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Abstract

In December 2005, the U.S. Securities and Exchange Commission approved mar-
gin rules for complex option spreads with 5, 6, 7, 8, 9, 10 and 12 legs. Only
option spreads with 2, 3 or 4 legs were recognized before. Taking advantage of op-
tion spreads with a large number of legs substantially reduces margin requirements
and, at the same time, adequately estimates risk for margin accounts with positions
in options. In this paper we present combinatorial models for known and newly
discovered option spreads with up to 134 legs. We propose their full characteriza-
tion in terms of matchings, alternating cycles and chains in graphs with bicolored
edges. We show that the combinatorial analysis of option spreads reveals powerful
hedging mechanisms in the structure of margin accounts, and that the problem of
minimizing the margin requirement for a portfolio of option spreads can be solved
in polynomial time using network flow algorithms. We also give recommendations
on how to create more efficient margin rules for options.

1 Introduction

The margining of accounts, i.e., the calculation of minimum regulatory margin re-
quirements for margin accounts, is a critical intra-day and end-of-day risk management
operation for any brokerage firm. There exist two approaches to margining portfolios,
strategy-based and risk-based. Recently, Coffman et al. [2010] have published an ex-
perimental analysis of the two approaches to margining. Their results suggest that the
risk-based approach, recently adopted in the US, has serious shortcomings. Specifi-
cally, it significantly undermargins stock option portfolios and does not provide any
exit strategy. Coffman et al. conclude that strategy-based approach to margining is
more appropriate for portfolios of stock options, although it is computationally and
analytically more challenging and lacks in depth academic research. These conclusions
call for a more detailed and comprehensive analysis of the strategy-based approach
which we offer in this paper.

The strategy-based margining of an account without positions in options or other
derivatives is simply the calculation of the total margin requirement for all positions in

1



the account. Options, however, bring a nontrivial combinatorial component to the cal-
culation because margin regulations for positions in options permit the use of different
offsets for margin reductions that usually imitate trading strategies. Offsets involving
only options are based on option spreads.

By the end of the nineties, it was commonly recognized that margin regulations
impose excessively high minimum margin requirements. This can be partially explained
by the fact that margin rules by that time permitted the use of option spreads with
only two, three or four legs. The brokerage term “leg” stands for a single position in
one option series. All options in an option series have the same type, i.e., call or put,
the same underlying instrument, the same expiry date and the same exercise price.

On the other hand, the calculation of the minimum margin by using offsets with
more than two legs is a computationally complex combinatorial problem that is not
well understood. Despite the fact that margin regulations have a 75-year history dating
from Regulation T in the Securities Act of 1934, the literature on margin calculations
is surprisingly small. We can point to only two books [Geelan and Rittereiser, 1998;
Curley, 2008], three papers [Rudd and Schroeder, 1982; Fiterman and Timkovsky,
2001; Coffman et al., 2010] devoted to margining algorithms and two papers [Fortune,
2000, 2003] devoted to margining practice. Literature on studying the influence of
margin requirements on the market, such as for example [Moore, 1966; Luckett, 1982],
is more representative; see the related survey in [Kupiec, 1998]. The vast majority
of publications on margining consists primarily of regulatory circulares and manuals
written by security market lawyers.

Consequently, margin calculation systems, developed and used in the brokerage
industry up to 2005, ignore highly effective and broadly applicable combinatorial opti-
mization methods. In particular, the reduction of the margin-minimization-by-pairing
problem to the minimum-cost network-flow problem [Rudd and Schroeder, 1982] was
seemingly forgotten for more than 20 years. As a result, existing margin calculation
technology, faced with the combinatorial complexity of margin calculations, failed to
take advantage of multi-leg option spreads. The vast majority of margin calculation
systems used in the brokerage industry, as our study shows, uses offsets with two legs
only; and they are based on outdated heuristics proposed by brokers in the mid sev-
enties [Cox and Rubinsein, 1985; Geelan and Rittereiser, 1998]. The most advanced
margining systems recognize offsets with up to four legs by using heuristics that cannot
guarantee the minimum margin. However, as we show, the failure to use offsets with
more that two legs can increase the margin requirement by several thousands of dollars.

The more legs an option spread has the more margin reduction it gives. Thus, the
reduction of minimum margin requirements can be achieved by designing new option
spreads with a larger number of legs. Option spreads with two, three and four legs,
such as bull and bear spreads, butterfly spreads, condor spreads and box spreads, were
known and permitted for margining since the mid seventies. Option spreads with more
than four legs, a very efficient means of achieving adequate margin reductions, did not
appear until 30 years later. Specifically, in August 2003 the CBOE (Chicago Board
Options Exchange) proposed new margin rules for option spreads with up to 12 legs
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that were called complex option spreads [CBOE, 2003]. After two revisions of this
proposal [CBOE, 2004, 2005], the SEC (U.S. Securities and Exchange Commission)
approved these rules [SEC, 2005] and added them to NYSE Rule 431 in December
2005. In August 2007, these rules were also recognized in Canada [IDA, 2007].

The regulatory move of 2005 was a very important step in the development of
margin regulations. Now it is important to understand how multi-leg spreads can be
used in margin calculations and design efficient margin calculation algorithms that
take advantage of multi-leg spreads. At the best of our knowledge, this kind of research
has never been attempted. As we show in this paper, 12 legs is not the final step.
We discover new multi-leg option spreads that have the same hedging mechanism as
that of complex option spreads and propose a full characterization of multi-leg option
spreads with up to 134 legs. We also show that the number of such spreads reaches
several thousands. Therefore, any algorithm identifying all of them in a given margin
account would be impractical. Note that the existing margining algorithms are based
on spreads identification; see a discussion in [Rudd and Schroeder, 1982; Fiterman and
Timkovsky, 2001]. We discover, however, that the problem of minimizing the margin
requirement where multi-leg spreads are used for offsetting under the maximum loss
margin rules, can be solved without identification of option spreads. Moreover, we show
that it can be solved in polynomial time by network flow algorithms.

The remainder of the paper is organized as follows. Section 2 explains the advantage
of using option spreads with a larger number of legs. Section 3 discusses types of margin
requirements and explains that only the market risk component of the margin require-
ment for a portfolio of option spreads can be minimized. A model and a characterization
of option spreads with two, three and four legs are proposed in Section 4. Section 6 is
devoted to margining a portfolio of basic spreads. Sections 7 and 8 present complex
spreads and their generalizations. Sections 9 is devoted to graph characterization and
counting multi-leg spreads. Sections 10 contains a portfolio decomposition theorem and
the margin minimization algorithm using offsets based on multi-leg spreads. In con-
clusion, we outline possible directions of further research and give recommendations on
how to create more efficient margin rules for options.

2 Why Counting Legs Matters

As a matter of fact, every leg saves money. In this section, we show that the advantage
of using an additional leg in margining equals the product of the difference between
exercise prices and the contract size of the options.

Let us consider a margin account which consists of a long position in one call
option A, a long position in one call option B and a short position in two call options C.
The options’ exercise prices and market prices are, respectively,

Ae = $70.00, Ap = $55.90,
Be = $90.00, Bp = $40.90,
Ce = $80.00, Cp = $50.60.
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Each of the options expires by the end of day, January 15, 2010, and has the contract
size of 100 shares. The market price of the underlying stock1 is Up = $123.62.

In what follows, it will be convenient to denote a long or short position in an option,
say, C, as +C or −C, respectively; so, a set of positions then can be written as a formal
sum of the positions. Following the definitions form NYSE Rule 431(f)(2)(C), we can
conclude that, since Ae < Ce < Be and Ce− Ae = Be− Ce, the account represents a
long butterfly spread A + B− 2C whose components are spreads A− C and B− C.

Next, we show that the regulatory minimum initial and maintenance margin re-
quirements for this account are $1000 less if considered as the long butterfly spread,
which has three legs, in comparison with the case where it is considered as a consoli-
dation of the two two-leg spreads, which are its components.

Indeed, in accordance with NYSE Rule 431(f)(2)(G)(v)(1), the initial margin re-
quirement for A + B− 2C is the total market price of A and B, i.e.,

100 · (Ap + Bp) = 100 · ($55.90 + $40.90) = $9680.

NYSE Rule 431(f)(2)(G)(i) states that the initial margin requirement for a two-leg
spread is the market value of the option carried long plus the lesser of the initial
margin requirement for the option carried short and the spread exercise loss.

Since Ae < Ce, the spread A− C exercise loss, i.e., 100 ·max{Ae− Ce, 0}, is zero,
and hence the initial margin requirement for A− C is 100 · Ap = $5590.

Since Be > Ce, the spread B− C exercise loss, i.e., 100 ·max{Be− Ce, 0}, is $1000.
In accordance with NYSE Rule 431(f)(2)(D)(i), the initial margin requirement for −C
is 100 · (Cp + Cm) = 100 · ($50.60 + $24.724), where

Cm = max{0.2 · Up− Co, 0.1 · Up}
= max{0.2 · $123.62− $0.00, 0.1 · $123.62} = $24.724,

Co = max{Ce− Up, 0}
= max{$80.00− $123.62, 0} = $0.00.

Note that Co here is the out-of-the-money amount of the call option C. Thus, the initial
margin requirement for B− C is 100 · Bp + $1000 = $5090. Therefore, if the account is
considered as a consolidation of the two two-leg spreads, the initial margin requirement
for it is $5590 + $5090 = $10680, which is $1000 more.

Deducting the total market value of the options in the long positions A and B in
both cases, we obtain the maintenance margin requirements, i.e., $0 for A + B− 2C
and $1000 for the consolidation of A− C and B− C. Thus, we have the advantage of
$1000 in the maintenance margin requirement as well.

We have demonstrated the advantage of three legs over two legs. However, the more
legs an option spread has the more advantageous it is. As we will see, the advantage of
using multi-leg spreads is a multiple of the product of the difference between exercise
prices and the contract size of the options involved in the spreads.

1The data are taken from http://finance.yahoo.com as of the end of day, May 21, 2008, at NYSE
for the symbol IBM.
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3 Market Risk Margin Requirement

In the above example, we calculated a regulatory minimum initial and maintenance
margin requirements for option spreads, which are based on the estimation of the cur-
rent loss in accordance with the current market prices of the options and the underlying
stock. Any margin charge below this minimum is illegal. However, brokers/brokerage
houses are allowed to use more stringent margin requirements in accordance with their
house margin rules. Although these rules may vary, more stringent margin requirements
for option spreads are usually based on the estimation of the maximum loss.

To explain the difference between current loss and maximum loss margin require-
ments for option spreads, let us recall that the current loss initial margin requirement
for B− C, see Section 2, is 100 · (Bp + Rm), where

Rm = min{Cm,max{Be− Ce, 0}.

This margin consists of the following two components: 100 · Bp, the premium margin
requirement, and 100 · Rm, the market risk margin requirement. Note that the latter
remains the same in the calculation of maintenance margin requirements.

It is clear that we obtain a more stringent margin requirement if we replace the
market risk component by the spread exercise loss

Rmax = max{Be− Ce, 0}

since Rmax ≥ Rm. The new market risk component, i.e., 100 · Rmax, ignores the fact
that, if the current market price of the underlying stock falls, the current loss on the
option in the short position can be less than the spread exercise loss and associates
the market risk only with the worst case scenario in which both options of the spread
are exercised. Note that the current loss on the spread B− C in Section 2 is also the
maximum loss because Rm < Cm, and hence Rm = Rmax.

The formula 100 · Rmax representing the maximum loss market risk margin require-
ment should be recognized as commonly used and more preferable for margining stock
option spreads in practice; see for example [CBOE, 2000]. This preference can be ex-
plained by the weighty argument that stocks are the most volatile securities on the
market, and therefore the current loss calculated at the present moment can easily
become the maximum loss in a few seconds.

On the other hand, the maximum loss margining is much more tractable than
the current loss margining because, as can be seen from the formula for Rmax, the
calculation of the initial or maintenance margin requirements for options in the short
position can be avoided, and therefore the current market price of the underlying stock
is not needed for the calculation. This paper takes advantage of this fact and considers
only maximum loss margin requirements.

Regardless of what margin requirement we calculate, initial or maintenance, current
loss of maximum loss, for a portfolio of option spreads, its premium component remains
invariant to offsetting spreads in the portfolio. It is either the total market value of the
options in long positions if we calculate the initial margin requirement, or zero if we
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calculate the maintenance margin requirement. Only the market risk component can
be reduced by offsetting.

In what follows, we will be dealing with only the maximum loss market risk margin
requirements. So, any margin formula we will obtain for margining option spreads will
represent either the maintenance margin requirement or the market risk component of
the initial margin requirement. The initial margin requirement can be easily obtained
from its market risk component by adding the total market value of all options in the
long positions of the portfolio. We will also call a maximum loss market risk margin
requirement simply market risk to be short.

4 Main Option Spreads

The model presented in this section follows the regulatory definitions related to option
spreads from NYSE Rule 431(f)(2) that can be found at http://rules.nyse.com/nyse/.

Option spreads of dimension h can be formally defined as integer vectors

v = ( c1 c2 . . . ch : p1 p2 . . . ph )

whose components cj/pj , 1 ≤ j ≤ h, are said to be on the call/put side of the spread
and associated with the number of option contracts in the jth position in a call/put
option with the exercise price ej on the same underlying instrument.

A positive/negative component of v is called a long/short leg of the spread. A zero
spread that we denote by 0 has no legs. Let l1, l2, . . . , lk be the sequence of legs of a
spread when scanning its components from left to right or right to left. If li = lk−i+1

or li = −lk−i+1 for all i = 1, 2, . . . , bk/2c, then the spread is called symmetric or
antisymmetric, respectively. Single-side spreads, i.e., call-side/put-side spreads, have
legs only on the call/put side. Two-side spreads have legs on both sides.

The exercise prices are assumed to be all different and placed in the increasing
order, i.e., e1 < e2 < . . . < eh. The set {e1, e2, . . . , eh} is called an exercise domain.

Treating spreads as vectors we can add them, multiply by an integer scalar, cyclicly
shift their components and take their transpositions, i.e., create the spreads v̄, where
the components ci and pi are transposed for all i = 1, 2, . . . , h.

Let a be a positive integer and a > 1. Then av is a multiple of v and a is a divisor
of av. A spread without divisors is prime. We call two spreads isomorphic if one can
be cyclicly shifted into the other such that the legs do not change their sides.

Antisymmetric two-leg spreads and simplest symmetric three-leg or four-leg spreads
are well known and widely used as trading strategies and offsets in margining practice.
Prime spreads among them can be defined as follows.

Definition 1 Let 0k denote k successive zero components of a vector. Then the fol-
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lowing antisymmetric prime two-leg spreads are basic spreads:

the ith bull call spread = ( 0i−1 1 −1 0h−i−1 : 0h )
the ith bear call spread = ( 0i−1 −1 1 0h−i−1 : 0h )
the ith bull put spread = ( 0h : 0i−1 1 −1 0h−i−1 )
the ith bear put spread = ( 0h : 0i−1 −1 1 0h−i−1 )

where i = 1, 2, . . . , h− 1. Let x and y be a bull spread and a bear spread, respectively.
Then x + y is a symmetric prime three-leg or four-leg spread.

If the exercise prices are separated by the same price interval, then its length is

e2 − e1 = e3 − e2 = . . . = eh − eh−1 = D = an exercise differential,

and the exercise domain and spreads on this domain are called uniform. Note that only
uniform spreads are permitted for margining purposes [SEC, 2005]. Although, in what
follows, our attention will be focused on the case of dimension four, all further results
except counting, are valid for any dimension higher than four. Note that four is the
minimum dimension that takes into consideration four-leg spreads.

Table 1 presents all 12 call-side spreads, where isomorphic spreads are numbered.
For example, there are only two isomorphic long call butterfly spreads. The abbrevi-
ations “dr” and “cr” mark debit spreads and credit spreads.2 Transposing spreads in
Table 1 and changing the word “call” into “put” in the second column we can get all
12 put-side spreads. The last 9 rows of Table 2 present all 9 debit two-side spreads.
Negating these spreads, transposing the words “long” and “short” in the second column
and replacing “dr” by “cr” in the last column, we can get all 9 credit two-side spreads.
We do not show the three bull put spreads, the 12 put-side spreads and the 9 credit
two-side spreads because their structure is clear. Thus, the number of all prime spreads
of dimension four that meet Definition 1 is 42. We call them further main spreads.

The set of basic spreads, which we refer to as A∪B, generates the crown graph on
12 vertices. It is a bipartite graph with the vertex set A ∪B, where the parts

A = {−a,−b,−c,−e,−f ,−g} and B = {a,b, c, e, f ,g}

represent bear spreads and bull spreads, respectively, and the set of edges

A+B = {u + v : u ∈ A, v ∈ B}

represents symmetric spreads. Since |A| = |B|, the crown graph is a balanced bipar-
tite graph. It can be converted into a complete balanced bipartite graph by adding
horizontal edges that connect six bull/bear spreads with their negations and therefore
represent zero spreads. We denote the crown graph on 2n vertices by Cn; see Fig. 1.

It is not hard to verify that with the exception of the box spreads, symmetric main
spreads are long/short depending only on whether their leg with the lowest exercise

2They are called so because the net positions in these spreads are the results of net debit/credit
trades, i.e. where the cost of the long options is more/less than the cost of the short options.
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Table 1: Call-Side Spreads

spread spread name calls puts net

a 1st bull call 1 -1 dr

b 2nd bull call 1 -1 dr

c 3rd bull call 1 -1 dr

-a 1st bear call -1 1 cr

-b 2nd bear call -1 1 cr

-c 3rd bear call -1 1 cr

a− b 1st long call butterfly 1 -2 1 dr

b− c 2nd long call butterfly 1 -2 1 dr

b− a 1st short call butterfly -1 2 -1 cr

c− b 2nd short call butterfly -1 2 -1 cr

a− c long call condor 1 -1 -1 1 dr

c− a short call condor -1 1 1 -1 cr

Table 2: Bull Call Spreads, Bear Put Spreads and Debit Two-Side Spreads

spread spread name calls puts net

a 1st bull call 1 -1 dr

b 2nd bull call 1 -1 dr

c 3rd bull call 1 -1 dr

−e 1st bear put -1 1 dr

−f 2nd bear put -1 1 dr

−g 3rd bear put -1 1 dr

a− e 1st long box 1 -1 -1 1 dr

b− f 2nd long box 1 -1 -1 1 dr

c− g 3rd long box 1 -1 -1 1 dr

a− f 1st long call iron butterfly 1 -1 -1 1 dr

b− g 2nd long call iron butterfly 1 -1 -1 1 dr

b− e 1st short put iron butterfly 1 -1 -1 1 dr

c− f 2nd short put iron butterfly 1 -1 -1 1 dr

a− g long call iron condor 1 -1 -1 1 dr

c− e short put iron condor 1 -1 -1 1 dr

price is long/short, respectively. The box spreads have both a long and a short leg
with the lowest exercise price, therefore they cannot be classified in this way. The box
spread is long/short if its call leg with the lowest exercise price is long/short.

Analogously, with the exception of the box spreads, symmetric main spreads are
call/put spreads depending only on whether their leg with the lowest exercise price is
a call/put leg, respectively. The box spreads have both a call and a put leg with the
lowest exercise price, therefore they are call spreads and also put spreads.

One can also observe that symmetric debit/credit spreads correspond to the edges
of the crown graph C6 with a positive/negative slope. This property, of course, holds
only if the vertices of the crown graph are positioned on the plan as shown in Fig. 1.
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A B
symmetric call-side spreads

symmetric put-side spreads

two-side credit spreadstwo-side debit spreads

-a1st bear call spread a 1st bull call spread

-b2nd bear call spread b 2nd bull call spread

-c3rd bear call spread c 3rd bull call spread

-e1st bear put spread e 1st bull put spread

-f2nd bear put spread f 2nd bull put spread

-g3rd bear put spread g 3rd bull put spread

Figure 1: The crown graph C6 of main spreads: thick lines depict credit spreads.

Other properties of main spreads can be expressed by the following equations:

−short call [name] spread = long put [name] spread

−long call [name] spread = short put [name] spread

−short put [name] spread = long call [name] spread

−long put [name] spread = short call [name] spread

debit/credit spread = debit/credit spread
−debit/credit spread = credit/debit spread

It is well known, see [McMillan, 2002] for example, that debit spreads are free of market
risk, i.e., they have no loss associated with underlying security price changes. Credit
spreads, in contrast, are not free of market risk. The maximum loss on a credit spread x
associated with underlying security price changes is D or 2D if it is a short call iron
butterfly or condor spread. Thus, the market risk m(x) of an option spread x is

m(x) =


0 if x is a debit spread,
D if x is a credit spread that is not

a short call iron butterfly or condor spread,
2D if x is a short call iron butterfly or condor spread.

(1)

Among symmetric credit spreads, only a short call iron butterfly spread and a short
call iron condor spread do not give an advantage in the market risk in comparison with
the pairs of their basic components, therefore they are not used as trading strategies.
Their transpositions, i.e., a short put iron butterfly spread and a short put iron condor
spread, however, are commonly used as trading strategies. The word “put” in their
names is usually omitted, so they are called simply a short iron butterfly spread and a
short iron condor spread; see, e.g., [Cohen, 2005]. As we will see, there exist only 12
among 30 symmetric spreads that give an advantage in the market risk.
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Figure 2: The offset graph.
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source

Figure 3: The offset network.

5 Offsets

An option spread is an offset if its market risk is lower than the total market risk of its
components. Thus, a four-leg main spread u+v is an offset if m(u)+m(v) > m(u+v).
Among four-leg main spreads only offsets are advantageous for margin reductions.

As we mentioned in Section 4, a short call iron butterfly and a short call iron condor
are not offsets because m(u + v) = 2D while m(u) = D and m(v) = D. The following
lemma generalizes this result.

Lemma 1 Symmetric single-side credit spreads, two-side debit spreads, short call iron
butterfly and short call iron condor spreads are not offsets, while symmetric single-side
debit spreads and two-side credit spreads which are not short call iron butterfly or short
call iron condor spreads are offsets that reduce the market risk by D.

Proof Formula (1) and Tables 1 and 2 imply that m(u)+m(v)−m(u+v) = 0 if u+v
is a symmetric single-side credit spread, two-side debit spread, short call iron butterfly
or short call iron condor spread, and D if u + v is another symmetric spread. �

Figure 2 depicts the offset graph, i.e., the subgraph of C6 whose edges represent offsets.
Note that it does not contain the 3rd bull call spread c and the 1st bear put spread −e
because they are not components of offsets, therefore they can be margined separately.
Let us set A′ = A \ {−e}, B′ = B \ {c} and denote the set of all 12 offsets by O.

6 Four-Leg Margining of Portfolios of Basic Spreads

A position in a basic spread x is the pair [x, q(x)], where q(x) is a nonnegative integer
indicating how many basic spreads x are involved in the position. A portfolio of basic
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spreads is a set of positions in basic spreads with the same underlying instrument and
exercise differential. Without loss of generality, we can assume that such a portfolio
contains all 12 basic spreads, where some of them have zero quantities.

To define a portfolio market risk associated with a portfolio of basic spreads, let us
first calculate the total market risk for all basic spreads x ∈ A ∪B, i.e.,

M =
∑

x∈A∪B
q(x)m(x).

It is clear that only credit spreads x with positive quantities q(x) contribute to this sum
because market risk of debit spreads is zero. The total market risk M overestimates
the portfolio market risk if the portfolio has a bear spread u and a bull spread v such
that u + v is an offset. By Lemma 1, an offset reduces market risk by D, therefore the
portfolio market risk is at most M− D.

It is important to notice that the offsets with the maximum of four legs are used here
as a simplest mechanism of hedging market risk associated with basic credit spreads.
So, the problem considered in this section is the simplest portfolio margin minimization
(PMM) problem with this hedging mechanism. Consequently, the margin requirement
found as a solution to this problem we call the minimum four-leg margin requirement.
In Section 10 we consider the PMM problem with much more powerful hedging mech-
anisms that yield substantially lower margin requirements.

Decreasing q(u) and q(v) by one we can apply the described above offsetting oper-
ation to the residual portfolio and choose the next offset and prove that the portfolio
market risk is at most M− 2D, etc. It is clear that on a certain step the residual port-
folio will not contain offsets because the uncovered quantities of the positions, i.e., not
covered by chosen offsets, remain on only one side, bullish or bearish. Let us define the
total offset quantity to be the number of offsets created during this procedure.

Theorem 1 Let x be the total offset quantity. Then the portfolio market risk is at most
M− xD, and hence this difference is a four-leg margin requirement for the portfolio.

Proof Directly follows from Lemma 1. �

Thus, the problem of minimizing the four-leg margin requirement for a portfolio of
basic spreads is equivalent to the problem of maximizing the total offset quantity.

Let us show a reduction of this problem to the maximum flow problem [Ford and
Fukerson, 1962]: Given a network with the set of nodes N , a source s ∈ N , a sink
t ∈ N , s 6= t, and the set of edges E with capacities c(e) of running a flow through
e ∈ E, find a maximum flow from s to t.

Let us introduce a dummy bull spread d, a dummy bear spread −d and create an
offset network setting N = A′ ∪B′ ∪ {d,−d}, s = d, t = −d,

E = {(u,d) : u ∈ A′} ∪ {(−d,v) : v ∈ B′} ∪ {(u,v) : u + v ∈ O},

c(u,d) = q(u) for all u ∈ A′, c(−d,v) = q(v) for all v ∈ B′ and make the capacities
c(u,v) unrestricted for all u + v ∈ O; see Fig. 3.
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Feasible integer flows in this network can be interpreted as follows: Let u + v ∈ O.
Then the amount of flow through the edges (u,v) represents the quantities x(u + v) of
the offsets u + v; the differences q(u)−

∑
u+v∈O x(u+v) and q(v)−

∑
u+v∈O x(u+v)

represent uncovered position quantities of the bear spread u and the bull spread v,
respectively; the flow from d to −d represents the total offset quantity. If x∗ is the
maximal offset quantity, then M− x∗D defines the portfolio four-leg market risk.

7 Complex Option Spreads

The regulatory amendment of December 14, 2005, initiated by the CBOE, was moti-
vated by the observation that some combinations of main spreads have the same risk
profile as single main spreads such as bull and bear spreads, condor spreads, iron but-
terfly and iron condor spreads. This phenomenon is explained by the fact that the
summation of main spreads in such a combination turns out to be also a main spread.
These combinations were named complex spreads.

Ten of the complex spreads are presented in Table 3. The other ten are their
transpositions, where the names of the components have the words “call” and “put”
interchanged. Negations of these 20 give 20 additional complex spreads, where the
names of the components have the words “long” and “short” interchanged. Thus,
Table 3 defines a total of 40 complex spreads. Since complex spreads 1 and 2, 4 and 5,
7 and 8 are isomorphic, there exist only seven types of the complex spreads.3

Margin calculations for complex spreads follow the ways of margin calculations for
their resulting spreads; and a complex spread is an offset if its margin requirement
is less than the total margin requirement for its components. Hence, not all complex
spreads are offsets.

For example, the complex spread 6 in Table 3 has three components: the 1st long
call butterfly spreads b− c, the 2nd long call butterfly spread a− b and the 3rd bull
call spread c. All the three are debit spreads. By formula (1), the margin requirements
for these spreads are zeros. The resulting spread is the 1st bull call spread a, which is
also a debit spread. Therefore, the margin requirement for the complex spread 6 is also
zero. Thus, the complex spread 6 is not an offset, and there is no advantage of using it
for margin reductions. It is not hard to verify that all complex spreads in Table 3 are
not offsets. However, their negations are offsets.

For example, since the bear call spread−a is a credit spread, the margin requirement
for the negation of the complex spread 6 is D, while the total margin requirement for
b− a, c− b and −c, which are all credit spreads, is 3D. Thus, the complex spread 6
is an offset that gives the advantage of two exercise differentials.

In general, if a complex spread with the resulting debit/credit spread is an offset,
it reduces the total margin requirement for basic spreads by kD/(k− 1)D, respectively,

3The regulatory definition in SEC Release 34-52738, the CBOE Regulatory Circular and NYSE Rule
431 contains only descriptions of these seven types. The CBOE gave some of them the same names as
those of their resulting main spreads. To avoid confusions, we do not use these names.

12



Table 3: Complex Spreads, Their Components and Resulting Spreads

cmplx sprd: cmpnt sum = result sprd calls puts net

1. b + (a− b) = a : 5 legs

2nd bull call 1 -1 dr

+ 1st long call butterfly 1 -2 1 dr

= 1st bull call 1 -1 dr

2. c + (b− c) = b : 5 legs

3nd bull call 1 -1 dr

+ 2st long call butterfly 1 -2 1 dr

= 2nd bull call 1 -1 dr

3. (b− c) + (a− b) = a− c : 6 legs

2nd long call butterfly 1 -2 1 dr

+ 1st long call butterfly 1 -2 1 dr

= long call condor 1 -1 -1 1 dr

4. (a− b) + (e− a) = e− b : 7 legs

1st long call butterfly 1 -2 1 dr

+ 1st short box -1 1 1 -1 cr

= 1st long put iron butterfly -1 1 1 -1 cr

5. (b− c) + (f − b) = f − c : 7 legs

2nd long call butterfly 1 -2 1 dr

+ 2nd short box -1 1 1 -1 cr

= 2nd long put iron butterfly -1 1 1 -1 cr

6. c + (b− c) + (a− b) = a : 8 legs

3rd bull call 1 -1 dr

+ 2nd long call butterfly 1 -2 1 dr

+ 1st long call butterfly 1 -2 1 dr

= 1st bull call 1 -1 dr

7. b + (a− b) + (e− a) = e : 9 legs

2nd bull call 1 -1 dr

+ 1st long call butterfly 1 -2 1 dr

+ 1st short box -1 1 1 -1 cr

= 1st bull put 1 -1 cr

8. c + (b− c) + (f − b) = f : 9 legs

3rd bull call 1 -1 dr

+ 2nd long call butterfly 1 -2 1 dr

+ 2nd short box -1 1 1 -1 cr

= 2nd bull put 1 -1 cr

9. (b− c) + (a− b) + (e− a) = e− c : 10 legs

2nd long call butterfly 1 -2 1 dr

+ 1st long call butterfly 1 -2 1 dr

+ 1st short box -1 1 1 -1 cr

= long put iron condor -1 1 1 -1 cr

10. c + (b− c) + (a− b) + (e− a) = e : 12 legs

3rd bull call 1 -1 dr

+ 2nd long call butterfly 1 -2 1 dr

+ 1st long call butterfly 1 -2 1 dr

+ 1st short box -1 1 1 -1 cr

= 1st bull put 1 -1 cr
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where k is the number of credit components. Thus, the negations of complex spreads 1
through 5, 6 through 9 and 10 reduce margin requirement by D, 2D and 3D, respectively.

8 Generalizations of Complex Option Spreads

Generalizing the concept of complex spreads, we define a centipede to be a combination
of main spreads such that their summation, i.e., the resulting spread, is also main. The
margin rule for complex spreads we formulated in Section 7 depends only on whether
the resulting spread is debit or credit. Therefore, it naturally applies to centipedes.
Besides, centipedes provide the same margin reduction as complex spreads.

The goal of this section is to characterize centipedes and define centipedes with
extreme properties. Although centipedes are low-risk option combinations for the same
reason as complex spreads, they are not permitted for margining purposes.

Let A be the 8 × 42 matrix whose columns are all 42 main spreads. Then the
centipedes with the resulting spread b can be found as 0–1 solutions to the equation
Ax = b, where x is a 0–1 column vector of size 42.

To measure the efficiency of centipedes for the purpose of margin reductions, we
introduce the following two criteria. Let l and d be the row vectors of size 42 whose
components are the numbers of legs and the exercise differential components in margin
requirements for the main spreads, respectively. Thus, the ith component of d is 0 or
D depending on whether the ith main spread is debit or credit.

Then lx and dx are the total number of legs and the margin advantage of the
centipede x, respectively. The larger lx the more legs are covered by the margin rule
for x. The larger dx the more margin reduction can be achieved using x. Centipedes
that maximize lx and dx are solutions to the corresponding 0–1 programs with the
constraint Ax = b. They can be found as follows.

Let b be the number of legs of b. All 42 main spreads have 136 legs in total and the
resulting zero spread. Hence, the set of 41 main spreads without −b constitutes the
centipede with 136− b legs and the resulting spread b. It is clear that centipedes with
the resulting spread b and the number of legs more than 136 − b do not exist. Since
the minimum value of b is 2, the maximum number of legs a centipede can have is 134.

To find a centipede with the maximum margin advantage we observe that the margin
advantage a centipede gives is D times the number of its credit components minus 0/D
if the resulting spread is debit/credit. Hence, a centipede with 134 legs whose resulting
spread is debit has the maximum margin advantage of 21D because there exist exactly
21 credit main spreads.

Now we consider spread combinations which, in a sense, are even better than cen-
tipedes. They are based on the concept of a horizontal option spread, i.e., a long option
combined with a short option on the same underlying security of the same type and
exercise price. A horizontal option spread is invariant to underlying security market
price changes and therefore market risk-free.

To illustrate, let us consider a horizontal call spread where the long call option lC
and the short call option sC have the same exercise price e. Each option contracts, say,
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100 underlying units. If sC is exercised, then the spread holder is obliged to sell 100
underlying units to the holder of sC at the price e. In this case, the spread holder can
exercise lC, i.e., buy 100 underlying units at the same price, and deliver them to the
holder of sC with no loss. If sC is not exercised and lC is out-of-the-money, then lC can
be kept unexercised. A horizontal put spread has the same hedging mechanism except
that exercising put options triggers the sell of underlying units.

We define a millipede to be a nonempty set of main spreads whose resulting spread
is zero. Using induction on the number of components, it is easy to verify that the set
of legs of a millipede can be partitioned into pairs such that each pair is a horizontal
call or put spread. Therefore a millipede is a market risk-free option combination that
should be margined in the same way as centipedes with the resulting debit spread.
Thus, the margin requirement for a millipede is zero. Millipedes have the same margin
advantage as centipedes with the resulting debit spread, i.e., kD, where k is the number
of credit components of the millipede.

There is a simple relationship between centipedes and millipedes. Indeed, any
centipede with the resulting spread b being complemented by the spread −b is a
millipede since b − b = 0. On the other hand, any component b of a millipede
generates a centipede with the resulting spread −b.

As well as centipedes, millipedes can be associated with 0–1 column vectors x of
size 42 for which Ax = 0, where A, as before, is the 8 × 42 matrix of main spreads.
However, we can avoid using the equation Ax = 0 for solving optimization problems
related to millipedes and reduce them to classical problems on bipartite graphs if we
take into account the structure of main spreads considered in Section 9.

We call a millipede/centipede symmetric, if all its components are symmetric spreads,
and asymmetric otherwise. For example, complex spreads 3, 4, 5 and 9 in Table 3 are
symmetric centipedes; the other six complex spreads in Table 3 are asymmetric.

9 Graph Characterization and Counting

The graph characterization of millipedes and centipedes will allow us to establish their
key properties that will be used in the proof of the portfolio decomposition theorem in
Section 10. This theorem will show that, if only maximum loss margin rules are used
for margining main spreads, then the multi-leg margining problem for a portfolio of
basic spreads, where millipedes and centipedes are used for offsetting, can be solved
in polynomial time without their identification. Thus, the algorithm we propose in
Section 10 is free of any enumeration of millipedes and centipedes.

Although it is not clear how the portfolio decomposition theorem can be extended
to the current loss margin rules, it is obvious that the related margining algorithms are
impossible without identification and hence at least partial enumeration of millipedes
and centipedes. In this section, we estimate the complexity of their full enumeration
providing only the numbers of all possible millipedes and centipedes of dimension four.
Since these numbers reach several thousands, such a full enumeration for a portfolio
with even a dozen of basic spreads is practically impossible.
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-a a

-b b

-c c

-e e

-f f

-g g

1st long call butterfly spread

1st short box
spread

Figure 4: A balanced matching sub-
graph of C6 with the set of vertices
{a,−a,b,−b, e,−e} and the set of edges
{a− b, e− a} that corresponds to the
millipede b + (a− b) + (e− a)− e.

-a a

-b b

-c c

-e e

-f f

-g g

Figure 5: A red-blue-red alternating
chain (b,−b,a,−a, e,−e) in C′6 that cor-
responds to the independent asymmetric
millipede b + (a− b) + (e− a)− e.

In addition, our counts permit to estimate the size of the margin rule book for
option spreads if the CBOE or another option exchange decides to include in there
margin rules for all possible millipedes and centipedes. If these rules are described in
the traditional text form, as those in NYSE Rule 431, the work on such a book would
take several years. Thus, a compact form of presenting the margin rules is necessary.

A subgraph with the set of vertices V and the set of edges E of a graph is called vertex-
induced/edge-induced and denoted by [V ]/[E] if it is induced by V /E. Let us consider
the crown graph C6 defined in Section 4. We call a subgraph of C6 balanced/quasi-
balanced if the sum of its vertices is a zero/main spread. A balanced vertex-induced
subgraph of Cn is also crown, so it is called a balanced crown subgraph.

A matching in a graph is a set of edges without common vertices. A matching is
perfect if it covers all vertices of the graph. Let M be a matching in a vertex-induced
subgraph [V ] of Cn. Then the subgraph of [V ] with the set of vertices V and the set of
edges M is a matching subgraph (V,M) of Cn. The difference V −M will denote the
set of isolated vertices in (V,M), i.e., that are not covered by M .

Lemma 2 Millipedes/centipedes x are in a one-to-one correspondence with balanced/
quasi-balanced matching subgraphs (V,M) of C6. A vertex in V − M represents a
component of x which is a bull or bear spread. An edge in M represents a component
of x which is a symmetric spread.

Proof Trivially follows from the definition of Cn and the definitions of balanced, quasi-
balanced and matching subgraphs of Cn; see Fig. 4. �

Thus, the numbers of all millipedes and centipedes equal to the numbers of all balanced
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and quasi-balanced, respectively, matching subgraphs of C6. We will be able to find
this number after establishing other properties of crown graphs. At this point, however,
we can count only symmetric millipedes and centipedes.

Lemma 3 Symmetric millipedes/centipedes are in a one-to-one correspondence with
perfect/maximal matchings in balanced/quasi-balanced vertex-induced subgraphs of C6.

Proof Lemma 2 implies that a millipede or centipede is symmetric if and only if
the corresponding matching subgraph does not have isolated vertices or has only one
isolated vertex, respectively. Hence, the related matchings of the matching subgraphs
representing symmetric millipedes/centipedes are perfect/maximal. �

Lemma 4 The number of perfect matchings in Cn is

pn =
n−2∑
k=0

(−1)k
(
n

k

)
(n− k)k(n− k − 1)n−k.

Proof Follows from an application to Cn Ryser’s formula [Ryser, 1963]∑
X⊆R

(−1)|X|
∏
u∈L

∑
v/∈X

1uv∈E

for counting perfect matchings in a bipartite graph with the left/right part L/R and
the set of edges E. �

Theorem 2 There exist exactly 719/3600 symmetric millipedes/centipedes.

Proof By Lemmas 3 and 4, the number of symmetric millipedes with n components,
i.e., the total number of perfect matchings in all balanced crown subgraphs Cn of C6 is
Pn =

(
6
n

)
pn, where n ≥ 2. Hence the number of all symmetric millipedes, i.e., the total

number of perfect matchings in all balanced crown subgraphs of C6 is

6∑
n=2

Pn = 15 · 1 + 20 · 2 + 15 · 9 + 6 · 44 + 1 · 265 = 719.

Since every component v of a millipede with n components generates a centipede with
n − 1 components and the resulting spread −v, the number of symmetric centipedes
with n− 1 components is nPn. Hence the number of symmetric centipedes is

6∑
n=2

nPn = 2 · 15 + 3 · 40 + 4 · 135 + 5 · 264 + 6 · 265 = 3600. �

We call a millipede/centipede independent if it does not contain another/a millipede.
Hence, a millipede is a disjoint union of independent millipedes; and a centipede is a
disjoint union of a millipede and an independent centipede.
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For example, main spreads are trivial independent centipedes with a single compo-
nent; complex spreads defined in Section 7 are also independent centipedes. Indepen-
dent millipedes and centipedes can be naturally characterized by graphs whose edges
are colored in two colors.

A cycle/chain in a graph with red and blue edges is alternating if it alternates red
and blue edges. A cycle/chain is even/odd if it is of even/odd length. Obviously, an
alternating cycle is even, and the colors of the end edges of an even alternating chain
are different. If an even alternating chain is scanned starting from the red/blue end
edge, then we call it red-blue/blue-red alternating.

An odd alternating chain is red-blue-red/blue-red-blue alternating if it has red/blue
end edges. In particular, a single red/blue edge is a red-blue-red/blue-red-blue alter-
nating chain. A cycle/chain in a graph is Hamiltonian if it covers all its vertices.

Let ′ denote the operator coloring all edges of a subgraph of Cn in blue and adding
all incident horizontal edges colored in red. Thus, if H is a balanced vertex-induced
subgraph of Cn, then H ′ is a balanced complete bipartite subgraph of C′n, where all
horizontal edges are red and all the other edges are blue. We will also apply this
operator to matchings M assuming that M ′ = [M ]′.

Thus, if M is a matching in Cn, then M ′ is a collection of alternating cycles and
red-blue-red alternating chains in C′n. It is also clear that any alternating cycle/chain
in C′n that covers the set of vertices V is Hamiltonian in [V ].

A cycle/chain in the graph C′n is balanced if together with a vertex it also contains
its negation, and unbalanced otherwise. Thus, an alternating cycle and a red-blue-red
alternating chain are balanced; an even alternating chain is unbalanced; and a blue-
red-blue alternating chain is balanced if and only if its end vertices negate each other.

Lemma 5 Independent millipedes are in the following one-to-one correspondence with
alternating cycles and red-blue-red alternating chains in C′6 :

(v1 − v2) + (v2 − v3)+ . . .+ (vn−1 − vn) + (vn − v1) and
−v1 + (v1 − v2) + (v2 − v3)+ . . .+ (vn−1 − vn) + vn

are an independent symmetric millipede with n components and an asymmetric milli-
pede with n+ 1 components if and only if

(v1,−v2,v2,−v3, . . . ,vn−1,−vn,vn,−v1) and
(−v1,v1,−v2,v2,−v3, . . . ,vn−1,−vn,vn)

are an alternating cycle of length 2n, where 2 ≤ n ≤ 6, and a red-blue-red alternating
chain of length 2n− 1, where 1 ≤ n ≤ 6, respectively.

Proof Let (V,M) be a matching subgraph, where |M | = n, that represents a millipede
x, and let VM be the set of vertices covered by M . Then M ′ is not an alternating cycle
of length 2n or red-blue-red alternating chain of length 2n − 1 in (V,M)′ if and only
if M ′ contains a proper subset N ′ such that N ′ is an alternating cycle or red-blue-red
alternating chain. Then Lemma 2 implies that (VN , N) is a proper subgraph of (V,M)
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that represents a proper millipede in x. Lemma 3 implies that M ′ is an alternating
cycle in C′6 if and only if x is an independent symmetric millipede; see Fig. 5 �

Note that balanced blue-red-blue alternating chains also represent independent sym-
metric millipedes. However, there is no one-to-one correspondence between them be-
cause the deletion of any red edge from an alternating cycle transforms it into a balanced
blue-red-blue alternating chain.

Lemma 6 Independent centipedes are in the following one-to-one correspondence with
unbalanced alternating chains in C′6:

(v1 − v2) + (v2 − v3)+ . . .+ (vn−1 − vn),
(v1 − v2) + (v2 − v3)+ . . .+ (vn−1 − vn) + vn and

−v1 + (v1 − v2) + (v2 − v3)+ . . .+ (vn−1 − vn)

are an independent symmetric centipede with the resulting spread v1 − vn and n − 1
components and independent asymmetric centipedes with the resulting spreads v1 and vn

and n components if and only if

(v1,−v2,v2,−v3, . . . ,vn−1,−vn),
(v1,−v2,v2,−v3, . . . ,vn−1,−vn,vn) and

(−v1,v1,−v2,v2,−v3, . . . ,vn−1,−vn)

are an unbalanced blue-red-blue alternating chain of length 2n − 3, where 2 ≤ n ≤ 6,
a blue-red alternating chain of length 2n− 2 and a red-blue alternating chain of length
2n− 2, where 1 ≤ n ≤ 6, respectively.

Proof Follows from Lemma 5 because the deletion of a red-blue-red alternating chain
of length three together with the end vertices of the blue edge from an alternating cycle
transforms it into an unbalanced blue-red-blue alternating chain; and the deletion of
an end edge together with one of its end vertices from a red-blue-red alternating chain
transforms it into an even alternating chain;4 see Figs. 6 and 7. These operations
correspond to the deletion of only one component of the millipede represented by an
alternating cycle or a red-blue-red alternating chain. �

Theorem 3 An independent symmetric millipede/centipede has at most six/five com-
ponents, while an independent asymmetric millipede/centipede has at most seven/six
components.

Proof Follows from Lemmas 5 and 6 because an alternating chain/unbalanced blue-
red-blue alternating chain on 12/10 vertices has six/five blue edges; a red-blue-red
alternating chain on 12 vertices has five blue edges and two end red edges; an even
alternating chain on 12 vertices has five blue edges and one end red edge. �

4A trivial red-blue-red alternating chain has only one red edge with two end vertices.
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Lemma 7 Independent centipedes and millipedes are in the following one-to-one cor-
respondences:

(v0 − v1) + (v1 − v2)+ . . .+ (vn−1 − vn) + (vn − vn+1)

is an independent symmetric centipede with the resulting spread v0 − vn+1 and n + 1
components if and only if (a)

(v0 − v1) + (v1 − v2)+ . . .+ (vn−1 − vn) + vn and
−v1 + (v1 − v2)+ . . .+ (vn−1 − vn)

are independent asymmetric centipedes with the resulting spreads v0 and −vn, respec-
tively, and n+ 1 components, and (b)

−v1 + (v1 − v2)+ . . .+ (vn−1 − vn) + vn and v1 − vn

are an independent asymmetric millipede with n+1 components and a symmetric main
spread, respectively, where 1 ≤ n ≤ 5.

Proof Follows from Lemmas 5, 6 and a one-to-one correspondence between unbalanced
blue-red-blue alternating chains C and (a) pairs of even alternating chains produced
from C by adding single red edges to the ends of C or (b) balanced blue-red-blue alter-
nating chains produced from C by deleting end blue edges and blue edges connecting
the end vertices of C. �

Note that alternating cycles/chains in C′n form axially symmetric pairs: every alternat-
ing cycle/chain C ′ has its negation−C ′ where the signs of the vertices are interchanged.5

Figures 8 and 9 give an example of an axially symmetric pair.
Let /2 denote the operator applicable to graphs with red and blue edges that con-

tracts all red edges into single vertices and removes blue loops and parallel blue edges.
Thus, C′n/2 is a complete graph. If C ′ is an alternating cycle/chain in C′n, then C ′/2 is
a blue cycle/chain in C′n/2. Obviously, C ′/2 is a Hamiltonian cycle/chain in [C ′/2].

Lemma 8 Pairs of axially symmetric alternating cycles/chains C ′ and −C ′ in C′n are
in a one-to-one correspondence with cycles/chains C ′/2 = −C ′/2 in C′n/2.

Proof Trivially follows from the definition of the operator /2. �

Lemma 9 The numbers of Hamiltonian alternating cycles and red-blue-red alternating
chains, maximal unbalanced blue-red-blue alternating chains and even alternating chains
in C′n are an = (n − 1)! and rn = n!, un = n! and en = 2n!, respectively; where
2 ≤ n ≤ 6; a1 = 0 and r1 = 1, u1 = 0 and e1 = 0.

5Axially symmetric alternating cycles/chains are not isomorphic, otherwise they would not be cy-
cles/chains but collections of at least two cycles/chains.
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-e e
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Figure 6: The unbalanced blue-red-blue
alternating chain (−c,a,−a, e,−e,b)
in C′6 that corresponds to the in-
dependent symmetric centipede
(a− c) + (e− a) + (b− e) with the
resulting spread b− c.

-a a

-b b

-c c

-e e

-f f

-g g

Figure 7: The red-blue alternating chain
(a,−a, e,−e,b) in C′6 that corresponds
to the independent asymmetric centipede
a + (e− a) + (b− e) with the resulting
spread b.

Proof Follows from Lemma 8 and that fact that the number of Hamiltonian cycles
C ′/2 in the complete graph C′n/2 is (n−1)!/2; the number of Hamiltonian red-blue-red
alternating chains R′ that can be produced from C ′ by deleting one blue edge is n; the
number of unbalanced blue-red-blue alternating chains that can be produced from C ′

by deleting one blue edge with incident vertices and two red edges is also n; and the
number of even alternating chains that can be produced from R′ by deleting an end
red edge and an incident end vertex is two. �

Theorem 4 The numbers of independent symmetric millipedes with n components,
asymmetric millipedes with n+ 1 components, symmetric centipedes with n− 1 compo-
nents and asymmetric centipedes with n components are

An =

(
6

n

)
(n− 1)!, Rn = nAn, Un = Rn and En = 2Un if 2 ≤ n ≤ 6;

and A1 = 0, R1 = 6, U1 = 0 and E1 = 0, respectively. Thus, there exist ex-
actly 409/1950 independent symmetric millipedes/centipedes and 1956/3900 indepen-
dent asymmetric millipedes/centipedes.

Proof Every alternating cycle of length 2n or red-blue-red alternating chain of length
2n− 1 is Hamiltonian, and every unbalanced blue-red-blue alternating chain of length
2n − 3 or even alternating chain of length 2n − 2 is maximal in a balanced complete
bipartite subgraph C′n of C′6. The number of such subgraphs is

(
6
n

)
. Hence, the theorem
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Figure 8: The alternating cycle
(a,−a, e,−e,b,−b,a) in C′6 that cor-
responds to the independent millipede
(a− b) + (b− e) + (e− a) and that is
axially symmetric to the alternating
cycle in Fig 9.

-a a

-b b

-c c

-e e

-f f

-g g

Figure 9: The alternating cycle
(−a,a,−e, e,−b,b,−a) in C′6 that
corresponds to the independent milli-
pede (b− a) + (e− b) + (a− e) and
that is axially symmetric to the alter-
nating cycle in Fig 8.

follows from Lemmas 5, 6, 7(a) and 9 and the following count:

A1 = 0, A2 = 15, A3 = 40, A4 = 90, A5 = 144, A6 = 120,
R1 = 6, R2 = 30, R3 = 120, R4 = 360, R5 = 720, R6 = 720,
U1 = 0, U2 = 30, U3 = 120, U4 = 360, U5 = 720, U6 = 720,
E1 = 0, E2 = 60, E3 = 240, E4 = 720, E5 = 1440, E6 = 1440. �

To characterize and count all millipedes we need the following definitions of graph
covers. Let φ be a family of subgraphs of a graph C′n. We say that a subfamily ψ ⊆ φ
is a cover of C′n by subgraphs from φ if subgraphs in ψ cover all vertices in C′n. If no
two subgraphs in ψ have common vertices, then ψ is an exact cover of C′n. Associating
cycles and chains with the subgraphs induced by their edges, we can define covers of
C′n by cycles and chains in C′n in the same way.

Lemma 10 Let φ be the family of alternating cycles and red-blue-red alternating chains
in C′6. Then millipedes are in a one-to-one correspondence with exact covers ψ ⊆ φ of
balanced complete subgraphs of C′6.

Proof By Lemma 2, it will suffice to show a one-to-one correspondence between bal-
anced matching subgraphs (V,M) of C′6 and exact covers ψ of the balanced complete
subgraph [V ]′ of C′6. The operator ′ establishes such a correspondence: if (V,M) is a
balanced matching subgraph, then (V,M)′ is a disjoint union ψ of alternating cycles
and red-blue-red alternating chains covering all vertices of [V ]′. �

Theorem 5 There exist exactly 17591 millipedes and 16872 asymmetric millipedes.
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Proof By Lemma 10, we can count millipedes as exact covers of balanced complete
bipartite subgraphs of C′6 by alternating cycles and red-blue-red alternating chains.

Let m1,m2, . . . ,ml, n be positive integers, and let N = {n1 < n2 < . . . < nl} be a
set of positive integers such that

∑l
i=1mini = n. Then Pn =

∑l
i=1mi · ni will denote

a partition of n over N . For example, 2 · 1 + 2 · 2 is a partition of 6 over {1 < 2}.
Let Φ be the family of all balanced complete subgraphs of C′n. A single partition Pn

defines a collection of sizes 2k, k ∈ N , of balanced complete subgraphs of C′n such that
they form an exact cover Ψ ⊆ Φ of C′n. By Lemma 9, the total number of Hamiltonian
alternating cycles and red-blue-red alternating chains in a balanced complete subgraphs
of size 2k is hk = ak + rk. Thus, h1 = 1 and hk = (k + 1)(k − 1)! if k > 1.

Hence, the number of exact covers ψ of C′n by these cycles and chains per single
exact cover Ψ is hm1

n1
hm2
n2
. . . hml

nl
.

Let s0 = 0, and let sj−1 =
∑j−1

i=1 mini if j > 1. Then the number of all exact covers
Ψ is g1g2 . . . gl, where gj = 1 if nj = 1 and

gj =

mj−1∏
k=0

(
n− sj−1 − knj

nj

)
if nj > 1,

where j = 1, 2, . . . l. Hence, the number of all exact covers ψ for all partitions Pn is

Dn =
∑
Pn

l∏
j=1

gjh
mj
nj .

Table 4 shows that there exist 11 partitions P6 and that D6 = 9650. We leave for the
reader to verify that D5 = 915, D4 = 135, D3 = 18, D2 = 4, D1 = 1.

There exist
(
6
n

)
complete balanced bipartite subgraphs of size 2n of the graph C′6,

therefore the number of all millipedes equals

6∑
n=1

(
6

n

)
Dn = 6 · 1 + 15 · 4 + 20 · 18 + 15 · 135 + 6 · 915 + 1 · 9650 = 17591.

By Theorem 2, the number of all symmetric millipedes is 719, therefore the number of
all asymmetric millipedes is 17591− 719 = 16872. �

Corollary 1 There exist exactly 47520 centipedes and 43920 asymmetric centipedes.

Proof A dependent centipede is a disjoint union of a millipede and an independent cen-
tipede. Therefore, by Lemmas 6 and 10, we can represent a centipede as a combination
of an exact cover of a balanced complete bipartite subgraph of C′6 (by alternating cycles
and red-blue-red alternating chains) and an unbalanced blue-red-blue or even alternat-
ing chain in its complement. Thus, by Theorems 4 and 5, the number of dependent
centipedes equals

4∑
n=1

(
6

n

)
Dn ·

6−n∑
k=1

(
6− n
k

)
(uk + ek) = 41670,
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Table 4: Counting the number D6 = 9650 of exact covers of the graph C′6, where h1 = 1
and hk = (k + 1)(k − 1)! for k > 1, i.e., h2 = 3, h3 = 8, h4 = 30, h5 = 144, h6 = 820.

N partitions P6 exact covers Ψ exact covers ψ product

{1} 6 · 1 1 1 h6
1 16 1

{1,2} 4 · 1 + 1 · 2
(

6
2

)
15 h4

1h
1
2 14 · 31 45

{1,2} 2 · 1 + 2 · 2
(

6
2

)(
4
2

)
15 · 6 h2

1h
2
2 12 · 32 810

{1,3} 3 · 1 + 1 · 3
(

6
3

)
20 h3

1h
1
3 13 · 81 160

{1,4} 2 · 1 + 1 · 4
(

6
4

)
15 h2

1h
1
4 12 · 301 450

{1,5} 1 · 1 + 1 · 5
(

6
5

)
6 h1

1h
1
5 11 · 1441 864

{1,2,3} 1 · 1 + 1 · 2 + 1 · 3
(

6
3

)(
3
2

)
20 · 3 h1

1h
1
2h

1
3 11 · 31 · 81 1440

{2} 3 · 2
(

6
2

)(
4
2

)(
2
2

)
15 · 6 · 1 h3

2 33 2430
{2,4} 1 · 2 + 1 · 4

(
6
4

)(
2
2

)
15 · 1 h1

2h
1
4 31 · 301 1350

{3} 2 · 3
(

6
3

)(
3
3

)
20 · 1 h2

3 82 1280
{6} 1 · 6

(
6
6

)
1 h1

6 8201 820

total 9650

where uk + ek = 3k!. By Theorem 4, the number of independent centipedes is 5850,
therefore the number of all centipedes is 5850 + 41670 = 47520. By Theorem 2, the
number of symmetric centipedes is 3600, therefore the number of asymmetric centipedes
is 47520− 3600 = 43920. �

10 Portfolio Decomposition

In the proof of the portfolio decomposition theorem we use the following definitions.
Two collections of millipedes and centipedes are equivalent if they cover the same set
of basic spreads. Lemma 7(b) implies that an independent centipede z with at least
two components is equivalent to a pair that contains an independent millipede x and
a main spread y that is the resulting spread of z. Thus, x and y is an equivalent pair
of z. Lemma 7(b) also implies that an equivalent pair is unique.

Lemma 11 Let an independent millipede x and a main spread y generate the equiva-
lent pair of an independent centipede z. Then m(y) = m(z).

Proof Since y is the resulting spread of z, we have m(y) = m(z). �

As defined in Section 6, a portfolio P of basic spreads x ∈ A ∪ B can be represented
by their quantities q(x). A portfolio P ′ with quantities q′(x) ≤ q(x) is a subportfolio
of P . Let P − P ′ denote a portfolio with quantities q(x)− q′(x). Then P ′ and P − P ′
constitute a decomposition of P . We also say that P is a consolidation of P ′ and P−P ′.
A portfolio P is symmetric if q(x) = q(−x) for all x ∈ A ∪ B and antisymmetric if
q(x) > 0 implies q(−x) = 0 for all x ∈ A ∪B.

Now let us return to the PMM problem posed in Section 6 and consider its extension
to the case where millipedes and centipedes are used as offsets. The minimum margin
requirement found by using these offsets we call a multi-leg margin requirement meaning
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that the number of legs in offsets based on millipedes and centipedes is not restricted.
Thus, the minimum multi-leg margin requirement is always not higher than the four-leg
margin requirement; see Section 6.

Lemma 12 Let P be a portfolio of basic spreads. If P is symmetric, then the minimum
multi-leg margin requirement for P is zero. If P is antisymmetric, then the minimum
multi-leg margin requirement for P is the minimum four-leg margin requirement.

Proof In the symmetric case, consider an arbitrary millipede x in P . Regardless of its
structure, the margin requirement for x is zero. Then we can take the next millipede in
the residual portfolio, etc. Since the portfolio is symmetric, the position quantities will
be exhausted on a certain step. This means that a symmetric portfolio is a consolidation
of millipedes with zero total margin requirement.

In the antisymmetric case, P has no millipedes. Besides, P has no centipedes
other than main spreads, otherwise a centipede has at least two components and hence
contains a millipede, which is a contradiction. Therefore, the minimum four-leg margin
requirement for P cannot be reduced by using millipedes and centipedes other than
main spreads. �

Theorem 6 A portfolio of basic spreads P has a unique decomposition into a symmet-
ric portfolio P ′ and an antisymmetric portfolio P −P ′ such that the minimum multi-leg
margin requirement for P is the minimum four-leg margin requirement for P − P ′.

Proof Let us set q′(x) = min{q(x), q(−x)}. Then P ′ is a symmetric portfolio and P−P ′
is an antisymmetric portfolio, which obviously constitute a unique decomposition of P .
To show that this decomposition provides a minimum multi-leg margin requirement,
we assume the opposite: There exists a nonempty set σ of other decompositions of P
with lower multi-leg margin requirements. In general, they must involve the following
three subportfolios: a symmetric portfolio P ′ that is a consolidation of millipedes, an
antisymmetric portfolio A that is a consolidation of main spreads and the portfolio
P − P ′ − A that is a consolidation of centipedes with at least two components. Note
that P − P ′ −A is neither symmetric nor antisymmetric.

Let us consider a decomposition in σ where the portfolio P ′ is maximal and take a
centipede z from P − P ′ − A. It can be only an independent centipede, otherwise it
contains a millipede which can be separated from z and added to P ′ while the residual
centipede would be left in P − P ′ − A. Since the margin requirement is not changed
after this rearrangement, we have a contradiction because then P ′ is not maximal.

If z is an independent centipede, then z can be replaced by the equivalent pair
which, by Lemma 11, has the same margin requirement. This pair contains a millipede
that could be added to P ′ in the same way, which is a contradiction again. �

Theorem 6 states that the minimum multi-leg margin requirement for a portfolio of
basic spreads with quantities q(x) is the minimum four-leg margin requirement for the
subportfolio with quantities q(x)− q′(x), where

q′(x) = min{q(x), q(−x)}.
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Hence, it can be calculated by a maximum flow algorithm as described in Section 6.
Thus, the complexity of the problem of margining a portfolio of basic spreads is pri-
marily the complexity of finding a maximum flow in a network.

Since this network has only 12 vertices in the four-dimensional case, see Fig. 3, for
each exercise differential, the complexity of margining a collection of portfolios of basic
spreads is proportional to the number of these portfolios.

11 Concluding Remarks

We believe that we have taken only the first step in combinatorial modeling of derivative
instruments. Being successful on further steps, this kind of modeling will lead to
important inferences for margin regulators and eventually margin calculation practice.
Our research literature review shows that nothing similar has been done before with
the exception of only one paper devoted to combinatorics of stock index baskets offset
by index options [Fiterman and Timkovsky, 2001].

Some open theoretical questions and recommendations for margin regulators are
collected in the following remarks:

• All results in this paper related to margining are based on the concept of a uniform
exercise domain that simplifies the margin rules for option spreads. They are
also based on the margin rules following the concept of a maximum loss that
disregards the current market prices of the underlying instrument and assigns
more stringent margin requirements. The next step in the study of margining
aspects of combinatorics of option spreads we believe must be devoted to the case
where the exercise domain is not uniform or margin rules for options spreads are
based on the concept of a current loss.

• We consider in this paper only the case where the spreads with number of legs
more than two are simplest symmetrical spreads that are commonly used as trad-
ing strategies. Introducing new combinations of two-leg spreads will allow to
find more sophisticated option spreads which represent more efficient hedging
mechanisms. They can be used for margining purposes as well as for the de-
sign of new option trading strategies. We should mention, however, that even
four-dimensional complex spreads whose components are antisymmetrical two-
leg spreads and symmetrical three- or four-leg spreads are not being used by
the existing margining systems; thus, they cannot take advantage of multi-leg
margining even in the simplest form.

• Our model shows that together with 40 complex spreads of dimension four there
exist many more spreads with the same hedging mechanism that can be margined,
therefore, in the same way. If all four-dimensional centipedes and millipedes were
recognized by margin regulators, then margin requirements for margin accounts
with options could have been substantially decreased. Such a regulatory move-
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ment would release substantial free equity capital bursting investment activity in
the options markets.

• As we have shown in Section 10, the problem of minimizing the multi-leg margin
requirement for a portfolio of basic spreads can be solved in polynomial time. We
can pose the following question: how to construct a portfolio of basic spreads from
a portfolio of individual options such that the former has the minimum multi-leg
margin requirement? This problem is equivalent to the problem of minimizing
the multi-leg margin requirement for a portfolio of individual options whose com-
plexity status remains unknown. A polynomial solution to this problem is known
only in the case of finding the minimum two-leg margin requirement [Rudd and
Schroeder, 1982].

Complex option spreads are the most efficient regulatory products of these days, which
lead to the new era of lowered margin requirements in the stock market; without in-
creasing risk but more careful study of hedging mechanisms hidden in option portfolios.
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