
 
 

Business School 
The University of Sydney 

 
 

OME WORKING PAPER SERIES 

 
Stochastic trends and seasonality in economic time 

series: new evidence from Bayesian stochastic 
model specification search 

 
Tommaso Proietti 

Business School 
The University of Sydney 

 
Stefano Grassi 

CREATES 
Aarhus University  

 

Abstract 
 
An important issue in modelling economic time series is whether key unobserved 
components representing trends, seasonality and calendar components, are 
deterministic or evolutive. We address it by applying a recently proposed Bayesian 
variable selection methodology to an encompassing linear mixed model that features, 
along with deterministic effects, additional random explanatory variables that account 
for the evolution of the underlying level, slope, seasonality and trading days. Variable 
selection is performed by estimating the posterior model probabilities using a suitable 
Gibbs sampling scheme.  
 
The paper conducts an extensive empirical application on a large and representative 
set of monthly time series concerning industrial production and retail turnover. We 
find strong support for the presence of stochastic trends in the series, either in the 
form of a time-varying level, or, less frequently, of a stochastic slope, or both. 
Seasonality is a more stable component: only in 70% of the cases we were able to 
select at least one stochastic trigonometric cycle out of the six possible cycles. Most 
frequently the time variation is found in correspondence with the fundamental and the 
first harmonic cycles.  
 
An interesting and intuitively plausible finding is that the probability of estimating 
time-varying components increases with the sample size available. However, even 
for very large sample sizes we were unable to find stochastically varying calendar 
effects. 
 

 

September 2011 
 

OME Working Paper No: 07/2011 
http://www.econ.usyd.edu.au/ome/research/working_papers 

 



Stochastic trends and seasonality in economic time
series: new evidence from Bayesian stochastic

model specification search

Tommaso Proietti1

University of Sydney
Stefano Grassi2

CREATES, Aarhus University

September 2, 2011

1Address for Correspondence: Room 499 Merewether Building (H04), Discipline of
Operations Management and Econometrics, The University of Sydney, NSW 2006. E-
mail : t.proietti@econ.usyd.edu.au.

2CREATES, Aarhus University DK-8000 Aarhus C, Denmark. E-mail :
sgrassi@creates.au.dk. Financial support from CREATES, funded by the Danish National
Research Foundation, is gratefully acknowledged by Stefano Grassi.



Abstract

An important issue in modelling economic time series is whether key unobserved
components representing trends, seasonality and calendar components, are deter-
ministic or evolutive. We address it by applying a recently proposed Bayesian vari-
able selection methodology to an encompassing linear mixed model that features,
along with deterministic effects, additional random explanatory variables that ac-
count for the evolution of the underlying level, slope, seasonality and trading days.
Variable selection is performed by estimating the posterior model probabilities using
a suitable Gibbs sampling scheme.

The paper conducts an extensive empirical application on a large and representa-
tive set of monthly time series concerning industrial production and retail turnover.
We find strong support for the presence of stochastic trends in the series, either in
the form of a time-varying level, or, less frequently, of a stochastic slope, or both.
Seasonality is a more stable component: only in 70% of the cases we were able to
select at least one stochastic trigonometric cycle out of the six possible cycles. Most
frequently the time variation is found in correspondence with the fundamental and
the first harmonic cycles.

An interesting and intuitively plausible finding is that the probability of estimat-
ing time-varying components increases with the sample size available. However, even
for very large sample sizes we were unable to find stochastically varying calendar
effects.

Keywords: Nonstationarity. Variable selection. Linear Mixed Models.
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1 Introduction

Economic time series, recorded at monthly time intervals, exhibit trends, seasonality
and the effects due to the aliasing of the weekly cycle in economic activity. Modeling
and extracting these component has represented an important problem in time series
analysis. See Zellner (1978), Zellner (1983) Nerlove et al. (1979), Harvey (1989)
Hylleberg (1992), Peña et al. (2001), and Ghysels and Osborn (2001), among others.

Figure 1 displays three such series. The first is the French index of industrial
production for total manufacturing; the middle series is the index of retail turnover
for Germany, while the third is the UK retail turnover index. These series show
trending behaviour and a strong seasonal pattern. It is definitely less straighfor-
ward to be able to spot the effect of trading days and moving festivals from the
graph, but their contribution is also relevant. An interesting question is whether
these components can be adequately represented by deterministic functions of time.
For instance, the trend may be modelled by a time polynomial, and the seasonal
component by a combination of sine and cosine functions with pre-specified frequen-
cies. An alternative view is that these components are subject to random evolution,
and thus we need more elaborate stochastic processes to model them.

The time series literature offers methods for discriminating the deterministic gen-
eration hypothesis against the stochastic one. One approach is performing the class
of seasonal unit root tests proposed by Hylleberg et al. (1990), which is based on the
finite autoregressive representation of the series and tests for the presence of roots
with unit modulus and zero or seasonal phase in the autoregressive polynomial. An
alternative approach is to carry out the stationarity tests proposed by Canova and
Hansen (1995) and extended by Busetti and Harvey (2003).

In this paper we propose to investigate the issue as a model selection problem
within a mixture model that encompasses both deterministic and stochastic gen-
eration hypotheses. For this purpose, we extend the stochastic model specification
search proposed by Frühwirth-Schnatter and Wagner (2010), and applied by Proietti
and Grassi (2012). The mixture model nests the different specifications for the com-
ponents, with the elements of the mixture representing the evolution of a particular
unobserved components, such as a stochastic level, a stochastic slope, a stochastic
trigonometric cycle defined at the fundamental frequency and at the harmonics.
By setting up a suitable Gibbs sampling scheme we can sample the indicators of
the mixture, as well as the model parameters and underlying state, and obtain a
Monte Carlo estimate of the posterior probability for the various different specifi-
cations. Deterministic components are obtained by imposing exclusion restrictions.
Hence, discriminating between deterministic and stochastic components amounts to
performing variable selection within a regression framework that is similar to that
considered by George and McCulloch (1993).

The central contribution of this paper lies with the empirical analysis, as we apply



the methodology to a dataset consisting of 530 time series, with the aim of assessing
the case for the presence of stochastic trends, seasonals and trading days effects in
economic time series. For each of the series belonging to the dataset we perform
model selection and evaluate the frequency by which time evolving components
were selected. Since the available series are characterised by different lengths, we
will be able to assess the role of the sample size in the probability of detecting time
variation in the components. We find the evidence for the presence of stochastic
trends overwhelming, whereas the probability of detecting stochastic variation in
the seasonal cycles depends crucially on the length of the available series.

The paper is structured as follows. The reference model will be presented in
Section 2. Section 3 discusses its relation with the literature and contextualises the
various specifications. Section 4 discusses how stochastic model specification search
can be applied for the selection of the components of the linear mixed models. This
hinges on a convenient reparameterization of the standard deviations of the distur-
bances that drive the components. Section 5 discusses the state space representation
of the non-centered model and Markov Chain Monte Carlo (MCMC) inference via
Gibbs sampling for model selection and Bayesian estimation of the hyperparameters
and the components. After a brief description of the dataset, section 6 presents the
empirical results. In Section 7 we draw our conclusions.

2 An encompassing linear mixed model with trend

and seasonal effects

Let yt denote a time series observed at t = 1, 2, . . . , n. We focus on modelling yt by
a linear mixed model that accounts for a trend component, denoted µt, a seasonal
component, St, a calendar component, Ct, and an irregular disturbance term, ϵt,
specified as follows:

yt = µt + St + Ct + ϵt, t = 1, . . . , n, (1)

The trend component has a deterministic linear part, and a random part, specified
as follows:

µt = µ0 + q0t+ σηµ̃t + σζÃt,

µ̃t = µ̃t−1 + η̃t, η̃t ∼ NID(0, 1),

Ãt = Ãt−1 + q̃t−1,

q̃t = q̃t−1 + ζ̃t, ζ̃t ∼ NID(0, 1),

(2)

here µ̃t is a random walk component with starting value µ̃0 = 0 and unit size;
the parameter ση ≥ 0 establishes the scale of this component. The process Ãt is
an integrated random walk (such that q̃0 = Ã0 = 0), driven by standard normal
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Figure 1: Monthly time series: 1. France, Index of Industrial Production for Total
Manufacturing; 2. Germany, Index of Retail Turnover, Total; 3. UK, Index of Retail
Turnover, Total. Source: Eurostat, Europa Database.

disturbances, accounting for the random evolution of the slope; σζ ≥ 0 is the scale
parameter for the component.

The seasonal component results from the sum of six trigonometric cycles defined
at the seasonal frequencies λj = 2πj/12, j = 1, . . . , 6. In particular, St =

∑6
j=1 Sjt,

with each Sjt made up of a deterministic and a random component: for j = 1, . . . , 5,

Sjt = aj0 cosλjt+ bj0 sinλjt+ σj

(
ãjt cosλjt+ b̃jt sinλjt

)
,

ãjt = ãj,t−1 + ω̃jt, ω̃jt ∼ NID(0, 1), t = 1, . . . , n,

b̃jt = b̃j,t−1 + ω̃∗
jt, ω̃∗

jt ∼ NID(0, 1).

(3)

with starting values ãj0 = b̃j0 = 0 whereas, for j = 6,

S6t = a60(−1)t + σ6ã6t(−1)t

ã6t = ã6,t−1 + ω̃6t, ω̃6t ∼ NID(0, 1).
(4)
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The parameters aj0 and bj0, j = 1, . . . , 6, determine the amplitude of the fixed
trigonometric cycles, whereas σj regulate the contribution of the random component.

The calendar component, Ct, plays an important role for the class of economic
time series that we investigate in the paper. In fact, production and sales are
characterised by a strong weekly cycle, which is aliased since the data are recorded
with reference to the months. The component accounts for trading days (TD)
effects and for moving festivals. The former are related to the fact that the number
of weekdays and weekend days is not the same across the months. Let Djt denote
the number of days of type j, j = 1, . . . , 7, occurring in month t, and define xkt =
Djt−D7t, k = 1, . . . , 6, which is a contrast between the number of days of a particular
type (Mondays, Tuesdays, . . . , Saturdays), and the number of Sundays occurring
in the same month. A time varying trading day component can be modelled as a
regression component with time-varying coefficients:

TDt =
∑6

k=1 ϕk0xkt + σν

(∑6
k=1 ϕ̃ktxkt

)
ϕ̃kt = ϕ̃k,t−1 + ν̃t, ν̃t ∼ NID(0, 1).

(5)

The coefficients associated with the regressors xkt evolve as independent random
walks with starting value ϕ̃k0 = 0. Obviously, if σν = 0 the trading days effect are
time invariant.

As far as moving festivals are concerned, we focus on Easter and Labor Day
(U.S. time series), and model their effects defining explanatory variabe measuring
the proportion of 7 days before Easter (xEt) or Labor Day (xLt) that fall in month
t and subtracting their monthly long run average, computed over the first 400 years
of the Gregorian calendar (1583-1982). This treatment is quite standard in the
literature; see Bell and Hillmer (1983), among others, and the references therein.

Finally, the irregular component is a Gaussian white noise process, ϵt ∼ NID(0, σ2
ϵ ).

3 Discussion

The linear mixed model proposed in the previous section is sufficiently general to
accommodate both deterministic and stochastic trends, seasonals and calendar ef-
fects. The specification with σj constant across j and σTD = 0 is referred to as
the basic structural model; see Harvey (1989). The representation used for the
components is known as the non-centred (with respect to location and scale) rep-
resentation; Frühwirth-Schnatter and Wagner (2010) and Strickland et al. (2007)
discuss its advantages for Bayesian estimation of the model.

Notice that the trend component (2) can be written equivalently using the fol-
lowing recursions:

µt = µt−1 + qt−1 + ηt, ηt ∼ NID(0, σ2
η)

qt = qt−1 + ζt, ζt ∼ NID(0, σ2
ζ )

(6)
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where qt is the slope component and we assume that ηt and ζt are mutually un-
correlated and independent of ϵt and St (see Harvey (1989) and West and Harrison
(1997)). The trend model is related to cubic spline smoothing (see Wecker and
Ansley (1983)). If σζ = 0 the trend is a random walk with constant drift; if ση = 0
and σζ > 0 the trend is an integrated random walk; finally, if both ση = σζ = 0 the
trend is linear deterministic.

The seasonal component consists of six cycles: the first is defined at the funda-
mental frequency, λ1 = π/6 (corresponding to a period of 12 monthly observations)
while the others are defined at the harmonic frequencies λj = 2πj/12, j = 2, . . . , 6,
(corresponding, respectively, to periods of 6 months, i.e. two cycles in a year, 4
months, i.e. three cycles in a year, 3 months, i.e. four cycles in a year, 2.4, i.e. five
cycles in a year, and 2 months).

Using trigonometric identities, the j-th seasonal cycle in 4 can be rewritten:
Sjt = φt cos(λjt− ϑt), where

φt =

√√√√(aj0 + t−1∑
k=0

ω̃j,t−k

)2

+

(
bj0 +

t−1∑
k=0

ω̃∗
j,t−k

)2

is the time varying amplitude and

ϑt = tan−1

(
aj0 +

∑t−1
k=0 ω̃j,t−k

bj0 +
∑t−1

k=0 ω̃
∗
j,t−k

)

represents the phase shift. If σ1 = · · · = σ6 = 0, the seasonal component is the
sum of six perfectly deterministic cycles. The recursive representation of the j-th
seasonal cycle is[

Sjt

S∗
jt

]
=

[
cosλj sinλj

− sinλj cosλj

] [
Sj,t−1

S∗
j,t−1

]
+

[
ϖj,t

ϖ∗
j,t

]
, j = 1, . . . , 5, (7)

and S6,t = −S6,t−1 + ϖ6t, where ϖjt ∼ NID(0, σ2
j ), j = 1, . . . , 6, ϖ∗

jt ∼ NID(0, σ2
j ),

j = 1, . . . , 5. These recursions hold for t = 1, . . . , n, with starting values Sj,0 = aj0
and S∗

j,0 = bj0. This representation is the one usually adopted in the time series
literature (see Harvey (1989) and West and Harrison (1997)).

4 Bayesian stochastic specification search

A widely debated issue is whether trends, seasonals and trading day effects are
deterministic or stochastically evolving over time; this translates into the following
main specification issues with respect to the model set up in section 2:
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• when σζ = 0, cœteris paribus, the trend changes are white noise around a
constant drift;

• when ση = σζ = 0, cœteris paribus, the trend is linear deterministic.

• When σj = 0, ∀j, cœteris paribus, seasonality is represented by a set of per-
fectly periodic deterministic components.

• When σν = 0, cœteris paribus, the TD coefficients are time invariant.

In the econometric literature formal statistical tests are available for discriminat-
ing deterministic trends from stochastic ones. When seasonality is absent, unit root
tests, see Dickey and Fuller (1979) and Phillips and Perron (1988), test the null of
integration versus a stationary alternative see De Jong and Whiteman (1991), Koop
(1992), Sims (1988), Sims and Uhlig (1991), Phillips (1991), Schotman and van
Dijk (1991), Phillips and Perron (1994), among others, for the Bayesian approach
to unit root testing; on the contrary, the tests proposed by Nyblom and Makelainen
(1983) and Kwiatkowski et al. (1992) test trend stationarity against the alternative
of integration. Unit root tests were extended to the seasonal case by Hylleberg
et al. (1990), whereas the extension for stationarity tests was proposed by Canova
and Hansen (1995), and Busetti and Harvey (2003). Other important references
on whether seasonality is stochastically evolving over time include Hylleberg and
Pagan (1997) and Koop and van Dijk (2000). The issue as to whether trading days
affects are time varying has been addressed by Dagum et al. (1993), Dagum and
Quenneville (1993), Bell and Martin (2004).

We can decide on the above main specification issues using the specification search
methodology proposed by Frühwirth-Schnatter and Wagner (2010). The approach
starts with the linear mixed model representation presented in section 2 and proceeds
to the the reparameterization of the hyperparameters representing standard devi-
ations as regression parameters with unrestricted support, as it will be illustrated
shortly.

It should be noticed that the linear mixed model is identified up to sign switches
that operate on both the standard deviations and on the underlying stochastic com-
ponents. Consider, for instance the trend component in equation (6): if we replace
σηµ̃t by the product (−ση)(−µ̃t), i.e. we switch the sign to both the elements, we
obtain an observationally equivalent representation, characterised by exactly the
same likelihood. FS-W came up with the clever idea of replacing σηµ̃t with βµµ

∗
t ,

where, for t = 1, . . . , n,

βµµ
∗
t =

{
σηµ̃t, with probability 0.5

(−ση)(−µ̃t), with probability 0.5

5



Hence, the sign switch is the outcome of a Bernoulli random experiment, with 50%
success probability. According to this setting, the parameter βµ can take any real
value and it would be suitable to set up a normal prior for it centred in zero.

The same reasoning can be applied to the pairs (−σζ)(−Ãt) and (σζ)(Ãt),

(−σj)
[
−
(
ãjt cosλjt+ b̃jt sinλjt

)]
and σj

(
ãjt cosλjt+ b̃jt sinλjt

)
, and (−σν)

(
−
∑6

k=1 ϕ̃ktxkt

)
and σν

(∑6
k=1 ϕ̃ktxkt

)
. The likelihood function is symmetric around zero along the

parameter space and multimodal, if the true standard deviations are larger than
zero, as resulting from the identifiability issue. This feature will be later exploited
to judge whether the posterior of ση, σζ , σj, j = 1, . . . , 6, and σν , is far away from or
sufficiently close to zero.

The random switch process can be formalised by defining independent Bernoulli
random variates with success probability 0.5, Bµ,BA,Bsj, j = 1, . . . , 6,BTD, so that

we can use the reparameterisation σηµ̃t = βµµ
∗
t , where βµ = (−1)Bµση, and µ∗

t =

(−1)Bµµ̃t,; similarly, σζÃt = βAA
∗
t , where βA = (−1)BAσζ , A

∗
t = (−1)BAÃt,

σj

(
ãjt cosλjt+ b̃jt sinλjt

)
= βsjU

∗
jt, βsj = (−1)Bsjσj, U

∗
jt = (−1)Bsj

(
ãjt cosλjt+ b̃jt sinλjt

)
,

for j = 1, . . . , 6, and

σν

(∑
k

ϕktxkt

)
= βTDΦ

∗
t , βTD = (−1)BTDσν ,Φ

∗
t = (−1)BTD

(∑
k

ϕktxkt

)
.

As stated above, the reparameterisation aims at transforming a standard devi-
ation into a regression parameter in a linear mixed model, so that the selection
of an evolutive component is related to the inclusion of a particular explanatory
variable. The different specifications for the trend and the seasonal components are
obtained by imposing exclusion restrictions, so that discriminating between deter-
ministic and stochastic components amounts to performing variable selection within
the regression framework considered by George and McCulloch (1993).

Although in principle we could conduct variable selection for any of the explana-
tory variables in the model, for our purposes, it will suffice to carry it out on the
slope term q0t, on the random walk and integrated random walk components µ∗

t , A
∗
t ,

on the six stochastic terms U∗
jt and on

(∑6
k=1 Φ

∗
ktxkt

)
. We then introduce nine binary

indicator variables γµ, γA, γsj, j = 1, . . . , 6, γTD, taking value 1 if the random effects
µ∗
t , A

∗
t , Ujt, j = 1, . . . , 6,

(∑6
k=1 Φ

∗
ktxkt

)
are present and 0 otherwise, along with a

binary indicator for the linear trend component, δ, taking values (0,1) according to
whether the term q0t is included in the model. The ten indicators can be further
collected in the multinomial vector Υ = (γµ, γA, γsj, j = 1, . . . , 6, γTD, δ).
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Considering all the possible values of Υ, there areK = 210 = 1024 possible models
in competition, which are nested in the specification:

yt = µt + St + Ct + ϵt, ϵt ∼ NID(0, σ2
ϵ ),

µt = µ0 + δq0t+ γµβµµ
∗
t + γAβAA

∗
t ,

µ∗
t = µ∗

t−1 + η̃t, η̃t ∼ NID(0, 1),
A∗

t = A∗
t−1 + q̃t−1,

q̃t = q̃t−1 + ζ̃t, ζ̃t ∼ NID(0, 1),

St =
∑5

j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t +
∑6

j=1 γsjβsjU
∗
jt,

U∗
jt = A∗

jt cosλjt+B∗
jt sinλjt, j = 1, . . . , 5, U∗

6t = A∗
6t cos πt,

A∗
jt = A∗

j,t−1 + ω̃jt, ω̃jt ∼ NID(0, 1),
B∗

jt = B∗
j,t−1 + ω̃∗

jt, ω̃∗
jt ∼ NID(0, 1),

Ct =
∑6

k=1 ϕk0xkt + γTDβTD

(∑6
k=1 Φ

∗
ktxkt

)
+ ϕExEt + ϕLxLt,

Φ∗
kt = Φ∗

k,t−1 + ν̃t, ν̃t ∼ NID(0, 1).
(8)

where we have defined A∗
jt = (−1)Bsj ãjt, B

∗
jt = (−1)Bsj B̃jt,Φ

∗
kt = (−1)BTDϕ∗

kt.
All the specifications will include the constant term, the set of 11 sine and

cosine terms at the seasonal frequencies, the six trading days regressors and the
moving festivals regressors, so that the most elementary model is a model with a
constant level, deterministic seasonals and fixed calendar effects; this corresponds
to the most elementary model and has Υ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). When Υ =
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1), the model features a deterministic linear trend and a per-
fectly deterministic seasonal component (assuming there is no moving festival):

yt = µ0 + q0t+
∑5

j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t +
∑6

k=1 ϕk0xkt + ϵt,
(9)

In turn, Υ = (1, 0, 1, 0, 0, 0, 0, 0, 0, 1) corresponds to

yt = µ0 + q0t+ σηµ̃t +
∑5

j=1(aj0 cosλjt+ bj0 sinλjt) + a60(−1)t+

σ1

(
ã1t cosλ1t+ b̃1t sinλ1t

)
+
∑6

k=1 ϕk0xkt + ϵt,
(10)

The different models will be labelled by

Mk, k = 1 +
U∑

u=1

2U−uΥu,

where Υu is the u-th element of the vector Υ, u = 1, . . . , U . For instance, Υ =
(1, 0, 1, 0, 0, 0, 0, 0, 0, 1) is model M641.

7



5 Statistical Treatment

Model selection entails the computation of the posterior model probabilities π(Mk|y) ∝
π(Mk)π(y|Mk), where y denotes the collection of time series values {yt, t = 1, . . . , n}.
The evaluation of the marginal likelihood π(y|Mk) for each model is computationally
intensive; in fact, it would be unfeasible to compute the posterior model probabili-
ties for each of the 1024 specifications and select the specification characterised by
the largest. It is feasible instead to draw samples from the posterior distribution of
Υ given the data by Markov Chain Monte Carlo methods, as by a suitable design
of the priors the full conditional posterior distribution of the multinomial vector Υ
is available in closed form. A suitable Gibbs sampling (GS) scheme can in fact be
devised which enables Υ to be sampled along with the model parameters and states.
After the GS scheme has converged, we estimate π(Υ|y), by the proportion of times
a particular specification was drawn.

Depending on the value of Υ, the models nested in (10) admit the following state
space representation:

yt = x′δ,tρδ + z′γ,tαγ,t + ϵt, ϵt ∼ NID(0, σ2
ϵ ), t = 1, . . . , n,

αγ,t = Tγαγ,t−1 +Rγuγ,t, uγ,t ∼ NID(0, I),
(11)

where αγ,0 = 0, and

xδ,t = (1, δt, cosλ1t, sinλ1t, . . . , cos πt, x1t, . . . , x6t, xEt, xLt)
′

ρδ = (µ0, q0, a10, b10, . . . , a60, ϕ1, . . . , ϕ6, ϕE, ϕL)
′,

zγ,t = (γµβµ, γAβA, 0, γs1βs1 cosλ1t, γs1βs1 sinλ1t, . . . , γs6βs6 cos πt,
γTDβTDx1t, . . . , γTDβTDx6t)

′,
αγ,t = (µ∗

t , A
∗
t , q̃t, A

∗
1t, B

∗
1t, . . . , A

∗
6t,Φ

∗
1t, . . . ,Φ

∗
6t),

Tγ =


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 I12

 , Rγ =


1 0 0
0 0 0
0 1 0
0 0 I12

 .

We will denote by α the collection of the latent states {αγ,t, t = 0, 1, . . . , n}, and
by ψΥ the appropriate subset of the parameters (µ0, q0, a10, b10, . . . , a60, ϕ10, . . . , ϕ60, βµ,
βA, βs1, . . . , βs6, βTD) that enter the model for a particular value of Υ.

The prior has the following conditional independence structure:

π(Υ, ψ, σ2
ϵ , α) = π(Υ)π(σ2

ϵ )π(ψ|Υ, σ2
ϵ )π(α|Υ),

where individual factors are given as follows.

• We assume that the models Mk, k = 1, . . . , K, are equally likely a priori, that
is π(Υ) = 2−U .

8



• For σ2
ϵ we adopt a hierarchical inverse Gamma (IG) prior: σ2

ϵ ∼ IG(c0, C0),
where C0 ∼ G(g0, G0), G(·) denoting the Gamma distribution, c0 = 2.5, g0 =
5, and G0 = g0/[0.75Var(yt)(c0 − 1)]. The hierarchical prior is intended to
make the posteriors less sensitive to the choice of the hyperparameters of the
IG distribution.

• Denoting the i-th element of the parameter vector ψΥ by ψΥi, i = 1 . . . , p,
we set π(ψΥ|Υ, σ2

ϵ ) =
∏p

i=1 π(ψi|σ2
ϵ ), where all the priors are conjugate. For

instance, q0|σ2
ϵ ∼ N(0, d0σ

2
ϵ ), etc. A distinctive feature of the methodology pro-

posed by Frühwirth-Schnatter and Wagner (2010) is the adoption of Gaussian
priors, centered at zero, for the parameters βµ, βA, βsj, βTD:

βµ|σ2
ϵ ∼ N(0, κµσ

2
ϵ ), βA|σ2

ϵ ∼ N(0, κAσ
2
ϵ ),

βsj|σ2
ϵ ∼ N(0, κjσ

2
ϵ ), j = 1, . . . , 6, βTD|σ2

ϵ ∼ N(0, κTDσ
2
ϵ ).

Not only this allows conjugate analysis, but FS-W show that inference will
benefit substantially from the use of a normal prior for e.g. βµ = ±ση,
βµ|σ2

ϵ ∼ N(0, κµσ
2
ϵ ), instead of the usual inverse Gamma prior for the vari-

ance parameter σ2
η.

For the constant term and the coefficients aj0, j = 1, . . . , 6, bj0, j = 1, . . . , 5, ϕk0, k =
1, . . . , 6 we adopt the uninformative priors π(µ0|σ2

ϵ ) ∝ 1.

• The prior distribution for α is given directly by the Gaussian dynamic model
(11):

π(α|Υ) = π(αγ0)
n∏

t=1

π(αγt|αγ,t−1),

with αγt|αγ,t−1 ∼ N(Tγαγ,t−1, RγR
′
γ) and αγ,0 = 0.

The GS scheme can be sketched as follows. After specifying a set of initial values
Υ(0), σ

2(0)
ϵ , α(0), ψ(0), we iterate for i = 1, 2, . . . ,M , the following operations:

a. Draw Υ(i) ∼ π(Υ|α(i−1), y)

b. Draw σ
2(i)
ϵ ∼ π(σ2

ϵ |Υ(i), ψ(i−1), α(i−1), y)

c. Draw ψ(i) ∼ π(ψ|Υ(i), σ
2(i)
ϵ , α(i−1), y)

d. Draw α(i) ∼ π(α|Υ(i), σ
2(i)
ϵ , ψ(i), y)

The above complete conditional densities are available, up to a normalizing constant,
from the form of the likelihood and the prior.
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For the sake of notation, let us write the linear mixed model as y = ZΥψΥ + ϵ,
where y and ϵ are vectors stacking the values {yt} and {ϵt}, respectively, and the
generic row of matrix ZΥ contains the relevant subset of the explanatory variables.

Step a. is carried out by sampling the indicators with probabilities proportional
to the conditional likelihood of the regression model, as

π(Υ|α, y) ∝ π(Υ)π(y|Υ, α)
∝ π(y|Υ, α),

which is available in closed form (see below).
Under the normal-inverse Gamma conjugate prior for (ψΥ, σ

2
ϵ )

σ2
ϵ ∼ IG(c0, C0), ψΥ|σ2

ϵ ∼ N(0, σ2
ϵDΥ),

where DΥ is a diagonal matrix with elements κµ, κA, etc., steps b. and c. are carried
out by sampling from the posteriors

σ2
ϵ |Υ, α, y ∼ IG(cT∗, CT∗)
ψΥ|Υ, σ2

ϵ , α, y ∼ N(m,σ2
ϵS)

where

S =
(
Z ′

ΥZΥ +D−1
Υ

)−1
, m = SZ ′

Υy
cT∗ = c0 + T ∗/2, CT∗ = C0 +

1
2
(y′y −m′S−1m) .

Finally,

π(y|Υ, α) ∝ |S|0.5

|DΥ|0.5
Γ(cT ∗)

Γ(c0)

Cc0
0

CcT∗
T ∗

,

see e.g. Geweke (2005), where Γ(·) denotes the Gamma function.
The sample from the posterior distribution of the latent states, conditional on

the model and its parameters, in step d., is obtained by the conditional simulation
smoother proposed by Durbin and Koopman (2002).

Finally, the draw of the parameters βµ, βA, βsj, j = 1, . . . , 6, βTD are obtained by
performing a final random sign permutation. This is achieved by drawing indepen-
dently Bernoulli random variables Bµ, BA, Bsj, j = 1, . . . , 6,BTD with probability

0.5, and recording (−1)Bµ(ση, µ̃t), (−1)BA(σζ , Ãt, at), etc.
A key assumption is that σ2

ϵ is strictly greater than zero, i.e. the irregular com-
ponent is always present.

6 Empirical Results

Our application deals with data set consisting of 530 monthly time series for 10 Euro
Area countries, the UK, and the US, referring to the index of industrial production
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and retail turnover. This is a large and representative sample, with 379 series
referring to the index of industrial production (IPI) and 151 to the index of retail
turnover (RT). The breakdown of the series by country and their sample period
is available in Table 1. For the IPI we consider series from Sectors B (Mining
and quarrying), C (Manufacturing), D (Energy), and B–D, and the series for the
manufacturing sectors are from those identified by two digits of the NACE statistical
classifications of economic activities (sectors C1-C31). For the US we consider the 63
series for Market and Industry Group and the 32 series for Special Aggregates and
Selected Detail (see http://www.federalreserve.gov/releases/g17/table1_2.

htm for more details). For retail turnover, we focus on the series available with code
starting with G47 (Retail trade, except of motor vehicles and motorcycles). The
sources of the series are Eurostat (http://epp.eurostat.ec.europa.eu/portal/
page/portal/eurostat/home/), the Federal Reserve and the US Census Bureau.
All the series are analysed in logarithms.

We set the scale parameters d0 = κµ = κA = κµ = κj = κTD = 100 for the priors
(our experience is that the results are very insensitive to the choice of these priors:
although the priors have to proper for the purposes of model selection, taking 10
or 100 or 1000 did not make a difference), and run the GS scheme outlined in the
previous section. For each series yit, i = 1, . . . , N we record the 10 modal models,
denoted Υik, k = 1, . . . , 10, visited by the GS scheme, as well as the number of times
they were visited. All the results are based on 40,000 MCMC draws (after a burn–in
sample of 20,000 draws). Let cik denote the number of times model Υik was selected
and let ci be the total number of draws (which is actually invariant with i). Then,
π̂ij =

cij
ci

estimates the posterior probability of model Υj for the i-th series. Limiting
ourselves to the first 10 model models is not at all restrictive as the median percent
of draws absorbed by them across the 530 series amounts to 99.32%. Figure 2 shows

the histogram of
∑10

k=1 π̂ij =
∑10

j=1 cij

ci
, i.e. of the total probability attached to the 10

modal specification, which turned out to be highly concentrated around 100%.
Table 2 reports the first three models that were visited more frequently by the

Gibbs sampler for the time series considered in the introduction. As far as the IPI
for France is concerned, the evidence is overwhelmingly in favour of a stochastic level
and seasonality. An important source of model uncertainty is about the presence
of a nonzero drift q0. The retail turnover series for Germany feature a stochastic
level, possibly with a constant drift, and a time-varying seasonal cycle at the funda-
mental frequency; the remaining harmonics are predominantly deterministic, except
the fourth (which is responsible for a cycle with period of three months). The UK
retail turnover series behaves rather differently. First and foremost, the model pos-
terior probabilities are more diffuse, the modal model being drawn only 15.66% of
the times. There are four stochastic cycles at the fundamental and the first three
harmonic frequencies, and the slope component is evolutive.

Figure 3 displays the distribution of the 5300 vectors Υij, i = 1, . . . , 530, j =

11
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Table 1: Breakdown of the series by country, sample period, number of time series.

Index of industrial production
Country Sample period Number of series
Austria 1996.1-2010.12 28
Belgium 1995.1-2010.12 27
Finland 1990.1-2010.12 20
France 1990.1-2010.12 28
Germany 1991.1-2010.12 28
Greece 2000.1-2010.12 29
Italy 1990.1-2010.12 27
Netherlands 1990.1-2010.12 22
Portugal 1995.1-2010.12 20
Spain 1980.1-2010.12 28
UK 1990.1-2010.12 28
US 1947.1-2010.12 94

Index of retail turnover
Country Sample period Number of series
Austria 1999.1-2010.12 6
Belgium 1998.1-2010.12 15
Finland 1995.1-2010.12 14
France 1994.1-2010.12 14
Germany 1994.1-2010.12 15
Greece 1995.1-2010.12 13
Italy 2000.1-2010.12 14
Netherlands 1996.1-2010.12 9
Portugal 1995.1-2010.12 9
Spain 2000.1-2010.12 14
UK 2000.1-2010.12 14
US 1992.1-2010.12 14
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Figure 2: Distribution of
∑10

j=1 π̂ij for the 530 series in our dataset.

1, . . . , 10, in the model space: the horizontal axis refers to Mk, k = 1, . . . , 1024,
and each bar is proportional to the average number of times the corresponding
specification was visited per series. The graph shows that the specification M513,
featuring a stochastic level, no slope, deterministic seasonality and constant trading
days effects, was the most visited, followed byM514, which is as the same specification
as before, but with a constant non zero slope. The next two modal models feature
stochastic seasonality in the form of a fundamental stochastic cycle (model 641),
also in conjunction to the first four harmonic cycles.

To obtain an estimate of the marginal probabilities that a particular component
is present in series i we compute

π̂i =

∑10
j=1 cijΥij∑10

j=1 cij
;

this is actually the probability that each component is present in the first ten
modal specifications that were recorded, as it amounts to summing up the values
cij/

∑10
j=1 cij over those specifications which contain the component, i.e. for which
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Table 2: Estimation results for selected time series.
France, Index of industrial production

Mk γµ γA γs1 γs2 γs3 γs4 γs5 γs6 γTD δ 100× π̂ij
729 1 0 1 1 0 1 1 0 0 0 55.69
730 1 0 1 1 0 1 1 0 0 1 40.77
665 1 0 1 0 0 1 1 0 0 0 0.92

Germany, Retail turnover
Mk γµ γA γs1 γs2 γs3 γs4 γs5 γs6 γTD δ π̂ij
641 1 0 1 0 0 0 0 0 0 0 58.21
642 1 0 1 0 0 0 0 0 0 1 29.88
657 1 0 1 0 0 1 0 0 0 0 7.18

UK, Retail turnover
Mk γµ γA γs1 γs2 γs3 γs4 γs5 γs6 γTD δ π̂ij
497 0 1 1 1 1 1 0 0 0 0 15.66
881 1 1 0 1 1 1 0 0 0 0 7.88
498 0 1 1 1 1 1 0 0 0 1 7.38

the elements of Υ is one. However, as we have illustrated, the modal specifications
absorb the quasi totality of the GS draws, so that the vector π̂i can be thought of
as an approximation to the true marginal probabilities given the data.

The distribution of the π̂i, i = 1, . . . , 430, can be effectively represented graphi-
cally using a biplot; see Gower and Hand (1996) and Greenacre (2010). The latter
is a two-dimensional display that is based on the singular value decomposition of
the matrix Π, obtained by stacking the row vectors π̂i.

In the graph, obtained using the BiplotGUI package, described in la Grange
et al. (2009), the individual series are represented as points and the columns are
represented as calibrated axes, as advocated by Gower and Hand (1996). Points
are marked by a circle if they refer to the IPI series, whereas the RT series are
marked by a square. The interpretation of the biplot is such that (the best rank 2
approximation to) the individual probabilities π̂ik are obtained from the orthogonal
projection of the point representing the series on the calibrated axis representing
the k-th component. Moreover, the Euclidean distances among the points are an
approximation to the Mahalanobis distances between the vectors π̂i, so that series
that follow similar models are represented close in the plane. The calibrated axes
are defined by the eigenvectors corresponding to the two largest eigenvalues of the
covariance matrix of Π. The orientation of the axes can be gauged from the position
of the labels. For instance slope and level span essentially the same subspace, which
we can label the trend subspace, but move along opposite directions, which is a
consequence of the negative correlation between the corresponding columns of the
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Model 513: ϒ= (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Model 514: ϒ= (1, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Model 641: ϒ= (1, 0, 1, 0, 0, 0, 0, 0, 0, 0)

Model 765: ϒ= (1, 0, 1, 1, 1, 1, 1, 0, 0, 0)

Figure 3: Distribution of results in the model space.

matrix Π. Also, the trend subspace is almost orthogonal to the space spanned by
the seasonal components.

The cluster of points in the lower left part of the graph refers to series for which
the level is stochastic, the slope is fixed (the probability of selecting this component
is well below the average, and seasonality is stable, i.e. the projection of those points
along the Seas1-6 axes is low. This is the most numerous cluster. The points to
the left will display stochastic seasonality as well. On the contrary, the set of point
on the top left corner are characterised by low probabilities for stochastic level and
seasonal cycles, but the probability that the slope is stochastic is high.

The vectors π̂i can be further aggregated across the series to yield

π̂ =
N∑
i=1

π̂iwi, wi =
10∑
j=1

cij/
N∑
i=1

10∑
j=1

cij.

The elements of this vector are presented in table 3 for the 379 industrial pro-
duction series (IPI), the 151 retail turnover series (RT) and for all the 530 series.
The main result is that the marginal probability of having a stochastic level com-
ponent is very high, and it it is much higher for the industrial production series.
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Figure 4: Principal components biplot of π̂i, i = 1, . . . , 430,. Circles represent in-
dustrial production series, and squares represent RT series. The orientation of the
calibrated axes is provided by the position of the labels.

The probability of having a stochastic slope is higher for the retail series, and it is
very low for the IPI series. Thus, we find that the trend component in the IPI series
has a different characterisation than the RT series. The marginal probability of a
stochastically time-varying seasonal trigonometric cycle is always less than 50% and
tends to decrease with j, as order of the harmonic cycles increases. Time-varying
trading day effects are never detected.

We conclude the presentation of the empirical results by discussing the joint
frequencies by which given stochastic components are detected. In particular, we
focus on the joint frequency distribution for the indicators γµ, γA and I(

∑
j γj > 0);

the latter is the indicator for the presence of at least one stochastic cycle at anyone of
the seasonal frequencies. This is presented in table 4 for the complete dataset (Total,
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530 series), the industrial production series (IPI, 379 series), the retail turnover
series (RT, 151 series), the subset of very long time (VL) series, consisting of the US
industrial production series (for which more than sixty years of data are available),
the subset of long time series (L), featuring 195 series having more less than 30 but
more that 18 years of data; (all the series except the US RT series belong to the IPI
group), the subset of medium sized series (M), featuring more than 12 and no more
than 18 years of data (149 series are in this group), and finally the subset of short
time series, with at most 12 years of data (this subsets comprises 96 time series).

Table 3: Probability of identifying a particular component.
Component of Υ IPI RT Total
Stochastic Level γµ 0.93 0.60 0.84
Stochastic Slope γA 0.18 0.43 0.25
Stochastic Seas1 γs1 0.39 0.46 0.41
Stochastic Seas2 γs2 0.42 0.47 0.43
Stochastic Seas3 γs3 0.41 0.44 0.42
Stochastic Seas4 γs4 0.34 0.47 0.37
Stochastic Seas5 γs5 0.24 0.34 0.27
Stochastic Seas6 γs6 0.18 0.23 0.19
Time-Varying Calendar γTD 0.00 0.00 0.00
Drift δ 0.34 0.38 0.35

The table reports the proportion of the MCMC draws referring to the 10 modal
specifications that featured a particular combination of the indicators. A stochastic
trend (either γµ = 1 or γA = 1, or both) is detected in most occurrences; only in the
case of short time series a completely deterministic trend was found in 4% of the
draws. The modal representation in that case is (1,0,0), i.e. features a stochastic
level, but deterministic slope and seasonals. If we consider the entire dataset, the
modal representation (48.29%) features a stochastic level and at least one stochastic
seasonal cycle. An interesting finding is that the frequency by which stochastic slope
and seasonality are detected depends inversely on the sample size. The percentage
of specifications featuring all three random components (corresponding to the triple
(1,1,1) of the indicators) is 36.57 for the U.S. industrial production series, which are
very long. This percentage decreases quite rapidly as the sample sizes decreases.
The different results for the IPI and RT subsets may be the consequence of the
different sample sizes of the series making up the two groups, the RT series being
much shorter.
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Table 4: Joint frequency distribution of the three indicators γµ, γA and I(
∑

j γj > 0)
for the complete dataset (Total), the industrial production series subset (IPI), the
retail turnover series subset (IPI), the subsets consisting of very long time series
(VL), long time series (L), medium sized (M), and short time series (S).

γµ γA I(
∑

j γj > 0) Total IPI RT VL L M S

0 0 0 0.26 0.10 0.68 0.00 0.00 0.00 1.52
0 0 1 0.69 0.33 1.61 0.00 0.25 0.64 2.68
0 1 0 2.35 1.03 5.69 0.00 0.59 2.45 8.17
0 1 1 12.74 5.25 31.69 7.79 7.57 22.54 11.56
1 0 0 25.77 27.74 20.80 13.98 18.08 31.63 41.89
1 0 1 48.29 54.02 33.78 36.89 69.57 39.68 32.87
1 1 0 0.99 1.23 0.37 4.77 0.02 0.22 0.49
1 1 1 8.91 10.30 5.38 36.57 3.92 2.84 0.80

7 Conclusions

We find strong support for the presence of a stochastic trend in the series, either in
the form of a time-varying level, or, more rarely, of a stochastic slope, or both. We
estimate the probability of detecting a stochastic trend close to 1. There is however
a difference in the trend model for the industrial production series and the retail
turnover, as for the latter a stochastic slope is more likely to be found, whereas for
the former the slope is either fixed or zero in most of the cases.

Seasonality is a more stable component: only in 70% of the cases we were able
to select at least one stochastic trigonometric cycle out of the six possible cycles.
Most frequently the time variation is found in correspondence with the fundamental
and the first harmonic frequencies. As we move to higher order harmonics, it is less
probable to find time variation.

An interesting intuitive finding is that the probability of estimating time-varying
components increases with the sample size available. This is particularly true of
seasonality. However, even for very large sample sizes (such as those available for
the US industrial production) we were unable to find stochastically varying calendar
effects.
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