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Ranking games and gambling:

When to quit when you’re ahead

Eddie Anderson

The University of Sydney Business School, Australia

August 7, 2011

Abstract

It is common for rewards to be given on the basis of a rank ordering, so that relative

performance amongst a cohort is the criterion. In this paper we formulate an equilibrium

model in which an agent makes successive decisions on whether or not to gamble and is

rewarded on the basis of a rank ordering of final wealth. This is a model of the behaviour of

mutual fund managers who are paid depending on funds under management which in turn

are largely determined by annual or quarterly rank orderings. In this model fund managers

can elect either to pick stocks or to use a market tracking strategy. In equilibrium the

final distribution of rewards will have a negative skew. We explore how this distribution

depends on the number of players, the probability of success when gambling, the structure

of the rewards, and on information regarding the other player’s performance.

1 Introduction

There are many areas in life in which the aim is to come first, even by a small amount.

More generally rewards are often based, not on the absolute values of some variables, but

instead on the rank ordering between firms or individuals who compete against each other.

Business School academics are used to a world in which significant rewards accrue to Schools

who do well in various published rankings. Such an environment may well persuade firms or

individuals to adopt some relatively high risk strategies to give a chance of breaking into the

group with the highest rewards.

Even without any external ranking process, the relative wealth of individuals may be

an important motivator for behavior. This reflects the importance of people’s concept of
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status and the patterns of conspicuous consumption which go along with this. Many authors

have discussed the impact of status-seeking behavior (see Hopkins and Kornienko (8) and the

references therein). It is clear that if individuals care about their relative wealth then there

are implications for attitudes to risk as has been considered by Robson (12) and others.

In this paper we explore the way in which negative skew is introduced by players who

are in part competing against other players for a high ranking in a tournament. We model

an environment in which players derive benefit from doing better than other players, though

their objective may also include some measure of absolute return. Our model is one in which

each player’s strategy has the effect of selecting a distribution of possible returns. Each player

then receives a benefit that is a function of its own return and the returns of the other players.

Players act in a way to maximize their expected utility.

This is a situation that can occur in a number of different environments: for example we

could consider a group of managers who are seeking to maximize the relative profits of their

part of the overall organization (perhaps competing store managers in a retail chain, or sales

managers for different regions), or we could consider fund managers seeking a higher ranking

for their funds. We will show that in these circumstances players can be expected to choose

actions which lead to a small probability of large negative returns, while at the same time

foregoing the balancing large positive returns in favour of a safer strategy giving a relatively

high probability of a modest positive return. Later we will look in more detail at the shapes of

the distributions that occur, but we can summarize by saying that distribution of returns has

negative skew. The intuition for this is simple. If the return is already better than the other

players then from a competitive standpoint nothing more is gained by improving it further,

while if the return is worse than the return of the other players then from a competitive

standpoint nothing is lost if the return is made even worse.

Where a principal wishes to motivate a group of agents, all subject to common exoge-

nous factors, then it may well be appropriate to reward on the basis of a rank ordering of

performance, rather than absolute performance values. Doing so eliminates the possibilities

of rewarding players who simply benefit from good conditions and retains the incentives for

effort even when overall conditions are bad. The same sort of argument applies in a fund

management setting where the rankings provide a useful tool for investors who want to look

beyond the absolute level of returns. In this context however the introduction of negative

skew may well be contrary to the aims of the principal: neither shareholders nor investors are
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likely to favour an environment in which a high probability of positive returns is balanced by

a small probability of disastrous results.

The literature in this area has two main strands. There are a number of papers which

analyze situations where rewards based on ranking are given in order to motivate effort applied

by agents. Some of this literature is in labour economics, and job promotions comprise one

obvious way in which the best relative performance generates a large prize. An early paper by

Lazear and Rosen (11) formulates the problem with output related to investment (or effort)

together with a random component. The reward structure is then related to rank and the

optimum choice of effort will be related to the difference between rewards for coming first,

second etc. Hvide (9) introduces the ability for the agent to take risks (increasing the variance

of the random component) and shows that a result with very high variance and low effort

occurs as an equilibrium. A recent study by Casas-Arce and Martinez-Jerez (4) considers the

tournament game that arises when a manufacturer rewards retailers with prizes for good sales

performance. Again the primary aim is to induce retailers to expend more sales effort.

A second strand of literature, which is more relevant to this paper, arises from research on

fund performance. It has been recognized for some time that the rankings of mutual funds,

which are regularly published, have a considerable impact on the flow of money into these

funds. Since fund managers are often compensated through a flat fee plus a percentage of

the funds under management it is reasonable to suppose that these managers will behave

in ways that are similar to a tournament game in which their reward is directly related to

their ranking amongst similar funds. Both Brown et al. (3) and Chevalier and Ellison (7)

provide evidence that fund managers who do well in the first half of the year tend to use less

risky strategies in the second half of the year and propose that this is a consequence of the

fact that in a tournament a fund that starts out badly needs to achieve a higher volatility

in order to have any chance of winning. There is now quite a substantial literature in this

area. First the empirical evidence is more mixed than the early studies suggested and also

the tournament model may produce counter-intuitive results when formulated in a way that

reflects the choice between investing in a risky asset and investing in the index. Taylor (15)

provides a two period model in which winning managers are more likely to choose a risky

portfolio than losing managers. There are a number of more recent papers such as (1) that

discuss these issues.

Our focus is on the dynamics of these competitive environments: this enables us to model
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a situation with a rich structure for the distribution of final returns. We look at a multiple

period model in which a simple (‘gamble or not’ ) decision is taken at each period. The net

effect is to produce a distribution of returns with some negative skew in the equilibrium. It

has been observed by a number of authors (10) (2) that returns from both mutual funds and

hedge funds are far from normal, with evidence of negative skew in many cases.

In this paper we discuss the properties of the equilibrium solution. We are able to analyze

small cases exactly and prove some results characterizing the equilibrium strategies, as well

as providing a numerical method for larger problems. We investigate the impact of changes

in the probability of winning a gamble, of increasing the number of players, and of changing

from a winner takes all payoff to one in which say the first, second and third placed players all

benefit. Finally we consider the impact of information about the performance of other players.

Our basic model has the final returns of all the players revealed only at the end: What is the

result of having information on the performance of other players available throughout the

game?

2 The model

We suppose that there are  players who compete in a tournament. The game ends at time  .

At this point player  has a total return ( ). We will use the terminology ‘return’ or ‘position’

interchangeably to refer to the characteristic on which competing players are evaluated. In

a fund management context this will be equal to wealth. The payoff or utility received by

player  has two components related to the absolute value of its return and the relative value

with respect to the other players. Thus we can suppose that player  seeks to maximize the

expectation  [(( )) + (( ) −( )] where we write −( ) for {( ) :  6= } and
the function ( ) is based entirely on the rank ordering of  within the set of values . We

look for equilibrium solutions to this game.

We begin by focussing on a simple class of these problems in which (( ) −( )) =

1 if there are  players including player  in the set of winning players. Thus if we define

the set of winning players as = { : ( ) = max(1( ) ( ))} then (( ) ( )) =
1 | | if  ∈  and (( ) −( )) = 0 otherwise. Hence the component of the player’s

expected utility which is given by  [(( ) −( ))] is simply the probability of player 

winning when the winner is selected at random from amongst the players achieving the best

return at time  .
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We will suppose that there are  periods and the firm’s action at stage  depends on its

current position, (). We shall assume that players have no information on the behavior

of other players. There is a choice of doing nothing so ( + 1) = (), or investing in a

risky asset (‘gambling’) with a probability  of (+ 1) = () +  and a probability 1−  of

( + 1) = () − . In the special case that  = 05 and the component (( )) is linear

so that players are risk neutral with respect to final return then, since expected final return

is fixed, we may ignore the  term in the player payoff. We look for a Nash equilibrium in

strategies.

Since one of our applications relates to the behavior of fund managers, we begin by showing

how this simple “±” random walk with drift can be translated into a framework more familiar
from the perspective of financial investment. We can suppose that the players may choose

either to invest in a market tracking instrument which follows some stochastic behavior ()

or to invest in a risky stock which in each period achieves a return of () with probability

 and a return of −() with probability 1− . From a fund manager’s perspective this is

achieved by letting the fund become significantly overweight in a few stocks relative to their

natural weighting in the asset class. Thus if wealth is () at time  then investing in the

market tracking instrument gives wealth ()() at time  + 1. and the log of wealth is

either log(()) + log(()) or log(()) + log(()) ±  depending on whether or not the

market tracking instrument is selected. The log of wealth at a time  is given by log((0)) +P
= log(()) plus a term that captures the random walk which takes place when there is

an investment in a risky stock. Hence we can track the log market behavior and take this

away from the log return to exactly reproduce our original problem. Notice however that we

can no longer simply remove the  term in the player payoff if it is linear. In this context

‘gambling’ will leave expected log wealth unaltered if  = 05, but will lead to a change in

expected wealth. Note that it is not unreasonable in some circumstances to treat log wealth

as a (risk averse) utility function.

We will assume that the first period has  = 1 so there are  − 1 opportunities to gamble
(or not) at time periods 1,  − 1. We use the notation that, for a policy , ( ) is the

probability of gambling at time  if the position at time  is . We will often refer to this as

the state ( ). A pure strategy will have either ( ) = 1 or ( ) = 0. However since

we are interested in a Nash equilibrium we may need to use mixed strategies in which 0 

( )  1 for some values of  and .
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We consider an optimal strategy for player  given that the strategy for each of the other

players  6=  1 ≤  ≤ , is fixed and each of the other players is using the same strategy.

Thus each of the other players has the same distribution over final positions ( ): we let

() = Pr(( ) ≤ ) and () = Pr(( ) = )

We write  ( ) for the expected value for player  starting at state ( ) and behaving

optimally. The dynamics of the process is that if we gamble in state ( ) then with probability

 we move to + 1 at time + 1 and with probability 1−  we move to − 1 at time + 1.
The probability of winning if we end in state (  ) can be calculated by considering the

probability that all  − 1 other players end at positions less than ; plus the probability that

 − 2 players end at positions less than , and one other player ends at  (when we split the

prize); plus the probability that  − 3 players end at positions less than , and two other

players end at ; and so on. We obtain

 (  ) = (− 1)−1 + 1
2
( − 1)()(− 1)−2

+
1

3

( − 1)( − 2)
12

()2(− 1)−3 + +
1


()−1

=
1

()
(
¡
() +(− 1)) −(− 1)¢ = 1

()

¡
() −(− 1)¢ 

When  = 2 this becomes

 (  ) = (− 1) + 05() = 05(− 1) + 05() (1)

The dynamic programming recursions are as follows (where in each case the condition

holds for all  ∈ X = {−− + 1  − 1 } and  ∈ T = {1 2 − 1} ):

 ( ) = max{ (+ 1 + 1) + (1− ) (− 1 + 1)  ( + 1)}. (2)

Then the optimal policy is to gamble, i.e. ( ) = 1, if

 ( + 1)   (+ 1 + 1) + (1− ) (− 1 + 1) (3)

and the optimal policy is not to gamble, i.e. ( ) = 0, if

 ( + 1)   (+ 1 + 1) + (1− ) (− 1 + 1) (4)
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Lemma 1. If for some given  both

 ( )   ( + 1 ) + (1− ) ( − 1 ) (5)

and

 ( )   ( + 1 ) + (1− ) ( − 1 ) (6)

then   .

Proof. Suppose on the contrary that   . Choose the last such , so

 ( ) =  ( + 1 ) + (1− ) ( − 1 )

for     . When   − 1 we may use (2) and deduce that  ( ) =  ( + 1) =  =

 ( − 1). If  = − 1 then this is trivial. Now from (5) and (2)

 ( − 1) =  ( + 1 ) + (1− ) ( − 1 )

Hence

 ( ) =  ( + 1 ) + (1− ) ( − 1 ) (7)

Now we can apply (2) repeatedly to show that

 ( − 1 ) ≥  ( − 1 + 1) ≥  ≥  ( − 1 )

and that

 ( + 1 ) ≥  ( + 1 + 1) ≥  ≥  ( + 1 )

Hence, from (6),  ( )   ( + 1 ) + (1 − ) ( − 1 ) which contradicts (7) and

establishes the result. ¥

The result of this lemma shows that once there is a definite advantage to not gambling,

then gambling will not take place again. We can say that the player then ‘quits’. In the fund

management context once there is a definite advantage to switching out of the risky asset,

then it is never optimal to switch back again. Thus there are functions ()  () for  ∈ X
taking values in T ∪{0 }with the properties:

(a)  ( +1)   (+1 +1)+ (1− ) (− 1 +1) and ( ) = 1 for  ≤ () and
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 ∈ T ;
(b)  ( +1)   (+1 +1)+ (1− ) (− 1 +1) and ( ) = 0 for  ≥ () and

 ∈ T ;
(c)  ( + 1) =  (+ 1 + 1) + (1− ) (− 1 + 1) for ()    () and  ∈ T .

In the case that () = 0 then (a) is empty and when () =  then (b) is empty. If

() = ()− 1 then (c) is empty.

Notice that for ()   then

 ( ()) =  ( () + 1) =  =  (  ) = 05(− 1) + 05()

Values of  for which () =  − 1 have the property that a player at position  always

gambles whatever the time period. We expect this set to include any value sufficiently small

(i.e. large negative values). We can be more specific since these  values are determined by

the fact that

 (  )   (+ 1  ) + (1− ) (− 1  )

When there are two players, substituting from (1) gives

(− 1) +()  () + (+ 1) + (1− )(− 2) + (1− )(− 1)

which simplifies to

(1− )(() + (− 1))  ((+ 1) + ()) (8)

Under this condition we gamble at ( ) when  =  − 1 and hence (from the lemma) for any

value of . On the other hand (reversing all the inequalities) shows that if

(1− )(() + (− 1))  ((+ 1) + ())

then ()   and it is optimal not to gamble at (  − 1).

3 Equilibrium solutions for two examples

We begin by considering a two player game with  = 05. Small cases can be solved by hand

and Figure 1 shows an equilibrium solution with  = 4. At the nodes marked A and C mixing
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V=29/32
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V=15/32

V=1/4

V=1/8

V=1/16
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C

Figure 1: The equilibrium solution for  = 4

takes place: there is a 34 probability of gambling at A and a 47 probability of gambling

at C. With the policy shown the probabilities of achieving each of the final wealth values are

as shown on the right of the Figure. From these values the final values  (  ) are obtained

(also shown on the right of the Figure) and then the dynamic programming recursions can be

used to determine the values of  throughout the tree. It is not hard to check that at each

node the ‘right’ decisions are made and at the two nodes at which mixing takes place there

are equal values obtained from the gambling or quitting options.

It turns out that there are many different equilibrium solutions. There will be a range of

equilibrium solutions in which the basic structure is the same but the exact choice of gamble

probabilities varies: all of these will share the same values of the probabilities at  and hence

of  (  ). Specifically if , , and  are the probabilities of gambling at these three

nodes, then we have

 =
1

1 + 
,  =

075− 

1− 

and  can take any value in the range [0 075]

We note that the condition for mixing at ( ) is

 ( + 1) = 05 (+ 1 + 1) + 05 (− 1 + 1)

i.e. that  ( +1)− (− 1 +1) =  (+1 +1)− ( +1). Using the same approach

as in (8) we can simplify this expression for  =  −1 and we see that the condition for mixing
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time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0665
5 1 1 1 0 0 0 0 0 0 0 0.022 0.0975
4 1 1 1 1 0.612 1 1 0 0 0 0 0.0665
3 1 1 1 1 1 0.239 1 0.169 0.177 0.035 0 0.0975
2 1 1 1 1 1 1 1 0.854 0.287 0 0.379 0.0665
1 1 1 1 1 1 1 1 1 0.938 0.421 0 0.0975
0 1 1 1 1 1 1 1 1 0.963 0.857 0.259 0.0665

-1 1 1 1 1 1 1 1 1 0.753 0 0.0975
-2 1 1 1 1 1 1 1 1 0.526 0.0665
-3 1 1 1 1 1 1 1 1 0.0975
-4 1 1 1 1 1 1 1 1 0
-5 1 1 1 1 1 1 1 0.0962
-6 1 1 1 1 1 1 1 0
-7 1 1 1 1 1 1 0.0517
-8 1 1 1 1 1 1
-9 1 1 1 1 1 0.0222

-10 1 1 1 1 1
-11 1 1 1 1 0.0074
-12 1 1 1 1
-13 1 1 1 0.0018
-14 1 1 1
-15 1 1 0.0003
-16 1 1
-17 1 4E-05
-18 1
-19 2E-06

Figure 2: Pattern of equilibrium behaviour when  = 20

at (  − 1) is simply
(− 1) = (+ 1) (9)

We note the duplication of the  values 316 and 14 in the  = 4 equilibrium solution, just

as is required by this equation.

Our second example uses  = 20 with  = 2 and  = 05. This is straightforward to

solve using the computational approach which will be discussed later and Figure 2 shows

an equilibrium solution. Shading represents the points where there is a positive probability

mass The final column gives the  values and the other elements in the table are ( ), the

probabilities of gambling at each position.

The pattern of behavior here is quite clear. For low values of  it is best to gamble but

there is an absorbing barrier - so that if  becomes large enough (equal to 6 with  = 20)

then gambling stops. However at a certain point mixing starts to occur and this is carried

out in a way that gives rise to alternating probability values at the final time for sufficiently

large  (  ≥ −3 in this case). We have a triangular region in which mixing takes place (with
 = 20 the region is determined by +  ≥ 17).
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4 Finding an equilibrium solution

Consider first the two-player game in which each player selects a value of  ∈ {0 1} at each
state ( ). We take Π to be the (finite) set of such . This is the same problem except that

we have added a restriction to rule out 0  ( )  1. Then this is a two player constant

sum game with a finite action space (all the pure strategies with ( ) ∈ {0 1} for  ∈ X
and  ∈ T ) and so has a minimax solution in mixed strategies. Now observe that playing a
mixture

P
 with each ( ) ∈ {0 1} is equivalent to playing the strategy defined by

( ) =
P

( ). Hence we have established that there is an equilibrium in our original

game with two players.

The  player case requires more care. We can use a general result which goes back to Nash

(1951) but see also Cheng et al. (2004) for a discussion of this result. They show (Theorem 4)

that a symmetric game of this form will have an equilibrium solution which is also symmetric,

and hence each player gets a payoff of 1 . Thus the existence of an equilibrium is established.

Notice, however, that the equilibrium may not be unique. Indeed our examples above indicate

that there will not be a unique policy. The result of playing any policy is clearly determined

by the final distribution of return values, and so strategies that share the same distribution,

(), will be equivalent. We will show that in many cases an equilibrium solution is unique

up to this equivalence.

Our next task is to establish that a (symmetric) solution for the  player case can be

found using a method related to the linear programming solution for the two player case. We

let  be the prize awarded to a player in position  so the winner gets 1, the second place

player 2, etc. If there is a tie for places ,  + 1,  + − 1 then the  prizes are awarded
randomly amongst these players with each prize going to a different player. The consequence

is that each of these  players has expected payoff (̇++1+++−1). We say that the

prize structure determined by  is convex if either  = 2, or if   2 and  + +2 ≥ 2+1,
 = 1 2  − 2.

The difficulties in many of the calculations for the multi-player version of this game are

associated with the possibility of a number of players ending at the same position. Since it

is only rank ordering that matters, it will turn out to be convenient to define the perturbed

game in which each player after ending at position  then undergoes a further randomization

giving a final distribution of positions which is uniform over an interval [ −   + ]. Thus

all rank orderings amongst the players with a position  are equally likely. So the expected
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payoff in the perturbed game matches that in the original game and they are equivalent.

Now consider one player using a pure strategy  and all the other players using mixed

strategies. We let  be the set of all pure strategies and || =  . If there are  players,

let ()((2) (3)  ()) be the payoff to a player 1 using pure strategy  when the ’th

player mixes with probabilities () ∈ R over the set of pure strategies. Thus each () is an

 -vector. For an  -vector  we define ()() = ()(   ), to be the expected payoff to

player 1 when each of the other players uses the same mixed strategy .

Lemma 2. If the prize structure is convex then ()() is convex in .

Proof. Let () be the probability of ending at a position less than  in the perturbed game

using strategy . We write this as . Then the probability of winning prize  if (  ) = 

is given by

() :=
( − 1)!

( − 1)!( − )!
−(1−)−1

Hence the expected payoff in this final position is

() :=
X
=1

()

First suppose that   2. Then

0() =
X
=1


( − 1)!

( − 1)!( − )!
(( − )−−1(1−)−1 − ( − 1)−(1−)−2)

= ( − 1)
−1X
=1

( − 2)!
( − 1)!( −  − 1)!( − +1)

−−1(1−)−1

Hence

00() = ( − 1)
−1X
=1

( − +1)
( − 2)!

( − 1)!( −  − 1)! [( −  − 1)−−2(1−)−1

− ( − 1)−−1(1−)−2]

= ( − 1)( − 2)
−2X
=1

[( − 2+1 + +2)
( − 3)!

( − 1)!( −  − 2)!
−−2(1−)−1

which is non-negative by our assumption on , demonstrating that  is a convex function of

.

If  = 2 then 0() = (1 − 2) and  is linear.
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Notice that we can write

()() =
X


()
1

2

Z +

−
(())

But if  =  + (1 − ) is a convex combination of two mixed strategies  and  then

() = () + (1− )(). And so, from the convexity of ,

(()) ≤ (()) + (1− )(())

Thus

()() =
X


()
1

2

Z +

−
(())

≤ ()() + (1− )()()

as required. ¥

We are now ready to characterize a symmetric Nash equilibrium for the  player game.

We define the problem

 (): minimize 

subject to ()() ≤  for all  ∈ P
=1  = 1

 ≥ 0  = 1 2 

Theorem 1. If the prize structure is convex and ∗, ∗ is an optimal solution to the problem

 (), then ∗ = 1 and each player using ∗ is a symmetric Nash equilibrium for the 

player game

Proof. The problem() has a linear objective and from Lemma 2 the feasible region

is convex. Moreover a constraint qualification is satisfied (simply take  large). Hence a

Lagrangian duality result holds.
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The Lagrangian for this problem is

(    ) = +
X
∈

(
()() +  − ) + (1−

X
=1

)

= (1−
X
∈

) +
X



()() + (1−

X
=1

) +
X
∈



Lagrangian duality implies that there are values for   such that

minimize (    ) over  ≥ 0,  ≥ 0

is achieved at the optimal solution to the original problem and moreover these values maximize

the minimum of . We deduce  ≥ 0 and
P

  = 1 with complementary slackness between

 and  .

Hence there exists a scalar  and vector  with  ≥ 0 with
P

  = 1 such that

min≥0
X



()() + (1−

X
=1

) = ∗

Thus, since one possible value for  is  =  and noting that
P

=1  = 1, we have

X



()() ≥ ∗

But the left hand side here is just the result of playing  against itself and is therefore equal

to 1 , and hence ∗ ≤ 1 .
Now consider the first player using the mixed strategy ∗ which solves  . Then all the

strategies are the same and the player has a payoff of 1 . i.e.
P

∈ 
∗


()(∗) = 1 .

Hence at least one pure strategy  ∈  has ()(∗) ≥ 1 and so ∗ ≥ 1 . Putting these
results together we have ∗ = 1

This completes the proof that each player using ∗ is a symmetric Nash equilibrium for

this game. One player varying from this can achieve at most max∈ ()(∗) = 1 so no

player can improve its payoff by unilaterally changing its strategy. ¥

This result can be used to establish uniqueness of the solution up to the values of  in the

case that the prize structure us strictly convex (with the obvious interpretation of this) and

  2. The problem can be reformulated with the  values as the fundamental choice rather
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than  and then use the fact that an optimization problem with a strictly convex feasible set

and linear objective has a unique optimal solution. A more specific approach will be needed

to show this with  = 2

A computational approach for large problems

The fact that an equilibrium solution can be obtained from solving  () suggests a compu-

tational approach that can be used for larger examples. We adapt a method using a column

generation approach to solve the convex problem (). The set of all pure strategy solutions,

, is very large since each () can take values from || to  and to define a pure strategy

solution involves picking a () for each  ∈ X . This gives ( !)2( +1) pure strategies. When
 = 10 this is already more than 1014.

Our algorithm proceeds as follows. At step  we use a set of pure strategies  =

{1 2 }, and solve the problem  () as though  was the complete set of pure strate-

gies. Suppose this gives an optimal solution () which gives weight 
()
 to pure strategy  .

Then we suppose that all the players 2 3   use strategy () and search for the best strat-

egy for player 1. This is done simply by solving the dynamic programming recursions (1) and

(2). This new strategy, call it +1, is then added to the set  to produce +1 = ∪{+1}.
Then  is incremented by 1 and the whole process is repeated (solving the problem  (+1) ).

We stop when the new optimal policy +1 is already in the policy set, or when +1 achieves

a value of 1 for player 1, indicating that the new policy achieves no improvement over the

existing set of policies. This will guarantee an equilibrium since it shows that no player can

improve their return by changing from ().

We implement this by starting with a set of  solutions (all the same) and then adding

one solution at a time by replacing a solution with zero weight in the current best mixture. In

fact we continue for longer than  steps, at each stage replacing the solution with the lowest

average recent weight (we use an exponential smoothing approach to form a measure of the

recent average probabilities applied to each solution). At each stage the payoff function ()

needs to be found for the new pure strategy  being introduced.

5 Patterns of behavior in larger problems

With the computational approach described above we can find equilibrium solutions for larger

values of  and we observe a consistent pattern of behavior. This is broadly similar to the
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behavior with  = 20, having a triangular region where mixing takes place. But there may also

be a region with higher values of  where the behavior is not to gamble for  large enough. In

this region () is strictly greater than (+1)−1 whereas in the mixing region () increases
by 1 for each increment in . In this section we explore how changes in the parameters of the

problem effect the equilibrium solutions.

Varying the drift

The parameter  gives the advantage or disadvantage of gambling. In an investment context

it is natural to consider an upward drift corresponding to   05. We expect that as 

increases then gambling becomes more and more attractive. We begin by asking whether for

sufficiently high  value there is an equilibrium where players always gamble. Consider this

‘always gamble’ solution with  even and let  = 2. In this case the probabilities () are

given by the binomial distribution with

() = +2(1− )−2
 !

( + 2)!( − 2)!
if  = −− + 2 − 2 0 2  − 2 

and () = 0 when  is odd. Now observe that we can evaluate the decision to gamble at

 + 1 at time  − 1 where  = 2 is even. As we saw before it is optimal to gamble if the

inequality (8) holds, and since (+ 1) = 0 we can rewrite this condition as

(1− )(+(1− )−
1

( + )!( − )!
)  (++1(1− )−−1

1

( +  + 1)!( −  − 1)!)

This simplifies to

2( − )  (1− )2( +  + 1)

This inequality is less likely to be satisfied as  increases (making the positive term smaller

and the negative term higher). The highest value of  occurs when  + 1 =  − 1 and so
 =  − 1. Hence an always-gamble solution will be an equilibrium if (1 − ) 

√
2i.e.

 
√
(1 +

√
 ). Thus for high enough value of  the always-gamble solution will be an

equilibrium, but the switching point for  approaches 1 as  gets large. For  = 80 we need

  0899.

In the other direction we can consider values of  less than 05 when gambling becomes

less attractive. For small enough values of  we expect that the solution of never gambling
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Figure 3: Distribution of final position with upward drift

will be an equilibrium. Against another player using this strategy it is clearly best to gamble

at any   position with   0 (otherwise we never win) and not to gamble if   0 (since

winning is assured). Hence we need to calculate the value of  at  = −1,  = 1 to check

that not gambling is optimal at the start. Unfortunately this is a very complex expression

and does not give rise to a simple expression for the limiting value of  at which gambling

becomes never worthwhile. We can work out the values numerically and for  = 80 it turns

out that for   0333344 it is never worth gambling.

In the limit of large  we have  (−1 ) = 05Pr( = 0 for some   ). Let  be

the probability for  infinite that we never reach the position one step larger in . Then

 = (1−2)(1−), which can be seen from a standard analysis of a gambler’s ruin probability
for an infinitely rich adversary - see e.g. Ross (2007). Thus the limiting value of  (−1 1) for
large  is 05(1− ) which can be simplified to [2(1− )] . Hence we have established that

the never gamble solution is an equilibrium when

05  + (1− )


2(1− )

i.e. for   13.

Figures 3 and 4 show the behavior of  (i.e. the distribution of final positions) for different

values of  near 05 and  = 80. Because over part of the range (at the left hand end)

the  values alternate with every other one being zero it makes better sense to plot the two

point moving average: (() + (− 1))2. With this size of problem we begin to reach some

computational difficulties. The solutions below were obtained using the method outlined

above, using GAMS and the CONOPT solver, with a maximum number of 35 solutions in the
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Figure 4: Distribution of final position with downward drift

set .

Notice that for  = 05 there is a region where the values of () alternate with () =

(+2), which is the condition for mixing. On this segment of the curve the two point moving

average plotted has a constant value. For values of  6= 05 there is a segment of the curve

where mixing takes place and (from (8)) the two point moving average is multiplied by a factor

(1 − ) at each increase in  by 1. this is apparent in all the curves drawn except for the

case  = 058 where the mixing region (starting at  = 23) is disguised by the shape of the

bell curve.

Varying the number of competitors

In order to investigate the effect of varying the number of competitors we carry out some

experiments with  = 80. Figure 5 shows what happens for different values of  and  = 05.

Again we plot the two point moving average, but even so we observe some oscillation in values

around  = 0 for  = 3 and  = 4. Each of the curves exhibits a sharp cutoff on the

right-hand side - corresponding to a value of  that is sufficiently large that gambling is no

longer attractive, but the point at which we stop gambling is pushed higher as the number of

players increases. This is intuitive - with a larger number of players the chance of winning is

reduced and the winning player will be likely to have a larger value of  at time  .
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Each of the curves has a region where

 (  ) =  (+ 1  ) + (1− ) (− 1  )

so that players are indifferent whether to gamble or not at  − 1. For  = 2 we have seen

that this gives a flat section of the curve but for higher values of  the condition is more

complicated and implies a decreasing and convex segment in the  function.

Varying the reward structure

Up to now our experiments have considered the case where the prize is divided amongst the

winners. In this section we consider different prize structures. We have already observed

that a convex prize structure has properties enabling a solution approach through a particulat

convex optimization problem. Non-convex prize structures lead to problems which are com-

putationally harder. Before discussing an example of a non-convex prize structure we give a

result for the linear case.

Lemma 4. Suppose that the prize structure is linear with −+1 =   0 for  = 2 3  ,

then there is an equilibrium which exactly matches the equilibrium in the two player case.

Proof. We consider the perturbed game so that we do not need to consider two players

ending at the same position. We may assume that in an equilibrium all other players use the
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same strategy. The expected payoff from ending at  in the  player game is

X
=1

 Pr( −  other players below ) =  + 

X
=1

( − ) Pr( −  other players below )

=  + (number of other players below )

=  + ( − 1)()

where () = Pr(the player finishes at a position less than ). Thus the payoff is simply an

affine transformation of the payoff in a two player game (which is 2 + (1 − 2)() ) and

this is enough to establish the result we require. ¥

Next we consider the possibility that the prize is divided amongst the top two or three

players. In particular we investigate the case with  = 3, when the prize is shared between

the top two players (a non-convex prize structure). We use the framework from section 4

with 1 = 05 and 2 = 05, and hence if one player is first and there is a tie between the

second and third players, then the first placed player receives 05 and the other two players

each receive 025. Then

 (  ) = (12)(− 1)2 +(− 1)(1−(− 1)) + (12)()(1−()) + (13)()2

The first term relates to both the other players doing worse than ; the second term arises

from just one of the other players doing worse than ; the third term comes from one of the

other players also getting  while the third player does better; and the final term comes from

both the other players getting .

Since this is not a convex prize structure the approach based on solving  () may not

work (and in fact does not work in practice). We have instead used a more direct approach

of finding the solutions to a set of non linear equations where the probabilities of gambling

( ) at each position lead to the final probabilities () and these are used as the basis for a

dynamic programming recursion with the aim of achieving the appropriate complementarity

conditions where ( ) = 1 if (3) holds and ( ) = 0 if (4) holds. We use CONOPT as a

solver and the result for  = 80 is shown in Figure 6. The winner-takes-all prize structure for

 = 3 is also shown as a comparison.

Spreading the prize in this way is equivalent to switching from a reward for coming first
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Figure 6: The effect of different prize structures for  = 3 and  = 05

to a punishment for coming last. This has a dramatic effect on the distribution of returns,

giving a more strongly skewed shape

The case with a very large number of players is also of interest. Suppose that the reward

a player receives is related to its percentile position. Thus there is some function () such

that the reward given to player  is (proportion of players doing worse than ). We require 

increasing on [0 1] . Thus the expected reward with  as  goes to infinity is just (()). It

is important to note that in this large  case we no longer need to assume that players have

no knowledge of other players’ actions or results as decisions are taken. In equilibrium with

a large number of other players we can expect the range and distribution of results simply to

match the equilibrium distribution. As before with a linear prize structure where () = ,

so that the amount received is proportional to the percentile rank, then the reward is ()

which matches the two player case. Thus the equilibrium solution with a large number of

players for this reward function is just the two player equilibrium discussed earlier.

6 Knowing the other player’s position

Up to now we have assumed that there is no exchange of information until the end of the

game when the winning player is revealed at time  . In many circumstances it makes more

sense to assume that the positions of the other players are known at all times. It is easy to

see that the decision on whether or not to gamble will depend only on the relative positions

of the other players and the time till  . If there are just two players then the game can be
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analyzed easily since the state at time  is then captured with a single number, while more

generally the state with  players requires an  − 1 vector to represent it. In this section we
will concentrate on analyzing the two player case, indicated by  and . We suppose that  is

the probability of moving to a higher position and (1 − ) is the probability of moving to a

lower position.

We can use similar notation to before. The state variable ( ) represents the state where

player  has a value  greater than the value of player  at time . For a policy , ( ) is the

probability of gambling at state ( ). Hence (0 ) is the probability of player  gambling

if both players have the same value at time , (1 ) is the probability of player  gambling

if player  is one ahead player , etc. A pure strategy for  will have either ( ) = 1 or

( ) = 0. The value of the game is the expected payoff, and for finite  , this is a two player

finite sum game and so has a Nash equilibrium. If the equilibrium involves mixed strategies,

then this can be obtained with 0  ( )  1.

To find an optimal strategy for one player against a fixed strategy of the other we write

( ) for the optimal expected payoff for player  starting at the state ( ). Then the final

conditions are (  ) = 1 if   0, (0  ) = 05 and (  ) = 0 if   0.

If player  is in the state ( ) then player  is in the state (− ). Writing  for the

strategy used by player  we let  = (− ) be the probability that player  gambles when
player  is in state ( ). Then we can write the following dynamic programming recursion

for :

( ) = max{((− 1 + 1) + (1− )(+ 1 + 1)) + (1− )( + 1) (10)

((2 + (1− )2)( + 1) + (1− )(+ 2 + 1) + (1− )(− 2 + 1))

+ (1− )((+ 1 + 1) + (1− )(− 1 + 1))}

The first term tracks what happens if player  does not gamble and the second term tracks the

case where player  does gamble. The optimal policy for player  is determined by the larger

term (with mixing only possible if they are equal).

Note that the expected payoffs to the two players sum to 1. In a symmetric equilibrium

we can write  =  =  and this translates into the requirement that

 ( ) +  (− ) = 1 (11)
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which implies that  (0 ) = 05.

Theorem 2. When 0    05 there is a symmetric equilibrium in which each player gambles

if they are behind the other player, and does not gamble if they are either ahead or at the

same position as the other player. In the case that  = 05 there is an equilibrium in which

each player gambles if they are behind the other player, does not gamble if they are ahead

and chooses an arbitrary probability of gambling if the two players are at the same position.

Proof. To prove this we only need to check the optimality conditions given by (10) i.e. that

if player  follows the policy stated then player  will do so as well. At the same time as doing

this we will establish inductively that for any equilibrium: (a)  ( ) ≥  ( + 1 ) + (1 −
) ( − 1 ) for   0 ; (b)  ( ) ≤  ( + 1 ) + (1 − ) ( − 1 ) for   0, and (c)

 ( ) is non-decreasing in . Notice that all these statements are true at  =  .

First consider the case  = 0. From (10) and letting  = (0 ) we have

 ( ) = max{( (−1 + 1) + (1− ) (1 + 1)) + (1− )05

(052 + 05(1− )2 + (1− ) (2 + 1) + (1− ) (−2 + 1))

+ (1− )( (1 + 1) + (1− ) (−1 + 1))}

We can use (11) to show that the first term is

(+ (1− 2) (1 + 1)) + (1− )05

and the second is

(052 + 05(1− )2 + (1− )) + (1− )((1− )− (1− 2) (1 + 1))

Hence the first term minus the second is ( (1  + 1) − 05)(1 − 2) ≥ 0 with equality when
 = 05. Since this holds independent of  we have established that when   05 we should

never gamble but when  = 05 it does not matter what value of  is chosen.

Now consider   0. We have  = (− ) = 1 so

 ( ) = max{ (− 1 + 1) + (1− ) (+ 1 + 1))

(2 + (1− )2) ( + 1) + (1− ) (+ 2 + 1) + (1− ) (− 2 + 1)}
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From inductive assumption (a) we have

 (− 1 + 1) ≥  ( + 1) + (1− ) (− 2 + 1)

 (+ 1 + 1) ≥  (+ 2 + 1) + (1− ) ( + 1)

Note that in the case where  = 1 we need to deal with the first inequality differently. Using

(11) and  (0 + 1) = 05, the inequality can be written

(1− 2) (1 + 1) ≥ 05−  (12)

which is satisfied because  (1 +1) ≥ 05 from inductive assumption (c) and  ≤ 05. Hence
the maximum in (??) occurs in the first term and it is optimal not to gamble. Moreover

 ( )−  (+ 1 )− (1− ) (− 1 )

= ( (− 1 + 1)−  ( + 1)− (1− ) (− 2 + 1))

+(1− )( (+ 1 + 1)−  (+ 2 + 1)− (1− ) ( + 1))

≥ 0

Note that for  = 1 we have to use (12) in order to establish this inequality. In any case this

establishes part (a) of the inductive assumptions. Finally observe that in this region

 (+ 1 )−  ( )

= ( ( + 1)−  (− 1 + 1)) + (1− )( (+ 2 + 1)−  (+ 1 + 1)) ≥ 0

which establishes part (c).

Next we consider   0. We have  = (− ) = 0 so

( ) = max{( + 1)) (+ 1 + 1) + (1− )(− 1 + 1)}

Now by our inductive assumption (b) the maximization occurs in the second term and it is
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optimal to gamble. Moreover for   −1

 ( )−  (+ 1 )− (1− ) (− 1 )

= ( (+ 1 + 1)−  (+ 2 + 1)− (1− ) ( + 1))

+(1− )( (− 1 + 1)−  ( + 1)− (1− ) (− 2 + 1))

≤ 0

For  = −1 we need a different expression for  (0 ) and

 (−1 )−  (0 )− (1− ) (−2 )

= 05+ (1− )( (−2 + 1)− 05−  (−1 + 1)− (1− ) (−3 + 1))

≤ 0

by the inductive assumption (b). Thus we have established the inductive assumption (b).

Finally observe that for   0

 ( )−  (− 1 )

= ( (+ 1 + 1)−  ( + 1)) + (1− )( (− 1 + 1)−  (− 2 + 1)) ≥ 0

which establishes part (c).

It only remains to show that  (−1 ) ≤  (0 ) = 05 ≤  (1 ) which has not been covered

by our discussion above. Now

 (1 ) = 05+ (1− ) (2 + 1) ≥ 05+ (1− ) (1 + 1)

and hence  (1 ) ≥ 05. The other inequality  (−1 ) ≤ 05 follows from (11). ¥

Notice that there are other equilibrium solutions. Since the maximum change in  at a

single step is 2, whenever ||  2 − 2 it no longer matters what policy is chosen. However
our interest is in the distribution of final values, and this will be affected by the choice of

whether or not to gamble when there is no longer any chance of reversing the rank ordering.

The policy described in Theorem 2 is a natural one to consider and we show the distribution
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Figure 7: Distribution of final values with full information,  = 05

of final values under this policy when  = 05 in Figure 7.  gives the probability of gambling

when  = 0, which we take to be the same for both players. We have shown the solution when

 is 1, but different values for  produce little difference in the final distribution The figure

also shows the case where players have no information on the other player, as a comparison.

When   05 it is not possible to write down a simple equilibrium policy. Notice that

as  → 1 it will become best to gamble at almost all states. Numerical calculation of an

equilibrium policy is simpler than for the problem without information on the other player’s

position. We can work out an equilibrium policy with one step to go, then with two steps

to go and so on. As an example Figure 8 shows the structure of the equilibrium policy for

 = 054 and  = 5. The nodes which are shaded are those at which the players gamble in

equilibrium and those shown as empty are those at which the players do not gamble. Notice

that the equilibrium has a complex structure and at  = 3 the players gamble when  = 2 but

do not gamble when  = 1, which is somewhat counterintuitive.

7 Conclusions

We have explored the patterns of behavior that occur when individuals can control the riskiness

of their actions and are rewarded only when they outperform their competitors. In our model

individuals can choose to gamble or not at each time period. The typical equilibrium behaviour
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Figure 8: Possible states in equilibrium for  = 5 and  = 054

involves a time varying boundary: if at any time  the current position is lower than the

boundary it is best to continue gambling. However, equilibria in this game usually contain a

range of values at which there is mixing with a positive probability both of gambling and not

gambling. Thus, once a player hits the boundary, a possibility of not gambling is introduced,

but the player may not quit gambling entirely. The shape of the boundary involves lower values

of  as the time horizon approaches, and for a fair gamble ( = 05) and a small number of

players this will involve negative values of  for  close to  . Thus we might summarise by

saying that we stop gambling (or reduce its probability) when we are sufficiently far ahead,

but as the end approaches we may no longer need to be ahead of the starting position. In

that sense we might choose to quit even though we are “behind”.

As we would expect the equilibrium produces results that involve a negative skew, with

small probabilities of bad outcomes being balanced by larger probabilities of better than

average outcomes. In these models higher negative skew occurs at equilibria in which the

players are more likely to quit early, rather than carrying on gambling. Our computations

demonstrate that these higher skew distributions occur with fewer players rather than many

players; with negative drift rather than positive drift; with punishment for poor relative

performance rather than rewards for good relative performance; and with knowledge of the

other player’s ongoing performance rather than ignorance.

This work has involved two fundamental decisions on the type of model to employ. First
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we have assumed that the game is played over a finite time horizon, and second we have

used a discrete time framework. Both of these choices present the opportunity for further

work through exploring either an infinite time horizon or a continuous time model. In a fund

management context it may be argued that either a quarterly or annual ranking exercise

is important, making the finite time horizon a natural modelling choice. However there are

many circumstances when competitors receive some benefit from their current relative position,

which would lead naturally to a infinite time horizon model with discounting where rewards

at each time period are given to the player who is ahead at that time.

In the case of the continuous time diffusion limit and a model without information on the

performance of other players, we conjecture that there will be a monotonic switching curve at

which gambling stops. We expect that a continuous time framework will eliminate the need

to consider mixed strategies, since the desired final distribution of values (·) can be obtained
simply by using the right switching curve. This is closely related to the type of switching curve

that arises in the exercise of an American option, but here occurs in an equilibrium context.

Some related work is by Browne (6) who considers a stochastic differential game in which two

players compete with a dynamic portfolio trading strategy. This varies from our model, not

only through using a continuous time framework, but also through not having a finite time

horizon. The game stops, and a winner is determined, when one player outperforms the other

by a given percentage.
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