spreads with the
total market risk M and the common exercise differential D. Then the market risk of
this portfolio is M− xD.

Proof Directly follows from Lemma 1 and the definition of the offsetting operation. �

Thus, the problem of minimizing the margin requirement for a portfolio of basic spreads
by the maximum-loss margin rule is equivalent to the problem of maximizing the total
offset quantity. The problem of maximizing the total offset quantity, in turn, can be
reduced to the following network problem.

Definition 6 (the maximum-flow network problem [Ford and Fulkerson, 1962]) Given
a network with the set of nodes N , a source s ∈ N , a sink t ∈ N , s 6= t, and the set
of edges E with capacities c(e) of running a flow through e ∈ E, find a maximum flow
from s to t.
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To show the reduction let us set N = A′ ∪B′ ∪ {s, t},

E = {(u, t) : u ∈ A′} ∪ {(s,v) : v ∈ B′} ∪ {(u,v) : u + v ∈ O},

c(u, t) = q(u) for all u ∈ A′, c(s,v) = q(v) for all v ∈ B′ and make the capacities
c(u,v) unrestricted for all u + v ∈ O; see Fig. 4.

Feasible integer flows in this network can be interpreted as follows: The amount of
flow through the edges (u,v) represents the quantities x(u + v) of the offsets o(u + v);
the differences

q(u)−
∑

u+v∈O
x(u + v) and q(v)−

∑
u+v∈O

x(u + v)

represent uncovered position quantities of the bear spread u and the bull spread v,
respectively; the flow from s to t represents the total offset quantity.

The Goldberg-Rao algorithm [Goldberg and Rao, 1998] finds a maximum-flow in
a network with n nodes and m edges of maximum capacity U with the record theo-
retical time complexity O(mmin{n2/3,

√
m} log(n2/m) logU). Since the offset network

has O(h) nodes and O(h) edges whose maximum capacity U is the maximum position
quantity qmax, the algorithm margins a portfolio of basic spreads by the maximum-loss
margin rule in time O(h3/2 log h log qmax).

We can now combine the reductions to network flow problems presented in Sections 5
and 6 with the results of Rudd and Schroeder to propose the following two-step method
of margining option portfolios:

Heuristic H

1. Margin a given portfolio of options by the reduction of Rudd and Schroeder and
create the related subportfolio of two-leg option spreads;

2. Margin the subportfolio by the reduction proposed in this paper.

Although this method does not guarantee the exact minimum margin for all option
portfolios, it presents a reasonable and handy heuristic that uses only well developed
minimum-cost-flow and maximum-flow network algorithms, usually available in one
software package. Besides, our method finds an exact solution in the case when the
option portfolio is preliminary structured into basic two-leg option spreads. This pre-
liminary structure is usually available because the vast majority of option portfolios in
customer margin accounts are formed as a result of trading two-leg option spreads.

7 Computational Study

The goal of our computational study is to compare margin requirements produced by
the two-step heuristic described above with the requirements produced by method of
Rudd and Schroeder [1982] and an algorithm of dimension four proposed by Coffman
et al. [2010b]. To achieve this, we compare the behaviour of the portfolio maintenance
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margin requirement as a function of the portfolio size that is calculated by all three
methods in different scenarios. Note that the method of Rudd and Schroeder is an LP
that uses offsets with 2 legs only, whereas the algorithm of dimension four of Coffman
et al. [2010b] is an MIP that uses offsets with 2, 3, and 4 legs. All three methods were
implemented using CPLEX.3 As before, we follow NYSE Rule 431.

7.1 Design of the Experiments

The main idea of portfolio variation is to first build a maximal portfolio and then
randomly remove positions to provide a monotonic reduction of its size. The margin
requirement was computed for each generated portfolio by using the strategy-based
algorithms of dimensions two and four, and the two-step algorithm. The portfolios
were generated by performing the following steps:

Step 1. A group of 16 call options and a group of 16 put options were selected4 such
that exactly 8 options inside each group were in the money; see Table 3, where
each row presents a call option and a put option with the same exercise price.

Step 2. The maximal portfolio with 32 positions was built by creating 8 long positions
in randomly chosen 8 call options and 8 short positions in the remaining 8 call
options; the other 16 positions in put options were created in the same way. This
step was repeated 10 times and resulted in 10 unique maximal portfolios. The
next steps were repeated for each maximal portfolio.

Step 3. The number of option contracts in each position was randomly generated in
the range from 1 to 10. This step was repeated 50 times.

Step 4. A randomly selected position from one side (bearish or bullish) was removed
to get a portfolio of the smaller size.

Step 5. The number of option contracts in each remaining position was randomly
generated in the range from 1 to 10. This step was repeated 50 times.

Step 6. Steps 4-5 were repeated 29 times to get a total of 30 sets of 50 randomly
generated portfolios with sizes monotonically decreasing from 32 to 3. The side
from which a position was to be removed in Step 4 was alternated to maintain a
balance between the number of bearish and bullish positions.

Step 7. Steps 3-6 were repeated 25 times alternating the starting side in Step 4. Each
time the random number generator was restarted to avoid repeated patterns.

Step 8. Three margin requirements were calculated for each portfolio and averaged for
portfolios of the same size. Hence, we calculated 30 averaged margin requirements
for each algorithm.

Steps 1 through 8 create a symmetric scenario because position quantities chosen at
Steps 3 and 5 are distributed uniformly between 1 and 10. The symmetric scenario

3We used ILOG CPLEX 12.1 on Dell Precision T7400 with two 3.5 GHz Quad-Core Intel Xeon
CPUs, 32 GB RAM running Windows XP 64-bit.

4These 32 options were on the IBM stock at the market price of $84.92 and expired on April 17, 2009.
The data was taken as of the end of the day of January 16, 2009, from http://finance.yahoo.com/.
Note that we could have chosen any other stock with sufficient number of options.
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generates balanced portfolios where the numbers of call and put options, in-the-money
and out-of-the-money options, long and short positions are approximately the same.
Thus, to obtain each point in the graph, we computed and averaged margin require-
ments for 12,500 portfolios, with the total of 12,500 ·30 = 375,000 unique and randomly
generated balanced portfolios.

We also performed this experiment in six asymmetric scenarios to model unbalanced
portfolios with different kinds of asymmetry. We performed the same steps as in the
above algorithm except for Steps 3 and 5, where the quantities of options in the positions
were ranging according to the following three scenarios, where quantities A and B were
random integers in the intervals [7, 10] and [1, 4], respectively:

Long Portfolio : A\B option contracts for each long\short, position;
Call Portfolio : A\B option contracts for each position in call\put options;
Bull Portfolio : A\B option contracts for each bullish\bearish, position.

The other three asymmetric scenarios, Short Portfolio, Put Portfolio, Bear Portfolio,
respectively, were obtained by transposing A and B in the above three definitions.5

# ex price call price put price

1 45 39.70 0.45
2 50 35.50 0.67
3 55 31.90 1.00
4 60 25.30 1.45
5 65 21.50 1.90
6 70 17.30 2.70
7 75 13.50 3.90
8 80 10.10 5.34
9 85 7.10 7.38

10 90 4.63 10.00
11 95 2.85 14.83
12 100 1.75 17.02
13 105 0.95 21.50
14 110 0.50 26.03
15 115 0.20 28.40
16 120 0.15 32.90

Table 3: Selected options and their prices

7.2 Results of the Experiment

The results of the experiment are presented in Figs. 5 through 11, where margin re-
quirements are given in thousands of dollars for portfolio sizes 3, 4, 5, . . . , 31, 32. The

5Recall that long positions in call options and short positions in put options are bullish, long positions
in put options and short positions in call options are bearish.
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balanced long short call put bull bear

average 70.23 61.04 73.10 71.50 77.50 78.52 61.63
min 36.41 0.00 8.40 31.51 62.04 58.33 1.20
max 77.43 83.63 83.82 76.94 82.07 100.00 75.42

Table 4: The average, minimum and maximum relative error provided by two-step
heuristic H for different scenarios for all portfolios (in %). Margin computed using S4
was used as a baseline and S2-S4 as the maximum error (100%).

balanced long short call put bull bear

average 56.32 37.18 50.01 61.88 70.35 73.70 37.53
min 36.41 0.00 8.40 31.51 62.04 58.33 1.20
max 67.32 57.62 70.69 71.03 76.16 100.00 59.25

Table 5: The average, minimum and maximum relative error provided by heuristic H
for different scenarios for portfolios with sizes ≤ 10 (in %). Margin computed using S4
was used as a baseline and S2-S4 as the maximum error (100%).

notation S2, S4, H stands for margin requirements obtained by the strategy-based al-
gorithms of dimensions two [Rudd and Schroeder, 1982], four [Coffman et al., 2010b],
and heuristic H, respectively.

To compare the performance of heuristic H to the other two algorithms we have
computed the relative error: (H-S4)/(S2-S4). Our main conclusion is that the two-step
heuristic H performs well in all scenarios. It allows us to improve the results obtained by
the algorithm of Rudd and Schroeder by 21-39% on average, depending on the scenario
(see Table 4). Heuristic H is especially effective in the case of long and bear portfolios.
The average relative error in this cases is 61.4% and 61.63% respectively.

The majority of portfolios have 10 or less positions. For such portfolios heuristic
H performs even better. It has a relative average error of 56% or less for all scenarios
except call, put, and bull (see Table 5).

8 Conclusions and Future Research

In this paper we have proposed a vector model of option spreads that allows for a
full characterization of main option spreads. We have also proposed a reduction of the
minimum margin requirement for a portfolio of basic option spreads to a minimum-cost-
flow network problem and hence, shown that it can be efficiently solved in polynomial
time by minimum-cost-flow algorithms. In the case of margining option spreads by the
maximum-loss margin rule there exist an even more efficient model, a maximum-flow
network problem, that has even faster algorithms. These results have strong practical
implications. They allow to upgrade margin calculation systems to not only solve the
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Figure 5: Balanced Portfolios
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Figure 6: Long Portfolios
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Figure 7: Short Portfolios

problem of margining option portfolios in polynomial time but to solve it fast using
network flow algorithms that have efficient implementations.

We believe that the concept of uniform option spreads came into margining practice
from the desire to simplify margin rules for credit spreads. Margining of non-uniform
option spreads is more complex because it involves the current price of the underlying
instrument. Nevertheless, our model also works for non-uniform option spreads because
margin requirements for option spreads are external parameters.

Our vector model of option spreads suggests that together with main spreads there
exist other spreads with a more complex structure. Our future research will be devoted
to the study of complex option spreads that have more than four legs.
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Figure 8: Call Portfolios
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Figure 9: Put Portfolios
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Figure 10: Bull Portfolios
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Figure 11: Bear Portfolios
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