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Abstract

The Beveridge-Nelson decomposition defines the trend component in terms of the eventual

forecast function, as the value the series would take if it were on its long-run path. The paper in-

troduces the multistep Beveridge-Nelson decomposition, which arises when the forecast func-

tion is obtained by the direct autoregressive approach, which optimizes the predictive ability

of the AR model at forecast horizons greater than one. We compare our proposal with the stan-

dard Beveridge-Nelson decomposition, for which the forecast function is obtained by iterating

the one-step-ahead predictions via the chain rule. We illustrate that the multistep Beveridge-

Nelson trend is more efficient than the standard one in the presence of model misspecification

and we subsequently assess the predictive validity of the extracted transitory component with

respect to future growth.
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1 Introduction

The Beverigde-Nelson decomposition (BN, henceforth, Beveridge and Nelson, 1981), defines the

trend component at time t as the value of the eventual forecast function at that time, or, equivalently,

as the value that the series would take if it were on its long run path.

In the case of a difference stationary process with no drift, denoted Xt, such that the changes

∆Xt = Xt −Xt−1 are stationary, letting Ft denote the information set available at time t, the long

run prediction equals the current level plus all forecastable future changes:

liml→∞ E[Xt+h|Ft] = liml→∞ E[Xt +
∑h

j=1 ∆Xt+j|Ft]

= Xt +
∑∞

j=1 E[∆Xt+j|Ft].

The resulting trend component is a random walk process, whereas the transitory component is a

stationary process.

The role of the decomposition for characterizing the nature of macroeconomic fluctuations,

and its relation to other unobserved components models, are discussed in Watson (1986), Morley,

Nelson and Zivot (2003), Proietti (2006), Oh, Zivot and Creal (2008), and Morley (2009), among

others. A recent issue of the Journal of Econometrics (JoE, Volume 146, Issue 2, October 2008),

celebrating the 25th anniversary of the publication of the Beveridge and Nelson paper, featured

some interesting extensions of this result in various directions.

One important finding, also remarked by the paper by Nelson (2008) opening the JoE issue,

is that most of the variation in macroeconomic time series can be ascribed to permanent shocks,

which are largely unpredictable, whereas the transitory component has very little amplitude. In

particular, Nelson tests the predictive validity of the BN cycle, as well as other model-based cycle

measures, with respect to future growth. It turns out that for U.S. real Gross Domestic Product

(GDP), all the cyclical measures have little value for predicting economic growth in real time,

and neither outperforms the BN cycle, which is significantly and negatively correlated with one-

quarter-ahead output growth.

The univariate BN trend is typically obtained from a parametric model that is estimated by

minimizing the one-step-ahead prediction error variance. The forecast of the future changes are
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obtained by iterating the one-step-ahead predictor, using the chain rule for multistep forecasting.

When the model for ∆Xt is ARMA, exact computational algorithms based on the state space

representation of the ARMA model are available; see Proietti (1995) and Morley (2002). Under

model and parameter uncertainty, the iterated predictor can be seen at best as an approximation

to the conditional expectation of the future change, E[∆Xt+j|Ft], which is the optimal predictor

for a symmetric square loss function. A better approximation could be provided by the so-called

direct predictor, which optimizes the forecasting ability at a longer run horizon. Hence, reduced

form models are short-run forecasting tools, and they may not be appropriate for forecasting the

long-run.

The objective of this paper is to propose the multistep BN decomposition, which is the BN

decomposition that arises when the reference model is linear autoregressive and the out of sample

predictions are obtained by the so-called direct method. As matter of fact, the notion of the BN

decomposition is tightly bound up with long-run forecasting and a forecasting rule that optimizes

the predictability at longer horizons may be more suitable for the task of extracting the trend from

a time series. A difference with the standard BN decomposition obtained from an autoregressive

model for ∆Xt would emerge in the case of model misspecification, when the direct method is

know to provide a better approximation to the true expectation E[∆Xt+j|Ft].

The paper sets off by reviewing the theory of forecasting using the direct and iterated predictors

for difference stationary processes (section 2). The multistep BN decomposition is introduced and

illustrated in section 3. Section 4 deals with the possibility of defining a two-sided symmetric filter

for estimating the trend. In section 5 we present the estimation methodology. Section 6 provides

two empirical illustration concerning the U.S. gross domestic product and monthly inflation; in the

second case, the direct method produces a significant increase in predictive accuracy at horizons

greater than a year and estimates smoother trends. Following Cogley (2002) and Nelson (2008) we

then validate the BN cycles obtained by the indirect and direct AR methods by the effectiveness

by which they predict future growth. In section 7 we summarize the contribution of the paper and

draw our conclusions.
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2 Direct and iterated forecasting

Let us assume that ∆Xt = Xt − Xt−1 is a stationary zero mean process. Two important linear

predictors of the levels or the series, the direct (labelled by D henceforth) and iterated predictors

(labelled by I), are obtained by the following projection (see Marcellino, Stock and Watson, 2006):

Xt+h = Xt +

p∑
j=1

ϕ
(i)
jh∆Xt−j+1 + ϵ

(i)
t+h|t, i = D, I, (1)

where ϵ(i)t+h|t denotes the h-steps ahead prediction error. The two predictors use the same infor-

mation set, represented by the vector ∆X′
t = [∆Xt, ∆Xt−1, . . . ,∆Xt−p+1], but differ in the

definition of the coefficients ϕ(i)
jh .

The direct predictor of the levelsXt+h arises from the direct projection of ∆hXt+h = Xt+h−Xt

on ∆Xt; it can be expressed as X(D)
t+h|t = Xt +∆hX

(D)
t+h|t, where ∆hX

(D)
t+h|t =

∑p
j=1 ϕ

(D)
jh ∆Xt−j+1,

and the coefficients minimize the h-step ahead mean square forecast error,

MSFED(h, p) = E[(Xt+h −X
(D)
t+h|t)

2].

Notice that this is different from the direct predictor of the changes ∆Xt+h, which arises from

projecting ∆Xt+h onto ∆X′
t.

The indirect (or iterated) predictor is obtained from the AR(p) model by iterating the one-step-

ahead predictor via the chain rule, so as to obtain forecasts of all the intermediate future changes

∆Xt+k, for k = 1, . . . , h, which are combined to yield: X(I)
t+h|t = Xt +

∑h
k=1 ∆X

(I)
t+k|t, where

∆X
(I)
t+k|t =

∑p
j=1 ϕ

(I)
j1 ∆X

(I)
t+k−j|t (with ∆X

(I)
t+k−j|t = ∆Xt+k−j , if j ≥ k), and the coefficients

ϕ
(I)
j1 , j = 1, . . . , p, minimize MSFED(1, p) = E[(Xt+1 − X

(I)
t+1|t)

2] = E[(∆Xt+1 − ∆X
(I)
t+1|t)

2].

Obviously, ϕ(I)
j1 = ϕ

(D)
j1 . From the application of the chain rule we can express the indirect predictor

as X(I)
t+h|t = Xt+

∑p
j=1 ϕ

(I)
jh ∆Xt+j−1, where ϕ(I)

jh are the iterated AR multistep coefficients (which

will be defined more properly in a later section).

There is a vast and well established literature comparing the performance of the two predictors

for the purpose of forecasting more than one step ahead, not exclusively in the AR case. We

refer to Chevillon (2007) for a comprehensive survey of the literature. The seminal paper by Cox
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(1961) concerned multistep estimation of a first order integrated moving average model, yielding

exponential smoothing forecasts. Other essential references are Findley (1983), Weiss (1991),

Tiao and Xu (1993), Tiao and Tsay (1994), Clements and Hendry (1996), Ing (2003, 2004), and

Marcellino, Stock and Watson (2006).

The differences between the two predictors lie in the AR coefficients ϕ(i)
jh . For the direct pre-

dictor, i = D, the coefficients ϕ(D)
h = [ϕ

(D)
1h , . . . , ϕ

(D)
ph ]′ are obtained by minimizing MSFED(h, p)

with respect to ϕD
h . The optimization problem leads to the following linear system of equations:

Γϕ
(D)
h = γh, (2)

with

Γ =


γ(0) γ(1) · · · γ(p− 1)

γ(1) γ(0)
. . . γ(p− 2)

... . . . . . . ...

γ(p− 1) γ(p− 2) · · · γ(0)

 ,γh =


γ(1) + · · ·+ γ(h)

γ(2) + · · ·+ γ(h+ 1)
...

γ(p) + · · ·+ γ(h+ p− 1)

 .

Notice that, from

γh = γh−1 + γ(h),γ(h) =


γ(h)

γ(h+ 1)
...

γ(h+ p− 1)

 , h = 2, . . . ,γ1 = γ(1),

it follows

ϕ
(D)
h = ϕ

(D)
h−1 + ϕ(h), ϕ(h) = Γ−1γ(h). (3)

Bondon (2001) and Brockwell and Dahlhaus (2004) provide generalized Levinson–Durbin recur-

sions for computing the coefficients ϕ(h), which operate both on the order p and the forecast lead

h.

The iterated method obtains the coefficients ϕ(I)
jh , j = 1, . . . , p, in (1) recursively from the one-

step-ahead coefficients, which are in turn obtained from the linear system ϕ
(I)
1 = ϕ

(D)
1 = Γ−1γ1:

ϕ
(I)′

h = e′1(I−Th)(I−T)−1T = e′1

h∑
j=1

Tj
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where

T =



ϕ
(I)
1 ϕ

(I)
2 · · · ϕ

(I)
p−1 ϕ

(I)
p

1 0 · · · 0 0

0 1
. . . 0 0

... . . . . . . ...
...

0 0 · · · 1 0


, e1 =



1

0

0
...

0


. (4)

The iterated AR coefficients satisfy the following first order recursion:

ϕ
(I)
h = ϕ

(I)
h−1 +Th′e1, (5)

with starting value ϕ
(I)
1 = T′e1 = Γ−1γ1.

An obvious but important result is that, if Γ is positive definite, MSFEI(h, p) ≥ MSFED(h, p).

This fact can be proven using e.g. the results in Ing (2003), who establishes a more general theo-

rem, referring to the case when Xt is stationary, and taking into account the estimation uncertainty.

3 Long range forecasting and trend estimation: the multistep

Beveridge-Nelson decomposition

Using the identity

Xt+h = Xt +
h∑

j=1

∆Xt+j,

the h-step ahead predictor based on the information set available at time t, denoted F t, is obtained

by adding to the current Xt all forecastable future changes up to time t+ h, i.e.:

X̃t+h|t = Xt +
h∑

j=1

∆̃X t+j|t, (6)

where ∆̃X t+j|t = E(∆Xt+j|F t).

If h is allowed to go infinity in (6) and we assume that the drift is zero, then X̃t+h|t tends to the

BN trend, or permanent, component, and limh→∞
∑h

j=1 ∆̃X t+j|t is minus the BN cycle (transitory

component). In the case when the drift is nonzero, E(∆Xt) = β ̸= 0, the BN trend is redefined
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as X̃t+h|t − βh, which equals the current value of the series plus ”all forecastable future changes

beyond the mean rate of drift” (Beveridge and Nelson, 1981).

The direct and iterated AR methods provide two different approximations to

lim
h→∞

h∑
j=1

∆̃X t+j|t.

As a matter of fact, the integration of all forecastable future changes up to time h,
∑h

j=1 ∆̃X t+j|t,

is approximated by ϕ
(i)′

h ∆Xt, i = I,D, and thus the BN trend arising from both methods is

mit = lim
h→∞

Xt+h|t = Xt + lim
h→∞

ϕ
(i)′

h ∆Xt, i = I,D. (7)

Letting ϕ(i)
∞ = limh→∞ϕ

(i)
h , (an approximation to) the BN trend can be expressed as the following

one sided moving average of the series:

mit = (1 + ϕ
(i)
∞,1)Xt + (ϕ

(i)
∞,2 − ϕ

(i)
∞,1)Xt−1 + · · ·+ (ϕ(i)

∞,p − ϕ
(i)
∞,p−1)Xt−p+1 − ϕ(i)

∞,pXt−p. (8)

The filter weights, which add up to one, can be obtained directly by letting h → ∞ in the expres-

sions (3) and (5), respectively.

3.1 The BN trend for AR(1) predictors

A simple example can be used to illustrate that in the case of model misspecification, the multistep

BN trend is a more efficient estimator of the true underlying trend. Let us consider the AR(1) case

(p = 1). Letting h→ ∞ in (3) gives

ϕ(D)
∞ =

g(0)− γ(0)

2γ(0)
=

1

2
(P − 1), P =

g(0)

γ(0)
,

where g(0) = γ(0)+2
∑∞

j=1 γ(j) is the long run variance of ∆Xt, which is 2π times the spectrum

at the zero frequency. The parameter P is often referred to in the literature as the persistence

parameter (being equal to the normalized spectral generating function at the zero frequency, or

equivalently, to the ratio of the long run variance to the variance of ∆Xt).

In the iterated case T is a scalar matrix; taking the limit of (5), and denoting ϕ1 = ϕ
(I)
1 ,

ϕ(I)
∞ =

ϕ1

1− ϕ1

=
γ(1)

γ(0)− γ(1)
,
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since ϕ1 = γ(1)/γ(0). The BN trend is mit = (1 + ϕ
(i)
∞ )Xt − ϕ

(i)
∞,pXt−1 = Xt + ϕ

(i)
∞∆Xt.

If we assume that Xt is the IMA(1,1) process ∆Xt = (1 + θL)ϵt, then we have, respectively,

mIt =
1

1− ρ(1)
Xt −

ρ(1)

1− ρ(1)
Xt−1,mDt = (1 + ρ(1))Xt − ρ(1)Xt−1, ρ(1) =

θ

1 + θ2
.

When θ = 0 (Xt is a pure random walk), the two expressions are equivalent. When θ is equal to -1,

Xt is white noise and the BN trends are, respectively, mIt =
2
3
Xt +

1
3
Xt−1,mDt =

1
2
(Xt +Xt−1).

Notice that mit, i = I,D, can be regarded as estimators of the mean of the process and that the

second is more efficient.

For a general IMA(1,1) process the true BN trend is

mt =
1 + θ

1 + θL
Xt = Xt +

θ

1 + θL
∆Xt,

so that the mean square error ratio is equal to

Eff(θ) =
Var(mIt −mt)

Var(mDt −mt)
=

(ϕ
(I)
∞ − θ)2 + (θϕ

(I)
∞ )2

(ϕ
(D)
∞ − θ)2 + (θϕ

(D)
∞ )2

.

The ratio measures the precision of the direct method relative to that of the iterated one.

Figure 1 displays 100×Eff(θ) against the value of θ ∈ [−1, 1]. The ratio is always greater than

1 for |θ| ≤ 1, except for θ = 0, in which case it is exactly 1. For θ = 1 the direct approximation is

twice as efficient; the maximum of the ratio is when θ = 0.5, for which Eff(0.5) = 2.78. Finally,

Eff(−1) = 1.11.

3.2 A closed form expression for the iterated case

In the iterated case the coefficients ϕ(I)
∞ can be expressed in terms of the one-step AR polynomial

coefficients, ϕ(I)
1 . Intuitively, this is so since in (3) all the autocovariances beyond lag p are made

dependent upon the first p autocovariances. Hence, we can derive an explicit limit for the iterated

coefficients:

ϕ(I)′

∞ = e′1(I−T)−1T,

where the matrix T was given in section (4), and depends solely on the elements of ϕ(I)
1 .
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Figure 1: Efficiency of the multistep BN trend estimator versus the indirect AR(1) BN trend esti-

mator: plot of 100× Eff(θ) against the value of θ ∈ [−1, 1].

Theorem: The BN trend implied by the indirect method can be expressed as

mIt =
ϕ
(I)
1 (L)

ϕ
(I)
1 (1)

Xt. (9)

Proof: The proof is direct. Writing for simplicity of notation ϕ
(I)
1 = ϕ = [ϕ1, . . . , ϕp]

′, ϕ(L) =

1 − ϕ1L − · · · − ϕpL
p, ϕ(1) = 1 − ϕ′i, i = [1, 1, . . . , 1]′, and defining C as the matrix with unit

elements on the main diagonal, -1 on the first subdiagonal and zero elsewhere, so that C−1 is a

lower triangular matrix with all elements equal to one (sometimes referred to as the random walk

generating matrix),

I−T = C− e1ϕ
′, (I−T)−1 = C−1 +

1

ϕ(1)
iϕ′C−1;

using (I−T)−1T = (I−T)−1 − I and replacing into (8), yields the nice representation (9).
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3.3 The BN trend at horizon h

The estimator mDt is clearly unfeasible, unless we know the true model that generated Xt. In fact,

the example presented in section 3.1 postulated that the true model is IMA(1,1) and considered the

long run forecast function implied by the AR(1) predictors for ∆Xt.

Hence, the analytic form of mDt is only useful for theoretical discussion. Nevertheless, we can

construct an approximation at horizon h, with h sufficiently large, m(h)
it = Xt + ϕ

(D)′

h ∆Xt, or,

equivalently,

m
(h)
Dt = (1 + ϕ

(D)
h,1 )Xt + (ϕ

(D)
h,2 − ϕ

(D)
h,1 )Xt−1 + · · ·+ (ϕ

(D)
h,p − ϕ

(D)
h,p−1)Xt−p+1 − ϕ

(D)
h,pXt−p.

Obviously, m(h)
Dt = mDt if Xt is an IMA(1,q) process with q ≤ p.

Another possibility is to construct an estimate of the forecastable future changes of the series

by deriving the one step ahead predictor implied by the h-step ahead coefficients, and applying the

chain rule for forecasting any step ahead in the future. Hence, having obtained the h-step ahead

AR prediction coefficients ϕ
(D)
h , we can obtain the corresponding one-step ahead coefficients as

those coefficients that, when propagated h-steps ahead by the chain rule, would produce exactly

ϕ
(D)
h . Denoting by ϕ∗

h the vector of implied one-step coefficients, the above argument leads to the

solution of the following nonlinear system of equations:

ϕ
(D)′

h = e′1(I−Th
h)(I−Th)

−1Th

where ϕ
(D)
h is known and

Th =


ϕ∗′

h

· · · · · · · · ·

Ip−1
... 0


We can equivalently obtain ϕ∗

h as the vector, containing the coefficients of the projection of

∆Xt+1 onto ∆Xt, that minimize the h step ahead prediction error variance. Hence, the model

is the same as for the iterated method, i.e. a standard AR(p) autoregressive model, but the coef-

ficients are obtained by minimizing the h-step ahead, rather than the one-step ahead, prediction

error variance (this is sometimes referred to as multistep estimation of a standard AR model).
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From ϕ∗
h we construct the corresponding AR lag polynomial ϕ∗

h(L), and we obtain the follow-

ing approximation, indexed by the forecast horizon h, of the BN trend:

m
(h)∗
Dt =

ϕ∗
h(L)

ϕ∗
h(1)

Xt. (10)

Obviously, limh→∞m
(h)∗
Dt = mDt.

4 The Beveridge-Nelson smoother

As shown in Proietti and Harvey (2000), when the true model is AR(p), under suitable conditions,

there exists a two sided Beveridge-Nelson smoother, given by the following two-sided symmetric

weighted average of the series:

µIt =
ϕ
(I)
1 (L)ϕ

(I)
1 (L−1)

[ϕ
(I)
1 (1)]2

Xt =
ϕ
(I)
1 (L−1)

ϕ
(I)
1 (1)

mIt. (11)

A sufficient condition for the interpretation of the BN smoother as the Wiener-Kolmogorov trend

extraction filter for the decomposition into orthogonal components with uncorrelated disturbances,

using the identifying assumption that the trend is a random walk and the cycle is stationary, is that

the persistence parameter, [ϕ1(1)
(I)]−1, is less than one.

For definining the multistep BN smoother at forecast horizon h, there are two possibilities.

The first is to apply the BN smoother above using the implied AR(p) lag polynomial obtained by

multistep estimation:

µ
(h)∗
Dt =

ϕ∗
h(L)ϕ

∗
h(L

−1)

[ϕ∗
h(1)]

2
Xt =

ϕ∗
h(L

−1)

ϕ∗
h(1)

m
(h)∗
Dt . (12)

For h→ ∞ this estimator coincides with the final BN smoother estimator:

µDt = (1 + ϕ
(D)
∞,1)mDt + (ϕ

(D)
∞,2 − ϕ

(D)
∞,1)mD,t+1 + · · ·+ (ϕ(D)

∞,p − ϕ
(D)
∞,p−1)mD,t+p−1 − ϕ(D)

∞,pmD,t+p.

An alternative approximate BN smoother is obtained by replacing in the expression for the

final BN smoother the quantities arising from h-step ahead estimation:

µ
(h)
Dt = (1 + ϕ

(D)
h,1 )m

(h)
Dt + (ϕ

(D)
h,2 − ϕ

(D)
h,1 )m

(h)
D,t+1 + · · ·+ (ϕ

(D)
h,p − ϕ

(D)
h,p−1)m

(h)
D,t+p−1 − ϕ

(D)
h,pm

(h)
D,t+p.
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5 Estimation issues

Given a realization of the stochastic process Xt, denoted xt, t = 1, . . . , n, there are several alter-

native estimators of the direct and indirect coefficients, ϕ(i)
h , i = I,D. The most common esti-

mation method is ordinary least squares (LS), by which the vector ϕ̂
(D)

h minimizes
∑

t(∆hxt+h −

ϕ̂
(D)′

∆xt)
2, where ∆xt = [∆xt,∆xt−1, . . . ,∆xt−p+1]

′. The properties of the corresponding pre-

dictor have been discussed by Ing (2004) in the stationary case; Marcellino, Stock and Watson

(2006) provide an empirical comparison of the direct and iterated least squares predictors in terms

of their capability of forecasting a large set of macroeconomic time series, both stationary and non

stationary.

The problems with the least square estimates are twofold. First, the AR estimated parameters

may be nonstationary. Secondly, for given horizon and AR order the empirical MSFE of the it-

erated predictor can be smaller than that of the direct predictor. On the contrary, the Yule-Walker

estimates, which are obtained by replacing the theoretical autocovariances in (3) by their sam-

ple counterparts γ̂(k) = n−1
∑n−k

t=1 ∆xt∆xt+k, are guaranteed to correspond to a stationary AR

process and they enforce the condition ̂MSFEI(h, p) ≥ ̂MSFED(h, p).

On the other hand, it is well known that the Yule-Walker estimators suffer from larger bias than

the least squares estimates for short time series and when the root of the AR polynomial is close

to one (Priestley, 1981, p. 351, Tjostheim and Paulsen, 1983, Kang, 1987, Shaman and Stine,

1988). These drawbacks are alleviated by tapering. A taper is a data window taking the form of

a sequence of positive weights wt, t = 1, . . . , n that leaves unaltered the series in the middle of

the sample and downweights the observations at the extremes. In other words, tapering amounts

to smoothing the observed sample transition from zero to the observed values when estimating

convolutions of data sequences such as the autocovariances and the periodogram.

The tapered Yule-Walker estimates of the AR coefficients are obtained by replacing the theo-

retical autocovariances with those computed on the sequence wt∆xt, by the estimator:

γ̂(k) =
n

(
∑n

t=1w
2
t )

2

n−k∑
t=1

wt∆xtht+k∆xt+k.

In our applications we consider the Tukey-Hanning data taper (see e.g. Bloomfield, 1985, p. 84,
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and Dahlhaus, 1988), such that, defining u = (t− 0.5)/n,

wt =


0.5 [1− cos(2πu/ϱ)] , u ≤ 0.5ϱ,

1, 0.5ϱ ≤ u ≤ 1− 0.5ϱ,

0.5 [1− cos(2π(1− u)/ϱ)] , u ≥ 1− 0.5ϱ,

The ϱ parameter, regulating the fraction of the initial and final stretch of data that are tapered, is set

equal to 0.1. Notice that the standard biased estimator of the autocovariance arise when the boxcar

taper, with wt = 1, 1 ≤ t ≤ n and 0 otherwise, is adopted.

The tapered Yule-Walker estimates have better small sample properties with respect to the non-

tapered counterparts. In particular they can reduce substantially the bias affecting the Yule Walker

estimates of the AR parameters, see e.g. Dahlhaus (1988). For solving the system Γ̂ϕ̂
(D)

h = γ̂h,

we use the functions for Toeplitz systems built in the package Ox 4.00 by Doornik (2006), which

make use of the Levinson-Durbin algorithm.

The choice of the AR order p is according to the Hurvich and Tsai (1997) multistep general-

ization of the corrected AIC, given by

AICC(h, p) = n[log ̂MSFED(h, p) + 1] + 2(p+ 1)
n

n− p− 2
. (13)

To judge the significance of the reduction of the MSFE arising from using the direct predictor

at horizon h we propose the following F -type test statistic, defined in terms of the Granger and

Newbold (1986, p. 310) measure of forecastability at horizon h:

F (h, p) =
(R2

D −R2
I)/p

(1−R2
D)/(n− p)

(14)

where

R2
i (h, p) = 1−

̂MSFEi(h, p)

γ̂(0)
, i = I,D.

is the forecastability index. The statistic (14) is the standard test for the p restrictions ϕ
(D)
h =

ϕ
(I)
h , but it has not the usual F distribution in finite samples. The p-values of the finite sample

distribution of the statistic (14) are obtained by the bootstrap method, using the sieve bootstrap

to obtain replicates of the observed time series (see Bühlmann, 1997, 2002, and the references

therein).
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6 Illustrations

This section presents two illustrations dealing with two relevant macroeconomic indicators of the

U.S. economy: quarterly real gross domestic product (GDP, 100 × logarithms, sample period:

1947.q1–2008.q4) and monthly inflation, obtained as xt = 100(lnCPIt − lnCPIt−1), where CPI is

the consumer price index for all urban consumers released by the U.S. Bureau of Labor Statistics

(seasonally adjusted, January 1960 - December 2008). The series were downloaded from the

FREDr(Federal Reserve Economic Data) database.

In both cases we first discuss whether the direct predictor provides a significant improvement

in the predictive accuracy at a given horizon, we compare the standard one-step-ahead and the

multistep BN decompositions, and finally we apply the predictive validity test proposed by Cogley

(2002) and Nelson (2008), which aims at evaluating whether the BN transitory components contain

information that is useful for predicting the future growth of GDP and inflation.

6.1 U.S. Gross Domestic Product

The top panel of figure 2 shows, for each forecast lead time h on the horizontal axis, the order

selected by Hurvich and Tsai corrected AIC criterion given in (13); p is around 3 for small lead

times and increases up to 12 for horizons around 7-8 years (28-32 quarters). The plot also displays

the efficiency of the direct predictor for the selected p, measured by

G(h, p) = 100×

(
1−

̂MSFED(h, p)

̂MSFEI(h, p)

)
,

i.e. percent gain in forecast accuracy arising from the direct method.

The gains do not appear to be substantial; the maximum value, around 5%, is obtained for

h = 15 and p = 3. The next question is whether the empirical accuracy gains are statistically

significant. The bottom panel answers this by plotting against h the bootstrap p-values (using

B = 9999 replicates) of the test statistic F (h, p) in (14), where p is equal to the value selected

by AICC . The steady line is drawn at the value 0.05. The plot reveals that none of these gains is

significant at the 5% level.
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Figure 2: U.S. real gross domestic product. Selected AR orders and percent efficiency gain versus

forecast horizon h (top panel); bootstrap p-values of the predictive accuracy test statistic (bottom

panel).
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We would like to remark at this point that our proposed test of equal forecasting accuracy

serves as a preliminary screening for situations of potential interest, where the direct predictor can

lead to a significant improvement in predictive accuracy, possibly since the AR(p) representation

is misspecified. From an applied standpoint, if one carries out a rolling forecasting exercise, using

least squares for parameter estimation, it may well turn out that the direct predictor is actually less

accurate. Hence, our result are not in contrast with those reported in Marcellino, Stock and Watson

(2006); rather, they confirm that for U.S. GDP the direct predictor does not outperform the iterated

one.

Be that as it may, it is nevertheless instructive to construct the multistep BN decomposition.

Figure 3 compares to the standard BN components, obtained from fitting an AR(3) model and

the multistep ones at horizon h = 20 (5 years) and p = 6. In particular, the top panels display

the estimated trend m̂It, as given in (8) or (9), with the coefficients replaced by the tapered Yule-

Walker estimates, and the deviations xt− m̂It; the one-step estimated BN trend closely follows the

observed GDP and the resulting BN cycle has small amplitude. The bottom panels display m̂h∗
Dt,

the trend obtained assuming the eight years forecast horizon, h = 32, and the corresponding cycle

xt − m̂h∗
Dt. See section 3.3 for details.

The estimated trend m̂h∗
Dt (which is the sample counterpart of (10)) is smoother than its one-step

trend; as a consequence, the estimated cycle has larger amplitude and displays the alternation of

phases and the persistence that is characteristic, say, of the Hodrick and Prescott (1997) estimate

of the U.S. GDP business cycle.

To validate the predictive content of the BN transitory component we run the OLS regression

of ∆xt+1 on xt − m̂it, i = D, I . For simplicity we report only the results for two representative

values of p and h. The following table presents the correlation coefficient between the two se-

ries, the estimated regression coefficient and the associated t-value, and finally the coefficient of

determination, R2 of the regression.
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Figure 3: U.S. real gross domestic product. Beveridge-Nelson trends and cycles: standard (iter-

ated) decomposition for h = 1 and multistep direct decomposition at horizon h = 20.
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h = 1, p = 3 h = 1, p = 7

Correlation -0.27 -0.19

Coefficient -0.63 -0.47

t-value -5.81 -3.89

R2 0.07 0.04

h = 20, p = 3 h = 20, p = 7

Correlation -0.03 0.09

Coefficient -0.05 0.07

t-value -0.60 1.91

R2 0.00 0.01

The results confirm Nelson’s overall conclusion that only a small fraction of future GDP growth

is predictable using the BN transitory component. This fraction is significant only when h = 1,

which confirms that the multistep decomposition plays no differential role in explaining the GDP

fluctuations. It should be noticed that, as it is also evident from figure 3, the sign of the correlation

is reversed.

6.2 U.S. Monthly Inflation

The U.S. monthly inflation series is often modeled by an IMA(1,1) model, as in Stock and Watson

(2007) and the references therein, with a negative MA coefficient. Hence, we expect that the AR

representation is misspecified for this series.

In fact, the order p minimizing the corrected AIC is typically very large, as it can be seen from

the top panel of figure 4): for the one-step ahead predictor (h = 1) it is already equal to p = 14 and

jumps to around 32 for h ≥ 12. The finding that long autoregressions are required is consistent

with the presence of a MA component close to the non invertibility region. The reduction of the

MSFE produced by the direct predictor is highly significant at all horizons greater than h = 18, as

it is visible from the bottom panel of figure 4. For horizons around 4 years the gain in predictive

accuracy can reach up to 20%. It is also noticeable that the order p selected by AIC is negatively
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Figure 4: U.S. monthly inflation. Selected AR orders and percent efficiency gain versus forecast

horizon h (middle panel); bootstrap p-values of the predictive accuracy test statistic.
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correlated with h.

We thus turn to the implications of adopting the multistep direct AR model for the estimation

of the underlying level of inflation. The top right panel of figure 5 displays the standard BN trend

arising from the AR(14) model for ∆xt fitted by minimizing the one-step ahead prediction error

variance. The second panel on the right depicts the BN smoothed trend computed according to

the two-sided symmetric filter in (11). These plots should be compared with the multistep BN and

smoothed BN trends, estimated respectively using the sample counterpart of m(h)∗
Dt , see equation

(10), and µ(h)∗
Dt , given in (12). These estimates are characterized by a higher degree of smoothness,

which is motivated by the fact that the estimates of the AR polynomial optimize the predictive

performance at an horizon, h = 48, i.e. 4 years of monthly observations. The comparison of

the real time and the smoothed estimates further reveals that the former suffer from a phase shift,

due to the one sided nature of the signal extraction filter, which is not present in the smoothed

estimates.

Turning to the predictive content of the transitory component with respect to the next period

change in inflation, the regression of ∆xt+1 on the the BN transitory component at time t, xt −

m̂it, i = I,D, produced the following results, which refer to a few representative cases:
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Figure 5: U.S. monthly CPI inflation. Beveridge-Nelson trends and smoothed (two-sided) trends:

standard (iterated) decomposition for h = 1 and multistep direct decomposition at horizon h = 48.
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h = 1, p = 2 h = 1, p = 10 h = 1, p = 20

Correlation -0.39 -0.50 -0.50

Coefficient -1.01 -0.69 -0.71

t-value -10.15 -13.95 -13.83

R2 0.15 0.26 0.25

h = 48, p = 2 h = 48, p = 10 h = 48, p = 20

Correlation -0.39 -0.51 -0.49

Coefficient -0.63 -0.75 -0.61

t-value -10.31 -14.38 -13.48

R2 0.15 0.27 0.24

h = 60, p = 2 h = 60, p = 10 h = 60, p = 20

Correlation -0.39 -0.51 -0.50

Coefficient -0.66 -0.66 -0.63

t-value -10.34 -14.11 -13.72

R2 0.15 0.26 0.25

The main evidence is that the transitory component has a large predictive power for the next change

in monthly inflation. The best performance is the case h = 48, p = 10, for which R2 = 0.27.

Increasing the AR order from a low value (p = 2) to a moderately high value p = 10 yields a tran-

sitory component with higher predictive content. Increasing the forecast horizon helps improving

the performance, but not as dramatically.

It should be noticed that if the true model was IMA(1,1), that is ∆Xt = ϵt+θϵt−1, |θ| < 1, ϵt ∼

NID(0, σ2), the BN transitory component would be ψt = −θϵt, so that ∆Xt+1 = −ψt+ϵt+1,which

implies E[∆Xt+1ψt] = −θ2σ2, the theoretical regression coefficient is -1, and Corr(∆Xt+1, ψt) =

− θ√
1+θ2

.
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7 Conclusive remarks

The paper has introduced the multistep Beverigde-Nelson decomposition, which is the BN de-

composition that arises when the long-run predictions are generated by the direct autoregressive

predictor. We have also discussed how to construct a two sided BN decomposition. This result

plays a role when the AR model is misspecified, so that minimizing the multistep prediction mean

square error is likely to yield more accurate long-run predictions. The components can be vali-

dated according to their capability of predicting future growth, as proposed by Cogley (2002) and

Nelson (2008).

The application to the U.S. GDP provide strong support to the conclusion by Nelson (2008),

that much of the variation is due to permanent shocks, which are largely unpredictable: the BN

transitory component has negligible amplitude and has very low predictive content for the next

period GDP growth rate. The multistep decomposition has even less predictive power and there is

no statistical support for it.

However, the reverse is true when we consider the U.S. monthly inflation rate, for which about

one fourth of the variation of the future changes of the inflation rate is explained by the BN cy-

cle, and the multistep BN components yield more accurate estimates of the true underlying BN

components.
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